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ABSTRACT

This thesis is a collection of seven papers concerned with the relationship between variation
of gluing spaces and categories in homological mirror symmetry(HMS). We divide it into three
parts according to how we vary gluing what. The first part consists of three papers on algebraic
deformations of Calabi—Yau 3-folds(CY3s), where we vary complex structures to glue locally
trivial deformations. The second part consists of two papers on cut-and-reglue procedure for
relative Jacobians of generic elliptic 3-folds, where we vary Brauer classes to glue smooth
elliptic 3-folds with sections. The third part consists of two papers on local-to-global principle
for wrapped Fukaya categories of very affine hypersurfaces(VAHs), where we vary Liouville
structures to glue pairs of pants. Our main goal of the first two parts is to construct new Fourier—
Mukai partners(FMPs), nonbirational derived-equivalent CY3s. While birational CY3s are
derived-equivalent, FMPs give highly nontrivial multiple mirrors to the dual manifolds. Our
main goal of the third part is to establish HMS for complete intersections of VAHs. Recently,
Gammage—Shende established HMS for VAHs under some assumption essential to construct a
global skeleton, which allows them to reduce gluing wrapped Fukaya categories to gluing local
skeleta. For several reasons we need a different approach to remove their assumption.

In the first paper, we prove that the derived equivalence of CY3s extends to their versal de-
formations over an affine complex variety. This is fundamental for our deformation methods to
construct new examples of FMPs. Due to the main theorem of the second paper, the derived
category of the generic fiber of a flat proper family can be described as a certain Verdier quo-
tient. As a consequence, the derived equivalence of the above versal deformations is inherited
to their generic fibers. We analyze some good cases where also nonbirationality is inherited,
establishing a deformation method to construct new FMPs from known examples. Conversely,
the description enables us to prove specialization, i.e., the derived equivalence of the generic
fibers extends to general fibers, completing all the relevant inductions of the derived equiva-
lence of CY3s through deformations. The main theorem of the third paper gives a rigorous
explanation of these phenomena. Namely, deformations of a CY3 are equivalent to Morita
deformations of its dg category of perfect complexes. We also prove that, analogous to isomor-
phisms of schemes, the derived equivalence is inherited from effectivizations to their enough
close approximations. This is an improvement of the main theorem of the first paper, expected
from the equivalence of the two deformation theories.

In the fourth paper, we prove that any flat projective family must be what we call an almost
coprime twisted power, whenever it is linear derived-equivalent over the base to a generic el-
liptic CY3. This should be the best possible reconstruction result for generic elliptic CY 3s.
Combining with the main theorem of the first paper, we obtain a family of pairs of coprime
twisted powers whose closed fibers are nonbirational whenever they are nonisomorphic. Un-
winding our arguments, one sees that generic elliptic CY3s are linear derived-equivalent over
the base if and only if their generic fibers are derived-equivalent. This is the key observation
for the fifth paper where we give affirmative answers to two of the four conjectures raised by
Knapp-Scheidegger—Schimannek. Namely, we prove that each of 12 pairs of elliptic CY3s
constructed by them share the relative Jacobian and linear derived-equivalent over the base.
Except one self-dual pair, the closed fibers of the family obtained by the above combination
are nonisomorphic. Hence we obtain families of new FMPs, establishing another deformation



method to construct FMPs. As far as we know, this is the first systematic construction of (fami-
lies of) FMPs. Moreover, it works for elliptic CY3s with higher multisections, whose examples
some string theorists have been looking for.

In the sixth paper, we establish HMS for complete intersections of VAHs. The main chal-
lenge is computing wrapped Fukaya categories of complete intersections. With the aid of
equivariantization/de-equivariantization, we reduce it to unimodular case. Proving that locally
complete intersections are products of lower dimensional pairs of pants, we reduce it further
to hypersurface case without the assumption imposed on the previous result by Gammage—
Shende. We extend it by inductive argument following Pascaleff—Sibilla which does not re-
quire any global skeleton. Besides the invariance of wrapped Fukaya categories under simple
Liouville homotopies, one key is to find Weinstein structures on the initial exact symplectic
manifold and the additional pair of pants which glue to yield that on the gluing, everytime we
proceed the inductive argument. Another is to show that also their wrapped Fukaya categories
glue to yield that of the gluing. Our method should work to compute wrapped Fukaya cat-
egories in other relevant settings. Finally, we glue HMS for pairs of pants along the global
combinatorial duality over the tropical hypersurface. The geometry of VAHs is further studied
in the seventh paper, where we complete the missing A-side of the SYZ picture over fanifolds.
This can be regarded as a generalization of that over tropical hypersurfaces.
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ALGEBRAIC DEFORMATIONS AND FOURIER-MUKAI TRANSFORMS FOR
CALABI-YAU MANIFOLDS

HAYATO MORIMURA

ABsTRACT. Given a pair of derived-equivalent Calabi—Yau manifolds of dimension more than
two, we prove that the derived equivalence can be extended to general fibers of versal deforma-
tions. As an application, we give a new proof of the Pfaffian—Grassmannian derived equivalence.

1. INTRODUCTION

Let X, be a Calabi—Yau manifold of dimension more than two in the strict sense, 1.e., a
smooth projective variety over a field k with trivial canonical bundle and H'(X,, Oy,) = 0 for
0 < i < dim Xj. Then the deformation functor

FXO = DCfXOZ Al'tk — Set

of X has a universal formal family (R, &), which is effective by [GD61, Theorem III 5.4.5] and
there exists an effectivization Xy flat and projective over R, whose formal completion along
the closed fiber X is isomorphic to £. Since deformations of Calabi—Yau manifolds are unob-
structed, the complete local noetherian ring R is regular and we have

R =K1, ....1l,

where d = dimy H'(Xo, 7 x,)- By [Art69b, Theorem 1.6] there exists a versal deformation Xg
flat and of finite type over S, where § is an algebraic k-scheme with a distinguished closed
point s such that the formal completion along the closed fiber X, over s is isomorphic to &. It is
known that the triple (S, s, Xy ) is unique only locally around s in the étale topology. Unwinding
the construction, one finds a nonsingular affine variety S over which the versal deformation X
is smooth projective. Our main result is the following:

Theorem 1.1 ( Theorem 4.1 ). Let X, and X be derived-equivalent Calabi—Yau manifolds
of dimension more than two. Then there exists a nonsingular affine variety S over K such
that general fibers of smooth projective versal deformations Xs and X; over S are derived-
equivalent. In particular, after possible shrinking of the base scheme S, the schemes Xs and
X5 are derived-equivalent.

The relationship between deformations and Fourier—-Mukai transforms has been addressed
in [Tod09] for first order deformations of smooth projective varieties, in [BBPO7] for formal
deformations of complex tori, and in [HMS09] for formal deformations of K3 surfaces by
deforming Fourier—-Mukai kernels. In the above cases, a relative Fourier—Mukai transform of
n-th order deformations induces an isomorphism which associates to the direction of a (n + 1)-
th order deformation of one side that of the other side. So the fiber product deforms along the
pair of the directions to yield the fiber product of the (n + 1)-th order deformations. Then it is
natural to ask whether one can deform the Fourier—Mukai kernel to a perfect complex on the
fiber product of the (n + 1)-th order deformations, and the relative integral functor defined by
the deformed perfect complex is an equivalence.

SISSA, via BoNOoMEA 265, 34136 TRIESTE, ITALY
E-mail address: hmorimur@sissa.it.
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For Calabi—Yau manifolds of dimension more than two, the isomorphism induced by a rel-
ative Fourier—Mukai transform connects a pair of (n + 1)-th order deformations of complex
structures. Moreover, since the effectivizations Xz and X} are smooth over R, the obstruction
class to deforming a perfect complex [Low0S5, Lie06] is given by the product of the relative
Atiyah class and the relative Kodaira—Spencer class [HT10, Corollary 3.4]. In this paper, based
on the argument in [HMSO09, Section 3], we deform a Fourier—Mukai kernel defining the de-
rived equivalence of X, and X) along the sequence of the natural quotient maps

o — R/mE? — R/miE — R/ml — -

From the compatible system of deformed Fourier—Mukai kernels, we obtain an effectivization
as a perfect complex by [Lie06, Proposition 3.6.1]. Passing through a filtered inductive system
of finitely generated subalgebras of R whose colimit is R, we obtain a perfect complex on
Xs X Xg which restricts to the Fourier—-Mukai kernel on X, X X by [Lie06, Proposition 2.2.1]
and the construction of the versal deformations. Then the standard argument shows that the
relative integral functor defined by the perfect complex is an equivalence. One can also show
the derived equivalence of effectivizations of universal formal families, in particular, that of
formal deformations of X, and X).

As an application, we give a new (but slightly weaker) proof of the Pfaffian—Grassmannian
equivalence, which is conjectured in [Rgd00], explained in [HTO7] from a physical perspective,
and proved in [BC09, Kuz, ADS15]. Via Theorem 1.1, the derived equivalence is induced by
that of the complete intersections of G,-Grassmannians [Kuz18, Ued19]. Similarly, due to
[IIM19, Proposition 4.7] the derived equivalence of the intersections of two Grassmannians in
P? [BCP20] is induced by that of the complete intersections in G(2,5) [KR19, Mor21]. We
expect to find a new example of Fourier—Mukai partners through deformation methods using
Theorem 1.1.

Notations and conventions. We work over an algebraically closed field k of characteristic 0
throughout the paper. For an augmented K-algebra A, by m, we denote its augmentation ideal.
For a noetherian formal scheme 2, by D*(Z") we denote the bounded derived category of the
abelian category Coh(Z") of coherent sheaves on 2.

Acknowledgements. The author would like to express his gratitude to Kazushi Ueda for sug-
gesting the problem. The author would like to thank Paolo Stellari for inviting him to the
university of Milan, his hospitality, and helpful discussions. The author also would like to
thank Andrea Tobia Ricolfi for offering many corrections to earlier versions of this paper. The
author thanks Yukinobu Toda for informing the author on the paper [HMS09], Atsushi Ito and
Makoto Miura on the paper [Kiic96].

2. SMOOTH PROJECTIVE VERSAL DEFORMATIONS

When it comes to deformations, Calabi—Yau manifolds are equipped with nice geometric
features. In this section, after reviewing some basics on deformation theory of schemes, we
explain how to construct smooth projective versal deformations of Calabi—Yau manifolds of
dimension more than two.

2.1. Infinitesimal deformations of schemes. Let X be a k-scheme. A deformation of X over
a local artinian k-algebra A with residue field Kk is a pair (X4, i4), where X, is a scheme flat
over A and iy: X < X, is a closed immersion such that the induced map X — X, X4 k
is an isomorphism. Two deformations (X4, i4) and (Y4, j4) are said to be equivalent if there
is an A-isomorphism X, — Y, compatible with iy and j4. The deformation functor Fy =
Defy: Art, — Set sends each A € Arty to the set of equivalence classes of deformations of X
over A.

11



Assume that X is projective over k. Then F satisfies Schlessinger’s criterion [Sch68] and
there exists a miniversal formal family (R, &) for Fy [Harl0, Theorem 18.1], where R is a
complete local noetherian k-algebra with residue field k, and & belongs to the limit

Fx(R) = lim Fy(R/m
of the inverse system

= Fx(R/mE™?) = Fx(R/mi™) — Fx(R/mp) — -

induced by the natural quotient maps R/ m}“e“ — R/mj. The formal family & corresponds to a

natural transformation
(21) hg = Homk—alg(Ra -) — Fx,

which sends each homomorphism f € hg(A) factorizing through R — R/ m;’e“ S AtoF x(2)(&)
[Har10, Proposition 15.1]. The functor (2.1) is strongly surjective by versality of £. So for every
surjection B — A in Arty the map

hg(B) — hg(A) Xpa) Fx(B)

is surjective. In particular, the map hg(A) — Fx(A) is surjective for each A € Art.

Let X, be the schemes which define &,. Then by [Har10, Proposition 21.1] there is a noether-
ian formal scheme 2~ over R such that X, = 2~ Xz R/ m};“ for each n. By abuse of notation,
we use the same symbol & to denote the formal scheme 2. Thus any scheme which defines
an equivalence class [X4, i4] can be obtained as the pullback of & along some morphism of
noetherian formal schemes Spec A — Spf R. If X is regular, then the Zariski tangent space of
Spec R at the closed point is Hl(X, 7x). Assume further that HO(X, Tx) =0, i.e., the scheme X
has no infinitesimal automorphisms which restrict to the identity of X. Then every equivalence
class [X4,14] 1s just a deformation (X,,i4) and we have hy ~ Fx [Harl0, Corollary 18.3]. In
this case, the functor F is said to be pro-representable and (R, £) a universal formal family for
Fy.

2.2. Algebraization. Towards an algebraic family of deformations of X, the first step is to find
a scheme Xy flat and of finite type over R whose formal completion along the closed fiber X
is isomorphic to £. If X is projective and H2(X,Ox) = 0, i.e., deformations of any invertible
sheaf on X are unobstructed, then by [GD61, Theorem II15.4.5] there exists such a scheme
Xg. In this case, the formal family (R, &) is said to be effective. One sees that the scheme Xz
appeared in the proof of [GD61, Theorem I115.4.5] is projective over R. We will call such Xz
an effectivization of &.

The next step is to find an algebraic k-scheme S with a distinguished closed point s € S, and
a scheme Xs flat and of finite type over S whose formal completion along the closed fiber X
over s is isomorphic to &. The deformation functor F can naturally be extended to a functor
defined on the category k-alg™® of augmented noetherian k-algebras. By abuse of notation, we
use the same symbol F'y to denote the extended functor, which sends each (B, mp) € k-alg®® to
the set of equivalence classes of deformations over (B, mg). The following is the well-known
fact necessary to prove the existence of such a triple (S, s, X5). We provide a proof as we could
not find any reference in the literature.

Lemma 2.1. Let X be an algebraic K-scheme. Then the functor Fy is locally of finite presenta-
tion, i.e., for every filtered inductive system of augmented noetherian k-algebras {(B;, mp,)}
whose colimit is B, the canonical map

lim Fy ((Bi, ms,)) = Fx (B, mg))

i€l

is bijective.

12



Proof. To show the surjectivity, let [ X3, ig] be an element in Fy ((B, mp)). By [GD66, Corollary
IV11.2.7] for some index A € I there exists a scheme X3, flat and of finite type over B, with a
B-isomorphism Xz — Xp, X, B. Then an element {[Xp,, iz 1},., € lim Fx ((B;, mz,)) is sent to

[Xp,ip] by the canonical map.

To show the injectivity, let {[Xg,, i1}, ; and {[Y,, jp1};-, be two elements sent to the same
equivalence class [Xp,ig] = [Y3, jg]l. By [GD66, Theorem 1V8.8.2, Corollary 1V8.8.2.4] for
some index / > j there is a Bj-isomorphism Xz — Yjp sent to the B-isomorphism Xz —
Y. Since we have [Xp,ig] = [Y3, jgl, the isomorphism is compatible with ig, and jg,. Thus
{[X5,,ip1};5, and {[Yp,, jg 1}, define the same element in li_r)n Fx ((B;, mg)). O

By Lemma 2.1 one can apply [Art69b, Theorem 1.6] to obtain such a triple (S, s, Xg). The
scheme Xj is said to be a versal deformation over S and the miniversal formal family (R, &) is
said to be algebraizable. Since some details are necessary in the sequel, we show the existence
of a versal deformation when X is a higher dimensional Calabi—Yau manifold.

Theorem 2.2. Let Xy be a Calabi—Yau manifold of dimension more than two. Then every
effective universal formal family (R, €) for F, is algebraizable.

Proof. Let T = SpecKk|ty,...,t;] and t € T be the closed point corresponding to a maximal
ideal (1q,...,t;). Since the formal completion of O7(T) along (¢4, ...,t,) is isomorphic to R,
there is a filtered inductive system {R;},c; of finitely generated Or(T)-subalgebras of R whose
colimit is R. Choose a finite type presentation

R; = Or(D)[Y1/ (f (Y)),

where Y = (Yy,...,Yy) and f = (fi,..., fin). Then we have the solution y = (Jy,...,9n)
of f(Y) = 0 in R corresponding to the canonical homomorphism R; — R [Art69a, Corollary
1.6]. Since Fy, is locally of finite presentation, [Xg,ig] is the image of some element ¢; €
Fx, ((R;, mg,)) by the canonical map Fy, ((R;, mg,)) = Fx,(R). By [Art69a, Corollary 2.1] there
exist an étale neighborhood S of 7 in 7', and a solution y = (yy, ..., yy) in Os(S) with

(2.2) yi =¥; (mod m3),

i.e., y and y induce the same element in F, (R/ mlze). Let ¢: R; — Os(S) be the homomorphism
corresponding to the solution y, and let [ X, is ] be the image of {; by the map Fx,(¢) and {1, },en
the formal family induced by [Xy, is]. From (2.2) it follows

Fx,(1)([Xg, ir]) = &1 =11,

where ;: R — R/mj is the natural surjection. By versality of (R, ¢) there is a compatible
sequence of homomorphisms ¢,,: R — R/m}* !lifting ¥,,_; and such that F xoWn)([Xg, ir]) = 0y
for every positive integer n. The sequence {¢,},cn induces a homomorphism ¢: R — R such
that

Fx, () ([ Xz, ig]) = 1, (mod mip™).

Since ¥ is the identity modulo m3, it is an automorphism. Thus the formal completion of X
along the closed fiber X is isomorphic to &. O

2.3. Smoothness and projectivity. If S’ is an étale neighborhood of s in §, then the scheme
X obtained in the same way gives another versal deformation. The following lemma is crucial
for the rest of the paper.

Lemma 2.3. Let X be a Calabi—Yau manifold of dimension more than two. Then there exists
a nonsingular affine variety S over K with a versal deformation Xs which is projective and
smooth of relative dimension dim X, over S.
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Proof. An étale neighborhood of ¢ in 7" is smooth over k. Since an open immersion is étale,
we may assume that S is connected. Then § must be irreducible, otherwise the local ring
Os , has more than one minimal prime ideal for every point s in the intersection of irreducible
components. We already know that Xy is flat over §. Since Xy is projective over R, by [GD66,
Theorem I'V8.10.5] there exists an index j such that for all k£ > j the schemes Xk, are projective
over R;. A base change of projective morphism is projective [SP, Tag 02V6].

Since S is irreducible and mg: Xg — § is flat and proper, the restriction of ng to each
irreducible component of X is surjective. In particular, each irreducible component contains
the closed fiber X, and we have

rel. dim(rrg) = dim Xj.
Note that the function
nXs/S : S - ZZO U {OO},

which sends every point s € S to the dimension of the fiber over s is locally constant, since g
is flat and proper [SP, Tag 0D4J]. Again, we have used the irreducibility of S .

Due to Lemma 2.4 below, the morphism 7z : Xg — Spec R is smooth. We claim that there is
an index [/ such that for all k > [ the morphisms Xz, — Spec Ry are smooth. To show this, we
may assume that Xg. are affine. Let R — B be the ring homomorphism corresponding to mg.
Then there exists a finitely generated Z-subalgebra R, of R and a smooth ring homomorphism
Ry — By such that B = B, ®g, R [SP, Tag 00TP]. By [SP, Tag 07C3] the inclusion Ry — R
factors through R, for some index /. Since smoothness is stable under base change, the claim
follows. O

Lemma 2.4. The scheme Xg is regular and the morphism ng: Xg — SpecR is smooth of
relative dimension dim X,.

Proof. We adapt the proof of [Har77, Proposition II110.4]. Since the base scheme Spec R has
the only one closed point, every closed point x € Xz belongs to the closed fiber X,. By [SP,
Tag 031E] the local ring Oy, , is regular, so Xy is regular. Note that X is irreducible. From the
proof of [SP, Tag 031E] one sees that 7z induces the injection mg/m% — Moy ./ méXRX, which

is dual to the surjection
T

o ToXgp = TreoR

of Zariski tangent spaces. It follows that
dimy,) (Qx,/z @ k(x)) = dim X

for every closed point x € Xg. Since g is flat and of finite type, we also have
dimg) (Qyx,/r ® k({)) = dim X,

for the generic point { of Xz [Har77, Theorem 14.8A, Theorem II8.6A]. Then by [Har77,
Lemma II8.9] the coherent sheaf Qy, r 1s locally free of rank dim Xj. O

Remark 2.1. From the proof of Lemma 2.3, one sees that the scheme Xg must be irreducible,
otherwise X, becomes disconnected.

3. DEFORMATIONS OF FOURIER—-MUKAI KERNELS

In order to define a relative integral functor from D’(Xs) to D*(X <), we deform the Fourier—
Mukai kernel P to a perfect complex $s on the fiber product Xg Xg X¢ of smooth projective
versal deformations. Although applying the main theorem in [Lie06] might suffice, we adopt
a more concrete approach based on [HMS09, HT10], still using some results from [Lie06].
Here, for a deformation X3 of a k-scheme X over an augmented noetherian k-algebra (B, mp),
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by a deformation of a perfect complex E on X over (B, mg) we mean a pair (Eg, ug), where
Ep € D"(Xp) and up: Ep ®; k — E is an isomorphism.

3.1. Derived equivalence and relative Hochschild cohomology. Let X, and X, be derived-
equivalent schemes smooth and projective over R,,. The schemes X, X/, and their fiber product
X, Xg, X;, over R, form the following diagram

Xn XR, X;l

N
Xg, Xk,

with the natural projections ¢, and p,. For any perfect complex £, on X,, Xg X,, the relative
integral functor

®p, (=) = Rpy (P & ¢, (-))

sends each object in D”(X,) to D’(X’). Due to the Grothendieck—Verdier duality the functor
®p, has the right adjoint, which we denote by ®p,),.
Assume that @y is an equivalence. Then two functors

lI’l : Db(Xn XRn Xn) - Db(Xn XR,I X};)
G PG,

¥,: D"(X, Xz, X)) — D"(X, xg, X\
G = G (Pur
respectively induce isomorphisms
Y1t Exty,x, x,(—= =) = Exty,, x; (1 (=), V1 (=),

Y21 EXty,x, x;, (=, =) = Exty s x (P2 (=), P2 (-)).
The composition defines the isomorphism
DM =y, 0y : HH'(X,/R,) - HH (X /R,)
of the relative Hochschild cohomology complex [Cal10], which gives rise to the isomorphism
DR = (1) o DR o YR HT(X,,/R,) — HT (X, /R,),
where

L% HT*(X, /R,) — HH'(X,/R,),

I HT*(X,/R,) — HH'(X,/R,)

are the relative Hochschild—Kostant—Rosenberg isomorphisms. Namely, we have the following
commutative diagram

IHKR

HT"(X,/R,) —= Exty ., x,(04,.On,)

3.1) o L . l@p e
" (). "

HT"(X;/R,) < Ext},.. x,(On,,Ou).
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3.2. Relative Atiyah class and HKR isomorphism. For a perfect complex E, on X, the rel-
ative Atiyah class is the element

A(E,) € Exty (E,,E, ® Q)
induced by the boundary morphism of the short exact sequence
0 - In/I;% - OXnXRan/In - OA,; - 07

where I, is the defining ideal sheaf of the relative diagonal. Composition in D”(X,,) and exterior
product Q%' — er yield the exponential

exp (A(E,)) € P Ext}, (E,. E, @ Q).

Consider the automorphism 7: X, Xg X, — X,, Xg, X, interchanging the two factors. Since
the conormal bundle 7,/1> consists of elements of the form x ®; 1 — 1 ®;, x, the pullback 7*
acts on H”(X,,, A7) by (=1)4. Then as a straightforward generalization of [Tod09, Lemma
5.8], one obtains two commutative diagrams

7 olHKR
HT*(X,/R,) EXt}}ann x,(Oa,>On,)
(3.2) q;\ lm
Xp(A(P)):
HT"(X, Xg, X,/Ry) —— Exty . (P Py).
I/HKR
X7, "
HT"(X},/R,) Exty . x; (Oy;, On,)

(3.3) . j l .
exp(A(Pn));

HT* (X, X, X,/ Ry) = Exty (P Po).

3.3. Obstruction class. There exists an obstruction for a perfect complex E, on X, to deform
to some perfect complex on X,;; [Low05, Lie06]. By [HT10, Corollary 3.4] it has the explicit
expression as the product of the truncated Atiyah class of E, and the truncated Kodaira—Spencer
class of the thickenings X,, < X, defined by a square zero ideal. In our setting, the deforma-
tion X,;; is smooth over R,,;. So the truncated Atiyah and Kodaira—Spencer classes coincide
with the relative Atiyah and Kodaira—Spencer classes respectively. Then the obstruction class
is given by

@(E,) = (idg, ® k,) 0 A(E,) € Exty (E,, EZ"™),

where «, € Ext)lfn (Q,, O?Ei”) denotes the relative Kodaira—Spencer class, which is the extension
class of the short exact sequence

Ndsy--dsy,

)
0 - Oj.;f,n QXn+I |Xn - Qﬂn - 0

Here /, = dimy m;*! /m%*% and {s1, ..., s;,} is a fixed basis of the k-vector space m/s*! /m/s2.
Suppose that there exists a thickening X;, — X' , whose relative Kodaira—Spencer class is

’ HT2 &y 1 ) ’ * %0 1 @, .
K, = ()™ (k,) € H'(T)®. Let &k, B K, = qjky + pik;, € H'(T7,r,)®". Adapting [HMS09,
Lemma 3.7] to our setting in a straightforward way, we obtain the following:

Lemma 3.1. Under the above assumption there exists a perfect complex Py, on X1 Xg, ., X!
L

with an isomorphism P, % R, = P, such that the integral functor ®p : D*(X,.) —

n+l °

b , . .
D°(X' ) is an equivalence.
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Proof. We show the vanishing of the obstruction class
AP, - (kB K,) € EXG, o 1 (P P)™".

We write k,, &, as k, = (k,...,k"), & = (,...,«") with respect to the fixed basis. By
commutativity of the diagrams (3.1), (3.2), and (3.3), we have

AP = AP - (K, B K)
= ( () + " (8 (<)
=5 B (- () (0 0 (B () + )
=93 g (-0 (k) +£1) =0

for each i. Note that, as mentioned above, the pullback 7" acts on H'(X, Xg, X5, T roxr,) by —1.
So there exists a deformation #,.; of £,. Then by [LST13, Proposition 1.3] the functor ®p
1s an equivalence, since P, defines an equivalence and 7, 7r;, are smooth projective. O

Combining Lemma 3.1 and Lemma 3.2 below, one sees that if the closed fibers X, and X
are higher dimensional Calabi—Yau manifolds, then one can always deform a Fourier—Mukai
kernel on X, X X|, to some Fourier-Mukai kernel on X,, Xz, X, for arbitrary order n.

Lemma 3.2. If the closed fiber of X, is a Calabi—Yau manifold of dimension more than two,
then there exists a thickening X, — X | whose relative Kodaira—Spencer class is k, =

(o5)"

Proof. First, we show the vanishing of cohomology H*(A*T,,) and H*(Oyx;). Since 7/, is a
projective morphism of noetherian schemes and the sheaves A*T,,, Oy, are flat over R,, by
[Har77, Theorem III12.8] there is a Zariski open neighborhood U C Spec R, of the closed
point such that dimy, H*(A*T, ;) = 0 and dimy,) H’(Ox,,) = 0 for all y € U. Then we have
U = Spec R,, as the complement does not contain the only closed point of Spec R,,.

Next, we construct the thickening X) < X’ . Fix an affine open covering {U;} of X). The
element ¥, € H'(T, )% is represented by 2-cocycles {6;;} with respect to {U;}. By [Harl0,
Propsotion 3.6, Exercise 5.2] these cocycles define automorphisms of the trivial deformations
Uij Xr, Spec R,; that can be glued to make a global deformation X’ ., of X}. By definition, the
relative Kodaira—Spencer class of this thickening is «,. O

3.4. Algebraization. Now, we have a system of deformations #, € perf(Xg, Xg, Xi ) of Po
with compatible isomorphisms %, (X)]L?”+1 R, — P,. By [Lie06, Proposition 3.6.1] there exists
an effectivization, i.e., a perfect complex P on Xg X X; with compatible isomorphisms P ®,L{,
R, — P,. Recall that in Section 2 to algebrize X we have used a filtered inductive system
{R;}ic; of finitely generated O7(T)-subalgebras of R whose colimit is R. For a sufficiently large
index i, there are deformations Xg,, X1’e,- of X, X, over R; whose pullback along the canonical
homomorphism R; — R are Xg, X;. So we have
Xp Xg X[,? = (XR,' XR; XI,?,) XR; R.

By [Lie06, Proposition 2.2.1] there exists a perfect complex Pg, on Xg, Xz, X 1,2,» with an isomor-
phism Py, ®1qu R — Pk. Then the derived pullback Py € perf(Xs x5 Xg) along R; — Og(S)is a
deformation of . Finally, we obtain the following:

Proposition 3.3. Let P be a Fourier—Mukai kernel defining the derived equivalence of Calabi—
Yau manifolds X, and X, of dimension more than two. Then there exists a perfect complex Pg
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on the fiber product Xg Xs X of smooth projective versal deformations with an isomorphism
P ®(L)s(5) k — P,

Remark 3.1. For fixed universal formal families (R, ¢) and (R, ¢’) of Xj and X,, the deformations

X’ associated with the images «/, = (@g}z) " (k) determine another universal formal family
(R, &) of X{. Since two universal formal families (R, £’) and (R, &) are isomorphic up to unique
isomorphism, by the construction of our versal deformations we may algebrize Xp and X},
simultaneously.

4. PROOF OF THE MAIN THEOREM

The smooth projective versal deformations Xg, X§, and their fiber product Xg xg X over §
form the following diagram

X5 Xg Xg
/ \
Xs X
with the natural projections g and p. The relative integral functor
®p, (-) = Rp. (PS L q* (—))

sends each object in D*(Xs) to D? (X5), where Pg € perf(Xs Xg X¢) is a deformation of P, over
(Os(S), mog(sy)- In this section, after possible shrinking of the base scheme S, we show that
the functor @y, is an equivalence. One can also show similar results for formal deformations
and their effectivizations.

Theorem 4.1. Let X, and X be derived-equivalent Calabi—Yau manifolds of dimension more
than two. Then there exists a nonsingular affine variety S over k such that general fibers of
smooth projective versal deformations Xs and X5 over S are derived-equivalent. In particular,
after possible shrinking of the base scheme S, the schemes Xs and X are derived-equivalent.

Proof. Due to the Grothendieck—Verdier duality the functor ®p, has the left adjoint, which we
denote by ®p,), . For every object E € D”(Xs) the counit morphism 77: @), © Pp; — idps(xy)
gives a distinguished triangle

(41) (D(PS)L o (Dgos (E) — E — F :=Cone (7] (E)) .

We may assume that E and F are perfect complexes on Xg. Let i;: X, — X, I{: X; — X,
and j; = iy X i} X, X X — X Xg X be the closed immersions for every closed point s € S.
By the derived flat base change we have

L, ®p (E) = O (E,),

where E; = Liy(E) and ®; = ®:p.. We also denote by (Dy), the left adjoint of @ with kernel
(Ji®s),- Then (4.1) restricts to a distinguished triangle

((Ds)L o (Ds(Es) - Es - Fs-

Note that the restriction of the counit morphism is the counit morphism. Since ®gp, is an
equivalence, the restriction of F to X is quasi-isomorphic to 0. So the support supp(F) =
U supp H!(F) of the perfect complex F is a proper Zariski closed subset of X5. Let U C
S be the complement of the image 7s (supp(F)). Since U contains the image of the closed
fiber Xy, it is a nonempty open subset of S and #5'(U) does not intersect with supp(F). In
particular, we have F; = 0 for every closed point s € U. If E is a strong generator of D(Xy),
this implies that ®p,, is fully faithful. Here Py denotes the restriction of Ps to g~ 'ng'(U).

18



Recall that a triangulated category is strongly finitely generated if there exist an object E and
nonnegative integer k such that every object can be obtained from E by taking isomorphisms,
direct summands, shifts, and not more than k times cones. Since Xs is noetherian, separated,
and regular, D’(Xy) is strongly finitely generated by [BB03, Theorem 3.1.4]. Since ®p,; and
D p,), commute with direct sums on D’(Xs) by [BB03, Corollary 3.3.4], we may assume that
E has no nontrivial direct summands. Using the cohomology long exact sequence induced by
a distinguished triangle, one inductively sees that on 75'(U) the cone of the counit morphism
for any object is quasi-isomorphic to 0. Similarly, one finds a Zariski open subset V C S such
that (®p, ), is fully faithful. Finally, we obtain an equivalence ®,: D’(X,) — D’(X}) for every
closed point s € U NV # 0, as a fully faithful functor which admits either fully faithful left or
right adjoint is an equivalence. In particular, ®@p; is an equivalence after possible shrinking of
the base scheme S . O

Corollary 4.2. Let X, and X be derived-equivalent Calabi—Yau manifolds of dimension more
than two. Then all effectivizations Xg and X}, of universal formal families & and &' projective
over R are derived-equivalent.

Proof. Replace X, X¢, and § by X, Xz, and R in the above proof. Then mz(supp F) is a Zariski
closed subset of Spec R which does not contain the only one closed point. This implies that
supp F' is empty. It remains to show that the derived equivalence does not depend on the choice
of Xz and X},. Given an effectivization nz: Xz — Spec R of &, we have the following pullback
diagram

&= Xg— X
Spf R—— Spec R

of noetherian formal schemes, where X is considered as the formal completion along itself.
Since 7y is projective and R is a complete local noetherian ring, by [GD61, Corollary I115.1.6]
the functor

coh(Xz) — Coh(Xz),

which sends each coherent sheaf # on Xk to its formal completion F along the closed fiber is
an equivalence of abelian categories. So we have

D"(Xg) = D"(Xg).
In particular, all effectivizations of ¢ are derived-equivalent. O

Corollary 4.3. Let X, and X be derived-equivalent Calabi—Yau manifolds of dimension more
than two. Then for any formal deformation X = ka of Xy there exists a formal deformation
X' = X'y of X() which is derived-equivalent to X.

Proof. From the argument in Section 3 and the above proof, it follows immediately. O

5. PFAFFIAN—GRASSMANNIAN EQUIVALENCE

By Theorem 4.1 the derived equivalence of central fibers of versal deformations can be ex-
tended to that of general fibers. After studying deformations of the relevant Calabi—Yau 3-folds,
we show that the Pfaffian—Grassmannian derived equivalence is induced by the derived equiv-
alence of IMOU varieties.
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5.1. Grassmannian side. Let & be a locally free sheaf on a smooth projective variety Z over C
and let Y be the zero scheme of a section s € H°(Z, &) with codim Y, = rank & and the defining
ideal sheaf 7'y, ¢ O;. By [Weh84] a sufficient condition for every algebraic deformation of Y
to be obtained by varying the section in H%(Z, ) is the vanishing of cohomology

Hl(Z, E®TIy,), Hl(Yo, T zly,)-
Now, we will consider the case
Yo = Gr(2, V7)7 = Gr(2, V;) N P(W),

where V; is a 7-dimensional complex vector space and W is a 14-dimensional general quotient
vector space of A2V; —» W.

Lemma 5.1. Every deformation of Yy = Gr(2, V7)7 can be obtained by varying the section s.

Proof. It suffices to show the vanishing of cohomology
H'(Gr(2, V1), Ocra,vy(D¥ ® Iy, H'(Yo, Taravplvy)-
By [Kiic96, (1.4)] we have two spectral sequences
H(Gr(2, V), F ® A" O(~1)grawy) = HP4(Gr(2, V1), F @ Iy,),q >0,
H? (Gr(2, V7), F ® NO(-ravy) = HP9(Gr(2, V7), Fly,)

for any locally free sheaf # on Gr(2, V7). Then Borel-Bott—Weil theorem gives the desired
result. O

5.2. Pfaffian side. Let Hy,: Arty — Set be the functor of embedded deformations of a pro-
jective scheme Y| C P over C. Then we have the forgetful functor Hy(/) - F ;- Letty, — tr,

0 0
be the induced map of tangent spaces, which is given by

Hy,(Cl11/7*) — Fy,(Cl)/).
Now, we will consider the case
Y, = Pf(4, V;) N\P(W*) = Pf(4, V;) N P°,
where W+ = Coker(WY < A?VY).

Lemma 5.2. The induced map of tangent spaces

ty, — tp,
0 0
is surjective.
Proof. We have an exact sequence
(5.1 0 = Ops(=7) = T0ps(=4) = T0ps(=3) = Ops — Oy; — 0.

From the cohomology of (5.1) and the restriction of Euler sequence we obtain H'(7; p6|Y6) = 0.
Since Y| is nonsingular, the short exact sequence

0 — Ty; = Teoly; = Nygps = 0
gives rise to a long exact sequence of cohomology
0—- HO(TY()) - HO(TP6|Y(3) - HO(NY(;/IPﬁ)
60
- HI(TY(;) - HI(TP6|Y(;) - HI(NY(’)/P") o,

where the boundary map ¢° coincides with ty,, — tr,, by [HarlO, Proposition 20.2]. |
0 0

Lemma 5.3. Every deformation of Y, = Pf(4, V;) N P lifts to an embedded deformation in P°.
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Proof. Tt is well-known that Hy, is pro-representable and unobstructed. We also know that
F'y, is pro-representable. Then Lemma 5.2 allows us to apply [Harl0, Exercise 15.8] and the
forgetful functor Hy, — Fy, is strongly surjective. In particular, it is surjective. O

5.3. Induced derived equivalence. Let X, be the complete intersection in G,-Grassmannian
G = G, /P associated with the crossed Dynkin diagram ex defined by an equivariant vector

bundle & 1) = G, Xp V(}]”]), which is a flat degeneration of Y, [IIM19, Proposition 5.1]. Let

X, be the complete intersection in G,-Grassmannian Q = G,/Q associated with the crossed

Dynkin diagram »e= defined by an equivariant vector bundle F(; 1, = G, Xg Vg,l), which is a

flat degeneration of Y [KK16, Theorem 7.1]. It is known that the Calabi—Yau 3-folds X, and
X)) are derived-equivalent [Kuz18, Ued19].

Corollary 5.4. The Calabi-Yau 3-folds Yy = Gr(2, V7),7 and Y| = Pf(4,V;) N P° are derived-
equivalent.

Proof. By definition of Y; and Lemma 5.1 general fibers of a versal deformation of X, are
isomorphic to Gr(2, V;)7. By [KK16, Corollary 6.3] and Lemma 5.3 general fibers of a versal
deformation of X are isomorphic to Pf(4,V;) N P®. Then Gr(2, V), and Pf(4, V;) N P° are
derived-equivalent by Theorem 4.1. O

Remark 5.1. The derived-equivalent pair obtained here does not carry any information about
W and W+, while the original Pfaffian—-Grassmannian equivalence connects Gr(2, V;) N P(W)
with Pf(4, V;) N P(W+) for every W. We have proved that for a generic choice of W the Y, is
derived-equivalent to the Y associated with some other W.
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CATEGORICAL GENERIC FIBER

HAYATO MORIMURA

ABsTrRACT. For flat proper families of algebraic varieties, we describe the abelian category of
coherent sheaves on the generic fiber as a Serre quotient. As an application, we provide new
examples of Fourier—Mukai partners via deformations. As another application, we prove that
the derived equivalence of the generic fibers extends to that of general fibers.

1. INTRODUCTION

1.1. The main result. The categorical general fiber was introduced in [HMS11] to study the
generic categorical behavior of formal deformations of K3 surfaces. When a formal defor-
mation is effective, one can consult the generic fiber of an effectivization. In analytic set-
ting, Raynaud constructed the generic fiber of formal deformations [Ray74]. Based on his
idea, Huybrechts—Macri—Stellari developed the categorical general fiber, providing a categor-
ical analogue of the generic fiber for noneffective formal deformations of K3 surfaces. As
shown in [HMSO09], it captures the generic categorical behavior of formal deformations. Below
we briefly review their work.

Let X — SpfKk[¢] be a formal deformation of a smooth projective k-variety X,. Recall that
the abelian category of coherent sheaves on the general fiber is the Serre quotient

COh(Xk((I))) = COh(X)/ COh(X)(),

where Coh(X), c Coh(X) is the full abelian subcategory spanned by coherent k[ ¢]-torsion Ox-
modules. By [Miy91, Theorem 3.2] the derived category D” (Coh (X)) of the Serre quotient
is equivalent to the Verdier quotient

D*(X)/Dy(X),

where Dg(X) is the full triangulated subcategory spanned by complexes with coherent Kk[[#]-
torsion cohomology. Huybrechts—Macri—Stellari showed the k((¢))-linear exact equivalence

D’ (Coh (X)) = D} (Mod (Oy)) /D% (Mod (Ox))

when X is a K3 surface [HMS11, Theorem 1.1]. Here D’C’ (Mod (O)) is the bounded derived
category of Ox-modules with coherent cohomology and D’C’0 (Mod (Oy)) is its full triangulated
subcategory spanned by complexes with coherent k[[#]-torsion cohomology. The latter Verdier
quotient is called the derived category of the general fiber.

If X is effective with a proper effectivization X, i.e., isomorphic to the formal completion of
a proper K[ 7]]-scheme X, then by [GD61, Corollorary II15.1.6] we have

D"(X) = D"(X)
and D (Coh (X)) is equivalent to the Verdier quotient
D"(X)/Dy(X),

SISSA, via BonoMEA 265, 34136 TRIESTE, ITALY
E-mail address: hmorimur@sissa.it.
Key words and phrases. Derived category, Generic fiber, Verdier—quotient, Fourier—Mukai transform.
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which is k((¢))-linear. This can be regarded as an effectivization of D” (Coh (Xy))). On the
other hand, the derived category of the generic fiber Xy of the effectivization X gives another
k((?))-linear category. By [BFN10, Theorem 1.2] also Db(Xk((,))) is obtained from the K[7]-
linear category D”(X). As both D”(X)/D}(X) and D”(Xys)) carry sufficient information on
the generic categorical behavior of formal deformations, it is natural to ask whether they are
equivalent as a k((¢))-linear triangulated category. Motivated by this question, we prove the
following.

Theorem 1.1 (Theorem 2.5). Let Xg be a smooth separated family over a noetherian con-
nected regular affine k-scheme Spec R whose closed points are K-rational. Let K be the field of
fractions of R and Xk the generic fiber. Then there exists a K-linear equivalence

coh(Xk) =~ coh(Xg)/ coh(Xg)o
of abelian categories, where coh(Xg), is the Serre subcategory spanned by R-torsion sheaves.

Corollary 1.2 (Corollary 2.6). Under the same assumption as above, there exists an exact
K-linear equivalence

D’(Xk) = D"(Xg)/Dy(Xx),

where Dg(XR) is the full triangulated subcategory spanned by complexes with R-torsion coho-
mology.

We impose the technical condition on Spec R to include smooth proper effectivizations of
formal families over formal power series rings, besides smooth proper families over nonsingu-
lar affine k-varieties.

1.2. The first application. One advantage to describe the derived category of the generic fiber
as a Verdier quotient is that Fourier—Mukai machinery carries over easily. Suppose that

®g: D'(Xz) — D°(X})

is a relative Fourier—Mukai transform of smooth proper families over R with kernel & € D?(Xgxx
X%). Then ®g induces a Fourier-Mukai transform

®g, : D" (Xx) = D(X})

of the generic fibers, where the kernel & is the pullback along the canonical inclusion R —
K. By the standard argument the further base change to the closure defines a Fourier—Mukai
transform

D¢, : D"(Xg) —> D' (Xp)
of the geometric generic fibers.

Typical examples for our results are given by deformations of higher dimensional Calabi—
Yau manifolds. Recently, the author proved the following.

Theorem 1.3 ([Mor23, Theorem 1.1]). Let Xy, X{) be derived-equivalent Calabi—Yau manifolds
of dimension more than two. Then there exists a nonsingular affine k-variety Spec S such that
smooth projective versal deformations Xs, Xg over S are derived-equivalent.

Here, the derived equivalence is given by the relative Fourier—Mukai transform with kernel
obtained by deformation of the original kernel for central fibers. Similarly, the Fourier—Mukai
transform of central fibers extends to proper effectivizations of universal formal families. Com-
bining with our current results, we obtain derived-equivalent geometric generic fibers of the
versal deformations and the effectivizations respectively. One can check that they are Calabi—
Yau manifolds of dimension dim X,. When the central fibers are nonbirational, in some special

24



cases one can deduce the nonbirationality of the geometric generic fibers. See, also specializa-
tion of birational types over a smooth connected curve [KT19, Theorem 1.1]. To summarize,
we obtain

Theorem 1.4 (Theorem 5.7). Let Xy, X, be derived-equivalent Calabi—Yau manifolds of dimen-
sion more than two. Then the geometric generic fibers Xg, X}, of proper effectivizations and that
XQ-,X’Q of smooth projective versal deformations are respectively derived-equivalent Calabi—
Yau manifolds. If, in addition, we have either NS,,. Xo # NS, X, or p(Xo) = p(X{)) = 1 and
deg(Xo) # deg(X(), then they are respectively nonbirational.

Recall that Fourier—Mukai partners are pairs of nonbirational Calabi—Yau threefolds that
are derived-equivalent. They are of considerable interest from the viewpoint of string theory
and mirror symmetry. For instance, the Gross—Popescu pair [GPOla, Sch] and the Pfaffian—
Grassmannian pair [BC09, Kuz] satisfy the first and the second conditions in Theorem 1.4
respectively. Thus we obtain new examples of Fourier—Mukai partners over the closure K, Q
of function fields. Note that if k is a universal domain, i.e., an algebraically closed field of
infinite transcendence degree of the prime field, then there exists an isomorphism k = Q [Vial3,
Lemma 2.1]. In particular, if k = C then the new examples over Q can be regarded as complex
manifolds.

When X, X are the Pfaffian-Grassmannian pair, we demonstrate the subtle difference be-
tween Xp, X’Q and known examples. The geometric generic fibers X, X’Q are respectively iso-
morphic to Xp, X as a scheme, but not as a variety. We will explain why any other known
pair Yy, ¥ over k cannot be isomorphic to XQ,X'Q even as a scheme. However, we empha-
size that one can obtain X, X’Q starting from IMOU varieties [IMOU, Kuz18] which are flat
degenerations of Xy, X.

1.3. The second application. Another, and probably the most important advantage to describe
the derived category of the generic fiber as a Verdier quotient is that any object of D?(X) lifts to
that of D?(Xz). The quotient description extends to nonaffine base case for flat proper families
of k-varieties.

Theorem 1.5 (Theorem 6.1). Let m: X — S be a flat proper morphism of K-varieties. Then
there exists a K-linear exact equivalence

D"(X)/ Ker(fy) = D"(X),
where K = k(S) is the function field and tx : Xx — X is the canonical morphism.

In particular, there always exists a lift & € D?(X Xg X’) of a Fourier—Mukai kernel Ex €
DP(Xx x X ©) whenever X, X} are derived-equivalent. It allows us to extend the derived equiv-
alence of the generic fibers to that of general fibers.

Theorem 1.6 (Corollary 6.9). Let n: X — S,n': X’ — S be flat proper morphisms of k-
varieties. Assume that their generic fibers Xk, X}, are derived-equivalent. Then there exists
an open subset U C S over which the restrictions Xy, X;, become derived-equivalent. In
particular, over U any pair of closed fibers are derived-equivalent.

This can be regarded as a categorical analogue of the fact that isomorphic generic fibers
imply birational families in our setting. In classical algebraic geometry, the generic fiber often
controls behaviors of general fibers. For instance, if the generic fiber satisfies a certain property
which is constructible, then general fibers also satisfy the same property. Such characteristics
of the generic fiber must be translated via Gabriel’s theorem [Gab62] into the abelian category
of coherent sheaves. Nevertheless, as there exist pairs of nonisomorphic derived-equivalent
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K-varieties, it makes sense to wonder how the derived category of the generic fiber affects that
of general fibers.

When Kk is a universal domain, very general fibers are obtained as base changes of the geo-
metric generic fiber along isomorphisms k = K from [Vial3, Lemma 2.1]. Hence in this case
the derived equivalence of the generic fibers induces that of very general fibers. The proof of
[Mor23, Theorem 1.1] shows that Theorem 1.6 follows as soon as a lift of the Fourier—Mukai
kernel induces the derived equivalence of a single pair of closed fibers. However, since the
composition of the canonical morphisms R — K — K with a fixed K = k does not coincide
with the surjection R — K, the induced Fourier Mukai kernel on very general fibers should be
different from the restriction of the lift.

Consider another description

D)), (X) = Perfo(X;) = Perf g (X) @pert,, s Perfyg(K)

of a dg enhancement ng(Xf) of D?(X,) obtained from [BFN10, Theorem 1.2] and [Coh]. By
[CP21] and [Miy91] the category Perf,,(K) is a dg enhancement of the Verdier quotient

D (S)/Dgims 1 (S),

where D’; dims—1(8) 1s the full triangulated subcategory spanned by objects with cohomology
supported on dimension at most dim S — 1. Thus removing the torsion support from D?(X) is
equivalent to removing all closed fibers from the supports of objects of D?(X). In particular,
from a collection of a finite number of objects and Hom-sets between them in D’(X), one can
remove its torsion support by shrinking the base.

In order to show that the restriction of the lift to general fibers define equivalences, we apply
the argument in the proof of [Mor23, Theorem 1.1] to a fixed strong generator E; of D’(Xy),
which always exists over sufficiently small open subset U c S. By shrinking U further if
necessary, one can remove the torsion parts with respect to the base from Ey and its relevant
Hom-sets. Then we invoke some basic categorical results to show that the value of the counit
morphism on the trimmed strong generator is an isomorphism, which implies that the restriction
of the counit morphism is a natural isomorphism.

Theorem 1.6 tells us that the derived category of the generic fiber determines an U-linear
triangulated category D”(Xy) =~ D’(X)/D%(X) for some open subset U C S and its comple-
ment Z, where D5(X) ¢ D*(X) is the full S-linear triangulated subcategory with cohomology
supported on X;. In general, the derived category of the generic fiber cannot recover that of
the initial fiber as we have D*(Xy) ~ D’(Xg)/D"(X,) for R = Kk[].. Rather, [HMS09] and our
results suggest that it carries information on derived categories of general fibers. We expect
that Theorem 1.6 provides a way to seek categorical constructible properties and their derived
invariance.

Notations and conventions. We work over an algebraically closed field k of characteristic 0
throughout the paper. Every time we apply [Vial3, Lemma 2.1] we always assume K to be a
universal domain with comments. A Kk-variety is an integral separated K-scheme of finite type.
A Calabi-Yau manifold X, is a smooth projective K-variety with trivial canonical bundle and
H (X, Ox,) = 0 for 0 <i < dim Xy. For a noetherian formal scheme X by D’(X) we denote the
bounded derived category of the abelian category Coh(X) of coherent sheaves on X.

Acknowledgements. The author would like to express his gratitude to Kazushi Ueda for sug-
gesting the problem studied in [Mor23]. The author would like to thank Paolo Stellari for
answering some questions. The author also would like to thank Evgeny Shinder and Nicolo
Sibilla for informing him on the paper [CP21]. Finally, the author is deeply thankful to anony-
mous referees who carefully read the earlier version of this paper, pointed out some mistakes,
and suggested many useful ideas.
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2. THE DERIVED CATEGORY OF THE GENERIC FIBER
For a scheme Xy over an integral domain R, we have the following pullback diagram

i

Xk Xr
Spec K — SpecR,

where K is the field of fractions of R and X is the generic fiber, i.e., the fiber over the generic
point & € Spec R. In the sequel, we assume the following conditions:

(1) Xg is connected and smooth separated over R.
(i) SpecR is a noetherian connected regular affine k-scheme whose closed points are k-
rational.

The assumption guarantees that Xz and Xk are noetherian separated regular. Indeed, O, , is
regular for every closed point x € Xg by [SP, Tag 031E]. Under the assumption also X is
connected. An example of Xz we have in mind is proper effectivizations of miniversal formal
families of a smooth projective k-variety whose deformations are unobstructed. Note that in
this case Spec R is not of finite type over k. We impose (ii) to include such examples, besides
smooth proper families over nonsingular affine k-varieties.

We denote by coh(Xg)) C coh(Xg) the Serre subcategory spanned by R-torsion sheaves,
i.e., for each .% € coh(Xy), there is an element r € R such that ».% = 0. We write C =
coh(Xg)/ coh(Xg), for the Serre quotient. The natural projection p: coh(Xz) — C which sends
F to F is known to be exact. By universality of Serre quotient, the exact functor

(-)®r K: coh(Xp) — coh(Xk)
induces a unique exact functor
®: C - coh(Xg)
such that (—) ® K = ® o p. Then ® defines the derived functor
D*(C) - D*(Xx),
which induces a functor
¥: D(Xy)/Dh(Xz) — D'(Xx)
via [Miy91, Theorem 3.2]. We show that ® and ¥ are equivalences. In particular,
2.1) D"(C) = D"(Xy)/ Dy(Xr)

gives an alternative description of D*(X).
2.1. K-linear categorical quotients. As expected from their constructions, both the Serre
quotient C = coh(Xg)/ coh(Xg)o and the Verdier quotient D*(Xg)/D(Xg) carry natural K-linear

structures. To see this, one can adapt [HMS11, Proposition 2.3, 2.9] to our setting in a straight-
forward way. We include the proofs for reader’s convenience.

Lemma 2.1 ((HMS11, Proposition 2.3]). The abelian category C is K-linear and for all &, ¥ €
coh(Xg) the natural projection p: coh(Xg) — C induces a K-linear isomorphism

(22) HomXR(f, y) ®r K = Homc(é}(, gZK)
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Proof. As a quotient of the R-linear category coh(Xg), the category C is also R-linear. The
multiplication with ~! for r € R is defined as follows. Let f € Homg(&x, %) be a morphism

rso

represented by f: (& & 0 57 ) with Ker(sy), Coker(sy) € coh(Xg)o. Then set =1 f: (& «—

&0 5 F ), which is well-defined in C, since Ker(rs), Coker(rsg) are in coh(Xg),. Moreover,
we have r(r"! f) = f due to the commutative diagram

i

0 é@o
and the K-linearity of the composition is obvious. Recall that a morphism in the Serre quo-
tient is an equivalence class of diagrams. In C, two morphisms f: (& & & 5 7 ) and

(& & &y 5 7 ) are equivalent if there is a third diagram f”: (& & &y’ 5 7 ) with
Ker(sy), Coker(sy) € coh(Xg)o and morphisms u: &' — &,v: &’ — &; in coh(Xg) which
makes the diagram

o

N

gﬁg/’%ﬁ

50 4
j ' /
0 g

&

N

commute.
Consider the induced K-linear map

Nk : HomXR(éa, g) ®r K — Homc(éa](, y]{)

To prove the injectivity of 7k, let f € Homy, (&, .#) be a morphism with nx(f) = 0. There
exists a commutative diagram

&

F

é@l
P
f
with Ker(s), Coker(s) € coh(Xg)o and hence f factorizes through

f: &2 Coker(s) EiN ZF.
If r Coker(s) = 0, then this yields rf = f’ o (rqg) = 0. In particular, f ® 1 € Homy,(&,.%) @ K
is trivial.
To prove the surjectivity of ng, we have to show that for any f € Hom¢(&%, k) there
exists an element » € R such that rf is induced by a morphism & — .% in coh(Xg). Write

f: (& & &) 57 ) with r; Ker(sy) = r, Coker(sy) = 0 for some ry, r, € R. Consider the exact
sequence

0 — Homy, (&, 7) -5 Homy, (&, F) < Homy, (Ker(so), F)

induced by the natural projection j: & — &’ := Im(s) and its kernel i: Ker(sy) < &. Since
(rig)oi = go(ryi) = 0, there exists a unique homomorphism g’: & — % such that g’ op = rig.
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This yields the commutative diagram

=

&’ &
which allows us to represent r; f by & « &” 57

As &/&" = Coker(sg) is annihilated by r,, the homomorphism r,g": & — % lifts to a
homomorphism g”: & — %, i.e., g’|s = rg’. This yields the commutative diagram

&

~

id g//

Hence rr, f is represented by (éb <E FKEN ﬁ), 1e., rnrf =nx(g’). O

Lemma 2.2 ((HMS11, Proposition 2.9]). The triangulated category D*(C) is K-linear and for
all E, F € D*(Xg) the natural projection Q: D*(Xg) — D”(C) induces a K-linear isomorphism

HomDh(XR) (E, F) ®r K = Home(C) (E](, FK) .
Proof. Any morphism in D?(C) can be represented by a morphism of bounded complexes of
objects in C, which is a collection of morphisms in C compatible with the differentials. Since
by Lemma 2.1 both the morphisms and the differentials are K-linear, the representative is also

K-linear. The K-linear isomorphism is a direct consequence of Corollary 2.6, whose proof does
not rely on it. O

Remark 2.1. In [HMS11] only the case where R = Kk[¢] was treated. This is because some
results require R to be a DVR. Throughout the paper, we are free from the requirement and
results which rely on it.

2.2. Canonical functor from the Serre quotient. Due to the natural K-linear structure, the
Serre quotient C can be embedded in coh(Xx) via the exact functor @, which is induced by that
(—) ®g K: coh(Xg) — coh(Xk).

Proposition 2.3. The functor ®: C — coh(Xx) is fully faithful.

Proof. The images of &%, %k € C by @ are respectively isomorphic to the pullbacks i*&, i*.%
of some coherent sheaves &,.% on Xz. We have

Homy, (®(&k), O(Fx) = Homy, ("8, i".F)
=T oi"Hom, (&, %)
= j* o (7p).Hom, (&, F)
=~ Homy, (&,.%7) @ K
= Homc (&k, Fk) »
where the second, the third, and the fourth isomorphisms follow from flat base change, Lemma

2.4 below, and Lemma 2.1 respectively. O

Lemma 2.4. For all &,.% € coh(Xg) we have an isomorphism

(7g).Hom, (&, F)®r K = Homy, (£,.%) ® K.
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Proof. We may consider (7TR)*HO_1’I1XR (&,.7)®r K as the stalk of the sheaf (ﬂR)*Ho_mXR (&, F)
at the generic point € of Spec R. For an affine open cover Spec R = {D(f)}, 0 # f € R, take any
germ (D(f), s) of (nR)*Ho_mXR (&, F )¢ Since (nR)*Ho_mXR (&,.%) is a quasi-coherent sheaf on
an affine scheme as Xy is noetherian, by [Har77, Lemma II5.3] there exists an integer n > 0
such that f”s becomes a global section. Let

¢: (mgr).Hom, (&, F): = Homy, (&,.7) @ K

be the homomorphism of R-algebras which sends (D(f), s) to f"s ® (1/f™), where m is the
minimum integer such that s becomes a global section. One can check that this is well-
defined. The inverse ¢! is given by the map which sends v ® (g/f) to (D(f),(gv/f)) for
v € Homy, (£,.%#) and g € R. O

Theorem 2.5. The functor ®: C — coh(Xy) is a K-linear equivalence of abelian categories.

Proof. It suffices to show that @ is essentially surjective. By assumption X is connected. Let
Z¢ be an object of coh(Xk). Since Xk is noetherian integral separated regular, by [Har77,
Exercise 1116.8] any coherent sheaf on Xy can be obtained as the cokernel of a morphism of
locally free sheaves of finite rank. The essential image of @ is a full abelian subcategory of
coh(Xk). In particular, it is closed under taking cokernels. Hence we may assume .7 to be a
locally free sheaf of finite rank.

Take an affine open cover {U;}",, U; = Spec A; of Xy such that the restriction of .%; to each

affine open subset V; = U; X K of X is isomorphic to a finite rank free B; = A; ®; K-module
F; = B®",
Let ¢;j = ¢; o ¢J‘.1: Fijly, — Fily, be isomorphisms on V;; = V; N V; where ¢;: Fe¢ly, — F; are

trivializations with their inverses ¢l.‘1 : Fi — F¢ly,. In other words, we have the commutative
diagrams

Fely,, == Fely,

ﬂ L@

Filv, rme Fily,;.

From F; we obtain a rank N free A;-module
E; = A®N

with the same generators. By construction tensoring K with E; recovers F;. Now, up to shrink-
ing the base Spec R, we glue E; to construct a coherent sheaf & on Xy such that & @ K = 7.
By Lemma 2.1 there are lifts éij: Ejly,;, — Eily,; on U;; = U; N U; of ¢;; along (2.2). Namely,
we have

¢ij®r 1/1ij = ¢y

for some r;; € R.
Consider the affine open subset

SpecT C SpecR

defined by r;; # 0,1 < i, j < m. On the base changes U;;r = U;; Xg T all r;; become invertible.
Hence ¢;; canonically lift to isomorphisms

—173 .
rij ¢lj Ele,’j,T - El‘lU,'j,T
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which injectively map to r;;'¢;; ®r 1 = ¢;; under

—orK
Homy,, . (Ejlu,,;» Eilu,7) — Homy, . (Ejlv,,» Eilu,,;) ®r K = Hom¢((E )k, (Ej)k)-

Clearly, the lifts satisfy cocycle condition. Thus E;|y,, glue to yield a locally free sheaf & on
X7 = Xz Xz T such that & ®; K = Fe.

By [Har77, Exercise 115.15] the lift & extends to a coherent sheaf & on Xz. Since the exact
functor (—) ®& K factorizes through

coh(Xg) — coh(X7) — coh(Xy)
and it sends & to .7, there is an object &x € C which maps to .%; under ®. O
2.3. Canonical functor from the Verdier quotient. As the functor ®: C — coh(Xk) is exact,

termwise application of @ defines the derived functor D°(C) — D”(Xx). By universality of
Verdier quotient, the induced functor

¥: D"(Xg)/Dy(Xg) — D’ (X)
by (2.1) coincides with D*(C) — D?(Xy). From Theorem 2.5 we obtain
Corollary 2.6. The functor ¥: D"(Xg)/D}(Xg) — D"(Xx) is a K-linear exact equivalence.

In Section 6 we will extend Theorem 2.5 and Corollary 2.6 to nonaffine base case for flat
proper families of k-varieties.

3. COMPARISON WITH THE CATEGORICAL GENERAL FIBER

3.1. The abelian category of coherent sheaves on the general fiber. Recall that in [HMS11]
for a formal deformation X of a smooth projective k-variety over a formal power series ring
k([ ] the abelian category of coherent sheaves on the general fiber is defined as the Serre quo-
tient

Coh(Xk()) = Coh(X)/ Coh(X)y,

where Coh(X) is the abelian category of coherent &x-modules and Coh(X), is the full abelian
subcategory spanned by coherent k[[#]-torsion &x-modules. In the case where X is effective
with a proper effectivization, one can obtain Coh(Xy.) via formal completion along the closed
fiber in the following sense.

Corollary 3.1. Let X = Xz — Spf R be an effective formal deformation of a smooth projective
variety with a proper effectivization Xg. Then abelian category of coherent sheaves on the
general fiber of X is equivalent to that on the generic fiber Xk of its effectivization, i.e., there
exists a K-linear equivalence

coh(Xk) =~ Coh(Xg)
of abelian categories.

Proof. We have the pullback diagram

L

X = XR XR
|
Spf R —— Spec R

31



of noetherian formal schemes. Since R is a complete local noetherian ring, one can apply
[GD61, Corollorary I115.1.6] to see that the functor

(3.1) coh(Xg) — Coh(X),
which sends each coherent sheaf .% on Xj to its formal completion F along the closed fiber, is

an R-linear equivalence of abelian categories. By universality of Serre quotient, we obtain the
induced K-linear equivalence

coh(Xg)/ coh(Xg)y — Coh(X)/ Coh(X)y.
O
3.2. Serre functor. In the case where X is effective with a proper effectivization, the Serre
functor from [HMS11, Theorem 1.1] constructed when X is a formal deformation of a K3

surface, extends to smooth projective varieties and formal power series rings of any finite di-
mension in a straightforward way.

Proposition 3.2. Let X = Xz — Spf R be an effective formal deformation of a d-dimensional
smooth projective variety with a proper effectivization Xz. Then a Serre functor on D*(Xk) is
given by

S(Ex) = (E® W, )ld],
where wy, is the dualizing sheaf for mg.
Proof. We have
Home(Coh(XK)) (EK, ﬁ[{) = Home(X) (E, F) ®r K
= Home(XR) (E, F) ®R K
= Hompy(x,) (F, E ® wy, [d])v ®r K
= HomDh(X) (ﬁ, E’§Bﬂ}a [d])v ®R K
A — \Y
= Hompp(concx ) (F Kk, (E® wnR)K[d]) ,

where the first and the fifth, the second and the fourth, and the third isomorphisms follow from
Lemma 2.2, the equivalence (3.1), and Serre duality for the smooth morphism 7xz of relative
dimension d respectively. |

3.3. The derived category of the general fiber. Recall that the derived category of the gen-
eral fiber is defined as the Verdier quotient

D} (Mod (Ox)) /Db, (Mod (Ox)),
where D’C’ (Mod (OY)) is the bounded derived category of Ox-modules with coherent coho-

mology and D’C’0 (Mod (OY)) is the full triangulated subcategory spanned by complexes with
coherent Kk[[]-torsion cohomology. By [HMS11, Theorem 1.1] we have

D} (Mod (Oy)) / D}, (Mod (O)) = D’ (Coh (X))

when X is a formal deformation of a K3 surface. This is deduced from the intermediate k((7))-
linear exact equivalence

(3.2) DY (Mod (6x)) /D%, (Mod (6x)) = D"(X)/Dy(X)
established in the proof of [HMS11, Proposition 3.10].
While we have

D!, (Mod (6x)) = D(X)
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by [HMS11, Proposition 2.5], in general the natural inclusion
D"(X) <= D? (Mod (Oy))

is not an equivalence. Hence one cannot expect (3.2) to hold for more general X. However, in
the case where X is effective with a proper effectivization, we have

D¢ (Mod (0,)) /D¢, (Mod (0x,)) = D (Xg)/ D(Xg) = D’ (X)
by Corollary 2.6. Note that the first equivalence follows from
D¢ (Mod (0x,)) = D"(Xg),

which holds for noetherian schemes. Unless the closed fiber of Xy is a K3 surface, in general
one can only recover the part

D*(X)/DG(X) = D"(X)

via [Miy91, Theorem 3.2] and formal completion along the closed fiber in the sense of Corol-
lary 3.1.

4. INnpuceD FOURIER—MUKAI TRANSFORMS

As mentioned in [HMS11], one advantage to describe the derived category of the generic
fiber as a Verdier quotient is that the Fourier—Mukai machinery carries over easily. Given a rel-
ative integral functor ®g: D’(Xz) — Db(X,’e) on smooth proper families z: Xz — Spec R and
ne: Xi — Spec R, we study the induced derived equivalence on thier generic fibers, geometric
generic fibers, and formal completions. One will see that ®g being equivalences when restricted
to general fibers implies the derived equivalence of their generic and geometric generic fibers.
We will discuss the opposite direction in Section 6 below.

4.1. Induced Functor from smooth proper families to generic fibers.

Proposition 4.1. Let Xg, X}, be smooth proper families over R. If ®g: D*(Xg) — DP(X}) is
a relative Fourier-Mukai functor, then the induced integral functor ®g,: D*(Xg) — D"(X})
is an equivalence. Here, Ex € D°(Xg Xg X;e)/Dg(XR X X3) is the image of & by the natural
projection.

Proof. Since objects of D”(Xg Xg Xj)/Dj(Xr Xg X}) are the same as those of D*(Xg Xz Xj)
[HMS11, Appendix], the R-linear functor @g induces an integral functor

D, : D*(Xg)/Dy(Xg) = D"(Xg)/ Dg(Xp).

By Corollary 2.6 we have the commutative diagram

Db (Xg) —2= DY(X]

0| |o

Dg
D' (Xg) —= D*(X}).

The inverse functor CDg] is a left adjoint to ®@g as g is an equivalence. On the other hand,
due to the Grothendieck—Verdier duality ®g has a left adjoint g, with &, a perfect complex
on Xr Xg X;. By uniqueness of left adjoint up to isomorphism, it follows (D(:;l = @g,. Then
@;' induces an integral functor ®,), and we obtain natural isomorphisms @), o Dg, =
Idpoxg), Qe © Py = Idprxy ). Thus the functor @, is an equivalence.

O

Remark 4.1. By universality of Verdier quotient, Corollary 2.6 induces a mere K-linear equiv-
alence D*(Xg) ~ D(X},), while Proposition 4.1 preserves Fourier-Mukai kernels.
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Corollary 4.2. Let Xg, X}, be smooth proper families over R. If ®s: D*(Xg) — DP(X}) is a
relative integral functor whose restrictions to general fibers are equivalences, then the induced
integral functor ®g,, : D'(Xg) — Db(X;() is an equivalence. Here, Eg € D’ (Xg XRXI’e)/Dg(XR XR
Xy) is the image of & by the natural projection.

Proof. We are given a Zariski open subset U C Spec R such that any pair of closed fibers of
Xr and X} over U are derived-equivalent. By [HLS09, Proposition 2.15] the relative integral
functor ®g,, is an equivalence, where &y denotes the restriction of & to pr]1 oyr,;] (U). Note that
we do not need the assumption on X;; = X Xg U to be locally projective in the statement of
[HLSO09, Proposition 2.15], which guarantees the existence of a right adjoint to ®g,,, as mg, 7}
are smooth proper. Now, the claim follows immediately from Proposition 4.1. O

Remark 4.2. The previous corollary provides from general to generic induction of Fourier—
Mukai transforms. Conversely, by Corollary 2.6 any integral functor ®g, : D*(X;) — D’ (X7)

lifts to a relative integral functor ®g: D*(Xz) — D”(X;e). In Section 6 we will prove that the
induced functor is an equivalence when restricted to general fibers.

4.2. Induced Functor from generic to geometric generic fibers. Due to [Ola], one can
slightly improve [Huy06, Exercise 5.18] and a well-known fact about the relation between
field extensions and Fourier—Mukai transforms.

Lemma 4.3. Let X, X}, be smooth proper K-varieties and g, : DP(Xy) — DP (Xy) an integral
functor. Then Qg is an equivalence if and only if there are isomorphisms

4.1) Ek * (Ek)L = Oy, (Eg)L *Ek = Oy,
where A: Xg — Xg X Xg, A': X}, — X}, X X}, are the diagonal embeddings.

Proof. Assume that we are given the isomorphisms (4.1). Regarding the isomorphic objects as
kernels, we obtain natural isomorphisms

(4.2) D), © Loy = Idpocxy)» Peg © Pegey, = Idprixy).-

Thus the functor ®g, is an equivalence.
Conversely, assume that @g, is an equivalence. Let (%K)‘1 be its inverse. Then we have
natural isomorphisms

(Dg,) " 0 Dg, = Idpoxy), ey © (Dg) ™' = Idpoxy ).

In particular, it follows that (®g, )" is a left adjoint of ®g,. By uniqueness of left adjoint up to
isomorphism, we obtain (®g, )™ = Dg,), and (4.2). Thus two pairs of the kernel Eg *(Ex) ., Oa
and (Eg)*Ex, Oa respectively define the same derived autoequivalence of D?(Xx) and D?(X ©)-
Since any derived equivalence of smooth proper varieties is defined by a unique Fourier—Mukai
kernel up to isomorphism [Ola], we obtain (4.1). O

Lemma 4.4. Let X, X}, be smooth proper K-varieties. If Xg, X}, are derived-equivalent, then
for any filed extension Ly/K the base changes Xy, X  are derived-equivalent.

Proof. Let Eg € D’(Xk X X},) be a Fourier-Mukai kernel, which is unique up to isomorphism.
By Lemma 4.3 we have isomorphisms

Ex * (Ex)L = Op, (Ek)L *Ex = Op.
As Ly is a flat K-module, the pullback by i’ : X;, X Xz, — Xx X Xk yields
Ery x ()L = " (Ek * (Ek)) =00, = O,
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where &, = ""Ek and A: X;, — X, X Xp, is the diagonal embedding. Here, we have used
QXLO/LO = Qy,/xk ®k Ly [Har77, Proposition 1I8.10]. Similarly, we have (&), * &, = 0.
Again, by Lemma 4.3 we conclude that @, is an equivalence. O

Remark 4.3. When Spec R is an affine k-variety and k is a universal domain, very general fibers
of Xz, X}, are dereived-equivalent if and only if so are their geometric generic fibers. Indeed,
by [Vial3, Lemma 2.1] there is an isomorphism k — K along which the pullback of Xy x X;
is isomorphic to Xz X X¢. Here, Xk, X are very general fibers of Xg, X;. One can apply the
same argument as in the proof of Lemma 4.4. Note that we assume K to be a universal domain
to apply [Vial3, Lemma 2.1].

4.3. Induced Functors to effective formal families and their categorical general fibers.
Assume that the families 7z: Xz — SpecR, m,: X; — SpecR are effectivizations of formal
deformations X, X" over R of smooth projective varieties Xy, X| respectively. Assume further
that g, 7, are proper. Here, we will show that the induced Fourier-Mukai functor from smooth
proper families to their generic fibers is compatible with formal completion along the closed
fibers.

The schemes Xk, X}, their restrictions to the n-th order thickenings, and their formal com-
pletions along the closed fibers form the commutative diagram

X X, X,
/ JATNX\
X, X XRr X’ X;l

T & (
Xr
of noetherian formal schemes. Here, g, p are canonically determined as the limit by the com-

patible collections of morphisms g,, p, of schemes, and compositions of two sequential vertical

arrows give the canonical factorizations of the closed embeddings
/77 144 /7 / ’ /
Kn=t0oT,, K, =U"01), K,=UoT,.

n

Proposition 4.5. Given & € D"(Xg Xg X},), the formal completion & along the closed fiber
Xo X X|, defines a relative integral functor

g = Rp.(E®" §°(-)): D'(X) - D"(X"),

which makes the diagram
D(Xg) —2= D(X},)
G l lc
b d)é b /
D°(X) —— D*(X")
2-commutative.

Proof. Since objects of D?(X’), D*(X xz X’) are quasi-isomorphic to perfect complexes, the
functors §*: D(X) — D*(XxzX’) and E®' (-): D’(XxzxX') — D’(X xzX’) can be computed
by termwise application after replacing objects with perfect complexes. It is known that Rp, is
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well-defined and sends bounded complexes to bounded complexes by the comparison theorem
[GD61, Corollary 4.1.7] and Leray spectral sequence. Since by the equivalence (3.1) any object
of D?(X) can be written as £ = G(E) = Li*E for some object E € D’(Xy), we have

Dy(E) ®5 R, = LT 'Rp.(E &% LG E)
= Rp, LT/ (E®% LG E)
= Rp,..(E, ®r, . E,)
= Qg, (Ey),

where R, = R/ mj’?“, E, = T:E , and the first isomorphism follows from the comparison theorem.
We also have

Dg(E) ®% R, = LK Rp.(E ®% Lg'E)
= Rp,. LK/ (E ®% LG'E)
= an*((gn ®R,, qun)
= Qg (E,).

Thus we obtain isomorphisms
fur @4(E) ®, Ry — D5(E) @k R,

for any positive integer n satisfying f,.; ®1Len+1 idg, = f,. Note that (DS(E) is the formal comple-

tion of some perfect complex on X}, as it belongs to D(X’) ~ D”(X}). Then, by the argument
in the proof of [HMS11, Lemma 3.4], taking the limit yields an isomorphism

£ @g(E) > G (0(E))
which completes the proof. O

Corollary 4.6. Given a Fourier—-Mukai kernel & € D*(Xi Xz X}), the functors ®g: D'(X) —
D*(X') and O, : D’(Coh(Xg)) — Db(Coh(X}{)) are equivalences, where Ex € DP(X Xz
X")/D}(X Xg X') is the image of & by the natural projection.

5. FOURIER—-MUKAI PARTNERS OVER THE CLOSURE OF FUNCTION FIELDS

In this section, passing through the deformation theory, we provide new examples of Fourier—
Mukai partners, pairs of nonbirational Calabi—Yau threefolds that are derived-equivalent. Our
results play a role in deducing the derived equivalences. Let Xj, X be derived-equivalent
Calabi—Yau manifolds of dimension more than two. There exists a nonsingular affine k-variety
Spec S such that smooth projective versal deformations Xg, X over S are derived-equivalent
[Mor23, Theorem 1.1]. Also effectivizations Xg, X} are shown to be derived-equivalent. These
equivalences are given by deformed Fourier—-Mukai kernels. From our results in Section 4 it
immediately follows that the geometric generic fibers of Xy, X; and Xz, X, are respectively
derived-equivalent. One can check that the geometric generic fibers are Calabi—Yau manifolds.
If Xo, X, satisfy either NS, Xo # NS, X{j, or p(Xo) = p(X;) = 1 and deg(Xo) # deg(X)),
then the geometric generic fibers are nonbirational as well as X, X|. Several pairs are known
to satisfy one of the two conditions. Thus we obtain new examples of Fourier—Mukai part-
ners over the closure K, Q of the function fields. One may also pass to base changes over a
smooth connected k-curve containing Xy, X/, to apply [KT19, Theorem 1.1]. If kK is a universal
domain, then Q is isomorphic to k but the Fourier—Mukai partner X5, X'Q are different as a va-
riety from known examples. We demonstrate this subtle difference when X, X{ are the famous
Pfaffian—Grassmannian pair.
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5.1. Deformations of Calabi—Yau manifolds. Let X, be a Calabi—Yau manifold with dimen-
sion more than two. The deformation functor

Defy,: Arty, — Set

of Xy has a universal formal family (R, £), where R is a formal power series ring with dimy H' (Xo, Tx,)
valuables, and & belongs to the limit

Defy,(R) = lim Defy, (R/n})

of the inverse system
cee — DefXO(R/m;‘;rz) - DefXO(R/mﬁﬂ) - DefXO(R/m;’e) — ..
n+1

induced by the natural quotient maps R/my"" — R/mj}. Here, mg C R is the maximal ideal.
The formal family & corresponds to a natural transformation

hR = Homk—alg(R’ _) - DefX()’

which sends each homomorphism f € hgz(A) factorizing through
R— R/ S A

to Defy,(g)(&,). Let X, be the schemes defining &,. There is a noetherian formal scheme X
over R such that X, = X X R/mZ*l for each n. Thus for a deformation (X4, i4) the scheme
X, can be obtained as the pullback of X along some morphism of noetherian formal schemes
Spec A — SpfR.

Now, we briefly recall how to algebrize X. By [GD61, Theorem III5.4.5] there exists a
scheme X} flat projective over R whose formal completion along the closed fiber X, is isomor-
phic to X. Moreover, Xy is smooth over R of relative dimension dim X, [Mor23, Lemma 2.4].
We call Xy an effectivization of X. Consider the extended functor

Defy,: k-alg™® — Set

from the category of augmented noetherian k-algebras. Let T = K[#,...,t;] and t € Spec T
be the closed point corresponding to maximal ideal (#,...,#;). There is a filtered inductive
system {R;};e; of finitely generated T-subalgebras of R whose colimit is R. Since Defy, is
locally of finite presentation, [Xg, ig] is the image of some element ; € Defy, ((R;, mg,)) by the
canonical map Defy, ((R;, mg,)) — Defy,(R). By [Art69, Corollary 2.1] there exists an étale
neighborhood Spec S of ¢ in Spec T with first order approximation ¢: R; — S of R; < R. Let
[Xs, is] be the image of {; by the map Defy, (¢). The formal completion of X along the closed
fiber Xj is isomorphic to X.

The triple (Spec S, 5o, Xs), or sometimes Xy, is called a versal deformation of X,. By con-
struction, Spec § is an algebraic k-variety with a distinguished closed point s, mapping to ¢,
and Xj is flat of finite type over S whose closed fiber over s is Xj. In our setting, one can find
a versal deformation Xg smooth projective over a nonsingular affine k-variety Spec S of rel-
ative dimension dim X, [Mor23, Lemma 2.3]. Moreover, given another Calabi—Yau manifold
X{, derived-equivalent to X, one can find a smooth projective versal deformation X over the
same base. The construction passes through effectivizations. Namely, there are effectivizations
Xg, Xy, of Xo, X{) over the same regular affine k-scheme Spec R.
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5.2. Calabi-Yau geometric generic fibers. First, we consider the effectivization Xz of X and
its geometric generic fiber. We have the pullback diagram

i

Xg

Spec K — Spec K — SpecR,
J .

where K is the field of fractions of R and K is the closure of K.
Lemma 5.1. The geometric generic fiber Xg is a Calabi-Yau manifold over K.

Proof. Smoothness and projectivity follow from their being stable under base change. One can
apply [GD66, Proposition IV15.5.7] to see that X is connected. Then Xz must be irreducible,
as it is regular. By [Har77, Theorem I1112.8] the function h°: Spec R — Z defined as

R(r) = dimy HO(X,, A%~ 7 @p k(1))

for r € Spec R is upper semicontinuous, where .7, is the relative tangent sheaf. It follows that
there is an open neighborhood U of the closed point to which the restriction vanishes. Since R
is a domain, U contains the generic point. By flat base change we obtain

HO(XI'(, /\dimXO_lf%(,-() ~ HO(XK, /\dimXO_laq.XK) Rk I_< =0.

Similarly, one can show the vanishing of all the other relevant cohomology.

It remains to show the triviality of the canonical bundle. Consider the formal completion
Wx,,r of the relative canonical sheaf on Xy along the closed fiber Xj. It is given by the limit of
inverse system {wx, /g, lneny With R, = R/ m?{“l. Here, the inverse system consists of the sequence
of deformations of wy, along order by order square zero extensions. Since we have wy, = Oy,
the inverse system {0, },en also consists of the sequence of deformations of wy,. On the other
hand, by [Lie06, Theorem 3.1.1] freedom of deformations of wy, as a perfect complex to X is
given by Ext}(() (wx,, a)xo)@l‘ , where /; is the dimension of k-vector space mg/ mlze. This is trivial
by the assumption on X, and there is an isomorphism wy, g, = Oy, respecting wx,r, ®g, k =
wy, and Oy, ®g, k = O, = wx,. Inductively, one finds isomorphisms wx, r, = O, respecting
wx, /R, ®r, Ri-1 = wyx,_, and Ox, ®g, R,-1 = O, | = wx, ,. By universality of limit, we obtain
Wxy /R = ﬁXR, which in turn induces wy, /g = O, via the equivalence (3.1). O

Next, we consider the versal deformation X of X, and its geometric generic fiber. We have
the pullback diagram

<

X5

7o l 7T l jﬂs
Spec O —— Spec Q —— Spec S,
where Q is the field of fractions of S and Q is the closure of Q.

Lemma 5.2. The geometric generic fiber X, is a Calabi-Yau manifold over 0.

Proof. Nontrivial part is the triviality of the canonical bundle. Consider the collection {w X, /Ri Vier
of relative canonical sheaves on Xg,. It consists of the sequence of deformations of wy,. Since
we have wy, = OY,, the collection {0, }.cn of structure sheaves also consists of the sequence of
deformations of wy,. We have wx,/z = Wy, /R; OF; R by [Har77, Proposition I18.10] and the con-
struction of Xg. One can apply [Lie06, Proposition 2.2.1] to find an isomorphism wy, /r, = ﬁXR,.
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for sufficiently large i with respect to the partial order of /. We obtain wy,;s = Oy, again by
[Har77, Proposition 118.10] and the construction of Xg. O

Remark 5.1. Assuming k = C, one can show the previous lemma without using the deformation
theory of perfect complexes as follows. The fact that deformations of Calabi—Yau manifolds
are Calabi—Yau is well-known. Let X be a very general fiber of Xg. Choose a subfield L c k
over which Xy is defined, i.e., we are given a L-variety X; such that the base change X; x; Kk is
isomorphic to Xy. From the proof of [Vial3, Lemma 2.1] there exists an isomorphism k — Q
fixing L such that the base change Xy xx Q is isomorphic to X5. Note that Xy and X are
isomorphic as a scheme but not as a variety, since the induced isomorphism of the schemes
does not lie over a fixed base.

5.3. The derived equivalence. Suppose that X is derived-equivalent to another Calabi—Yau
manifold X{). Recall that there are effectivizations Xg, X over the same regular affine k-scheme
Spec R. We have the pullback diagram

Xi X X, = Xy X X}y = Xp xz X}
n,gxn}.{L nKxn}(l LnRan;a
Spec K —— Spec K —— SpecR.

Let &y be a Fourier—Mukai kernel. By [Mor23, Proposition 3.3, Corollary 4.2] one can deform
& to a Fourier-Mukai kernel & on X Xz Xj. Applying Proposition 4.1 and Lemma 4.4, we
obtain the derived equivalence of the geometric generic fibers
Qroprys: Db(Xi() - Db(X}()-
Recall that there are smooth projective versal deformations Xg, X of Xy, X over the same
nonsingular affine k-variety Spec S. We have the following pullback diagram

, ;// j//
XQXXQéXQXX’Q—>XS Xs X&

RQXH,Ql HQXH’Ql lﬂ'sXsﬂé
Spec Q — Spec Q — Spec S.

By [Mor23, Proposition 3.3] one can deform & to a perfect complex Es on Xg Xg Xg. After
possible shrinking of Spec §, the relative integral functor ®g, is an equivalence [Mor23, Theo-
rem 1.1]. Applying Proposition 4.1 and Lemma 4.4, we obtain the derived equivalence of the
geometric generic fibers

Djrojrye: D'(Xg) = D'(X).
5.4. Nonbirationality. Let X be a smooth proper variety over an algebraically closed field.
Recall that the Néron—Severi group NS X is the quotient of the Picard group Pic X by the sub-
group Pic’ X of isomorphism classes of line bundles which are algebraically equivalent to 0.

The group NS X is a finitely generated with rank p(X) called the Picard number. We denote by
NS,,, X the subgroup of torsion elements, which is known to be a birational invariant.

Lemma 5.3. IfNS,,, Xo,NS,,, X{ are nonisomorphic, then Xg, X}( are nonbirational.

Proof. By [MP12, Proposition 3.6] there is an injection
spgk: NS Xg — NS X,

whose cokernel is torsion free. In particular, spg is bijective on torsion subgroups. Then
NS, Xz, NS;,. X;_( cannot be isomorphic. O
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The same argument yields
Lemma 5.4. IfNS,,, Xo,NS,,, X{ are nonisomorphic, then X, X’Q_ are nonbirational.

If p(Xo) = p(X;) = 1, then Xy, X{) are birational if and only if they are isomorphic [BCO09,
Section 0.5]. Indeed, birational Calabi—Yau manifolds are connected by a sequence of flops
[Kaw08]. However, no such flops are possible on neither X, nor X, since by p(Xo) = p(Xj) = 1
all their nonzero nef divisors are ample.

Lemma 5.5. Assume that p(Xo) = p(X;) = 1 and deg(Xy) # deg(X]). Then X,g,X}{ are nonbi-
rational. Here, the degree is defined with respect to the unique ample generator of the Picard

group.

Proof. By [MP12, Proposition 3.6] we have p(Xg) < p(X{)) = 1. There is an ample divisor H
on Xg, as it is a projective variety of positive dimension. It follows that H is neither torsion
nor algebraically equivalent to 0. Indeed, torsion divisors are numerically trivial and one of
the two numerically effective divisors is ample if and only if so is the other. Two algebraically
equivalent divisors share the degree. Hence we obtain p(Xz) = 1.

Recall that deg(X)) is the highest order coefficient of the Hibert polynomial of X, multiplied
with (dim Xj)!. Since my is flat projective, we have deg(X;) = deg(Xk). Let S(Xg) be the
homogeneous coordinate ring of Xx and Py, the Hilbert polynomial of Xx. By definition
Py, (l) are given by dimg S (Xk), for sufficiently large integers / € Z. Since X is irreducible,
dimg S (Xg); is stable under the base change Xz — X along algebraic extension K ¢ K. Thus
we obtain deg(Xg) = deg(Xx) and deg(Xg) # deg(X}(). O

Lemma 5.6. Assume that p(Xo) = p(X;) = 1 and deg(Xy) # deg(X]). Then XQ,X’Q are nonbi-
rational. Here, the degree is defined with respect to the unique ample generator of the Picard
group.

Proof. The same argument as above works also here. Assuming thatk = C, we show p(X;) = 1
in another way. By [Ser56] the morphism 75 : Xg — Spec S corresponds to a proper submer-
sion of complex manifolds (r5),: (Xs), — (SpecS),. Ehresmann lemma tells us that (7g),
gives a locally trivial fibration of real manifolds [Ehr52]. In particular, all the fibers of (7g),
share the differential type and H*((X,),, Z) is independent from closed points s € SpecS. On
the other hand, we have NS X, = Pic X, = H*((X,),, Z), as X, are Calabi—Yau threefolds. By
[MP12, Theorem 1.1], we obtain p(Xy) = p(Xo) = 1. O

In summary, we obtain

Theorem 5.7. Let X, X|, be derived-equivalent Calabi—Yau manifolds of dimension more than
two. Then the geometric generic fibers Xg, X%, of proper effectivizations and that XQ,X’Q of
smooth projective versal deformations are respectively derived-equivalent Calabi—Yau man-
ifolds. If, in addition, we have either NS,,. Xo # NS, X[, or p(Xo) = p(X;)) = 1 and
deg(Xo) # deg(X)), then they are respectively nonbirational.

Remark 5.2. Consider base changes nig: Xp — B, nj: X — B of nrg, m to a smooth connected
k-curve B containing the point so. The derived equivalence of X, X; induces that of Xp, X7,.
If X, X|, are nonbirational, then by [KT19, Theorem 1.1] the generic fibers of 7p, 7}, must be
nonbirational. Hence the function fields of X3, X}, are nonisomorphic. Since any field extension
gives a faithfully flat module over the original field, also the geometric generic fibers must be
nonbirational.
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5.5. Geometric generic Gross—Popescu pair. In this subsection, we temporarily assume that
k = C. Now, we will consider the case of the Gross—Popescu pair

Xo = Vg,» X5 = Vy,/G

where Vg,y is one of the two small resolutions of Vg, and G = Zg X Zg freely acts on Vgl’v. Here,
Vs, is a 3-dimensional complete intersection in P® of four hypersurfaces parametrized by a gen-
eral point y € P2. They are derived-equivalent Calabi—Yau threefolds with A""! (X)) = h'*(X,) =
2 [GPOl1a]. Since X, is simply-connected [GPO1b, Theorem 1.4], we have H'(X,, Ox,) =0, i=
1,2. Although the fundamental group of X is given by G # 0, we also have H(X!, Ox;) =
0, i = 1,2 by [PS97, Corollary B]. Then NS,,, Xo # NS,,, X, or in this case equivalently
Pic,r Xo # Picy,r Xj. Indeed, from the exponential sequence it follows Pic X, = H2((Xo)n, Z).
The torsion part of H2((Xo)n, Z) is Tor;(H;((Xo)n, Z),C) = 0 by the universal coefficient the-
orem and Van Kampen’s theorem. On the other hand, the torsion part of HZ((X(’))h,Z) 1s
Tor|(H((X{)s,Z),C) = G. Thus one can apply Theorem 5.7 to see that X,-(,X;_( and XQ,X’Q

are respectively nonbirational derived-equivalent Calabi—Yau threefolds.

5.6. Geometric generic Pfaffian—-Grassmannian pair. Next, we will consider the case of the
Pfaffian-Grassmannian pair

X, = Gr(2, V5) N\B(W), X, = Pf(4, V7) N\ B(W*)

where V; is a 7-dimensional k-vector space, W is a 14-dimensional general quotient vector
space of A?V; » W, and W+ = Coker(W¥ < A?VY). They are derived-equivalent Calabi—
Yau threefolds with p(Xy) = p(Xj) = 1 and deg(Xy) # deg(X;) [BC09, Kuz]. One can apply
Theorem 5.7 to see that Xz, X7, and XQ-,X’Q are respectively nonbirational derived-equivalent
Calabi—Yau threefolds. Similarly, one obtains another example from Reye congruence and
double quintic symmetroid Calabi—Yau threefolds [HT16].

We will study XQ,X’Q slightly further. Assume that Kk is a universal domain. Let L C k
be a subfield over which Xy, X are defined, i.e., we are given L-varieties X;,X] such that
XX k = Xy, X; Xk = X{. From the proof of [Vial3, Lemma 2.1] there exists an isomorphism
k — Q fixing L such that the base change of very general fibers X, X’ of X, X ¢ are respectively
isomorphic to XQ,X’Q. Note that by [Mor23, Lemma 5.1] and [KK16, Corollary 6.3], general
fibers of their smooth projective versal deformations X, X; are isomorphic to Xy, X). The
isomorphisms X = X,, X| = X|| of kK-varieties induces that

Xo = X5, X, EX’Q

of schemes.

There is another Fourier—Mukai partner called IMOU varieties [IMOU, Kuz18], consisting
of derived-equivalent Calabi—Yau threefolds Yy, ¥) which are deformation equivalent to Xy, X{)
respectively [KK16, IIM19]. Extending L if necessary, we may assume that also Yy, Y| are
defined over L. Then either of them fails to be isomorphic to X, X /Q as a scheme, otherwise
we would have X; = Y, and X; = Y;. Hence Y, ¥ cannot be isomorphic X, X’Q at the same
time even as a scheme. Thus X, X’Q provide a new example of Fourier—Mukai partners. They
are isomorphic to Xp, X as a scheme, but have different structures from both the Pfaffian—
Grassmannian pair and IMOU varieties as a variety.

Remark 5.3. General fibers of smooth projective versal deformations of Y, ¥ are isomorphic
to Xo, X as a K-varieties. This implies that one can obtain X, ng starting from IMOU varieties.
Moreover, one sees that X, X ’Q are nonbirational, otherwise Xy, X} must be birational.
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As in this case, when deformations of Fourier—Mukai partners are well-understood, one can
deduce nonbirationality of the geometric generic fibers immediately. For instance, GPK? three-
folds [BCP20] are isomorphic to general fibers of smooth projective versal deformations of
Kapustka—Rampazzo varieties [KR19] as a k-varieties [IIM19, Proposition 4.7]. Then by the
same argument the geometric generic fibers are nonbirational and one obtains another Fourier—
Mukai partner. Note that for Pfaffian-Grassmannian pair and GPK? threefolds, the derived
equivalences of the geometric generic fibers stems from birationality of noncompact Calabi—
Yau manifolds connected by simple K-flops [Ued19, Mor21].

Remark 5.4. In this case Xp, Xé are also L-equivalent. Indeed, the isomorphism k — Q induces

that Ko(Vary) — Ko(Vary) of Grothendieck rings mapping the relation in [Mar16, Theorem 1.1]
to

([Xp] - [X5]) - LG = 0.

6. SPECIALIZATION OF DERIVED EQUIVALENCE

As advertised, for flat proper families of k-varieties over a common base we study the in-
duced derived equivalence from their generic to general fibers. The key is the ability of Corol-
lary 2.6 to lift Fourier—Mukai kernels along the projection. First, although it is not strictly
necessary for our purpose, we extend Corollary 2.6 to nonaffine base case for flat proper fami-
lies of k-varieties. It suffices to show that, when restricted to general fibers, the relative integral
functor defined by the lift admits fully faithful left adjoints. As in the proof of [Mor23, The-
orem 1.1], we show that the associated counit morphism is a natural isomorphism. However,
since in general the generic finer is not a subscheme of a family, we have to adapt the proof
as follows. Shrinking the base, we remove torsion parts with respect to the base from a fixed
strong generator and its relevant Hom-sets. Then we invoke some basic categorical results to
show that the value of the counit morphism on the trimmed strong generator is an isomorphism,
which implies that the restriction of the counit morphism is a natural isomorphism.

6.1. Lifts of Fourier—-Mukai kernels. Let7: X — S be a flat proper morphism of k-varieties.
Since S is integral, the function field K = k(S) is given by local ring Oy, and it coincides with
the field of fractions Q(R) for any affine open k-subvariety U = Spec R [Har77, Exercise 113.6].
Hence we have the following pullback diagram

e

X, X
|
Spec K — S

where «; is the canonical morphism.

Definition 6.1. The categorical generic fiber of m: X — § is the Verdier quotient
D"(X)/ Ker (%),

where Ker(Z;) is the kernel [SP, Tag O5SRF] of the exact functor Z;: D’(X) —» D’ (Xe).

Recall that for a smooth separated family nz: Xg — Spec R over a nonsingular affine k-
variety, by Corollary 2.6 there exists a Q(R)-linear exact equivalence

D"(Xp)/ Dy(Xg) = D" (Xe),
where DS(XR) is the full triangulated subcategory spanned by complexes with R-torsion coho-

mology. The above definition is an extension of this local description in the following sense.
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Theorem 6.1. Let 1: X — S be a flat proper morphism of k-varieties. Then there exists a
K-linear exact equivalence

D"(X)/ Ker(i) = D"(X,).
Proof. Let [z]: D (X)/ Ker(z;) — D"(X;) be the unique functor which makes the diagram

L

D"(X) D"(X,)

(6.1) X Tlt}]

DP(X)/ Ker(zy)

commute, where Q: D*(X) — D’(X)/ Ker(Z;‘;) is the quotient functor. Take any affine open
subset U = SpecR C S. Letny: Xy — U and mrz: X; — Z be the base changes to U and its
complement Z = § \ U respectively. We have

coh(Xy) ~ coh(X)/ cohz(X)

where the right hand side is the Serre quotient by the Serre subcategory cohz(X) C coh(X) of
sheaves supported on X;. Passing to the derived category, via [Miy91, Theorem 3.2] we obtain
U-linear exact equivalence

DP(Xy) = D"(X)/Dy(X)

where D5(X) c D*(X) is the full S -linear triangulated subcategory with cohomology supported
on Xz. Since DZ(X) is contained in Ker(Z;), the commutative diagram (6.1) extends to

=k
Le

D"(X) D"(Xy)

Db(Xy) o Db(X)/ Ker(zy).

On the other hand, the inclusion Dg(X) C Ker(Zg) induces a commutative diagram

DP(X) —— DH(Xy)

(6.2) 5 l /

D"(Xy)

where Qg: D*(Xy) = DP(Xg) — D’(X;) =~ D"(Xg)/D5(Xg) is the quotient functor. Note that
shrinking U if necessary, we may assume that 7z is smooth in order to apply Corollary 2.6.
Indeed, by [Har77, Theorem 15.3] the singular locus of X is a proper closed subset, whose
image under the flat proper morphism 7; is proper closed subset of Spec R. Changing the
base to its complement, we may assume that Xy is nonsingular. Then one can apply [Har77,
Corollary III10.7] to find an open subset of Spec R over which the restriction of 7 becomes
smooth. Since Dg(XR) is contained in Ker([Q]), the commutative diagram (6.2) extends to

%

D" (X) D"(X,)

i
UL % j[[Q]]

DP(Xy) —g= D"(X)/ Ker(T;
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with unique [[Q]]. Thus we obtain a commutative diagram

D'(X) —2= DV(X)/ Ker(@)

X T[[Qno[rg]

D’ (X)/ Ker(7)).

By universality of Verdier quotient, the composition [[Q]] o [Z;] is natural isomorphic to the
identity functor. Hence [] is an equivalence. O

Remark 6.1. The above theorem is a direct consequence of [Miy91, Theorem 3.2] and the
K-linear equivalence

coh(X)/ Ker(;) =~ coh(Xy),

which can be deduced by the similar argument. Here, we use the same symbol Ker(z;) to denote
the kernel [SP, Tag 02MR] of the exact functor Z:; of abelian categories. In particular, Theorem
2.5 also extends to nonaffine base case for flat proper families of k-varieties.

Corollary 6.2. Let 1: X — S be a flat proper morphism of k-varieties. Then any object of
D(X;) can be lifted to that of D*(X) along the projection Q.

6.2. Basic categorical results.

Lemma 6.3. Let €', 2 be small categories and F: ¢ — 2,G: 9 — € functors with F 4 G.
Assume that there exists an object D € 9 such that the canonical maps

Hom(D, D) - Hom(G(D), G(D)), Hom(D, FG(D) - Hom(G(D), GFG(D))
are bijective. Then the counit morphism €: FG = 14 induces an isomorphism €p: FG(D) —
D.
Proof. Let ap, apgp) be the compositions
Hom(D, D) - Hom(G(D), G(D)) —» Hom(FG(D), D),
Hom(D, FG(D) —» Hom(G(D), GFG(D)) - Hom(FG(D), FG(D))

of the canonical maps. By assumption and definition of adjoint functors «p, @rg(p) are bijective.
We denote €p = ap(1p) by f and a;};(D)(l rGp)) by g. Consider the diagrams

Hom(D, D) —=—~ Hom(FG(D), D) Hom(D, FG(D)) 22 Hom(FG(D), FGD)
g"l l” fol j.fo
Hom(D, FG(D)) — Hom(FG(D), FGD), Hom(D, D) Hom(FG(D), D),

QFG(D) ap

which are commutative by definition of functors and naturality of adjoints. As expressions of
the images of 1p, g we respectively obtain

Lrew) = araw)@rgpy (1 ram) = @ram)(8) = glap(1p)) = gf,
ap(fg) = flarcw)(8) = f(@row @rgp)1ram)) = f-
From the second line it follows fg = al‘)l (f) = 1p. Hence f is an isomorphism. O

Remark 6.2. The above proof is just an adaptation of the proof of the fact that G is fully faithful
if and only if € is a natural isomorphism.

Similarly, one can prove the dual statement.
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Lemma 6.4. Let €, 2 be small categories and F: € — 9,G: 9 — € functors with F 4 G.
Assume that there exists an object C € € such that the canonical maps

Hom(C, C) — Hom(F (D), F(D)), Hom(GF(C),C) - Hom(FGF(C), F(C))
are bijective. Then the unit morphism n: 14 = GF induces an isomorphism nc: C — GF(C).

Remark 6.3. Again, the proof is just an adaptation of the proof of the fact that F' is fully faithful
if and only if 7 is a natural isomorphism.

6.3. Removal of torsion supports.

Lemma 6.5. Let mg: X — SpecR,np: X' — SpecR be a smooth proper morphisms to a
nonsingular affine K-variety. Assume that their generic fibers Xy, X}, are derived-equivalent.
Let ®g, : DP(Xx) — D”(X;() be a Fourier—Mukai functor giving the equivalence with kernel
Ex € D"(Xk X X}). Fix alift & € D*(X xg X’) of Ex along the projection

D’ (X Xz X') = D"(X xz X')/Dy(X Xz X') =~ D*(Xx X X)

and a strong generator E of D*(X). Then there exists an affine open subset U C Spec R over
which the restriction

Oy = Og,: D'(Xy) > D"(X})
induces bijections
Hom(Ey, Ey) — Hom(®y(Ey), Py(Ey)),
Hom(Ey, (DZCDU(EU)) — Hom(®y(Ey), (DU(D%/(DU(EU))’
where CD@: Db(X;]) — D’(Xy) is the left adjoint to ®y.

Proof. By [BV03, Theorem 2.1.2, Lemma 3.4.1] the base change E of E along the canonical
inclusion R — K is a strong generator of D’(Xx), which can not be trivial. Consider the
support of the R-torsion part of E, i.e., the union |J; supp H'(E),,,s of the supports of the R-
torsion parts H'(E),,,s of H'(E). Each H'(E),,,, is a coherent sheaf on X, as every submodule
of a finitely presented module over a noetherian ring is finitely presented. Since the union
is finite, |; supp H'(E),.rs is a closed subset of X. Its complement must contain the generic
point of X, otherwise Ek is trivial. Let U C Spec R be the image of the complement under
mg, which is a nonempty open subset. By construction over U the restriction Ey = El,ral(U)
is Oy(U)-torsion free. Since Hom(Ey, Ey) is coherent as an Oy (U)-module by Lemma 6.6
below, shrinking U if necessary, we may assume that it is &y (U)-torsion free. The tensor
product ®y(Ey) ®¢,w) K can not be trivial, otherwise it does not map to an object quasi-
isomorphic to Ex under ®;'. Hence by the same argument one finds an affine open subset
V c Spec R over which the restriction @y (Ey) = ®5(E)|ﬂ;1(v) and Hom(®y(Ey), ®y(Ey)) are
Oy(V)-torsion free. The intersection U NV C Spec R is a nonempty open subset, as Spec R is
integral. Now, we replace U NV with U.
Consider a map

(6.3)

(6.4) Hom(Ey, Ey) =% Hom(®y(U), ®y(Ey))
of Oy(U)-modules. By assumption and Lemma 2.2 tensoring K yields an exact sequence

Dy®oy WK

(65) 00— HOII’I(EU, EU) ®ﬁU(U) K— HOl’l’l((DU(U), (DU(EU)) ®ﬁU(U) K — 0.

Hence the map @y in (6.4) is injective, as Hom(Ey, Ey) is Oy (U)-torsion free. The associated
sheaf with the cokernel

Hom(®y(Ey), Py(Ey))/ Hom(Ey, Ey)

45



might have nontrivial & (U)-torsion part. However, since by Lemma 6.6 below it is coherent,
one finds an affine open subset W C U to which the restriction of the associated sheaf is
Ow(W)-torsion free. Now, we replace W with U. Then the exactness of (6.5) implies that of
(6.4). Hence the map @y in (6.4) is bijective. Shrinking U if necessary, by the same argument
we conclude that

D
Hom(Ey, ®5®y(Ey)) — Hom(®y(Ey), Oy L dy(Ey))
is also bijective. O

Remark 6.4. For our purpose, we do not need the generator E to be strong. Nevertheless, we put
the adjective “strong” as there always exists a strong generator of D’(X) under the assumption.

Remark 6.5. Note that the base change
(6.6) (Hom(®y(Ey), @y(Ey))/ Hom(Ey, Ev)) ®4,w) Ow(W)
is isomorphic to the cokernel of the sequence
0 — Hom(Ew, Ew) v, Hom(®y (W), Dy (Ew)) — 0.
Indeed, (6.6) is isomorphic to
Hom(®y(Ey), Py(Ev)) ®ayw) Ow(W)/ Hom(Ey, Ey) ®ayw) Ow(W)

as the pullback by an open immersion is exact. Consider the pullback diagrams

Xy—— Xy X, X,
w l l Ty Ty l l Ty

By the derived flat base change we have
*"RHom*(Ey, Ey) = "Rry.RHom*(Ey, Ey) = RHom®(Ey, Ey),
"RHom*(®y(Ey), ®u(Ey)) = " Rry RHom* (@y(Ey), Py(Ey)) = RHom* (Pw(Ew), w(Ew)).
Passing to the 0-th cohomology of complexes, we obtain
Hom(Ey, Ey) ®s,w) Ow(W) = Hom(Eyw, Ey),
Hom(®y(Ey), Py(Ey)) ®gyw) Ow(W) = Hom(Ow(Ew), Ow(Ew))

as (", /" are exact.

Lemma 6.6. Let mg: X — Spec R be a smooth proper morphism to a nonsingular affine k-
variety. Then for any object E, F € D*(X) the R-module Hom(E, F) = Exty(E, F) is coherent.
Proof. Consider the spectral sequences

EN" = Exty(E, H(F)) = Exty"(E, F),

EN = Exthy(H™9(E), F) = Ext{"(E, F),

E}? = HP(X,Exti(E, F)) = Exty"(E, F),
from [Huy06, Example 2.70, Compatibilities(v)]. Applying the first two, we may assume that
E, F are coherent sheaves on X. Then E_Xti(E , F) is coherent. Since my is proper, RpﬂR*@i(E ,F)
is also coherent, which is isomorphic to the associated sheaf on Spec R with H”(X, Ext}(E, F))
[Har77, Proposition III8.5]. In the decreasing filtration of Ext?((E , F), the smallest nontrivial

submodule is isomorphic to E% for some [ € Z, which is a coherent R-module. Ascending the
filtration, one sees that ExtY(E, F) is coherent by two out of three principle. O
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Similarly, one can prove the dual statement.

Lemma 6.7. Let ng: X — SpecR,n,: X — SpecR be a smooth proper morphisms to a
nonsingular affine K-variety. Assume that their generic fibers Xy, X}, are derived-equivalent.
Let g, : D'(Xg) — Db(X;() be a Fourier—Mukai functor giving the equivalence with kernel
Ex € D" (X x Xy). Fixalift& € D(X xg X") of Ek along the projection

D’ (X Xz X') = D"(X xg X')/Dy(X Xz X') =~ D*(Xg X X})

and a strong generator E' of D’(X’). Then there exists an affine open subset U C Spec R over
which the restriction

Oy = O - D'(X) - D'(Xy)
induces bijections
Hom(E},, E};) — Hom(®L(E}), PE(E))),

(67) L ’ ’ L L ’ L ’

where ®y: D*(Xy) — Dh(ij) is the right adjoint to d)%].
6.4. Specialization.

Theorem 6.8. Let mz: X — SpecR,n,: X' — SpecR be smooth proper morphisms to a
nonsingular affine K-variety. Assume that their generic fibers Xg, X}, are derived-equivalent.
Let Og, : DP(Xx) — Db(X}() be a Fourier—Mukai functor giving the equivalence with kernel
Ek € D"(Xk X X}). Fix a lift & € D*(X xg X’) of Ex along the projection

D’ (X Xz X') = D"(X xz X')/Dy(X Xz X') =~ D*(Xg X Xp).
Then there exists an affine open subset U C Spec R over which the restriction

Dy = Delyy-t ont(y: D' (X)) = D'(X)

pryton

become an Oy(U)-linear exact equivalence. In particular, over U any pair of closed fibers are
derived-equivalent.

Proof. The proof is an adaptation of the argument in the proof of [Mor23, Theorem 1.1]. Fix a
strong generator E of D?(X). The counit morphism e: ®L o g — idpey, gives a distinguished
triangle

(6.8) @ o Dg(E) 5 E — F := Cone (¢ (E)).

Over any open subset U C Spec R, (6.8) restricts to a distinguished triangle

DL o Dy(Ey) =% Ey — F
U U U U U-

Note that the restriction of the counit morphism is the counit morphism. Choose U so that
we have the bijections (6.3) from Lemma 6.5. Then by Lemma 6.3 the counit morphism g,
on Ey is an isomorphism. Since Ey is a strong generator of D’(Xy) by [BV03, Theorem
2.1.2, Lemma 3.4.1], this implies that @y, is fully faithful. Recall that a triangulated category is
strongly finitely generated if there exist an object E; and a nonnegative integer k such that every
object can be obtained from E by taking isomorphisms, finite direct sums, direct summands,
shifts, and not more than k times cones. Now, we may assume that £, has no nontrivial direct
summands, as ®; and (Df] commute with direct sums on D”(Xy) by [BV03, Corollary 3.3.4].
Since €g, is an isomorphism, one inductively sees that over U the counit morphism on any
object is an isomorphism.
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Fix a strong generator E’ of D’(X’). The unit morphism 7: idpxy — @g o D% gives a
distinguished triangle

, g

(6.9) E' — ®go ®L(E") — F' := Cone(ng).

Over any open subset U C Spec R, (6.9) restricts to a distinguished triangle

Mg’

E,, —5 @y o Oy(E,) — F).

Note that the restriction of the unit morphism is the unit morphism. Choose U so that we have
the bijections (6.7) from Lemma 6.7. Then by Lemma 6.4 the unit morphism g, on Ej; is
an isomorphism. Since E}, is a strong generator of D”(X’) by [BV03, Theorem 2.1.2, Lemma
3.4.1], this implies that @, is fully faithful. Shrinking U if necessary, we may assume that over
U both @, and @} are fully faithful. Then @ is an equivalence, as a fully faithful functor
which admits a fully faithful left adjoint is an equivalence. O

Remark 6.6. If g induces the derived equivalence of a single pair of closed fibers, then there
exists a Zariski open subset U C SpecR such that the base changes Xy, X}, are derived-
equivalent. This follows from the proof of [Mor23, Theorem 1.1], which exploits the fact
that the restriction of the counit morphism e : d)é o ®g(E) — E to any closed fiber is the
counit morphism for each object E € D’(X). However, it does not work for the generic fiber.
In general, the generic fiber is not a subscheme of X%, while any closed fiber can naturally be
regarded as a subscheme of Xy via the reduced induced structure on the image of the closed
immersion.

Corollary 6.9. Let 1: X — S,n': X' — S be flat proper morphisms of K-varieties. Assume
that their generic fibers Xg, X, are derived-equivalent. Then there exists an open subset U C §
to which base changes Xy, X;, become derived-equivalent. In particular, over U any pair of
closed fibers are derived-equivalent.

Proof. By [Har77, Theorem 15.3] the singular locus of X, X" are proper closed subsets, whose
images under flat proper morphisms 7, 7" are proper closed subsets of §. Changing the base
to the complement of their union, we may assume that X, X’ are nonsingular. Then one can
apply [Har77, Corollary II110.7] to find an open subset of S over which the restrictions of &, n’
become smooth. Hence we may assume further that 7, 7” are smooth.

Let Og, : DP(Xyx) —» D'(X ) be a Fourier—Mukai functor giving the equivalence with kernel
Ex € D'(Xx x X}). Fix a lift & € D*(X X5 X’) of Ek along the projection

D’(X x5 X') — D"(X x5 X)/D5(X x5 X') =~ D"(Xg X Xj).

Take an affine open cover (Y, Spec R; of S. One can apply Theorem 6.8 to find open subsets
U; C Spec R; over which the restrictions

Dy, = O, : D"(Xy,) = D(Xy,)

become Oy (U;)-linear exact equivalences. Let V = |J~, U; be their union, which is an open
k-subvariety of S. Consider the restriction

®y = Dg,: D’ (Xy) — D°(X})

over V. Since its restriction to any pair of closed fibers over V defines an equivalence, @y is an
equivalence by [HLS09, Proposition 2.15]. O
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VERSAL DG DEFORMATION OF CALABI-YAU MANIFOLDS
HAYATO MORIMURA

ABsTRACT. We prove the equivalence of the deformation theory for a higher dimensional Calabi—
Yau manifold and that for its dg category of perfect complexes by giving a natural isomorphism
of the deformation functors. As a consequence, the dg category of perfect complexes on a versal
deformation of the original manifold provides a versal Morita deformation of its dg category
of perfect complexes. Besides the classical uniqueness up to étale neiborhood of the base, we
prove another sort of uniqueness of versal Morita deformations.

1. INTRODUCTION

The derived category of coherent sheaves on an algebraic variety is an intensively studied
invariant which carries rich information about geometric properties of the variety. For instance,
given a smooth projective variety either of whose canonical or anticanonical bundle is ample,
one can reconstruct the variety from its derived category [BOO1]. The condition guarantees the
absence of nontrivial autoequivalences of the derived category. Such autoequivalences often
stem from the derived equivalence of nonisomorphic, sometimes even nonbirational Calabi—
Yau manifolds. According to the homological mirror symmetry conjecture by Kontsevich,
derived-equivalent Calabi—Yau manifolds should share their mirror partner. Usually, the homo-
logical mirror symmetry is considered for families of Kihler manifolds.

A goal of this paper is to study the relationship between deformations and the derived cate-
gory of a higher dimensional Calabi—Yau manifold. There seems to be a consensus among some
experts that deforming an algebraic variety and its derived category are essentially the same.
Philosophically, it is reasonable since their Hochschild cohomology, which in general is known
to control deformations of a mathematical object, are isomorphic. However, before [LV06b]
we were not given the correct framework to study deformations of even linear nor abelian cate-
gories. To every second Hochschild cocycle on a smooth projective variety, Toda associated the
category of twisted coherent sheaves on the corresponding noncommutative scheme over the
ring of dual numbers [Tod09]. In [DLL17] Dinh-Liu-Lowen showed that Toda’s construction
indeed yields flat abelian first order deformations of the category of coherent sheaves on the
variety in the sense of [LV0O6b]. We fill the gap between this point and the conclusion stated
below more precisely.

Let X, be a Calabi—Yau manifold of dimension more than two in the strict sense, i.e., a
smooth projective k-variety with wy, = O, and Hi(ﬁxo) =0 for 0 < i < dim X,. We denote by
Perf ;,(Xo) the dg category of perfect complexes on Xj. The deformation functor

Defy,: Arty — Set

sends each local artinian k-algebra A € Arty with residue field k to the set of equivalence classes
of A-deformations of X, and each morphism B — A in Arty to the map Defy,(B) — Def,(A)
induced by the base change. Consider another deformation functor

Defpis, o) - At — Set
which sends each A € Art, to the set of isomorphism classes of Morita A-deformations of

Perfy,(Xo) and each morphism B — A in Arty to the map Defpg, \(B) — Defpgy, (x,(A)
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induced by the derived dg functor — ®5 A. Our first main result claims that the deformation
theory for Xj is equivalent to that for Perf;,(Xo) in the following sense.

Theorem 1.1. (Theorem 7.1) There is a natural isomorphism
{: Defy, — Defﬁs"rfdg(xo)
of deformation functors.

In particular, Morita deformations of Perf,(X) is controlled by the Kodaira—Spencer dif-
ferential graded Lie algebra. To obtain { we need to consider certain maximal partial curved
dg deformations of Perf,(X,). Curved dg deformations of a dg category is a special case of
curved A.-deformations of an A -category. Let (a, u) be a dg category over R € Arty with a
square zero extension

0-I—-S—->R-—-0.

Choose generators € = (€y,...,¢€) of I regarded as a free R-module of rank /. By [Low08,
Theorem 4.11] there is a bijection
(1.1) H>*C(0)® — Defi(S), ¢ — a, = (a[e], u + de)

where ¢ is a Hochschild cocycle. In other words, curved dg S-deformations of a are classified
by the direct sum of the second Hochschild cohomology.

Assume that a is an R-linear category. We denote by Com™(a) the dg category of bounded
below complexes of a-objects. Then by [Low08, Theorem 4.8] the characteristic morphism

X2 HC(0)® — 3°K* ()

maps ¢ € Z>*C(a)® to the obstructions against lifting objects of K*(a) to K*(as) along the
functor Homg(R, —). In particular, for each C € K*(a) there exists a lift to K*(a,) if and only if
x2(¢)c = 0. The characteristic morphism y® is induced by a B.,-section

embr;: C(a)® — C(Com*(a))¥

of the canonical projection, which is a quasi-isomorphism of B-algebras [Low08, Theorem
3.22]. Hence (1.1) induces another bijection
H*C(0)® — Defi® . (S),

(1 2) Com™*(a)
¢ — Com™ (Q)embry(gy = (Com™(a)[€], embrs(u) + embrs(¢)e).

From the proof of [Low08, Theorem 4.8] it follows that Xffl(zf))c = 0 if and only if the curvature
element (embrs(u + ¢€))oc vanishes for each C € Com*(a). Hence any full dg subcategory of
Com™(a) spanned by object C with y®(¢)c = 0 dg deforms along the restriction of embrs(¢).
Note that the restrictions of embrs(u)+embrs(¢)e and embrs(u+¢e) to such a full dg subcategory
coincide up to coboundary.

Let X be an R-deformation of X, and X, its deformation along a cocycle ¢ € HH*(X)® =
H'(Jxr)®. The above argument can be adapted to our setting so that for each E € Perf 4,(X)
the curvature element vanishes if and only if there exists a lift of E € Perf(X) to Perf(X,). With
a little more effort one can apply [KLO09, Proposition 3.12] to obtain

Theorem 1.2. (Theorem 6.11) There is a bijection
mo cd,
Defpe, x(S) = Defpe}gfdgm(s)

between the set of isomorphism classes of Morita S-deformations and that of curved dg S-
deformations of Perf ;,(X).

52



In particular, giving curved dg S-deformations of Perf;,(X) is equivalent to giving its Morita
S-deformations. Consider the dg category Perf,,(X,) of perfect complexes on X. It defines a
Morita S-deformation of Perf;,(X). Let

m(¢) = Perf,(X,) @6 R

be the image of the derived base change. Then any h-flat resolution Perf,,(X,) defines a dg
deformation of m(¢). There is an isomorphism

HH*(X)® = H*C(Perf ;,(X))®
induced by the B,-section
embrs: C(Inj(Qch(X))® — C(Com*(Inj(Qch(X)))®,

where Inj(Qch(X)) € Qch(X) is the full R-linear subcategory of injective objects. We denote
by embrs(¢) the image of ¢ under the isomorphism, which defines another dg S-deformation
M(P)embry(g) Of M(¢p) along embrs(¢p). Deformations and taking the dg category of perfect com-
plexes intertwine in the following sense.

Theorem 1.3. (Theorem 6.12) There is an isomorphism

Perf;4(Xy) = mM(d)embry(s)

of dg S-deformations of m(¢). In particular, the Morita S-deformation Perf;,(X,) defines a
maximal partial dg S-deformaiton of Perf ;,(X) along embrs(¢).

This is the key to prove Theorem 1.1. Unwinding Toda’s construction, from [DLL17, The-
orem 5.12] we obtain an equivalence Qch(X), = Qch(X,) of Grothendieck abelian categories,
where Qch(X); is the flat abelian S-deformation of Qch(X) along ¢ € Z*C,;,(Qch(X))®. Here,
we use the same symbol ¢ to denote the image under the isomorphism

HH*(X)® = H*C,,(Qch(X))®.
Via the induced equivalence

D4y(Qch(Xy)) =~ Dgo(Qch(X)y)
we regard Perf;,(X,) as the full dg subcategory of compact objects of D;,(Qch(X)4). Based
on the idea in the proof of [Low08, Theorem 4.15], we compare the dg structure on Perf ;,(X,)
with that on mM(¢)embr;(4)-
Working with Morita deformations of Perf;(Xy), by [Coh, Corollary 5.7] we may apply
[BEN10, Theorem 1.2] to obtain reductions. In particular, given a deformation (Xp,iz) €
Defy,(B) and a morphism B — A in Arty, there is a Morita equivalence

Perf 4, (Xp) ®% A =, Perf (Xp) ®% Perf,(A) =, Perf o (X4)

of A-linear dg categories, where — ®% — is the derived pointwise tensor product of dg cate-
gories. Further application of [BFN10, Theorem 1.2] shows that any universal formal family
for Defpgy, v, 18 effective. If we ignore the set theoretical issues, the deformation functor
Def;”:rfdg(xo) can naturally be extended to a functor defined on the category Alg®¢(Kk) of aug-
mented noetherian k-algebras. Although we do not know whether it would be locally of finite
presentation (colimit preserving), one can always construct a versal Morita deformation via
geometric realization in the following sense.

Corollary 1.4. (Corollary 7.4) Any effective universal formal family for Defggrfdg(xo) is alge-
braizable. In particular, an algebraization is given by Perf,(Xg) where (SpecS, s, Xs) is a
versal deformation of X).
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The versal Morita deformation Perf,(Xs) may be regarded as a family of Morita deforma-
tions of Perf,(Xy). More generally, for such a family determined by an enough nice S -scheme
X we introduce its generic fiber as follows.

Definition 1.5. Let Xg be a smooth separated scheme over a noetherian connected regular
affine k-scheme Spec S whose closed points are K-rational. Then the dg categorical generic
fiber of Perf 4,(Xs) is the Drinfeld quotient

Perf ;,(Xs)/ Perf 4,(Xs ),

where Perf ;,(Xs)o C Perf,(Xs) is the full dg subcategory of perfect complexes with S -torsion
cohomology.

We impose a technical assumption on § to include also the case where S is a formal power
series ring. The Drinfeld quotient is a natural dg enhancement of the categorical generic fiber
introduced in [Morb], which is in turn based on the categorical general fiber by Huybrechts—
Macri—Stellari [HMS11]. Taking the generic fiber and the dg category of perfect complexes
intertwine in the following sense.

Proposition 1.6. (Proposition 7.5) Let Xs be a smooth separated scheme over a noetherian
connected regular affine K-scheme Spec S whose closed points are K-rational. Then there is a
quasi-equivalence

Perf ;,(Xs)/ Perf 45(Xs )0 ~4eq Perfy(Xo(s))
where Q(S) is the quotient field of S and Xys) is the generic fiber of Xs.

Another goal of this paper is to show the uniqueness of versal Morita deformations with
respect to geometric realizations. Recall that up to étale neighborhood of the base versal defor-
mations of X, are unique. Namely, if (Spec S, s, Xs) (Spec S’, s’, Xs-) are two versal deforma-
tions of Xy, then there is another versal deformation (Spec S”, s, Xs~) such that (SpecS”, s”)
is an étale neighborhood of s, s" in Spec S, Spec S’ respectively and Xs~ is the pullback along
the corresponding étale morphisms. The deformation functor Defy, has an effective univer-
sal formal family (R, &), where R is a regular complete local noetherian k-algebra. Choose an
isomorphism R = K[z#,...,t;]] and let T = K[#,...,7;] with d = dimy Hl(ﬁxo). There is a
filtered inductive system {R;},; of finitely generated T-subalgebras of R whose colimit is R.
Then (Spec S, s) is an étale neighborhood of 7 in Spec T with ¢ corresponding to the maximal
ideal (71,...,25) C T, and Xs is the pullback of a deformation Xz, of X, along a first order
approximation R; — S of R; — R for sufficiently large j € I. Hence the ambiguity of X;
stems from the choice of j € I, besides the choice of étale neighborhoods.

In [Mora] the author constructed smooth projective versal deformations X, Xg of Xo, X
over a common nonsingular affine variety Spec S, while deforming simultaneously the Fourier—
Mukai kernel connecting deformations of Xy, Xj. By Corollary 1.4 we have two versal Morita
deformations Perf (X ), Perf,(X) of Perf,(Xo). Theorem 1.1 together with the construction
of versal deformations suggests that Perf ;,(Xy), Perf ;,(X} ) should be determined only by quasi-
equivalent universal formal families and the same sufficiently large index j € I. From this
observation we arrive at our second main result.

Theorem 1.7. (Theorem 8.3) Let X, X, be derived-equivalent Calabi—Yau manifolds of dimen-
sion more than two and Py, € D"(Xy Xx X)) the Fourier—-Mukai kernels. Then there exists an
index j € I such that for all k > j the integral functors

®p, : Perf(Xg,) — Perf(Xp,)
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defined by deformations Py of Py are equivalences of triangulated categories of perfect com-
plexes. In particular, the dg categories Perf,(Xg,), Perf (X} ) of perfect complexes are quasi-
equivalent.

Theorem 1.7 tells us that, given two algebraic Morita deformations Perf,(Xg, ), Perf (X, )
geometrically realized by algebraic deformations Xg,, X, of two derived-equivalent higher di-
mensional Calabi—Yau manifolds Xy, X[, if Xg,, Xz’ek are enough close to effectivizations Xg, X
then Perf ;,(Xg, ), Perf ;,(X Ilek) are Morita equivalent. The base change along the homomorphism
R; — S yields Morita equivalent versal Morita deformations Perf;,(Xy), Perf,(X5). In other
words, up to Morita equivalence the versal Morita deformation Perf;,(Xs) does not depend on
the choice of geometric realizations in the following sense.

Corollary 1.8. (Corollary 8.4) Let Xy, X, be derived-equivalent Calabi-Yau manifolds of di-
mension more than two and X, X their smooth projective versal deformations over a common
nonsingular affine K-variety Spec S. Let {R;}ic; be a filtered inductive system of finitely gener-
ated T-subalgebras R; C R whose colimit is R with

T =K[t1,..., 14, R=K[t},..., 1], d = dimy H'(Fy,).

Assume that Xs, X correspond to a first order approximation R; — S of R; — R for suf-
ficiently large j € I. Then Xs,X; are derived-equivalent. In particular, the dg categories
Perf,(Xs), Perf o (X5) of perfect complexes are quasi-equivalent.

The uniqueness result also holds for the dg categorical generic fiber. Corollary 1.8 slightly
improves [Mora, Theorem 1.1], which extends the derived equivalence from special to general
fibers. Here, the advantage is that we do not have to shrink the base Spec S as long as the
construction passes enough close to effectivizations. In particular, beginning with a pair of
general fibers, one obtains the derived equivalence of special fibers contained in the versal
deformations. Hence the above corollary partially provides a method for the opposite direction,
1.e., how to extend the derived equivalence from general to special fibers.

Notations and conventions. We work over an algebraically closed field k of characteristic 0
throughout this paper. For an augmented K-algebra A by m, we denote its augmentation ideal.
All higher dimensional Calabi—Yau manifolds we treat are smooth projective K-varieties X, of
dimension more than two with wy, = Oy, and H'(Ox,) = 0 for 0 < i < dim X,

Acknowledgements. The author would like to thank Yukinobu Toda for pointing out mistakes
in earlier version. The author also would like to thank Wendy Lowen for answering questions
about [KLO9, Proposition 3.12] and explaining to the author the dual statement of [Low08,
Theorem 4.8] and [Low08, Corollary 4.9].

2. HOCHSCHILD COHOMOLOGY OF RELATIVELY SMOOTH PROPER SCHEMES

In this section, we review various kinds of complexes whose cohomology controls defor-
mations of associated mathematical objects, mainly following the exposition from [DLL17,
Section 2, 3]. We always assume that all algebras have units, morphism of algebras preserve
units, and modules are unital. In the sequel, we fix a local artinian k-algebra R with residue
field k and its square zero extension

0—-I—->S—>R->0,

and choose generators € = (e, ..., ) of I regarded as a free R-module of rank /. For smooth
proper R-schemes, we explain the correspondence between its relative Hochschild cohomology
and cohomology of the Gerstenharber—Shack complex associated with its restricted structure
sheaf.
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2.1. Relative Hochschild cohomology of schemes. Let X be a smooth proper R-scheme. We
denote by Agr: Xg — X Xg X the relative diagonal embedding. The relative Hochschild coho-
mology is defined as the graded R-algebra

HH.(X/R) = EXt;(XRX(ﬁAR’ ﬁAR) = EXt}(AEﬁAR, ﬁx)

Here, the multiplication in HH*(X/R) is given by the composition in D’(X xg X). Then the
natural map R — Endy,,x(0,,) induces the R-algebra structure. There is a quasi-isomorphism

AEﬁAR = @QQ/RU]

called the relative Hochschild—Kostant—Rosenberg isomorphism, which induces an isomor-
phism

Xt (Ax Osg Ox) = Ex(ED) Qyrlil, 030 > @D H (X, N )

where Jx g is the relative tangent sheaf and Qy is its dual. We also call the compositions

IR Bty x(Ong Ong) = HH'(X/R) > HT"(X/R) = D) H"(X, A" Fym)

ptq=n

the relative Hochschild—Kostant—Rosenberg isomorphisms.

2.2. Hochschild cohomology of algebras. Let A = (A, m) be an R-algebra and M an A-
bimodule. The Hochschild complex C(A, M) has C"(A, M) = Homg(A®", M) as its n-th term
anddy, ,: C"(A,M) — C™(A, M), called the Hochschild differential, as its differential which
is given by

dyoen( D) an, an-y, . .., a0) = and(@p-1, . .., ao)
n—1
i+1
DM@y, iy, )
i=0

+ (=D)""p(ay, . .., a)a.

A cochain ¢ € C"(A, M) is normalized if ¢(a,_1,...,ap) = 0 whenever a; = 1 for some
0 < i < n— 1. The normalized cochains form a subcomplex C(A, M) quasi-isomorphic to
C(A, M) via the inclusion. When M = A, we call C(A) = C(A, A) the Hochschild complex and
H"C(A) the n-th Hochschild cohomology of A. Note that the multiplication m on A belongs to
C%(A).

The direct sum of the second normalized Hochschild cohomology of A classifies S-deformations
of A up to equivalence. Recall that an S-deformation of A is an S-algebra (A,m) = (Ale] =
A ®gr S, m + me) with m € C?(A)® such that the unit of A is the same as that of A. Two defor-
mations (A, m), (A’,m’) are equivalent if there is an isomorphism of the form 1 + ge: A — A’
with g € C'(4)®. We denote by Deff‘lg (S) the set of equivalence classes of S-deformations of
A. It is known that there is a bijection

H>*C(A)® — Def%%(S), m  (A[e], m + me), m € Z>C(A)®.

2.3. Simplicial cohomology of presheaves. Let Ml be a small category and N () its simplicial
nerve. We write

uj u up Up+1
oc=do=Uy—> U — - —>U,— U, =co)
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fora (p + 1)-simplex o € N,,.1 Q). Let (#, f), (¥, g) be presheaves of R-modules with restric-
tion maps f“: . #(U) —» F(V),g": 9(U) » 4(V) foru: V — U in U. We write f“ for the
map f+1-"2 s F(Up) = F (Up). Consider a complex whose p-th term is

CP

simp

(G, F) = ]_[ Homg (4(c7), F(d7)) .

TeN, ()

and whose differential d”

simp is defined as follows. Recall that we have the maps

32 Ny (D) = N, QD), o - dior,
fori=0,1,...,p+ 1 given by

g = (Up =S - Uy M Uy 225 5 0, 25 U, i 2 0,p + 1,
do= U 50U, S DU, 75 U,
0o = Uy -5 U 5o U,
Each 0; induces a map

di: CY, (4, F) > Chy (4, F), ¢ = (@) > digp = (di$))o
given by
(dig)” = ¢", i#0,p+1,
(do@)” = f** 0 ™7,
(dps1§)” = ¢7717 0 g1,

Then one defines

p+l
dyimp = Z(—l)l’di: C, (. F) - CoHL (G, F).
i=0

When ¥ is the constant presheaf R, we call H?(U, %) = HCg,,(:F) = H?Cgnp(R, F) the
simplicial presheaf cohomology of #. A (p + 1)-simplex o € N, () is degenerate if u; = 1y,
forsome 1 <i < p+ 1. A p-cochain ¢ = (¢7), € CP(¥4,.F) is reduced if " = 0 whenever T
is degenerate. All O-cochains are reduced by convention. The reduced cohains are preserved
by dsimp and form a subcomplex C;imp(% ,#), which is quasi-isomorphic to Cy;,,(¢,.%) by
[DLL17, Proposition 2.9].

The direct sum of the first reduced simplicial presheaf cohomology of .%# classifies S-deformations
of . up to equivalence. Recall that an S-deformation of % is a presheaf of S-modules
(Z,f) = (Flel, f +fe) with f € C}, (F, F)®. Two deformations (F, f), (F', f’) are equiv-
alent if there is an isomorphism of the form 1 + ge with g € C(S)imp(gZ ,7)®. We denote by

Defﬁh(S) the set of equivalence classes of S-deformations of .%.

Lemma 2.1. ([DLL17, Proposition 2.11]) Let (%, f) be a presheaf of R-modules. Then there
is a bijection

1w
H Csimp

(F,F)% — Def2'(S), ¢ = (Flel, f +te), £ € 2'C,, (F, F).

simp

Another cocycle f' € Z'C'. (F,.7)® maps to an equivalent deformation if and only if there

simp

is an element g € C° (F, F) satisfying £ — £ = dipp(g).

simp
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2.4. Gerstenharber-Schack complexes. Let Ul be a small category and (<7, m, f) a presheaf
of R-algebras on U. The Gerstenharber—Schack complex Cgs (/) introduced in [GS88] is the
total complex of the double complex whose (p, g)-term for p,g > 0 is

Chi(e) = | | Homp(e/(c)™, o/ (dr),
TN, (1)
where we regard <7 (dt) as an <7 (ct)-bimodule via f7: </ (ct) — o/ (dt). When q is fixed, we
have
CZ;’_Z (%) = Csirnp(bd@qa d)

endowed with the simplicial differential d;,, horizontally. When p is fixed, we have

=[] c@ien, o)

TeN,(U)

endowed with the product Hochschild differential dy,, vertically. The differential

dis (o) Clg (/) — Clgl(F)

is defined as dZ, = (=1)""'dimp + droch-

A cochain ¢ = (¢7), € Cp{ (<) is normalized if ¢" is normalized for each p-simplex 7, and
it is reduced if ¢ = 0 whenever 7 is degenerate. The normalized cochains form a subcom-
plex Cgs(o?) of Cgs(<7) called the normalized Hochschild complex of <7, and the normal-
ized reduced cochains form a subcomplex CQ;S (o) of Cgs () called the normalized reduced
Hochschild complex of of. These three complexes are quasi-isomorphic via the inclusions.
Eliminating the bottom row from Cgg(%7), one obtains a subcomplex C,gs(<7) called the trun-
cated Hochschild complex. There is a short exact sequence

0— Cs() = Cos () — Csimp(@{) — 0.

Since R is commutative, one can apply [DLL17, Proposition 2.14] to see that the sequence
splits and we have

Cos () = Cigs () @ Cyinp(A).
Similarly, we have

Cys(@) = Cipg (@) @ C, ().

simp
The direct sum of the second normalized reduced Gerstenharber—Schack cohomology of
</ classifies twisted S-deformations of o7 up to equivalence. Recall that a rwisted presheaf
o = (<, m, f,c,z) of R-algebras on U consists of the following data:

e for each U € U an R-algebra (<7 (U), mY),

e foreach u: V — U in U a homomorphism of R-algebras f*: o7/ (U) — <7/ (V),

e for each pairu: V — U, v: W — V in U an invertible element ¢’ € o/ (W) satisfying
for any a € &7(U)

(@) = @)
e for each U € U an invertible element zY € &7 (U) satisfying for any a € <7 (U)
Va = @),
Moreover, these data must satisfy
GV P VW (i

Cu,leV — 1’ ClU,ufu(ZU) — 1
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for each triple u: V. — U, vi W —» V, w: T — W in U. When ¢*", 7Y are central for all u, v
and U, we call & a twisted presheaf with central twists and denote by |<7| = (&7, m, f) the
underlying ordinary presheaf.
For twisted sheaves o7 = (&7, m, f,c,z), /" = (", m’, f',¢’,7’) of R-algebras on U, a mor-
phism (g, h): of — </’ consists of the following data:
e for each U € U a homomorphism of R-algebras gV: .&/(U) — &' (U),
e foreach u: V — U in U an invertible element A" € &/’ (V).

Moreover, these data must satisfy
m'V(g" f'(a), k") = m"V (h", f"(g"(a))),
m/W(huv,C/u,V) — er(gW(Cu,V)’ hv’f/V(hu))’
m,U(l’llu, Z/U) — gU(ZU)

for all u,v and a € </(U). Morphisms can be composed and the identity 1, is given by
gV = loywyand " =1 € &/(V). When gY are isomorphisms of R-algebras for all U, we call
(g, h) an isomorphism. Any twisted presheaf (o7, m, f, ¢, z) is isomorphic to the one of the form
(”Q{,’ m/, f/7 C,’ 1)

Let o7 = (&7, m, f,c) be a twisted presheaf of R-algebras on . A twisted S-deformation of
o/ is a twisted presheaf

o = (o, m, f,¢) = ([el,m+me, f +fe, ¢ + ce)

of S-algebras such that (E(U ),ﬁu) is an S-deformation of (27 (U), mY) for each U € U with
(m, f, ¢) € Chs()® = Coi (/) & Ce () @ Coo( ).

Two twisted deformations (g, m, ?, c), (E, ', ]T’, ¢') are equivalent if there is an isomorphism
of the form (1 + ge, 1 + he) with

(g.h) € Clis ()% = Co ()™ @ CL ().

We denote by Def”(S) the set of equivalence classes of twisted S-deformations of .o7.

When ¢ = 1, A presheaf S-deformation of < is a twisted S-deformation with ¢ = 0. Two
presheaf deformations (E, m, ?), (', m’, ]T’) are equivalent if there is an isomorphism of the
form 1 + ge with g € Cg’; («7)®. We denote by Deff;;h(S) the set of equivalence classes of
presheaf S-deformations of 7.

Lemma 2.2. ([DLL17, Theorem 2.21]) Let (<7, m, f) be a presheaf of R-algebras on 0. Then
there is a bijection

H*C'gs(2)® — Def(S), (m,f,¢) = (F[e],m +me, f +fe,c + ce), (m,f,¢) € Z°Clg ().

Another cocycle (m',f’,¢’) € ch’GS ()® maps to an equivalent deformation if and only if
there is an element (g,h) € Cpo()® satisfying (m',f’,¢')—(m, £, ¢) = dgs(g, h). In particular,
there is a bijection

H*C 55()® — Deff;;h(S), (m,f) > (€], m + me, f + fe).

2.5. Hodge decomposition. In the group algebra QS , of the n-th symmetric group S, there
is a collection of pairwise orthogonal idempotents e,(r) for 1 < r < nsuch that }"_, e,(r) = 1
[GS87, Theorem 1.2]. Put ¢,(0) = 0, ¢g(0) = 1 € Q, and e,(r) = O for r > n. Let A be a
commutative R-algebra and M a symmetric A-bimodule. The subcomplex C(A, M), c C(A, M)
whose n-th term is C(A, M)e,(r) gives rise to a Hodge decomposition

C(A, M) = @ C(A, M),.

reN
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Assume that .7 is a presheaf of commutative R-algebras. Then the Hodge decomposition
q
Hom(</ (c7)®, o/ (d7)) = @ Hom(.<7 (c7)®, o/ (dT)),

induces a decomposition of the double complex Cr.;"?(7) preserved by dy,., and dg;,,p. Hence
one obtains a Hodge decomposition

Cos(/) = P Cas ().
reN
Taking cohomology yields a decomposition for H*Cgg ().
Assume further the following.

e The restriction map f*: o/ (U) — <7/ (V) is a flat epimorphism of rings for each u: V —
U.
e The algebra <7 (U) is essentially of finite type and smooth R-algebra for each U.

Recall that a homomorphism of rings is called an epimorphism if it is an epimorphism in the cat-
egory of noncommutative rings. For instance, every surjective homomorphism of commutative
rings is an epimorphism. Then one obtains the presheaf of differential Q. : 0P — Mod(</)
with Q(U) = Q). Since we have a canonical isomorphism .7 (V) ® o) Q) = Qur(v)
by the first additional assumption, the induced restriction maps 7R — Zw(v)r yield the
tangent presheaf 7., WP — Mod(#/) with 7,(U) = Z.yw)wr. From the second additional
assumption it follows that antisymmetrizations A". 7,y — H"C(<7(U)) are isomorphisms.

Lemma 2.3. ([DLL17, Theorem 3.3]) Let U be a small category and <f : WP — CAlg(R) a
presheaf of commutative algebras. Assume that the algebra <7 (U) is essentially of finite type
and smooth R-algebra for each U. Assume further that the restriction map f*: o/ (U) — </ (V)
is a flat epimorphism of rings for each u: V — U. Then there is a canonical bijection

2.1) H"Cos (/) = @H"Ccsuzf), = (P H QLA T).

p+q=n

From the proof, one sees that any Gerstenharber—Shack cohomology class ¢y is represented
by a normalized reduceq decomposable cocycle 90,,, 01.4-15---,0,0 in the sense that 6,_,, are
reduced and belong to C"™""(#/),. Each 6,_,, = (6;_, )ren,_qy lifts to a unique simplicial

cocycle ©, ., = (O] _, Jren,_,an € CII 7 (A Z.7). The image of ¢gs under the bijection is the

simp
cohomology class ¢, represented by ¢, ©1,,_1,...,0,.

2.6. Comparison with relative Hochschild cohomology. We describe the relationship be-
tween simplicial cohomology and Cech cohomology for a presheaf .% : A°? — Mod(R) in the
case where U is a poset with binary meets. We use the symbol N to denote meets in . For a
p-sequence 7 = (U, U7,...,U)) € UP*! we denote by N7 the meet of all coordinates of 7. The

Cech complex C(%) of has
¢ =[] Zom
et
as the p-th term with the usual differentials. A Cech cochain ¥ = (y7), is alternating if y* = 0
whenever two coordinates of T are equal, and Y™ = (—1)*€"®)y" for any permutation s of the set
{0,1,..., p}. Here, we regard 7 as a set theoretic map {0, 1,..., p} — U. The alternating Cech

cochains form a subcomplex (vf’(ﬁ ) which is quasi-isomorphic to C(ﬁ ) via the inclusion.
To a p-sequence 7, one associates a p-simplex

T=dr=n_Uj>n_Uj—> - —>nl_ U —>U,=c.
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Conversely, any p-simplex u can be regarded as a p-sequence j by forgetting the inclusions.
Define a map 6;: W+ — U’ fori=1,...,pas

ot=Ug,..., UiT_Z, UiT_1 N UiT’ Uz'T+1""’ U;)

There are morphisms ¢: C'. ~— C’(ﬁ ), 2 C(F ) — C’.  of complexes defined as

simp simp

(g = D (DG, g e Cl,, (F), Te W,

W) =gk, g e C'(F), ue N,Q),

which induce mutually inverse isomorphisms between H*(X, .%) and H*(1,.%) [DLL17, Lemma
3.9].

Now, for a smooth proper R-scheme X we give an alternative description of the relative
Hochschild cohomology. As explained above, we have HH*(X/R) = HT*(X/R). Choose a
finite affine open cover U closed under intersections. By definition 2l is semi-separating, i.e.,
U is closed under finite intersections. For every quasi-coherent sheaf .% on X, one can apply
[DLL17, Lemma 3.9] and Leray’s theorem [Har77, Theorem 4.5] to obtain

2.2) H' (W, Z ) = H* (W, Z ) = H'W,.7) = H*(X, F)

with .% |y regarded as a presheaf on . Since X is smooth over R and open immersions V < U
in 2 define flat epimorphisms Ox(U) — Ox(V), combining (2.1) with (2.2), we obtain

Lemma 2.4. ([DLL17, Corollary 3.4]) Let X be a smooth proper R-scheme with a finite affine
open cover U closed under intersections. Let Ox|y, Txrlu be the restrictions of Ox, Ixr to U
respectively. Then there are canonical isomorphisms

(2.3)  H"Cas(Oxh) = @D H'Cos(Oxh), = ) HY QU A? Txrhe) = HH"(X/R),

r=0 ptq=n

where the first isomorphism respects the Hodge decomposition.

3. DEFORMATIONS OF RELATIVELY SMOOTH PROPER SCHEMES

In this section, we review the classical deformation theory of schemes. The main reference
is [Har10]. We explain how deformations of smooth proper k-varieties extend to Toda’s con-
struction [Tod09], which can be adapted to deformations of relatively smooth proper schemes
along square zero extensions in a straightforward way. When the original scheme is a defor-
mation of a higher dimensional Calabi—Yau manifold, Toda’s construction gives the category
of quasi-coherent sheaves on deformations of the Calabi—Yau manifold.

3.1. Deformations of schemes. Let X be a k-scheme and A a local artinian k-algebra with
residue field k. An A-deformation of X is a pair (Xy,i4), where X, is a scheme flat over
A and iy: X — X, is a closed immersion such that the induced map X — X, X4 k is an
isomorphism. Two deformations (X4, i4), (X}, ) are equivalent if there is an A-isomorphism
X4 — X, compatible with iy, 7’,. The deformation functor

Defy: Arty — Set

sends each A € Arty to the set of equivalence classes of A-deformations of X.

Assume that X is projective over k. Then Defy satisfies Schlessinger’s criterion and there
exists a miniversal formal family (R, &) for Defy, where R is a complete local noetherian k-
algebra with residue field k, and & = {£,}, belongs to the limit

Defy(R) = lim Defy(R/m})

61



of the inverse system
-+ — Defy(R/mi?) — Defy(R/mi") — Defy(R/mf) — - -

induced by the natural quotient maps R/m’4"! — R/m%. The formal family £ corresponds to a

natural transformation
hR = Homk—alg(R’ _) - DefXa

which sends each g € hg(A) factorizing through R — R/m%" 1 2% A to Def x(g.)(&).

Let X, be the schemes which define &,. There is a noetherian formal scheme 2~ over R
such that X,, = 2~ xg R/m%"! for each n. By abuse of notation, we use the same symbol & to
denote 2. Thus any scheme which defines an equivalence class [X,, i4] can be obtained as the
pullback of £ along some morphism of noetherian formal schemes Spec A — Spf R. If X has
no infinitesimal automorphisms which restrict to the identity of X, then every equivalence class
[X4,14] becomes just a deformation (X4, i4) and we have a natural isomorphism /i = Defy. In
this case, we call Defy prorepresentable and (R, ¢) a universal formal family for Defy.

3.2. Algebraization. Let X be a projective k-variety. We call a miniversal formal family (R, &)
for Defx effective when there exists a scheme Xy flat and of finite type over R whose formal
completion along the closed fiber X is isomorphic to £&. By [GD61, Theorem II15.4.5] the family
(R, &) is effective if deformations of any invertible sheaf on X are unobstructed. Note that this
is the case, for instance, if we have H*(Oy) = 0. From the proof, one sees that Xy is projective
over R. We will call such X an effectivization of &.

The deformation functor Defy can naturally be extended to a functor defined on the cate-
gory Alg®™#(Kk) of augmented noetherian k-algebras. By abuse of notation, we use the same
symbol Defy to denote the extended functor, which sends each (P, mp) € Alg*¢(K) to the set
of equivalence classes of deformations over (P, mp). Since the functor Defy is locally of fi-
nite presentation, by [Art69b, Theorem 1.6] the miniversal formal family is algebraizable, i.e.,
there exists a triple (S, s, Xs) where S is an algebraic k-scheme with a distinguished closed
point s € §, and Xy is a flat and of finite type S -scheme whose formal completion along the
closed fiber X over s is isomorphic to £&. We call the scheme X a versal deformation over
S. When there exists a versal deformation, we say that the miniversal formal family (R, £) is
algebraizable.

3.3. Deformations of higher dimensional Calabi-Yau manifolds. Here, we focus on a spe-
cial case where several interesting results hold. Let X, be a Calabi—Yau manifold of dimension
more than two. Then the deformation functor Defy, has an effective universal formal fam-
ily (R,&). Since deformations of Calabi—Yau manifolds are unobstructed, the complete local
noetherian ring R is regular and we have

R =K][t,....t]
with d = dimy H'(J,). Every A-deformation of X, is smooth projective over A, as we have

Lemma 3.1. ([Mora, Lemma 2.4]) The effectivization Xg for (R, £) is regular and the morphism
ng: Xg — Spec R is smooth of relative dimension dim X,.
Now, we briefly recall the construction of Xs. Consider the extended functor
Defy,: Alg™*(k) — Set.
Fix an isomorphism R = K[z#,...,t;]. Let T = K[t;,...,#;] and t € SpecT be the closed
point corresponding to maximal ideal (#,...,7;). There is a filtered inductive system {R;};c;

of finitely generated T-subalgebras of R whose colimit is R. Since Defy, is locally of finite
presentation, [Xg, ig] is the image of some element {; € Defy, ((R;, mg,)) by the canonical map
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Defy, ((R;, mg,)) — Defy,(R). By [Art69a, Corollary 2.1] there exists an étale neighborhood
Spec S of ¢ in Spec T with first order approximation ¢: R; — S of R; — R. Let [Xg, is] be
the image of ¢; by the map Defy (¢). From miniversality of (R, &), it follows that the formal
completion of Xy along the closed fiber X, over s € Spec S is isomorphic to &, where s is
the distinguished closed point mapping to ¢. By construction, Spec S is a nonsingular affine
k-variety and X is flat of finite type over S. Exploiting inherited smoothness and projectivity
of Xy by terms in the projective system {Xg };e; for sufficiently large indices, one can show

Lemma 3.2. ([Mora, Lemma 2.3]) Let Xy be a Calabi—Yau manifold of dimension more than
two. Then there exists a nonsingular affine k-variety SpecS with a versal deformation Xg
which is smooth projective of relative dimension dim X, over S.

3.4. T' functors. Let A — B be a ring homomorphism and M a B-module. Define the groups
T/(B/A, M) for i = 0, 1,2 as the i-th cohomology of the complex Homp(L,, M), where

dy d
L. = Lz — Ll — L()

is the cotangent complex. When the ring homomorphism A — B is a surjection with kernel J,
L, is given as follows. Choose a free A-module P and a surjection j: P — J with kernel Q. We
have two short exaxt sequences

O—>J—>A—>B—>0,0—>Q—>P—j>J—>O.

Let Py be the submodule of P generated by all relations of the form j(a)b — j(b)a for a,b € P.
From j(Py) = 0 it follows Py ¢ Q. Take L, = Q/Py, L = P ®, B, and Ly = 0. Note that L,
is a B-module. Indeed, for a € J there is an element a’ € P such that a = j(a’). Then we have
ax = j(x)a’ = 0 modulo P, for x € Q. The differential d,: L, — L, is the map induced by
the inclusion Q — P and d; = 0. By [Har10, Lemma 3.2] the B-modules T/(B/A, M) do not
depend on the choice of P up to isomorphism.

Lemma 3.3. ([Har10, Theorem 3.4]) Let A — B be a homomorphism of rings. Then
T(B/A,-): Mod(B) —» Mod(B), i =0,1,2
define covariant additive functor.

The construction of 7' functors is compatible with localization and one obtains sheaves
TUX/Y,F), i = 0,1,2 for any morphism of k-schemes f: X — Y and any quasi-coherent
Ox-module .% [Har10, Exercise 3.5]. The sections of .7(X/Y,.%) over U = Spec B C f~1(V)
give T'(BJ/A, M), where V = SpecA C Y and .|y = M for some B-module M.

3.5. Infinitesimal extension of schemes. Let X be a scheme of finite type over R and .# a
coherent sheaf on X. An infinitesimal extension of X by .# is a pair (¥, 3), where Y is a scheme
of finite type over S and 3 C Oy is an ideal sheaf such that 3% = 0, (¥, Oy/3) = (X, Ox), and
I = % as an Oy-module. Two infinitesimal extensions (Y, 3), (Y’, ') are equivalent if there is
an isomorphism 0y — Oy, which makes the diagram

0 F Oy Ox 0
Lid | Ji
0 F Oy Ox 0

commute. The trivial extension is a sheaf Oy & .%# of abelian group endowed with the ring
structure by

(Cl, f) . (Cl/, f/) = (aal’ le/ + Cl/f).
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Assume that X is smooth proper over R. Recall that for the square zero extension
3.1 0-I->S—>R->0

we have I = R® as an R-module. Note that given an infinitesimal extension (¥, 3J) of X by
ﬁ’j‘fl, Y is flat over S since Oy is flat over R and ﬁj‘fl — Oy is injective [Harl0, Proposition
2.2]. Below, we collect fundamental results necessary to describe the relationship between
deformations and extensions of schemes.

Lemma 3.4. ([Har10, Exercise 4.7]) Let X be a smooth R-scheme and g: Y — X a morphism
from an affine R-scheme Y to X, and is: Y — Y’ an S-deformation of Y. Then g lifts to a
morphism h: Y — X such that ho ig = g.

Lemma 3.5. ([Har10, Proposition 3.6, Exercise 5.2]) Let A — B be a homomorphism of rings,
M a B-module, and B’ an extension of B by M. Then the automorphism group of B’ is given by

T°(B/A, M) = Homp(Qp4, M) = Dery(B, M).

Lemma 3.6. ([Har10, Theorem 5.1]) Let A — B be a homomorphism of rings and M a B-
module. Then there is a bijection between the set of equivalence classes of B by M and the
group T'(B/A, M). The trivial extension corresponds to the zero element.

Lemma 3.7. ([Har10, Theorem 4.11]) Let f: X — Y be an of finite type morphism of noether-
ian K-schemes. Then f is smooth if and only if it is flat and 7' (XY, F) = O for every coherent
Ox-module % .

Now, we are ready to show relevant results to our setting.

Lemma 3.8. Let X be a smooth separated R-scheme. Then every S-deformation (Y, j) of X is
locally trivial.

Proof. Since Y is flat over S, (3.1) induces a short exact sequence
0— 0¥ - Oy — Ox — 0,

which defines equivalence classes of infinitesimal extensions of coordinate rings on affine open
subschemes of X. Let is: Spec B < Spec A be the induced deformation of any affine open
subscheme. Since Spec B is smooth over R, by Lemma 3.4 the identity Spec B — Spec B lifts
to a morphism /4: SpecA — Spec B such that 4 o ig = id. The lift & induces a morphism
Spec A — Spec B Xg S of schemes flat of finite type over S. Now, one can apply [Harl0,
Exercise 4.2] to see that the induced morphism is an isomorphism. O

Proposition 3.9. Let X be a smooth separated R-scheme. Then there is a bijection
Defx(S) = H'(X, r%(/R)@l’
where Jx R is the relative tangent sheaf on X.

Proof. Let (Y, j) be an S-deformation of X. Take an affine open cover U = {U;};c; of X. By
Lemma 3.8 we may assume that the induced deformations U; < V; C Y are trivial. Choose
isomorphisms ¢;: U; Xg S — V; and write ¢;; for the composition (,oj‘.l o g; on U;; Xg S, where
the intersections U;; = U; N U, are again affine as X is separated over R. Let Spec B = Uj;
and SpecA = U;; xg S. According to Lemma 3.5, the set of automorphisms of extensions A
of B by B* bijectively corresponds to T°(B/R, B*) = Hom(Qg/g, B)®. Then {¢;;}; j; define a
collection {6;;}; je; of sections 6;; € H(U;;, Ixr)® on U;;. One checks 6;; + 8 + 6; = 0 and
{0ij}ijer1s a Cech 1-cocycle with respect to . Another choice of isomorphisms ¢!: U; Xg S —
V; yields a collection {¢] }; jer of automorphisms such that ¢}, = (¢;' 0 9})™ o gij 0 (7' 0 ¢)). Tt
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follows 6;; = 6;; + a; — @; for some sections a; € H°(U;, Ix/r)®. Thus we obtain a well defined
assignment

Defx(S) — HI(X, %{/R)@, Y, j1 = {9ij}i,je1,

as {0;;}i jer does not depends on .

Conversely, an element of H'(X, ﬁx/R)@’ can be represented by Cech 2-cocycle {6;;}; jer with
respect to 2. As explained above, the cocycle define automorphisms of the trivial deformations
U;; xr S, which glue to yield a global deformation (Y, j') of X. Clearly, this construction gives
the inverse assignment. O

Corollary 3.10. There is a canonical bijection between Defx(S) and the set of equivalence
classes of infinitesimal extensions of X by O’ ;‘2’.

Proof. By Lemma 3.6 and Lemma 3.7 any extension of X by ﬁ’j‘fl is locally trivial. Then due to
Lemma 3.5 the claim follows from the same argument as in the proof of Proposition 3.9. O

3.6. Toda’s construction. Let X, be a smooth projective k-variety. In [Tod09] Toda con-
structed the category of @-twisted sheaves on the noncommutative scheme (X, & )(f) ) over the
ring of dual numbers for each [¢y] € HT*(X,) represented by a cocycle

(@0, Bos Y0) € H*(Ox,) © H'(Fx,) © H(N T,).
Here, we apply his idea to a smooth proper R-scheme X and [¢] € HT?(X/R)® represented by
@87 =(@....d) @B, ....0 7 ....7N) € H(On™ & H' (Tyw)®™ @ H(\ Tym)®.
Take a finite affine open cover U = {U[}f‘i , of X and let U Xg S = {U; Xg S ,- Consider the

i

extension of X by ﬁ;‘?l whose equivalence class corresponds to 8, giving rise to an classical
S-deformation X; of X by Corollary 3.10. We modify the multiplication on Oy & C(1l, O%') as

(@, (b)), ... 1B1Y) %, (e, (d]}, ... {d})
=(ac, {ad} + b!c +vy;(a,c)}, ..., {ad + blc +yi(a,c)}),

where y/: Ox x Ox — Ox are regarded as bidifferential operators. We denote by X, =
(X, ﬁ;ﬁ) the resulting noncommutative S-scheme. By the standard argument, one sees that up

to isomorphism the scheme does not depend on the choice of Il and Cech representative of .
From a one obtains an element

a=1{l- % € — - — a €}iiri, € CZ(Xﬁ,Z(ﬁ)V(B)*),

loi1ln Lol
which is a cocycle. Then @-twisted sheaves on X3, form a category Mod(Xs,), @). By the
similar argument to [Cal00, Lemma 1.2.3, 1.2.8], one sees that up to equivalence the category
does not depend on the choice of Il and Cech representative of @. We denote by Qch(X, ¢) the
full abelian subcategory spanned by a-twisted quasi-coherent sheaves.
Assume that X is an R-deformation of a higher dimensional Calabi—Yau manifold. Then we
have

HT*X/R) = H'(Zx®).

In this case, Toda’s construction yields nothing but the category of quasi-coherent sheaves on
the S-deformation of X along ¢.

Proposition 3.11. Let X, be a Calabi—Yau manifold with dim X, > 2 and X an R-deformation
of Xo. Then for every cocycle € HT*(X/R)® = H'(Txr)® we have

Qch(X, ¢) = Qch(X,),
where X, is the S-deformation of X along ¢.
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4. DEFORMATIONS OF LINEAR AND ABELIAN CATEGORIES

In this section, we review the deformation theory of linear and abelian categories developed
by Lowen and van den Bergh in [LV06b], introducing the fundamental notion of flatness. As
explained there, when considering only flat nilpotent deformations over a certain class of rings,
one avoids any set theoretic issue by choosing sufficiently large universe. Moreover, both linear
and abelian deformations reduce to strict linear deformations without affecting the deformation
theory up to equivalence. Along square zero extensions, flat deformations of linear and abelian
categories are controlled by the second Hochschild cohomology of the corresponding linear
categories.

4.1. Universes. First, we need to extend the Zermelo—Fraenkel axioms of the set theory to
avoid foundational issues in the deformation theory of categories. One solution is the theory
of universes introduced by Grothendieck with the axiom of choice and the universe axiom. A
universe is a set U with the following properties:

ifxeUandye xtheny e U,

if x,y € U then {x,y} € U,

if x € U then the powerset P(x) of x is in U,

if (x;);c; 1s a family of objects of U indexed by an element of U then | J;; x; € U,
if UeUand f: U— U is afunction then {f(x) | x € U} € U.

A universe U containing N is a model for the Zermelo—Fraenkel axioms of the set theory with
the axiom of choice. Since the known nonempty universe only contains finite sets, the universe
axiom is added, which imposes every set to be an element of a universe.

Consider the category U — Set whose objects are elements of U and whose morphisms are
ordinary maps between sets in U. The category U — Cat consists of categories whose objects
and morphisms respectively form sets being an element of U. Similarly, by requiring the
underlying sets to belong to U, we obtain categories with a structure such as abelian groups
and rings. We call a category U-small when its objects and morphisms respectively form sets
with the same cardinality as an element of U, and essentially U-small when it is equivalent to a
U-small category. A U-category is a category whose Hom-sets have the the same cardinality as
an element of U. The axiom of choice allows us to replace a U—category % by an equivalent
category ¢’ with Ob(%) = Ob(%”) and ¢'(C,D) € U for all C,D € Ob(%¢’). When ¥
is abelian with a generator, we call ¢ U-Grothendieck. Every U-Grothendieck category ¢
admits U-small colimits and U-small filtered colimits are exact in € .

Throughout the paper, we work with a fixed universe U containing N. All the notion based
on universes will be with respect to U and all the related symbols will be tacitly prefixed by
U. By taking U sufficiently large, we may assume all categories to be small. Unless otherwise
specified, we will be free from any issue caused by the choice of universes.

4.2. Flatness. The notion of flatness for abelian categories was introduced in [LVO6b]. For a
while, we temporarily drop the assumption on R and S imposed at the beginning of Section 2.
Let R be a commutative ring. An R-linear category is a category a enriched over the abelian
category Mod(R) of R-modules. Namely, a is a pre-additive category together with a ring map
p: R — Nat(1,, 1,) inducing a ring map p,: R — a(A, A) for each A € a and an action of R on
each Hom-set.

Assume that R is coherent, i.e., any finitely generated ideal is finitely presented as an R-
module. Typical examples are given by noetherian rings. We denote by mod(R) the full abelian
subcategory of finitely presented R-modules. Let ¢ be an R-linear abelian category. We call
an object C € ¥ flat if the natural finite colimit preserving functor (—) ®g C: mod(R) — ¥
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is exact, and coflat if the natural finite limit preserving functor Homg(—, C): mod(R) — % is
exact.
An R-linear category a is flat if its Hom-sets are flat R-modules. Namely, the functors

— ®gr a(A,A”): mod(R) — Mod(R) are exact for all A,A” € a. An R-linear abelian category
% is flat if for each Y € mod(R) the functor Torlf(Y, -): ¥ — ¥ is co-effaceble, i.e., for each
C € ¢ there is an epimorphism f: C’ — C with Tor\(Y, f) = 0 [LVO6b, Proposition 3.1]. Here,
TorR(Y, —) is the left derived functor of the finite colimit preserving functor ¥ ®g (-): € — €.
The flatness has the following characterizations [LV06b, Proposition 3.3, 3.4, 3.6, 3.7].

e ¢ is flat if and only if €7 is flat.

e ¢ is flat if and only if all injectives in ¢ are coflat.

e ¢ is flat if and only if Ind(%) is flat.

e ais flat if and only if the abelian category Mod(a) is flat.

Here, Ind(%) is the Ind-completion of ¥, i.e., the full subcategory of Mod(%’) consisting of
left exact functors, where Mod(%) is the category of covariant additive functors from % to the
category Ab of abelian groups. Note that we are assuming all categories to be small in our fixed
universe U.

4.3. Base change. We fix a homomorphism 8: S — R of commutative rings. For an R-
module M, by M we denote M regarded as an S-module via 6. Let a be an R-linear category.
We have the category a with Ob(a) = Ob(a) and a(A,A”) = a(A, A’). For an S-linear category
b, we denote by b ® R the R-linear category with Ob(b ® R) = Ob(b) and (b ®s R)(B, B") =
b(B, B’) ® R. The functor (—) ®g R is left adjoint to E in the sense that there is a natural
isomorphism

Add(R)(b ®s R, a) ~ Add(S)(b, 7)

of S-linear categories, where Add(S) is the category of S-linear functors.

Let (b, p) be an S-linear category. We have the category bg of R-linear objects whose objects
are pairs (B, ) where B € b and ¢: R — b(B, B) is a ring map with ¢ o § = pg, and whose
morphisms are those of b compatible with the ring maps. An object B € b belongs to bg
if and only if 1 is annihilated by the kernel of 6. Taking R-linear objects defines a functor
(—)r: b — by, which is right adjoint to (=) in the sense that there is a natural isomorphism

Add(R)(a, bg) =~ Add(S)(a, b)

of S-linear categories. If & is an S-linear abelian category, then Zg is also abelian and by
[LVO6D, Proposition 4.2] the forgetful functor Zgr — ¥ is exact. From (Mod(S))g =~ Mod(R),
it follows

Add(R)(a, Mod(R)) ~ Mod(a)
for any R-linear category a.

Lemma 4.1. ([LV06b, Proposition 4.4(1)]) Let b be an S-linear category. Then there is an
equivalence Mod(b ®s R) — Mod(b)g of R-linear categories which makes the diagram

Mod(b ® R) —— Mod(b)g

| |

Mod(b) —<—~ Mod(b)

commutes, where the left vertical arrow is the dual to b — b ®g R and the right vertical arrow
is the forgetful functor.
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4.4. Deformations of linear categories. Let a be an R-linear category. A linear S-deformation
of a is an S-linear category b together with an S-linear functor b — a inducing an equivalence
b ® R — a. Two deformations f: b — a, f': b’ — a are equivalent if there is an equivalence
®: b — b’ of S-linear categories such that f” o @ is natural isomorphic to f. When b is flat
over R, we call the deformation b flaz. We denote by Def'"(S) the set of equivalence classes of
flat linear S-deformations of a. The notation will be justified below with respect to the choice
of universe. When b ® R — a is an isomorphism, we call the deformation b strict. Two strict
linear deformations f: b — a, f': b’ — a are equivalent if there is an isomorphism ®: b — b’
of S-linear categories such that f’ o ® = f. We denote by Def:""(S) the set of equivalence
classes of strict flat linear S-deformations of a. Also this notation will be justified below.

4.5. Deformations of abelian categories. Let 4 be an R-linear abelian category. An abelian
S-deformation of € is an S-linear abelian category 2 together with an S-linear functor € — 2
inducing an equivalence 4 — Zg. When & is flat over R, we call the deformation & flat. Two
deformations g: € - 9, g € — 9 are equivalent if there is an equivalence ¥: ¥ — &’ of
S-linear abelian categories such that ¥ o g’ is natural isomorphic to g. We denote by DefﬁZ’(S)
the set of equivalence classes of flat abelian S-deformations of 4. The notation will be justified
below with respect to the choice of universe. When 4 — g is an isomorphism, we call the
deformation & strict. Two strict abelian deformations g: 6 — Z,¢": € — &’ are equivalent
if there is an isomorphism ¥: ¥ — &’ of S-linear abelian categories such that W o g’ = g. We
denote by Def? “(8S) the set of equivalence classes of strict flat abelian S-deformations of %.
Also this notation will be justified below.

Assume that : S — R is a homomorphism of coherent commutative rings with R being
finitely presented as an S-module. Then the bifunctors

(=) ®s (-): Z xmod(S) —» 2, Homg(—, —): mod(S) X Z — 2
yield respectively left and right adjoint
(-)®sR: > P ~€, Homg(R,-): I > Dp =€

to the natural inclusion functor ¢ ~ Yg — & [LVO06b, Proposition 4.3]. They agree with the
adjoints in the Section 4.3.

4.6. Flat nilpotent deformations of categories. Assume further that 6 is surjective. Then for
an S-linear abelian category & the forgetful functor Zx — Z is fully faithful. When the kernel
I = ker@ is nilpotent, we call both linear and abelian S-deformations nilpotent. From now
on, we restrict our attention to flat nilpotent deformations. The following properties of R-linear
category a and R-linear abelian category % are respectively preserved under flat nilpotent linear
and abelian deformations [LVO06b, Proposition 6.7, 6.9, Theorem 6.16, 6.29, 6.36].

e q, % are essentially small.

e ¢ has enough injectives.

e % is a Grothendieck category.

e % is alocally coherent Grothendieck category.

Here, we call € locally coherent Grothendieck when it is Grothendieck and generated by a
small abelian subcategory of finitely presented objects.

4.7. Deformation pseudofunctors. In order to be careful about our choices of universes, we
temporarily make them explicit in the notation. Let U be a universe containing the field k. We
denote by U — Rng” the category whose objects are coherent commutative U-rings and whose
morphisms are surjective ring maps with finitely generated nilpotent kernels. We are interested
in the category U — Rng’ /k. Fix some other universe ‘W. A deformation pseudofunctor
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is a pseudofunctor D: U — Rng’ /k — W — Gd. Two deformation pseudofunctors D, D’
are equivalent if there is a pseudonatural transformation u: D — D’ such that for each R €
U —Rng’ /k we have an equivalence D(R) — D’(R) of categories. For any enlargement U’ of
U, the canonical functor

U - Rng’ /k - U’ —Rng’ /k

is an equivalence of categories [LV06b, Proposition 8.1]. Thus the deformation pseudofunctor
is independent of the choice of U up to equivalence.

Let a be a flat k-linear U-category and % a flat k-linear abelian U-category. Fix a universe
V such that a, % are essentially V-small and U € V. For R € U — Rngo /K we consider
the groupoid V — def’™(R) whose objects are flat linear R-deformations of a belonging to V,
and whose morphisms are equivalences of deformations up to natural isomorphism of functors.
Also we consider the groupoid V — deff;f’(R) whose objects are flat abelian R-deformations
of € belonging to V, and whose morphisms are equivalences of deformations up to natural
isomorphism of functors. Enlarging the universe W if necessary, we may assume that V € W
and we obtain deformation pseudofunctors

V — def?,V — def?: U - Rng’ /k - W - Gd.

The universe ‘W is a purely technical device which guarantees V —defff", % —def?ff’ taking values
in categories. Moreover, whether two deformation pseudofunctors are equivalent is preserved
under enlargement of “W. On the other hand, by [LV06b, Proposition 8.3] for any enlargement
V" € W of V, the canonical pseudonatural transformations

V — def™ — V' — def?, V — def? — V' — def?
define equivalences of deformation pseudofunctors.

In summary, as long as we consider flat nilpotent deformations, the choice of universe does

not affect deformation pseudofunctors up to equivalence. Thus we simply write defff”, defff(f for

deformation ps.eudofunctors. Since they have small skeletons [LV0O6b, Theorem 8.4, 8.5], we
also write Def!", Def% for deformation functors

V — Def”,V - Def?: U — Rng’ /k — W — Set

which take values in sets.
Finally, we collect relevant results on deformations of linear and abelian categories.

Lemma 4.2. ([LV06b, Theorem 8.16]) Let S — R be a morphism in U — Rngo /k and a an
essentially small flat R-linear category. Then there is a bijection

Def!"(S) — Deffy,q(S), b — Mod(b).
In particular, deformations of a module category are module categories.

Lemma 4.3. ([LVO6b, Theorem 8.17]) Let S — R be a morphism in U — Rng0 /K and € an
essentially small flat R-linear abelian category with enough injectives. Then there is a bijection

Def(l () — Def(S), i > (mod(j))”.

Lemma 4.4. ([LV06b, Proposition B.3]) Let S — R be a morphism in U — Rng’ /k and a an
essentially small flat R-linear category. Then the map
Def;""(S) — Def;"(S)
induced by the canonical pseudofunctor
defS™ — deft"

is bijective.
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Now, let again R be the fixed local artinian k-algebra with residue field k, the square zero
extension

0-I—->S—>R->0,

and the chosen generators € = (e, ..., ) of I regarded as a free R-module of rank /.

Lemma 4.5. ([Low08, Proposition 4.2]) Let (a,m) be a flat R-linear category with composi-
tions m. Then there is a bijection

4.1) H>C(a)® — Def"™(8), ¢ — (a[e],m + ¢e), ¢ € Z*C(a)®".

Another cocycle ¢’ € Z*C(a)® maps to an isomorphic linear deformation if and only if there is
an element h € C'(a) satisfying ¢’ — ¢ = d,,(h).

Lemma 4.6. ([LV06a, Theorem 3.1]) Let € be a flat R-linear abelian category. Then there is
a bijection

(4.2) H*C () — Def(S).
Here, C(a) is the Hochschild object associated with a. The compositions m is an element of

1_[ [a(A1, A2) ®r a(Ag, A1), a(Ag, A2)]°
Ap.A1LArea
rather than the ring map p defining the R-linear structure. For an R-linear abelian cate-
gory %, the associated Hochschild object is defined as C,,(4) = C,,(Ind(Inj(%))), where
C,(Ind(Inj(%"))) is the Shukla complex associated with Ind(Inj(%¢’)). Note that we have H*Cg,(a) =
H*C(a). We will review the definitions in Section 6.

4.8. Examples. Let X be a smooth proper R-scheme. Since it is noetherian, the category
Qch(X) of quasi-coherent sheaves on X has enough injectives. We denote by i = Inj(Qch(X))
the full R-linear subcategory of injective objects. Since X is flat separated, by [DLL17, Propo-
sition 4.28, 4.30(2)] the R-linear abelian category Qch(X) is flat. From [LV06b, Proposition
2.9(6)] it follows that the R-linear category i is flat. Then by Lemma 4.5 and Lemma 4.6 or
Lemma 4.3 both flat linear S-deformations of i and flat abelian S-deformations of Qch(X) are
classified by H>C(i)®.

5. THE CATEGORY OF QUASI-COHERENT SHEAVES

In this section, we review an alternative description of Toda’s construction in terms of the
descent category of the category of twisted quasi-coherent presheaves over the restricted struc-
ture sheaf, following the exposition from [DLL17, Section 4,5]. It follows that, for square zero
extension of relatively smooth R-schemes, Toda’s construction coincides with the deformation
of the category of quasi-coherent sheaves along the corresponding Hochschild cocycle. As a
consequence, deforming the category of the quasi-coherent sheaves is equivalent to deforming
the complex structure for higher dimensional Calabi—Yau manifolds. In particular, deforma-
tions of the category of quasi-coherent sheaves are given by the category of quasi-coherent
sheaves on deformations.

5.1. Descent categories. Let 2l be a small category and Cat(R) the category of small R-linear
categories and R-linear functors. A prestack </ is a pseudofunctor U? — Cat(R) consists of
the following data:

e for each U € U an R-linear category <7 (U),

e foreachu: V — U in U an R-linear functor f*: o/(U) — </ (V),

e foreach pairu: V — U, v: W — Vin U a natural isomorphism ¢*": f¥f* — f*,
e for each U € U a natural isomorphism z¥: 1), — fv.
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Moreover, these data must satisfy
CM,VW(CV,W o fu) — cuv,W(fw o Cu,v ,
cu,lv(ZV o fu) — 1’ Cly,u(fu o ZU) =1

foreach tripleu: V- U, vi W - V, w: T — W in . With o/ (U) regarded as one-objected
categories, a twisted presheaf .7 of R-algebras provides an example of a prestack of R-linear
category.

For prestacks & = (o/,m, f,c,2), /" = (',m’, f',c’,7’) of R-linear category on U, a
morphism (g, h): o/ — </’ is a pseudonatural transformation which consists of the following
data:

e for each U € U an R-linear functor gV: &7/ (U) — &7’ (U),
e foreach u: V — U in U a natural isomorphism A*: f“g! — g" fu.

Moreover, these data must satisty
huV(clu,V o gU) — (gW o CLt,V)(hv o fu)(f/v o hu)’
hIU(ZIU OgU) — gU OZU-
for each pairu: V.— U, vi: W — V in U. When &/ is a twisted presheaf of R-algebras,
morphisms of twisted presheaves of R-algebras coincide with morphisms of prestacks.
A pre-descent datum in a prestack .7 is a collection (Ay)y of objects Ay € o&7/(U) with a
morphism ¢,: f“Ay — Ay in o7/ (V) foreach u: V — U in U, which satisfies

u,v,Ay

Svav‘Pu = Pl

given an additional v: W — V in U. A morphism of pre-descent data g: (Ay)y — (A))v
is a collection (gy)y of compatible morphisms gy : Ay — Aj,. Pre-descent data and their
morphisms form a category PDes(%7) equipped with a canonical functor

Ty . PDCS(bQ{) - ﬂ(V), (AU)U (g Av.

When all ¢, are isomorphisms, (Ay)y is called a descent datum and we denote by Des(.e/)
the full subcategory of descent data. Given limits and colimits in each .7 (U) preserved by
all f*: o/(U) — </ (V), there exist ones in Des(.<?) preserved by all 7y : Des(e/) — o/ (V)
[DLL17, Proposition 4.5(3)]. In particular, if each category 7(U) is abelian and all f* are
exact, then Des(?) is abelian and 7y are exact.

5.2. The category of quasi-coherent modules over a prestack. The category of right quasi-
coherent modules over a prestack o7 is defined as

Qch(«?) = Qch’ (&) = Des(Mod,,),
where Mod,, is the associated prestack with a prestack <7 given by
Mod,, = Mod’,: U” — Cat(R), U — Mod(U) = Mod(Z (U)),
whose restriction functor
-®, (V): Mod(«(U)) — Mod(7(V))

is the unique colimit preserving functor extending f*: o/ (U) — <7 (V). The functor sends each
F € Mod(«7(U)) to an R-linear functor F ®, </ (V): &/ (V)°’ — Mod(R) such that

F&,d(V)B) = (P F(A)&r &/(V)(B, f'4)] ~

Aed/ (U)
for each B € &7 (V). Here, ~ denotes the equivalence relation defined as

Fl@x)®y~x® f“(a)y
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forxe F(A"), ye o (V)(B, f*A),anda: A —» A’ in &7 (U).
In the case where F' = &7 (U)(—, A”) for some A" € o/ (U), f* induces an isomorphism

0y A (U)=,A")®, (V) > A (V)(-, f*A).
If u =1y, thenz¥: lyw = f v induces an isomorphism
Mod(2)" : Imed,,w) = — @1, ' (U).
Since we have
Fo,d(V)8, d(W)CO) = @  Fa)er 7 (V)B, f'A) & & (W)C, f'B)/ ~,
A€/ (U),Be/ (V)
0., and ¢*” induce another isomorphism

fuA
Mod(c""): —®,4(V)Q, (W) — —Q,, o (W).

When 7 is a twisted presheaf of R-algebras, Mod(.2Z (U)) coincides with the category of right
2/ (U)-modules whose restriction functor is the ordinary tensor product and Mod(c)*", Mod(z)V
are respectively given by

Mod(c)y,: M ®, (V) ®, (W) - M ®,, 4 (W), mn@a®b— m® " f'(a)b,
Mod(2)%: M — M ®,, o/ (U), m+— mez7’
for any right <7 (U)-module M.

5.3. The category of twisted quasi-coherent presheaves over a twisted presheaf. Let <7 be
a presheaf of R-algebras on 2. We denote by Pr(.o7|;,) the category of presheaves of right <7 -
modules on !/U, where /|y is the induced presheaf on 2/U with o7 |y(V — U) = &/ (V) for
UeWandu: V — UinU. Eachu: V — U in Uinduces a functor uy : Pr(2/|y) — Pr(<|y).
Since we have vj up. = (uv)p. and (1y)p. = lpyy,) given an additional v: W — V in U, the
assignments U + Pr(/|y) and u — uy_define a functor

Pr(<): U’ — Cat(R).

Let M be aright 7 (U)-module. Then M(u) = M®,%/ (V) = M® </ (V) is aright o7 (V)-
module with o7 (V) regarded as a left .o/ (U)-module via f*. Suppose that u’': V' — U satisfies
w' =u' forv': V' — V. We have the right <7 (U)-module homomorphism 1, ® 7 M(u) —
M(u'). The assignments u +— M(u) and f” + 1), ® f* define a presheaf M of right <7 (U)-
modules on /U. Any <7 (U)-module homomorphism g: M — N induces a natural transform
g =1{8" = g® 1y}, Thus the assignments M M and g — g define a functor

(5.1 QY: Mod(#(U)) — Pr(<|p).
We have the canonical isomorphism
can)) : M ®, 4 (V)®, (W) > M®,, 4 (W), m@a®b+— m® f'(a)b.

By [DLL17, Lemma 4.10] the functor QU is fully faithful and there is a natural isomorphism
5.2) ™ up 0V — 0V(-®, (V)
induced by (can”MV)‘l. A quasi-coherent presheaf over <7 is defined as the essential image
of some &7 (U)-module M by QV. We denote by QPr(.2/|y) the category of quasi-coherent
presheaves over <7 |y .

When o7 is a twisted presheaf with central twists ¢, one can adapt Mod(c)*" to Pr(c)*" as

follows. For . € Pr(|<7||y) and w: T — W in U/W the central invertible element f”(c*") in
o/ (T) gives an automorphism

), Fuvw) —» F(uvw), m > mf" (")
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inducing an isomorphism
Pr(c)% : vpup (F) = (uv)p(F)
in Pr(|<7||y). Since we have
Pr(c)""™ Pr(c)"™" = Pr(c)""wp.(Pr(c)""),
the assignments U — Pr(l<7||y) and u — uj,_ define a prestack
Pr. : U — Cat(R)
whose twist functor is given by Pr(c) and z is given by the identity. Restricting to the essential
images QPr(|.<7||y), we obtain another prestack QPr,,. The category of right twisted quasi-

coherent presheaves over a twisted presheaf o : U°? — Alg(R) with central twists is defined
as

QPr(«7) = Des(QPr,)).

Lemma 5.1. ([DLL17, Theorem 4.12]) Let o/ : WP — Alg(R) be a twisted presheaf with
central twists. Then Q = (QY, )y, defines an equivalence

Qch(«) ~ QPr(</)
of R-linear categories, where QV, v are given by (5.1), (5.2) respectively.

5.4. Deformations of the restricted structure sheaves. Let .o7: U°? — Cat(R) be a flat
prestack. Recall that <7 is flat if R-modules </ (U)(A,A’) are flat for all U € W and A,A’ €
</ (U). An S-deformation of <7 is a flat prestack % : U°? — Cat(S) together with an equiva-
lence of prestacks Z ® R — o7, i.e., for each U there is a morphism of prestacks inducing
an equivalence A(U) ® R — &7 (U) of R-linear categories [DLL17, Proposition 4.7]. Two
deformations A, %’ are equivalent if there is an equivalence # — %’ of prestacks compatible
with equivalences ZQsR — o7, #’' ®sR — o7. We denote by Def”(S) the set of equivalence
classes of S-deformations of .2#. When £ ®s R — .o is an isomorphism of prestacks, i.e.,
for each U there is a morphism of prestacks inducing an isomorphism Z(U) ® R — </ (U)
of R-linear categories, we call the deformation Z strict. Two strict deformations %, %’ are
equivalent if there is an isomorphism &4 — %’ of prestacks inducing the identity on «/. We
denote by Def?,™(S) the set of equivalence classes of strict S-deformations of <7 Recall that
twised presheaves of R-algebras can be regarded as a prestack. Due to the lemma below, as
long as we consider equivalence classes of twisted deformations of flat presheaves, we may
restrict our attention to strict twisted deformations.

Lemma 5.2. ([DLL17, Proposition 5.9]) Let (<7, m, f, ¢, z) be a flat prestack of R-linear cate-
gories on . Then the canonical map
Def? ™ (S) — Def”(S)
is bijective.
Let U be a finite poset with binary meets. Then any prestack on U is guasi-compact since
U is finite. A prestack o7 : U? — Cat(R) is right semi-separated if the associated prestack

Mod,, is of affine localizations. Namely, for all U, V,W € U withv: V —- Uw: W — U in U
and the pullback diagram

N

w

w2

Vv

<

S
<

w

<

the following conditions are satisfied.



e The category Mod_,(U) is Grothendieck abelian.

e The functor v*: Mod_(U) — Mod_(V) is exact.

e The functor v* admits a fully faithful exact right adjoint v,.: Mod.(V) — Mod(U).
e There are natural isomorphisms

V) waw’) = (). (V)" = (Wwaw)(V.v").

A presheaf o7 : U? — Alg(R) is right semi-separated if so is </ with &/ (U) regarded as
one-objected categories. Every right semi-separated prestack is geometric, i.e., the restriction
functor

-®, (V): Mod(«/(U)) — Mod(<7(V))

is exact. Note that for any geometric prestack .o/ : U°? — Cat(R) on a small category Qch(.<?)
is a Grothendieck abelian category [DLL17, Theorem 4.14].

Let X be a smooth proper R-scheme. Choose a finite affine open cover U closed under
intersections. We denote by 0|y the restricted structure sheaf to . Since U N V is affine as X
is separated, we have isomorphisms of &x(U)-modules

Ox(V) ®oywy Ox(W) = Ox(UNV) = Ox(W) @y Ox(V)

forall U,V,W € U with V;W c U. Since pushforwards along open immersions V < U of
affine schemes are fully faithful, by [DLL17, Lemma 3.1] the restriction maps Ox(U) — Ox(V)
are flat epimorphism of rings. Then one can apply [DLL17, Proposition 4.28] to see that the
presheaf Oxl|y: U°? — Alg(R) is right semi-separated. Since Ox(U) are flat R-modules, the
category

Qch(Ox|y) = QPr(Ox|u) ~ Qch(X)
is flat over R and Grothendieck abelian [DLL17, Proposition 4.30].

Lemma 5.3. ([DLL17, Theorem 5.10]) Let X be a smooth proper R-scheme with a finite affine
open cover U closed under intersections. Then every twisted S-deformations of the restricted
structure sheaf Oxly is a quasi-compact semi-separated presheaf on W and there is a bijection

Deff, | (S) = Deflny (), (Oxlw)g = Qch((Oxhi)y),

where ¢ € H*Cgs(Oxl)® is a cocycle and (Ox|y)y is the twisted S-deformation of Ox|y along
¢. In particular, the category of right quasi-coherent modules over a twisted deformation of
Ox|u is given by an abelian deformation of the category Qch(X) of quasi-coherent sheaves.

5.5. Toda’s construction revisited. Let Ul be a small category and (<7, m, f) a presheaf of
R-algebras on U. The simplicial complex of presheaves associated with <7 is the complex
(o7°, ¢*) defined as follows. Consider the presheaf of algebras 7" = (7", m", f") forn > 0
given by
a'= || 2w
TeN,/U)
endowed with the product algebra structure m™V. Here, T € N,(U/U) is identified with the
object dr — U € U/U by composing all morphisms of 7, and the restriction map
U U) - GV, (@) = (@)
is induced by the natural map N, 2l/V) — N, (1/U), o — uo. Define morphisms of presheaves
SDn: ,Qf" N %nﬂ as
n+1

@0 ] um— ] oo, @ | a0 Yt

TeN,(U/U) geN 1 (U/U) o
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which specialize to
U] - ] ), @ e - at
u: V-U u: VoUy: W=V

Then one obtains the complex (.27, ¢*) with ker(¢”) = .7 [DLL17, Lemma 2.12].

Using a part of the simplicial complex of presheaves, one can give an alternative description
of Toda’s construction. Since R is commutative, by [DLL17, Proposition 2.14] every normal-
ized reduced cocycle

¢ =m,f,¢)=(my,....,m, fi,..., fici,....c1) € CoZ () & Clii () @ CLJ (o).
admits a weak decomposition
m, f,c) = m, f,0) + (0,0,¢) € C2 () & C2, ()%

simp
From [DLL17, Proposition 2.24] it follows that the twisted S-deformation 7, of </ along ¢
has central twists and the underlying presheaf |7 is the presheaf S-deformation of .7’ along
|¢| = (m, £, 0). Consider the morphism F: ./ & (/°)® — (&!)® of presheaves defined as
Flrawe [| 0> ] a'we,
u: VoU u: VoUy: W—oV
(a, by, ....b))w) o (fiu'(a) + v (b)) = bY',..., fiu"(a) + V(D)) = )" us
where we denote f* by u* for clarity. Define the multiplication on .7 @ (&7°)® as
(a, (b, ....0))) - (@, (BY', ..., b))
=(ad’, W (a)b}" + bju*(@') + my(u"(a), u"(a")), ..., u"(@)b)" + biu"(a") + my(u*(a), u"(a’))).).
With the scalar given by
A+ ke + ... +xe)a, (b, ...,b)) ) = (da, (ku'(a) + AbY, ..., ku' (a) + Ab)),),

o & (/°)® becomes an S-algebra. Then the morphism G: || — o & (&/°)* of presheaves
of S-algebras defined as

GY: ||(U) — o/ (U) ® /°(U)®,
a+bie +---+bie (a,(ff (@ +u"(br),..., fi'(@) +u' (b))

yields an exact sequence
0 | S o & (@) S (o)l

Consider the case where 7 is the restricted structure sheaf Oy|y of a smooth proper R-
scheme X. Fix a finite affine open cover U of X closed under intersections. As explained
above, Ox|y gives a quasi-compact right semi-separated presheaf of R-algebras. Since Ox(U)
is smooth R-algebra for each U € U, we may assume further that ¢ = (m, f, ¢) is decomposable.
We use the same symbol ¢ to denote the cocycle

(a,B,7) € H*(Ox) ® H'(Fxr) ® H (A\* Txr)

which is the image of (m, f, ¢) under the bijection (2.3). Then ¢ defines the S-linear abelian
category Qch(X, ¢) obtained by Toda’s construction.

Lemma 5.4. ([DLL17, Theorem 5.12]) For a smooth proper R-scheme X with a finite affine
open cover U closed under intersections, let (Ox|y)y be the twisted S-deformation of the re-
stricted structure sheaf Ox|y along a normalized reduced decomposable cocycle

¢ = (m,f,¢) € Co(Oxh)® ® Clii (Oxl)® & CLY(Oxlw)®,
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which maps to a cocycle
(a,B,7) € H*(Ox) ® H'(Txr) ® H (N> Txr)
under the bijection (2.3). Then there is an equivalence

Qch((Oxlw)g) = Qch(X, ¢)

of S-linear Grothendieck abelian categories, where Qch(X, @) is the abelian category obtained
by Toda’s construction from Qch(X) along (a, B,).

By (2.3), Lemma 2.2, and Lemma 5.3 we obtain a bijection
(5.3) HT*(X/R)® = HH*(X/R)® = HH? (Qch(X))®.

Let Qch(X), the flat abelian S-deformation of Qch(X) along the image of (a, 8, ¥) under (5.3).
Combining Lemma 5.3 and Lemma 5.4, we obtain

Proposition 5.5. For a smooth proper R-scheme X, let Qch(X), be the flat abelian S-deformation
of Qch(X) and Qch(X, ¢) the abelian category obtained by Toda’s construction from Qch(X)
corresponding to [¢] € HH*(X/R)® via the isomorphism (5.3). Then there is an equivalence

Qch(X)s ~ Qch(X, ¢)

of S-linear Grothendieck abelian categories.

Now, we return to our setting. Let X, be a Calabi—Yau manifold with dim X, > 2 and (X, ig)
an R-deformation of X,. Since we have

HT*(X/R) = H*(Ox/R) ® H'(x/R) ® H'(A\* Ix/R) = H'(Ix[R),

every cocycle ¢ € HH*(X/R)® defines an S-deformation (Xy, is) of (X,ig). By Proposition
3.11 we have Qch(X,¢) ~ Qch(X,). Along square zero extensions, deforming Calabi—Yau
manifolds and taking the category of quasi-coherent sheaves are compatible in the following
sense.

Corollary 5.6. Let Xy be a Calabi—Yau manifold with dim X, > 2, (X, ir) an R-deformation of
Xo, and (X4, is) the S-deformation of (X, ir) corresponding to [§] € HH?*(X/R)®. Then there is
an equivalence

Qch(X)y =~ Qch(X,)

of S-linear Grothendieck abelian categories, where Qch(X), is the flat abelian S-deformation
of Qch(X) corresponding to (@] via the isomorphism (5.3).

Remark 5.1. Since we have HT*(X,/S) = H'(J%,/S) by Calabi—Yau condition and the finite
affine open cover U = {U,-}fi , of X closed under intersections canonically lifts to the locally
trivial deformation UxgS = {U;xgS}Y |, one may iteratively use Corollary 5.6 along a sequence
of square zero extensions.

6. DEFORMATIONS OF THE DG CATEGORY OF PERFECT COMPLEXES

In this section, we review the deformation theory of dg category following the exposition
from [LowO8] and [KLO09]. Based on the ideas thereof, for a higher dimensional Calabi—Yau
manifold we prove the compatibility of deformations with taking the dg category of perfect
complexes. Namely, the dg category of perfect complexes on a deformation is Morita equiva-
lent to the corresponding dg deformation of a certain full dg category determined by the direc-
tion of the deformation.
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6.1. Curved A -categories. In the sequel, by a quiver we will mean a Z-graded quiver. We
choose shift functors ¥ on the category G(R) of Z-graded R-modules. Let a be an R-linear
quiver. Namely, a consists of a set Ob(a) of objects and a Z-graded R-module a(A, A”) for each
pair A, A’ € Ob(a). The category of quivers with a fixed set of objects admits a tensor product

1@ b(A,A) = @ a(A”,A’) @& B(A,A”)
A/I

and an internal hom
[a,b](A,A") = [a(A,A"),b(A,A)].

Morphisms of degree k are elements of [a, b]* = [T, [a, b](A, A"
The tensor cocategory T (a) of a is the quiver

T(a) = @ a®"
n>0

equipped with the comultiplication which separates tensors. There is a natural brace algebra
structure on [7'(a), a] = [],-0[7 (), a],, where

[T(0),aly = [0, al = [ ]| [a(4y1,4,) 8k -+ @R a(Ag, A)), a(Ag, A,)].
Ag,...,A €Q
It is given by the operations
[T((l), a]n AR [T(CI), a]m ®R - ®Or [T(a)’ a]n,- - [T((l), a]n—i+n1+~~-+n,-a
(¢’¢1"' "¢i) = ¢{¢1""’¢i}
with

Hor....t=) ¢1® 8hBIE - 0H8IE 8l)
satisfying

¢{¢la o ~’¢i}{wl’~ . ,W/} = Z(_l)a(b{wl’ e ~9¢l{wm17~ . -}7wn1a o ~a¢i{wmi o -}7wn,"~ e 7’#}'}’

where @ = 22:1 o Z’;ikl_ ! l)|. We denote by Ba the Bar cocategory 7'(Xa) and by C,,(a) the
brace algebra [Ba, Za]. The associated Hochschild object is defined as C(a) = Z7'C,,(a). By
[Low08, Proposition 2.2] the tensor coalgebra T(C,,(a)) = BC(a) becomes a graded bialgebra
with the associative multiplication defined by the composition.

A curved A.-structure on a is an element b € C;r(a) satisfying b{b} = 0. The pair (a, b) is
called a curved A..-category. When the defining morphisms b, : Xa®" — Xa vanish for n > 3,
we call (a,b) a cdg category. The curvature elements of (a,b) is the morphism by. When it

vanishes, we drop “curved” and ‘““c” from the notation.

Definition 6.1. ([Low08, Definition 2.5]) For curved A.-categories (a,b), (o', b") with Ob(a) =
Ob(a’) a morphism is a fixed object morphism of quivers f: Ba — Ba’, which is determined by
morphisms f,: (Za)®" — Xa’ and respects the comultiplications and the curved A.-structures.

6.2. Hochschild complexes of curved A.-categories. The associated Lie bracket with the
brace algebra C,,(a) is defined as

(B, 00y = ply} — (—=1)Wy{g).

Via an isomorphism

C,,(a) = Coder(Ba, Ba)
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of Z-graded R-modules to coderivations between cocategories, it corresponds to the commuta-
tor of coderivations. For a curved A -structure b on a the Hochschild differential on C,,.(a) is
defined as

dy = (b, =) € [Cp(a), Co(®)]', ¢ = (b, ).

In particular, C,,(a) can be regarded as a dg Lie algebra. Then C(a) is known to be isomor-
phic to the classical Hochschild complex of a, whose definition we will review later. Since b
naturally belongs to BC(a)!, it induces a differential

Dy, = [b,-] € [BC(a), BC(0)]", ¢ > [b, ¢],

where [—, —] is the commutator of the multiplication given by [Low08, Proposition 2.2]. As D,
belongs to Coder(BC(a), BC(a)), it defines a curved A.,- structure on C(a). The differential D,
gives a dg bialgebra structure on BC(a) and C(a), Cp,(a) become B,-algebras [GJ, Definition
5.2].

We will use the same symbol C(a) to denote the bigraded object with

Cri@ =[] [aAg1,49) @x - @ a(Ao, A1), alAo, A)).

Anelement ¢ € CP4(a) is said to have the degree |¢p| = p, the arity ar(¢p) = g, and the Hochschild
degree deg(¢) = n = p + q. The total complex of Hochschild degree n is defined as C"(a) =
[1,+4=n C"(a). Via the canonical isomorphisms

2 a(Ay-1,Ay) ®R -+ ®R a(Ag, A1), a(Ag, A,)]
— [Za(Ay-1,A,) Or - - ®r Za(Ag, A1), Za(Ag, Ay,

the B.,-structure on Cp,(a) is translated in terms of a. For instance, the operation
dot: Cpr(a)g ® Cpr(a); = Cp(@)gss—1, (&, 9) = P{Y}
induces the classical “dot product”
o: C"(a) ® C*’(a) —» C"*"*"(a)

on C(a) given by

q-1
poy =) (-1Yp(1% " gy 1%,
k=0

where § = (deg(¢) + k + 1)(ar(y) + 1). We also call the bigraded object C(a) the Hochschild
complex of a and its elements Hochschild cochains. In the sequel, curved A.-structure on a
will often be translated into an element of C?(a) without further comments.

6.3. Curved dg category of precomplexes. Let a be an R-linear category. Consider the cate-
gory PCom(a) of precomplexes of a-objects. A precomplex of a-objects is a Z-graded a-objects
C with C' € a together with a predifferential, a Z-graded a-morphism 6-: C — C of degree 1.
For any C, C' € PCom(a) the Hom-set PCom(a)(C, C’) is a Z-graded R-module with

PCom(a)(C, C')t = ]_[ a(C!, 1),

i€Z
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The cdg structure u € C(a)*> on PCom(a) consists of the compositions m, differentials d, and
curvature elements ¢, where

m=u € rl [PCom(a)(C}, C3) ® PCom(a)(Cy, C;), PCom(a)(Cy, C»)]°,
C0,C1,C2€PCom(a)
d=me [] [PCom(a)Co,C1),PCom(a)(Co,CI',
C0,C1€PCom(a)
c=me || PCom()C,C)
CePCom(a)
are given by
m(g, )i = (&) = gimpnfi: Co = €y,
d(f) = 6c,f = (=D féc,,
cc = —6%
for morphisms f: Cy — Cy,g: C; — C, in PCom(a). One can check that m, d, and c satisfy
d(c) =0,
& =-mc®l-1®0¢),
dm=md®1+1®d),
mme® 1) =m(l ®m).
We denote by Com(a) the full dg subcategoy of complexes of a-objects, where - become

differentials.
Here, we demonstrate how the cdg structure is translated. The differential

dy, = (b,=)y = (Zc +d + X7 'm, =) € [C},(PCom(a)), C,(PCom(a))]'
on C,,(PCom(a)) sends X'~¢ € C,,(PCom(a)) with ¢ € C*4(PCom(a)) to
dot(Zc +d + o 'm, 2"71¢) — (=) dot(T' ¢, Tc + d + X' m).

In terms of C(a) the image corresponds to [c¢ + d + m, ¢], where

q-1
e, 61 = ) (-Dg(1% 7 @ c 0 1),

k=0

q-1
[d,¢] = (=" d(g) + D (~1)**Pp(1%* @ c @ 1),
k=0
q-1
[m ¢l =m@® 1)+ ()" m(l @)+ Y (-1*'¢(1% " @ c@ 1%).
k=0
6.4. Curved dg deformations of dg categories. Assume that a is an R-linear cdg category.
A cdg S-deformation of a is an S-linear cdg structure on an S-linear quiver b together with an
isomorphism b — a[e] = a ®g S of S-linear quivers whose reduction b ® R — a induces
an isomorphism of cdg categories. Two cdg deformations b, b’ are isomorphic if there is an
isomorphism b — b’ of cdg categories inducing the identity on a. We denote by DefS*(S) the
set of isomorphism classes of cdg S-deformations of a.

Theorem 6.2. ([Low08, Theorem 4.11]) Let (a, u) be an R-linear cdg category. Then there is
a bijection

(6.1) H>C(0)® - Def™(S), ¢ — (a[e], u + pe), ¢ € Z*C(a)®.
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Another cocycle ¢’ € Z*C(a)® maps to an isomorphic cdg deformation if and only if there is
an element h € C'(a) satisfying ¢’ — ¢ = d,(h).

A partial cdg S-deformation of a is a cdg S-deformation of some full cdg subcategory a’.
Two partial cdg deformations b, b’ are isomorphic if there is an isomorphism b — b’ of cdg
categories inducing the identity on a’. A morphism of partial cdg deformations b,b” is an
isomorphism of cdg deformations between b and a full cdg subcategory of b’. When every
morphism of b — b’ of partial cdg deformations is an isomorphism, we call b maximal. We
denote by Def? “**(S) the set of morphism classes of partial cdg S-deformations of a and by
Def””"“*(S) the set of isomorphism classes of maximal partial cdg S-deformations of a.

Assume further that a is a dg category. For ¢ € Z>C(a) the [¢] — oo part of a is the full dg
subcategory aj4)-, spanned by objects A € a satisfying

H(mo)([¢])a = 0 € H(a(A, A)),

where my: C(a) — C(a), is the projection onto the zero part

C(a)o = T [T(Za), Zalp = | ] a4, A).
A€a
For a cdg S-deformation b = (a[e],u + ¢€) of a, the co-part b, is the full cdg subcategory
spanned by objects B € b satisfying

(1 + ¢p€)o5 = 0 € b(B, B)*.

It is a partial dg deformation of a and a dg deformation of aj4)_... More explicitly, if we restrict
¢ 10 a[4]-0, then ¢ becomes a coboundary and there is an element

he ﬂ a(A,A)' c Cla)

)

with d,(h) = (@luy,_. )o- Thus the cocycle ¢l ., — d,(h) has trivial curvature elements.

Proposition 6.3. ([Low08, Proposition 4.14]) Let (a, i) be an R-linear dg category. Then there
is a map

(6.2) H>C(0)® — Def?™(S), ¢ — (apg)-oole], pt + (Play. — du(h))e), ¢ € Z*C(0)*.

6.5. The characteristic morphism for dg categories. Let (a,u = d + m) be an R-linear dg
category. Consider the co-part Tw(a) = Twj,i(a)e of the cdg category of locally nilpotent
twisted objects over a from [Low08, Proposition 3.6]. It is known to be a dg enhancement
of the derived category D(a) of right dg modules over a. Each object of Tw(a) is given by a
pair (M, 6,,) of M € Free(a) and 6y, € Free(a)(M, M)'. The collection {Om}metw(a) canonically
determines an element 6 € C'(Tw(a)). Here, Free(a) is a quiver whose objects are formal
expressions M = @, X" A; with A; € a, n; € Z, and I an arbitrary index set. For any M, M’ €
Free(a) the Hom-set is
Free()(M, M') = | | @y " a(Ai, A)).
i€l

Theorem 6.4. ([Low08, Theorem 3.19]) Let a be a dg category and Tw(a) the co-part of the cdg
category of locally nilpotent twisted objects from [Low08, Proposition 3.6] with its canonical

Hochschild cochain 6 € C'(Tw(a)). Then the canonical projection r: C(Tw(a)) — C(a) has a
B..-section

(6.3) embr;: C(a) —» C(Tw(a)), ¢ > Z o 5%},
i=0
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which is an inverse in Ho(Bs) of Bw-algebras. In particular, both m and embrs are quasi-
isomorphisms.

Consider the projection onto the zero part

(6.4) 7. C(Tw(a)) = C(Tw(a))y = H Tw(a)(M, du), (M, 6pm)).

(M,0p)€Tw(a)

Since Tw(a) is uncurved, my induces a morphism of dg algebras [Low08, Proposition 2.7].
Composing (6.3) and (6.4), one obtains the characteristic dg morphism

(6.5) Cw— [] Tw@M,6m), M, 5m).

(M.5)1)ETw ()
The full dg subcategory tw(a) = twini(a)e € Tw(a) spanned by objects (M, d,,) with
d{oy} +m{oy, om) =0

is equivalent to the classical dg category of twisted complexes over a [Low08, Example 3.16].
It is known to be a dg enhancement of the smallest triangulated subcategory of D(a). We denote
by Tw(a)¢ the full dg subcategory of Tw(a) spanned by compact objects. It is known to be a dg
enhancement of the idempotent completion of the homotopy category of tw(a).

Assume that a is triangulated, i.e., pretriangulated and closed under homotopy direct sum-
mands. Then the homotopy category of Tw(a)“ get identified with that of tw(a) by assumption
and that of a via the Yoneda embedding. When restricted to Tw(a)‘, on cohomology (6.5)
induces the characteristic morphism

Xoa: H'C(a) —» 3°(Tw(a)) = 1—[ H*(a(A, A)),
Ae€a

where we identify each object A € a with its image under the Yoneda embedding. Here,

3(Tw(a)) = Hom(1y(aye, lTw(a)C)

is the center of the graded category Tw(a)‘, where Hom denotes the graded R-module of graded
natural transformations [Low08, Remark 4.6].

6.6. The characteristic morphism for linear categories. In this subsection, although it is
not strictly necessary to deduce our main results, for completeness we review the relationship
between the characteristic morphism and the obstruction against lifting objects of derived cat-
egories. Besides [Low08, Theorem 4.8] and [Low08, Corollary 4.9], we include their dual
statements due to Lowen.

Let i be an R-linear category. The canonical projection

7. C(PCom(i)) — C(i)
has a B.,-section
(6.6) embr;: C(i) » C(PCom(1)),

whose restriction to the full dg subcategory Com™ (i) of bounded below complexes of i-objects is
an inverse in the homotopy category Ho(B.,) of B,-algebras [Low08, Theorem 3.21]. Consider
the projection onto the zero part

(6.7) 7o C(Com(i)) — C(Com(i))y = 1—[ Com(i)(C, C).

CeCom(i)
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Since Com(i) is uncurved, 7y induces a morphism of dg algebras [Low08, Proposition 2.7].
Composing (6.6) and (6.7), one obtains the characteristic dg morphism

ciy— [] Comixc o).
CeCom(i)
Note that Tw(i) is precisely Com(i) [Low08, Section 3.5]. On cohomology it induces the char-
acteristic morphism

xi: H'C() — 3°(K(1))
for a linear category i. Here, 3(K(1)) is the graded center of K(i), i.e., the center

J(Com(i)) = Hom(1comey» Lcoma))

of the graded category Com(i). The characteristic morphism can be interpreted in terms of
deformations of categories.

Theorem 6.5. ([Low08, Theorem 4.8]) Let i be an R-linear category and i, its S-deformation
along ¢ € Z*C({i)®. Then for each C € K(i) the element X?l(qb)c e KG)(C,O)[2]% is the
obstruction against lifting C to an object of K(is) along Homg(R, —): K(iy) — K(i).

Remark 6.1. The notation in [Low08, Section 4.4] is quite confusing. It was confirmed by
Wendy Lowen that ¢-deforming C in the statement of [Low08, Theorem 4.8] means precisely
lifting C along Homg(R, —).

Let € be an R-linear abelian category with enough injectives. Assume that i is the full linear
subcategory Inj(%’) of injective objects. Taking cohomology of (6.7) restricted to Com™ (i) and
composing with the isomorphism HH?, (¢) = HC*(Com*(i)) induced by (6.6), one obtains the
characteristic morphism

(6.8) X HH, () — 3°(D™(4)

for an abelian category 4. Here, we use the isomorphism HH?, (¢") = HC*(i) obtained from
[LVO6b, Theorem 6.6]. Note that the graded center 3(D*(%)) of D*(%¢) ~ K*(i) is given by
the center 3(Com™*(1)).

Corollary 6.6. ([Low08, Corollary 4.9]) Let € be an R-linear abelian category with enough
injectives and €y its abelian S-deformation along a cocycle ¢ € HHib((K)@l. Then for each
C € D*(6) the element )(??((ﬁ)c € EX‘[%(C, C)® is the obstruction against lifting C to an object
of D*(6,) along RHomg(R, —): D*(€;) — D*(%).

Remark 6.2. Similarly to the previous remark, deforming C in the statement of [Low08, Corol-
lary 4.9] means precisely lifting C along R Homg(R, —).

As mentioned in [Low05, Introduction], dualizing the relevant arguments, one obtains sim-
ilar results for lifting objects along the functors — ®s R and — ®§ R. We thank Wendy Lowen
for explaining the next two results below to the author.

Theorem 6.7. Let p be an R-linear category and v, its S-deformation along ¢ € Z*C(p)®.
Then for each C € K(p) the element )(f’(qﬁ)c € K(p)(C, O)[2)% is the obstruction against lifting
C to an object of K(p4) along — ®s R: K(p,) — K(p).

Let € be an R-linear abelian category with enough projectives. Assume that p is the full
linear subcategory Proj(é) of projective objects. Taking cohomology of (6.7) restricted to
Com™(p) and composing with the isomorphism HH?, (¢) = HC*(Com™(p)) induced by (6.6),
one obtains the characteristic morphism

X HH,(C) = 3%(D (%))
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dual to (6.8). Here, we use the isomorphism HH?,(¢) = HC®(p) obtained from the dual
statement of [LV0O6b, Theorem 6.6]. Note that the graded center 3(D™ (%)) of D™(%) ~ K~ (p)
is given by the center 3(Com™(p)).

Corollary 6.8. Let ¢ be an R-linear abelian category with enough projectives and 6, its
abelian S-deformation along a cocycle ¢ € HHgb(‘K)eBl. Then for each C € D™ (%) the element
)(?Z(gb)c € Extgg(C, C)® is the obstruction against lifting C to an object of D™ (%) along — ®§
R: D~ (6;) —» D (¥).

6.7. Maximal partial dg deformations of the dg category of bounded below complexes.
In this subsection, for a linear category we explain that the maximal partial deformation of the
dg category of bounded below complexes along a given Hochschild cocycle is precisely the
dg deformation of the full dg subcategory spanned by all objects whose lifts become curvature
free with respect to the Hochschild cocycle. Similar observation for the dg category of perfect
complexes will be crucial later.
Consider the map
(6.9) p': H*CH* — Defl % (S), ¢ > (Com" ({embryie))eo

Com™* (i)
obtained from (6.2) and (6.6). The partial dg deformation (Com" (1)embry(s))e of Com™(a) co-

incides with a dg deformation (Com" (i)embry(g)]—co Jembrs(¢) Of COM™ () [embry(#)-0» Where the cdg
structure embrs(¢) restricted to the [embrs(¢)] — oo part.

Theorem 6.9. ([Low08, Theorem 4.15(ii1)]) Let t be an R-linear category and i, its S-deformation
along ¢ € Z*C(H)®. Then, for every collection of complexes T’ = {C}CeCom+(i>[embr5( ol With
Homg(R, C) = C, the full dg subcategory Com;-(is) ¢ Com*(is) spanned by T is a maximal
partial dg S-deformation of Com™ (i) representing p'(¢).

From the proof, one sees that Com;-(i,) is a dg deformation of Com™ (i){embr(g)}-c0- According
to [Low08, Example 4.13], an object C € Com™ (i) belongs to Com™ (i) embr(#))-c if and only if

X¥(p)e = 0 € KH)(C, C[2)%.

Since X?’(qﬁ)c is the obstruction against lifting C to an object of Com™(i,) along Homg(R, -),
we may take a collection of lifts of unobstructed complexes in Com™ (i) as I'. Clearly, any dg
subcategory of Com™ (i)[embr(g))- dg deforms along the restriction of embrs(¢).

6.8. Hochschild cohomology of the dg category of perfect complexes. We review the defini-
tion of the classical Hochschild complex of dg categories. Assume that a is a small R-cofibrant
dg category, i.e., all Hom-sets are cofibrant in the dg category Mod,(R) = Com(Mod(R)) of
complexes of R-modules. Recall that N € Mod,(R) is cofibrant if its terms are projective. For
an a-bimodule M : a°? ® a — Modg,(R), the Hochschild complex C(a, M) of a with coeflicients
in M is the total complex of the double complex whose g-th columns are given by

[| Hom(a(a, 1,4, @ - @r a(Ay, Ap), M(Ao, A,))

with horizontal differentials df{loch. When M = a we call C(a) = C(qa, a) the Hochschild complex
of a. The Hochschild complex satisfies a “limited functoriality” property. Namely, if j: a < b
is a fully faithful dg functor to a small R-cofibrant dg category b, then there is an associated
map between Hochschild complexes

J 1 C(b) = C(a)
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given by restriction. As mentioned above, the Hochschild complex is isomorphic to the asso-
ciated Hochschild object C(a) = X7'C;.(a). In particular, the Hochschild complex C(a) has a
B..-algebra structure compatible with the map j*.

The definition of the Hochschild complex was modified by Shukla and Quillen [Shu61,
Qui70] to general dg categories. Now, we drop the assumption on a to be R-cofibrant and fix a
good R-cofibrant resolution @ — a, which is a quasi-equivalence with an R-cofibrant dg cate-
gory a inducing surjection of Hom-sets in the graded category [LV06a, Proposition-Definition
2.3.2]. The Shukla complex of a with coefficient M is defined as

Csh(aa M) = C(aa M)
According to [LVO06a, Section 4.2], which in turn is attributed to [Kel], the assignment
Csh: ak Csh(a)

defines up to canonical natural isomorphism a contravariant functor on a suitable category of
small dg categories with values in Ho(B,,). In particular, C;(a) does not depend on the choice
of good R-cofibrant resolutions of a up to canonical isomorphism. The functor Cy, satisfies
some extended “limited functoriality”. Let j: a < b be a fully faithful dg functor to a small
dg category b with a good R-cofibrant resolution b — b. One may restrict the resolution to a
good R-cofibrant resolution @ — a of a. Then the restriction along the extended fully faithful
dg functor @ < b defines a morphism of Shukla complexes

Cin(d) = Cy()

still denoted by j*. In the sequel, we write C(a) for Cg,(a).

Now, we return to our setting. Let X, be a Calabi—Yau manifold with dimX, > 2. We
denote by D4,(Qch(Xy)) the dg category of unbounded complexes of quasi-coherent sheaves
on Xj. In our setting, the full dg subcategory Perf ;,(X,) of compact objects consists of perfect
complexes on Xy. The canonical embedding Perf;,(Xo) < D4 (Qch(Xy)) factorizes through
the dg category D:;g(Qch(XO)) of bounded below complexes of quasi-coherent sheaves on Xj.
Let (X, ig) be an R-deformation of X, and i = Inj(Qch(X)). As explained above, X is smooth
projective over R. The Hochschild cohomology of Perf;,(X) can be expressed in terms of i.

Lemma 6.10. There is an isomorphism

(6.10) HC*(Com™ (1)) » HC*(Perf4,(X)).
Proof. Consider the quasi-fully faithful functor

(6.11) Perf 4,(X) — ng(Qch(X)) — Com* (i),

where the first functor is the canonical embedding and the second functor is a quasi-equivalence
induced by the canonical equivalence

D™ (Qch(X)) — K™(1)
of their homotopy categories [CNS, Theorem A]. The functor (6.11) induces a morphism
(6.12) C(Com™ (1)) — C(D,(Qch(X))) — C(Perf (X))
of B -algebra, which in turn induces a morphism
(6.13) H*C(Com" (1)) — H*C(D},(Qch(X))) — H*C(Perf (X))
of Hochschild cohomology. Since quasi-equivalences preserve Hochschld cohomology, the

first arrow in (6.13) is an isomorphism.
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It remains to show that the second arrow in (6.13) is an isomorphism. We claim that the
restriction

C(D4g(Qch(X))) — C(Perf (X))
is an isomorphism in Ho(B,,). Fix a good R-cofibrant resolution
D 4o(Qch(X)) — Dge(Qch(X)).
Via the canonical embedding Perf,(X) < D4,(Qch(X)) it induces a good R-cofibrant resolu-
tion Perf;,(X) — Perf,,(X) and the fully faithful embedding
j: Perfy(X) = D(Qch(X)).

We denote by j the induced fully faithful functor on the homotopy categories. One can apply
[Por10, Theorem 1.2] to see that the functor

D(Qch(X)) — Mod(Perf(X)), F = Hompqenx)(j(=), F)

lifts to a localization D(Qch(X)) — D(Modg,(Perf (X)), where D(Mod ,(Perf (X)) is the
derived category of right dg modules over the dg category Mod ,(Perf 4,(X)) of right dg modules
over Perf,,(X). In particular, the lift is fully faithful. Then the claim follows from [DL13,
Proposition 5.1]. Similarly, one can show that the restriction
C(D4,(Qch(X))) — C(Dg,(Qch(X)))
is an isomorphism in Ho(B,,). Hence the restriction
C(D;,(Qch(X))) — C(Perfy,(X))

is an isomorphism in Ho(B,,), which induces the desired isomorphism on Hochschild coho-
mology. O

6.9. Morita deformations of the dg category of perfect complexes. Let dgCaty be the cate-
gory of small R-linear dg categories and dg functors. The category dgCatg has two model struc-
tures, so called the Dwyer—Kan model structure and the Morita model structure, constructed by
Tabuada respectively in [Tab0O5a] and [TabO5b]. On the Dwyer—Kan model structure, weak
equivalences are given by quasi-equivalences of dg categories. On the Morita model struc-
ture, weak equivalences are given by Morita morphisms. Recall that a dg functor in dgCaty
is a Morita morphism if it induces an derived equivalence. Also recall that for each object
a € dgCaty the derived category D(a) of right dg modules over a is defined as the Verdier
quotient

[Mode(a)]/[Acycl(a)]

of the homotopy category of the dg category Mod,(a) of right dg modules over a by the ho-
motopy category of the full dg subcategory Acycl(a) of acyclic right dg modules.

We denote by Hog the localization of dgCaty by weak equivalences in the Dwyer—Kan model
structure and by Hmog the localization of dgCaty by weak equivalences in the Morita model
structure. Passing to Hog, two quasi-equivalent R-linear dg categories a, b get identified. Pass-
ing to Hmog, two Morita equivalent R-linear dg categories a, b get identified. Recall that two
R-linear dg categories a, b are said to be Morita equivalent if they are connected by a Morita
morphism. By [T6e, Proposition 7] or [Toe, Exercise 28] for R-linear triangulated dg cat-
egories Morita equivalences coincide with quasi-equivalences. The dg category Perf,(X) is
triangulated. Namely, it is pretriangulated and closed under homotopy direct summands.

Let a be a small R-linear dg category. A Morita S-deformation of a is an S-linear dg category
b together with a Morita equivalence b®§ R — a, where - ®§ R: Hmog — Hmog is the derived
functor of the base change — ® R: dgCaty — dgCat,. Two Morita deformations b, b" are
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isomorphic if there is a Morita equivalence b — b” inducing the identity on a. We denote by
Def’”(S) the set of isomorphism classes of Morita S-deformations of a. By [KL09, Proposition
3.3] there is a canonical map

(6.14) Def™(S) — H*C(a)®

defined as follows. Any Morita S-deformation b of a small R-linear dg category a can be
represented by a A-flat resolution b — b, which defines a dg S-deformation of b ®s R. Let
¢: € Z*C(b ®s R)® be a Hochschild cocycle representing b via the bijection (6.1). The map
(6.14) sends b to the image ¢y, of ¢ under the isomorphism H*C(b®s R)* — H>C(a)® induced
by the Morita equivalence b ® R — a.

Theorem 6.11. The composition

mo cd
(6.15) Defpe, x0(S) — Defpelgfdg(x)(S)
of (6.14) with the inverse of (6.1) is bijective.

Proof. To show the injectivity, by [KL09, Proposition 3.7] it suffices to check that Perf ;,(X)
has bounded above cohomology, i.e., the dg module Perf;,(X)(E, F) has bounded above coho-
mology for all E, F' € Perf 4, (X). Consider the spectral sequence

EN = HP(X,Ext}(E, F)) = Exty"(E, F).
Since we have @i(E ,F) = HIEY ®g4, F), the cohomology
HP 4 (Perf1o(X)(E, F)) = Extf(+q(E, F)

vanishes whenever p, g are sufficiently large.
To show the surjectivity, consider the characteristic dg morphism

(6.16) C(Perf (X)) — 1—[ Tw(Perf 4,(X))(M, 6p1), (M, 1))

(M,6p)€Tw(Perf 44 (X))

for the dg category Perf,,(X). Here, Tw(Perf;,(X)) = Twipii(Perf;4(X))o is the co-part of the
cdg category of locally nilpotent twisted object over Perf ;,(X). Itis a dg enhancement of the de-
rived category D(Perf 4,(X)) of right dg modules over Perf;,(X). We denote by Tw(Perf ;,(X))“
the full dg subcategory of Tw(Perf,;,(X)) spanned by compact objects. Its homotopy category
D(Perf4,(X)), the full triangulated subcategory of D(Perf,,(X)) spanned by compact objects,
get identified with Perf(X) via the Yoneda embedding as Perf;,(X) is triangulated. When re-
stricted to Tw(Perf (X)), on cohomology (6.16) induces the characteristic morphism

Xperty00. - H C(Perfe(X)) — Ext(E, E),

where we identify each object E € Perf;,(X) with its image under the Yoneda embedding.

By Lemma 6.10 any element of H ZC(Perfdg(X))@’ can be represented by the image embrs(¢)
of ¢ € Z>C(i)® under the B.-section (6.6). We use the same symbol to denote the image
under the direct sum of (6.10). Since Perf,,(X) has bounded above cohomology, by [KLO09,
Proposition 3.12] the map (6.15) is surjective if there exists a full dg subcategory m(¢) C

Perf 4,(X) which is Morita equivalent to Perf,(X) such that Xﬁérfdg(x)’E(embr(;(qS))E = 0 for any
E € m(¢) and cocycle embr;(¢) € Z>*C(Perf,(X))®. If the possibly curved dg S-deformation
M(P)embry(¢) along embrs(¢) is uncurved, then by definition Xﬁérfdg(x)’E(embr(;(gb))E must vanish
for any E € m(¢). Thus it suffices to construct a Morita S-deformation of Perf,,(X) along each
embrs(¢).

For a cocycle ¢ € HHﬁb(Qch(X))e” we denote by (X, is) the S-deformation of (X, ir) along

¢ via the bijection (5.3). Let Perf,,(X,) be the h-flat resolution of Perf;(X;) from [CNS,

86



Proposition 3.10]. Then the dg category m(¢) = Perf;,(Xy) ®s R is a full dg subcategory of
Perf ;,(X) with a Morita equivalence

m(¢) =mo Perfdg(X¢) ®§ R =mo Perfdg(X)

from [BFN10, Theorem 1.2]. Hence Perf;,(X,) defines a Morita S-deformation of Perf ;,(X).
As explained in the proof of Theorem 6.12 below, the direction of the deformation coincides
with embrs(¢) up to coboundary. O

Remark 6.3. The canonical equivalence
Perf oo (Xy) ®perr..s) Perfo(R) ~ Perfo(X)

of corresponding co-categories from [BFN10, Theorem 1.2] translates via [Coh, Corollary 5.7]
into a Morita equivalence

(6.17) Perf 4,(X,) ®1§erf (S Perf 4,(R) =, Perf;,(X)

of dg categories, where —®"—: Hmog x Hmog — Hmog is the derived pointwise tensor product
of dg categories. The left hand side of (6.17) is a triangulated dg category split-generated by
objects of the form E,R M for E; € Perf;,(Xy) and M € Perf;,(R), which maps to E®, mpy M €
Perf ;,(X) via the Morita equivalence. Here, E = Es ®s R and g : X — Spec R is the structure
morphism. Hence we obtain a Morita equivalence

Perf (Xy) & R =y, Perfo(Xy) ®perr, (s) Perfag(R) =y, Perf(X)
used in the above proof.

Remark 6.4. Alternatively, the surjectivity of the map (6.15) can be shown in terms of obstruc-
tion theory as follows. Let p = Proj(Pro(Qch(X))) be the full linear subcategory of projective
objects of the Pro-completion Pro(Qch(X)) of Qch(X). Consider the quasi-fully faithful functor

(6.18) Perf ;,(X) — D;g(Pro(Qch(X))) — Com ™ (p),

where the first functor is the canonical embedding and the second functor is a quasi-equivalence
induced by the canonical equivalence

D~ (Pro(Qch(X))) — K~ (p)

of their homotopy categories. The functor (6.18) induces a morphism

(6.19) C(Com™ (p)) — C(D,,(Pro(Qch(X)))) — C(Perf,(X))
of B-algebra, which in turn induces a morphism
(6.20) H*C(Com™(p)) — H'C(D;g(Pro(Qch(X)))) — H*C(Perf 4,(X))

of Hochschild cohomology. Since quasi-equivalences preserve Hochschld cohomology, the
first arrow in (6.20) is an isomorphism. From the proof of Lemma 6.10 it follows that the
second arrow is also an isomorphism.

One can apply [KL09, Proposition 2.3] to obtain a commutative diagram

Com™(p),E

H*C(Com™(p)) = Exty(E, E)

L XD (Pro(Qch(X))).E l

(6.21) H*C(D;,(Pro(Qch(X)))) — Exty(E. E)
L XPerf 4o (X).E l
H*C(Perf 1,(X)) Exty(E, E)
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for each object E € Perf,,(X), whose horizontal arrows are the characteristic morphisms and
whose left vertical arrows are (6.20). Applying [KL09, Proposition 2.3] to the quasi-fully
faithful functor,

(6.22) p — Com™ (p)

we obtain another commutative diagram

H*C(Com™(p)) % Ext}(E, E)
(6.23) L l
Xv.E

H*C(p)

whose horizontal arrows are the characteristic morphisms and whose vertical arrows are the
canonical isomorphisms, as the morphism C(Com (p)) — C(p) induced by the quasi-fully
faithful functor (6.22) coincides with the canonical projection and its inverse in Ho(B.,) is the
B,-section embrs: C(p) — C(Com™ (p)), which induces an isomorphism on cohomology. Note
that Tw(p) is precisely Com(p).

The composition of the opposite vertical arrow in (6.23) and the vertical arrows in (6.21)
coincides with the induced map by embrs: C(p) — C(Com™ (p)) up to coboundary. By Corol-
lary 6.8 the image of ¢ € H>*C(p) = H*C,,(Pro(Qch(X))) = H*C,(Qch(X)) under Xf,lE is the
obstruction against deforming E to an object of D™(Qch(X,)). As each object E € m(¢) lifts
to an object of Perf(X,), we obtain )(fl (¢)r = 0. Chasing the diagrams (6.21) and (6.23), we
obtain )(;fé ncdg(x)(embr(g(@)g = 0, where embrs(¢) denotes the image of ¢ under the bijection

H*C(p) — H*C(Perf;,(X)) induced by the embr;: C(p) — C(Com™(p)). Thus the surjectivity
of (6.15) follows from [KL09, Proposition 3.12].

6.10. Maximal partial dg deformations of the dg category of perfect complexes. As ex-
plained above, the category Perf;,(X,) defines a Morita S-deformation of Perf;,(X). The h-flat

resolution Perf 4,(X,) of Perf,,(X,) from [CNS, Proposition 3.10] defines a dg S-deformation
of m(¢) = Perf;,(X,) ®s R. On the other hand, m(¢) admits a dg deformation

M(P)embry¢) = (M(P)[€] = m(¢) ®r S, embrs(m) + embrs(P)e) ,

where embrs(m) € Z>C(m(¢)) and embrs(¢) € Z>C(m(¢p))® are respectively the images under
the B..-section (6.6) and its direct sum of the compositions m in i and the cocycle ¢ € ZC?(1)®
corresponding to ¢ € Hsz(Qch(X )® via the isomorphism obtained from [LV06b, Theorem
6.6]. Here, as above we use the same symbol to denote the images under the compositions of the
bijections induced by the quasi-equivalences with (6.10) and its direct sum respectively. Also,
we use the same symbol to denote the images under the morphism C(Perf (X)) — C(m(¢)) of
B.-algebras induced by the Morita equivalence m(¢) — Perf;,(X).

Exty(E, E)

Theorem 6.12. There is an isomorphism

Perfdg(X¢) = m(¢)embr5(¢)
of dg S-deformations of m(¢). In particular, the Morita S-deformation Perf;,(X,) defines a
maximal partial dg S-deformaiton of Perf ;,(X) along embrs().

Proof. Since both dg deformations share their underlying quiver m(¢)[€], it suffices to show
the coincidence of their dg structures up to coboundary. The dg structure on M(@)embry(p) 1S

embrs(m) + embrs(¢)e. Let Dgg(Qch(qu)) be the h-flat resolution of D:;g(Qch(X,l,)) from [CNS,
Proposition 3.10]. There is a canonical dg functor

Perfyy(Xy) <= D, (Qch(Xy))
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extending the canonical embedding Perf;,(X,) — D:;g(Qch(X¢)). By [Low08, Proposition 2.6]
the dg structure on Perf 4, (X,) is the restriction of that on ng(Qch(X,p)).

We compute the dg structure on Perf,(X,). Consider the quasi-fully faithful functor
(6.24) Perf,(X4) — Dj;,(Qch(X,)) — Com™(iy)

where the first functor is the canonical embedding and the second functor is a quasi-equivalence
induced by the canonical equivalence

(6.25) D*(Qch(Xy)) — K™ (iy)
by [CNS, Theorem A]. The functor (6.24) canonically extends to that

(6.26) Perfyy(Xy) < D, (Qch(Xy)) — Com*(iy)

of the h-flat resolutions from [CNS, Proposition 3.10]. It induces a morphism
(6.27) C(Com’(iy)) — C(D}(Qch(X,))) — C(Perfy4(X,))

of B.-algebras, which in turn induces an isomorphism

(6.28) H*C(Com*(i,)) — H*C(D};,(Qch(X,))) — H*C(Perfy,(X,))

of Hochschild cohomology by Lemma 6.10.

Recall that § € C!(Com™(1)) is the differentials of objects in Com*(i). Let § + ¢’e €
C!(Com*(iy)) be the differentials of objects in Com™(iy) with &’ = (8}, ...,6]) € C'(Com(i))?.
Then the dg structure on Com* (i) is

embrs, s (m + ¢pe) = (m + de){0 + 6'€,5 + '€} + (m + pe){6 + &€} + (m + ge).

We use the same symbol to denote the images under the composition of (6.27) with the mor-
phism C(Com*(i;)) — C(Com*(i,)) induced by the h-flat resolution. Note that 6 € C'(Perf,(X))
is the differentials of objects in Perf,(X) and 6 + ¢’€ € Cl(Perfdg(X¢)) is the differentials of
objects in Perf,(X,) with 6" = (6],...,6)) € Cl(Perfdg(X))@l, as (6.27) is a morphism of B-
algebras induced by the canonical equivalence (6.25). One can apply the same argument as in
the proof of [Low08, Theorem 4.15] to obtain

embrs, 5. (m + ¢e) = embrs(m) + embrs(P)€ + dempryom)(07)€1 + -+ + dembrsom) (07 €
on m. Note that up to coboundary the image of
embryom)(O))€1 + * + * + dembrymy ())& € C(Com™ (i)
under (6.27) coincide with the image of
§€ + -+ + 016 € C(Perf (X))
under Hochschild differential dempr,my 0n C(Perf ,(X)). Hence we obtain an isomorphism

Perf,(Xy) = (m(@)[€], embrs,c(m + ¢e))
= (m(¢)[€], embrs(m) + embrs(¢)e)

= m(¢)embr(5(¢) .

of dg deformaitons of m(¢) from (6.1). O

Remark 6.5. From the above theorem it follows that the image of Perf,,(X4) under the map
(6.14) is represented by embrs(¢).
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Remark 6.6. In general, m(¢) is strictly smaller than Perf 4, (X). For instance, let X, be a quintic
3-fold of Fermat type. By [AK91, Proposition 2.1] for any general first order deformation X,
of X, there 1s no line in X, which lifts to a closed subvariety of X;. Hence deformations of any
perfect complex quasi-isomorphic to the pushforward of the structure sheaf of a line in Xj is
obstructed. This example was informed to the author by Yukinobu Toda.

7. DEFORMATIONS OF HIGHER DIMENSIONAL CALABI—YAU MANIFOLDS REVISITED
Now, we are ready to prove our first main result. Consider the functor
mo .
Defpe, (xy ¢ Artk = Set

which sends each A € Arty to the set of isomorphism classes of Morita A-deformations of
Perfy,(Xo) and each morphism B — A in Arty to the map Defpg (\(B) — Defpgy, (x,(A)
induced by — ®§ R. The deformation theory for X, is equivalent to that for Perf ,(Xy) in the
following sense.

Theorem 7.1. There is a natural isomorphism
(7.1) {: Defy, — Defpgy, ()
of deformation functors.
Proof. We show that the assignment
(Xa,ia) = (Perfyo(X4), i)

for each A € Arty defines a natural transformation. Here, we use the same symbol 7, to denote
both the derived pullback functor

iy: Perfyy(Xa) — Perfyy(Xo)
and the induced Morita equivalence
Perf o(Xa) ®% K =, Perf,(Xo).
The surjection A — Kk factorizes through a sequence
A=A,—>A,.1 > -—>A -k
of small extensions. Pullback of X4 yields a sequence
(Xa,»ia,) 2 (X, 5 ia,.,) P (Xa,04,) 2 Xo

of deformations of X,,. Let ¢4, € HH 2(X,) = H! (Ix,) be the cocycle representing (Xy,, ia,)-
By Theorem 6.12 the Morita deformation Perf 4, (X4, ) of Perf 4,(X) corresponds to embrs,(¢4,)
via the bijection (6.15). Here, embr; (¢4,) denotes the image under the composition of

H*C(Com™ (Inj(Qch(Xo)))) = H*C(Perf 4,(Xo))
with the induced isomorphism
HH*(Xp) = H*C(Inj(Qch(Xo))) = H>C(Com" (Inj(Qch(Xp))))

by the B.-section of the canonical projection C(Inj(Qch(Xy))) — C(Com™(Inj(Qch(Xy)))).
Induction yields a sequence

[Perfdg(XAm), l;m] = [Perfdg(XAm_,), iZm—l] e ] [Perfdg(XA,), ljh] (ard Perfdg(XO)

of Morita deformations of Perf ;,(X,). In particular, (Perf ,(X4,,), i/jm) is a Morita deformation of
Perf;,(Xo) corresponding to the collection {embrs,  (¢4,)}",. Here, each embrs,  (¢4,) denotes

n—1
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the image of ¢, € H ](,%(A’H JA,_)®1, where [,_; is the rank of the kernel of square zero
extension A, — A, as a free A,,_;-module, under the composition of

H>C(Com* (Inj(Qch(Xy, ))*"! = H*C(Perfye(Xa, )™
with the induced isomorphism
HH*(Xy, , /An-1)®" = H*C(Inj(Qch(X,,_)))®"' = H*C(Com™ (Inj(Qch(X,, ,))))®

by the B,,-section of the canonical projection C(Inj(Qch(Xy, ,))) — C(Com™ (Inj(Qch(Xy4, ,)))).
It follows that the assignment defines a map

{a: Defy, (A) — Def{,"e”rfdg(xo)(A), (Xa,ia) > [Perfyo(Xa), iy
For each morphism f: B — A in Arty the diagram
Defy,(B) — Def?é’rfdg(xo)(B)
(72) DefXO fH lDefgl:rfdg(Xo)(f)

Defy,(A) — Defpor, (x,)(A)

commutes. To see this, we may assume that f is a square zero extension B = S of A = R.
Then for any (X, is) € Defy,(S) with Xg Xg R = Xg we have Xg = (Xgr), for some cocycle ¢ €
H l(ka /R)®. We already know that (Perf 44(Xs), ig) is the Morita deformation of Perf;,(Xg).
Since (Xs, is) maps to (Xg, ir), the derived pullback functor ig factorizes through iy. Thus the
assignments {{4}acarn, defines a natural transformation {: Defy, — Defg’e”rfdg(xo).

It remains to show that 4 is bijective for each A € Artx. We will proceed by induction.
Now, assume that {4, are bijective for all 1 < i < n. In order to show the surjectivity of
a,» take any element [a,,,,uy 1 € Defpge «\(Au1). By the assumption of induction,
the reduction [aa, uy 1 € Def’,f’;fdg(xo)(A,,) is equal to [Perfz(Y,,), Jx ] for some (Yu,, ja,) €
Defx,(A,). Combining Theorem 6.11 with Theorem 6.12, one sees that the Morita A, -
deformation (ay,,,, ”;klm) of Perf 4,(Y4,) 1s represented by embr;, (¢4,,,) for some cocycle ¢y,,, €

H'(Fy,, ja,)%". Then we have

n+1?2

n+l1

[aa,.uy,, 1 = [Perfye(Ya, g, ), Ja,., -

n+1

In order to show the injectivity, suppose that we have

(7.3) [Perfo(Xa,, ), iy, .1 = [Perfg(Ya,,,), ja . 15

i.e., there is a Morita equivalence Perf ,(Xy,,,) =, Perfy (Y, ) reducing to the identity on
Perf 4,(Xo). Combining the above argument with the commutative diagram (7.2), we have

[Perfug(Xa,.,)s 4,1 = [Perfug(Xa, 9,0, 04, 1, [Perfae(Ya,. ), ja,. 1 = [Perfae(Ya, y, ) Ja

for some elements

n+1

]

n+l
(Xa,,14,), (Ya,, ja,) € Defy, (A,)
and cocycles

¢An € Hl(’%(An/An)@ln’ l//An € Hl(f%]An/A")@ln.

Applying — ®ﬁn+l A,, we obtain a Morita equivalence Perf ,(Xy,) =, Perfg,(Yy4,) reducing to
the identity on Perf,,(X). By the assumption of induction there is an isomorphim Xy, = Yy,
reducing to the identity on X,. Then (7.3) implies [embrs,  (¢4,)] = [embrs,  (¥4,)], which
in turn implies [¢4,] = [Y4,]. Thus we obtain an isomorphism X, , = Y, reducing to the
identity on Xj. 0
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Remark 7.1. Consider the functor
— Mo

which sends each A € Artg to the set of isomorphism classes of Morita A-deformations of
Perfy4(Xo) and each morphism B — A in Arty to the map Defpg, \(B) — Defp, (x,(A)
induced by the derived pointwise tensor product with Perf;,(A) over Perfdg(B) Based on Re-

mark 6.3, one can rewrite the proof of Theorem 7.1 in terms of DefPerf ((xp) to obtain a natural
isomorphism

~ —— mo
g: DefXO i DefPerf,[g(Xo)
of deformation functors. In the sequel, we will identify the deformation functors
——— mo
Defgeorfdg(Xo)’ D fPeI‘fd (XO) Artk — Set
without further comments.

Remark 7.2. Theorem 7.1 tells us that infinitesimal deformations of Perf,,(X,) is controlled
by the Kodaira—Spencer differential graded Lie algebra KSx, of X,. Consider the functor
DCstXO . Arty — Set defined as

MCks,, (A)
gauge equivalence

(7.4) Defs, (A) =

for each A € Arty, where

(7.5) MCxs, (A) = {x € KS} @m, | dx + %[x, x] =0},

Recall that given a differential graded Lie algebra L and a commutative k-algebra m there exists

a natural structure of differential graded Lie algebra on the tensor product L ® m given by
dxQxr)=dx&®r, [xXQcry® s] =[x,y]®rs, x,yeL, r,s €m.

For every surjection A — k[f]/#* in Arty the set DestXO (A) consists of solutions of the ex-
tended Maurer—Cartan equation to my. Giving higher order deformations of Xj is equivalent to
giving solutions of the extended Maurer—Cartan equation. Indeed, we have Defks, =~ Defy, by
[Man09, Example 2.3].

Corollary 7.2. The functor Defgeorfdg(Xo) is prorepresented by R.
Proof. This follows immediately as Defy, is prorepresented by R. O

Corollary 7.3. The functor Defge"rfdg(xo) has an effective universal formal family.

Proof. Let (R, &) be a universal formal family for Def;f’:rfdg(xo), where & = {£,}, belongs to the
limit
DefPerfdg(Xo)(R) = 1}21 Defge(ifdg(xo)(R/ my)

of the inverse system
2 1
-+ = Defpgy, o) (R/ME™) = Defply, ) (R/mME™) — Defply ) (R/mg) — -

induced by the natural quotient maps R/m’;"! — R/m’%. Recall that for the universal formal
family (R, £) there is a noetherian formal scheme 2~ over R such that X,, = 2" Xz R/ m;;“ for
each n, where (X, i,) are R,-deformations of X, defining &,. By [GD61, Theorem III5.4.5]
there exists a scheme Xy flat projective over R whose formal completion along the closed fiber
X is isomorphic to Z". From the proof of Theorem 7.1 it follows that (Perf,(X,), i;) defines
£,. Then by [BFN10, Theorem 1.2] the R-linear dg category Perf,,(Xz) yields the compatible
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system {&,}, via reduction along the natural quotient maps R/ mitl — R/m%, which means Eis
effective. |

Remark 7.3. Recall that the Dwyer—Kan model structure on dgCat, has a natural simplicial
enrichment [Toe, Section 5]. We denote by dgCat,’ the underlying co-category. There is a
notion of limits in co-categories that behaves similarly to the classical one [Lur09, Chapter 4].
As dgCaty’ is the underlying co-category of a simplicial model category, it admits limits [Lur09,
Corollary 4.2.4.8]. Hence we obtain a limit

Perf ,(Xg) = lim Perf 4,(X,,)

of the inverse system
Ead Perfdg(Xn+2) - Perfdg(Xn+1) - Perfdg(Xn) e

of small k-linear dg categories induced by the natural quotient maps R/mj"! — R/mi.
We claim that the limit is quasi-equivalent to Perf,(2"). By [GD61, Corollary 5.1.3] the
canonical map

Homy,(&,.7) — Homy (&, F)

defined by taking the formal completion of each morphism along the closed fiber is an isomor-
phism for all coherent sheaves &', .%# on X. In particular, we may write

Homx/R(\é", F) = Homy (&, F).

Since Xy is projective over a complete local noetherian ring R, by [GD61, Corollary I115.1.6]
the functor

coh(Xg) — coh(Z"),

which sends each coherent sheaf .# on Xy to its formal completion F along the closed fiber is
an equivalence of abelian categories. We obtain the induced derived equivalence

Perf(Xg) ~ D*(Xg) ~ D*(Z") ~ Perf(Z").
Hence for E, F € Perf ;,(Xz) with formal completions E Fe Perf,,(2") we may write
Exty (E, F) = Ext,, (£, F).

Now, one sees that the objects and morphisms in Perf(.2") satisfy universality with respect to
the induced inverse system on homotopy categories. Thus the dg functor

Perfy(27) — P/e?fdg(XR)

uniquely determined by universality of the limit is a quasi-equivalence. Namely, the formal
completion of Perf,(Xz) is quasi-equivalent to Perf,(2").

Corollary 7.4. Any effective universal formal family for Def’;’:rfdg(xo) is algebraizable. In par-
ticular, an algebraization is given by Perf ;,(Xs) where X is a versal deformation of X,.

Proof. Consider the triple (Spec S, s, Perf,(Xs)). Since the reduction of X along the natural
quotient maps S/m%*! — §/m? yields a compatible system isomorphic to &, the reduction of
Perf;,(Xs) yields a compatible system isomorphic to &. Thus (Spec S, s, Perf ;,(Xs)) gives a
versal Morita deformation of Perf ;,(Xo). O

Proposition 7.5. There is a quasi-equivalence
Perf ,(Xs)/ Perfyo(Xs)o ~4eq Perfae(Xo(s))
where Q(S) is the quotient field of S and X s is the generic fiber of X.
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Proof. By [Dri04, Theorem 3.4] and [Morb, Theorem 1.1] we have an equivalence
[Perf ;,(Xs)/ Perf 44(Xg)o] = Perf(Xs)/ Perf(Xs)o = Perf(Xy(s))

of idempotent complete triangulated categories, where the middle category is the Verdier quo-
tient by the full triangulated subcategory Perf(Xs)o C Perf(Xy) of perfect complexes with § -
torsion cohomology. Then the claim follows from [CNS, Theorem B]. O

Remark 7.4. From the proof one sees that the dg categorical generic fiber is a natural dg en-
hancement of the categorical generic fiber introduced in [Morb], which is in turn based on the
categorical general fiber by Huybrechts—Macri—Stellari [HMS11].

8. INDEPENDENCE FROM GEOMETRIC REALIZATIONS

Due to Corollary 7.4, a versal Morita deformation of Perf;,(X,) is given by Perf;,(Xs) where
Xs is a versal deformatiion of X,. Suppose that there is another Calabi—Yau manifold X
derived-equivalent to X,. Since by [CNS, Theorem B] dg enhancements of

Perf(X,) ~ D"(Xo) =~ D*(X}) ~ Perf(X})
are unique, we obtain a quasi-equivalence
Perf ,(Xo) — Perf,(X{).

Hence Perf,,(Xs) gives also a versal Morita deformation of Perf (X))

By Lemma 3.2 we may assume X to be smooth projective over S. Then one finds a smooth
projective versal deformation X over the same base. The construction requires the deformation
theory of Fourier—Mukai kernels, which we briefly review below. It passes through effectiviza-
tions, i.e., there are effectivizations Xg, X, of Xy, X[} over the same regular affine scheme Spec R.
Applying [Mora, Corollary 4.2] and [CNS, Theorem B], we obtain a quasi-equivalence

(8.1) Perf ,(Xg) =404 Perfa(Xp).

Unwinding the construction of versal deformations recalled in Section 3.3, one sees that, up
to equivalence of deformations, the ambiguity of X essentially stems from the choice of indices
i € I of the filtered inductive system {R;},c;, where R; are finitely generated 7-subalgebras of
R whose colimit is R. The versal deformations X, X; over the same base are obtained by
choosing the same sufficiently large index. From this observation combined with Theorem
7.1 and the quasi-equivalence (8.1), it is natural to expect that the versal Morita deformations
Perf,(Xs), Perf,(X5) become quasi-equivalent close to effectivizations. In this section, we
prove our second main result which yields the quasi-equivalence as a corollary.

8.1. Deformations of Fourier—-Mukai kernels. Suppose that the derived equivalence of X, X,
is given by a Fourier-Mukai kernel P, € D*(X, x X()). In order to define a relative integral func-
tor from D’(Xs) to Db(X_’g), we deform Py to a perfect complex Ps on Xg Xg X;. Here, for a
deformation [Xp, ip] € Defx((P, mp)) of a k-scheme X, by a deformation of E € Perf(X) over
(P, mp) we mean a pair (Ep, up), where Ep € Perf(Xp) and up: Ep ®1L,k — E is an isomorphism.
Two deformations (Ep, up) and (Fp, vp) are equivalent if there is an isomorphism Ep — Fp re-
ducing to an isomorphism of E.
The R,-deformations X, X;, of Xy, X and their fiber product X,, Xg, X, form the diagram

X, Xg, X,
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with the natural projections ¢, and p,. For any perfect complex £, on X,, Xg X,, the relative
integral functor

Op, (=) = Rp,. (P0 ®" g5, (-))
sends each object of D’(X,) to D” (X7). Due to the Grothendieck—Verdier duality the functor
®p admits the right adjoint (D’;n = O, with kernel (P,)r = P, ® p;w, [dim X,], where

wy 1s the determinant of the relative cotangent sheaf associated with the natural projection
m, . X, — SpecR,.

Lemma 8.1. ([Mora, Lemma 3.1, 3.2]) Assume that ®p_ is an equivalence. Then for any thick-
ening X, — X, there exist a thlckemng X, — X', and a perfect complex P, on X1 Xg,,,
X', with an isomorphism P, ® Rn = P, such that the integral functor ®p  : D’'(X,.1) —
Db(X’ ' .1) IS an equivalence.

Iterative application of Lemma 8.1 allows us to deform the Fourier-Mukai kernel $, €
DP(X, x X)) to some Fourier-Mukai kernel P, € Perf(X, Xz, X;) for arbitrary order n. We
obtain a system of deformations $, € Perf(X, Xg, X)) of P, with compatible isomorphisms
P ®115n+1 R, — P,. According to [Lie06, Proposition 3.6.1] there exists an effectivization, i.e.,
a perfect complex Pr on Xg Xz Xj, with compatible isomorphisms P ®Ilg R, — P,. Recall that
to algebrize 2~ we used a filtered inductive system {R;},c; of finitely generated T-subalgebras
of R whose colimit is R. Taking an index i sufficiently large, one finds smooth projective R;-
deformations X, ,X of Xy, X, whose pullback along the canonical homomorphism R; < R
are Xg, X;. Since we have Xg xR Xp = (XR Xpg, X ) Xg; R, by [Lie06, Proposition 2.2.1] there

exists a perfect complex P, on Xg, Xg, lee with an isomorphism Pk, ®L R — Pp. Finally, the
derived pullback Ps € Perf(Xy X5 X¢) along R, — S yields a deformatlon of Py.

Lemma 8.2. ([Mora, Proposition 3.3]) Let P be a Fourier—Mukai kernel defining the derived
equivalence of Calabi—Yau manifolds Xy, X)) of dimension more than two. Then there exists a
perfect complex Ps on the fiber product Xs Xs X; of smooth projective versal deformations
with an isomorphism Ps % k — P,

8.2. Inherited equivalences. The schemes Xg, X ;?[_, and their fiber product Xg, Xz, X ;?,» together
with the pullbacks along T-algebra homomorphisms R; — R; — R for i < j form the commu-
tative diagram

Xr Xg XI,?

AN

Xr XRj XR] XIIQJ X],?

f/ lf \ jf

X X, Xg, X
/ 2 fz'f

where g;, p; are smooth projective of relative dimension dim Xj. Given a collection {#;},c; with
P € Perf(Xg, Xg, Xy satisfying P; = Pr, & R; and Pr = Pr, & R forall i < j, consider the
relative integral functors

(Dpi = Rpi* (Pz ®L CIT (_)) : Db(XRi) - Db(XI,?:)

Xg,
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Since p; is projective and P; is of finite homological dimension, i.e., P; ®" g} Fg, are bounded
for each object Fz. € D’(Xg,), one can apply [LST13, Lemma 1.8] to see that ®p, send perfect
complexes to perfect complexes. We use the same symbol to denote the restricted functor.

Theorem 8.3. There exists an index j € I such that for all k > j the functors
Op, : Perf(Xg,) — Perf(X% )

are equivalences of triangulated categories of perfect complexes. In particular, the dg cate-
gories Perfqo(Xg,), Perf,(Xy, ) of perfect complexes are quasi-equivalent.

Proof. Under the assumption one always finds deformations [X,, i, [X’j, i;e]_] smooth projec-
tive over (R;, mg,) for sufficiently large index j € I. Moreover, the pullbacks along R; — R
and R; — § yield respectively effectivizations Xg, X, of universal formal families &,&" and
versal deformations (Spec S, s, Xs), (Spec S, s, X¢) of X, X|. Recall that (Spec S, ) is an étale
neighborhood of 7 in Spec T' with ¢ corresponding to the maximal ideal (#,,...,¢;) € T, and
the formal completions of Xy, X along the closed fibers over s are 1som0rph1c to XR,X In
summary, we have the pullback diagrams

fi fi
X, X —2 ~ Xp L X

Spec k—— Spec § —— Spec R; <—— SpecR

R
£ £

X)) X Xy, X,

Let Py € D(Xy Xk X)) be a Fourier-Mukai kernel defining the derived equivalence. As
explained above, one can deform P, to a perfect complex P; € D° (XR; Xg; Xz,e,)- Due to the
Grothendieck—Verdier duality the functor ®p, admits a left adjoint ®f, = ®p,, with kernel
P = SDV ® p Wr, [d1m Xo]. By [BV03, Corollary 3.1.2] the category Perf(XR ) is generated

by some smgle object Eg,. Namely, each object Fg, € Perf(Xg,) can be obtained from E,
by taking isomorphisms, ﬁnite direct sums, direct summands, shifts, and bounded number of
cones. The counit morphism 7;: (Déj o (D;Dj - idperf(XR‘) gives the distinguished triangle

nj(Er,
Dp, 0 Op (Eg,) 2, Eg, — C(Eg,) := Cone(1;(Eg,)).

For sufficiently large k > j we will show that n;(Eg,) 1s an isomorphism and then ®p, is fully
faithful. Similarly, one can show that CDL is also fully faithful. Thus @y, is an equivalence, as
it is a fully faithful functor admitting a fully faithful left adjoint.

Pullback along R; C Ry yields

],JI;( R; )

8.2) Of, o Dp,(Er,) ——— Eg, = [3C(Ex,)
with E; = f;}(E sand P = (fix X f] k) P ;. Further pullback along R, C R yields

L fini(ER)) .
b, o By, (Ex) "> Ex — [C(E)).

where f;: Xg — Xg, satisfies fj o fy = f;. Restriction to the closed fiber X, yields

ni(Er,Ix,) )
(Déo o ®p,(Eglx,) —— Eglx, — (f; C(ER,))x,-
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Note that since f] ~1(Xy) = X, and the restriction of the counit morphism is the counit morphism,
we have ( fJ ‘n(Er;)x, = n(Eg,|x,)- Each term in the above distinguished triangle is perfect so
that we may consider the restriction to the closed fiber. Since ®p, is an equivalence, 7;(Eg;|x,)
is an isomorphism and we obtain a quasi-isomorphism f;C(Eg)lx, = 0. Then the support
of f;C(Eg,) is a proper closed subscheme of X which does not contain any closed point of
Xg. Thus the quasi-isomorphism extends to fjka (Eg;) = 0. From [Lie06, Proposition 2.2.1] it
follows f; C(Eg;) = 0 when k € [ is sufficiently large.

Take any closed point u € Spec R; whose inverse image by g;: Spec R, — Spec R; is not
empty. We have the pullback diagrams

Juje .
XRj ° X, - fjkl X)) —— XRk

R

Spec R; < Speck Sl 85 (u)—— Spec R;.

Note that f, j is surjective by construction and flat as g, j is flat. The restriction of (8.2) to
/i (X, yields
I T g 1iCER|x,) .
D, . © Pe, i (Erdl i x,) = Erdppony = JupCERIx) =0,
where P, i = Pil I (X”>ng_.k1(u)fﬁfl(xl"). It follows C(Eg,|x,) = 0 and 17;(Eg,[x,) is an isomorphism.

By [BV03, Lemma 3.4.1] the restriction Eg [y, is a generator of Perf(X,). Then each object
F, € Perf(X,) can be obtained from Ef |x, by taking isomorphisms, finite direct sums, direct
summands, shifts, and bounded number of cones. We may assume that ER;|x, has no nontrivial
direct summands, as CD’,,;M and @p, , commute with direct sums on Perf(X]) and Perf(X,) re-

spectively with P, ; = Pjlx,xx; [BVO3, Corollary 3.3.4]. One inductively sees that the counit
morphism CDVL%,,- o®p, (F,) — F, 1s an isomorphism. In other words, the restriction @p, ; of @p,

u,j

to X, is fully faithful. Similarly, the restriction @ém of d)é)/_ to X/ is also fully faithful. Thus
®p, , is an equivalence. ' ‘
Since X, is a smooth projective k-variety,

(Déw o Op, . = idpert(x,), Pp,; © (Dém ;= idperixy)
imply
PujxPuL = O,y PujrsPuj = ﬁA;w.
where
Ayt Xy — X, xX,, A'u’j: X — X xX
are the diagonal embeddings. Pullback by f, i yields
Puji * Pujdr = On, o PujdL * Puje = Oy,
where
Aujer [ X) = S X)Xt ' Xy Al et (F07 X0 = (F)7 (X0 X (F)7 (X0
are the relative diagonal embeddings. Thus ®p, , is an equivalence. Since Xg, is covered by
the collection { fj ;{1 (X,)}, with u running through all the closed points of Spec R}, from [LST13,
Proposition 1.3] it follows that @y, is an equivalence. By the same argument, we conclude that

@y, are equivalences for all / > k. Applying [CNS, Theorem B], we obtain a quasi-equivalence
Perf 4(Xg,) ~4eq Perfdg(Xl’el) forall [ > k. O

97



Corollary 8.4. Let Xy, X|) be derived-equivalent Calabi—Yau manifolds of dimension more than
two and X, X their smooth projective versal deformations over a common nonsingular affine
K-variety SpecS. Assume that X5, X correspond to a first order approximation R; — S of
R; — R for sufficiently large j € 1. Then Xg, X; are derived-equivalent. In particular, the dg
categories Perf ;,(Xs), Perf 4,(X) of perfect complexes are quasi-equivalent.

Proof. By assumption one can apply Theorem 8.3 to find an index j € I such that X, X are the
pullbacks of smooth projective families Xk, Xz,ej over R; satisfying Perf,(Xg;) 4, Perfdg(Xl’ej).
Consider the distinguished triangle

I n;j(ER;)
(DP/' °© Op(Eg;) — Eg, = C(nj(Eg)) = 0.

Applying the same argument in the above proof to Xg — Xz, instead of Xz, — Xk, one sees
that Op, : DP(Xs) — Db(Xg) is an equivalence with Pg = (fjs X ;S)*‘Pj. O

Proposition 8.5. Let Xy, X be derived-equivalent Calabi-Yau manifolds of dimension more
than two and Xg, X, smooth projective versal deformations over a common nonsingular affine
variety Spec S. Then the dg categorical generic fibers are quasi-equivalent.

Proof. We have
Perfo(Xs)/ Perf o(Xs)o ~4eq Perfag(Xos)) =geq Perfag(Xps)) geq Perfag(Xs)/ Perfo(Xs o,

where the first and the tirhd quasi-equivalences follow from Proposition 7.5. The second quasi-
equivalence follows from the above corollary, [Mora, Theorem 1.1], [Morb, Corollary 4.2], and
[CNS, Theorem B]. O
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REDUCED TATE-SHAFAREVICH GROUP

HAYATO MORIMURA

ABSTRACT. We prove a sort of reconstruction theorem for generic elliptic Calabi—Yau 3-folds. As
an application, we give a method to construct a family of pairs of derived-equivalent Calabi—Yau
3-folds whose general fibers are nobirational if they are nonisomorphic.

1. INTRODUCTION

For a normal integral excellent scheme S and an abelian variety E over the function filed
k(S), the Tate—Shafarevich group IlIs(E) was introduced by Dolgachev and Gross in [DG94]
as a subset of the Weil-Chatelet group. When § is a complex surface, they gave its geometric
interpretation. Namely, any element of I1Ig(E) can be obtained as the generic fiber of an elliptic
fibration f: X — § with possible isolated multiple fibers.

Given a smooth elliptic fibration 7r: J — S with section, we have Il (J,) = Br'(J)/ Br'(S)
and 111 (J,) bijectively corresponds to the set of smooth elliptic fibrations f with relative Jaco-
bian 7. In fact, f can be obtained from 7 and a representative a € Br'(J). Via the description of
Brauer classes as gerbes, « gives the gluing data for enough refined étale cover {J; = J X5 U}
to yield X [Cal00, Section 4.4].

Categorically, this amounts to an § -linear exact equivalence

D"(X) =~ D"(J, )
established by Caldararu in [Cal02] for generic elliptic 3-folds [Cal00, Definition 6.1.6]. On
the other hand, Antieau—Krashen—Ward showed that if there is an S -linear exact equivalence
D"(J,) = D"(J, ),

then we have 8 = a“ for some d € Z coprime to ord([]) in ITTg (J;) [AKW17, Theorem 1.5].
Define an equivalence relation ~ in Br'(J) as

a ~ B e B = for some d coprime to ord([a]),

descending to that in IIIg(J,). The following lemma, which is a straightforward consequence
of the arguments in [Cdl00, Chapter 4, 6], shows that I11s(J,)/ ~ classifies up to S -linear exact
equivalence derived categories of smooth elliptic 3-folds with relative Jacobian .

Lemma 1.1 (Lemma 4.3). Let f: X — S,g: Y — § be smooth elliptic 3-folds with relative
Jacobian m: J — S. Assume that there exists an S -linear exact equivalence ®: D’(X) —
D'(Y). Then g is a coprime twisted power of f in the sense of Definition 2.14.

Recall that the morphism g in the above statement is isomorphic to the relative moduli space
of stable sheaves of rank 1, degree d on the fibers X, s € S of f with respect to a fixed relative
ample line bundle Oys(1). The moduli problem is fine if and only if d is coprime to ord([a]). It
is natural to seek a similar reconstruction result for more general elliptic fibrations. Unwinding
the arguments in [Cal00, Chapter 4, 6], one can easily extend Lemma 1.1 to

SISSA, via BoNOoMEA 265, 34136 TRIESTE, ITALY
E-mail address: hmorimur@sissa.it.

100



Proposition 1.2 (Proposition 4.5). Let f: X — S,g: Y — S be generic elliptic 3-folds
with relative Jacobian n: J — S. Assume that there exists an S -linear exact equivalence
®: D*(X) — D’(Y). Then g is an almost coprime twisted power of f in the sense of Definition
2.14.

Presumably, this is the best possible reconstruction result for generic elliptic 3-folds. Indeed,
if the smooth parts f°: X° — §°,¢°: Y° — S° are represented by a°,8° € Br'(J°), for any
analytic small resolution p: J — J we have the S -linear exact equivalences

D(X) =~ D"(J,@), D"(Y) = D"(J,p)

where @, € Br,,(J) denote the Brauer classes canonically determined by a°, 8°. Moreover,
each p;: J; — J; over U; with only one node can be either of the two possible resolutions,
which is the source of the differences between X, Y and J. Hence the right hand sides should
not recover X \ X°, Y \ Y°.

Our proof of Proposition 1.2 works without assuming dim X = 3, the condition responsible in
[C&l02, Theorem 5.1] for construction of the pseudo-universal sheaf giving rise to the Fourier—
Mukai kernel. Hence, unless dim X = 3 one might not have any S -linear exact equivalence

D"(J,&) = D"(J.B),
which would be input for [AKW 17, Theorem 1.5] to obtain 5 = @“ for some d € Z coprime to
ord(@) in Br(J).

The reconstruction problem will be more interesting when X is Calabi—Yau, as the derived
category of a Calabi—Yau manifold might have nontrivial autoequivalences. Moreover, most
of Calabi—Yau 3-folds admit elliptic fibrations. Some of them are connected with their mirrors
admitting dual fibrations via relative Fourier—Mukai transforms [HLS09, HMO02], which can be

seen as S -duality in string theory [Don98, DP0S, DP12]. In this case, we strengthen Proposition
1.2 as follows.

Theorem 1.3 (Theorem 5.2, Corollary 5.3). Let f: X — S be a generic elliptic Calabi—Yau
3-fold. Then any flat projective family g: Y — S with an S -linear exact equivalence D*(X) ~
D’(Y) is an almost coprime twisted power of f.

Here, we could remove the assumption from Proposition 1.2 on f, g to share the relative
Jacobian. First, we reconstruct closed fibers based on [LT17]. The key is [AKW17, Lemma
2.4], which tells us that the generic fibers X,, Y, share the Jacobian. We use the triviality of
wy, wy to guarantee that the base changes of the relative Jacobians ry, y along enough refined
étale morphisms coincide.

Due to [Wil94, Wil98] and [Mor23, Theorem 1.1], the morphisms f, g in the above statement
deform to families of elliptic Calabi—Yau 3-folds f: X — S,g: Y — S over a smooth affine
C-variety Spec B. Their general fibers f,, g, are smooth elliptic fibrations. Recently, in [Morb]
the author used the following application of Theorem 1.3 to construct families of nonbirational
derived-equivalent Calabi—Yau 3-folds.

Theorem 1.4 (Theorem 6.5, Corollary 6.6). Any general fiber g, is a coprime twisted power of
f,. In particular, X,,, Y, are S,-linear derived-equivalent. Moreover, if X,,, Y, are nonisomor-
phic, then they are nonbirational.

Note that we call g a coprime twisted power of f if it is isomorphic to the relative mod-
uli space of stable sheaves of rank 1 with a suitable degree. It would be interesting to find
such a moduli structure via our result in, for instance, the third pair of Fourier—Mukai partners
constructed by Inoue [In022] and their deformations, whose derived equivalence follows from
homological projective duality for categorical joins developed by Kuznetsov and Perry [KP21].
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Notations and conventions. Throughout the paper, all C-varieties are integral separated scheme
of finite type over C. Via Serre’s GAGA theorem we sometimes go from algebraic to analytic
categories for proper C-varieties. For any morphism f: X — § of smooth C-varieties, we
consider the canonical S -linear structure on D”(X) ~ perf(X) given by the action

perf(X) x perf(S) — perf(X), (F,G) = F ®¢, fG.

Then for morphisms f: X — S,g: Y — S of smooth C-varieties, an exact functor ®: D’(X) —
DP(Y) is S -linear if ® respects the S -linear structure, i.e., we have functorial isomorphisms

O(F ®p, f7G) = D(F)®g, §'G, F € perf(X),G € perf(S).

Acknowledgements. The author is supported by SISSA PhD scholarships in Mathematics. He
would like to thank Antnella Grassi for informing him on [Gra91, Proposition 2.2].

2. REVIEW ON GENERIC ELLIPTIC 3-FOLDS

Definition 2.1 ([DG9Y94, Definition 2.1]). An elliptic fibration f: X — § is a projective mor-
phism of C-schemes whose generic fiber X;, is a genus one regular k(S )-curve and all fibers are
geometrically connected. The discriminant locus Ay of f is the closed subset of points s € S
over which the fiber X; is not regular. We denote by f°: X° — §° the smooth part, i.e., the
restriction fy: Xy — Sy of fover U =8 \ As. A fiber X over a point s € S is multiple if f is
not smooth at any x € X;. A section of f is a morphism ox: § — X satisfying f ooy =id. A
multisection of f is a closed subscheme to which the restriction of f becomes a finite morphism.

Definition 2.2 ([Cal00, Definition 6.1.6]). A generic elliptic 3-fold f: X — § is an elliptic
fibration from a smooth 3-fold X to a smooth surface § over C satisfying:

(1) fis flat.

(2) f does not have multiple fibers.

(3) f admits a multisection.

(4) The discriminant locus Ay C S is an integral curve in § with only nodes and cusps as

singularities.

(5) The fiber over a general point of A, is a rational curve with one node.
We call f a generic elliptic Calabi—-Yau 3-fold if in addition X is a Calabi—Yau in the strict
sence, i.e., we have wy = Oy and H' (X, Oy) = 0.

Remark 2.3. The conditions (4), (5) are null for smooth elliptic 3-folds. We will regard them
as a special case of generic elliptic 3-folds.

Lemma 2.4 ([Cal00, Theorem 6.1.9]). Let f: X — S be a generic elliptic 3-fold. Then over
any closed point s € S the fiber X, is one of the following:

a smooth elliptic curve when s € § \ Ay;

e a rational curve with one node when s € Ay is a smooth point;

e two copies of P! intersecting transversely at two points when s € Ay is a node;
e a rational curve with one cusp when s € Ay is a cusp.

Definition 2.5 ([Cil00, Definition 6.4.1]). Let f: X — S be a flat elliptic fibration of C-
varieties. Fix a relatively ample line bundle Ox/s(1) of f and a closed point s € S. Let P
be the Hilbert polynomial of Oy on X; with respect to the polarization given by Oy ;s(1)lx,.
Consider the relative moduli space Mx,s(P) — S of semistable sheaves of Hilbert polynomial
P on the fibers of f. By the universal property of My,s(P) — S there exists a natural section
S — Myx/s(P) which sends s to the point [ O ] representing OY,. Let J be the unique component
of M which contains the image of this section. The relative Jacobian of f is the restriction
n: J — S of the morphism My,s(P) — S to J.
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Definition 2.6 ([Cal00, Notation 6.6.3]). Let f: X — S be a generic elliptic 3-fold. Fix a rela-
tively ample line bundle Ox/s(1). Let M; /s (P) — S be the relative moduli space of semistable

sheaves of rank 1, degree d on the fibers of f. Let X¢ be the union of the components of
Mf( 15 (P) which contains a point corresponding to a stable line bundle on a fiber of f. The d-th

twisted power of f is the restriction f: X* — S of the morphism M{ ((P) — S to X“.
Remark 2.7. The relative Jacobian 7: J — § is a flat elliptic fibration with section. It has
the same discriminant locus Af as f. The restriction J Xg §° — §° coincides with the relative

Jacobian 7° for the smooth part £°. Similarly, the restriction X x5 §° — S ° coincides with the
d-th twisted power f°¢ of f°.

Definition 2.8 ([Sil08, Section X.3]). A forsor or principal homogeneous space for J,/k(S)
is a smooth curve C/k(S) together with a simply transitive algebraic group action of J, on C
defined over k(S). It is trivial if C(K) # (0. Two torsors C/k(S), C'/k(S) are equivalent if there
is a k(S )-isomorphism 6: C — C’ compatible with the J,-action. The Weil-Chdtelet group
WC(J,/k(S)) is the set of equivalence classes of principal homogeneous spaces for J,,/k(S ).

Definition 2.9 ([DG94, Section 1]). The Tate—Shafarevich group Ills(J,) is defined as the
subset (s Ker(locs) € WC(J,/k(S)) for natural specialization maps

locs: WC(J,/k(S)) = WC(J,(5)/k(5)), C = C(5) = C Xy k(3).

Remark 2.10. There is a standard cohomological interpretation of IIls(/,). Consider the exact
sequence

0 — H(S,t.J,) — Hi(1,J,) — HA(S,R"w.J,) — Hi(S,u.J,) — H:(1,J,)

where ¢: Speck(S) — § denotes the canonical morphism. For any s € S we have (RIL*J”)g =
H, (15, J,(3)) and the natural homomorphism

HY(S R dy) = [ [R'dy)s
seS
is injective. Since the composition H} (n, J,,) — HY(S,R't.J;) = (R't.J,); coincides with locs,
one obtains an exact sequence
0 — HA(S.,1.dy) = WCU,/K(S)) = | | WCU,(3)/k(3)

seS§
and Il (J,) = H} (S, uJ,).

Remark 2.11. An element C/k(S) € WC(J,/k(S)) maps to 0 in WC(J,,(5)/k(5)) if and only if
there exists an irreducible étale neighborhood U — S of s such that J;, Xy, k(U) has a rational
point over k(U). Indeed, if the image of C/k(S) in (R 1L*J,7) 5 1s 0, then there exists an irreducible
étale neighborhood U — S of s such that the image of C/k(S) in H ;t(k(U ), Iy Xisy k(U)) is
0. Hence I1I5(J;) consists of equivalence classes of étale locally trivial principal homogeneous
spaces. In fact, there is a bijective correspondence between smooth elliptic fibrations f: X — S
with relative Jacobian : J — S and elements in Il (J,) [Cal00, Section 4.4].

Definition 2.12 ([C&l00, Definition 1.1.3, 1.1.7]). For a C-scheme X the cohomological Brauer
group Br'(X) is defined as Hézt(X, Oy). For a complex analytic space X the cohomological
Brauer group Br, (X) is defined as H2 (X, 07%).

Theorem 2.13 ([DG94, Corollary 1.17]). Letn: J — S be a smooth elliptic fibration of smooth
C-varieties with section. Then we have

I (J,) = Coker(Br'(S) — Br'(J))
where the map Br'(S) — Br'(J) is given by the pullback.
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Definition 2.14. Let f: X — § be a generic elliptic fibration with relative Jacobian 7: J —
S and o° € Br'(J°) a representative of Ill;-(J;) for f°. We call a generic elliptic fibration
g: Y — S acoprime twisted power of f if g is isomorphic to f for some d € Z coprime to the
order ord([e°]) in IIg-(J;). We call g: ¥ — S an almost coprime twisted power of f if g° is
isomorphic to £°¢ for some d € Z coprime to ord([@°]) and there exists an analytic open cover
{U;} of S such that Y xg U;, X* xg U, are isomorphic as an analytic space over U;.

3. RECONSTRUCTION OF FIBERS

Lemma 3.1. Let f: X — S,g: Y — S be flat morphisms of C-varieties with Y, S smooth over
Cand f;: X; = Z,87: Y7 — Z their base changes to Z = S \ U for any open subset U C §.
Then every S -linear exact functor ®: D*(X) — D"(Y) restricts to

Oz: D?thZ(X)(X) - D(b:ohyZ(Y)(Y)’

where D° " (X) c D*(X),D" (Y) € D*(Y) denote the full S -linear triangulated subcat-
cohy,, (X) cohy, (Y)

egories with cohomology supported on Xz, Y7 respectively.

Proof. For each F € D”(X) we have
O H(F)I-i) = P OH (F)[-i]

as @ is exact. Consider the pullback diagrams

X, X x Y,y
le jf gzL Lg

If F is supported on X then we have
O(H'(F)) = ®(H'(F) @g, Tx. Ox,)
= O(H'(F) ®py ['1.07)
= O(H'(F)) ®p, 1.0
= O(H'(F)) ®g, Ty. Oy,

where the first, the second, the third, and the forth isomorphisms respectively follow from F
being supported on X, the isomorphism ix,f; 07 = f*1,07, S-linearity of @, and the iso-
morphism ty.g,07 = g"1.07. Since Y is smooth over C, replacing it with a quasi-isomorphic
object if necessary, we may assume that ®(H'(F)) are perfect. Then the last term becomes
iy (D(H(F))ly,) by the projection formula. Note that the functor Zy,: coh(Yz) — coh(Y) of
abelian categories is exact as Iy is affine. Hence ®(H'(F)) is supported on Y, which completes
the proof. O

Lemma 3.2. Let f: X — S,g: Y — S be flat morphisms of smooth C-varieties. Assume that
there exists an S -linear exact equivalence ®: D*(X) — D’(Y). Then over any closed point
s € S the fibers X, Y are derived-equivalent.

Proof. Take an affine open subset U = Spec R C §. First, we show that ® induces an R-linear
exact equivalence

®y: D' (Xy) - D'(Yy),
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where fy: Xy — U,gy: Yy — U denote the base changes to U. For their complements
X; =X\ Xy,Yz =Y\ Yy we have

coh(Xy) = coh(X)/ cohy,(X), coh(Yy) =~ coh(Y)/ cohy,(Y),
where the right hand sides denote the quotients by the Serre subcategories
cohy, (X) C coh(X), cohy,(X) C coh(Y)

of coherent sheaves supported on Xz, Y respectively. Passing to their derived categories, via
[Miy91, Theorem 3.2] we obtain

D’(Xy) = D"(X)/ D}y, x)(X), D'(Yy) = D"(Y)[ Dy, (Y)-
Since Y, S are smooth over C, one can apply Lemma 3.1 to obtain the induced equivalence
Oy DP(Xy) =~ Db(X)/DithZ(X)(X) — DP(Yy) = Db(Y)/D‘gohyZ(y)(Y)

by universality of Verdier quotients.

Next, we show that @, induces an equivalence ®,: perf(X;) — perf(Y,) of categories of
perfect complexes on the closed fibers X;, Y. Consider dg enhancements Perf(X), Perf(Y) of
perf(X) ~ D*(X), perf(Y) ~ D”(Y), which are unique up to quasi-equivalence [CS18, Proposi-
tion 6.10]. Here, we use the assumption on X to be smooth over C. Since f, g are flat, one can
apply [BEN10, Theorem 1.2] and [T6e, Exercise 32] to the pullback diagrams

Xs XU Ys YU
Spec k(s) — SpecR, Spec k(s) — Spec R

to obtain a quasi-equivalence Perf(X,) — Perf(Y,). Passing to their homotopy categories, we
obtain the induced equivalence

@, : perf(X;) — perf(Yy).
Now, the claim follows from [CS18, Proposition 7.4]. O

Proposition 3.3. Let f: X — S,g: Y — S be generic elliptic 3-folds. Assume that there exists
an S -linear exact equivalence ®: D*(X) — D'(Y). Then over any closed point s € S the fibers
X, Y, are isomorphic.

Proof. By Lemma 3.2 the closed fibers Xj, Y, are derived-equivalent. Then the claim follows
from Lemma 2.4 and [LT17, Theorem 7.4(2)]. O

Remark 3.4. The above proposition holds for flat morphisms of smooth C-varieties whose
fibers are reduced Kodaira curves. Under the assumption in the statement, one could obtain the
first line of the proof by [Orl97, Section 2], S -linearity and [HLS09, Proposition 2.15].

4. RECONSTRUCTION OF FIBRATIONS

Lemma 4.1. Let f: X — S,g: Y — S be flat separated morphisms of smooth C-varieties.
Then every S -linear exact equivalence ®: D*(X) — D”(Y) induces a k(S)-linear exact equiv-
alence ®ys): D*(X,) — D’(Y,) on the generic fibers X,,, Y,,.

Proof. By the same argument as Lemma 3.2 and [Har77, Cororallry II110.7], we may assume
that f, g are smooth over S = Spec R. One can apply [Mora, Theorem 1.1] to obtain k(S )-linear
exact equivalences

D’(X,) — D"(X)/Dy(X), D’(Y,) — D"(Y)/D}(Y).
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to the Verdier quotients by the full S-linear triangulated subcategories spanned by complexes
with coherent R-torsion cohomology. Since @ is §-linear, universality of Verdier quotients
induces the desired equivalence. O

Corollary 4.2. Let f: X — S,g: Y — § be generic elliptic 3-folds. Assume that there exists
an S -linear exact equivalence ®: D*(X) — D'(Y). Then their generic fibers X,, Y, share the
Jacobian J,,[k(S).

Proof. The generic fibers X, Y, are derived-equivalent by Lemma 4.1. Now, the claim follows
from [AKW17, Lemma 2.4]. O

Lemmad4.3. Let f: X — S,g: Y — S be smooth elliptic 3-folds with relative Jacobian: J —
S. Assume that there exists an S -linear exact equivalence ®: D*(X) — D’(Y). Then g is a
coprime twisted power of f.

Proof. Let «,8 € Br'(J) be representatives of Illg(J,) = Br'(J)/Br'(S) for f,g. There is an
étale cover {U;} of S such that to each U; the base changes f;, g; admit sections

Ox,i- Ui—>Xi:XXS U,', Oy Ui—>Y,':Y><S Ul'

and «, 8 give the gluing data for {J;} to yield X, ¥ respectively [Cal00, Chapter 4.2, 4.4]. The
injection Br'(J) — Br'(J,) defined by the base change J,, — J to k(S) sends a,f to @, 3, €
Br’(J,). Then the induced étale cover {U; x5 k(S )} of Spec k(S ) represents both a,, and 3,,.
Since by assumption and Lemma 4.1 the generic fibers X, Y, are derived-equivalent, one
can apply [AKW17, Lemma 2.4, Theorem 2.5] to see that Y, is isomorphic to the moduli space
of degree d line bundles on X, for some d € Z coprime to the order ord([a]). Hence both af;
and 8, yield g, via gluing the étale cover {J; Xy, k(U;)} of J,. Since the map Br'(J) — Br'(J,)
is injective, both @ and S yield g via gluing the étale cover {J;} of J. As explained in [C#100,
Section 4.5], the Brauer class o represents f¢. Thus g is isomorphic to f. O

Remark 4.4. One could have used [AKW17, Theorem 1.5] to obtain 8 = ¢, provided the
inherited Fourier-Mukai transform D’(J,, @) = D’(J,, B,) from D?(J, @) =~ D"(J, B) for derived
categories of twisted coherent sheaves.

Proposition 4.5. Let f: X — S,g: Y — § be generic elliptic 3-folds with relative Jacobian
n: J — S. Assume that there exists an S -linear exact equivalence ®: D*(X) — D*(Y). Then g
is an almost coprime twisted power of f.

Proof. Let a°,3° € Br'(J°) be representatives of Ils-(J,) = Br'(J°)/ Br'(S°) for the smooth
parts f°, g°. By [Cal00, Theorem 6.5.1] there exist unique extensions «,8 € Br) (J) of °,°.
Let @, € Br.,(J) be their images under the map Br/ (J) — Br/,(J) induced by the pullback
along any analytic small resolution p: J — J of singularities. Take an analytic open cover
{U;} of S representing both @ and 3 such that each U; contains at most one node of A = A,
Then X;, Y; are isomorphic as an analytic space over U; [Cal00, Theorem 6.4.6]. By the same
argument as Lemma 3.2, there is an S °-linear exact equivalence D’(X°) — D’(Y°). One can
apply Lemma 4.3 to find some d € Z coprime to ord([a°]) such that g° is isomorphic to f°¢. As
explained in [C&l00, Section 6.6], the base changes Xf is U;-isomorphic to X;. O

Remark 4.6. In the above proof, we have not used the assumption on X to be 3-dimensional.
However, this is crucial for Lemma 2.4 on the classification of the fibers, which in turn is
responsible for the construction of local universal sheaves %; on V; = X; Xy, J; [Cil00, Theorem
6.4.2]. The collection defines the pr} a~'-twisted pseudo-universal sheaf % = (%}, {¢: ;1) on

XXgsJ, where ¢;;: 0Z/j|vl.j - OZ/ilv,-, denotes an isomorphism on each V;; = V;NV;. Hence without
the assumption one might not have the equivalence

(4.1) D2, D'(X) - D"(J, @)
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from [C&l00, Theorem 5.1], where t5: X Xs J < X X J denotes the closed immersion.

Remark 4.7. For the convenience of readers we add an explanation to the above remark. The
Brauer class @ appeared in (4.1) gives the obstruction against the collection {%;} to glue to
yield a universal sheaf. The discrepancy between the composition ¢;; o ¢ jx © ¢4; and the identity
on each V; = V; N V; NV, defines precisely the pr; a~!-twisting of %;. By [Cil00, Theorem
4.4.1] the image [a°] of @° under the projection Br'(J°) — Br’(J°)/ Br'(S°) corresponds to f°
via Ogg—Shafarevich theory. Namely, [@°] gives the gluing data for {J7} to yield X° via the
description of Brauer classes as gerbes. Hence up to elements of Br’(S °) the obstruction @ can
be interpreted geometrically, which was tacitly used to obtain the equivalence (4.1).

5. CALABI-YAU CASE

Lemma 5.1. Let f: X — S be a projective morphism of smooth C-varieties with wy = Ox
such that over any closed point s € S the fiber X is connected. Then the relative canonical
sheaf wyys is invertible and isomorphic to f*w3'. In particular, we have f.wys = wj'.

Proof. Consider the first fundamental exact sequence
(5.1) Qs = Qy — Qs — 0.

If u is injective, then we obtain wy;s = f*a)gl, which is invertible. Since X, S are smooth over
C, for any x € X there is an open neighborhood V C X on which u can be expressed as a
homomorphism G24™S — G24mX of free Oy-modules. As X is integral, it suffices to check
the injectivity on the generic point. However, (5.1) restricts to yield the short exact sequence
ul
0— fZ}QU i) QXU i QXU/U — 0.

on the smooth part f,: Xy — U of f for some open subset U c S [Har77, Corollary I1110.7].
The second claim follows from the projection formula. Indeed, since any closed fiber X is
connected, by [Har77, Corollary III 12.9] the coherent sheaf f. Oy is invertible and isomorphic
to ﬁs. O

Theorem 5.2. Let f: X — S,g: Y — S be generic elliptic Calabi—Yau 3-folds. Assume that
there exists an S -linear exact equivalence ®: D*(X) — DP(Y). Then f,g share the relative
Jacobianrm: J — S.

Proof. Since by Proposition 3.3 any closed fibers X;, Y over s € § are isomorphic, we have
Ap = A, Letny: Jx = S,my: Jy — § be the relative Jacobians of f, g. For any analytic small
resolutions py: Jy — Jx,py: Jy — Jy of singularities, we denote by 7y, 7y the compositions
Ty o px, Ty o py respectively. Take an analytic open cover {U;} of S such that each U; contains
at most one node of Ay = A, and to each U, the base changes f;, g;, Tx;, Ty; admit sections

oxit U= Xi, 0y Uy = Yy, Gt Up = Jxi = Jx Xs Us, Gz Uy = Jyi = Jy X U
Applying [Nak87, Theorem 2.1] or [DG94, Theorem 2.3], we obtain birational morphisms
Wx,i jX,i - W(Z,a;, b)), @y;: J_Y,i - W(A,, ci, dy),

where W(.%,, a;, b)), W( 4, c;, d;) denote the Weierstrass fibrations associated with line bun-
dles .Z, .#; on U, global sections a;, ¢; of £, .#>* and b;, d; of L2, /4 such that 4a’ +
27b2,4c? +27d? are nonzero global sections of £*'%, .#®'2. Since wy;, @y, are the morphisms
which contract all components of fibers not intersecting oy ;(U,), 7y;(U;) respectively, the fi-
brations W(.%,, a;,b;) — S, W(A4;,c;,d;) — S coincide with the base changes my;, 7y; of the
relative Jacobians to U;. See also [Cal02, Theorem 6.4.3].
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From Lemma 5.1 it follows
~ = _ ~ 1 ~ = _ ~
L= Ry W) v, = Wy, = Rypw),u, = M,

as X;, J_X,i and Y;, fm are isomorphic as an analytic space over U;. Since by Corollary 4.2 the
generic fibers Jx,, Jy, are isomorphic, we obtain U;-isomorphisms

(52) W(DZ’ a;, bl) = W(*%i’chdi)a

as two Weierstrass fibrations W(.Z,, a;, b;), W(.%,, ¢;, d;) must coincide whenever they share the
generic fiber. The construction of a Weierstrass fibration is functorial. Hence for each U;; =
U; Xs U; we have the U,;j-isomorphism

W(ZLlu,» ailu,» bilu,;) = W(Z, ai, b)ly,,.
Thus (5.2) canonically glue to yield an S -isomorphism Jxy — Jy. O

Corollary 5.3. Let f: X — S,g: Y — § be generic elliptic Calabi-Yau 3-folds. Assume that
there exists an S -linear exact equivalence ®: D’(X) — D”(Y). Then g is an almost coprime
twisted power of f.

Proof. The claim follows immediately from Proposition 4.5 and Theorem 5.2. O

Remark 5.4. It sufficed to assume either X or Y is Calabi—Yau. Without loss of generality
we may assume that X is Calabi—Yau. The triviality of the canonical bundle of Y follows
from the uniqueness of Serre functors. The vanishing of H'(Y, Oy) follows from H*(X, Ox) =
H?*(Y, Oy) and Serre duality. Note that the S -linear exact equivalence is in particular C-linear
exact equivalence and hence naturally isomorphic to the Fourier—Mukai transform ®p, with
P € D°(X X Y) unique up to isomorphism [Orl97, Section 2]. One obtains the induced isometry

H*(X, Ox) ® H'(X, Ox) = H*(Y, Oy) ® H*(Y, O%)
from [Cal00, Corollary 3.1.13, 3.1.14].

Remark 5.5. If X is Calabi—Yau, then J is also Calabi—Yau. Again, the triviality of the canoni-
cal bundle of J follows from the uniqueness of Serre functors. By [CR11, Corollary 3.2.10] the
higher direct image R’p, Oy vanishes for each j > 0. Hence we obtain R7,0; = O and Leray
spectral sequence implies H'(J, 05) = H'(S, Os). Since X is Calabi—Yau the base S must
be either a rational or Enriques surface by [Gro94, Proposition 2.3]. In both cases H'(S, O)
vanishes. See also [Gra91, Proposition 2.2] for a more general result.

6. DEFORMATIONS OF ALMOST COPRIME TWISTED POWERS

Let f: X — S,g: Y — § be generic elliptic Calabi—Yau 3-folds. Assume that there exists
an S -linear exact equivalence ®: D”(X) — D’(Y). Then by [Orl97, Section 2] and S -linearity
® is naturally isomorphic to a relative Fourier—Mukai transform

®p/s = Rps.(P ® g5(=)): D’(X) — D"(Y)

with kernel P € perf(X xg Y) where gs: X X5 ¥ — X, ps: X Xg Y — Y denote the projections.
Note that we have ®p = d_)p/s for the pushforward P = 7, P along the closed immersion
Ts: X Xg Y — X x Y. By [Mor23, Theorem 1.1] there exists a smooth affine C-variety Spec B
over which we have smooth projective versal deformations X,Y of X, Y and a deformation
P € perf(X X Y) of P defining a relative Fourier—Mukai transform

Dpp = Rpp.(P ® g(-)): D'(X) = D"(Y),

where gg: X Xs Y — X, pg: X Xs Y — Y denote the projections.
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Lemma 6.1. Up to taking étale neighborhood of Spec B, also the base S and morphisms f, g
deform to give families of elliptic fibrations f: X — S, g: Y — S over Spec B.

Proof. The claim immediately follows from [Wil94, Wil98]. O

Lemma 6.2. Up to shrinking Spec B, over any closed point b € Spec B the fibers f,: X, —
Sy, 8: Y, = S, are smooth elliptic Calabi—Yau 3-folds. In particular, they are generic smooth
elliptic Calabi—Yau 3-folds.

Proof. By construction f;, g, are elliptic Calabi—Yau 3-folds. We check that general fibers of
f, g satisfy the conditions (1),...,(5) in Definition 2.2. By [Har77, Corollary II110.7], after
shrinking S, the morphisms f, g become smooth. Under the structure morphism, which is flat,
the open subset of S maps to a nonempty open subset of Spec B. Hence general fibers £}, g,
are smooth elliptic fibrations and satisfy all the conditions but (3), which follows from the well
known fact that any elliptic Calabi—Yau manifold admits a multisection. O

Remark 6.3. Presumably, if the initial fibers fj,, g,, are nonsmooth, then over a sufficiently
small open neighborhood of by € Spec B the fibers f},, g, are also nonsmooth. Here, we do not
pursue this as anyway we need smooth ellitpic fibrations to construct the desired family.

Lemma 6.4. The kernel P € perf(X X Y) is supported on X Xg Y.

Proof. Let R = C[[#1, ..., tgm.u' (x5 ] be the formal power series ring which prorepresents
the deformation functors Defy, Defy. By [GD61, Theorem I115.4.5] there exist effectivizations
X, Y of universal formal families. Let {R;},ca be the filtered inductive system used to algebrize
X,Y. Itis a compatible system of finitely generated C[t, ..., f4y. 1 (x,7)]-Subalgebras of R
whose colimit is R. Let Xg,, Y, be the R,-deformations of X, Y used to algebrize X, Y. Their
pullbacks along the canonical homomorphism R, — R are isomorphic to X,Y. Then X, Y
are the pullbacks of X,, Y&, along some homomorphism R; — B. In summary, we have the
commutative diagram

XXg Y——= XX Y — X, XS, Yp,—XxsY

| | |

Spec C—— Spec R Spec R, Spec B

] | |

XXYQXXRyﬁXRd XRﬂyRA(—XXBY-

Note that the upper vertical arrows are flat projective, while the lower vertical arrows are smooth
projective for sufficiently large 1 € A.

By [Lie06, Proposition 3.6.1] there exists an effectivization € perf(X Xz Y) of a formal
R-deformation of P. Let Py, € perf(Xg, Xz, Y&,) be the perfect complex used to algebrize P
[Lie06, Proposition 2.2.1]. Its derived pullback Pk, ®1Le,l R is isomorphic to £. Then P is the
derived pullback of P, along the homomorphism R, — B used to algebrize X, Y. Regarding
X X Y as a closed subscheme of X Xz Y, by [Huy06, Lemma 3.29] we have

(6.1) supp(P) N (X X Y) = supp(Plxxy) = supp(P) = X X5 ¥

and supp(P) € XxrY is a proper closed subset. Since the structure morphism XxzY — Spec R
is flat proper, it sends supp(#) to the closed point which implies supp(¥) € X X Y. From (6.1)
it follows supp(P) C X Xs Y. In particular, the restriction Plyy to U = X Xg Y \ X Xs Y is
acyclic. Consider the collection {U,},ca of complements U, = Xg, Xg, Yr, \ X, XSk, Yr,»
which are flat separated R,-schemes of finite presentation. For 1" € A with " > 1 we have
U, = Uy Xg, R, by construction. Now, one can apply [Lie06, Proposition 2.2.1] to see that
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Palu, 1s acyclic for sufficiently large A. Thus the restriction Ply to U = X X5 Y\ X XsY becomes
acyclic after replacing A if necessary, which completes the proof. O

Remark 6.5. While the natural projection supp(P) — X is surjective [Huy06, Lemma 6.4], by
supp(P) € X X Y ¢ X Xz Y the natural projection supp(P) — X cannot be surjective. This
is not a contradiction, as [Huy06, Lemma 6.4] is a statement for C-varieties. Indeed, the proof
does not work in our setting as there is no closed point in the complement of X in X.

Theorem 6.6. Up to taking étale neighborhood of Spec B, there exists d(b) € Z for each closed
point b € Spec B such that g, is a coprime d(b)-th twisted power of f,,

Proof. The claim immediately follows from Corollary 5.3, Lemma 6.2 and Lemma 6.4. |
Corollary 6.7. If general fibers X, Y, are nonisomorphic, then they are nonbirational.

Proof. By Theorem 6.6 general fibers f;,, g, are smooth and g, is isomorphic to f;l(b) for some
d(b) € Z. Suppose that the generic fibers f;, ,, fig’) are isomorphic. Then f;,, fZ(b) must be isomor-
phic. It follows that X, Y}, is isomorphic, which contradicts the assumption. Hence X,,,,, Yy,
are nonisomorphic. By [Sil08, Corollary 2.4.1] they are nonbirational and their function fields
k(Xp), k(Y ,) are nonisomorphic. Then the function fields k(X;), k(Y;) of X, Y, must be
nonisomorphic, as they are respectively isomorphic to k(X ), k(Yy ). O
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TOTARO-VIAL LEMMA IN F-THEORY

HAYATO MORIMURA

AsstrAcT. For each pair of elliptic Calabi—Yau 3-folds in [KSS, Table 19], we prove that they
are P-linear derived-equivalent. Except one self-dual pair, each yields two families of smooth
elliptic fibrations over a common base whose general fibers are nonbirational derived-equivalent.

1. INTRODUCTION

Among Calabi—Yau manifolds, there are two classes of considerable interest for both alge-
braic geometers and string theorists. One consists of Fourier—Mukai partners, pairs of non-
birational derived-equivalent Calabi—Yau 3-folds. The other consists of elliptic Calabi-Yau
manifolds, those which admit elliptic fibrations.

Recently, Knapp—Scheidegger—Schimannek constructed 12 pairs of Calabi—Yau 3-folds ad-
mitting elliptic fibrations over P? with 5-section. Although not smooth, they are flat and have
no multiple fibers. Moreover, all reducible fibers are isolated and of type I,. The idea was
to consider fiberwise homological projective duality [Kuz06] for Grassmannian Gr(2, Vs) of
2-planes in Vs = C° and its dual Gr(2, V) with respective Pliicker embeddings into P(A%Vs)
and P(A?VY).

Definition 1.1. Let A;, B;,i = 1,...,12 be one of the 12 pairs of elliptic Calabi—Yau 3-folds

over P? labeled as i,, i;, in [KSS, Table 19]. We call A;, B; type i KSS varieties. We denote by
fi» gi the elliptic fibrations A; — P?, B; — P? induced by the canonical projections.

Based on F-theoretical observations, Knapp—Scheidegger—Schimannek raised

Conjecture 1.2 ([KSS)). The elliptic fibrations f;, g; share the relative Jacobian n;: J; — P>,
By construction it is natural to ask

Conjecture 1.3 ([KSS]). Type i KSS varieties A;, B; are derived-equivalent.

For i = 11 the statement is trivial, as A, By, are isomorphic. For i = 1,2 the statement
follows from [KSS, Remarks 2.3.3, 2.4.3] and [Ino22, Proposition 3.5]. Explicitly, ¥,, Y; and
X5, X, in [Ino22] which admit elliptic fibrations over P? are respectively isomorphic to A, A,
and B, B,.

In this paper, we give affirmative answers to these conjectures by proving

Theorem 1.4. The elliptic fibrations f;, g; are mutually an almost coprime twisted power of the
other in the sense of [Mor, Definition 2.14].

In particular, the smooth parts f7, g7 of f;, g; are respectively isomorphic to the relative mod-
uli spaces of stable sheaves of rank 1 and degree k, [ on the fibers of g7, /. Here, k,[ € Z are
respectively coprime to the fiber degree of g7, /. Then one can apply [Cil02, Theorem 5.1,
6.1] to obtain a P?>-linear Fourier—Mukai transform.

Realizing KSS varieties as two different geometric phases of non-abelian gauged linear
sigma models, they also raised

SISSA, via BonoMEA 265, 34136 TRIESTE, ITALY
E-mail address: hmorimur@sissa.it.
2010 Mathematics Subject Classification. 14J32.
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Conjecture 1.5 ([KSS]). Fori # 11 type i KSS varieties A;, B; are nonbirational.

For i = 1, 2 the statement follows from [Ino22, Theorem 3.6]. If f;, g; were smooth, by Theo-
rem 1.4 and [KSS, Table 19] the morphism g; would be a nonisomorphic coprime twisted power
of f; in the sense of [Mor, Definition 2.14], Then the argument in the proof of [C&l07, Proposi-
tion 2.2] implies their generic fibers being nonisomorphic. Here, we obtain nonbirational pairs
through deformation method based on [Mor23, Theorem 1.1].

Corollary 1.6. Let f;: A; — S,g;: B, — S be the deformations of f;, g; over a smooth affine
C-variety Spec T from [Mor, Theorem 6.5]. Their general fibers A, ,, B;; are nonbirational.

By [Mor, Lemma 4.3] general fibers f;;, g;, are mutually a coprime twisted power of the
other. As far as we know, combined with [KSS], this provides the first systematic construction
of multiple pairs of (familes of) Fourier—Mukai partners. Our arguments should work also for
elliptic fibrations with higher multisections.

Some computations in [KSS] were carried out assuming

Conjecture 1.7 ([KSS]). The Tate—Shafarevich group Il (J;,) is isomorphic to Zs.

If f;, g; were smooth, one could adapt the argument as in [DG94, Example 1.18] to prove the
conjecture, after checking either Br'(A;) or Br'(B;) vanishes. Here, we could only identify the
Tate—Shafarevich group associated with the above deformations.

Proposition 1.8. Let m;(b): Ji(b) — S, be the relative Jacobian of general fibers f;;, 8;,. Then
we have Ulg, (J(D)iy) = Zs ), where 6'(D), is the minimal positive degree of an element
of Pic((A,-J)ﬁ)GW/MS) dividing the positive generator 6(b);, of the image of the degree map
Pic((A;,),) — Z from [DGY4, Definition 1.6].

Toward Theorem 1.4 one needs to prove that the generic fibers A;,, B;,, of f;, g; share the
Jacobian J;, /k(P?). In our setting, this follows from [AKW17, Lemma 2.4], as the fiberwise
homological projective duality induces the derived equivalence

D’(A;,) = D"(B.,).

Similarly, one obtains derived equivalences of general fibers of f;, g;, which implies their being
isomorphic [LT17, Theorem 7.4]. Then one might seek to invoke instead [DG94, Lemma 5.5].
Alternatively, one would try to apply [Cal00, Proposition 4.2.2], since A;, B; are Calabi—Yau.

However, their proofs seem incomplete. The former proof ended showing A, B;, to be
twists of the geometric generic fiber Jy, 5 = A;; = B;; = Jp, 5. In general, not all twists come
from a torsors [Sil08, Proposition 5.3]. Namely, the K-isomorphism J,,,, — Jp,,, might be any
isomorphism fixing the origin. The latter proof ended showing the relative Jacobians to be iso-
morphic to minimal Weierstrass models W(.Z, a, b), W(.Z, d’, b’), which become isomorphic
over the base if and only if their generic fibers are isomorphic. See also Remark 4.2.

Originally, we also aimed to improve the above situation, which might be useful for study-
ing broader classes of elliptic fibrations, exploiting the following lemma found by Totaro and
proved by Vial.

Lemma 1.9 ([Vial3, Lemma 2.1]). Let Q be a universal domain and f: X — S a morphism of
Q-varieties. Then there exists an intersection U C S of countably many nonempty Zariski open
subsets, for each closed point s of which one finds an isomorphism ¢: k(S) — Q satisfying
X, = X; Xm%(m)- In particular, any very general fiber X, is isomorphic to X5 as a scheme.

Although rather surprising, this lemma seems not to be known so widely. Despite our failure
to achieve the additional goal in earlier version of this paper, we believe that it is worthwhile to
share the following question.
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Question 1.10. Let f: X — S,g: Y — S be elliptic fibrations without section between C-
varieties. Assume that their very general fibers are isomorphic. Then under which additional
conditions the generic fibers X,,, Y, of f, g share the Jacobian J,,/k(S)?

Theorem 1.4 holds also for type 1,2 Inoue varieties X;,Y, and X5, Y,, the Fourier—Mukai
partners admitting elliptic fibrations with 5-section constructed by Inoue [Ino22]. In particular,
we give a partial affirmative answer to the question raised in [Ino22, Remark 2.12]. This will
be completed if the remaining type 3 Inoue varieties X3, Y3 have only irreducible fibers except
isolated of type I,, which presumably can be checked by the same method as in [KSS, Section
5, 6]. Note that Y3 is isomorphic to the first in [KSS, Miscellaneous examples] and admits only
one elliptic fibration over P! x P! [Ino22, Remark 3.13].

By construction the derived equivalence

®p,: D'(X)) > D(Y)), P; e DP(X;x Y)), j=1,2,3

of X;, Y; follows from homological projective duality for categorical joins developed in [KP21].
If ®p are S j-linear, then by [Mor, Corollary 4.3] we would obtain an alternative proof of
Theorem 1.4 for Inoue varieties. Hence it is interesting to see whether the Fourier—Mukai
kernels #; are supported on the fiber products X; X, ¥; so that ®p, become S j-linear.

Acknowledgements. The author is supported by SISSA PhD scholarship in Mathematics. He
would like to thank Burt Totaro for suggesting to change the title and pointing out mistakes in
earlier version. He thanks a referee for informing him on the example in Remark 4.2.

2. REVIEW ON OGG—SHAFAREVICH THEORY OVER THE COMPLEX NUMBER FIELD

2.1. The Weil-Chatelet group.

Definition 2.1 ([SilO8, Section X.2]). Let E be an elliptic curve over a filed K of characteristic
0. The isomorphism group Isom(E) of E is the group of K-isomorphism from E to E. The
automorphism group Aut(E) of E is the Gg g-invariant subgroup of Isom(E) whose elements
preserve the origin of E. We use the same symbol E to denote the elliptic curve and its trans-
lation group, the Gg g-invariant subgroup of Isom(E) of translations. For a point p € E we
denote by 7, the corresponding translation.

Lemma 2.2 ([Sil08, Proposition X5.1]). There is a bijection of pointed sets
E X Aut(E) — Isom(E), (p,a) = 7,0,
identifying Isom(E) with the product E X Aut(E) twisted by the natural action of Aut(E) on E.

Definition 2.3 ([Sil08, Section X.2]). A twist of E/K is a smooth curve C/K which is isomor-
phic to E/K over K. Two twists C/K, C’/K are equivalent if they are K-isomorphic. We denote
by Twist(E/K) the set of equivalence classes of twists of E/K.

Lemma 2.4 ([Sil08, Theorem X2.2]). There is a canonical bijection of pointed sets
H,(Gg g, Isom(E)) — Twist(E/K).

Definition 2.5 ([Sil08, Section X.3]). A torsor or principal homogeneous space for E/K is a
smooth curve C/K together with a simply transitive algebraic group action of £ on C defined
over K. It is trivial if C(K) # 0. Two torsors C/K,C’'/K are equivalent if there is a K-
isomorphism 8: C — C’ compatible with the E-action. The Weil-Chdatelet group WC(E/K) is
the set of equivalence classes of principal homogeneous spaces for E/K.
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Theorem 2.6 ([SilO8, Theorem X3.6]). There is a canonical bijection of pointed sets
WC(E/K) — H}(Gg/x, E).

In particular, the image of H} (G, E) under the inclusion induced by E C Isom(E) gives a
natural group structure to WC(E/K) C Twist(E/K).

Theorem 2.7 ([Sil08, Proposition X5.3]). The inclusion Aut(E) C Isom(E) induces
H}(Ggx, Aul(E)) C H}(Gg k., Isom(E)).

Let Twist((E, O)/K) be the image of H;,(G,g/ x> Aut(E)) regarded as a subset of Twist(E/K). If
C/K € Twist((E, O)/K) then C(K) # 0. Conversely, if E'/K is an elliptic curve isomorphic to
E/K over K, then E' | K represents an element of Twist((E, 0)/K).

Remark 2.8. In general, C/K € Twist((E, O)/K) is not K-isomorphic to E/K. By [Sil08,
Proposition 5.4] the group Twist((E, O)/K) is canonically isomorphic to K*/(K*)" where n be-
comes equal to 2,4 or 6 depending on the j-invariant of E/K. Hence the elements of K*/(K*)"
correspond to the twists of E/K which do not come from principal homogeneous spaces.

2.2. The Tate-Shafarevich group.

Definition 2.9 ([DG9%4, Section 1]). Let S be a normal integral excellent scheme. We denote
by = Spec k(S) its generic point. Let E be an elliptic curve over k(S ). The Tate—Shafarevich
group 1lg(E) is the subset of WC(E/k(S)) of equivalence classes of étale locally trivial prin-
cipal homogeneous spaces for E/k(S).

Definition 2.10 ([Cal00, Definition 1.1.3, 1.1.7]). Let X be a scheme. The cohomological
Brauer group Br'(X) of X is defined as Hgt(X, 0%). The Brauer group Br(X) of X is the group
of isomorphism classes of Azumaya algebras on X modulo equivalence relation. Here, the
group structure is given by tensor products. Two Azumaya algebras .7, o7” on X are equivalent
if there exists a locally free sheaf & satisfying

</ @ End(&) = /" ® End(&).

Theorem 2.11 ([Cal00, Theorem 1.1.4]). For a smooth C-scheme X the cohomological Brauer
group Br'(X) is torsion. Let X" be the associated analytic space. Then we have

Br'(X) = Br,(X") = H2 (X", %) = H: (X", O%)rors-

Theorem 2.12 ([SP, Tag 0A2J], [Jon]). If X is quasicompact or connected, then Br(X) is torsion
and there is a canonical injection Br(X) — Br'(X). If X is quasiprojective over C, then Br(X)
surjects onto Br'(X),,,s. In particular, if X is smooth quasiprojective over C, then we have

Br(X) = Br'(X) = H*(X, O})0s.

Theorem 2.13 ([DGY94, Corollary 1.17]). Let f: X — S be a flat elliptic fibration of smooth
C-varieties with section whose generic fiber is isomorphic to E. Let SV be the set of points in
S with dim O ; = 1. If the fiber X, is geometrically integral over each s € SV, then we have

IIg(E) = Coker(Br'(S) — Br'(X))

where the map Br'(S) — Br'(X) is given by the pullback.
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2.3. Minimal Weierstrass fibrations.

Definition 2.14 ([DGY4, Definition 2.1], [Cal00, Definition 6.1.5]). An elliptic fibration f: X —
S is a projective morphism of C-schemes whose generic fiber X,, is a genus one regular k(S )-
curve and all fibers are geometrically connected. The discriminant locus A of f is the closed
subset of points s € S over which the fiber X; is not regular. A fiber X over a point s € § is
multiple if f is not smooth at any x € X;. A section of f is a morphism ox: § — X satisfying
f ooy =1id. An n-section of f is a closed subscheme to which the restriction of f becomes a
finite morphism of degree n.

Remark 2.15. Each component of a multiple fiber must be either of dimension more than one
or of dimension one and nonreduced at all points. If an elliptic fibration f: X — S has no
multiple fibers, then étale locally it admits a section.

Example 2.16. Let % be a line bundle on S. Take global sections a of #®* and b of .£*°
such that 4a® + 27b* is a nonzero global section of .#®!2. Consider the projective bundle
Py, = Ps(Os ® L% & £*3). We denote by Op,,;5(1) the line bundle corresponding to
the relative hyperplane class. Let W(.Z,a,b) C Py be the closed subscheme defined by the
equation Y?Z = X*+aXZ?+bZ>, where X, Y and Z are respectively given by the global sections
of Op ., ;s(1) L%, Op ., s(1) ®.Z®* and Op ;s (1) which corresponds to the natural injections
of %72, #®73 and O into O & L®2 @ £*3. The canonical projection induces a flat elliptic
fibration 74 : W(Z,a,b) — S admitting a section ¢ : S — W(Z,a,b), called a Weierstrass
fibration.

Remark 2.17. All fibers of 74 are irreducible plane cubic curves. The discriminant locus of
7 o is the support of the Cartier divisor defined by 4a* +27b%. The construction of a Weierstrass
fibrations is functorial. Namely, we have

WL, h*(a), k" (b)) = W(ZL,a,b) Xs S’

for any morphism 4: §” — § of C-schemes. If § is smooth, then o (§) lies in the smooth
locus of W(.Z, a, b).

Lemma 2.18 ([Nak87, Theorem 2.1], [DG94, Theorem 2.3]). Let f: X — S be an elliptic
fibration of smooth C-varieties admitting a section ox: S — X. Then there exists a birational
S -morphism from X to W(Z, a, b) contracting all components of fibers which do not intersect
ox(8). Moreover, £ is isomorphic to all of o(Qxys), fiwxys, (R f.Ox)™" and Oy y(sy(—ox(S))
when they are invertible.

Lemma 2.19 ([DG9Y94, Proposition 2.4]). Let E be an elliptic curve over K with a rational
point ¢ € E(K). For any smooth C-scheme S with k(S) = K there exists a Weierstrass fibration
ny: W(Z,a,b) — S whose generic fiber is isomorphic to E. The closure of ¢ is o #(S).

Definition 2.20 ([DG94, Definition 2.6]). A Weierstrass fibration W(.Z, a, b) is minimal if there
is no effective divisor D such that div(a) > 4D, div(b) > 6D.

Remark 2.21. Every Weierstrass fibration is birational to a minimal Weierstrass fibration
[DGY4, Proposition 2.5]. Its discriminant locus is not smaller than that of the minimal Weier-
strass fibration.

Definition 2.22 ([DGY94, Definition 2.11]). A projective morphism f: X — S is relatively
minimal if X 1s Q-factorial and has only terminal singularities, and if C C X is any irreducible
curve mapping to a point in S, then Kx.C > 0 for the canonical divisor Kx of X.

Lemma 2.23 ([DG94, Proposition 2.16]). Let f: X — S be a relatively minimal elliptic fibra-
tion admitting a section. Assume that f.wys is invertible. Then W(f.wxs, a, b) from Lemma
2.18 gives a minimal Weierstrass fibration.
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Lemma 2.24 ([DG94, Proposition 2.17]). Let f: X — S be a relatively minimal elliptic fibra-
tion and ty: W(ZL,a,b) — S a minimal Weierstrass fibration whose generic fiber is isomor-
phic to E. If the Jacobian of X, is E, then the discriminant loci A¢, A, ., coincide.

2.4. The relative Jacobian.

Definition 2.25 ([Cal00, Definition 4.1.1, 4.2.1, 4.5.1]). A smooth elliptic fibration f: X — S
is a smooth projective morphism of smooth C-schemes whose fiber X over any point s € § is
a genus one regular k(s)-curve. Fix a relatively ample line bundle O/ (1) for a smooth elliptic
fibration f: X — S. The relative Jacobian n: J — § 1is the relative moduli space of stable
sheaves of rank 1, degree 0 on the fibers of f. The k-th twisted power f*: X* — S of f is the
relative moduli space of stable sheaves of rank 1, degree k € Z on the fibers of f.

Theorem 2.26 ([Cal00, Theorem 4.5.2]). Fix a relatively ample line bundle Ox;s(1) for a
smooth elliptic fibration f: X — S. Any k-th twisted power f*: X* — S of f is a smooth
elliptic fibration which has the same relative Jacobian n: J — § as f. If a € Uls(J,) is the
element representing f, then f* is represented by a*.

Definition 2.27 ([Cal00, Definition 6.4.1]). Let f: X — S be a flat elliptic fibration of C-
varieties. Fix a relatively ample line bundle Ox/s(1) of f and a closed point s € §. Let P
be the Hilbert polynomial of Oy, on X; with respect to the polarization given by Oy/s(1)|x,.
Consider the relative moduli space Mx,s(P) — S of semistable sheaves of Hilbert polynomial
P on the fibers of f. By the universal property of My,s(P) — S there exists a natural section
S — Myx/s(P) which sends s to the point [ O ] representing Oy, . Let J be the unique component
of M which contains the image of this section. The relative Jacobian of f is the restriction
n: J — S of the morphism My,s(P) — S to J.

Remark 2.28. The relative Jacobian 7: J — § is a flat elliptic fibration with section whose
discriminant locus A, equals Ay. The restriction over the complement S \ A, coincides with
the relative Jacobian for a smooth elliptic fibration. Similarly, the restriction over S \ A, of f¢
coincides with the d-th twisted power of the smooth part of f.

Definition 2.29 ([Cal00, Notation 6.6.3]). Let f: X — § be a flat elliptic fibration with n-
section without multiple fibers. Assume that all reducible fibers of f are isolated and of type I,.
Fix a relatively ample line bundle Oy/s(1). Let M§/S (P) — S be the relative moduli space of
semistable sheaves of rank 1, degree k on the fibers of f. Let X* be the union of the components
of M;‘( ,s(P) which contains a point corresponding to a stable line bundle on a fiber of f. The
k-th twisted power of f is the restriction f“: X* — S of the morphism My ((P) — S to X*,

3. ReviEw oN KSS VARIETIES

3.1. Grassmannian side. Let .7 " be a globally generated vector bundle of rank 5 on P? and
G = Grp2(2,.%) the Grassmannian bundle whose fiber over any point x € P? is the Grassman-
nian Gr(2, tot(.#),) of 2-planes in the k(x)-vector space tot(.#),. We denote by Og (1) the
line bundle corresponding to the relative hyperplane class and by g the canonical projection.
Let & be a globally generated homogeneous vector bundle of rank 5 on G and s € H(G, &)
a general section. By the generalized Bertini theorem, the zero locus A = Z(s) is a smooth
projective 3-fold. If in addition wg = det™ &V then w, becomes trivial. Setting .#" = F and
EY = Ogp(l) ® nE’ for F, E" in [KSS, Table 2], one obtains Calabi—Yau 3-folds A. We will
put subscript i on .# ", &Y, F, E’, G and A to specify which row we are dealing with.

Lemma 3.1. The 3-fold A; is Calabi-Yau in the strict sense, i.e., we have H'(A;, O4) = 0in
addition to wy, = Oy,.
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Proof. Concatenating Koszul resolution of the ideal sheaf J,, of A; and the short exact sequence
0 — 34, = Og, — 04, — 0, we obtain an exact sequence

00— A& - NE— = & — Og, — Oy — 0.
Due to the spectral sequences
HY(G;, NP &) = HTP(A;, On),

it suffices to show the vanishing of H”*!(G;, A?&;) for 0 < p < 5, which follows from Leray
spectral sequence

H'®, NE} ® R'n6,. Og,52(—p)) = H™(Gi, \6).
O

3.2. Pfaffian side. Let & be a globally generated vector bundle of rank 5 on P> and P =
Pp2(&) the projective bundle. We denote by Opp2(1) the line bundle corresponding to the rela-
tive hyperplane class and by 7rp the canonical projection. Let .7 be a globally generated vector
bundle of rank Son P and ¢: .% — %" ® Opp2(1) a skew-symmetric morphism corresponding
to 54 € H'P,N2Z' ® Opp2(1)). We denote by B the first nontrivial degeneracy locus

D5(¢) = {x € Plrank ¢(x) < 3} = {x € P|rank ¢(x) < 2} = D,(¢)

of ¢. Since Pic(P) has no torsion, one can apply the first lemma in [Oko94, Section 3] to obtain
an exact sequence
(G ¢ A%

0 — det ﬁv ® ﬁP/PZ(—Z) — 7 > ﬁv ® ﬁp/PZ(l) E— SB ®det?v ® ﬁp/p2(3) — 0,
where Jp denotes the ideal sheaf of B. From the first proposition in [Oko94, Section 3], it
follows that B is a smooth projective 3-fold, as A2.Z" ® Opp(1) is globally generated. If
in addition (det.%)®* = (det &)(3) then wp becomes trivial by the second lemma in [Oko94,
Section 3]. Setting & = E" and .#" = apF for E’, F in [KSS, Table 2], one obtains Calabi—
Yau 3-folds B. We will put subscript i on &",.#",E’, F,P and B to specify which row we are
dealing with.

Lemma 3.2. The 3-fold B; is Calabi—Yau in the strict sense, i.e., we have H'(B;, Og) = 0in
addition to wp, = Op..

Proof. Concatenating the locally free resolution of Jp from the second lemma in [Oko94,
Section 3] and the short exact sequence 0 — Iz — Op, — Op — 0, we obtain

00— %, — Foi— ,?O\fi@)%’i — Op, = Op — 0

where %; = (det Z)®* ® Op,jp2(—5) and F; = F#; @ det F; ® Op,jp2(—3). The vanishing of the
first and the second cohomology of % ;, %, L@OVJ ® % and Op, follows from Leray spectral
sequence. |

3.3. Elliptic fibrations over P?>. According to [KSS, Section 2.3, 2.4], one can apply the
main theorem in [Ogu93] to see that ng,, mp, respectively restrict to elliptic fibrations f;: A; —
P2, gi: B; — P? with 5-sections. They are flat and have no multiple fibers. Moreover, all
reducible fibers of f;, g; are isolated and of type I, [KSS, Section 5, 6].

Remark 3.3. The existence of type I, fibers [KSS, Section 5, 6] implies that the morphisms
fi» & are not smooth. In [KSS] the authors called f;, g; smooth genus one fibrations, apparently
because A;, B; are smooth. If this is the case, then smoothness follows automatically from the
above constructions, despite the comment on usage of Higgs transitions in [KSS, Introduction].
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Lemma 3.4. The generic fibers of f;, g are derived-equivalent. In particular, they share the
Jacobian J;/k(P?).

Proof. The fiber of f; over a point x € P? is given by
Gr(2. V) Xe(xovs) B(1OL(EL)E)
with identifications
tot(F;), = Vs, tot(0g,p2(1)) ® g, tot(E7")y = tot(E]")y,

where tot(E/")+ € A% tot(F}'), denotes the orthogonal subspace to a fixed inclusion tot(E/"), C
A% tot(F;),. Observe from the explicit description of s € H°(G;, E;) as in [KSS, Section 2.3]
that s defines a 5-dimensional quotient k(x)-vector space of A? tot(F Y)x whose complement is
tot(E!¥)+. Then the fiber of g; over general x € P? is given by

GI'(2, VS\/) X]P’(/\QVSV) P(tOt(El/v)x)

Note that the subvariety of IP(/\ZVSv ) defined by the 4 x 4 Pfaffians of a general 5 X 5 skew-
symmetric matrix is isomorphic to Gr(2, VJ'). One can apply [Kuz07, Theorem 1.1] to obtain
a derived equivalence of the generic fibers. See [KP21, Theorem 2.24] for the same statement
over more general base. Now, the claim follows from [AKW17, Lemma 2.4]. O

Remark 3.5. In [KSS, Section 2.5] the authors claimed that the above fiberwise orthogonal
description globalizes to that of A; and B;. For their global description, one needs E’" to be
a subbundle of A2F; up to twisting by line bundles. However, each F; is a direct sum of line
bundles on P? and a subbundle of any line bundle is either O or itself. Then most of E/" in
[KSS, Table 2] cannot be a subbundle of A?F; no matter how twisted.

Corollary 3.6. Over any closed point x € P? the fibers of f;, g; are isomorphic.

Proof. Using Lemma 3.4, we will obtain P?-linear Fourier-Mukai transforms D?(A;) — D’(B;)
in Section 5. Then the claim follows from [Mor, Proposition 3.3]. O

4. COMMON RELATIVE JACOBIAN
4.1. A sufficient condition.

Proposition4.1. Let f: X — S,g: Y — § beflat elliptic fibrations between smooth C-varieties
without multiple fibers. Assume that the following conditions hold:

(1) The generic fibers of f, g share the Jacobian J,[k(S ).
(2) There exist resolutions of singularities
Px: J_X - Jx, py: J_Y - Jy
such that my = my o px, Ty = 7y o py give relatively minimal elliptic fibrations and
Tx.Wjy s, Ay«wj, s are isomorphic invertible sheaves.
Then f, g share the relative Jacobiann: J — S.

Proof. The condition (2) tells us that x gives a relatively minimal elliptic fibration admit-
ting a section. Since in addition 7x.wj, s 1s invertible, one can apply Lemma 2.23 to see
that the Weierstrass fibration W(nx.wj,s,a,b) — § from Lemma 2.18 is minimal. Similarly,
one obtains another minimal Weierstrass fibration W(zty.wj,;s,a’,b") — S associated with my.
Moreover, there is an § -isomorphism

Waywy,s,a',b') = Wax.wy, s, a',b').

It is well known that two Weierstrass fibrations W(x.wj, s, a, b), W(rx.wj, s, a’, b") with iso-
morphic generic fibers must coincide. Now, the claim follows from the condition (1). O

119



Remark 4.2. In earlier version of this paper, the condition (1) required only very general fibers
to be isomorphic. However, the following example informed by an anonymous referee implies
that our original proof was wrong. This example also implies that [DG94, Lemma 5.5] cannot
be true. Consider any elliptic fibration f: X — S. Suppose that S has a nontrivial double
covering T — §. Let Y be the quotient of X7 = X Xg T by Z,, where the action is given by
involution on 7" and negation on the fibers. The generic fiber of g: ¥ — §, so called quadratic
twist, is not isomorphic to that of f. On the other hand, over any closed point s € S the fibers
of f, g are isomorphic.

4.2. Answer to Conjecture 1.2.
Corollary 4.3. Type i KSS varieties A;, B; share the relative Jacobian n;: J; — P2,

Proof. We check that f;, g; satisfy the conditions in Proposition 4.1. The condition (1) follows
from Lemma 3.4. As for the condition (2), take any analytic small resolutions of singularities
Pa.»Pp,- One can show that J,,, Jp, are analytic Calabi—Yau 3-folds in the strict sense and we
have 74w Iy /P2 = Apaj, p2 = w];zl. This follows for instance from the same argument as in
[Mor, Section 4] based on [Cal00, Section 6], which we will briefly review in Section 5. O

5. DERIVED EQUIVALENCE

Remark 5.1. In this section, we invoke some results from [Cal00]. As mentioned above, the
proof of [Cal00, Proposition 4.2.2] seems incomplete. However, it is used only once in the proof
of [Ci100, Theorem 4.5.2] to show that the k-th twisted power f* of a smooth elliptic fibration
f: X — S has the same relative Jacobian as f. There the usage of [Cal00, Proposition 4.2.2]
is not crucial, as the claim immediately follows from [C&l00, Proposition 4.2.3]. Moreover,
the author explicitly constructed this §-isomorphism Jy — Jy« in terms of the cut-and-reglue
procedure in [Cal00, Section 4.5].

5.1. The proof of Theorem 1.4.

Lemma 5.2. For any analytic small resolution of singularities
PA;: ‘I_Ai - JA:” PsB;: ‘]_Bi - JB:'

of the relative Jacobians of type i KSS varieties A;, B;, there exists an analytic open cover {U;}
of P? such that Ajy; = Ai Xp2 Uj, Biy, = B; Xp2 U; are respectively isomorphic to Ja,y, =
Ja, Xe2 U}, Jp.u, = Jg, Xe2 U; as an analytic space over U,

Proof. This is a straightforward adaptation of [Cal00, Theorem 6.4.6]. Since f;, g; have no
multiple fibers, analytic locally they admit sections [Cdl00, Theorem 6.1.8]. Moreover, as all
their reducible fibers are isolated and of type I, over sufficiently small analytic open subset
U; there is at most one type I fiber of f;, g;. For each component C = P' of type I, fiber, the
normal bundles .A¢/,, -4¢/p, are isomorphic to Oc(—1) & O(-1) [Cal00, Theorem 6.1.9]. It is
well known that contraction of such a curve as C in a 3-fold yields an ordinary double point.
Hence p4,, pp, resolve the ordinary double points.

By [C4l00, Proposition 6.4.2, Theorem 6.4.3] there exist sheaves %A,»,Uj, %B,-,U,- on Ay, Xy,
Aiv;» Biu;, Xu; By, flat over the second factors, which by universality of J4,v,/U;, Jp, v,/ U,
induce surjective morphisms A; y, — Ja,v;» Biv, = Jp,u;- These are at most contraction of one
of the two components of type I, fiber which does not intersect the local section. Note that such
morphisms coincide with the morphisms from Lemma 2.18. Hence Ay, — Jiv;, Biv;, = Jiv;
might differ respectively from PALU; " J av; = JauPBU; - J B.u; — Jp,u; up to whether the
contracted component intersect the local sections. Switching components amounts to perform-
ing ﬂOpS to Ai,Uj - J[’Uj, Bi,Uj - Ji,Uj~ O
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Remark 5.3. As we use some results in this section to prove Corollary 4.3, here we do not
assume that f;, g; share the relative Jacobian x;: J; — P2

Remark 5.4. The minimal Weierstrass fibrations for f;, g; coincide with their relative Jacobians.

Lemma 5.5 ([Cal00, Theorem 3.3.2]). Let f: X — S be a flat projective morphism. Fix
a relatively ample line bundle Ox;s(1). Let My;s(P) — S be the relative moduli space of
semistable sheaves with a fixed Hilbert polynomial P on the fibers of f. Then there exists a
local universal sheaf %; on each X X5 U; for some open cover {U ;} of Mxs(P). Moreover, there
exist an element @ € Br'(Mx,s(P)) and isomorphisms ¢ : %lijs U, = %lU_ixs v, which make
(%}, {¢ji}) into a pr; a-twisted sheaf. The element a, called the obstruction fo the existence of
a universal sheaf on X Xs My,s(P), depends only on f, Ox;s(1) and P.

Lemma 5.6 ([Cil00, Theorem 3.3.4]). Let X — S,M — S be morphisms between proper
C-schemes. Assume that X — S is projective and M is integral. Assume further that for
@ € Br'(M) there exists a coherent pr; a-twisted sheaf % on X xs M which is flat over M. Then
a belongs to Br(M).

Let V; = P2\ A;, W; = P2\ A,, be the complements of the discriminant loci of f;, g;. By
Theorem 2.13 and Br’'(P?) = 0 the smooth elliptic fibrations f;y., g;w. represent some elements
a; € Br'(Ja,v,), Bi € Br'(Jp,w,). Moreover, «;, B; respectively coincide with the obstructions to
the existence of a universal sheaf on A, y, Xy, Ja, v.» Biw, Xv, Jp,.w,

Lemma 5.7. There exist unique extensions
& € Ho\(Up 05, B € Ho\(J5, 0),)

of a;,Bi. For any analytic small resolutions of singularities py,, ps, let & = p) a,pi = P B

Then &;, f3; respectively belong to Br(Jy,), Br(Jp,) and there exist pr; @;, pr, * Bi-twisted sheaves
?/A , %B on A; Xz J, ;> BiXp2 J B, Whose restrictions over V;, W; are isomorphic to the pr; a;, pr; Bi-

twisted sheaves from Lemma 35.5.

Proof. This is a straightforward adaptation of [Cal00, Theorem 6.5.1]. Let
Pj- AiU; - J_AvU,-a Y By, — J_B-U~
be isomorphisms of analytic spaces from Lemma 5.2. As explained above, there exist sheaves
U, v, Us,u; 0N Aiy, Xu, Aiu;» B, .u; Xu,; Biy; flat over the second factors. We write Uy, Uj» , Us, U;
for their pullbacks by id x Ujgpj‘. dxy ;. I, Restricted over the intersection with V;, W;, the pull-
backs JZZAi,U_,., ‘%Bi,u_,- become local universal sheaves. The collections {?ZA,-,U_,-}, {%_B,-,U,-} together
with isomorphisms on double intersections form pr} a;, pr; Bi-twisted sheaves. Since by con-
struction any double intersections
J_A,-,Uj N jA,-,Uk = Jau; N Jaue J_B,-,Uj N J_B,-,Uk = Jp.u; NIy,

for j # k do not contain type I, fibers, all the claim but &; € Br(J,,), 8; € Br(Jp,), which follows
from Lemma 5.6, are obvious. O
Proposition 5.8 ([Cdl02, Theorem 5.1]). The relative integral transforms

Dy, : D"(A) = DUy, @), Dy, : D'(B) — D'(Jp,B)
with kernel @ZA., OZZB. are equivalences.

Remark 5.9. By Proposition 5.8 and uniqueness of Serre functors, the canonical bundle of
JA ,J , are trivial. Moreover, JA ,J , are analytic Calabi—Yau 3-folds in the strict sense [Mor,
Remark 4.5]. From Lemma 5.2 and the same argument as in [Mor, Theorem 4.2] it follows
Manwj, o2 = M, p2 = sz Since our argument in this section is independent of that in
Section 4, 50 is the proof of Corollary 4.3 and we conclude that 74, 75, coincide.
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Now, one can prove Theorem 1.4 as follows. By Corollary 4.3 the restrictions of f;, g; over
V; = P2\ A,, represents some elements «;, 5; € Br(J;y,). We use the same symbol to denote their
images under the injection Br'(J;y,) — Br'(J;,) induced by the pullback along the canonical
morphism J;,, — J;y,. Since by Lemma 3.4 the generic fibers of f;, g; are derived-equivalent,
one can apply [AKW17, Lemma 2.4, Theorem 2.5] to obtain 3; = a* for some k € Z coprime to
the order ord([a;]) in I1Iy,(J;;) = Br'(J;y,)/ Br'(V;) = Br'(J;y,). Then g; y, is isomorphic to flkv
by [Mor, Lemma 4.3] and B; y;, become isomorphic to Aff y, s an analytic space after refining
the cover {U} by [Cal00, Theorem 6.4.6].

5.2. Answer to Conjecture 1.3.

Corollary 5.10. There exists a P*-linear Fourier—-Mukai transform ®;: D’(A;) = D!(B)).

Proof. By Theorem 1.4 we may assume that g, y, is isomorphic to flkv Then g, v, represents
a¥ € Br'(J;v,). Applying Proposition 5.8, we obtain P-linear equivalences

D"(A;) - D’(J;, &), D"(B)) — D"(J;,@)).
Then the claim follows from the P2-linear equivalence [C#l02, Theorem 6.1]

D (J,, @) — D"(J;,ab).

6. NONBIRATIONALITY OF DEFORMATIONS

6.1. The proof of Corollary 1.6. Recall that the deformations f;: A; — S,g;: B; — S over
Spec T are obtained from Theorem 1.4 and [Mor, Theorem 6.5]. General fibers f;,, g;, are
smooth elliptic fibrations and mutually a coprime twisted power of the other in the sense of
[Mor, Definition 2.14]. For i # 11 general fibers A;;, B;, are nonisomorphic, as they have
distinct Betti numbers b; [KSS, Table 19], which depend only on diffeomorphism type. Since
by [Har77, Corollary I1110.7] the restriction of the flat projective morphisms f;, g; over some
open subset of Spec T become smooth, one can apply Ehresmann fibration theorem to see that
pairs of these distinct Betti numbers b, does not depend on general ¢ € Spec T. Now, the claim
follows from [Mor, Corollary 6.6].

7. TOWARD IDENTIFICATION OF THE TATE—SHAFAREVICH GROUP

7.1. Vanishing of the Brauer group.
Lemma 7.1. The cohomological Brauer group Br'(A;) of A; vanishes.

Proof. Since by Lemma 3.1 the 3-fold A; is Calabi—Yau in the strict sense, we have Br'(A;) =
H>*(A;,Z),,rs. Each generator of the general section s; € H°(G;, é”iv) defines an ample divisor
by construction and [Har77, Exercise 117.5(a)]. Applying [Fuj80, Theorem C] iteratively to the
divisors, one sees that H,(A;, Z) is torsion free. Then the first term in the short exact sequence

0 — Extl(Hy(A;,Z),Z) — H*(A;,Z) — Homgz(H3(A;,Z),Z) — 0

from the universal coeflicient theorem vanishes. Since Homyz(H3(A;,Z),Z) is always torsion
free, we obtain H>(A;, Z)ors = 0. O
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7.2. Computation of the Tate—Shafarevich group.

Proposition 7.2. Let f: X — S be a smooth elliptic fibration between smooth C-varieties
without sections. Assume that the following conditions hold:

(1) HS,(S’,ULS) = 0 for some l € N.

(2) The number ¢, from [DGY4, Definition 1.6] is prime.

(3) Br'(X) = 0.

Then the Tate-Shafarevich group W (Jx,) is isomorphic to Zs,.

Proof. This is an adaptation of the arguments in [DG94, Example 1.18]. Since f is flat with
X, S smooth over C, from [DG94, Proposition 1.16] we obtain exact sequences

0— Zg — Ws(Jxy) — H (S, tL.'R' .O%) — 0,

(71) 1 1 * 1 *pl * 2
Hét(S’R ﬁkﬁX) - Hét(S’ Ll R ‘f*ﬁx) — Hét(S,(/j@).

Here, (5;7 is a certain positive integer with 6;7|(5,7 from [DG94, Definition 1.6], ¢: Speck(S) — S

denotes the canonical morphism and & is a certain sheaf on S from [DG94, Definition 1.8]. If

we have H} (S, t.l*R' f.0%) = 0, then from the condition (2) it follows ITLs(Jx,,) = Zs,.
Consider the exact sequence

Br'(X) — H(S,R'f.0%) — H(S, 0%)

from [DG94, Corollary 1.5], where the first term vanishes by the condition (3). The Kummer
sequence 0 — ;5 — 05 — O3 — 0 induces an exact sequence

H3(S,us) — HA(S, 05) — Hi(S, O%).

The term Hé’t(S , 05) is torsion by [DG94, Proposition 1.2]. From the condition (1) it follows
HL(S,R'f.0%) = H.(S, 0%) = 0. Since f is smooth, one can apply [DG94, Proposition 1.12,
1.13] to obtain H2(S,&) = 0, which implies H} (S, t.*R' f.0%) = 0 due to the second exact
sequence in (7.1). O

7.3. The proof of Proposition 1.8. We check that f;, satisfies the conditions (1), (3) in Propo-
sition 7.2. Due to [AGV73, Theorem 4.4], when coefficients are finite, étale cohomology of a
smooth C-scheme coincides with singular cohomology of its analytification. In particular, we
have H (P?, w;p2) = H*(P?,Z/1Z) = 0 for any [ € N by the universal coefficient theorem. Since
the family S — Spec B is smooth proper, one can apply Ehresmann fibration theorem to obtain
H3(Sy, pus,) = H(Sy,Z/IZ) = H*(P*,Z/IZ) = 0 for any [ € N. From the same argument and
Lemma 7.1 it follows Br'(A;,) = 0, as we have Br'(A;,) = H*(A;;, Z)ors.

8. INOUE VARIETIES AS ALMOST COPRIME TWISTED POWERS

8.1. Review on Inoue varieties. Let M; = Gr(2, V5) be a Grassmannian of 2-planes in V5 =
C’>and M, = Ps.(&;) a rank r; projective bundle over a del Pezzo surface S; satisfying the
following conditions:

(i) & is globally generated.
(i1) dime¢ ¢, (Ps,(&;)) > r where ¢;, denotes the morphism defined by the line bundle
Owm,s,(Ly) corresponding to the relative hyperplane class L, of mgs,: My — S,
(iii) det &; = wg,.

We denote by Z; and X, the image of M; and M, under the Pliicker embedding and the mor-
phism defined by the relative hyperplane class respectively.
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Lemma 8.1 ([Ino22, Proposition 3.1]). Let Py, a1, = Pasyxar, (O(=Ly) ® O(—L,)) be the resolved
join of My and M,, where L, denotes the Schubert divisor class of M, and L, is the relative
hyperplane class of M,. Then a general complete intersection X of r; + 5 relative hyperplanes
in Py, ., is a Calabi—Yau 3-fold in the strict sense.

Remark 8.2. The image of Py, 5, under the morphism ¢y coincides with the projective join
Join(X;,X,) of Z; and X,, where H denotes the relative hyperplane class of 7wy, s, @ Parymt, —
M, x M,. In general, Join(Z, X,) is singular along the disjoint union X; U X,. The morphism
wn gives a resolution of Join(Z,, X,). In particular, the restriction of ¢y to any enough general
complete intersection X becomes an isomorphism.

Let &+ be the orthogonal locally free sheaf of &;. Namely, we have a short exact sequence
0— & — HY(S,8)® Os, —» &' — 0.

We denote by r; and L) the rank of & and the relative hyperplane class of g 5,1 Ps,(&77) — S
respectively. Assume the following additional conditions:

@iv) dim% Ps,(EH) > 7.

(v) H'(S:, &) = 0.
Then (&7+)" is globally generated and det &+ = wy,.
Corollary 8.3. Let Py, = PM;xMé(ﬁ(—Li) ® O(=L))) be the resolved join of M| = Gr(2, V)
and M), = Ps(&7-), where L denotes the Schubert divisor class of M| and L is the relative

hyperplane class of M. Then a general complete intersection Y of r; + 5 relative hyperplanes
in PM{ M, is a Calabi—Yau 3-fold in the strict sense.

Consider the cases where M, = N; = Ps,(&;), M) = N! = Pg,(&;") are one of the following:
(1) Ny = Ppa(0p2(=1)®) = P2 X P2, N = Pea( ),
(2) N2 = Pp(0p(=2) ® Op2(-1)) = Bl P, Nj = P (S5 @ 1)),
(3) N3 = Ppiyp1 (Opiypi(—1, —1)®2) =P' xP' x P!, N; = PP'xPl(e%/ﬁz)-
Here, %11, %, for j = 1,2 denote respectively the kernel of the surjections
H(P' X P!, Oprp1(1,1)) ® Oaiypr = Opriye(1,1), HO®?, Op2()) ® Op2 > Opa(j).

We write Vy, for H(N;, O(L,))". Let W; ¢ A*Vs @ V. be general codimension r; + 5 linear
subspaces and W;- C /\ZVSV ® VI\V,i their orthogonal subspaces. By Lemma 8.1 and Corollary 8.3
the complete intersections

Xi=Pun, XB(A2Vs®Vy,) P(W), Y, = PM;,N; XB(A2VY@VY ) P(W,-l)

of r; + 5, r; + 5 relative hyperplanes in Py, x,, Py v are Calabi—Yau 3-folds in the strict sense.
Fori=1,2,3 we call X;, Y; type i Inoue varieties.

Theorem 8.4 ([Ino22, Proposition 3.5, Theorem 3.6]). Type i Inoue varieties X;, Y; are nonbi-
rational derived-equivalent.

8.2. Elliptic fibrations of Inoue varieties. For the rest of the paper, we discuss an alternative
proof of the derived equivalence of X;, Y; via Theorem 1.4. Consider the compositions

Wy, : X ;)PMl,Nl — M; XN; - N; :P2XP2 HPZ,
ﬂ(‘:yz
Tyt Xo = Payyy = My X Ny = Ny = Pa(6) —— P2,

Pry,
@y, X3 o Pyy, = My X Ny > Ny = P! x P! x P! —5 P! x P!

which are shown to be elliptic fibrations [Ino22, Lemma 3.7]. Similarly, ¥; admit elliptic fibra-
tions @y, over P? for i = 1,2 and P' X P! for i = 3 [In022, Lemma 3.11, Remark 3.13].
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Lemma 8.5. The generic fibers of wx,, wy, for i = 1,2, 3 are derived-equivalent. In particular,
they share the Jacobian J/ k(P?).

Proof. The fibers of @y, , @y, over a point x € P? are given by
Join(Gr(2, Vs), {x} x P*) N P(W), Join(Gr(2, VY), {x} x P?) N P(W*).

Hence general fibers are linear sections of Gr(2, Vs), Gr(2, VSV ) of codimension 5. By definition
of W, W+, they respectively coincide with

Gr(2, Vs) Xpp2vy) P(Wy), Gr(2, st) Xp(A2VY) P(WXL)

for some 5-dimensional subspace W, € A*Vs and its orthogonal subspace W} € A?Vs. We have
similar dual descriptions of the fibers also for i = 2,3. Now, the claim follows from the same
argument as in Lemma 3.4. O

Corollary 8.6. Over any closed point x € P? the fibers of wx., @y, for i = 1,2 are isomorphic.

Proof. The proof of Corollary 3.6 carries over. According to [KSS, Remarks 2.3.3, 2.4.3]
the Calabi—Yau 3-folds Y, Y, and X, X, are respectively isomorphic to A, A; and B,, B;. By
[[no22, Lemma 3.11, Remark 3.13] the Calabi—Yau 3-folds X;, X, admit only one elliptic fibra-
tion. Recall that all reducible fibers of g,, g, are of type 1. O

8.3. The proof of Theorem 1.4 for Inoue varieties.
Lemma 8.7. Type i Inoue varieties X;,Y;,i = 1,2 share the relative Jacobian w;: J| — P2.

Proof. The proof of Corollary 4.3 carries over, since the generic fibers of wy,, @y, share the
Jacobian and all reducible fibers of wy., @y, are isolated and of type . m]

Remark 8.8. According to [KSS, Remark 2.3.3] the Calabi—Yau 3-fold Y3 is isomorphic to the
first in [KSS, Miscellaneous examples]. The elliptic fibration from it must be isomorphic to
@y,, as Y3 admit only one elliptic fibration [Ino22, Remark 3.13]. By Lemma 8.5 the generic
fibers of wy,, @y, share the Jacobian. If all reducible fibers of wy,, @y, are isolated and of type
I, then from Proposition 4.1 it follows that @wy,, @y, share the relative Jacobian @s: J; — P2

Theorem 8.9. The elliptic fibrations wy,, wy, for i = 1,2 are mutually an almost coprime
twisted power of the other in the sense of [Mor, Definition 2.14].

Proof. Provided Lemma 8.7, the proof of Theorem 1.4 carries over. O

Remark 8.10. Suppose that all reducible fibers of wy,, @wy, are isolated and of type /,. Then
one similarly shows Theorem 8.9, since we have Br' (P! xP!) = 0 by the standard purity theorem
for the cohomological Brauer group, as P! x P! is rational.

Now, from the same arguments as in Corollary 5.10 we obtain

Corollary 8.11. Fori = 1,2 type i Inoue varieties X;, Y; are P>-linear derived-equivalent.
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HOMOLOGICAL MIRROR SYMMETRY FOR COMPLETE INTERSECTIONS IN
ALGEBRAIC TORI

HAYATO MORIMURA, NICOLO SIBILLA, AND PENG ZHOU

ABsTRACT. We prove one direction of homological mirror symmetry for complete intersections
in algebraic tori, in all dimensions. The mirror geometry is not a space but a LG model, i.e. a
pair given by a space and a regular function. We show that the Fukaya category of the complete
intersection is equivalent to the category of matrix factorizations of the LG pair. Our approach
yields new results also in the hypersurface setting, which was treated earlier by Gammage and
Shende. Our argument depends on breaking down the complete intersection into smaller more
manageable pieces, i.e. finite covers of products of higher dimensional pairs-of-pants, thus
implementing a program first suggested by Seidel.

1. INTRODUCTION

Mirror symmetry is a mysterious duality discovered by string theorists in the *80-s. It as-
serts that string theory backgrounds should come in pairs (called mirror partners) that, despite
having different geometric properties, give rise to the same physics. To the untrained eye mir-
ror partners might look nothing alike, but string theory predicts the existence of an intricate
dictionary allowing to transfer geometric information across between them. Roughly, complex
geometric information on a space is encoded as symplectic data on its mirror partner, and vice
versa. Since the early 90-s, mathematicians have made various attempts to distill the geomet-
ric meaning of mirror symmetry. Homological Mirror Symmetry (HMS) is one of the most
influential mathematical formulations of mirror symmetry. It posits that mirror symmetry is, at
bottom, an equivalence of categories. HMS was first proposed by Kontsevich in 1994 and it
is still, thirty years on, the focus on intense research. It is fundamental, in the sense that it is
expected to encompass most other mathematical formulations of mirror symmetry.

According to HMS if X and X’ are mirror partners the derived category of coherent sheaves
of X should be equivalent to the Fukaya category of X’, and vice versa. The derived category is
a repository of algebraic information. The objects living inside it include, for instance, vector
bundles and the structure sheaves of subvarieties of X. The Fukaya category is a highly so-
phisticated symplectic invariant, which captures the quantum intersection theory of Lagrangian
submanifolds of X’. The original formulation of HMS requires the mirror partners X and X’
to be compact Calabi—Yau (CY) varieties, and under these assumptions it has been established
in many important cases, starting with [PZ98] [Sei03] [Shel5]. However HMS has also been
generalized to wider non-proper and non-CY settings. This requires readjusting the nature of
the objects involved in the equivalence. In this article we contribute to this line of research by
studying HMS for a particularly interesting class of non-compact symplectic manifolds.

We prove one direction of HMS for complete intersections in algebraic tori, in all dimen-
sions. We adopt the formulation of HMS for complete intersections proposed in [AAK16],
see also [GKR17]. We remark that the other direction of HMS for complete intersections was
proved in [AA]. The mirror geometry is not a space but a LG model, i.e. a pair given by a
space and a regular function. Our proof follows by implementing an algorithm that allows us to
break down the complexity of complicated symplectic manifolds into small computable pieces,
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and that ultimately goes back to ideas of Seidel [Seil0]. The key input is given by recent ad-
vances in the study of the Fukaya category, which reveal its hidden local nature, at least for
non-compact symplectic manifolds. We will briefly review this story in the next section.

1.1. Fukaya categories and locality. The Fukaya category of a symplectic manifold M was
introduced by Fukaya [Fuk93]. It is a highly non-trivial symplectic invariant. Providing ad-
equate foundations for the theory in the general setting is delicate, and this has been accom-
plished only relatively recently by Fukaya and his collaborators [FOOO1, FOOO?2]. In fact, the
Fukaya category is not quite a category: it is an A.-category. In an A -category the composi-
tion of morphisms is associative only up to homotopy, and homotopies are themselves just the
first layer in an infinite tower of higher composition laws. Roughly, the objects of the Fukaya
category of M are Lagrangian submanifolds, while the Hom space between two Lagrangians is
the linear span of their intersection points. The actual picture is much more complicated: for in-
stance, as Lagrangians intersect in finitely many points only under transversality assumptions,
all these data are well defined only up to appropriate choices of perturbations.

The higher A.-operations in the Fukaya category are controlled by counts of pseudoholo-
morphic disks with Lagrangian boundary conditions. This is the source of some of the biggest
challenges in the theory. In particular, pseudo-holomorphic disks are non-local in nature, so
higher operations in the Fukaya category depend on the global geometry of the manifold. This
is in sharp contrast with the derived category of coherent sheaves, that satisfies descent with
respect to the analytic topology and most other Grothendieck topologies commonly used in
algebraic geometry. Around 2010 however, two new paradigms emerged suggesting that under
favourable assumptions the Fukaya category should also exhibit a good local-to-global be-
haviour. The computational payofts would be tremendous, as complicated global computations
would be reduced to more manageable local ones. The first of these approaches breaks down a
Liouville manifold into pieces called Liouville sectors; while the second, which originated with
Seidel [Seil0], relies on the availability of higher dimensional pants decompositions. These
two point of views are subtly different, and rely on somewhat distinct sets of assumptions. As
we will show, in the setting of symplectic submanifolds of (C*)" they turn out to give com-
patible pictures of the locality of the Fukaya category. In fact, this is one of the key inputs in
our argument. Before explaining our results in greater detail, let us briefly explain these two
stories.

The Fukaya category was long expected to be a kind of quantization of the symplectic mani-
fold. A precise proposal was made in the influential paper of Kapustin—Witten [KWO07], where
the authors model the Fukaya category of a holomorphic cotangent bundle in terms of D-
modules over the base. Motivated by this and by earlier work of Fukaya, Nadler—Zaslow show
that the (infinitesimally wrapped) Fukaya category of a cotangent bundle 77X is equivalent
to the category of contructible sheaves over X (which is assumed to be an analytic manifold)
[NZ09]. Via microlocalization, the category of constructible sheaves sheafifies over 7*X. This
implies, in particular, that the Fukaya category of cotangent bundles displays suprisingly good
local-to-global properties. An extension of this picture to Weinstein manifolds was later pro-
posed by Kontsevich [Kon09]. Cotangent bundles are exact: the standard symplectic form
admits a primitive, called a Liouville 1-form. Weinstein manifolds are a class of exact symplec-
tic manifolds satisfying some extra regularity assumptions on the Liouvillel-form. Weinstein
manifolds retract to an exact Lagrangian core, called the skeleton which is a kind of general-
ized zero section with singularities. Kontsevich conjectured that the wrapped Fukaya category
localizes on the skeleton. That is, it defines a (co)sheaf of categories whose global sections
recover the wrapped Fukaya category, and whose local sections are in many cases easily com-
putable. This line of research has been intensely pursued in the last ten years, and we now have
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a robust theory of the local behaviour of the Fukaya category in this setting. The state-of-the-
art is provided by a series of works by Ganatra—Pardon—Shende [GPS1, GPS2, GPS3], one of
whose main results is a complete descent package for the Fukaya category relative to a class of
covers of Weinstein manifolds called Weinstein sectors.

This point of view has had numerous applications to HMS, starting from [Kon09] [STZ14]
[DK18]. In [GS1], Gammage—Shende use this framework to prove HMS for hypersurfaces in
(C*)V. In this paper we study HMS for all complete intersections in (C*)V, but our approach
differs from Gammage—Shende already in the hypersurface case, and yields more general re-
sults. Our methods combine sectorial descent and a different locality with respect to pants
decompositions, that was first suggested by Seidel, and that we explain next.

Pants decompositions have long played a central role in understanding the topology of com-
plex curves. Higher dimensional pants decompositions were studied by Mikhalkin in [Mik04].
A higher dimensional pair-of-pants is the complement of N + 2 generic hyperplanes in PV,
Mikhalkin proves that hypersurfaces in (C*)"¥ admit a higher dimensional pants decomposi-
tion. Mikhalkin’s result is formulated in purely topological terms but, as he points out, it can
be upgraded so as to be compatible with the natural symplectic structures. Mikhalkin’s work
has had many applications in HMS, and it plays for instance an important role in [Shel5].
Higher dimensional pants decompositions exist in more general settings, and sometimes also
for compact varieties: for instance, hypersurfaces in abelian varieties admit pants decomposi-
tions. Seidel suggested that when such a decomposition exists, pairs-of-pants should provide
the building blocks of the global Floer theory of the manifold. In particular, the Fukaya cate-
gory should be expressible as a limit of the Fukaya category of the pairs-of-pants making up
the decomposition. It is important to stress that this provides a very different kind of local-to-
global principle for the Fukaya category. Pants are very different from the Liouville/Weinstein
sectors underpinning the locality on the skeleton which we have described above.

Remarkably the locality of the Fukaya category with respect to pants decomposition is ex-
pected to match neatly, under mirror symmetry, Zariski descent on the mirror category. This
opens the way to implement divide-and-conquer algorithms in HMS, reducing a difficult global
mirror symmetry statement to a much more computable local one. Up to now, there have been
only a few attempts to implement rigorously Seidel’s proposal. One instance was the beautiful
paper of Lee [Leel6] that proves Hori-Vafa HMS for curves in (C*)?. The same result was
proved independently, and with very different methods by Pascaleft and the second author in
[PS1], with follow-ups in the compact setting in [PS2] [PS3].

Since [PS1] serves as the blueprint for some of the key arguments in this paper, it is worth-
while to review its main ideas here. The critical point is exactly the interplay between the two
regimes of locality. In [PS1] the authors work within the framework of microlocal sheaves
on skeleta. Thus, sectorial descent is built in their underlying theory. They show that secto-
rial descent, supplemented with a local calculation, implies the seemingly very different Seidel
type localization on pants. Proving this involves setting up a recursion which builds up the
Riemann surface in a step-by-step fashion, by gluing together the pants making up the pants
decomposition. Crucially, at each step the Weinstein structure of the surface is modified so as
to be adapted to the gluing. Geometrically, this means deforming the skeleton in such a way
that some of its components are pushed towards the portions on the boundary along which the
gluing is taking place.

The vertices of the diagram implementing Seidel’s locality are the Fukaya categories of the
pairs-of-pants and of their intersections. The latter, in the surface case, are isomorphic to sym-
plectic annuli. The arrows are Viterbo restrictions. The claim is that the limit of this diagram
of categories is equivalent to the wrapped Fukaya category. Geometrically, the Seidel type lo-
calization is a mechanism that allows to glue skeleta along a common closed subskeleton, on
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the condition that the latter lies in a separating contact hypersurface. So it can be rephrased as
a kind of descent for the wrapped Fukaya category with respect to closed covers of the skele-
ton, subject to appropriate assumptions. Sectorial descent, on the other hand, captures a more
straightforward descent of the wrapped Fukaya category with respect to open covers of the
skeleton.

In this paper, we adapt this strategy to the higher dimensional case. We recover Gammage—
Shende’s result on HMS for hypersurfaces in (C*)" in a more general form, as we remove
all assumptions on the triangulation of the associated Newton polytope. Our methods extend
to give a proof of HMS for complete intersections in (C*)N. We remark that extending the
approach of Gammage—Shende to complete intersections is unfeasible with current technology.
Their argument requires controlling the global skeleton of the Weinstein manifolds, which is
not known with current methods in the case of complete intersections. Our approach bypasses
this delicate issue, as it depends on constructing only smaller local pieces of the skeleton near
the place where the gluing is taking place. As such it provides an algorithm for proving HMS
that has potential to be applicable in more general settings beyond the one we consider in this
article.

We explain our main results and the structure of the paper next.

1.2. Main results. Hypersurfaces. Let T = Mﬂg/z = M /M" be areal (d + 1)-dimensional
torus with cocharacter lattice M. Let M be the character lattice of 7. We denote by Tc the
associated complex torus. Let H C T/, be a hypersurface cut out by the Laurent polynomial

W:TE—>C, x> anx"
acA

where A C M" is a finite set of monomials. The hypersurface H is a closed subvariety of T/, and
is thereofore naturally Weinstein. An adapted triangulation 7 of the convex hull Conv(A) of A
is, by definition, a triangulation arising as the corner locus of a convex piecewise linear function.
These data determine a tropical hypersurface Il in My, the tropicalization of H, and equip H
with a higher-dimensional pair-of-pants decomposition. As an abstract topological space, I1 is
a homeomorphic to the dual intersection complex of the pair-of-pants decomposition of H.

The mirror of H is a (d + 2)-dimensional toric LG model. Let Y be the noncompact toric
variety associated with the fan

Xy = Cone(—7 X {1}) c My xR

Via the usual toric dictionary, the map of fans induced by the projection My xR — R determines
a regular funtion Wy : Y — C. On this side of the mirror correspondence, the tropicalization
IT of H is naturally identified with the image of the singular locus of W;'(0) under the moment
map.

Theorem A. There is an equivalence of categories
Fuk(H) ~ MF(Y, Wy)

Let us outline the argument. Both side of the equivalence are local in nature. The key is
that, as we explained, the manifold H carries a pants decomposition, and therefore its wrapped
Fukaya category can be built out of the local Fukaya categories of the individual pants P.
Although our proof of this fact is remarkably simple, it relies in a crucial way on the machinery
developed by Ganatra—Pardon—Shende. The locality of MF(Y, Wy) is straightforward. Indeed,
the category of matrix factorizations satisfies Zariski descent. As Y is smooth, it has a canonical
toric open cover by affine spaces. Further the restriction of Wy on each patch coincides, up to
coordinates change, with the standard superpotential

Yioo Va2 AT - Al
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Our argument involves two steps. The first consists in establishing the local equivalence
(1.1) Fuk(P) ~ MF(A"2, y; - - ya.2)

This was proved by Nadler in [Nad] using an alternative model for the B-side category. Recall
that, by a theorem of Orlov, there is an equivalence

MF(A™2 y; ... y42) = Coh({y; - - yas1 = O})z,

where the latter is the Z,-folding of the ordinary category of coherent sheaves. Nadler describes
a family of Weinstein structures on P depending on the choice of a leg of P. The corresponding
skeleton has non-trivial intersections with all the legs of P, except with the chosen one. Nadler
computes the Fukaya category in terms of microlocal sheaves on the skeleton, and proves in
this way that Fuk(P) is equivalent to Coh({y; - - - yz+1 = 0})z,. The choice of skeleton collapses
the natural S;,,-symmetry of the pair-of-pants to the smaller S,,;-symmetry of the skeleton.
This matches the S, -action on Coh({y; - - - y4+1 = 0})z, by permutation of coordinates, which
is also the residue of the richer S;,,-symmetry of

ME(A* 2, y1 -+ ya40)

For our purposes, we need to restore the complete S,,,-symmetry of the problem which re-
mains hidden in Nadler’s formulation. The locality of the two mirror categories is neatly en-
coded in the combinatorics of the tropicalization II. Both Fuk(H) and MF(Y, Wy) define in
a natural way two constructible sheaves of categories over I, where Il is equipped with its
natural stratification. The final globalization step consists in noticing that as the local sections
and local restrictions of these two sheaves match, their global sections must also be equivalent.
This is the content of Theorem A.

1.3. Main results. Complete intersections. Let us describe next the complete intersection
setting. The underlying toric geometry is a simple extension of the ideas entering in the hy-
persurface setting, so we will give a somewhat abbreviated treatment of this story and refer the
reader to the main text for full details. We keep the notations from the previous section.
Consider hypersurfaces Hy, ..., H, C T in general position, cut out by Laurent polynomials

Wi,...,W,: T, > C, x> anx”

(IEA[
By the genericity assumption, they meet transversely in a subvariety of dimension n — r
H=H Nn---NnH, CT,

The subvariety H carries a natural Weinstein structure. We form a total superpotential Wy by
adding an extra factor C” with coordinates uy, ..., u,

Wa=uyWy+---+u,W,: T\ xC > C

Note that H can be recovered as the critical locus of Wy.
The Newton polytope of Wy is the convex hull of

A=|J-Aix{e)c My xR’
where ey, ..., e, is the standard basis of R". A choice of adapted triangulations of the convex

polytopes Conv(A;) C My determines a triangulation T of Conv(A). Following [AAK16], the
mirror of H is the higher dimensional LG model determined by T. More precisely, let

ZYCMI&/XR"
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be the fan corresponding to T, and let Y be the noncompact (d + r + 1)-dimensional toric variety
associated with £y. The fan Xy admits r projections to R, and the sum of the corresponding
monomials induces a regular function Wy on Y. The mirror of H is the LG model (Y, Wy).

Theorem B. There is an equivalence of categories
Fuk(H) ~ MF(Y, Wy)

The proof strategy follows the pattern of the hypersurface case, but there are some features
which are specific to the complete intersection setting which are worth highlighting. Strictly
speaking, complete intersections do not admit a higher dimensional pair-of-pants decomposi-
tion. Rather, generic intersections of pants are locally isomorphic to (finite covers of) products
of lower dimensional pairs-of-pants. The appearance of finite covers cannot be avoided, how-
ever it is easily controlled. For clarity, in this introduction, we shall ignore this issue. Via the
Kiinneth formula for the wrapped Fukaya category, the Fukaya category of H is thus locally
equivalent to the tensor product of the Fukaya categories of the factors, i.e. lower dimensional
pairs-of-pants. This is matched, on the B-side, by the Zariski local behaviour of MF(Y, Wy).

On each affine toric open subset of Y, the superpotential Wy can be written as a sum of
monomials. Preygel’s Thom-Sebastiani theorem implies that, locally, the category of matrix
factorizations factors as a tensor product of matrix factorizations of lower dimensional super-
potentials. Thus, in the complete intersection case, the local HMS equivalence is just a tensor
product of the fundamental local equivalences

Fuk(P) ~ ME(A"?, v - y442)

underpinning the hypersurface case. The globalization step follows along exactly parallel lines
as in the hypersurface case.

As we have already remarked, our methods allow us to give a description of the Fukaya cat-
egory of H bypassing the difficult task of describing a global skeleton. The explicit calculation
of the skeleton is, in contrast, a key input in the approach of Gammage—Shende in the hypersur-
face case. We obviate the absence of a computable model of the global skeleton by setting up
a recursion that builds the complicated global symplectic geometry of H out of simple pieces
amenable to computation: products of lower dimensional pants, and their finite covers. This
is a mild generalization of the set-up originally envisioned by Seidel in terms of pants decom-
positions. This allows us to get away with building skeleta, or rather Weinstein structures, for
these local pieces only. This extra flexibility crucially relies on the invariance of the wrapped
Fukaya category under Liouville homotopy, which allows us to engineer Weinstein structures
with good properties near a boundary where local pieces are glued together.

Our methods and results open the way to several potential directions for future investiga-
tions. We limit ourselves to mention one, which we intend to pursue in future work. In this
paper we espouse the viewpoint on HMS for complete intersections proposed in [AAK16].
There is however another important model for mirror symmetry for complete intersections in
toric ambient varieties, which was developed by Batyrev—Borisov in [BB96]. That framework
encompasses both the non-compact regime where the ambient manifold is a torus (which is the
setting we work in this article), and its toric compactifications. In future work we will explore
in which ways our methods can be used to obtain Batyrev—Borisov type HMS for complete
intersections.

Acknowledgements: Some of the key inputs in this article are generalizations of ideas that

were developed in joint work by the second author with James Pascaleff. Over the years,
the second author has benefited from countless discussions with James that have shaped his
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understanding of the Fukaya category and mirror symmetry. We want thank James for his
generosity in sharing his ideas, and for his encouragement and interest in this project.

2. ReviEw oN HMS FOR PAIRS OF PANTS

In this section, we review HMS for pairs of pants established by Nadler in [Nad]. This gives
local equivalences which we glue to yiled HMS for hypersurfaces in an algebraic torus. Also,
thorough understanding of such local equivalences plays an important role when working in
the complete intersection setting.

2.1. Tailored pants. Let T9*' = (R/2nZ)%*! be the real torus with coordinates 6 = (6, ..., 641).
Fix the usual identification T*T%*!" = T%! x R¥! with canonical coordinates (6, &) for & =
(&1, ...,&4:1). The symplectic manifold T*T9*! carries the standard Liouville structure

d+1 d+1

Qg1 = Zfidei, Was1 = Zdé:i A db;
i=1 i=1

whose skeleton is the zero section 79+ ¢ T*T?*!, The self-action of 74! lifts to a Hamiltonian
action on T*T%*! with the moment map

pavr: T"TT - Lie(T™)" = R™!, (0,6 o &

Taking its squared length, one obtains a Weinstein manifold (T*T%!, a1, |uas1|*). Note that
the function |ug,|* is Morse-Bott.
Fix the identification 7*7T%!" = Td*' = (C)**! with coordinates x = (xi,...,x4) via

x; = €57 V=16 Then py,, transports to the log projection
Log,, : T¢" - R x5 (loglxil, ..., log |xs.1]).
Definition 2.1. The d-dimensional standard pair of pants is a complex hypersurface
Py={1+x ++x4 =0} c T

We regard P, as an exact symplectic manifold equipped with the restricted standard Liouville
structure. Via the open embedding 72" < P4 = Proj Clx, X1, . .., X411] the pants P, maps
to the complement of

d+1
| Jdhxo + 21 + -+ + x40 = 0} 0 {x; = O
i=0

in the hyperplane {xy + x; + -+ + x4.1 =0} C Pé”. Hence the symmetric group S,,, naturally
acts on P, by permutation of the homogeneous coordinates.

Lemma 2.2 ([Mik04, Proposition 4.6]). There is a S;,,-equivariant isotopy of Liouville sub-
manifolds of Té” Sfrom Py to (Pg,ap, = ay1lp,) with the following properties:

e The isotopy is constant inside Log;il (A4(R)) for some constant 0 < R with

d+1

AdR) = e R |=R<&,...,-R< &1, ) & <R
i=1

o We have the inductive compatibility
Lyas1(K) = Py N Té;il(K) = Py x Ch, (K)
for some constant 0 < K, where

Cui1(K) = {x41 € C" |log|xg11] < =K}, Téfdil(K) = {x € T |log |x41| < —K}.
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Note that P, coincides with P, inside Log;}rl(Ad(R)). The S,;4,-action implies similar com-
patibilities in other directions. Namely, we have the inductive compatibility
Lyi(K) = Py TE(K) = Pany X CH(K),
for some constant 0 <« K and fixedi = 1,...,d, where
Ci(K) = {x; € C" [loglx)| < =K}, T (K) = {x € T& |log|x| < =K}

Definition 2.3. We call the Liouville manifold (P, a5 ) the d-dimensional tailored pants. We
call the open Liouville submanifold L;;(K) the i-th leg of (P, ap ). The (d + 2)-th leg of
(Py, ap,) is the remaining open Liouville submanifold with respect to the ©4,,-action, which
corresponds to the positive diagonal direction in R**!,

In order to provide P, with particularly simple skeleton, Nadler broke symmetry and applied
a natural isotopy to its Liouville structure. Consider the translated Liouville structure

d+1 d+1

2.1) @y = ) &+ Db,y = ) dE+ D) Ad; = wgi
i=1 i=1

on Té“ for some constant 0 << /.

Definition 2.4. We call the Weinstein structure given by a triple
(pd’ﬁpd = ai]+]|1~3’,/’ 2?:]1 (log |xi| + l)z)

Nadler’s Weinstein structure. We write Core(P,) for its skeleton. We call the (d + 2)-th leg of
P, equipped with Nadler’s Weinstein structure the final leg.

Remark 2.5. All the legs but the final remain symmetric under the ©,,,-action.

For a proper subset I C {1,...,d + 1} let
A(D) ={xeP;n T{é:}) | log|xi| = =l fori € I, log|x;| > —I for j € I}
be the relatively open subsimplex of the closed simplex

Ay(l) = {x € Pyn T | log x| > —1).

<

We denote by 9,(/) the barycenter
{xe Pyn T | loglxi| = —Ifori €I, loglx,| = loglx;| > —Ifor j, j € I}

<

of the subsimplex A,(l).

Lemma 2.6 ([Nad, Theorem 5.13]). Fora subsetI c {1,...,d+1}let T' c T4 be the subtorus
defined by 0; = 0,i € I°. Then we have

Core(P,) = U T A/(D).
I¢{1,...d+1}

Proof. The original proof uses induction on d. The case d = 0 is obvious. Whend = 1, a
nonempty proper subset I C {1,...,d+ 1} is either {1} or {2}. On 6;(!) = A;(I) the Liouville form
Bp, vanishes and their stable manifolds are isomorphic to T o) = T Ayy(D). From [Mik04,
Corollary 4.4, 4.5, Proposition 4.6] it follows that the critical locus Crit(Z*!(log |x;| + 1)*)
coincides with P; N T]g:ol. In particular, since P, is Weinstein, P, N Tfé:ol contains the zero
locus Z(Bp,). The negative real points P;n Tﬁéjol is a Lagrangian as d6; vanishes there and the
Liouville flow on 2, N Tﬂgjo] attracts the points to a point 6¢(/). Hence, aside T* - A;(I), only the

stable manifold 7% - Ay(1) of T° - 54(I) contributes to Core(P,). For general d, combine the same
argument and the inductive compatibility from Lemma 2.2. O
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2.2. Microlocal interpretation. Next, we review the geometry of Core(P,). The action of the
diagonal circle Ti C T9*! by translation lifts to a Hamiltonian action with the moment map

d+1
pa: T'T™ SR, 0,6 - ) &
i=1

Distinguishing the final coordinate 6,,, on T¢*!, we identify the quotient T = T“*! /T with T¢
via [0] > (81 =041, . . ., 04— 04:1). Denoting by t the dual of Lie(T?) = {¢ € R™!| 27! & = 0},
we identify 7*T¢ with T¢ x t’. The product conic Lagrangian

Agir = (AD)™ ' (Ryp) € T*TH!
1s transverse to ,u;l()() for y > 0, where
A =1{6,0) 10 THU{(0,8)E€Ry) c T xR = T*T.

Consider the twisted Hamiltonian reduction correspondence
d+1
ax

T*Td+1 <> ,Ll;l(/\/) — {(0,5) c T*Td+1| Zégl :X} ﬁ))() T*Td
i=1

where g, is the canonical inclusion and p, is the translated projection

P ((0,8) = ([0,&1 — x> . »€ae1 — X)» X = x/(d + 1).
For a proper subset 7 C {1,...,d + 1} let
d+1

00 = E RGN &1, 01 20,) &= x)
i=1

[1]:

be the closed subsimplex. The map p, restricts to an isomorphism
1300 N Agir = 121 Ba00) = 4= py(g, (Ags)-
Let Z,(v) = Z4(x) N o be the relatively open subsimplex with
or={EeRG & =0Foriel, &> 0forje Y.

From fiz.1(Age1) = Rso)™ it follows ! (€) N Ay = T for € € o and p, restricts to an
isomorphism Jc(y. i1y T X Z,(y) = £4. Hence we obtain an identification of subspaces

Q= U T! X Z;(¢) € T¢ x t} = T*T,
IC{1,....d+1}

where T/ C T¢ are isomorphic images of 77 under the quotient and
d+1

Ei(0) = (€ e RGN &= —pforiel, &> —gforjel’, ) &=0)
i=1

are isomorphic images of =;(y) under translation by ¥.

The symplectic geometry of a certain open neighborhood of Core(P,) in P, is equivalent to
that of the associated open neighborhood of £, in T*T¢.

Lemma 2.7 ([Nad, Theorem 5.13]). There is an open neighborhood U, c P, of Core(P,) with

an open symplectic embedding i: Uy — T*T“ which makes the diagram

Uq U, =i(Uy)

Core(P,) L,
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commute, where the vertical arrows are the canonical inclusions.

Proof. Let Uj be a sufficiently small open neighborhood of A,(/) in P,. By the inductive
compatibility from Lemma 2.2, near A;(l) for @ # I € {1,...,d + 1} the functions log |x;|,i € 1
define a local coisotropic foliation of Uj. If I’ ¢ {1, d + 1} contains /, then the foliation
defined by log |x;|,i € I’ refines that deﬁned by log |x;|, i € I. Let U}, be a sufficiently small open
neighborhood of Z,(y) in TTY. Near Z;(y) for @ # I ¢ {1,...,d + 1} the functions &,i € I
define a local coisotropic foliation of U. If I’ ¢ {1,...,d + 1} contains /, then the foliation
defined by &;,i € I’ refines that defined by &;,i € 1.

The neighborhoods U;; and I, are symplectomorphic to the cotangent bundles of their La-
grangians USNTEE and 11° Nty Hence one finds a symplectomorphism {*: U; — I restricting

R<0

toa diffeomorphlsm u;n Tﬂ‘é:}) — U° Nt} and an isomorphism Ay(l) — E4(x), which is compat-

ible with the above local coisotropic fohatlons. Choose a sufficiently small open neighborhood
U; of Ai(l) in U for each I C {1,...,d + 1}. We denote by 7 the open neighborhood {°(U;)

of Z;(y). Then
= U rmuow= | T

I¢{1,...,d+1} I¢{1,...,d+1}

are respectively open neighborhoods of Core(P,), £,. Since the matched local coisotropic fo-
liations correspond to the moment maps for the Hamiltonian actions of T/, T/, the symplecto-
morphism j° canonically extends to j: U, — U,. O

On U, there are two Liouville forms @zsy«|y, and B4 = GHYBp - When y = x/(d+1)€eZ
the function

d+1

A 00N Ap = T, (0,6 D (& +Db
i=1

is invariant under the T&—action and descends to an integral structure f: €, — T' [Nad, Defi-
nition 5.17(1)]. By [Nad, Remark 5.18(1)] the graph I'g, _; of —f gives a Legendrian lift of £,
to the circular contactification

(Nas A4g) = Uy X T, @pogaly, + db).

Since we have S4.1lg, = 0, the Lagrangian £, is exact [Nad, Definition 5.17(2)]. By [Nad,
Definition 5.18(2)] the zero section £, X {0} gives a Legendrian lift of £, to the circular contac-
tification

(N ) = Uy X T, Baey + di).
The contact geometry of (Ng, A4) near I'g, _ is equivalent to that of (N, A) near £, X {0}.
Lemma 2.8 ([Nad, Section 5.3]). There is a contactomorphism
G: (Na, A2) = (Ny, A, (101, 8), 1) & (([0], ). 1 + g([6],£))

which makes the diagram

Ny N

.

Lo, - — 24 x {0}

commute, where the vertical arrows are the canonical inclusions.
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Proof. The difference ar«ra|ly, — Ba+1 1s closed and integral, as we have B4.1l¢, = 0. Since the
inclusion £, C 1, is a homotopy equivalence, there is a unique function g: ; — T such that
dg = ar-raly, — Ba+1 With normalization glg, = f. Then one obtains the desired map from [Nad,
Remark 5.16]. O

We denote by QF | € S*T4! = (T*T*!'\ T**") /R, and A5, the spherical projectivizations
of the open conic subset Qu.1 = py'(Rs9) € T*T9*! and the Lagrangian A4,;. The projection
Qi1 = Q= Qui1 /R, induces a contactomorphism from ' (y) to Q5 . Let §: T4 — T

be the diagonal character. By [Nad, Lemma 5.19] the map
d+1

(P8 Q5 = 3100 = TTXT!, (0,6 - (0161 = %o €41 =0, ) 00
i=1

defines a finite contact cover for y = d + 1. The cover is trivializable over (Vy, 4,;) with a

canonical section s: N; — Q7 | satisfying s(I'e, _r) = A7 ,.
The contact geometry of (Ng, ;) near I'g, _ is equivalent to that of Q7 | near A7 ,.

(o)

Lemma 2.9 ([Nad, Lemma 5.19]). There is an open contactomorphism s: (Ng, 4q) — Q3

which makes the diagram

Ny — s(Ny)

L]

~ [
ri?d,—f - Aa’+1

commute, where the vertical arrows are the canonical inclusions.

Consider the symplectization P, x T' x R of the circular contactification (P; X T, By.1 +
dt) whose Liouville form is given by e'(84; + dt). The skeleton Core(P,) c P, lifts to the
Legendrian submanifold Core(P,) x {0} ¢ P, x T', which in turn lifts to a conic Lagrangian
Core(P;) x {0} x R ¢ P, x T' x R along the canonical projections. Note that the contact
geometry of a cooriented contact manifold is equivalent to the conic symplectic geometry of its
symplectization. In particular, taking the inverse image under the canonical projection induces
a bijection from subspaces of the contact manifold to conic subspaces of its symplectization.

The symplectic geometry of the open neighborhood Uy x T' x R of Core(P;) X {0} x R in
P, xT'xRis equivalent to that of the open neighborhood s(N;) X R of Agy1 N Quyq in Qpyy.

Theorem 2.10 ([Nad, Theorem 5.23]). There is an open symplectomorphism Uy X T' X R <
Q1 which makes the diagram

U XT' X R— Qg
Core(P,) X {0} X R —— Ay N Qusy
commute, where the vertical arrows are the canonical inclusions.
Proof. The restriction of { from Lemma 2.7 induces a symplectomorphism
U/ XxT'xR - U;xT!' xR

which sends Core(P,) x {0} X R to €, x {0} x R. The inverse of the contactomorphism G from
Lemma 2.8 induces a symplectomorphism

(N, ADXR=U;xT'XR = Uy x T X R = (Ny, Ag) X R
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which sends £, X {0} x R to I'g, _s x R. The contactomorphism s from Lemma 2.9 induces a
symplectomorphism

(NpyA)XR=U; xT' xR - sQU; x T xR = s(Ny) xR

which sends I'g, _r X R to Agy N Q4. Note that the symplectization of Q7 is isomorphic to

Qu.1, as Qu,q does not intersect the zero section 79+!. O

2.3. A-side category. Let Z be a real analytic manifold over C. We denote by Sh°(Z) the
cocomplete dg category of large constructible sheaves on Z. Recall that a large constructible
sheaf % on Z is a complex of C-vector space on Z for which there exists a Whitney stratification
S = {Z,} of Z such that H'(F|,) are locally constant for all i. We denote by Sh§(Z) c Sh°(2)
the full dg subcategory of such sheaves, called large S-constructible sheaves.

Fix a point (z,&) € T*Z. Let B C Z be a sufficiently small open ball around z € Z and
f: B — R a compatible test function, i.e., a smooth function with f(z) = 0 and df|, = &.
Consider the vanishing cycle functor

¢f§ Sho(Z) i MOd(C), F Ffz()(B, ﬁ|3)

Definition 2.11. The microsupport ss(%) C T*Z of .# € Sh®(Z) is the largest closed subset
with ¢ () = 0 for any (z,¢) € T*Z \ ss(.#) and its compatible test function f.

Definition 2.12. For a conic Lagrangian A C T*Z, we denote by Sh}(Z) c Sh®(Z) the full dg
subcategory of large constructible sheaves with microsupport in A.

Given a closed embedding A C A’ of conic Lagrangians, there is a full embedding Sh}(Z) —
Sh},(Z). Note that the microsupport is a closed conic Lagrangian.

Remark 2.13. Let —A C T*Z be the antipodal conic Lagrangian and w; the Verdier dualizing
complex. There is an involutive equivalence

D;: Sh}(Z2)”” — Sh’,(Z), ¥ — Hom(Z, wy)
defined by Verdier duality.

Definition 2.14. For a closed conic Lagrangian A € T*Z and an open conic subspace Q C T*Z,
we define the dg category uSh{ () of large microlocal sheaves on Q supported along A as the
Verdier localization

uSh}(Q) = ShXU(T*Z\Q)(Z)/ Sh§*Z\Q(Z).
Given an inclusion Q c Q' of open conic subspaces of 7*Z, there is a restriction functor
Pacar: MSh{(Q) — uShy (Q).

Lemma 2.15. The assignments Q + uSh{(Q) and (Q C Q') — pocor assemble into a sheaf
of dg categories supported along A. Moreover, there exists a Whitney stratification of A the
restriction of uShy to whose strata are locally constant.

Remark 2.16. One can check that uSh is conic, i.e., invariant under the cotangent scaling of
T*Z. Since the intersection of the microsupport and Z coincides with the support, #Shy is the
pushforward of a sheaf supported on A, which we also denote by uShj.

Given a closed embedding A C A’ of conic Lagrangians, there is a full embedding

IACA - /lSh[O\ — /lShf\, .
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Remark 2.17. For the antipodal conic Lagrangian —A C T*Z and the antipodal open conic
subspace —Q C T*Z, there is an involutive equivalence

D,: uShi () — uSh®,(-Q)
induced by Verdier duality.

Definition 2.18. For a closed conic Lagrangian A € T*Z and an open conic subspace Q C T*Z,
the category of wrapped microlocal sheaves on € supported along A is the full dg category
uSh, (Z) c uSh§(Z) of compact objects.

The restriction functor pgcq preserves products. Hence it admits a left adjoint which pre-
serves coproducts. Thus the restriction to compact objects yields a corestriction functor

Pocar: HShA(Q) — uSh, (Q).

Lemma 2.19 ([Nad, Proposition 3.16]). The assignments Q +— uSh, () and (Q C Q') — pgcg,
assemble into a cosheaf of dg categories supported along A. Moreover, there exists a Whitney
stratification of A the restriction of uSh, to whose strata are locally constant.

The full embedding ixcp- preserves products. Hence it admits a left adjoint which preserves
coproducts. The restriction to compact objects yields a Verdier localization

iheart uShy, — uSh, .

Definition 2.20. For a Liouville manifold H, we denote by Fuk(H) the ind-completion of the
wrapped Fukaya category of H.

Lemma 2.21 ([GPS3, Theorem 1.4]). Let H be a real analytic Weinstein manifold. For any
stable polarization of H, there is an equivalence

Fuk(H)” = Sh¢. . (Core(H)).

Remark 2.22 ([GPS3, Remark 1.2]). Due to the involutive equivalence from Remark 2.17, one
could equivalently negate Core(H) rather than passing to the opposite category of Fuk(H).

2.4. B-side category. For any stable dg category 4 we denote by %7, its folding, i.e., 67, is
the stable envelope of the Z,-dg category with the same objects as 4 whose morphism complex
for ¢y, ¢; € 67, is given by

Hom%ZZ (c1,02) = EB Hongn(cl, 2), Hom%ZZ (c1,02) = @ Hom?;“(cl, 2).
nez nez
For any stable Z,-dg category 4" we denote by %7 its unfurling, i.e., 65 is the 2-periodic dg
category with the same objects as 4 whose morphism complex for ¢y, ¢, € %)z is given by
Hom{,_(ci,¢;) = Homi(c1,¢2), n € Z - i € Z,.

The folding and unfurling define equivalences between stable Z,-dg categories and 2-periodic
dg categories.
Let AY*? = Spec R4 for Rgsa = Clyy, ..., yaral and Wayn = y1 -+ Va2 € Rasa-

Definition 2.23. A matrix factorization for the pair (A“*2, W,,») is given by the diagram

Vo Lyt Ly

where VO @ V! is a Z,-graded free R;,,-modules of finite rank and d, € Hom(V°, V'), d, €
HOI’Il(Vl, VO) satisfy dld() = Wd+2 . idVO, d()dl = Wd+2 . idvl . We denote by MF(Ad+2, Wd+2) the
Z,-dg category of the matrix factorizations for (A%*2, W,,,) with obvious morphisms.
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i . . .
Let 0", be the matrix factrization

d+2
Rivx — Ry 5 > Rasa

with W¢

oo = Wan/yifori=1,...,d+2.

Lemma 2.24 ([Nad, Proposition 2.1]). The Z,-dg category MF(AY*?, W,.,) is split-generated

by { é; " }"Jrl There are isomorphisms of Z,-graded C-modules

H* (Hom(_d+]’_d+])) Rd+2/(yi’ W[llurz)a 1<i<d+2,
H* (Hom(@w_dﬂ)) Rin/(iypl=1], 1 <i# j<d+2.

Remark 2.25. The matrix factorization Qd | belongs to the stable envelope of { Qﬁl R Ean

Let Y, = Spec R;;1/(W 1) be the union of the coordinate hyperplanes Y ; = Spec Ry /(yi), 1 <
i <d+ 1. We denote by ¢, the structure sheaf of Y7,

Lemma 2.26 ([Nad, Proposition 2.2]). The dg category Coh(Y,) is generated by {O'}*!. There
are isomorphisms of Z-graded C-modules

H*(Hom(ﬁl9 ﬁ;)) = Rd+1[u]/(yi’ qu.;.])’ 1 S l S d + 19
H'(Hom(6}, 0))) = Ryn /i y)I=11, 1< i # j<d+1,
where u is a variable of cohomological degree 2

Lemma 2.27 ([Orl04, Theorem 3.7]). Let Dy;,,(Y;) = Coh(Y,)/ Perf(Y,) be the 2-periodic dg
quotient category of singularities. Then there is an equivalence

MF(A%?, 1+ Yar2) = Diing(Ya),

1

WO L v Ly yoy o Coker(d)).

Lemma 2.28 ([Nad, Proposition 2.3]). Let w414 Yar1 — Y4 be the natural projection. Then
the pullback functor r, il Coh(Y,) — Coh(Y,1) induces an equivalence

Coh(Ys)z, = ME(A™?, y - - yai0)
which sends O to Qimfor 1<i<d+1andutoyy,.

2.5. Homological mirror symmetry. Let 7,,; be the category whose objects are subsets
I c {l,...,d + 1} and whose morphisms are given by inclusions. We denote by 7, the
full subcategory of proper subsets. For I € I, | we define A; as the product conic Lagrangian
(A)! c (T*T"). Consider the hyperbolic restriction

Micr = (prer)s(qier)' = Shy (T") — Sh} (T")

where p;cp: T'x[0, $)"\' — T"is the projection and g;c : T' %[0, )" — T” is the canonical
inclusion. Note that 7, is the product of hyperbolic restrictions in the coordinate directions
indexed by I’ \ I and the identity in the coordinate directions indexed by /. We denote by n; the
hyperbolic restriction with I’ = {1,...,d + 1}.

Lemma 2.29 ([Nad, Lemma 5.25, 5.26]). There is an equivalence
Sh} . (T“*") ~ IndCoh(A™*")
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which makes the diagram

ShY, (T*') — IndCoh(A”*")

mL l

Shy (T') ——— IndCoh(A")
commute, where
u: A =SpecCly; | i € Il — A™' = SpecClyy, ..., Vas1]
is the canonical inclusion of the subvariety defined by y; = 0 for j € I.
For I € I, we define Q; as the open conic subset
Q; =1{(0,6) e T'T™EHé > 0,€ # 0 for j € IF) € Q.

The collection {€;},c . forms an open conic cover of Q. satisfying Q,~, = Q; N Qp. Note
that we have Q; c Q; whenever I C I’. Let ** DG be the category of cocomplete dg categories
and functors which preserve colimits and compact objects. Consider a functor

pSh®: (I3, )7 =" DG, I - uShy (Q) = pShy, (Q)

which sends inclusions I C I’ to the restriction functors p,c; along the inclusions Q; C Q.
We denote by p; the restriction functor with I’ = {1,...,d + 1}. As ,uShf\ " forms a sheaf, the
canonical functor

pShy  (Qq.) = lim  uShy (Q))

I, )or
is an equivalence.
Theorem 2.30 ([Nad, Theorem 5.27]). There is an equivalence

uSh, (Quer) > IndCoh(¥,) = lim IndCoh(4')

which makes the diagram

pShS,, (Q4+1) —— IndCoh(Y,)

pShs, (©Q) —— IndCoh(A)

commute, where Ty is the canonical functor.

Proof. There is a natural isomorphism pShy ~ — Sh}  induced by ;. Indeed, 5, factors

through the microlocalization
S, (T*") - uShi, (@) 2> Sh} (T7)

and for inclusions I C I’ the diagrams

uShS, (@) —2~ShS (T")

Picr l L Micr

uSh, (@) —— Shi (T")

commute. Note that the hyperbolic restriction in the coordinate direction indexed by j € ¢
vanishes on sheaves whose microsupport does not intersect the locus {£; > 0} ¢ T*T*!. For
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each I € (I, ,)°" the functor #j; is an equivalence, since it admits an inverse induced by the
pushforward

Shy,(T") — Shy, (7))
along the inclusion 77 — T4+, O
Corollary 2.31 ([Nad, Corollary 5.28]). There is an equivalence
Fuk(P,)z, =~ uSh} . (Qus1)z, = MF®(A™?, 1 -+ yai0)
where MFX (A2 y, -+ y4.») is the ind-completion of MF(A%2, y, -+ - ya.2).

Proof. The first equivalence follows from Lemma 2.21. Taking compact objects of the equiva-
lence from Theorem 2.30 and passing to Z,-folding, one obtains the second equivalence from
Lemma 2.28. O

3. CriricAL LocI OF LANDAU—GINZBURG MODELS FOR VERY AFFINE HYPERSUFACES

In this section, following [AAK16, Section 3], we realize the mirror pair for very affine
hypersuface as critical loci of associated Landau—Ginzburg models. They give rise to fibrations
over the tropical hypersurface equipped with the canonical stratification.

3.1. Very affine hypersurfaces. Let T = My, = My /M" be areal (d + 1)-dimensional torus
with cocharacter lattice M". We denote by Tc = M. the associated complex torus. Taking
its dual, one obtains the complex torus Té = Mc- associated with TV = Mg,z = Mr/M whose
cocharacter lattice is M. We choose an inner product to identify 7T with 7*T" and regard
TS = TTY = T*T" as an exact symplectic manifold equipped with the standard Liouville
structure.

Definition 3.1. Let 7 be a triangulation of a lattice polytope AY c M. We call 7 adapted
if there is a convex piecewise function p: AY — R whose corner locus is 7. We call 7
unimodular if each cell is congruent to the standard (d + 1)-simplex A, ; under the GL(d+1, Z)-
action.

For a latiice polytope A C My, choose an adapted unimodular triangulation 7". We denote
by A the set of vertices of 7. In other words, 7 is the convex hull Conv(A) of A. The convex
piecewise function p: AY — R defines a Laurent polynomial

3.1) Wi TE = C, x o ) ot POy
a€A
in coordinates x = (x,..., X4+1) on Té, where ¢, € C* are arbitrary constants and # > 0 is a

tropicalization parameter.
Definition 3.2. For sufficiently general ¢ > 0 we call the hypersurface H, = W;(0) very affine.

Since ¢ is sufficiently general, a very affine hypersurface H, is smooth. Due to the above
choice of inner product, we may regard H, as a Liouville submanifold of T¢.

Definition 3.3. The amoeba I1, of H, is its image under Log,,, : T, — R4

Definition 3.4. The tropical hypersurface 11y associated with H, is the hypersurface defined by
the tropical polynomial

¢©: Mz — R, ¢(m) = max{{m,n) — p(n) |n € A"}.

Namely, Iy is the set of points where the maximum is achieved more than once.
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According to [Mik04, Corollary 6.4], when ¢t — oo the rescaled amoeba I,/ log ¢ converges
to Ilz. It is known that Ily is a deformation retract of II, for # > 0. Combinatorially, Iy
is the dual cell complex of 7. In particular, the set of connected components of R**! \ Tlx
bijectively corresponds to A according to which @ € A achieves the maximum of (m, @) — p(@)
for m € R%! \ I1s. Note that R+! \ TI, for # > 0 has the same combinatrics as R%*! \ IIs.

Remark 3.5. Each connected component of R**!\I1; is the locus where the monomial ¢, x?
becomes dominant.

In the sequel, we will fix a general ¢ > 0 and drop ¢ from the notation.

3.2. Landau-Ginzburg A-models for very affine hypersurfaces. For X = T} x C with co-
ordinates (x, u) = (xy,..., X441, 4), consider a Laurent polynomial

Wx: X - C, (x,u) » uW(x)
where W is the Laurent polynomial (3.1).

Definition 3.6. Let H C T be a very affine hypersurface defined by the Laurent polynomial
W from (3.1). We call the pair (X, Wx) the Landau—Ginzburg A-model for H.

Definition 3.7. The Newton polytope Ay, of Wy is the convex hull
Conv(0,—A" x {1}) ¢ My xR.

Remark 3.8. The polytope Ay admits an adapted unimodular star-shaped triangulation T
canonically induced by 7. Recall that a triangulation of Ay is star-shaped if all of its sim-
plices not contained in the boundary dAy share a common vertex 0 [GS1, Definition 3.3.1].

Lemma 3.9. The critical locus Crit(Wy) is given by {u = 0} N {W =0} C X.

Proof. Express the tangent map dWx of Wy as a vector (udW, W). Since H C T is smooth,
dW nowhere vanishes. Hence rank(dWy) = 0 if and only if u = 0 and W = 0. O

Remark 3.10. By Lemma 3.9 the projection pr;: X = T/ x C — T preserves Crit(Wy). Let
ret: IT — Il be the continuous map induced by the retraction. Then the composition

Logg. ret

(3.2) £1 H = Crit(Wy) & X =5 T =4 11 55 1,

gives the fibration from [Mik04, Theorem 1’]. Recall that k-th intersections of legs of a pair
of pants has torus factor of dimension k. Away from lower dimensional strata, the fiber over a
point in a k-stratum contains a real k-torus in the torus factor.

3.3. Landau-Ginzburg B-models for very affine hypersurfaces. Let Y be the noncompact
(d + 2)-dimensional toric variety associated with the fan

Yy = Cone(—7 X {1}) c My X R.

The primitive ray generators of Xy are the vectors of the form (-, 1) with @ € A. Such vectors
span a smooth cone of Xy if and only if @ span a cell of 7.
Dually, Y is associated with the noncompact moment polytope

Ay = {(m,u) € Mz X R | u > ¢(m)}.

The facets of Ay correspond to the maximal domains of linearity of ¢. Hence the irreducible
toric divisors of Y bijectively correspond to the connected components of R?*! \ TI5. In partic-
ular, the combinatrics of toric strata of Y can be read off 1ls.
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Remark 3.11. The noncompact polytope Ay is homeomorphic to the image of Y under the
composition

(3.3) Y - (Y)sg > Mg XR

of the map induced by retraction to the nonnegative real points with the restriction of negated
algebraic moment map.

Lemma 3.12. Let g: Mz X R — My be the natural projection. Then under q the union of
facets of Ay homeomorphically maps to M. Moreover, the union of codimension 2 faces of Ay
homeomorphically maps to 1ls.

Proof. By construction of Xy under g each facet of Ay homeomorphically maps to the maximal
domain of linearity of ¢ corresponding to the same @ € A. Any codimension 2 face of Ay
can be obtained as the intersection of two distinct facets. Hence g restricted to the union
of codimension 2 faces of Ay gives an injection to IIy. This is also surjective, as each full

dimensional face of Ily is adjacent to exactly two maximal domains of linearity. O
Foreacha = (ay,...,aq4 ) € AletY, = (C*)¥"'xC with coordinates y, = (a.1» - - - » Yauds 1> Va)s
where y, 1, ..., Yad+1, Ve are the monomials with weights

771 = (_1’()"- .,0,—61(1),.. -’nd+1 = (0,--~,0,_1,_ad+1),77d+2 = (0’~- -90’ 1) € MXZ‘
Their pairing with the monomial with weight (-, 1) € MY X Z yields 0, ..., 0, 1 respectively.

Lemma 3.13. The complex algebraic variety Y, is the affine open subset of Y associated with
the ray spanned by (—a, 1) € MY X Z.

Proof. Suppose that o € Zy(1) is the cone associated with the affine open subset Y, C Y. We
have

divEh) = Y (&mudDe, div(ve) = " (lasa, ) D,
geo(1) gea(l)

where u, are primitive ray generators of ¢ and Dy = O(é) are the closures of the orbits cor-
responding to £. Since y;‘l, ces yz,ld ., hever vanish on Y,, pairing of 7; with the primitive ray
generators in o must yield O for 1 < i < d + 1. On the other hand, pairing of 7., with the
primitive ray generators of o must yield 1. |

Due to the above lemma, Y,, covers the open stratum of ¥ and the open stratum of the irre-
ducible toric divisor corresponding to . If @, 8 € A are connected by an edge in 7, then we
glue Y, to Y with the coordinate transformations

Ya,i = V?_m)/ﬂ,i’ Vo = Vg, 1<i<d+1.

Thus the coordinate charts {Y,},c4 cover the complement in Y of the codimension more than 1
strata.

We may write v for v, as it does not depend on the choice of @ € A. Since the weight
(O, ...,0, 1) pairs nonnegatively with the primitive ray generators of Xy, the monomial v defines
a regular function on Y, which we denote by Wy.

Definition 3.14. Let H C T be a very affine hypersurface defined by the Laurent polynomial
W from (3.1). We call the pair (¥, Wy) the Landau—Ginzburg B-model for H.

Remark 3.15. The pair (Y, Wy) is a conjectural SYZ mirror to H [AAK16, Theorem 1.6].
The critical locus Crit(Wy) is the preimage of the codimension 2 strata of Ay under (3.3).

One can check this locally in each affine chart, which is isomorphic to C?*? as 7~ is unimodular.
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Lemma 3.16. The critical locus Crit(Wy) is given by | J e Yo \ Yo C Y.

Proof. For each a € A the intersection Crit(Wy) N Y, is empty. Indeed, when restricted to Y,
the tangent map dWy of Wy is expressed as a vector whose last factor is 1. Hence dWyly, is
surjective and we obtain

CritWy) € Y\ ()Y = [ J¥a\ Y

a€cA €A

Take any point y € Y, \ Y,. Suppose that there is a vertex @’ € A connected with a by
an edge in 7 such thaty € Y, \ Y. Let o € Xy be the cone generated by two rays &, =
Cone(-a, 1),&, = Cone(—a’, 1). Then we have

div(v) = (Mas2, M§Q>D§a + (Ma+2, Ueg, >D§(,,

on the associated affine open subset Spec C[o¥ N (M x Z)] = (C*)¢ x C? of Y. Hence the
restriction of dWy vanishes on D, N Dy, which is

(Yo \ Y) O (Yor \ Yor)lspec Clovniaz)-

The union of such intersections for all @’ € A is Y, \ Y,. Applying the same argument to the
other cases, we obtain

U Y, \ Y, C Crit(Wy).

a€cA

O

Remark 3.17. Since the map (3.3) sends each k-th intersection of D, , @ € A to a codimension
k face of Ay, by Lemma 3.16 it sends Crit(Wy) to the union of codimension 2 faces. On the
other hand, by Lemma 3.12 the map g: Mr X R — My homeomorphically sends the union of
codimension 2 faces of Ay to Ilz. Hence the composition

(3.4) g: Crit(Wy) — ¥ 22 Ay 5 1y

gives a fibration. The fiber over a point in a k-stratum is a real k-torus [CLS11, Prop 12.2.3(b)].

4. CONSTRUCTIBLE SHEAVES OF CATEGORIES

In this section, we define two constructible sheaves of categories over the tropical hyper-
surface Ily ¢ R%*! with the canonical stratification and a certain topology generated by the
vertices. In the sequel, by a Liouville manifold we mean a Liouville manifold of finite type,
1.e., the completion of some Liouville domain. By a Weinstein manifold we mean a Liouville
manifold together with a Morse-Bott function constant on the cylindrical ends for which the
Liouville vector field is gradient-like.

Definition 4.1. We introduce into IIy with the canonical stratification a topology defined as
follows. To a vertex v € Ily we define the associated open subset U, as the union of all
strata adjacent to v, which is homeomorphic to a d-dimensional tropical pants. To an edge
e C Il connecting two vertices vy, v, we define the associated open subset U, as the intersection

U,, N U,,. Similarly, to each k-stratum S ® < Iy adjacent to [ vertices vy, ..., v; we define the
associated open subset Ugw as the intersection U,, N --- N U,,. A general open subset U is of
the form Uguy U - -+ U Ugun for some strata S®, ..., § &) 5.
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4.1. A-side partially presheaves of categories for very affine hypersurfaces. Fix a pants
decomposition of H C T} = T*T**! [Mik04, Theorem 1°].

Definition 4.2. The A-side partially presheaf " of categories for H is a collection
{ﬂ’re(USU‘)), R?(k)’s(l)}

of sections and restriction functors defined on connected open subsets of Iy as follows:

e The section over Ugw is given by Z,-folding of the ind-completion of the wrapped
Fukaya category

ﬂ?re(Us (k)) = Fuk(H5<k>)Z2

where Hgw is the inverse image of suitably shrunk Ugw under (3.2). In other words,
Hgw is symplectomorphic to the intersection of k legs of P,.

e Along an inclusion Ugo < Ugw the restriction functor is given by Z,-folding of the
ind-completion of the Viterbo restriction [GPS2, Section 11.1]

Riw 50 = Viw so)z,: Fuk(Hsw)z, = Fuk(Hso)z,.

We will show that ;" is well defined. First, since our Liouville manifolds are of finite type,
the section is unique up to canonical equivalence. In particular, the sections are well defined.
The following is a special case of [GPS2, Lemma 3.4].

Lemma 4.3. Let Agw, A, be the completions of two Liouville forms on a Liouville domain
[Hsw] completing to Hyw. Then there is a canonical equivalence

Fuk(Hgw, /lUg‘)) = Fuk(Hw, /Yng))-

Proof. Our argument is essentially the same as [Jef22, Lemma 2]. Since the space of Liouville
forms for a compact symplectic manifold-with-boundary is convex, any two Liouville forms on
[Hsw] are canonically homotopic and the homotopy completes to that for Agw, A¢,. Then one
can apply [CE12, Proposition 11.8] to obtain a strictly exact symplectomorphism ¢ : Hgw —
Hgw. By definition it satisfies ¥*A’ — A = d f for some compactly supported function f: Hgw —
R. In particular, ¢ defines a trivial inclusion of open Liouville sectors in the sense of [GPS2,
Definition 3.3]. Then one can apply [GPS2, Lemma 3.4] to see that the pushforward functor
from [GPS1, Section 3.6] gives the canonical equivalence. O

In the sequel, we drop Liouville structures from the notation. Since by [Mik04, Remark 5.2]
each piece of the pants decomposition can be made symplectomorphic to P;, we obtain

Corollary 4.4. For each vertex v € I the section F1"(U,) is given by Fuk(P;)z,.

Let Pgw be the intersection of k-legs of P; mapping onto Ugw under Log,,, .
Corollary 4.5. For each Usw = N\_ U, the section F1"*(Usw) is given by Fuk(Psw)z,.

Next, along an inclusion Ugoy — Ujgw the restriction functor comes from a certain quotient
functor. In particular, the restriction functors are well defined.

Lemma 4.6. Along an inclusion Usoy — Ugw the Viterbo restriction functor is given by the
quotient by the cocores of Psw not in Pso. Here, we regagrd [Pso] as a Weinstein subdomain
of Psw with respect to Nadler’s Weinstein structure.

Proof. As the other cases can be proved similarly, we restrict ourselves to the case where S ® =
U, and S = U, for some edge e connecting v with v'. By Corollary 4.5 the section ¥,"“(U,)
is given by Fuk(P,)z,. Permuting legs by S ,,-action if necessary, we may assume that P,
does not correspond to the final leg of P,. Since both [P,] and the cobordism [P,] \ [P,]° are
Weinstein, one can apply [GPS2, Proposition 11.2] to see that the Viterbo restriction coincides
with the quotient by the cocores of P, not in P,. O
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4.2. A-side constructible sheaves of categories for very affine hypersurfaces. Since U, for
all v € Vert(Ily) form a subbase of the topology of Ily, we may pass to its sheafification.

Definition 4.7. The A-side constructible sheaf of categories for H is the sheafification
Fa: Open(Ily)?” - DG,

where Open(Ily) is the category of open subsets of [y with respect to the topology defined in
Definition 4.1.

Remark 4.8. In general, the existence of sheafification might be delicate because of size issues.
However, this is not the case in our setting as ** DG has small limits and colimits, and the
topology on Iy has finite cardinality.

We will show that the global section is given by the wrapped Fukaya category of H. In our
proof, the following two lemmas play key roles.

Lemma 4.9. Let € be a stable presentable dg category and <7 , A its full presentable dg sub-
categories such that

Homg¢ (A, B) = Homg(B,A) =0
forany A € of , B € B. Then there is a fiber product
€ C| A

| |

C|A —C|(A, B).

Proof. Since we have the pushouts

1 T
0— %/, 0——%/%,

the Verdier localizations ¢ — €'/ </, ¢ — € /28 admit right adjoints as well as the inclusions
o — C,9% — €. Hence we obtain two semiorthogonal decompositions of ¢ by 7, &7+ and
by A, %+, which respectively yield cofiber sequences

Co—>C—>Cy,Cy—>C—>Cy, Cyop > C— Cyen:

for any object C € %. Note that the full dg subcategory (o7, ) C € is equivalent to .o¥ & %, as
</, % are mutually orthogonal. Here, the morphism C,4% — C in the last cofiber sequence is
the direct sum of that C,, — C,Cy4 — C in the first two. Since .7, % are mutually orthogonal,
its cone can be computed by taking the cone of C4 — C followed by taking the cone of
C., — C4.. Hence we obtain a cofiber sequence

Coy — Cp: — Ciyom).

The conclusion is equivalent to there being a fiber product

Homy(Cq, C,) Hom%/gf?(cl ,C2)

4.1 L l

Homgy,(Cy, Cy) — Homy (v 2)(Ci, C2)
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of morphism complexes for any C|,C, € %. Note that it suffices to check the latter when
C = C; = C,. Since Cy1,Cye, Cyep): are the images of C under the right adjoints of the
Verdier localizations ¢ — 6/, ¢ — €| B, ¢ — € /{,P), one can rewrite (4.1) as

Homy (C, C) Hom(C, Cx1)

| |

Hom%»(C, C_Q{L) —_— Hom%(C, C(,Q{@,%)L).

Now, as the functor Hom (C, —) preserves fiber products, it suffices to show that

C Cp:

4.2) L l

Cor — Clonr

is a fiber product in €. Consider the diagram

C., c Cop
4.3) l l l
0 Cot Cron)-

Since both the left and the outer squares are pushouts, the right square is also a pushout. It
follows that (4.2) is a fiber product, as for stable dg categories any fiber product is a bicartesian.
O

Lemma 4.10. Let W be a d-dimensional Weinstein manifold with a fixed pants decomposition.
Consider the gluing W U P, of Weinstein manifolds W with P, along a union of | legs of P, for
1 <1< d+ 2 with restricted Nadler’s Weinstein structures. Then we have

Homg,ywup,) (L1, L2) = Homgygwup,) (L2, L) = 0
for cocores Ly, L, of W U P, respectively not in P, W.

Proof. As the other cases can be proved similarly, we restrict ourselves to the simplest case.
Consider the gluing P; Ucore(C) f’fl of two d-dimensional pairs of pants along a leg C, where
P}i, Pfl are equipped with Nadler’s Weinstein structures. Here, we choose their final legs differ-
ent from C. Then [P!], [P%] are Weinstein subdomains of [P}, Ucere(c) P3]. Since the cobordisms
[P} Ucoreicy P21\ [PL1°, [P) Ucorecy P21\ [P2]° are also Weinstein, by [GPS2, Proposition 11.2]
the Viterbo restriction functors

Fuk®(P)}, Ucore(cy P3) — Fuk®(P)), Fuk®(P}, Ucore(c) P3) — Fuk“(P3)

are the quotients by the cocores respectively not in P, Pfl. Here, (—)“ denotes taking compact
objects.

Let Ly, L, be cocores of P! Ucore(c) P2 respectively not in P2, P! We claim that the generating
set of Floer complex CF*(L,, L) is empty. Suppose that the time 1 trajectory ¢11{am(L1) of L,
under the Hamiltonian flow ¢y, intersects L,. Then one finds a point p € L; which needs to
be pushed from the initial position through C to reach L,. Let 0 < ¢ < 1 be the minimum time
such that ¢}, (p) € 0C and ¢ (p) € C\ dC for 0 < € < 1. By construction the Hamiltonian

flow on the gluing region is orthogonal to the Liouville flow on C. Recall that on cylindrical
ends the wrapping is defined by the Hamiltonian flow which is orthogonal to the Liouville flow
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and we glue P!, f’j along their skeleta inside C. Consider its restriction to the first factors in
the product decompositions

C=CiXPyy, C=CixPy,y

of C respectively as a leg of PI,PEJ. The restricted Liouville flow to C;, C; is parallel to their
radial coordinate directions. Hence ¢i;< (p) would never exit C to reach L,, leading to contra-
diction. O

Theorem 4.11. The canonical functor

Fuk(H)z, —» Fals) =lim| [ | Fawn - || Fawo -

veVert(Ily) ecEdge(Ily)

is an equivalence.

Proof. We begin with a vertex v € IIy to which some free edge is adjacent. Here, by a free
edge we mean an edge not connecting two vertices. There are in total /; < d + 2 vertices
Vi, .. ,v}l € Il connected with »¥ by single edges e}, ..., e}h. Let i, ... ,v’l‘k be the vertices of
ITy connected with v{ by at least k edges. Each v{ is connected with at least one vertex ;™' by
a single edge eﬁi for some 1 < j < [;_;. We will compute the section of ¥4 over the union

UoUUUlU UUk.
ix=1

Consider Nadler’s Weinstein structures transported to H W, H,y whose final legs correspond

to different edges from e;],. Then H,; 0, H, glue along their Welnsteln submanifold H, to yield
a Weinstein manifold H, o UH,. Note that the pants decomposition from [Mik04, Theorem 1°]
is nothing but the gluing of the closures of tailored pants along their boundaries. By [Mik04,
Remark 5.2] this gluing is compatible with the natural symplectic structures. To the product of
their boundaries with a sufficiently small open interval, one can transport Nadler’s Weinstein
structure restricted to H, via radial deformation. By Lemma 4.9 and Lemma 4.10 we obtain a
canonical equivalence

Fuk(Hyo U H,1)z, = Fa(Uyo U U,).

Consider Nadler’s Weinstein structures transported to H,, o, H,1, H, whose final legs corre-

spond to different edges from e}, e}, and possibly ex1st1ng edge e}, connecting v} with v.
Note that each of Hy,H, . H, has at least one free leg which is not involved in this gluing.
Then HV?’ H,,H, glue along their Weinstein submanifolds H, .H, ,H, to yield a Weinstein
manifold HoUH, UH, . By Lemma 4.9 and Lemma 4.10 we obtain a canonical equivalence

Fuk(HV(I) U HV{ U Hv;)Zz = ﬂ(UV? U UV: U Uv;)-

Iteratively, we obtain a canonical equivalence

ll ll
Fuk(H,» U U Hy)z, = FaUp U U Uy).

i=1 i=1
Suppose that the canonical functor

I L1 li—1
Fuk(Hy U | JH, U---U U HH)ZZ_wa(UouUUI U.-U U Uyr)

i1=1 ir-1=1 i1=1 ik-1=1
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is an equivalence. When 1/ is connected with only one vertex vA~', consider Nadler’s Weinstein
structures transported to H, s H whose final legs correspond to different edges from e . The

former extends to give another Wernstern structure on H,oU U ! 1 U---u Ul" ' H, 1 as fol-

lows. First, recall the translated Liouville structure a;, +] on Té“ from 2.1). Note that we negate
[ here. Restrict it to P, and then transport to all the other legs but the final compatibly with the
outward Liouville vector field from H, ot To the final leg, transport its slight modification.

Namely, push the zero locus of the Llouvrlle vector field associated with ;' | far away along
the positive diagonal direction. Then the closure of P, becomes a Welnsteln cobordisim. We
extend this along the direction towards cylindrical ends of HyU UQZI U U[k ' H e

lg—1= =1 ’k 1
Note that the extension might not be canonical.
In any case, the result is a Liouville manifold of finite type and Liouville homotopic to the
standard Liouville structure, which can be canonically upgraded to Weinstein. Then H, 0 U

Ull L H,y ) U---u Uf" - 1 Hy - . Hy glue along their Weinstein submanifold H, (. to yield a We-

instein manlfold Hv(f U Ul.i:l N U Ul" ' H, w1 U Hy. Here, we use the same symbol to
n

denote the exact symplectic mamfolds with modlﬁed Wemstem structure. By Lemma 4.9 and
Lemma 4.10 we obtain a canonical equivalence

lk-1 I lx-1

Iy
Fuk(HV? U UHV] Uu---u H -1 U Hk)Zz 7:A(UV(1) U Ui U---U Uy U Uk)
i Vi1 i Vi1
i1=1 ir-1=1 i1=1 ir-1=1

1 k—l

When ¥ is connected with more than one vertices vk ,..-, v, by single edges, consider

Nadler’s Welnsteln structures transported to H,, 1 H ol ,Hy whose final legs correspond to
different edges from the ones connecting any two of vk 1, . V];, !,v%. The Weinstein structure
on H et U --- U H -1 extends to give another Welnsteln structure on H, 0 U Ull Hyy U---u

/l

l
Ui -1 Hy-1 in a similar way as above. Iteratively, we obtain a canonical equlvalence
lk 1

A Ik I I
Fuk(H,o U UHV; U---U UH&)Zz = FaUp U UUV; U---U U Uy).
i1=1 ! ir=1 k i1=1 : ir=1 g

O

4.3. B-side constructible sheaves of categories for very affine hypersurfaces. Recall that
1y is the dual cell complex of 7, which we assume to be an adapted unimodular triangu-
lation of the convex lattice polytope AY C M. In particular, each vertex v € Ily bijec-
tively corresponds to a cell congruent to a standard simplex under the GL(d + 1, Z)-action.
The cell in turn bijectively corresponds to a cone o, € Xy, which defines an affine open
subvariety ¥, = SpecC[oY N (M X Z)] C Y isomorphic to A%, Introduce coordinates
(yetlr, ... ’yeﬁm) on Y,, where ¢! stand for edges adjacent to v and dual to facets Ter of o, so
that Yo = Spec C[O'ZIY N (M x Z)] C Y, are the open subvarieties defined by Yer # 0.

Definition 4.12. The B-side constructible sheaf ¥ of categories for H is a collection
{Fp(Usw), R_Igg(k),s(l) J

of sections and restriction functors defined on connected open subsets of Iy as follows:

e The section over Ugw is given by the ind-completion of the category of matrix factor-
izations

Fo(Usw) = MFOO(YV|ﬂfn=1{y,_,En sopYer -+ Yer s
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where e/ ..., e} are the edges adjacent to v determining the k-stratum §®.
e Along an inclusion Ugon — Ugw the restriction functor is given by the canonical re-
striction functor

B . 00 00
Rs(k)’s(l)' MF (Yv|ﬂﬁl:|{ye;r 20} Yey " ° 'ye;+2) — MF (leﬂflzl{ye; #0p Ve *° ')’e;+2),
v v v v : : LI (k)
where([;?l.1 ,...,e; and e’ ... e are edges adjacent to v respectively determining S
and S§%.

Note that ¥ defines a sheaf on Iy without passing to sheafification, since U, for all v €
Vert(Ily) form a subbase of the topology of Iy and MF” is a sheaf on Y [Pre, Proposition
A3.1].

Lemma 4.13. There is a canonical equivalence
Fp(lly) = MF*(Y, Wy)
compatible with restrictions. In particular, for every open subset U C Il it makes the diagram

Fp(Ily) 75U)

MF*(Y, Wy) — MF*(Yy, Wy)

commute where horizontal arrows are the restrictions. Here, Y, C Y is the open subset map-
ping to U under the composition of (3.3) with q: Mg X R — Mg.

Proof. Take an affine open cover | J,ever,) Yy of Y. By definition of ¥ we have

Fply) = llm[ l—[ Fs(U,) — l—[ Fp(U,) — -- )

veVert(Ily) ecEdge(Ily)
If e is an edge connecting two vertices v, V', then the associated restriction functors are
B . 00 )
Rv’g . MF (Yva ye‘l’ o ')’e;+2) — MF (le{yEm&O}aye‘l' o 'ye;+2)a
B . 00 )
Rt ME(Fy, v -y ) = ME (ol oy i)
J

Recall that Iy encodes all the combinatorial information to recover both H and Y from pieces.
In particular, it gives a coordinate transformation

(yeﬂl"/’ e ’ye;};z) - (Ye‘l" e a)’efm)
on Y, which defines a gluing datum
MF® (¥, iy 200 Ve, Ves,,) = MF* (Yol 0o+ Yoy -
1 j I+

As Y, form an open cover of Y, such a gluing datum is compatible with further restrictions.
Hence F3(Ily) is also the limit of the diagram

[ MFPWoygye )= [ MPilgaonye - ve,) = -

veVert(Ily) ecEdge(Ilx)

Since the sheaf MF® on Y satisfies Zariski descent [Pre, Proposition A.3.1], it coincides with
MF®(Y, Wy) and the compatible equivalences on pieces glue to yield a canonical equivalence
Fe(Ily) = MF®(Y, Wy). By the same argument, we obtain a canonical equivalence F3(U) =
MEFE®(Yy, Wy) for every open subset U C Ily. Since U, for all v € Vert(Ily) form a subbase,
these equivalences respect restrictions. O
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5. ISOMORPHISM OF THE CONSTRUCTIBLE SHEAVES

In this section, we give a proof of HMS for very affine hypersurfaces by gluing HMS for
pairs of pants established in [Nad]. When gluing such equivalences, the combinatorial duality
over Ily from Section 3 plays a crucial role.

5.1. Local equivalences. Passing to the category of matrix factorizations might be delicate
because of Knorrer periodicity. First, we show how to lift Nadler’s equivalence, i.e., the equiv-
alence from Corollary 2.31 to the category of matrix factorizations preserving the compatibility
with restrictions.

Lemma 5.1. Let [Hy] be a Weinstein subdomain of [H]. Then the skeleton Core(Hy) of Hy is
a closed subset of the skeleton Core(H) of H.

Proof. Replacing [Hy ] with its radial deformation if necessary, we may assume that Core(Hy)
is disjoint from 0[Hy] = 0.Hy. Indeed, skeleta of Liouville manifolds of finite type are
maximal compact subsets conic with respect to Liouville vector fields. Since any point in
0. Hy escapes to infinity along the Liouville vector flow, it never contributes to Core(Hy ). We
may assume further that Core(H) is contained in [H]. Then Core(H) N ([H] \ [Hy]°) is an
open subset of Core(H). Since, up to deformation, Core(Hy) coincides with the complement
of Core(H) N ([H] \ [Hy]°) in Core(H), it is a closed subset of Core(H). O

Lemma 5.2. For each vertex v € Ily there is an equivalence
d+1
7:A(l]v) = IndCOh(Yv,d)Zz, Yv,d = {ye‘l' te 'ye:;H = O} c A%
compatible with restrictions. In particular, for every open subset Usw C U, determined by
edges el.vl e efk adjacent to v, we have the commutative diagram

A
R sw

Fa(Uy) FaUsw)

IndCOh(Yv’d)Zz —_— IndCOh(Yv,dlm/;ZI{er #0})22
'

where the lower horizontal arrow is the canonical restriction functor.

Proof. From the argument in the proof of Theorem 2.30 we obtain a commutative diagram

Coh(Uf, AlM) —— Coh(¥, )

COh(Yv,d|m’Js:1{ng ¢o}) —0
'

(5.1 = ‘: l:

pSh(Uj_y A ) — uSh(AF, ) — uSh(AT, )/ pSh(US, AF)) —=0
where the horizontal arrows form exact sequences. Here, the upper left horizontal arrows is
the canonical functor to the colimit and the lower left horizontal arrows is left adjoint to the
restriction.

Recall that Hgw is isomorphic to the intersection of legs Ly, (K),...,Ly;(K) C P,. We
write Agw for the isomorphic image of Core(Hgw) X {0} X R under the symplectomorphism
Uy xT' xR < Qu,; from Lemma 2.10. Let P; ¢ T*T' be the tailored pants for I = {i|, ..., i}.
We write £; for the isomorphic image of Core(P;) under the symplectomorphism from Lemma
2.10. Unwinding the proof of Lemma 2.7 and Lemma 2.10, one sees that

Core(Hsw) = T" x Core(P) =T x &, = T" x s(Co,p1,,) = T x AY C AS,
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and A%

s C A3, 1s defined as ﬂljle{fij = 0}. Hence we obtain

k k
AT = AT\ A, uSh(_J AT = uSh(AT, \ Ag).
J=1 j=1

From the argument in the end of [GS1, Section 4] we obtain another commutative diagram

HSh* (AT, \ A

> uSh® (A%, ) —= uSh*(A%,) —0

d+1 S ()

(Cocores of [H,] \ [Hgw]°) — Fuk(H,) — Fuk(Hgx) —— 0

5.2)

where the horizontal arrows form exact sequences and the middle and right vertical arrows are
the equivalences from [GPS3, Theorem 1.4]. Here, the upper left horizontal arrow is left adjoint
to the restriction to AZ,, \ Ag,, which is open by Lemma 5.1, and the lower right horizontal
arrow is the ind-completion of the Viterbo restriction functor from [GPS2, Proposition 11.2].

Hence we may concatenate (5.1) and (5.2) to obtain a commutative diagram

IndCoh(UJ_, A1) IndCoh(Y,, 4) — IndCoh(¥, l¢_,,, z0) — O
(5.3) - ~ l
(Cocores of [H,] \ [Hgw]°) — Fuk(H,) Fuk(Hgw) 0.

O

Remark 5.3. Recall that Nadler broke the symmetry of P, so that the final leg attracts the
Liouville vector flow while remaining the other legs symmetric. In particular, each of the
other legs defines a Weinstein submanifold, which is isomorphic to a product of C* and a 1-
dimensional lower tailored pants. Via the combinatorial duality incorporated into the definition
of ¥, the Viterbo restriction to such a Weinstein submanifold associated with the j-th leg
corresponds to the restriction to the open subset defined by Yer # Oforj=1,...,d+1.

Consider the natural projection
Yv,d+l = {ye: o ‘y62+1ye;+2 = 0} c Yv = Ad+2 - Y\i,d+l = {ye‘{ o .}7;:"’ o .y€:}+2 = O} C Ad+l

of the union of the coordinate hyperplanes. By Lemma 2.28 the pullback induces an equiva-
lence

(5.4) Coh(Y, 4, )z, = MF(A2, yr -y yer ).
Theorem 5.4. For each vertex v € Iy there is an equivalence
FaU,) = Fp(U,)
compatible with restrictions. In particular, for every open subset Ugsw C U, determined by
edgese; ,...,e; adjacent to v, we have the commutative diagram

A
Rv,s (k)

Fa(Uy) — Fa(Usw)

Fs(U,) o Fe(Usw).

15 ®
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Proof. On each vertex v € IIy we have d + 2 Nadler’s equivalences
¢} Fuk(H,)z, = IndCoh(Y} ;, )z, = MF*(yer ... e )

depending on the choice of the final leg. Here, we use the symbol MF*(y,r ... y.r ) to denote
MFE®(A®?, ypr - -y ver ) for brevity. The equivalence ¢!, is compatible with restrictions
along edges except €}, ,. Passing to ¢! fori = 1,...,d + 1, we obtain restrictions

yi o @iler + Fuk(Her )z, — IndCoh(Y, 1ly,d+]|{yer[+2¢0})22 — MF”(yer - - ‘yejl+2|{yg;+2¢0})

along ¢!, ,, where i} are the autoequivalences MF“(yeﬁv . 'ye;+2) — MF“(er . ~ye;+2) induced
by shuffling the coordinates corresponding to the final legs. By Lemma 4.3 and the argument
in the proof of Theorem 2.30 the additional restrictions ¢ o ¢;|.» . do not depend on the choice
of i. Namely, we have the commutative diagram

VoVl 1
viceiler

Fuk(I'Iez}+2 )Zz —_— MFOO(YeY T yef,ﬂl{yg;” ¢0})

H Yol v H

P42

Fuk(HeZurz )Zz R MFoo(ye\l, e ye:}ﬂ'{yg;ﬂ ;tO})'

By the same argument, one sees that ¢!, , is compatible with further restrictions and defines the
desired equivalence. O

5.2. Gluing equivalences. Finally, we glue the local equivalence from Theorem 5.4 on each
vertex v € Ily to obtain a global equivalence which is compatible with restrictions.
Theorem 5.5. There is an equivalence

Fa(lly) = Fp(Ily)

compatible with restrictions. In particular, for every open subset U C Iy we have the commu-
tative diagram

Fally) —= Fa(U)

?B(HZ) I TB(U)
where the horizontal arrows are the restrictions.

Proof. Choose an integer 1 < k(v) < d + 2 for a vertex v € Il to fix a Nadler’s equivalence

Ohwy: Fuk(H,)z, = IndCoh(YXY) )z, = MF (yer, ..., yer ).

Suppose that v is connected with another vertex v’ by an edge e. Then Xy gives the correspon-
dences

(5.5 Yer € Vo, i=1,...,d+2
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of the coordinates on the intersection Y, = ¥, N Y,,. Hence there is a unique integer 1 < k(') <
d + 2 such that cp,vcl(v,) is compatible with ¢} . Namely, we have the commutative diagram

Prory: Fuk(Hy )z, IndCoh(YS") )z, MF®(y, -y, )

A B
R v R i
v ,ei, v ,Ei,

/ k(v 00
Crnler + FUk(H )z, —= IndCoh(Yy1 ) Iy, 20z — MF ey .3 iy, 00)

v d+ 111y
(5.6) ‘ o
Prwler © Fuk(Hep)z, —— IndCoh(Y, fgl 1 {yg;:#O})Zz — MF"(y,; .. -}’e;ﬂhyg;r;eO})
]RA v RB .
Voo k(v 00
on(V) : Fuk(HU")ZZ IndCOh(Yv,(dj-l)Zz MF (yej' Ve +2)

where ¢;Y' is the canonical equivalence induced by (5.5). Clearly, it yields the commutative
diagrams for further restrictions.

Suppose further that V" is connected with another vertex v by an edge e’. Then Xy gives the
correspondences

(5.7) ye‘_',, <_>ye\./,’,’, i’ = 1,...,d+2

of the coordinates on the intersection Y, = Y,, N Y,». Hence there is a unique integer 1 <
k(v"") < d +2 such that ¢}, is compatible with ¢}, . Namely, we have the same commutative
diagram as (5.6). On the intersection Y, N Y,» N Y,~, the fan Xy also gives the correspondences
vyoi=1,...,d+2

i

(5‘8) yel/ « ye

of the coordinates. Hence there is a unique integer 1 < k’'(v'") < d + 2 such that go,ﬁﬁ'(v,,) is
compatible with ¢} . Since the affine pieces Y,, Y/, Y, glue to yield an open subset of Y, the
correspondences (5.8) are compatible with (5.5) and (5.7). Namely, we have k(v"") = k’(v"") and
Yo =Yg fori=1,...,d +2. Hence Nadler’s equivalences ¢}, ¢}» i, &lue to yield an
e(iuivaleflce

Chy U Py U Phir Fuk(H, U Hy U Hy) = ME®(Y, U Yy U Yy, Wy).
Iteratively, we obtain a compatible system {go,t(v)}ve\/ert(nz) of Nadler’s equivalences whose
gluing
) @t Faly) - Fo(lly)
veVert(Ily)

gives the desired equivalence. O

6. CriticaL LocT OF LANDAU—GINZBURG MODELS FOR COMPLETE INTERSECTIONS

In this section, following [AAK16, Section 10], we realize the mirror pair for a complete
intersection of very affine hypersufaces as critical loci of associated Landau—Ginzburg mod-
els. They give rise to fibrations over the complete intersection of the tropical hypersurfaces
equipped with the canonical stratification.
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6.1. Landau-Ginzburg A-model for complete intersections. Let H,,...,H, C T/ be very
affine hypersurfaces in general position defined by Laurent polynomials

(6.1) Wit TE = C,oxo Y et ™ i=1,.r
(l’iEA,'
Here,

e ¢, € C are arbitrary constants,

e > 0 1is a sufficiently general tropical parameter,

e p; are convex piecewise linear functions on convex lattice polytopes A’ whose corner
loci give adapted unimodular triangulations 77 of A, and

e A; C MY are the set of vertices of 7.

We denote by H the complete intersection H;N---NH, C T{. For X = T/ xC" with coordinates
(x,u) = (x1,..., X441, U1, . .., U,), consider a Laurent polynomial

Wyx: X = C, (x,u) > Z u;Wi(x).
=1

Definition 6.1. Let H c T/ be the complete intersection of the very affine hypersurfaces
H,, ..., H, defined by the Laurent polynomials Wy, ..., W, from (6.1). We call the pair (X, Wx)
the Landau—Ginzburg A-model for H.

Definition 6.2. The Newton polytope Ay of Wy is the convex hull
Conv(0, —A{ X ey,...,—A) X e,) C My X R"
where e, ..., e, € R" are the standard basis vectors.

Remark 6.3. The polytope Ay, admits an adapted star-shaped triangulation T canonically in-
duced by py, ..., p,. However, it might not be unimodular.

Lemma 6.4. The critical locus Crit(Wx) is given by (;_{u; = 0} N N;_({W; =0} c X.
Proof. Express the tangent map dWx of Wx as a (1, 2r)-matrix

(l/l]dWl, ceey LtrdWr, W], ceey Wr)

Since Hi, ..., H, C T/ are in general position, we may assume that they intersect transversely.
Then dW; nowhere vanish. Hence rank(dWx) = O if and only if u; = --- = u, = 0 and
Wy=---=W,=0. O

Remark 6.5. By Lemma 6.4 the projection pr,: X = T/, x C" — T preserves Crit(Wx) and
the inclusions H ¢ H; — Crit(Wx). Now, we may assume that the tropical hypersurfaces
[y,,..., Iy, c R*! intersect transversely, as Hy, ..., H, C T/, are in general position. We may
assume further that H,, ..., H, intersect along their legs. Let ret;: II; — Ily, be the continuous
maps induced by the retractions. Then the composition

r Log,, 4 ret, o---ore -
6.2) f: H = Crit(Wx) & X =5 T), —=, ﬂ AR ﬂ s,
i=1 i=1

gives a fibration. Away from lower dimensional strata, the fiber over a point in the intersection
of r top dimensional strata one from each Ily, is a real (d — r + 1)-torus.
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6.2. Landau-Ginzburg B-model for complete intersections. Recall that 7; are the chosen
adapted unimodular triangulations of A;’ C My obtained as the corner loci of the convex piece-
wise linear functions p;: A/ — R. Recall also from Remark 6.3 that T is the adapted star-
shaped triangulation of Ay C My x R” canonically induced by py,...,p,. Let Zy ¢ My xR’
be the fan corresponding to T and Y the noncompact (d + r + 1)-dimensional toric variety as-
sociated with y. The primitive ray generators of Xy are the vectors of the form (—a'/, ;) with
o € A;. Such vectors span a smooth cone of Xy if —a*/ span a cell of 7; for fixed i.

Remark 6.6. Unlike the case r = 1, there might be nonsmooth cones in Xy as T is not necessar-
ily unimodular. Indeed, consider the case where d = 2, r = 2 and the two defining polynomials
are x| + x» + x3, x%xz + x3. Then the Newton polytope Ay is a 5-dimensional simplex which has
twice volume of the unit simplex. As x; + x; + x3, xfxz + x3 cannot be further divided, there
is no room for subdivision of Ay. Possible nonsmooth cones would contain at least two rays
belonging to distinct subfans of the form
2 =Ryo - (=T x{ei}) C Zy.
Dually, Y is associated with the noncompact moment polytope
Ay = {(myuy,...,u) € Mg XR" | u; > ¢;(m), 1 <i<r}.

The facets of Ay correspond to the maximal domains of linearity of ¢y, ..., ¢,. We denote by
A the set of connected components of R**! \ | J_, Ily, and index each component by the tuple
@=@@",..., ) eM x---xM"

of vertices.

Remark 6.7. The noncompact polytope Ay is homeomorphic to the image of Y under the
composition

(63) Y- (Y)ZO - MR X R"

of the map induced by retraction to the nonnegative real points with the restriction of the
negated algebraic moment map.

Lemma 6.8. Let q: Mg X R” — My be the natural projection. Then under q the union of
intersections of r facets of Ay one from each {u; > ¢;(m)} homeomorphically maps to Mg.
Moreover, the union of intersections of r codimension 2 faces of Ay one from each {u; > ¢;(m)}
homeomorphically maps to (;_, I,

Proof. By construction of Xy under q the intersection of r facets of Ay one from each {u; >
¢;(m)} homeomorphically maps to the intersection of r maximal domains of linearity one from

each ¢; corresponding to the same o/ € A;. When @ = (a'“', ..., ") runs through A, the
closure of the latter covers My. Then the second statement follows from the same argument as
in the proof of Lemma 3.12. O

For each @ € A let Yy = T X C" with coordinates y; = (Va1s-+-»>Yad+1>Vals---»Va,), Where
Yils---»Yad+1 are the monomials with weights

1,j 1,j
m=1...,0,-a",...,=a"), o na =0, -1 -, ) e M X T

and vz 1, ..., Vg, are the monomials with weights

Nav2 = (0,...,0,1,...,0), ..., 04441 = (0,...,0,0,...,1) e M X Z.
Pairing of the former monomials with the monomials with weight
ué:l = (_alsjl’el)’ e, ué:r — (_ar,jr’er) c MV X Zr

yield O while that of the latter monomials yield 1.
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Lemma 6.9. The complex algebraic variety Yz is the affine open subset of Y associated with
the cone spanned by ug,, . .., ug, € MY x7Z.

Proof. Suppose that o € Zy(r) is the cone associated with the affine open subset Y; C Y. We
have

diV()’é,li) = Z (£1;, ug)De, div(vg;) = Z (Masjr1, ) De
gea(1) gea(1)

forl <i<d+1land1 < j < r, where u; are the primitive ray generators of £ and D; = O(§) are
the closures of the orbits corresponding to £. Since yéll, cees y§1d+ , never vanish on Yy, pairing

of n; with the the primitive ray generators in o must yield O for 1 < i < d + 1. On the other
hand, pairing of 174, j+1 with ug, must yield 0 for 1 < j,k <d + 1. i

Due to the above lemma, Y covers the open stratum of Y and the open strata of the irre-
ducible toric divisors corresponding to '/1, ..., a"/r. If aJi, B are connected by an edge in
7 forsome 1 <i<d+1,then we glue Yz to YE with the coordinate transformations

ik i
:8 i_gii
Yar=vg, ' Ygp Vai=vg 1SI<d+ 1
Thus the coordinate charts {Yz}zca cover the complement in Y of the codimension more than 1
strata.
We may write v; for vz, as they do not depend on the choice of @ € A. Since the weights

o,...,0,1,...,0),...,(0,...,0,0,...., 1) e M X Z'

pair nonnegatively with the primitive ray generators of Xy, the polynomial v, + - - - + v, defines
a regular function on Y, which we denote by Wy.

Definition 6.10. Let H C T, be the complete intersection of very affine hypersurfaces H,, ..., H,
defined by the Laurent polynomials Wi,..., W, from (6.1). We call the pair (Y, Wy) the
Landau—Ginzburg B-model for H.

Remark 6.11. The pair (Y, Wy) is a conjectural SYZ mirror to H [AAK16, Theorem 1.6].
Lemma 6.12. The critical locus Crit(Wy) is given by (._, Crit(v;).

Proof. Since we have (), Crit(v;) c Crit(Wy), it remains to show the opposite inclusion.
For y € Crit(Wy) there are r rays &;;, = Cone(—a™/i X e;) € Xy one from each X; such that
Y € Niz1 Dg,;, where Dy, = O(&; ;,) are the closures of the orbits corresponding to ¢; ;.. Indeed,
we have

r

Crit(Wy) c Y\ (Tex €)= | | De={] | ) De.

£exy(1) i=1 &exi(l)

If y ¢ Uges;a) Dg; for some 1 < j < r, then there is a neighborhood y € U C Y such that
UNUges;1) De; = 0 and Crit(Wyly) = 0, as v; never vanishes on U. Hence y belongs to at least
one D, for each i and we obtain

Crit(Wy) < |_] ﬂ Dg,.

aeA i=1
From the proof of Lemma 6.8 it follows that under q the intersection of r facets of Ay
corresponding to Dy, ; ,..., D, maps to the closure Cy of the connected component Cz C

Mg \ U, Iy, indexed by @ = (a'',...,a"/r). By Lemma 6.9 under (6.3) Yy maps to the
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intersection of r facets of Ay corresponding to Dy, ; , ..., D, . As explained above, on Yy we
are given the coordinates

Lji rjr Lj1 rjr
-1, @ -1, 7%+ Yy
(Wi, v D wo v ey Ty )

which implies Crit(Wy)ly, = 0. Hence we obtain

Crit(Wy) C U (ﬂ Dg,, \ Y(-,»] = ﬂ Crit(v;)
i=1

aeA \i=1
as we have |, ijic A,-(D&-,j,- \ (Y, x C"~1) = Crit(v;) by Lemma 3.16. O

Remark 6.13. Since the map (6.3) sends each k-th intersection of Dy, . a"Ji € A to a codimen-
sion k face of Ay, by Lemma 6.12 it sends Crit(Wy) to the union of codimension 2r faces. On
the other hand, by Lemma 6.8 the map q: Mz X R” — My homeomorphically sends the union
of intersections of r codimension 2 faces of Ay one from each {u; > ¢;(m)} to N;_, Il5,. Hence
the composition

(6.4) g: Crit(Wy) = Y <2 Ay 5 ()T
i=1

gives a fibration. The fiber over a point in the intersection of r top dimensional strata one from
each Ily, is areal (d — r + 1)-torus [CLS11, Prop 12.2.3(b)].

7. EQUIVARIANTIZATION AND DE-EQUIVARIANTIZATION

In this section, following [She22, Section 4], we review the last piece of our proof, i.e.,
equivariantization and de-equivaiantization of presentable dg categories with certain group ac-
tions. The fact that, they give mutually inverse equivalences of the categories we will consider,
enables us to deduce our main result for nonunimodular case from unimodular case.

7.1. Equivariantization. Let G C (C*)" be any subgroup. Assume that G acts on a pre-
sentable dg category €. Namely, there is a monoidal functor G — End(%’). Then % becomes a
module over the monoidal category (Qcoh(G), x), where  is the convolution product induced
by the multiplication on G. Let (Qcoh(BG), ®) be the monoidal category of G-representations.
Taking G-invariants defines a functor

E %G = HOH]QCOh(G)(MOd(C), cg)
from the category of (Qcoh(G), x)-modules to the category of (Qcoh(BG), ®)-modules, called

G-equivariantization. Here, the action on Mod(C) is trivial.

7.2. De-equivariantization. We denote by G the character group Hom(G, C*) of G. Assume
that GV acts on a presentable dg category &. This is the same as an action of the monoidal
category of GV-graded C-modules, which in turn is equivalent to (Qcoh(BG),®). Hence ¥
becomes a module over (Qcoh(BG), ®). Taking G-coinvariants defines a functor

P v Dpc = Mod(C) ®qconss) Z

from the category of (Qcoh(BG), ®)-modules to the category of (Qcoh(G), x)-modules, called
G-de-equivariantization. Also here, the action on Mod(C) is trivial.
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7.3. Mutually inverse equivalences. For a presentable dg category & with a G"-action, tak-
ing its GY-invariants is equivalent to taking its G-coinvariants. Since equivariantization and
de-equivariantization give mutually inverse equivalences, one obtains

Lemma 7.1 ([Shel5, Lemma 8]). Let G C (C*)N be any subgroup and G = Hom(G, C*). Then
G-equivariantization and G"-equivariantization give mutually inverse equivalences between
the category of presentable dg categories with a G-action and that with a G -action.

7.4. Quotient construction of toric varieties. Let Y5 be the toric variety associated with a fan
X C My. Assume that Yy has no torus factors, i.e., My is spanned by primitive ray generators
u, for all p € X(1) [CLS11, Proposition 3.3.9]. Then [CLS11, Theorem 4.1.3] gives the short
exact sequence

0 M— 7"V = (P ZD, > Cl(¥y) > 0,

pex(1)

where m € M maps to div(y™) = X es1y(m, u,)D, and Cl(Yx) is the divisor class group. Apply-
ing Homz(—, C*), one obtains another short exact sequence

1 - G = Homz(Cl(Ys), C*) — Homz(Z*",C*) = (C*)*P — Homz(M,C*) = M} — 1.

Lemma 7.2 ([CLS11, Lemma 5.1.1]). The subgroup G C (C*)*V is isomorphic to a product of
an algebraic torus and a finite abelian group. More explicitly, we have

G = {(1,) € (C")*V] l_[ tﬁ,m’“’) =1 for all m € M}.

pex(1)

Let S = Cly, | p € Z(1)] be the total coordinate ring of ¥s. Then we have C*) = Spec S and
the irrelevant ideal is defined as

BE) =G locey =0 |oceZm)CS, y = 1_[ Y.
pgo(1)

We denote by Z(X) the zero locus V(B(X)) ¢ C*V of B(X). Via inclusion G c (C*)*1 the
canonical action of (C*)* on C* induces a G-action on C*V \ Z(%).

Lemma 7.3 ([CLS11, Proposition 5.1.9, Theorem 5.1.11]). There is a toric morphism
n: C*V\ Z(2) - Vs
which is constant on G-orbit and gives an isomorphism
Yy = (C*V\ Z(2))//G.

Namely, nt is an almost geometric quotient for the G-action. It is a geometric quotient if and
only if ¥ is simplicial.

Now, we drop the assumption that Y5 has no torus factors. Then the primitive ray generators
Up,p € Z(1) span a proper subspace (My) & My. Pick the complement (M")” of (M") =
(My)YNM" sothat MY = (M"Y ®(M")"”. The cones of X defines a fan X’ C (My)’. Note that we
have ¥'(1) = X(1) and B(X’) = B(X) c S. We denote by G’ the subgroup Homz(Cl(Yy),C*) C
(C¥ M Since Y5 has no torus factors, from the above argument it follows

Yy 2= Yo X (MY = (C¥V\ Z(X))//G') x (C*).
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7.5. Model case. Let Y5 be a simplicial affine toric variety associated with a fan £ c Mj.
Then Ys has no torus factors. Since X contains only one top dimensional cone, by definition of
B(X) and Lemma 7.3 we obtain Z(X) = @ and

Yy = A" G, d+r+ 1 =#Z(1).
If also the rank of M is d + r + 1, then the inclusion M — Z*1 induces a finite cover
BY s T* R MY — THREH 744+,
Consider the tailored pants P,,, in the target induced by the pants
(1 + T xixp0 = 0) = (XL, + 7 = 0) € (€)™,

Let Py, C P,., be its closed subset induced by setting x4,,.; = 1. From G¥ = Z4"1 /M it
follows

Pory = (W) (Pyero1)/G.

Hence we obtain
Fuk(Pys,-1) = Fuk((h")™ (Pyer-0)®" = Fuk((h")™' (Pysr-1)c-
Taking G-invariants, we obtain
Fuk(P 1) = (Fuk((h")™' (Parr-1))86)" = Fuk((h")™' (Pgsr-1)).
Via HMS for pairs of pants the left most term is equivalent to
MEA™™ Ly yarr)® = MEAY™ G,y Yaern)-

Note that by Lemma 7.2 the product y; - - - y44,41 18 invariant under the G-action. Thus we obtain

MEA“™ G, y1 -+ Yairs) = Fuk((BY) " (Pgiro1)).

8. INTERSECTIONS AND CATEGORIES

As explained in Remark 6.5, 6.13, the critical loci Crit(Wx), Crit(Wy) dually project onto
(i—; [I5, under f,g. We introduce a topology on (), Iy, induced from that on Ily, defined
as in Definition 4.1. Then (0, Iy, admits an open cover by the intersections ();_; S l(.k") of k;-
strata S Ek") of Ily,. In this section, we establish equivalences of corresponding categories over
Nz S Ek") and glue them to yield HMS for complete intersections of very affine hypersurfaces.

8.1. Covering complete intersections. By Lemma 6.4 we have

r

Crit(Wy) = (){u; = 0} n (" )(W; = 0} ¢ ()™ x ",
i=1 i=1
where {W; = 0} are given by the union {J,icverns ) P, x C". We denote by L,(S Ek")) the inter-

section of k; legs of P,; corresponding to S gk"). Since by assumption Hy, ..., H, are in general
position, we may assume that Crit(Wx) is the union

r

U U [Nw=0n ﬂ (Lu(S1) x @f)].
i=1

1 r oo (kp) kr) \i=1
v, v Sll Si;) i

.....

.....
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We denote by o (S Ek’)) the cones in the subfans ¥; C Xy c R¥*"*! corresponding to S gk[) and by
ST Ek")), cosEanai (S Ek")) € X;(1) the rays spanning o (S Ek")). Since by assumption Iy , ..., Iy
intersect transversely, the rays

(8.1) ESY), o Er i (S, L ES ), i (SE) € Zy(1)

span a (X_,d + 2 — k;)-dimensional cone o(S (lk‘), Y ﬁk’)) € Xy. Note that we have

r

Zd+2—kisd+r+l.
i=1

Under g the union of intersections of

UES™,...,8%) = SpecCla"(S™, ..., 8%)) N (M x Z)]

8.2. Local A-side categories for complete intersections. Let ﬁ be a X!_ /;-tuple of vertices

BU LB e AL B L B e A,
which together with the origin define rays
Earsata S\, o Edirmiqan (ST € 21 (1), Eaia, S Y, L i, (ST) € (1)
spanning a top dimensional cone o (S (lk‘), oS (,k"), ﬁ) € Yy max together with the rays (8.1). We
denote by AV(S*, ..., 8%, B) the (d + r + 1)-simplex
Conv(0, (—a"', e)), ..., (=" e, ... (=" ), ..., (=a" T e,)

with &;(S ") = Cone(~a/, ¢;) and o/"*+2~Ki+ii = giii,

liecall that the tailored AY(S (lk‘), ... ,Sﬁk’), ,é))—pants P(S (lkl), e, Sﬁk'"), ﬁ) is the inverse image
of P,,, under the map

hV(S (lkl), e S(k,)’ﬁ): (C*)d+r+l — (C*)d+r+1,

whose restriction gives a finite cover of P,.,. Here, hV(S gk‘), e, S ﬁk’) , ﬁ) is induced by a homo-
morphism

]’l(S gkl) S(k,) B)) Zd+r+l — Zd+r+1
NN .

of lattices which sends A}, ., to AY(S (11“), .. ,Sﬁk’),ﬁ). Now, assume that AY(S Ek'), .. ,Sﬁk’),ﬁ)

. . k k) 2 . . .
is unimodular. Then /4" (S (1 '), oS (r ), ) becomes an isomorphism and the monomials
L1 —al Rk g 1 _rd+2ktl o

—a' ey —-a e,

X yeeas X yeees X s X

give coordinates on the target (C*)?*!,
Consider the product

FI(S gkl),ﬁ) X oo X I:I(S gkr),B)) C (C*)d+2—k1+ll X oo X (C*)d"'z_kr"'lr — (C*)d+r+l

of very affine hypersurfaces

d+2—kl‘+li
ook A _ —ablie; _ so\d+2—ki+1; snd+r+1
ASP. B =1 ), x"=0)c@yhh @y,
Ji=1
k) 3 : Frea k) B " .
We denote by H(S;™, ) the quotients of H(S;™, B) by the C; -action
(ui’ x*a’i’laei, L x*(l'.’dﬂ*ki”i,ei) N (uixia,i,l’e’_’ L uixiai,dﬂ—kﬁli’ei)’
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which are isomorphic to (d — k; + [;)-dimensional tailored pants up to deformation. Locally, H
is given by a product of r lower dimensional tailored pants.

Lemma 8.1. Assume that AY(S (lk‘), Y 5’”), ﬁ) is unimodular. Then the product
H(S (lkl)aﬁ—)) X X H(Sgkr)’ﬁ) C (C*)d+l—k1+ll X oo X (C*)d+l—k,+l, — (C*)d+l

is isomorphic to the intersection
ro d+2—ki+l;

ﬂ{ul =0} N ﬂ Z X = 0) c (CHF x T

—alle —aldr 2k, —ale _ardr 2kl
(uy,...,u,x L 4 L 4 R )
—alle —ald¥ 2K+, —atle —ard+2krtlr o
(U x L 72 L UX T URX )
is X_ H(S (&) ﬁ) Since we have
i=1 i P
r d+2—k,‘+l,‘
rorrrak) A _Qi,j,-’e. _ s\ r—1+ki—1;
><,':1PI(S,- ' ’ﬁ) = { X =0} x(C) cable;  aald¥2kitl
i=1 =1
the quotient is isomorphic to
r d+2—ki+l;

ﬂ N m Z —ai~fi,e,- =0} C (C*)d+r+l,

i=1

which in turn is isomorphic to

ﬂ{ui =0} N ﬂ{ Z = 0) c (@) x T

O

Corollary 8.2. Assume that AV(S (k') Y (,k’), ﬁ) is unimodular. Then there is an equivalence

Fuk(( J{u; =0 ﬂ skt = o) = (X) Fuk(H(S ™. ).
i=1 i=1

Proof. As an open submanifold of a closed submanifold H of (C*)?**!, the intersection (), {u; =
0ynNiZ 1{ d+2 kil o 0} carries a Stein manfold structure, which in turn defines a Weinstein
structure. Then the claim follows from [GPS2, Theorem 1.5, Corollary 1.18]. O

8.3. Local B-side categories for complete intersections. Also in this subsection, we assume
AY(S (lkl), 8k ﬁ) to be unimodular. Let

n(S ﬁkl)), oo Yawo—ig+1, (S (lkl)), oS E), Va4, (SE)
be local coordinates for

A2kl o s pd¥2ketl o U(S(lkl)’ o ’Sgkr)’ﬁ)
= Spec C[a" (S, ...,S%). Byn(M xZ")] c Y.

Lemma 8.3. Assume that AY(S (lkl) yeuesS 5’”), ﬁ) is unimodular. Then there is an equivalence

ME(U(ST,...,8 9, B), Wy) = (G ME (A% 3y (S17) - g0 s (S 1)),

i=1
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Proof. Since we have

.....

the claim follows from Lemma 3.16, Lemma 6.12 and [Pre, Theorem 4.1.3]. O
8.4. Gluing equivalences.

Lemma 8.4. Assume that AY(S (lkl), ) ik”, ,g) is unimodular. Then there is an equivalence
Fuk(( Y = 0p [ =457 = )z,  MFR UGS, ..., S&, B), W),
i=1 i=1

Proof. Due to Corollary 8.2 and Lemma 8.3 it suffices to show an equivalence
(8.2) Fuk(H(S ", B))z, =~ ME® (A2l yi(g k). VoS ),

This follows from Theorem 5.4, since by construction H(S Ek"), ﬁ) is isomorphic to (d — k; + [;)-
dimensional tailored pants up to deformation. O

Theorem 8.5. Assume that AY(S gk'), . Sﬁk’),ﬁ) are unimodular for all Sﬁk'), . Sﬁk’) whose
intersection is nonempty. Then there is an equivalence

Fuk(H)z, = lim ~MF*(U(S ®0 8% B), Wy) = MF*(Y, Wy)
L s 3

Proof. We glue the local equivalences from Lemma 8.4. Again, due to Corollary 8.2 and
Lemma 8.3 it suffices to show the compatibility of (8.2) with gluing, which follows from the
same argument as the proof of Theorem 5.5. O

8.5. Nonunimodular case. Finally, we drop the assumption on A" (S (lkl) oo, S, ﬁ) to be uni-

modular. The simplicial toric variety U(S (lkl), 8% ﬁ) becomes isomorphic to the geometric
quotient

ARG, 8% B).

by the finite abelian subgroup G(S (1]“), oS ﬁk'), ﬁ) of (C*)®**! with canonically induced action.
The inclusion extends to a short exact sequence

(8.3) 0—GE™,...,s® B - @)y - M'S™,....s% B — 0,

where MY (S (lk'), Y (,kf), ﬁ) is the cocharacter lattice associated with U(S (lkl), Y 5"”, ﬁ). Then
we have

On the A-side, P(S (lk‘), R Sik’),ﬁ) becomes a finite cover of P,,,. Since U(S (lk'), e, S(rk’),ﬁ)
has no torus factors, (8.3) is obtained from the short exact sequence

0— M(Sgkl)’ o ’SEk,),B)) N Zd+r+l N G\/(Sgkl)’ . ’Sgkr)’ﬁ) -0

by taking Homgz(—, C*). Here, we use the symbol GV (S (lk‘), oS ik"), ﬁ) to denote the divisor
class group of U(S (lk‘), oS (rk"), ﬁ), which acts on

(C*)d+r+l ~ T*(Rd+r+1/M(S (lkl)’ o Sgk,),ﬁ))
Then the finite cover is given by

P, 8%, B - P, 8% GV (S, . S B = Py
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Similarly replace
r d+2—k;+l; r d+2-ki+l;

~ (k) 3 —abie _ N _ ~aMie; _
X;:1H(S§ ),,8) = ﬂ { Z X = O} X (C )ia::(,, abd+2=ki+l; | T { Z X = 0}
X CiLX “i

i=1 ji=1 i

1l
—_

Ji=1

and x_ H(S E""), ﬁ) with their inverse images. Then we have

(k1)

84)  Fuk((X_HS™.3)/G'(S™,....8%, B)) = Fuk(xi_ H(S &, )¢ 615D,

As explained above, there is an equivalence to the de-equivariantization

(k1)

(8.5) Fuk(x_ H(S ® BT 15" ~ Fuk(x_ H(S @, B))

with respect to G(S Ek‘), oS ﬁk’), ﬁ). Combining (8.4), (8.5) and the equivalence for unimodular
case, we obtain

ME® (A%, Wy) = (Fuk(x[_H(S [, B))z,)
Passing to the equivariantization, we obtain

ME (A" G, 5%, B), Wy) = (Fuk(x H(S™, B))z,) )OS

BG(S\V,...s%,

which by Lemma 7.1 implies
(8.6) ME*(U(S*, ..., 8%, B), Wy) ~ Fuk((x/_, H(S ", B))).

We glue the above local equivalences. It suffices to show the compatibility of (8.6) with
gluing, which follows from the same argument as the proof of Theorem 5.5 extended in a
straight forward way. Indeed, the compatibility of the actions of G(S Ek‘), L8, ﬁ) and

G'(S (lkl), 8% ﬁ) with gluing follows from Lemma 7.2 and the combinatorial duality.
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LARGE VOLUME LIMIT FIBRATIONS OVER FANIFOLDS
HAYATO MORIMURA

AssTrAcT. We lift the stratified torus fibration over a fanifold constructed by Gamage—Shende to
the associated Weinstein manifold, which is homotopic to a filtered stratified integrable system
with noncompact fibers. When the fanifold admits a dual stratified space in a suitable sense,
we give a stratified fibration over it completing SYZ picture. For the fanifold associated with a
very affine hypersurface, we realize the latter fibration as a restriction of SYZ fibrations over the
tropical hypersurface proposed by Abouzaid—Auroux—Katzarkov.

1. INTRODUCTION

Given a Calabi—Yau manifold X, Homological Mirror Symmetry(HMS) conjecture [Kon0O]
claims the existence of another Calabi—Yau manifold X called its mirror partner whose Fukaya
category Fuk(X) and dg category of coherent sheaves Coh(X) are respectively equivalent to
Coh(X) and Fuk(X). The equivalences are believed to connect the symplectic and complex
geometry of the mirror pair (X, X). Nowadays, HMS concerns more general spaces but neither
precise definition nor systematic construction of mirror pairs are available.

One way to go is indicated by Strominger—Yau—Zaslow(SYZ) conjecture [SYZ96], which
has been elaborated independently by Kontsevich—Soibelman [KS00, KS06] and Gross—Siebert
[GS11]. Roughly speaking, (X, X) should admit so called SYZ fibrations, i.e., dual special
Lagrangian torus fibrations X — B « X over a common base. Then X should be obtained by
dualizing X — B over the smooth locus and compactifying the result in a suitable way. SYZ
conjecture is hard to correctly formulate and still largely open.

Recently, Gamage—Shende introduced fanifolds [GS1, Definition 2.4] by gluing rational
polyhedral fans of cones, which provide the organizing topological and discrete data for HMS
at large volume [GS1, Theorem 5.4]. To a fanifold @ they associated an algebraic space T(®P)
[GS1, Proposition 3.10] obtained as the gluing of the toric varieties T associated with the fans
¥ along their tg{ic boundaries. Based on an idea from SYZ fibrations, they constructed its
mirror partner W(®) by inductive Weinstein handle attachements.

Theorem 1.1 ([GS1, Theorem 4.1]). Let ® € M be a fanifold. Then there exists a triple
(W((D) L((D) m) of a subanalytlc Weinstein manifold W((I)) a conic subanalytic Lagrangian
]L,((I)) C W((D) and a map m: L((D) — O satisfying the following conditions.
(1) Let S C @ be a stratum of codimension d. Then:
o 11(S) =T xS where T? is a real d-dimensional torus.
o 77 '(NbA(S)) = L(Zs)xS where Nbd(S) is an appropriate neighborhood and L(Zs)
is the FLTZ Lagrangian associated with the normal fan g of S.
e In a neighborhood of n='(S) = T x S, there is a symplectomorphism of pairs

(1.1) (T*TY x T*S,L(Zs) X S) — (W(D), L(D)).

(2) If @ is closed, then we have L(®) = Core(W(®)) for the skeleton Core(W(®)) of W(®).
(3) A subfanifold @’ co determines a Weinstein sector W(®’) ¢ W(®) with skeleton
L(®") = W(D') N L(D)

2010 Mathematics Subject Classification. 53D37.
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(4) The Weinstein manifold W((D) carries a Lagrangian polarization given in the local
charts (1.1) by taking the fiber direction in T*T¢ and the base direction in T*S.

The guiding principle behind their construction of W(q)) was that the FLTZ Lagrangians
L(X) and the projections I(X) — X should glue to yield Core(W(CD)) and 7. Theorem 1.1(4)
gives rise to canonical grading/orientation data [GPS3, Section 5.3], which one needs to define
the partially wrapped Fukaya category Fuk(W(dD), 9o L(D)). By [GPS3, Theorem 1.4] we have

Fuk(W(®), 0 L(®)) = [(L(®), pshr, )7 = T(®, 7. pishg )

where ushg, 4, 18 a certain constructible sheaf of dg categories. Over neighborhoods of strata, lo-
cal sections of 7, pshy, 4, are computed in [GS2, Section 7.3]. The third bullet in Theorem 1.1(1)
gives rise to gluing data [GS1, Proposition 4.34], which one needs to determine 7. ushg g, .

SYZ fibrations often give candidates for mirror pairs and [GS1, Theorem 5.4] is just one
of such examples. Moreover, [GS1, Corollary 5.8] implies that HMS at large volume limit is
obtained by the local-to-global principle. Hence it is natural to expect that the canonical lift of
the projections L(X) — X should glue to yield a version of A-side SYZ fibration W((D) — @, as
predicted by Gamage—Shende [GS1, Remark 4.5]. Indeed, taking wrapped Fukaya categories
and gluing of local pieces of W(®), which respects the gluing of L(X), intertwine in the sense
of [GS1, Corollary 5.9]. In this paper, we prove the following.

Theorem 1.2. There is a filtered stratified fibration 7: W((D) — @ restricting to m, which
is homotopic to a filtered stratified integrable system with noncompact fibers. If the fan Xg
associated to any stratum S C @ is proper, then the homotopy becomes trivial.

Note that by construction of W(®) one can expect isotrivial fibers only on each stratum
of the induced stratification by ®. Moreover, ® admits a filtration [GS1, Remark 2.12] and
fibers would vary when passing through the induced filters. Since in general the canonical
lift of 7 does not land in ®, we must compose the map induced by a retraction, which might
not be smooth, even C!. After that, as suggested in [GS1, Remark 4.5], it remains to show
compatibility with the handle attachment process. Then we need to fully understand the proofs
of Theorem 1.1, especially (4) and the third bullet in (1). As their details are skipped in [GS1],
we include them for completeness.

If ® admits a well defined dual stratified space ¥, then one expects the gluing T(®) — ¥
of algebraic moment maps to be the B-side SYZ fibration as mentioned in [GS1, Remark 4.5].
We obtain a stratified fibration which should be its SYZ dual, modifying the canonical lift of .

Theorem 1.3. Assume that ® has the dual stratified space ¥ in the sense of Definition 6.1.
Then there is a stratified fibration n: W(®) — Y. Let S C ® be a stratum of codimension d.
Over a point of its dual stratum S* C ¥, the fiber of rt is isomorphic to T? x T*S.

Finally, we provide an evidence to convince the readers that z should be the A-side SYZ
fibration for (W(CD), T(®)). Consider the fanifold ® = £ N $"*! from [GS1, Example 4.22]
generalized as in [GS1, Sectiogﬁ]. It is associated with the mirror pair (H, 0Tyx) [GS2, Theorem
1.0.1] in the sense that Core(W(®)) = Core(W(®)) = Core(H) and T(®) = 9Ty for a very
affine hypersuface H C (C*)"*! and the toric boundary divisor dTs of the toric stack Ts. The
fanifold @ has the dual stratified space Y. We show that the SYZ dual fibrations for (H, dTy)
over the tropical hypersurface Iz of H [AAK16, Section 3] restricts to that for (W(®), T(®D))
over YV in the following sense.

Theorem 1.4. Let © be the fanifold from [GS1, Example 4.22] generalized as in [GS1, Sec-
tion 6]. Then there are a stratified homeomorphism ¥ — Ils, a symplectomorphism of pairs
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(W(®D), (D)) — (H, Core(H)) and a map T(®) — Y which makes the diagram
L(®)— W(D) —— ¥ —— T(D)

]

Core(H)¢ H Iy —Kr,

commute, where H — 1ly « —Kr, are canonical extensions to toric stacks of SYZ fibrations
from [AAK16, Section 3].
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2. REVIEW ON FANIFOLDS

Fanifolds are introduced by Gamage—Shende in [GS1, Section 2] as a formulation of strati-
fied manifolds for which the geometry normal to each stratum is equipped with the structure of
a fan. Let ® be a stratified space. As in [GS1], throughout the paper, we assume @ to satisfy
the following conditions.

(1) @ has finitely many strata.

(i1) ® is conical in the complement of a compact subset.
(ii1) @ is given as a germ of a closed subset in an ambient manifold M.
(iv) The strata of ® are smooth submanifolds of M.

(v) The strata of @ are contractible.

We will express properties of @ in terms of the chosen ambient manifold M as long as they
only depend on the germ of ®@. Taking the normal cone Cs® C Ts M for each stratum S C @,
one obtains a stratification on Cy® induced by that of a sufficiently small tubular neighborhood

TsM - M.

Definition 2.1. The stratified space @ is smoothly normally conical if for each stratum § C @
some choice of tubular neighborhood 7s M — M induces locally near § a stratified diffeomor-
phism Cg® — @, which in turn induces the identity Cs® — CsO.

Example 2.2. Associating to each cone its interior as a stratum, one may regard a fan X of
cones as a stratified space satisfying the conditions (1), ... , (v). Clearly, X is smoothly normally
conical. By abuse of notation, we use the same symbol o € X to denote a stratum of X corre-
sponding to o~. We introduce a partial order in X canonically descending to the stratified space.
Namely, for two strata o, 7 € X we define o < 7 if and only if o C 7T for the closure 7 of 7 in Z.

Definition 2.3. We write Exit(®) for the exit path category. For each stratum § C ® we write
Exitg (@) for the full subcategory of exit paths starting at S contained inside a sufficiently small
neighborhood of §.

Definition 2.4. We write Fan™ for the category whose objects are pairs (M, X) of a laticce M
and a stratified space X by finitely many rational polyhedral cones in My = M ®; R. For any
(M, %), (M’,Y) € Fan™ a morphism (M,X) — (M’,Y’) is given by the data of a cone o € X
and an isomorphism M/{o) = M’ such that ¥’ = X/o = {t/{0) € My/{o) | T € Z,0 C T}.
We denote by Fang) for an object (M, X) € Fan™ the full subcategory of objects (M’,X") with
Y’ = X/o for some cone o € X.

We have a natural identification
Exit(Z) = Fang), o = [Z - Z/0]

of posets. In addition, the normal geometry to o is the geometry of X/o. This is the local
model of fanifolds introduced by Gamege—Shende.
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Definition 2.5 ([GS1, Definition 2.4]). A fanifold is a smoothly normally conical stratified
space @ c M satisfying the conditions (i), ..., (v) and equipped with the following data:

e A functor Exit(®) — Fan™ whose value on each stratum S is a pair (M, X¢) of a lattice
My and a rational polyhedral fan 23 € My called the associated normal fan.

e For each stratum S C @ a trivialization ¢g : Ts M = My of the normal bundle carrying
the induced stratification on Cy® to the standard stratification induced by Xg.

These data must make the diagram

TS/\/(L> MS,R

.

Ts Ms e My g,

commute for any stratum S’ of the induced stratification on Nbd(S), where the left vertical
arrow is the quotient by the span of §’. The right vertical arrow corresponds to the map My —
M. on lattices.

Remark 2.6. In the original definition, the conditions (i), ..., (iv) were assumed in advance and
the condition (v) was added later [GS1, Assumption 2.5]. Due to (v), Exits (®) is equivalent to
the poset Exit(Zg). Although we have already assumed @ to satisfy (i), ..., (v) above, here we
mention it again to emphasize the difference from the original form.

Example 2.7. A manifold M regarded as a trivially stratified space is obviously a smoothly
normally conical satisfying (i), ..., (v). Associating to the unique stratum M a pair (My; =
{0}, X = {0}) defines a trivial fanifold structure on M. It follows that the product of a manifold
and a fanifold is canonically a fanifold.

Example 2.8 ([GS1, Example 2.7]). As explained in Example 2.2, a fan ¥ c R”" of cones
regarded as a stratified space is a smoothly normally conical satisfying (i), ..., (v). Associating
to each stratum o € X a pair (M/{o),X/0) of the quotient lattice M/{o") and the normal fan
2 /o defines a fanifold structure on .

Example 2.9 ([GS1, Example 2.10]). Given a fanifold ® c M, if a submanifold M’ ¢ M
intersects transversely all strata of @, then ® N M’ c M’ canonically inherits the fanifold
structure. In particular, the ideal boundary d.,® of the fanifold carries a canonical fanifold
structure.

Lemma 2.10 ([GS1, Remark 2.12]). Let ® be a fanifold of dimension n. Then it admits a
filtration
(2.1) OycP,Cc---CcD, =D

where ©, are subfanifolds defined as sufficiently small neiborhoods of k-skeleta Ski(®), the
closure of the subset of k-strata.

Proof. The normal geometry to a O-stratum P C @ is the geometry of the normal fan Xp C Mpg
by definition. Let
D = |_| Tp
P

be the disjoint union of Xp equipped with the canonically induced fanifold structure, where P

runs through all O-strata of ®. Then @, C @ is clearly a subfanifold containing Sk,(D).
Suppose that ®;_; has the desired filtration ®y € ®; C --- C ®;_;. The normal geometry to a

k-stratum S C @ is the geometry of the normal fan X3 C M by definition. The ideal boundary
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0S5 might have some subset 9;,S which is in the direction to the interior of ®. Perform the
gluing @y #z,xs,5)(Zs X S) which is equal to X5 X § when ®,_; is empty and equal to Oy,
unless S is an interior k-stratum, i.e., 0;,S = S, where S, = S \ ®,_; is a manifold-with-
boundary. Note that by Example 2.9 the induced fanifold structure on 9;,S is compatible with
that of ®;_;. Let

D = Q1 # | (55%0:,5) |_|(ZS X S)
5

be the result of such gluings for all k-strata S in ®. Then ®; C @ is a subfanifold containing
Sk;(®) since the products X5 X S are canonically fanifolds by Example 2.7, 2.8. O

Definition 2.11. A fanifold ® c M is closed if its all strata are interior. Namely, any k-stratum
S of O satisfies 9;,S = S, where S, = § \ O;_;.

Example 2.12 ([GS1, Example 4.21]). Consider a 2-dimensional fanifold ® = [0, 1] x [0, 1]
stratified by vertices Py = (0,1),P, = (0,0),P; = (1,0),P4, = (1,1), edges I}, = {0} X
[0,1], 3 = [0,1] X {0}, 34 = {1} x [0,1],1,3 = [0,1] x {1} and a face F = (0,1) x (0, 1).
As all strata are interior, @ is closed. The filtration from Lemma 2.10 is given by

4
2.2) Oy = | |Sp, @1 = Oty s, i, | | Sy X L) @2 = ity pF
i=1

1<i<j<4
where Xp,, X, are the fans X,> C R2, X, C R. We place the origins of Xp, at P; and that of X,
along I;; so that Xp, N F # 0 and Z;, N F # 0.

As explained in [GS1, Section 6], one can generalize fanifolds in terms of stacky fans. First,
we recall the definition of stacky fans.

Definition 2.13 ([GS15, Definition 2.4]). A stacky fan is the data of a map of lattices 3: M —
M with finite cokernel, together with fans £ ¢ My and £ ¢ My such that 8 induces a combina-
torial equivalence on the fans.

Stacky fans form a category stFan™. Morphisms
(M, M,%,%). > (M',M', 2, %)
are given by the choices of cones & with §(6) = o and compatible isomorphisms
(M/{c), M[(6),Z]0, 2/F) = (M',M', T, ).

Now, replace the functor Exit(®) — Fan™ in Definition 2.5~with Exit(®) — stFan™. Defining
the associated normal fan as Xg for each value (Mg, My, X, Xg), one obtains the generalization.

3. REVIEW ON WEINSTEIN HANDLE ATTACHMENTS

The Weinstein manifold W(®) is obtained by inductively attaching products of cotangent
bundles of real tori and strata of ®. Each step requires us to modify Weinstein structures near
gluing regions. In order to show the compatibility of such modifications with candidate maps,
we need to fully understand the attachment process.

3.1. Weinstein manifolds.

Definition 3.1 ([CE12, Section 11.1], [Eli, Section 1]). A Liouville domain (W, 1) is a com-
pact symplectic manifold (W, w = dA) with smooth boundary dW whose Liouville vector field
Z = "1 points outwardly along dW. We call the positive half (OW X R, €'(A|w)) of the
symplectization of W with Liouville form e’(Ayw) the cylindrical end. Any Liouville domain

(W, 1) can be completed to a Liouville manifold (W, ) by attaching the cylindrical end, i.e.,
W =W U @W X Rs), Aw = A and Agwxe., = €' (Alaw).
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Remark 3.2. Strictly speaking, the completion (W, ) is a Liouville manifold of finite type. Ev-
ery Liouville manifold of finite type is the completion of some Liouville domain. Throughout
the paper, following [GS1, Section 4], by a Liouville manifold we will mean the completion
of some Liouville domain. Note that the skeleton, which will be defined below, of a Liouville
manifold of finite type is compact.

Definition 3.3 ([CE12, Section 11.1], [GS1, Definition 4.8]). Let (W, A) be a Liouville mani-
fold. Its skeleton is the attractor

Core(W) = () Z™(W)
>0
of the negative Liouville flow Z™. Equivalently, Core(W) is the union of all stable manifolds,
1.e., the maximal compact subset invariant under the Liouville flow. We denote by ([W], [1]) a
Liouville domain which completes to (W, 1) and contains Core(W). The ideal boundary 0..W
of W is the intersection W N d[W]. For a subset L of d.,W the relative skeleton Core(W, L) of
(W, A) associated with £ is the disjoint union

Core(W)URLCW
of Core(W) and the saturation of £ by the Liouville flow.

Definition 3.4 ([CE12, Definition 11.10], [Eli, Section 1]). A Weinsten domain (W, A, ¢) is a
Liouville domain (W, 1) whose Liouville vector field is gradient-like for a Morse—Bott function
¢: W — R which is constant on dW. We call the positive half (OW X R, €' (yw), @) of the
symplectization of W with Liouville form ¢(1]sw) and canonically extended ¢ the cylindrical
end. Any Weinstein domain (W, 4, ¢) can be completed to a Weinstein manifold (VV, A, gAb) by
attaching the cylindrical end.

Remark 3.5. The completion (W, A, d) is a Weinstein manifold of finite type, i.e., ¢ has only
finitely many critical points. Every Weinstein manifold of finite type is the completion of
some Weinstein domain. Throughout the paper, following [Nad, Definition 5.5], by a Weinstein
manifold we will mean the completion of some Weinstein domain. Note that in view of [GS1,
Example 4.23] one may regard mirror symmetry established in [GS1] as a generalization of
that in [GS2], which relies on [Nad, Theorem 5.13].

Remark 3.6. For a Weinstein manifold (W, 4, ¢) the skeleton Core(W) is isotropic by [CE12,
Lemma 11.13(a)]. Moreover, the stable manifold of the critical locus of ¢ contains the zero
locus of Z.

Example 3.7 ([CE12, Definition 11.12(2)(3)]). Consider the cotangent bundle 7*Y of a closed
manifold Y with the standard symplectic form w,, = dAy, where A, = pdgq is the standard
Liouville form. The associated Liouville vector field Z;, = pd, is gradient-like for a Morse—
Bott function ¢4(q, p) = %lplz. The product 7Y X T*Y’ of two such Weinstein manifolds
with symplectic form wy @ w),, Liouvlle form A, @ A, and Morse-Bott function ¢, ® ¢, is a
Weinstein manifold.

3.2. Weinstein pairs.

Definition 3.8 ([Eli, Section 2]). Let (Y, &) be a contact manifold. We call a codimension 1
submanifold H C Y with smooth boundary a Weinstein hypersurface if there exists a contact
form A for & such that (H, 4|y) is compatible with a Weinstein structure on H, i.e., wy = dA|y
is a symplectic form, Zy = w’ Aly points outwardly along dH and is gradient-like for some
Morse—Bott function ¢p: H — R. Its contact surrounding U.(H) is the neighborhood of
H in Y defined as follows. Let H be a slightly extended Weinstein hypersurface satisfying
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Alg\y = tAlpg for t € [1, 1+€]. There is a neighborhood U of H diffeomorphic to Hx(—¢, €) with
Alg = pr{(4lz) + du where u is the coordinate of the second factor. For a nonnegative function
h: H — R which is equal to 0 on H and to ¢ — 1 near 0H, set U.(H) = {h* + u> < €’} c U.

Remark 3.9. Although the induced Weinstein structure on H depends on the choice of 4, the
skeleton Core(H) is independent of the choice [CE12, Lemma 12.1].

Example 3.10 ([Eli, Example 2.1(1)]). Let £ be a Legendrian submanifold of a contact mani-
fold (Y, &€). It admits a neighborhood U (L) isomorphic to

(JNL),du— pdg), g€ L, ||pI* +u* <e.

Then H(L) = U(L) N {u = 0} is a Weinstein hypersuface called a Weinstein thickening of L.
It is symplectomorphic to the cotangent ball bundle of £. Up to Weinstein isotopy, H(L) is
independent of all the choices.

Definition 3.11 ([Eli, Section 2]). A Weinstein pair (W, H) consists of a Weinstein domain
(W, 4, ¢) together with a Weinstein hypersurface (H, A|g) in 0W. The skeleton Core(W, H) of
(W, H) is the relative skeleton of the Liouville manifold (W, A1) associated with H.

Definition 3.12 ([Eli, Section 2]). Let (W, H) be a Weinstein pair, ¢ : H — R a Morse—Bott
function for which Zy = (w|g)*Aly is gradient-like and U.(H) C W the contact surrounding
of H. We call a pair (A, ¢y) of a Liouville form 4y for w and a smooth function ¢o: W — R
adjusted to (W, H) if

e Zy = w1y is tangent to AW on U.(H) and transverse to AW elsewhere;

® Lolu.w) = Zy + ud,;

e the attractor (). Z,"(W) coincides with Core(W, H);

e the function ¢, is Morse-Bott for which Z, = (w)* A, is gradient-like satisfying dolu.m) =

oy + %uz and whose critical values are not more than ¢olsy, ).

Given a Weinstein pair (W, H), one can always modify the Liouville form A for w and the
Morse—Bott function ¢y to be adjusted.

Lemma 3.13 ([Eli, Proposition 2.9]). Let (W, H) be a Weinstein pair. Then there exist a Liou-
ville form Ay for w and a smooth function ¢o: W — R such that (Ao, ¢o) are adjusted to (W, H)

and Aolw\v.my = Am\v.w)-
3.3. Gluing of Weinstein pairs.

Definition 3.14 ([Eli, Section 3.1]). Let (W, 4,¢) be a Weinstein domain. A splitting for
(W, 4, ¢) is a hypersurface (P, dP) c (W, 0W) satisfying the following conditions.
e 0P and P respectively split 9W and W into two parts W = Y_ U Y, with 9Y_ = 9Y, =
Y.NY,=0Pand W=W_UW, withoW_=PUY_,0W,=PUY W_NW, =P.
e The Liouville vector field Z = w"A is tangent to P.
e There exists a hypersurface (H,0H) C (P, 0P) which is Weinstein for 1|y, tangent to Z
and intersects transversely all leaves of the characteristic foliation of P.

The above hypersurface (H,0H) is called the Weinstein soul for the splitting hypersurface
P. Due to Lemma 3.16 below, P is contactomorphic to the contact surrounding U.(H) of its
Weinstein soul.

Definition 3.15 ([Eli, Section 2]). Let H be a closed hypersurface in a (2n — 1)-dimensional
manifold and ¢ a germ of a contact structure along H which admits a transverse contact vector
field Z. The invariant extension of the germ & is the canonical extension & on H X R, which is
invariant with respect to translations along the second factor and whose germ along any slice
H x {t},t € R is isomorphic to &.
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Lemma 3.16 ([Eli, Lemma 2.6]). Let H be a closed (2n — 2)-dimensional manifold and ¢ a
contact structure on P = H X [0, 00) which admits a contact vector field Z inward transverse to
H x {0} such that its trajectories intersecting H X {0} fill the whole manifold P. Then (P, ) is
contactomorphic to (HX[0, o), £), where & is the invariant extension of the germ of & along H x
{0}. Moreover, for any compact set C C P with Hx {0} C Int C there exists a contactomorphism
¥,¢) — (H x [0, 00),5), which is equal to the identity on H X {0} and sends Z|c to the vector
field 0,.

Definition 3.17 ([Eli, Section 3.1]). Let (W, H),(W’, H") be Weinstein pairs with adjusted Li-
ouville forms and Morse—Bott functions (4, ¢), (1’, ¢"). Suppose that there is an isomorphism
(H, Allg, dlp) = (H', Vg, ¢'|g) of Weinstein manifolds. Extend it to their contact surroundings
morphism U.(H) = U.(H’). Then the gluing of (W,H),(W’, H') is given by W#y.yp W' =
W Uy, m=v.ry W with glued Liouville form and Morse-Bott function.

By definition we have
COI'C(W#HEH’ W’) = COI‘C(W H) UCOFG(H)ECOFG(H') COI'C(W’, H,)

3.4. Weinstein handle attachments. Let W be a Weinstein domain with a smooth Legendrian
L c d,W. Fix a standard neighborhood of £ in 0.,W
n: Nbdy_w(L) = J'L=T"LxR
which extends to a neighborhood in the Weinstein domain W
&: Nbdy(L) = J'LxRe = T (L X Re),

where the Liouville flow on W gets identified with the translation action on R.,. Note that
7~ Y(T* L x {0}) gives a Weinstein thichkening of £.

Due to Lemma 3.13, one can modify the Weinstein structure near £ so that the Liouville
flow gets identified with the cotangent scaling on 7*(L X R.j). In other words, the Liouville
form and the Morse—Bott function become adjusted to the Weinstein pair (W 7 N(T* L x {0})).
We denote by W its conic completion. Then 7 yields a neiborhood of L in oW

7 Nbd,z(L) — J' L
which extends to a neighborhood in w
& Nbdp(L) & J'LxRe = T7(L X Ry).

Remark 3.18. As a Liouville domain, the modification is canonical up to contractible choice,
since any two Liouville structures on a compact symplectic manifold are canonically homotopic
[Eli, page 2].

Remark 3.19. The result W is a Liouville sector in the sense of [GPS1, Definition 2.4]. In-
deed, W is a Liouville manifold-with-boundary, whose boundary consists of Nbd, (L) and the
conic completion of d Nbdy_w(L). The characteristic foliations of the former and the latter are
respectively given by the Reeb vector field on W and the restricted Liouville vector field on
W. Now, it is clear that 99, W is convex and there is a diffeomorphism OW = RxXF sending
the characteristic foliation of W to the foliation of R X F by leaves R X {p}.

Given Weinstein domains W, W’ with smooth Legendrian embeddings 0.,W <> L — 9., W',
we write W#,W’ for the gluing

W#n“(T*Lx{()})zn’-l(T*LX{O})W, =W Ujig VT;’
which yields another Weinstein domain with skeleton
Core(W#,W’") = Core(W, L) U, Core(W’, L).
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Definition 3.20 ([GS1, Definition 4.9]). Let W be a Weinstein domain with a smooth Legen-
drian £ C 0.,W. A conic subset L ¢ W is biconic along L if the image of L N Nbdy (L) under
some &: Nbdy (L) — T*(L X R), where the Liouville flow on W gets identified with the
translation action on R, is invariant also under the cotangent scaling of 7*(L X R.).

By construction any biconic subset L. € W remains conic in W. We write L c W for its
saturation under the Liouville flow.

Lemma 3.21 ([GS1, Lemma 4.10]). Let W be a Weinstein domain with a smooth Legendrian
L C 0W. Then a Lagrangian L C W is biconic along L if and only if it is conic and

&L NNbdy(L)) € T*L X {0} X Reg € J' L X Ry = T*(L X Rep)

for some &: Nbdy (L) — T*(L X Ryy), where the Liouville flow on W gets identified with the
translation action on R

Proof. The second factor R in the product T7*£ x R = J' £ is responsible for the additional
cotangent scaling of T*(L X R.y) with respect to 7* L. O

Given biconic Lagrangians L ¢ W,L” ¢ W’ with matching ends in the sense that
7L N Nbdy .w(L)) =7 (L' N Nbdy w (L))
in W#,W’, we write L# L’ for the gluing L USLANbds, (L) L’ in W#,W’. Since any biconic
subsets in W, W’ remain conic in W#,W’, the gluing L# /L’ is a conic Lagrangian.
For a closed manifold M and a manifold-with-boundary S, consider the Weinstein domain
W' = [T*M x T*S] with a smooth Legendrian £ = M X 0S taken to be a subfs\gt of the
zero section. The Liouville flow on W’ near L is the cotangent scaling. We write W’ for the

completion T*M x T*S, which is an exact symplectic manifold without boundary. One can
check that the above gluing procedure carries over, although £ does not belong to 0., W’.

Definition 3.22 ([GS1, Definition 4.11]). Let W be a Weinstein domain with a smooth Legen-
drian embedding M X 9§ — 0., W.
(1) A handle attachement is the gluing

Wiy oo [T"M X T*S]
respecting the product structure. _
(2) Let further L ¢ W be a biconic subset along M x dS which locally factors as
(L N Nbdy_w(M x 8S)) = Ls XS C T*M x T*0S
for some fixed conic Lagrangian Lg. The extension of L through the handle is the gluing
L# 57,55 (Ls X S)

respecting the product structure.
(3) Let further A C d.,W be a subset satisfying

n(A N Nbdy_w(M x 8S)) = Lg x S € T*M x T*8S x {0} € J'(M x 8S)
for Lg. The extension of A through the handle is the ideal boundary
Oo(Core(W, A, s (Ls X S))
of the extension of the biconic Lagrangian Core(W, A) thorough the handle.

Lemma 3.23 ([GS1, Lemma 4.12]). Let E — Y be a vector bundle. Then near the Legendrian
L = 0.TyE C T"E there are local coordinates such that if A c U, Tg E for any collection
{S o}e of conic subsets S, C E with respect to the scaling of E, then A is biconic along L.
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Proof. Asabundle over Y, we have T*E = E®EY®T*Y. Let P C T*E be the polar hypersurface
defined as the kernel of the pairing between E and EV. Then P contains T E for any conic
subset S, C E. Indeed, a point (y,u,v,w) € T Ebelongs to the fiber (7'g E)y C (T Els,)y only if
(v,u) € S, and v(u) = 0. Locally, the ideal boundary O0wP C 0 T*E can be identified with T L
compatibly with their standard Liouville structures. Indeed, any point of (0 P)y is expressed
as (y,u, [v],w) with (y,u,v,w) € P,, while any point of T*L is expressed as (y, [v], w, u) with
0, [v]) € (0TyE)y,w € Ty, and u e E Here, we identify E with the hyperplane orthogonal to
v passing through the origin. Hence locally 0P is a Weinstein thickening of £ from Example
3.10 Transporting to Nbdp(L) the Reeb vector flow which intersects 7" L transversely, we
obtain local coordinates n7: Nbdp(L) — J' £ whose biconicity follows from Lemma 3.21. O

Corollary 3.24 ([GS1, Corollary 4.13]). Let Y C Y’ be a submanifold. Then near the Legen-
drian 0sTyY' there are local coordinates such that if A C J, Tg Y’ for any collection {S .}, of
subsets S, C Y, then A is biconic.

Proof. Locally identify a tubular neighborhood NyY” of Y in Y” with Y’. Since any subset
S, C Y trivially becomes conic with respect to the scaling of NyY’, one can apply Lemma 3.23
for E = NyY" and £ = d.,TyNyY’ to obtain the desired local coordinates. O

Definition 3.25 ([FLTZ12, Section 3.1]). Let £ C My be a rational polyhedral fan and M the
real n-torus Hom(M,R/Z) = My /M" . The FLTZ Lagrangian is the union

L(Z):ULU:UO'LXO'

g oEX
of conic Lagrangians o+ X o~ C M x My = T*M, where o* is the real (n — dim o-)-subtorus
{xe M| (x,v)=0forallve o}

Remark 3.26 ([FLTZ14, Definition 6.3]). When X is a stacky fan, the FLTZ Lagrangian L(X)
becomes the union | J,s G, X 0, where G, = Hom(M,, R/Z) are possibly disconnected sub-
group of M. Here, we denote by M, the quotients of the lattice M by the stacky primitives for
o.

Lemma 3.27 ([GS1, Lemma 4.16]). Let . C My be a rational polyhedral fan. Then for each
cone o € X near the Legendrian 0.,L, C 0,T*M there are local coordinates

Ne: Nbd(0oLy) = J' 00y = T 0Ly X R
with the following properties.

(1) The Lagranzian L, is biconic along 0.,
(2) For any nonzero cones o, T € X with o C T, we have

(3.1) 750l NNbd(0wLy)) = Lyjo X 00 X {0} € T 0" X T 00 X {0} = T* 0oLy X {0}.

(3) The FLTZ Lagranzian 1.(X) is biconic along each 0L, .
(4) For each o € X the local coordinates n, define a Weinstein hypersuface

Ry = 1,/ (T"0 Ly X {0)) € 0 T" M
containing 0L, as its skeleton and we have R, N Nbd(d.L,) C R, for any T € X with
oCT.

Proof. Applying Corollary 3.24 to each submanifold o+ C M, we obtain local coordinates
Ne: Nbd(d.L,) — J'd.L, near d,L, such that L, is biconic along d.L,. Provided (1), the
property (3) follows from (2), which is a consequence of the identification

0oLy = T X 0o (T/{0) X 0) = (T/{0))" X T/{0) X D0 C L(Z/0) X OO
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near o of subsets of the stratified spaces X ¢ X and E/ o for any 7 € £ with {0} # o c 7. Note that
subtori (7/{o))*, T+ of respective tori M / (o) C M are the same. When o = {0} and taking the
ideal boundary d.,0- makes no sense, we have instead

No(OeLr N Nbd(0wLy)) = eollr/or X {0} € T¥ 0" x {0},
It remains to show (4). Let P, be the polar hypersurface defined as the kernel of the pairing
fr: T*Uy = T*NyoM = Nyo M & (N,o M) @ T*0- > R,

which gives rise to the above local coordinates Nbdp, (0T, M AN Tc*rll\//f as in the proof
of Lemma 3.23. However, there is no inclusion between 0., P, 0., P, for o C 7. To remedy this
issue, one needs to modify the above local coordinates as follows. For a 1-dimensional cone
o, replace f, with g, = f;|v, where V, = N]L(TT*M\ is a conic tubular neighborhood projecting
to U, and W, = N,Mpy via the identification T*M = M x Mpy, chosen so that V. NV, when
o N a’ ={0}. Locally, we have

Ry =g (0)NT 0T M x {0} = T*0.. T M
and the modified local coordinates
Nbd,- 1) 0uTia M) = J' 3 Tiu M

satisfies the properties (1), (2), (3).
For a higher dimensional cone 7, one extends g, as follows. When dim7 = 2 and 7 is
spanned by o, 0, replace f; with

g =aifolv, + arfolv,: V: & R

where (aj,ay): V. — 7 = (01, 0,) is the canonical projection. The functions a; take values
in R, and satisfy 611|vgzmv, = aly, nv, = 0. Since we have (NTLM)V D N:Mg C Ny My C

o

(N(T#M)V as a bundle over 7+, the restrictions ( Jolvolv, v, coincide with (gy)lv, nv,. Hence g-
is an extension of (g,,,8.,): Vo, U V,, = R. Locally, we have

R. = &' (0) N T 0 T: M x {0} = T*9. T, M
and the modified local coordinates
Nbd 100 T2 M) — J' 0 T: M
satisfies the properties (1), (2), (3) and
R NNbd 10\ M) C Ry,
Inductively, one obtains the desired extensions for the other cases. O

Remark 3.28. Some readers of [GS1] might wonder why the authors stated Lemma 3.27(4).
As explained in Section 3.3, we glue two Weinstein domains along their isomorphic Weinstein
hypersurfaces. Here, each Weinstein hypersurface R, is defined in the modified Polar hyper-
surface g(‘,l(O) and coincides with a Weinstein thickening of d.,L,. Lemma 3.27(4) guarantees
compatibility of such local Weinstein pair structures with the union L(X) = (J s Lo

4. THE PROOF OF THEOREM 1.1 EXPLAINED

In this section, we review the proof of Theorem 1.1, filling in the details. By Lemma 2.10
the fanifold ® of dimension n admits a filtration (2.1) We proceed by induction on k.
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4.1. Base case. When k = 0, let
W(@) = W(®) = |_| T Mp, L(®g) = L(®) = |_| L(Zp)

where each T*Mp is equipped with the canonical Liouville structure. We fix an identification
T*M p = M p X Mpg to regard each L(Zp) as a conic Lagrangian submanifold of T*M Pp.

Lemma 4.1. The manifold W((DO) is subanalytic Weinstein.

Proof. Equipped with the canonical Liouville structure, T*Mp become Weinstein as explained
in Example 3.7. In general, real analytic subsets of real analytic manifolds are subanalytic and
the product of subanalytic subsets of real analytic manifolds is subanalytic. O

Lemma 4.2. lee subset E(d)o) C W(@o) isa su@gnalytic conic Lagrangian and contains the
skeleton Core(W(®y)) of the Weinstein manifold W(®,).

Proof. The skeleton Core(W(d)o)) is the disjoint union |_|p M p of the zero sections M p C T*M P
for all O-strata P of @, each of which is contained in the conic Lagrangian L(Xp) via the fixed
identification T*M, p = M p X Mpg. In general, the collection of subanalytic subsets of a real
analytic manifold forms a Boolean algebra. Hence L(Xp) is subanalytic, as it is the union of the
products of a real torus and the union of an Euclidean space and its algebraic subsets, which
are subanalytic subsets of M p X Mpg. O

Let 7ro: L(®g) — D be the map induced by the projection to cotangent fibers.
Lemma 4.3. The triple (W(@o),E(QO), my) satisfies the conditions (1), ..., (4).

Proof. (1) It suffices to show the claim for a neighborhood Nbd(P) of a single O-stratum P C ®.
Let Sp C @y be the stratum of codimension d corresponding to a cone op € Xp via ¢pp. Then
by definition of 7y we have

7' (Sp) =Ly, =0p xop =TI X Sp.
From the isomorphism
4.1) L., =15 X Tp = (Tp/{0p))" X Tp/{0p) X Op = Liyjop X Op

for any stratum 7p € Xp with op C 7p it follows

7' (Nbd(Sp) = | ] Lo, =LEp/op) X Sp.

TpEXp, OpCTp
Consider the cotangent bundle 7*T¢ x T*S p with the canonical symplectic form. Since we
have T*Sp = S p x RimMr=d =~ § , % § . there is a symplectomorphism

(4.2) T'T'XT*Sp =TT XT*S p, ((6,7), (x,)) = ((6,7), (=y, X)).
Then an open embedding
TX TS p s T x T4 (g, y) > (9, -y)

canonically extends to a symplectomorphism

(4.3) T*T* X T*S p < T*Mp, ((6,7), (x,¥)) = (6, =y, 7, x).
Since it restricts to isomorphisms
4.4) (Tp/{oTp))" X Tp/{0p) X Tp = Tp X Tp, ((6,7),(x,0)) = (6,0,7, x),

the symplectomorphism (4.3) embeds L(XZs,) X S p into L(Zp).
(2) The fanifold @ is closed only if dim Mpg = O for all O-strata P. Then the claim is trivial.
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(3) Since any subfanifold @j, C @, is the disjoint union of fans Xp for some O-strata of @, by
definition we have W(CI) ) = W(D[) C W(dy) and ]L(d) ) = L(®y) = W(CI) ) N L(Dy).

(4) Recall that a Lagrangian polarization of a symplectic manifold W is a global section of the
Lagrangian Grassmannian bundle LGr(W) over W. Up to homotopy, a Lagrangian polarization
of W is equivalent to a real vector bundle B over W with an isomorphim B ®z C. When W is
a cotangent bundle 7™ M, the tautological foliation by cotangent fibers yields an isomorphism
TT*M = T*M &z C. Consider the Lagrangian foliation of 7*T? x T*S » with leaves

(T;Tx (YD x ({0} x Sp), 0 T4, y e RImMrd = g

Via the symplectomorphism (4.2) the leaf space get identified with the zero section, which
in turn is isomorphic to 7;'(Sp). Along the base direction in TS p, it is compatible with
the inclusion Sp — S_;, to any stratum S, of codimension d” of the induced stratification on
Nbd(S p). Along the fiber direction in T*T¢, it is compatible with the inclusions T;Td' —
T;T“ induced by the quotient map Ts,Mpr — Ts, Mprls, from the definition of fanifolds for

0T NT?c Mp. Hence one obtains the desired polarization. O

4.2. Special case. Before moving to general cases, we explicitly write down the relevant re-
sults and their proofs for Example 2.12, where the filtration of ® from Lemma 2.10 is given by
(2.2). Let L, be the disjoint union of

Ly, =7, (1)) N 0L(Dp), 1 <i< j<4.
for all interior 1-strata.
Lemma 4.4. There are smooth Legendrian embeddings
0W(@)) & L1 >0 | | ("M, x T" L),
1<i<j<4

Proof. 1t suffices to show the claim for £;,,. Since 0;,/;, consists of two O-strata P;, P, of @,
there is a smooth Legendrian embedding

(4.5) L1y = 0uL,n UOL, 5 > 0 W(@y)

Ty

for the cones O'f ' € Xp, corresponding to I1,. The quotient maps Mp,r = Mp.r/ (o-f,)1 "2> M, r

from the definition of fanifolds identify the images of o 1., With the origin of Z,,. Hence d.L_»;
Ty

are isomorphic to M,]Z. Regarding M1]2 x 0I5, as a subset of T*M,]2 x 0T*1,,,, one obtains
another smooth Legendrian embedding

Lllz = Mllz X a112,0 — a(T*MIIZ X T*Ilz,o)-

We define W(d)l) as the handle attachment
W@z, | | 1My, x T 1),

1<i<j<4
Lemma 4.5. The manifold W((Dl) is subanalytic Weinstein.

Proof. Asitis the result of handle attachments, W(dD 1) is Weinstein. Each handle T M 1, XT Lijo

is subanalytic. Since the union of subanalytic subsets is subanalytic, W((Dl) is subanalytic by
Lemma 4.1. O
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Lemma 4.6. There is a standard neighborhood
(4.6) M Nbdy wiwg(L1) = J' L
near L, for which L(®y) is biconic along L, and 0., L(Dy) locally factors as

M (L(®o) N Nbdy wian(L1) = | | (L) x 01350,

1<i<j<4

Proof. 1t suffices to show the claim for £;,,. Since we have (4.5), the disjoint union L(Zp,) LI
L(Zp,) 1s biconic along .L;,, for the standard coordinates

. _ _ 1
N, U 77(7222 : NbdaooT*MP]I_laooT*Mpz (-5112) —J ‘£112

112

from Lemma 3.27. Then the local factorization of 0,L(Zp,) U0 L(Zp,) follows from (3.1). O

We define L(®,) as the extension through the disjoint union of the handles "M 1, X T*I;;

ijo
L@z, | | (L) X Il

1<i<j<4

Lemma 4.7. The subset L(d)l) C W(d)l) isa subanalytlc conic Lagrangian and contains the
skeleton Core(W(d) 1)) of the Weinstein manifold W((D 0.

Proof. Since by Lemma 4.6 and Lemma 3.23 the Lagrangians
L(®) € W(@), | | L&) x Ll € | | [T"My, x T"1e]

I<i<j<4 I<i<j<4

are biconic along £, the gluing E(d) 1) remains conic. The part of Core(W(dD 1)) newly formed
by the handle attachment is the cone R(L(®y) N Nbds_wa,) (L:1)). It is the saturation of the zero
set of the Liouville vector field on the gluing

M (Nbdo won LWz, || Nbdy g, g (L0) © W0y, || [T My, XTI,

1<i<j<4 1<i<j<4

which implies Cone(W((D] ) C E(@l). The extension E(@l) is subanalytiic, as it is the union of
the products of a real torus and the union of an Euclidean space and its algebraic subsets. O

Let 7y : E(Cl)l) — @, be the map induced by 7 and the projections from T*M, X T, t

the cotangent fiber direction in T*M 1, and the base direction in 77I;;,.

Lemma 4.8. The triple (W(d) 1),E(d>1), my) satisfies the conditions (1), ..., (4).

Proof. (1) It suffices to show the claim when attaching the handle T*M 1, X T* 1150 tO W(CDO).
Then we may assume that

(4‘7) ®0 = Zpl U 2132, (Dl = (I)O#EI]ZXBinllz(zllz X 112)'
Let S C @, be the stratum

Py
(SPI LJ SPZ)#O_PI/(0_;’112>X6112,0(O'P1 /<O'112> X 112’0)

where S p, are the strata of codimension d corresponding to cones op, € Zp, via ¢p,. Then by
definition of 1, and Lemma 4.6 the inverse image 7r1‘1(S ) is equal to

2 2
(|_| O'P ) Pl ><3112 [L 1/ :12 X 112’0] = Td X ((I_I SPi) op, /(0_1 )><6[ 2.0 (O-P1/<0-1 2> X 112 o) .
i=1

(J'
i Py,
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From the isomorphisms (4.1) and
(4.8) 5 X Tp, = (Tp, {0 ) X Tp, [{0p) X Op, (0] ) X 1
for any stratum 7p, € Xp, with op, C Tp, it follows

ﬂ-l_l(Nbd(S)) = U ([LTPI U LTPZ]#L / Py Xﬁ[lz,o [ILTP1 /G'fl X 112,0]) = L(ZPI/O-PI) X Sa
12

TP o
1791
TP TP, 12

where 7p, run through cones in Xp, with op, C Tp, mapping to the same cone under the quotient
maps Mp,g = Mp,r/{0p,) = Mg from the definition of fanifolds.
Consider the symplectomorphism

(4.9) T*TXT*S < [T"Mp, UT" Mp, s, [T My, X T'I1]
induced by the symplectomorphisms

(4.10) T*T'XT*Sp, = T*Mp,, TT* X T*(0p, [{(o}')) & T*My,
defined as (4.3) and the identity on 7", ,. Since it restricts to isomorphisms
(4.11) L(Zs,) X S p, = L(Zp), L(Ey,/(0p, /(o) ) X 0p, [{]' ) = L(Zy,,)

defined as (4.4), the symplectomorphism (4.9) embeds L(Zg) X S into L(®,).
(2) By assumption @, is closed. The saturation of the zero set of the Liouville vector field
on the gluing

m(Nbda wwy (L) e, Nbdgm[r*ﬁ,nXT*IIZ,O](-EIQ) - W((DO)#LIIZ[T*MIQ X T 11,]

gives the newly formed part of Core(W(@ 1)) by the handle attachment. Due to the absence of
higher dimensional strata, it projects onto /1, under r; and connects 1-dimensional components
of W(®dy). Since I}, is interior, by Lemma 4.3(2) the union of the saturation and E(Q)O) coincide
with L(®)).
(3) It suffices to show the claim for @] = ®,. Then by definition and Remark 3.19
W(D)) = T*Mp, U T*Mp,

determines a Weinstein sector W(®}) C W(CDI) with skeleton L(®}) = W(D}) N E(d)l). Here,
one obtains W(®}) by completing [T*Mp | U [T*Mp,] along the modified Liouville flow.
(4) Consider the Lagrangian foliation of 7*T¢ x T*S with leaves

(T, T x {y) X {0} x T;S), 0 T?, y€S.

Via the symplectomorphism T*T9 x T*S = T*T? x T*S induced by (4.9), the leaf space get
identified with the zero section, which in turn is isomorphic to 77'(S). For the rest, the proof
of Lemma 4.3(4) carries over. O

In our current setting, there is only one 2-dimensional stratum F of ®, which is interior. Let

L= Lr =17 (F) N uL(®)).

Lemma 4.9. There are smooth Legendrian embeddings
AW (D)) > L < &T*Mp x T*F.).
Proof. Since 77! (F) is the gluing of
4
|_| LO_?', LU?‘/UZ; X Iij,o,
4

i=1 1<i<j<
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by the second bullet of Lemma 4.8(1), there is a smooth Legendrian embedding
L= Mp X OF, — 0 W(D)).
On the other hand, M r X OF, can be regarded as a smooth Legendrian in

T*Mp X T*0F, C &(T*Mr x T*F.).

O
We define W(d)z) as the handle attachment
W(D ), [T*Mp x T*F,].
Lemma 4.10. The manifold W(CDZ) is subanalytic Weinstein.
Proof. The proof of Lemma 4.5 carries over. O

Lemma 4.11. There is a standard neighborhood

4.12) Mt Nbdy w)(L2) = J' L,

near L, for which L(®y) is biconic along L, and 0.,,L(®,) locally factors as
m(I(®1) N Nbdy, w,)(L2)) = L(ZF) X OF,.

Proof. Along the smooth Legendrian

4
| oL,z € Lr 0 dL@y),

i=1

the disjoint union | |}, L(Zp,) is biconic for the standard coordinates

4
| |7, Nbdawion(Lr N 0L(®@0) < J' L
i=1

from Lemma 3.27. Along the smooth Legendrian
|_| (600}1‘,0_?-/01” X I;jo) C |_| 3mT*M1,._, X T*[jo C |_| am(T*M,U X T*I;;.),
1<i<j<4 ’ I<i<j<4 I<i<j<4
the Lagrangian | |, ;<4(I(X;,) X ;) is biconic for the disjoint union
|_| (111, X Can1): NOy o g (L ) |_| B0e(L(Es) X I1j)) < J' Ly
1<i<j<4 Y 1<i<j<4

of the product of the standard coordinates from Lemma 3.27 and the canonical coordinates
cany, on | |i<cj<s T"1;jo. By construction of L(®;) these coordinates glue to define a standard
neighborhood

nr: Nbdg wo,(Lr) = J' L.
Then the factorization of (|_|f':1 GWL(ZP,.)) # (|_|15,-< jea (X)) X 1 j,o)) as

4
|| oy x awafé‘)) #( | | W& /@ o) x ot Koy X 1) | = LEF) X
i=1

I<i<j<4

follows from (3.1) for any strata 7p, € Xp, with o’? C Tp, mapping to the same cone in X under
the quotient maps Xp, — Xp,/ o-?. |

We define E(@z) as the extension through the handle T*M rXTF,
L(®)#,,[Ly, X F,].
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Lemma 4.12. The subset L((Dz) - W((Dz) isa subanalytlc conic Lagrangian and contains the
skeleton Core(W(CI)z)) of the Weinstein manifold W((Dz)

Proof. Since by Lemma 4.11 and Lemma 3.23 the Lagiangians L(®;) c W(d,) and [L(Zf) X
F.,] C [T*Mp x T*F,] are biconic along £,, the gluing L(®,) remains conic. For the rest of the
claim, the proof of Lemma 4.7 carries over. O

Let mp: L(®,) — ®, be the map induced by 7, and the projections from T*Mp x T*F, to the
cotangent fiber direction in 7" My and the base direction in T*F..

Lemma 4.13. The triple (W(d)z),i((l)z), m,) satisfies the conditions (1), ..., (4).
Proof. (1) Let S c @, be the stratum
P P
[U_IS P st AR )( |_| op,/{0) X I"!’"’}] H e 1o o, (TP (T ) X Fo)

i=1 1<i<j<4

where S p, C @y, 1 < i < 4 are the strata of codimension d corresponding to cones op, € Xp, via
¢p,. Then by definition of 7, and Lemma 4.11 the inverse image ,'(S) is equal to

([|_|Lo-,,] Ui, 500 || L, xlij,o]]#L poxor Ly, on X Fo
TPl TPloy; oplop P11CF

1<i<j<4

=T [[|_|Sp] sesston it )[ | | r i) >x1,,o>J) o s yep, TP IO X Fo)).

1<i<j<4
From the isomorphisms (4.1), (4.8) and
(4.13) T X Tp, = (Tp, [{Op )" X Tp [{Op,) X Op /{01y X F

for any stratum 7p, € Xp, with op, C Tp, it follows that 7 Y(Nbd(S)) is equal to

U (([I_l LTP] U1<,<J<4L p 10! P; XBI,J |_| LT /(,-P XILJO])#]L /pIXBF [L T, |0 1;1 XFO]]

TP TPy I<i<j<4 E
=L(Zp,/op) XS,

where 7p,, ..., Tp, run through cones in XZp,, ..., Zp, with op, C Tp, mapping to the same cone
under the quotient maps Mp. g — Mp r/{0p,) = My from the definition of fanifolds.
Consider the symplectomorphism

4
4.14) T'T'XT'S — [[I_I T*Mpi]#u1§i<jS4inj[ |_| T*MI,»,» x T* zjo]]#LF[T Mp X T"F,]

i=1 1<i<j<4
induced by the symplectomorphisms (4.10) and

T*T X T (op, /(o) = T" My
defined as (4.3), and the identity on 7*1,, T*F ,. Since it restricts to such isomorphisms as (4.11)
and an isomorphism
(4.15) LEr/(@p (T M) X Tp, {03y = L(E)

defined as (4.4), the symplectomorphism (4.14) embeds L(Xg) X S into L(D,).
(2) By assumption @, is closed. The saturation of the zero set of the Liouville vector field
on the gluing

m(Nbdy w) (L), Nbdy 757 rep(LF) C W(D ), [T My x T*F,]
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gives the newly formed part of Core(W(®,)) by the handle attachment. Due to the absence of
higher dimensional strata, it projects onto F' under m, and connects 2-dimensional components
of W(®d,). Since F is interior, by Lemma 4.8(2) the union of the saturation and E((Dl) coincide
with L(®,).

(3) It suffices to show the claim for ®, = @;. Then by definition and Remark 3.19

W(D)) = [|_| T Mp Wi, | | T°My, x T 1)
1<i<j<4
determines a Weinstein sector W(®)) C W((I)z) with skeleton L(®)) = W(D)) N ]L(d)z) Here,

one obtains W(®) by completing the gluing of [|_|l q T*Mp I with [|j<icjea T" M x T"I;j.]
along the modified Liouville flow.
(4) Consider the Lagrangian foliation of 7*T¢ x T*S with leaves

(T;Tx {yH x ({0} x T;S), 6T, y€S.

Via the symplectomorphism T*T¢ x T*S = T*T¢ x T*S induced by (4.14), the leaf space get
identified with the zero section, which in turn is isomorphic to 7;'(S). For the rest, the proof
of Lemma 4.3(4) carries over. O

4.3. General case. Suppose that Theorem 1.1 and the relevant results hold for the subfanifold
®;_,. Let L} be the disjoint union of

Lsw = 7T]:_]1(S (k)) N 0o L(Py—1)
for all interior k-strata S ® of ®@.
Lemma 4.14. There are smooth Legendrian embeddings

WD) > L = 0 |_|<T*A7S<k) x T*S©).

s®
Proof. 1t suffices to show the claim for Lsw. Since 7! (S®) is the gluing of

L PXIO,LP/O_PXFO,...

r o, Lye
Ty’ (k>/(’

by the second bullet of Theorem 1.1(1) for n = k — 1, there is a smooth Legendrian embedding
Low = Mg(k) X SW < 9 W(D;_)).

Here, P, I, F,... run through strata of dimension 0,1,2,... in 95, ® with P ¢ 0i,1,P I C
0 F, . ... Note that by definition of fanifolds O'S(k)/ (0' ), 0-s<k> / (O'F) . regarded as cones in
¥, 2F,...do not depend on the choice of P and we fix some P when such /, F, ... run. On the
other hand, M s X 0S 2"> can be regarded as a smooth Legendrian in

T*Ms(k) X T*0S gk) co I_I(T*Ms(k) X T*Sgk)).

s®
O
We define W(d)k) as the handle attachment
W(Dy_ ), |_|[T*A715<k> x T*S®1.
s®
Lemma 4.15. The manifold W(Cl)k) is subanalytic Weinstein.
Proof. The proof of Lemma 4.5 carries over. O
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Lemma 4.16. There is a standard neighborhood
(4.16) N . NbdamW(d)k,l)(‘Lk) — J1£k
near L for which IL(®y_) is biconic along L; and 0.,L(®y_,) locally factors as

Me(L(@x-1) N Nbdy wia,_)(Lr)) = |_|(L(Zs<k>) x S Y.
s®
Proof. It suffices to show the claim for Lgw. Along
amL(,p s (?OOLO.P /oP X Io, (’)DOL(,p JoP X Fo, cen
NG NGO NOI

where P, I, F, . . . run through strata of dimension 0, 1,2,...in dS, with P C 9;,1, P,I C 0;,F, . ..
as above,

4.17) LZp), LE) X L, LEZp) X Fo, ...
are biconic for the products
770. 2 NP (k)/o_P X cany, 7]0_13 /O.P X cang, ...

of the standard coordinates from Lemma 3.27 and the canonical coordinates can;, cang, ... on
T"1,,T*F.,,.... By construction of L(®,_;) these coordinates glue to define a standard neigh-
borhood

nsw: Nbdg wa, ) (Lsw) = J' L.
Then the factorization of the gluing of (4.17) as the gluing of
L(Zp/05w)s LE/(0 5 /{TIN) X 05w {07) X Loy LER/ (050 [{TEN) X 040 [(0E) X F, ...
follows from (3.1) for any strata 7p € Zp,7p/{07) € X1, Tp/{0}) € Zp,... With ol C Tp
mapping to the same cone in Xg® under the quotient maps
Zp = Zp/0gw, Tr = /(050 {0y Tir = Zp/ (05w [{TED)s - -
]

We define E(d)k) as the extension through the disjoint union of the handles T*M s X T*S ®
L@ | [IL(Zs0) x SL1.

Q)

Lemma 4.17. The subset L(CDk) C W(d)k) is a subanalyttc conic Lagrangian and contains the
skeleton Core(W(d)k)) of the Weinstein manifold W(de)

Proof. Since by Lemma 4.16 and Lemma 3.23 the Lagrangians L(®y—1) € W(®;) and | |sw [L(Zsw)%
Se (k) C gw[T™ M s X T*S (k)] are biconic along £, the gluing L((Dk) remains conic. For the
rest of the claim, the proof of Lemma 4.7 carries over. O

Let m: L(®y) — @, be the map induced by m;_; and the projections from 7~ M s X T*S ¢ ®

to the cotangent fiber direction in 7* M s® and the base direction in T*S , ®.
Lemma 4.18. The triple (W((Dk), L(CDk), i) satisfies the conditions (1), ..., (4).

Proof. (1) It suffices to show the claim when attaching the handle T*M s X T*S ® to W((Dk_l)
for a single interior k-stratum S® C ® with k < dim S. Then by definition of ; and Lemma
4.16 the inverse image 7, '(S) is the gluing of

Lo, = TX 0p, Ly,jor X Lo 2 T X 0p/{0}) X Loy Ly, jqr X Fo = T X 0p/{(0h) X Fo, ...

op/ oy op/ oyt
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and Lap(k) X S 2’0 = T % op/ <0-§(k)> X S Ek) where P, I, F, ... run through strata of dimension
S

0,1,2,...1n 6S§k) with P c 0;,I,P,1 C 0;,F,... as above. Hence by Lemma 2.10 we obtain
n,:l(S) =TI%xS.
From the isomorphisms (4.1), (4.8), (4.13), ...and

(4.18) Tp X Tp = (tp/{Tp))" X Tp[{Tp) X O-P/<o-§(k)> x§®

for any stratum 7p € Xp with op C Tp, it follows that ﬂ;l(S ") for a stratum S’ of the induced
stratification on Nbd(S$') is the gluing of

~ ~ P ~ P
L‘rp = LTP/O'P X O p, LTP/O_P x 1, = LTP/O'P XO'P/<O'1> x 1, LTP/O'? X F, = LTP/O'P XO'p/<O'F> xXF,, ...

1
and L.,/», X Op/ (Ug(k)> X Sgk) where P, I, F, ... run through strata of dimension 0, 1,2,... in

S® with P c 01, P, I C 0;,F, ... as above and where 7p are the cones in Xp corresponding to
S’. Since 7p map to the same cone under the quotient maps Mpr — Mpr/{op) = Mg from
the definition of fanifolds, by Lemma 2.10 we obtain

7 (8 =T x1p/opx S, ' (Nb(S)) = L(Zp/op) X S.

Consider the symplectomorphism
(4.19) T*T'XT*S — WD)y, [T*Msw x T*S®]
induced by the symplectomorphisms
T T X T*S p < T*Mp, T*T X T*(p/{0Vy) = T*M;, T*T? x T*(0p/{0hY) < T*Mp, ...
and the symplectomorphism

T*T! x T*(op/{oh)) — T MY
defined as (4.3), and the identity on T*1,, T*F,,...and T*S Sf”. Since it restricts to isomorphisms
L(Zs) X S — L(Zp), L(Zs) X op/{oh) = LE)), L(Zs) X op/{ohy — L(Zp), ...

and an isomorphism

(4.20) L(Zsw /(0 p, /(T ) X Tp {0 gl) = L(Es) X 0p, /{0y = L(Es0)

defined as (4.4), the symplectomorphism (4.19) embeds L(Xg) X S into L(Dy).
(2) The fanifold @ is closed only if:

e There are no strata of dimension more than k.
e All strata of dimension 1,2, ...,k — 1 are interior.

Then the saturation of the zero set of the Liouville vector field on the gluing

nk(NbdﬁmW(d)k,l)(Lk))#Lk |_| Nbdam[T*MS(k)xT*Sgk)](‘LS(k)) C W(q)k_l)#-[:g(k) LI[T*MS(IO X T*Sgk)]

S® S®

gives the newly formed part of Core(W((Dk)) by the handle attachment. Due to the absence of
higher dimensional strata, it projects onto | |gw S® C @, under 7; and connects k-dimensional
components of W(®,_;). Since all k-strata are interior, by Theorem 1.1(2) for n = k — 1 the
union of the saturation and E(d)k_l) coincide with E(d)k).

(3) It suffices to show the claim for

D = Oy i#y 1,50 (Esw X V), Of = Oy

Then by definition and Remark 3.19 W(CI);C) determines a Weinstein sector W(®;) C W(Cl)k)
with skeleton L(®;) = W(®;) N L(PD;). Here, one obtains W(®,) by completing the gluing of
the domains along the modified Liouville flow.
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(4) Consider the Lagrangian foliation of 7*T¢ x T*S with leaves
(T, T {y) x {0} x T;S), 0T, y€S.
Via the symplectomorphism T*T¢ x T*S = T*T? x T*S induced by (4.19), the leaf space get

identified with the zero section, which in turn is isomorphic to ;' (S). Along the base direction

in T*S, it is compatible with the inclusion § < S’ to any stratum S’ of codimension d’ of the
induced stratification on Nbd(S). Along the fiber direction in 7*T?, it is compatible with the
inclusions 7;T% < T;T induced by the quotient maps

Ts,Mpr — TS;JMP,R|SP’ Tcrp/<o-j’>MI,R - To'}/(o‘f>M1,R|(TP’ T(rp/<g§>MF,R - TJ;J/(J?)MF,RLTP’

and T,/ \Mswz = Ty 7 yMsw zlo, from the definition of fanifolds for 6 TV NT C
N N
Mp. Hence one obtains the desired polarization. O

Remark 4.19. The symplectomorphism (4.19) sends the cotangent fibers of
T*Sp, T*(op/{o7)), T (Tp/{TE))s -
and T*(O'p/<a'§(k))) to the bases of T*Mp, T*M,, T*Mp, ...and T*MS@) with negation.

Remark 4.20. If £p, %, XF, ... and Xgw are stacky fans, then we consider stacky FLTZ skeleta
LZp,), L(Z;,), L(ZF), . . . and L(Zgw). According to how many of copies of tori there, duplicate
the corresponding handles T*M, x T*1,, T*MF X T*F,, ...and T*Ms(k) X T*Sf)k). Then our
proof generalizes in a straightforward way.

5. THE PROOF OF THEOREM 1.2

Recall that a fibration is a map which satisfies the homotopy lifting property for all topo-
logical spaces. Any fiber bundle over a paracompact Hausdorff base gives an example. In this
section, we first construct an intermediate filtered stratified fibration 7 from W(CI)) restricting
to mr, which defines a filtered stratified integrable system with noncompact fibers. The compo-
sition with a certain map induced by retractions yields 7. When X is proper for any S C @,
the map is trivial and 7 defines the integrable system. As in the previous section, we proceed
by induction on k.

5.1. Base case.
Lemma 5.1. There is a stratified fibration 7y : W(@O) — @ restricting to m.

Proof. Define 7, as the disjoint union of the projections to the cotangent fibers T*Mp > M PR-
Clearly, its restriction to L(dy) coincides with 7. Let rety : L lp Mpr — | |p Zp be the disjoint
union of maps induced by retractions which are the canonical extensions of piecewise projec-
tions onto facets in d® from outwards along their normal directions. Then the composition
7y = rety ofty gives the desired fibration. O

5.2. Special case. Again, before moving to general cases, we explicitly write down the proof
for Example 2.12.

Lemma 5.2. There is a filtered stratified fibration 7y : W((I)l) — @, restricting to m;.

Proof. 1t suffices to show the claim when attaching the handle "M 1, XTI, tO W(®,). Then
we may assume (4.7). Define 7; as the map canonically induced by 7, 7 ;,, and the projection
T*l5, — I2, to the base, where 7, : T*MI12 — M, is the projection to the cotangent
fibers. Here, we precompose the contraction

cont; : W((Dl) — W((Dl)
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of the cylindrical ends along the negative Liouville flow to the union of 9., W(®) and 971, ..
Let ret;: M;,r — X;,, be the map induced by a retraction which is the canonical extension of
piecewise projections onto facets in @ from outwards along their normal directions. Define
71 as the map canonically induced by 7y, 7 ;,, = ret; oftg;,, and the projection 7115, — I12, to
the base.

Recall that the symplectomorphism (4.9) sends the bases of 7*S p, and T*(op,/ (0'1,[: 12)) to the

cotangent fibers of T*M p, and T*M,12 preserving T*11, . In the gluing
(5.1 W(®)) = [T"Mp, UT Mp, s, [T"My, X T I10]

the cotangent fibers of the images of T*S p,, T*S p, get connected through J' £, , with the prod-
uct of the cotangent fibers of the image of T (cp, / (O'z 12)) and the base of 7"1}, .. In other words,
(4.9) respects the gluing (5.1) and

T* T X (TS p, UT*S p)#(T*(0p, /{0 )) X T*112,0))

induced by the gluing of the zero sections.
By definition 7; projects the former and the latter parts of (5.1) respectively onto

SPl U SPz’ ap /<0-212> X 112,0
in the gluing

_ P
S = (S UShy, o, T 01 X T2,

Hence 7, is compatible with the relevant gluing procedure. As explained in the proof of Lemma
4.8(4), the source T*T¢ x T*S contains 7T1_1(S ) as the zero section. Then by Lemma 4.8(1) the

restriction of 7, to E(@l) coincides with . O
Lemma 5.3. There is a filtered stratified fibration 7, : W(@z) — @, restricting to m,.

Proof. Define 7, as the map canonically induced by 7, 7 r and the projection T*F, — F,
to the base, where 7o r: T°"Mr — Mgy is the projection to the cotangent fibers. Here, we
precompose the contraction

cont, : W(@z) - W(@z)

of the cylindrical ends along the negative Liouville flow to the union of 0., W(®,) and 0T*F.
Let ret,: Mpr — X be the map induced by a retraction which is the canonical extension of
piecewise projections onto facets in 0@ from outwards along their normal directions. Define
m, as the map canonically induced by 7, 7y = ret, ofty r and the projection 7°F, — F, to the
base.
Recall that the symplectomorphism (4.14) sends the bases of T7*S p,, T*(0p, / <0—i ‘2>) and T (o p, / (O'f;1 )

to the cotangent fibers of T*Mp,., T*Mllz and T*Mp preserving T*11,,, T*F,. In the gluing
(5.2) W(®,) = ([T"Mp, U T"Mp,Wr, [T" My, X TIipo]) #2, [T My X T°F,]

the cotangent fibers of the images of T*S p, get connected through J'£;, with the product of

1

the cotangent fibers of the image of T7(op,/ (afl 2)) and the base of 7°/j,,. The result gets

connected through J' £ with the product of the cotangent fibers of the image of T*(op,/ <0'§' )
and the base of T*F,. In other words, (4.14) respects the gluing (5.2) and

TT X ([T*S p, UT"S p, T (0p, [T} ) X T I 1) #IT " (0p, /{0 )) X T*F]

induced by the gluing of the zero sections.
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By definition 7, projects the former and the latter parts of (5.2) respectively onto
(SPI L ‘S‘PZ):":I:O—P1 /(0'212>><3112,o(0-P1/<0-212> X 112,0)7 0-P1/<0-[P;1> X Fo
in the gluing
S = (S USPIH,, ot an, o) X 1))

Hence 7, is compatible with the relevant gluing procedure. As explained in the proof of Lemma
4.13(4), the source T*T¢ x T*S contains T, 1(S) as the zero section. Then by Lemma 4.13(1)

the restriction of 7, to E(@z) coincides with ;. O

ﬁ1>)<aFO(O-P1/<O-§l> X FO)'

op, /{0

5.3. General case. Suppose that Theorem 1.2 holds for the subfanifold @;_;.
Lemma 5.4. There is a filtered stratified fibration ;. : W((Dk) — @ restricting to my.

Proof. It suffices to show the claim when attaching the handle T*M s X T*S® to W((I)k_ 1) for
a single interior k-stratum S ® C ® with k < dim §. Define #; as the map canonically induced
by 7x_1, To,s® and the projection 7S ® 5 5% to the base, where Tosw: T"Mgw — Mgwg 18
the projection to the cotangent fibers. Here, we precompose the contraction

conty: W(@k) — W(d)k)

of the cylindrical ends along the negative Liouville flow to the union of 9., W(®;_,) and 9T*S .
Letrety: Mgwr — Xgw be the map induced by a retraction which is the canonical extension of
piecewise projections onto facets in 9@ from outwards along their normal directions. Define 7
as the map canonically induced by 7;_;, 7o sw = rety ofty w and the projection 7S ® 5 5% 0
the base.

Recall that the symplectomorphism (4.19) sends the bases of

T*S p, T*(op/(0])), T*(Tp/{TE ...

and T*(op/ (0'§ ®») to the cotangent fibers of
T*Mp, T*M,, T*Mp, ...

and T*MS w preserving T°1,, T*F,, ..., where P, I, F, . . . run through strata of dimension 0, 1,2, . ..
in 89S ¥ with P c Oinl, P, 1 C 0;,F, ... as above. In the gluing
(5.3) W(®)) = W@ ), [T Msw x T*S®]
the cotangent fibers of the images of T*S p get connected through J' £; with the products of the
cotangent fibers of the images of T*(op/ (O'f ») and the bases of T*1,. The results get connected
through J' £y with the product of the cotangent fibers of the images of T*(cop/ (o{i}) and the
bases of T*F,. Inductively, the results for n = k — 1 get connected through J' Ls® with the

product of the cotangent fibers of the image of T*(op/ <0'§(k))) and the base of T*S®. In other
words, (4.19) respects the gluing (5.3) and the gluing of

T*TY X T*Sp, T*T' X T*(0p/{ot)) X T*I,, T*T x T*(0p/{oh)) x T*F., ...
and T*T¢ x T*(op/ <0-§(k)>) x T*S® induced by the gluing of the zero sections.
By definition 7 projects the former part of (5.3) onto the gluing of
Sp, op/{ayYX L, opl{ohE) X Fo, ...
and the latter part onto o p/ (o?WxS ® in the gluing S. Hence 71, is compatible with the relevant
gluing procedure. As explained in the proof of Lemma 4.18(4), the source T*T¥ X T*S contains
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ﬂ,?l(S ) as the zero section. Then by Lemma 4.18(1) the restriction of 7, to E((Dk) coincides with
. O

Remark 5.5. If X5 is proper for any S C @, then ret;,i = 0, 1,..., k are trivial and 71, = 7.

Remark 5.6. From the above proof and the definition of fanifolds it follows that 77, projects
the former part of (5.3) onto the gluing of

MP,]R’ M]’R X IO, MF,R X FO, e
and the latter part onto Mgw g X S ® in the gluing

| | Mpz#| |(Miz X L#| |(Mpz X Fo) - #(Msw z x S©).
P 1 F

Hence 71, is also compatible with the relevant gluing procedure.
5.4. The associated integrable system.

Definition 5.7 ([KS06, Section 3.1]). Let (W, w) be a 2n-dimensional symplectic manifold, B
an n-dimensional manifold and @w: W — B a smooth surjective map. A triple (W, @, B) is an
integrable system if @ satisfies

{@ ' (). @ (9} =0, f.g € C*(B)
where {-, -} is the Poisson bracket on W.
Remark 5.8. Here, we do not require the fibers of @ to be compact.

Example 5.9. A collection (H,, ..., H,) of Hamiltonian functions on W defines a typical ex-
ample of integrable systems. In particular, on local coordinates (g, p) = (q1,---»Gns P15+ -5 Pn)
the projection to the base (g, p) — ¢ defines an integrable system, as we have

(g qj} = ), dai A dpuZy,Z,) = > dai Ndpi(d,,9,) =0
k=1 k=1
where Z,, are Hamiltonian vector fields for g;. Similarly, the projection to the cotangent fibers

(g, p) — p defines another integrable system.

Consider the map
7=, WD) — |_| Mpsi#t |_|(M,,R x I,)# |_|(MF,R X F)- - # |_|(MS(,,),R x §™)
P T F T
where P, 1, F, ...,S™ run through strata of dimension 0, 1,2,...,n of ®. If
PcC Oy, PICO,F,...PILF,...,S" Y cd,s™,
then by definition of fanifolds

O-g(n)/<0-;)>9 0-§(n)/<0-§'>’ .. O-g(n)/<o-§(n)>
regarded as cones in X;, 2r, . . ., Zgm do not depend on the choice of P and we fix some P when
such I, F,...,S™ run. By construction 7 respects the gluing.

Lemma 5.10. The map 7 defines a filtered stratified integrable system with noncompact fibers.

Proof. When restricted to each stratum in the filter over ®; \ ®;_,, clearly W(@) becomes a
smooth surjective submersion. Moreover, 7 is the gluing of products of the projection to the
cotangent fibers from T*M s® and the projection to the base from 7*§ % Hence the restriction
is an integrable system defined by a collection of Hamiltonian functions. O
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Consider the map
7=, W®) — O.

In general, & does not define an integrable system. For instance, on O-strata Py,..., P4 of the
fanifold from Example 2.12 it is not even C ! Nevertheless, from construction and Remark 5.5
for k = n it follows

Lemma 5.11. The map 7 is homotopic to 7. If Xg is proper for any S C @, then the homotopy
becomes trivial and 7 defines a filtered stratified integrable system with noncompact fibers.

6. SYZ PICTURE

6.1. The associated dual stratified spaces. First, we recall a fundamental piece of B-side
SYZ fibrations over stratified spaces dual in a certin sense to fanifolds. Let Xy be the n-
dimensional toric variety associated with a fan £ C My for a lattice M = Z". Consider the
map Xz — (Xx)so induced by the retraction to the nonnegative real points. By [CLS11, Propo-
sition 12.2.3] the fiber over a point of O(c)s for each cone o € X is isomorphic to 7"4m7,
Here, O(0) is the orrbit corresponding to o via [CLS11, Theorem 3.2.6]. Assume that X is the
normal fan of a very ample full dimensional lattice polytope Q. Then we have the algebraic
moment map Xy — M. By [CLS11, Theorem 12.2.5] the image of its restriction (X5)>o — My
is homeomorphic to Q. Hence the composition

(6.1) momg: Xy — (Xz)s0 — 0

gives a stratified torus fibration. Note that Q gives the dual cell complex to X. Since momy is
compatible with taking subfans, one can also define it when Q is noncompact.

Now, in order to define the associated dual stratified space, we assume @ to satisfy the
following additional condition.

(vi) There is a collection of full dimensional lattice polytopes Qp C Mp;, such that £p are
subfans of the normal fans of Qp and for some collection {/p}pecq, Of integers [pQp are
very ample and mom,,,(Xs,) glue along the inclusions obtained by the definition of
fanifolds.

Here, we explain more about the condition (vi). Given a fanifold ®, we have the disjoint union
of toric varieties Xy, associated with the fans 2p C Mpy for all O-strata. Consider an exit path

Po>I—>F—---—8S®

By definition of fanifolds, we have the sequence of quotients
TpM=Mpr — TtMlp = Mg —» TeMlp = Mg — -+ = TsoM|p = Mgw .
Fixing inner products, we obtain the sequence of inclusions
Mz = - My = Mjz = Mg,
which induces a sequence of inclusions of cones
(@p/{Tgu))" = - = (@p{Tp))t = (@p/{T])" = (op)*
for the cone op € Tp corresponding to S ©. Note that
(@) (/[ { T (@[ {TE)*s - (p /(T )

can be regarded as fibers of Tp M, T/M,, T M, --- , Tsow M.
Another exit path

PoI—>F—. . .—8®
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induces a sequence of inclusions of cones
(Op [(TG)" = = (op [(op ) = (op /(o] D" = (0p)*
for the cone op € Zp corresponding to S®. Then the identifications

(@pl TNt = (@p {obu D, o (@p o) = (Tp (TR DY (Tp{oi)* = (op /(o) )"

from the definition of fanifolds give a gluing datum for (op)* and (op)*. Identifying (op)*
with momy, ¢, (o p) for each P € @y, the condition (vi) requires such gluing data to be compatible
with all exit paths.

Definition 6.1. Let @ be a fanifold satisfying the additional condition (vi). We define its asso-
ciated dual stratified space ¥ as the gluing of mom,,(,(Xs,) with the canonical stratification in
a sufficiently large ambient space N. For a k-stratum S® of @, its dual stratum S ©+ of ¥ is
the stratum defined by the cone op € Xp corresponding to S®.

Example 6.2. Let © be the fanifold from Example 2.12. Adding rays to Py, P,, P3, P, parallel
to vectors (—1,1),(-=1,-1),(1,-1),(1, 1), we obtain the normal fans ZQP,- of full dimensional
lattice polytopes Qp.. Since we have dim Mp. x = 2, by [CLS11, Corollary 2.2.19] any full di-
mensional lattice polytope is very ample. Then momy, (Xs, ) glue to yield a stratified space V' C
M. Its O-stratum F* is a point (1/2,1/2), 1-strata I};, I5;, I5,, I}, are defined by rays from F+
parallel to vectors (-1, 0), (0, 1), (1,0), (0, 1), and 2-strata P}, Py, Py, P, are defined by quad-
rants with the origin placed at F* bounded by the pairs (I}, I3;), (115, I53), (I, 13,), (i, I3

Lemma 6.3. Let ®© be a fanifold of dimension n satisfying the additional condition (vi). Then
it admits a filtration

(6.2) Yoc¥,Cc---Cc¥, =Y

where Py, is a stratified subspace defined as the complement in ¥ of k-skeleta Sk,_y—(\Y), the
closure of the subset of n — k — 1-strata.

Proof. It follows immediately from the construction of V. O

In [GS1, Section 3], to a fanifold ® Gamage—Shende associated the colimit
T(D) = liSrn X3
along closed embeddings induced by quotient maps between fans, where S runs through all
strata of ®. By [GS1, Proposition 3.10] the colimit T(®) always exists as an algebraic space.

We will recall later that T(®) is a mirror partner of W(@ When @ has the associated dual
stratified space, B-side SYZ fibration over W for the pair (W(®), T(®)) should be the following.

Definition 6.4. Let ® be a fanifold satisfying the additional condition (vi). We define
momg: T(®) » ¥
as the gluing of momy,y, where P runs through all O-strata of ©.

6.2. The proof of Theorem 1.3. Suppose that @ satisfies the additional condition (vi). By
Lemma 6.3 the dual space ¥ admits a filtration (6.2). Now, we construct a fibration r: W(@) —
¥ as an integrable system with noncompact fibers, which should be SYZ dual to momg. We
proceed by induction on k.

Definition 6.5. We define
my: W(Dg) — ¥y
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as the composition of 7y with the disjoint union of diffeomorphisms 7' Mp=M pr = P*. Here,
the first and the second diffeomorphisms respectively follow from the fixed identifications and
the definition of V.

Remark 6.6. The map « is nothing but the disjoint union of moment maps
Logp: T"Mp = (C')" > R", (6,6) > &
for the lifts to T*M, p of the self M p-actions.

Suppose that we construct r, , for the subfanifold ®;_;.

Definition 6.7. We define

7_Tk: W(q)k) g \Ijk
as follows. First, consider the map canonically induced by 7, _,, 7, and the projections
TS E,k) - S E,k) to the base, where 7, ., are the compositions of 77y s with the diffeomorphisms

T;A?ék) = Mgwy = S®*. Here, we regard the images S as a fiber of the normal bundles
Tsw.. N. Next, contract the images S ® to obtain T,

Remark 6.8. Since we contract 7*S % to single points when defining 7, by Remark 5.6 one
can regard 7, as the gluing of &1, | with 7, (. As the contraction of the images § ® corresponds

to shrinking the Lagrangians M s XS ® in the gluing E(@k), the image of 7, is homeomorphic
to that of 7.

We denote nr, by m. From Remark 6.8 for k = n one sees that x is the gluing of the disjoint

unions of the projections to the cotangent fibers from T*Mp along the canonical inclusions
induced by

Mgw — ... > Mp — M; — Mp,

which are obtained by the definition of fanifolds. Here, P, 1, F,...,S®™ run through strata of
dimension 0, 1,2, ...,n of ®. with P c 9,,I, P, c 0;,F,...,P,I,F,...,S® D c9,S™.

Lemma 6.9. The map r defines a stratified fibration, whose fiber over a point of any k-stratum
S®-L s given by TF x T*S®,

Proof. It immediately follows from definition and Remark 6.8 |

6.3. Review on very affine hypersurfaces. First, we recall HMS for very affine hypersurfaces
established by Gamage—Shende. Let ¥ ¢ My = R™! be a smooth quasiprojective stacky
fan [GS15, Definition 2.4] whose primitive ray generators span a convex lattice polytope A"
containing the origin. Then X defines a smooth Deligne-Mumford stack Ty [GS15, Definition
2.5] with toric boundary divisor dTs and an adapted star-shaped triangulation 7~ of A" [GS2,
Definition 3.3.1]. Recall that a triangulation 7" is adapted if there is a convex piecewise function
u: AV — R whose corner locus is 7. We denote by T the complex torus My /M Qg C acting
on Ty, where T is a real (n + 1)-dimensional torus with character lattice M" and cocharacter
lattice M.
Consider a Laurent polynomial

W;: Té —-C, z— Z Cat—ﬂ(a)za
aeVert(7)

in coordinates z = (zy,...,Zu+1) on T, where ¢, € C* are arbitrary constants and # > 0 is a
tropicalization parameter. For sufficiently general ¢, the hypersurface H, = W, '(0) is smooth
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and called very affine. Restricting the canonical Liouville structure on T{, = TT{ = T*T" for a
fixed inner product, we may regard H, as a Liouville submanifold.

Theorem 6.10 ([GS2, Theorem 1.0.1]). There is an equivalence
Fuk(H,;) ~ Coh(0Ty)
between the wrapped Fukaya category on H, and the dg category of coherent sheaves on 0Ty.

Next, following [AAK16, Section 3], we explain SYZ fibrations associated with mirror sym-
metry for very affine hypersurfaces. For simplicity, we temporarily assume that X is an ordinary
simplicial fan. Consider the moment map

Log: T — R™', z (loglzil,. .., 10g |z,11])
for the lift to T*T" of the self T"-action. The image I1, = Log(H,) is called the amoeba of H,.

Definition 6.11. The tropical hypersurface 11y associated with H, is the hypersurface defined
by the tropical polynomial

¢: My — R, @(m) = max{{m,n) —pu(n) | n € A"}.
Namely, I1y is the set of points where the maximum is achieved more than once.

It is known that Iy is a deformation retract of Il,. According to [Mik04, Corollary 6.4],
when ¢t — oo the rescaled amoeba I1,/log ¢ converges to IIy. Combinatorially, Iy is the dual
cell complex of 7. In particular, the set of connected components of R"*! \ Ily bijectively
corresponds to the set Vert(7") of vertices of 7 according to which @ € Vert(7") achieves
the maximum of (m,a) — u(a) for m € R™' \ IIy. Note that R""! \ TI, for # > 0 has the
same combinatrics as R"*!' \ IIz. Since we assume A" to contain the origin, each connected
component of R"*! \ Ty is the locus where the monomial ¢, #®z% becomes dominant. In the
sequel, we will fix a general ¢ > 0 and drop ¢ from the notation.

Let ret: I1 — Ily be the continuous map induced by the retraction. Then the composition

(6.3) HoT, 515

gives the A-side SYZ fibration. Recall that H admits a pants decomposition [Mik04, Theorem
1’]. By [Mik04, Proposition 4.6] the k-th intersection of iy, - - - , i;-th legs [GS2, Definition
5.2.2] of an n-dimensional tailored pants P, is isomorphic to a product

C, X xCl x P,

Zi]
Under (6.3) a k-th intersection of legs maps to a subset of k-stratum away from lower dimen-
sional strata. In particular, the fiber over a general point of a k-stratum contains T*. On the other
hand, the B-side SYZ fibration is induced by the map from the total space of the anticanonical
sheaf on Ts = X5 defined as (6.1).
Now, we return to the case where X is a smooth quasiprojective stacky fan. Since 7 is
star-shaped, each (n + 1)-simplex is a polytope

A} = Conv(0,a',...,a") C My

1

spanned by the origin and primitive ray generators a,...,a" of some maximal dimensional

cone o. Consider the map
A, = AL e a

+ o

from the standard (n + 1)-simplex with the standard basis e, . .., e,, whose dual induces a map

194



Definition 6.12 ([GS2, Definition 5.1.4]). The A’-pants is the inverse image PA(\; = fA‘V1 (P,) of
the tailored pants. We write AAg for its amoeba Log(ISAg). For b = (by,...,b,11),b; > 0 we
denote by PZV and AZV respectively the translated tailored A)-pants obtained by scaling the

coefficients of the defining polynomial by e and its amoeba obtained by translation to the
first orthant.

Lemma 6.13 ([GS2, Lemma 5.3.6]). Let 8OAZV be the component of 0AL, which bounds the

region of R"! containing the inverse image of the all-negative orthant. Restrict the canoni-
cal Liouille structure on T*T" to ng. Let £, C X be the stacky subfan whose primitive ray

generators are ay, . . .,a,. Then we have
Core(P%,) = Log™'(8°A%,) N L(-Z,).

From [GS2, Theorem 6.2.4] it follows that Core(H) is the gluing of Core(f’gv) for all o €
Ymax- Hence in this case the fiber of (6.3) over a point of k-stratum away from lower dimen-
sional strata becomes isomorphic to a product

Ci XX Ci x Py,

'k T/ i)

Here, P%, is the k-th intersection of iy, - - , i-th legs [GS2, Definition 5.2.5] of P4, with

\Y 1 Al Al n
A(T/U1 .... i = Conv(0,a,...,a",..., &%, ..., a").

On the other hand, the B-side SYZ fibration becomes the composition of the structure morphism
Ty — Xs to the coarse moduli space with the map defined as (6.1). The fiber over any point
of a k-stratum is the real part of the corresponding subgroup of the Deligne-Mumford torus
[FMN10, Definition 2.4, Proposition 2.6] acting on Ts.

6.4. The proof of Theorem 1.4. For a smooth quasiprojective stacky fan ¥ C My, consider
the fanifold ® = £ N S™*! from [GS1, Example 4.22] generalized as in [GS1, Section 6]. In
particular, to each O-stratum P we associate the stacky fan Xp = X/pp where pp € X is the
ray passing through P. Hence T(®) coincide with the toric boundary divisor dTy of Ts. Fix a
stratified homeomorphism /g : dAY — ®. Then strata of A" inherit the labels from ® which
induces the labels on strata of Ils.

Definition 6.14. Let I1) be the connected component of R"*! \ Iy corresponding to the origin
of A. We define W as the image of a fixed stratified homeomorphism hy : 913 — $™! c My,
which makes the inherited labels on strata of W compatible with that on strata of @ transported
to My via a fixed inner product.

Note that I1] is the image of the composition
3Tz — TZ - XZ = (XZ)ZO - M]g
Hence ® satisfies (vi) and has the dual stratified space ¥. In particular, the B-side fibration

T(®) — Y is the gluing of the compositions Ty, — X5, — Qp and compatible with that
Ty — GHg for very affine hypersurface. Namely, we have the commutative diagram

T(®) —— dTx
|
N, ()

Lemma 6.15. There is a stratified homeomorphism of the image of Core(H) under the compo-
sition ret o Log and ® transported to My via the fixed inner product.
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Proof. As explained above, Core(H) is the gluing of Core(PZv) for all o € Z,,,x. By Lemma
6.13 each piece is the Legendrian boundary 0., L(—X,) of the FLTZ Lagrangian L(-ZX,) asso-
ciated with the stacky subfan X, c £. Unwinding the proof of [Nad, Theorem 5.13], one sees
that ret o Log projects each k-dimensional torus in d.,L(—X,) to a point of the corresponding
cone in X (n + 1 — k) transported to M. Such k-dimensional tori are connected with lower
dimensional tori by the Liouville flow. Hence the composition

hy oretoLog: Core(H) —» ¥

projects each k-dimensional torus in Core(H) to a point of the corresponding (n—k)-stratum of @
transported to My. Note that tori in different 0..L(—X,) mapping to the same point get identified
in Core(H). The images of k-dimensional tori are connected with that of lower dimensional
tori by the images of the Liouville flow, which become parallel to the corresponding strata
of ®. Thus one can find a homeomorphism of the image of each stratum of Core(H) under
hy o retoLog to the corresponding stratum of @ transported to M. By construction such
homomorphisms glue to yield the desired map. O

Corollary 6.16. There is a diffeomorphism of L(®) and Core(H) over ® transported to My.

Proof. For any k-stratum S ff) of @ adjacent to a O-stratum P, its inverse image under the re-

striction Ay o reto Log |core) 18 diffeomorphic to the zero section of T*Mgw X T*Sff). By
P

construction

(hy o ret o Log lcore(rn) ™ (S §), Mg x S
respectively glue along the boundaries to yield Core(H), L(®D). O

Corollary 6.17. There is a symplectomorphism of pairs
(6.4) (W(®D), L(D)) — (H, Core(H))
over Y with respect to t and a certain modification of hy o reto Log.

Proof. Contracting cotangent fibers along the negative Liouville flow if necessary, one can
make (T"M st X TS g‘), MS;f) xS Ef)) symplectomorphic to

(Nbd((/y o ret o Log |core(rn) ™ (S W), (g o ret 0 Log [coreqrn) (S W)

for any k-stratum Sg‘) of ® adjacent to a O-stratum P. By construction they glue to yield a
symplectomorphism of pairs

(W(®D), L(D)) — (H, Core(H))

over the pair (7(W(®)), ®). Since it is an embedding, the same modification as in the proof of
Theorem 1.3 yields compatible fibrations over Y. O
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