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We formally prove the existence of a quantization procedure that makes the path integral

of a general diffeomorphism-invariant theory of gravity, with fixed total spacetime volume,

equivalent to that of its unimodular version. This is achieved by means of a partial gauge

fixing of diffeomorphisms together with a careful definition of the unimodular measure.

The statement holds also in the presence of matter. As an explicit example, we consider

scalar-tensor theories and compute the corresponding logarithmic divergences in both set-

tings. In spite of significant differences in the coupling of the scalar field to gravity, the

results are equivalent for all couplings, including non-minimal ones.

I. INTRODUCTION

General Relativity (GR) is in perfect agreement with all experimental data. Even if this is con-

firmed by the next observational campaigns, another important issue remains open. Classical GR

has several equivalent formulations that may differ when quantum effects are taken into account.

An interesting example is unimodular gravity (UG) [1–10], that we define as a theory of gravity

constrained by
√
∣g∣ = ω , (1)

where ω is a fixed volume form 1. UG was advocated to be better suited to address some poten-

tial conceptual problems, such as the cosmological constant problem and the problem of time in
∗ gustavo@cp3.sdu.dk
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1 One often just takes ω = 1, which justifies the name, but this may not be applicable globally, so we stick to the more

general definition.
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quantum gravity, offering, in this viewpoint, some advantages [11–23], see, however, [24–26]. At

the classical level, GR and UG have the same equations of motion, but the nature of the cosmo-

logical constant term differs: it is a Lagrangian parameter, in the first case, an integration constant

in the second. Choosing the integration constant of UG to have the same value as the Lagrangian

parameter of GR, will give the same local dynamics. There is however a subtlety that prevents a

full equivalence between the two theories at global level. We can view (1) as a partial gauge-fixing

for GR. Integrating both sides we get

∫ d4x
√
∣g∣ = ∫ d4xω , (2)

The total volume of spacetime2 is diffeomorphism-invariant and therefore a physical observable.

Since (2) is a statement about an observable, it cannot be viewed as a gauge condition. Thus the

total volume is a physical degree of freedom in GR, but not in UG. One must conclude that GR has

one degree of freedom more than UG - just one, not one per spacetime point [8]. Thus, classical

UG is equivalent to a version of classical GR where the total volume of spacetime is held fixed.

This can be seen in the Lagrangian formalism by adding to the action a term

Λ

8πG
(V − ∫ d4x

√
g) (3)

where Λ has to be thought of as a Lagrange multiplier enforcing that the spacetime volume is

equal to V 3. In this paper we shall not discuss the global, large scale properties and when we say

“GR” we shall implicitly mean “GR with fixed total volume”.

It is then natural to ask whether this “almost equivalence” holds also for the quantum versions

of the theories. The unimodularity condition (1) restricts the invariance group from diffeomor-

phisms (Diff ) to special (volume-preserving) diffeomorphisms (SDiff ) 4, and one may expect that

this could lead to different quantum theories. For example, if we choose a unimodular gauge for

GR, this requires a Faddeev-Popov determinant, while in the quantization of UG is defined as

an integral over unimodular metrics5, this condition is present ab initio and no Faddeev-Popov

determinants are necessary.

In recent years, there appeared in the literature conflicting statements about the equivalence,

or lack thereof, between GR and UG at the quantum level, see, e.g., [17, 18, 21–25, 28–45]. We

2 When the volume is infinite, one has to regulate it by “putting the system in a box” and impose (2) on the regulated

system.
3 This point of view has been used by Hawking in Euclidean quantum gravity, where he interpreted the resulting

partition function as the “volume canonical ensemble”, see [27]
4 In the recent literature, the group SDiff is often referred to as TDiff , where T stands for “transverse”.
5 There are alternative formulations of UG and its quantization as, e.g., in [22, 28] which may have a different gauge-

fixing structure than the one adopted in this work.
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believe that some of these contradictions may be just due to different quantization procedures.

In this work, we prove in general, based on formal path integral arguments, that there exists

a quantization procedure that preserves the “almost equivalence” between these theories. The

proof goes through for any Diff -invariant action and in this sense extends beyond ordinary GR.

Of course, there may be other definitions of the quantum theories that break the equivalence, but

in the absence of other independent arguments in their favor, we think that the one we describe

here is more natural. Our argument is in the same spirit as the one presented in [24, 25] and

extends the results of [23, 36, 46] beyond one-loop order. We should remark that both GR and UG

are not renormalizable in perturbation theory and the formal path integrals should be ultraviolet

(UV) regularized. Our formal proof relies on the use of the background field method, but we leave

the parameterization of the metric, i.e., the way that we split the full metric in background and

fluctuating parts, generic. Hence, this also extends previous results [23, 36] which made explicit

use of the so-called exponential split of the metric to impose the unimodularity condition [30].

Our proof of equivalence is given initially for pure gravity and one may again worry that as

soon as matter degrees of freedom are introduced, the equivalence would fall apart. This is due

to the different vertex structures. In GR, the determinant of the metric produces infinitely many

vertices between gravitons and matter fields that are absent in UG. Hence, Feynman rules are

different in the two settings and one might expect that it is very unlikely that in the computation

of an observable, miraculous cancellations lead to equivalent results. Yet, there are results in the

literature explicitly showing that this happens, see, e.g., [37, 38, 47]. In fact, we shall see that our

formal proof of equivalence extends also to the case when matter is present.

As an explicit check, we shall consider gravity non-minimally coupled to a scalar field and

show that the one loop UV divergences are the same for GR and UG. This disagrees with [43],

who claimed that a particular dimensionless combination of couplings, called ∆, has different beta

functions in the two settings. In our calculation, the beta functions turn out to be the same. What

is perhaps more important, we find that the beta functions of ∆ are gauge-dependent, which may

at least in part explain the discrepancy. Furthermore, the implementation of the unimodularity

condition adopted in [43] is different from the one we use in this paper. We therefore think that the

question whether different formulations of quantum UG can lead to different physical predictions

than GR remains still open.

The paper is structured as follows: In Sect. II, we define the path integral of diffeomorphism-

invariant theories and formally show that it is possible to partially fix the gauge so as to reduce it

to the one of UG. In Sect. III, we perform an explicit computation in order to verify the claim of
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Sect. II in the presence of matter. We consider scalar-tensor theories with a non-minimal coupling.

We then proceed to the calculation of the one-loop beta functions in these theories both in the

full diffeomorphism and special diffeomorphism invariant cases. In particular, we compute the

running of ∆ and discuss how it depends on the choice of gauge. We also display the results of

the running of ∆ in GR with linear parameterization of the metric, in a generic linear covariant

gauge, and compare our findings with the available literature. We collect our conclusions and

perspectives in Sect IV. Appendix A is mainly intended for users of the functional renormalization

group and explains how to extract the logarithmic terms of the beta functions. Appendix B

contains some long expressions that are omitted in the main text.

II. EQUIVALENCE OF PATH INTEGRALS

The starting point of our analysis is the (Euclidean)6 path integral defined by a gravitational

action SDiff(gµν), gµν = gµν(ḡ;h) being the metric, ḡµν a fixed background metric and hµν the

fluctuating field which is integrated over. The fluctuating field hµν does not need to be small, i.e.,

a perturbation around ḡµν . Moreover, the split of the full metric gµν in background and fluctuating

parts is also general, not being restricted to the standard additive (linear) split. The action is

assumed to be invariant under diffeomorphisms (but it is not restricted to be the Einstein-Hilbert

action), and so is the functional measure Dhµν . Formally, the path integral is expressed as

ZDiff = ∫
Dhµν

VDiff
e−SDiff[g(ḡ;h)] . (4)

The factor VDiff stands for the volume of the diffeomorphism group.

In most practical calculations within a continuum quantum-field theoretic setting, a gauge-

fixing term must be introduced in (4). This is typically achieved by the Faddeev-Popov procedure.

The redundancy is generated by vector fields ϵµ which can be decomposed as

ϵµ = ϵµT +∇
µϕ , (5)

with ∇µϵ
µ
T = 0 and ∇µ the covariant derivative defined with respect to the metric gµν . The trans-

verse vectorfields ϵµT generate the group SDiff of special (volume-preserving) diffeomorphisms.

Instead of introducing a single gauge-fixing condition for the entire group of diffeomorphism,

we introduce two different conditions, first breaking Diff to SDiff, and then breaking SDiff. This

strategy has been discussed and worked out in a different way in [24], see also [25] and [48] for

6 The Euclidean signature is not essential at this stage and the results could be equally deduced in the Lorentzian case.
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a general discussion of partial gauge fixing. In the first step we choose a gauge-fixing functional

F(g) and insert the standard Faddeev-Popov identity given by

1 =∆F(g)∫ Dϕ δ(F(g
ϕ
)) , (6)

where ∆F(g) denotes the Faddeev-Popov determinant. The notation gϕ denotes the transforma-

tion of the metric generated by the longitudinal vectorfield ∇µϕ:

δϕgµν = 2∇µ∇νϕ . (7)

We can now plug (6) in (4) leading to

ZDiff = ∫
Dhµν

VDiff
(∆F(g)∫ Dϕ δ(F(g

ϕ
))) e−SDiff[g(ḡ;h)] . (8)

Following the standard steps we now use the gauge invariance of the measure, of the Faddeev-

Popov determinant and the action and redefine the integration variable, to get

ZDiff = ∫
DϕDhµν

VDiff
∆F(g)δ(F(g)) e

−SDiff[g(ḡ;h)] . (9)

In [23, 36] it was shown that

VDiff = Det (−∇2) × VSDiff × ∫ Dϕ , (10)

where VSDiff denotes the volume of the SDiff group. Hence,

ZDiff = ∫
Dhµν

VSDiff

1

Det (−∇2)
∆F(g)δ(F(g))e

−SDiff[g(ḡ;h)] . (11)

An explicit example of this first stage of gauge fixing is the unimodular gauge defined by

F(g) = detgµν − ω
2
(x) , (12)

ω(x) being a fixed scalar density. The delta function in (11) enforces that the full dynamical metric

is unimodular. The corresponding Fadeev-Popov determinant is

∆F(g) = Det (ω2
(x)(−∇2

)) . (13)

The contribution due to ω2(x) in (13) can be absorbed in a normalization factor of the path integral

and thereby it is harmless. Finally, by plugging (13) into (11), yields

ZDiff = ∫
Dhµν

VSDiff
δ(detgµν − ω

2
(x))e−SDiff[g(ḡ;h)] . (14)
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Due to the presence of the delta functional in (14), the action in the Boltzmann factor collapses to

its unimodular counterpart, i.e., SDiff[g(ḡ;h)] → SSDiff[g(ḡ;h)] where factors of
√
g are replaced

by ω(x) and when expanded in hµν , the constraint F(g) = 0 must be imposed. Eq.(14) is the path

integral of UG with the unimodular measure (Dhµν)UG defined by

(Dhµν)UG ≡ Dhµν δ(detgµν − ω
2
(x)) , (15)

i.e,

ZDiff = ∫
(Dhµν)UG

VSDiff
e−SSDiff[g(ḡ;h)] ≡ ZSDiff . (16)

One particular parameterization which is well-suited for the implementation of the unimodular-

ity condition is the exponential split

gµν = ḡµκ(e
h
)
κ
ν . (17)

Unimodularity of gµν is achieved by requiring the background to be unimodular (detḡ = ω2(x))

and that the flucuations hµν are traceless7.

In order to complete the gauge-fixing procedure, one applies again the Faddeev-Popov method

for a gauge condition which fixes the SDiff invariance. This is achieved, e.g., by taking the stan-

dard linear covariant gauges in quantum gravity and applying the transverse projector to it. We

refer to [23, 30, 31, 33, 36, 44, 45, 50] for more details.

We remark that eq.(16) does not rely on the specific form of the gravitational action. Morever,

if matter interactions were included (also of arbitrary form), the equivalence would still hold.

In this case, the matter action SDiff
M (φ,ψ,A) is mapped to SSDiff

M (φ,ψ,A) with the replacement
√
g → ω and fluctuations satisfying the constraint defined by the delta functional in (15). Thus,

we expect that gravity-matter systems in a full diffeomorphism-invariant setting are equivalent,

quantum-mechanically, to gravity-matter systems in the unimodular framework.

III. NON-MINIMAL COMPARISONS IN SCALAR-TENSOR THEORIES

This section is devoted to the explicit calculation of one-loop divergences in gravity-matter

systems, illustrating the quantum equivalence between Diff – and SDiff – invariant theories. In

7 Another efficient method is the “densitized” parameterization, see, e.g., [22, 49]. If one opts for less efficient imple-

mentations, the unimodularity condition becomes difficult to implement in practical calculations. Nevertheless, for

the partial gauge-fixing associated with the gauge freedom (7), there seem to be no generation of quartic ghost terms

[48] due to the fact that one just introduces a ghost-antighost pair.



7

particular, we focus on scalar-tensor theories including non-minimal couplings between gravity

and the scalar field.

This system has been discussed recently in [43], where it was claimed that through considera-

tion of a suitable dimensionless combination of couplings ∆, it is possible to distinguish GR from

UG. This would seem to contradict our results. While for us the beta function of ∆ is the same

in the two theories, it turns out to be gauge dependent, thus weakening the significance of this

test. We should also stress that in [43], the authors employ a different way of implementing the

unimodularity condition, and we do not exclude the existence of quantization schemes that break

the equivalence between GR and UG.

A. Action

The beta functions of GR coupled to a scalar have been derived previously in, e.g., [51] for the

general class of actions

S[ϕ, g] = ∫ ddx
√
g (V (ϕ) − F (ϕ)R +

1

2
∇µϕ∇

µϕ) . (18)

This includes an arbitrary potential V and arbitrary non-minimal couplings parametrized by the

function F . If one expands V and F in Taylor series in ϕ, with the additional assumption of

invariance under ϕ→ −ϕ,

V (ϕ) = V +
1

2
m2ϕ2 + λϕ4 . . . , V =

Λ

8πGN
(19)

F (ϕ) = ZN +
1

2
ξϕ2 + . . . , ZN =

1

16πGN
(20)

We are especially interested in the dimensionless couplings ξ and λ, whose leading one-loop beta

functions are universal, i.e., indenpendent of the regularization scheme, and in dimensionless

ratios of the dimensionful couplings, such as GNΛ, GNm
2, Λ/m2, since their beta functions are

also known to be less gauge- and parameterization-dependent. In [51], the beta functions were

computed by the use of the functional renormalization group (FRG) equation which is based on

a cutoff-like regularization. Thus, power-law divergences are also taken into account. In [43], on

the other hand, the authors employed dimensional regularization which is blind to the power-law

divergences8. For a direct comparison, we would have to extract from the FRG the “universal”

contributions, i.e., those related to logarithmic running. This is discussed in Appendix A 1. In the

8 The relation between dimensional regularization and cutoff regularization in the context of functional renormaliza-

tion is discussed in [64]
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next section we directly extract the beta functions from the logarithmic divergences, calculated

with heat kernel methods.

B. Dynamical gravitons: UG or GR in exponential parametrization

We start from GR in the exponential parametrization (17) and follow the procedure of [52]. We

decompose the metric fluctuation in its irreducible spin 2, 1 and 0 components:

hµν = h
TT
µν + ∇̄µξν + ∇̄νξµ + ∇̄µ∇̄µσ −

1

4
ḡµν∇̄

2σ +
1

4
ḡµνh , (21)

with ∇̄µhTT
µν = 0, ∇̄µξµ = 0 and ḡµνhµν = h. A redefinition of the fields σ and ξµ is performed in

order to cancel the Jacobian generated by the York decomposition (21),

ξ′µ =

√

−∇̄2 −
R̄

4
ξµ , and σ′ =

√
−∇̄2

√

−∇̄2 −
R̄

3
σ . (22)

We take the background metric ḡµν to be a four-dimensional Euclidean maximally symmetric

space. Then we choose the “unimodular physical gauge”, which consists of setting to zero the

spin one field ξ′µ and the spin-0 field h. With these choices, the gauge fixed Hessian is

S̃(2)grav = ∫ d4x
√
ḡ

⎡
⎢
⎢
⎢
⎢
⎣

1

4
F (ϕ̄)hTT

µν (−∇̄
2
+
R̄

6
)hTT µν

−
3

32
F (ϕ̄)σ′(−∇̄2

)σ′

−
3

4
F ′(ϕ̄)δϕ

¿
Á
ÁÀ(−∇̄2)(−∇̄2 −

R̄

3
)σ′ +

1

2
δϕ (−∇̄2

+ V ′′(ϕ̄) − F ′′(ϕ̄)R̄) δϕ

⎤
⎥
⎥
⎥
⎥
⎦

. (23)

As a further simplification we note that defining 9

σ′′ = σ′ + 4
F ′(ϕ̄)

F (ϕ̄)

¿
Á
ÁÀ−∇̄

2 − R̄
3

−∇̄2
δϕ , (24)

the gauge fixed Hessian becomes diagonal,

S(2)grav = ∫ d4x
√
ḡ

⎡
⎢
⎢
⎢
⎢
⎣

1

4
F (ϕ̄)hTT

µν (−∇̄
2
+
R̄

6
)hTT µν

−
3

32
F (ϕ̄)σ′′(−∇̄2

)σ′′

+
1

2
δϕ( − ∇̄2

+ V ′′(ϕ̄) − F ′′(ϕ̄)R̄ + 3
F ′(ϕ̄)2

F (ϕ̄)
(−∇̄

2
−

R̄

d − 1
)) δϕ

⎤
⎥
⎥
⎥
⎥
⎦

. (25)

The unimodular physical gauge produces Faddeev-Popov ghost determinants

∆FP=

√
det0(−∇̄2)

¿
Á
ÁÀdet1 (−∇̄2 −

R̄

4
) , (26)

9 This change of variables has a trivial Jacobian.
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with the subscripts 0 and 1 denoting the spin of the fields that the corresponding operators act on.

Thus the one-loop partition function reads

Z = e−Sgrav[ϕ̄,ḡ]

√
det∆1

√
det∆2

√
det∆S

, (27)

where ∆1 = −∇̄
2 − R̄

4 , ∆0 = −∇̄
2 and

∆S = −∇̄
2
+ES , ES =

FV ′′ − (F ′2 + FF ′′)R̄

F + 3F ′2
. (28)

This agrees with the standard result for GR with a cosmological constant, except for the appear-

ance of the additional scalar determinant.

Consider now the same calculation in UG. The trace fluctuation h is absent from the degrees

of freedom from the start and it is therefore not necessary to fix the corresponding gauge. The

SDiff gauge can be fixed again by setting ξ′ = 0. Altogether this produces the Faddeev-Popov

determinant

∆UG
FP =

¿
Á
ÁÀdet1 (−∇̄2 −

R̄

4
) . (29)

On the other hand, as discussed in [23, 36], the factorization of the volume of SDiff produces an

additional determinant
√
det(−∇̄2) which cancels the determinant coming from the integration

over σ′, so that the final result is again exactly (27). Notably, such an equivalence holds irrespec-

tive of the choice of F (ϕ).

In a standard perturbative approach, the beta functions can be read off from the logarithmic

divergences. The one-loop effective action is

Γ = S +
1

2
Tr log∆2 −

1

2
Tr log∆1 +

1

2
Tr log∆S , (30)

and its divergent parts can be obtained from

Γdiv = −
1

2

1

16π2
log(

Λ2

µ2
)∫ d4x

√
ḡ [b4(∆2) − b4(∆1) + b4(∆S)] , (31)

with Λ standing for an ultraviolet cutoff and µ being a reference scale. The first two contributions

in (31) only give terms of order R2 and are not relevant for the beta functions of interest. For ∆S

we have

−
1

2

1

16π2
b4(∆S) = −

1

2

1

16π2
(
1

2
E2

S −
1

6
R̄ES +O(R̄

2
))

= −
1

64π2
V ′′2

(1 + 3F ′2

F )
+

1

192π2
1 + 6F ′′ + 9F ′2

F

(1 + 3F ′2

F )
V ′′R̄ +O(R̄2

) . (32)
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Inserting (19) and (20) and expanding in powers of ϕ we obtain the beta functions

βV=
m4

32π2
(33)

βm2=
3λ

2π2
m2
−
6Gm4ξ2

π
(34)

βλ=
9λ2

2π2
−
72Gm2λξ2

π
(35)

βG=−
G2m2(1 + 6ξ)

6π
(36)

βξ=
λ(1 + 6ξ)

4π2
+
Gm2ξ2(1 − 12ξ)

π
(37)

We note that the leading terms are the same as for the pure scalar theory, discussed in Appendix

A. Here we only kept correction terms linear in G (with the exception of the beta function of G

itself). The explicit one-loop computation reported above leads to the same results in GR and UG,

since (31) is the same in both cases. Moreover, we have kept only the contributions generated by

the universal Q-functionals. The remaining terms are associated to power divergences and are

not universal. The conclusion of this explicit calculation agrees with our statement in Sec. II. In

particular, the non-minimal scalar-gravity coupling does not change this conclusion.

As is well-known, quantum-gravity contributions to matter beta functions can be gauge de-

pendent. The “unimodular physical gauge” can be obtained from the standard two-parameter

linear covariant gauge condition for Diff-invariant theories, namely

∇̄
νhνµ −

1 + β

4
∇̄µh = αbµ , (38)

with bµ being a fixed function, by taking the limits α → 0 and β → −∞. For generic α, β, the beta

functions βV and βG are left unchanged, while the others become,

βm2 =
3m2λ

2π2
+
2Gm4(4α − 3(2 + (3 − β)ξ)2)

(3 − β)2π
,

βλ =
9λ2

2π2
−
8Gm2λ(12 − 4α + 24(3 − β)ξ + 9(3 − β)2ξ2)

(3 − β)2π
,

βξ =
λ(1 + 6ξ)

4π2
−
Gm2

12π
F(α,β, ξ) . (39)

The contribution F(α,β, ξ) is lengthy and collected in the Appendix B. In the limit β → −∞, the

beta functions turn out to be α-independent. It is also worth mentioning that the first two of these

beta functions are also independent of another parameter that can be introduced in the definition

of the measure, namely the use of a densitized metric as a quantum field, see, e.g., [49].

As a side comment, at one-loop order, the universal gravitational correction to the quartic

coupling λ at vanishing non-minimal coupling is negative, irrespective of the values of the gauge
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parameter β, provided that10 α < 3,

βλ∣
grav
= −λ

32Gm2

π

3 − α

(3 − β)2
. (40)

At α = 3 or β → ±∞, the contribution vanishes at one loop. In particular, in the unimodular

physical gauge, the gravitational contribution vanishes at vanishing ξ. However, in such a gauge,

if the non-minimal coupling is included, the contribution is always negative at leading order inG.

Hence, such a contribution can balance the non-gravitational contribution to the one-loop running

of λ - which is positive and leads to the well-known triviality problem. In order to circumvent the

issues due to the gauge dependence, and of the non-universal power-law terms, one will have to

to compute a gauge invariant physical observable possibly along the lines of [53].

C. A universal beta function?

In [43], it was argued that the dimensionless combination of couplings

∆ =
(Gm2)2

λ
, (41)

has a universal beta function and carries a physical meaning. By quantizing UG in the presence of

non-minimally coupled scalar fields, the authors claim that the results differ in GR and UG. More

precisely, taking into account the differences in notation, their result for UG is

βUG
∆ =∆

−9λ + 2πGm2(−4 − 24ξ + 180ξ2)

6π2
(42)

while their result for GR is

βGR
∆ =∆

−9λ + 2πGm2(−4 + 156ξ + 180ξ2)

6π2
. (43)

Hence, ∆ would be a physical quantity able to distinguish GR and UG if the scalar field is non-

minimally coupled to the gravitational field.

Using our previous calculations, we cannot distinguish UG and GR non-minimally coupled to

scalars at one-loop simply because the path integrals are the same. In particular, in the unimodu-

lar physical gauge, we obtain

β∆ =∆
−9λ + 2Gm2π(−1 − 6ξ + 180ξ2)

6π2
, (44)

10 In an Euclidean setting, α has to be non-negative.
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which differs from either of the results above. These discrepancies may be ascribed to the fact

that we are using a different parameterizarion of the metric and a different implementation of the

unimodularity condition.

What is perhaps more important is that, even if we stick to our computation scheme, the quan-

tity ∆ is gauge dependent. In fact, in the linear covariant gauge (38), the result is

β∆ =
∆(−9(3 − β)2λ − 2Gm2π(48α + β2A1(ξ) + 6βA2(ξ) − 27A3(ξ)))

6π2(3 − β)2
, (45)

with

A1(ξ) = 1 + 6ξ − 180ξ
2 , A2(ξ) = −1 + 66ξ + 180ξ

2 , A3(ξ) = 5 + 46ξ + 60ξ
2 . (46)

Thus, even in the absence of ξ, the beta function of ∆ is gauge dependent and comparing results

for GR and UG would be problematic. We also remark that, in the limit β → ±∞, eq.(45) reduces

to (44) irrespective of α.

D. Dynamical gravitons: GR in linear parametrization

So far, the explicit one-loop computations were performed using the exponential parameter-

ization of the metric. In this parameterization, the unimodularity condition simply amounts to

removing the trace mode of the gravitational field fluctuation hµν . While field redefinitons, prop-

erly done, should not affect the result of physical quantities, there are several subtleties when

changing from one parameterization to another in quantum gravity. In this section, we present

the one-loop results for the scalar-gravity system with a non-minimal coupling in the so-called

linear parameterization, i.e.,

gµν = ḡµν + hµν , (47)

in the linear covariant gauges (38). This system was studied, e.g., in [51], but the beta func-

tions were computed with the functional renormalization group and contained also non-universal

terms. Here, we select just the universal contributions, that are related to logarithmic divergences.

In a general gauge (α,β), the result is completely equivalent to (39) apart from the beta function

of the non-minimal coupling βξ which reads

βξ =
λ(1 + 6ξ)

4π2
−
Gm2

12π
G(α,β, ξ) , (48)

where the explicit expression for G(α,β, ξ) is reported in Appendix B. In particular, if we take

α → 0 and β → ±∞, we obtain

G(0,±∞, ξ) = 6(−13 + 10ξ2 + 24ξ3) , (49)
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which differs from F(0,±∞, ξ). The beta function of ∆ in a general linear covariant gauge and in

linear parameterization is the same as (45). Hence, although gauge-dependent, ∆ seems to display

some kind of universality as far as different choices of parameterization is concerned. This fact is

not very surprising given that, the only beta function in the linear parameterizarion that differs

from the exponential parameterization at one-loop is βξ and it does not enter the definition of β∆.

In [54], Kamenshchick and Steinwachs (see, also, [55]) investigated the one-loop divergences

of a more general theory than the one considered in this work. In particular, they have considered

a scalar-gravity action SKS[g,Φ] expressed as11

SKS[g,Φ] = ∫ d4x
√
g (V (Φ̃) − F (Φ̃)R +

1

2
gµνG(Φ̃)∇µΦ

a
∇νΦa) , (50)

where a = 1, . . . ,N and N is a positive integer. The functions V and F depend on Φ̃ =
√
δabΦaΦb.

The gauge condition used in [54] is

Fµ =

√

F (Φ̃)(∇̄αhαµ −
1

2
∇̄µh −

F ′(Φ̃)

F (Φ̃)
na∇̄µφa) , (51)

with φa the scalar field fluctuations and na = Φa/Φ̃. Unfortunately, our gauge condition (38) is not

deformable to this, and therefore we cannot directly compare our results with theirs. However,

we can extract from their work the beta function of ∆ in the gauge (51). The authors employed

the linear parameterization of the metric and the reduction to the a single-scalar non-minimally

coupled to gravity is achieved by taking N → 1, Φa = na = 1 and Φ̃ → ϕ. Moreover, in order to

have the same scalar-tensor action we discussed in this work, one has to take G(Φ̃) → 1 and their

quantity s has to be identified as

s = −
F

F + 3F ′2
=

−1 − 8πξGϕ2

1 + 8πξGϕ2(1 + 6ξ)
. (52)

The beta functionals of V and F are βV = 2α1, βF = 2α2, where α1 and α2 are given in their

equations (48) and (49). From there we read off

βm2=
3λ

2π2
m2
−
2Gm4(2 + 4ξ + 3ξ2)

π
, (53)

βλ=
9λ2

2π2
−
8Gm2λ(2 + 8ξ + 9ξ2)

π
, (54)

βG=−
G2m2(1 + 6ξ)

6π
, (55)

βξ=
λ(1 + 6ξ)

4π2
−
Gm2(13 − 16ξ − 39ξ2 − 36ξ3)

3π
, (56)

11 The functions U , G, V of [54] correspond to −F , −1, −V in our notation.
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which gives

β∆ =∆
−9λ + 10πGm2(5 + 30ξ + 36ξ2)

6π2
. (57)

This confirms once more that the first and last term in the fraction are universal, but not the other

ones.

IV. CONCLUSIONS

Disregarding the single global spacetime volume degree of freedom, we have shown at a for-

mal path integral level that the classical equivalence between general (Diff –invariant) and uni-

modular (SDiff –invariant) versions of gravity theories, can be maintained at the quantum level12.

This is true independently of the choice of the action and also in the presence of matter. This was

achieved by a careful factorization of the gauge-group volume which produces an extra contri-

bution that is missing in comparison with standard GR calculations. Keeping this in mind, due

to such an equivalence, the path integrals lead to the same perturbative results order by order.

Moreover, at least within the standard perturbative assumptions, our results are not restricted to

an Euclidean setting. As a formal argument, one should verify it with explicit calculations, since

the path-integral manipulations deal with ill-defined objects and require a proper regularization.

To this end, we have calculated the universal parts of the one loop beta functions of scalars

coupled to gravity. In spite of significant differences13 in the two cases, the beta functions turn

out to be the same. We have then compared these results to those of [43], who also made the same

comparison. Our beta function for the dimensionless combination ∆, see (41), differs from theirs

both for GR and UG. The differences can probably to be ascribed at least in part to the different

way they implement unimodularity14. A more detailed analysis has shown that the beta function

of ∆ is actually gauge-dependent, so that it is not a sufficiently good test. There are two terms in

the beta function of ∆ that are the same in all gauges and are the same across all calculations we

could find in the literature, whereas other terms have strong gauge dependence. For the future, it

will be important to identify a genuinely universal combination of couplings, or another potential

observable that can act as a benchmark.

We conclude with some comments on the cosmological constant. In UG, a “cosmological term”
Λ

8πG ∫ d
4xω in the Lagrangian is just an additive, field-independent term that does not affect the

12 The equivalence of GR and UG in the presence of an independent connection, deserves a separate investigation,

which is ongoing.
13 The theories feature different gauge symmetries and, e.g., different vertices.
14 They consider a redefinition of the metric which renders unimodularity automatically at the cost of introducing an

extra Weyl invariance.
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equations of motion and can be absorbed in the overall normalization of the functional integral.

The equations of motion of UG are obtained through a constrained variation of the unimodular

action and the cosmological constant is regained as an integration constant upon the use of the

Bianchi identities. Hence, an initial condition for the value of the cosmological constant must

be provided. GR is only (classically) equivalent to UG if we impose that the total volume of

spacetime is fixed. In this restricted theory the cosmological term in (3) is a Lagrange multiplier,

whose value is ultimately related to the volume through the equations of motion.

Computations of the beta functions performed in the so-called unimodular gauge [52] show

that the cosmological constant decouples from the system of beta functions. This resembles sim-

pler calculations involving the functional renormalization group, where a field-independent con-

tribution is generated by the flow and can be cancelled by a proper normalization of the vacuum

energy. This suggests that its quartic running is unphysical. This is in line with other hints coming

from different directions [56–59]. This and related issues deserve to be investigated further.
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Appendix A: Derivation of beta functions from the Functional Renormalization Group

1. Extracting the universal terms from the FRG

In the literature, the beta functions of gravity, with or without matter, have been often calcu-

lated in the Functional Renormalization Group (FRG) framework, see, e.g., [60–63] for reviews

on the subject). Since the FRG is based on a momentum cutoff, the beta functions contain terms

proportional to powers of the cutoff, that are not seen with other techniques. In this appendix we

discuss the way in which one can recover from the FRG the standard one loop beta functions that

one would see, e.g. in dimensional regularization. For a more detailed discussion of the relation

between the FRG and dimensional regularization we refer to [64].

In the FRG, a cutoff function Rk is introduced by hand in the quadratic part of the action, in
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order to suppress the contribution to the functional integral of modes with (Euclidean) momenta

smaller than a cutoff scale k. This leads to a coarse-grained effective action Γk which coincides

with the full effective action at k = 0. The flowing action Γk obeys the flow equation

k
d

dk
Γk ≡ ∂tΓk =

1

2
Tr [(Γ

(2)
k +Rk)

−1∂tRk] , (A1)

where Γ
(2)
k is the Hessian constructed from Γk. For our present purposes it will be enough to

consider the simple case of scalar fields in a background metric, with a Hessian of the form Γ
(2)
k =

∆ where ∆ is a Laplace-type operator:

∆ = −∇2
+E ; E =m2

+ 12λϕ2 − ξR . (A2)

This derives from a scalar action containing a potential and a non-minimal coupling to gravity.

Then the r.h.s. of the flow equation is a function W (∆) that, for constant ϕ, can be evaluated as

TrW (∆) =
1

(4π)d/2
[Qd/2(W )B0(∆) +Qd/2−1(W )B2(∆) + . . . +Q0(W )Bd(∆) + . . . ] , (A3)

with the Q-functionals defined as

Qn(W ) =
(−1)k

Γ(n + k)
∫

∞

0
dz zn+k−1W (k)

(z) . (A4)

In eq.(A4), n ∈ R, W (k)(z) stands for the k-th derivative of W with respect to z. If n > 0, then

k = 0. Otherwise, k is a positive integer such that n + k > 0. The heat kernel coefficients are

Bn(∆) = ∫ d
dx
√
g Tr bn(∆), where

b0 = 1 , b2 =
R

6
−E ,

b4 =
1

180
(RµναβRµναβ −R

µνRµν +
5

2
R2
) −

1

6
RE +

1

2
E2 . (A5)

In the flow equation, we are interested in computing Q-functionals of the form

W (z) =
∂tRk(z)

(Pk(z))m
, (A6)

where Pk(z) = z +Rk(z). If, m = n + 1, then one can show that

Qn (
∂tRk

Pn+1
k

) =
2

Γ(n + 1)
, (A7)

is “universal”, i.e. independent of the shape of Rk. For certain cutoff schemes the denominator in

the function W is Pk +E, and

Qn (W ) = Qn (
∂tRk

(Pk +E)m
) , (A8)
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are, in general, non-universal quantities. Nevertheless, one can extract universal parts of each

Q-functional defined in eq.(A8) by expanding in E:

Qn (
∂tRk

(Pk +E)m
) = Qn (

∂tRk

Pm
k

(1 −m
E

Pk
+
m(m + 1)

2

E2

P 2
k

−
m(m + 1)(m + 2)

3!

E3

P 3
k

+ . . .)) , (A9)

and exploiting the linearity of the Q-functionals to pick up the contribution which satisfies n =

m + 1.

Consider first a “type III” cutoff, see, e.g., [60, 65]. The beta functional is

Γ̇k =
1

32π2

⎡
⎢
⎢
⎢
⎢
⎣

Q2 (
Ṙk

Pk
)B0(∆) +Q1 (

Ṙk

Pk
)B2(∆) +Q0 (

Ṙk

Pk
)B4(∆) + . . .

⎤
⎥
⎥
⎥
⎥
⎦

. (A10)

Only the last term is universal. Thus

Γ̇k∣
univ
=

2

32π2
∫ d4x

√
g b4(∆) . (A11)

The relevant terms (up to linear order in R which are not total derivatives) are

b4 ∼
1

2
E2
−
1

6
RE

∼
1

2
m4
+ 72λ2ϕ4 + 12λm2ϕ2 + (ξ +

1

6
)m2R + 2λ(6ξ + 1)ϕ2R . (A12)

From here one reads off the beta functions

βV=
m4

32π2
, (A13)

βm2=
3λm2

2π2
, (A14)

βλ=
9λ2

2π2
, (A15)

βZN
=
1 + 6ξ

96π2
m2 , (A16)

βξ=
λ(1 + 6ξ)

4π2
. (A17)

The same result can be obtained in a more laborious way using a “type I” cutoff. In this case

Γ̇k=
1

32π2

⎡
⎢
⎢
⎢
⎢
⎣

Q2 (
Ṙk

Pk +E
)B0(−∇

2
) +Q1 (

Ṙk

Pk +E
)B2(−∇

2
) +Q0 (

Ṙk

Pk +E
)B4(−∇

2
) + . . .

⎤
⎥
⎥
⎥
⎥
⎦

. (A18)

The universal terms come from all three pieces in this expression, when one expands in E: the

third term in the expansion for Q2, the second for Q1 and the leading term for Q0. In the latter

term, B4(−∇
2) is of order R2 and does not concern us. The rest is

Γ̇k∼
1

32π2

⎡
⎢
⎢
⎢
⎢
⎣

Q2 (
Ṙk

P 3
k

)E2B0(−∇
2
) +Q1 (

Ṙk

P 2
k

)(−E)B2(−∇
2
) + . . .

⎤
⎥
⎥
⎥
⎥
⎦

,
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=
1

32π2
∫ d4x

√
g

⎡
⎢
⎢
⎢
⎢
⎣

E2
− 2E

1

6
R + . . .

⎤
⎥
⎥
⎥
⎥
⎦

, (A19)

which is clearly the same as before, and therefore leads to the same beta functions. Note that the

universal parts of the beta functions are those that come from the dimensionless Q-functionals

and therefore are independent of k, see eq.A7.

Appendix B: Some General Expressions

In this appendix, we collect some long expressions that were omitted in the main text. In

particular, the beta function of the non-minimal coupling ξ depends on the choice of the metric

parameterization. Hence, in the exponential parameterization in a general linear covariant gauge

(38), the factor F in eq.(39) is

F(α,β, ξ) = −4
F1(α,β, ξ) − 3 (F2(β, ξ) + F3(β, ξ) + F4(β, ξ) + F5(β, ξ) + F6(β, ξ))

(3 − β)4
, (B1)

with

F1(α,β, ξ) = 24α
2
+ 2α(β2(24ξ + 1) − 18β(4ξ + 1) − 27) ,

F2(β, ξ) = β
4ξ2(12ξ − 1) ,

F3(β, ξ) = −4β
3ξ (36ξ2 + 9ξ − 1) ,

F4(β, ξ) = β
2 (648ξ3 + 342ξ2 + 36ξ − 2) ,

F5(β, ξ) = −12β (108ξ
3
+ 81ξ2 + 15ξ + 1) ,

F6(β, ξ) = 9 (108ξ
3
+ 99ξ2 + 12ξ − 2) . (B2)

As for the linear parameterization, the expression for G(α,β, ξ) in (48) is

G(α,β, ξ) = 2
G1(α,β) + G2(α,β, ξ) + 3G4(β, ξ)

(3 − β)4
(B3)

with

G1(α,β) = −3α
2
(3(β − 6)β((β − 6)β + 18) + 259) ,

G2(α,β, ξ) = α(2β(β(3(β − 12)β + 24ξ + 194) − 396) − 432ξ + 630) ,

G3(β, ξ) = −13β
4
+ 112β3 − 458β2 + 24(β − 3)4ξ3 ,

G4(β, ξ) = (2(β(5β − 42) + 117)(β − 3)
2ξ2 − 8(β(5β − 12) + 27)(β − 3)ξ + 888β − 657) .

(B4)
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