
Master in High Performance
Computing

Analysis of OpenFOAM
performance obtained using
modern C++ parallelization

techniques

Supervisor(s):
Giovanni Stabile,
Filippo Spiga,
Matthew Martineau

Candidate:
Giulio Malenza

8th edition
2021–2022

ii

To my family.

iv

Abstract

Current trends in high performance computing (HPC) include the use of Graphics Pro-

cessing Units (GPUs) as massively parallel co-processors coupled with CPUs to acceler-

ate the solution of complex physics and engineering problems like computational fluid

dynamics (CFD).

OpenFOAM is a popular open-source CFD parallel software used by scientists and

engineers worldwide. Several attempts have been performed to adapt the codebase to

run on GPUs, with variable successes. Recently NVIDIA, CINECA and ESI-OpenCFD

have collaborated to accelerate solver computation in OpenFOAM using the NVIDIA

AmgX linear solver library. Other sections of the code still bounded by CPU can quickly

become a limiting factor in achieving good end-to-end performance.

The main objective of this project will be to explore the use of modern ISO C++

parallel constructs to accelerate well-defined kernels extracted from the main applica-

tion, in particular routines associated to operators evaluation.

v

Abstract

vi

Contents

Abstract v

1 Introduction 1

1.1 Background . 1

1.2 Project overview . 2

2 Standard ISO C++ 5

2.1 Concurrency in C++ . 5

2.2 STL Algorithms . 6

2.2.1 Class ”Iteration & Transform” . 7

2.2.2 Class ”Reductions” . 8

2.2.3 Class ”Search” . 9

2.2.4 Class ”Memory Movement & Initialization” 9

2.2.5 Class ”Reorder” . 10

2.3 Parallel STL Algorithms . 10

2.4 Support in NVIDIA HPC SDK . 11

2.4.1 NVIDIA Unified Memory . 12

3 OpenFOAM 13

3.1 Domain Discretization . 14

3.2 Gauss-Green Gradient Computation . 17

4 Implementation 21

4.1 Previous works . 21

4.2 Identification of simpleFOAM hot-spots . 21

4.3 Code Porting and Refactoring . 23

4.3.1 Routine SurfaceIntepolationScheme 23

4.3.2 Routine gradf . 24

4.3.3 Routine CorrectBoundaryConditions 33

4.4 OpenFOAM gradient mini-app . 35

4.5 Profiling a GPU application . 36

4.6 Tuning data movement with explicit pre-fetching 36

vii

CONTENTS

5 Results 39

5.1 Mini-app input cases . 39

5.2 Computing platform . 39

5.3 Results obtained . 40

5.3.1 Performance running Mesh 16M input case 41

5.3.2 Performance running 32M mesh input case 44

5.3.3 Performance running 64M mesh input case 45

5.4 General considerations . 46

6 Conclusions 49

A Execution Times for 51

A.1 Global Execution Times for . 51

A.2 Execution Times for Mesh 16M . 52

A.3 Execution Times for Mesh 32M . 52

A.4 Execution Times for Mesh 64M . 53

Bibliography 53

viii

List of Figures

2.1 Simplified timeline of C++ standard development from 1980 to the present day. 5

3.1 Example of structured and unstructured meshes 15

3.2 Owner and Neighbour . 16

3.3 diag, lower and upper lists of a OpenFOAM matrix 17

4.1 Partial Kcachegrind output of the gradient computation 22

4.2 List of List . 26

4.3 Optimized list of list . 27

4.4 Sorting list . 27

4.5 Start owner list . 28

4.6 Start list creation . 31

4.7 Weight first cycle without pre-fetching tools 37

4.8 Weight first cycle with pre-fetching tools 38

4.9 Pre-fetching section . 38

5.1 The NVIDIA Arm HPC Developer Kit platform. 40

ix

LIST OF FIGURES

x

List of Tables

5.1 Mesh specifications . 39

5.2 Explanations of various NVTX tags acronyms used. 41

5.3 speed-up first iteration Mesh 16M (HYBRID = 10 MPI + × 8 CPU threads) . 42

5.4 speed-up second iteration Mesh 16M (HYBRID = 10 MPI × 8 threads) 43

5.5 speed-up first iteration Mesh 32M (HYBRID = 10 MPI × 8 threads) 44

5.6 speed-up second iteration Mesh 32M (HYBRID = 10 MPI × 8 threads) 45

5.7 speed-up first iteration Mesh 64M (HYBRID = 10 MPI × 8 threads) 45

5.8 speed-up second iteration Mesh 64M (HYBRID = 10 MPI × 8 threads) 46

5.9 Full speed-ups of GRAD during the First Iteration (HYBRID = 10 MPI × 8

threads) . 47

5.10 Full speed-ups of GRAD during the Second Iteration (HYBRID = 10 MPI × 8

threads) . 47

A.1 Global Execution Times for first iteration (HYBRID = 10 MPI × 8 threads) . 51

A.2 Global Execution Times for second iteration (HYBRID = 10 MPI × 8 threads) 51

A.3 Times first iteration Mesh 16M (HYBRID = 10 MPI × 8 threads) 52

A.4 Times second iteration Mesh 16M (HYBRID = 10 MPI × 8 threads) 52

A.5 Time first iteration Mesh 32M (HYBRID = 10 MPI × 8 threads) 52

A.6 Times second iteration Mesh 32M (HYBRID = 10 MPI × 8 threads) 53

A.7 Times first iteration Mesh 64M (HYBRID = 10 MPI × 8 threads) 53

A.8 Times second iteration Mesh 64M (HYBRID = 10 MPI × 8 threads) 53

xi

LIST OF TABLES

xii

Listings

2.1 for each algorithm . 7

2.2 transform algorithm(unary operator) . 7

2.3 transform algorithm(binary operator) . 8

2.4 reduce algorithm . 8

2.5 count algorithm . 8

2.6 search algorithm . 9

2.7 find algorithm . 9

2.8 copy algorithm . 9

2.9 generate algorithm . 10

4.1 dotInterpolate cycle . 23

4.2 dotInterpolate cycle in parallel . 23

4.3 weights cycle . 24

4.4 forAll macro syntax . 24

4.5 weights cycle in parallel . 24

4.6 Gradient field constructor . 25

4.7 Field constructor . 25

4.8 Field constructor in parallel . 25

4.9 First cycle in the gradf . 26

4.10 Sorting lists . 27

4.11 Start list creation . 28

4.12 OwnerList creation . 29

4.13 OwnerList and OwnerStart allocation . 29

4.14 first cycle gradient in parallel . 30

4.15 Second cycle gradient . 30

4.16 List creation . 31

4.17 Second cycle in parallel . 32

4.18 Third cycle . 32

4.19 Third cycle in parallel . 33

4.20 Correction boundary condition . 33

4.21 mag function . 33

4.22 Parallel mag function . 33

xiii

LISTINGS

4.23 PatchInternalField function . 34

4.24 PatchInternalField function in parallel . 34

4.25 Deltacoeff function . 34

4.26 Deltacoeff function in parallel . 34

4.27 Test Application . 35

xiv

Chapter 1

Introduction

1.1 Background

Current trends in High Performance Computing (HPC) include the use of accelerators, such

as graphics processing units (GPUs), as co-processors coupled with Central Processing Units

(CPUs) in order to accelerate numerical operations common to different applications. From

the hardware point of view, technology providers such as NVIDIA, Intel and AMD are focused

on developing and improving these new technologies adding in each generation new function-

alities such mixed precision, better memory hierarchies and tensor core for high throughput.

From the software point of view, many efforts have been made to make the best use of these

new technologies and make them easy for users to handle. GPUs were originally developed to

accelerate the rendering of 3D graphics. Graphical rendering consists mainly of simple math-

ematical operations performed on large amounts of data in SIMD-like fashion. Over the years

GPUs became more flexible and programmable. In particular, thanks to the introduction of

programming models such as CUDA, developers were able to write code and execute it on

the GPUs by using a very pragmatic and intuitive programmable API.

OpenFOAM is one of the most popular open-source Computational Fluid Dynamics (CFD)

software due to its flexibility and other optimized features. It is manly written in C++ and

it is based on the finite volume method [23]. Any OpenFOAM simulation consists manly in

two parts:

• In the assembly part, linear systems of algebraic equations are derived from the dis-

cretization of a set of Partial Differential Equations (PDE).

• In the solver part, the solution of these systems is obtained using numerical methods.

Discretizing and solving these equations is not only difficult from the theoretical point of view

but also from a computational one. Previous works [1] show that the main bottleneck on the

OpenFOAM simulation resides in the solver part for a broader set of use-cases. Many efforts

have been devoted to improve the performance of the solver part [19, 20] as well as non-solver

1

Introduction

parts [25]. However, also the assembly part requires time and resources in a general end-to-

end OpenFOAM simulation. It has been observed that assembly can too become a dominant

aspect of a simulation.

One of the main features that makes OpenFOAM easily portable on different CPU archi-

tectures is the portable nature of the programming language (C++). Therefore, the challenge

is to modify the code-base to run on GPUs without limiting its portability and without

introducing many duplicated specialized code for different engines. Despite all the recent de-

velopments, porting a code to the GPUs is rarely a quick and straightforward process. Many

GPU vendors develop libraries, programming languages and frameworks to make it easier

for developers to perform such task with ease of mind. However, many of these technologies

and paradigms limit code portability to specific architectures. It is not uncommon to have

to rewrite or modify certain parts of the code. Starting from the C++11, first set of par-

allel construct and concurrency topics have been introduced as part of the standard C++

language. Further iterations of the C++ standards (C++14, C++17, C++20) have progres-

sively introduced new concepts and refined the specification. From the Standard C++17 the

algorithms of the Standard Template Library (STL) were extended in order to express and

exploit parallel computation, for example by introducing the so called execution policies [6].

1.2 Project overview

The purpose of this work is to explore the use of modern ISO C++ parallel constructs to

accelerate OpenFOAM computation. By continuing to use standard C++, we are allowed

to unlock extra parallelization opportunities (multi-core CPUs and GPU offload) without

limiting its portability. The novelty of the developed Proof-of-Concept consists in unlocking

multi-core and GPU execution with just a compiler flag switch, avoiding adding extra parallel

programming models (such as OpenMP, Thrust or SYCL) and avoiding restrict the execution

of OpenFOAM simulations to specific accelerated platforms. The code is just modern C++,

it runs on any CPU using any standard-compliant open-source or commercial C++ compiler.

Offload capabilities are provided by the compiler without requiring developer/user special

technical knowledge.

Chapter 2 introduces the theoretical concepts of OpenFOAM relevant to this work. In

particular the domain discretization and the Gauss-Green gradient evaluation are explained.

Chapter 3 is devoted to describing how the implementation was made. Starting with a

brief description of the work previously done to optimise OpenFOAM, the chapter dives into

the selected kernels. Both in the original and in the modified version (where possible) in order

to clearly display the changes needed to unlock opportunities for parallel execution.

2

Introduction

Chapter 4 introduces first the platform used to run the simulations and then analyzes the

results obtained running several kind of experiments: pure MPI (original) execution, hybrid

MPI + multi-thread, MPI + GPU offload

Chapter 5 provides a summary of the achieved results, the merits and shortcomings of the

Proof-of-Concept developed and discuss few extra ideas to expand this research.

3

Introduction

4

Chapter 2

Standard ISO C++

The history of the standard library C++ starts in the 1980s and continues to the present day.

Figure 2.1 summarizes the main developments over the years. The first version of the C++

standard (C++98) consisted of three components: a library to handle the I/O data, a string

library to manipulate strings and the Standard Template Library (or STL). The Standard

Template Library is a collection of containers and algorithms that communicate with each

other via iterators.

In 2005 a technical report (TR1) introduced many new features which were ratified and

made official in the C++11 standard. In the standard C++11 the memory consistency model

was introduced describing the allowed behavior of multi-threaded programs executing with

shared memory [6]. The C++14 was an update of the C++11, the C++17 introduced new

features such as parallel STL algorithms.

Figure 2.1: Simplified timeline of C++ standard development from 1980 to the present day.

2.1 Concurrency in C++

A task can be defined as an activity that could be performed concurrently with other activi-

ties. In this contest the word concurrency can be identified as the execution of several tasks

simultaneously. Traditionally the difference between parallelism and concurrency is a matter

of intent. Both in practical terms mean taking advantages from the hardware capabilities

5

Standard ISO C++

performing multiple tasks simultaneously. However, the former is more related to increas-

ing performances during the processing of large amounts of data, while the latter refers to

increasing performances by separating a large job into smaller tasks that can be executed

simultaneously. In this work the words concurrency and parallelism will have the same mean-

ing, i.e. performing a calculation simultaneously using multiple threads.

Before the standard C++11 the system only knew about one control flow which guaranteed

the programmer that the observed behaviour of the program was the exact consequence of

the instructions executed in the source code [7]. The memory model introduced in C++11

gave the user the possibility of executing code in parallel using threads. To do this, however,

developers had to establish rules to avoid corrupted operations.

2.2 STL Algorithms

Originally the Standard Template Library(STL) was mainly composed of three components:

the containers, objects that store a collection of other objects1, algorithms that run on the

containers and iterators that allow algorithms to run over the container elements.

Containers can be classified as sequential or associative. Sequential containers are: vector,

array, deque, forward list and list. Associative containers are containers based on

key-value pairs. They can be ordered or unordered. Set, map, multiset and multimap are

ordered containers while unordered set, unordered map, unordered multiset and unorder

ed multimap are unordered. Finally, there are container adapters which provide a different

interface for sequential containers, the most important are: stack, queue, priority queue.

Iterators are the glue between containers and algorithms. Specifically they are objects

that represent a pointer which is able to point some element in a range of elements. It has the

ability to iterate over the container using operators like increment(++), decrement(−−) and

dereference(∗)2. There are different iterator categories, the classic ones are: input iterator,

output iterator, forward iterator, bidirectional iterator, random-access iterator.

Input and Output iterators are the simplest and limited iterators, they can move forward

with the increment operator and they are used for input and output operations. The forward

iterators are both input and output iterators, so they are able to do input and output opera-

tions. They can iterate over a container with the increment operator(++) and, if they point

to a class object, they can refer to one of its members with → operator. Bidirectional iterators

are similar to the forward with the ability to go backward using the decrement operator(−−).

As the forward iterators they can be compared using operators(== or ! =).

1https://cplusplus.com/reference/stl/
2https://en.cppreference.com/w/cpp/iterator

6

https://cplusplus.com/reference/stl/
https://en.cppreference.com/w/cpp/iterator

Standard ISO C++

Finally, Random-access iterators implement all the functionality of the bidirectional itera-

tors and, moreover, they can access ranges non-sequentially using the operator([]). They can

be compared with the following operators: ==, ! =, <,<=, >,>=.

Originally, C++11 introduces around 80 algorithms into the Standard Template Library3.

With the evolution of the standard, other algorithms were added over time and now there are

more than 100 algorithms implemented.

2.2.1 Class ”Iteration & Transform”

This class of algorithms allows to iterate or transform container elements. A key and popular

algorithm in this class is for each4. This algorithm applies a function pointer to each element

in the container over which it iterates. Its behaviour is similar to the following one 2.1:

1 template <class InputIt , class Function >

2 constexpr Function for_each(InputIt first , InputIt last , Function f)

3 {

4 for(; first!=last; ++fist){

5 f(*first);

6 }

7 return f;

8 }

Listing 2.1: for each algorithm

Another important algorithm, used many times in this work is the transform5. This

algorithm applies a given operation to a range and returns the result in another range, keeping

the original container elements ordered. There are two variants of this algorithm depending

on the type of operations used by the user. Indeed the operator could be unary, taking only

argument, or binary, taking two arguments. In the first case the behaviour of the algorithm

is similar to the following code (2.2):

1 template <class InputIt , class OutputIt , class UnaryOpn >

2 OutputIt transform(InputIt first1 , InputIt last1 ,

3 OutputIt d_first , UnaryOpn unary_op)

4 {

5 while (first1 != last1)

6 *d_first ++ = unary_op (* first1 ++);

7

8 return d_first;

9 }

Listing 2.2: transform algorithm(unary operator)

In the second case, the algorithm behaviour is like the following 2.3:

3https://en.cppreference.com/w/cpp/algorithm
4https://en.cppreference.com/w/cpp/algorithm/for_each
5https://en.cppreference.com/w/cpp/algorithm/transform

7

https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/algorithm/for_each
https://en.cppreference.com/w/cpp/algorithm/transform

Standard ISO C++

1 template <class InputIt , class InputIt2 ,

2 class OutputIt , class BinaryOp >

3 OutputIt transform(InputIt first1 , InputIt last1 ,

4 InputIt2 first2 , OutputIt d_first ,

5 BinaryOp binary_op)

6 {

7 while (first1 != last1)

8 *d_first ++ = binary_op (* first1 ++,* first2 ++);

9

10 return d_first;

11 }

Listing 2.3: transform algorithm(binary operator)

The algorithms transform reduce, transform inclusive scan and transform exclusi

ve scan apply respectively a transform followed by a reduce operation in the first case, an

inclusive scan in the second case, and an exclusive scan in the last case. In particular inclusive

and exclusive scans are important for computing in parallel common algorithm such as prefix

sum.

2.2.2 Class ”Reductions”

These algorithms usually are useful to perform some type of summary operations. For example

the algorithm count6 can be used to count the number of elements that satisfy some condition

in a given range.

One of the most important algorithms in this class is the reduce. A possible sketch of the

implementation of this algorithm is the following 2.4:

1 template <class InputIt , class Tp, class BinaryOp >

2 Tp reduce(InputIt first , InputIt last , Tp init , BinaryOp binary_op)

3 {

4 for (; first != last; ++ first)

5 init = binary_op(init , *first);

6 return init;

7 }

Listing 2.4: reduce algorithm

Another example of algorithm in this class is the count:

1 template <class InputIt , class T>

2 typename iterator_traits <InputIt >:: difference_type

3 count(InputIt first , InputIt last , const T& value)

4 {

5 typename iterator_traits <InputIt >:: difference_type ret = 0;

6 for (; first != last; ++ first)

7 if (*first == value)

6https://en.cppreference.com/w/cpp/algorithm/count

8

https://en.cppreference.com/w/cpp/algorithm/count

Standard ISO C++

8 ++ret;

9 return ret;

10 }

Listing 2.5: count algorithm

2.2.3 Class ”Search”

In this class the most relevant algorithm for this work are the search and the find algorithms.

2.6 look for the first occurrence of a range in another range. Instead 2.7 returns an iterator to

the first element in a range of elements that satisfies the condition equal to a specific value.

1 template <class ForwardIt1 , class ForwardIt2 >

2 constexpr ForwardIt1 search(ForwardIt1 first , ForwardIt1 last ,

3 ForwardIt2 s_first , ForwardIt2 s_last)

4 {

5 while (1) {

6 ForwardIt1 it = first;

7 for (ForwardIt2 s_it = s_first; ; ++it , ++s_it) {

8 if (s_it == s_last) return first;

9 if (it == last) return last;

10 if (!(*it == *s_it)) break;

11 }

12 ++first;

13 }

14 }

Listing 2.6: search algorithm

1 template <class InputIt , class T>

2 constexpr InputIt find(InputIt first , InputIt last , const T& value)

3 {

4 for (; first != last; ++ first) {

5 if (*first == value) {

6 return first;

7 }

8 }

9 return last;

10 }

Listing 2.7: find algorithm

2.2.4 Class ”Memory Movement & Initialization”

In this class the copy algorithm can be found. This algorithm simply copies all the elements

in a range into another range. Its structure is the following 2.8.

1 template <class InputIt , class OutputIt >

2 OutputIt copy(InputIt first , InputIt last ,

9

Standard ISO C++

3 OutputIt d_first)

4 {

5 for (; first != last; (void)++first , (void)++ d_first) {

6 *d_first = *first;

7 }

8 return d_first;

9 }

Listing 2.8: copy algorithm

Another particularly interesting algorithm in this class is the generate7. It assigns each

element in a range a value generated by a given function object 2.9.

1 template <class ForwardIterator , class Generator >

2 void generate (ForwardIterator first , ForwardIterator last , Generator gen)

3 {

4 while (first != last) {

5 *first = gen();

6 ++first;

7 }

8 }

Listing 2.9: generate algorithm

Finally in this class of algorithms there is the fill, which assigns a specific value to each

element in a range. It is useful for example during the container initialization.

2.2.5 Class ”Reorder”

In this class there are algorithms like sort, which sorts elements in a container, rotate, which

produces a left rotation on a range of elements and other such algorithms.

2.3 Parallel STL Algorithms

When the standard C++17 was introduced, many algorithms of the Standard Template Li-

brary were extended in order to be able to invoke the execution policy8. By specifying an

execution policy, the target algorithm can be executed in multiple ways: sequentially, sequen-

tially with the vectorization, parallel and parallel with the vectorization.

Originally, in C++17, the execution policies were three: sequenced, parallel and parallel

unsequenced. Then in the standard C++20 the policy unsequenced was introduced. These

policies are defined in the header <execution>:

• std::execution::seq → The sequenced policy (since C++17). This policy forces the

execution of an algorithm to run sequentially on the CPU.

7https://en.cppreference.com/w/cpp/algorithm/generate
8https://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t

10

https://en.cppreference.com/w/cpp/algorithm/generate
https://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t

Standard ISO C++

• std::execution::unseq → The unsequenced policy (since C++20). With this policy

the calling algorithm is executed using vectorization on the calling thread.

• std::execution::par → The parallel policy (since C++17). This policy tells the

compiler that the algorithm could be run in parallel.

• std::execution::par unseq → The parallel unsequenced policy (since C++20). This

policy allows the algorithm to be run in parallel on multiple threads each able to vectorize

the calculus.

The first important thing to note is that parallel execution policies allow the system to

perform the calculation with multiple threads, but this permission is not a requirement. The

standard C++ leaves the compiler great freedom in deciding if, when and how to run the

algorithms in parallel.

Another important thing is that the parallel algorithm does not automatically protect the

user from data races and deadlocks. The user must be sure that by changing the execution

policy, typically from sequential to parallel, no deadlocks or data races are introduced. As

seen in the previous sections, atomic operations can be useful to manage these situations.

2.4 Support in NVIDIA HPC SDK

The NVIDIA HPC SDK is a comprehensive toolbox for GPU accelerating HPC modeling

and simulation applications. It includes the C, C++, and Fortran compilers, libraries, and

analysis tools necessary for developing HPC applications on the NVIDIA platform.

The NVIDIA C++ nvc++ compiler is able to compile and generate an executable that can

run on GPUs just by adding in the command-line the option -stdpar. If -stdpar=multicore

is used then the generated code than execute multi-threading on CPU. Extra compiler flags

can tune CUDA runtime version and target compute capability. The NVIDIA HPC SDK

allows to mix various programming languages (e.g. standard ISO C++ for GPU offloading

with CUDA API calls or CUDA kernels).

NVIDIA has demonstrated in recent studies [14, 15] that cleaner code can be written

and performance on GPU can be improved on par with other more explicit programming

models such as OpenACC or CUDA. An example of this is Lulesh, a hydrodynamics mini-app

from Lawrence Livermore National Laboratory (LLNL) written in C++ and then modified to

use standard parallelism with NVC++ [13]. Analyses show that performance obtained using

standard C++ parallelism with offload on an NVIDIA A100 GPU are around 13X faster than

using the OpenMP offload on an AMD EPYC 7742.

11

Standard ISO C++

2.4.1 NVIDIA Unified Memory

One of the key points in developing code for GPUs is how data movement between CPU and

GPU takes place. CUDA and OpenACC have specific directives that allow the user to manage

this data movement. The ISO C++ does not include any construct or concept or operation

to manage explicitly data movement between two distinct computing devices. Allowing so

would break the C++ memory model and the C++ abstract machine.

In order to allow programming GPU using standard C++ parallel constructs, the data

movement management has to be entirely transparent and self-managed. To do so, nvc++

assume CUDA Unified Memory [17] enabled by default.

First introduced in CUDA 6, Unified Memory marks a turning point on how program

NVIDIA GPUs. Unified memory creates a single Unified Virtual Address space accessible

from any processor in a system [12] and allow to allocate a pool of managed memory that is

shared between CPU and GPU. Data allocated with this approach can be read and written

from code running on CPUs or GPUs. The NVIDIA CUDA driver and NVIDIA GPU hard-

ware are responsible, via a page-fault mechanism, to automatically trigger data migration

based on its use. The way it works is simple: if a kernel running on the GPU accesses a

page that is not resident in its memory then it faults allowing the page to be automatically

migrated to the GPU memory on-demand.

Only data dynamically allocated on CPU can be marked managed. Hence data allocated

on the CPU or GPU stack cannot be automatically moved. This means that any de-referenced

pointer and any referenced object in a parallel C++ algorithm must refer to the CPU heap.

In the other cases the result is a memory violation in GPU code. For example:

• use std::vector since it is allocated dynamically.

• do not use std::array since it is allocated on the CPU stack.

12

Chapter 3

OpenFOAM

OpenFOAM [18] is one of the most popular computational fluid dynamics (CFD) software

due to its flexibility and other optimization features. It is written mainly in C++ and it is

based on the finite volume method (FVM). This method is used to representing and evaluate

general partial differential equations (PDE) in the form of algebraic equations.

The Navier-Stokes equations are among the most important partial differential equations

of fluid dynamics. In the case of incompressible flow these equations can be written as follows

3.1: ⎧⎨⎩∇ · v⃗ = 0

∂v⃗
∂t + (v⃗ · ∇)v⃗ = ν∆v⃗ − 1

ρ∇p+ g⃗
(3.1)

The two equations of the previous system represent the conservation of mass and momentum

respectively. In this equations: v⃗ is the velocity vector, p is the pressure field, g⃗ represents body

accelerations acting on the continuum, for example gravity, inertial accelerations, electrostatic

accelerations, and so on, ρ is the fluid density, ν is the kinematic viscosity.

Considering the second equation, the first term on the left hand side is the transient term

and represents the time variation. The second term is the convective term. The first term on

the right hand side is the diffusion term. The second term is the pressure gradient term and

the last term is an external source term.

To solve the previous equations OpenFOAM first discretizes them in a set of algebraic

equations and then solves them using a numerical method.

Since the aim of this work is to try to understand how to apply the parallelization techniques

of the new standard C++, seen in chapter 2, to the assembly phase of OpenFOAM, it may

be useful to explain briefly the purpose of this phase and what is done in it. The concepts

that will be shown later in this chapter are explained in more detail in the books [21, 23] and

in the thesis [22].

As a starting point, it can be said that the numerical solution of a partial differential

13

OpenFOAM

equation consists of finding the values of a dependent variable ϕ at specified points called grid

elements. Therefore the main goal is to replace the continuous exact solution of the considered

equation with discrete values in those nodes. The process of converting the equation into a set

of algebraic equations is called discretization process. The discrete values of ϕ are typically

computed by solving this set of algebraic equations. This phase usually is called solver phase.

Once the values of ϕ are discovered, data are processed to extract any relevant information.

3.1 Domain Discretization

Typically the result of the geometric discretization is a mesh on which the algebraic equations

are first derived and then solved. This mesh consists of a discrete set of non-overlapping

elements that completely fill the entire physical domain. Since the finite volume method is

chosen as discretization approach, the elements of a mesh can be of arbitrary convex polyhedral

shapes. In general they are defined by a set of vertices, which represent locations in one, two or

three dimensional space. However the elements can be defined also in terms of their bounded

faces. Usually the faces are subdivided in the interior faces, which connect two elements, and

in boundary faces, that coincide with the boundary of the domain.

The process from which algebraic equations are derived consists in two parts, usually called

local and global assembly. During the local assembly the integration of the equations over each

elements is performed. After this in the global assembly the system of linear equations can

be construct using the previous contributes. In order to complete local and global assembly,

topological information about elements, faces and vertices are needed. This information is

represented in terms of connectivity lists. There are element, face and vertex connectivity. The

first relates the local assembly to the global assembly. In particular, it relates an element to

its neighbouring elements, its bounding faces and its vertices. The second stores information

about the elements that share a face. The last relates the lists of elements and faces that

share a vertex.

In general, meshes fall into two categories: structured and unstructured. An example of

structured mesh can be seen in figure 3.1a. In this case elements are identified by their three

local indices (i, j, k). This type of mesh has many computational advantages but is limited by

the geometry of the problem under consideration. On the other hand, unstructured meshes,

figure 3.1b, allow more complex and general problems to be studied, but at the cost of higher

computational activity.

Due to the geometric symmetries of the domain under consideration, structured meshes do

not need to define connectivity lists. In particular local indices are mapped into global indices

14

OpenFOAM

through the following relations:

(i, j, k) → n

(i+ 1, j, k) → n+ 1 (i− 1, j, k) → n− 1

(i, j + 1, k) → n+Ni (i, j − 1, k) → n−Ni

(i, j, k + 1) → n+Ni ∗Nj (i, j, k − 1) → n−Ni ∗Nj

The previous relations allow the global matrix to be constructed from the local indices.

For unstructured meshes the situation is more complex. In these types of meshes the ele-

(a) Structured Mesh (b) Unstructured Mesh

Figure 3.1: Example of structured and unstructured meshes

ments can be of arbitrary polyhedral shapes. For this reason it is not possible define indices

that map local contributions into global ones and it is necessary to proceed by defining con-

nectivity lists.

A polyhedron is a three-dimensional solid that can be represented as a set of plane polygons,

joined at their edges. To handle meshes composed by general polyhedron OpenFOAM uses

the so called face-addressing storage. It is based on the use of a set of lists (array) to storage

points, faces and elements.

The list of points contains the vertices of the mesh, a set of three dimensional spatial coordi-

nates defined as vectors. The faces are represented by a list of vertex labels that are order such

that two adjacent points in the list are connected by an edge. Moreover this list is organized

in a way that all the internal faces appear first in the list followed by the faces related to the

boundaries. Lists of boundary faces are also named patches. Finally an element or cell of the

mesh is defined by a list of indices where the first one is the number or faces composing that

element and the others are the faces indices for that element.

All the relevant information about the mesh, represented by the previous lists, are contained

in the folder constant/polyMesh. In this folder there are the following files [18]:

15

OpenFOAM

• points: the list of vectors describing the cell vertices.

• faces: the list of faces, each face is identified by a list of indices to vertices in the points

list.

• owner: a list of owner cell labels, the index of entry relating directly of the face.

• neighbour: a list of neighbour cell labels.

• boundary: a list of patches.

The owner and neighbour lists are particularly important for this work. Figure 3.2 represents

owner and neighbour cell labels for the blue face. It is worth noting that the normal vector

to the surface is oriented from the owner to the neighbour. This is standard and applies to

each face. Another thing worth noting is that for each face, the owner element has a smaller

cell labels than the neighbour element.

The owner is a list of size the number of total faces. Each entry of this list represent the

owner cell label of that face. This means that if the first entry has value 1 the owner of face

0 is the cell 1, if the second entry has value 5 then the owner of face 1 is the cell with label 5

and so on.

The neighbour is a list where each entry represents the cell label neighbour of that face. It is

important to note that each face has an owner cell label but not every face has an neighbour

cell label. Indeed boundary faces have not neighbours. For this reason the size of neighbour

list is equal to the number of neighbour faces.

Figure 3.2: Owner and Neighbour

OpenFOAM managed the mesh using a class called GeometricField<Type,... >. This class

stores data structure based on the characteristics of the mesh. In OpenFOAM a field is a

list of tensors. In general a geometricField object is renamed using typedef C++ syntax as

follows :

• volField<Type >: a field defined at cell centres;

• surfaceField<Type>: a field defined on cell faces;

• pointField<Type>: a field defined on cell vertices;

16

OpenFOAM

The Type which template all these classes can be: scalar, vector, tensor, symmTensor,

tensorThird and a symmTensorThird. Specifing the template a volField of scalar type is

also called volScalarField, a surfaceField becomes a surfaceScalarField and a pointField a

pointScalarField. The same holds with vector, tensor and so on.

OpenFOAM uses the face addressing storage not only to handle the mesh but also to storage

the matrices coefficients. In general matrices obtained from the discretization of the partial

differential equations with the finite volume method are sparse. This means that they con-

tains a lot of zero coefficients. There is no a precise definition of how many non-zero values a

matrix must have to be defined as sparse. However, a matrix is commonly defined as sparse

if it has a number of non-zeros values equal, in order of magnitude, to the number of rows or

columns in the matrix.

From a computational point of view, a sparse matrix has many advantages when the problem

size is large. In fact, instead of storing the entire matrix which would require the use of a

large amount of memory, only the indices of the non-zero elements o interest can be saved.

Over the years, many techniques have been developed to store sparse matrices, i.e. coordinate

list (COO), compressed sparse row (CSR), compressed sparse column (CSC) and so on. As

said before, OpenFOAM uses the face-addressing storage to matrix storage which is based on

the owner and neighbour lists.

To store a general matrix OpenFOAM uses five lists: diag, lower, upper, lowerAddr and up-

perAddr. LowerAddr and upperAddr are the owner and neighbour lists. As shown in figure

3.3 the diagonal part of the matrix is stored in the diag list, the lower part is stored in the

lower list and the upper part is stored in the upper list.

Figure 3.3: diag, lower and upper lists of a OpenFOAM matrix

3.2 Gauss-Green Gradient Computation

During the dicretization of the Navier-Stokes equation one computation particularly expensive

is the evaluation of the gradient of a field. Many schemes were developed to do this, chapter

9 of the book [21] explain these schemes in detail. Here only the method based on the Green-

Gauss theorem will be shown. This scheme is relatively straightforward, it can be used for a

different grids and topologies (structured and unstructured meshes).

17

OpenFOAM

The goal is to compute the following integral:

∇ϕC =
1

VC

ˆ
VC

∇ϕdV. (3.2)

Here C and VC are respectively the centroid and the volume of the cell while ϕ is the quantity

whose gradient is to be calculated. Using the divergence theorem1 the previous integral is

transformed into the following surface integral:

∇ϕC =
1

VC

ˆ
∂VC

ϕdS⃗. (3.3)

Here dS is the outward pointing surface vector. Since the element is bounded by faces, this

integral can be rewritten as the sum of discrete integrals over the faces:

∇ϕC =
1

VC

∑︂
∂VC

ˆ
face

ϕdS⃗. (3.4)

The integral over a cell face can be approximated using a numerical integration method.

For example, using the mid-point integration the previous integral is evaluated at the face

centroid:

∇ϕC =
1

VC

∑︂
f=nb(C)

ϕfSf⃗ . (3.5)

To evaluate the last expression the value of the variable ϕ at the face centroid (ϕf) and the

value and the direction of the surface vector Sf⃗ are needed.

To compute the value of the variable ϕf at the face centroid it is necessary to assume that the

variation of ϕ between the centroid of the element C and the centroid of its neighbour element

F , with which it shares the face, follows some profile. This introduces an approximation in

the gradient evaluation. There are different methods to make this approximation. In the

following a brief explanation of the main ones will be given, more details can be found in [21].

One of the most popular method on which this work is focused is the cell based linear inter-

polation method, it assumes a linear variation between ϕC and ϕF . Hence the value of the

variable in the face centroid ϕf can be calculated using the following expression:

ϕf = gFϕF + gCϕC with gC = 1− gF . (3.6)

GF and gC are called weight factors and can be computed starting from the position vector

r⃗ in this way:

gC =
∥ rF⃗ − rf⃗ ∥
∥ rF⃗ − rC⃗ ∥

=
dFf

dFC
, gF = 1− gC = 1−

dFf

dFC
, (3.7)

where dFf is the distance between the cell centroid F and the face centroid f and dFC is the

distance between the cell centroid F and the cell centroid C.

1https://en.wikipedia.org/wiki/Divergence_theorem

18

https://en.wikipedia.org/wiki/Divergence_theorem

OpenFOAM

This approach to evaluate the variable ϕ at the face centroid is simple to implement and not

require additional connectivity lists. Generally this method leads to a first order of accuracy.

However if the segment connecting the centroids C and F intersects the face f in its centroid

the method leads a second order of accuracy. This condition is verified only if the mesh is

orthogonal and structured. A correction and an iterative process is usually required to achieve

greater accuracy.

Another method with which the value of ϕ at the face centroid can be computed is the nodal

averaging method. In this case the value ϕf is computed as the mean of the values at the

vertices defining the surface. Since the values of ϕ at the vertices are unknown, they must

be estimate before to compute the mean. These values can be estimated using the weighted

average of the properties within the cells surrounding that node.

Assuming n the vertex, Fk the neighbouring cell node, NB(n) the total number of cell node

surrounding the vertex n and ∥ r⃗n− r⃗Fk
∥ the distance between the vertex and the neighbour-

ing cell elements the resulting equation is he following:

ϕn =

∑︁NB(n)
k=1

ϕFk
∥r⃗n−r⃗Fk

∥∑︁NB(n)
k=1

1
∥r⃗n−r⃗Fk

∥

. (3.8)

Once the previous values are computed, the value at the face center can be estimated by

averaging over the values in the vertices:

ϕf =

∑︁nb(f)
k=1

ϕnk
∥r⃗nk

−r⃗f∥∑︁nb(f)
k=1

1
∥r⃗nk

−r⃗f∥

. (3.9)

19

OpenFOAM

20

Chapter 4

Implementation

4.1 Previous works

In the past years several efforts [1],[2],[3] have identified as main bottleneck of a general Open-

FOAM simulation the linear solver computation. For this reason, past efforts were mainly

concentrated on improving exclusively it.

One particular effort that went beyond the solver computation is RapidCFD [25]. Rapid-

CFD is an open-source OpenFOAM implementation capable of running almost entire simula-

tions on NVIDIA GPUs. it is based on a old and fixed version of OpenFOAM codebase. For

the assembly step, RapidCFD uses the Thrust library [16]. Thrust is a powerful library of par-

allel algorithms and data structures written in C++ library with a CUDA back-end. Including

Thrust in the OpenFOAM framework is certainly effective for running code on NVIDIA GPUs

but it creates a dependency and reduces the native portability of OpenFOAM. We will focus

only on native C++ techniques are used in the Proof-of-Concept, so that the portability of

the code is not affected in any way.

4.2 Identification of simpleFOAM hot-spots

simpleFOAM [24] is a popular OpenFOAM application which represents fairly well various

well-known bottlenecks. This application implements a steady-state solver for incompress-

ible, turbulent flows, using the SIMPLE (semi-implicit method for pressure linked equations)

algorithm. This algorithm solves the Navier-Stokes equations decoupling pressure and veloc-

ity. This algorithm generates two linear systems, one for the velocity components and one for

the pressure correction. Analyses revealed that most of the time is spent solving the system

related to the pressure correction equation.

The resolution on GPU of the two linear systems can be performed by calling the PETSc

solvers via the PETSc4FOAM [20]. PETSc4FOAM also supports NVIDIA AmgX (Algebraic multi-

21

Implementation

grid Solver) linear solver library. This is an open-source GPU accelerated iterative solver

library with special focus on multi-grid methods. Preliminary results show that solving the

pressure equation with PETSc4FOAM + NVIDIA AmgX back-end on NVIDIA V100 GPUs is up

to 7 times faster than the OpenFOAM GAMG-PCG.

We have decided to focus on the gradient computation. In order to apply the techniques

explained in chapter 2, we have looked at the most computationally intensive functions be-

yond the solver itself. We used Valgrind [26] to identify precisely which routines prioritise

to move from C++ to more modern and parallel-ready C++17.

Valgrind is an open-source instrumentation framework for building dynamic analysis tools.

It comes with a set of tools each of which performs some kind of debugging, profiling and

other similar tasks. The tool which was used to identify the main intensive routines was the

callgrind tool.

The callgrind output can be visualized easily with the kcachegrind tool [27]. Figure 4.1

shows a partial callgrind output representing the gradient computation of a target execution.

Figure 4.1: Partial Kcachegrind output of the gradient computation

From the figure 4.1 we observed that the grad routine calls the calcGrad routine which

then calls three other routines together consuming 99% of total grad walltime:

• Routine interpolate from the surfaceInterpolationScheme class.

• Routine gradf from the gaussGrad class.

• Routine correctBoundaryConditions from the gaussGrad class.

22

Implementation

From this output, the calculation of the gradient can be divided into three phases cor-

responding to the three mentioned functions. In the following, each phase will be analyzed

in detail, explaining which functions and which classes have been modified to perform the

computation in parallel.

4.3 Code Porting and Refactoring

The details of this work are explained by showing which functions have been modified in order

to parallelize the gradient calculation and execute it in multi-threading on CPU or offload

to GPU. In particular, this work focuses on the Gauss-Green method 3.2 for the gradient

discretization.

4.3.1 Routine SurfaceIntepolationScheme

SurfaceInterpolationScheme [28] is a class implemented in the finite volume library which

performs interpolation from volume fields to face fields. The member function dotInterpolate

was modified. Since it is not possible to put the entire code here due to its length1, we will

be report only the modified parts.

The original OpenFOAM code is shown in 4.1. Here P and N are constant references to the

owner and neighbour labelUList, lambda is a constant reference to a surfaceScalarField,

vfi is a constant reference to a GeometricField, Sfi is a constant reference to an SFType::In

ternal and sfi is a reference to the output field.

f o r (l a b e l f i =0; f i<P. s i z e () ; f i ++)

{
s f i [f i] = S f i [f i] & (lambda [f i] ∗ (v f i [P [f i]] − v f i [N[f i]]) + v f i [N[f i]]) ;

}

Listing 4.1: dotInterpolate cycle

The previous loop runs sequentially on the CPU. One way to execute that loop in parallel is by

using the standard for each algorithm 2.1, iterating in parallel over an iterator generated by

iota and performing the calculation within a lambda. The objects required for the calculation

are captured by value into the lambda passing the pointers to them. The previous code can

be modified in the following way 4.2:

auto∗ S f i i = &S f i ;

auto i t e r=std : : views : : i o t a (0 ,P. s i z e ()) ;

std : : f o r e a ch (std : : execut ion : : par , i t e r . begin () , i t e r . end () ,

[N,P, l=lambda . cdata () , S f i i , v=v f i . cdata () , s=s f i . data ()] (const auto& f i){
s [f i] = (∗ S f i i) [f i] & (l [f i] ∗ (v [P[f i]] − v [N[f i]]) + v [N[f i]]) ;

}) ;

Listing 4.2: dotInterpolate cycle in parallel

1See https://www.openfoam.com/documentation/guides/latest/api/surfaceInterpolationScheme_8C_
source.html

23

https://www.openfoam.com/documentation/guides/latest/api/surfaceInterpolationScheme_8C_source.html
https://www.openfoam.com/documentation/guides/latest/api/surfaceInterpolationScheme_8C_source.html

Implementation

Another member function that is called in this phase is the weights. This function computes

the weights required for the interpolation by the previous dotInterpolate. It is a member

function of the class basicFvGeometryScheme2. In this function the following loop is present:

f o rA l l (owner , f a c e i)

{
// Note : mag in the dot−product .

// For a l l v a l i d meshes , the non−o r thogona l i t y w i l l be l e s s than

// 90 deg and the dot−product w i l l be p o s i t i v e . For i n v a l i d

// meshes (d & s <= 0) , t h i s w i l l s t a b i l i s e the c a l c u l a t i o n

// but the r e s u l t w i l l be poor .

s c a l a r SfdOwn = mag(Sf [f a c e i] & (Cf [f a c e i] − C[owner [f a c e i]])) ;

s c a l a r SfdNei = mag(Sf [f a c e i] & (C[neighbour [f a c e i]] − Cf [f a c e i])) ;

i f (mag(SfdOwn + SfdNei) > ROOTVSMALL)

{
w[f a c e i] = SfdNei /(SfdOwn + SfdNei) ;

}
e l s e

{
w[f a c e i] = 0 . 5 ;

}
}

Listing 4.3: weights cycle

The first thing that can be noticed in the previous loop is the forAll syntax. This is a macro

definition that replaces in a more compact way the standard C++ ”for” loop. It is defined in

the file UList.H and it works in the following way:

#define forAll(list , i) \

for (Foam:: label i=0; i<(list).size(); i++)

Listing 4.4: forAll macro syntax

In the listing 4.3 the owner and neighbour are owner and neighbour labelULists, Sf is the

face area vector, C is the cell centres vector, Cf is the face centres vector, w is the output

surfaceScalarField representing the wanted weights. One way to parallelize the previous loop

is by using the transform algorithm 2.2 in the following way:

auto i t e r=std : : views : : i o t a (0 , owner . s i z e ()) ;

std : : t ransform (std : : execut ion : : par , i t e r . begin () , i t e r . end () ,w. begin () ,

[ne=neighbour . cdata () ,ow=owner . cdata () , s=Sf . cdata () , c=C. cdata () , c f=Cf . cdata ()] (const auto& f a c e i

){
s c a l a r SfdOwn = mag(s [f a c e i] & (c f [f a c e i] − c [ow [f a c e i]])) ;

s c a l a r SfdNei = mag(s [f a c e i] & (c [ne [f a c e i]] − c f [f a c e i])) ;

i f (mag(SfdOwn + SfdNei) > ROOTVSMALL){
re turn SfdNei /(SfdOwn + SfdNei) ;

} e l s e {
re turn 0 . 5 ;

}
}) ;

Listing 4.5: weights cycle in parallel

4.3.2 Routine gradf

The second and the most computational intensive phase in the gradient evaluation is the one

which calls the gradf member function. This function is part of the gaussGrad class.

2https://www.openfoam.com/documentation/guides/latest/api/basicFvGeometryScheme_8C_source.

html

24

https://www.openfoam.com/documentation/guides/latest/api/basicFvGeometryScheme_8C_source.html
https://www.openfoam.com/documentation/guides/latest/api/basicFvGeometryScheme_8C_source.html

Implementation

Field construction

The first thing worth noting is the construction of the gradient field. This is done in the

following listing:
typede f GeometricField<GradType , fvPatchFie ld , volMesh> GradFieldType ;

tmp<GradFieldType> tgGrad

(

new GradFieldType

(

IOobject

(

name ,

s s f . i n s t ance () ,

mesh ,

IOobject : :NO READ,

IOobject : :NO WRITE

) ,

mesh ,

dimensioned<GradType>(s s f . d imensions () /dimLength , Zero) ,

extrapo latedCalcu latedFvPatchFie ld<GradType> : : typeName

)

) ;

Listing 4.6: Gradient field constructor

This constructor calls other functions and, at the end, it invokes the field constructor of the

class Field. This field constructor takes the length of the field to be built and the value at

which to initialize its elements, listing 4.7. Then it calls the list constructor which allocates

memory and initializes the elements using a forAll.
template<c l a s s Type>

i n l i n e Foam : : Fie ld<Type> : : F i e ld (const l a b e l len , const Type& val)

:

L ist<Type>(len , va l)

{}

Listing 4.7: Field constructor

This runs sequentially on the CPU and most of the time is spent initializing the elements.

One way to parallelize this constructor is calling the default list constructor to allocate the

memory and then use the fill n algorithm to fill in parallel the field 4.8.
template<c l a s s Type>

i n l i n e Foam : : Fie ld<Type> : : F i e ld (const l a b e l len , const Type& val)

:

L ist<Type>(l en)

{
std : : f i l l n (std : : execut ion : : par , th i s−>begin () , len , va l) ;

}

Listing 4.8: Field constructor in parallel

First cycle

The first cycle that can be found in the gradf function makes the sum over the faces of the

cell. It is based on the global face numbering and it uses the upper and lower addressing list

to add or subtract the flux to cell values, listing 4.9.

This loop is complex to parallelize because developing it in parallel by having each thread

performing a different iteration would lead to a data race condition. In fact, if two threads

25

Implementation

have different facei values at which correspond the same owner or neighbour element then

a data race occurs.

f o rA l l (owner , f a c e i)

{
const GradType S f s s f = Sf [f a c e i]∗ i s s f [f a c e i] ;

igGrad [owner [f a c e i]] += S f s s f ;

igGrad [neighbour [f a c e i]] −= S f s s f ;

}

Listing 4.9: First cycle in the gradf

There could be two different ways to parallelize the loop in 4.9. One way could be to

use atomic operations, ensuring that each thread writes safely while the others wait. This

solution can be applied but it is not recommended. One main reason is that inserting the

atomic operations in the loop should be done taking into account the type of field which

represents the gradient. For example it could be a vector or a tensor. Depending on this one

should subdivide the cases by treating them differently. However, this would lead to a very

long code, which would be difficult to read and maintain.

We proposed and implemented a re-organization of the owner and neighbour lists. By do-

ing so only the owner list is taken into account. The same procedure is applied to neighbour

list.

Original
List

List of
List

Figure 4.2: List of List

As said in chapter 2 the owner is a list with size equal to the number of faces, whose

elements are the labels identifying the cell owner of the face. Hence the elements in the list

vary in the range [0, Ncell], with NCell the number of cells. Since each cell label owns different

faces, the loop 4.9 can be safely parallelized by iterating over the number of cells and for each

cell iterating over the faces that this cell owns. One way to organize the owner list in this way

is to reorder the elements in a list of lists like in figure 4.2. For practical reasons the list on

the left of the arrows will be called external list while the list on the right will be the internal

list.

26

Implementation

In the case depicted in the figure 4.2 the cell labels vary between 0 and 5, the loop 4.9 can

be performed in parallel along this range, the external list, with each thread that executes

an internal loop on the connected internal list and takes the values corresponding to these

indices from the original list.

The focus now is on how to construct this list of lists in an optimized way. Taking inspiration

from the RapidCFD software [29] one way to proceed is to create one list with the elements

contained in the internal list and another list that contains the starting point of the previous

list between two successive cell elements. Figure 4.3 shows these new lists called Owner and

OwnerStart.

Owner
List

OwnerStart
List

Figure 4.3: Optimized list of list

The next point to focus on is how to implement these lists. The goal is to create these lists

in parallel using the same C++ techniques as before. It is very important to note that, in a

general OpenFOAM simulation, these lists are used multiple times during the simulation but,

unless the mesh geometry changes, they are only created once.

The first list can be easily computed in parallel using the standard sort algorithm. Specif-

ically two lists are needed, the first list is the original owner list, the second list is the output

and it is initialized as a list of indices from 0 to the size of the owner list. Then sorting the

first list and rearranging the second one accordingly, the output is obtained, as it can be seen

from figure 4.4.

Figure 4.4: Sorting list

A possible implementation of the previous algorithm with the standard C++20 parallelization

techniques is described in the listing 4.10. This function was created as member function of the

class lduAddressing. One of the main classes that handles the pointers required to represent

the typical OpenFOAM matrices in sparse format, as seen in the previous chapter.

27

Implementation

void Foam : : lduAddress ing : : s o r t i n g p a i r (l a b e l L i s t& index , l a b e l L i s t& val) const

{
const l a b e l N=index . s i z e () ;

auto i t e r=std : : views : : i o t a (0 ,N) ;

std : : vector<std : : pair<l abe l , l abe l>> tmp pair ;

tmp pair . r e s e r v e (N) ;

std : : t ransform (std : : execut ion : : par , index . begin () , index . end () , va l . begin () , tmp pair . begin () ,

[] (const auto& i , const auto& v){ re turn std : : make pair (i , v) ;}) ;

std : : s t a b l e s o r t (std : : execut ion : : par , tmp pair . begin () , tmp pair . begin ()+N,

[=] (const auto& p1 , const auto& p2){
re turn p1 . second<p2 . second ;

}) ;

std : : f o r e a ch (std : : execut ion : : par ,

i t e r . begin () ,

i t e r . end () ,

[pr=tmp pair . data () , id=index . data () , v l=va l . data ()] (const auto& i){
id [i]=pr [i] . f i r s t ;

v l [i]=pr [i] . second ;

}) ;

}

Listing 4.10: Sorting lists

The second list is slightly more difficult to compute. Figure 4.5 shows a possible solution.

Starting from the reordered owner list (it works even if the list is unordered) another list is

appended at the end. This second list has indices from 0 to the number of cells Ncell. Another

list of size the owner list size plus the Ncell is created initializing its elements to zero. Then

all the elements from 0 to the owner size are set to 1. The second step is sorting the lists as

previously. The third step is to reduce both lists according to the first list while the elements

of the second list are added. Finally an exclusive scan algorithm can be applied.

Sorting

Reduce

Esclusive Scan

Figure 4.5: Start owner list

A possible implementation of the previous algorithm is shown in the listing 4.11. This function

is called csr list and it is a member function of the class lduAddressing as the previous

function.

void Foam : : lduAddress ing : : c s r l i s t (l a b e l L i s t& ne igh so r t , l a b e l L i s t& sta r t , const l a b e l& n , const

l a b e l& N) const

{
atomic<l abe l> ∗stmp=new atomic<l abe l >[n] ;

l a b e l L i s t ones (n+N) ;

l a b e l L i s t nb tmp (n+N) ;

28

Implementation

auto i t e r 2=std : : views : : i o t a (0 , n) ;

std : : f i l l (std : : execut ion : : par unseq , ones . begin () , ones . end () ,1) ;

std : : f i l l (std : : execut ion : : par unseq , nb tmp . begin () , nb tmp . end () ,0) ;

std : : copy (std : : execut ion : : par unseq , n e i gh s o r t . begin () , n e i gh s o r t . end () , nb tmp . begin ()) ;

std : : copy (std : : execut ion : : par unseq , i t e r 2 . begin () , i t e r 2 . end () , nb tmp . begin ()+N) ;

std : : f i l l (std : : execut ion : : par unseq , ones . begin ()+N, ones . end () ,0) ;

std : : f i l l (std : : execut ion : : par unseq , stmp , stmp+n , 0) ;

s o r t i n g p a i r (ones , nb tmp) ;

auto i t e r 3=std : : views : : i o t a (0 , n+N) ;

std : : f o r e a ch (std : : execut ion : : par , i t e r 3 . begin () , i t e r 3 . end () ,

[= ,nb=nb tmp . data () , on=ones . data ()] (const auto& i){
stmp [nb [i]] . f e t ch add (on [i] , memory order re laxed) ;

}) ;

std : : copy (std : : execut ion : : par , stmp , stmp+n , s t a r t . begin ()) ;

std : : e x c l u s i v e s c an (std : : execut ion : : par , s t a r t . begin () , s t a r t . end () , s t a r t . begin () ,0) ;

d e l e t e [] stmp ;

}

Listing 4.11: Start list creation

These lists are useful to safely parallelize the first gradient cycle 4.9. To compute that cycle

in parallel four lists are needed: the ownerList , the ownerStart , the neighbourList

and the neighbourStart . For this reason four pointers to labelList were allocated in the

lduAddressing.H. Those pointers represent the lists.

To allocate the lists, public functions ownerList, ownerStart, neighbourList and neighbour

Start have been defined in lduAddressing.H. In the next only the ownerList is shown.

const Foam : : l abe lUL i s t& Foam : : lduAddress ing : : ownerList () const

{
i f (! ownerLis t)

{
ca l cownerL i s t () ;

}
re turn ∗ ownerLis t ;

}

Listing 4.12: OwnerList creation

As it can be seen in 4.12 the function checks if the pointer, in this case ownerList , is allocated.

If it is not allocated it calls the calcownerList function. The same happens for ownerStart,

with ownerStart instead of ownerList . This function calls the same calcownerList be-

cause in that function both ownerStart and ownerList are allocated, but it is still useful

because it helps to handle lists separately.

The function calcownerList is shown in the following listing 4.13, it is a member function

of lduAddressing class. As it can be seen it allocates ownerStart and ownerList lists.

void Foam : : lduAddress ing : : ca l cownerL i s t () const

{
i f (ownerLi s t)

{
Fata lError In (” lduAddress ing : : ca l cownerL i s t () const ”)

<< ” ownerList a l ready ca l cu l a t ed ”

<< abort (Fata lError) ;

}
const l abe lUL i s t& owner=lowerAddr () ;

29

Implementation

const l a b e l N=owner . s i z e () ;

const l a b e l n=s i z e () ;

ownerLis t = new l a b e l L i s t (N) ;

ownerStart = new l a b e l L i s t (n+1) ;

l a b e l L i s t owner sort (N) ;

l a b e l L i s t& o l i s t= ∗ ownerLis t ;

l a b e l L i s t& o s t a r t= ∗ ownerStart ;

l a b e l L i s t& oso r t= owner sort ;

std : : copy (std : : execut ion : : par unseq , std : : views : : i o t a (0) . begin () , std : : views : : i o t a (N) . begin () ,

o l i s t . begin ()) ;

std : : copy (std : : execut ion : : par unseq , owner . begin () , owner . end () , o so r t . begin ()) ;

s o r t i n g p a i r (o l i s t , o so r t) ;

c s r l i s t (osort , o s ta r t , n ,N) ;

}

Listing 4.13: OwnerList and OwnerStart allocation

Finally with these lists the first cycle 4.9 in the gradient computation can be translated in

parallel in the following way:

const l abe lUL i s t& ow l i s t=mesh . lduAddr () . ownerList () ;

const l abe lUL i s t& owstart=mesh . lduAddr () . ownerStart () ;

const l abe lUL i s t& n e l i s t=mesh . lduAddr () . ne ighbourL i s t () ;

const l abe lUL i s t& ne s t a r t=mesh . lduAddr () . ne ighbourStart () ;

auto i t e r=std : : views : : i o t a (0 , igGrad . s i z e ()) ;

std : : f o r e a ch (std : : execut ion : : par , i t e r . begin () , i t e r . end () ,

[o l=ow l i s t . cdata () , os=owstart . cdata () , n l=n e l i s t . cdata () , ns=ne s t a r t . cdata () , s f=Sf . cdata () , i s=i s s f

. cdata () , i g=igGrad . data ()] (const l a b e l& f a c e i){
f o r (i n t i=os [f a c e i] ; i<os [f a c e i +1];++ i){

i g [f a c e i]+= s f [o l [i]] ∗ i s [o l [i]] ;

}
f o r (i n t i=ns [f a c e i] ; i<ns [f a c e i +1];++ i){

i g [f a c e i]−= s f [n l [i]] ∗ i s [n l [i]] ;

}
}) ;

Listing 4.14: first cycle gradient in parallel

Second cycle

The second cycle in the gradf takes into account the boundary of the domain, it is shown in

the listing 4.15.

f o rA l l (mesh . boundary () , patch i)

{
const l abe lUL i s t& pFaceCel l s =

mesh . boundary () [patch i] . f a c eC e l l s () ;

const v e c t o rF i e l d& pSf = mesh . Sf () . boundaryField () [patch i] ;

const fvsPatchFie ld<Type>& ps s f = s s f . boundaryField () [patch i] ;

f o rA l l (mesh . boundary () [patch i] , f a c e i)

{
igGrad [pFaceCel l s [f a c e i]] += pSf [f a c e i]∗ p s s f [f a c e i] ;

}
}

Listing 4.15: Second cycle gradient

The most computationally intensive cycle is the innermost one, so the goal is to parallelize

it. However, as in the case of the first cycle, running the innermost cycle in parallel without

any precautions would lead to a data race. To parallelize it the followed procedure was the

30

Implementation

same of the first cycle. It was based on the creation of similar lists like before. Even these

lists can only be created once and used in the code when needed.

Figure 4.6: Start list creation

Two lists were created as before. One list, called faceIndex, represents the indices to take

from the original pFaceCells list, the other list represents the starting point faceStart.

The first list is obtained using the sorting function as before 4.10. To build the second list a

different approach was followed.

Figure 4.6 shows the procedure to obtain the list. As it can be seen the first list is obtained

after the sorting by key. Then a list initialized to one is allocated. The next step iterates

over the sorted list and when two adjacent elements are equal, the element in the list of ones

corresponding to the index of the second element found to be equal is set to 0. Then an

inlusive scan is applied. Hence the reduce is applied like in the first cycle algorithm 4.5.

Before applying the reduce, 1 is subtracted from the elements of the list. Finally using an

exclusive scan the faceStart list is obtained.

A possible implementation of this algorithm is shown in listing 4.16. This function is a

member function of the class gaussGrad.

template<c l a s s Type>

void Foam : : fv : : gaussGrad<Type> : : c s r l i s t 2 (const l abe lUL i s t& l i s t , l a b e l L i s t& l index , l a b e l L i s t&

sta r t , l a b e l& n){
const i n t N=l i s t . s i z e () ;

l a b e l L i s t l s o r t ;

l a b e l L i s t ones ;

l i ndex . r e s i z e (N) ;

l s o r t . r e s i z e (N) ;

ones . r e s i z e (N) ;

auto i t e r=std : : views : : i o t a (0 ,N) ;

std : : copy (std : : execut ion : : par unseq , l i s t . begin () , l i s t . end () , l s o r t . begin ()) ;

std : : copy (std : : execut ion : : par unseq , i t e r . begin () , i t e r . end () , l i ndex . begin ()) ;

std : : f i l l (std : : execut ion : : par unseq , ones . begin () , ones . end () ,1) ;

s o r t i n g p a i r 2 (l index , l s o r t) ;

31

Implementation

std : : f o r e a ch (std : : execut ion : : par , i t e r . begin () , i t e r . end () −1,

[ns=l s o r t . data () , t s=ones . data ()] (const auto& x){
i f (ns [x]==ns [x+1]){

t s [x+1]=0;

}
}) ;

std : : i n c l u s i v e s c a n (std : : execut ion : : par , ones . begin () , ones . end () , ones . begin ()) ;

n=ones . l a s t () ;

atomic<int> ∗stmp=new atomic<int >[n+1] ;

s t a r t . r e s i z e (n+1) ;

std : : f i l l (std : : execut ion : : par , stmp , stmp+n+1, 0) ;

std : : f o r e a ch (std : : execut ion : : par , i t e r . begin () , i t e r . end () ,

[ns=stmp , t s=ones . data ()] (const auto& x){
ns [t s [x] −1] . f e t ch add (1 , memory order re laxed) ;

}) ;

std : : move(std : : execut ion : : par , stmp , stmp+n+1, s t a r t . begin ()) ;

std : : e x c l u s i v e s c an (std : : execut ion : : par , s t a r t . begin () , s t a r t . end () , s t a r t . begin () ,0) ;

d e l e t e [] stmp ;

}

Listing 4.16: List creation

With the previous lists, the second cycle in the gradf function can be parallelized in the

following way 4.17:
f o rA l l (mesh . boundary () , patch i)

{
const l abe lUL i s t& pFaceCel l s =

mesh . boundary () [patch i] . f a c eC e l l s () ;

const v e c t o rF i e l d& pSf = mesh . Sf () . boundaryField () [patch i] ;

const fvsPatchFie ld<Type>& ps s f = s s f . boundaryField () [patch i] ;

i f (mesh . boundary () [patch i] . s i z e () !=0){
l a b e l L i s t face Index ;

l a b e l L i s t f a c eS t a r t ;

l a b e l n=0;

c s r l i s t 2 (pFaceCel ls , faceIndex , f a ceSta r t , n) ;

std : : f o r e a ch (std : : execut ion : : par ,

std : : views : : i o t a (0) . begin () ,

std : : views : : i o t a (n) . begin () ,

[i g=igGrad . data () , f=pFaceCel l s . cdata () , f i r=pSf . cdata () , s ec=p s s f . cdata () , p s t r=

f a c eS t a r t . cdata () , p l s t=face Index . cdata ()] (const l a b e l& f a c e i){
l a b e l id=f [p l s t [p s t r [f a c e i]]] ;

f o r (i n t i=ps t r [f a c e i] ; i<ps t r [f a c e i +1];++ i){
i g [id]+= f i r [p l s t [i]] ∗ sec [p l s t [i]] ;

}
}) ;

}
}

Listing 4.17: Second cycle in parallel

Third cycle

The third cycle in the gradf function is not really a cycle, it is an operation that is performed

using a loop. The operation is the following:
igGrad /= mesh .V() ;

Listing 4.18: Third cycle

The previous operator divides each component of the igGrad field by each component of

the mesh.V() field. As shown in listing 4.19 it can be easily parallelized using a transform

algorithm.

32

Implementation

auto& meshV=mesh .V() ;

std : : t ransform (std : : execut ion : : par unseq , igGrad . begin () , igGrad . end () ,meshV . cbegin () , igGrad . begin () ,

[] (auto& ig , const auto& val){ re turn i g / va l ;}) ;

Listing 4.19: Third cycle in parallel

4.3.3 Routine CorrectBoundaryConditions

The last function that is called from the calcGrad routine is the CorrectBoundaryConditions.

In this function there is one main cycle over the boundary domain patches.
f o rA l l (v s f . boundaryField () , patch i)

{
i f (! v s f . boundaryField () [patch i] . coupled ())

{
const v e c t o rF i e l d n

(

v s f . mesh () . Sf () . boundaryField () [patch i]

/ v s f . mesh () . magSf () . boundaryField () [patch i]

) ;

gGradbf [patch i] += n ∗
(

v s f . boundaryField () [patch i] . snGrad ()

− (n & gGradbf [patch i])

) ;

}
}

Listing 4.20: Correction boundary condition

As it can be seen, this cycle calls different functions. Some of these functions are computa-

tionally intensive and they call other functions. During the execution of magSf, the function

mag is called. This function is originally implemented in the following way:
template<c l a s s Type>

void mag

(

Fie ld<typename typeOfMag<Type> : : type>& res ,

const UList<Type>& f

)

{
typede f typename typeOfMag<Type> : : type magType ;

TFOR ALL F OP FUNC F(magType , res , =, mag , Type , f)

}

Listing 4.21: mag function

The loop is executed sequentially by the macro TFOR ALL F OP FUNC F. This function can be

parallelized as follow:
template<c l a s s Type>

void mag

(

Fie ld<typename typeOfMag<Type> : : type>& res ,

const UList<Type>& f

)

{
typede f typename typeOfMag<Type> : : type magType ;

std : : transform (std : : execut ion : : par unseq , f . cbeg in () , f . cend () ,

r e s . begin () , [=] (const auto& f f){
re turn mag(f f) ;

}) ;

}

Listing 4.22: Parallel mag function

33

Implementation

Another function called in the cycle 4.20 is snGrad. This function in turn calls two other

functions: patchInternalField and deltaCoeffs. Originally this function runs sequentially

as follow:

template<c l a s s Type>

Foam : : tmp<Foam : : Fie ld<Type>> Foam : : fvPatch : : pa t ch In t e rna lF i e l d

(

const UList<Type>& f ,

const l abe lUL i s t& f a c eC e l l s

) const

{
auto t p i f = tmp<Field<Type>>::New(s i z e ()) ;

auto& p i f = t p i f . r e f () ;

auto i t e r=std : : views : : i o t a (0 , p i f . s i z e ()) ;

std : : t ransform (std : : execut ion : : par ,

i t e r . begin () ,

i t e r . end () ,

p i f . begin () ,

[f f=f . cdata () , f c=f a c eC e l l s . cdata ()] (const auto& f a c e i){
re turn f f [f c [f a c e i]] ;

}) ;

r e turn t p i f ;

}

Listing 4.23: PatchInternalField function

It can be parallelized using the transform algorithm as follow:

template<c l a s s Type>

Foam : : tmp<Foam : : Fie ld<Type>> Foam : : fvPatch : : pa t ch In t e rna lF i e l d

(

const UList<Type>& f ,

const l abe lUL i s t& f a c eC e l l s

) const

{
auto t p i f = tmp<Field<Type>>::New(s i z e ()) ;

auto& p i f = t p i f . r e f () ;

auto i t e r=std : : views : : i o t a (0 , p i f . s i z e ()) ;

std : : t ransform (std : : execut ion : : par ,

i t e r . begin () ,

i t e r . end () ,

p i f . begin () ,

[f f=f . cdata () , f c=f a c eC e l l s . cdata ()] (const auto& f a c e i){
re turn f f [f c [f a c e i]] ;

}) ;

r e turn t p i f ;

}

Listing 4.24: PatchInternalField function in parallel

Inside DeltaCoeffsfunction there is an intensive computation given by the loop below:

f o rA l l (owner , f a c e i)

{
de l t aCoe f f s [f a c e i] = 1 .0/mag(C[neighbour [f a c e i]] − C[owner [f a c e i]]) ;

}

Listing 4.25: Deltacoeff function

This loop can be parallelized using another transform algorithm as follow:

std : : transform (std : : execut ion : : par ,

owner . begin () ,

owner . end () ,

neighbour . begin () ,

d e l t aCoe f f s . begin () ,

[CC=C. cdata ()] (const auto& nf , const auto& no){
re turn 1 .0/mag(CC[nf]−CC[no]) ;

34

Implementation

}) ;

Listing 4.26: Deltacoeff function in parallel

4.4 OpenFOAM gradient mini-app

Since this work is focused on the gradient part, we built a Proof-of-Concept application that

only invokes the gradient computation (grad).

// ∗∗∗ //

#inc lude ”fvCFD .H”

#inc lude ” fvOptions .H”

#inc lude ” s impleContro l .H”

#inc lude ” FixedLi s t .H”

#inc lude ”Pair .H”

in t main (i n t argc , char ∗argv [])

{
a rgL i s t : : addNote

(

”Laplace equat ion s o l v e r f o r a s c a l a r quant i ty . ”

) ;

#inc lude ”addCheckCaseOptions .H”

#inc lude ” setRootCaseLi s t s .H”

#inc lude ” createTime .H”

#inc lude ” createMesh .H”

s impleContro l s imple (mesh) ;

#inc lude ” c r e a t eF i e l d s .H”

unsigned in t i = 0 ;

v o l S c a l a rF i e l d yPos = T.mesh () .C() . component (vector : :Y) . r e f () ;

v o l S c a l a rF i e l d xPos = T.mesh () .C() . component (vector : :X) . r e f () ;

f o r (auto i = 0 ; i < T. s i z e () ; i++)

{
T[i] = std : : exp (− 2 ∗ std : : pow(xPos [i] − 0 .45 , 2) −

2 ∗ std : : pow(yPos [i] − 0 .45 , 2)) ;

}

Info<< ”\nCalcu lat ing temperature d i s t r i b u t i o n \n” << endl ;

// L i s t s cn s t ru c t i on

const l abe lUL i s t& ow l i s t=T.mesh () . lduAddr () . ownerList () ;

const l abe lUL i s t& owstart=T.mesh () . lduAddr () . ownerStart () ;

const l abe lUL i s t& n e l i s t=T. mesh () . lduAddr () . ne ighbourL i s t () ;

const l abe lUL i s t& ne s t a r t=T.mesh () . lduAddr () . ne ighbourStart () ;

// main loop (2 i t e r a t i o n s , hard−coded)

auto s t a r t = std : : chrono : : s t e ady c l o ck : : now() ;

whi le (i <2){
f vc : : grad (T) ;

++i ;

}
auto end = std : : chrono : : duration<double>(std : : chrono : : s t e ady c l o ck : : now() −

s t a r t) . count () ;

Info<<”TOTAL TIME GRADIENT COMPUTATION (in [s]) : ”<<end <<endl ;

r e turn 0 ;

}
// ∗∗∗ //

Listing 4.27: Test Application

This application starts by reading the mesh then creates the scalar temperature field and

initializes its values following a Gaussian distribution. Finally it computes the gradient two

35

Implementation

times.

4.5 Profiling a GPU application

The Unified Memory approach made the development of standard C++ parallelism on GPUs

possible. One of the main aspects to be taken into account when using this parallel approach

is the page faults that can occur if data has to be moved between CPU and GPU. These page

faults can be detected using NVIDIA Nsight Systems [9], a performance analysis tool, part of

the powerful debugging and profiling NVIDIA Nsight Tools suite [10], designed to visualize

an application’s algorithm.

Another tool useful to store events happening in the GPU is the NVIDIA Tools Extension

(NVTX) [11]. It is composed by a set of APIs for annotating events, code ranges and resources

in the applications. These information are visualized in the NVIDIA Nsight Systems GUI to

help improving analysis and visualization of data, simplifying the correlation between what

the code does versus the behaviour of the compute platform (CPU and GPU). In particular,

markers denote specific moments in time and are useful to catch specific sections of the code

during the application running.

The library introduces close to zero overhead if no profiling is activated (so the execution

is not performed with the nsys tool). The overhead when profiling is active varies according

to multiple factors but, if tuned, it can be considered negligible.

4.6 Tuning data movement with explicit pre-fetching

By analyzing the nsys profile reports, it is possible to understand the origin of page faults

and, in general, the data transfer that takes place during the execution of the application.

Usually page faults and data transfer are expensive, especially if access are randoms and page

fault is triggered multiple times within a kernel execution stalling kernel progression while

waiting data to be moved from CPU to GPU.

It is possible to get rid of them by using data pre-fetching APIs that are part of CUDA

C [8]. Pre-fetching helps moving big chunk of contiguous data to the GPU on-demand rather

than rely on the automatic Unified Memory management mechanism. By doing so, better

data transfer bandwidth is achieved. CUDA provides several routines to perform and control

pre-fetching behaviour it, i.e. cudaMemPrefetchAsync. When the data required by a kernel

is fully on the GPU, it can be processed by a kernel without generating page faults resulting

36

Implementation

in a better kernel time and efficient use of GPU hardware.

Figure 4.7: Weight first cycle without pre-fetching tools

Figure 4.7 illustrates a section of the NVIDIA Nsight Systems profile representing a code

function in which no pre-fetching techniques were added. In particular, it can be observed

from the first blue line that while the routine, whose NVTX tag is called weight first

cycle, is running on the GPU, many page faults occur. These page faults can be identified

from the red lines.

Figure 4.8 shows the same code executed by inserting the pre-fetching techniques be-

fore executing the weight first cycle tag. As can be seen, the red markers are no longer

present. So there are no more page faults and the entire calculation is performed on the GPU

without interruption.

37

Implementation

Figure 4.8: Weight first cycle with pre-fetching tools

Figure 4.9 shows how pre-fetching appears in a general profile. It is identify by the green

lines. To use pre-fetching in this work, the CUDA function cudaMemPrefetchAsync() was

called up by passing it the pointer to be pre-fetched, the container size in bytes and the

destination device to be pre-fetched to. One might think that including pre-fetching within

the code restricts the portability of the code. However, our goal is to demonstrate that using

the new C++ standard, it is possible to run code on GPUs. Perhaps in the future, the entire

simulation could be run on the GPU using these techniques. At that point, pre-fetching would

not be necessary since, if everything is executed on the GPU from the beginning, the data

needed for the gradient calculation would already be on the GPU.

Figure 4.9: Pre-fetching section

38

Chapter 5

Results

5.1 Mini-app input cases

All meshes considered in this work are 2D meshes, which in OpenFOAM means setting the

third dimension to one. Although tests on 3D meshes were done correctly, these are not shown

here for reasons of time and space. We pick 3 different sizes as per number of unknown, details

are described in table 5.1.

X-SIZE Y-SIZE Z-SIZE Unknowns [millions]

Mesh 16M 4000 4000 1 16

Mesh 32M 8000 4000 1 32

Mesh 64M 8000 8000 1 64

Table 5.1: Mesh specifications

5.2 Computing platform

The simulations that will be shown in the next sections, were performed on a heterogeneous

platform called NVIDIA Arm HPC Developer Kit [5]. Figure 5.1 shows a diagram of

this system. The platform main compute engines are:

• A single-socket ARM Ampere Computing Altra processor with 80 cores based on Arm

Neoverse N1 running at 3.0 GHz.

• Two Ampere GPUs A100 PCIe with 40 GByte HBM2 memory not connected via NVlink

due to the server form factor.

The Altra CPU is custom built for large-scale public and private cloud environments [4].

This processor has only NEON SIMD (2 × 128 bits) but competitive memory bandwidth.

39

Results

Figure 5.1: The NVIDIA Arm HPC Developer Kit platform.

The A100 GPU supports PCIe Gen4 which doubles the bandwidth of PCIe Gen3. The

faster speed is especially beneficial for A100 GPUs connecting to PCIe Gen4 CPUs like the

Ampere Computing Altra. At the time of the start of this project, there were no x86 platforms

on the market with PCIe Gen4.

5.3 Results obtained

Using NVIDIA Nsight Systems the application was profiled in order to identify the macro

routines called during the gradient computation. Not all functions that are executed within

the gradient computation have been parallelized. This is due to limitations of time and diffi-

culty. For this reason, a global comparison, although necessary, may not be very indicative.

Therefore, to analyze the advantages and disadvantages of this new parallel programming

model, the times of each individual routine were taken and are shown in the next tables. The

NVIDIA Nsight Systems tool in combination with NVTX was used to collect these times.

Table 5.2 shows the shortcuts which will be used in the next tables to identify the times

40

Results

in milliseconds taken by each routine.

NVTX tag Description Algorithm GPU?

WB Weight Built No

WFC Weight First Cycle 4.3 Yes, Full

WSC Weight Second Cycle Yes, Full

DB DotInterpolate Built No

DFC DotInterpolate First Cycle 4.1 Yes, Full

DSC DotInterpolate Second Cycle No

GB Gradient Built 4.6 Yes, Partial

GFC Gradient First Cycle 4.9 Yes, Full

GSC Gradient Second Cycle 4.15 Yes, Full

GD Gradient Division 4.18 Yes, Full

GBC Gradient Boundary Condition Yes, Partial

CBC Correct Boundary Condition 4.20 Yes, Partial

Table 5.2: Explanations of various NVTX tags acronyms used.

As briefly presented in Chapter 4, the calculation of the gradient can be divided into 3 parts.

• Routine interpolate includes the calculation of weights (WB, WFC, WSC) and interpola-

tion (DB, DFC, DSC);

• Routine gradf computes the gradient field (GB, GFC, GSC, GD, GBC);

• Routine correctBoundaryConditions takes into account the boundary conditions

(CBC), within part there is the calculation of the delta coefficients, which, however,

is only performed during the first iteration.

In the following Tables we will only report timings and speed-ups related to fully accelerated

tagged sections. All timings shown in the following tables are averaged values across minimum

3 executions.

5.3.1 Performance running Mesh 16M input case

The first mesh presented is a mesh of 16 million unknowns. The simulations that were per-

formed here are on 1 node with 80 PURE MPI (original version of the code), 1 node with 1

MPI and 1 GPU, 1 node with 2 MPI and 2 GPUs and 1 node with 10 MPI and 8 threads.

Since not all routines were modified to run in parallel, in order to analyze the effectiveness

of this new programming model, the execution times of the individual functions making up

41

Results

the code were taken using NVTX markers. The global times will be analyzed in the next

sections. Tables 5.3 and 5.4 represent the speed-up obtained from the simulations. The first

three columns compare PURE MPI, 80 MPI processes, with three different settings: the hy-

brid one, composed of 10 MPI and 8 threads, the 1 MPI process with 1 GPU and the 2 MPI

processes with 2 GPUs. The last column compares the execution times obtained with 2 MPI

and 2 GPUs with the one resulting from the hybrid approach. Execution times can be seen

in the appendices of this document A. Tables A.3 and A.4 show the times spent by these four

settings: PURE MPI, Hybrid, 1 GPU and 2 GPUs.

The application performs two iterations of the gradient computation. This is because there

are routines calculated only during the first iteration and then recalculated only if the mesh

is changed. In an application where the calculation of the gradient is done iteratively several

times, the time of the second iteration is more indicative.

As said before, in order to isolate the actual calculation time performed on the GPUs, pre-

fetching routines were called explicitly to initiate the transfer of necessary data to the GPU

before the actual kernel execution. This is not too restrictive: indeed, one of the possible big

goals in the future could be to develop the code so that it runs entirely on different GPUs,

and in that case, this pre-fetching would not be necessary and the performance would be as

shown in the tables.

In Table 5.3 speed-ups of the first iteration are shown.

NVTX tag
HYBRID

vs
PURE MPI

1 MPI + 1 GPU
vs

PURE MPI

2 MPI + 2 GPU
vs

PURE MPI

2 MPI + 2 GPU
vs

HYBRID

WFC 3.13 8.40 16.03 5.12

WSC 44.41 60.78 41.98 0.95

DFC 3.17 8.20 15.80 4.98

GFC 3.19 7.10 10.09 3.17

GSC 4.35 1.14 0.30 0.07

GD 2.66 5.68 10.79 4.06

Table 5.3: speed-up first iteration Mesh 16M (HYBRID = 10 MPI + × 8 CPU threads)

Considering the weight part it can be noticed that a good speed-up is obtained paralleliz-

ing the first and second cycle (WFC-WSC) on both multiple GPUs and the multi-core approach.

Even in the interpolation part, a great advantage can be observed when parallelizing the first

cycle loop (DFC). In particular, when executed on 1 GPU it is 8 times faster than 80 MPI.

Coherently, the same loop executed on 2 GPUs is 2 times faster than the loop executed on 1

GPU and, therefore, 15 times faster than the loop executed on 80 MPI.

The second macro part computes the gradient field. The first routine shown in the table is

42

Results

the first gradient cycle (GFC). This routine is the most computationally intensive of this phase

and one of the most expensive in the gradient calculation. It was parallelized with the new

lists defined in chapter 4. As it can be seen using 1 GPU there is a speed-up of 7 and using

2 GPU a speed-up of 10. Using the multi-core gives a speed-up of 3 compared to 80 MPI,

which is half of the one obtained with 1 GPU.

The next routine is the second gradient cycle (GSC), in this case no great advantage is obtained

executing it on GPUs. This for two main reasons. The first is the data transfer between CPU

and GPUs. The second is because in this simulation that cycle is not big enough to take full

advantage of the GPUs.

The next routine is the gradient division (GD). This routine lends itself very well to paralleliza-

tion and even if there is partial data transfer, very good speed-ups are achieved. On 1 GPU

a speed-up of approximately 5x is obtained and on 2 GPUs is doubled. Even with multi-core

you get a speed-up of 2.5x, roughly half that of 1 GPU.

NVTX tag
HYBRID

vs
PURE MPI

1 MPI + 1 GPU
vs

PURE MPI

2 MPI + 2 GPU
vs

PURE MPI

2 MPI + 2 GPU
vs

HYBRID

DFC 2.87 8.70 16.75 5.83

GFC 3.07 6.86 11.62 3.78

GSC 0.66 1.75 0.49 0.74

GD 2.43 6.11 11.83 4.86

Table 5.4: speed-up second iteration Mesh 16M (HYBRID = 10 MPI × 8 threads)

Table 5.4 shows the performance of the second iteration. As mentioned above, the cal-

culation of weights is only done in the first iteration. So the second iteration starts with

interpolation. The speed-up trend is similar to that of the previous iteration. Again, a signif-

icant speed-up can be seen in the execution of the first cycle, while the second cycle, which

runs sequentially, doesn’t show a speed-up but it takes small time.

The gradient part also shows a similar trend to that of the first iteration. Gradient first cycle

and gradient division are the routines in which there is a significant speed-up, both when

running them on GPUs and on multi-core. The parallelization of the gradient second cycle

doesn’t show relevant performance since there is data transfer and the loop size is not so large

to exploit the gpu.

Finally the last routine, correct boundary condition, as before doesn’t show relevant speed-up

mainly due to data transfer.

43

Results

5.3.2 Performance running 32M mesh input case

The second mesh considered in this work is composed of 32 million unknowns. The speed-ups

of the NVTX markers are shown in tables 5.5 and 5.6. As before, the former represents the

speed-ups of the first iteration while the latter shows the speed-ups of the second iteration.

Tables A.5 and A.7 in the appendix A show the corresponding execution times.

NVTX tag
HYBRID

vs
PURE MPI

1 MPI + 1 GPU
vs

PURE MPI

2 MPI + 2 GPU
vs

PURE MPI

2 MPI + 2 GPU
vs

HYBRID

WFC 2.88 8.40 16.56 5.74

WSC 13.68 91.31 92.78 6.78

DFC 3.91 8.62 16.52 4.22

GFC 3.03 6.82 13.75 4.54

GSC 0.77 1.83 1.07 1.40

GD 3.77 5.88 10.66 2.83

Table 5.5: speed-up first iteration Mesh 32M (HYBRID = 10 MPI × 8 threads)

In the first iteration, looking at weight first cycle routine, a speed-up can be clearly ob-

served, which is more or less the same as in the Mesh 16M case.

The same happens in the interpolation part. As it can be observed the speed-ups of this

part are not very different from those found by running the simulation on the previous mesh.

In particular the parallelized first cycle shows the same trend as before both on GPUs and

multi-core.

In the second macro part of the gradient computation, the first gradient cycle has a speed-

up of 7 on 1 GPU and 14 on 2 GPUs. Even in multi-core there is a speed-up of 3, about half

that with 1 GPU as in the results of the previous mesh. The gradient division shows the same

behaviour. The performance of the second gradient cycle improves on that of the previous

mesh. This could be because by increasing the mesh size, the GPU is better exploited. The

performance of the gradient boundary condition and the correct boundary condition improves.

However, this improvement stems from a deterioration in original MPI.

In table 5.6 results of second iteration are shown. As it can be seen the dotinterpolate

first cycle shows a speed-up behaviour similar to the previous ones. The same holds for the

gradient first cycle and the gradient division.

44

Results

NVTX tag
HYBRID

vs
PURE MPI

1 MPI + 1 GPU
vs

PURE MPI

2 MPI + 2 GPU
vs

PURE MPI

2 MPI + 2 GPU
vs

HYBRID

DFC 2.66 8.68 17.05 6.42

GFC 2.78 6.90 13.58 4.89

GSC 2.11 3.64 1.65 0.78

GD 2.95 5.27 9.48 3.22

Table 5.6: speed-up second iteration Mesh 32M (HYBRID = 10 MPI × 8 threads)

The behaviour of the gradient second cycle function also seems to improve, consistently

with the first iteration. However, the times are still too low to see a clear improvement, and

there is data transfer in the GPUs case, which limits performance.

5.3.3 Performance running 64M mesh input case

The last mesh on which the modifications were tested is composed of 64 million of unknowns.

The size of this mesh doesn’t fit on 1 GPU so the simulations were done only on 2 GPUs. As

usual tables 5.7 and 5.8 report the speed-ups of the first and second iterations, while tables

A.7 and A.8 represent the execution times.

Considering the first iteration 5.7 the weight part shows a behavior similar to that seen

in previous meshes. In particular the weight first cycle speed-up is approximately the same

of Mesh 32M and Mesh 16M. In fact, doubling the mesh size doubles the time to perform that

cycle from 1.78[ms] (Mesh 32M) to 3.52 [ms]. The same holds for dotinterpolate first cycle

for which the time taken by mesh 32 is 0.69[ms] and here is 1.35 [ms].

NVTX tag
HYBRID

vs
PURE MPI

2 MPI + 2 GPU
vs

PURE MPI

2 MPI + 2 GPU
vs

HYBRID

WFC 3.20 17.08 5.35

WSC 29.04 154.27 5.31

DFC 3.44 17.36 5.05

GFC 2.62 13.13 5.01

GSC 7.35 2.45 0.33

GD 2.55 10.99 4.32

Table 5.7: speed-up first iteration Mesh 64M (HYBRID = 10 MPI × 8 threads)

45

Results

In the gradient part a good speed-up can be observed on gradient first cycle and gradient

division routines. Even in this case the speed-up is the same of Mesh 32M. It can also be no-

ticed that although the times for calculating the gradient second cycle routine increase using

80 MPI, the times taken by the GPU do not show the same speed-up seen in the previous

cycle (GFC). The speed-up of this part is 2.45. This is due to data transfer. In fact, looking

at the speed-up obtained in multi-core, where the data transfert is not present, one can see

an increase both in the first and in the second iteration, compared to the speed-ups obtained

from previous meshes.

Table 5.8 shows the second iteration. Again, the first dotinterpolation cycle shows a

significant speed increase on the GPU. Performance is also good in multi-core. The same

behaviour can be said for the first gradient cycle, the second gradient cycle and the gradient

division. It can be notice that these are the main routines that occupy most of the time in a

general PURE MPI gradient calculation.

NVTX tag
HYBRID

vs
PURE MPI

2 MPI + 2 GPU
vs

PURE MPI

2 MPI + 2 GPU
vs

HYBRID

DFC 2.83 17.18 6.06

GFC 2.59 14.68 5.68

GSC 4.55 2.11 0.46

GD 1.68 9.35 5.56

Table 5.8: speed-up second iteration Mesh 64M (HYBRID = 10 MPI × 8 threads)

5.4 General considerations

The previous sections have highlighted the speed-ups of the code sections provided by the

NVTX tag. Tables 5.9 and 5.10 show instead the full speed-ups results for the execution of

the first and the second iteration of the gradient computation on the previous meshes 16M,

32M and 64M. These speed-ups take into consideration also portions of code that have not

been parallelized using C++11 parallel constructs.

Table 5.9 shows the overall results of the second iteration. The highest speed-up on Mesh

16M was obtained using 1 MPI and 1 GPU. In this case the memory occupied on the GPU is

about half of the total memory (∼ 17GB). In this case the speed-up obtained using 2 GPUs is

slightly lower. There could be different reasons for that. One cause could be not being able

to fully utilize the power of the GPUs, another could be increased data transfer and MPI

communications. The comparison between PURE MPI versus HYBRID shows no relevant

46

Results

speed-up. The reasons of this behaviour will be investigated as continuation of this thesis work.

HYBRID
vs

PURE MPI

1 MPI + 1 GPU
vs

PURE MPI

2 MPI + 2 GPU
vs

PURE MPI

2 MPI + 2 GPU
vs

HYBRID

Mesh 16M 1.14 3.56 2.03 1.79

Mesh 32M 0.77 2.14 7.05 9.17

Mesh 64M 1.52 - 4.27 2.81

Table 5.9: Full speed-ups of GRAD during the First Iteration (HYBRID = 10 MPI × 8 threads)

Table 5.10 shows the overall results of the second iteration. It can be seen that on average

these are slightly lower than in the first iteration. However, the performance is in line with

that obtained in the previous iteration. In particular, it can be observed that the speed-up in

the 16 mesh case with 1 GPU is about half that obtained on 32 mesh and 2 GPUs. Moreover

a decrement in the performance in the case of mesh 32 and 1 GPU and mesh 64 and 2 GPU

can be noticed.

HYBRID
vs

PURE MPI

1 MPI + 1 GPU
vs

PURE MPI

2 MPI + 2 GPU
vs

PURE MPI

2 MPI + 2 GPU
vs

HYBRID

Mesh 16M 1.02 2.74 2.82 2.78

Mesh 32M 2.12 0.85 5.11 2.41

Mesh 64M 0.73 - 1.66 2.26

Table 5.10: Full speed-ups of GRAD during the Second Iteration (HYBRID = 10 MPI × 8 threads)

47

Results

48

Chapter 6

Conclusions

During this project a simple Proof-of-Concept mini-app has been developed and uses aiming

to demonstrate that adopting standard C++ parallelization techniques in the OpenFOAM

framework is possible and performance improvements can be achieved. We selected the gradi-

ent computation, a calculation really frequent in OpenFOAM simulations, and analyzed it in

detail. The most computationally expensive routines were identified, analyzed and modified

to be compliant with C++11 standard and so executed in parallel. After checking the cor-

rectness of the results, benchmark simulations were done on the system NVIDIA Arm HPC

Developer Kit.

From the benchmark simulations, it can be observed that the performance of the gradient

computation can be improved using both multi-threading as well as GPU offloading. From

tables 5.9 and 5.10, the best performance on average is that obtained by performing the cal-

culation on the GPUs. Speed-ups varying from 1.66x to 5.11x compared to PURE MPI and

from 2.26x to 2.78x compared to HYBRID. These speed-ups include compute time on GPU,

time spent in kernel launch and synchronisation, time spent in managing memory accesses

(with or without pre-fetching), overheads added by the profiling tools. In all scenarios, en-

abling GPU offload has produced a positive overall speed-up.

This work has given us an in-depth insight into the latest technological developments in

High Performance Computing. It has demonstrated the possibility to port key OpenFOAM

routines on GPUs using ISO C++ stdpar and language parallelism with some modification

in the source code but without requiring to change completely the underlying algorithm, the

data structure and the execution flow.

Currently only a small part of the overall OpenFOAM codebase runs on GPUs (the gradi-

ent evaluation). In the near future, we plan to extend to other routines of immediate interest

and perform scalability tests on multiple nodes. The work caught the attention of OpenCFD,

the company maintaining OpenFOAM codebase, confirming the approach based on standard

49

Conclusions

ISO C++ parallelism has potential to become mainstream and widely adopted. Considering

the size of OpenFOAM codebase, we envision the involvement of a larger group of active and

interested developers to increase the pace of development and expand quickly code capabili-

ties on GPU. We aim to publish an extension of this work in a journal or conference proceeding.

50

Appendix A

Execution Times for

The present Appendix collects all timings (in milliseconds) of all experiments conducted.

These timings are average of minimum three independent executions.

A.1 Global Execution Times for

PURE MPI HYBRID 1 MPI + 1 GPU 2 MPI + 2 GPU

Mesh 16M 59.45 52.30 16.71 29.29

Mesh 32M 145.44 189.11 68.12 20.63

Mesh 64M 292.78 192.86 - 68.64

Table A.1: Global Execution Times for first iteration (HYBRID = 10 MPI × 8 threads)

PURE MPI HYBRID 1 MPI + 1 GPU 2 MPI + 2 GPU

Mesh 16 24.794 24.3744 9.0392 8.7784

Mesh 32 48.738 22.9572 57.3998 9.5362

Mesh 64 98.548 134.2658 - 59.506

Table A.2: Global Execution Times for second iteration (HYBRID = 10 MPI × 8 threads)

51

Execution Times for

A.2 Execution Times for Mesh 16M

NVTX tag PURE MPI HYBRID 1 MPI + 1 GPU 2 MPI + 2 GPU

WFC 14.843 4.7424 1.767 0.926

WSC 10.151 0.2286 0.167 0.2418

DFC 5.583 1.7616 0.681 0.3534

GFC 12.232 3.8398 1.723 1.2128

GSC 0.352 0.081 0.310 1.1864

GD 3.746 1.4086 0.660 0.3472

Table A.3: Times first iteration Mesh 16M (HYBRID = 10 MPI × 8 threads)

NVTX tag PURE MPI HYBRID 1 MPI + 1 GPU 2 MPI + 2 GPU

DFC 5.829 2.0298 0.67 0.348

GFC 11.984 3.9002 1.748 1.0314

GSC 0.343 0.518 0.196 0.6968

GD 4.023 1.653 0.658 0.3402

Table A.4: Times second iteration Mesh 16M (HYBRID = 10 MPI × 8 threads)

A.3 Execution Times for Mesh 32M

]NVTX tag PURE MPI HYBRID 1 MPI + 1 GPU 2 MPI + 2 GPU

WFC 29.502 10.229 3.512 1.7814

WSC 20.727 1.5152 0.227 0.2234

DFC 11.488 2.9356 1.333 0.6956

GFC 24.308 8.0206 3.562 1.7674

GSC 0.756 0.9828 0.414 0.7042

GD 7.757 2.057 1.319 0.7274

Table A.5: Time first iteration Mesh 32M (HYBRID = 10 MPI × 8 threads)

52

Execution Times for

NVTX tag PURE MPI HYBRID 1 MPI + 1 GPU 2 MPI + 2 GPU

DFC 11.627 4.3764 1.339 0.6818

GFC 24.542 8.8412 3.559 1.8068

GSC 0.765 0.3626 0.210 0.4624

GD 6.92 2.347 1.314 0.7296

Table A.6: Times second iteration Mesh 32M (HYBRID = 10 MPI × 8 threads)

A.4 Execution Times for Mesh 64M

NVTX tag PURE MPI HYBRID 2 MPI + 2 GPU

WFC 60.198 18.8354 3.5236

WSC 43.135 1.4854 0.2796

DFC 23.39 6.8086 1.347

GFC 47.222 18.0108 3.5964

GSC 1.248 0.1698 0.5092

GD 14.593 5.728 1.3274

Table A.7: Times first iteration Mesh 64M (HYBRID = 10 MPI × 8 threads)

NVTX tag PURE MPI HYBRID 2 MPI + 2 GPU

DFC 23.246 8.2082 1.3534

GFC 52.78 20.4146 3.5952

GSC 1.117 0.2456 0.5284

GD 12.355 7.3548 1.3218

Table A.8: Times second iteration Mesh 64M (HYBRID = 10 MPI × 8 threads)

53

Execution Times for

54

Bibliography

[1] Massimiliano Culpo. “Current Bottlenecks in the Scalability of OpenFOAM on Mas-

sively Parallel Clusters”. In: Partnership for Advanced Computing In Europe (2012).

[2] I. Spisso , G. Amati , V. Ruggero , C. Fiorina. Porting, optimization and bottleneck

of openFOAM in KNL. Tech. rep. Intel eXtreme Performance Users Group (IXPUG),

2018.

[3] Giorgio Amati Ivan Spisso. HPC Comparison of Hypre vs Pstream as external linear

algebra library for OpenFOAM. ESI get it right, 2018.

[4] Ampere Altra Multi-Core Processor Features. Available on line. 2022. url: https://

d1o0i0v5q5lp8h.cloudfront.net/ampere/live/assets/documents/Altra_Rev_A1_

DS_v1.30_20220728.pdf.

[5] NVIDIA Arm HPC Developer Kit. Available on line. url: https : / / developer .

nvidia.com/arm-hpc-devkit.

[6] Anthony Williams. C++ Concurrency In Action. Manning, 2019.

[7] Rainer Grimm. Concurrency with Modern C++. Packt, 2019.

[8] Nikolay Sakharnykh. Beyond GPU Memory Limits with Unified Memory on Pascal.

Tech. rep. NVIDIA, 2016. url: https://developer.nvidia.com/blog/beyond-gpu-

memory-limits-unified-memory-pascal/.

[9] NVIDIA Nsight Systems. Available on line. url: https://developer.nvidia.com/

nsight-systems.

[10] NVIDIA Developer Tools. Available on line. url: https://developer.nvidia.com/

tools-overview.

[11] NVIDIA Tools Extension (NVTX). Available on line. url: https://docs.nvidia.

com/nvtx/index.html.

[12] Mark Harris. Unified Memory for CUDA Beginners. Tech. rep. NVIDIA, 2017. url:

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/.

[13] Jeff Larkin. Developing Accelerated Code with Standard Language Parallelism. Tech.

rep. NVIDIA, 2017. url: https : / / developer . nvidia . com / blog / developing -

accelerated-code-with-standard-language-parallelism/.

55

https://d1o0i0v5q5lp8h.cloudfront.net/ampere/live/assets/documents/Altra_Rev_A1_DS_v1.30_20220728.pdf
https://d1o0i0v5q5lp8h.cloudfront.net/ampere/live/assets/documents/Altra_Rev_A1_DS_v1.30_20220728.pdf
https://d1o0i0v5q5lp8h.cloudfront.net/ampere/live/assets/documents/Altra_Rev_A1_DS_v1.30_20220728.pdf
https://developer.nvidia.com/arm-hpc-devkit
https://developer.nvidia.com/arm-hpc-devkit
https://developer.nvidia.com/blog/beyond-gpu-memory-limits-unified-memory-pascal/
https://developer.nvidia.com/blog/beyond-gpu-memory-limits-unified-memory-pascal/
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/tools-overview
https://developer.nvidia.com/tools-overview
https://docs.nvidia.com/nvtx/index.html
https://docs.nvidia.com/nvtx/index.html
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/developing-accelerated-code-with-standard-language-parallelism/
https://developer.nvidia.com/blog/developing-accelerated-code-with-standard-language-parallelism/

BIBLIOGRAPHY

[14] Wei-Chen Lin, Tom Deakin, and Simon McIntosh-Smith. “Evaluating ISO C++ Parallel

Algorithms on Heterogeneous HPC Systems”. In: International Workshop on Perfor-

mance Modeling, Benchmarking and Simulation of High Performance Computer Sys-

tems held in conjunction with Supercomputing (PMBS). in press. IEEE, 2022.

[15] Jonas Latt, Christophe Coreixas , Joel Beny. “Cross-platform programming model

for many-core lattice boltzmann simulations”. In: PLoS ONE (2021). url: https :

//journals.plos.org/plosone/article?id=10.1371/journal.pone.0250306.

[16] Thrust. Available on line. url: https://developer.nvidia.com/thrust.

[17] Mark Harris. Unified Memory in CUDA 6. Tech. rep. NVIDIA, 2013. url: https:

//developer.nvidia.com/blog/unified-memory-in-cuda-6/.

[18] Christopher J. Greenshields. OpenFOAM, The OpenFOAM Foundation. User Guide

version 10. OpenFOAM Foundation Ltd, 2022.

[19] Simone Bnà, Ivan Spisso, Mark Olesen and Giacono Rossi. “PETSc4FOAM: A Library

to plug-in PETSc into the OpenFOAM Framework”. In: Partnership for Advanced Com-

puting In Europe (2020).

[20] Matt Martineau, Stan Posey and Filippo Spiga. AmgX GPU Solver Developments for

OpenFOAM. ESI get it right, 2021.

[21] F. Moukalled, L.Mangani and M.Darwish. The Finite Volume Method in Computational

Fluid Dynamics. An advanced Introduction with OpenFOAM and Matlab. Springer,

2016.

[22] Jasak Hrvoje. “Error Analysis and Estimation for the Finite Volume Method with Ap-

plications to Fluid Flows”. PhD thesis. Imperial College of Science, Technology and

Medicine, 1996.

[23] H.K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics.

THE FINITE VOLUME METHOD. PEARSON, 2007.

[24] SimpleFOAM. url: https://openfoamwiki.net/index.php/SimpleFoam.

[25] Daniel Molinero Hernandez et al. “Multi GPU Implementation to Accelerate the CFD

Simulation of a 3D Turbo-Machinery Benchmark Using the RapidCFD Library”. In:

Dec. 2019, pp. 173–187. isbn: 978-3-030-38042-7. doi: 10.1007/978-3-030-38043-

4_15.

[26] Julian Seward, Nicholas Nethercote, Tom Hughes, Jeremy Fitzhardinge, Josef Weiden-

dorfer, Paul Mackerras, Greg Parker, Dirk Mueller, Robert Walsh, Bart Van Assche ,

Cerion Armour-Brown et al. Valgrind Documentation. English. Version Version 3.20.0.

GNU Free Documentation License. 396 pp. October 24, 2022.

[27] Josef Weidendorfer. Kcachegrind. url: https://kcachegrind.sourceforge.net/

html/Home.html.

56

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250306
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250306
https://developer.nvidia.com/thrust
https://developer.nvidia.com/blog/unified-memory-in-cuda-6/
https://developer.nvidia.com/blog/unified-memory-in-cuda-6/
https://openfoamwiki.net/index.php/SimpleFoam
https://doi.org/10.1007/978-3-030-38043-4_15
https://doi.org/10.1007/978-3-030-38043-4_15
https://kcachegrind.sourceforge.net/html/Home.html
https://kcachegrind.sourceforge.net/html/Home.html

BIBLIOGRAPHY

[28] OpenFOAM guide/SurfaceInterpolation. Available on line. url: https://openfoamwiki.

net/index.php/OpenFOAM_guide/SurfaceInterpolation.

[29] RapidCFD Github Repository. Available on line. url: https://github.com/Atizar/

RapidCFD-dev.

57

https://openfoamwiki.net/index.php/OpenFOAM_guide/SurfaceInterpolation
https://openfoamwiki.net/index.php/OpenFOAM_guide/SurfaceInterpolation
https://github.com/Atizar/RapidCFD-dev
https://github.com/Atizar/RapidCFD-dev

Acknowledgments

In this work, I had the pleasure of working closely with Filippo Spiga, Giovanni Stabile and

Matthew Martineau.

To all of them goes my sincere thanks, without their ideas, support and knowledge this work

would not have been possible.

In particular, I would like to thank Filippo for the original idea of including the new parallelism

standard in OpenFOAM and for his support throughout the work. Thanks go to Giovanni for

sharing so much knowledge of OpenFOAM in order to better understand the code and be

able to modify it effectively. Thanks to Matthew for providing excellent technical support by

accelerating the changes needed to bring the code to the GPU.

59

	Abstract
	Introduction
	Background
	Project overview

	Standard ISO C++
	Concurrency in C++
	STL Algorithms
	Class "Iteration & Transform"
	Class "Reductions"
	Class "Search"
	Class "Memory Movement & Initialization"
	Class "Reorder"

	Parallel STL Algorithms
	Support in NVIDIA HPC SDK
	NVIDIA Unified Memory

	OpenFOAM
	Domain Discretization
	Gauss-Green Gradient Computation

	Implementation
	Previous works
	Identification of simpleFOAM hot-spots
	Code Porting and Refactoring
	Routine SurfaceIntepolationScheme
	Routine gradf
	Routine CorrectBoundaryConditions

	OpenFOAM gradient mini-app
	Profiling a GPU application
	Tuning data movement with explicit pre-fetching

	Results
	Mini-app input cases
	Computing platform
	Results obtained
	Performance running Mesh 16M input case
	Performance running 32M mesh input case
	Performance running 64M mesh input case

	General considerations

	Conclusions
	Execution Times for
	Global Execution Times for
	Execution Times for Mesh 16M
	Execution Times for Mesh 32M
	Execution Times for Mesh 64M

	Bibliography

