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1. INTRODUCTION

More than 60 years ago, mathematicéll ecology had its genesis through the coincident
efforts of two intellectual giants A.Lodka and V.Volterra. The goal of Lodka-Volterra
equation, logistic, Kolmogorov, and Gause type model was briefly, thev quantification of
the non-linear interactions within and between populations which can lead to periodic

behaviour.

All these classical works ignored the spatial heterogeneity. The ecological situation can
be understood only when population of organisms are considered in both time and space
(Okubo, 1980). Many kautkhors showed the role of space in the non-uniform distribution
patterns of populations [2,5,6,8,14,23,29]. Taylor and Taylor remarked that the degree of
crowding is not only a product of multiplication, but also of movement in space; and some
populations disperse to avoid crowding (Namba, 1989). Shigesada and al. (1979) proposed
a model of two animals species which have almost the same favorableness for the environ-
ment and disperse under population pressure due to intra and interspecific interferences.
Namba (1989), in his work ”Competition for space in a heterogeneous environment” ana-
lyzed the combined effects of density-dependent dispersal and spatially variable growth on
distribution of competing populations. All these investigations, however, never took into
account the effects of external factors of unpredictable environment. On another hand,
many investigators were interested about the impact of stochastic unpredictable environ-
ment (May, 1975) and showed that the unpredictable em)rironment strongly influenced the
the population density (Nisbet and Gurney, 1982). All population, natural or artificial, are
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affected to some extent by external perturbations. This variation frequently is sufficiently
important that it can be regarded as a primary force in structuring many natural systems.
Indeed, the existence of continual fluctuating stress on the ecosystem has lead to proposals
of an ecological paradigm that emphasizes population survival through the disequilibrium
caused by the disturbances [27]. Classical models had assumed that birth and death rates
are constant function of the population u. Obviously this is an extreme idealization even
of laboratory conditions. While in the real world, outside laboratories, birth and death
rates depend on some external factors of heterogeneous fluctuating environment such as
temperature and humidity. This provides a possibility which cannot be explained by mod-
els that do not incorporate the effects of external factors. Therefore temporal fluctuation
can be reflected in a population model through intrinsic parameters such as birth and
death processes or extrinsic parameters relating to the environment. The simple and very
common external factors of the varying environment are the climatic variations, which
in general, change periodically with the time. A good example is the seasonal climatic

variations which are quasi-cyclic.

Recently, summarizing the work of Hassell [11] and Mountford [19], (May 1989) sug-
gested that for further studies, it is much more interesting to analyse a realistic model,
in which spatial heterogeneity, environmental unpredictability, and nonlinear interactions
within and between populations can swirl together to confound empirical studies aimed at
understanding what prevents the long-term average density of a population from increas-
ing indefinitely (or decreasing to zero in a time short compared with average extinction
times). However, instead of using statistical approach, we will adopt a continuum mechan-

ics approach to deduce and simplify the basic equations.

Now, a growing literature deals with the interplay between environment noise and
the intrinsic dynamics of non-linear system of populations by using difference equation
and by employing stochasticity in demographic or environment parameters (10,19]. Our
developments are deterministic, in the mode of Namba, Nisbet and Gurney, by assuming
that two species share the same space and disperse to avoid crowding. One of species is

strongly affected by the external environment factors, while the second remain unaffected.
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Clearly, in this work we seek to formulate a model capable of combining the spatio-
temporal distribution of population which disperses, to avoid crowding in a heterogeneous

space and periodically fluctuating environment.



2. CLASSICAL MODELS OF POPULATION DYNAMICS

In the natural heterogeneous and unpredictable environment, populations of many

species can grow, coexist, compete and move around.

According to the first biological postulate [12]: "every living organism has arisen from
at least one parent of like kind of itself”, Lodka generalized the behavior of a population

in the following equation

du
- fw, (2.)

which merely tell us that the rate at which the number of individuals u in the population
changes with time depends in some way on the number present. The solution of this first-

order differential equation, in the simple case:

du
_(Z‘,- = bu,
is
u = ug exp(bt), (2.2)

where b represents the constant rate of increase per individual, birth minus death rates

and is called Malthusian parameter.

The second biological postulate states that ” in a finite space there is an upper limit
to the number of finite being that can in some way occupy or utilize the space under
consideration”. This postulate leads to the best known model of a single species with
density-dependent population regulation: the logistic model. In the differential form, this
1s

— =bu — —u”, (2.3)
where b is the intrinsic growth rate of the species and k is the carrying capacity of the

environment for this particular species.

The dynamics of the growth of a population can be described if the functional behavior

of the rate of growth is known. Of course, it is this functional behavior which is usually
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measured in the laboratory or in the field when the ecologist is interested in single-species

population growth.

The usually assumption made is that the rate of growth is proportional to the number
of species present. The proportionality »constant” may be dependent or independent of
the number of individuals present, and it may be dependent or independent of time. In
general, when the model is time independent, the population growth may be described by

the autonomous equation

du
- = ug(u), (2.4)
where u is the number of individuals present at time ?. If the model is time dependent,

the population growth may be given by the nonautonomous equation

du
el : 2.5
= = uh(u,) (2.5)

Models of the preceding type are suitable for the growth of populations where the individual
numbers are large. In this case u may be taken to represent the population density or
perhaps the biomass of the population. Models given by (2.4) or (2.5) are generally not
suitable if the individual numbers are small. The reason for this is that the differential
equation models assume continuous birth and death rates, whereas in small populations
that assumption is clearly false. When the average birth rates of the population is small,
let say one a year, the natural model to describe the population dynamics is a difference
equation, giving the change in population from one generation to the next. Hence the

appropriate model for such a population is

u(t +1) = u(t)g(u(t)) (2.6)

where u(t) is the population number in the t-th generation or appropriate time unit, and
u(t 4 1) is the population number in the (t+ 1) -th.

As usual we will let u(t) stand for the prey density (or number, or biomass) and v(t) for
the predator density (or number, or biomass). Then it is assumed that the growth rate
of any species at a given time is proportional to the number of that species present at

that time. Further general assumptions are that the species are living in a homogeneous
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environment and that age structures are not taken into account [4].
Every species in an ecological community is connected to many others. They can coexist
together or compete for the use of the common resources. Each can be both a predator
(if the species use the others species as a food) and prey (if one species is considered as
a food of an other). These assumptions lead to a very well known model in populations
dynamics, named the Lodka-Volterra equation [4].
For the prey species u it isV assumed that the prey growth, if left alone, is Malthusian,
i.e., the specific growth rate is constant. It is further assumed that the specific growth rate
is diminished by an amount proportional to the predator density. This leads to the prey
equation

du

- = ula—pv), a,f > 0. (2.7)

For the predator species v it is assumed that in the absence of prey, the predators will
become extinct exponentially (just as in the radioactive decay) but that their growth rate
is enhanced by an amount proportional to the prey density. This leads to the predator
equation

dv

o= v(—y + du) v,6 > 0. (2.8)

Putting both equations (2.7) and (2.8) together, we get a system referred as the Lodka-

Volterra model for predator-prey interactions.

du
- = u(a — Bv) (2.90)
dv

If the probability of an individual birth and death is constant at all points in a closed
region, then movement of individuals from place to place within has no effect on the total

population size.

The goal of Lodka-Volterra type model is briefly the description of the interactions
within and between species and their inorganic environment. The classical modeling ap-

proach focuses on temporal evolution of populations, ignoring movement of species in the

6



space. All the classical works assumed a homogeneous space in an unvarying, deterministic
environment and a density-dependent effect which would regulate a population to some
constant value, or at worst to a stable cycle (May, 1989). These classical models for the
whole population species imply only changes through time. The equations of ecosystem are
then established by equating the derivative %—1‘- to another relation expressing the effect
of species and environmental interactions on the population u . However, spatial varia-
tion is not considered. This is irrealist in the natural environment where the key factors
differ for the same species in different places and affect different stages in the life history.
This makes models for the whole species population unrealistic. The ecological situation
can be understood only by taking into account the space and the time variation. Taylor
and Taylor (1977), remarked that a lack of rigour in distinguishing total population from
population density can imply uniform distribution of density in space. As soon as birth
and death rates vary with the position the situation changes dramatically and dispersal
may play a vital role in determining whether a population grows or declines.

Mathematical ecologists have produced numerous models showing how spatial aspect of
species interactions can provide opportunities for coexistence [21,22,23,25,27,28,29]. With-

out the benefit of equation, naturalists had concluded that many species persist together

only because of opportunities provided by spatial heterogeneity and dispersal.



3. SPATIO-TEMPORAL DISTRIBUTION OF DISPERSAL POPULATIONS

Space complicates ecological interactions by two fundamental mechanisms: it allows
for non-uniform patterns of environment and population density and for movement (dis-
persal or migration) of individuals or their gametes from one location to another (Levin,
1976a). One classic definition of the aim of animal ecology is 'to discover the reasons for the
distribution and abundance of animals in nature’(Elton,1927). This definition emphasizes
the expectation that the same factors, both external (such as food and water, temperature,
predation ect.) and internal (such as territorial behaviour, social interactions ect.) which
set the overall size of a population will also determine the way in which it is distributed
over the available space [27]. Nisbet and Gurney (1982) formulated their fundamental
equation by assuming that, there is one elementary principle which underlies all popula-
tion modelling, namely that the total number of individuals (u) in a fixed region of space

can only change for four reasons:
(a) births,
(b) deaths,
(c) immigration,

(d) emigration.
In a small time interval At the change in population Au can thus alway be written as
Au= (B - D +1I- E)At, (3.1)
where BAt, DAt are respectively the total numbers of births and deaths during
At, while IAt and EAt are the total numbers of individuals entering and leaving
the region during the same time interval. The wide variation in the mathematical form of
population equations found in the literature correspond to different assumptions concerning

the terms, B, D, I and E in this fundamental equation.

These assumptions are of two types. First we need to specify the type of information

on B, D, I, or E whichis to beincorporated in the model. This determines the
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class of mathematical equations which will be used. Then we must specify the function
form for each of the quantities. For instance, if we are modelling a population density-
dependent, age-specific mortality we must specify the death rate as a function of age and of
population size. It is important that this should be done as late as possible in the analysis
in order to distinguish general principles from special results caused by particular choices
of B, D, I, or E. Immigration or emigration occur only by moving from one region

to another.

In the life time of most animals there occurs a time when the site of inhabitation is
abandoned in favor of migration. Thus, in an environment changing through space and
time, the most probable strategy for a new individual to adapt to survive and reproduce
may not necessarily consist of remaining to compete with its parents or congeners, but may
rather consist of migration elsewhere to find empty niche to habitat (Taylor and Taylor,
1977). As a result, the spread of population, i.., dispersal takes place. Such animal
movement include nomadism, whereby animals wander with no particular direction in
search of sustenance, in a manner that resembles the random walk; and migration, which
may be periodic when animals move from one habitat to another in a repetitive cycle, or
nonperiodic. In addition, animals may display a restricted movement as they carry on
their daily activities within a given domain of their habitat (home range). Animals utilize
spatial selectivity in their movement. A similar restriction can also be applied to time.
The utilization of time by animals is not uniform. They do not always move around, but

sometimes rest.

The spatial distribution of patterns of animal population in its natural environment
may be realized as a result of various kinds of biological effects, for example, heterogeneity
of environment conditions, mutually attractive or repulsive interactions of individuals and
localization of egg-laying process can be the principal causes of spatial pattern formation.
Species interaction is directly related to the net population flux through an arbitrary small
piece of space, and thus a proper expression is unattainable without knowledge of the
mechanism of movement of the organism. Many organisms in the natural environment

are subject to biodiffusion, i.e, there exist some forces acting on individual organism.
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Neither Patlk’s model nor The Fokker-Planck equation for biodiffusion which describe the
diffusion of population species in a randomly fluctuating environment, takes into account
interference between individuals, although the parameters of these models may be regarded

as being dependent upon the population density in general.

Shigesada and Teramoto (1978) presented a mathematical model of advection and

diffusion to explain the spatial distribution of animal populations that are principally
‘ controlled by interference between individuals and other environmental conditions. The
formulation of this model is based on the assumption that animals move under the influence

of the following fundamental forces:
(1) a dispersive force associated with random movement of animals;

(2) an attractive force, which induces directed movement of animals toward favorable

environments;

(3) population pressure due to interference between individual animals.

Thus, Shigesada and Teramoto presented their equation for the one dimensional model

o5 H? o (09
i 5;5[{0("'3) +ﬁ(m)5}5]+5;{5;5}- (3.2)

Here S(z,t) is the density of animals; afz) + B(z)S represents the virtual diffusivity,
dependent upon spatial inhomogeneity and population pressure; and ®(z) denotes the

potential of the environmental attraction, which induces the advection velocity

V() =~ (33

toward favorable region. Shigesada and Teramoto derive equation (3.2) from a microscopic

model in which individuals perform a biased random walk.

The steady-state distribution of animals for the above is obtained by equating the

right-hand side of (3.2) to zero and integrating with respect to z:

d ®
a—;{(a +BS)S}+ %TB-S = —J (constant) (3.4)
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where J represents the flux of organisms. When an animal is displaced in a closed region

this flux must vanish.

One year later, Shigesada and al. extended their model to the populations of two
animal species that have almost the same affinity for the environment and are under the
influence of population pressure due to intra-and interspecific interference. They showed,
by computer simulations, that coexiétence of two similar and competing species, which
cannot coexist in the absence of dispersal, is realised if environmental heterogeneity and
non-linear dispersive forces are introduced. However, they assumed that the environmental
heterogeneity modifies only the dispersive forces and does not alter the growth rate and
competitive interactions. The growth rate and the ranks of competitive ability also varies
as the environmental conditions change and some inferior competitors can survive in het-
erogeneous environments, because of their wider tolerance to the environment conditions.

The time changes of population densities Si(z,t) and S3(z,t) are given by

a5 82 a o
-—55 = —a—a—:é-{(a]_ +ﬂ1151 +ﬂ1252)51} + 5};{71 5;51} (35(1)
a5 o? 0 0
-—a—t?— = 5-:1—:—2—{(042 -+ ﬂ2151 + ,32252)52} -+ 5‘5{725}252}7 (3-55)

where «; + £;;5;(3,7 = 1,2) are the virtual diffusivities of the i-th species, which de-
pend upon spatial inhomogeneity and intra-and interspecific population pressure, and
vi(i = 1,2) are the coeflicients of affinity for the environment.

If two similar species have slightly different preference to the environmental conditions be-
cause of distinctive adaptabilities, there occurs severe competition only in the overlapping
zone when their main habitats meet in some region [27].

Until now we have been concerned primarily with diffusional aspects of animal move-
ments, and ignoring the growth or decay of the populations. Under optimum condition,
most populations have a very high potential for growth. However, in spite of this potential,
the number observed in populations of many species appear to be regulated within certain
limits, because of the effects of environment heterogeneity in the habitat.

To study such an effect in the habitat, we must consider growth function and diffusion
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coefficients for each species as space-dependent.

Ecological models incorporating spatial heterogeneity of habitats are of profound impor-
tance in understanding the movements of organisms and their effects on the stability of
spatial distributions of populations under natural circumstances. Equations describing the
time development of the spatial distribution of a population in a heterogeneous environ-
ment fundamentally involve two terms, dispersal and growth, which are both functions of

space [5].
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4. ON THE REACTION-DIFFUSION EQUATION FOR BIOLOGICAL SYSTEM!

As the relations describing the growth, decay, and interaction of biological populations
are very closely analogous to the laws of chemical kinetics in general, mathematical methods
and analyses underlying the reaction-diffusion systems in chemistry may often be applicable
to an ecosystem with diffusing populations. In this context the book by (Nicolis and
Prigogine, 1978) is very useful. In recent years reaction-diffusion equation have been
frequently used to model ecological system. The formalism they provide is rich enough to
include all reasonable forms of intra- and interspecific interactions, also making possible to
account for the effects of dispersal. A good general reference is the book by (Okubo, 1980).
Reaction-diffusion systems have received much attention particularly when two or more
equations are coupled through nonlinear terms to model predator-prey and competitive
interactions between species [7]. The diffusion is almost invariably always to be Fickian.
This has been criticized by a number of authors, notably by Cohen and Murray [1] in their
work ” A generalized diffusion model for growth and dispersal in a population ”. They
beloved that, with complexity of ecological system it seems too restrictive to describe
spatial effects (other than convection) with the simply Fickian. They have shown that an
approach based on a Landau-Ginzburg free energy model is more general and contains the
Fickian law model as a special case.

We see now another approach: a modelling procedure which has found wide application in
such situation is the use of partial differential equations which describe the changes with

respect to both space and time of population density.

Ou
% _ DA + flayut), (41)

where u is the population density depending on space z, time ¢, and D the diffusion
coefficient, while f(z,u,t) represents the reaction terms. The underlying assumption
made by the authors which used this model is that dispersal is due to random motion of
individuals. There is, however, ample evidence that for some species migration to avoid
crowding, rather than random motion is primarily cause of dispersal [20,23].

Gurney and MacCAMY (1977) adopt a continuum viewpoint and use standard techniques
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of continuum mechanics to deduce and simplify the basic equations.

Gurney and Nisbet (1975), based the analysis on probabilistic consideration They showed
that the population is growing with a local growth rate G(z) which in their case did
not depend on the population density and disperse with a local population current density
J(z,t). In the general case G(z) is a function depending on the density wu, the space
z and time t. Then they proposed that the population density u(z,t) satisfy the

equation

Ou
ot

where J(z,t) is the local density flux. Such flux can be induced by some forces which

= G(z)u — V.J(z,1), (4.2)

can be decomposed into random and non-random components.

Random forces are related to the random motion of the individuals themselves and can be
included in the diffusion process. In many cases they are enclosed in the diffusivity terms.
The transport behaviour of the population as a whole will then be considered as the simple

linear diffusion normally observed in physical systems, and can be expressed as
J = —DVu, Fick law. (4.3)

This model is obtained from the assumption of random motion

The non-random forces are not directly related to diffusion, but it brings about a regular
motion of individuals and acts to change the spatial distribution of population. In some
cases it counteracts diffusion and causes a concentration (aggregation) of population in
specific places, and in other cases it augments diffusion (dispersal). (Gurney and Nisbet,
1975) proposed two models of non-random forces:

(a) the biased random motion model
J = —dVu — puVu, (4.4)

(b) the directed motion model
| J = —AuVu, (4.5)

where d, p and A are positive constants. The model (a) and (b) respectively were

obtained from the microscopic assumption that individuals move down the gradient of the
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population density and that movement of individuals is largely random but with some
bias in the direction down the gradient of the population density (see Gurney and Nisbet,
1975, 1976, and Namba, 1980 for details). Model (b) and (a) may also be considered as
some kind of the diffusion model with coefficients dependent on population density. These

models are called density-dependent dispersal models.

Namba (1989), basing his idea on Shigesada and Teramoto’s model, investigated the
combined effect of density-dependent dispersal and spatial variable growth on distributions
of competing populations. However, he did not consider the usual competitive dynamics,
which are expressed through decrease of growth rate in the presence of competing popu-
Jations. It suggested that ” extrinsic population control by Malthusian killing agencies is
partly an illusion borne of man’s obsession with mortality” (Taylor and Taylor) [31]. Thus,
it may be more rational to expect migration before population densities rise so high as to
cause severe competition, unless migration brings a great risk. For this reason Namba ig-
nored density dependence in growth rates, to focus his attention on density dependence in
dispersal rates, or competition for space. In this case the growth rate of both populations
depend on the spatial position reflecting the environmental heterogeneity. This may be
interpreted as an approximation when the population densities are far below the carrying
capacities of the environment because of movements to avoid crowding. Namba also ne-
glected the random diffusion in his model and considered only purely density-dependent
terms. The environment is assumed to have a favorable habitat for growth of population
surrounded by largely hostile universe. This assumption may be ecologically reasonable:
the border of a habitat must be hostile for any population since, or else the population
can further extend its range. From this assumption it is possible to consider a kind of
non-linear-interaction diffusion model that is similar to the models of Shigesada and al,

Gurney and Nisbet.

] 9?
—(;—Ltl- = W[(ul + a1u2)u1] + G1(z)uq (4.6a)
0 H?
%tl = 5.7 [(uz + agul)uz] + Ga(z)us (4.6b).
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If a; =0 or u;(t,z) =0, then each of the two equations in system (4.6) reduces to

Bui (92

—é_t_ = di-é-;—z-(ui)z + Gi(z)ui. (4.7)

Using a quadratic form for G(z) Namba arrived to the following model

Ouq 0? T 2
—————at = ———-—61:2 [('u,l -+ al'u,z)‘ul] “+ 7 1- "‘"ml U1 (4.8(1)
(9'&2 82 T :
B = Ba? [(uz + a2u1)uz] +r2|l— . Uz, (4.8b)

With this model, he showed that the coexistence of two species is possible in the presence
of competition for the space if there exist the coexistence of the stationary solutions. That
is, a solution in which uy(z,t) and wuz(=,?) are positive for some z. He formulated a
sufficient condition for coexistence of positive stationary solutions of his model by assuming

that,
Gz(‘C) = ﬁG1(:B), (49)

that is, Gi(z) and Ga(x) are proportional to each other. This means ecologically that
the favorable habitats for two populations coincide and that the hostile regions are also the
same for both species. Namba made for convenience, an additional assumption to obtain
a positive stationary solution in some cases. First, he considered a positive stationary

solution (@1(z), #z(z)), which satisfies

is(=) = 7iia (2); (4.10)

that is, the solution () itself is proportional to @1(z). Then the stationary problem

corresponding to the system (4.6) can be written, making use only Gi(z) and di(z);

d* .
0= d1(1 + a17)—6—;§'(a1)2 -+ Gl(m)ul (411(1)

0* .
0= dz"y(’}’ -+ 02)5;—2—('111)2 + /8")/@1(517)11,1. (411())

From the previous considerations, we know that each equation of the system (4.11) has

a solution with free boundaries. However, these two solutions must coincide. Thus a
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compatibility condition can be obtained as a condition on the ratio of coefficients of the

system (4.11);
dnlytoz) By (4.12)

d1(1+a17) 1 )

The author determined ~ from the above condition;

dlﬁ — dyoy

= 4.13
7 dy — dioa 3 ( )
In order to have u; and u; non-negative, 7y must be positive. Then, they obtained a

sufficient condition for the existence of a positive stationary solution of their system (4.6).

Theorem 1.  Suppose that Gi(z) and Gz(z) are chosen so that the reduced
equation (4.7) has a positive stationary solution with free boundaries. Further assume
that Gy(z) and Ga(z) satisfy the relation (4.9). Then the system (4.6) has a positive

stationary solution with free boundaries,

(1) if ajay >1 and Z'&-l‘ < ﬂ < :i‘;az (4140,)
or
d dy 1
(2) if ajaz <1 and —az <fB< —-2-—--, (4.14b)
d1 d1 (84}

if G1(z) and Gy(z) specifically satisfy the specific form in (4.8), then S equals 2 . How-
ever, note that the sufficient conditions (4.14) for existence of a positive stationary solution
do not depend on the specific form of function Gi(z) and Gz(z) so long as the reduced
equation (4.7) has a positive stationary solution. Hitherto, it is found that when either of
condition (4.14) is satisfied, system (4.6) has three solutions (uj(z), 0), (0, u3(z)) and
(1 (), iis(x)) see (Fig.4.1). However the stability of these solution is not yet known.
Moreover, the author had not determined whether a positive solution may exist or not
when conditions (4.14) are not satisfied. Even if conditions (4.14) are satisfied, they have
not determined whether or not the stationary solutions is uniquely determined. In other
words, it is not certain whether there exists another positive stationary solution of system

(4.6) in which u;(z) and ua(x) are not proportional.

However, it is certain that there alway exist two stationary solutions (u*(m), 0) and

(0, uj(z)). If B becomeslarge enough to satisfy either of conditions (4.14) then a positive
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stationary solution (di(z), @2(z)) appears. If B increases further to violated the upper
condition, then the solution disappears (see Fig.4.2). If the positive stationary solution is
stable and a solution with positive initial data approaches it, then two populations can
coexist permanently. However, if it is unstable and a solution approaches either of two
solutions (uj(z), 0) and (0, u3(z)), one population must go to extinction. Namba also
showed numerically that question of extinction can arise when the initial data of either
of population is too small compared with the other one. The population, yvhich has a
large initial data forces the other population to extinction, see for example Fig.4.3(£) and
(b), which is the cases with r,(= r18 sufficiently large to satisfy the first condition of
(4.14). In Fig.4.3(b), the initially superior population u; survives and extincts. It
is not true that any solution with non-negative initial value data approaches the positive
solution. Depending also on their spatial position in the favorable region of growth, the
species can go to extinction (stationary solution) or to a positive stationary solution. If
the initial date is confined to a border region, it may vanish because of the finite speed of
propagation. This means ecologically that a population may extinct before it can reach a
favorable habitat if the initial distribution ranges within a severely harsh region. Further-
more, we can expect that there exists no stable positive stationary solution. Thus, when
two populations are competing for space through repulsive forces to eﬁforce migration, one
of them may be extinct because of harshness of the border environment, although it never

goes to extinction in the absence of the rival species.

dy=1.00  ay=0.25 r1=1.00  x;=1.00
d2=1.00  ay=2.00 r2=3.00  x5=1.00

N | “
T~

Fig.4.1 example of stationary solutions of system (4.8).(a) ('u.*(a:), 0), (b) the positive stationary

solution (ﬂl(m), '27,2(:3)); (c) (0, ug(:c)) Note that they have same boundaries T = ﬂ::l:t
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Fig.4.2 The relation between the value of ﬂ and the number of stationary solution. In case (B),

there exist three stationary solutions including a positive one since ﬂ satisfles conditions (4.14)

From the practical point of view, the question of whether all the competing species in
a given space can persist or coexist together for all the time is one of the most important
problems. This question was aborded by Hutson and Vickers (1982), and they formulated

the following criterion of permanent coexistence of different populations (see also Levin,

(a) The criterion should be global. That is, it should be independent of the initial

values of the populations (so long as these are all nonzero).

(b) The existence of a stable limit cycle should not be ruled out. Cyclic behavior is
completely consistent with the persistence of species so long the cycle lies away from the
. boundary. Indeed, even such unpleasant dynamics as associated with a "strange attractor”

should be allowed if the attractor is at nonzero distance from the boundary.



(c) The population vector should not be near the boundary for more than a finite
time. For if it is, over a large time interval the probability of extinction of species (due
say to small random fluctuations in the environment) is large, and the system cannot be
regarded as modeling persistence of species in any realistic sense.

As we can see, Namba’s sufficient conditions (4.14) satisfy all these criterions. Therefore,
Namba’s model is useful for modeling the dynamics of permanent coexistent populations
in a bounded space. However, the omissing of an explicit dependence of demographic

parameters (birth or death rates) on environment fluctuations in his model is unrealist.

41=1.80 o=, 1=
32=1.00 =200 Z=1.00
Jt=0.0001

_J+=0.0%

Fig.4.3a-b. Example of numerical solution of system (4.8), in case of Qi > 1. However, in a and

b, nothing other than the initial data differs. The first conditions (4.14) is satisfled in a and b
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Up to now, we were concerned with the model in which the population grow and
disperse in a limited heterogeneous space, under an unvarying environment. But real envi-
ronmental is uncertain and stochastic; 1t can be periodical for certain species and stochastic
for others. As we mentioned in the introduction of this work, all the populations, natural
or artificial, are affected by the external environment perturbations. The importance of
this effect in natural ecosystem was appreciated by Nicholson, who asserted that any pe-
riodic change of climate tends to impose its period upon oscillations of internal origin or
to cause such oscillations to have a harmonic relation to periodic climatic changes (Nisbet

and Gurney, 1976).
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5. THE EFFECTS OF UNPREDICTABLE STOCHASTIC ENVIRONMENTS

The magnitudes of real populations of plants and animals are rarely governed by sim-
ple non-linear equation that could crisp illustrations of chaotic behaviour (May, 1989).
Rather such populations are typically affected by the interaction with many others and by
unpredictable environmental fluctuations. Some years ago, one of the major theoretical
and empirical challenges in ecology was elucidating the role of various kinds of hetero-
geneity, such as environmental fluctuations in the dynamics of the populations and the
organisation of communities. There is substantial evidence that stochastic environmental
fluctuations have a strong role in population and community processes (May, 1974) . Birth
rate, carrying capacities, competition coefficients and other parameters which characterize
natural biological systems all, to a greater or lesser degree, exhibit random fluctuations.
Consequently equilibrium is an average situation around which the system fluctuates. In
the early 1958s Elton had observed that the "chief cause of fluctuations in animal numbers
is the instability of the environment. The climate in most countries is always varying
_”. There exist some trenchant affirmations of the view that such environment must be
stochastic not deterministic.
For deterministic environments, May states that, we seek the constant equilibrium popula-
tion U}, and then study their stability, which follows from the dynamics of the interactions
between and within species. In particular, for relatively small amplitude disturbances, the
interactions are summarized and the stability set by the community matrix of interacting

species. -

Once environmental stochasticity is admitted, so that some of the parameters are
fluctuating randomly about their mean values, we obviously can no longer speak of the
population U(t) at time t, but only of its probability distribution. Such a distribution
function, f(u,t), gives the probability to observe u = 0,1,2,---,N, animals at time
t. More generally, for community with m species, there will be a multivariate probability
distribution function, f(w,uz,+,um;t). By taking the usual statistical moments of this

distribution, we get the mean numbers of animals at time t; these may, or may not be equal
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to the deterministic populations Uj(t) which is obtained from the deterministic equation
in which all the environmental parameters are fixed at their mean values. Similarly one

may obtain the variances of fluctuating populations, and so on.

Furthermore, the analogue of the equilibrium population, U/ (t), which were the time-
independent solutions of the deterministic population equations, is the time-independent
probability distribution function, f*(u). This equilibrium probability distribution is to

the stochastic environment as the stable equilibrium point is to the deterministic one.

In the deterministic case, May studied the response to a specific disturbance from the
equilibrium configuration; in the stochastic environment, an incessant sequence of such
perturbations is built into the fabric of the model. The relation between deterministic and
stochastic case is illustrated for the two interacting populations, U; and U, infig 5.1.
Fig 5.1(a) shows a stable equilibrium point, corresponding to constant population U{ and
U}. If disturbed from this point, the dynamics of the population interactions brings the
system back: for small disturbances, these dynamics are described by the community ma-
trix, and the characteristic time to return to equilibrium is measured by the (negative)
real parts of the matrix’s eigenvalues ). In the stochastic environment, Fig. 5.1(b), there
is no longer an equilibrium point, but rather a probabilistic ”smoke cloud,” described by
the equilibrium probability distribution. There is now a continuous spectrum of distur-
bances, generated by the environmental stochasticity, and the system is in tension between
two countervailing tendencies. On the one hand, the random environmental fluctuations
(measured by a characteristic variance o? ) act to spread the cloud, to make the prob-
ability distribution more diffuse, while on the other hand the dynamics of the stabilizing
population interactions tend to restore the population to their mean values, to compact
the cloud. For a relatively compact probability cloud, the interaction dynamics are again
measured by the eigenvalues of the same community matrix as for the deterministic case,

the matrix being evaluated using the mean values of the environmental parameters.

We see immediately that, if the stabilizing effects of the interactions are ”strong”

compared to the diffusive effects of random environmental fluctuations, the probability
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cloud will be compact, and may for many practical purposes be indistinguishable from the
deterministic equilibrium point. In such cases, the deterministic model will be entirely
relevant. Conversely, if the stability provided by the population interactions is ”weak”
compared with the environmental variance, then (even though the deterministic model-;n\ay
be eminently stable) the probability cloud is highly dispersed with a significant likelihood
that one or both species of population may vanish. In such case, the deterministic model

clearly is irrelevant.

For models with deterministic environmental parameters, we have a stable neighbor-
hood of the equilibrium point if and only if all eigenvalues of the community matrix lie in
the left-hand half of the complex plane: (Fig.5.2(a)). for the corresponding model with
stochastic parameters, this condition 1s necessary, but insufficient, for the existence of a
relatively compact equilibrium probability cloud for the population. It is required, in ad-
dition, that the stability provide by the interactions, which is measured by the real part of
the community matrix eigenvalues, be sufficiently great to counteract the diffusive effects
of the random fluctuations. Thus the eigenvalues must all lie to the left of the imaginary

axes by an amount measured roughly by the degree of environment variance: (Fig. 5.2(b)).

| {a) (b)
|
o B L
A
) r

FiGUre 3.1, Schematic representation of the character oran equiiib-
rium two-species community in (1) a deterministic und by a sto-
chastic environment. {n ta) we have a stable equilibrium point.
carresponding to populatons [7{ and [77: the communiv dvnam-
ics. as measured by the eigenvalues A of the community matnx.
return the svstem to its equilibrium point if it is perwurbed. For
the corresponding stochastic environment of (hi. the equilibrium
community is described by some time-independent probability
distribution: this probability cloud is in tension between the sta-
hilizing influences of the interaction dynamics tagain measured by
the eigenvalues A), which act o compact the cloud. and the de-
stabilizing environmental Huctuations {measured bv -1, which act
10 disperse the cloud.
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Ficure 5.2. The eigenvalues A of the community matrix 4 may be
represented as points (x, y) in the complex plane. In the deter-
mirtistic case, (a). the criterion for an equilibrium community 10 be
stable with respect to small disturbances is that all such eigen-
values have negative real parts, i.e. lie in the hatched area of (a).
For a stochastic environment, (b), with a variance characterized
by o< it is necessary for the eigenvalues to lie far enough into the
left-half plane for their stabilization to countervail against the
diffusive effects of the random fluctuations. i.e. they need to lie n
the hatwched area of (b).

As we have seen, also in the simplest space independent model of population dynamics,
if the environment is randomly fluctuating, so that one or more of the parameters in this
general equation are stochastic variable, we need to reformulate the mathematics in the
terms of the probability distribution function f(u,?). In interesting and general case
when the variability is ” white noise”, the partial differential equation for the probability

distribution is called, depending on the author’s background, the Fokker-Planck, or the

Kolmogorov, or simply the diffusion equation:

Ot _ D (ttufia, )45 o (V)01 (5.1)
Here M(u) is defined as the mean value, and V(u) as the variance, of the population
* density F'(u)
M(u) =< F(u) >
V(u) =< (F(u) = M)* >
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These average are taken over all the stochastic parameters in the function F.

With some populations the random fluctuations are small, and for many purposes it is suf-
ficient to construct a model, which is called deterministic. The most important property
of deterministic models is that, if we know the history of the population up to the present
time, we can predict its exact value at any future time, while a stochastic model is only
able to predict the probability that at a given time, the population will be of a particular
size.

Wherever an assumption of randomness is made in a stochastic model, it implies neglect
(often reflecting ignorance), of some of details of the systems being modelled. However,
at present it is useful to not that the transition to a probabilistic approach is valid when
considering large numbers of statistically independent factors. One such situation arises if
the external factors which cause population fluctuations are uncorrelated in time; we then
use a mathematical idealisation known as "white noise” which enormously simplifies the
analysis.

In this work we will not deal with the stochasticity, or randomly fluctuating environment
but we will focus our attention on the periodically perturbation of the environmental ex-
ternal factors. Recently (May, 1987) states that a central task for population biologists
is to disentangle, from the superimposed fluctuations caused by environmental noise and
other chance events, the underlying mechanisms that regulate natural population so that
no one species of plant or animal increases without bound. Such studies lead us to consider
simple equations that might describe the dynamics of natural populations if the environ-
mental noise and the heterogeneity could be stripped away. A clear understanding of the
dynamics of these simple deterministic, but nonlinear, models then serves as a point of
departure for evaluating the effects of various kind of complications associated with envi-
ronmental unpredictability and heterogeneity. Interactions with other species mean that
populations are usually governed by higher-order systems of equations. These complica-
tions are, of course compounded by environmental noise and spatial heterogeneity. Thus,
a,ltho‘ugh broad patterns may be understandable (four-year cycles in many populations of
small mammals in extremely seasonal environments may be an example), most work on

the dynamics of natural populations is concerned just with trying to tease out density-
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dependent signals from a confusing background of density-independent noise, rather than

with nonlinear details of the density-dependent signal as such.

Ultimately, environment noise does not act on populations as such, but on their con-
stituent individuals. Thus we really need to derive deterministic models for the dynamics of
populations from assumptions about the behaviour of individuals, so that the parameters
in the population model derive from the biology of individuals. The effect of environmental
variations can then be introduced in the proper way, through their effects on individuals

(May, 1987).
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6. DESCRIPTION OF THE NEW MODEL

Consider a model which take into account the effects of periodic external factors and
let assume that dispersal is more governed by intra and interspecific pressures between
species, rather by random motion, i.e density-dependent dispersal of species which move
to avoid crowding. Therefore, we neglect random motion . Then, we consider the Namba’s

model, as exposed in the (chapter 4)

0 52

*52%- =d; 5;:5[&1 + aruz)ur] + Gi(z)uy (6.1a)
0 o2

“g;?z = dz:?—a;l-[uz + oaug Jup] + Ga(z)us, (6.18)

and substitute G;(z) functions by Gi(z,t) which is time dependent , thus we can write

the following system of equations:

0 H?

—-at-itl— = dl "a—m—f[(u:[ + auz)ul] + Gl(myt)ul (6'20')
0 5?

—g;— = d2 5;5[(&2 -+ aul)uz] + Gz(z,t)'U'?' (62b)

Instead of G;(z,t), (Gurney and Nisbet, 1975) used a special form Gi(z) which do
not depend explicitly on timé t and made the following assumption. The environment
which is a favorable habitat for the growth of the population is surrounded by a hostile
universe. Thus, G(z) > 0 forz € © and G(z) < 0 for the largely hostile universe.

They considered the equations in an infinite region with the boundary condition

u(z,t)— 0, as |z | — oo.

Now, we restrict ourselves to the case where the domain is a one dimensional interval
(=L,L), and L is an adjustable parameter that determines the size of a domain. G(z), is
positive only in this bounded domain, otherwise G(z) is negative. For simplicity, (Gurney

and Nisbet, 1975) made a further assumption that G(z) is an event function. The above
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properties were discussed originally by (Namba, 1975), particularly, when the growth rates

G;(z) of the i-th species takes a specific quadratic form,

Gi(z) =i [1 - (5-)2 ] (6.3)

We will make further assumption about G(z), which in this model is considered as a
simple exponential growth rate (Malthusian parameter birth minus death rates). In the
real word birth and death rates clearly depend on external environment parameters such
as temperature and humidity which vary with time t. Therefore, G(z) in this case will

depend explicitly on time through the external parameter #(1).

We assume that, the heterogeneous space is affected by external factors (seasonal cli-
matic variations). In macroscopic point of view, it is well known that the climate changes
periodically (diurnal, annual and seasonal cycles are the good examples of periodic vari-
ations). To incorporate environmental variability into the models, we assume that some
time-dependent external factors ¢(t) influences the growth rate of the population. This
means that, in a varying environment the population growth rate fluctuates in response to
the driving term  ¢(2). The effect of this is to introduce driven into the partial differential
equations that describe the spatio-temporal development of the population densities distri-
butions. Nevertheless, we may still hope to make some progress in predicting the spatio-
temporal pattern of environmentally driven fluctuation in the cases where demographic
fluctuations are negligible. Historically, most strategic studies of the effects of environ-
mentally variability on population dynamics have proceeded by a heuristic approach in
which one or more of the parameters in a determin_istic equation are permitted to wobble
and the resulting population fluctuations studied {26]. This approach is useful (and indeed
is the source of most existing insights on the consequences of variable environments) but
it has severe limitations which become most apparent when question of extinction arises.
Because of these difficulties, also (Nisbet and Gurney, 1982) approach the question of en-
vironmentally driven fluctuation rather cautiously through successive modifications of the
basic formalism of birth and death processes. Following their approach, but neglecting
environmental stochasticity, we consider a general model of two interacting species dis-

tributed over a one dimensional space with densities uy(z,1), uz(z,t) respectively. Both
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species are assumed to have population growth rate G and G which depend only on
space z, time t, a single environment parameter $(t), and disperse because of intra
and interspecific pressures. Thus we can express the growth rate as a function of space

z and environmental external factors which itself depends on time % :

e (r (), :c) .

We assume a sinusoidal variation of the growth rate with respect to the periodically vari-
ability of climate. Therefore,

Gi(e, ) = ro[l + 6(2)] [1 - (;)2 ] (6.4)

lad )

where ¢(t) = bcoswt, is the external environmental factors, b the amplitude of periodical
oscillations, and w is the angular frequency. Then,

Gi(z,t) = ro(1 + bcoswt)[l - (f‘i>2] (6.5)

T;

This means that the growth rate Gy(z,t) is affected by the periodic changes of climate.
We recall that, the population u; and wu; have the same favorable region of growth.
Therefore the amplitude b, the angular frequency w and the time ¢ over which the growth
of population is observed will be the same for each population. We assume also that the
periodic effects of the environment affect the growth rate of different species differently.
In the natural environment there exist many species who share the same region and can
grow in it. Usually, they coexist and their growth rates can be affected differently by the
variation of climate or weather. Therefore, we can ‘assume in our model that, the climatic
variations have a strong effect on one of the species only. The growth rate of the second

species is assumed unaffected by the climatic changes. Then, according to (6.5) and the

above assumptions the system (6.2) becomes:

0 H? i T 2

——(;—?- =d; B—;[(ul + ajug)ui] + 71(1 + beoswt) ‘1 - (f}— ) }ul (6.6a)
5, 0? AN

‘gf = d, ‘8—33—2[(11»2 + ogug uz] + 72 [1 - <§; ) | U2. (6.6b)
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Finally we complete our model by assuming some positive initial distribution, that is

ui(z,0) >0 for —L<z<L,

P

and we define the initial population as a function of space; ui(z,0) = ki(z), thus,

—z+w;, i pi<z<s; (6.7)
0, otherwise,

T + wi, if —s;<z<ps
ki(z) = {
where w;, p; are constant and s; < L, (see Fig. 6.1). Note that this is only a convenient
assumption for the initial population which is used only in the numerical analysis of model,

and there are no reasons to assume (6.7)

ki(z)

uy /\

-L —8; pi Si L

Fig.6.1 Example of initial population density k,(:c)
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7. ANALYSIS OF THE NEW MODEL BEHAVIOR

Let wuy(z,t) and wua(z,t) be defined on the domain [-L,L] x [0,7] in which
there exist a non-negative solution of the system (6.6). To complete the formulation of
the model, we shall assume that, the densities u; and wu, satisfy the following initial

conditions:
u1(z,0) = ki(z) and ua(z,0) = k2(z), (6.1)
with
|z [< L, (7.2)
ie ki(z) and ki(z) are bounded continuous non negative functions, representing the

initial population densities, which we will use for the numerical calculations. For simplicity,

we consider the following boundary conditions:

ul(L,T) = 0, ”U.z(L,T) =0 (73(1,)
u (=L, T) =0, wus(—L,T)=0 (7.3b)
Ouq Ous .

—8';—0——-—5:;— at L+ L. (14)

Using similar condition and assumption as in Namba’s model, we arrive to the following

inequalities for the system (6.6):

Gi(z,t) >0, with |z |<z;.

Thus
2
r1(1 + beoswt) [1 - (E—> ]> 0, (7.7)
L1
and -

2\ 2

T‘z{l—(—) :‘>O, (78)
T3

rp>0, |b|<l, 72>0 (7.9)



For b =0, the model (6.6) reduces to

811.1 (92 o4 2 710
‘é‘t—' = dl (—9;5[(111 + C!‘lL2)’lL1] +7r 1- ;’; (15} ( . a)
8 8? 2

—au?z- = dzé—m—z[(llq + aul)uz] + 7y {1 -— <g“2‘) ]’U/z, (7.10b)

which is the Namba’s model. Because of mathematical difficulties and according to the
sufficient condition (4.14), the system (7.10) was solved numerically. The numerical anal-
ysis leads to two different cases depending whether ajaz > 1 or not. That is, when
interspecific repulsive effects are stronger than intraspecific ones. In the inverse case, one

has ajas < 1.

Using the same assumptions and conditions as Namba we will analyse numerically the
model (6.6). We focus our attention to the case in which all the species survive and
coexist together in a limited and favorable region, i.e., the positive stationary solution.
We repeated the work of Namba (see Fig.7.1 and Fig.7.3). These are the cases in which
the conditions oz < 1 and aja; > 1 respectively are satisfied. To be sure for
the nonextinction of the populations in the given region, we will assume that the case in
which the populatibn is confined near the border will be neglected. We choose the positive
stationary solution because we are more interested for the case of persistence of the both
populations. The Fig.7.1 shows the spatio-temporal distribution of wu; and wup , with
different initial data, and in the absence of external environment factors. Fig.7.2, shows the
effects of external factors on the demographic parameters of population species u; which
consequently exhibits periodically fluctuations in time. This confirms the assumption made
by Nicolson that, "any periodic change of climate tends to impose its period ---”. While
u, is affected indirectly through a nonlinear interactions between species, and therefore
exhibits also periodically fluctuations. This provides a good tool to understand that the
intra and interspecific forces play a central role in the distribution of population species

both in space and in time.

The cases for which ajas > 1 is satisfied are showed in Fig.7.3. In these cases the

initial data for u; and wu, are equal. The Fig.7.3 shows the coexistence of the species
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u; and u, in the absence of external fluctuations. In Fig.7.4, u; is strongly affected by
external factors, while u; remains unaffected. However, under these conditions the situ-
ation seems to be similar to the previous in Fig.7.2. Therefore a number of general points
can be drawn from an examination of the numerical analysis of our model (5.6), which is the
interconnection between spatio-temporal distribution of the population species, dispersing

to avoid crowding and their response to periodically variations of climate:

(a) wui increases attain a maximum value, which could be his maximum number in
the absence of the environment fluctuations, while u, decreases to a certain value in
response to these fluctuations. It is clear from the Fig.7.2 and Fig.7.4 that the oscillations
of u; and wu, are not synchronized and that wus practically is affected because of

nonlinear interactions with u;.

(b) If the angular frequency w is to hight and tends to infinity, then the populations
cannot change fast enough to respond to the rapid changes in the environment and the
population oscillations are much more smaller and some time are not observed for the

hight living organisms.

(c) We assume that b satisfies the condition (7.9). For b near 1 and if the angular
frequency w is small we can expect some period in which there are no population at all
in the considered space. This is the case of strong oscillations which deal on a long period.
In the real ecosystem this phenomenon arises very often, that is, in the natural world,
there exist some period when a given population species disappear almost completely in a
given space because of the hostility of climate or weather, and appear when the period is

favorable for their life.
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ay =024 ry=0.8 ywl dy=]
a; = 1.7 ry= 2.5 3 =] d3 =1
=00 4 =01 un = 0.09
Pr=0.0 43=02 wy = 0.5

=00 w=0.8 t = 40

Fig.7.1 The permanent coexistence of two species U3 and and U3,

with different initial data kl(:c) < kg(il!) This is the case in which the

ajag < 1 is satisfled

condition

ay = 0.24 ry= 0.8 =1 dy=1
ay = 1.7 ry = 2.5 zy=1 dy =1
=00 a4 =01 wy = 0.09
p3 =00 33 =02 wy = 0.5

=07 w=06 t =40

Fig.7.2 External factor effects of periodically varying environment on the coexistent species.
Note that g is affected indirectly through the interspecific interferences with

a10g < 1, and the initial data kl(m) < k‘g(w)
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Fig.7.3 Coexistence of the species Uj and U3 in the case where

10y > 1 with the same initial data kl(.‘C) = kg('v)

Fig.7.4 External factors effects of periodically varying environment

for the case (xjQy > 1 with the same initial data kl(:ll) = kz(w)
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8. DISCUSSION

We have considered the effects of periodic environmental constraints on the spatio-
temporal distribution of population species in a favorable habitat surrounded by largely
hostile region. The population species are assumed to be governed by a nonlinear interac-
tions between species, that force them to disperse in a considered space, to avoid crowding.
It is also assumed that population species persist together in the same favorable region. In
the real world, all population, natural or artificial, are affected to some extent by external
perturbations [10] and, birth and death rates clearly depend on external parameters such
as temperature and humidity. Therefore the effects of environmental variation can be in-
troduced in the proper way, through the demographic parameters.

From thesé assumptions, periodic environmental variations were introduced in the nonlin-
ear interaction-diffusion model. Furthermore, it was assumed that the periodic environ-
mental variations affected only one of population species w3 and the other u, remained
unaffected.

In the previous works, see for example Shigesada and al. 1978, Namba and Mimura 1930,
Gurney and Nisbet 1975, it has been emphasized that two competing populations can
coexist by virtue of dispersal and environment heterogeneity, even if local coexistence is
impossible when no migration occurs. However, (Namba, 1989) has shown that density-
dependent dispersal in a heterogeneous environment some times results in extinction of one
of two populations, although no one of them become extinct in the absence of the other
population. Therefore, mutual repulsive interactiops that exclude other individuals may
cause an inevitable damage if the effects are too strong, and migration in a heterogeneous
environment is not always a stabilizing agent

Nevertheless, we may still hope to make some progress in predicting the spatio-temporal
distribution of population species and their coexistence in a fluctuating environment for
the cases where demographic fluctuations are negligible. Thus, we have shown that the
introduction of this kind of periodic environmental variation in the demographic parame-
ter provide the distribution of population species in the time and confirm the assumption

made by Nicolson about the influence of the period of climate changes on the ecosystem.
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These effects also provide a good tool to assume that intra and interspecific forces between
species play a central role in the distribution of population not only in space, but also in
time. These results are not surprising in the natural ecosystem where, in some regions, the
life and the abundance of some population species appear to be periodically, and coincide
with climatic variations. Good weather can stimulate growth in body size and reproduc-
tion, and bad weather can cause death.

Tt seems to me that for further studies, a more general model can be constructed if one
assumes a very large space which is divided into two or more regions so that to allow migra-
tion of species from one region to another when the period is hostile. Thus the population

flux at the border of the regions should not vanish, rather can vary on time.
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