
Mathematics Area - PhD course in

Geometry and Mathematical Physics

Combinatorics of Classical
Unitary Invariant Ensembles

and Integrable Systems

Candidate:
Massimo Gisonni

Advisors:
Tamara Grava
Giulio Ruzza

Academic Year 2021-22



1

Abstract

The first part of this thesis is devoted to the combinatorics, geometry, and
effective computation of correlators of unitary invariant ensembles of random
hermitian matrices with classical potentials. The main results are the subject
of the publications [92, 93] with my supervisors T. Grava and G. Ruzza, and
are summarized as follows.

We provide generating functions for correlators of general Hermitian ma-
trix models; formulæ of this sort have already appeared in the literature
[23, 78], we rederive them here with different methods which lend themselves
to further generalizations. Such formulæ are not recursive in the genus and
hence particularly effective. Moreover, these formulae express the correlators
of classical unitary ensembles as linear combinations of products of discrete
hypergeometric polynomials; this generalizes relations to discrete orthogonal
polynomials for the one-point correlators

〈
trMk

〉
of the classical ensembles

recently discovered by Cunden et al. [52].
Hence, we turn our attention on the combinatorial interpretation of corre-

lators for the Laguerre and Jacobi ensembles. We prove that the coefficients
in the topological expansion of Jacobi correlators are multiparametric single
Hurwitz numbers involving combinations of triple monotone Hurwitz numbers.
Via a simple limit, this reproduces formulæ of [51] on the Laguerre ensemble.
This completes the combinatorial interpretation of correlators of unitary en-
sembles with classical potential.

Combining results of Dubrovin et al. [62], and of Norbury [148] connecting
integrable systems with enumerative geometry, we obtain ELSV-like formulæ
linking the multiparametric single Hurwitz numbers of LUE and JUE respec-
tively to cubic Hodge integrals and Θ-GW invariants.

In the second part of the thesis we analyse various integrable dynamical
systems from a probabilistic point of view. Specifically, we study the spectrum
of their random Lax Matrix equipped with the associated Gibbs Measure, in
the spirit of [102, 156]. This is the content of the preprint [91], in collaboration
with T. Grava, G. Gubbiotti and G. Mazzuca.

We explicitly compute the density of states for the exponential Toda lat-
tice and the Volterra lattice showing they are connected to the Laguerre β-
ensemble at high temperatures and the β-antisymmetric Gaussian ensemble at
high temperatures respectively. For generalizations of these system we derive
numerically their density of states and compute their ground states.



2

Acknowledgements

These four years at SISSA have been a wonderful ride, and for this the first people I need to
thank are my supervisors: Tamara Grava and Giulio Ruzza. To professor Grava, for all the time
you dedicated, for all the opportunities you gave me to enjoy this PhD at its fullest, and for always
keeping up the morale; to Giulio, for being both a mentor and a friend, for all your patience, for
all the discussions and the time spent together. Thank you.

I am grateful to all the professors at SISSA which helped me in these years, teaching me the ways
of math and life. Amongst many prof. Davide Guzzetti, prof. Marco Bertola, prof. Ken McLaughlin;
the list should continue. The gratitude extends to all the personnel at SISSA, who never ceases to
have a smile for us students.

From the heart, thanks to all my colleagues in Trieste and around the world: Guido, Felipe,
Umar, Michele, Eduardo, Stefano, Mario, Leo, Giuseppe, Fran, Sofia, Roozbeh, and all the others.
A paragraph is far from enough to recollect all the smiles, drinks, chess, talks we had together; I
feel blessed to have met you.

Thanks to all my friends in Valvasone: il Frantoio, il gruppo Praglia, i pipini, i disagiati, i
Ferox; thanks to my cousins. You all always make it difficult to leave home.

Last but not least, a special thanks to my family, my parents Enzo and Tiziana, my brother
Luciano. For your endless support, for always believing in me. And thanks to myself, for keeping
it up.



Contents

Introduction 5

1 Random matrix ensembles 11
1.1 Unitary invariant ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Orthogonal polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Classical unitary ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Partition functions and the Toda lattice hierarchy . . . . . . . . . . . . . . . . . . . 20

2 Hurwitz numbers and symmetric functions 23
2.1 Geometric and combinatoric definition of Hurwitz numbers . . . . . . . . . . . . . . 23
2.2 The symmetric group algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Hurwitz numbers and integrable systems . . . . . . . . . . . . . . . . . . . . . . . . . 29

Classical Unitary Invariant Ensembles 32

3 Correlators of unitary invariant ensembles 32
3.1 Analytic generating functions for correlators . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 The multiple and discrete orthogonal polynomials case . . . . . . . . . . . . . 40
3.2 Generating functions for correlators of classical unitary invariant ensembles . . . . . 43

3.2.1 Correlators generating functions for GUE . . . . . . . . . . . . . . . . . . . . 44
3.2.2 Correlators generating functions for LUE . . . . . . . . . . . . . . . . . . . . 45
3.2.3 Correlators generating functions for JUE . . . . . . . . . . . . . . . . . . . . 52

4 Combinatorics of classical unitary invariant ensembles 59
4.1 Combinatorics of the JUE correlators . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Preliminaries: expansions in Schur basis . . . . . . . . . . . . . . . . . . . . . 60
4.1.2 Topological expansion in triple Hurwitz numbers . . . . . . . . . . . . . . . . 63
4.1.3 Generalization to the Jacobi beta ensemble . . . . . . . . . . . . . . . . . . . 68

4.2 LUE and double Hurwitz numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Connections with intersection theory on moduli spaces of curves 74
5.1 Hodge integrals and LUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.1 Relation between LUE and mGUE partition functions . . . . . . . . . . . . . 77
5.1.2 Hodge-LUE correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Θ-GW invariants of P1 and the Legendre unitary ensemble . . . . . . . . . . . . . . 83

Discrete integrable systems and random Lax matrices 88

3



CONTENTS 4

6 Hermitian Lax systems 88
6.1 Background material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2 Laguerre β-ensemble and the exponential Toda lattice . . . . . . . . . . . . . . . . . 91
6.3 Volterra lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Non-Hermitian Lax systems 100
7.1 Generalization of the Volterra lattice: the INB k-lattices . . . . . . . . . . . . . . . . 100
7.2 The focusing Ablowitz-Ladik lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.3 Schur flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Appendices 117

A Numerical Tables 118
A.1 Tables of some weighted strictly monotone double Hurwitz numbers . . . . . . . . . 118
A.2 Tables of some weighted weakly monotone double Hurwitz numbers . . . . . . . . . 119



Introduction

Overview

In the study of dynamical systems, a key concept is that of integrability. Many definitions can
be given but as Birkhoff writes [29] “let us not forget the dictum of Poincaré, that a system of
differential equations is only more or less integrable”. In this thesis we both seek and reap the
rewards of integrability.

Amongst the first and most studied integrable systems is the Toda lattice [159], describing
particles on the real line interacting via the Hamiltonian

H(p, q) =
1

2

N∑
j=1

p2j +
N−1∑
j=1

e(qj−qj+1). (1)

It is a Liouville integrable system, in the sense that it admits a maximal set of independent invariants
in involution. This can be proved by constructing a pair of matrices (L,A) that reproduces the
equations of motion via the commutator relation

L̇(t) = [A(t), L(t)] . (2)

Then, the eigenvalues of L form a complete set of first integrals for the system. The matrix L takes
the name of Lax matrix, and the pair (L,A) of Lax pair. In the case of the Toda lattice, it can be
used to explicitly compute the time evolution of the dynamical system [127].

Matrix Models. The very concept of Lax matrix is at the origin of much of the arguments
treated in this work. Foremost, the Lax formulation allows to define in a simple way an extension
of the Toda lattice to infinitely many time variables. The Toda lattice-hierarchy in the time variables
t = (t1, t2, . . . ) is given by the infinite set of commuting flows

∂

∂tk
L(t) =

[(
Lk(t)

)
+
, L(t)

]
, k = 1, 2, . . . , (3)

from which the classical Toda lattice is recovered for k = 1. Correspondingly, one seeks for a
function in infinitely many time variables from which solutions for all equations in the hierarchy
can be constructed. In a nutshell, this is the concept of tau function τ(t1, t2, . . . ), which also has
the asset of taking all equations in the hierarchy in bilinear form, see Hirota [113].

Remarkably, partition functions of Hermitian matrix models happen to be Toda tau functions.
They are defined via the matrix integral

ZN (t) =

∫
HN

etrV (M ;t)dM V (x; t) = V0(x) +
∑
j≥1

tjx
j , (4)
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for some regular enough background potential V0(x). Via the spectral theorem for Hermitian
matrices, one can give a complete description of the partition functions in terms of the orthogonal
polynomials associated to V0(x). The identification with a specific Toda tau function passes through
the remarkable fact that the Toda Lax matrix has essentially the same structure of the Jacobi
operator describing the three term recurrence of orthogonal polynomials.

For a dynamical system, the existence of commuting flows is [133] “Fundamentally [...] well-
definedness of correlation functions”. A matrix model can be called integrable if its partition
function is the tau function of some integrable hierarchy; in this case, the correlators are defined as〈

trMk1 · · · trMkℓ
〉
, (5)

and are the coefficients of the partition function in the monomial base of symmetric polynomials in
the variables t. Well-behavedness of correlators, in this context, also means they can be recovered
at all orders starting from the base cases ℓ = 1 and ℓ = 2, as described by the theories e.g. of
the Topological recursion and Loop equations [79]. More to that, in the case of Hermitian one-cut
matrices they can be expanded in Laurent series of N2, with N the size of the matrix [40, 75], as〈

trMk1 · · · trMkℓ
〉
∼
∑
g≥0

fg(k1, . . . , kℓ)

N2g−2
, N →∞. (6)

In some exceptional cases, one can get the explicit expression of the coefficients fg(k1, . . . , kℓ) in
this expansion. When the background potential is quadratic – V0(x) = x2 – it was shown in the
seminal paper of Bessis, Itzykson and Zuber [28] how they are connected to the counting problem
of ribbon graphs. Ever since there has always been interest in finding, in this sense, combinatorial
interpretations of matrix models.

Hurwitz numbers are a recurrent object in this context. They were first introduced by Adolf
Hurwitz in [114] and concern the counting of equivalence classes (up to biholomorphism) of ramified
coverings over P1; equivalently, via the Riemann existence Theorem, they describe factorization
problems in the symmetric group. Amongst the many species of Hurwitz numbers, Simple Hurwitz
numbers are somewhat the base case and the most studied one. In 2011 Borot, Eynard, Mulase and
Safnuk [38] were able to construct generating functions of simple Hurwitz numbers via the external
matrix model

Z ∝
∫
HN (C)

dM exp

(
− 1

gs
tr (V (M)−M A)

)
, (7)

we refer to loc. cit. for the precise definitions of the objects; here external pertains to the presence of
the matrix A in the measure, whose eigenvalues serve as extra parameters for the system. Another
important result was the proof by Goulden, Guay-Paquet and Novak [96, 97] that the Harish-
Chandra-Itzykson-Zuber integral [67, 111, 118]

IN (z) =

∫
U(N)

ezN tr (AUBU−1)dU (8)

is a generating function for double weakly monotone Hurwitz numbers; a similar result holds for the
BGW model which is related to single weakly monotone Hurwitz numbers [149]. Recently, external
matrix models for generic multiparametric Hurwitz numbers have been worked out by Bertola and
Harnad [25]. Remarkably, internal – in the sense of (4), with no additional matrices in the measure
– matrix models for Hurwitz numbers do exist but have been investigated only recently in relation to
unitary invariant ensembles with classical weights. The correlators of the GUE have been related
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to double strictly monotone Hurwitz numbers with a prescribed partition (also called orbifold
Hurwitz numbers) by Borot and Garcia-Failde [39]. The Laguerre Unitary Ensemble (LUE) is
related to multiparametric single Hurwitz numbers involving combinations of double (both weakly
and strictly) monotone Hurwitz numbers. Glances of the combinatorial structure of the LUE first
appeared in [101]; the idea was later systematized by Collins et al. in [50] and the study completed
by Cunden Dahlqvist and O‘Connell [51]. The last classical matrix integral is the Jacobi Unitary
Ensemble (JUE), and it is related to multiparametric Hurwitz numbers involving combinations of
triple weakly monotone Hurwitz numbers; this constitutes one of the original contributions in this
thesis and appeared in [93].

The interplay between tau functions, matrix models and Hurwitz numbers is deep and spreads
over many branches of Mathematics. One of the most striking ones is their connection through
the Kontsevich–Witten theorem [129, 166] with enumerative geometry. This celebrated result
states that the generating function of certain intersection numbers on the moduli spaces of curves –
specifically intersection numbers of psi-classes – is a tau function for the KdV hierarchy. It was later
reproved by Kazarian and Lando [125] essentially inverting the ELSV formula [73], named after its
discoverers: Ekedahl, Lando, Shapiro, Vainshtein. The ELSV formula gives a close expression for
simple Hurwitz numbers in terms of Hodge integrals,

hg(µ) =
(2g − 2 + |µ|+ ℓ)!

|Aut(µ)|

ℓ∏
i=1

µµi
i

µi!

∫
Mg,n

∑g
j=0(−1)jλj∏ℓ

i=1(1− µiψi)
. (9)

The first closed formula for general Hurwitz numbers was given long ago by Burnside [43] but the
spark has revived in the early 2000s; along with the ELSV formula, important work on properties of
Hurwitz numbers has been done, amongst the others, by Dubrovin, Yang, Zagier [64] and Goulden,
Jackson, Vakil [95, 98]. The latter authors also conjectured an ELSV formula for one-part double
Hurwitz numbers [99] then proved in [59]. Regarding double Hurwitz numbers, very recently an
ELSV-like formula has been obtained in [37] by deforming the Johnson–Pandharipande–Tseng [119]
formula for orbifold Hurwitz numbers. In this work we present two ELSV-like formulæ relating the
Hurwitz numbers associated to the LUE/JUE with some specific intersection numbers. These
formulæ involve weighted sums of the considered objects, and are similar in spirit to those in [39].

Random Lax systems We turn our attention back to Lax matrices. As mentioned, they can
serve as a tool both to prove integrability of a dynamical system and to explicitly integrate it when
the initial data are known. The latter can be a significantly difficult task, and has been worked
out only in a few cases, e.g. [127]. Nonetheless, even if the exact solvability of a system is hardly
achievable, it is still possible to study it from a probabilistic point of view.

When the initial data (p, q) are chosen randomly, the Lax matrix itself inherits an entrywise
distribution and thus becomes a random matrix. In general, Hamiltonian systems have a natural
invariant measure with respect to the Hamiltonian flow, defined in terms of the Hamiltonian itself,
the so called Gibbs measure [126],

µH =
1

ZH
e−βH(p,q)dpdq. (10)

The eigenvalues of a Lax matrix L are constants of motion for the associated system, so that
understanding the behaviour of its spectrum with random initial data remains a sensible question.
In order to trigger (global features of) the randomness, these systems are analysed in the regime
where the number N of degrees of freedom goes to infinity. This allows to define the density of
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states νL from the empirical measure on the eigenvalues λj of the Lax matrix L,

1

N

N∑
j=1

δλj

N→∞−−−−⇀ νL . (11)

Recently, Spohn [156] connected the spectrum of the random Lax matrix of the Toda lattice
with the one of the sparse matrix of the Gaussian β-ensemble [68] at high temperature [11]. The
sparse matrix of the Gaussian β-ensemble is the random matrix

N (0, 2) χ(N−1)β

χ(N−1)β N (0, 2) χ(N−2)β

. . .
. . .

. . .

χ2β N (0, 2) χβ

χβ N (0, 2)

 . (12)

It is equivalent in distribution to the GβE of full matrices – e.g. the potential V0(x) = x2 in (4)
recovers the β = 2 case – in the sense that their eigenvalues distributions coincide [69]. Roughly,
the identification with the Toda lattice takes place since its Lax matrix has the same tridiagonal
form of (12) and its entries for N → ∞ converge to the same distributions under the associated
Gibbs measure. This observation sparks the interest in linking other classical dynamical systems
with known β-ensembles of matrices. In this direction, work has been done also by Mazzuca et
al. [102, 136]. In this thesis we provide the link to the Laguerre β-ensemble and the β-antisymmetric
Gaussian ensemble at high temperatures studying two lattice systems, the exponential Toda lattice
and the Volterra lattice.

Structure of the thesis and original contributions

In the first two Chapters of the thesis we recall the main definitions from the theory of random
matrix ensembles and orthogonal polynomials, as well as their connection with integrable systems.
We also introduce the geometric and combinatorial definitions of Hurwitz numbers and recollect
known results linking them to integrable systems.
Chapter 3 deals with generating functions for correlators of classical unitary ensembles.
These results are based on the work done with T. Grava and G. Ruzza in [92, 93]. General formulæ
for generating functions of correlators of Hermitian matrix models appeared in the work of Eynard
et al. [77, 78] and Dubrovin and Yang [63] (see also [22]), through the so called matrix resolvent
R(z). They read

C c
1 (z) =

(
Y −1
N (z)Y ′

N (z)
)
1,1
, (13)

C c
2 (z1, z2) =

tr (R(z1)R(z2))− 1

(z1 − z2)2
, (14)

C c
ℓ (z1, . . . , zℓ) = −

∑
(i1,...,iℓ)∈cyc((ℓ))

tr (R(zi1) . . . R(ziℓ))

(zi1 − zi2) · · · (ziℓ − zi1)
, ℓ ≥ 3, (15)

where C c
ℓ (z1, . . . , zℓ) is the ℓ-point cumulant function, YN (z) is the Fokas-Its-Kitaev matrix [117],

and R(z) := YN (z)( 1 0
0 0 )Y −1

N (z); in Section 3.1 we present a new derivation of the above. These
formulæ hold for finite, N where N is the matrix dimension, and are different in flavour both
from the topological recursion formulæ, [46] that permit to evaluate the coefficients of the large N
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expansions of the correlators, and from the Dubrovin-Zhang approach [66] via Dubrovin-Frobenius
manifolds. We also point out how a similar approach could be extended to ensembles arising from
discrete and multiple orthogonal polynomials, see Section 3.1.1. We apply the matrix resolvent to
the Laguerre and Jacobi unitary ensemble; this completes the study on generating functions for
correlators of classical ensembles, the Gaussian case having been dealt with by Dubrovin and Yang
in [63]. We obtain the solution in the form

R(z) =

(
1 0
0 0

)
+
∑
ℓ≥0

1

z2ℓ+2

(
Aℓ,N −zBℓ,N+1

zBℓ,N Aℓ,N

)
, (16)

as z →∞, where the entries Aℓ,N and Bℓ,N are shown to be discrete orthogonal polynomials indexed
by the variable ℓ. It was first proved by Cunden, Mezzadri, O’Connell and Simm [52] that one-
point correlators

〈
trMk

〉
of all three classical unitary invariant ensembles are discrete orthogonal

polynomials. Our results imply that multi-point correlators can be expressed as combinations of
them as well. Explicit formulæ are presented in Theorems 3.2.3, 3.2.5 and 3.2.12.
In Chapter 4 we obtain the combinatorial interpretation of the JUE. We show that correlators
of the Jacobi partition function admit a topological expansion in terms of multiparametric single
Hurwitz numbers [104, 112]〈

ℓ∏
j=1

trXλj

〉
JUE

= (−1)|λ|
zλ
|λ|!

∑
g≥0

1

N2g−2−ℓ(λ)

∑
µ,ν⊢|λ|

c
ℓ(ν)
α

(−cα − cβ)ℓ(µ)+ℓ(ν)+ℓ(λ)+2g−2
h≥g (λ, µ, ν),

which are expressed as a combination of triple weakly monotone Hurwitz numbers, Theorem 4.1.5.
The derivation is carried out using the Selberg-Aomoto integral to explicitly compute the coefficients
in the Schur expansion of the Jacobi partition function. Identical Hurwitz numbers are related to
negative correlators (i.e. expectation of products of traces of negative powers of the random matrix).
In Section 4.2 we show how the same technique retrieve analogous results of [51] on the Laguerre
unitary ensemble.
In Chapter 5 we obtain an ELSV-like formula for the multipoint correlators. In [62] the
modified GUE partition function (mGUE) was introduced and proved to be a generating function
for cubic Hodge integrals. We point out a symmetry (N,α)→ (N+α,−α) in the Laguerre partition

function Z
(α)
N which allows us to connect it with the mGUE partition function for the particular

value α = −1
2 . As a consequence we relate the Hurwitz numbers of LUE with Hodge integrals

according to∑
g≥0

ϵ2g−2Hg,µ = 2ℓ
∑
γ≥0

(2ϵ)2γ−2
∑
ν⊢|µ|

(
ω +

ϵ

2

)2−2γ+|µ|−ℓ−ℓ(ν) (
ω − ϵ

2

)ℓ(ν)
h>γ (µ, ν), (17)

Hg,µ := 2g−1
∑
m≥0

(ω − 1)m

m!

∫
Mg,ℓ+m

Λ2(−1)Λ

(
1

2

)
exp

−∑
d≥1

κd
d

 ℓ∏
a=1

µa
(
2µa

µa

)
1− µaψa

+
δg,0δℓ,1

2

(
ω − µ1

µ1 + 1

)(
2µ1
µ1

)
+
δg,0δℓ,2

2

µ1µ2
µ1 + µ2

(
2µ1
µ1

)(
2µ2
µ2

)
, (18)

where Hg,µ is a finite sum of Hodge integrals, see Theorem 5.1.1. The Theta classes on moduli
spaces of curves have been introduced by Norbury [47, 147] as the analogue of standard intersec-
tion numbers of psi classes (associated to the Airy topological recursion) for the Bessel topological
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recursion. In the work [148] Norbury relates the generating function of Theta classes coupled to
GW invariants of P1 with the Legendre matrix model. In view of the fact that this is a special case
of JUE, we obtain

∑
µ,ν⊢|λ|

h≥g (λ, µ, ν)

(−2)ℓ(µ)+ℓ(ν)+ℓ+2g−2
=

(−1)|λ||λ|!
2|λ|

∏
i≥1 i

mi

∑
k1,...,kℓ≥1

〈
Θ ·
∏ℓ

j=1

(
λi
kj

)
τkj−1(ω)

〉g
d

2k1+···+kℓ
. (19)

This is the content of Section 5.2.
Chapter 6 is partially unrelated to the first part of the thesis and concerns the spectra of random
Lax matrices. We show that the exponential Toda lattice, and the Volterra lattice are related,
respectively, to the Laguerre β-ensemble at high temperature and the antisymmetric Gaussian β-
ensemble at high temperature. The results are in Section 6.2 and Section 6.3. We thus fill in rows
two and five of the following table, the others appearing in [102, 136, 156]. We explicitly compute

β-ensemble at high temperature Integrable System

Gaussian Toda lattice

Laguerre Exponential Toda lattice

Jacobi Defocusing Schur flow

Circular Defocusing Ablowitz-Ladik lattice

Antisymmetric Gaussian Volterra lattice

the density of states of the associated random Lax matrices endowed with their generalized Gibbs
measures as

νET (x) = β∂α(αµα,γ(βx))dx, νVolt(x) =
√
β∂η

(
ηθη(

√
βx)
)

dx , (20)

where µα,γ and θη are related to the Tricomi’s confluent hypergeometric and the Whittaker functions
respectively.
In Chapter 7 we numerically investigate the eigenvalues distribution of other integrable systems,
namely the additive and multiplicative INB lattices, the focusing Ablowitz-Ladik lattice and the
focusing Schur flow.

The content of Chapter 6 and Chapter 7 is based on the work done with T. Grava, G. Gubbiotti
and G. Mazzuca in [91].



Chapter 1

Random matrix ensembles

A random matrix ensemble is the datum of a probability measure dµ(M) over a family, an ensemble,
of matricesM⊂Mat (C, N1 ×N2). It carries an entrywise distribution on the elements Mij of M ,

Mij ∝ dµij(M). (1.1)

Usually, the ensemble M is taken to be some vector space acted upon by a group of symmetries
(e.g. Hermitian, Symmetric matrices,...), thus endowed with a natural Lebesgue measure dM , with
respect to which we ask the measure dµ(M) to be absolutely continuous.

Random matrices serve as a model for many phenomena coming from the physics world; they
first appeared in the fifties in the work of physicist E.P. Wigner, who was investigating properties
of the energy levels of highly excited states of heavy nuclei [164]. He was interested in studying the
spacings between those energy levels and conjectured they were related to the eigenvalues spacings
of a certain random matrix ensemble. The book of Mehta [137] also played a foundational role in
the development and spread of the theory.

Dealing with probabilistic quantities, one is often interested in computing expectations of func-
tions with respect to the given measure, write

⟨f(M)⟩ =

∫
M
f(M)dµ(M). (1.2)

In this thesis we will be particularly interested in the correlators of Hermitian matrix ensembles,
defined as averages of products of traces of powers of matrices,〈

trMk1 · · · trMkℓ
〉

=

∫
HN

trMk1 · · · trMkℓ dµ(M), (1.3)

where k1, . . . kℓ ∈ Z. They can be regarded as the building blocks, coefficients of Taylor expansions,
of partition functions of matrix models, see Section 1.3. We will extensively investigate these
objects in Chapters 3 and 4 for specific measures dµ.

1.1 Unitary invariant ensembles

In the general scenario, random matrix ensembles can be extremely complicated to analyze. How-
ever, most of the models drawn from the real world exhibit an invariance property under the action
of specific groups, most notably, the unitary, the orthogonal, and the symplectic group. It is a
natural feature, which can be thought of as invariance of a system under change of coordinates [57].
We will almost entirely focus on unitary invariant ensembles.

11
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Definition 1.1.1. Define U(N) the unitary group of size N ∈ N as

U(N) := {U ∈Mat(C, N) |U−1 = U †}, (1.4)

with U † denoting the conjugate transpose. A measure dµ(M) on an ensemble M is said to be
unitary invariant if

µ(M) = µ(UMU †), ∀M ∈M, ∀U ∈ U(N). (1.5)

The natural ensemble of matrices for unitary invariant measures is the N2-dimensional vector
space of Hermitian matrices of size N ,

HN := {M ∈Mat(C, N) |M = M †}. (1.6)

Indeed, by the spectral theorem, any hermitian matrix can be diagonalized as

M = UDU †, (1.7)

with U ∈ U(N) a unitary matrix and D = diag(λ1, . . . , λN ) the diagonal matrix with entries the
eigenvalues of M . We consider measures of the form

dµ(M) =
1

CN
etrV (M)dM, (1.8)

with

dM =
∏

1≤i<j≤N

d ReMij d ImMij

N∏
i=1

dMii (1.9)

the Lebesgue measure over the vector space HN , a regular enough (specific assumptions will be
made down the road) scalar function V (x), named potential, and CN the normalization constant,

CN =

∫
HN

etrV (M)dM. (1.10)

Measures of the form (1.8) are automatically unitary invariant by elementary properties of the
trace, tr (M) = tr (UMU †), and by unitary invariance of the Lebesgue measure dM .

In view of (1.7), unitary invariant measures over HN of the form (1.8) can be factorized in a
constant angular part and a random one depending on its eigenvalues. Indeed consider the map

ψ : U(N)/ [U(1)]N ×DN → HN , (U, [D]) 7→ UDU † (1.11)

where DN is the set of diagonal N ×N matrices diag(λ1, λ2, . . . , λN ) with real ordered eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λN . Then ψ can be parametrized in a smooth way on a Zariski open set of HN .
It can be proved that the square of the Vandermonde determinant

∆(λ) :=
∏

1≤i<j≤N

(λi − λj) = det



1 λ1 λ21 · · · λn−1
1

1 λ2 λ22 · · · λn−1
2

...
...

. . .
...

...
...

. . .
...

1 λn λ2n · · · λn−1
n

 , (1.12)
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is the Jacobian dM = ∆2(λ)dλ for the change of coordinates induced by ψ. Then we can write∫
HN

etr V (M)dM = V ol
(
U(N)/ [U(1)]N

)∫
DN

∏
|λi − λj |2 e

∑N
k=1 V (λk)dλ1 . . . dλN , (1.13)

and passing from DN to RN , upon adding measure zero terms,∫
HN

etr V (M)dM =
1

N !
Vol(N)

∫
RN

PN (λ1, . . . , λN ) dλ1 . . . dλN , (1.14)

where we introduced

Vol(N) :=

∫
U(N)/[U(1)]N

dU =
π

N(N−1)
2∏N−1

j=0 j!
, (1.15)

and the probability measure over the eigenvalues

PN (λ1, . . . , λN ) :=
1

CN
e
∑N

k=1 V (λk)∆2(λ) dλ1 . . . dλN . (1.16)

Notice that in this way we reduced a matrix integral to a standard integral over RN .
When computing averages of functions of M invariant under the action of the unitary group,

one can apply the same argument to dimensionally reduce the matrix integral. An example is given
by the correlators (1.3), which are indeed symmetric in the eigenvalues, depending on traces of
powers of the matrix only,

〈
trMk1 · · · trMkℓ

〉
=

∫
RN

∏ℓ
j=1

(∑N
i=1 λ

kj
i

)
∆2(λ) e

∑N
i=1 V (λi)dλ1 . . . dλN∫

RN ∆2(λ) e
∑N

i=1 V (λi)dλ1 . . . dλN
. (1.17)

A very efficient tool in computing the so obtained space integrals is supplied by the theory
of orthogonal polynomials, [56, 57]. In a nutshell, the idea is to further reduce the N -dimensional
integrals to lower dimensional ones; this line of thought will be a building block in proofs of Chapter
3. In the next section we recall the basics on orthogonal polynomials.

1.2 Orthogonal polynomials

Orthogonal polynomials are ubiquitous objects in mathematics. We will now state a number of
standard facts which can be retrieved e.g. in [48, 115].

Definition 1.2.1. Let {Pn(x)}n≥0 be a collection of polynomials defined over an open interval
I ⊆ R such that degPn(x) = n. They form a family of orthogonal polynomials with respect to the
weight w(x) : I → R+ provided∫

I
Pn(x)Pm(x)w(x)dx = δnmhn, ∀m,n ∈ N. (1.18)

Here, δnm is the standard Kronecker delta, valued 1 if m = n and 0 otherwise, and hn ∈ R are
called norming constants. The weight w(x) : I → R+ shall be positive and continuous, and such
that all moments

mk(x) :=

∫
I
xk w(x), k = 0, 1, 2, . . . (1.19)

exist finite.
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Such a family is unique up to a multiplicative constant, so that we can take them to be monic

Pn(x) = xn + cn−1x
n−1 + · · ·+ c0. (1.20)

In particular, once a weight w(x) as in the above definition is given, an associated family of orthog-
onal polynomials can always be constructed by means of the Gram-Schmidt procedure. Namely,
consider the inner product on L2(w(x)dx)

⟨f, g⟩ =

∫
I
f(x)g(x)w(x)dx, (1.21)

and simply define

P0(x) = 1, P1(x) = x− ⟨x, P0⟩
⟨P0, P0⟩

, (1.22)

Pn(x) = xn − ⟨x, Pn−1⟩
⟨Pn−1, Pn−1⟩

Pn−1(x)− · · · − ⟨x, P0⟩
⟨P0, P0⟩

P0(x), (1.23)

which are orthogonal by construction.
We can already start to appreciate the usefulness of orthogonal polynomials in the matrix

models context looking back at (1.14). Indeed, it is easy to see that the following holds∫
RN

∆2(x) e
∑N

i=1 V (xi)dx1 . . . dxN ,= N !h0h1 · · ·hN−1, (1.24)

where the hi’s are the norming constants associated to the weight eV (x). Indeed, by simple row
operations we can rewrite the Vandermonde determinant (1.12) as

∆(x) = det



1 x1 x21 · · · xN−1
1

1 x2 x22 · · · xN−1
2

...
...

. . .
...

...
...

. . .
...

1 xN x2N · · · xN−1
N

 = det



1 P1(x1) P2(x1) · · · PN−1(x1)
1 P1(x2) P2(x2) · · · PN−1(x2)
...

...
. . .

...
...

...
. . .

...
1 P1(xN ) P2(xN ) · · · PN−1(xN )

 , (1.25)

so that, expanding the squared determinant and then using the orthogonality property (1.18),

∫
RN

∆2(x) e
∑N

i=1 V (xi)dx =

∫
RN

(∑
σ∈Sn

P0(xσ(1)) · · ·PN−1(xσ(n))

)2

e
∑N

i=1 V (xi)dx (1.26)

=
∑
σ∈Sn

∫
RN

P 2
0 (xσ(1)) · · ·P 2

N−1(xσ(n)) e
∑N

i=1 V (xi)dx (1.27)

= N !h0h1 · · ·hN−1, (1.28)

and finally from (1.14) we get

1

Vol(N)

∫
HN

etr V (M)dM = h0h1 · · ·hN−1. (1.29)

From the Gram-Schmidt procedure is possible to prove the following characterizing feature of
orthogonal polynomials.
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Theorem 1.2.2. Any family {Pn(x)}n≥0 of monic orthogonal polynomials satisfies a three term
recurrence, which is, there exist sequences of real numbers {an}n≥0, {bn}n≥0, such that

x · Pn(x) = Pn+1(x) + anPn(x) + bnPn−1(x). (1.30)

Clearly, the knowledge of the sequences {an}n≥0, {bn}n≥0, together with the monic condition
P0(x) = 1 and assuming P−1(x) = 0, allows one to completely reconstruct the family of orthogonal
polynomials. More to that, the following viceversa to Theorem 1.2.2 holds.

Theorem 1.2.3 (Favard Theorem, [81]). If there exist sequences {an}n≥0, {bn}n≥0, such that

x · Pn(x) = Pn+1(x) + anPn(x) + bnPn−1(x), (1.31)

with P−1(x) = 0 and P0(x) = 1, then there exists w(x) of bounded variation such that∫
I
Pn(x)Pm(x)w(x)dx = δnmhn, ∀m,n ∈ N. (1.32)

The three term recurrence can be rewritten in (semi-infinite) matrix form by means of the
Jacobi operator, which is the tridiagonal matrix

L =


a0 1 0 · · ·
b1 a1 1 · · ·
0 b2 a2 · · ·
...

...
...

. . .

 . (1.33)

Then, denoting P(x) = (P0(x), P1(x), . . . )T equation (1.30) is recasted as

x ·P(x) = L ·P(x), (1.34)

and the vector of monic orthogonal polynomials P(x) can be thought of as an eigenvector of the
operator L. An important feature of orthogonal polynomials is the Christoffel-Darboux identity.

Proposition 1.2.4. Let {Pn(x)}n≥0 be a family of monic orthogonal polynomials with norming
constants {hj}j≥0, and N a positive integer. Then,

N−1∑
j=0

Pj(x)Pj(y)

hj
=

1

hN−1

PN (x)PN−1(y)− PN−1(x)PN (y)

x− y
, (1.35)

In particular, if {Pn(x)}n≥0 are orthogonal with respect to the weight w(x) = eV (x) we name
Christoffel-Darboux kernel the quantity

KN (x, y) :=
e

V (x)+V (y)
2

hN−1

PN (x)PN−1(y)− PN−1(x)PN (y)

x− y
. (1.36)

It consists of the right hand side of (1.35) multiplied by the square root of the weights in the
variables x and y. The Christoffel-Darboux kernel satisfies two important properties,

1. normalization
∫
I KN (x, x)dx = N ,

2. reproducibility
∫
I KN (x, y)KN (y, z)dy = KN (x, z).
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Comparing with (1.35) we realize that KN (x, y) is the kernel of the orthogonal projection of
L2(I, w(x)dx) onto the space of polynomials of degree < N . Given a unitary invariant matrix
ensemble with the same weight eV (x), the Christoffel-Darboux identity also gives an immediate way
to reconstruct the probability measure over the eigenvalues and, more generally, all its marginals
ρk(x1, . . . , xk), which here take the name of k-point correlation functions.

Proposition 1.2.5. Let PN (x)dx be the eigenvalue measure (1.16), then we have

PN (x) dx :=
1

CN
e
∑N

i=1 V (xi)∆2(x) = det (KN (xi, xj))1≤i,j,≤N . (1.37)

ρk(x1, . . . , xk) :=

∫
RN−k

PN (x1, . . . , xk, xk+1, . . . , xN )dxk+1 · · · dxN = det (KN (xi, xj))1≤i,j,≤k .

(1.38)

Proof. A standard proof can be found in [56].

Finally, family of orthogonal polynomials can be characterized in a third way as the unique
solution of the associated Riemann-Hilbert problem, first established in the seminal work by Fokas,
Its and Kitaev in [117], and which we hereby recall.

Definition 1.2.6. The Cauchy-Transform of the orthogonal polynomial PN (x) with respect to the
weight eV (x) is given by

P̂N (x) :=
1

2πi

∫
I

PN (ξ)

ξ − x
eV (ξ)dξ. (1.39)

It is analytic for x ∈ C\I and continuous up to the boundary of I, where it has a jump.

Introduce the Fokas-Its-Kitaev matrix

YN (x) :=

(
PN (x) P̂N (x)

− 2πi
hN−1

PN−1(x) − 2πi
hN−1

P̂N−1(x)

)
. (1.40)

It is the unique matrix analytic in z ∈ C \ I satisfying

1. YN (x) has a jump on the real axis given by

YN,+(x) = YN,−(x)

(
1 eV (x)

0 1

)
, x ∈ I, (1.41)

where we use the notation

YN,±(x) = lim
ϵ→0+

YN (x± iϵ), x ∈ I◦, (1.42)

and I◦ is the interior of the interval I,

2. for x→∞ it has the behaviour

YN (x) =
(
1 +O(x−1)

)
xNσ3 , (1.43)

3. at any endpoint x0 of I, for x→ x0

YN (x) = O (log(x− x0)) . (1.44)

where we denote 1 =

(
1 0
0 1

)
and σ3 =

(
1 0
0 −1

)
. In Chapter 3 we will exploit such a characteri-

zation to investigate probabilistic quantities related to the weight eV (x).
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1.2.1 Classical unitary ensembles

Amongst the many, infinite, families of orthogonal polynomials {Pn(x)}n≥0 we distinguish a par-
ticular class, the so called classical orthogonal polynomials. They are characterized by the following
equivalent properties, [30, 128]

1. They are solutions of the system of differential equations

A(x)y′′n(x) +B(x)y′n(x) + λnyn(x) = 0, n = 0, 1, . . . , (1.45)

required A(x), B(x) are independent of n, λn independent of x and solutions yn(x) are poly-
nomials of degree deg yn(x) = n,

2. Their derivatives {P ′
n(x)}n≥0 form a family of orthogonal polynomials as well,

3. Rodrigues-type formula: there exist constants kn and n-independent polynomials w(x), T (x)
such that

Pn(x) =
kn
w(x)

dn

dxn
[w(x) (T (x))n] . (1.46)

It turns out that up to a linear change of variables, which amounts to scale and shift of the
domain and standardization of the polynomials, there are exactly three measures on R which
satisfy any of the properties above, each coming with its associated family of classical orthogonal
polynomials. Correspondingly the three associated matrix ensembles go by the name of classical
unitary ensembles. We recall their definition and main properties in the next subsections.

Hermite polynomials

Hermite polynomials {PH
n (x)}n≥0 are orthogonal with respect to the Gaussian measure

µH(x) = e−
x2

2 , x ∈ (−∞,∞), (1.47)

with orthogonality relation∫
R
PH
n (x)PH

m(x)e−
x2

2 dx = δnmhn, hn = n!
√

2π (1.48)

They can be computed via the Rodrigues formula

PH
n (x) = (−1)ne

x2

2
dn

dxn

(
e−

x2

2

)
(1.49)

and the three term recurrence reads

x · PH
n (x) = PH

n+1(x) + nPH
n−1(x). (1.50)

The associated unitary invariant matrix model is known as Gaussian Unitary Ensemble, or
simply GUE. The ensemble of matrix is that of Hermitian matrices endowed with the measure

µHN (M) =
1

CN
e−tr M2

2 dM, (1.51)

where dM is the standard Lebesgue measure. In virtue of the discussions in the previous section,
the normalization constant is explicitly computed as

CH
N = Vol(N) ·

N−1∏
j=0

hj =
π

N(N−1)
2∏N−1

j=0 j!
·

N−1∏
j=0

(
j!
√

2π
)

=
√

2
N√

π
N2

(1.52)
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Laguerre polynomials

Laguerre polynomials {P L
n}n≥0 are orthogonal with respect to the measure

µL(x) = xαe−x, x ∈ (0,∞), (1.53)

with α ∈ C a complex parameter, and orthogonality relation∫ ∞

0
P L
n (x)P L

m(x)xαe−xdx = δnmh
L
n, hLn = n!Γ(α+ n+ 1) (1.54)

They can be computed via the Rodrigues formula

P L
n (x) = (−1)nx−αex

dn

dxn
(
xα+ne−x

)
, (1.55)

in an explicit way as

P L
n (x) =

n∑
j=0

(−1)n−j(n− j + 1)j(j + 1 + α)n−j

j!
xj (1.56)

where (p)j := p(p+ 1) · · · (p+ j − 1) denotes the rising factorial ; the three term recurrence reads

x · P L
n (x) = P L

n+1(x) + (2n+ α+ 1)P L
n (x) + n(n+ α)L

(α)
n−1(x). (1.57)

The associated unitary invariant matrix model is known as Laguerre Unitary Ensemble, or
simply LUE. The ensemble of matrix is the cone H+

N of positive definite Hermitian matrices, which
is hermitian matrices with positive eigenvalues only. The measure is given by

µLN (M)
1

CL
N

detα (M) e−trMdM, (1.58)

the normalization constant being

CL
N = Vol(N) ·

N−1∏
j=0

hLj = π
N(N−1)

2

N−1∏
j=0

Γ (α+ j + 1) . (1.59)

Remark 1.2.7. The LUE can also be realized in terms of the product of two full, rectangular,
Gaussian Wigner matrices, e.g. [85, 165]. Specifically, let W be an N × (N + α) matrix with
independent identically distributed Gaussian entries. Then, the matrix

M :=
1

N
WW T (1.60)

is positive definite and with entries distributed according to (1.58) and parameter α ∈ N.

Jacobi polynomials

Jacobi polynomials {P J
n(x)}n≥0 are orthogonal with respect to the measure

µJ(x) = xα(1− x)β, x ∈ (0, 1), (1.61)
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with α, β ∈ C complex parameters, and orthogonality relation∫ 1

0
P J
n(x)P J

m(x)xα(1− x)β,dx = δnmh
J
n, (1.62)

hJn = n!
Γ(α+ n+ 1)Γ(β + n+ 1)

Γ(α+ β + 2n+ 2)

Γ(α+ β + n+ 1)

Γ(α+ β + 2n+ 1)
. (1.63)

Jacobi polynomials can also be defined over the symmetric interval (−1, 1) via the affine trans-
formation x 7→ x+1

2 and renormalizing. However, measure (1.61) will best fit our needs. The
Rodrigues formula here reads

P J
n(x) = (−1)n

Γ(α+ β + n+ 1)

Γ(α+ β + 2n+ 1)
x−α(1− x)−β dn

dxn

(
xα+n(1− x)β+n

)
, (1.64)

the explicit form

P J
n(x) =

n!

(α+ β + n+ 1)n

n∑
k=0

(
n+ α

k

)(
n+ β

n− k

)
(x− 1)k xn−k, (1.65)

and the three term recurrence

x · P J
n(x) = P J

n+1(x) + anP
J
n(x) + bnP

J
n−1(x), (1.66)

an = 1 +
n(β + n)

α+ β + 2n
− (n+ 1)(β + n+ 1)

α+ β + 2n+ 2
, (1.67)

bn =
n(β + n)(α+ n)(α+ β + n)

(α+ β + 2n− 1)(α+ β + 2n)2(α+ β + 2n+ 1)
. (1.68)

The associated unitary invariant matrix model is known as Jaocobi Unitary Ensemble, or simply
JUE. The ensemble of matrix is the space HN (I) with I = (0, 1) which denotes hermitian matrices
with all the eigenvalues lying in I. The measure is given by

µJN (M) =
1

CJ
N

detα (M) det1−β (M) dM, (1.69)

the normalization constant being

CJ
N = Vol(N) ·

N−1∏
j=0

hJj = π
N(N−1)

2

N−1∏
j=0

Γ(α+ j + 1)Γ(β + j + 1)

Γ(α+ β + 2N − j)
. (1.70)

Remark 1.2.8. The JUE can also be realized in terms of a rational function of two Gaussian
Wigner matrices [61, 85]. Specifically, let Wα := A†A and Wβ := B†B where A and B are,
respectively, N×(N + α) and N×(N + β) matrix with independent identically distributed Gaussian
entries. Then, the probability measure (1.69) describes the distribution of the matrix

M := (Wα +Wβ)−1/2Wα(Wα +Wβ)−1/2, (1.71)

which has spectrum in (0, 1) and entries distributed according to (1.69), with parameters α, β ∈ N.
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1.3 Partition functions and the Toda lattice hierarchy

Random matrix ensembles are deeply connected with integrable systems. Indeed, exponentially
perturbed measure of unitary invariant ensembles are Toda tau-functions, with initial conditions
given by the coefficients of the three term recurrence of the associated orthogonal polynomials. We
make this statement more precise in the following.

Definition 1.3.1. The Toda lattice is the dynamical system of N particles x1(t), . . . , xN (t) on the
real line interacting via the Hamiltonian

H =
1

2

N∑
j=1

p2j +
N−1∑
j=1

e(xj−xj+1), (1.72)

which, with respect to the standard Poisson bracket {·, ·}, yields equations of motion

ẋj = {xj , H} = pj , ṗj = {pj , H} = e(xj−1−xj) − e(xj−xj+1), j = 1, . . . , N (1.73)

In particular, as first recognized in the seminal works of Flaschka and Manakov [82, 83, 132]

the change of variables aj := −pj
2 and bj := 1

2e
(xj−xj+1)

2 allows to rewrite the equations of motion
(1.73) in the Lax form

˙L(t) =
∂

∂t
L(t) = [A(t), L(t)] (1.74)

with

L =



b1 a1
a1 b2 a2

. . .
. . .

. . .

. . .
. . . aN−1

aN−1 bN

 , A =



0 a1
−a1 0 a2

. . .
. . .

. . .

. . .
. . . aN−1

−aN−1 0

 . (1.75)

Notice that the matrix L has essentially, up to a gauge transformation, the same form of the
Jacobi operator (1.33), while A is the difference of the upper and lower triangular parts of L, write
A = L+ − L−. The Lax formulation allows to define in a simple way an extension of the Toda
lattice to infinite time variables.

Definition 1.3.2. The Toda Lattice-hierarchy in the time variables t = (t1, t2, . . . ) is given by the
infinite set of commuting flows

∂

∂tk
L(t) = [Ak(t), L(t)] , Ak(t) =

(
Lk(t)

)
+
−
(
Lk(t)

)
−
. (1.76)

A τ -function for the Toda lattice is a solution of the Toda equation; essentially it satisfies

a = ϵ
∂

∂t1
log

τ(x+ ϵ)

τ(x)
, b = log

τ(x+ ϵ)τ(x− ϵ)
τ2(x)

, (1.77)

where an =: a(ϵn) and bn =: b(ϵn), we refer to the literature [160, 167] for a precise definition.
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It can be proven that deformations of unitary invariant matrix ensembles are tau functions of
the Toda lattice hierarchy, with choice of parameter ϵ = 1/N . Specifically, given a unitary invariant
measure etrV0(M)dM on a certain ensemble of matrices M, we consider the deformed potential

V (x; t) = V0(x) +
∑
j≥1

tjM
j (1.78)

and name partition function the object

ZN (t) =

∫
HN

etrV (M ;t)dM. (1.79)

Then, we have the following.

Proposition 1.3.3. ZN (t) is a tau-function for the Toda lattice hierarchy (1.76). Moreover,

1. aj(t) and bj(t) are exactly the coefficients of three term recurrence associated to the potential
V (x; t), see Theorem 1.2.2.

2. the partition function ZN (t) is explicitly evaluated as

ZN (t) =

∫
HN

etrV (M ;t)dM =
π

N(N−1)
2∏N−1

j=0 j!
h0(t) · · ·hN−1(t), (1.80)

with hj(t) the norming constants associated to V (x; t), as in (1.29).

Notice that taking derivatives of the partition function (1.79) with respect to the time variables
t = (t1, t2, . . . ), and evaluating at t = 0, exactly recovers the correlators (1.3) of the matrix model
associated to eV0(trM), namely

∂ℓZN (t)

∂tk1 · · · ∂tkℓ

∣∣∣∣
t=0

=
〈

trMk1 · · · trMkℓ
〉
. (1.81)

Given a partition λ = (λ1, . . . , λℓ), see also Definition 2.1.1, we denote〈
trMλ

〉
:=
〈

trMλ1 · · · trMλℓ

〉
. (1.82)

In view of (1.81), the partition function can be regarded as a (formal) generating function for the
correlators in the basis of monomial symmetric polynomials tλ = tλ1 · · · tλℓ

,

ZN (t) :=

∫
HN

exp

V0(M) +
∑
j≥1

tj trM j

 dM =
∑
λ∈P

〈
trMλ

〉 tλ∏
i≥1mi!

, (1.83)

where mi are the parts of λ equal to i, see also Definition 2.1.1.

Remark 1.3.4 (Connected correlators). Closely related are the connected correlators, defined as〈
ℓ∏

j=1

trMλj

〉c

=
∑
P([ℓ])

(−1)|P|−1(|P| − 1)!
∏
A∈P

〈∏
a∈A

trMλa

〉
(1.84)
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where P ([ℓ]) denotes the set of partitions of {1, . . . , ℓ}. For example〈
trMk1

〉c
:=
〈

trMk1
〉
,

〈
trMk1trMk2

〉c
:=
〈

trMk1trMk2
〉
−
〈

trMk1
〉〈

trMk2
〉
. (1.85)

By standard combinatorial methods [157] one can argue that connected correlators are the Taylor
coefficients of the logarithm of the partition function,

∂ℓ logZN (t)

∂tk1 · · · ∂tkℓ

∣∣∣∣
t=0

=
〈

trMk1 · · · trMkℓ
〉c
. (1.86)

and write, similarly to (1.83),

logZN (t) = logZN (0) +
∑
r≥1

∑
k1,...,kr≥1

tk1 · · · tkr
r!

〈
trMk1 · · · trMkr

〉c
. (1.87)

Remark 1.3.5 (Negative correlators). Assuming the potential V0(M
−1) still results in an invariant

measure over HN , deforming it with negative exponents

V (x; t) = V0(x) +
∑
j≥1

tjM
−j , (1.88)

we get a different Toda tau function. Indeed it is the datum of a different underlying measure,
dµ̃(M) corresponding to the change of variables M̃ = M−1. Writing dU for the projection of the
Lebesgue measure onto the angular variables, the Jacobian is computed as

dM = dU ∆2 (x) dx ⇐⇒ dM̃ = dU ∆2

(
1

x1
, . . . ,

1

xN

)
d

(
1

x1

)
. . . d

(
1

x1

)
=

dM

det2NM
(1.89)

so that the new measure reads

dµ̃(M)dM̃ =
etrV (M−1;t)

det2NM
dM. (1.90)

Similarly, we can perform formal expansions of the associated partition function and compute the
correlators as its logarithmic derivatives.

That the above expansions actually converge is not given for granted. More to that, parti-
tion functions related to integrable systems admit a topological expansion, which is an asymptotic
expansion in series of N2, with N being the size of the matrices, see [40, 75]. Part of the work
exhibited in this thesis, is to give an exact characterization of the coefficients which comes with
such expansions. Remarkably, in the classical ensembles, they are integer numbers counting specific
combinatorial objects, see Chapter 4.



Chapter 2

Hurwitz numbers and symmetric
functions

Hurwitz numbers were first introduced by Adolf Hurwitz in [114]. He was interested in the counting
problem of Riemann surfaces with assigned ramification profiles, encoded by partitions, up to
biholomorphic equivalence. He also realized the same question could be posed as a factorization
problem in the symmetric group, and sketched the proof of formulæ which later reappeared in the
work of Goulden and Jackson [94]. We recall some concepts and definitions in the following.

2.1 Geometric and combinatoric definition of Hurwitz numbers

Definition 2.1.1. A partition λ = (λ1, λ2, . . . , λℓ) of n ∈ N is an ordered sequence of positive
integers λ1 ≥ λ2 ≥ · · · ≥ λℓ such that

λ1 + λ2 + · · ·+ λℓ = n. (2.1)

We shall denote by λ ⊢ n that λ is a partition of n, with ℓ(λ) := ℓ the length of the partition and
|λ| = n for its weight. As an alternative notation let

mi = #{λj = i, j = 1, . . . , ℓ}, (2.2)

then the partition λ is equivalently denoted as λ = (1m1 , 2m2 , . . . ).

In some contexts it can be useful to identify the partition λ with its diagram, i.e. the set of
(i, j) ∈ Z2 satisfying 1 ≤ i ≤ ℓ(λ), 1 ≤ j ≤ λi. For example, the diagram of the partition
λ = (4, 2, 2, 1) ⊢ 9 is depicted below.

j = 1 j = 2 j = 3 j = 4

i = 1 • • • •
i = 2 • •
i = 3 • •
i = 4 •

(2.3)

Let us now give the definitions of Riemann surfaces and maps between them. We refer to the
standard books for further references [139].

Definition 2.1.2. A Riemann surface S is a 1-dimensional complex manifold.

23
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– Two Riemann surfaces S,S ′ are biholomorphically equivalent if there exists a map f : S → S ′
holomorphic, bijective and with holomorphic inverse f−1 : S ′ → S

– Two holomorphic maps between Riemann surfaces, f : S → R and f ′ : S ′ → R are said to be
equivalent if and only if there exists an isomorphism φ : S → S ′ such that f ′ ◦ φ = f

– The automorphism group of a holomorphic map f : S → R is

Autf = {φ : S → S isomorphism s.t f ◦ φ = f } (2.4)

– The degree of the map f : S → R is defined as the cardinality of the fibers f−1(r), r ∈ R
counting multiplicity

Remark 2.1.3 (Riemann-Hurwitz formula). Given a non constant degree d holomorphic map
f : S → R between Riemann surfaces of, respectively, genus gS and gR, the Riemann-Hurwitz
formula states that

2 gS − 2 = d (2 gR − 2) +
∑
x∈S

(ex − 1) , (2.5)

where ex is the ramification index of the map f at the point x ∈ S. Notice that if f is not ramified
at x then ex = 1, and the sum in (2.5) is finite.

The fundamental tool to give both a geometric definition, in the first place, and hence com-
binatoric interpretation of Hurwitz numbers is the Riemann Existence Theorem [139, 152] (the
definition of transitive group can be found below in Definition 2.1.6.)

Theorem 2.1.4 (Riemann Existence Theorem). Let S be a compact and connected Riemann sur-
face, and ∆ ⊂ S a finite subset. Let q be a base point of S \ ∆, then there is a one-to-one
correspondence between the following

isomorphism classes of holomorphic maps
of Riemann surfaces φ : S ′ → S of
degree d whose branch points lie in ∆

↔


up to conjugacy, group
homomorphisms ρ : π1(S \∆, q)→ Sd

with transitive image


(2.6)

with representation given by the monodromy representation.

The Riemann existence theorem tells us that every Riemann surfaces can be realized as a
branched covering of the complex projective line P 1

C. This allows us to define

Definition 2.1.5 (Geometric definition of Hurwitz numbers). Let d be a positive integer and
µ(1), . . . , µ(k) ⊢ d partitions of d. Define the (connected) Hurwitz number hd(µ(1), . . . , µ(k)) as

hd(µ(1), . . . , µ(k)) =
∑
[f ]

1

|Autf |
(2.7)

where the sum ranges over all equivalence classes of connected, genus g and degree d covers of P 1
C

with k branching points with ramification profiles µ(1), . . . , µ(k). The weight of each Hurwitz cover
is the inverse of the order of its automorphism group. Notice that g and d are related according to
(2.5).

On the other hand, Theorem 2.1.4 states that the problem of constructing a Riemann surface
with assigned branching points and ramification profiles, is equivalent to a factorization problem
in Sd. Let us recall a few notions on the symmetric group.
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Definition 2.1.6. The symmetric group of order d, write Sd is the group of permutations of the
set {1, 2, . . . , d}.

– Every permutation σ ∈ Sd is the product of disjoint cycles,

σ = σ1σ2 . . . σℓ, σi = (ai1 · · · aiℓi), (2.8)

their number ℓ is the length of the permutation σ, write ℓ = ℓ(σ)

– The profile of a permutation σ ∈ Sd as in (2.8) is the partition µ ⊢ d consisting of k parts
exactly equal to the lengths of the cycles σj of σ, namely µ = (ℓ1, ℓ2, . . . , ℓk).

For example the permutation S8 ∋ σ = (146)(23)(57)(8) has profile µ = (3, 2, 2, 1).

– A subgroup G ≤ Sd is called transitive if it acts transitively on the set {1, 2, . . . , d}

Thanks to Theorem 2.1.4, we can give an equivalent combinatorial definition of Hurwitz num-
bers.

Definition 2.1.7 (Combinatorial definition of Hurwitz numbers). Let d be a positive integer and
µ(1), . . . , µ(k) ⊢ d partitions of d. Define

hd(µ(1), . . . , µ(k)) =
1

d!
#

{
σ1, . . . , σk ∈ Sd such that σ1 · · ·σk = idSd

,

σi has profile µ(i) and ⟨σ1, . . . , σk⟩ is transitive

}
, (2.9)

where ⟨σ1, . . . , σk⟩ denotes the subgroup in Sd generated by σ1, . . . , σk.

The factor (d!)−1 in (2.9) takes into account overcounting, and corresponds to relabelling of the
sheets of the cover. Moreover, in comparing with Theorem 2.1.4, the condition σ1 · · ·σk = idSd

is a
consequence of the fact that we take the Riemann surface S to be compact; similarly, the condition
that ⟨σ1, . . . , σk⟩ generates the whole Sd comes from the connectedness hypothesis.

Remark 2.1.8. Disconnected Hurwitz numbers are defined in the same way, respectively dropping
the connectedness hypothesis of the cover from Definition 2.1.5, and the transitivity condition on
⟨σ1, . . . , σk⟩ from Definition 2.1.7. We shall denote them with

h◦d(µ(1), . . . , µ(k)) (2.10)

Definitions 2.1.5 and 2.1.7 are quite general, and the Hurwitz numbers they define are not trivial
to compute in the general case. Some closed formulæ do exist, see e.g. (2.24) below, but they are
rarely computational friendly. A majorly studied version of Hurwitz numbers is the following base
case, involving a single non trivial partition.

Definition 2.1.9. Let g, d be non negative integers and λ = (λ1, . . . , λℓ) a partition of d. The
simple Hurwitz number hg(λ) is defined as the general Hurwitz number hd(λ, µ(1), . . . , µ(k)) where
µ(i) = (2, 1, 1, . . . , 1). Due to (2.5), there holds the relation

2g − 2 = k − ℓ− d. (2.11)

In regard of Definitions 2.1.5 and 2.1.7, simple Hurwitz numbers can be defined as

– Geometrically: correspond to covers of P1
C where a specific point, e.g. the point z = 0, has

branching profile λ, and all the others are simple, which means they have (d− 1) preimages,
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– Combinatorially: all but one permutations are transpositions (we recall that a transposition
is a permutation τ = (a b)).

Some solid results have been made throughout the history in the study of Simple Hurwitz
numbers. Amongst the many we recall the cut and join equation of Goulden and Jackson [94], the
ELSV formula [73] (see also Theorem 5.0.1), the connections with integrable systems by Okounkov,
Harnad and Guay-Paquet [104, 150] as well as to matrix model by Borot et al. [38].

2.2 The symmetric group algebra

Many and various modification and specializations of Hurwitz numbers exist; in this section we
introduce the necessary tools to study a vast class of them. This is done giving a third way to look
at Hurwitz numbers in the setting of the group algebra of the symmetric group.

Definition 2.2.1. The group algebra of the symmetric group Sd, denoted C [Sd], is the set of linear
combinations with complex coefficients of elements in the symmetric group∑

σ∈Sd

cσσ, cσ ∈ C, (2.12)

equipped with the sum ∑
σ∈Sd

cσ σ +
∑
σ∈Sd

dσ σ =
∑
σ∈Sd

(cσ + dσ)σ, (2.13)

and multiplication induced by the symmetric group,∑
σ∈Sd

cσ σ

 ·
 ∑

σ′∈Sd

cσ′ σ′

 =
∑

σ′′∈Sd

cσ′′σ′′, cσ′′ =
∑

σ,σ′∈Sd
σ◦σ′=σ′′

cσ · cσ′ (2.14)

The center of the group algebra (i.e. the multiplicative subgroup of the group algebra consisting
of elements commuting with every other element) is denoted by Z (C [Sd]) and is called the class
algebra of Sd.

There are some distinguished elements in the group algebra. First off, recall the definition of
conjugacy class of a permutation σ ∈ Sd,

cyc(σ) = {ρσρ−1 s.t. ρ ∈ Sd}. (2.15)

It is easy to see that all elements in cyc(σ) must have the same cycle structure of σ. In par-
ticular, the conjugacy class depends only the profile of σ, see Definition 2.1.6, and if σ has
profile µ = (µ1, . . . , µℓ) we will simply write cyc(µ) for cyc(σ). The cardinality of cyc(µ) with
µ = (1m1 , 2m2 , . . . ) is

|cyc(µ)| = d!

zµ
, zµ :=

∏
j≥1

jmjmj ! (2.16)

We can consider the elements in the group algebra

Cµ =
∑

σ∈cyc(µ)

σ, (2.17)
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labelled by permutations µ ⊢ d. In particular notice that C1d = idSd
. It is well known [154]

that the elements Cµ form a basis for the class algebra Z (C [Sd]). Definition (2.10), can then be
reformulated as

h◦d(µ(1), . . . , µ(k)) =
1

d!
[C1d ]

k∏
i=1

Cµ(i) , (2.18)

where the operator [C1d ] takes the coefficient of the identity element. Here we take disconnected
Hurwitz numbers, see also Remark 2.1.8.

We would like to obtain a more accessible form of equation (2.18). To this end, the representa-
tion theory of symmetric groups is crucial: let us first recall the following basic facts of this theory
[154]. Irreducible finite dimensional representations of the symmetric group Sd are labelled by
partitions λ ⊢ d, namely for every such λ we have

ρλ : Sd → GL(Vλ) (2.19)

with Vλ some vector space. Define the irreducible characters χλ of the symmetric group as

χλ =
∑
σ∈Sd

tr (ρλ(σ))σ, (2.20)

which is an element in C [Sd]. In particular, write χλ
µ for the evaluation of χλ at an element

σ ∈ cyc(µ); we are rightfully doing so since expression (2.20) is invariant by conjugation. The
irreducible characters form a basis for the class algebra Z (C [Sd]), and the following change of
bases formulæ hold,

χλ =
∑
µ⊢d

χλ
µCµ, ⇐⇒ Cµ =

∑
λ⊢d

χλ
µ

zµ
χλ. (2.21)

Moreover, they are orthogonal to each and idempotents according to the formulæ∑
λ

χλ
µχ

λ
µ′ = zµδµ,µ′ χλ χλ′

= δλ,λ′
d!

dimλ
χλ, (2.22)

in particular, the latter allows to define a basis of idempotents, denoted {Eλ}λ⊢d, as

Eλ =
dimλ

d!

∑
µ⊢d

χλ
µCµ, ⇐⇒ Cµ =

∑
µ⊢d

d!

dimλ

χλ
µ

zµ
Eλ, EλEλ′ = δλ,λ′ · Eλ. (2.23)

We can thus recast (2.18) in terms of the characters χλ
µ.

Proposition 2.2.2 (Burnside formula). Let µ(1), . . . , µ(k) ⊢ d, then the following holds

h◦d(µ(1), . . . , µ(k)) =
1

d!
[C1d ]

k∏
i=1

Cµ(i) =
|cyc(µ(1))| · · · |cyc(µ(k))|

d!

∑
λ⊢d

χλ
µ(1) · · ·χλ

µ(k)

(dimλ)k−2
. (2.24)

Proof. Rewrite (2.18), explicitly including the C1d factor and using (2.21), as

h◦d(µ(1), . . . , µ(k)) =
1

d!

∑
λ(0),λ(1),...,λ(k)

χλ(0)

1d

d!

χλ(1)

µ(1)

zµ(1)

· · ·
χλ(k)

µ(k)

zµ(k)

(
χλ(0)

χλ(1) · · ·χλ(k)
)

(id), (2.25)



CHAPTER 2. HURWITZ NUMBERS AND SYMMETRIC FUNCTIONS 28

using repeatedly the idempotency property (2.22)

h◦d(µ(1), . . . , µ(k)) =
1

d!
[C1d ]

k∏
i=1

Cµ(i) =
1

d!

∑
λ

dimλ

d!

χλ
µ(1)

zµ(1)

· · ·
χλ
µ(k)

zµ(k)

(
d!

dimλ

)k−1

χλ(id), (2.26)

and recalling (2.16) the proof is complete.

Equation (2.24) traces back to Burnside [43] and it allows us, in principle, to compute any
Hurwitz number. Indeed, characters of the symmetric group had already been studied for quite a
while and their values easily computable for small d, for example via the Murnaghan–Nakayama
rule, see [143, 157]; however, the computational complexity drastically increases as d grows [20] and
it can thus be tricky to apply (2.24) in the generic case.

We introduce one last important set of elements in the group algebra, the Young–Jucys–Murphy
(YJM) elements [121, 144] Ja, for a = 1, . . . , d, defined as

J1 = 0, Ja = (1 a) + (2 a) + · · ·+ (a− 1 a), 2 ≤ a ≤ d, (2.27)

denoting (a b) (with a < b) the transposition of {1, . . . , d} switching a, b and fixing everything else.
The following relation [121] takes place in Z(C[Sd])[ϵ],

d∏
a=1

(1 + ϵJa) =
∑
λ⊢d

ϵd−ℓ(λ)Cλ. (2.28)

Although singularly the YJM elements are not central, they commute amongst themselves, and
symmetric polynomials of d variables evaluated at J1, . . . ,Jd generate Z(C[Sd]), in particular for
any symmetric polynomial p(y1, . . . , yd) in d variables, p(J1, . . . ,Jd) belongs to Z (C[Sd]). Now,
central elements are diagonal on the basis of idempotents, see e.g. [154], and it is proven by Jucys
in [121] that

p(J1, . . . ,Jd)Eλ = p
(
{j − i}(i,j)∈λ

)
Eλ, (2.29)

where in the right hand side we denote p
(
{j − i}(i,j)∈λ

)
the evaluation of the symmetric polynomial

p at the d values of j− i for (i, j) ∈ Z2 in the diagram of λ ⊢ d, see Definition 2.1.1. With respect to
the partition λ = (4, 2, 2, 1) ⊢ 9 in (2.3), this denotes the evaluation p(0, 1, 2, 3,−1, 0,−2,−1,−3).

YJM elements allow us to define in a simple way a variation of Hurwitz numbers, in the spirit
of (2.18). The construction was pioneered by Guay-Paquet, Harnad and Orlov, see [26, 104, 112].

Definition 2.2.3. Fix real parameters γ1, . . . , γL and δ1, . . . , δM (L,M ≥ 0) and collect them into
the rational function

G(z) :=

∏L
i=1(1 + γiz)∏M
j=1(1− δjz)

. (2.30)

Then, the (rationally weighted) multiparametric (single) Hurwitz numbers hGr (µ), associated to the
function G in (2.30) and labeled by the integer r ≥ 1 and by the partition µ ⊢ N , are defined by

hGr (µ) :=
1

zµ
[ϵrCµ]

N∏
a=1

G (ϵJa) , (2.31)

where [ϵrCλ] denotes the coefficient in front of ϵrCλ in the expansion of
∏N

a=1G (ϵJa) as an ele-
ment in Z(C[SN ])[[ϵ]] in the basis {Cλ}; to compute the expression G (ϵJa) ∈ Z(C[SN ])[[ϵ]], the
denominators in (2.30) are to be understood as (1− δjz)−1 =

∑
k≥0 δ

k
j z

k.



CHAPTER 2. HURWITZ NUMBERS AND SYMMETRIC FUNCTIONS 29

Different Hurwitz number (not necessarily rationally weighted) can be defined choosing a dif-
ferent form specifications of the function G(z). For example G(z) = 1+

∑
j≥1 gjz

j with gj = (j!)−1

returns the exponential function, which is related to simple Hurwitz numbers, see e.g. [26, 104].

Example 2.2.4 (Single weakly monotone Hurwitz numbers). Take G(z) = 1
1−δz , then

h
G=(1+γz)
d (µ) :=

1

zµ
[ϵdCµ]

n∏
a=1

G (ϵJa) =
1

zµ
[ϵdCµ]

n∏
a=1

1

1− ϵδJa
(2.32)

=
1

zµ
[ϵdCµ]

∑
r≥0

(ϵδ)r
∑

1≤a1≤···≤ar≤n

Ja1 · · · Jar

 . (2.33)

Then, it is clear how the above Hurwitz numbers counts factorizations in the symmetric group of
permutations in σ ∈ cyc(µ) in d weakly monotone transpositions, i.e.

σ = τ1 · · · τd, τi = (ai bi), ai < bi, b1 ≤ b2 ≤ · · · ≤ bd, (2.34)

Similarly G(z) = (1+γz) generates single strictly monotone Hurwitz numbers, where the inequalities
in (2.34) are taken to be only strict, b1 < b2 < · · · < bd.

2.3 Hurwitz numbers and integrable systems

In this section we recall results linking Hurwitz numbers with the theory of integrable systems. In
particular, we state how generating functions of Hurwitz numbers often happen to be tau-functions
of some integrable hierarchies.

The groundbreaking result in this direction was obtained by Okounkov, who proved that gen-
erating functions of double Hurwitz numbers, defined akin the single ones of Definition 2.1.9, are
tau-functions of the 2D-Toda lattice [150]. The result was then generalized to double Multipara-
metric Hurwitz numbers by Harnad and Guay-Paquet [104], the Theorem is below. To be self
contained, we prove a weaker version in Chapter 4, Proposition 4.1.1, we prove a weaker version;
relevant definitions can be found there.

Theorem 2.3.1 ([104]). The generating function

τG(ϵ; t, s) =
∑
d≥1

ϵd
∑

µ,ν∈P
hGd (µ, ν)pµ(t)pν(s) (2.35)

of multiparametric weighted double Hurwitz numbers associated to the rational function (2.30) is a
2D-Toda tau-function. Moreover, the series (2.35) admits the equivalent expansion

τG(ϵ; t, s)) =
∑
λ∈P

r
(G,ϵ)
λ sλ(t)sλ(s). (2.36)

In the above, pµ(t) denote the power sum symmetric polynomial, sλ(t) the Schur polynomials (4.3)

and the coefficients r
(G,ϵ)
λ are given explicitly by

r
(G,ϵ)
λ =

∏
(i,j)∈λ

G(ϵ(j − i)), (2.37)



CHAPTER 2. HURWITZ NUMBERS AND SYMMETRIC FUNCTIONS 30

A notable question in Random matrix theory, and one of our main purposes in this work, is to
find partition functions, in the sense of (1.79), whose correlators admit topological expansions in
terms of Hurwitz numbers. Notably, a matrix model for simple Hurwitz number has been found
only recently by Borot, Eynard, Mulase and Safnuk [38], which we report for completeness.

Z ∝
∫
HN (C)

dM exp

(
− 1

gs
tr (V (M)−M A)

)
, (2.38)

where HN (C) is the ensemble of unitarily diagonalizable matrices with eigenvalues in a suitable
contour C in the complex plane and V (x) is the potential

V (x) = −x
2

2
+ gs(N −

1

2
)x+ x ln(gs/t) + iπx− gs ln

(
Γ(−x/gs)

)
. (2.39)

We refer to loc. cit. for further details. A few years later, Goulden, Guay-Paquet and Novak, [96, 97]
were able to conceive the Harish-Chandra-Itzykson-Zuber integral [67, 111, 118]

IN (z) =

∫
U(N)

ezN tr (AUBU−1)dU, (2.40)

as a generating function for double monotone Hurwitz numbers.
Recently Bertola and Harnad [25] were able to construct matrix models for generic multipara-

metric Hurwitz numbers; however, as in the case of (2.38) and (2.40), they depend on additional
parameters given by (the eigenvalues of) the matrices A and B appearing in the measures. Matrix
models of this kind take the name of external matrix models.

In Chapter 4 we prove how the Laguerre and Jacobi partition functions provide generating
functions for specific multiparametric single Hurwitz numbers; the result is different from the ones
cited above as we deal with internal matrix models, namely we have just a measure on the space
of Hermitian matrices (or restriction of it) of the form V (M)dM where V (x) is a scalar function
which may depend on additional complex parameters.
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Chapter 3

Correlators of unitary invariant
ensembles

In this chapter we provide generating functions for the connected correlators of unitary invariant
ensembles with a regular enough potential and explicitly compute them for the classical unitary
invariant ensembles.

The results of the former are contained in Section 3.1, specifically Theorem 3.1.1. Formulæ of
this sort for correlators of hermitian matrix models have been recently discussed in the literature, see
e.g. [63, 78]. They are directly related to the theory of tau functions (formal [63] and isomonodromic
[24, 92]) and to topological recursion theory [18, 19, 46, 79], incidentally, similar formulæ also appear
for matrix models with external source [21–23, 27, 129]. Generating functions for correlators in
the free probability setting were recently presented in [36]. We provide a direct derivation based
on the Riemann–Hilbert characterization of the matrix YN (z) outlined in Section 1.2. In Section
3.1.1 we give the ideas of how this approach could be extended to the case of discrete and multiple
orthogonal polynomials.

In Section 3.2 we explicitly compute the just found generating functions in the case of the
classical potentials introduced in Section 1.2.1, namely the Gaussian, Laguerre and Jacobi unitary
ensemble. The GUE case had already been dealt with by Dubrovin and Yang [63], while the
LUE and JUE were tackled in [92, 93]. Formulæ of different kind for multipoint correlators of
classical ensembles have been recently derived by Jonnadula, Keating, and Mezzadri in [120] via
the connection with the theory of multivariate orthogonal polynomials.

It is a nontrivial observation that these generating functions can be expressed via discrete or-
thogonal polynomials; this has first been proved for one-point correlators

〈
trMk

〉
for all three

classical unitary invariant ensembles by Cunden, Mezzadri, O’Connell and Simm [52]. It is worth
noting that in loc. cit. similar results have been proved also for one-point correlators of the orthog-
onal and symplectic ensembles with classical potentials.

3.1 Analytic generating functions for correlators

We consider the general case of a measure on HN (I), the space of Hermitian matrices with eigen-
values in the interval I, of the form

dmN (X) =
1

CN
exp trV (X)dX, (3.1)

32
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with normalizing constant CN =
∫
HN (I) exp trV (X)dX. Here V (x) is a smooth function of x ∈ I◦

(the interior of I) and we assume that expV (x) = O
(
|x− x0|−1+ε

)
for some ε > 0 as x ∈ I◦

approaches a finite endpoint x0 of I; further, if I extends to ±∞ we assume that V (x)→ −∞ fast
enough as x→ ±∞ in order for the measure (3.1) to have finite moments of all orders, so that the
associated orthogonal polynomials exist, recall Definition 1.2.1.

Introduce the moment functions

Cℓ(z1, . . . , zℓ) :=

∫
HN (I)

ℓ∏
i=1

tr
[
(zi −X)−1

]
dmN (X), ℓ ≥ 1, (3.2)

which are analytic functions of z1, . . . , zℓ ∈ C \ I, symmetric in the variables z1, . . . , zℓ. To simplify
the analysis it is convenient to introduce their connected version which take the name of cumulant
functions,

C c
ℓ (z1, . . . , zℓ) =

∑
P partition of {1,...,ℓ}

(−1)|P|−1(|P| − 1)!
∏
A∈P

C|A|({za}a∈A), (3.3)

from which the moments can be recovered by

Cℓ(z1, . . . , zℓ) =
∑

P partition of {1,...,ℓ}

∏
A∈P

C c
|A|({za}a∈A). (3.4)

For example, C1(z) = C c
1 (z), C c

2 (z1, z2) = C2(z1, z2)− C1(z1)C1(z2),

C c
3 (z1, z2, z3) = C3(z1, z2, z3)− C2(z1, z2)C1(z3)− C2(z2, z3)C1(z1)

− C2(z1, z3)C1(z2) + 2 C1(z1)C1(z2)C1(z3). (3.5)

We now want to express the cumulant functions in terms of the monic orthogonal polynomials
Pℓ(z) = zℓ + . . . uniquely defined by∫

I
Pℓ(x)Pm(x)eV (x)dx = hℓδℓ,m, (3.6)

and of the 2× 2 matrix YN (z) solution to the Riemann–Hilbert problem of orthogonal polynomials,
see Section 1.2 and equation (1.40) which we hereby recall,

YN (z) :=

(
PN (z) P̂N (z)

− 2πi
hN−1

PN−1(z) − 2πi
hN−1

P̂N−1(z)

)
, (3.7)

together with its defining properties,

1. YN (z) has a jump on the real axis given by

YN,+(z) = YN,−(z)

(
1 eV (z)

0 1

)
, z ∈ I, (3.8)

2. for z →∞ it has the behaviour

YN (z) =
(
1 +O(z−1)

)
zNσ3 , (3.9)
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3. at any endpoint z0 of I, for z → z0

YN (x) = O (log(z − z0)) . (3.10)

The result is the following.

Theorem 3.1.1. Let

R(z) := YN (z)

(
1 0
0 0

)
Y −1
N (z) , (3.11)

with YN (z) as in (3.7). Then, the cumulant functions (3.3) are given by

C c
1 (z) =

(
Y −1
N (z)Y ′

N (z)
)
1,1
, (3.12)

C c
2 (z1, z2) =

tr (R(z1)R(z2))− 1

(z1 − z2)2
, (3.13)

C c
ℓ (z1, . . . , zℓ) = −

∑
(i1,...,iℓ)∈cyc((ℓ))

tr (R(zi1) . . . R(ziℓ))

(zi1 − zi2) · · · (ziℓ − zi1)
, ℓ ≥ 3, (3.14)

where prime in the second formula denotes derivative with respect to z and cyc((ℓ)) in the last
formula is the set of ℓ-cycles in the symmetric group Sℓ.

We give two remarks: in the first we explain how generating functions for positive and negative
correlators are related to formulæ of Theorem 3.1.1; in the second one we point out how, in the
same way, is possible to obtain generating functions for mixed correlators.

Remark 3.1.2. When expanded at z = ∞, the cumulant functions serve as generating functions
for connected correlators, namely

C1(z)
z→∞∼ F c

1,∞(z)− N

z
, C c

ℓ (z1, . . . , zℓ)
z→∞∼ F c

ℓ,∞(z1, . . . , zℓ), (3.15)

where

F c
ℓ,∞(z1, . . . zℓ) :=

∑
k1,...,kℓ≥1

〈∏ℓ
j=1 trXkj

〉c
zk1+1
1 · · · zkℓ+1

ℓ

. (3.16)

Similarly, when expanded at z = 0 they yields the negative correlators, see Remark 1.3.5,

C1(z)
z→0∼ F c

1,0(z), C c
ℓ (z1, . . . , zℓ)

z→0∼ F c
ℓ,0(z1, . . . , zℓ), (3.17)

where

F c
ℓ,0(z1, . . . , zℓ) := (−1)ℓ

∑
k1,...,kℓ≥1

〈
ℓ∏

j=1

trX−kj

〉c

zk1−1
1 · · · zkℓ−1

ℓ . (3.18)

The same formulæ hold for the disconnected counterparts.
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Remark 3.1.3. We could consider more general generating functions as follows; take ℓ1, . . . , ℓp ≥ 0
with

∑p
i=1 ℓi > 0 and expand the cumulant function

Cℓ1+···+ℓp(z
(1)
1 , . . . , z

(1)
ℓ1
, . . . , z

(p)
1 , . . . , z

(p)
ℓp

) (3.19)

as z
(1)
j → x1, . . . , z

(p)
j → xp where x1, . . . , xp are endpoints of the support of V (x). For example, for

the Jacobi measure V (x) = α log x+β log(1−x), see also Section 3.2.3 below, taking (x1, x2, x3) =
(∞, 0, 1) we obtain generating functions∑

k1,...,kq≥1
i1,...,ir≥1
j1,...,js≥1

∫
HN (0,1)

trXk1 · · · trXkqtrX−i1 · · · trX−irtr (1−X)j1 · · · tr (1−X)jsdmJ
N (X)

×w
i1−1
1 · · ·wir−1

r (y1 − 1)j1−1 · · · (ys − 1)js−1

zk1+1
1 · · · zkq+1

q

. (3.20)

It is then clear that we can compute the coefficients of such series in terms of the asymptotic series
R[∞], R[0], R[1], of the matrix R(z) of JUE at (∞, 0, 1).

Proof of Theorem 3.1.1

The strategy for the proof of Theorem 3.1.1 is based on the observation that setting

ZN (t, z) :=

∫
HN (I)

exp
(
tr (V (X)+

ℓ∑
i=1

ti(zi−X)−1)
)
dX, t = (t1, . . . , tℓ), z = (z1, . . . , zℓ), (3.21)

we have

C c
ℓ (z1, . . . , zℓ) =

∂ℓ

∂t1 · · · ∂tℓ
log Z (t, z)

∣∣∣∣
ti=0

. (3.22)

Here and below it is assumed that zi ̸∈ I. Let us recall here for convenience a couple of formulæ
from Chapter 1. In particular, the Christoffel–Darboux identity (1.35)

KN (x, y) := e
V (x)+V (y)

2

N−1∑
i=0

Pi(x)Pi(y)

hi
=

e
V (x)+V (y)

2

hN−1

PN (x)PN−1(y)− PN−1(x)PN (y)

x− y
, (3.23)

which can be conveniently rewritten in terms of the matrix YN (z) in (3.7) as

KN (x, y) = − e
V (x)+V (y)

2

2πi(x− y)

(
0 1

)
Y −1
N (x)YN (y)

(
1
0

)
, (3.24)

which is independent of the choice of boundary value of YN because of the jump condition (3.8),
namely because of the jump matrix being upper triangular,

(
0 1

)
Y −1
N,+(x)YN,+(y)

(
1
0

)
=
(
0 1

)(1 eV (x)

0 1

)
Y −1
N,−(x)YN,−(y)

(
1 −eV (y)

0 1

)(
1
0

)
(3.25)

=
(
0 1

)
Y −1
N,−(x)YN,−(y)

(
1
0

)
. (3.26)
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Next, we recall the expression (1.80) in order to expresses the partition function (3.21) as a
product of the norming constants. Here we use a slightly different perturbation of the potential
V (x) but the observations made in Proposition 1.3.3 stand still. In particular, introducing

Vt,z(x) := V (x) +

ℓ∑
i=1

ti
zi − x

, t = (t1, . . . , tℓ), z = (z1, . . . , zℓ), (3.27)

and, for convenience, writing explicitly the dependence of Pℓ = P V
ℓ and hℓ = hVℓ on the potential

V , we have
ZN (t, z) = N !h

Vt,z

0 · · ·hVt,z

N−1. (3.28)

Since our final goal is to be able to give generating functions for the (logarithmic) time deriva-
tives of ZN (t, z), it will be convenient to analyse such operation with respect to expression (3.28).

Lemma 3.1.4. We have

∂tjh
Vt,z

i =

∫
I

(
P

Vt,z

i (x)
)2

eVt,z(x) dx

zj − x
. (3.29)

Proof. We have h
Vt,z

i =
∫
I

(
P

Vt,z

i (x)
)2

eVt,z(x)dx hence

∂tjh
Vt,z

i = 2

∫
I
P

Vt,z

i (x)
(
∂tjP

Vt,z

i (x)
)

eVt,z(x)dx+

∫
I

(
P

Vt,z

i (x)
)2

eVt,z(x)
(
∂tjVt,z(x)

)
dx , (3.30)

but the first term vanishes by orthogonality because P
Vt,z

i (x) are normalized to be monic and,

therefore, ∂tjP
Vt,z

i (x) is a polynomial of degree strictly less than i.

We now begin the proof of Theorem 3.1.1. We will proceed by induction on ℓ.

Case ℓ = 1

It follows from (3.24) that

KN (x, x) = lim
y→x

KN (x, y) =
eV (x)

2πi

(
0 1

)
Y −1
N (x)Y ′

N (x)

(
1
0

)
. (3.31)

In the following we shall use the notation

∆f(x) := f+(x)− f−(x), x ∈ I◦, (3.32)

for the jump of a function f across I, namely f±(x) := limϵ→0+ f(x ± iϵ). The next preliminary
lemma is well known, see e.g. [49], and it is proven here for the reader’s convenience.

Lemma 3.1.5. We have

KN (x, x) = − 1

2πi
∆

[
tr

(
Y −1
N (x)

∂YN (x)

∂x
E1,1

)]
, E1,1 :=

(
1 0
0 0

)
(3.33)

Proof. Let us denote ′ := ∂x. It follows from the jump condition (3.8) for YN that

Y ′
N,+(x) = Y ′

N,−(x)

(
1 eV (x)

0 1

)
+ YN,−(x)

(
0 V ′(x)eV (x)

0 0

)
, x ∈ I◦. (3.34)
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Therefore we compute

∆
[
tr
(
Y −1
N (x)Y ′

N (x)E1,1

)]
= tr

(
Y −1
N,+(x)Y ′

N,+(x)E1,1

)
− tr

(
Y −1
N,−(x)Y ′

N,−(x)E1,1

)
= tr

((
1 −eV (x)

0 1

)
Y −1
N,−(x)Y ′

N,−(x)

(
1 eV (x)

0 1

)
E1,1

)
− tr

(
Y −1
N,−(x)Y ′

N,−(x)E1,1

)
+ tr

((
1 −eV (x)

0 1

)(
0 V ′(x)eV (x)

0 0

)
E1,1

)
. (3.35)

The last term vanishes and so, by the cyclic property of the trace, we have

∆
[
tr
(
Y −1
N (x)Y ′

N (x)E1,1

)]
= tr

[
Y −1
N,−(x)Y ′

N,−(x)

((
1 eV (x)

0 1

)
E1,1

(
1 −eV (x)

0 1

)
− E1,1

)]
(3.36)

which is easily seen to be equivalent, up to multiplying by −1/(2πi), to (3.31).

We are ready for the proof of the case ℓ = 1. In such case, t = t1, z = z1 and Vt,z(x) =
V (x) + t/(z − x). By (3.28), Lemma 3.1.4, and (3.23), we have

∂t log ZN (t, z) =
N−1∑
i=0

1

h
Vt,z

i

∂th
Vt,z

i =
N−1∑
i=0

1

h
Vt,z

i

∫
I

(
P

Vt,z

i (x)
)2

eVt,z(x) dx

z − x
=

∫
I
K

Vt,z

N (x, x)
dx

z − x
,

(3.37)
where we denote explicitly the dependence of the Christoffel–Darboux kernel on the potential. Let
Γ be an oriented contour in the complex plane which surrounds I in counterclockwise sense (i.e. I
lies on the left of Γ) and leaves z outside (i.e. z lies to the right of Γ). Then, in virtue of Lemma 3.1.5
we get

∂t log ZN (t, z) = −
∫
I

∆

[
tr

(
Y −1
N (x; t, z)

∂YN (x; t, z)

∂x
E1,1

)]
dx

2πi(z − x)

=

∫
Γ

tr

(
Y −1
N (x; t, z)

∂YN (x; t, z)

∂x
E1,1

)
dx

2πi(z − x)
, (3.38)

where YN (·; t, z) is the matrix (3.7) for the potential Vt,z. The last contour integral can be evaluated
by a residue computation as

∂t log ZN (t, z) =
(
− res

x=z
− res

x=∞

)
tr

(
Y −1
N (x; t, z)

∂YN (x; t, z)

∂x
E1,1

)
dx

z − x
. (3.39)

It can be checked from the normalization condition at x = ∞ for YN (x; t, z), equation (3.9), that
the residue at x =∞ vanishes. Therefore

∂t log ZN (t, z) = tr

(
Y −1
N (z; t, z)

∂YN (x; t, z)

∂x

∣∣∣∣
x=z

E1,1

)
. (3.40)

Evaluating this identity at t = 0, taking into account (3.22), we obtain exactly (3.12), namely

C c
1 (z) =

(
Y −1
N (z)Y ′

N (z)
)
1,1
. (3.41)
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Case ℓ = 2

Let us first formulate a result that will be needed for all ℓ ≥ 2.

Lemma 3.1.6. Let
R(x; z, t) := YN (x; t, z)E1,1Y

−1
N (x; t, z), (3.42)

and

Vt,z(x) = V (x) +
ℓ∑

i=1

ti
zi − x

, (3.43)

where t = (t1, . . . , tℓ), and z = (z1, . . . , zℓ). For all 1 ≤ j ≤ ℓ, we have

1

zj − x
R(x; t, z) +

(
∂YN
∂tj

(x; t, z)

)
Y −1
N (x; t, z) =

1

zj − x
R(zj ; t, z). (3.44)

Proof. Let us denote by Ωj(x; t, z) the left-hand side of (3.44). Using (3.8) we get the identities

YN (x+; t, z) = YN (x−; t, z)

(
1 eVt,z(x)

0 1

)
, (3.45)

∂YN
∂tj

(x+; t, z) =
∂YN
∂tj

(x−; t, z)

(
1 eVt,z(x)

0 1

)
+ YN (x−; t, z)

(
0 1

zj−xeVt,z(x)

0 0

)
, (3.46)

from which we readily ascertain that ∆Ωj(x; t, z) = 0 for all x ∈ R. Hence, Ωj(x; t, z) is a mero-
morphic function of x with a single simple pole at x = zj and which vanishes at x = ∞, because
of (3.9), and so the statement follows.

Let us consider the case ℓ = 2, in which t = (t1, t2), z = (z1, z2), and Vt,z(x) = V (x)+ t1
z1−x+ t2

z2−x .
By the argument used for ℓ = 1, cf. (3.40), we obtain

∂t1 log ZN (t, z) = tr

(
Y −1
N (z1; t, z)

∂YN (x; t, z)

∂x

∣∣∣∣
x=z1

E1,1

)
. (3.47)

Next we have to take a derivative in t2: omitting the explicit dependence on t, z, we have

∂t2∂t1 log ZN (t, z) = tr

(
−Y −1

N (z1)
∂YN
∂t2

(z1)Y −1
N (z1)

∂YN (x)

∂x

∣∣∣∣
x=z1

E1,1 + Y −1
N (z1)

∂2YN (x)

∂t2∂x

∣∣∣∣
x=z1

E1,1

)
.

(3.48)

We use (3.44) to rewrite the first term inside the trace in the right-hand side as

−Y −1
N (z1)

R(z2)−R(z1)

z2 − z1
∂YN (x)

∂x

∣∣∣∣
x=z1

E1,1 (3.49)

and the second term as

Y −1
N (z1)

∂2YN (x)

∂x∂t2

∣∣∣∣
x=z1

E1,1 = Y −1
N (z1)

∂

∂x

(
R(z2)−R(x)

z2 − x
YN (x)

)∣∣∣∣
x=z1

E1,1

= Y −1
N (z1)

(
R(z2)−R(z1)

(z2 − z1)2
YN (z1)−

[
∂YN (x)

∂x

∣∣∣∣
x=z1

Y −1
N (z1) , R(z1)

]
z2 − z1

YN (z1)

+
R(z2)−R(z1)

z2 − z1
∂YN (x)

∂x

∣∣∣∣
x=z1

)
E1,1,
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where [A,B] := AB−BA is the commutator. The term in the last row exactly cancels with (3.49),
and so, rearranging terms

∂t2∂t1 log ZN (t, z) =
tr
(
R(z1)R(z2)

)
− 1

(z2 − z1)2
+

tr

([
Y −1
N (z1)

∂YN (x)
∂x

∣∣∣∣
x=z1

,E1,1

]
E1,1

)
z2 − z1

(3.50)

and, since tr ([A,B]B) = tr ([AB,B]) = 0, the proof of the case ℓ = 2 is completed by setting
t1 = t2 = 0. This yields formula (3.13).

Case ℓ ≥ 3

Let us denote

Sℓ(z1, . . . , zℓ; t) := −
∑

(i1,...,iℓ)∈cyc((ℓ))

tr (R(zi1 ; t, z) · · ·R(ziℓ ; t, z))

(zi1 − zi2) · · · (ziℓ−1
− ziℓ)(ziℓ − zi1)

−
δℓ,2

(z1 − z2)2
, (3.51)

where the sum extends over cyclic permutations of {1, . . . , ℓ}. We aim at proving that

∂ℓ log ZN (t, z)

∂tℓ · · · ∂t1
= Sℓ(z1, . . . , zℓ; t). (3.52)

where YN (x; t, z), and so R(x; t, z), are computed for the potential Vt,z(x) = V (x) +
∑ℓ

i=1
ti

zi−x .
Then, the seeked formula (3.14) follows by taking ti = 0. The proof of (3.52) is by induction
on ℓ ≥ 2 and it is similar in spirit to that in [22, 23, 92].

Let us assume (3.52) for ℓ and let us prove it for ℓ + 1, the base case having been established
in the previous section. Since the potential V is arbitrary, we can assume (3.52) holds true for
Vt,z(x) = V (x) +

∑ℓ+1
j=1

tj
zj−x , and so we just have to show that

∂tℓ+1
Sℓ(z1, . . . , zℓ; t) = Sℓ+1(z1, . . . , zℓ, zℓ+1; t). (3.53)

To this end we first observe that by (3.44) we have

∂R(x; t, z)

∂tj
=

[
R(zj ; t, z)−R(x; t, z)

zj − x
,R(x; t, z)

]
=

[R(zj ; t, z), R(x; t, z)]

zj − x
, (3.54)

and therefore

∂Sℓ(z1, . . . , zℓ; t)

∂tℓ+1
= −

∑
(i1,...,iℓ)∈cyc((ℓ))

ℓ∑
j=1

tr
(
R(zi1 ; t, z) · · · [R(zℓ+1; t, z), R(zij ; t, z)] · · ·R(ziℓ ; t, z)

)
(zi1 − zi2) · · · (ziℓ − zi1)(zℓ+1 − zij )

.

(3.55)
Expanding the commutator

[R(zℓ+1; t, z), R(zij ; t, z)] = R(zℓ+1; t, z)R(zij ; t, z)−R(zij ; t, z)R(zℓ+1; t, z),

we note that, in the previous sum, each term involving the expression

tr
(
R(zi1 ; t, z) · · ·R(zℓ+1; t, z)R(zij ; t, z) · · ·R(ziℓ ; t, z)

)
(3.56)
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appears exactly twice, but with different denominators. Collecting such terms yields

∑
(i1,...,iℓ)∈cyc((ℓ))

ℓ∑
j=1

tr
(
R(zi1 ; t, z) · · ·R(zℓ+1; t, z)R(zij ; t, z) · · ·R(ziℓ ; t, z)

)
(zi1 − zi2) · · · (ziℓ − zi1)

(
1

zij − zℓ+1
− 1

zij−1 − zℓ+1

)

= −
∑

(i1,...,iℓ)∈cyc((ℓ))

ℓ∑
j=1

tr
(
R(zi1 ; t, z) · · ·R(zℓ+1; t, z)R(zij ; t, z) · · ·R(ziℓ ; t, z)

)
(zi1 − zi2) · · · (zij−1 − zℓ+1)(zℓ+1 − zij ) · · · (ziℓ − zi1)

= Sℓ+1(z1, . . . , zℓ, zℓ+1), (3.57)

where we set i0 := iℓ in the internal summation. The proof is complete.
Notice that the functions Sℓ(z1, . . . , zℓ) are regular along the diagonals zi = zj . In the case

ℓ = 2 this can be seen from the fact that

tr (R2(z)) ≡ 1 (3.58)

hence the function tr (R(z1)R(z2))−1 is symmetric in z1 and z2 and vanishes for z1 = z2. Therefore
the zero on the diagonal z1 = z2 is of order at least 2 and so S2(z1, z2) is regular for z1 = z2. For
ℓ ≥ 3 instead we can reason as follows; since Sℓ is manifestly symmetric, we can focus on the case
zℓ−1 = zℓ and keeping only the summands in Sℓ which are singular for zℓ−1 = zℓ gives

∑
(i1,...,iℓ−2)∈cyc((ℓ−2))

tr
(
R(zℓ−1)R(zℓ)R(zi1) · · ·R(ziℓ−2

)
)

(zℓ−1 − zℓ)(zℓ − zi1) · · · (ziℓ−2
− zℓ−1)

+
tr
(
R(zℓ−1)R(zi1) · · ·R(ziℓ−2

)R(zℓ)
)

(zℓ−1 − zi1) · · · (ziℓ−2
− zℓ)(zℓ − zℓ−1)

, (3.59)

but this sum is regular for zℓ−1 = zℓ by the cyclic property of the trace, as terms cancel out pairwise.
We end this section with a couple of remarks.

Remark 3.1.7. We note here that since R(z) is a rank one matrix, the formulae of Theorem 3.1.1
for C c

ℓ , ℓ ≥ 2, can be expressed in terms of the scalar quantities

w(x, y) :=
2πi

hN−1

PN (x)P̂N−1(y)− PN−1(x)P̂N (y)

x− y
(3.60)

as

C c
ℓ (z1, . . . , zℓ) = −

∑
(i1,...,iℓ)∈cyc((ℓ))

w(zi1 , zi2) · · ·w(ziℓ−1
, ziℓ)w(ziℓ , zi1)−

δℓ,2
(z1 − z2)2

, ℓ ≥ 2, (3.61)

compare for instance with [65, 167].

3.1.1 The multiple and discrete orthogonal polynomials case

Formulæ of Theorem 3.1.1 lend themselves to be generalized in various directions, namely to discrete
orthogonal polynomials and multiple orthogonal polynomials. Here we only give a blueprint of the
strategy to be adopted in the two cases, which will be subject of future work. Essentially, one just
has to write out the corresponding Riemann-Hilbert problem and use the solution – akin the Fokas-
Its-Kitaev matrix YN (z) – to construct the matrix R(z) as depicted in Section 3.1; the cumulant
functions are expressed via R(z) in the same fashion.
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Discrete orthogonal polynomials

Let X ⊂ R be a discrete set and w : X→ R>0 a probability mass function on X with moments of all
orders. Discrete orthogonal polynomial ensemble are defined as the probability distribution on XN

QN (x1, . . . , xN ) =
1

ZN
w(x1) · · ·w(xN )

∏
i<j

(xj − xi)2, (3.62)

where ZN is the normalizing constant

ZN =
∑

x1,...,xN∈X
w(x1) · · ·w(xN )(xj − xi)2. (3.63)

The probability distribution QN defines a determinantal point process on X: all marginals of (3.62)
can be expressed as determinants of the correlation kernel KN (x, y),∑

xℓ+1,...,xN∈X
QN (x1, . . . , xN ) =

(N − ℓ)!
N !

(
det

1≤i,j≤ℓ
KN (xi, xj)

)
,

where as in the continuous case, see (1.35), it holds

KN (x, y) =
√
w(x)w(y)

N−1∑
n=0

h−1
n Pn(x)Pn(y) =

√
w(x)w(y)

hN−1

PN (x)PN−1(y)− PN−1(x)PN (y)

x− y
.

(3.64)
Here we denote by Pn(x) the (unique) monic orthogonal polynomial with respect to the weight w,
and with P̂n(z) its (discrete) Hilbert transform,∑

x∈X
Pn(x)Pm(x)w(x) = hnδmn, hn > 0, P̂n(z) :=

∑
x∈X

Pn(x)
w(x)

z − x
, z ∈ C \ X. (3.65)

The matrix

YN (z) :=

(
PN (z) P̂N (z)

1
hN−1

PN−1(z) 1
hN−1

P̂N−1(x)

)
(3.66)

is uniquely characterised by the following properties.

1. YN (z) is meromorphic in z, with simple poles at z ∈ X.

2. res
z=x

YN (z)dz = limz→x YN (z)

(
0 w(x)
0 0

)
.

3. YN (z) = (I +O(z−1))zNσ3 as z →∞ away from X.

The three conditions above constitute the discrete Riemann-Hilbert characterization of discrete
orthogonal polynomials; their proof from the definition (3.66) is straightforward, and it turns out
that they uniquely define the matrix YN (z), [17] (see also [35]). The crucial observation is that the
Christoffel-Darboux identity (3.64) allows us to write the correlation kernel via the matrix YN (z)
akin to (3.24) (see also Remark 3.1.7), namely

KN (x, y) = −
√
w(x)w(y)

x− y
(
0 1

)
Y −1
N (x)YN (y)

(
1
0

)
. (3.67)



CHAPTER 3. CORRELATORS OF UNITARY INVARIANT ENSEMBLES 42

Then, analogously to (3.31) the confluent version of (3.67) is recovered as

KN (x, x) = res
z=x

tr
(
Y −1
N (z)Y ′

N (z)E1,1

)
dz, (3.68)

from which the one-point function is derived as in the continuous case, Lemma 3.1.5. For the
two point functions, again define R(z) := YN (z)( 1 0

0 0 )Y −1
N (z); in the discrete setting, R(z) is a

meromorphic function of z with simple poles at X. The analogue of Lemma 3.1.6 is obtained
proving Ω has no poles on the support X (rather than no jumps on the interval I). Multi point
functions are a byproduct of this Lemma and the definition of R(z).

Multiple orthogonal polynomials

Multiple orthogonal polynomials are polynomials of one variable which satisfy orthogonality con-
ditions with respect to several measures [134]. Consider r weight functions w1, . . . , wr on the real
line with support on intervals Ij . Given a multi index n = (n1, . . . , nr) of positive integers with
|n| := n1 + · · · + nr, there are two, somewhat dual, families of orthogonal polynomials one can
construct

1. Type I multiple orthogonal polynomial: the vector of polynomials (An,1, . . . , An,r) such that
An,j has degree at most (nj − 1), satisfying the orthogonality condition

r∑
j=1

∫
xkAn,j(x)wj(x)dx = 0, 0 ≤ k ≤ |n| − 2. (3.69)

2. Type II multiple orthogonal polynomials: the monic polynomial Pn of degree |n| satisfying
the r orthogonality conditions∫

xkPn(x)wj(x)dx = 0, 0 ≤ k ≤ nj − 1, 1 ≤ j ≤ r. (3.70)

The uniqueness of both types of multiple orthogonal polynomials is guaranteed under additional
assumptions on the weights (e.g. Angelescu and AT systems, see [161]).

Let us focus on type II multiple orthogonal polynomials, the type I case being analogous. In
[14] the following characterization via a Riemann-Hilbert problem is given.

Theorem 3.1.8. The unique (r + 1)× (r + 1) matrix function YN (z) satisfying

1. YN (z) is analytic in C \ R,

2. on the real line it satisfies the jump condition

YN,+(z) = YN,−(z)


1 −2πiw1(z) −2πiw2(z) · · · −2πiwr(z)
0 1 0 · · · 0
0 0 1 0
...

...
. . .

...
0 0 · · · 0 1

 (3.71)

3. as z →∞ we have

YN (z) ∼
(
1 +O(z−1)

)

z|n|

z−n1

. . .

z−nr

 (3.72)
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is given by

YN (z) =


Pn(z) Rn,1(z) · · · Rn,r(z)

c1Pn−e1(z) c1Rn−e1,1(z) c1Rn−e1,r(z)
...

. . .

crPn−er(z) crRn−er,1(z) cr Rn−er,r(z)

 . (3.73)

Here, ek = (0, . . . , 1, . . . , 0) is the r-dimensional vector with k − th entry equal to 1, Rn,j(z) is the
Hilbert transform of Pn(z) with respect to the weight wj(x) and dj are constants,

Rn,j(z) =

∫
Pn(x)

x− z
wj(x)dx, d−1

j =

∫
xnj−1Pn−ej (x)wj(x)dx. (3.74)

The related ensemble is a determinantal point process, as first pointed out by Borodin in the
biorthogonal case, [34]. Remarkably, it is proven in [55] that the correlation kernel KN (x, y) can
be expressed as

KN (x, y) =
1

2πi

(
0 w1(y) · · · wr(y)

)
Y −1
N (y)YN (x)

(
1 0 · · · 0

)T
, (3.75)

from which its confluent version is readily recovered as

KN (x, x) =
1

2πi

(
0 w1(x) · · · wr(x)

)
Y −1
N (x)Y ′

N (x)
(
1 0 · · · 0

)T
. (3.76)

Then again, defining the matrix R(z) := YN (z)E1,1Y
−1
N (z), where now E1,1 is the (r + 1)× (r + 1)

matrix with 1 in the upper left entry and 0 elsewhere, the same strategy outlined in Section 3.1
yields generating functions for the correlators of the associated process.

3.2 Generating functions for correlators of classical unitary invari-
ant ensembles

In this section we employ Theorem 3.1.1 to obtain explicit expressions for generating functions
of correlators related to the classical potentials introduced in Section 1.2.1, namely the Gaus-
sian, Laguerre and Jacobi ones. We derive for each of these case an expression for the functions
F c

ℓ,∞(z1, . . . zℓ) and F c
ℓ,0(z1, . . . zℓ) of Remark 3.1.2 in terms of asymptotic expansions at z = 0,∞

of the matrix R(z). Let us first see how said matrix can be written in terms of the associated
orthogonal polynomials and their Cauchy transforms.

Remark 3.2.1. The jump matrix in (3.8) has unit determinant and detYN (z) ∼ 1 when z → ∞
by (3.9). We conclude by Liouville theorem that detYN (z) ≡ 1 identically, this implies

Y −1
N (z) =

(
− 2πi

hN−1
P̂N−1(z) −P̂N (z)

2πi
hN−1

PN−1(z) PN (z)

)
. (3.77)

In turn, using again detYN (z) ≡ 1 and the definition R(z) := YN (z) ( 1 0
0 0 )Y −1

N (z), we get

R(z) =

(
1 0
0 0

)
+

(
− 2πi

hN−1
PN−1(z)P̂N (z) −PN (z)P̂N (z)(

2πi
hN−1

)2
PN−1(z)P̂N−1(z) 2πi

hN−1
PN−1(z)P̂N (z)

)
. (3.78)

Thus, what we really need in computing asymptotic expansions of R(z) is the expansion for the
products of the orthogonal polynomials and their Cauchy transforms.
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As we shall see in the next section, asymptotic series for Cauchy transforms of polynomials from
the classical ensembles are relatively easy to carry out, due to the existence of a Rodrigues formula
of type (1.46). Moreover, it turns out their product satisfies a three term recurrence which we are
able to identify with specific families of discrete orthogonal polynomials, see Remarks 3.2.4, 3.2.11
and 3.2.16. Let us make final observation which will be useful in the writing of more aesthetically
pleasing formulæ.

Remark 3.2.2. A z-independent (but possibly N -dependent) gauge transformation of the matrix

R(z), i.e. R(z) 7→ R̃(z) := TNR(z)T−1
N or equivalently YN (z) 7→ ỸN (z) := TNYN (z), does not affect

formulæ of Theorem 3.1.1, as(
Ỹ −1
N (z)Ỹ ′

N (z)
)
1,1

=
(
Y −1
N (z)T−1

N TN · Y ′
N (z)

)
1,1

=
(
Y −1
N (z)Y ′

N (z)
)
1,1
, (3.79)

tr
(
R̃(zi1) . . . R̃(ziℓ)

)
(zi1 − zi2) · · · (ziℓ − zi1)

=
tr
(
TNR(zi1)T−1

N . . . TNR(ziℓ)T
−1
N

)
(zi1 − zi2) · · · (ziℓ − zi1)

=
tr (R(zi1) . . . R(ziℓ))

(zi1 − zi2) · · · (ziℓ − zi1)
. (3.80)

The latter follows from the basic conjugation-invariant property of the trace.

3.2.1 Correlators generating functions for GUE

The correlators generating functions for the GUE were first computed by Dubrovin and Yang in
[63] and were part of the motivation for our subsequent work on the Laguerre and Jacobi ensemble.
There, the authors compute the matrix R(z) from its difference equation. A proof on the line of this
thesis has already been written by Ruzza in his PhD thesis [153](Theorem 3.5.3). We report the
relevant Theorem for the sake of completeness in our analysis on the classical unitary ensembles.

Theorem 3.2.3 ([63]). Introduce the formal series

R(z) ∼
(

1 0
0 0

)
+
∑
ℓ≥0

1

z2ℓ+2

(
NAℓ,N −zNBℓ,N+1

zBℓ,N −NAℓ,N

)
(3.81)

where

Aℓ,N := (2ℓ+ 1)!!
ℓ∑

j=0

2j
(
ℓ

j

)(
N

j + 1

)
= N(2ℓ+ 1)!! 2F1

( −ℓ,1−N
2

∣∣ 2) (3.82)

Bℓ,N := N(2ℓ− 1)!!

ℓ∑
j=0

2j
(
ℓ

j

)(
N − 1

j

)
= N(2ℓ− 1)!! 2F1

( −ℓ,1−N
1

∣∣ 2) . (3.83)

as z →∞ within any of the two sectors in C\(−∞,+∞). Then, the correlator generating functions
introduced in Remark 3.1.2 are

F1,∞(z) =

∫ ∞

z
(R11(y)− 1) dy (3.84)

F c
2,∞(z1, z2) =

tr (R(z1)R(z2))− 1

(z1 − z2)2
(3.85)

F c
ℓ,∞(z1, . . . , zℓ) = −

∑
(i1,...,iℓ)∈cyc((ℓ))

tr (R(zi1) . . . R(ziℓ))

(zi1 − zi2) · · · (ziℓ − zi1)
, ℓ ≥ 3, (3.86)
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Equivalent formulæ for the one and two point functions were given by Harer and Zagier and by
Morozov, [110, 140]. Interestingly, they have recently been reproved by Giacchetto, Lewański and
Norbury by the sole use of the theory on moduli spaces of curves in [90].

Remark 3.2.4. As first pointed out in [52], the normalized moments of GUE are Meixner polyno-
mials, defined via their hypergeometric representation

Mn(x; γ, c) = 2F1

(
−n, − x

γ

∣∣∣∣ 1− 1

c

)
. (3.87)

As it turns out, both the Aℓ,N and Bℓ,N can be put in the form (3.87) as

Aℓ,N

N(2ℓ+ 1)!!
= Mℓ(N − 1; 2,−1),

Bℓ,N
N(2ℓ− 1)!!

= Mℓ(N − 1; 1,−1). (3.88)

As a consequence, we deduce that also the GUE multipoint correlators are linear combinations of
products of Meixner polynomials.

3.2.2 Correlators generating functions for LUE

Theorem 3.2.5 ([92]). Introduce the matrix-valued formal series

R[∞](z) :=

(
1 0
0 0

)
+
∑
ℓ≥0

1

zℓ+1

(
ℓAℓ(N,N + α) Bℓ(N + 1, N + α+ 1)

−N(N + α)Bℓ(N,N + α) −ℓAℓ(N,N + α)

)
(3.89)

R[0](z) :=

(
1 0
0 0

)
+
∑
ℓ≥0

zℓ

(α− ℓ)2ℓ+1

 (ℓ+ 1)Aℓ(N,N + α) −Bℓ(N + 1, N + α+ 1)

N(N + α)Bℓ(N,N + α) −(ℓ+ 1)Aℓ(N,N + α)

 (3.90)

where we denote by (p)j := p(p+ 1) · · · (p+ j − 1) the rising factorial and

Aℓ(N,M) :=

{
N, ℓ = 0,
1
ℓ

∑ℓ−1
j=0(−1)j (N−j)ℓ(M−j)ℓ

j!(ℓ−1−j)! , ℓ ≥ 1,
Bℓ(N,M) :=

ℓ∑
j=0

(−1)j
(N − j)ℓ(M − j)ℓ

j!(ℓ− j)!
.

(3.91)
Then, the one-point correlators generating functions introduced in Remark 3.1.2 are

F1,∞(z) =
N

z
+

1

z

∫ ∞

y

[(
R[∞](y)

)
11
− 1
]

dy, F1,0(z) =
1

z

∫ y

0

[(
R[0](y)

)
11
− 1
]

dy, (3.92)

and similarly, the multipoint generating functions admit the expression

F c
2,p(z1, z2) =

tr
(
R[p](z1)R

[p](z2)
)
− 1

(z1 − z2)2
, (3.93)

F c
ℓ,p(z1, . . . , zℓ) = −

∑
(i1,...,iℓ)∈cyc((ℓ))

tr
(
R[p](zi1) . . . R[p](ziℓ)

)
(zi1 − zi2) · · · (ziℓ − zi1)

, ℓ ≥ 3, p = 0,∞. (3.94)
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Remark 3.2.6. The one-point generating series boil down to the following identities〈
trXk

〉
= Ak(N,N + α),

〈
trX−k−1

〉
=
Ak(N,N + α)

(α− k)2k+1
, k ≥ 0 (3.95)

which were already derived in the literature [52, 109]. From from Theorem 3.2.5 for example one
can deduce compact expressions for correlators of the form〈

trXktrX
〉
c

= kAk(N,N + α),
〈

trX−ktrX−1
〉
c

=
kAk(N,N + α)

α(α− k)2k+1
.

We begin the proof of Theorem 3.2.5 computing R[∞](z), the expansion of R(z) as z →∞.

Proposition 3.2.7. The matrix R(z) admits the asymptotic expansion

TR(z)T−1 ∼ R[∞](z), z →∞ (3.96)

uniformly within the sector 0 < arg z < 2π. Here R[∞] is the formal series introduced in Theorem
3.2.5, see (3.89), and T is defined as

T :=

(
1 0

0 hN
2πi

)
(3.97)

where hN = N !Γ(N + α+ 1) as in (1.54).

Proof. As outlined at the beginning of Section 3.1, the first step is to get our hands on the asymp-
totic expansion at z =∞ of the Laguerre polynomials and their Cauchy transforms. For convenience
we report formula (1.56) here,

π
(α)
N (x) =

N∑
j=0

(−1)N−j(N − j + 1)j(j + 1 + α)N−j

j!
xj , N ≥ 0. (3.98)

We can expand π̂
(α)
N when z →∞ as

π̂
(α)
N (z) =

1

2πi

∫ +∞

0
π
(α)
N (ξ)ξαe−ξ dξ

ξ − z

∼ − 1

2πi

∑
j≥0

1

zj+1

∫ +∞

0
π
(α)
N (ξ)ξα+je−ξdξ

= − 1

2πi

∑
j≥0

1

zj+N+1

∫ +∞

0
π
(α)
N (ξ)ξα+j+Ne−ξdξ

= − 1

2πi

∑
j≥0

1

zj+N+1

∫ +∞

0
(−1)N

(
dN

dξN
(e−ξξα+N )

)
ξj+Ndξ

= − 1

2πi

∑
j≥0

1

zj+N+1

∫ +∞

0

(
dN

dξN
ξj+N

)
ξα+Ne−ξdξ

= − 1

2πi

∑
j≥0

(j + 1)NΓ(j +N + 1 + α)

zN+j+1
(3.99)

= − 1

2πi

∑
j≥0

hN−1

j!

(N)j+1(N + α)j+1

zN+j+1
, (3.100)
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where we have used the orthogonality property to shift the sum in the first place, then Rodrigues
formula (1.55), integration by parts and the trivial formula (A). The expansion (3.100) is formal;
however, it has an analytic meaning of asymptotic expansion within 0 < arg z < 2π. Indeed, we
note that for any J ≥ 0 the difference between the Cauchy transform and its truncated formal
expansion is

π̂
(α)
N (z) +

1

2πi

J−1∑
j=0

1

zj+1

∫ +∞

0
π
(α)
N (ξ)ξα+je−ξdξ =

1

2πizJ

∫ +∞

0
π
(α)
N (ξ)ξα+Je−ξ dξ

ξ − z
= O

(
1

zJ+1

)
(3.101)

where the last step holds as z → ∞, uniformly within any closed subsector 0 < arg z < 2π.
Rotating the contour of integration we see that the expansion actually holds uniformly in the full
sector 0 < arg z < 2π. Hence from (3.7), together with (3.98) and (3.100), we have

YN (z) ∼
∑
j≥0

1

j!zj

 (−1)j(N − j + 1 + α)j(N − j + 1)j −hN−1

2πiz (N + α)j+1(N)j+1

− 2πi
hN−1z

(−1)j(N − j + α)j(N − j)j (N + α)j(N)j

 zNσ3

(3.102)
as z → ∞ within the sector 0 < arg z < 2π, and in turn we can compute R(z) via (3.78). For
example for the (1, 1)-entry we have

R11(z) = 1− 2πi

hN−1
π
(α)
N−1(z)π̂

(α)
N (z) ∼ 1+

∑
ℓ≥0

1

zℓ+2

ℓ∑
j=0

(−1)j(N)ℓ−j+1(N − j + α)j(N − j)j(N + α)ℓ−j+1

j!(ℓ− j)!
(3.103)

and noting a trivial simplification of rising factorials

(N + α)ℓ−j+1(N − j + α)j = (N − j + α)ℓ+1, (N)ℓ−j+1(N − j)j = (N − j)ℓ+1 (3.104)

it follows that as z →∞, and since diagonal conjugation only affects off-diagonal entries,

(TR(z)T−1)11 ∼ 1 +
∑
ℓ≥0

1

zℓ+2
(ℓ+ 1)Aℓ+1(N,N + α) = 1 +

∑
ℓ≥0

1

zℓ+1
ℓAℓ(N,N + α) = (R[∞])11(z),

(3.105)
with Aℓ(N,M) as in (3.91), notice that the first term in the sum is identically zero. In a similar
way, now recalling (3.97) as well, we compute the (1, 2)-entry as

(TR(z)T−1)12 = −2πi

hN
π
(α)
N (z)π̂

(α)
N (z)

∼ 1

N(N + α)

∑
ℓ≥0

1

zℓ+1

ℓ∑
j=0

(−1)j
(N + α)ℓ−j+1(N)ℓ−j+1(N − j + 1 + α)j(N − j + 1)j

j!(ℓ− j)!

=
∑
ℓ≥0

1

zℓ+1

ℓ∑
j=0

(−1)j
(N − j + 1 + α)ℓ(N − j + 1)ℓ

j!(ℓ− j)!
,

=
∑
ℓ≥0

1

zℓ+1
Bℓ(N + 1, N + 1 + α) = (R[∞])12(z)

where we used a similar version of (3.104) and with Bℓ(N,M) as in (3.91). Finally, the (2, 1)-entry
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of the expansion of TR(z)T−1 is computed in a similar way as

(TR(z)T−1)21 =
hN
2πi

π
(α)
N−1(z)π̂

(α)
N−1(z)

∼ −N(N + α)
∑
ℓ≥0

1

zℓ+1

ℓ∑
j=0

(−1)j
(N)ℓ−j

j!(ℓ− j)!(N − j + α)j(N − j)j(N + α)ℓ−j

= −N(N + α)
∑
ℓ≥0

1

zℓ+1

ℓ∑
j=0

(−1)j
(N − j + α)ℓ(N − j)ℓ

j!(ℓ− j)!

= −N(N + α)
∑
ℓ≥0

1

zℓ+1
Bℓ(N,N + α)

and the proof of the Proposition is complete.

Before considering the asymptotic expansion as z → 0, let us dwell on the properties of the
coefficients Aℓ(N,M) and Bℓ(N,M) entering the expansion R[∞](z). We claim they satisfy a three
term recurrence and hence are orthogonal polynomials themselves, this is the content of Lemma
3.2.9 and Remark 3.2.11.

In preparation let us recall the matrix differential equation satisfied by the Laguerre polynomials
and their Cauchy transform via the matrix Y (z).

Proposition 3.2.8. Let us introduce the following dressing transformation of the matrix YN (z) of
the Laguerre polynomials1,

ΨN (z) := YN (z)zα
σ3
2 e−z

σ3
2 , (3.106)

then, Ψ(z) has a constant jump

ΨN,+(z) = ΨN,−(z)

(
e−iπα e−iπα

0 eiπα

)
. (3.107)

Moreover it satisfies the matrix differential equation

∂ΨN (z)

∂z
= A(z)ΨN (z), A(z) := −1

2
σ3 +

1

z

 N + α
2 −hN

2πi

2πi
hN−1

−N − α
2

 (3.108)

with hN = N !Γ(α + N + 1) as in (1.54). Notice that (3.108) has a Fuchsian singularity at x = 0
and an irregular singularity of Poincaré rank 1 at x =∞.

Proof. It is a classical result, see e.g. [115, 128]

Notice that R(z) can equivalently be defined via the matrix Ψ(z) in (3.106) as

ΨN (z)

(
1 0
0 0

)
Ψ−1

N (z) = YN (z)

(
1 0
0 0

)
Y −1
N (z) = R(z), (3.109)

in particular from the above and (3.108) we infer

∂ΨN (z)

∂z
= A(z)ΨN (z) =⇒ ∂

∂z
R(z) = [A(z), R(z)]. (3.110)

We are now ready to prove the following Lemma.

1Here we choose the branch of the logarithm for the potential Vα(x; t) := α log x − x +
∑

k>0 txx
k analytic for

x ∈ C \ [0,∞) satisfying limϵ→0+ log(x+ iϵ) ∈ R; to be consistent we shall identify Vα(x; t), without further mention,
with Vα,+(x; t) = limϵ→0+ Vα(x+ iϵ; t) whenever x > 0.
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Lemma 3.2.9. The entries Aℓ(N,M),Bℓ(N,M) (ℓ ≥ 0) defined in (3.91) satisfy the following
three term recursions

(ℓ+ 2)Aℓ+1(N,M) = (2ℓ+ 1)(N +M)Aℓ(N,M) + (ℓ− 1)(ℓ2 − (M −N)2)Aℓ−1(N,M), (3.111)

(ℓ+ 1)Bℓ+1(N,M) = (2ℓ+ 1)(N +M − 1)Bℓ(N,M) + ℓ(ℓ2 − (M −N)2)Bℓ−1(N,M), (3.112)

for ℓ ≥ 1, with initial data given as

A0(N,M) = N, A1(N,M) = NM, B0(N,M) = 1, B1(N,M) = N +M − 1. (3.113)

Proof. Introduce the matrices

σ3 =

(
1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
, (3.114)

and write

TR(z)T−1 =
1

2
1 + r3σ3 + r+σ+ + r−σ−, (3.115)

where we used that trR ≡ 1; hereafter we omit the dependence on z for brevity. Since the gauge
T is independent of z, from (3.110) we also have

∂

∂z
R(z) = [A(z), R(z)]⇒ ∂

∂z

(
TR(z)T−1

)
= [TA(z)T−1, TR(z)T−1] (3.116)

and from (3.108) we set

TA(z)T−1 = −1

2
σ3 +

1

z

(
N + α

2 −1
N(N + α) −N − α

2

)
= a3σ3 + a+σ+ + a−σ−, (3.117)

which together with (3.116) yields the system of linear ODEs

∂zr3 = a+r− − a−r+, ∂zr+ = 2(a3r+ − a+r3), ∂zr− = 2(a−r3 − a3r−). (3.118)

In turn, these imply the following decoupled third order equations for ∂zr3, r+, r−

3(2N + α− z)∂zr3 + (4− α2 + 2(2N + α)z − z2)∂2zr3 + 5z∂3zr3 + z2∂4zr3 = 0, (3.119)

(2N + α± 1− z)r± + (1− α2 + 2(2N + α± 1)z − z2)∂zr± + 3z∂2zr± + z2∂3zr± = 0. (3.120)

Finally, using the Wishart parameter M = N + α, we substitute the expansion at z =∞ given by
(3.89) into the ODEs (3.119) and (3.120) to obtain the claimed recursion relations.

We will now make use of Lemma 3.2.9 to get the asymptotic expansion of the matrix R(z) at
z = 0.

Proposition 3.2.10. The matrix R(z) admits the asymptotic expansion

TR(z)T−1 ∼ R[0](z), z → 0 (3.121)

uniformly within the sector 0 < arg z < 2π. Here R[0] is the formal series claimed in Theorem
3.2.5, see (3.90), and T is defined in (3.97).
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Proof. First we observe that by arguments which are entirely analogous to those employed in
the proof of Proposition 3.2.7, the matrices Y (z) and (consequently) R(z) possesses asymptotic
expansions in integer powers of z as z → 0, which are uniform in a sector properly containing
0 < arg z < 2π. The first coefficients of these expansions at z = 0 can be computed from

π
(α)
N = (−1)N

(
(α+ 1)N −N(α+ 2)N−1z +O

(
z2
))

(3.122)

π̂
(α)
N ∼ (−1)N

2πi

(
N !Γ(α) + (N + 1)!Γ(α− 1)z +O

(
z2
))

(3.123)

where the former is found directly from (3.98) and the latter by a computation analogous to (3.100);
hence recalling the definition (3.7) we have

Y (x) ∼(−1)N

 (α+ 1)N
N !Γ(α)
2πi

2πi
hN−1

(α+ 1)N−1
(N−1)!Γ(α)

hN−1


+ (−1)N

 −N(α+ 2)N−1
(N+1)!Γ(α−1)

2πi

− 2πi
hN−1

(N − 1)(α+ 2)N−2
N !

hN−1
Γ(α− 1)

x+O
(
x2
)

(3.124)

as x→ 0 within 0 < arg x < 2π; this implies that in the same regime we have

TR(x)T−1 ∼
(

1 0
0 0

)
+

1

α

(
N −1

N(N + α) −N

)
+

(
2N(N + α) −2N − α− 1

N(N + α)(2N + α− 1) −2N(N + α)

)
x

(α− 1)α(α+ 1)
+O

(
x2
)
. (3.125)

Therefore, our goal is just to show that the coefficients of the latter expansion are related to those
of the expansion at z =∞ as stated in the formulæ (3.89) and (3.90). To this end let us write, in
terms of the decomposition (3.115),

r3(z) ∼ 1

2
+
∑
ℓ≥0

(ℓ+1)Ãℓ(N,N+α)
zℓ

(α− ℓ)2ℓ+1
, r±(z) ∼

∑
ℓ≥0

B̃±ℓ (N,N+α)
zℓ

(α− ℓ)2ℓ+1
(3.126)

for some, yet undetermined coefficients Ãℓ(N,M), B̃±ℓ (N,M). From (3.125) we read the first coef-

ficients Ãℓ(N,M), B̃±ℓ (N,M) in (3.126) as

Ã0(N,M) = N = A0(N,M), Ã1(N,M) = NM = A1(N,M),

B̃+0 (N,M) = −1 = −B0(N + 1,M + 1), B̃+1 (N,M) = −N −M − 1 = −B1(N + 1,M + 1),

B̃−0 (N,M) = NM = NMB0(N,M), B̃−1 (N,M) = NM(N +M − 1) = NMB1(N,M)
(3.127)

Finally, it can be checked that inserting (3.126) in (3.119) and (3.120) we obtain, again using
M = N + α, the recursions

(ℓ+ 2)Ãℓ+1(N,M) = (2ℓ+ 1)(N +M)Ãℓ(N,M) + (ℓ− 1)(ℓ2 − (M −N)2)Ãℓ−1(N,M),

(ℓ+ 1)B̃+ℓ+1(N,M) = (2ℓ+ 1)(N +M + 1)B̃+ℓ (N,M) + ℓ(ℓ2 − (M −N)2)B̃+ℓ−1(N,M),

(ℓ+ 1)B̃−ℓ+1(N,M) = (2ℓ+ 1)(N +M − 1)B̃−ℓ (N,M) + ℓ(ℓ2 − (M −N)2)B̃−ℓ−1(N,M) (3.128)
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for ℓ ≥ 1. In view of Lemma 3.2.9, the linear recursions (3.128) with initial data (3.127) are uniquely
solved as

Ãℓ(N,M) = Aℓ(N,M), B̃+ℓ (N,M) = −Bℓ(N + 1,M + 1), B̃−ℓ (N,M) = NMBℓ(N,M).
(3.129)

Therefore from (3.115), (3.126) and the above relation we obtain

TR(z)T−1 ∼
(

1 0
0 0

)
+
∑
ℓ≥0

zℓ

(α− ℓ)2ℓ+1

(
(ℓ+ 1)Aℓ(N,N + α) −Bℓ(N + 1, N + 1 + α)

N(N + α)Bℓ(N,N + α) −(ℓ+ 1)Aℓ(N,N + α)

)
(3.130)

with α = M −N and Aℓ(N,M) and Bℓ(N,M) as in (3.91). The proof is complete

We now complete the proof of Theorem 3.2.5 deriving formulæ (3.92) and (3.94).

Proof of Theorem 3.2.5. The equations (3.94) for the multipoint generating functions follow
immediately from the general Theorem 3.1.1.

As far as it concerns the one-point formulæ , we claim the following equation holds,

∂z (z C1(z)) = 1−R11(z). (3.131)

First off, recall that from the general Theorem 3.1.1,

C c
1 (z) =

(
Y −1
N (z)Y ′

N (z)
)
1,1

= tr
(
Y −1
N (z)Y ′

N (z)
σ3
2

)
. (3.132)

Plugging in the above the definition (3.109) for R(z), the one (3.106) for ΨN (z) and the differential
equation (3.108) yields

C c
1 (z) = tr (A(z)R(z))− 1

2

(α
z
− 1
)
. (3.133)

Following the claim (3.131) we then compute

∂z (z C1(z)) = tr (A(z)R(z))− 1

2

(α
z
− 1
)

+z

(
tr (∂zAz)R(z)) + tr (A(z)∂zR(z)) +

α2

2z

)
. (3.134)

Notice that the terms in z−1 cancel out, as does

tr (A(z)∂zR(z)) = tr (A(z) [A(z)R(z)]) = tr
([
A2(z)R(z)

])
, (3.135)

being the trace of a commutator. On the other side, from (3.108)

z ∂zA(z) = −A(z)− σ3
2
. (3.136)

so that (3.134) simplifies to

∂z (z C1(z)) = tr (A(z)R(z)) +
1

2
− tr

((
A(z) +

σ3
2

)
R(z)

)
(3.137)

=
1

2
− tr

(σ3
2
R(z)

)
= 1−R11(z). (3.138)

Upon integrating and using formulæ of Remark 3.1.2 to pass from the C to the F generating
functions, we retrieve exactly (3.92).
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Remark 3.2.11. Let us remark that the recursion for Aℓ(N,M) in Lemma 3.2.9 is also deduced,
by different means, in [107]. In [52] it is pointed out that such three term recursion is a manifes-
tation of the fact that Aℓ(N,M) is expressible in terms of hypergeometric orthogonal polynomials;
this property extends to the entries Bℓ(N,M), as we now show. Introducing the generalized hyper-
geometric function 3F2

3F2

(
p1, p2, p3
q1, q2

∣∣∣∣ ζ) :=
∑
j≥0

(p1)j(p2)j(p3)j
(q1)j(q2)j

ζj

j!
(3.139)

we can rewrite the coefficients Aℓ(N,M) and Bℓ(N,M) in the form

Aℓ(N,M) :=
(N)ℓ(M)ℓ

ℓ!
3F2

(
1−N, 1−M, 1− ℓ
1−N − ℓ, 1−M − ℓ

∣∣∣∣ 1), (3.140)

Bℓ(N,M) :=
(N)ℓ(M)ℓ

ℓ!
3F2

(
1−N, 1−M, − ℓ

1−N − ℓ, 1−M − ℓ

∣∣∣∣ 1). (3.141)

Alternatively, introducing the Hahn and dual Hahn polynomials [52, 128]

Qj(x;µ, ν, k) := 3F2

(
−x, j + µ+ ν + 1, − j

−k, µ+ 1

∣∣∣∣ 1), (3.142)

Rj(λ(x); γ, δ, k) := 3F2

(
−j, x+ γ + δ + 1, − x

−k, γ + 1

∣∣∣∣ 1), λ(x) = x(x+ γ + δ + 1) (3.143)

the coefficients Aℓ(N,M) and Bℓ(N,M) can be rewritten in the form

ℓ!

(N)ℓ(M)ℓ
Aℓ(N,M) = Qℓ−1(N − 1;−M − ℓ, 1, N + ℓ− 1) = RN−1(ℓ− 1;−M − ℓ, 1, N + ℓ− 1),

(3.144)

ℓ!

(N)ℓ(M)ℓ
Bℓ(N,M) = Qℓ(N − 1;−M − ℓ, 0, N + ℓ− 1) = RN−1(ℓ;−M − ℓ, 0, N + ℓ− 1).

(3.145)

3.2.3 Correlators generating functions for JUE

Theorem 3.2.12 ([93]). Introduce the matrix-valued formal series

R[∞](z) =

(
1 0
0 0

)
+
∑
ℓ≥0

1

zℓ+1

1

α+ β + 2N

(
ℓAℓ(N) N(α+N)(β +N)(α+ β +N)Bℓ(N + 1)
−Bℓ(N) −ℓAℓ(N)

)
(3.146)

R[0](z) =

(
1 0
0 0

)
+
∑
ℓ≥0

zℓ

α+ β + 2N

(
(ℓ+ 1)Ãℓ(N) −N(α+N)(β +N)(α+ β +N)B̃ℓ(N + 1)

B̃ℓ(N) −(ℓ+ 1)Ãℓ(N)

)
(3.147)
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where

A0(N) =
N(β +N)

α+ β + 2N
, (3.148)

Aℓ(N) =
N(α+N)(β +N)(α+ β +N)(α+ 2)ℓ−1

(α+ β + 2N − 1)ℓ+2
4F3

(
1− ℓ, ℓ+ 2, 1− β −N, 1−N

2, α+ 2, 2− α− β − 2N

∣∣∣∣ 1), ℓ ≥ 1,

(3.149)

Bℓ(N) =
(α+ 1)ℓ

(α+ β + 2N − 1)ℓ+1
4F3

(
−ℓ, ℓ+ 1, 1− β −N, 1−N

1, α+ 1, 2− α− β − 2N

∣∣∣∣ 1), ℓ ≥ 0,

(3.150)

and

Ãℓ(N) =
(α+ β + 2N − ℓ)2ℓ+1

(α− ℓ)2ℓ+1
Aℓ(N), B̃ℓ(N) =

(α+ β + 2N − 1− ℓ)2ℓ+1

(α− ℓ)2ℓ+1
Bℓ(N), ℓ ≥ 0.

(3.151)
Then, the one-point correlators generating functions introduced in Remark 3.1.2 are

F1,∞(z) =
α+ β + 2N

z(1− z)

∫ z

∞

(
1−R[∞]

1,1 (w)
)

dw − N(α+N)

z(1− z)(α+ β + 2N)
, (3.152)

F1,0(z) =
α+ β + 2N

z(1− z)

∫ z

0

(
1−R[0]

1,1(w)
)

dw − N

1− z
, (3.153)

and similarly, the multipoint generating functions admit the expression

F c
2,p(z1, z2) =

tr
(
R[p](z1)R

[p](z2)
)
− 1

(z1 − z2)2
, (3.154)

F c
ℓ,p(z1, . . . , zℓ) = −

∑
(i1,...,iℓ)∈cyc((ℓ))

tr
(
R[p](zi1) . . . R[p](ziℓ)

)
(zi1 − zi2) · · · (ziℓ − zi1)

, ℓ ≥ 3, p = 0,∞. (3.155)

The proof is similar to that of the previous section for the LUE. We start by recalling the explicit
expression for the monic Jacobi polynomials (1.65) defined in Section 1.2.1

P J
ℓ (z) =

ℓ!

(α+ β + ℓ+ 1)ℓ

ℓ∑
k=0

(
ℓ+ α

k

)(
ℓ+ β

ℓ− k

)
(z − 1)k zℓ−k, (3.156)

and then by computing their Cauchy transforms.

Lemma 3.2.13. The following relations hold true;

P̂ J
ℓ (z) = − 1

2πi(α+ β + ℓ+ 1)ℓ

∑
j≥0

1

zj+ℓ+1
(j + 1)ℓ

Γ(α+ ℓ+ j + 1)Γ(β + ℓ+ 1)

Γ(α+ β + 2ℓ+ j + 1)
, |z| > 1,

(3.157)

P̂ J
ℓ (z)

z→0∼ (−1)ℓ
1

2πi(α+ β + ℓ+ 1)ℓ

∑
j≥0

zj(j + 1)ℓ
Γ(α− j)Γ(β + ℓ+ 1)

Γ(α+ β + ℓ− j + 1)
, (3.158)

where the first relation is a genuine Taylor expansion at z =∞ whilst the second one is a Poincaré
asymptotic expansion at z = 0 uniform in the sector 0 < arg z < 2π.
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Proof. We start with the expansion (3.157) at z =∞, which is computed as follows;

P̂ J
ℓ (z) =

1

2πi

∫ 1

0
P J
ℓ (x)xα(1− x)β

dx

x− z
(i)
= − 1

2πi

∑
j≥0

1

zj+1

∫ 1

0
P J
ℓ (x)xα+j(1− x)βdx

(ii)
= − 1

2πi

∑
j≥0

1

zj+ℓ+1

∫ 1

0
P J
ℓ (x)xα+j+ℓ(1− x)βdx

(iii)
= − 1

2πi

(−1)ℓ

(α+ β + ℓ+ 1)ℓ

∑
j≥0

1

zj+ℓ+1

∫ 1

0

(
dℓ

dxℓ
xα+ℓ(1− x)β+ℓ

)
xj+ℓdx

(iv)
= − 1

2πi

1

(α+ β + ℓ+ 1)ℓ

∑
j≥0

1

zj+ℓ+1

∫ 1

0
xα+ℓ(1− x)β+ℓ dℓ

dxℓ
(xj+ℓ)dx

(v)
= − 1

2πi

1

(α+ β + ℓ+ 1)ℓ

∑
j≥0

(j + 1)ℓ
zj+ℓ+1

∫ 1

0
xα+ℓ+j(1− x)β+ℓdx

(vi)
= − 1

2πi

1

(α+ β + ℓ+ 1)ℓ

∑
j≥0

1

zj+ℓ+1
(j + 1)ℓ

Γ(α+ ℓ+ j + 1)Γ(β + ℓ+ 1)

Γ(α+ β + 2ℓ+ j + 1)
. (3.159)

In (i) we have expanded the geometric series and exchanged sum and integral by Fubini theorem,
in (ii) we use that P J

ℓ (z) is orthogonal to zj for j < ℓ, in (iii) we use the Rodrigues’ formula (1.64),
in (iv) we integrate by parts, in (v) we compute the derivative, and finally in (vi) we use the Euler
beta integral. The computation at z = 0 is completely analogous, with the only difference that
in (i) it is not legitimate to exchange sum and integral so this step holds only in the sense of a
Poincaré asymptotic series.

Unlike the Laguerre case, in the Jacobi one is not trivial to get a succinct expression for the
product of polynomials with their Cauchy transforms. However, we bypass this problem exploiting
directly the associated matrix differential equation and the recurrence it induces on the entries of
R(z). Indeed, we have the following Proposition analogue to Proposition 3.2.8.

Proposition 3.2.14. Consider the following matrix obtained dressing the matrix YN (z) of Jacobi
polynomials,

ΨN (z) := YN (z)zασ3/2(1− z)βσ3/2. (3.160)

Then, ΨN (z) satisfies the following linear differential equation

∂zΨN (z) = U(z)ΨN (z) (3.161)

and the matrix R(z) satisfies the following Lax differential equation,

∂zR(z) = [U(z), R(z)]. (3.162)

Here the matrix U(z) is explicitly given as

U(z) =
U0

z
+

U1

1− z
, (3.163)
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with

U0 =

 2N(α+β+N)+α(α+β)
2(α+β+2N) −hJ

N
2πi(α+ β + 2N + 1)

2πi
hJ
N−1

(α+ β + 2N − 1) −2N(α+β+N)+α(α+β)
2(α+β+2N)

 , (3.164)

U1 =

 −2N(α+β+N)+β(α+β)
2(α+β+2N) −hJ

N
2πi(α+ β + 2N + 1)

2πi
hJ
N−1

(α+ β + 2N − 1) 2N(α+β+N)+β(α+β)
2(α+β+2N)

 . (3.165)

Proof. Equation (3.162) is derived as in the Laguerre case, see (3.110). Equation (3.161) is a
classical property of Jacobi orthogonal polynomials, see [115].

We can now prove the claimed asymptotic expansions.

Proposition 3.2.15. We have the Taylor expansion at z =∞

TR(z)T−1 ∼ R[∞](z), z →∞, (3.166)

where T is the constant matrix

T =

(
1 0

0
hJ
N−1

2πi
1

(α+β+2N)(α+β+2N−1)

)
, (3.167)

the hJN−1’s have been defined in (1.63) and R[∞](z) is the matrix-valued power series in z−1 in
(3.146).

Proof. As in Lemma 3.2.9, in proving Proposition 3.2.15 we can perform our computations via the
matrix TR(z)T−1 since, again, generating functions for the correlators are invariant under gauge
transformations of R(z). It follows from Proposition 3.2.14 that

∂

∂z
TR(z)T−1 = [TU(z)T−1, TR(z)T−1], U(z) =

U0

z
+

U1

1− z
, (3.168)

and we can explicitly compute

TU0T
−1 =

1

α+ β + 2N

(
2N(α+β+N)+α(α+β)

2 −N(α+N)(β +N)(α+ β +N)

1 −2N(α+β+N)+α(α+β)
2

)
,

TU1T
−1 =

1

α+ β + 2N

(
−2N(α+β+N)+β(α+β)

2 −N(α+N)(β +N)(α+ β +N)

1 2N(α+β+N)+β(α+β)
2

)
. (3.169)

Introduce the matrices

σ3 =

(
1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
, (3.170)

and write

TR(z)T−1 =
1

2
1 + r3σ3 + r+σ+ + r−σ−, TU(z)T−1 = u3σ3 + u+σ+ + u−σ−, (3.171)

where we used that trR(z) = 1, trU(z) = 0. For the sake of brevity we omit the dependence on z
in the sl2 components. The Lax equation (3.168) yields the coupled first order linear ODEs

∂zr3 = u+r− − u−r+, ∂zr+ = 2(u3r+ − u+r3), ∂zr− = 2(u−r3 − u3r−), (3.172)
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which is equivalent to three decoupled third order linear ODEs, one for ∂zr3

3
[
2N(α+ β +N) + α(α+ β)− 2− z

(
(α+ β + 2N)2 − 4

)]
∂zr3

−
[
α2 − 4− 2z (2N(α+ β +N) + α(α+ β)− 12) + z2

(
(α+ β + 2N)2 − 24

)]
∂2zr3

− 5z(z − 1)(1− 2z)∂3zr3 + z2(z − 1)2∂4zr3 = 0, (3.173)

and for r±

[2N(α+ β +N ± 1) + (α± 1)(α+ β)− z(α+ β + 2N ± 2)(α+ β + 2N)] r±

−
[
α2 − 1− z (−4N(α+ β +N ± 1)− 2(α+ β)(α± 1) + 6)

+z2 (4N(α+ β +N ± 1) + (α+ β)(α+ β ± 2)− 6)
]
∂zr± + 3z(z − 1)(2z − 1)∂2zr± + z2(z − 1)2∂3zr± = 0.

(3.174)

The following ansatz is quite natural in view of the Laguerre case scenario, see Lemma 3.2.9namely
we write the expansions of the entries of R(z) at z =∞ as

r3(z) ∼ 1

2
+

1

α+ β + 2N

∑
ℓ≥0

1

zℓ+1
ℓAℓ(N), (3.175)

r+(z) ∼ 1

α+ β + 2N

∑
ℓ≥0

N(α+N)(β +N)(α+ β +N)

zℓ+1
Bℓ(N + 1), (3.176)

r−(z) ∼ − 1

α+ β + 2N

∑
ℓ≥0

1

zℓ+1
Bℓ(N), (3.177)

for some coefficients Aℓ(N) = Aℓ(N,α, β) and Bℓ(N) = Bℓ(N,α, β). By substitution in (3.173)
and (3.174) we see that the ansatz is consistent with them; in particular we get the following three
term recurrence relations for Aℓ(N),Bℓ(N),

(2ℓ+ 1) (α(α+ β)− ℓ(ℓ+ 1) + 2N(α+ β +N))Aℓ(N)

+ (ℓ− 1)(ℓ2 − α2)Aℓ−1(N) + (ℓ+ 2)
(
(ℓ+ 1)2 − (α+ β + 2N)

)
Aℓ+1(N) = 0, (3.178)

(2ℓ+ 1) ((α− 1)(α+ β)− ℓ(ℓ+ 1) + 2N(α+ β +N − 1))Bℓ(N)

+ ℓ(ℓ2 − α2)Bℓ−1(N) + (ℓ+ 1)
(
(ℓ+ 1)2 − (α+ β + 2N − 1)

)
Bℓ+1(N) = 0, (3.179)

for ℓ ≥ 1, together with the initial conditions

A0(N,α, β) =
N(β +N)

α+ β + 2N
, A1(N,α, β) =

N(α+N)(β +N)(α+ β +N)

(α+ β + 2N − 1)(α+ β + 2N)(α+ β + 2N + 1)
,

(3.180)

B0(N,α, β) =
1

(α+ β + 2N − 1)
, B1(N,α, β) =

(α− 1)(α+ β) + 2N(α+ β +N − 1)

(α+ β + 2N − 2)(α+ β + 2N − 1)(α+ β + 2N)
.

(3.181)

The initial conditions are obtained from (3.156) and (3.157). It can be checked that the recurrence
relation for the coefficients of r+(z) are actually those of r−(z), modulo a shift in N , as claimed in
(3.177).

Analogously to the Laguerre case, the three term recurrence relations (3.178) and (3.179) can
be solved in terms of hypergeometric orthogonal polynomials, specifically Wilson polynomials.
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Remark 3.2.16. In this case as well, the coefficients Aℓ(N,α, β) and Bℓ(N,α, β) can be expressed
in terms of discrete orthogonal polynomials, namely Wilson Polynomials. They are defined as

Wn(k2; a, b, c, d)

(a+ b)n(a+ c)n(a+ d)n
:= 4F3

(
−n, n+ a+ b+ c+ d− 1, a+ ik, a− ik

a+ b, a+ c, a+ d

∣∣∣∣ 1), (3.182)

and the identification is the following

Aℓ(N,α, β) =
(−1)N−1(α+ ℓ)!(α+ β +N)!(β +N)

(N − 1)!(α+N − 1)!(α+ β + 2N + ℓ)!
WN−1

(
−
(
ℓ+

1

2

)2

;
3

2
,

1

2
, α+

1

2
,

1

2
− α− β − 2N

)
,

Bℓ(N,α, β) =
(−1)N−1(α+ ℓ)!(α+ β +N − 1)!

(N − 1)!(α+N − 1)!(α+ β + 2N + ℓ− 1)!
WN−1

(
−
(
ℓ+

1

2

)2

;
1

2
,

1

2
, α+

1

2
,

3

2
− α− β − 2N

)
,

or equivalently in hypergeometric notation

Aℓ(N,α, β) = N(α+N)(β +N)(α+ β +N)
(α+ 2)ℓ−1

(α+ β + 2N − 1)ℓ+2
4F3

(
1− ℓ, ℓ+ 2, 1− β −N, 1−N

2, α+ 2, 2− α− β − 2N

∣∣∣∣ 1),
Bℓ(N,α, β) =

(α+ 1)ℓ
(α+ β + 2N − 1)ℓ+1

4F3

(
−ℓ, ℓ+ 1, 1− β −N, 1−N

1, α+ 1, 2− α− β − 2N

∣∣∣∣ 1).
In this case, the identification with is obtained by comparing the recurrence relations (3.178) and
(3.179) with the difference equation for this family of orthogonal polynomials, which reads

n(n+ a+ b+ c+ d− 1)w(k) = C(k)w(k + i)− [C(k) +D(k)]w(k) +D(k)w(k − i), (3.183)

where w(k) = Wn(k2; a, b, c, d) and

C(k) =
(a− ik)(b− ik)(c− ik)(d− ik)

2ik(2ik − 1)
, D(k) =

(a+ ik)(b+ ik)(c+ ik)(d+ ik)

2ik(2ik + 1)
. (3.184)

The hypergeometric representation of Aℓ,Bℓ then directly follows from that of the Wilson polyno-
mials in (3.182).

The asymptotic expansion of R(z) at z = 0 is obtained in a similar way.

Proposition 3.2.17. We have the Poincaré asymptotic expansion at z = 0 uniformly within the
sector 0 < arg z < 2π

TR(z)T−1 ∼ R[0](z), (3.185)

where T is the constant matrix (3.167) and R[0](z) is the matrix-valued (formal) power series in z
in (3.147).

Proof. We claim that the expansion at z = 0 of the entries of R̂(z) reads as

r3(z) ∼ 1

2
+

1

α+ β + 2N

∑
ℓ≥0

(α+ β + 2N − ℓ)2ℓ+1

(α− ℓ)2ℓ+1
(ℓ+ 1)Aℓ(N,α, β)zℓ,

r+(z) ∼ −N(β +N)(α+N)(α+ β +N)

α+ β + 2N

∑
ℓ≥0

(α+ β + 2N + 1− ℓ)2ℓ+1

(α− ℓ)2ℓ+1
Bℓ(N + 1, α, β)zℓ,

r−(z) ∼ 1

α+ β + 2N

∑
ℓ≥0

(α+ β + 2N − 1− ℓ)2ℓ+1

(α− ℓ)2ℓ+1
Bℓ(N,α, β)zℓ. (3.186)

This can be proven by checking that plugging the formulæ (3.186) in the equations (3.173), (3.174),
one obtains the same recurrence relations (3.178) and (3.179). The associated initial conditions can
again be computed from (3.156) and (3.158). This concludes the proof of Proposition 3.2.15.
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We now complete the proof of Theorem 3.2.12 deriving formulæ(3.152), (3.153) and (3.155).

Proof of Theorem 3.2.12. From the general Theorem 3.1.1, the definition of R(z) and the dif-
ferential equation (3.161) we have

C1(z) = tr
(
Y −1
N (z)Y ′

N (z)E1,1

)
= tr (U(z)R(z))− 1

2

(
α

z
− β

1− z

)
. (3.187)

On the other side, we notice that the following holds

∂z [z(1− z)tr (U(z)R(z))] = (1− 2z)tr (U(z)R(z)) + z(1− z)tr (U ′(z)R(z)) (3.188)

+ z(1− z)tr (U(z)R′(z)) (3.189)

= −(α+ β + 2N)tr
(
R(z)

σ3
2

)
. (3.190)

where we used that tr (U(z)[U(z), R(z)]) = 0 and the identity

(1− 2z)U(z) + z(1− z)U ′(z) = −α+ β + 2N

2
σ3, (3.191)

which can be checked directly from (3.163). Equation (3.187) and (3.190) imply

∂z[z(1−z)C1(z)] = −(α+β+2N)

(
R11(z)− 1

2

)
+
α+ β

2
= −(α+β+2N) (R11(z)− 1)−N, (3.192)

which, upon integrating, yields for any p ∈ C \ [0, 1]

z(1− z)C1(z)− p(1− p)C1(p) = (α+ β + 2N)

∫ z

p
(1−R1,1(w)) dw +N(p− z). (3.193)

Letting p→∞ we have p(1− p)C1(p) ∼ (1− p)N − ⟨trX⟩+O(1/p) and therefore from (3.193) we
have (noting that R11(w) = 1 +O(w−2) so the integral is well defined)

z(1− z)C1(z) = (α+ β + 2N)

∫ z

∞
(1−R11(w)) dw + (1− z)N − ⟨trX⟩ . (3.194)

We can compute

⟨trX⟩ =
N(α+N)

α+ β + 2N
(3.195)

by expanding the general formula C1(z) = tr
(
Y −1
N (z)Y ′

N (z)σ3/2
)

at z =∞, using (3.156) and the
first few terms in (3.157). We finally obtain

C1(z) =
α+ β + 2N

z(1− z)

∫ z

∞
(1−R1,1(w)) dw +

N

z
− N(α+N)

z(1− z)(α+ β + 2N)
. (3.196)

In view of Remark 3.1.2 and Proposition 3.2.15 (note that (TR(z)T )11 = R11(z) because T is
diagonal) the formula for F1,∞(z) is proved.

Letting instead p→ 0 in (3.193) we have p(1− p)C1(p)→ 0 and so

C1(z) =
(α+ β + 2N)

z(1− z)

∫ z

0
(1−R11(w)) dw − N

1− z
. (3.197)

Expanding this identity at z = 0 we get at the left hand side

C1(z) ∼ −
∑
k≥0

〈
trX−k−1

〉
zk = F1,0(z), (3.198)

and again by Remark 3.1.2 and Proposition 3.2.17 the formula for F1,0(z) is proved.



Chapter 4

Combinatorics of classical unitary
invariant ensembles

In this chapter we provide a combinatorial interpretation to the partition functions of classical
unitary Invariant Ensembles. Specifically we show how their (positive and negative) correlators
admit a topological expansion in even powers of N of the type

〈
trXk1 · · · trXkℓ

〉
∼
∑
g≥0

f
(k1,...,kℓ)
g

N2g−2
, N →∞, (4.1)

where the coefficients f
(k1,...,kℓ)
g have meaningful combinatorial quantities. For the GUE it has

been know since the seminal work of Bessis, Itzykson and Zuber [28, 158], that these coefficients
count the number of ribbon graphs whose features (number of vertices, valencies and genus) are all
encoded by the set of parameters (g, k1, . . . , kℓ) appearing in (4.1). This case has been extensively
studied in the literature [42, 63] and we will not dwell on it further here.

We analyze the LUE in Section 4.2. The combinatorial interpretation for positive correlators
has been folklore in the literature, remarkably first appearing in a paper in The Annals of Statistics
[101], and later systematized by Collins et al. in [50] via the theory of Weingarten functions and
later (also extended to negative correlators) by Cunden et al. [51, 53]. The quantities of interest
are, in this case, combinations of double monotone Hurwitz numbers where, for one of the two fixed
partitions, only its length is distinguishable (and not its parts). Positive correlators are related to
strictly double monotone Hurwitz numbers, while the negative ones involve their weakly monotone
version.

In Section 4.1 we supply the combinatorial interpretation for correlators of the JUE; it is one
of the original results in this thesis. They are weighted multiparametric single Hurwitz numbers,
involving combinations of triple weakly monotone Hurwitz numbers where, for two of the three
fixed partitions, only the length is distinguishable. Interestingly, positive and negative correlators
carry the same combinatorial coefficients. The proof is inspired by theory of hypergeometric tau-
functions [104, 112], see also Section 2.3, but is self contained and relies on an accurate use of the
Selberg-Aomoto integral. This technique also allows us to reprove the results for the LUE, and
as a consequence we also identify the Hurwitz numbers here involved as multiparametric Hurwitz
numbers.

59
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4.1 Combinatorics of the JUE correlators

The idea of the proof is to expand both the generating function of multiparametric Hurwitz numbers
and the JUE partition function in the basis of symmetric functions given by the Schur polynomials
and, then, identify the coefficients of these two formal power series. Remarkably, in both settings
the coefficient can be explicitly written out. In the former, this happens thanks to the properties
of the YJM elements, see (2.29) and Proposition 4.1.1 below. In the latter, this is due to the
Selberg-Aomoto integral, see (4.29).

4.1.1 Preliminaries: expansions in Schur basis

We will need some notation. Denote the standard Schur polynomials in n variables x1, . . . , xn

χλ(x) :=
det
[
xN−i+λi
j

]N
i,j=1

∆(x)
. (4.2)

The definition of Schur polynomials can be extended to allow infinitely many variables by an
inductive limit (see Chapter 1 in [131]). In this context, they are regarded as the basis {sλ(t)},
with λ running in the set of all partitions, of the space of weighted homogeneous polynomials in
t = (t1, t2, . . . ), with deg tk = k,

sλ(t) = det [hλi−i+j(t)]
ℓ(λ)
i,j=1 , (4.3)

where the complete homogeneous symmetric polynomials hk(t) are defined by the generating series

∑
k≥0

wkhk(t) = exp

∑
k≥1

tk
k
wk

 . (4.4)

We now prove the following general Proposition, see also [112].

Proposition 4.1.1 ([112]). The generating function

τG(ϵ; t) =
∑
d≥1

ϵd
∑
λ∈P

hGd (λ)

ℓ(λ)∏
i=1

tλi
(4.5)

of multiparametric weighted Hurwitz numbers (2.31) associated to the rational function (2.30) is
equivalently expressed as

τG(ϵ; t) =
∑
λ∈P

dimλ

|λ|!
r
(G,ϵ)
λ sλ(t), (4.6)

where sλ(t) are the Schur polynomials (4.3) and the coefficients are given explicitly by

r
(G,ϵ)
λ =

∏
(i,j)∈λ

G(ϵ(j − i)), (4.7)

dimλ = χλ
1|λ|

being the dimension of the irreducible representation of S|λ| associated with λ.
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Proof. First off, let us recall formula (2.23)

Eλ =
χλ
1d

d!

∑
µ⊢d

χµ
λCµ, EλEλ′ = δλ,λ′ · Eλ, (4.8)

which gives a basis of idempotents for the class algebra Z (C[Sn]), as well as equation (2.29)
expressing the action of symmetric polynomials on the YJM elements on said basis,

p(J1, . . . ,Jn)Eλ = p
(
{j − i}(i,j)∈λ

)
Eλ. (4.9)

In particular this immediately implies[
n∏

a=1

G(ϵJa)

]
Eλ = r

(ϵ,G)
λ Eλ, (4.10)

with the r
(ϵ,G)
λ defined in (4.7). Indeed, this is just (4.9) in the case the function G(z) is a polyno-

mials, but it remains valid if we expand via geometric series possible denominators, as the resulting
series will still be symmetric. Using the orthogonality of the {Eλ}λ⊢n amongst themselves, equation
(4.10) then yields

n∏
a=1

G(ϵJa) =
∑
λ⊢n

r
(ϵ,G)
λ Eλ. (4.11)

Secondly, recall the definition (2.31) for hdG(µ),

hGd (µ) :=
1

zµ
[ϵdCλ]

n∏
a=1

G (ϵJa) , (4.12)

together with (4.11) allows to obtain the first equality in the following∑
µ⊢n

∑
d≥1

ϵdzµh
G
d (µ)Cµ =

∑
λ⊢n

r
(ϵ,G)
λ Eλ =

∑
λ,µ⊢n

dimλ

|λ|!
r
(ϵ,G)
λ χµ

λCµ, (4.13)

the second being obtained by the definition of Eλ. Since Cµ form a basis of Z (C[Sn]), comparing
the left and right most sides of (4.13) we get that for any partition µ∑

d≥1

ϵdhGd (µ) =
∑
λ⊢|µ|

dimλ

|λ|!
r
(ϵ,G)
λ

χµ
λ

zµ
. (4.14)

Multiplying this identity by
∏ℓ(µ)

i=1 tµi and summing over all partitions µ, on the left we obtain (4.5).
On the right hand side, the well-known identity [131]

sλ(t) =
∑
µ⊢|λ|

χµ
λ

zµ

ℓ(µ)∏
i=1

tµi , (4.15)

yields

∑
d≥1

ϵd
∑
µ∈P

hGd (µ)

ℓ(µ)∏
i=1

tµi =
∑
µ∈P

∑
λ⊢|µ|

dimλ

|λ|!
r
(ϵ,G)
λ

χµ
λ

zµ

ℓ(µ)∏
i=1

tµi =
∑
λ∈P

dimλ

|λ|!
r
(G,ϵ)
λ sλ(t). (4.16)

The proof is complete.
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As far as it concerns the JUE partition function, it is a general fact that Hermitian partition
functions possess a Schur expansion which can be carried out by a use of the Cauchy Identity,
see (4.20). The coefficients are identified with a N -dimensional integral; remarkably in the Jacobi
and Laguerre cases these can be explicitly evaluated by means of the Selberg-Aomoto integral, see
(4.29) below. The general Lemma is the following.

Lemma 4.1.2. For any potential V (x) (x ∈ I) we have∫
HN (I) exp tr

(
V (X) +

∑
k≥1

uk
k X

±k
)

dX∫
HN (I) exp tr (V (X)) dX

=
∑

λ∈P: ℓ(λ)≤N

c±λ,Nsλ(u), (4.17)

where the coefficients are

c±λ,N =

∫
IN χλ(x±1)∆2(x)

∏N
a=1 exp [V (xa)] dNx∫

IN ∆2(x)
∏N

a=1 exp [V (xa)] dNx
. (4.18)

and we denote x = (x1, . . . , xN ) and x−1 = (x−1
1 , . . . , x−1

N ).

Proof. We have∫
HN (I) exp tr

(
V (X) +

∑
k≥1

uk
k X

±k
)

dX∫
HN (I) exp tr (V (X)) dX

=

∫
IN ∆2(x)

∏N
a=1 exp

[
V (xa) +

∑
k≥1

uk
k x

±k
a

]
dNx∫

IN ∆2(x)
∏N

a=1 exp [V (xa)] dNx
,

(4.19)
where we use the standard decomposition dX = ∆2(x)dNxdU of the Lebesgue measure into eigen-
values x = (x1, . . . , xN ) and eigenvectors U ∈ UN of the hermitian matrix X = UXU †, with dU a
Haar measure on UN (whose normalization is irrelevant as it cancels in (4.19) between numerator
and denominator). The proof follows by an application of the identity

exp

∑
k≥1

uk
k

(x±1
1 + · · ·+ x±1

N )k

 =
∑

λ∈P: ℓ(λ)≤N

χλ(x±1)sλ(u), (4.20)

which is nothing but a form of Cauchy identity, see e.g. [157].

Notice that the Schur polynomials evaluated at the reciprocal variables x−1 can be written in
terms of standard ones x as follows.

Lemma 4.1.3. For any partition λ = (λ1, . . . , λℓ) of length ℓ ≤ N we have

χλ(x−1) =

(
N∏
a=1

x−λ1
a

)
χ
λ̂
(x), (4.21)

where λ̂ is the partition of length < N whose parts are λ̂j = λ1 − λN−j+1.

Proof. The proof follows from the following chain of equalities;

χλ(x−1) =
det
[
x
−N+j−λj

i

]N
i,j=1

det
[
x−N+j
i

]N
i,j=1

=
det
[
x
1−j−λN−j+1

i

]N
i,j=1

det
[
x1−j
i

]N
i,j=1

=

(
N∏
a=1

x−λ1
a

) det
[
x
N−j+λ1−λN−j+1

i

]N
i,j=1

det
[
xN−j
i

]N
i,j=1

=

(
N∏
a=1

x−λ1
a

)
χ
λ̂
(x). (4.22)
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In the first step we have shuffled the columns as j 7→ N − j + 1, then we have multiplied both
numerator and denominator by (x1 · · ·xN )N+λ1 , and finally we have applied the definition (4.2).

4.1.2 Topological expansion in triple Hurwitz numbers

Let us introduce the formal generating functions

Z±
N (u) :=

∫
HN (0,1)

exp

∑
k≥1

uk
k

trX±k

 dmJ
N (X) =

∑
λ∈P

〈∏ℓ
j=1 trX±λj

〉
zλ

ℓ(λ)∏
i=1

uλi
, (4.23)

of JUE correlators, where we recall that

dmJ
N (X) =

1

CJ
N

detα(X)detβ(1−X)dX, (4.24)

with parameters α, β satisfying Reα,Reβ > −1, CJ
N defined in (1.70) and HN (0, 1) the set of

Hermitian matrices with eigenvalues lying in the interval (0, 1). We call Z+
N (u) (resp. Z−

N (u)) the
positive (resp. negative) JUE partition function. Our description of the JUE correlators involves
(weighted sums of) triple weakly monotone Hurwitz numbers, which we promptly define.

Definition 4.1.4. Given n ≥ 0, three partitions λ, µ, ν ⊢ n and an integer g ≥ 0, we define
h≥g (λ, µ, ν) to be the number of tuples (π1, π2, τ1, . . . , τr) of permutations in Sn such that

1. r = 2g − 2− n+ ℓ(µ) + ℓ(ν) + ℓ(λ),

2. π1 ∈ cyc(µ), π2 ∈ cyc(ν),

3. τi = (ai, bi) are transpositions, with ai < bi and b1 ≤ · · · ≤ br, and

4. π1π2τ1 · · · τr ∈ cyc(λ).

The relation of these Hurwitz numbers to the JUE is expressed by the following result.

Theorem 4.1.5. Under the re-scaling α = (cα − 1)N , β = (cβ − 1)N , for any partition λ we have
the following Laurent expansions as N →∞;

(−1)|λ|N ℓ(λ) |λ|!
zλ

〈
ℓ∏

j=1

trXλj

〉
=
∑
g≥0

1

N2g−2

∑
µ,ν⊢|λ|

c
ℓ(ν)
α

(−cα − cβ)ℓ(µ)+ℓ(ν)+ℓ(λ)+2g−2
h≥g (λ, µ, ν),

(4.25)

(−1)|λ|N ℓ(λ) |λ|!
zλ

〈
ℓ∏

j=1

trX−λj

〉
=
∑
g≥0

1

N2g−2

∑
µ,ν⊢|λ|

(1− cα − cβ)ℓ(ν)

(cα − 1)ℓ(µ)+ℓ(ν)+ℓ(λ)+2g−2
h≥g (λ, µ, ν), (4.26)

where zλ is given in (2.16) and h≥g (λ, µ, ν) are the weakly monotone triple Hurwitz numbers of
Definition 4.1.4.
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As anticipated, we want to explicitly compute the coefficients cλ in (4.28) for the Jacobi measure

and identify them with the r
(G,ϵ)
λ in (4.7) for a suitable function G(z) and parameter ϵ. To this

end, we apply Lemma 4.1.2 to I = [0, 1] and V (x) = α log x+ β log(1− x) and expand the positive
and negative JUE partition functions (4.23) in the Schur basis as

Z±
N (u) =

∑
λ∈P: ℓ(λ)≤N

c±λ,Nsλ(u), (4.27)

where

c±λ,N =

∫
(0,1)N χλ(x±1)∆2(x)

∏N
a=1 x

α
a (1− xa)βdNx∫

(0,1)N ∆2(x)
∏N

a=1 x
α
a (1− xa)βdNx

. (4.28)

These can be explicitly evaluated via the following Selberg-Aomoto integral∫
(0,1)N

χλ(x)∆2(x)

n∏
a=1

xαa (1−xa)βdNx = N !
∏

1≤i<j≤N

(λi−λj+j−i)
N∏
k=1

Γ(β + k)Γ(α+N + λk − k + 1)

Γ(α+ β + 2N + λk − k + 1)
,

(4.29)
for which we refer e.g. to [131, page 385]. Specifically, we write the coefficients c±λ,N as functions of
the contents of λ only.

Proposition 4.1.6. We have

c+λ,N =
dimλ

|λ|!
∏

(i,j)∈λ

(N − i+ j)(α+N − i+ j)

(α+ β + 2N − i+ j)
, c−λ,N =

dimλ

|λ|!
∏

(i,j)∈λ

(N − i+ j)(α+ β +N + i− j)
(α+ i− j)

,

(4.30)
where

dimλ

|λ|!
=

∏
1≤i<j≤N (λi − λj + j − i)∏N

k=1(λk − k +N)!
(4.31)

is the dimension of the irreducible representation associated to the partition λ.

Proof. We start with c+λ,N ; using (4.28), (4.29), and (4.31) we compute

c+λ,N =

∏
1≤i<j≤N (λi − λj + j − i)∏

1≤i<j≤N (j − i)

N∏
k=1

Γ(α+N + λk − k + 1)Γ(α+ β + 2N − k + 1)

Γ(α+ β + 2N + λk − k + 1)Γ(α+N − k + 1)

=
dimλ

|λ|!

N−1∏
k=1

(N − k + 1)λk
(α+N − k + 1)λk

(α+ β + 2N − k + 1)λk

=
dimλ

|λ|!
∏

(i,j)∈λ

(N − i+ j)(α+N − i+ j)

(α+ β + 2N − i+ j)
. (4.32)

We remind that (r)j := r(r + 1) · · · (r + j − 1) denotes the rising factorial. For c−λ,N we first note
that, thanks to Lemma 4.1.3 and (4.29), we have∫
(0,1)N

χλ(x−1)∆2(x)
N∏
a=1

xαa (1−xa)βdNx = N !
∏

1≤i<j≤N

(λi−λj + j− i)
N∏
k=1

Γ(β + k)Γ(α− λk + k)

Γ(α+ β +N − λk + k)
,

(4.33)
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then with similar computations as above we obtain

c−λ,N =

∏
1≤i<j≤N (λi − λj + j − i)∏

1≤i<j≤N (j − i)

N∏
k=1

Γ(α− λk + k)Γ(α+ β +N + k)

Γ(α+ β +N − λk + k)Γ(α+ k)

=
dimλ

|λ|!

N−1∏
k=1

(N − k + 1)λk
(α+ β +N − λk + k)λk

(α− λk + k)λk

=
dimλ

|λ|!
∏

(i,j)∈λ

(N − i+ j)(α+ β +N + i− j)
(α+ i− j)

. (4.34)

This proposition enables us to identify the Jacobi generating function (4.23) with the generating
function of multiparametric weighted Hurwitz numbers in (4.5).

Corollary 4.1.7. Let cα := 1+α/N and cβ := 1+β/N ; then the Jacobi formal partition functions
in (4.23) take the form

Z+
N (u) = τG+

(
ϵ =

1

N
, t

)
, G+(z) =

(1 + z)
(

1 + z
cα

)
1 + z

cα+cβ

, tk =

(
cαN

cα + cβ

)k

uk, (4.35)

Z−
N (u) = τG−

(
ϵ =

1

N
, t

)
, G−(z) =

(1 + z)
(

1− z
cα+cβ−1

)
1− z

cα−1

, tk =

(
(cα + cβ − 1)N

cα − 1

)k

uk,

(4.36)

where τG is introduced in Theorem 4.1.1. i.e. it serves as a generating function for the multipara-

metric Hurwitz numbers h
1
N

G±(µ).

Proof. We first note that we can rewrite the expansion (4.27) as

Z±
N (u) =

∑
λ∈P

c±λ,Nsλ(u), (4.37)

with the sum over all partitions P and no longer restricted to ℓ(λ) ≤ N ; this is clear as c±N,λ = 0
whenever N = 0, 1, 2, . . . and ℓ(λ) > N . Then the proof is immediate by the formula (4.7) for the

coefficients r
(G,ϵ)
λ , since (4.30) can be rewritten as

c+λ,N =
dimλ

|λ|!

(
cαN

cα + cβ

)|λ| ∏
(i,j)∈λ

(
1 + 1

N (j − i)
) (

1 + 1
cαN

(j − i)
)

1 + 1
(cα+cβ)N

(j − i)
, (4.38)

c−λ,N =
dimλ

|λ|!

(
(cα + cβ − 1)N

cα − 1

)|λ| ∏
(i,j)∈λ

(
1 + 1

N (j − i)
) (

1− 1
(cα+cβ−1)N (j − i)

)
1− 1

(cα−1)N (j − i)
. (4.39)
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We now connect the multiparametric Hurwitz numbers (2.2.3) for the functions G±(z), appear-
ing in Corollary 4.1.7, with the counting problem in Definition 4.1.4.

Proposition 4.1.8. If G(z) = (1+z)(1+γz)
1−δz , with γ and δ parameters, then for all partitions λ ⊢ n

and all integers g ≥ 0 we have

hG2g−2+n+ℓ(λ)(λ) =
1

n!

∑
µ,ν⊢n

γn−ℓ(ν)δℓ(µ)+ℓ(ν)+ℓ(λ)+2g−2−nhg(λ, µ, ν), (4.40)

where the triple monotone Hurwitz number hg(λ, µ, ν) has been introduced in Definition 4.1.4.

Proof. We apply the relation between YJM elements and the conjugacy classes (2.28) to the first
two factors of the following to get

n∏
a=1

G (ϵJa) =
n∏

a=1

(1 + ϵJa)(1 + ϵγJa)
1

1− ϵδJa

=

∑
µ⊢n

ϵn−ℓ(µ)Cµ

(∑
ν⊢n

(ϵγ)n−ℓ(ν)Cν

)∑
r≥0

(ϵδ)r
∑

1≤a1≤···≤ar≤n

Ja1 · · · Jar

 . (4.41)

By definition (2.31), extracting the coefficient of ϵdCλ and dividing by zλ we obtain hGd (λ); therefore

hGd (λ) =
1

zλ|cyc(λ)|
∑
µ,ν⊢n

γn−ℓ(ν)δrhg(λ, µ, ν), (4.42)

where d, r, g in this identity are related via

r = ℓ(λ) + ℓ(µ) + ℓ(ν) + 2g − 2− n, d = 2n− ℓ(µ)− ℓ(ν) + r. (4.43)

The proof is complete by the identity zλ|cyc(λ)| = n!, see (2.16).

We finally have all the elements to complete the proof of Theorem 4.1.5.

Proof of Theorem 4.1.5. From Corollary 4.1.7 we have, with the scaling α = (cα − 1)N , β =
(cβ − 1)N ,

Z+
N (u) =

∑
d≥1

1

Nd

∑
λ∈P

(
cαN

cα + cβ

)|λ|
hG

+

d (λ)

ℓ(λ)∏
i=1

uλi
, (4.44)

Z−
N (u) =

∑
d≥1

1

Nd

∑
λ∈P

(
(cα + cβ − 1)N

cα − 1

)|λ|
hG

−
d (λ)

ℓ(λ)∏
i=1

uλi
, (4.45)

where we have used Proposition 4.1.1. It follows from (4.23) that〈∏ℓ
j=1 trXλj

〉
zλ

=
∑
d≥1

N |λ|−d

(
cα

cα + cβ

)|λ|
hG

+

d (λ), (4.46)〈∏ℓ
j=1 trX−λj

〉
zλ

=
∑
d≥1

N |λ|−d

(
cα + cβ − 1

cα − 1

)|λ|
hG

−
d (λ), (4.47)
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and using finally Proposition 4.1.8 we have〈∏ℓ
j=1 trXλj

〉
zλ

=
1

|λ|!
∑
g≥0

N2−2g−ℓ(λ)
∑

µ,ν⊢|λ|

(−1)|λ|
c
ℓ(ν)
α

(−cα − cβ)ℓ(µ)+ℓ(ν)+ℓ(λ)+2g−2
h≥g (λ, µ, ν),

(4.48)〈∏ℓ
j=1 trX−λj

〉
zλ

=
1

|λ|!
∑
g≥0

N2−2g−ℓ(λ)
∑
µ,ν⊢n

(−1)|λ|
(1− cα − cβ)ℓ(ν)

(cα − 1)ℓ(µ)+ℓ(ν)+ℓ(λ)+2g−2
h≥g (λ, µ, ν). (4.49)

Example 4.1.9. From Theorem 4.1.5, together with the explicit formulæ of Theorem 3.2.12, we
can compute〈
(trX)3

〉c
=

2N(α+ β)(β − α)(α+N)(β +N)(α+ β +N)

(α+ β + 2N − 2)(α+ β + 2N − 1)(α+ β + 2N)3(α+ β + 2N + 1)(α+ β + 2N + 2)
.

(4.50)
With the substitution α = (cα − 1)N and β = (cβ − 1)N we have the large N expansion〈

(trX)3
〉c

=
1

N

[
cα

(
2

(cα + cβ)3
− 6

(cα + cβ)4
+

4

(cα + cβ)5

)
+ c2α

(
− 6

(cα + cβ)4
+

18

(cα + cβ)5
− 12

(cα + cβ)6

)
+c3α

(
4

(cα + cβ)5
− 12

(cα + cβ)6
+

8

(cα + cβ)7

)]
+O

(
1

N3

)
. (4.51)

Matching the coefficients as in Theorem 4.1.5 we get the values for hcg=0(λ = (1, 1, 1), µ, ν) (the
connected Hurwitz numbers defined in Remark 1.3.4) reported in the following table;

ν = (3) ν = (2, 1) ν = (1, 1, 1)

µ = (3) 2 6 4

µ = (2, 1) 6 18 12

µ = (1, 1, 1) 4 12 8

(4.52)

For example, the numbers in the first row (µ = (3)) can be read from the following factorizations in
S3. To list them let us first note that we have cyc(λ) = {Id} and cyc(µ) = {(123), (132)}; therefore
for ν = (3) we have 2 factorizations (r = number of transpositions = 0)

(123)(132) = Id, (132)(123) = Id, (4.53)

for ν = (2, 1) (cyc(ν) = {(12), (23), (13)}) we have 6 factorizations (r = 1)

(123)(12)(13) = Id, (123)(13)(23) = Id, (123)(23)(12) = Id, (4.54)

(132)(13)(12) = Id, (132)(12)(23) = Id, (132)(23)(13) = Id, (4.55)

and for ν = (1, 1, 1) we have the 4 factorizations (r = 2, here the monotone condition plays a role)

(123)Id(12)(13) = Id, (123)Id(13)(23) = Id, (4.56)

(132)Id(12)(23) = Id, (123)Id(23)(13) = Id. (4.57)
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Similarly we can compute〈(
trX−1

)3〉c
=

2N(α+N)(α+ 2N)(β +N)(α+ β +N)(α+ 2β + 2N)

(α− 2)(α− 1)α3(α+ 1)(α+ 2)

=
1

N

[(
2

(cα − 1)3
+

6

(cα − 1)4
+

4

(cα − 1)5

)
(cα + cβ − 1)

−
(

6

(cα − 1)4
+

18

(cα − 1)5
+

12

(cα − 1)6

)
(cα + cβ − 1)2

+

(
4

(cα − 1)5
+

12

(cα − 1)6
+

8

(cα − 1)7

)
(cα + cβ − 1)3

]
+O

(
1

N3

)
(4.58)

and from Theorem 4.1.5 we recognize the connected Hurwitz numbers tabulated above.

4.1.3 Generalization to the Jacobi beta ensemble

The same strategy used in deriving the connection of the Jacobi unitary ensemble to multipara-
metric Hurwitz numbers can be employed to link the Jacobi beta ensemble (JβE) [142] to the so
called b-Hurwitz numbers [45]. Here we give an idea of how to prove such a statement.

The joint eigenvalues probability distribution function of the N -dimensional JβE with param-
eters α1 and α2 is given by

fβ(x) = cβ,α1,α2

J

∏
i<j

∆β(x)
N∏
j=1

x
β
2
α1−1(1− x)

β
2
α2−1dx. (4.59)

For β = 1, 2, 4 it corresponds to the eigenvalue distribution associated to a full matrix model, re-
spectively the Jacobi orthogonal/unitary/symplectic ensembles. For generic β a tridiagonal matrix
model has been given in the foundational paper of Dumitriu-Edelman [69].

The b-Hurwitz numbers have been introduced by Chapuy and Do lega in [45]. They are asso-
ciated to the counting problem of generalized branched coverings of the Riemann sphere by (not
necessarily orientable) surfaces with appropriate b-weighting and generalizes the weighted multi-
parametric Hurwitz numbers of Definition 2.2.3; see loc.cit. for the complete picture. The b and β
parameters here and in the following are related as

b =
2− β
β

. (4.60)

In [45] the authors study the generating functions of these objects, which can be in turn con-
sidered a b-deformed version of the tau-functions of multiparametric weighted Hurwitz numbers of

Theorem 2.3.1. They are expressed as an expansion in Jack symmetric polynomials J
(b)
λ , see [131],

τ bG(u, ϵ; t, s)) =
∑
n≥0

un
∑
λ⊢n

J
(b)
λ (t)J

(b)
λ (s)

||J (b)
λ ||2

∏
(i,j)∈λ

G(ϵ · cb(j − i)), (4.61)

where G(z) can be taken to be a rational function as in (2.30) and cb is the weighted content of
partitions,

cb(i, j) = b(i− 1) + i− j. (4.62)

The familiar expansion in Schur symmetric polynomials (2.36) is recovered from b = 0; it is proved
in [33] that for b = 1 the function (4.61) obeys the BKP-integrable hierarchy.

Recall that the identification between the JUE and G(z) =
(1 + z)(1 + γz)

1− δz
multiparametric

Hurwitz numbers consists of three steps:
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1. Lemma 4.1.2: consider the deformation of the Jacobi potential V (x; t) = α1 log x+α2 log(1−
x) +

∑
k>0 tkx

k and use the Cauchy identity (4.20) to expand it in the basis of Schur polyno-
mials sλ(t) with coefficients cλ,N

2. Proposition 4.1.6: use the Selberg-Aomoto integral (4.29) to explicitly compute the coefficients
cλ,N as a function of the contents of λ for some rational G(z)

3. Corollary 4.1.7: use previous results and Proposition 4.1.1 to connect the JUE with the
Hurwitz numbers associated to the specific G(z)

The tentative relation between the JβE and generating functions of type (4.61) follows similar
lines, replacing Schur polynomials with Jack ones:

1. A Cauchy identity of the form (4.20) holds for Jack polynomials as well, namely

exp

∑
k≥1

tk
k(1 + b)

(xk1 + · · ·+ xkN )

 =
∑
λ∈P
J (1+b)
λ (x1, . . . , xN )

Jλ(t)

j
(b)
λ

, (4.63)

where j
(b)
λ is the analogue of

dimλ

|λ|!
in the b = 0 case.

2. The Selberg-Aomoto integral can be generalized to arbitrary β to compute averages of Jack

polynomials J
(b)
λ with respect to the Jacobi measure. It can be found e.g. in [84],∫

(0,1)N
J
(1/k)
λ (x)∆2k(x)

N∏
i=1

xr−1
i (1− xi)s−1dx = νλ(k) ·

N∏
i=1

Γ(λi + r + k(N − i))Γ(s+ k(N − i))
Γ(λi + r + s+ k(2N − i− 1))

,

(4.64)

νλ(k) =
∏

1≤i<j≤N

Γ(λi − λj + k(j − i+ 1))

Γ(λi − λj + k(j − i))
, (4.65)

and allows to express the coefficients in the Jack expansion in terms of b-contents

3. The connection with the b-Hurwitz numbers now passes through the results of Chapuy et
al. and formula (4.61).

The detail will be sorted out in a future work.

4.2 LUE and double Hurwitz numbers

Let us introduce the formal generating functions

Z±
N (u) :=

∫
HN (0,1)

exp

∑
k≥1

uk
k

trX±k

 dmL
N (X) =

∑
λ∈P

〈∏ℓ
j=1 trX±λj

〉
zλ

ℓ(λ)∏
i=1

uλi
, (4.66)

of LUE correlators, where we recall that

dmL
N (X) =

1

CL
N

detα exp (−trX) dX, (4.67)

with parameter α satisfying Reα,Reβ > −1, CL
N defined in (1.59) and H+

N the set of positive
definite Hermitian matrices, i.e. with eigenvalues lying in (0,∞). We call Z+

N (u) (resp. Z−
N (u)) the
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positive (resp. negative) LUE partition function. Our description of the LUE correlators involves
(weighted sums of) double (both strictly and weakly) monotone Hurwitz numbers, a reduction of
the triple Hurwitz numbers introduced in Definition 4.1.4.

Definition 4.2.1. Given n ≥ 0, partitions λ, µ ⊢ n and an integer g ≥ 0, we define h>g (λ;µ) (resp.
h≥g (λ;µ)) as the number of tuples (π1, π2, τ1, . . . , τr) of permutations in Sn such that

1. r = 2g − 2 + ℓ(λ) + ℓ(µ),

2. π1 ∈ cyc(λ), π2 ∈ cyc(µ),

3. τi = (ai, bi) are transpositions, with ai < bi and b1 < · · · < br, (resp. b1 ≤ · · · ≤ br)

4. π1τ1 · · · τr ∈ cyc(µ).

The relation of these Hurwitz numbers to the LUE is expressed by the following result.

Theorem 4.2.2 ([51]). Under the re-scaling α = (c−1)N , for any partition λ we have the following
Laurent expansions as N →∞;

N ℓ(λ)−|λ| |λ|!
zλ

〈
ℓ∏

j=1

trXλj

〉
=
∑
g≥0

1

N2g−2

∑
µ⊢|λ|

cℓ(µ) h>g (λ;µ), c > 1− 1

N
, (4.68)

N ℓ(λ)+|λ| |λ|!
zλ

〈
ℓ∏

j=1

trX−λj

〉
=
∑
g≥0

1

N2g−2

∑
µ⊢|λ|

h≥g (λ;µ)

(c− 1)2g−2+|λ|+ℓ(λ)+ℓ(µ)
, c > 1 +

|λ|
N
. (4.69)

Remark 4.2.3. The proof of Theorem 4.2.2 could be carried out following the same strategy adopted
in the previous section in the proof of Theorem 4.1.5. Indeed a Selberg-Aomoto integral formula
holds for the Laguerre measure as well,∫

(0,∞)N
χλ(x)∆2(x)

n∏
a=1

xαae
−xadNx = N !

∏
1≤i<j≤N

(λi− λj + j − i)
N∏
k=1

Γ(α+N + λk − k+ 1), (4.70)

from which we find a suitable function G and parameter ϵ to match the coefficients cλ with r(G,ϵ).

However, a much more direct way is to just pass from JUE to LUE via the following limit,

lim
β→+∞

βk1+···+kℓ

〈
ℓ∏

j=1

trXkj

〉
JUE

=

∫
HN (0,+∞)

(∏ℓ
j=1 trXkj

)
detα(X) exp(−trX)dX∫

HN (0,+∞) detα(X) exp(−trX)dX
, (4.71)

valid for k1, · · · , kℓ arbitrary integers. Indeed, let us prove the expansion (4.68) starting from (4.46),
which we rewrite here as〈∏ℓ

j=1 trXλj

〉
JUE

zλ
=
∑
d≥1

N |λ|−d

(
cα

cα + cβ

)|λ|
HG+

d (λ). (4.72)
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Then, applying (4.71) to (4.72) and substituting β = N(cβ − 1) yields〈∏ℓ
j=1 trXλj

〉
LUE

zλ
= lim

cβ→+∞
N |λ|c

|λ|
β

∑
d≥1

N |λ|−d

(
cα

cα + cβ

)|λ|
hdG+(λ) (4.73)

= lim
cβ→+∞

1

zµ
[ϵdCλ]

n∏
a=1

(
1 +

1

N
Ja
)(

1 +
1

N cα
Ja
)

1

1− 1
N(cα+cβ)

Ja
(4.74)

=
∑
d≥1

N |λ|−dc
|λ|
β

(
cα

cα + cβ

)|λ|
hd
G̃

(λ) (4.75)

where

G̃(z) = lim
cβ→+∞

G+(z; cα, cβ) = lim
cβ→+∞

(1 + z)
(

1 + z
cα

)
1 + z

cα+cβ

= (1 + z)

(
1 +

z

cα

)
. (4.76)

The associated multiparametric Hurwitz numbers are found as in Proposition 4.1.8,

|λ|∏
a=1

G̃ (ϵJa) =

|λ|∏
a=1

(1 +
ϵ

cα
Ja)(1 + ϵJa)

=

∑
µ⊢|λ|

(
ϵ

cα

)|λ|−ℓ(µ)

Cµ

∑
r≥0

ϵr
∑

1<a1<···<ar<|λ|

Ja1 · · · Jar

 , (4.77)

so that

hd
G̃

(λ) =
1

|λ|
∑
µ⊢|λ|

(
1

cα

)|λ|−ℓ(µ)

h>g (λ, µ), (4.78)

where d, r, g in this identity are related via

r = 2g − 2 + ℓ(λ) + ℓ(µ), d = |λ| − ℓ(µ) + r. (4.79)

Finally, putting together equations (4.75), (4.78) and (4.79) we have

N−|λ| |λ|!
zλ

〈
ℓ∏

j=1

trXλj

〉
LUE

=
∑
g≥0

N2−2g−ℓ(λ)
∑
µ⊢|λ|

cℓ(µ)α h>g (λ, µ), (4.80)

which is exactly (4.68). Formula (4.69) is proved likewise starting from (4.47).

Remark 4.2.4. Notice that, in contrast to the JUE case, positive and negative correlators of the
LUE are expressed via different objects, respectively strictly and weakly monotone Hurwitz numbers.
In the Jacobi case, it is somewhat a generalization of the reflection formula for the Gamma function;
specifically, when N = 1 moments are expressed via the beta function as∫ 1

0 x
k · xα(1− x)βdx∫ 1

0 xα(1− x)βdx
=

Γ(α+ k + 1)Γ(α+ β + 2)

Γ(α+ 1)Γ(α+ β + k + 2)
=: m(k, α, β) (4.81)

and using Euler’s reflection formula

Γ(z)Γ(1− z) =
π

sinπz
, (4.82)
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the following relation is immediate for k ∈ Z,

m(k, α, β) = m(−k,−2− α− β, β). (4.83)

For general N , a similar relation holds between negative and positive correlators, namely writing
out the dependence on α, β explicitly〈

ℓ∏
j=1

trXλj

〉
JUE

(α, β) =

〈
ℓ∏

j=1

trX−λj

〉
JUE

(−2N − α− β, β). (4.84)

This can already be seen from formulæ (4.25) and (4.26) of Theorem 4.1.5. Indeed, recall we defined
cα = 1 + α/N and cβ = 1 + β/N , so that the parameters relation (4.84) is equivalent to

(α, β)↔ (−2N − α− β, β) ⇐⇒ (cα, cα + cβ)↔ ((1− cα − cβ)N,−(cα − 1)N), (4.85)

which automatically brings (4.25) in (4.26). Such a symmetry is not preserved in the Laguerre case
via the limit (4.71) since it is obtained via the parameter limit β →∞.

Example 4.2.5. Here we employ the formulæ of Theorems 3.2.5 and 4.2.2 to obtain the genus
zero limit for one- and two-point correlators. In these cases, formulæ of the same kind have already
appeared in the literature [54, 87, 169]. In the regime α = N(c− 1) with N →∞ we have

lim
N→∞

Aℓ(N, cN)

N ℓ+1
=

1

ℓ

ℓ−1∑
b=0

(
ℓ

b+ 1

)(
ℓ

b

)
cb+1, (4.86)

lim
N→∞

Bℓ(N, cN)

N ℓ
=

ℓ∑
b=0

(
ℓ

b

)2

cb. (4.87)

In particular,
〈
trXℓ

〉
= Aℓ (N,M), in the regime N →∞ with α = N(c− 1) we have

lim
N→∞

〈
trXℓ

〉
N ℓ+1

=
ℓ∑

s=1

Nℓ,sc
s (4.88)

where

Nℓ,s :=
1

ℓ

(
ℓ

s

)(
ℓ

s− 1

)
, ℓ ≥ 1, s = 1, . . . , ℓ (4.89)

are the Narayana numbers. Formula (4.88) agrees with Wigner’s computation of positive moments

of the Laguerre equilibrium measure ρ(x) =

√
(x+−x)(x−x−)

2πcx 1x∈(x−,x+) with x± := (1±
√
c)2, see [85].

From the one-point function, matching the coefficients in N (i.e. the genus g) and in c (i.e. the
length s of the summand partition) we obtain, for the weighted strictly monotone and weakly mono-
tone double Hurwitz numbers of genus zero, for a partition µ = (k),

z(k)

k!

∑
ν of length s

h>g=0((k); ν) =
1

(k − 1)!

∑
ν of length s

h>g=0((k); ν) = Nk,s =
1

k

(
k

s− 1

)(
k

s

)
, (4.90)

z(k)

k!

∑
ν of length s

h≥g=0((k); ν) =
1

(k − 1)!

∑
ν of length s

h≥g=0((k); ν) =

(
k − 1

k − s

)
(s+ 1)k−2

(k − 1)!
. (4.91)
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Similarly, for all two-point generating functions, we obtain the planar limit g = 0 as

lim
N→∞

F c
2,∞(Nz1, Nz2) = lim

N→∞
F c

2,0(Nz1, Nz2) = −
ϕ(z1, z2) +

√
ϕ(z1, z1)ϕ(z2, z2)

2
√
ϕ(z1, z1)ϕ(z2, z2)(z1 − z2)2

(4.92)

where
ϕ(z1, z2) := c2 − c(2 + z1 + z2) + (z1 − 1)(z2 − 1). (4.93)

The two-point planar limit is strictly related [79] to the so called canonical symmetric bi-differential
(called also Bergman kernel) associated to the spectral curve x2y2 = (x−x+)(x−x−) = c2−2c(x+
1) + (x− 1)2.



Chapter 5

Connections with intersection theory
on moduli spaces of curves

In recent years, Hurwitz numbers have found their way to connect with the intersection theory on
moduli spaces of curves. In this respect, a fundamental result is the classical ELSV formula, which
takes its name from its discoverers, Ekedahl, Lando, Shapiro, Vainshtein, [73], and expresses simple
Hurwitz numbers in terms of intersection numbers on moduli spaces of curves.

Theorem 5.0.1 (ELSV-Formula, [73]). Let µ = (µ1, . . . , µℓ) be a partition of n, then

hg(µ) =
(2g − 2 + |µ|+ ℓ)!

|Aut(µ)|

ℓ∏
i=1

µµi
i

µi!

∫
Mg,n

∑g
j=0(−1)jλj∏ℓ

i=1(1− µiψi)
. (5.1)

In the above hg(µ) denotes indeed the simple Hurwitz numbers of genus g and partition µ, and
Aut(µ) the permutation group of symmetries of the parts of µ. We denote by Mg,n the Deligne-
Mumford moduli space of stable nodal Riemann surfaces, ψi ∈ H2

(
Mg,n,Q

)
the first Chern class

of the cotangent line bundle to the i-th marked point and with λi ∈ H2i
(
Mg,n,Q

)
the Chern

classes of the Hodge bundle E so that λi = ci(E) ∈ H2i
(
Mg,n,Q

)
. For the precise definition of

these objects we refer to the literature, see e.g. [171] and references therein.
The ELSV formula is a cornerstone of the modern enumerative geometry. Even though it

was obtained by purely geometrical means [80, 100] it can be connected to the Witten-Kontsevich
Theorem and hence to the KdV hierarchy, a direction pioneered by Kazarian and Lando [124, 125].
On the other side ELSV-like formulæ have been discovered recently, in the aim of counting general
Hurwitz numbers; we find such examples in [37] for double Hurwitz numbers generalizing a previous
result of Johnson-Pandharipande-Tseng [119], in [10] for single monotone Hurwitz numbers, in
[39] for 2-orbifold strictly monotone Hurwitz numbers, in [41] and [71] for spin Hurwitz numbers
following conjectural formulæ of Zvonkine [170].

The purpose of this chapter is exactly to give a contribution to this new plethora of ELSV-like
formulæ, combining our results on the combinatorial interpretation of classical unitary ensem-
ble with recent work connecting integrable systems and enumerative geometry. Specifically, from
Dubrovin et al. [62] we are able link the multiparametric Hurwitz numbers of LUE with cubic Hodge
integrals; work on the connection between cubic Hodge integrals and integrable hierarchies, namely
the KP-hierarchy, was also carried out by Alexandrov in [8, 9]. In a similar fashion, we connect the
explicit (Legendre) matrix model presented by Norbury in [148] as a generating function of Θ-GW
invariants with the multiparametric Hurwitz numbers of JUE. The resulting ELSV-like formulæ
are reported in (5.2) and (5.62).

74
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We thank Di Yang for pointing out the connection between our results on JUE and Norbury’s
one on intersection numbers.

5.1 Hodge integrals and LUE

The main Theorem of this section is the following ELSV-like formula.

Theorem 5.1.1. For any partition µ = (µ1, . . . , µℓ) of length ℓ we have∑
g≥0

ϵ2g−2Hg,µ = 2ℓ
∑
γ≥0

(2ϵ)2γ−2
∑
ν⊢|µ|

(
ω +

ϵ

2

)2−2γ+|µ|−ℓ−ℓ(ν) (
ω − ϵ

2

)ℓ(ν)
h>γ (µ, ν) (5.2)

where

Hg,µ := 2g−1
∑
m≥0

(ω − 1)m

m!

∫
Mg,ℓ+m

Λ2(−1)Λ

(
1

2

)
exp

−∑
d≥1

κd
d

 ℓ∏
a=1

µa
(
2µa

µa

)
1− µaψa

+
δg,0δℓ,1

2

(
ω − µ1

µ1 + 1

)(
2µ1
µ1

)
+
δg,0δℓ,2

2

µ1µ2
µ1 + µ2

(
2µ1
µ1

)(
2µ2
µ2

)
. (5.3)

Here κj ∈ H2j
(
Mg,n,Q

)
(j = 1, 2, . . . ) are the Mumford-Morita-Miller classes, and Λ(ξ) :=

1+λ1ξ+· · ·+λgξg is the Chern polynomial of the Hodge bundle, λi ∈ H2i
(
Mg,n,Q

)
, the remaining

objects have been defined below Theorem 5.0.1; again we refer to the literature for a more accurate
definition. Finally h>γ (µ; ν) are the Hurwitz numbers of Definition 4.2.1. Note that Hg,µ in (5.3)
is a well defined formal power series in C[[ω − 1]], as for dimensional reasons each coefficient of
(ω − 1)m in (5.3) is a finite sum of intersection numbers of Mumford-Morita-Miller and Hodge
classes on the moduli spaces of curves.

As anticipated, this will be proven by identifying the LUE partition function with the generating
function of the intersection numbers depicted above. The latter is connected to the modified GUE
partition function, termed mGUE and denoted Z̃N (s), introduced in [62] and which we now define.
Consider the classical GUE partition function with couplings to odd powers set to zero, namely

Zeven
N (s) :=

∫
HN

exp tr

−1

2
X2 +

∑
k≥1

skX
2k

dX, s = (s1, s2, . . . ). (5.4)

It is then argued in [62] that the identity

Zeven
N (s)

(2π)NVol(N)
= Z̃N− 1

2
(s)Z̃N+ 1

2
(s), Vol(N) :=

π
N(N−1)

2

G(N + 1)
, (5.5)

uniquely defines Z̃N (s); above, Vol(N) is the usual volume (1.15), while G(z) is the Barnes G-
function, with the particular evaluation

G(N + 1) = 1!2! · · · (N − 1)! (5.6)
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for any integer N > 0. With respect to the normalizations in [62] we are setting ϵ ≡ 1 for simplicity;
the dependence on ϵ can be restored by the scaling N = xϵ. The Hodge-GUE correspondence works
as follows; introduce the generating function

H(p; ϵ) =
∑
g≥0

ϵ2g−2
∑
n≥0

∑
k1,...,kn≥0

pk1 · · · pkn
n!

∫
Mg,n

Λ2(−1)Λ

(
1

2

) n∏
i=1

ψki
i , (5.7)

for special cubic Hodge integrals, here p = (p0, p1, . . . ). Then the following is proved in [62].

Theorem 5.1.2 (Hodge-GUE correspondence [62]). Introduce the formal series

A(ω, s) :=
1

4

∑
j1,j2≥1

j1j2
j1 + j2

(
2j1
j1

)(
2j2
j2

)
sj1sj2 +

1

2

∑
j≥1

(
ω − j

j + 1

)(
2j

j

)
sj , (5.8)

and a transformation of an infinite vector of times s = (s1, s2, . . . ) 7→ p = (p0, p1, . . . ) depending
on a parameter ω as

pk(ω, s) :=
∑
j≥1

jk+1

(
2j

j

)
sj + δk,1 + ωδk,0 − 1, k ≥ 0. (5.9)

Then we have

H
(
p (ω, s) ;

√
2ϵ
)

+ ϵ−2A(ω, s) = log Z̃ω
ϵ

(
(s1, ϵs2, ϵ

2s3, . . . )
)

+B(ω, ϵ) (5.10)

where B(ω, ϵ) is a constant depending on ω and ϵ only and Z̃ω
ϵ
the mGUE partition function (5.5).

On the other side, recall the positive LUE partition function (4.66),

ZN (α; t) =
1

CL
N

∫
H+

N

detαX exp tr

(
−X +

∑
k>0

tkX
k

)
dX, (5.11)

where for convenience we rescaled the time variables as uk 7→ k tk and explicitly wrote out the
dependence on the complex parameter α. We have the following relation with the mGUE partition
function.

Theorem 5.1.3. The modified GUE partition function Z̃N (s) in (5.5) is identified with the Laguerre
partition function ZN (α; t) in (5.11) by the relation

Z̃2N− 1
2
(s) = CNZN

(
α = −1

2
; t

)
(5.12)

where t, s are related by
tk = 2ksk (5.13)

and CN is an explicit constant depending on N only;

CN =
2N

2− 3
2
N+ 1

4

π
N(N+1)

2

G(N + 1). (5.14)
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Identity (5.12) can be recast as the following explicit relation,

Z̃2N− 1
2
(s) =

2−N+ 1
4

π
N(N+1)

2

G(N + 1)

∫
H+

N

exp tr

−X
2

+
∑
k≥1

skX
k

 dX√
detX

, (5.15)

which is obtained from (5.12) by a change of variable X 7→ X
2 in the LUE partition function.

Theorem 5.1.1 is proven combining Theorems 5.1.2 and 5.1.3.

5.1.1 Relation between LUE and mGUE partition functions

Recall that the mGUE partition function is uniquely defined by the factorization (5.5) of the even
GUE partition function; we will now seek for an identical factorization in terms of two LUE partition
functions.

To this end, let us introduce two sequences of monic orthogonal polynomials; pevenn (x) = xn+. . .
satisfying ∫ +∞

−∞
pevenn (x)pevenm (x)eV (x2)dx = hevenn δn,m (5.16)

and, for Reα > −1, p
(α)
n (x) = xn + . . . satisfying∫ +∞

0
p(α)n (x)p(α)m (x)xαeV (x)dx = h(α)n δn,m, (5.17)

where V (x) is an arbitrary potential for which the polynomials are well defined. The following
lemma is elementary and can be found e.g. in [49].

Lemma 5.1.4. For all n ≥ 0 we have

peven2n (x) = p
(− 1

2)
n (x2), peven2n+1(x) = xp

( 1
2)

n (x2) (5.18)

and

heven2n = h
(− 1

2)
n , heven2n+1 = h

( 1
2)

n . (5.19)

Proof. We prove the first formulæ in (5.18) and (5.19), the second ones follow likewise. Rewrite
(5.17) for α = −1

2 and make the change of variables x = y2, then

h
(− 1

2
)

n δn,m =

∫ +∞

0
p
(− 1

2
)

n (x)p
(− 1

2
)

m (x)x−
1
2 eV (x)dx =

∫ +∞

0
p
(− 1

2
)

n (y2)p
(− 1

2
)

m (y2)y−1eV (y2)2ydy (5.20)

=

∫ +∞

−∞
p
(− 1

2
)

n (y2)p
(− 1

2
)

m (y2)eV (y2)dy, (5.21)

where we also used the parity of the last integrand. The claim follows comparing with the orthog-
onality property (5.16).

Next, recall the relation between matrix integrals and the norming constants (1.29) so that with
respect to the above orthogonal polynomials

1

Vol(N)

∫
HN

exp tr (−V (X2))dX = heven0 heven1 · · ·hevenN−1, (5.22)

1

Vol(N)

∫
H+

N

detαX exp tr (−V (X))dX = h
(α)
0 h

(α)
1 · · ·h

(α)
N−1, (5.23)
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where Vol(N) is defined in (5.5). Using the above relations and (5.19) in the case V (x) = x
2 −∑

k≥1 skx
k, we obtain the following identity between the GUE partition function Zeven

2N (s) in (5.4)

and the Laguerre partition function ZN

(
±1

2 ; t
)

in (5.11),

Zeven
2N (s)

Zeven
2N (0)

=
ZN

(
−1

2 ; t
)

ZN

(
−1

2 ;0
) ZN

(
1
2 ; t
)

ZN

(
1
2 ;0
) , tk := 2ksk, (5.24)

where Zeven
N (0) =

√
2NπN2 is given as in (1.52) and ZN

(
±1

2 ;0
)

in (1.59). There is a similar, slightly
more involved, factorization for the matrix model Zeven

2N+1, but we do not need its formulation for
our present purposes. The following symmetry property of the LUE partition function allows us to
match the parameters α = ±1

2 in (5.24).

Lemma 5.1.5. The LUE connected correlator ⟨trXk1 · · · trXkr⟩c with k1, . . . , kr > 0 is a polyno-
mial in N,α, and it is invariant under the involution (N,α) 7→ (N + α,−α).

Proof. It follows directly from Theorem 3.2.5, as the coefficients of R[∞], defined in (3.89), are
polynomials in N,α which are manifestly symmetric under the aforementioned transformation.
Indeed

(N,α) 7→ (N + α,−α) ⇐⇒ (N,M −N) 7→ (M,N −M) ⇐⇒ (N,M) 7→ (M,N),
(5.25)

and from (3.91) we see that all the coefficients Aℓ(N,M), Bℓ(N,M) but A0(N,M) = N are sym-
metric in N,M := N +α; however R[∞] only contains the combination ℓAℓ(N,M), which is always
symmetric in N,M .

Let us restate Lemma 5.1.5, in view of the formal expansion (5.41), as the following identity

ZN (α; t)

ZN (α;0)
=
ZN+α(−α; t)

ZN+α(−α;0)
. (5.26)

In particular, for α = 1
2 it reads

ZN+ 1
2

(
−1

2
; t

)
=
π

3
8
+N

2 G(N + 1)

G
(
N + 3

2

) ZN

(
1

2
; t

)
(5.27)

which can be applied to (5.24) to prove Theorem 5.1.3.

Proof of Theorem 5.1.3. We use the uniqueness of the decomposition (5.5) which defines the
mGUE partition function; rewriting it under the substitution N 7→ 2N we have

Zeven
2N (s)

(2π)2NVol(2N)
= Z̃2N− 1

2
(s)Z̃2N+ 1

2
(s). (5.28)

On the other hand, from (5.24) we have

Zeven
2N (s) = DNZN

(
−1

2
; t

)
ZN

(
1

2
; t

)
(5.29)

where here and below we are identifying tk = 2ksk. The proportionality constant DN is explicitly
evaluated from the normalization constant of LUE (1.59) and (1.52) as

DN =
Zeven
2N (0)

ZN

(
−1

2 ;0
)
ZN

(
1
2 ;0
) =

2NπN
2+N+ 1

2 G(12)2

G(N + 1
2)G(N + 3

2)
. (5.30)
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It is then enough to show that the two factorizations (5.28) and (5.29) are consistent once we
identify Z̃2N− 1

2
(s) = CNZN

(
−1

2 ; t
)

with CN a constant depending on N only. Such consistency

follows from the chain of equalities

Zeven
2N (s)

(2π)2NVol(2N)
= Z̃2N− 1

2
(s)Z̃2N+ 1

2
(s)

= Z̃2N− 1
2
(s)Z̃2(N+ 1

2)− 1
2
(s)

= CNZN

(
−1

2
; t

)
CN+ 1

2
ZN+ 1

2

(
−1

2
; t

)
= CNCN+ 1

2

π
3
8
+N

2 G(N + 1)

G
(
N + 3

2

) ZN

(
−1

2
; t

)
ZN

(
1

2
; t

)
(5.31)

where we have used the symmetry property (5.27). This shows that the two factorizations (5.28)
and (5.29) are consistent, so that equation (5.12), i.e.

Z̃2N− 1
2
(s) = CNZN

(
α = −1

2
; t

)
, tk = 2ksk, (5.32)

holds, provided we also identify the proportionality constants (5.30) and (5.31),

CNCN+ 1
2

π
3
8
+N

2 G(N + 1)

G
(
N + 3

2

) =
DN

(2π)2NVol(2N)
= 4N(N−1)π−N(N+1)G(N + 1)2, (5.33)

where in the last step we use the duplication formula for the Barnes G-function in the form

G(2N + 1) =
2N(2N−1)π−N− 1

2

G
(
1
2

)2 G

(
N +

1

2

)
G(N + 1)2G

(
N +

3

2

)
. (5.34)

Equation (5.33) fixes the constant to be

CN = 2N
2− 3

2
N+ 1

4π−
N(N+1)

2 G(N + 1), (5.35)

as stated in (5.14).

Remark 5.1.6. The identification of the mGUE and LUE partition functions is manifest also from
the Virasoro constraints of the two models. Indeed, Virasoro constraints for the modified GUE
partition function have been derived in [62], directly from those of the GUE partition function, and
they assume the form L̃nZ̃N (s) = 0, for n ≥ 0, where

L̃n :=

{∑
k≥1 k

(
sk − 1

2δk,1
)

∂
∂sk

+ N2

4 −
1
16 , n = 0,∑n−1

k=1
∂2

∂sk∂sn−k
+
∑

k≥1 k
(
sk − 1

2δk,1
)

∂
∂sk+n

+N ∂
∂sn

, n ≥ 1.
(5.36)

On the other hand, it is well known [7, 108] that the LUE partition function with only positive

couplings t+ satisfies the Virasoro constraints L(α)n ZN (α; t) = 0, for n ≥ 0, where

L(α)n :=

{∑
k≥1 k (tk − δk,1) ∂

∂tk
+N (N + α) , n = 0,∑n−1

k=1
∂2

∂tk∂tn−k
+
∑

k≥1 k (tk − δk,1) ∂
∂tk+n

+ (2N + α) ∂
∂tn

, n ≥ 1.
(5.37)

The Virasoro constraints L̃n = L̃n(N, s) in (5.36) and = L(α)n = L(α)n (N, t) in (5.37) satisfy

2nL̃n
(

2N − 1

2
, s

)
= L(− 1

2)
n (N, t) (5.38)

under the identification tk = 2ksk, in agreement with Theorem 5.1.3.
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Formal matrix models

In this section we justify the (formal) identifications derived above. We start from the definition
of mGUE partition function. First, the logarithm of the even GUE partition function can be
considered as a formal Taylor expansion for small sk as

logZeven
N (s) := logZeven

N (0) +
∑
r≥1

∑
k1,...,kr≥1

sk1 · · · skr
r!

〈
trXk1 · · · trXkr

〉c
even

(5.39)

where the connected even GUE correlators are introduced as usual,〈
trXk1 · · · trXkr

〉c
even

:=
∂r logZeven

N (s)

∂sk1 · · · ∂skr

∣∣∣∣
s=0

(5.40)

and the normalizing constant Zeven
N (0) =

√
2NπN2 , see (1.52). The infinite sum in (5.39) can be

given a rigorous formal meaning in the algebra C[N ][[s]]; introducing the grading deg sk := k, the
latter algebra is obtained taking the inductive limit K → ∞ from the algebras of polynomials in
s of degree < K, with coefficients in C[N ]. Equivalently, this grading can be encoded, up to an
inessential shift, by a (small) variable ϵ via the transformation sk 7→ ϵk−1sk, which is the same

as considering the matrix model
∫
HN

exp
[
−1

ϵ

(
X2

2 −
∑

k≥1 skX
2k
)]

dX. For simplicity we have

preferred to avoid the explicit ϵ-dependence, even though we shall restore it for the statement of
the Hodge-GUE and Hodge-LUE correspondence, respectively Theorem 5.1.2 and Corollary 5.1.7.
It must be stressed that (5.39) makes sense for any complex N , and not just for positive integers
as it would be required by the genuine matrix integral interpretation; indeed the correlators are
polynomials in N .

The same arguments apply to the Laguerre partition function (5.11), which can similarly be
identified via the formal series

logZN (α; t) = logZN (α;0) +
∑
r≥1

∑
k1,...,kr≥1

tk1 · · · tkr
r!

〈
trXk1 · · · trXkr

〉c
. (5.41)

Since the correlators are polynomials in N,α, see Theorem 3.2.5, the expression (5.41) can be
viewed as an element of C[N,α][[t]], in particular it makes sense also for N complex.

This remark is crucial for a correct understanding of formulæ (5.26) and (5.27), as well as to
formally justify the factorization identity (5.5).

5.1.2 Hodge-LUE correspondence

The identification Theorem 5.1.3 and the Hodge-GUE correspondence Theorem 5.1.2, allow us to
deduce the following.

Corollary 5.1.7 (Hodge-LUE correspondence). Let H
(
p (ω, s) ;

√
2ϵ
)
as in (5.10) and ZN

(
−1

2 ; t
)

the Laguerre partition function (5.11) with parameter α = −1
2 . We have

H
(
p(ω, s);

√
2ϵ
)

+ ϵ−2A (ω, s) = logZN

(
−1

2
; t

)
+ C(N, ϵ), (5.42)

where we identify

ω = ϵ

(
2N − 1

2

)
, tk = 2kϵk−1sk, (5.43)
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C(N, ϵ) is a constant depending on N and ϵ only, and we recall the definitions of A(ω, s) and
p(ω, s), respectively (5.8) and (5.9), namely

A(λ, s) :=
1

4

∑
j1,j2≥1

j1j2
j1 + j2

(
2j1
j1

)(
2j2
j2

)
sj1sj2 +

1

2

∑
j≥1

(
λ− j

j + 1

)(
2j

j

)
sj , (5.44)

pk(λ, s) :=
∑
j≥1

jk+1

(
2j

j

)
sj + δk,1 + λδk,0 − 1, k ≥ 0. (5.45)

Proof. It follows from (5.10) upon the substitution ω 7→ ϵ
(
2N − 1

2

)
and applying Theorem 5.1.3

for the set of times ϵk−1sk, k ≥ 1.

Finally, Theorem 5.1.1 is obtained matching the coefficients in (5.42) and the topological ex-
pansion for the positive correlators of the LUE in terms of Hurwitz numbers equation (4.68).

Proof of Corollary 5.1.1. We apply ∂ℓ

∂sµ1 ···∂sµℓ

∣∣∣
s=0

, for ℓ > 0, on both sides of (5.10). On the

right side, in view of Theorem 5.1.3 and the Hodge-GUE correspondence (5.10) we get

∂ℓ

∂sµ1 · · · ∂sµℓ

∣∣∣∣
s=0

log Z̃ω
ϵ

(
(s1, ϵs2, ϵ

2s3, . . . )
)

= ϵ|µ|−ℓ2|µ| ⟨trXµ1 · · · trXµℓ⟩cLUE

∣∣
N= ω

2ϵ
+ 1

4
, α=− 1

2
,

which in view of the topological expansion (4.68) for the LUE correlators equals

= ϵ|µ|−ℓ2|µ|
∑
γ≥0

∑
ν⊢|µ|

(
ω + ϵ

2

2ϵ

)2−2γ+|µ|−ℓ(ω − ϵ
2

ω + ϵ
2

)s

h>γ (µ, ν). (5.46)

Note that the substitutions 2N − 1
2 = ω

ϵ , α = −1
2 , from Theorem 5.1.3, yield N =

ω+ ϵ
2

2ϵ , c =
ω− ϵ

2
ω+ ϵ

2
.

On the other side we get

∂ℓ

∂sµ1 · · · ∂sµℓ

∣∣∣∣
s=0

H(p(ω, s);
√

2ϵ) + ϵ−2 ∂ℓ

∂sµ1 · · · ∂sµℓ

∣∣∣∣
s=0

A(ω, s). (5.47)

The contributions from the last term is directly evaluated from (5.8) and give the second line of
(5.3). For the first term we recall the affine change of variable (5.9) and compute

∂ℓ

∂sµ1 · · · ∂sµℓ

H
(
p(ω, s);

√
2ϵ
)

=
∑

i1,...,iℓ≥0

ℓ∏
b=1

µib+1
b

(
2µb

µb

)
∂ℓ

∂pi1 · · · ∂piℓ
H
(
p(ω, s);

√
2ϵ
)

(5.48)

=
∑

g,n≥0

(√
2ϵ
)2g−2 ∑

k1,...,kn≥0
i1,...,iℓ≥0

pk1
(ω, s) · · · pkn

(ω; s)

n!

∫
Mg,n+ℓ

Λ2(−1)Λ

(
1

2

) n∏
a=1

ψka
a

ℓ∏
b=1

µib+1
b

(
2µb

µb

)
ψib
n+b.

(5.49)

Evaluation at s = 0 corresponds to pk = δk,1 + ωδk,0 − 1; thus, in the previous expression, we set
n = m+ r, where m is the number of ka’s equal to zero, and the remaining k1, . . . , kr’s are all ≥ 2
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(we are evaluating at p1 = 0), and so the evaluation of the (5.48) at pk = δk,1 + ωδk,0 − 1 reads

∑
g,m,r≥0

(√
2ϵ
)2g−2 ∑

k1,...,kr≥2
i1,...,iℓ≥0

(ω − 1)m(−1)r

m!r!

∫
Mg,ℓ+m+r

Λ2(−1)Λ

(
1

2

) r∏
a=1

ψka
a

ℓ∏
b=1

µib+1
b

(
2µb

µb

)
ψib
m+r+b

=
∑

g,m,r≥0

(√
2ϵ
)2g−2 ∑

d1,...,dr≥1

(ω − 1)m(−1)r

m!r!

∫
Mg,ℓ+m+r

Λ2(−1)Λ

(
1

2

) r∏
a=1

ψda+1
a

ℓ∏
b=1

µb

(
2µb

µb

)
1− µbψm+r+b

,

(5.50)

where in the last step we rename ka = da + 1, da ≥ 1.
We can trade the ψ1, . . . , ψr classes in (5.50) for a suitable combination of Mumford κ classes,

following ideas from [39]. Let π : Mg,ℓ+m+r → Mg,ℓ+m be the map forgetting the first r marked
points (and contracting the resulting unstable components), then we have the following iterated
version of the dilaton equation

π∗

(
(π∗X )

r∏
a=1

ψda+1
a

)
= X

∑
σ∈Sr

∏
γ∈Cycles(σ)

κ∑
a∈γ da , da, . . . , dr ≥ 1, (5.51)

for any X ∈ H• (Mg,ℓ+m,Q
)
. Here and below, Sr is the group of permutations of {1, . . . , r} and

Cycles(σ) is the set of disjoint cycles in the permutation σ, σ =
∏

γ∈Cycles(σ) γ. In our case it is
convenient to set

X = Λ2(−1)Λ

(
1

2

) ℓ∏
b=1

µb
(
2µb
µb

)
1− µbψm+b

, π∗X = Λ2(−1)Λ

(
1

2

) ℓ∏
b=1

µb
(
2µb
µb

)
1− µbψm+r+b

, (5.52)

so that the sum over r ≥ 0 and d1, . . . , dr ≥ 1 in (5.50) can be expressed as

∑
r≥0

(−1)r

r!

∑
d1,...,dr≥1

∫
Mg,ℓ+m+r

(π∗X)

r∏
a=1

ψda+1
a =

∑
r≥0

(−1)r

r!

∑
d1,...,dr≥1

∫
Mg,ℓ+m

X
∑
σ∈Sr

∏
γ∈Cycles(σ)

κ∑
a∈γ da

.

(5.53)
Let us now recall that for any set of variables F1, F2, . . . , we have the identity of symmetric

functions

exp

∑
r≥1

ξr

r
Fr

 =
∑
ν

ξ|ν|

zν
Fν1 · · ·Fνℓ(ν) (5.54)

where the sum on the right side extends over the set of all partitions ν = (ν1, . . . , νℓ(ν)), |ν| =
ν1 + · · ·+ νℓ(ν), and zν has the same definition as above, namely zν :=

∏
i≥1 (imi)mi!, mi being the

multiplicity of i in the partition ν. Applying this relation to

Fr =
∑

d1,...,dr≥1

κ∑t
a=1 da

=
∑
d≥r

(
d− 1

r − 1

)
κd, ξ = −1, (5.55)

since for any partition ν of r the quantity r!/zν is the cardinality of the conjugacy class labeled by
ν in Sr, we deduce that

∑
r≥0

(−1)r

r!

∑
d1,...,dr≥1

∫
Mg,ℓ+m

X
∑
σ∈Sr

∏
γ∈Cycles(σ)

κ∑
a∈γ da =

∫
Mg,ℓ+m

X exp

−∑
d≥1

κd
d

 (5.56)

where we also use the identity
∑

r≥1
(−1)r

r

(
d−1
r−1

)
= −1

d . The proof is complete.
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Example 5.1.8. Comparing the coefficients of ϵ−2 on both sides of (5.2) we obtain the following
relation in genus zero

H0,µ = 2ℓ−2ω|µ|+2−ℓ zµ
|µ|!

∑
ν⊢|µ|

h>g=0(µ, ν) (5.57)

valid for any partition µ of length ℓ. One can check that (5.57) is consistent with the computations
of Hurwitz numbers in genus zero performed in Example 4.2.5. E.g. for ℓ = 1 we compute the first
terms in the (ω − 1)-expansion of the left side of (5.57), directly from (5.2),

H0,µ=(µ1) =
1

2

1

µ1 + 1

(
2µ1
µ1

)
+

(ω − 1)

2

(
2µ1
µ1

)
+

(ω − 1)2

4
µ1

(
2µ1
µ1

)
+O

(
(ω − 1)3

)
. (5.58)

On the other hand, the right side of (5.57) is computed as

1

2
ωµ1+1

µ1∑
s=1

1

(µ1 − 1)!

∑
ν⊢|µ|

h>g=0(µ, ν) =
1

2µ1
ωµ1+1

µ1∑
s=1

(
µ1
s

)(
µ1
s− 1

)

=
1

2µ1
ωµ1+1

(
2µ1
µ1 − 1

)
=

1

2(µ1 + 1)

(
2µ1
µ1

) µ1+1∑
b=0

(
µ1 + 1

b

)
(ω − 1)b (5.59)

where we use (4.90) and the identity

µ1∑
s=1

(
µ1
s− 1

)(
µ1
s

)
=

µ1−1∑
s=0

(
µ1
s

)(
µ1

µ1 − 1− s

)
=

(
2µ1
µ1 − 1

)
, (5.60)

which follows from the Chu-Vandermonde identity
∑k−1

s=0

(
a
s

)(
b

k−1−s

)
=
(
a+b
k−1

)
for a = b = k = µ1.

Expressions (5.58) and (5.59) match.

5.2 Θ-GW invariants of P1 and the Legendre unitary ensemble

In [147] Norbury defines a new collection of cohomological class Θg,k ∈ H2(2g−2+k)
(
Mg,k

)
on

the moduli space Mg,k of stable algebraic curves. The k-point, genus g and degree d stationary
Θ-Gromov-Witten (Θ-GW) invariants of P1 are defined as the integrals〈

Θ ·
k∏

j=1

bj ! τbj (ω)

〉P1

g,k,d

:=

∫
[P1

g,k,d]

 k∏
j=1

ψ
bj
j ev∗

j (ω)

 ·ΘP1

g,k, (5.61)

where ω ∈ H∗(P1) is the Kähler class of P1, the bi are non-negative integers,
[
P1
g,k,d

]
is the virtual

fundamental class of the moduli space of stable maps from curves of genus g with k distinct
marked points to the target P1 of degree d, the evi are the evaluation maps evi : P1

g,k,d → P1

and ΘP1

g,k = p∗Θg,k with p : Mg,k → P1
g,k,d the forgetful map. We refer to loc. cit. and references

therein for a more accurate description of these objects. It is proved in [148], see also [47], that the
generating function of the Θ-GW invariants (5.61) is a tau-function of the KdV hierarchy, this is
the content of Theorem 5.2.2. More to that, it is expressible as the partition function of a matrix
model closely related to the JUE, which allows to derive the following ELSV-like formula.
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Theorem 5.2.1. The triple monotone Hurwitz numbers of Definition 4.1.4 and the stationary
Θ-GW invariants of P1 are related by

∑
µ,ν⊢|λ|

h≥g (λ, µ, ν)

(−2)ℓ(µ)+ℓ(ν)+ℓ+2g−2
=

(−1)|λ||λ|!
2|λ|

∏
i≥1 i

mi

∑
k1,...,kℓ≥1

〈
Θ ·
∏ℓ

j=1

(
λi
kj

)
τkj−1(ω)

〉g
d

2k1+···+kℓ
, (5.62)

where λ = (λ1, . . . , λℓ) = (1m1 , 2m2 , . . . ) is an arbitrary partition, and the right hand side is subject
to the dimensional constraint

2d =
ℓ∑

j=1

(kj − 1) + ℓ =
ℓ∑

j=1

kj . (5.63)

Conversely,〈
Θ ·

ℓ∏
j=1

τλj−1(ω)

〉g

d

=
2|λ|∏
i≥1mi!

∑
k1,...,kℓ≥1

2|κ|
zκ
|κ|!

ℓ∏
j=1

(
λi
kj

) ∑
µ,ν⊢|κ|

h≥g (κ, µ, ν)

(−2)ℓ(µ)+ℓ(ν)+ℓ+2g−2
, (5.64)

where we used the multi-index notation |κ| := (k1, . . . , kℓ) and |κ| =
∑
k1. Entering h≥g (κ, µ, ν), we

regard κ as the unique partition of |κ| with parts the (ordered) entries of κ.

Proof of Theorem 5.2.1

The main ingredient in the proof is the following Theorem.

Theorem 5.2.2 ([148]). Consider the generating function for the Θ-GW invariants of P1

FΘ
P1(ϵ, s = {sk}k≥0) =

∑
g≥0

ϵ2g−2FΘ
g =

∑
g,d

ϵ2g−2

〈
Θ · exp


∞∑
k≥0

τk(ω)sk


〉g

d

+
1

4
log ϵ (5.65)

and define the partition function ZΘ
P1(ϵ, s) = expFΘ

P1(ϵ, s). Then, setting ϵ = N−1 we have

ZΘ
P1

(
ϵ = N−1, s

)
=

c

N !

∫ 2

−2

∫ 2

−2
...

∫ 2

−2
dx1...dxN

∏
i<j

(xi − xj)2 exp

N∑
k≥0

sk

N∑
i=1

xk+1
i

 . (5.66)

where c ∈ C is a constant. More precisely, ZΘ
P1 coincides with an asymptotic expansion of the

integral (5.66) as N →∞.

Consider the following partition functions where, respectively, the first one is the Jacobi partition
function (4.23) with parameters α = β = 0, and the second one is essentially (5.66) ,

Z
(0,0)
N (u) :=

1

C
(0,0)
N

∫
HN (0,1)

exp

∑
k≥1

uk
k

trXk

 dX =
∑
λ∈P

〈∏ℓ
j=1 trX±λj

〉
(0,0)

zλ

ℓ(λ)∏
i=1

uλi
, (5.67)

ZΘ
N (v) := ZΘ

P1

(
ϵ = N−1,v = {vk = Nk sk−1}k≥1

)
=

1

CN

∫
HN (−2,2)

exp

∑
k≥1

vk
k

trY k

dY.

(5.68)
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The two models are the – respectively antisymmetric and symmetric – Legendre unitary ensemble,
and are equivalent up to an affine transformation. At the level of the disconnected correlators the
relation reads〈

ℓ∏
j=1

trXλj

〉
(0,0)

=
∑

j1,...,jℓ≥0

2−|λ|−j1−···−jℓ

〈
ℓ∏

i=1

(
λi
ji

)
trY ji

〉
Θ

(5.69)

〈
ℓ∏

j=1

trY λj

〉
Θ

=
∑

j1,...,jℓ≥0

(−1)|λ|(−2)|λ|+j1+···+jℓ

〈
ℓ∏

i=1

(
λi
ji

)
trXji

〉
(0,0)

(5.70)

notice that the sums are bounded due to the presence of the binomial factors. The connected
correlators admit the same relation, but the indices are taken to be different from zero,〈

ℓ∏
j=1

trXλj

〉c

(0,0)

=
∑

j1,...,jℓ≥1

2−|λ|−j1−···−jℓ

〈
ℓ∏

i=1

(
λi
ji

)
trY ji

〉c

Θ

(5.71)

〈
ℓ∏

j=1

trY λj

〉c

Θ

=
∑

j1,...,jℓ≥1

(−1)|λ|(−2)|λ|+j1+···+jℓ

〈
ℓ∏

i=1

(
λi
ji

)
trXji

〉c

(0,0)

(5.72)

This happens because, in general, if ji = 0 for some i ∈ {1, . . . , ℓ}, then the whole connected
correlator vanishes; for example if ℓ = 2,〈

trXjtrX0
〉c

=
〈
trXjtrX0

〉
−
〈
trXj

〉 〈
trX0

〉
=
〈
trXj ·N

〉
−
〈
trXj

〉
⟨N⟩ = 0. (5.73)

The next step is to rewrite relations (5.71) and (5.72) in terms of the topological expansion of
the correlators, given in Theorems 4.1.5 and 5.2.2. With respect to the former, we just substitute
the parameters α = β = 0 ⇐⇒ cα = cβ = 1 to get〈

ℓ∏
j=1

trXλj

〉c

(0,0)

= (−1)|λ|N−ℓ zλ
|λ|!

∑
g≥0

1

N2g−2

∑
µ,ν⊢|λ|

h≥g (λ, µ, ν)

(−2)ℓ(µ)+ℓ(ν)+ℓ+2g−2
. (5.74)

For the latter, first notice that by Theorem 5.2.2 we have

∂ℓ

∂sk1 · · · ∂skℓ

∣∣∣∣
s=0

FΘ
P1(ϵ, s) =

∑
g≥0

ϵ2g−2

〈
Θ ·

ℓ∏
j=1

τkj (ω)

〉g

d

(5.75)

so that, recalling the change of times s =
{
sk = 1

N
vk+1

k+1

}
k≥0

, for λ = (λ1, . . . , λℓ) = (1m1 , 2m2 , . . . ),〈
ℓ∏

j=1

trY λj

〉c

Θ

= zλ
∂ℓ

∂vλ1 · · · ∂vλℓ

∣∣∣∣
v=0

logZΘ
N (v) (5.76)

= zλ
∑

k1,...,kℓ≥0

∂sk1
∂vλ1

· · · ∂skℓ
∂vλℓ

∂ℓ

∂sk1 · · · ∂skℓ

∣∣∣∣
s=0

logZΘ
P1

(
ϵ = N−1, s

)
(5.77)

= zλ
δλ1−1
k1

λ1
· · ·

δλℓ−1
kℓ

λℓ

∂ℓ

∂sk1 · · · ∂skℓ

∣∣∣∣
s=0

FΘ
P1

(
ϵ = N−1, s

)
(5.78)

= N−ℓm1! · · ·mℓ!
∑
g≥0

1

N2g−2

〈
Θ ·

ℓ∏
j=1

τλj−1(ω)

〉g

d

. (5.79)
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Plugging formulæ (5.74) and (5.79) in (5.71) and matching the coefficients in N yields

∑
µ,ν⊢|λ|

h≥g (λ, µ, ν)

(−2)ℓ(µ)+ℓ(ν)+ℓ+2g−2
=

(−1)|λ||λ|!
2|λ|

∏
i≥1 i

mi

∑
k1,...,kℓ≥1

〈
Θ ·
∏ℓ

j=1

(
λi
kj

)
τkj−1(ω)

〉g
d

2k1+···+kℓ
, (5.80)

which is exactly (5.62). Similarly, from (5.72) we get (5.64) as〈
Θ ·

ℓ∏
j=1

τλj−1(ω)

〉g

d

=
2|λ|∏
i≥1mi!

∑
k1,...,kℓ≥1

2|κ|
zκ
|κ|!

ℓ∏
j=1

(
λi
kj

) ∑
µ,ν⊢|κ|

h≥g (κ, µ, ν)

(−2)ℓ(µ)+ℓ(ν)+ℓ+2g−2
, (5.81)

where we denoted |κ| := (k1, . . . , kℓ) and used the multi-index notations, |κ| =
∑
k1, while zκ is

still defined as usual, see (2.16).
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Chapter 6

Hermitian Lax systems

In this chapter, we consider two specific integrable systems: the exponential Toda lattice in Section
6.2 and the Volterra lattice in Section 6.3. The goal is to explore the behaviour of the spectrum of
their random Lax matrices when the number of degrees of freedom N → ∞, and the initial data
is sampled according to a properly chosen Gibbs measure. Analyzing the Lax matrix we connect
them respectively to the Laguerre β-ensemble at high temperature and the antisymmetric Gaussian
β-ensemble at high temperature. This allows us to explicitly compute their density of states, see
Corollary 6.45 and 6.3.3. The fact that both these systems admit a Lax representation with an
Hermitian Lax matrix plays a crucial role in the derivations, as rank one perturbations arguments
can be applied, see [16].

We briefly recall some useful formulæ and definitions from the classical theory of integrable
systems in Section 6.1.

6.1 Background material

In this section we recall some standard tools to study Hamiltonian integrable systems that we
need throughout the paper. For further details, we refer to various textbooks and monographs
[12, 13, 15, 151].

Definition 6.1.1. A Poisson manifold is a pair (P, {. , .}) where P is a n-dimensional differentiable
manifold and {. , .} is an antisymmetric bilinear operation on the space C∞(P ) of smooth functions
over P ,

C∞(P )×C∞(P )→ C∞(P )

(f, g) −→ {f, g}
(6.1)

such that for all functions f, g, h ∈ C∞(P ), it satisfies:

1. the Jacobi identity
{{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0, (6.2)

2. the Leibniz rule
{hf, g} = h{f, g}+ {h, g}f. (6.3)

The operator {. , .} is called a Poisson bracket. When there is no risk of confusion, we simply denote
a Poisson manifold by P , where the Poisson bracket is assumed to be fixed and given.
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In local coordinates a = (a1, . . . , an) the Poisson bracket is specified by an antisymmetric (2, 0)
tensor πij(a), the Poisson tensor, acting on the coordinates as

{ai, aj} = πij(a), i, j = 1, . . . n. (6.4)

The Jacobi identity on the coordinates is equivalent to the relation

∂πij(a)

∂as
πsk(a) +

∂πki(a)

∂as
πsj(a) +

∂πjk(a)

∂as
πsi(a) = 0, 1 ≤ i < j < k ≤ n, (6.5)

where we are summing over repeated indices. In an open subset of P the Poisson tensor has a fixed
even rank 2r ≤ n. By antisymmetry, it follows that the Poisson tensor can be non-degenerate,
meaning that detπ(a) ̸= 0, if and only if the dimension n of the base space is even, namely
n = 2N .

Given a function H(a) ∈ C∞(P ), it generates a set of so-called Hamilton’s equations through
the relation

ȧj = {aj , H} =
n∑

j=1

πij(a)
∂H

∂aj
, j = 1, . . . , n. (6.6)

The function H itself is called a Hamiltonian. The previous set of equations defines a continuum
time flow from an initial condition a(0) ∈ P to its time evolution t > 0, namely Φt : a(0) → a(t).
A function K = K(a) is constant under evolution Φt if and only if

K̇ = {K,H} = 0. (6.7)

In this case the quantity K is called a first integral or a constant of motion. The notion of Liouville
integrability is strictly related to the number of first integrals and the rank of the associated Poisson
tensor.

Definition 6.1.2 (Liouville integrability). A Hamiltonian system (6.6) on a Poisson manifold P
of rank 2r ≤ n is Liouville integrable if there are k = n− r first integrals H1, . . . , Hk in involution

{Hi, Hj} = 0, i, j = 1, . . . , k , (6.8)

and functionally independent, namely

rank

(
∂Hi

∂aj

)
i=1,...,k
j=1,...,n

= k , (6.9)

in a dense subset of P .

Finding first integrals is often a complicated task, and during the past decades several algorithms
to construct them have been developed. One of the most effective methods to produce first integrals
of a given mechanical system is the so-called Lax pair representation1. The concept of Lax pair
originates from the work of P. D. Lax on the theory of PDEs [130], where it was used to produce
exact solutions through the so-called inverse scattering method [1, 4]. We give the definition in the
finite dimensional setting, [12, 15].

Definition 6.1.3. Let L = L(a) and A = A(a) be N ×N matrices, with N = N(n) and such that
the equation

L̇ = [A,L], [A,L] = AL− LA. (6.10)

is equivalent to the Hamiltonian flow (6.6). Then the matrices L and A are a Lax pair for the
Hamiltonian system and the matrix L is called Lax matrix.

1Often L-A pair in the Russian literature.
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The main consequence of the Lax equation (6.10) is that the eigenvalues of L are first integrals
of the Hamiltonian flow (6.6). So, provided that we can prove these eigenvalues give enough func-
tionally independent quantities in involution, we can infer the Liouville integrability of Hamilton’s
equations (6.6) through the Lax pair.

Remark 6.1.4. The fact that in many cases an integrable system can be equivalent to a matrix
relation gives the connection with random matrix theory. Indeed, when the initial data a(0) is
chosen randomly, the Lax matrix L = L(a(0)) becomes a random matrix.

To define a random initial data, we consider invariant measures with respect to the Hamiltonian
flow. In general, such objects have the form

µ = m (a) da1 ∧ · · · ∧ dan, (6.11)

where the density m(a) is such that the measure µ ∈ L1(M), with M being a sub-manifold of the
manifold P .

Definition 6.1.5. Given an Hamiltonian system equipped with an invariant measure µ, define the
Gibbs measure [126] associated to the Hamiltonian as

µH =
1

ZH
e−βH(a)µ, (6.12)

where we assume the normalization constant ZH to be finite,

ZH =

∫
M
e−βH(a)µ <∞. (6.13)

Similarly, given H1, . . . , Hk first integrals and β1, . . . , βk constants, define the generalized Gibbs
measure as

µG =
1

ZG
e−

∑k
j=1 βjHj(a)µ. (6.14)

As above, we assume that the normalization constant ZG is finite,

ZG =

∫
M
e−

∑N
j=1 βjHj(a)µ <∞. (6.15)

As discussed above, random initial data are obtained from an invariant measure µ of the form
(6.11). More precisely, this means that the measure of every subset S ⊂ M with respect to µ is
preserved under the time-evolution Φt, ∫

Φt(S)
µ =

∫
S
µ. (6.16)

Interpreting the evolution as a coordinate transformation, we have∫
Φt(S)

µ =

∫
S

Φ∗
t (µ), (6.17)

where Φ∗
t (µ) is the pull-back of µ through Φt. This shows that the condition (6.16) is satisfied if

Φ∗
t (µ) = µ. In the following, we will only work in Euclidean coordinates, for a measure written in

the form (6.11), so that the above condition can be rephrased as

div (m(a)fH(a)) :=
m∑
i=1

∂

∂ai
(m(a)(fH(a))i) = 0, (6.18)
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where div is the usual euclidean divergence, see e.g. [106, Chapter 1]. The vector field fH is specified
by the Hamiltonian H via the relation (fH)i = {ai, H}. The condition (6.18) can be written in the
form

{m,H}+m div (fH) = 0. (6.19)

Remark 6.1.6. The condition (6.18) depends just on m(a) and the vector field fH , thus it is
independent of the Hamiltonian nature of the dynamical system at hand. In particular, we conclude
that a measure µ as in (6.11) is invariant for the dynamical system

ȧi = fi(a) , i = 1, . . . , N, (6.20)

if and only if (6.18) holds.

From formula (6.19) we immediately have two important consequences.

– If the Hamiltonian vector field is divergence free, like in the case of a canonical Poisson
bracket, it follows that the standard Euclidean measure

µ0 = da1 ∧ da2 ∧ · · · ∧ dan (6.21)

is an invariant measure.

– If K is a first integral and m is the density of an invariant measure, then from the Leibniz
rule (6.3) it follows that

m̃ := f(K)m (6.22)

is the density of another invariant measure for every scalar function f ∈ C∞(M).

In all the examples we analyse in this thesis, all the Hamiltonian vector fields are divergence free, so
we will be allowed to consider the Generalized Gibbs ensemble with µ = µ0 the Euclidean measure
in (6.21).

6.2 Laguerre β-ensemble and the exponential Toda lattice

In this section, we introduce an integrable model that we call exponential Toda lattice, since it
resembles the well-know Toda lattice. We construct the Lax pair for this system, and we define its
Generalized Gibbs measure. Finally, we compute the mean density of states of the Lax matrix.

The exponential Toda lattice is the Hamiltonian system on M = R2N with canonical Poisson
bracket described by the Hamiltonian

HE(p,q) =

N∑
j=1

e−pj +

N∑
j=1

eqj−qj+1 , pj , qj ∈ R . (6.23)

We consider periodic boundary conditions

qj+N = qj + ∆, pj+N = pj , ∀ j ∈ Z, (6.24)

and ∆ ≥ 0 is an arbitrary constant. The equations of motion are given in Hamiltonian form as

q̇j =
∂HE

∂pj
= −e−pj ,

ṗj = −∂HE

∂qj
= eqj−1−qj − eqj−qj+1 .

(6.25)
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The system possesses two trivial constants of motion,

H0(p,q) =

N∑
j=1

(qj − qj+1), H1(p,q) =

N∑
j=1

pj , (6.26)

the first one due to periodicity, the second one due to the translational invariance of the Hamiltonian
(6.23). In order to obtain a Lax pair for this system we introduce, in the spirit of Flaschka and
Manakov [82, 83, 132], the variables

xj = e−
pj
2 , yj = e

qj−qj+1
2 = e−

rj
2 , rj = qj+1 − qj , j = 1, . . . , N, (6.27)

where we notice that
∏N

j=1 yj = e−
∆
2 . In these variables, the Hamiltonian (6.23) and the constants

of motion (6.26) transform into

HE(x,y) =

N∑
j=1

(x2j + y2j ), H0(x,y) = 2

N∑
j=1

log yj , H1(x,y) = −2

N∑
j=1

log xj . (6.28)

The Hamilton’s equations (6.25) become

ẋj =
xj
2

(
y2j − y2j−1

)
, ẏj =

yj
2

(
x2j+1 − x2j

)
, j = 1, . . . , N, (6.29)

where xN+1 = x1, y0 = yN .
One can explicitly construct a Lax pair for this system. Let us introduce the matrix Er,s,

defined as (Er,s)ij = δirδ
j
s. Set

L =
N∑
j=1

(x2j + y2j−1)Ej,j +
N∑
j=1

xjyj(Ej,j+1 + Ej+1,j), (6.30)

A =
N∑
j=1

xjyj
2

(Ej,j+1 − Ej+1,j), (6.31)

where, accounting for periodic boundary conditions, indices are taken modulo N , so that Ei,j+N =
Ei+N,j = Ei,j for all i, j ∈ Z. For example, the matrix L in (6.30) has the explicit form

L =



x21 + y2N x1y1 xNyN
x1y1 x22 + y21 x2y2

. . .
. . .

. . .

. . .
. . . xN−1yN−1

xNyN xN−1yN−1 x2N + y2N−1

 . (6.32)

The system of equations (6.29) then admits the Lax representation

L̇ = [A,L]. (6.33)

Hence, the quantities Hm = Tr
(
Lm−1

)
, m = 2, . . . , N + 1 are constants of motion as well as the

eigenvalues of L. For the exponential Toda lattice, we define the generalized Gibbs ensemble as

µET =
1

ZE
N (β, η, θ)

exp (−βHE + θH0 − ηH1) drdp , (6.34)
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where β, η, θ > 0, the Hamiltonians HE , H0 and H1 are defined in (6.23) and (6.26) respectively, ZE
N

is the normalization constant, dr = dr1 . . . drN and analogously for dp. We notice that according
to this measure, all the variables are independent, moreover all pj are identically distributed, and
so are the rj . After introducing the variables (r,p)→ (x,y), the previous measure turns into

µET =
1

ZHE
N (β, η, θ)

N∏
j=1

x2η−1
j e−βx2

j dxj

N∏
j=1

y2θ−1
j e−βy2j dyj . (6.35)

Let χ2α be the chi-distribution, defined by its density

f2α(r) =
r2α−1e−

r2

2

2α−1Γ(α)
, r ∈ R+, (6.36)

where α > 0. The variables xj and yj in the Gibbs measure (6.35) are independent random variables
with scaled chi-distribution, respectively f2η(

√
2βxj)

√
2βdxj and f2θ(

√
2βyj)

√
2βdyj .

The Lax matrix L in (6.32) becomes a random matrix when the entries are sampled according
to (6.35). Such random matrix can be linked to the so-called Laguerre α-ensemble [135]. The
connection is obtained noticing that the matrix L admits the following decomposition

L = BB⊺, B =
N∑
j=1

xjEj,j +
N∑
j=1

yjEj+1,j , (6.37)

where B⊺ is the matrix transpose. On the other hand, the Laguerre α-ensemble is given by the set
of matrices Lα,γ = Bα,γ(Bα,γ)⊺, where Bα,γ ∈ Mat(N ×M), M ≥ N , and

Bα,γ =
1√
2


x1
y1 x2

. . .
. . .

yN−1 xN

0N×(M−N)

 , (6.38)

here 0N×(M−N) is the zero matrix of dimension N × (M −N). The variables xn, yn are distributed
according to chi-distribution

xn ∼ χ 2α
γ

n = 1, . . . , N, (6.39)

yn ∼ χ2α n = 1, . . . , N − 1. (6.40)

Thus, the following entry wise measure on the matrices Bα,γ can be defined,

µBα,γ =
1(

2
α
γ
−1

Γ(αγ )
)N

(2α−1Γ(α))N−1

N∏
j=1

x
2α
γ
−1

j e−
x2j
2 dxj

N−1∏
j=1

y2α−1
j e−

y2j
2 dyj . (6.41)

We observe that the matrix B in (6.37) has the same form of Bα,γ in (6.39), with the addition
of the corner element yNE1,N . Furthermore, the rescaling of the variables (xj , yj) 7→ 1√

2β
(xj , yj) in

(6.35), amounts to the matrix rescaling B 7→ 1√
2β
B, and comparing with (6.41) we see that 1√

2β
B

is a rank one perturbation of the matrix Bθ, θ
η
.
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We are interested in studying the density of states νET for the Lax matrix L when the entries
are distributed according to the Gibbs measure µET in (6.35). The density of states νET is obtained
from the weak convergence in L1(R) of the empirical measure of the Lax matrix L, namely

1

N

N∑
j=1

δλj

N→∞−−−−⇀ νET , (6.42)

where λj are the eigenvalues of L and δx is the Dirac delta function centred at x.
In order to study the density of states of the Exponential Toda lattice, we recall the following

result proved in [135].

Theorem 6.2.1 (cf. [135], Theorem 1.1). Consider the matrix Lα,γ = Bα,γB
⊺
α,γ distributed ac-

cording to µBα,γ in (6.41). Then, its mean density of states νLα,γ takes the form

νLα,γ = ∂α (αµα,γ(x)) dx , x ≥ 0, (6.43)

where

µα,γ(x) :=
1

Γ(α+ 1)Γ
(

1 + α
γ + α

) x
α
γ e−x∣∣∣ψ (α,−α
γ ;xe−iπ

) ∣∣∣2 , x ≥ 0 , (6.44)

here ψ(v, w; z) is the Tricomi’s confluent hypergeometric function [5].

In view of Theorem 6.2.1 and the previous discussion we deduce.

Corollary 6.2.2. Consider the Lax matrix L = BB⊺ in (6.37) of the exponential Toda lattice with
Hamiltonian (6.23) and endow the entries of the matrix B in (6.37) with the Gibbs measure µET

(6.35). Then, the density of states νET of the Lax matrix L = BB⊺ takes the form

νET = β∂α(αµα,γ(βx))|
α=θ,γ= θ

η

dx, x ≥ 0 , (6.45)

where the measure µα,γ is defined in (6.44).

Proof. First, we notice that by virtue of general theory of Hermitian matrices, see [16, Theorem
A.43], we can restrict to the case yN = 0 in (6.35). As observed above, performing the change of
variables (xj , yj) 7→ 1√

2β
(xj , yj), which amounts to rescale B 7→ 1√

2β
B, one has that the matrix

entries of 1√
2β
B are distributed as the matrix entries of Bθ, θ

η
. Applying Theorem 6.2.1 we obtain

the claim.

Parameter Limit

In this section, we examine the low-temperature limit of the Hamiltonian system (6.23). Namely,
we want to compute the eigenvalues of the Lax matrix L in (6.30) in the limit β, θ, η →∞, in such
a way that

η = η̃β, θ = θ̃β,

where η̃ and θ̃ are in compact sets of R+.



CHAPTER 6. HERMITIAN LAX SYSTEMS 95

Since all xj and yj are independent random variables, we just have to consider the weak limit
of the rescaled chi-distributions, respectively

f2η̃β(
√

2βx)
√

2βdx, f2θ̃β(
√

2βy)
√

2βdy .

We explicitly work out one of the cases above.
We consider a continuous and bounded function h : R+ → R and evaluate the limit

lim
β→∞

∫ ∞

0
h(x)f2ηβ(

√
2βx)

√
2βdx = lim

β→∞

∫∞
0 h(x)eβ(2η̃ log x−x2)dx∫∞

0 x2η̃βe−βx2dx
= h

(√
η̃
)
. (6.46)

The last identity has been obtained by applying the Laplace method (see [138]) and observing that
the minimizer of the term 2η̃ log(x)− x2 in the exponent of the integral is x0 =

√
η̃.

As a consequence, we conclude that xj ⇀
√
η̃ and yj ⇀

√
θ̃, j = 1, . . . , N as β → ∞, where

with ⇀ we denote weak convergence. The previous limit implies that the measure νET in (6.45)
converges, in the low temperature limit, to the density of states of the matrix L∞

L∞ =



η̃ + θ̃

√
η̃θ̃

√
η̃θ̃√

η̃θ̃ η̃ + θ̃

√
η̃θ̃

. . .
. . .

. . .

. . .
. . .

√
η̃θ̃√

η̃θ̃

√
η̃θ̃ η̃ + θ̃


. (6.47)

Indeed, the fact that L is tridiagonal with iid entries along the diagonals, implies its k-th
moment depends on a multiple of k number of variables only; specifically looking back at the Lax
matrix L in (6.32)

〈
tr
(
Lk
)〉

=

〈
N∑
j=1

(
Lk
)
jj

〉
= N ·

〈(
Lk
)
11

〉
=: N · ⟨f (xN−k, . . . , xN+k; yN−k, . . . , yN+k)⟩ , (6.48)

for some function f(·) of its entries. Then, passing to the density of states (6.42) and renaming the
iid variables, the scaling factor N identically cancels out and moments converge,

lim
N→∞

1

N

〈
tr (Lk)

〉
= ⟨f (x1, . . . , x2k; y1, . . . , y2k)⟩ . (6.49)

The eigenvalues being functions of moments, density of states converges as well. In particular, this
also shows that the two limit commute in taking the density of states at low temperature,

lim
N→∞

lim
β→∞

1

N

N∑
j=1

δλj
= lim

β→∞
lim

N→∞

1

N

N∑
j=1

δλj
= ν∞ , (6.50)

since the limits can be passed directly to the variables xi, yi.
The matrix L∞ is a circulant matrix, so its eigenvalues can be computed explicitly [103] as

λj = η̃ + θ̃ + 2

√
η̃θ̃ cos

(
2π

j

N

)
, j = 1, . . . , N . (6.51)
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Then, from the explicit expression (6.51), it follows that the density of states of L∞ is

νL∞ =
1

2π

dx√
(c+ − x)(x− c−)

1(c−,c+), c± = (
√
η̃ ±

√
θ̃)2. (6.52)

here 1(c−,c+) is the indicator function of the set (c−, c+). Thus, we proved the following result.

Proposition 6.2.3. Consider the random Lax matrix L in (6.30) sampled from the Gibbs ensemble
µET (6.35) of the Exponential Toda lattice (6.29). The density of states of the matrix L in the low-
temperature limit, i.e. when β, θ, η → ∞ in such a way that η = η̃β, θ = θ̃β, with η̃, θ̃ in compact
subsets of R+, is the hard edge distribution given by (6.52), namely an arcsine distribution.

6.3 Volterra lattice

The Volterra lattice, also known as the discrete KdV equation, describes the motion of N particles
on the line with equations

ȧj = aj (aj+1 − aj−1) , j = 1, . . . , N. (6.53)

It was originally introduced by Kac and Van Moerbeke in [122] to study population evolution in a
hierarchical system of competing species. It was first solved by Kac and van Moerbeke in [10], using
a discrete version of inverse scattering due to Flaschka [83]. Equations (6.53) can be considered as
a finite-dimensional approximation of the Korteweg–de Vries equation.

The phase space is RN
+ and we consider periodic boundary conditions aj = aj+N for all j ∈ Z.

The Volterra lattice is a reduction of the second flow of the Toda lattice [123]. Indeed, the latter is
described by the dynamical system

ȧj = aj
(
b2j+1 − b2j + aj+1 − aj−1

)
, j = 1, . . . , N, (6.54)

ḃj = aj(bj+1 + bj)− aj−1(bj + bj−1), j = 1, . . . , N, (6.55)

and equations (6.53) are recovered just by setting bj ≡ 0. The Hamiltonian structure of the
equations follows from the one of the Toda lattice. On the phase space RN

+ we introduce the
Poisson bracket

{aj , ai}Volt = ajai(δi,j+1 − δi,j−1) (6.56)

and the Hamiltonian H1 =
∑N

j=1 aj so that the equations of motion (6.53) can be written in the
Hamiltonian form

ȧj = {aj , H1}Volt . (6.57)

An elementary constant of motion for the system is H0 =
∏N

j=1 aj that is independent of H1.
The Volterra lattice is a completely integrable system, and it admits several equivalent Lax

representations, see e.g. [123, 141]. The classical one reads

L̇1 = [A1, L1] , (6.58)

where

L1 =
N∑
j=1

ajEj+1,j + Ej,j+1,

A1 =

N∑
j=1

(aj + aj+1)Ej,j + Ej,j+2 ,

(6.59)
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where we recall that the matrix Er,s is defined as (Er,s)ij = δirδ
j
s and Ej+N,i = Ej,i+N = Ej,i. There

exists also a symmetric formulation due to Moser [141],

L̇2 = [A2, L2]

L2 =
N∑
j=1

√
aj(Ej,j+1 + Ej+1,j) ,

A2 =
N∑
j=1

√
ajaj+1(Ej,j+2 − Ej+2,j) ,

(6.60)

which assumes that all aj > 0.
Furthermore, we point out that there exists also an antisymmetric formulation for this Lax pair,

indeed a straightforward computation yields

Proposition 6.3.1. Let aj > 0 for all j = 1, . . . , N . Then, the dynamical system (6.53) admits
an antisymmetric Lax matrix L3 with companion matrix A3, namely the equations of motion are
equivalent to L̇3 = [A3, L3] with

L3 =

N∑
j=1

√
aj(Ej,j+1 − Ej+1,j), (6.61)

A3 =
N∑
j=1

√
ajaj+1(Ej+2,j − Ej,j+2). (6.62)

Gibbs Ensemble

We introduce a Gibbs ensemble for the Volterra lattice (6.53) by observing that its vector field
fj = aj (aj+1 − aj−1) is divergence free, due to the periodic boundary conditions. Therefore, an

invariant measure can be obtained from (6.22). We use H0 =
∏N

j=1 aj , and H1 =
∑N

j=1 aj as
constants of motion to construct the invariant measure

µVolt(a) =
1

ZVolt
N (β, η)

e−βH1+(η−1) logH0da, β, η > 0, (6.63)

where

ZVolt
N (β, η) =

(
Γ (η)

βη

)N

<∞, (6.64)

and Γ (η) is the Euler Gamma function [58, §5]. We notice that according to this measure, all the
variables are independent and identically distributed (i.i.d.).

Next we want to characterize the density of states of the antisymmetric Lax L3 of the Volterra
lattice given in Proposition 6.3.1. Among the three Lax matrices of the Volterra lattice, the matrix
L3 is particularly useful since it allows to connect the Volterra Lattice with a specific α-ensemble,
namely the antisymmetric Gaussian α-ensemble. The antisymmetric Gaussian α-ensemble, see [86],
is the family of random antisymmetric tridiagonal matrices

Lα =


0 y1
−y1 0 y2

. . .
. . .

. . .

−yN−2 0 yN−1

−yN−1 0

 , (6.65)
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where yi are i.i.d. random variables with chi-distribution with density

f2α(y) =
y2α−1e−y2

Γ(α)
, y ∈ R+. (6.66)

Even though we use a different normalization of the chi-distribution with respect to Section 6.2, we
keep the same notation f2α(y) for the density. This distribution induces a measure on the entries
of the matrix Lα, namely

µLα =

∏N−1
i=1 y2α−1

i e−y2i 1R+(yi)dy

Γ(α)N−1
. (6.67)

In [86] the authors studied this matrix ensemble in connection with the Antisymmetric Gaussian β-
ensemble introduced by Dumitriu and Forrester [70] in the high temperature regime, and computed
explicitly its density of states νLα(x), defined as

1

N

N∑
j=1

δIm (λj)
N→∞−−−−⇀ νLα(x) , (6.68)

where λj are the eigenvalues of Lα. Since the matrix Lα is antisymmetric with real entries, its
eigenvalues are purely imaginary numbers.

Theorem 6.3.2. [86] The density of states of the random matrix Lα in (6.65), is explicitly given
by

νLα(x) = ∂α(αθα(x))dx , (6.69)

where
θα(x) =

∣∣Γ(α)W−α+1/2,0(−y)
∣∣−2

, (6.70)

here Wk,µ(z) is the Whittaker function [5].

We notice that performing the change of coordinates aj = x2j , the Gibbs ensemble (6.63) reads:

µVolt(x) =

∏N
j=1 x

2η−1
j e−β

∑N
j=1 x

2
j1R+(xj)dx

ZVolt
N (β, η)

, (6.71)

which, up to a rescaling xj → xj/
√
β and for the extra term xN in the probability distribution, is

exactly the distribution (6.67) of the matrix Lα. Furthermore, the matrix L3 is a 2 rank pertur-
bation of the matrix Lα. Therefore, by a corollary of [16, Theorem A.41] and Theorem 6.3.2, we
obtain the following.

Corollary 6.3.3. Consider the matrix L3 in (6.62) endowed with the Gibbs measure µVolt (6.63).
Then, the density of states of the matrix L3 is explicitly given by

νVolt(x) =
√
β∂η

(
ηθη(

√
βx)
)

dx , (6.72)

where θα(x) is given in (6.70).
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Parameter Limit

As for the case of Exponential Toda (6.29), in this section we consider the low-temperature regime
of the Volterra lattice, namely the limit η, β →∞, in such a way that η = βη̃, with η̃ in a compact
set of R+, and we compute the density of states of the matrix L3 (6.61) in this regime.

Applying the same techniques of Section 6.2, we conclude that the density of states of the matrix
L3 in the low-temperature limit coincides with the one of the matrix L∞, where

L∞ =



0
√
η̃ −

√
η̃

−
√
η̃ 0

√
η̃

. . .
. . .

. . .

. . .
. . .

√
η̃√

η̃ −
√
η̃ 0


. (6.73)

Since the matrix L∞ is circulant, we can readily compute its eigenvalues as

λj = 2i
√
η̃ sin

(
2π

j

N

)
, j = 1, . . . , N . (6.74)

From this explicit formula, it follows that the density of states of the matrix L∞ reads

νL∞ =
1

2π

1√
4η̃ − x2

1
(−2
√

η̃,2
√

η̃)
(x)dx . (6.75)

Such measure coincides with the measure νLα in the low-temperature limit. Thus, we just proved
the following.

Proposition 6.3.4. Consider the Gibbs ensemble µV olt of the Volterra lattice (6.63), in the low-
temperature limit, i.e. β, η → ∞, in such a way that η = η̃β, where η̃ is in a compact subset of
R+. Then, the density of states νVolt of the Lax matrix L3 in (6.61) converges, in this regime, to
an arcsine distribution, namely

νVolt =
1

2π

1√
4η̃ − x2

1
(−2
√

η̃,2
√

η̃)
(x)dx . (6.76)



Chapter 7

Non-Hermitian Lax systems

In this chapter we continue our pursuit in the description of Hamiltonian integrable systems with
random initial data sampled according to the associated generalized Gibbs measure. We consider:
generalizations of the Volterra lattice to short range interactions[32] , Section 7.1, the focusing
Ablowitz–Ladik lattice[2, 3], Section 7.2, and the focusing Schur flow, Section 7.3. In these cases the
corresponding random Lax matrices are not symmetric nor self-adjoint and we derive numerically
their density of states that has support in the complex plane. Interesting patterns of the density
of states emerge as we vary the parameters of the system. For all the systems under analysis we
are still able to compute the density of states in the low-temperature limit, namely in the ground
state. The background material is in Section 6.1.

7.1 Generalization of the Volterra lattice: the INB k-lattices

The Volterra lattice (6.53) can be generalized in a variety of ways. The most natural ones are two
families of lattices described in [32] (see also [31, 116, 145] ) which include short range interactions,

ȧi = ai

 k∑
j=1

ai+j −
k∑

j=1

ai−j

 , i = 1, . . . , N, (7.1)

ȧi = ai

 k∏
j=1

ai+j −
k∏

j=1

ai−j

 , i = 1, . . . , N, (7.2)

where k ∈ N, N ≥ k, and the periodicity condition aj+N = aj holds.
These two families are called the additive Itoh–Narita–Bogoyavleskii (INB) k-lattice and the mul-
tiplicative Itoh–Narita–Bogoyavleskii (INB) k-lattice respectively. Setting k = 1, we recover from
both lattices the Volterra one (6.53). Further generalizations of the INB lattice were recently
considered in [76].

A crucial difference in the two models is that in the additive lattice (7.1) the interaction is on
arbitrary number of points, but the non-linearity is still quadratic like the original Volterra lattice
(6.53); on the other hand , the multiplicative lattice (7.2) admits non-linearity of arbitrary order.
Moreover, both families admit the KdV equation as continuum limits, see [32].

As mentioned earlier, the additive INB k-lattice is an integrable system for all k ∈ N and i ∈ Z,

100
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since they all admit a Lax pair formulation (6.10). For the additive INB lattice (7.1), it reads

L(+,k) =
N∑
i=1

(ai+kEi+k,i + Ei,i+1) , (7.3)

A(+,k) =
N∑
i=1

 k∑
j=0

ai+j

Ei,i + Ei,i+k+1 , (7.4)

we recall that we are always considering periodic boundary conditions, so for all j ∈ Z, aj+N = aj
and Ei,j+N = Ei+N,j = Ei,j . The constants of motion obtained through this Lax pair are in
involution with respect to the Poisson bracket

{aj , ai}(+,k) = ajai

(
k∑

s=1

δj+s,i −
k∑

s=1

δj−s,i

)
. (7.5)

Then, the additive INB k-lattice (7.1) can be written as

ȧi = {ai, H1}(+,k) , (7.6)

where the Hamiltonian function H1 =
∑N

j=1 aj is the same as in equation (6.57). In the same

way, it is possible to prove that the function H0 =
∏N

j=1 aj is a first integral for the additive INB
k-lattice (7.1) as well.

Similarly, the multiplicative INB k-lattices can be endowed with a Lax Pair for all k ∈ N,
therefore it is another example of integrable systems. Specifically, for the periodic case we presented
in equation (7.2), the Lax pair reads

L(×,k) =
N∑
i=1

(aiEi,i+1 + Ei+k,i) , (7.7)

A(×,k) =
N∑
i=1

 k∏
j=0

ai+j

Ei,i+k+1 . (7.8)

We notice that both H1 =
∑N

j=1 aj , and H0 =
∏N

j=1 aj are constants of motion for these
systems, for all k ∈ N.

Remark 7.1.1. For fixed k, there exists a transformation that maps the multiplicative INB k-lattice
to the additive one. Namely, consider the system (7.2) and define the new set of variables

bi := ai · · · · · ai+k−1, i = 1, . . . , N, (7.9)

where the indices are taken modulo N . Then, it is immediate to see that

ȧi = ai (bi+1 − bi+k−1) , i = 1, . . . , N, (7.10)

which in turn, due to telescopic summations, implies

ḃi = bi

 k∑
j=1

bi+j −
k∑

j=1

bi−j

 , i = 1, . . . , N,

which is (7.1). The transformation (7.9) is invertible only when k and N are co-prime, for a more
detailed discussion see [32].
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Gibbs Ensemble

We want to introduce an invariant measure for the INB lattices ((7.1)) and (7.2). Since H0 =∏N
j=1 aj and H1 =

∑N
j=1 aj are constants of motion for all the INB lattices, and both systems are

divergence free, in view of (6.22) we can consider as invariant measure the same one that we used
for the Volterra lattice, namely

µINB (a; η, β) =
e−βH1+(η−1) logH0da∫

RN
+
e−βH1+(η−1) logH0da

=

∏N
j=1 a

η−1
j e−β

∑N
j=1 ajda

ZINB
N (β, η)

, β, η > 0, (7.11)

where the normalization constant ZINB
N (β, η) has the value given in equation (6.64).

Unlike the Lax matrix of the Volterra lattice, the Lax matrices of these generalizations lack of a
known random matrix model to compare with. For this reason, we present numerical investigations
of the density of states for these random Lax matrices for several values of the parameters k, η and
β, see Figures 7.2-7.3. We notice that, for both the additive lattice and the multiplicative one,
the density of states seems to possess a discrete rotational symmetry. In this spirit, we prove the
following

Lemma 7.1.2. Fix ℓ ∈ N. Then for N large enough

Tr
(

(L(+,k))ℓ
)

= Tr
(

(L(×,k))ℓ
)

= 0 , (7.12)

if ℓ is not an integer multiple of k + 1.

Proof. We prove the statement for the additive case, the proof in the multiplicative one is analogous.
The main idea is to relate each addendum appearing in Tr

(
(L(+,k))ℓ

)
to a specific path in the

Z2 plane, and prove that such a path exists if and only if ℓ = m(k + 1) for some m ∈ N. In
particular, we can focus on the first element of the diagonal of (L(+,k))ℓ, write (L(+,k))ℓ(1, 1), since
all the other ones can be recovered shifting the indices. First, we write (L(+,k))ℓ(1, 1) as

(L(+,k))ℓ(1, 1) =
N∑

i1,...,iℓ−1=1

L(+,k)(1, i1)L
(+,k)(i1, i2) · · ·L(+,k)(iℓ−1, 1) . (7.13)

We notice that, due to the structure of L(+,k), if L(+,k)(1, i1) · · ·L(+,k)(iℓ−1, 1) is not zero, then
either is+1 = is + 1 or is+1 = is− k modulo N . Now, consider paths in the Z2 plane from the point
(0, 0) to (ℓ, 0), such that the only permitted steps are the up step (1, 1) and the down step (1,−k).
Since these paths resemble the classical Dyck paths, we call them (1, k)-Dyck paths of length ℓ.
Given a non-zero element of the product in (7.13), we can construct the corresponding path in the
following way. We start at (0, 0), then if |i1 − 1| = 1 we make an up step of height 1, otherwise we
make a down step of height k, and so on.

For each path, let n be the number of up steps and m the number of down steps, then

m+ n = ℓ , n−mk = 0 , (7.14)

since there is a total of ℓ step, and the path has to go back to height 0. Thus, we deduce that

m(k + 1) = ℓ , (7.15)

and the claim is proven.
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Figure 7.1: Example of (1, 2)-Dick path of length 12

Remark 7.1.3. The previous result implies that the only non-zero moments of the densities of
states νINB,+,k, νINB,×,k, provided they exist, are the ones which are an integer multiple of k + 1.

Another interesting feature of these measures is that their supports seem to be exponentially
localized to one dimensional contours. Specifically, it appears that the supports are the two hy-
potrochoids γ+,k, γ×,k, respectively

γ+,k(t, η, β) = e−it +
η

β
eikt , γ×,k(t, η, β) =

η

β
e−it + eikt , t ∈ [0; 2π) . (7.16)

This feature is highlighted in Figures 7.2-7.3, where we plot the empirical density of states and
the corresponding hypotrochoid. This characteristic is important since this type of curves are also
related to the density of some cyclic digraph, see [6], and may serve as a link between these two
topics.

All these observations lead us to formulate the following conjecture

Conjecture 1. Consider the two matrices L(+,k), L(×,k) as in (7.3), (7.7) both endowed with the

probability distribution µINB (7.11). Then, the densities of states νγ,βINB,+,k and νγ,βINB,×,k exist, and
have a discrete rotational symmetry, namely

νγ,βINB+,k(dz) = νγ,βINB+,k

(
e

2πi
k+1 dz

)
, νγ,βINB×,k(dz) = νγ,βINB×,k

(
e

2πi
k+1 dz

)
. (7.17)

Moreover, the densities are exponentially localized in a neighbourhood of the two hypotrochoids
γ+,k(t, η, β) and γ×,k(t, η, β) in (7.16) respectively.

Parameter limit

As in the previous cases, although we are not able to give an explicit formula for the density of
states of the INB lattices for general β, η, we can characterize this measure in the low-temperature
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Figure 7.2: Eigenvalues of INB additive lattice for k = 2 (left) and k = 5 (right). N = 1000 and
6000 trials performed, in red the corresponding hypotrochoid γ+,k defined in equation (7.16). We
observe that the examples on the left panel correspond to the case η̃ = η

β = 1
k that in the limiting

case η, β →∞ gives the hard edge density of states in (7.21) where the hard edges are the cusps of
the hypotrochoid. This observation explains the very high peaks located at the cusps.

limit. Specifically, we consider the limit as β, η → ∞ in such a way that η = η̃β, with η̃ in a
compact set of R+, and we compute the density of states of the matrices L(+,k), L(×,k), endowed
with the probability inherited from µINB (7.11), in this limit.

The procedure is the same as in the case of Volterra (see Section 6.3). Indeed, following the same
line, we can conclude that the densities of states ν∞INB,+,k and ν∞INB,×,k coincide with the densities

of L(+) and L(×) respectively, where

L(+,k) =

N∑
i=1

(η̃Ei+k,i + Ei,i+1) , L(×,k) =

N∑
i=1

(Ei+k,i + η̃Ei,i+1) . (7.18)

We notice that both matrices are circulant, thus we can compute their eigenvalues explicitly as

λ
(+,k)
j = e−2πi j

N + η̃e2πi
jk
N , λ

(×,k)
j = η̃e−2πi j

N + e2πi
jk
N , (7.19)

here j = 1, . . . , N . Thus, in the large N limit, we deduce that the support of the measures ν∞INB+,k

and ν∞INB×,k are the hypotrochoids

γ+,k(t, η̃, 1) = e−it + η̃eikt , γ×,k(t, η̃, 1) = η̃e−it + eikt , t ∈ [0; 2π) , (7.20)
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Figure 7.3: Eigenvalues of INB multiplicative lattice for k = 2 (left) and k = 5 (right). N = 1000
and 6000 trials performed, in red the corresponding hypotrochoid γ×,k

Figure 7.4: Eigenvalues of INB multiplicative and additive lattice for k = 5, N = 1000 and 6000
trials performed, in red the corresponding hypotrochoid γ×,k, γ+,k
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and the limiting eigenvalue densities are

ν∞INB+,k =
|dz|

2π
√

1 + η̃2k2 − k(|z|2 − 1− η̃2)
, z ∈ γ+,k ,

ν∞INB×,k =
|dz|

2π
√
η̃2 + k2 − k(|z|2 − 1− η̃2)

, z ∈ γ×,k.

(7.21)

We summarize these results in the following Proposition.

Proposition 7.1.4. The densities of states of the Lax matrices L(+,k) and L(×,k) in (7.3) and (7.7)
endowed with the Gibbs measure µINB in (7.11), in the low temperature limit, i.e. when η, β →∞,
in such a way that η = η̃β, with η̃ in a compact set of R+, are given respectively by ν∞INB+,k and
ν∞INB×,k in (7.21).

Remark 7.1.5. When the parameters satisfy the relation η̃k < 1, the curve γ+,k(t, η̃, 1) is not
self-intersecting, while for η̃k > 1 the curve is self-intersecting. For η̃k = 1 it has cusp singularities
[60]. The limiting shape of the support as η̃ → 0 is a circle.
The same considerations are true for the curve γ×,k(t, η̃) upon substitution η̃ 7→ 1/η̃. We also
observe that the density of states ν∞INB+,k ( ν∞INB×,k) in equation (7.21) is a hard-edge distribution

for η̃ = 1
k (η̃ = k) and the hard edges correspond to the cusps of the curve γ+,k(t, η̃) ( γ×,k(t, η̃)).

7.2 The focusing Ablowitz-Ladik lattice

The focusing Ablowitz-Ladik lattice is the following system of spatial discrete differential equations

iȧj + aj+1 + aj−1 − 2aj + |aj |2(aj−1 + aj+1) = 0 , (7.22)

where aj ∈ C, j = 1, . . . , N , N ≥ 3, and we consider periodic boundary conditions aj+N = aj
for all j ∈ Z. This equation was introduced by Ablowitz and Ladik [2, 3], by searching integrable
spatial discretization of the cubic non-linear Schrödinger Equation (NLS) for the complex function
ψ(x, t), x ∈ R, t ∈ R+

i∂tψ(x, t) + ∂2xψ(x, t) + 2|ψ(x, t)|2ψ(x, t) = 0 , (7.23)

In contrast with what happens in the defocusing case, the particles (a1, . . . , aN ) are free to explore
the whole CN , which is the phase space of the system.

On the space C∞(CN ) we consider the Poisson bracket [74, 88]

{f, g} = i
N∑
j=1

ρ2j

(
∂f

∂aj

∂g

∂aj
− ∂f

∂aj

∂g

∂aj

)
, f, g ∈ C∞(CN ). (7.24)

We notice that the phase shift aj(t) → e−2itaj(t) transforms the AL lattice (7.22) into the
equation

ȧj = i ρ2j (aj+1 + aj−1), ρj =
√

1 + |aj |2, (7.25)

which we call the reduced AL equation. We remark that the quantity H0 = 2 ln
(∏N

j=1 ρ
2
j

)
is the

generator of the shift aj(t)→ e−2itaj(t), while H1 = −K(1) −K(1) with

K(1) :=

N∑
j=1

ajaj+1, (7.26)
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generates the flow (7.25). Therefore, we can rewrite the AL equation as

ȧj = {aj , HAL} , HAL = H0 +H1 . (7.27)

Moreover, it is straightforward to verify that {H0, H1} = 0. The Poisson bracket induces the
symplectic form

ω = i
N∑
j=1

1

ρ2j
daj ∧ daj , ρj =

√
1 + |aj |2 , (7.28)

that is invariant under the evolution generated by the Hamiltonians H0 and H1. Therefore, the
volume form

ωN = ω ∧ · · · ∧ ω,

is also invariant. In view of these properties, we can define the Gibbs ensemble for the focusing
Ablowitz-Ladik lattice on the phase space CN as

µAL =
1

ZAL
N (β)

e
β
2
H0ωN =

1

ZAL
N (β)

N∏
j=1

(
1 + |aj |2

)−β−1
d2a , β > 0 , (7.29)

where a = (a1, . . . , aN ), d2a =
∏N

j=1(idaj ∧ daj) and ZAL
N (β) is the normalization constant of the

system. We notice that according to this measure, all the variables are i.i.d.

Remark 7.2.1. The measure with density exp(−βHAL) and β > 0 is not bounded nor normalizable
on the whole phase space. For this reason, we have defined the Gibbs ensemble as in (7.29).
Furthemore, we observe that the measure (7.29) has a finite number of moments, which implies
that the corresponding density of states of the Lax matrix (see below), if it exists, would have a
finite number of moments.

The focusing AL lattice is a complete integrable system. Indeed it admits a Lax representation,
first obtained by Ablowitz and Ladik from the discretization of the Zakharov-Shabat Lax pair for the
focusing non-linear Schrödinger equation [168]. Gesztesy, Holden, Michor, and Teschl [89] found a
different Lax pair for the infinite case of focusing AL lattice, and for its general hierarchy. To adapt
their construction, we double the size of the lattice according to the periodic boundary conditions,
thus we consider a chain of 2N particles a1, . . . , a2N such that aj = aj+N for j = 1, . . . , N . Define
the 2× 2 matrix Ξj

Ξj =

(
−aj ρj
ρj −aj

)
, j = 1, . . . , 2N , (7.30)

and the 2N × 2N matrices

M =



−a2N ρ2N
Ξ2

Ξ4

. . .

Ξ2N−2

ρ2N −a2N


, L =


Ξ1

Ξ3

. . .

Ξ2N−1

 . (7.31)

Now let us define the Lax matrix
E = LM , (7.32)
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that has the structure of a 5-band diagonal matrix

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

. . .
. . .

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


.

The N -periodic equation (7.25) is equivalent to the following Lax equation for the matrix E ,

Ė = [A, E ] , (7.33)

where

A =
i

2
(E+ − E− − E−1

+ + E−1
− ) , (7.34)

where the two projections M+, M− are defined for a 2N × 2N matrix as

M+ =


Mℓ,j , ℓ < j ≤ ℓ+N

Mℓ,j , ℓ > j +N

0 otherwise

, M− =


Mℓ,j , j < ℓ ≤ j +N

Mℓ,j , j > ℓ+N

0 otherwise

. (7.35)

We notice that the Lax matrix E has a similar structure to the one of the defocusing AL lattice
obtained by Nenciu, and Simon [146, 155]. The crucial difference is that while for the defocusing
AL lattice the blocks Ξj are unitary matrices, for the focusing lattice this is not the case since

ΞjΞ
†
j ̸= I2 where I2 =

(
1 0
0 1

)
and † stands for hermitian conjugate.

The measure µAL induces a probability distribution on the entries of the matrix E , thus it
becomes a random matrix. As in the previous cases, one would like to connect the density of states
for this random matrix to the density of states of some β-ensemble in the high temperature regime,
but, as in the case of the INB lattices, we lack of a matrix representation of some β-ensemble with
eigenvalues supported on the plane.

We make the following observations. The matrix Ξj (7.30) is complex symmetric, and it can be
factorized in the form

Ξj = Uj

 aj

|aj |
(
|aj |+
√

1+|aj |2
) 0

0 − aj
|aj |(|aj |+

√
1 + |aj |2)

Uj (7.36)

where the matrices Uj =

( aj√
2|aj |

1√
2

1√
2

− aj√
2|aj |

)
are unitary, U−1

j = U †
j . Thus defining the matrices
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M̃ =



− a2N√
2|a2N |

1√
2

U2

U4

. . .

U2N−2
1√
2

a2N√
2|a2N |


, L̃ =


U1

U3

. . .

U2N−1

 , (7.37)

we can rewrite the Lax matrix E (7.32) as

E = L̃ΛoddL̃M̃ΛevenM̃ , (7.38)

where, defining cj :=
aj

|aj |
(
|aj |+
√

1+|aj |2
) , the matrices Λodd and Λeven are given by

Λodd = diag

(
c1,−

1

c1
, c3,−

1

c3
, . . . , c2N−1,−

1

c2N−1

)
Λeven = diag

(
− 1

c2N
, c2,−

1

c2
, . . . , c2N

)
.

(7.39)

Since we are interested in the distribution of the eigenvalues of E , it follows from the factorization
(7.38) that we can also consider the matrix ΛoddẼΛevenẼ⊺, where Ẽ = L̃M̃. The eigenvalues of
Λeven,Λodd come in pairs, such that if λ is an eigenvalue, then also −λ−1 is an eigenvalue. The
matrix Ẽ is a periodic CMV matrix [44], thus its eigenvalues are on the unit circle.

Thus, we are in a similar setting considered in [105, 162, 163]. Indeed in [162] the authors
derived the eigenvalues distribution of U

√
D where U is a Haar distributed unitary matrix and

D is a fixed diagonal matrix with positive eigenvalues. They show that the density of states is
rotational invariant and it is supported on a single ring whose radii r1 < r2 satisfy the constraint
dmin < r1 < r2 < dmax, where dmin and dmax are the minimum and maximum eigenvalues of D. In
[105], the authors considered a similar problem, namely the characterization of the density of states
for a matrix of the form UTV , where U, V are independent unitary matrices Haar distributed, and
T is a real diagonal matrix independent of U, V . They proved, under some mild conditions, that
the density of states of the matrix UTV is radially symmetric and it is supported on a ring.

It is therefore reasonable to expect that the density of states of the random Lax matrix of the
Ablowitz-Ladik lattice is rotational invariant, but with unbounded support, indeed the eigenvalues
of Λeven,Λodd could grow to infinity.

To confirm our expectations, we perform several numerical investigations of the eigenvalues of
the random Lax matrix of the Ablowitz-Ladik lattice for various values of β (see Figures 7.5-7.6).
In Figure 7.5 the eigenvalue density is shown. As expected, the density seems to be rotational
invariant, and concentrated on a ring, exactly as in [105, 162, 163]. For this reason, we investigate
the behaviour of the modulus of the eigenvalues, see Figure 7.6. They seem to be concentrated in a
small region, but, in view of Remark 7.2.1, we expect that the tails should decay just polynomially
fast.

Parameter Limit

Despite not being able to explicitly compute the density of states for general values of β, we can
perform such an analysis in the low-temperature limit, namely when β →∞.
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Figure 7.5: Empirical densities for the focusing Ablowitz-Ladik lattice for β = 5, 10, 20, 10000 trials
per picture .
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Figure 7.6: Empirical density for the eigenvalues’ modulus for the focusing Ablowitz-Ladik lattice
for β = 5, 10, 20, 10000 trials per picture.

We notice that, according to (7.29), all the aj are independent. Hence, in order to obtain the
density of states in the low-temperature limit, we have to compute the weak limit of the density

µβ =
(1 + |z|2)−β−1dz∫
D(1 + |z|2)−β−1dz

. (7.40)

Proceeding as in the previous cases, it follows that the following limit holds for all bounded and
continuous f : D→ R:

lim
β→∞

∫
D
f(z)µβ = f(0) (7.41)

The previous limit implies that the density of states of the Ablowitz-Ladik lattice in the low
temperature limit is equal to the one of Ê = L̂M̂, where L̂, M̂ are 2N × 2N matrices

M̂ =



0 1

Ξ̃

Ξ̃
. . .

Ξ̃
1 0


, L̂ =


Ξ̃

Ξ̃
. . .

Ξ̃

 , (7.42)

and Ξ̂ is defined as the unitary matrix

Ξ̂ =

(
0 1
1 0

)
. (7.43)
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To compute the density of states for the matrix E , we notice that both M̂, and L̂ are permutation
matrices. Specifically, we identify them with the following permutations

M̂ ←→ (2N, 1)(2, 3)(4, 5) . . . (2N − 2, 2N − 1) ,

L̂ ←→ (1, 2)(3, 4)(5, 6) . . . (2N − 1, 2N) .
(7.44)

As a consequence, the matrix Ê itself corresponds to the permutation

Ê ←→ (1, 3, 5, . . . , 2N − 1)(2, 4, 6, . . . , 2N) . (7.45)

This implies that the eigenvalues of Ê are all double, and given by

λj = e2πi
j
N , j = 1, . . . , 2N .

From this explicit expression of the eigenvalues, it is straightforward to prove that

νAL =
dθ

2π
, θ ∈ [0, 2π) . (7.46)

Thus, we have proved the following

Proposition 7.2.2. Consider the Gibbs ensemble µAL (7.29) of the focusing Ablowitz-Ladik lattice
in the low-temperature limit, i.e. β → ∞. Then, the density of states νAL of the Lax matrix E
(7.32) is given by

νAL =
dθ

2π
, θ ∈ [0, 2π) . (7.47)

7.3 Schur flow

The focusing Schur flow, also known as discrete mKdV, is an integrable system deeply related to
the Ablowitz-Ladik lattice. Its equations of motion are

ȧj = ρ2j (aj+1 − aj−1) , ρj =
√

1 + |aj |2 , (7.48)

here we consider periodic boundary conditions, aj = aj+N for all j ∈ Z. Notice that if aj(0) ∈ R
for all j = 1, . . . , N , then aj(t) ∈ R for all times, implying that RN is an invariant subspace for the
dynamics.

Recalling the definition (7.26) for K(1) =
∑N

j=1 ajaj+1 and introducing the Poisson bracket

{f, g} =

N∑
j=1

ρ2j

(
∂f

∂aj

∂g

∂aj
− ∂f

∂aj

∂g

∂aj

)
, f, g ∈ C∞(CN ), (7.49)

we can rewrite the equations of motion (7.48) as

ȧj = {aj , HS} , HS = K(1) −K(1) . (7.50)
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Notice that the quantity H0 = −2 ln
(∏N

j=1 ρ
2
j

)
is a global first integral for the system. More-

over, one can deduce immediately from the equations of motion that RN is invariant for the dy-
namics. Thus, in view of the Hamiltonian representation and this invariance, we define the Gibbs
measure for the Schur flow as

µS =
1

ZS
N (β)

N∏
j=1

(
1 + a2j

)−β−1
da , aj ∈ R , (7.51)

where ZS
N (β) is the normalization constant of the system,

ZS
N (β) =

∫
RN

N∏
j=1

(
1 + a2j

)−β−1
da . (7.52)

Remark 7.3.1. Similarly to the focusing AL case, the classical Gibbs ensemble is not well-defined
on the whole phase space. Indeed, the measure with density e−βHS , β > 0 cannot be normalized on
RN .

The Schur flow is a completely integrable system since it admits a Lax formulation. Namely,
define the 2× 2 matrix Ξj

Ξj =

(
−aj ρj
ρj −aj

)
, j = 1, . . . , 2N , (7.53)

and, similarly to the Ablowitz-Ladik case, the 2N × 2N matrices

M =



−a2N ρ2N
Ξ2

Ξ4

. . .

Ξ2N−2

ρ2N −a2N


, L =


Ξ1

Ξ3

. . .

Ξ2N−1

 , (7.54)

and as in (7.32) the Lax matrix
E = LM . (7.55)

Then, the N -periodic equation (7.48) is equivalent to the following Lax equation for the matrix E :

Ė = [A, E ] , (7.56)

where

A =
1

2

(
E+ + E−1

+ − E− − E−1
−
)
, (7.57)

where the two projection +,− are defined in (7.35).
Carrying on with the approach of this article, we study the density of states νS for the matrix

E when the entries are distributed according to the measure (7.51). First, we notice that Remark
7.2.1 is valid also in the case of the focusing Schur flow. Moreover, since the variables aj are real,
we can factorize the matrices Ξj in the following way:

Ξj = U0 diag

√1 + a2j − aj ,−
1√

1 + a2j − aj

U0, U0 =
1√
2

(
1 1
1 −1

)
, (7.58)
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where we note that U−1
0 = U0, so that the above is a similarity transformation. Thus, defining

M̃ =



− 1√
2

1√
2

U0

U0

. . .

U0
1√
2

1√
2


, L̃ =


U0

U0

. . .

U0

 , (7.59)

we can rewrite the Lax matrix of the Schur flow E as

E = L̃ΛoddL̃M̃ΛevenM̃ , (7.60)

where

Λodd = diag

(√
1 + a21 − a1,−

1√
1 + a21 − a1

,
√

1 + a23 − a3, . . .

)
,

Λeven = diag

− 1√
1 + a22N − a2N

,
√

1 + a22 − a2, . . . ,
√

1 + a22N − a2N

 .

(7.61)

As in the case of the Ablowitz-Ladik lattice, since we are interested in just the distribution of the
eigenvalues of E , we can consider the matrix ΛoddẼΛevenẼ⊺, where

Ẽ = L̃M̃. (7.62)

As in the AL case, the eigenvalues of Λeven,Λodd come in pairs, such that if λ is an eigenvalue,
then also −λ−1 is an eigenvalue. The main difference with the case of the focusing AL lattice is
that in this case the matrix Ẽ is deterministic. Thus, one can be led to think that the eigenvalue
distribution of the Schur flow would be similar to the one of the AL lattice, but it is not the case.
Indeed, we perform several numerical investigations, reported in Figure 7.7, which shows that the
behaviour of the eigenvalues is different in the two situations.

We notice that a consistent part of the eigenvalues tend to stay close to the real axis, see Figure
7.7. This behaviour is also typical of the orthogonal Ginibre ensemble [72]. The main reason is
that the eigenvalues of Ẽ are not evenly spaced on the unit circle, but they are constrained to the
left semicircle, and are more dense nearby ±i (see Figure 7.8). Indeed we can give an accurate
description of the spectrum of this matrix.

More precisely, we have the following.

Proposition 7.3.2. Let Ẽ be the 2N×2N matrix defined in (7.62). Its eigenvalues are the solutions
of the quadratic equations

λ+
1

λ
+ 1 = cos

(
2πj

N

)
, j = 0, 1, . . . , N − 1, (7.63)

counting the multiplicity.
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Figure 7.7: Schur flow eigenvalue density for β = 5, 10, 20, 10000 trials.

Proof. Recall that the matrix Ẽ is defined as Ẽ = L̃M̃ where L̃ and M̃ are as in (7.59). It is a
block circulant matrix, indeed we can write

Ẽ =
1

2



E0 E1 E−1

E−1 E0 E1

. . .
. . .

. . .

. . .
. . . E1

E1 E−1 E0

 , (7.64)

with

E0 =

(
−1 1
−1 −1

)
, E−1 =

(
0 1
0 1

)
, E1 =

(
1 0
−1 0

)
. (7.65)

One can immediately check that λ = ±i are eigenvalues for Ẽ with eigenvectors

v±i = (∓i, 1,∓i, 1, . . . ,∓i, 1)⊺ . (7.66)

We now claim that, for fixed N , the remaining eigenvalues have multiplicity 2 and are the (N − 1)
solutions to Ω (λ)N = I2, where we defined

Ω (λ) =

(
λ −λ− 1

−λ− 1 λ2+2λ+2
λ

)
. (7.67)
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Such solutions are obtained by solving the equation

λ+
1

λ
+ 1 = cos

(
2πj

N

)
for j = 0, . . . ,

⌊
N

2

⌋
. (7.68)

For j = 0 the solutions to (7.68) are ±i which we already treated separately. Indeed Ω (±i) is not
diagonalizable and Ω (±i)N ̸= I2 for every N greater than 0. For any other j ∈ {1, . . . ,

⌊
N
2

⌋
}, the

solutions to (7.68) are

λ1,2 =
cos
(
2πj
N

)
− 1

2
± i

√
3 + 2 cos

(
2πj
N

)
− cos2

(
2πj
N

)
2

. (7.69)

Since both the real and imaginary part are monotone functions of j, different j′s will correspond to
different solutions. Hence, if N is odd, we will have a total of N − 1 solutions coming from (7.69);
if N is even one has N − 2 distinct solutions coming from the equation in (7.68) plus the double
solution λ = −1 obtained for j = N/2.

For a given eigenvalue λ, the corresponding independent eigenvectors are

v1 =
(

(1, 0)Ω (λ) , . . . , (1, 0)Ω (λ)N−1 , 1, 0
)⊺
, (7.70)

v2 =
(

(0, 1)Ω (λ) , . . . , (0, 1)Ω (λ)N−1 , 0, 1
)⊺

. (7.71)

Let us check the correctness of the claim. Write Ẽv1 := (w1, . . . , wN )⊺, where wj are two-dimensional

row vectors, then using the fact that Ω (λ)N = I2, one can compute for any k = 1, . . . , N ,

w⊺
k =

1

2

(
E−1 Ω (λ)−1 + E0 + E1 Ω (λ)

)
Ω (λ)k

(
1
0

)
(7.72)

=
1

2

((
λ+ 1 λ
λ+ 1 λ

)
+

(
−1 1
−1 −1

)
+

(
λ −λ− 1
−λ λ+ 1

))
Ω (λ)k

(
1
0

)
(7.73)

= λ · Ω (λ)k
(

1
0

)
, (7.74)

which shows that v1 is an eigenvector with eigenvalue λ. The same proof clearly applies to the
other eigenvector v2.

Remark 7.3.3. From equation (7.63) we can infer the limiting distributions of the eigenvalues of
Ẽ. We already know all of its eigenvalues lie in the unit circle, hence we can write λ = eiφ for some
φ ∈ [−π, π). Equation (7.63) thus becomes

eiφ + e−iφ + 1 = cos

(
2πj

N

)
⇐⇒ φ = arccos

(
1

2
cos

(
2πj

N

)
− 1

2

)
. (7.75)

Passing to the limit N → ∞, by standard methods, we can compute the limiting density of the
argument φ of the eigenvalues as

µ(φ)dφ =
(
1[π

2
,π](φ)− 1[−π,−π

2
](φ)

) sinφdφ

π
√

1− (1 + 2 cosφ)2
(7.76)

This behaviour is shown in Figure 7.8.
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Figure 7.8: Distribution of the eigenvalues arguments for the Ẽ (7.62), N = 5000.

Parameter Limit

Since the Lax matrix E for the Schur flow coincides with the one of the AL lattice, cf. equations
(7.32) and (7.55), the parameter limit analysis coincides with the one performed at the end of
Section 7.2. In particular, as in the case of the AL lattice, for large β the eigenvalues tend to
accumulate on the unit circle, see Figure 7.7. In a completely similar way as done for the focusing
AL lattice we conclude that the density of states of the random Lax matrix E with probability
distribution entries given by the Gibbs measure µS in (7.51), converges in the limit β →∞ to the
uniform measure on the unit circle, analogously to (7.46).
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Numerical Tables

A.1 Tables of some weighted strictly monotone double Hurwitz
numbers

We display below tables for the multiparametric Hurwitz numbers

H>
g (µ; s) :=

zµ
|µ|!

∑
ν of length s

h>g (µ; ν). (A.1)

To obtain them, we first use Theorem 3.2.5 to compute the correlator ⟨trXµ⟩, hence we expand
in series and following Theorem 4.2.2 we extract the corresponding coefficients in the variable N ,
keeping track of the genus, and in c, keeping track of s = ℓ(nu).

µ = (3, 1) g = 0 g = 1
s = 1 3 3
s = 2 9 0
s = 3 3 0

µ = (3, 2) g = 0 g = 1
s = 1 6 18
s = 2 30 18
s = 3 30 0
s = 4 6 0

µ = (3, 3) g = 0 g = 1 g = 2
s = 1 9 75 36
s = 2 72 198 0
s = 3 138 75 0
s = 4 72 0 0
s = 5 9 0 0

µ = (4, 4) g = 0 g = 1 g = 2 g = 3
s = 1 16 616 3304 1104
s = 2 264 4636 8132 0
s = 3 1200 8496 3304 0
s = 4 1940 4636 0 0
s = 5 1200 616 0 0
s = 6 264 0 0 0
s = 7 16 0 0 0

µ = (6, 3) g = 0 g = 1 g = 2 g = 3
s = 1 18 1428 16002 22872
s = 2 414 15120 70938 22872
s = 3 2598 43680 70938 0
s = 4 6210 43680 16002 0
s = 5 6210 15120 0 0
s = 6 2598 1428 0 0
s = 7 414 0 0 0
s = 8 18 0 0 0

µ = (2, 1, 1) g = 0
s = 1 6
s = 2 6

µ = (2, 2, 1) g = 0 g = 1
s = 1 16 8
s = 2 40 0
s = 3 16 0

µ = (2, 2, 2) g = 0 g = 1
s = 1 40 80
s = 2 176 80
s = 3 176 0
s = 4 40 0

µ = (4, 3, 2, 1) g = 0 g = 1 g = 2 g = 3
s = 1 1728 54432 235872 70848
s = 2 26136 379512 570672 0
s = 3 111024 680832 235872 0
s = 4 175824 379512 0 0
s = 5 111024 54432 0 0
s = 6 26136 0 0 0
s = 7 1728 0 0 0

µ = (2, 2, 2, 2) g = 0 g = 1 g = 2
s = 1 672 3360 1008
s = 2 4464 8016 0
s = 3 7872 3360 0
s = 4 4464 0 0
s = 5 672 0 0

118
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µ = (4, 4, 4) g = 0 g = 1 g = 2 g = 3 g = 4
s = 1 704 89760 2631552 18161440 19033344
s = 2 21312 1568640 24587904 75241920 19033344
s = 3 204480 8507520 66562944 75241920 0
s = 4 843648 18934080 66562944 18161440 0
s = 5 1673856 18934080 24587904 0 0
s = 6 1673856 8507520 2631552 0 0
s = 7 843648 1568640 0 0 0
s = 8 204480 89760 0 0 0
s = 9 21312 0 0 0 0
s = 10 704 0 0 0 0

µ = (5, 4, 4, 2) g = 0 g = 1 g = 2 g = 3 g = 4 g = 5
s = 1 29120 7047040 444924480 8434666240 42317475200 35974149120
s = 2 1212800 180513600 6829912320 71893480000 168041817600 35974149120
s = 3 16616960 1529449920 33913376640 186374568640 168041817600 0
s = 4 103248000 5796138240 72317482560 186374568640 42317475200 0
s = 5 331189440 11030467200 72317482560 71893480000 0 0
s = 6 584935680 11030467200 33913376640 8434666240 0 0
s = 7 584935680 5796138240 6829912320 0 0 0
s = 8 331189440 1529449920 444924480 0 0 0
s = 9 103248000 180513600 0 0 0 0
s = 10 16616960 7047040 0 0 0 0
s = 11 1212800 0 0 0 0 0
s = 12 29120 0 0 0 0 0

µ = (2, 2, 2, 1, 1) g = 0 g = 1
s = 1 1680 3360
s = 2 7392 3360
s = 3 7392 0
s = 4 1680 0

µ = (3, 3, 2, 2, 2) g = 0 g = 1 g = 2 g = 3
s = 1 71280 2661120 18461520 18722880
s = 2 1206144 23973840 75182256 18722880
s = 3 6314976 63697968 75182256 0
s = 4 13791600 63697968 18461520 0
s = 5 13791600 23973840 0 0
s = 6 6314976 2661120 0 0
s = 7 1206144 0 0 0
s = 8 71280 0 0 0

A.2 Tables of some weighted weakly monotone double Hurwitz
numbers

We display below tables for the multiparametric Hurwitz numbers

H>
g (µ; s) :=

zµ
|µ|!

∑
ν of length s

h>g (µ; ν). (A.2)

The computation are performed as explained in the previous section. Notice that, in general,
H≥

g (µ; s) ̸= 0 for every s ≤ |µ| and g ≥ 0. We calculate H≥
g (µ; s) for the first few values of g.

µ = (3, 1) g = 0 g = 1 g = 2
s = 1 3 45 483
s = 2 18 255 2688
s = 3 30 420 4410
s = 4 15 210 2205

µ = (3, 2) g = 0 g = 1 g = 2
s = 1 6 168 3402
s = 2 54 1464 29058
s = 3 156 4176 82212
s = 4 180 4800 94260
s = 5 72 1920 37704

µ = (3, 3) g = 0 g = 1 g = 2
s = 1 9 462 16443
s = 2 117 5742 197559
s = 3 516 24660 833472
s = 4 1008 47580 1594836
s = 5 900 42300 1413720
s = 6 300 14100 471240
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µ = (1, 1, 1) g = 0 g = 1 g = 2 g = 3 g = 4
s = 1 4 20 84 340 1364
s = 2 12 60 252 1020 4092
s = 3 8 40 168 680 2728

µ = (3, 2, 1) g = 0 g = 1 g = 2 g = 3
s = 1 42 2268 81774 2498496
s = 2 558 28248 982326 29405736
s = 3 2472 121320 4143024 122714160
s = 4 4836 234060 7926312 233606280
s = 5 4320 208080 7025760 206699040
s = 6 1440 69360 2341920 68899680

µ = (5, 3, 2) g = 0 g = 1 g = 2 g = 3 g = 4 g = 5
s = 1 330 98670 17117100 2288397540 262779844470 27370788935490
s = 2 11790 3139530 508126980 64989626220 7244914364850 739256601861510
s = 3 151140 37555800 5814501240 722008428240 78865374260700 7932095991173640
s = 4 973200 231506100 34809669720 4236585517200 456285210221400 45429895491347220
s = 5 3600180 832748640 122812524600 14745786668160 1572851081541420 155505293985110400
s = 6 8126700 1846504080 268910866680 31999520486160 3391243294051140 333707416656660000
s = 7 11380320 2557716000 369587047200 43733298023520 4615886297332800 452853891923025600
s = 8 9649080 2155587000 310123401000 36581098895880 3852087017209200 377274782175656400
s = 9 4536000 1010772000 145151092800 17098516260000 1798743628584000 176040872796600000
s = 10 907200 202154400 29030218560 3419703252000 359748725716800 35208174559320000

µ = (1, 1, 1, 1) g = 0 g = 1 g = 2 g = 3 g = 4 g = 5
s = 1 30 420 4410 42240 390390 3554460
s = 2 174 2364 24498 233328 2151222 19565892
s = 3 288 3888 40176 382176 3521664 32022864
s = 4 144 1944 20088 191088 1760832 16011432

µ = (2, 2, 1, 1) g = 0 g = 1 g = 2 g = 3 g = 4 g = 5
s = 1 224 11760 417648 12652640 353825472 9465041040
s = 2 2936 145560 5001792 148676240 4111488168 109250057640
s = 3 12912 623088 21061152 619916064 17042443920 451231651728
s = 4 25176 1200264 40262736 1179630192 32339018280 854769872184
s = 5 22464 1066464 35678592 1043606592 28581355584 754984855584
s = 6 7488 355488 11892864 347868864 9527118528 251661618528

µ = (3, 2, 2, 1) g = 0 g = 1 g = 2 g = 3 g = 4 g = 5
s = 1 1080 142560 11891880 808030080 49030839000 2777130588960
s = 2 24408 2975688 236613384 15604156944 928759785048 51934912866648
s = 3 195696 22833936 1764985248 114273524448 6718979907216 372620872120176
s = 4 764208 86946408 6607836864 423012867984 24682857466608 1361716707058488
s = 5 1622160 181944000 13692581280 870735528000 50576815946160 2781487931040000
s = 6 1911600 212829120 15934474080 1009718844480 58506896866320 3212163320083200
s = 7 1175040 130440960 9745954560 616691715840 35698249900800 1958572008345600
s = 8 293760 32610240 2436488640 154172928960 8924562475200 489643002086400

µ = (3, 3, 3, 3) g = 0 g = 1 g = 2 g = 3 g = 4
s = 1 14742 6781320 1863064476 397980044280 73027276324002
s = 2 684774 286543656 73938326364 15124478632344 2690423275640562
s = 3 11927088 4700315952 1162209509712 230530176869328 40089332784598560
s = 4 108506304 41049414576 9847619855856 1910059732782864 326635075616752080
s = 5 591049872 217264375440 50997568912848 9730568084094000 1643434518194147520
s = 6 2065978224 744104821680 171941934622896 32417467690208400 5425295582074933440
s = 7 4798180800 1703613513600 389301061256640 72772493528332800 12099023079466665600
s = 8 7485955200 2632114958400 596891523260160 110918372096491200 18356651181359395200
s = 9 7754940000 2709582840000 611410862412000 113177279163888000 18674140608815688000
s = 10 5114988000 1780691688000 400648862930400 73995902520393600 12187705122917006400
s = 11 1944000000 675695520000 151836376608000 28014789102336000 4610660182447564800
s = 12 324000000 112615920000 25306062768000 4669131517056000 768443363741260800
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[30] S. Bochner, Über Sturm-Liouvillesche polynomsysteme, Math. Z., 29 (1929), pp. 730–736.

[31] O. I. Bogoyavlensky, Integrable discretizations of the KdV equation, Phys. Lett. A, 134 (1988),
pp. 34–38.

[32] , Algebraic constructions of integrable dynamical systems-extensions of the Volterra system, Russ.
Math Surveys, 46 (1991), pp. 1–64.

[33] V. Bonzom, G. Chapuy, and M. Do lega, b-monotone Hurwitz numbers: Virasoro constraints,
BKP hierarchy, and O(N)-BGW integral, arXiv preprint arXiv:2109.01499, (2021).

[34] A. Borodin, Biorthogonal ensembles, Nuclear Phys. B, 536 (1998), pp. 704–732.

[35] , Riemann-Hilbert problem and the discrete Bessel kernel, Int. Math. Res. Not. IMRN, 2000
(2000), pp. 467–494.

[36] G. Borot, S. Charbonnier, E. Garcia-Failde, F. Leid, and S. Shadrin, Analytic theory of
higher order free cumulants, arXiv preprint arXiv:2112.12184, (2021).



BIBLIOGRAPHY 123
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