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Preface

Many-body systems with long-range power-law decaying potentials among their mi-
croscopic components are known to fall outside the traditional framework of com-
plex systems. While some peculiarities in their behavior had emerged since the
very early days of statistical mechanics, the possibility of engineering such systems
in experimental setups based on molecular and optical systems has stimulated an im-
pressive theoretical activity in the last decades, unveiling a plethora of new physical
phenomena. In particular, depending on the exact form of the couplings, long-range-
interacting systems may avoid thermalization, remaining trapped in long-lived metastable
phases, or exhibit new equilibrium phases at thermal equilibrium. The study of such
novel phases, emerging both in the equilibrium behavior and in the dynamics, has
been the core of my Ph.D. work in the last three years.

The aim of the present thesis is twofold. First, to present my results, which have
been partially published, more concisely, in peer review journals, embedding my
work in the conceptual framework of long-range interacting systems. Second, to
(hopefully) provide the reader with a path to explore such a rich and stunning land-
scape, well knowing that other choices of presentations are equally valid.

Chapter 1 is intended to summarize some known features of long-range interact-
ing systems. Sec. 1.1 introduces the main distinction between weak and strong long-
range interaction and gives a brief overview of the experimental techniques used to
engineer long-range systems. Sec. 1.2 briefly revisits the critical properties of weak
long-range models, while 1.3 is devoted to the dynamics of closed quantum strong
long-range systems and their spectral proprieties.

The original results of this thesis are discussed in Chapters 2 to 5. Part I (Chap-
ters 2, 3) is devoted to the emergence of new equilibrium phases in systems with
O(2) symmetry, which may exhibit a non-trivial interplay between long-range cou-
plings and topological excitations. As we are mainly interested in finite-temperature
behavior, we will make use almost exclusively of classical spin models. Part II (Chaps.
4, 5) is instead devoted to the study of the dynamical phases emerging in strong long-
range quantum systems.

In particular, Chapter 2 explores the fate of the Berezinskii-Kosterlitz-Thouless
(BKT) universality class in presence of non-local interactions are added, which had
been so-far a long-standing problem, using as a paradigmatic example the general-
ization to long-range couplings of the two-dimensional XY model (introduced in
Sec. 2.1). The study of the crossover between long-range and short-range regimes is
addressed using different tools, such as the low-temperature expansion (Sec 2.2) and
the so-called self-consistent-harmonic approximation (Sec. (2.3) ). The introduction
of a suitable field theory (Sec. 2.5), which describes the long-distance behavior of
the model leads to a set of perturbative renormalization-group (RG) equations de-
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scribing the infrared behavior of the model. The resulting phase-diagram (Sec. 2.6)
features the emergence of a new ordered phase which takes over the usual quasi-
long-range-ordered phase as the range of the interaction is increased. The interplay
between the two phases, as well as the non-trivial scaling of the order parameter with
the temperature, are both unprecedented. Finally, in Sec. 2.7, it is shown how our
results can be extended to describe theT = 0 behavior of the one-dimensional quan-
tum XXZ chain.

In Chapter 3 the fate of the long-range counterpart of the two-dimensional Vil-
lain model is discussed. For nearest-neighbors couplings, the model is known to
fall within the same universality class of the two-dimensional XY model. As moti-
vated in Sec. 3.2, for sufficiently non-local couplings such equivalence is expected
to break down, so that the understanding of the critical properties of the model be-
comes important in order to discuss the Berezinskii-Kosterlitz-Thouless universality
in presence of long-range interactions. The best way to extend the Villain model to
non-local couplings is discussed in Sec. 3.1. In Sec. 3.3 and Sec. 3.4 the vortex-gas
description of the model and the corresponding real-space renormalization-group
equations, respectively, are derived. Quite unexpectedly, the phase diagram derived
in Sec. 3.5 partially coincides with the one of the one-dimensional Ising model with
1/r2 interactions. Finally, in Sec. 3.6 a field-theoretical description of the model is
proposed.

Chapter 4 addresses dynamical phases emerging on mesoscopic timescales in the
strong long-range interacting systems, using as a prototypical example the quench
dynamics of the quantum O(n) model, introduced in Sec. 4.1. While similar phe-
nomena have been observed in other systems, in the limit n → ∞ it is possible
to interpret it in terms of parametric resonances of the spin-waves, as discussed in
Sec. 4.2 and Sec. 4.3. Finally, in Sec. 4.4 it is shown how such resonances affect the
production of entanglement.

Finally, Chapter (5) is devoted to periodically driven strong long-range inter-
acting systems, which are known to exhibit robust dynamical phases in which the
discrete time-translation symmetry induced by the driving is spontaneously broken
(the so-called Floquet time-crystalline phases, introduced in 5.1). In particular, the
physics of the recently-introduced higher-order time crystalline phases is investi-
gated: in Sec. 5.2 a new order parameter is introduced in the context of the paradig-
matic kicked Lipkin-Meshkov-Glieb model, which is able to unambiguously charac-
terize such a phase. In Sec. 5.3 the properties of the corresponding phase diagram
are investigated and, in Sec. 5.4, it is shown how, for high-frequency driving, these
can be captured analytically. Sec. 5.5 introduces a semiclassical approximation, valid
for large (but finite) sizes, and discusses the robustness of our picture against finite
size effects.
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1 | Long-range-interacting systems

In this chapter we will briefly review the main features of long-range interacting
systems, i.e. many-body systems whose microscopic components interact via slow-
decaying, power-law potentials. Such non-local interactions are known to be able to
alter both the equilibrium and the out-of-equilibrium behavior of classical and quan-
tum systems [1–3]. Long-range interacting systems do occur, e.g. in the context of
astrophysics [4], or can be engineered in experimental setups such as trapped ions [5,
6], Rydberg gases [7] and optical cavities [8, 9], showing promising features for the
development of quantum technologies.

The Chapter is structured as follows: in Sec. 1.1 we introduce the basic nomencla-
ture regarding the subject and examine the possibility of experimental realization of
quantum many-body systems. In the remaining part of the Chapter we will address
closely the two main topics which correspond to Part I and II, respectively, of the
present work, namely the equilibrium critical behavior in the non-mean field regime
in Sec. 1.2 and the dynamics of long-range quantum systems which avoid thermal-
ization 1.3.

1.1 | Weak and strong long-range regimes

We want now to introduce a first, important, classification of non-local interaction,
in order to distinguish between different regimes. We will use here the conventions
and the nomenclature of Ref. [1], although different conventions can be found in the
literature as well.

Let us consider then a d-dimensional physical system whose elementary compo-
nents interact through a power-law coupling of the form

J (r) = J
r𝛼

. (1.1)

If we now consider, for sake of simplicity, a uniform configuration as the typical one,
we have that the corresponding energy can be estimated as

E ∼
∫
ddr

∫
ddr′ |r − r′|−𝛼 ∼ N

∫ L

a
dr rd−𝛼−1 , (1.2)
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L being the linear size of the system,N ∼ Ld the number of microscopic components,
a the typical distances among the nearest ones.

We see now that a first, important, distinction arises depending whether 𝛼 > d or
𝛼 < d. In particular, if 𝛼 > d the above integral is infrared convergent and we have

E ∼ N , (1.3)

while, for 𝛼 < d,
E ∼ NLd−𝛼 = N2−𝛼/d . (1.4)

In the latter case, thus, we lose the additivity of the energy [2]. Physically speaking
this means that, as one two copies of the system are positioned next to each other,
the interface energy is no longer negligible, so that the energy does not scale linearly
with N .

This situation corresponds to the so-called strong long-range regime. Because of
the fact that the energy grows over-extensively, the energetic contribution is going to
dominate over the entropic one, resulting in a trivial thermodynamics. On the other
hand, let us notice that it is possible to recover the extensive nature of the energy by
performing an appropriate rescaling of the coupling constant J , namely

J → J
N1−𝛼/d , (1.5)

which is known as Kac scaling [2, 10]. Let us remark that, even if (after the scaling)
E ∼ N , the system is still non-additive.

Although the choice of a N dependent coupling may appear unphysical, it is
worth noticing that we always deal with finite systems, so the definition of the cou-
pling J is somewhat arbitrary. Kac’s prescription can be thus read as a way of tuning
the interaction strength in such a way that its contribution is of the same order as the
entropic one. On the other hand, one can understand the scaling by thinking that
the usual thermodynamic limit (N , L→∞, NL−d constant) is no longer meaningful
when we are dealing with non-additive systems, in which the importance of surface
effects is growing with the size of the system.

While it is clear that in the strong long-range regime long-range interactions
do actually influence the physics of the system, they may change the physics of the
system for 𝛼 > d as well (albeit less dramatically). It turns out that the long-range
nature of the couplings indeed affects the universal critical behavior of the system,
provided that

𝛼 < 𝛼∗ , (1.6)

where 𝛼∗ > d is a critical value of the exponent which, in general, depends on the
model considered [11, 12]. This is the so-called weak long-range regime. It is customary
in this case to parametrize the exponent through the quantity

𝜎 = 𝛼 − d , (1.7)
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with the weak-long range regime corresponding to 0 < 𝜎 < 𝜎∗ for some 𝜎∗.
Another fundamental difference between the strong-long range regime and the

weak-long range one arises when we look at the dynamical properties. Indeed, it
is known that, for 𝛼 < d, the timescale on which the system thermalizes diverge
with N [2, 13–15]. Systems interacting through gravitational [15] or (unscreened)
electromagnetic [14] forces, e.g., are known to remain trapped in non thermal quasi-
stationary states whose lifetime grows with the number of particles [2, 4]. We can un-
derstand intuitively why this happens by looking at the 𝛼 = 0 case, i.e. the so-called
fully-connected limit: here, in the limit N → ∞, we recover a mean-field dynamics,
in which the fluctuations are suppressed, so that the system is prevented from ther-
malizing. Let us notice how, in this case, the Kac prescription can be thought of as a
time rescaling: without it, the frequency of the short-time oscillations would diverge
withN . On the other hand, while the thermalization process in the weak-long-range
regime is known to be analogous to its short-range counterpart [16, 17], the non-local
nature of the interaction affects the propagation of information [18–20], dynamical
critical exponents [12] and defect scaling [21, 22].

In summarizing, we can distinguish three fundamental regimes

• For 𝛼 < d (𝜎 < 0) the strong-long range regime, in which the thermodynamic
quantities are no longer additive, and the Kac’s rescaling (1.5) is needed in or-
der to find a meaningful thermodynamic limit, with extensive thermodynamic
potentials. The timescale under which the system thermalizes diverges with
N .

• For d < 𝛼 < 𝛼∗ (0 < 𝜎 < 𝜎∗) the weak long-range regime in which long-
range couplings can still influence the critical behavior and the propagation of
excitations.

• For 𝛼 > 𝛼∗ (𝜎 > 𝜎∗) the interaction is still non-local; still, the universal
properties of the system are the same of the 𝜎 → ∞ limit, i.e. of the short-
range case.

This classification of course holds even in the case of generic J (r) which behaves as
Eq. (1.1) only asymptotically for large r [3]. On the other hand, this classification has
the advantage to provide a simple conceptual scheme and ease our discussion, but it
does not pretend to be comprehensive or rigorous. New phenomena may arise, e.g.,
if there is a competition between different short-range and long-range interactions,
or if the system spontaneously forms non-homogeneous patterns [23]. Similarly,
screening processes can take place, as in the case of the Coulomb interaction [24].

Finally let us notice that, also for arbitrarily large 𝜎 , the power law nature of the
coupling can have an effect on the physics of the system. Most notably, as shown
in Ref. [25], the two-point correlation functions do not decay as an exponential for
high temperatures but, rather, they decay with the same power law of the coupling.
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1.1.1 | Experimental realizations

Before going on with the analysis of long-range physics it is important to take a closer
look at the possibility of engineering such interactions in experimental setups, and
in particular in the quantum realm, on atomic, molecular and optical (AMO) sys-
tems [1]. As mentioned above, the advancement in the control and manipulation
techniques of AMO systems has resulted in rising interest in long-range systems. As
the focus of the present work is on the theoretical analysis, however, we will limit
ourselves to briefly introducing the main classes of AMO setups that are relevant to
long-range physics.

Trapped ions allows for the almost unique possibility of tuning the exponent of
the effective interaction within the range 𝛼 ∈ (0, 3), and thus to reach, in one-
dimensional arrays of ion, both the weak and the strong long-range regime [5, 6].
Such systems are formed by Coulomb-interacting ions, confined by an external, har-
monic potential. When laser-cooled, they arrange themselves as a Wigner crystal.
By exerting an optical force on the spin degrees of freedom through coherent radia-
tion, an effective spin-spin, phonon-mediated, interaction arises. The range of such
interaction can be modified by tuning the parameters of the setup.

Quantum gases in cavities can be used to engineer all-to-all interacting, fully-connected
models [8, 9], such as the Lipkin-Meshov-Glick model [26] examined in Sec. 1.3.3
or the Hamiltonian Mean Field model [27, 28]. Such systems are formed by neu-
tral Bose-Einstein condensates inside an optical cavity and illuminated by a trans-
verse standing-wave laser field, far-detuned from the atomic resonance so that the
condensate behaves as a dielectric medium. By tuning the frequency of the cavity
frequency, the atoms of the condensate effectively interact by scattering photons in
the cavity mode and back. As such photons are delocalized over the cavity mode,
this interaction is flat.

Finally, dipolar systems [7], and in particular Rydberg atoms, are an ideal frame-
work for the study of the emergence of modulated structures which break transla-
tional invariance [23].

1.2 | Critical behavior of weak long-range models

In the weak-long range regime, the presence of non-local interaction does not pre-
vent thermalization. At the same time, it influences the critical behavior of the model.
We will now discuss briefly the main features of the critical behavior in weak-long
range systems. Let us notice that, as long as we are interested in the finite tempera-
ture behavior, we may neglect the quantum nature of elementary components of the
system, and restrict ourselves to their classical counterpart.

As a prototypical example, we introduce the long-range version of the classical
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O(n) model. Let us consider thus a d-dimensional square lattice, with N lattice sites;
let us associate with each site j ∈ ℤd a n-component classical spin variable sj. such
that s2j = 1. The interaction among those variables is given by the

𝛽H =
1
2

∑︁
i≠j

J (r)
(
1 − si · sj

)
(1.8)

with r = i − j, r = |r|, and J (r) which decays asymptotically as

J (r) ∼ Jr−d−𝜎 . (1.9)

As we are interested in the weak long-range regime, we consider here 𝜎 > 0. As
the name of the model suggests, Hamiltonian (1.8) is invariant under a global O(n)
symmetry.

For n = 1 we recover the ℤ2-symmetric Ising model, for n = 2 the XY model,
for n = 3 the Heisenberg model. In the nearest-neighbours regime (𝜎 → ∞) the
Ising model is known to undergo an order-disorder phase transition of the second
order for d ≥ 2 while the same happens in the n ≥ 2 case for d > 2 [29]. This is
in agreement with the celebrated Hohenberg-Mermin-Wagner theorem [30] which
forbids the spontaneous breaking of a continuous symmetry at finite temperatures
in d ≤ 2, provided that the couplings decay fast enough. The two-dimensional
nearest-neighbors XY model is known to exhibit the so-called Berezinskii-Kosterlitz-
Thouless (BKT) transition [31, 32] which is not of the order-disorder kind.

The presence of non-local interactions may alter this picture not only quantita-
tively (e.g. by modifying the critical exponents of the system) but also qualitatively, as
the model will in general exhibit a low-temperature phase transition as the couplings
decay slowly enough. Physically speaking, this is due to the fact that a long-range
ferromagnetic interaction inevitably favors ordered phases.

Generally speaking, by looking at the critical behavior of the system, we may
distinguish two cases [1]:

• For 0 < 𝜎 < 𝜎mf the critical behavior is well described by a Gaussian fixed
point, in which the usual short-range dispersion relation is replaced by its long-
range (𝜎-dependent) counterpart. The critical exponents thus can be obtained
by a saddle-point approximation (even though their value is 𝜎-dependent and
thus different from the usual short-range critical exponent).

• For 𝜎mf < 𝜎 < 𝜎∗ the universal quantities are still 𝜎 dependent, but they
are not given by the mean-field ones, as the critical behavior of the system
interpolates between the Gaussian and the short-range one.

• For 𝜎 > 𝜎∗ the critical behavior corresponds to the nearest-neighbors (𝜎 →
∞) one, and the phase transition may actually disappear in lower dimensions.
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In the rest of the Section, we will discuss the value of 𝜎mf and 𝜎∗ for theO(n) model.
Let us anticipate some key results. First, regardless of the value of n,

𝜎mf = d/2, (1.10)

for any d < 4. The determination of 𝜎∗ is instead more delicate. For d ≥ 4, as the
short-range critical point is Gaussian, we have 𝜎∗ = 2 (let us notice how 𝜎∗ = 𝜎mf
at d = 4, signaling that the phase transition is described everywhere by a mean-field
analysis). For d < 4 we have 𝜎∗ < 2; in particular, according to the criterion firstly
introduced by Sak [33]

𝜎∗ = 2 − 𝜂sr , (1.11)

𝜂sr being the anomalous dimension of the system in the short-range regime.
Before going on let us notice how the above analysis cannot be straightforwardly

applied to the d = 2 n = 2 case, because of its peculiar short-range behavior. Indeed
its generalization to the long-range case is more delicate and will constitute the main
topic of Chapter 2.

1.2.1 | Field-theoretical analysis

In order to motivate the results exposed above, it is convenient to provide a field-
theory description of the Hamiltonian (1.8) . The simplest way to do so is to replace
s𝕛 with a continuous n-component bosonic field 𝝓(x), enforcing a loose version of
the constraint s2j = 1 by adding a potential V0( |𝝓|) = u(𝝓2 − 1)2. We find thus a
euclidean action of the form

S = −
∫
ddx

∫
ddx′

𝜙 j (x)𝜙 j (x′)
|x − x′|d+𝜎

+
∫
ddxV0 ( |𝝓(x) |) . (1.12)

By reabsorbing a quadratic term into the definition ofV ( |𝝓|), we can write the kinetic
term in the momentum space so that S takes the form

S =

∫
ddq
(2𝜋)d

𝜔(q) |𝝓(q) |2 +
∫
ddx

(
r |𝝓(x) |2 + u |𝝓(x) |4

)
, (1.13)

where we introduce the long-range dispersion relation

𝜔(q) =
∫
r>a

ddrJ (r)
(
1 − eiq·r

)
(1.14)

a being the ultraviolet cutoff of the theory. By dimensional analysis, it can be shown
that the large wavelengths behavior of the above quantity is given by

𝜔(q) ∼ J (q𝜎 + a2−𝜎q2) (1.15)



Critical behavior of weak long-range models 13

(see Appendix B for a detailed discussion in the d = 2 case), so that the large-distances
continuous description of the model can be written as

S =

∫
ddq
(2𝜋)d

(q𝜎 + g q2) |𝝓(q) |2 +
∫
ddx

(
r |𝝓(x) |2 + u |𝝓(x) |4

)
. (1.16)

At a Gaussian level (u = 0), long-range interactions become relevant for 𝜎 < 2, so
that, 𝜎∗ = 2. The corresponding length dimension of the field |𝜙(q) | is given by

[𝜙(x)] ∼ L−(d−𝜎)/2 (1.17)

for 𝜎 < 2, while
[𝜙(x)] ∼ L−(d−2)/2 (1.18)

for 𝜎 > 2. If follows that, at criticality, for 𝜎 < 2, we have

⟨𝜙(x)𝜙(0)⟩ ∼ 1
xd−𝜎

=
1

xd−2+𝜂 (𝜎) , (1.19)

with 𝜂 (𝜎) = 2 − 𝜎. Let us notice that 𝜂 (𝜎) it is an anomalous dimension only with
respect to the usual definition, but it is already present on the Gaussian level. Thus,
it can be thought of as a measure of how the correlations decay is different from the
short-range mean-field case. As [r] = L−𝜎 for 𝜎 < 2 we have that the correlation
length 𝜉 in proximity of the transition temperatureTc behaves as |T −Tc | ∼ 𝜉−𝜎 and

𝜈 (𝜎) = 1
𝜎

. (1.20)

The exponent 𝛾 (𝜎) of the magnetic susceptibility can be extracted by the scaling
relation [29, 34, 35]

𝛾 (𝜎) = 𝜈 (𝜎) (2 − 𝜂 (𝜎)) = 1, (1.21)

i.e., independently on 𝜎 (and d), the value predicted by Landau’s theory [36].
Let us now introduce interactions in our picture. By considering the term ∝ u in

Eq. (1.16) as a perturbation of the Gaussian theory we have that, for 𝜎 < 2[
𝜙4] ∼ L−2(d−𝜎) , (1.22)

so that the perturbation is irrelevant as long as 𝜎 < d/2. In this regime thus our
results (1.19) and (1.20) becomes exact. Let us also notice that for d ≥ 4 the Gaussian
regime extends up to 𝜎 = 2.

Finally, for d < 4, the presence of a relevant interaction is expected to modify the
value of 𝜎∗. The problem has been addressed by Sak in his seminal paper Ref. [33]
by means of the perturbative renormalization group (RG) around the d = 4, 𝜎 = 2
Gaussian fixed point, in terms of 𝜖 = d − 2𝜎. For 𝜖 = 0, the long-range term in
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Eq. (1.16) is a marginal perturbation. One of the main findings is the observation
that the ∝ q𝜎 |𝝓(q) |2 term in the action (1.16) does not acquire an anomalous scaling.
Intuitively, this may be traced back to the fact that such a perturbative expansion
can only generate integer powers of q2, not affecting the non-analytic ∝ q𝜎 behavior.
As a consequence, even in presence of interaction, the scaling dimension Δ𝜎 of the
long-range kinetic term in the Hamiltonian is given by:

Δ𝜎 = 2Δ𝜙 + 𝜎 . (1.23)

By definition, however, in the short-range limit Δ𝜙 = (d −2+ 𝜂sr)/2, so that we have

Δ𝜎 = d + 𝜂sr − 2 + 𝜎 . (1.24)

We find then that the long-range perturbation is relevant for

𝜎 < 𝜎∗ = 2 − 𝜂sr. (1.25)

Let us notice how the above analysis predict that the scaling found in Eq. (1.19) is
actually valid even outside of the mean-field region, up to 𝜎∗, when 𝜂 (𝜎∗) = 𝜂sr.
The same does not happen for the exponent 𝜈 (𝜎) which may acquire an anomalous
scaling. However, according to Sak’s argument, 𝜈 (𝜎) is still a continuous function of
𝜎 , which interpolate between the mean field value for 𝜎 = d/2 and the short-range
one for 𝜎 = 2 − 𝜂sr.

The validity of Sak’s criterion for the classical O(n) models has been the subject
of considerable scrutiny. Indeed, numerical evidence supporting (or rejecting) Sak’s
result is notoriously hard to obtain [37–39]. Intense theoretical investigations both
via Monte-Carlo simulations [37, 40, 41], renormalization group (RG) theory [42]
and conformal bootstrap [43] appeared all to confirm the validity of Sak’s conjecture
for the long-range/short-range crossover [12, 44–46]. Let us notice, however how it
is not clear whether Sak’s criterion is useful in absence of a spontaneous-symmetry
breaking in the short-range regime. While some examples of such low-dimensional
model are worked out in the following, the status of the d = 2 XY model is particu-
larly delicate, also due to the notorious difficulty of numerically detecting the BKT
transition, and will be addressed in Chapter 2.

1.2.2 | The d = 1 long-range Ising model

The one-dimensional Ising model (n = 1, d = 1) is a good example of a model
exhibiting a non-trivial short-range/long-range crossover, which can be nevertheless
addressed easily [47–49]. In this case the lattice variables s j can only take the values
s j = ±1, and the Hamiltonian (1.8) takes the form

𝛽H =
1
2

∑︁
j≠ j ′

J (r)
(
1 − s j s j ′

)
=

1
4

∑︁
j≠ j ′

J (r)
(
s j − s j ′

)2 , (1.26)
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where r = |i − j | and, for r >> 1,

J (r) ∼ J r−1−𝜎 . (1.27)

Following Ref. [49], we notice that we can equivalently describe the model in terms
of the domain walls or kinks, each one associated with a point of the dual lattice,
defined as

m j =
1
2
(s j+1 − s j). (1.28)

We notice that m j = −1, 0, 1 and m j ≠ 0 only if there is a domain wall between the
site j and the site j +1. Moreover, the m j are actually constrained, since between any
pair of sites with m = 1 there is necessarily a site with m = −1, and vice versa. In
terms of the m j the Hamiltonian (1.26) becomes

𝛽H =
∑︁
j≠ j ′
U (r)m jm j ′ + 𝜀c

∑︁
j

m2
j , (1.29)

where

𝜀c =

∞∑︁
r=1

J (r) > 0 (1.30)

andU (r) is such that

J (r) =U (r + 1) +U (r − 1) − 2U (r). (1.31)

As in Hamiltonian (1.29) only the lattice sites corresponding to a pair of domain
walls actually contribute, we can think of such sites as the position of a set of particles.
Performing the continuum limit thus, it is thus possible to interpret the model as a
gas of point-like charges, with alternating signs, moving on a line. While 𝜀c plays
now the role of a chemical potential,U (r) is an interacting potential such that

J (r) = d2

dr2
U (r) , (1.32)

and then behaves asymptotically as

U (r) ∼ −J r
1−𝜎 − 1

𝜎 (1 − 𝜎) . (1.33)

The partition function can be written as a sum of sectors with different numbers of
charges

Z =
∑︁
p

yp
∫
xp>xp−1>···>x1

dx1 · · · dxpe−
∑
k ,k′ mkmk′U (xk−xk′) (1.34)
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where y = e−𝜖 c is the fugacity of the gas, xk is the position of the k-th kink and
mk = (−1)k its charge.

If 𝜎 > 1 the interaction vanishes at large distances, so that in the infrared the
system behaves as a collection of free particles, so that the number of domain walls
proliferates leading to a disordered phase at every temperature. If 𝜎 < 1, on the
other hand, the interaction potential is confining, so that, at low temperatures, the
charges arrange themselves as a collection of far-away pairs of opposite-charged par-
ticles interacting through residual dipole interactions. As the temperature is raised,
the dipoles will eventually unbound, as the average size of a dipole becomes com-
parable with their average distance. This qualitative picture may be made rigorous
by a real-space RG analysis in which the closest pairs of charges are perturbatively
integrated out (see e.g. [48, 49]). It follows

𝜎∗ = 1, (1.35)

which is different from the mean-field value of 𝜎∗ = 2. Close to 𝜎 = 1− the critical
exponents take the form

𝜂 (𝜎) = 2 − 𝜎 𝜈 (𝜎) = 1√︁
2(1 − 𝜎)

. (1.36)

As expected, 𝜂 (𝜎), contrary to 𝜈 (𝜎), coincides with its mean-field value.
In spite of the fact that the short-range one-dimensional Ising model does not

exhibit a phase transition, so that Sak’s criterion is not straightforwardly useful, let
us notice how the two-point critical correlation function〈

si s j
〉
∼ 1
|i − j |d−2+𝜂 (𝜎) =

1
|i − j |1−𝜎

, (1.37)

as 𝜎 → 1, goes to
〈
si s j

〉
∼ const, i.e. the same behavior of the short-range correlation

function for T = 0. As for any one-dimensional O(n) model the correlations are
expected to decay as Eq. (1.37) as well, this suggests 𝜎∗ = 1 for such models as well.

1.2.3 | The long-range spherical model

In the nearest-neighbors case, the n →∞ limit of theO(n) model is exactly solvable.
In this limit, indeed, it can be shown [50] the unit vector variable sj can be replaced
by a continuous variable s j with a single global constraint of the form∑︁

j

s2j = N , (1.38)
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so that the O(n) Hamiltonian can be replaced by the so-called spherical model [51,
52]. As the otherO(n) models with n > 2, it undergoes a second-order phase transi-
tion for d > 2, while its critical behavior becomes mean field for d ≥ 4. For 2 < d < 4
the critical exponents are given by

𝜂sr = 0 𝜈sr =
1

d − 2
(1.39)

The long-range counterpart of the model, described by the Hamiltonian

𝛽H = −1
2

∑︁
i≠j

J (r)sisj (1.40)

with r = |i − j|, J (r) ∼ Jr−d−𝜎 for r >> 1, has been addressed in [53].
As in the nearest-neighbors case, the constraint (1.38) can be enforced by intro-

ducing a Lagrange multiplier in the Hamiltonian (1.40) , obtaining

𝛽H = −1
2

∑︁
i≠j

sisj + 𝜇
∑︁
j

s2j , (1.41)

and imposing that
1
N

∑︁
j

〈
s2j

〉
= 1. (1.42)

In the momentum space, we have

𝛽H =
∑︁
q∈IBZ

(𝜇 + 𝜔(q)) |s(q) |2 (1.43)

where, similarly to Eq. (1.14) , 𝜔(q) is the long-range dispersion relation

𝜔(q) =
∑︁
r
J (r) (1 − eiq·r); (1.44)

and IBZ denotes the first Brillouin zone of the lattice. Eq. (1.42) becomes similarly

1
N

∑︁
q∈IBZ

1
𝜇 + 𝜔(q) = 1. (1.45)

As the critical behavior is determined by the long-wavelength behavior, let us con-
sider q << 1. In this regime, as in Sec. 1.2.1, we have that

𝜔(q) ∼ J (q𝜎 + gq2) , (1.46)
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so that for 𝜎 > 2 we recover the same dispersion relation of the short-range regime.
Let us restrict ourselves to the region 𝜎 < 2, in this case, the constraint (1.44) can
be approximated by

I (𝜇, J ) =
∫
q<Λ

ddq
(2𝜋)d

1
𝜇 + Jq𝜎 = 1 (1.47)

(Λ being an ultraviolet cutoff), without altering the critical behavior.
The phase transition corresponds to the value of J such that 𝜇 = 0 and the theory

is effectively massless. If I (𝜇, J ) diverges for 𝜇 = 0, 𝜇 will remain finite for every
temperature, otherwise there will exist a critical temperatureTc such that, forT < Tc
we have a macroscopic occupation of the mode q = 0, signaling a finite magnetization.
It follows that, in order to have spontaneous symmetry breaking we must have d > 𝜎 ,
so that the phase transition occurs for 𝜎 < 1 in d = 1, 𝜎 < 2 in d = 2. This implies
𝜎∗ = 1 in d = 1, 𝜎∗ = 2 in d ≥ 2. This is in agreement with Sak’s picture, as 𝜂sr = 0
in d > 2, and with the general understanding of one-dimensional, long-range spin
systems.

Close to the transition temperaturesTc we have that

I (𝜇, J ) ∼ 1 + a0(T −Tc) − a1𝜇
d/𝜎−1 − a2𝜇. (1.48)

For 𝜎 < d/2 we have that, close to the critical point

𝜇 ∼T −Tc (1.49)

and, by noticing that 𝜇 ∼ 𝜉−𝜎 , we find that, as expected,

𝜈 (𝜎) = 1
𝜎

. (1.50)

For 𝜎 > d/2, similarly we have

𝜇 ∼ (T −Tc)d/𝜎−1 (1.51)

which implies

𝜈 (𝜎) = 1
d − 𝜎

, (1.52)

which, for d > 2, correctly interpolates between the mean field value and the short-
range one as 𝜎 varies from 𝜎mf = d/2 to 𝜎∗ = 2.

1.2.4 | Effective dimension

The key result of this Section may be tough of as if long-range interactions were able
to effectively increase the dimensionality of the system. Intuitively, this makes sense,
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as a long-range coupling increases the number of neighbors with which a given lattice
site actually interacts.

Indeed, within Sak’s picture, the qualitative critical behavior of the long-range
O(n) in the 𝜎 < 2 − 𝜂sr regime can be related to the one of its nearest-neighbours
counterpart in an effective fractional dimension de f f such that [11]

de f f =
2 − 𝜂sr(de f f )

𝜎
d. (1.53)

As expected de f f > d, and de f f = 4 at𝜎 = d/2, while de f f → d as 𝜎 → 𝜎∗ = 2−𝜂 sr (d)
Besides giving a qualitative understanding of what is going on, this picture pro-

vides quantitative insights into the critical behavior of the model. Indeed, as shown
in Ref. [40], Eq. (1.53) can be obtained by assuming that, together with Sak’s picture,
a sort of super-universality holds, so that the exponent 𝛾 (𝜎) (which is independent
on 𝜎 in the Gaussian region) is a function of 𝜎/d alone. By means of the scaling
relations among critical exponents, we also find the following estimate for 𝜈 (𝜎)

𝜈 (𝜎) =
2 − 𝜂sr(de f f )

𝜎
𝜈sr(de f f ). (1.54)

Let us notice that, both in the mean-filed regime (de f f ≥ 4) and in the n → ∞
spherical limit, these relation become exact, as in both cases 𝜂sr(de f f ) = 0.

Even outside of the mean-field region, the super-universality hypotheses is valid
at the first perturbative order in 𝜖 = 𝜎 − d/2 [54]

𝛾 (𝜎) ≈ 1 + n + 2
n + 8

(
2 − d

𝜎

)
, (1.55)

while the second order of this expansion breaks the correspondence [44]. Eq. (1.54)
can be derived from a functional renormalization group analysis, within a modified
local potential ansatz [1, 11].

Here we will not address in detail the topic of quantum phase transitions in pres-
ence of long-range couplings. Even in this case, however, it is possible to extend the
effective dimension picture [1]. In the nearest-neighbours case, it is known that the
critical behavior of quantum rotor models [55] in dimension d is the same of those
of a classical O(n) model in dimension D = d + 1. Similarly, in the weak long-range
regime, we can introduce an effective dimension De f f

De f f =
2 − 𝜂sr(De f f )

𝜎
d + 1, (1.56)

valid for 𝜎 < 2 − 𝜂sr(De f f ). The correspondence becomes exact in the mean-field
regime.
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1.3 | Dynamical behavior

We now analyze the dynamic properties of long-range quantum systems, which will
be the subject of Part II of the present work. The dynamics of closed quantum many-
body-system have been the subject of thorough scrutiny in the last decades [56–58].
Generic non-integrable quantum systems are generally expected to reach the station-
ary microcanonical equilibrium. This behavior can be traced back to the spectral
properties of the system, and in particular to the so-called eigenstate thermalization
hypotheses[59, 60].

As remembered in Sec. 1.1, while this picture is not seriously hindered in the
presence of weak long-range interaction [16, 17], systems interacting through strong
long-range couplings are known to avoid thermalization in the thermodynamic limit
[2]. Recently, such a behavior has been linked to their peculiar spectral structure
[61], and in particular to the fact that the single-particle dispersion relation does not
converge to a continuous function of the spectrum as in Eq. (1.14) .

1.3.1 | Single-particle spectrum

In order to understand the spectral properties of strong long-range interacting sys-
tems, let us consider the simple case of a set of particles hopping in a one-dimensional
chain with N sites

H = −
∑︁
j≠ j ′

J (r)
(
a ja
†
j ′ + a

†
j a j ′

)
+ 𝜇

∑︁
j

a ja
†
j , (1.57)

with r = | j − j′|, 𝜇 is the chemical potential. We are of course interested in the case
of a strong long-range hopping so that we can choose

J (r) = 1
N𝛼

r−𝛼 , (1.58)

with 0 < 𝛼 < 1 and
N𝛼 =

∑︁
r≠0

J (r) ∼ N1−𝛼 (1.59)

enforces the Kac scaling. Neither the nature (bosonic or fermionic) of the particles
nor the dimensionality of the system is crucial for what follows.

Hamiltonian (1.57) can be diagonalized by means of a Fourier transform. As-
suming periodic boundary conditions (a j = a j+N ) we have

H = −
∑︁
q

𝜖 (q)aqa†q , (1.60)
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where the allowed momenta are q = 2𝜋m
N with m = −N/2 + 1, . . .N/2 and

𝜖 (q) = 𝜇 −
∑︁
r≠0

J (r) cos(qr). (1.61)

Since ∑︁
r≠0

J (r) cos(qr) = 1
N𝛼

∑︁
r≠0

cos(qr)r−𝛼 , (1.62)

we can write the spectrum as

𝜖 (q) = 𝜇 −
tq
t0

, (1.63)

where

tq =
N/2∑︁
r=1

cos(qr)r−𝛼 . (1.64)

It is now crucial to notice that the behavior of this Fourier sum is dramatically differ-
ent from those of its weak long-range counterpart of Eq. (1.14) . Indeed, by recalling
that k = 2𝜋

N q, as N →∞, we have

tq = N1−𝛼
N/2∑︁
r=1

N−1
( r
N

)−𝛼
cos

2𝜋mr
N

=

(
N
2𝜋

)1−𝛼 ∫ 𝜋

0
ds

cos(ms)
s−𝛼

+O(1).

(1.65)

In particular, as

t0 =

(
N
2𝜋

)1−𝛼 ∫ 𝜋

0
ds s−𝛼 +O(1) =

(
N
2𝜋

)1−𝛼
𝜋1−𝛼

1 − 𝛼 +O(1) (1.66)

we have

𝜖 (q) = 𝜇 − 1
u𝛼

∫ 𝜋

0
ds

cos(ms)
s−𝛼

(1.67)

up to O(N𝛼−1) corrections, with

u𝛼 =
𝜋1−𝛼

1 − 𝛼 (1.68)

Let us notice how 𝜖 depends on q only through m, so that the spectrum does not
converge to a continuous function of q. Rather, we have a finite gap between the
ground state 𝜖 (0) = 𝜇 − 1 and the first excited states (corresponding to |m | = 1). For
|m | >> 1 the eigenvalues accumulate around 𝜖∞ = 𝜇 as the integral in Eq. (1.67)
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in vanishes. This means that an extensive number of single-particle states is almost
degenerate. In the limit 𝛼 → 0 this degeneracy becomes exact ∀ m ≠ 0.

Let us now consider the spectral average of a regular functionG (x), namely

⟨G (𝜖 )⟩ = 1
N

∑︁
q

G (𝜖 (q)). (1.69)

As 𝜖 (q) accumulates around 𝜇, we expect that in the thermodynamic limit

⟨G (𝜖 )⟩ → G (𝜇). (1.70)

This suggests that, as long as we are dealing with observables of this form, the case
0 < 𝛼 < 1 behaves effectively as a fully-connected 𝛼 = 0 system in the thermody-
namic limit. On the other hand, we expect this convergence to be faster for smaller
values of 𝛼, so that the finite size scaling of this quantity is expected to give us infor-
mation about how fast the spectrum converges to its limiting value (this quantity will
moreover play an important role in Chapter 4, where it is shown that, for finite N , 𝛼
may play a dramatic role).

Let us notice, however, how Eq. (1.67) , being accurate only up to O(N𝛼−1), is
not reliable, so that we have to use the exact expressions of Eq. (1.63) and Eq. (1.64) .
By exploiting the latter ones, it follows that∑︁

q

t(q) = 0,∑︁
q

t2(q) = N
2

∑︁
r≠0

r−2𝛼 .
(1.71)

Then, at the lowest non-trivial order

⟨G (𝜖 )⟩ ≈ G (𝜇) + G
′′(𝜇)

4t(0)2
N/2∑︁
r=1

r−2𝛼 . (1.72)

In order to estimate this correction let us notice that t(0) ∼ N1−𝛼 and

N/2∑︁
r=1

r−2𝛼 ∼ N1−2𝛼 (1.73)

for 𝛼 < 1/2, while
N/2∑︁
r=1

r−2𝛼 → const (1.74)

for 1/2 < 𝛼 < 1. It follows that the correction is of order N−1 if 𝛼 < 1/2 and of
order N2(1−𝛼) for 1/2 < 𝛼 < 1.
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1.3.2 | Long-lived states

The key spectral properties found above for the case of a free system are expected
to be robust against the presence of interactions. Indeed if we perturb Hamiltonian
(1.57) with an interaction term Hint, we have [62]

En = E0
n +

〈
Ψ0
n

���Hint

���Ψ0
n
〉
+

∑︁
n′≠n

|
〈
Ψ0
n

��Hint
��Ψ0
n′
〉
|2

E0
n − E0

n′
+O(H3

int) (1.75)

where E0
n ,

��Ψ0
n
〉

are respectively the unperturbed eigenvalues and eigenvectors of the
unperturbed Hamiltonian (1.57) (which are, in turn, given by the sum of the single-
particle energies 𝜖 (q)). The unperturbed energies can be labeled by the collection
of single particles occupation numbers n = ⟨𝜈 (q)⟩, each relative to a given Fourier
mode, so that

En =
∑︁
q

𝜈 (q)𝜖 (q). (1.76)

(in the fermionic case 𝜈 (q) = 0, 1 while in the bosonic case 𝜈 (q) ∈ ℕ). For a generic
many-body system, the presence of a continuum of states in the single particle spec-
trum hinders the applicability of the usual perturbative result (1.75) for any finite
perturbation, as the denominator in the sum becomes arbitrarily small in the ther-
modynamic limit. On the other hand, the peculiar form of our one particle spectrum
(1.67) in the strong-long range regime leads to a different picture. Indeed: as in the
thermodynamic limit the energy gap between adjacent states remains finite, weak
enough perturbation will not alter the main features of the spectrum. In other words,
the presence of a discrete spectrum is expected to be a generic feature of quantum
many-body systems in presence of strong-long range interactions, so that the usual
picture describing the thermalization in generic many-body systems breaks down.
The fact that the single-particle energies accumulate around a finite value as m →∞
is crucial in stabilizing collective motion, avoiding the loss of coherence and allowing
for the presence of long-lived quasi-stationary states [61]. Intuitively speaking, this
can be understood by thinking that the effective number of non-commensurable fre-
quencies in the system is small.

Similar results have been obtained for the dynamics of a quantum spin-1/2 Ising
model in a parallel field, in presence of strong long-range interactions [63]. The
model is described by the Hamiltonian

H = − 1
2N𝛼

∑︁
j≠ j ′

r−𝛼 𝜎̂ j
x 𝜎̂

j ′
x + h

∑︁
j

𝜎̂
j
x , (1.77)

where 𝜎̂
j
x , 𝜎̂

j
y , 𝜎̂

j
z are the Pauli operators relative to the site j, h is the magnetic field,

r = | j − j′|, and N𝛼 =
∑
r≠0 r−𝛼 is the Kac rescaling. Exact results can be obtained for
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Figure 1.1: Evolution of the magnetization for the Ising Hamiltonian (1.77) and the Kitaev
Hamiltonian (1.80) respectively after a quench h = ∞ to h = 0 for different values of the
system size N . In the bottom panels we have 𝛼 < 1 (𝛼 = 0.5 and 𝛼 = 0.4 respectively for
the left and right panel) while in the top panel 𝛼 > 1 (𝛼 = 2 and 𝛼 = 12 respectively for the
left and right panel). The emergence of long-lived states in the strong long-range regime is
apparent. From Ref. [1].

the dynamics of the transverse magnetization

m̂z =
1
N

∑︁
j

𝜎̂z , (1.78)

provided that the initial state corresponds to |Ψ(0)⟩ = |→, · · · →⟩ (i.e. to the ground
state of the h = ∞ Hamiltonian). We have

⟨m̂z⟩ (t) = ⟨m̂z⟩ (0) cos(2ht)
N∏
j=1

cos2
(
N−1

𝛼 j−𝛼
)

. (1.79)

For h = 0, the above expression describes a relaxation from the initial value to
⟨mz⟩ (t) = 0; however, because of the diverging factor N𝛼 , coming from the Kac
rescaling, the timescale on which such relaxation happens diverges with N , so that in
the thermodynamic limit the system is trapped in a quasi-stationary state. Similar
results can be obtained studying the corresponding dynamics of a the strong long-
range Kitaiev chain [1]

H = − 1
2N𝛼

∑︁
j≠ j ′

r−𝛼 (c j + c†j ) (c j ′ + c
†
j ′) − h

∑︁
j

(1 − 2c†j c j) (1.80)
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where c j are fermionic operators ([c j , c′j]− = 𝛿 j , j ′).
Besides this very general consideration, long-lived oscillations may also arise, in

the thermodynamic limit, as it is the case of Eq. (1.79) for h ≠ 0, in which they
may be interpreted as a global Larmor precession. This is also the case of the fully-
connected Ising model in a transverse field (i.e. the so-called LMG model), addressed
in Sec. 1.3.3. In any case, the peculiar spectral properties of strong long-range pre-
vent thermalization, which seems to be a distinctive feature of such systems.

1.3.3 | Dynamical phases in the LMG model

As a paradigmatic example of the dynamics of an interacting strong long-range sys-
tem, let us consider the fully-connected (𝛼 = 0) version of the quantum spin-1/2
Ising model in a transverse magnetic field. The model was first introduced by Lipkin,
Meskhov and Glick in Ref. [26] in the context of nuclear physics (and thus sometimes
referred to as the LMG model) and it has become an important tool for the study of
strong-long range quantum systems [64–67]. It is described by the Hamiltonian

H = − 1
4N

∑︁
j≠ j ′

𝜎̂
j
x 𝜎̂

j ′
x + h

∑︁
j

𝜎̂
j
z , (1.81)

where h is the magnetic field and 𝜎̂
j
x , 𝜎̂

j
y , 𝜎̂

j
z are the Pauli operators relative to the

site j
[𝜎 j

a , 𝜎
k
b ] = 2i𝛿 j ,k 𝜖 abc𝜎

k
c (1.82)

In order to understand the main features of such system, here we want to analyse the
quench dynamic of a the model which at t = 0− is in the ground state with h = 0,
namely |Ψ(0)⟩ = |→, . . . ,→⟩, after a finite magnetic field is switched on at t = 0.
By introducing the global spin

Ŝa =
1
2

∑︁
j

𝜎̂
j
a , (1.83)

we may write the Hamiltonian (1.81) as

H = − 1
N
Ŝ2
x + 2hŜz. (1.84)

In the thermodynamic limit the Ŝa become classical spins [66]. In particular, if we
introduce the magnetization

m̂a =
2
N
Ŝa (1.85)

we have that [m̂a , m̂b] = O(1/N ). In the thermodynamic limit, we may replace them
with classical variables ma which, because of our choice of the initial conditions, are
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constrained on a sphere (m2
x + m2

y + m2
z = 1). The equation of motion for the ma

become
¤m = −(mzx̂ + 2hẑ) ×m, (1.86)

with initial conditions mx (0) = 1, my (0) = mz (0) = 0. The spherical constraint can
be solved by introducing I ∈ [0, 1] and 𝜙 ∈ [−𝜋 , 𝜋] such that

(mx , my , mz) = (
√︁

1 − I2 cos 𝜙,
√︁

1 − I2 sin 𝜙, I). (1.87)

In term of the new variables, Eqs. (1.86) become the Hamilton equation associated
with the classical Hamiltonian

H= −1
2
(1 − I2) cos2 𝜙 + 2hI , (1.88)

where I and 𝜙 play the role of a canonical conjugate pair

{𝜙, I} = 1. (1.89)

In terms of the new variables the initial conditions read I (0) = 0, 𝜙(0) = 0, so that
the dynamics in the (I , 𝜙) phase space is described by

(1 − I2) cos2 𝜙 − 4hI = 1. (1.90)

Depending on the value of h Eq. (1.90) describes a different kind of dynamics: for
h < hc = 1/4 we have a libration, as 𝜙 oscillates around two limiting values ±𝜙max;
for h > hc = 1/4 we have a rotation, in which the angle 𝜙 is allowed to go from −𝜋 to
𝜋; for h = hc = 1/4 we have a separatrix. Anyway, for ∀ h ≠ hc the motion is periodic,
while the period diverges for h→ 1. By introducing, as an order parameter,

m̄x =
1
T

∫ T

0
dt mx (t) , (1.91)

(T being the period of the oscillation). As this is non-zero for h < hc, while vanishes
for h > hc, the phenomenon can be seen as a dynamical phase transition between a
ferromagnetic and a paramagnetic phase.

While the above analysis is exact for 𝛼 = 0, N →∞, its robustness against finite-
size effect and competing short-range interactions has been recently addressed in
Refs. [67, 68]. For large, but finite, values of N , the semiclassical analysis shows that
such oscillatory behavior is damped on a timescale tQ which grows as a N for h ≠ hc,
while at criticality

tQ ∼ lnN , (1.92)

which can be interpreted as a signature of chaotic behavior. Similarly, the presence
of competing short-range coupling leads to the formation of an intermediate chaotic
region. In Chapter 4 it is shown how these phenomena can be explained in terms of
parametric resonances and linked to the peculiar spectral properties of such systems
(Sec. 1.3.1).
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Part I





2 | The long-range XY model in two
dimensions

In this chapter we analyze the critical behavior of theXY model (i.e. theO(2)model)
in two dimensions when long-range couplings are added. The description of such a
behavior has been a long-standing problem within the field of the long-range O(n)
models.

The Chapter is based on the Refs. [69–71] and it is structured as follows: in
Sec. 2.1 we introduce the model and briefly recap the main results known in the
nearest-neighbors regime. In Secs. 2.2 to 2.5, we examine the peculiar nature of the
crossover between long-range and short-range regimes, with various methods. The
main result of these sections is a set of perturbative renormalization-group (RG)
equations describing the infrared behavior of the model. In Sec. 2.6 these results are
used to derive the phase diagram of the model, which features a non-trivial interplay
between a novel ordered phase and the usual quasi-long-range ordered BKT phase.
The transition line is characterized by a non-trivial, unprecedented, scaling of the
order parameter. Finally, in Sec. 2.7 we examine the relationship between the d = 2
classical XY model and the d = 1 quantum XXZ chain, showing how our results can
be used to make predictions about theT = 0 phase diagram of the latter.

2.1 | The XY model

The model consists of a set of N planar spins sj, such that s2j = 1, arranged in a two-
dimensional square lattice, interacting through an O(2)-invariant quadratic Hamil-
tonian, which can be obtained by putting n = 2, d = 2 in Eq. (1.8) . By exploiting
the constraint on the single spin variable, it is convenient to parameterize its state by
introducing the phase 𝜃 j as sj ≡

(
cos 𝜃 j , sin 𝜃 j

)
, obtaining,

𝛽H =
1
2

∑︁
i≠j

J (r)
[
1 − cos

(
𝜃 i − 𝜃 j

) ]
(2.1)
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with i, j ∈ ℤ2, r = i − j, r = |r| and

J (r) ∼ Jr−2−𝜎 (2.2)

for r ≫ 1. We will moreover assume 𝜎 > 0 so that the thermodynamic quantities
are extensive. In terms of the angular variables 𝜃 j the O(2) symmetry becomes a
global translational symmetry 𝜃 j → 𝜃 j + 𝛼. Moreover, the model is characterized by
the periodicity of the phases 𝜃 j, which results in the local symmetry

𝜃 j = 𝜃 j + 2𝜋Nj (2.3)

where, for each j, Nj ∈ ℤ.
Let us remind briefly the properties of the 𝜎 →∞ limit, i.e. the nearest-neighbors

regime. In this case, we may derive the possibility of a spontaneous symmetry-
breaking (SSB) is ruled out by the Hohenberg-Mermin-Wagner theorem; however
the low-temperature phase is characterized by quasi-long-range-order, i.e. power-
law behavior in the connected correlations functions with a temperature-dependent
exponent 𝜂sr(T ). In their seminal paper [31], Kosterlitz and Thouless linked this be-
havior to a peculiar structure of the renormalization-group (RG) flow of the model,
which exhibits a line of non-isolated Gaussian fixed points, which become unstable
for certain values of the couplings (the so-called BKT transition). This means that,
below a transition temperature TBKT , the model is well described by a correspond-
ing quadratic model, whose excitations are described in terms of spin waves (the
so-called low-temperature, or Berezinskii, expansion [32]). The breaking down of
such an approximation has been described in terms of the proliferation of topologi-
cal, vortex-like, configurations of the spins Sj.

When the decay of the couplings is slow enough, we expect a SSB phase to ap-
pear at low temperature. This crossover between the short-range and long-range
regime is not straightforwardly described by Sak’s criterion [33], whose applicability
is hindered by the peculiar structure of the BKT RG flow, which does not feature
isolated fixed points. The correlation exponent 𝜂sr(T ) latter, in turn, does not obey
the common definition of anomalous dimension at a symmetry-breaking transition
and, except forT =TBKT, is not universal.

In the nearest-neighbors regime the effect of vortices can be understood by a
real-space renormalization group, by mapping the Hamiltonian into a Coulomb gas
of point-like charges [72, 73]; or within the formalism of the statistical field the-
ory, by mapping it into a Sine-Gordon model [73, 74]. These mappings can be
obtained by decomposing the spin-wave and the topological excitation or, more rig-
orously, through the so-called duality construction [75]. Unfortunately, both these
procedures break down for slowly decaying coupling (the latter already in the case of
next-to-nearest-neighbors couplings). Another way of obtaining the same mappings
is the so-called Villain approximation [76, 77] (i.e. the substitution of Hamiltonian
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(2.4) with a quadratic one which takes into account the phase periodicity). How-
ever, as shown in Chapter 3 of this work, there is reason to believe that this latter
Hamiltonian is no longer in the same universality class for sufficiently slow-decaying
couplings.

Finally, let us notice that numerically results are hard to obtain for two order of
reasons. First, the large number of non-vanishing couplings makes Monte-Carlo up-
dates computationally expensive. Second, even at the level of long-range interaction,
the BKT scaling is notoriously hard to see for small sizes (the so-called Texas state’s
argument, see Refs. [78–80])

2.2 | Low temperature expansion

For T < TBKT , the nearest-neighbours XY model flows in the infrared to an ef-
fective Gaussian description so that its behavior is captured by the Berezinskii ap-
proximation [32] in which the cosine in Eq. (2.1) is expanded to the second order.
Analogously, we expect the long-range version of the model to be well described by
a similar approximation for low enough temperatures. By expanding H we get then

𝛽H ∼ 1
4

∑︁
i≠j

J (r)
(
𝜃 i − 𝜃 j

)2 . (2.4)

This can be diagonalized by means of a Fourier transform

𝜃q =
1
√
N

∑︁
j

e−iq·j 𝜃 j 𝜃 j =
1
√
N

∑︁
q∈IBZ

eiq·j 𝜃q. (2.5)

We obtain

𝛽H ∼ 1
2

∑︁
q∈IBZ

𝜔(q) |𝜃q |2 , (2.6)

where we introduced, as before, the long-range dispersion relation

𝜔(q) =
∑︁
r
J (r)

(
1 − cos(q · r)

)
. (2.7)

If we are interested in the long-wavelength modes, we can approximate the above
sum with an integral, obtaining:

𝜔(q) =
∫
r>a

d2rJ (r)
(
1 − cos(q · r)

)
. (2.8)
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As shown in Appendix A, this quantity grows as 𝜔(q) ∼ q2 if 𝜎 > 2, while it shows a
non-analitic behavior 𝜔(q) ∼ q𝜎 for 𝜎 < 2. The difference between the two regimes
can be fully appreciated if we consider the two-point correlation function:

⟨sr · s0⟩ = ⟨cos(𝜃r − 𝜃0)⟩ . (2.9)

Being the theory quadratic in this approximation, the above quantity can be evalu-
ated quite easily by exploiting the identity ⟨cos A⟩0 = e−

1
2 ⟨A2⟩0. From Eq. (2.6) , it fol-

lows immediately that
〈
𝜃q𝜃q′

〉
0 = 𝛿q+q′𝜔(q)−1 so that we find ⟨cos(𝜃r − 𝜃0)⟩ = e−G (r)

with

G (r) = 1
2

〈
(𝜃0 − 𝜃r)2

〉
0 =

1
N

∑︁
q∈IBZ

1 − cos(q · r)
𝜔(q) . (2.10)

The long-distance behavior can be once again captured by replacing the sum with an
integral

G (r) = a2
∫
q<Λ

d2q
(2𝜋)2

1 − cos(q · r)
𝜔(q) , (2.11)

where we approximated the first Brillouin zone with a sphere of radius Λ =
√

8𝜋a−1,
so that its volume is preserved, i.e.

∫
q<Λ d

2q = (2𝜋)2a−2. As shown in Appendix A,
the asymptotic behavior ofG (r) depends on 𝜎. In particular, if 𝜎 > 2 we have

G (r) ∼ 𝜂 ( J ) ln r
a
+ AJ−1 (2.12)

with 𝜂 ( J ) = p/J , and A, p are non-universal constants (see a study of these constants
in [69]). If 𝜎 < 2 instead, we have that

G (r) ∼ AJ−1. (2.13)

Then, depending on whether 𝜎 < 2 or 𝜎 > 2 we have that the correlation ⟨sr · s0⟩ ∼
const or ⟨sr · s0⟩ ∼ r−𝜂 ( J ) respectively. In the latter case then, we recover the short-
range low-temperature BKT [32] behavior, in which the correlations decay as a power
law with a temperature-dependent exponent. The former case, instead, gives rise to
a finite-magnetization ordered phase, with

m2 = lim
r→∞
⟨sr · s0⟩ = lim

r→∞
e−G (r) . (2.14)

This argument then suggests that 𝜎∗ = 2. If compared with Sak’s criterion, this
implies an effective anomalous exponent 𝜂 = 0. Let us notice, however, how the low-
temperature approximation per se is unable to describe the topological configurations,
since 𝜃 i is no longer a phase, and thus no longer defined up to multiples of 2𝜋. As a
consequence, even in the short-range case, the approximation is unable to correctly
reproduce all the phenomenology of the BKT transition.
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2.3 | Self-consistent approach

The simplest way to improve the low-temperature approximation is to replace the
quadratic Hamiltonian (2.4) , obtained by expanding the cosine in Eq. (2.1) , with a
temperature-dependent effective one, obtained self-consistently through the request
of the minimization of a variational free energy with respect to the true Hamiltonian
(2.1) . In the nearest-neighbors case, such a self-consistent-harmonic-approximation
(SCHA) is able to foresee the breaking down of the Berezinskii approximation above
a certain temperature [81, 82] as in this case the variational coupling J̃ jumps discon-
tinuously to zero as the temperature increases. In retrospect, the success of such
a crude approximation traces back to the fact that the model behaves effectively as
a Gaussian theory for all T < TBKT . We want now to extend this analysis to the
long-range XY model.

To achieve this scope, we replace the cosine in the original Hamiltonian (2.4)
with a quadratic term

𝛽H0 =
1
4

∑︁
i, j

J̃ (r) (𝜃 i − 𝜃 j)2 , (2.15)

J̃ (r) being a completely arbitrary function of r = i − j, to be determined from free
energy minimization in a self-consistent way.

The quadratic Hamiltonian H0 induces the Boltzmann measure

⟨·⟩0 =
1
Z0

∫ ∏
j

d𝜃 j e−𝛽H0 , (2.16)

where

Z0 = e−𝛽F0 =

∫ ∏
j

d𝜃 j e−𝛽H0 (2.17)

is the partition function of the model. The variational principle establishes that our
best ansatz minimizes the variational free energy

F= 𝛽F0 + 𝛽 ⟨H⟩0 − 𝛽 ⟨H0⟩0 . (2.18)

On the other hand, from the equipartition theorem it follows that ⟨H0⟩0 = N
2𝛽 is

independent on the choice of J̃ (r), so that we can safely ignore it. Let us notice
moreover thatH0 has the same quadratic structure of the low-temperature Hamilto-
nian, so that we can diagonalize H0 as well by means of the Fourier transform

𝛽H0 =
1
2

∑︁
q∈IBZ

𝜔̃(q) |𝜃q |2 , (2.19)
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where 𝜔̃(q) is given by Eq. (2.7) with J (r) replaced by J̃ (r). Since, ⟨cos A⟩0 =

e−
1
2 ⟨A2⟩0 , as valid for every Gaussian measure, we find

𝛽 ⟨H⟩0 = −1
2

∑︁
i, j

J (r)
〈
cos

(
𝜃 i − 𝜃 j

)〉
0

= −1
2

∑︁
i, j

J (r)e− 1
2 ⟨(𝜃 j−𝜃 j)2⟩0

= −N
2

∑︁
r
J (r)e−G̃ ( |j−i|)

= −N
2

∑︁
r
J (r)e−G̃ (r) ,

(2.20)

where G̃ (r) is given by Eq. (2.10) with 𝜔(q) replaced by 𝜔̃(q). Finally, the first term
on the r.h.s can be also computed easily from the diagonal form (2.19) of H0:

𝛽F0 =
1
2

∑︁
q∈IBZ

ln𝜔(q). (2.21)

Plugging this result into the expression for F, we find that the variational free energy
takes the form

F=
1
2

∑︁
q∈IBZ

ln 𝜔̃(q) − N
2

∑︁
r
J (r)e−G̃ (r) , (2.22)

In order to simplify the notation, in the following we will drop the ∼ symbol for
𝜔(q).

Since in Eq. (2.22) J̃ (r) appears only through the 𝜔(q), in order to find the min-
imum is sufficient to derive Fwith respect to the latter. By exploiting the fact that

𝛿G̃ (r)
𝛿𝜔(q) = −

1
N

1 − cos(q · r)
𝜔(q)2

, (2.23)

we find
𝛿F

𝛿𝜔(q) =
𝜔(q) −∑

r J (r) (1 − cos(q · r)) .e−G (r)

2𝜔(q)2
. (2.24)

By using the definition (2.7) of 𝜔(q) and noticing that the above expression has to
be valid for each value of q ∈ IBZ, we find the condition

J (r) = J̃ (r)eG̃ (r) . (2.25)

Since we are interested in the large length-scales regime (i.e in the continuum limit),
we can assume J̃ to be a function of r only: in this case, indeed, G̃ (r) only depends
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on the modulus r as well, so that the above condition can be written in terms of single
variable functions

J (r) = J̃ (r)eG̃ (r) . (2.26)

Let us notice how, in this limit, one has to redefine r → ar, q → a−1q, J , J̃ →
a−2 J , a−2 J̃ .

Let us now discuss the possible solutions of Eq. (2.26) . The possible asymptotic
behaviors of 𝜔(q) and G̃ (q) in terms of 𝜎 are examined in Appendix A. We have
that:

• If J̃ (r) decays at infinity faster than r−4 (e.g. an exponential or a fast-decaying
power law) , then we have that G̃ (r) ∼ ln(r) as r → ∞. Since in this case eG̃ (r)

is a power law, it follows from Eq. (2.26) that J̃ (r) must behave asymptotically
as a power-law as well. We can then assume that for large r

J̃ (r) ∼ J̃ r−2−s (2.27)

for some s > 2 to be determined, so that

G̃ (r) ∼ 𝜂 ( J̃ ) ln r
a
+ AJ̃−1 , (2.28)

where 𝜂 ( J̃ ) = p J̃−1 andA, p are non-universal constants. Finally, from Eq. (2.26) ,
we have the conditions

𝜎 = s − 𝜂 ( J̃ ); J = J̃ eA/ J̃ . (2.29)

In this case the correlation functions decay as e−G̃ (r) ∼ r−𝜂 ( J̃ ). Then, as long
as J̃ is non-vanishing, we find a quasi-long-range order, characteristic of the
BKT phenomenology.

• If the variational coupling behaves as J̃ (r) ∼ J̃ r−2−s with s ∈ (0, 2), then
G (r) = AJ̃−1 +O(r s−2). In this case we then have:

𝜎 = s; J = J̃ eA/ J̃ , (2.30)

leading to correlations behaving as e−G̃ (r) ∼ e−AJ̃−1
. Then as long as J̃ is non-

vanishing, we find a finite magnetization ∼ e−AJ̃−1/2.

In both cases, the equation for J̃ has the same form of the nearest-neighbour case.
By introducing J̃ = Ax, J = Ay it can be written as:

y = xe1/x . (2.31)

The minimum of the r.h.s. term is in correspondence of x = 1, y = e so that we have
two solutions for J > Jc ≡ eA, and only the trivial solution for J < Jc, signaling a
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jump in J̃ from J̃c = A to zero. However, only the larger of the two solutions present
for J > Jc is physically acceptable. Indeed it is the only one to have the correct
asymptotic behavior J̃ (r) ∼ J (r) in the large J regime, in which our SCHA becomes
the low-temperature approximation studied in Sec. III. The meaning of this low-
temperature, finite J̃ phase, however, depends on the whether s < 2 (ordered phase)
or s > 2 (quasi-long-range-ordered BKT phase). Let us notice that, in the latter case,
we have that 𝜂 = p J̃−1 of Eq. (2.28) cannot be larger than a given value 𝜂c = p J̃−1

c .
As a consequence we have that:

• For 𝜎 > 2, the only possibility is that s = 𝜎 + 𝜂sr > 2. We are then in the
first case, so that we get the usual BKT phenomenology. (see [69] for further
details).

• For 𝜎 < 2 − 𝜂c, the only possibility is that s = 𝜎 with s < 2. We are then in
the second case, i.e. we find a finite magnetization for low temperature.

• For 2 − 𝜂c < 𝜎 < 2 both solutions are actually viable so that it is unclear
whether the system is in the ordered or in the quasi-long-range ordered phase.
To establish which solution should we choose we should compute Fon both
solutions. The dependence of F on the non-universal details of the model,
and in particular on the short-range behavior of J̃ (r), hinders the possibility
to reach a definite conclusion for this regime within the SCHA.

Although non-conclusive, our self-consistent analysis accounts for the possibility
of the existence of an intermediate region, in which the ordered phase or the BKT
behavior can prevail, depending on the temperature. Keeping in mind the results of
the Berezinskii approximation, it appears sensible to think that the magnetized phase
will prevail at lower temperatures, while the quasi-long-range ordered phase will, pos-
sibly, correspond to an intermediate range of temperature. Let us notice, however,
that the predictions of our analysis are non-universal and, thus, their quantitative out-
come depends on the peculiar model under study. Moreover, the first-order phase
transition foreseen for 𝜎 < 2 − 𝜂c could be an artifact of the approximation, since
the critical behavior of the model is known to be captured by the mean-field approxi-
mation for 𝜎 < 1, which foresees a second-order phase transition, see e.g. Ref. [12].

2.4 | Field-theoretical approach

In order to go beyond the limits of the SCHA, and capture the universal quantities we
are interested in, we resort to a field-theoretical approach, introducing a continuous
action, which encodes the same physics of our Hamiltonian (2.4) . Indeed, both the
low-temperature approximation and the SCHA are incapable to reproduce the local
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symmetry (2.3) and, ultimately, to capture the periodic nature of the phase 𝜃 . In the
nearest neighbors case, the main consequence of this is that the approximation does
not take into account the topological configurations in which, following a closed loop
on the plane, the phase 𝜃 increases by an integer multiple of 2𝜋. In the long-range
regime, we expect the same problem to arise also for non-topological configurations,
as the Hamiltonian couples pairs of sites which are far away. We want then to derive
a field theory that correctly takes into account the periodic nature of the phase 𝜃 in
the long-range regime.

First, we write the coupling as J (r) = JS (r) + JLRr−(2+𝜎) , JS (r) being a short-
range term which accounts for the small-distances behavior. This decomposition
allows us to refine our low-temperature approximation. This, in fact, is fully justi-
fied for the short-range coupling, even at intermediate temperatures, since it couples
neighboring sites. At the same time, it can become problematic for the long-range
part of the Hamiltonian, which couples far-away pairs: there can instead be smooth
configurations for which the phase difference 𝜃 i−𝜃 j is not necessarily small, and these
configurations may give a significant contribution to the Hamiltonian in an interme-
diate range of temperatures. Let us remember, however, how this approximation a
là Berezinskii is unable to capture the presence of vortices even in the short-range
regime.

To further proceed, we expand the cosine in the short-range part

1 − cos
(
𝜃 i − 𝜃 j

)
≈ 1

2
(
𝜃 i − 𝜃 j

)2 ≈ 1
2
|∇𝜃 |2 , (2.32)

where the last substitution is justified by the fact that in the short-range part of the
Hamiltonian only neighbouring lattice sites are important. We then find

S [𝜃] = J
2

∫
d2x |∇𝜃 |2 + SLR [𝜃] , (2.33)

where we introduced the long-range perturbation

SLR = JLR

∫
d2x

∫
r>a

d2r
r2+𝜎 [1 − cos (𝜃 (x) − 𝜃 (x + r))]. (2.34)

In turn, this term can be rewritten in terms of the fractional Laplacian, whose defini-
tion is given, along with the details of the calculation, in Appendix B. We obtain

SLR =
g
2

∫
d2x e−i𝜃 ∇𝜎ei𝜃 , (2.35)

with g = JLR/𝛾2,𝜎 and 𝛾2,𝜎 = 2𝜎Γ( 1+𝜎
2 )𝜋−1 |Γ(− 𝜎

2 ) |−1. This term is intrinsically
interacting. Moreover it is invariant under global translations 𝜃 (x) → 𝜃 (x) + 𝛼,
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JBKT JσJ

g

0

Figure 2.1: Sketch of the RG flow lines for 7
4 < 𝜎 < 2 in the y = 0 section. The dashed

red line is a possible realization of the physical parameters line, from which the flow starts,
as the temperature is varied. On the right/left of the gray dotted line the vortex fugacity y
is irrelevant/relevant (¤yℓ/yℓ ≷ 0). We see that the two separatrices (bold black lines) divide
the flow in three regions: an high-temperature region (orange lines), where the flow ends
up in the disordered phase, the intermediate one (blue lines), where the flow reaches one of
the stable fixed points and the low-temperature region (green lines), in which the long-range
perturbation brings the system away from the critical line.

and it correctly catches the fact that the field 𝜃 is periodic. However, because of the
kinetic term in S [𝜃], the whole action still does not correctly describes topological
phenomena.

Let us remind briefly of the g = 0 case. Here one can introduce vortices in
Eq. (2.33) i.e. evaluating the energy cost of a vortex configuration, and the core en-
ergy cost of a single vortex 𝜀c, which can be absorbed into the definition of the vortex
fugacity y = exp(−𝜀c). Since topological and non-topological configurations decou-
ple in the quadratic part of the action, this leads to the Coulomb gas picture and to the
well-known Kosterlitz-Thouless RG equations [31]. In turn, this implies that all the
fixed points for y = 0 and J > 2

𝜋
, which correspond to a Gaussian massless action, are

stable. There, the low-temperature approximation becomes correct (with the origi-
nal J (T ) replaced by the one corresponding to the fixed point), so that the power-law
scaling observed for the two-point functions is recovered. For J < 2

𝜋
, however, vor-

tices become relevant and the theory flows towards the disordered regime.
In order to study the transition between the short-range and the long-range regime,
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we can consider the effect of a small g deformation of the Gaussian fixed points. In
this case, we expect to be able to parametrize our theory in terms of three parame-
ters: J , g and y. In the next section, we will derive the RG flow perturbatively in
y, g. However, we provide here an argument to understand what one can expect on
general grounds. First, we notice that the fixed points with J < 2

𝜋
are already unsta-

ble under topological perturbations so that we will stick to the stable fixed line with
J > 2

𝜋
. Here, the long-range perturbation can be relevant or not depending on the

scaling dimension Δg of the coupling g , gℓ ≈ exp
(
Δgℓ

)
for ℓ ≫ 1, where ℓ = ln(r/a)

is the RG time.
Due to the quadratic nature of the measure, one has〈

ei
(
𝜃 (x)−𝜃 (x′)

) 〉
= e−

1
2

〈
(𝜃 (x)−𝜃 (x′))2

〉
= |x − x′|−𝜂sr ( J ) , (2.36)

where 𝜂sr( J ) = 1
2𝜋 J corresponds to the exponent of the two-point function for g = 0

[31, 77, 83]. Then

Δg = 2 − 𝜎 − 𝜂sr( J ). (2.37)

The long-range perturbation is relevant only in the regime 𝜎 < 2 − 𝜂sr( J ). This
bears some similarly with the SSB case [11], but with the main difference that the
anomalous dimension is temperature dependent.

For 𝜎 > 2, the long-range term is always irrelevant. For 𝜎 < 2 Eq. (2.37) pre-
dicts that the long-range perturbation is always relevant at low enough temperatures.
Since the points which are stable under the proliferation of vortices are those with
J > 2

𝜋
, we have that 0 < 𝜂sr < 1

4 , as in the usual BKT theory (which indeed corre-
sponds to the g = 0 theory). As a consequence, for 7

4 < 𝜎 < 2, we have that it exists
an intermediate range of values of J for which the Gaussian theory is stable with
respect to both the topological and the long-range perturbations, leading to conven-
tional quasi-long-range order in a given temperature window. Instead, for 𝜎 < 7/4
the BKT stable fixed line is completely swallowed by the action of the long-range
perturbation, so that our perturbative picture breaks down. However, it is sensible
to assume that in this regime the system simply undergoes an order-disorder phase
transition.

This picture is essentially in agreement with the results of the SCHA. However,
our results no longer depend on the regularization procedure or the exact form of
JS(r) and are genuinely universal.

2.5 | Renormalization procedure

Our observation can be made rigorous by computing the RG flow of the action (2.33)
perturbatively around the short-range gaussian point. Let us then consider the action
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S [𝜃] written as

S [𝜃] =
∫
d2x

(
Jℓ
2
|∇𝜃 |2 + gℓ

2

∫
r>a

d2r
r2+𝜎 [1 − cos (Δr𝜃 (x))]

)
(2.38)

with Δr𝜃 (x) = 𝜃 (x + r) − 𝜃 (x). We are going to compute the RG flow equations
perturbatively in g and in the vortex fugacity y. Let us notice, however, how the effect
of vortices is not encoded in Eq. (2.38) . On the other hand, at the first perturbative
order in y and g the two perturbations act independently, so that we can consider the
effect of the renormalization of the vortices on the short-range kinetic term only. As
usual in this case, one can map this theory into the Sine-Gordon action [73, 74]:

SSG =

∫
d2x

(
1

2Jℓ
|∇𝜑|2 − yℓ cos 2𝜋𝜑

)
. (2.39)

At the first order of the renormalization group, y varies according to the scaling di-
mension of the vertex operator cos(2𝜋𝜑)

dyℓ
dℓ

= (2 − 𝜋 J )y , (2.40)

while Jℓ is left unchanged. This is in agreement with the Kosterlitz-Thouless RG for
the short-range, in which ¤J = O(y2).

Let us now consider the first-order effect of the long-range perturbation: in this
case we can set y = 0. We can then write the field 𝜃 (x) as the sum of a fast-varying
and a slow-varying component. In particular, introducing the momentum cutoff
Λ = 2𝜋

a , we have 𝜃 = 𝜃> + 𝜃< with

𝜃< (x) =
∫
q<Λe−dℓ

d2q
(2𝜋)2

𝜃 (q)eiq·x

𝜃> (x) =
∫
Λ>q>Λe−dℓ

d2q
(2𝜋)2

𝜃 (q)eiq·x ,
(2.41)

and integrate out 𝜃>. The non-Gaussian part of the action can be expanded in cu-
mulant: at the first order we have

Sefb [𝜃<] = S0 [𝜃<] + ⟨SLR⟩> +O(g2). (2.42)

Because of the ℤ2 symmetry in 𝜃 , we can make the replacement

cos(Δr𝜃) → cos
(
Δr𝜃

>
)
cos

(
Δr𝜃

<
)
, (2.43)

finding, up to immaterial constants,

⟨SLR⟩> =
gℓ
2

∫
d2x

∫
d2r
r2+𝜎

〈
cos

(
Δr𝜃

>
)〉

>

[
1 − cos

(
Δr𝜃

<
) ]

(2.44)
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(from now on we let the integration run from r = 0). Exploiting the identity ⟨cos(Δr𝜃>)⟩> =

e
− 1

2

〈
(𝜃 (r)−𝜃 (0))2

〉
> , valid on the Gaussian measure, one has

1
2

〈
(𝜃 (r) − 𝜃 (0))2

〉
>
=

∫
Λ>q>Λe−dℓ

d2q
(2𝜋)2

1 − cos(q · r)
Jℓq2

=
dℓ

2𝜋 Jℓ

(
1 −J0(Λr)

)
,

(2.45)

where we denoted withJ0(x) the zeroth-order Bessel function of the first kind. Then,
remembering that 𝜂sr( J ) = 1

2𝜋 Jℓ
, we have〈

cos
(
Δr𝜃

>
)〉

>
= e−𝜂sr ( Jℓ )dℓ (1−J0 (Λr))

= 1 − 𝜂sr( Jℓ)dℓ + 𝜂sr( Jℓ)dℓJ0(Λr)
(2.46)

The first two terms provide, as expected, an anomalous dimension of the coupling
g , namely gℓ+dℓ = gℓe−𝜂sr ( Jℓ )dℓ . The last term, however, results in a new term in the
action of the form〈

Sg
〉
>
=

1
2

∫
d2x

{∫
d2r
r2+𝜎 ge

−𝜂sr ( Jℓ )dℓ [
1 − cos

(
Δr𝜃

<
) ]

+g𝜂sr( Jℓ)dℓ
∫

d2r
r2+𝜎J0(Λr)

[
1 − cos

(
Δr𝜃

<
) ]}

.

(2.47)

The second term of l.h.s. has the same form of the original XY form. However,
for x ≫ 1 J0(x) ∼ x−1/2 cos(x − 𝜋/4) so that this effective interaction has a fast-
decaying oscillating behavior. Since this act as a natural cutoff for r ∼ Λ−1 ∼ a this
can be interpreted as an additional local interaction, and reabsorbed into the short-
range part of S [𝜃]. One natural way to proceed is to expand 1−cos(Δr𝜃) ≈ 1

2 (r·∇x𝜃)
2

so that ∫
d2r
r2+𝜎J0(Λr) (r · ∇x𝜃<)2 = 𝜋 |∇x𝜃< |2

∫ Λ−1

a
drr1−𝜎J0(Λr). (2.48)

For 𝜎 > 1
2 the integral is infrared convergent so that one can neglect the cutoff (this

is safe, since we are interested in the 𝜎 > 7/4 regime). Finally, putting r = au, we
find the correction of the action as

C𝜎

2
(gℓa2−𝜎)𝜂sr( Jℓ)dℓ

∫
d2x |∇x𝜃< |2 , (2.49)

where C𝜎 = 𝜋
2

∫ ∞
1 duu1−𝜎J0(2𝜋u) > 0. However, the precise expression of the

coefficient is not important for what follows.
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Summarizing, we found that the effect of the integration over the fast modes can
be reabsorbed, at the first order in g ,y, into a redefinition of the couplings g → g+dg ,
J → g + d J with

dg = −𝜂sr( Jℓ)gℓdℓ
d J = C𝜎𝜂sr( Jℓ) (gℓa2−𝜎)dℓ .

(2.50)

Finally, we ought to perform the rescaling x → xe−dℓ , in order to obtain a theory
with the same cutoff as the original one. Then g , J are further modified by their
own bare length-dimension (namely 2 − 𝜎 and 0)

dg = (2 − 𝜎 − 𝜂sr( Jℓ))gℓdℓ
d J = C𝜎𝜂sr( Jℓ) (gℓa2−𝜎

0 )dℓ .
(2.51)

Together with Eq. (2.40) , we get to the desired set of equations:

dyℓ
dℓ

= (2 − 𝜋 Jℓ)yℓ ,
dgℓ
dℓ

=

(
2 − 𝜎 − 1

2𝜋 Jℓ

)
gℓ ,

d Jℓ
dℓ

= C𝜎𝜂sr( Jℓ)gℓ ,

(2.52)

(we absorbed the dimensional part a2−𝜎 into the definition of the constantC𝜎 ). Let us
notice how our naive dimensional argument was able to correctly guess the first two
equations, but not the third one, i.e. the renormalization of the spin-waves stiffness.

2.6 | Analysis of the RG flow

Let us now analyse the set of Eqs. (2.52) in some detail. In particular, for 7/4 <

𝜎 < 2, we find a line of stable quadratic fixed points for g = y = 0 and JBKT ≡
2
𝜋
< J < J𝜎 ≡ 1

2𝜋 (2−𝜎) , as expected. The behavior of yℓ , at this order, is completely
determined by J and, as long as J > JBKT, yℓ → 0.

Then, for 7/4 < 𝜎 < 2 we can characterize the transition between the ordered
phase and the quasi-long-range ordered one by looking at the y = 0 plane. As long
as g is small, we can explicitly identify the form of the flow trajectories of Eqs. (2.52) :

gℓ ( J ) =
𝜋 (2 − 𝜎)
C𝜎

[
( Jℓ − J𝜎)2 + k

]
. (2.53)

If k < 0 the trajectory arrives at the fixed point line g = 0 for some J < J𝜎 , while
for k > 0 the trajectory starts from the g = 0 line for J > J𝜎 and it goes to infinity,
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signaling the existence of a new, low-temperature, phase. The separatrix is given by
the semi-parabola with k = 0, J ≤ J𝜎 . The graphical depiction of the RG flow of
Eqs. (2.52) , in the y = 0 plane, is shown in Fig. 2.1.

Being Eqs. (2.52) a perturbative result we derived for small gℓ and yℓ , its use in the
low temperature region (T < Tc) is not justified, as gℓ grows indefinitely. However,
for T → T−c , the amount of time spent by the flow in the region close to J = J𝜎 ,
g = 0 becomes larger and larger, so that the scaling behavior of gℓ with T in this
regime can be reliably obtained from Eqs. (2.52) . In order to derive such a scaling,
let us notice that we can obtain the formal solution for gℓ

gℓ = ge(2−𝜎)ℓe−
∫
𝜂sr ( Jℓ )dℓ , (2.54)

which is a reliable as long as gℓ is small. Now let us consider a RG flow which starts
very close to the critical temperatureTc: the corresponding trajectory will follow the
separatrix up to the vicinity of the fixed point g = 0,J = J𝜎 , which is given by
Eq. (2.53) with k → 0+. We now consider a point in the flow ℓ∗ such that g (ℓ∗) is
small and J (ℓ∗) > J𝜎 . Then∫ ℓ∗

0
𝜂sr( Jℓ)dℓ =

∫ ℓ∗

J0

𝜂sr( J )
d J
¤J

= C−1
𝜎

∫ ℓ∗

J0

d J
g ( J )

= 𝜋 (2 − 𝜎)
∫ J (ℓ∗)

J0

d J

( J − J𝜎)2 + k

(2.55)

Let us consider now the physical bare parameter J0 as a function of the temperature.
This will cross the separatrix (k → 0+) for some Jc < J𝜎 (which corresponds to
Tc) so that k ∼ Tc −T . In this case the second order singularity J𝜎 lies within the
integration interval of Eq. (2.55) , so that the integral diverges as k−1/2 as k → 0+.
Then we have

gℓ∗ ∼ e−B(T−Tc)
−1/2

, (2.56)

where B is a non universal constant.
Although the infrared regime is beyond the reach of our perturbative analysis, it

is possible to guess the corresponding form taken by the action on physical grounds.
Indeed, the coupling J diverges there, suppressing spatial fluctuations of the phase
𝜃 (x), as confirmed by the rigorous results of Ref. [84], which predict a finite mag-
netization for low enough temperatures. This suggests that, in the infrared region
corresponding to the low-temperature phase, we are allowed to Taylor expand the
exponential in Eq. (2.33) , so that the action becomes

SLR = − g
2

∫
d2x 𝜃∇𝜎𝜃 , (2.57)

where we absorbed in g some immaterial constants. A further evidence in favour of
this action comes from the fact that, in the limit J → ∞, we have Δg = 2 − 𝜎 −
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Figure 2.2: Qualitative phase diagram for the long-range XY model in d = 2, in which
the three phases of the model (ordered, quasi-long-range-ordered, disordered) are shown.
For 𝜎 > 2 the system undergoes the usual BKT transition (gray line). The value 𝜎∗ at
which the long-range term becomes relevant is here a function of the temperature and varies
from 𝜎 = 2 (at T = 0) to 7/4 (when it met the BKT transition temperature). In this range
of 𝜎 then, as the temperature varies, beyond the BKT transition, we find an infinite order
symmetry-breaking transition (blue line). For 𝜎 < 7/4 the quasi-long-range ordered phase
disappears so that we only have an order-disorder transition.

𝜂sr( J ) → 2 − 𝜎 , which is exactly the scaling dimension of g in Eq. (2.57) . This also
suggests that in this regime topological excitations are suppressed.

Physically speaking, this is due to the fact that, as J → ∞, the energy cost of
highly non-local excitations like the topological one becomes higher and higher, and
the presence of relevant long-range perturbation further contributes to this. Let
us notice that the action of Eq. (2.57) is nothing but the continuous version of the
approximation a lá Berezinskii. This tells us that, for small enough temperature, the
approximation is indeed reliable. In particular, we can use Eq. (2.14) to derive the
magnetization

lnm ∼ g−1
∫
q−𝜎d2q (2.58)

Finally, from Eq. (2.56) we find the scaling of the magnetization

lnm ∼ −eB(Tc−T )−1/2
(2.59)

Here, the phase transition is of infinite order as all the derivatives of the order pa-
rameter with respect to the temperature vanish atT = Tc. The same can be said for
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the free energy which would as well exhibit an essential singularity. A similar behav-
ior in T is found approaching TBKT from above, so that this seems to be a general
property of the BKT phase. The presence of a SSB phase is, however, proper of the
long-range regime. A similar, albeit not identical, coexistence of finite order param-
eter and infinite order scaling signatures has been also observed in other long-range
statistical mechanics models [47, 49, 85–87], see also Ref.[88] for more examples in
this direction.

As 𝜎 → 7/4+,Tc reachesTBKT from below, leaving only a SSB phase transition.
Unfortunately however, our set of equations (2.52) is not reliable in this regime: the
RG flow spends a considerable amount of RG time close to the g = 0, J = J𝜎 fixed
point, which, in this regime, corresponds to ¤yℓ > 0. As a consequence, yℓ will not
remain small.

Summarizing, while for 𝜎 > 2 we find the same universality of the nearest-
neighbours model, we cannot derive any prediction from our analysis of the 2d XY
model in the region 𝜎 < 7/4. When 7/4 < 𝜎 < 2, we find a rich and non-trivial
beahvior i) forT < Tc, finite magnetization (ordered phase); ii) forTc < T < TBKT
quasi-long-range-order with zero magnetization and temperature-dependent power-
law decay in the two-point correlation function (BKT phase); iii) forT > TBKT zero
magnetization (disordered phase). The system, due to the power-law character of
the interactions, exhibits power-law decaying two-point functions, also in the high-
temperature phase, although with the same exponent of the coupling ⟨S(r) · S(0)⟩ ∼
r−2−𝜎 [25, 89, 90]. The qualitative form of the phase diagram of the model is shown
in Fig. 2.2.

2.7 | Quantum long-range XXZ chain

In the nearest-neighbors case, a rigorous mapping can be established between the
classical two-dimensional XY model and the quantum XXZ chain at T = 0 [92].
As the mapping between the two models relies on the local nature of the couplings,
however, the extension of the equivalence in presence of long-range couplings is
not obvious. Indeed, the original derivation in Ref. [92], neglects the z-z interac-
tion terms with a range ≥ 4 lattice sites in the resulting Hamiltonian and introduces
a suitable, averaged, interaction term for distances smaller than three lattice sites.
This allows introducing a bosonic hard-core condition and the mapping onto the 1d
quantum XXZ Hamiltonian. This approach cannot be straightforwardly applied to
the case of the 2d XY model with long-range interactions, as one should show the
RG irrelevance of terms violating the hard-core condition.

Therefore, an interesting question is to ascertain whether and how the T = 0
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Figure 2.3: Qualitative phase diagram of the long-range XXZ quantum chain studied in
Ref. [91]. The CSB (continuous simmetry breaking) phase corresponds to the SSB phase
of the long-range XY model, the AF (anti-ferromagnetic) phase to the disordered one, the
gapless XY phase to the BKT phase. The topology of the phase diagram is the same of the
long-range XY case (Fig. 2.2), but here the border between the new broken phase and the
gapless XY phase of the chain goes from 𝜎 = 2 to 𝜎 = 1, as discussed in the text. In the
region 𝜎 < 1 the intermediate phase disappears.
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phase diagram of the 1d XXZ Hamiltonian with long-range interactions

H = −
∑︁
i ,r

1
r1+𝜎

(
Sxi S

x
i+r + S

y
i S

y
i+r − ΔS

z
i S

z
i+r

)
(2.60)

(where 𝜎 > 0 and Sx ,y ,z are the components of the spin 1/2 operators) is related to
that of the 2d classicalXY model. It is worth noting that Hamiltonian (2.60) has been
studied in Ref. [91] through the bosonization technique and numerical simulations.
The effective action derived there describing the XXZ model bears a strong resem-
blance to the one of Eq. (2.33) . The resulting RG flow is therefore similar to the
one of Eq. (2.52) indicating that the long-short-range crossover of the two models
is somehow analogous. In particular, identifying in Eqs. (4) and (8) of Ref. [91]
K , gLR , g with 𝜋 J/4, g , y respectively, these flow equations become

dyℓ
dℓ

= (2 − 𝜋 J )y
dgℓ
dℓ

=

(
2 − 𝜎 − 2

𝜋 Jℓ

)
gℓ

d Jℓ
dℓ

= A( J )gℓ

(2.61)

A( J ) being a function of J , depending on the RG-scheme. The similarity between
Eq. (2.52) and Eq. (2.61) can be traced back both to the fact that the z-z long-range
interaction is actually irrelevant (for 𝜎 > 0) and to the fact that the coefficient of the
time derivative in the bosonized action does not renormalize (see the corresponding
discussion for 𝜎 < 0 in Ref. [93]). This also explains why both phase diagrams
feature three phases: the SSB, the disorder and the BKT one, which are called
in Ref. [91] continuous symmetry breaking (CSB) phase, anti-ferromagnetic (AF)
phase and gapless XY phase, respectively.

Let us notice that in the long-range regime, the usual mapping based on the co-
herent spin states, would result in a highly anisotropic action, due to the fact that one
still has short-range interactions along the Euclidean time direction [94]. In princi-
ple, a similar anisotropy would be present in the bosonized action of Ref. [91] due to
the presence of the z-z long-range contribution. As already noticed, however, this
term turns out to be irrelevant so that the effective infrared action is actually isotropic.

Notice that Eqs. (2.61) predict that the BKT phase extends here up to 𝜎 = 1,
rather than 𝜎 = 7/4. This difference boils down to the fact that, in the short-range
regime, in correspondence to the border between the XY and the anti-ferromagnetic
phase (Δ = 1) , the correlation functions of the x,y components decay as r−1, rather
than r−1/4, so that the corresponding anomalous dimension is 𝜂sr = 1 and therefore,
using the formalism introduced with Sak’s criterion, the smallest value of 𝜎∗ is 1 and
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𝜎∗ ranges between 1 and 2. This has to be compared with the range for 𝜎∗ between
7/4 and 1 for the classical long-range XY at finite temperature in d = 2.

Even if the ranges of 𝜎∗ do not coincide, the qualitative form of the phase dia-
grams of the two models is, therefore, the same, as it is possible to see from Fig. 2.3.
This is similar to the results in Fig. 1 of Ref. [91] (let us notice that 1/𝛼 ≡ 1/(1 + 𝜎)
on the vertical axis is replaced by 1/𝜎 in our Fig. 2.3) . In that figure two lines, one
separating the BKT and the SSB phases, and the other separating the BKT and the
disordered phases, are drawn as extracted from numerical DMRG simulations. It
is not clear by the figure whether and where the two lines are going to merge in
correspondence of 𝜎 = 1, as foreseen by Eqs. (2.61) and in agreement with the pic-
ture presented in this paper. Therefore, more extensive numerical simulations are
needed to confirm the predictions from Eqs. (2.61) in the vicinity of 𝜎 = 1.

Moreover, the substantial similarity between the field theory descriptions of the
two models implies that the magnetization m∥ in the x-y plane of the XXZ chain,
scales as

lnm∥ ∼ −eB(Δc−Δ)
−1/2

(2.62)

i.e. it follows the same scaling of Eq (2.59) . This scaling (which eludes the current
classification [95]) is, to the best of our knowledge, a new prediction for the XXZ
long-range model.

The present result fits within the effective-dimensionality picture described in
Ref. [12], for long-range quantum systems. In particular, the crossover between vari-
ous long-range regimes of the quantumO(n)model in dimension d can be described
within the picture of the effective dimension introduced in section Sec. (1.2.4)

De f f =
2 − 𝜂sr(De f f )

𝜎
d + 1 (2.63)

valid for any 𝜎 < 2 − 𝜂sr(d), 𝜂sr(D) being the anomalous dimension of the D-
dimensional action which describes the short-range version of our model. For the
case the long-range d = 1 XXZ phase-diagram, when De f f = 2, we know that the
system undergoes a BKT transition, for which 𝜂sr is not defined. If, however, we take
𝜂sr ∈ [0, 1], rather than a single value, we find, from Eq. (2.63) we have

2 > 𝜎 > 1 (2.64)

that is, exactly the range of coexistence of the SSB and the BKT phases.
For 𝜎 < 2/3, we find De f f > 4 (with 𝜂sr(De f f ) = 0), so that the order-disorder

transition is expected to be captured by the mean-field picture. The same thing it is
supposed to happen for the d = 2 classical XY model in the 𝜎 < 1 region. Therefore
one could expect that the critical behavior of the quantum chain in the 2/3 < 𝜎 < 1
interval can be related to the one of the classical model for 1 < 𝜎 < 7/4. However,



References 55

2d XY 1d XXZ

𝜎 < 1 𝜎 < 2/3
1 < 𝜎 < 7/4 2/3 < 𝜎 < 1

7/4 < 𝜎 < 2 1 < 𝜎 < 2

𝜎 > 2 𝜎 > 2

Table 2.1: Correspondence between the phases of the 2d XY long-range model at finite
temperature (left) and in the 1d XXZ long-range model at zero temperature (right). For the
values of 𝜎 corresponding to the first line we have a mean-field SSB transition; in correspon-
dence of the second line an interacting SSB transition; in correspondence of the third we
have both the order-disorder phase transition and the BKT one; in correspondence of the
fourth, finally, only the BKT transition is present.

given that Eqs. (2.61) and Eq. (2.52) do not, respectively, apply in these regimes,
further studies would be necessary to clarify this point. While the mapping between
the two models is well established in the nearest-neighbors case [92], the similarity
between the phase diagrams of the classical and quantum models in the long-range
case is remarkable. A table summarizing the analogous phases of the quantum XXZ
and the classical XY model is presented, see Tab. 2.1.
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3 | The long-range Villain model

The study of the nearest-neighbors XY model is made easier by the introduction
of the so-called Villain model, introduced in [76], i.e. a simplified version of the
original Hamiltonian (2.1) , which shares the same universality class. In this Chap-
ter we address the long-range equivalent of the Villain model and derive its phase
diagram. We find a phenomenology with is different with respect to the one of the
long-range XY model discussed in Chapter 2, but it is rather close to the one of the
one-dimensional Ising model with 1/r2 interactions.

In particular, after introducing the long-range Villain model in Sec. 3.1, in 3.2
we discuss the reason why we expect the long-range XY model to be in a different
universality class. In Sec. 3.3 we derive the vortex-gas description of the model,
analogous to the Coulomb gas one, in Sec. 3.4 we derive the corresponding real-
space RG equations, and in Sec. 3.5 we describe the corresponding phase-diagram.
Finally, in Sec. 3.6 we comment on our result in the light of the field-theoretical
description of the model.

3.1 | Definition of the model

In the nearest-neighbors case, the Villain model consists of a series of plane rotators

H =
J
2

∑︁
⟨i, j⟩

(
𝜃 i − 𝜃 j − 2𝜋ni, j

)2 , (3.1)

where i, j ∈ ℤ2, the 𝜃 j ∈ ℝ are continuous lattice variables while ni, j ∈ ℤ are discrete
link variables which couples nearest-neighbors pairs and obey the relation ni, j = −nj,i.

The main advantage of the model is that the presence of this auxiliary integer
link variables is able to restore the periodicity of the XY Hamiltonian, without intro-
ducing a direct interaction between the angular variable. This can be seen explicitly
by noticing that Hamiltonian (3.1) is invariant under the local transformation

𝜃 j → 𝜃 j + 2𝜋Nj
ni, j → Nj − Ni ,

(3.2)
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with Ni ∈ ℤ, which can be thought of as a discrete gauge symmetry on the lattice
[75, 96]. On the continuous variables 𝜃 j this is exactly the local symmetry (2.3)
of the original XY model, so that the model can account for its non-trivial critical
properties [97].

Here we want to introduce the generalization of the Villain model to the case of
long-range, power-law decaying couplings, i.e.

J (r) ∼ Jr−2−𝜎 (3.3)

for r ≫ 1 (𝜎 > 0 in order to preserve the extensive nature of the thermodynamic
quantities [2]). Before going on let us notice how, beyond its link to the XY uni-
versality class, the physics of the Villain model per se has drown considerable at-
tention in the last decades, proving interesting both from the theoretical [98–100]
and numerical [101–103] point of views, with applications running from the study of
quantum-phase transitions [104] and superconductivity [105] to lattice gauge theo-
ries [96, 106–108] and deconfinement in high-energy physics [109]. The fate of the
model in presence of long-range couplings is thus an interesting problem in itself.

First, we notice how the naive generalization of the Hamiltonian (3.1) , in which
the sum runs all over the lattice sites i,j and J is replaced by Eq. (3.3) , is problematic.
Indeed in this case we would have to deal with link variables whose number grows
super-extensively (as O(N2)).

In order to overcome this problem, and define a sensitive generalization of the
model, we have to give a more general definition of the Villain model. For our pur-
poses, thus, we define the Villain model as a quadratic model in the 𝜃 j, which pre-
serves both the global O(2) and the local symmetry of Eq. (2.3) .

We now see how to explicitly construct the Villain Hamiltonian corresponding
to an XY model with a generic choice of the couplings J (r). To better understand
the procedure is, however, more convenient to address firstly the continuous version
(2.35) of the XY Hamiltonian, in which 𝜃 j is replaced by a continuous field 𝜃 (x). We
already see that the Berezinskii approximation alone, i.e. the substitution

1 − cos (𝜃 (x + r) − 𝜃 (x)) → 1
2
(𝜃 (x + r) − 𝜃 (x))2 , (3.4)

breaks the local symmetry (2.3) , which accounts for the periodicity of 𝜃 (x). In the
continuum limi, this property can be stated by saying that 𝜃 (x) is not a single-valued
function (but rather is defined up to integer multiples of 2𝜋) so that for each closed
path 𝜕A on the plane∮

𝜕A
∇𝜃 (x) · dx =

∫
A
∇ × ∇𝜃 (x) d2x = 2𝜋M (A) (3.5)

withM (A) ∈ ℤ and ∇× a = 𝜖 j ,k𝜕jak. If we divide the region of the plane A enclosed
by 𝜕A into two subregions A1, A2 we will have thatM (A) = M (A1) +M (A2) so that



Definition of the model 61

M (A) has the meaning of the total topological charge enclosed into the region of the
plane A. Accordingly, Eq. (3.5) can also be put in a local form, namely

∇ × ∇𝜃 (x) = 2𝜋
∑︁
k

mk𝛿 (x − xk) , (3.6)

where mk ∈ ℤ and xk can be interpreted as vortex charges and their positions respec-
tively. In the continuum limi, then, the Villain model can be defined as a boson 𝜃 (x),
interacting with point-like charges mk through the constraint (3.6) . In formal terms

Z =
∑︁
{mi }

∫
D(∇𝜃) e−𝛽H0 (𝜃)𝛿 (∇ × ∇𝜃 − 2𝜋n(x)) , (3.7)

where the sum represents the trace over all the possible vortex configurations, 𝛽H0
the quadratic Hamiltonian

𝛽H0 =
1
4

∫
d2xd2r J (r) (𝜃 (x + r) − 𝜃 (x))2 , (3.8)

and we introduced the vortex density

n(x) =
∑︁
k

mk𝛿 (x − xk). (3.9)

Let us notice how we are now integrating over the configurations of ∇𝜃 , which are
single-valued, instead of 𝜃 (x).

Let us now see how we can built the Villain model directly on lattice. Once again,
the quadratic approximation alone, namely

1 − cos
(
𝜃 j+r − 𝜃 j

)
→ 1

2
(𝜃 j+r − 𝜃 j)2 , (3.10)

would break the local symmetry of Eq. (2.3) , and thus the possibility of correctly
describing topological configurations. Indeed, let us notice that, given a closed loop
of P points on the lattice j1,j2,. . . ,jP ,jP+1 ≡ j1 the lattice equivalent of the integral in
Eq.(3.5) is given by

P∑︁
p=1

(
𝜃 jp+1 − 𝜃 jp

)
≡ 0. (3.11)

In order to overcome this problem, we follow the original idea of the seminal Villain’s
work, i.e. we introduce an integer-valued link variable ni, j (ni, j = −nj,i) for each pair
of lattice points and we make the further replacement

𝜃 j+r − 𝜃 j → 𝜃 j+r − 𝜃 j + 2𝜋ni, j+r. (3.12)
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Figure 3.1: A topological configuration, namely a vortex with charge mz = 1, and a corre-
sponding choice of the Villain link variables which encircle a parallelogram in such a way
to satisfy the constraint (3.16) . In agreement with the symmetry (3.2) the choice of the ni, j
which is different from zero is arbitrary.

As a consequence, the Villain Hamiltonian becomes

𝛽H0 =
1
4

∑︁
i≠j

J (r)
(
𝜃 i − 𝜃 j − 2𝜋ni, j

)2 , (3.13)

(with r = |j − i|) while the closed-loop integral of Eq.(3.5) is now

P∑︁
p=1

(
𝜃 ip+1 − 𝜃 jp − 2𝜋njp , jp+1

)
= 2𝜋

P∑︁
p=1

njp , jp+1 . (3.14)

In this language, the lattice-analogous of the constraint Eq.(3.5) imposes that the
charge enclosed in the region A defined by the jp,

M (A) =
∑︁
𝜕A

ni, j ≡
P∑︁
p=1

njp , jp+1 , (3.15)

is extensive, such that for any bipartition of the region in two sub-regions A1, A2
M (A) = M (A1) +M (A2). As a consequence, we can introduce for each point of the
dual lattice z its corresponding vortex charge mz so that the constraint finally reads as∑︁

𝜕A

ni, j =
∑︁
z∈A

mz. (3.16)
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See Fig. 3.1 for a graphical interpretation of the constraint (3.16) within a prototypi-
cal topological configuration. Let us notice how, strictly speaking, one or more of the
z could lie on the boundary 𝜕A of the region A. This could, in principle, cause some
problems. However, as we are going to see, this boundary issue is not a problem in
the thermodynamic limit as only the large loops are going to contribute to the critical
behavior.

Finally, the partition function of the model takes the form

Z =
∑︁
{mi }

∫ ∏
j

d𝜃 j e−𝛽H0𝛿

(∑︁
𝜕A

ni, j =
∑︁
z∈A

mz

)
, (3.17)

with H0 given by (3.13) and we assume J (r) to have the form of Eq. (3.3) .

3.2 | Can the Villain model reproduce the XY phase di-
agram?

Before going on with the study of the long-range version (3.17) of the Villain model,
let us briefly discuss, on very general grounds, whether the latter can fall in the same
universality class of the corresponding XY model. As already mentioned, this is the
case for the nearest-neighbors (𝜎 →∞) regime: this comes from the fact that, once
the 𝜃 i are integrated out, the Villain Hamiltonian can be exactly mapped into the
Coulomb gas Hamiltonian. While the same calculation can be performed even for
the case of long-range-decaying couplings (and it will actually be performed in the
next section) there are, in fact, reasons to believe this will not reproduce the XY
phenomenology, as we are going to argue.

First, let us notice that, if on the one hand Hamiltonian (3.17) improves the
quadratic approximation by taking into account the presence of topological defects,
on the other hand it can only account for an interaction between vortices which is
quadratic in their charges. Let us instead now try and isolate the topological compo-
nent in the action (2.33) which describes the continuous version of the long-range
XY model. We start by splitting the field into a topological part and a non-topological,
spin-waves, part:

𝜃 (x) = 𝜃0(x) + 𝜃 top(x) , (3.18)

where
∇ × ∇𝜃0(x) = 0 ∇ × ∇𝜃 top(x) = 2𝜋n(x) , (3.19)

n(x) being the vortex density given by Eq. (3.9) . The ambiguity in the decomposi-
tion can be lifted if we impose the further constraint ∇ · ∇𝜃 top = 0 (see [110, 111]).
This allows us to write 𝜕i𝜃 top = 𝜖 i j𝜕j𝜃 where 𝜃 is singled valued. It follows that

∇2𝜃 (x) = 2𝜋n(x) , (3.20)
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that can be solved introducing the d = 2 Green function of the Laplacian Gc (r) =
− 1

2𝜋 ln r , finding
𝜃 (x) = 2𝜋

∑︁
k

mkGc ( |x − xk |) (3.21)

In terms of the decomposition (3.18) then, the kinetic term in action (2.33) decou-
ples into the two terms

J
2
|∇𝜃 |2 =

J
2
|∇𝜃0 |2 +

J
2
|∇𝜃 top |2

=
J
2
|∇𝜃0 |2 +

J
2
|∇𝜃 |2.

(3.22)

By replacing the solution (3.21) in the second term we get the usual Coulomb gas
interaction, so that S [𝜃] can be written as

S [𝜃] = J
2

∫
d2x |∇𝜃0 |2 − 𝜋 J

∑︁
j≠k

m jmk ln |xk − x j |

+ 𝜀c
∑︁
k

m2
k +

g
2

∫
d2x e−i (𝜃0+𝜃 top) ∇𝜎ei (𝜃0+𝜃 top) ,

(3.23)

where 𝜀c is the core vortex energy, which takes into account the small-distance singu-
lar behavior of the topological configurations. For small values of g we can integrate
out the non-topological component of the field, 𝜃0. At the first order in g we find
the the cumulant correction 〈

SLR [𝜃0 + 𝜃 top]
〉

0 , (3.24)

where the average is computed on the quadratic non-topological term. By exploiting
the form (2.34) of SLR∫

d2x
∫
r>a

d2r
⟨cos(Δr𝜃0)⟩0

r2+𝜎 (1 − cosΔr𝜃 top)

∼
∫
d2x

∫
r>a

d2r
1 − cosΔr𝜃 top(x)

r2+𝜎+𝜂sr ( J )
,

(3.25)

up to immaterial additive constants. This has the same form of Eq. (2.34) so that,
provided that 𝜎 + 𝜂sr( J ) < 2, it can be written as well as

g
2

∫
d2x e−i𝜃 top∇𝜎+𝜂sr ( J )ei𝜃 top , (3.26)

where 𝜂sr( J ) = 1/2𝜋 J and we absorbed some multiplicative proportionality factor
into the coupling g. For 𝜎 + 𝜂sr( J ) > 2, the above operator should be instead
replaced with the laplacian (see Appendix B).
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Finally, Eq. (3.23) becomes

Sefb ∼ − 𝜋 J
∑︁
j≠k

m jmk ln |xk − x j | + 𝜀c
∑︁
k

m2
k

+ g
2

∫
d2x e−i𝜃 top∇𝜎+𝜂sr ( J )ei𝜃 top .

(3.27)

Let us consider the regime 𝜎 + 𝜂sr( J ) > 2. In this case

− e−i𝜃 top∇2ei𝜃 top = |∇ei𝜃 top | = |∇𝜃 top |2 (3.28)

so that, by replacing 𝜃 top with its expression in terms of the mi , we recover the usual
Coulomb gas interaction

Sefb ∼ −𝜋 ( J + g)
∑︁
j≠k

m jmk ln |xk − x j | + 𝜀c
∑︁
k

m2
k . (3.29)

On the other hand, this is in agreement with the main result of our analysis in Chap-
ter 2, namely, the fact that, for 𝜎 + 𝜂sr( J ) > 2, the long-range term is not relevant
so that the XY model undergoes a BKT transition (which, in turn, can be described
in terms of a Coulomb gas).

Let us now analyze the 𝜎 + 𝜂sr( J ) < 2 regime. Since the fractional Laplacian
does not obey the simple Leibnitz rule [112], here it is not possible to derive a sim-
ple charge-charge interaction, unless we expand the exponential term in Eq. (3.27) .
This expansion is actually not easily justified, since the topological configurations 𝜃 top
are spatially extended. This suggests that the higher-order terms in 𝜃 top in the expan-
sion are relevant so that we have to keep in the Hamiltonian higher-order interaction
terms in themk (e.g. proportional tomim jmkmp), which cannot be obtained within the
Villain approximation. Moreover, as seen in Chapter 2, 𝜎 + 𝜂sr( J ) < 2 is precisely
the condition under which the LR term becomes relevant. In this regime, our RG
analysis foresees a boundless growth for the coupling g , so that the integration on 𝜃0
cannot be performed perturbatively as we did to derive Eq. (3.27) .

The fact that spin-waves and topological contributions do not decouple is a hint
that the long-range phenomenology cannot be captured by a quadratic model in
𝜃 , as the Villain model. As we provided reasons to believe the long-range two-
dimensional XY model is in a different universality class with respect to the Villain
model (3.17) , the remaining part of the present Chapter will be devoted to under-
standing the critical behavior of the latter. Let us notice, however, that the numer-
ical results obtained in Refs. [113, 114], seem to indicate that the diluted version of
the long-range XY model has a different phase diagram with respect to the original
model as well (further investigation, however, would be needed in order to confirm
this expectation).
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3.3 | Vortex-vortex interaction

In this section we derive the effective interaction between topological charges mz in
Eq. (3.17) . To this aim, we define the Fourier transformed variables

𝜃 j =
1
√
N

∑︁
q

𝜃qeiq·j nj, j+r =
1
√
N

∑︁
q
nq,reiq·(j+

r
2 ) , (3.30)

with q a vector of the reciprocal lattice. The Hamiltonian Eq. (3.13) becomes:

𝛽H0 =
1
4

∑︁
q,r

J (r)
���2i sin q · r

2
𝜃q − 2𝜋nq,r

���2 . (3.31)

In order to integrate out the 𝜃 j, it is useful to introduce the new variables

𝜓q = 𝜃q +
2𝜋i
𝜔(q)

∑︁
r
J (r) sin q · r

2
nq,r (3.32)

where, as in Chapter 2,

𝜔(q) =
∑︁
r
J (r) (1 − cos q · r) = 2

∑︁
r
J (r) sin2 q · r

2
(3.33)

(the asymptotic behavior of 𝜔(q) for small q is worked out in Appendix A). In terms
of the new variables the Hamiltonian decouples into two pieces, a spin-wave term
and a topological term, which only depends on the discrete link variables

𝛽H0 = HSW(𝜓) +Htop(m) (3.34)

The two pieces are given by:

HSW =
1
2

∑︁
q

𝜔(q) |𝜓q |2

Htop =
𝜋2

𝜔(q)
∑︁
q

[
𝜔(q)

∑︁
r
J (r) |nq,r |2 − 2

∑︁
r,r′

J (r) J (r′) sin q · r
2

sin
q · r′

2
nq,r′n∗q,r′

]
(3.35)

Let us notice how the spin-wave part of the Hamiltonian exactly corresponds to the
quadratic approximation of the original long-range XY Hamiltonian, analyzed in
Sec. 2.2.
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In order to derive the exact form of the vortex-vortex interaction let us focus now
on Htop. First, we notice it can be arranged as

Htop =
∑︁
q

𝜋2

𝜔(q)
∑︁
r,r′

J (r) J (r′)
����sin q · r′2

nq,r − sin
q · r
2
nq,r′

����2 . (3.36)

Back to the real space this takes the form

Htop =
∑︁
r,r′

J (r) J (r′)
∑︁
j, j′

f (j− j′) (∇rnj, j+r′ −∇r′nj, j+r) (∇rnj′ , j′+r′ −∇r′nj′ , j′+r) , (3.37)

where

f (x) = 𝜋2

4N

∑︁
q

eiq·x

𝜔(q) (3.38)

and we introduced the notation of the discrete curl

∇rnj, j+r′ − ∇r′nj, j+r ≡ nj, j+r + nj+r, j+r+r′ + nj+r+r′ , j+r. (3.39)

As expected, once the continuous field has been integrated out, the interaction de-
pends only on gauge invariants. Indeed, we have that:

∇rnj, j+r′ − ∇r′nj, j+r =
∑︁

𝜕P(j,r,r′)
ni,i′ , (3.40)

where the P(j, r, r′) denotes the region of the plane corresponding to a parallelo-
gram with vertices j,j + r,j + r + r′, j + r (and thus sides r,r′). As a consequence, the
symmetry of Eq. (3.2) leaves these quantities invariant.

By means of the constraint (3.16) finally, we can express the Hamiltonian in terms
of the topological charges enclosed in each parallelogram

Htop =
∑︁
r,r′

J (r) J (r′)
∑︁
j, j′

f (j − j′) ©­«
∑︁

z∈P(j,r,r′)
mz

ª®¬ ©­«
∑︁

z′∈P(j,r,r′)
mz′

ª®¬ . (3.41)

Remarkably, only the congruent parallelograms (which share the same r and r′) do
interact. Reshuffling the sums we finally find the vortex-vortex potential

Htop =
∑︁
z,z′

mzmz′U (z − z′) , (3.42)

with
U (z − z′) =

∑︁
r,r′

J (r) J (r′)
∑︁

j, j′ |z∈P(j,r,r′)z′∈P(j′ ,r,r′)
f (j − j′). (3.43)
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Figure 3.2: For a given point of the plane z, all the parallelograms P of sides r, r′ such that
z ∈ P (as the red and the blue one in Figure) are such that their internal points belong to a
parallelogram of sides 2r, 2r′, centered in z.

3.3.1 | Large-distance limit

We want now to derive an approximate expression for the potential (3.43) valid for
large distances. In this limit, we can as well replace the sum in Eq. (3.43) with an
integral. Since only congruent parallelograms interact we can replace j − j′ with the
distance between the centers of the two. To correctly parametrize the integral we
note that, fixed z and fixed r, r′ the parallelograms such that z ∈ P are those which
center belongs to a parallelogram centered in z of sides r, r′ (see Fig 3.2). In turn, each
point of this parallelogram can be written as j = z+𝜆 r+ 𝜇r′ with 𝜆 , 𝜇 ∈ [−1/2, 1/2].
By choosing 𝜆 , 𝜇 as our coordinates we have to carry a factor |r × r′| due to the
jacobian. Finally, we can expressU as

U (z − z′) =
∫
d2r

∫
d2r′(r × r′)2 J (r) J (r′)∫ 1/2

−1/2
d𝜆d𝜆 ′

∫ 1/2

−1/2
d 𝜇d 𝜇′ f (z − z′ + (𝜆 − 𝜆 ′)r + (𝜇 − 𝜇′)r′) .

(3.44)

So far, all our considerations are equally valid for any choice of J (r). In what follows
we are going to replace J (r) with its asymptotic form J (r) ∼ Jr−2−𝜎 valid for r ≫ 1.
This is safe, as we are interested in the large-distance limit.

By exploiting the definition (3.38) of f (x), which in the continuum limi becomes

f (x) = 𝜋2

4

∫
d2q
(2𝜋)2

eiq·x

𝜔(q) , (3.45)
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we find the expression for the Fourier transform ofU (q) ofU (z − z′)

U (q) = (𝜋 J )
2

4𝜔(q)

∫
d2r
r2+𝜎

∫
d2r′

r ′2+𝜎
(r × r′)2

∫ 1/2

−1/2
d𝜆d𝜆 ′d 𝜇d 𝜇′eiq·((𝜆−𝜆

′)r+(𝜇−𝜇′)r′)

=
(2𝜋 J )2
𝜔(q)

∫
d2r
r2+𝜎

∫
d2r′

r ′2+𝜎
(r × r′)2 sin2(q · r/2)

(q · r)2
sin2(q · r′/2)
(q · r′)2

.

(3.46)

By switching to the polar coordinates on the plane, for r and r′, we have

r × r′ = rr′ sin(𝜃 − 𝜃 ′) q · r = qr cos 𝜃 (3.47)

(and similarly for q′ · r′). Through the further substitution 𝜌 = qr cos 𝜃/2, we get
then

U (q) =𝜔(q)−1
(
21−𝜎𝜋 Jq𝜎−2

∫
d 𝜌
𝜌1+𝜎 sin2 𝜌

)2

∫
d𝜃 ′d𝜃 | cos 𝜃 |𝜎−2 | cos 𝜃 ′|𝜎−2 sin2(𝜃 − 𝜃 ′).

(3.48)

In Appendix A we derive the asymptotic expression of 𝜔(q) in the regime 0 < 𝜎 < 2
to be q to be 𝜔(q) ∼ Jc𝜎q𝜎 , with

c𝜎 = 21−𝜎
∫ ∞

0

d 𝜌
𝜌1+𝜎 sin2 𝜌

∫ 2𝜋

0
d𝜃 | cos 𝜃 |𝜎 . (3.49)

As a consequence we have that

U (q) = I (𝜎)𝜔(q)
q4

, (3.50)

where

I (𝜎) = 𝜋2
(∫

d𝜃 ′′| cos 𝜃 ′′|𝜎
)−2 ∫

d𝜃d𝜃 ′ sin2(𝜃 − 𝜃 ′) | cos 𝜃 |𝜎−2 | cos 𝜃 ′|𝜎−2

= 2𝜋2

∫
d𝜃 sin2 𝜃 | cos 𝜃 |𝜎−2∫

d𝜃 ′| cos 𝜃 ′|𝜎

=
2𝜋2

𝜎 − 1

(3.51)

We see then the that proportionality constant I (𝜎) converges as long as 𝜎 > 1. If we
carefully insert an infrared cutoff L it is easy to see that the divergence for 𝜎 ≤ 1 is
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actually an infrared divergence (∝ L1−𝜎 , L being the linear size of the system). This
mean that, as 𝜎 → 1+, in the thermodynamic limit we cannot excite the vortices for
any temperature, so that only the spin wave part HSW of the Hamiltonian survives,
and the system exhibits a finite magnetization at any temperature.

For 1 < 𝜎 < 2 the vortex-vortex potential should be taken into account. In
Fourier space, for q ≪ 1, it takes the form:

U (q) ∝ 𝜔(q)
q4
∼ Jq𝜎−4 +O(q−2) (3.52)

In turn, this implies that for R ≫ 1 (R being the distance between a pair of vortices):

U (R) ∼ J
∫ 1/R

1/L
q𝜎−3dq =

J
2 − 𝜎

(
L2−𝜎 − R2−𝜎

)
(3.53)

The additive constant L2−𝜎 brings a term ∝ L2−𝜎 (∑i mi)2 in the Hamiltonian (3.42) ,
which kills all the non neutral configurations, exactly as in the short-range case. Then,

Htop =
∑︁
i , j

mim jU (ri − r j)

=U (0)
∑︁
i

m2
i +

∑︁
i≠ j

mim jU (ri − r j)

=
∑︁
i≠ j

mim j
(
U (ri − r j) −U (0)

) (3.54)

where now we denoted with {ri} and {mi} respectively the position and the charge of
the vortices of a given configuration, and noticed that, for any neutral configuration∑
i≠ j mim j = −

∑
i m2

i . We can thus write

U (R) −U (0) ∼ J
∫

d2q
(2𝜋)2

eiq·r − 1
q4−𝜎 ∼ −J R2−𝜎 . (3.55)

Let us notice that, now that the sum runs only on i ≠ j,U (r) is no longer defined up
to additive constants. It is customary however to define the energy so that it is zero
for r = 1, which is the minimum distance at which a pair can be created. This means
that in the Hamiltonian we can write:

Htop =
∑︁
i≠ j

mim j
(
U (ri − r j) −U (1)

)
+ (U (0) −U (1))

∑︁
i

m2
i (3.56)

Now we can finally introduce:

V (r) =U (r) −U (1) = g
∫

d2q
2𝜋

eiq·r − eiq·n

q4−𝜎 = −𝛾
(
r2−𝜎 − 1

)
(3.57)
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(with g , 𝛾 ∝ J ) and the finite quantity 𝜀c = U (0) −U (1) > 0, which physically rep-
resents the core energy associated with the creation of a vortex pair at the minimum
distance possible. In terms of those the Hamiltonian becomes

Htop =
∑︁
i≠ j

mim jV (ri − r j) + 𝜀c
∑︁
i

m2
i (3.58)

while, the (topological part of the) partition function is given by

Ztop =
∑︁
{m j}

∫ ∏
j

d2r je−Htop . (3.59)

Finally, let us notice how in the 𝜎 > 2 case we recover the usual logarithmic interac-
tion of the two-dimensional Coulomb gas as

U (R) ∼ J
∫ 1/R

1/L
q−1dq = J (lnL − ln r). (3.60)

Since in this case, as noticed, the dispersion relation 𝜔(q) of the spin waves has the
same form of the nearest-neighbours one, we can safely conclude that the Villain
model is in the same universality class of the nearest-neighbours case for all 𝜎 > 2.

3.4 | Real-space renormalization group procedure

In this are now going to carry out the renormalization group procedure in the vortex
gas representation. To this extent we then introduce the renormalization parame-
ter ℓ such that the effective lattice spacing aℓ is given by aℓ = eℓ . Our picture is
the following: at scale ℓ the vortex-antivortex pairs with scale < aℓ renormalizes
the vortex-vortex potential. Let us notice that, while the ultra-violet (UV) potential
Vℓ=0(r) is given by Eq. (3.57) , there is no reason for the effective potential at scale ℓ ,
Vℓ (r), to have the same functional form.

Since in the UV the potential grows as a power law a simple energy-entropy scal-
ing argument would suggest that the fugacity y ≡ e−𝜀c is not relevant at any temper-
ature. However, as we are going to see, these naive expectations are defied by the
renormalization group calculations, which shows that, for every finite value of ℓ , the
behavior at large distances of the potential is no longer given by the power law of
Eq. (3.57) . The renormalization procedure we present here is the straightforward
generalization of those introduced for the short-range case by Kosterlitz and Thou-
less [31] to arbitrary (well-behaved) interaction potential and it is similar to those
present in [72] for a screened Coulomb interaction. However, up to our knowledge,
the corresponding treatment for the case of a confining interaction as Eq. (3.67) is
absent in the literature.
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In order to carry out the renormalization process, we assume y ≪ 1: in this
regime only the vortices with charge ±1 will actually contribute to the renormaliza-
tion procedure. Then, by the neutrality condition, every possible configuration will
have the same number of positive and negative charges, and the partition function
takes the form:

Ztop =

∞∑︁
p=0

y2p
ℓ

p!2

∫
|ri−r j |>1

p∏
i=1

dr+i d
2r−i e

−∑
i≠ j mim jVℓ (ri−r j) (3.61)

where r±i are the positions of the vortices with positive/negative charge respectively.
To perform the renormalization we integrate all over the pair such that 1 < |ri −

r j | < e𝛿ℓ . In order to do so, let us consider the sector with p pairs of vortices in the
partition function of Eq. (3.61) . There are p2 equivalent ways to choose the pair to
trace out. Then, assuming the coordinates of this couple to be r±p ≡ r± we have an
additional term given by:

y2pp2

p!2

∫
|ri−r j |>e𝛿ℓ

p∏
i=1

d2r+i d
2r−i

∫
1< |ri−r j |<e𝛿ℓ

dr+pdr
−
p e
−∑′

i≠ j mim jV (ri−r j)

=
y2p

(p − 1)!2

∫
|ri−r j |>e𝛿ℓ

p−1∏
i=1

dr+i dr
−
i e
−∑′

i≠ j mim jV (ri−r j)∫
1< |r+−r− |<e𝛿ℓ

d2r+d2r−e−V (r
+−r−)−∑′i mi (V (ri−r+)−V (ri−r−)) ,

where we are denoting with
∑′ the summation all over the remaining charges, namely

i , j ≠ p and we are dropping the subscript ℓ in V (r) and y in order to keep the
notation easy. This gives nothing but a p−1-pair term with the additional interaction:

y2(p−1)

(p − 1)!2

∫
|ri−r j |>e𝛿ℓ

p−1∏
i=1

d2r+i d
2r−i e

−∑′
i≠ j mim jV (ri−r j) (1 + A)

≈ y2(p−1)

(p − 1)!2

∫
|ri−r j |>e𝛿ℓ

p−1∏
i=1

d2r+i d
2r−i e

−∑′
i≠ j mim jV (ri−r j)+A

(3.62)

where we introduced the quantity:

A= y2
∫

1< |r+−r− |<e𝛿ℓ
d1r+d2r−e−V (r

+−r−)−∑′i mi (V (ri−r+)−V (ri−r−)) . (3.63)

We now introduce 𝝃 = r+ − r−, x =
r++r−

2 . Moreover, since 𝜉 = 1 + O(𝛿ℓ) and
V (1) = 0, we have that V (r+ − r−) = O(𝛿ℓ2) and can be neglected. At the same
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time, since the potential is supposed to vary slowly at large distance, we can expand
V (ri − r+) −V (ri − r−) = 𝝃 · ∇V (ri − x) +O(𝜉 3). Then we obtain

A= y2
∫

1<𝜉<e𝛿ℓ
d2𝝃d2xe−𝝃 ·

∑′
i mi∇V (x−ri )

= y2
∫

1<𝜉<e𝛿ℓ
d2𝝃d2x

(
1 − 𝝃 · E + 1

2
𝜉a𝜉bEaEb +O(𝜉 4)

) (3.64)

where we introduced the electric filed E(x) =
∑
i mi∇V (x − ri). Performing the

integral over 𝝃 :

A= const + y2(e𝛿ℓ − 1) 𝜋
2

∫
d2x E2 = 𝛿ℓ

𝜋y2

2

∫
d2x E2 +O(𝛿ℓ2) (3.65)

where we got rid of the additive constant which has no physical meaning. Now we
have to compute the electrostatic energy: let us notice that, in the ultraviolet, the
electric field of a single charge goes as ∇V ∼ r1−𝜎 for r ≫ 1; taking into account the
global neutrality we have E ∼ r−𝜎 and E2 ∼ r−2𝜎 so that the integral is convergent
only for 𝜎 > 1, which is exactly the range of the parameter we are interested in. In
this case we can write∫

d2x E2(x) =
′∑︁
i , j

mim j

∫
d2x∇V (x + ri) · ∇V (x + r j)

=

′∑︁
i , j

mim j

∫
d2x∇V (x) · ∇V (x + r j − ri)

=

′∑︁
i≠ j

mim j

∫
d2x

(
∇V (x) · ∇V (x + r j − ri) − |∇V (x) |2

) (3.66)

where we once again used the charge neutrality to write all in terms of the sum with
i ≠ j. Thus, setting p′ = p−1, we end up with a partition function with the same form
of Eq. (3.61) with a renormalized two-body interaction given by Vℓ (r) → V (r) −
𝜋2

2 y
2
ℓ
ΔV (r), with

ΔV (r) =
∫
d2x

(
∇Vℓ (x) · ∇Vℓ (x + r) − |∇Vℓ (x) |2

)
. (3.67)

Finally, in order to correctly write the change of the partition function under the
renormalization procedure we have to change the length-scale r̃ = re−𝛿ℓ so that the
new cutoff length aℓ+𝛿ℓ is 1 as well. Let us notice that, from the integration measure
of Eq. (3.61) we get a factor e4p𝛿ℓ which can be reabsorbed into a renormalization
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of the fugacity, yℓ → yℓe2𝛿ℓ . In terms of r̃ the potential becomes Vℓ (r) = Vℓ (r̃) +
r̃ V ′

ℓ
(r̃)𝛿ℓ +O(𝛿ℓ2). From now on we will rename r̃ , r. Thus, up to higher orders in

𝛿ℓ , we can writeVℓ (r) →Vℓ (r) + 𝛿V (r) where

𝛿V (r) = 𝛿ℓ

(
rV ′ℓ (r) −

𝜋y2

2
ΔV (r)

)
(3.68)

Let us notice that the new interaction energy no longer respects the conditionV (1) =
0, so that the procedure cannot be properly repeated. To make up for it we can
exploit once again the neutrality condition to have:

Htop =
∑︁
i≠ j

mim j
(
Vℓ (ri − r j) + 𝛿V (ri − r j)

)
=

∑︁
i≠ j

mim jVℓ+𝛿ℓ (ri − r j) − 𝛿V (1)
∑︁
i

m2
i

(3.69)

with Vℓ+𝛿ℓ (r) = Vℓ (r) + 𝛿V (r) − 𝛿V (1). The last term can be absorbed into the
renormalization of the fugacity:

yℓ+𝛿ℓ = yℓe2𝛿ℓe𝛿V (1) (3.70)

Summarizing we have been able to put the partition function in the same form of the
original one, with a different fugacity yℓ+𝛿ℓ and a different vortex interaction energy
Vℓ+𝛿ℓ (r), given by

𝜕ℓVℓ (r) = rV ′ℓ (r) −V
′
ℓ (1) −

𝜋

2
y2
ℓ (ΔVℓ (r) − ΔVℓ (1))

dyℓ
dℓ

= yℓ
(
2 +V ′ℓ (1)

)
+O(y3)

(3.71)

with ΔV from Eq. (3.67) . These are the renormalization equations we are interested
in.

3.5 | Phase diagram of the model

We now want to derive the phase diagram of the model, discussing the behavior of
the renormalization flow described by Eqs. (3.71) . Quite surprisingly, in spite of the
fact that we are dealing with a non-linear functional set of equations, it is possible to
solve them analytically.

Let us start by noticing that, since ΔVℓ in Eq. (3.67) involves a convolution, it is
natural to writeVℓ (r) as

Vℓ (r) =
∫

d2q
(2𝜋)2

Uℓ (q)
(
eiq·n − eiq·r

)
, (3.72)
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with n2 = 1 andUℓ=0(q) = −gq−4−𝜎 , in agreement with Eq. (3.57) . In terms ofUℓ (q)
the first equation of Eq. (3.71) becomes

𝜕ℓUℓ (q) = −
(
2 + q𝜕q

)
Uℓ (q) +

𝜋

2
y2
ℓ q

2Uℓ (q)2 , (3.73)

which, in turn, can be rewritten as

𝜕ℓU−1
ℓ (q) =

(
2 − q𝜕q

)
U−1
ℓ (q) −

𝜋

2
y2
ℓ q

2. (3.74)

Taking into account our initial condition we can solve this equation by using the
ansatz:

U−1
ℓ (q) = −Aℓq4−𝜎 − Bℓq2 , (3.75)

finding:

dAℓ

dℓ
= −(2 − 𝜎)Aℓ

dBℓ

dℓ
=

𝜋

2
y2
ℓ

(3.76)

along with the initial condition A0 = g−1, B0 = 0. We have then that Aℓ → 0 in
the infrared, while B0 grows as long as yℓ ≠ 0. The vortex-vortex potential becomes
then:

Vℓ (r) = −
∫

d2q
(2𝜋)2

eiq·n − eiq·r

Aℓq4−𝜎 + Bℓq2
= −

∫
dq
2𝜋

1 −J0(qr)
Aℓq3−𝜎 + Bℓq

, (3.77)

( Jk (qr) being the k-th order Bessel function of the first kind). By computingV ′(r)
we can derive the equation for y which, together with Eqs. (3.76) , gives the reduced
RG set of equations of the model

dyℓ
dℓ

= yℓ

(
2 −

∫
dq
2𝜋

J1(q)
Bℓ + Aℓq2−𝜎

)
(3.78)

From Eqs. (3.76) it follows that for any finite ℓ we have Bℓ > 0, so that the second
term in the denominator of Eq. (3.77) dominates for q ≪ 1 andVℓ (r) ∼ − ln r for
r ≫ 1. As announced then, the infrared behavior of the vortex-vortex potential
is, for any finite value of ℓ , qualitatively different from the ultraviolet behavior. In
particular, let us notice that the infrared, as Aℓ → 0, the RG equations (3.71) and
(3.78) can be approximated as

dBℓ

dℓ
=

𝜋

2
y2
ℓ

dyℓ
dℓ

= yℓ

(
2 − 1

2𝜋Bℓ

)
,

(3.79)
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i.e. exactly the form of the BKT RG flow for the short-range XY model.
As a consequence, we also have here a line of stable fixed points y = 0, B < 1

4𝜋 ,
corresponding to a phase in which the vortices are not relevant. At the same time it
will exist a transition temperatureTBKT such that, forT > TBKT , the vortices unbind
so that the system flows toward a disordered phase.

Let us notice, however, how here the low-temperature phase (T < TBKT ) does
not correspond to a quasi-long-range-ordered phase. Indeed, since the vortices are
irrelevant and it is not possible to excite vortex-antivortex pair, the constraint (3.16)
tells us that in the infrared the link variables ni, j are suppressed as well. As a conse-
quence, from Eq. (3.32) , in the infrared we have the identification

𝜃 (x) → 𝜓 (x). (3.80)

Since HSW is a quadratic Gaussian model, with the dispersion relation 𝜔(q) ∼ q𝜎 ,
we once again find the low-temperature effective Hamiltonian

S ∼ −1
2

∫
d2x 𝜃∇𝜎𝜃 (3.81)

which, in turn, foresees a finite magnetization for the order parameter s = (cos 𝜃 , sin 𝜃)
(see Sec. 2.2 and 2.6 of Chapter 2).

Unlike the case of the long-range XY model, however, here we do not find any
intermediate quasi-long-range-order phase. Instead, our analysis foresees a non-
universal jump in the magnetization between the ordered and the disordered phase.
We expect, however, the correlation length 𝜉 in the disorder phase (T > TBKT ) to
exhibit the usual BKT scaling, namely

ln 𝜉 ∼ (T −TBKT )−1/2 , (3.82)

as the set of RG Eqs. (3.79) has the same form of the standard BKT one.
We can thus conclude unambiguously that the Villain model and the XY model

are not in the same universality class for 𝜎 < 2.
In summarizing, we find the following phase diagram for the Villain model:

• For 𝜎 > 2, the long-range Villain model exhibits the same phases as its nearest-
neighbors counterpart, i.e. it undergoes a BKT phase transition between a
low-temperature quasi-long-range ordered phase and a high-temperature dis-
ordered one. The phase diagram is thus analogous to the one of the XY model
with 𝜎 > 2.

• For 1 < 𝜎 < 2 the model undergoes a phase transition which falls as well
under the BKT universality. In this regime, however, we have spontaneous
symmetry breaking, and a first-order phase transition in the order parameter
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Figure 3.3: Qualitative phase diagram of the long-range Villain model. For 𝜎 > 2 the
system exhibits a BKT transition between the quasi-long-range-ordered BKT phase and the
disordered (D) one (grey line). For 1 < 𝜎 < 2, for low temperature the model exhibit a low-
temperature spontaneous-symmetry-broken (SSB) phase with a finite magnetization. As
the temperature increases, we have a transition (red line) to the disordered (D) phase, with a
jump in the order parameter. This transition, however, still falls within the BKT universality
class. For 𝜎 → 1+ the transition temperature diverges, so that only the SSB phase survives
for 𝜎 < 1.

as the temperature is increased. The phase diagram is analogous to the one of
the one-dimensional Ising model with 1/r2 interactions (𝜎 = 1) [49, 115, 116],
in which we have, as well coexistence of first-order and BKT features in the
transition.

• For 0 < 𝜎 < 1 the topological defects cannot be excited at any temperature, so
that the model does not undergo any phase transition and exhibits spontaneous-
symmetry breaking at any temperature.

A qualitative depiction of the phase diagram of the model is presented in Fig. 3.3.
Depending whether we are looking at the behavior of the order parameter or to the
universality class of the phase transition, we can thus say that the model has 𝜎∗ = 1
or 𝜎∗ = 2.



78 The long-range Villain model

3.6 | Field-theory representation of the model

In this section we see how some of the results obtained rigorously through the lattice
Villain model (3.17) can be understood in terms of its continuum limit (3.7) within
the field theory formalism.

Let us start by expressing the quadratic action in terms of its Fourier modes

𝛽H0 =
J
4

∫
d2q 𝜔(q) |𝜃 (q) |2 ∼ J

∫
d2q q𝜎 |𝜃 (q) |2 , (3.83)

or, in terms of the single-valued, vector field v = ∇𝜃 (x):

𝛽H0 ∼ J
∫
d2q q𝜎−2 |v(q) |2. (3.84)

It is now possible to solve the constraint in Eq. (3.7) by introducing an auxiliary field
𝜑(x) so that

Z ∼
∑︁
{mi }

∫
D(v)

∫
D(𝜑) e−J

∫
d2q q𝜎−2 |v(q) |2 e−i

∫
d2x 𝜑(x) (∇×v−2𝜋n(x)) . (3.85)

After noticing that

− i
∫
d2x 𝜑(x) ∇ × v =

∫
d2q v(q) × 𝜑(q) , (3.86)

we can trace out the v, obtaining, for the topological part of the partition function

Ztop ∼
∑︁
{mi }

∫
D(𝜑) e−J−1

∫
d2q q4−𝜎 |𝜑(q) |2e−2𝜋i

∫
d2x 𝜑(x)n(x) (3.87)

From here, by integrating out the auxiliary field as well we get

Ztop ∼
∑︁
{mi }

e−J
∫
d2q q𝜎−4 |n(q) |2 ∼

∑︁
{mi }

e−
∑
j ,k m jmkU (r j−rk) (3.88)

withU (q) ∼ Jq𝜎−4, which is precisely the form of the (large-distance) vortex-vortex
interaction we worked out in Sec. 3.3. Let us notice, however, how this field theory
approach is not able to predict the divergence in the coupling constant for 𝜎 → 1.

On the other hand, from Eq. (3.87) , one could trace out the vortices, obtaining
an effective field theory of the model in terms of the field 𝜑. To this extent, it is
necessary to introduce by hand the core energy of the vortices, whose presence is
not captured by the long-distance, field-theoretical description. We get

Ztop ∼
∑︁
{mi }

∫
D(𝜑) e−J−1

∫
d2q q4−𝜎 |𝜑(q) |2e−2𝜋i

∫
d2x 𝜑(x)n(x)e−𝜀c

∑
i m2

i . (3.89)
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Working in the limit of low fugacity y = e−𝜀c , we sum over the configurations such
that mi = ±1. This means that, for each point of the space we get a term of the form

1∑︁
m=−1

yme−2𝜋i𝜑(x)m = 1 + y cos 2𝜋𝜑 ≈ ey cos 2𝜋𝜑 (3.90)

obtaining

Ztop ∼
∫

D(𝜑) e−S , (3.91)

with
S = J−1

∫
d2q q4−𝜎 |𝜑(q) |2 − y

∫
d2x cos(2𝜋𝜑). (3.92)

This is a Sine-Gordon action with a peculiar dispersion relation of the kinetic term
∼ U−1(q). Within this field-theoretical picture, it is the latter that is responsible for
the peculiar form of the RG flow. Let us notice, indeed, how q4−𝜎 is less relevant
than the usual q2 short-range dispersion relation. On the other hand, if we perform
a perturbative renormalization group for small y (e.g. in the Wilson picture) it is
known that the Sine-Gordon term, would generate, at the second order in y, short-
range kinetic terms ∼ q2 |𝜑(q) |2 in the Lagrangian (see e.g. [117, 118]). This means
that the action (3.92) would flow in the infrared to the usual Sine-Gordon theory,
which falls in the universality class of the BKT transition.
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Part II





4 | Quench dynamics in the long-range
O(n) model

In this Chapter we address the study of the dynamics of closed quantum systems
in presence of strong-long range (non-additive) interactions, using as a prototypical
example the quantum O(n) model in the large n limit. The peculiar properties of
the spectrum analyzed in Sec. 1.3.1 give rise to a complete new phenomenology that
manifests itself on mesoscopic timescales.

The Chapter is based on Ref. [119] and it is structured as follows: after introduc-
ing the model in Sec. 4.1 and discussing its large n limit, in Sec. 4.2 and Sec. 4.3
we discuss the solution of the effective equations of motion for short and mesoscopic
timescales respectively. Finally, in Sec. 4.4 we discuss the characteristics of the entan-
glement spreading in the model and how they can be used to tell apart the different
dynamical phases of the model.

4.1 | The quantum O(n) model

The quantum O(n) rotor model, constitutes a prototypical tool in the context of
quantum many-body physics. In the large n limit, it provides one of the simplest
instances of an interacting model [120, 121]. Let us consider a one dimensional lattice
ofN sites. For any lattice sites j we introduce a pair of n-component variables Φa

j ,Π
a
j

(with a = 1, · · · n) which are canonically conjugate [Φa
j , Π

a′
j′ ] = i𝛿j, j′𝛿a,a′ and interact

though the Hamiltonian

H =
1
2

∑︁
j

(
| ®Π j |2 + r | ®Φ j |2 +

𝜆

2n
| ®Φ j |4

)
+ 1

2

∑︁
j , j ′

J (r) | ®Φ j − ®Φ j |2 (4.1)

with r = | j− j′|. The model exhibits a globalO(n) symmetry which justifies its name;
in the classical limit ([Φa

j , Π
a′
j′ ] = 0), moreover, the model can be interpreted as a

straightforward discretization of the O(n) field-theory in Eq. (1.16) .
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In the strong-long range case, the quadratic coupling J (r) takes the form

J (r) = 1
N𝛼

r−𝛼 , (4.2)

with 0 < 𝛼 < 1 (strong long-range regime) and

N𝛼 =
∑︁
r≠0

r−𝛼 (4.3)

the Kac scaling [2, 10], crucial to ensure energy extensivity. Although we are here
working in d = 1, in this regime the qualitative features of the evolution shall not
depend on the dimension d. In the following we will also assume periodic boundary
conditions.

An appropriate solution for the model dynamics after a global quench on any of
the Hamiltonian parameters can be achieved, in the limit n →∞. There, the quartic
term in Eq. (4.1) can be decoupled via the self-consistent relation

| ®Φj |4 →
〈
| ®Φ|2

〉
| ®Φj |2. (4.4)

Formally, this means that the correlation function involving a finite number of com-
ponents, at any time t, are the same for the two theories, up toO(1/n) terms [121]. In
conclusion, the Hamiltonian in Eq. (4.1) at n → ∞ can be replaced by its quadratic
counterpart with a self-consistent effective mass [17]

𝜇(t) = r + 𝜆
2

〈
Φ2(t)

〉
. (4.5)

The dynamical properties of the model in the case of short-range couplings have
been deeply investigated(finding dynamical transitions [17, 122], aging [123]) as well
as the first finite-n corrections [124] and its extension to weak long-range regime [125].

The solution of the dynamics of the model passes through the introduction of the
Fourier modes, labeled by the momentum q = 2𝜋 m

N with m = −N/2 + 1, . . . , N/2,
in terms of which we have

H =
∑︁
q≥0

(
Π†qΠq + (𝜔2(q) + 𝜇(t))Φ†qΦq

)
(4.6)

where 𝜇(t) is determined self-consistently as

𝜇(t) = r + 𝜆

N

∑︁
q

| fq |2 , (4.7)

while
𝜔2(q) = 1 −

∑︁
r≠0

J (r) cos(qr). (4.8)
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As seen in Sec. 1.3.1 (or in Ref. [61]), in the thermodynamic limit, a spectrum of the
form of Eq. (4.8) does not converge to a continuous function of q as the short-range
case (and in the weak long-range regime 𝛼 > 1, see Eq. (1.14) ). Rather, we can derive
the expression

𝜔2(q) = 1 − 1
u𝛼

∫ 𝜋

0
ds

cos(sm)
s𝛼

, (4.9)

with

u𝛼 =
𝜋1−𝛼

1 − 𝛼 , (4.10)

valid up to order N𝛼−1 terms (see Sec. 4.9). The spectrum exhibits a finite gap be-
tween the ground state 𝜖0 = 0 and the first-excited states (|m | = 1), while the states
accumulate around 𝜔∞ = 1 for |m | >> 1, so that a thermodynamic large number of
single-particle states is in a neighbourhood of 𝜔 = 1.

The Hamiltonian in Eq. (4.6) , as well as its dynamics, is readily diagonalized in
terms of

Φq =
1
√

2

(
fq (t)aq + f ∗−q (t)a†−q

)
, (4.11)

Πq =
1
√

2

(
¤f ∗q (t)a†q + ¤f−q (t)a−q

)
. (4.12)

where aq, a
†
q and a−q, a

†
−q are two independent sets of ladder operators which do not

depend on time (see Ref. [17]). The canonical commutation relations introduce the
constraints fq (t) = f−q (t), Im( f ∗q ¤fq) = 1. Let us notice that, in terms of the fq, we can
express the equal-time correlators of the model as〈

Φq (t)Φq′ (t)†
〉
=
Nq

2
| fq (t) |2𝛿qq′ ,〈

Πq (t)Πq′ (t)†
〉
=
Nq

2
| ¤fq (t) |2𝛿qq′ ,〈

Φq (t)Πq′ (t)
〉
=
𝛿qq′

2

(
NqRe( fq (t) ¤f ∗q (t)) + iSq

)
,

(4.13)

where Nq = 1 +
〈
nq

〉
+

〈
n−q

〉
, Sq = 1 +

〈
nq

〉
−

〈
n−q

〉
,
〈
nq

〉
=

〈
a†q aq

〉
being the initial

occupation numbers of the corresponding mode.
The evolution equations of the amplitude functions fq (t) are obtained by the

Heisenberg equations of motion of Hamiltonian (4.6)

¤Φq = Π†q , ¤Πq = −(𝜔2(q) + 𝜇(t))Φ†q , (4.14)

which, once expressed in terms of the creation and annihilation operators, give

¥fq (t) +
(
𝜔2(q) + 𝜇(t)

)
fq (t) = 0. (4.15)
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In turn, once written in terms of the real and imaginary part of fq, they can be seen
as the equations of motion for a set of two-dimensional isotropic harmonic oscilla-
tors. The frequency varies in time, and it is determined self consistently by Eq. (4.5) .
The evolution respects the constraints Im( f ∗q ¤fq) = 1, as they correspond to the con-
served angular momenta of the oscillators. The single oscillator energy is instead not
conserved. However, one can verify that the energy per particle

𝜖 =
𝜆

2N

∑︁
q

Nq

(
| ¤fq |2 + 𝜔2(q) | fq |2

)
+ 1

2
𝜇2 (4.16)

is a constant of motion. Let us notice that, by definition 𝜇 > r and 𝜇2 < 2𝜖 must
hold.

In the following, we will focus on the dynamics of the model after a quench in
the bare mass parameter r (r− → r+) at t = 0, assuming the system is in the ground
state for t < 0.

4.1.1 | Ground state properties

Let us now analyze the ground state properties of the model (4.6) and compute
the ground-state energy per particle 𝜖gs and the corresponding value of 𝜇gs. In our
protocol, those will coincide with the state of the model at t = 0−.

Since each oscillator Φq is now in the ground state, we have〈
Φq (0)Φq′ (0)†

〉
=

1

2
√︃
𝜔2(q) + 𝜇gs

𝛿q′q ,

〈
Πq (0)Πq′ (0)†

〉
=

1
2

√︃
𝜔2(q) + 𝜇gs 𝛿q′q ,〈

Φq (0)Πq′ (0)
〉
=
i
2
𝛿q′q

(4.17)

from which, we find

fq (0) =
(
𝜔2(q) + 𝜇gs

)−1/4
, ¤fq (0) = i

(
𝜔2(q) + 𝜇gs

)1/4
, (4.18)

valid up to an immaterial phase factor. Since 𝜇gs is a positive constant, the solution
of the corresponding equations of motion (4.15) is given by

fq (t) =
(
𝜔2(q) + 𝜇gs

)−1/4
ei
√
𝜔2 (q)+𝜇gst . (4.19)

Finally, from Eq. (4.5) ,

𝜇gs = r +
𝜆

2N

∑︁
q

1√︃
𝜔2(q) + 𝜇gs

. (4.20)
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Let us remind that in the strong-long range regime we can replace
√︃
𝜔2(q) + 𝜇gs with√︁

1 + 𝜇gs, up to O(N−𝜁 ) corrections, with 𝜁 = max(1, 2 − 2𝛼) (see Sec. 1.3.1). We
thus get

𝜇gs = r− +
1
2

𝜆√︁
1 + 𝜇gs

, (4.21)

which always has a unique solution. Since we are implicitly assuming 𝜇gs > 0, in or-
der to have an oscillatory behavior for the q = 0 mode, we have to require r− > −𝜆/2.
For r− < −𝜆/2 the q = 0 mode acquires a non-zero occupation number, signal-
ing a finite magnetization in the system (the fact that the system undergoes a phase
transition even in one dimension is not surprising, since the Mermin-Wanger theo-
rem [30] no longer holds). The corresponding energy per particle is, up to O(N−𝜁 )
corrections, given by

𝜖gs =
𝜆

2N

∑︁
q

1√︃
𝜔2(q) + 𝜇gs

(
2𝜔2(q) + 𝜇gs

)
+ 1

2
𝜇2

gs

=
1
2

𝜆√︁
1 + 𝜇gs

(
2 + 𝜇gs

)
+ 1

2
𝜇2

gs.

(4.22)

For the sake of simplicity, in the following, we will always assume to be at t = 0−

in the disordered phase r− > −𝜆/2, in which all the modes have a finite occupation
number.

4.2 | Solution of the equation of motion

Now we are going to solve the equations of motion (4.15) in order to describe the dy-
namics for t > 0. The entire model dynamics is crucially dependent on the evolution
of the effective mass 𝜇(t), which can be thought of as a classical degree of freedom.
In turn, the dynamics of quantum degrees of freedom (parameterized by the fq) is
forced by 𝜇(t)

Due to the peculiar spectral properties of the model, here we are able to derive
a closed equation for the 𝜇(t) which becomes exact in the thermodynamic limit. In-
deed, by taking the time derivative of both sides of Eq. (4.5)

¤𝜇 =
𝜆

2N

∑︁
q

Nq ¤fq f ∗q + c.c.

¥𝜇 =
𝜆

2N

∑︁
n

Nq

(
| ¤fn |2 + ¥fn f ∗n + c.c.

)
=

𝜆

N

∑︁
q

Nq | ¤fq |2 −
𝜆

N

∑︁
q

Nq

(
𝜇 + 𝜔2(q)

)
| fq |2 ,

(4.23)
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from which, exploiting once again Eq. (4.5) together with the conservation of energy,
we can write

¥𝜇 = 2𝜖 + 2r 𝜇 − 3𝜇2 − 2(𝜇 − r) + g (t) (4.24)

where we introduced
g (t) = 1

2

∑︁
q

mq | fq (t) |2 , (4.25)

andmq = 4𝜆Nq (1−𝜔2(q))/N . Now, as discussed in Sec. 1.3.1, because of the peculiar
structure of the spectrum, in the strong-long-range limit we have

g (t) ∼
〈
1 − 𝜔2(q)

〉
∼ O(N−𝜁 ) (4.26)

as long as fq = O(1), so that its contribution to the equations of motion of 𝜇(t)
is negligible. In this limit, we can thus set fq = 0 in the above Hamiltonian and
consider the single particle dynamics

H =
P2
𝜇

2
+V (𝜇) , (4.27)

which conserves the quantity

E=
¤𝜇2

2
+V (𝜇). (4.28)

Within the same approximation

𝜖 =
𝜆

2N

∑︁
q

Nq | ¤fq |2 + 𝜇 − r + 1
2
𝜇2. (4.29)

The aforementioned classical dynamics only applies as long as the external force
g (t) remains negligible, this condition may be violated in two cases

1. The initial state at t = 0 contains at least one macroscopically populated mode
leading to some extensive nq.

2. The external drive g (t) may become extensive due to one (or more) q modes
undergoing a parametric resonance.

Scenario 1) occurs for any dynamics beginning in the magnetized ground-states at
r < −𝜆/2, where the q = 0 mode acquires a macroscopic occupation. We ruled out
this possibility as we restricted ourselves to the region r− > 𝜆/2 in the parameter
space. On the other hand, even for an initially negligible external drive g (t), one or
more of the q modes can resonate with the unperturbed, classical dynamics of 𝜇(t),
leading to scenario 2) at later times.
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Before examining the possibility of resonances, let us now consider the short-
time behavior of the model, in which we can safely ignore the forcing g (t) in Eq. (4.24) .
First, we notice that the assumption that the system is in the ground state at t = 0−

has a simple physical interpretation in terms of the dynamics of the fictitious parti-
cle 𝜇(t). Indeed it is easy to verify that, for r = r−, 𝜇 = 𝜇gs and 𝜖 = 𝜖gs, we have
V ′(𝜇gs) = 0, so that the ground state corresponds to the stable equilibrium for the
fictitious particle in the potentialV (𝜇).

After the quench r− → r+, the fictitious particle is no longer in the stable equilib-
rium, and starts moving in the potentialV (𝜇). In spite of the fact that the potential
V (𝜇) is cubic, let us notice, however, that its motion within the bounded region of
the potential, and it is thus given by a periodic oscillation, as E can only be negative.
To see this, we exploit the Cauchy-Schwartz inequality in Eq. (4.23) , finding

¤𝜇2 =

(
Re

(
𝜆

N

∑︁
q

Nq ¤fq f ∗q

))2

≤
����� 𝜆N ∑︁

q

Nq ¤fq f ∗q

�����2
≤

(
1
N

∑︁
q

Nq | fq |2
) (

1
N

∑︁
q

Nq | ¤fq |2
)

.

(4.30)

Now, putting together Eq. (4.29) and Eq. (4.15) and we find the constraint

¤𝜇2 ≤ 2
(
2𝜖 − 2(𝜇 − r) − 𝜇2

)
(𝜇 − r) = −V (𝜇) , (4.31)

from which the condition E < 0 follows.

4.3 | Fate of the quantum degrees of freedom

Let us now explore the fate of the quantum modes fq which may, at later times, lead
to the breakdown of our classical, single-particle picture. Since for early times g (t) is
negligible and 𝜇(t) is periodic with some periodT , the equation of motion (4.15) for
each of fq is in the form of a Hill equation so that the Floquet theory applies. Indeed
let us now consider the two independent solutions f1(t) and f2(t) of Eq. (4.15) , such
that f1(0) = 1, ¤f1(0) = 0 and f2(0) = 0, ¤f2(0) = 1 respectively. Let us notice that the
Wronskian of the solutionsW = f1 ¤f2 − f2 ¤f1 of the system is such that ¤W = 0. Now
we notice that, being a(t) periodic of period T , f1(t +T ), f2(t +T ) can be seen as
a new pair of independent solutions, and thus expressed as a linear combination of
f1(t), f2(t) namely (

f1(t +T )
f2(t +T )

)
= C

(
f1(t)
f2(t)

)
, (4.32)
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Figure 4.1: Phase diagram of the model for r+ = −1, 𝛼 = 0.5 as a function of the energy per
particle 𝜖 and the initial effective mass 𝜇(0), assuming ¤𝜇(0) = 0. Only the region with 𝜇(0)
between r and the minimum ofV (𝜇) is shown, being all the other initial conditions nonphys-
ical or redundant. In blue we have the resonance-free region (in which 𝜇(t) is periodic); in
orange the region in which the mode q = 0 is resonant; in green the region, where multiple
modes above q = 0 are resonant as well. Inset: the potential V (𝜇) for 𝜖 = 2.25, in which
the values of 𝜇(0) corresponding to different phases and the relative values of the classical
energy E, see Eq. (4.28) , are outlined.
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whereC is a constant square matrix of order 2. In particular, imposingW (t) =W (t+
T ) we find detC = 1. Let us now consider two independent linear combinations f±(t),
of f1,2(t) such that f±(t +T ) = Λ± f±(t), Λ± being the eigenvalues of C. On the other
hand, since C is real and detC = 1 we have that only two cases are possible: either

f ±q (t +T ) = e±i 𝜇T f ±q (t) (4.33)

with 𝜇 > 0, or
f ±q (t +T ) = e±𝜅T f ±q (t) (4.34)

with 𝜅 > 0. In the former case we are dealing with a quasi periodic pair of solutions,
in the latter, instead, we have a so-called parametric resonance in which the generic
solution fq (t) grows boundlessly.

As long as no resonance occurs for all the fq, we have that for any time fq ∼ O(1),
so that the effect of the external drive g (t) is suppressed in the thermodynamic limit,
up to tQ ∼ N 𝜁 . If, however, we have a resonance for a given mode fq, the whole
picture breaks down on a timescale t ∼ lnN , after which fq = O(N ). Thus, the time-
scale for the external drive g (t) to become relevant is reduced as well to tQ ∼ lnN .
If we compare the latter with t ∼ N 𝜁 of the non-resonant case we can see that, while
strictly speaking in both cases this time-scale diverges in the thermodynamic limit,
in the resonant case we will never reach, in practice, values of N so large to get rid of
this phenomenon.

Although it is very difficult, in general, to say something about the condition un-
der which such resonances occur, here we can derive some stability conditions. In-
deed let us notice that, even if we do not neglect g (t) in Eq. (4.24) , the equation of
motion for 𝜇(t) and the corresponding Eq. (4.15) for the fq, can be derived from the
classical Hamiltonian

H =
P2
𝜇

2
+V (𝜇) −

∑︁
q

(
|pq |2

2mq
+
mq
2
(𝜇 + 𝜔2(q)) | fq |2

)
. (4.35)

It follows that we, even when taking into account the contribution of the quantum
mode fq, we still have a conserved fictitious energy, namely

E=
P2
𝜇

2
+V (𝜇) −

∑︁
q

mq
2

(
| ¤fq |2 + (𝜇 + 𝜔2(q)) | fq |2

)
. (4.36)

(see Ref. [126] for an analogous picture in the classical case). This differs from the
single-particle energy (4.28) by a quantity of order N−𝜁 , as it can be seen by com-
puting both quantities at t = 0, when fq = O(1) for all q. On the other hand, we know
that for small times the system will follow the trajectory 𝜇sp(t) defined by Eq. (4.24) .
It follows that, for t ≪ tQ

mq
2

(
| ¤fq |2 + (𝜇sp(t) + 𝜔2(q)) | fq |2

)
= const (4.37)
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Figure 4.2: Behavior of 𝜇(t) with r+ = −1, 𝜆 = 1.24, N = 106 for the initial conditions
𝜇(0) = −0.7, ¤𝜇(0) = 0, 𝜖 = 1.2 (dotted blue line) compared with the corresponding single-
particle classical picture (continuous orange) and the two-particle one (continuous cyan line).
Since for this initial conditions only the q = 0 mode is resonant, the latter reproduces the
right evolution, while the former fails on a finite timescale. Inset: difference between 𝜇(t) and
the single-particle picture for different values ofN , showing how the time-scale on which the
approximation breaks down grows as lnN .
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of order N−𝜁 . Now if, along this trajectory, 𝜇sp(t) + 𝜔2(q) > 0 for every t and for
every q, then fq cannot be resonant, since a growth to | fq |2 = O(N ) is not compati-
ble with the above constraint. We conclude that in this case 𝜇(t) has to remain in
the vicinity of 𝜇sp(t), i.e. the single particle dynamics described by Eq. (4.24) . In
particular, since 𝜇(t) > r , we can rule out the possibility of a resonance as long as
r+ > 0.

Since 𝜔(q) grows with q, the first mode that can become resonant is q = 0: if
𝜇sp(t) +𝜔2(0) = 𝜇(t) < 0 for some t ∈ [0,T ], then the trajectory constraint at short-
times by Eq. (4.37) can escape, as the energy landscape has a hyperbolic structure.
As 𝜇sp(t) +𝜔2(q) becomes negative for some t ∈ [0,T ] the other modes can become
resonant as well. However, even in this case, looking at the form of Eq. (4.35) , we
have that the condition r+ + 𝜔2(q) > 0 is sufficient in order to prevent the q-th
modes from resonating. It is worth noting that the fact that the spectrum is discrete
and bounded both from above and below is crucial in order to allow for the existence
of resonance-free regions in the parameter space.

Our picture is indeed confirmed by the numeric phase diagram for r+ = −1,
𝛼 = 0.5 is shown in Fig. 4.1. In particular, at small enough 𝜖 , large oscillations
of 𝜇(t) begin triggering the resonance in the q = 0 mode (as 𝜇(t) becomes negative
during the oscillation); while, further decreasing 𝜖 , an increasing number of resonant
modes emerges (as 𝜇sp(t) + 𝜔(q) becomes negative).

Since we can always neglect non-resonant excitations, in the Hamiltonian (4.35) ,
the latter reduces to the contribution of resonant modes only. It follows that the
system is described in terms of a finite number of degrees of freedom. This is the
case shown in Fig. 4.2, where the single-particle picture (orange line) applicable in
the non-resonant phase is shown to fail on a time-scale tQ ∼ lnN , while a two-mode
approximation (cyan line) faithfully reproduces the numerical results (dotted blue
line). On timescale t > tQ the resonant mode grows large, and then becomes again
negligible, resulting in a periodic oscillation of 𝜇(t), punctured with periodic bursts,
corresponding to the resonances.

4.4 | Entanglement Production

So far we saw how, due to the discrete nature of the spectrum, the contribution of the
quantum degrees of freedom to the dynamics is suppressed in the thermodynamic
limit, at least for non-condensed initial states. Yet, for any finite size N the spreading
of quantum correlations may still occur at time-scales tQ which are radically different
for the non-resonant and resonant cases, as tQ scales as N 𝜁 or lnN respectively. To
grasp the qualitative difference between those phases, it is instructive to look at the
entanglement production. As a measure of entanglement, it is convenient to choose
the Von Neumann entropy relative to the partition of the chain in two intervals, of
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Figure 4.3: Left panel: behavior of the Von Neumann entropy S (t) relative to a ℓ = 10
interval after a ground state quench of r from 1 to −1, for N = 104. The dark red, red and
orange curves are relative to different values of 𝜆 (𝜆 = 1.24, 𝜆 = 0.028, 𝜆 = 0.0028) and
𝛼 = 0.5, which in turn corresponds to have 1, 116 and 221 resonant modes respectively. The
dotted dark blue and blue curves correspond to the short-range counterpart (𝛼 = ∞) of the
𝜆 = 0.028, 𝜆 = 0.0028 cases. Central panel: Behavior of S (t) in the single-resonance phase
(red), characterized by periodic bursts, compared with the analytical prediction of Eq. (4.51)
(dashed yellow line). Right panel: Production of entanglement for larger times in the multi-
resonant phase, compared with the correspondent limiting value S̄ for the same quench in
the short-range limit (𝛼 →∞).

length ℓ and N − ℓ , namely

S = −Tr{𝜌ℓ ln 𝜌ℓ}, (4.38)

𝜌ℓ being the reduced density matrix of the system to the subspace relative to the
lattice sites belonging to an interval of length ℓ.

Entanglement, which has indeed been called the characteristic trait of quantum me-
chanics[127], plays a major role in the understanding of many-body quantum systems,
as their collective out-of-equilibrium dynamics, from thermalization and excitation
confinement, to the complexity of numerical simulations can be witnessed by entan-
glement propagation [128–133]. In the case of one-dimensional short-range interact-
ing systems, linear growth in time of bipartite von Neumann entropy, followed by a
saturation to an equilibrium value, has been observed. This behavior has been traced
back to the presence of entangled pairs of quasi-particle excitations[129, 134–136],
which propagate ballistically. For the consistency of this picture, the presence of fi-
nite speed in information spreading and excitation propagation is crucial, guaranteed
for short-range-interacting systems by the Lieb-Robinson bound[137].

At the same time, the breakdown of the locality concept induced by long-range
interactions is known to yield a strong impact on the traditional picture for correla-
tions and entanglement spreading, breaking down the description of entanglement
spreading in terms of quasi-particle propagation. Several numerical simulations
have indeed shown that the growth of entanglement entropy is dramatically slowed
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Figure 4.4: Schematic depiction of the phases of our model along with the behavior of
the bipartite Von Neumann entropy S (t). Left: the classical phase, in which the classical
dynamics of 𝜇(t) is not influenced by the presence of the quantum bath up until tQ ∼ N 𝜁 so
that there is no production of entanglement. Center: the resonant phase, in which the m = 0
mode becomes resonant and affects the dynamics of the system on a timescale tQ ∼ lnN ,
causing periodic bursts in S (t). Right: the multi-resonant phase, in which a larger number
of modes resonate, causing a more complex oscillatory behavior with a finite production of
entanglement.

down [138–140], this in spite of the fact that quantum correlations between far-apart
degrees of freedom could build up quickly [18, 141].

The picture developed in the present Chapter for the quantum O(n) model is
able to substantiate these findings, giving an analytical picture of such entanglement
spreading in terms of the parametric resonances.

Let us, then, consider the growth of entanglement entropy in an interval of length
ℓ. Due to the factorisation of the rotor models interaction term at large-n, and to the
fact that the initial state is described by a Gaussian density matrix, one can apply the
formalism developed in Ref. [142] for computing the entanglement entropy starting
from the momentum and position two-point functions. Following this procedure we
introduce the matrix of the correlations

𝛾 = Re

(
⟨Φx (t)Φx′ (t)⟩ ⟨Φx (t)Πx′ (t)⟩
⟨Πx (t)Φx′ (t)⟩ ⟨Πx (t)Πx′ (t)⟩

)
. (4.39)
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The bipartite Von Neumann entropyS (t) can be expressed in terms of the symplectic
spectrum {𝜎n} of 𝛾red, i.e. the matrix reduced to the subspace x , x′ ∈ (0, ℓ). The
symplectic spectrum is defined such that {𝜎2

n } is the spectrum of −( J𝛾red)2, J being
the symplectic unity

J =

(
0 𝕀ℓ

−𝕀ℓ 0

)
. (4.40)

In terms of the 𝜎n, we have

S =
∑︁
n

s(𝜎n) , (4.41)

where:

s(𝜎) =
(
𝜎 + 1

2

)
ln

(
𝜎 + 1

2

)
−

(
𝜎 − 1

2

)
ln

(
𝜎 − 1

2

)
. (4.42)

For simplicity, we first restrict to the case in which the q = 0 mode only may be
resonant. Once again, up to corrections of order O(N−𝜁 ), we can discard the q de-
pendence of all modes at q > 0. Therefore, we can replace fq (t) and ¤fq (t) with their
high energy limit f𝜋 (t), ¤f𝜋 (t). As a result, the dynamical theory reduces to the one of
a classical particle coupled to the resonant q = 0 mode plus a ∼ N times degenerate
high energy mode. The corresponding correlators are thus given by

⟨Φx (t)Φx′ (t)⟩ =
𝛿x′x

2
| f𝜋 (t) |2 +

1
2N
| f0(t) |2 ,

⟨Πx (t)Πx′ (t)⟩ =
𝛿x′x

2
| ¤f𝜋 (t) |2 +

1
2N
| ¤f0(t) |2 ,

⟨Φx (t)Πx′ (t)⟩ =
𝛿x′x

2

(
Re( f𝜋 (t) ¤f ∗𝜋 (t)) + i

)
+ 1

2N
Re( f0(t) ¤f ∗0 (t)).

(4.43)

It is worth noting that the latter expressions approximate the actual correlations of
the system up to O(N−𝜁 ) terms, which may become relevant if the length of the
considered interval ℓ becomes of order N .

The resulting expression for the matrix of Eq. (4.39) , reduced to the interval, is
thus given by

𝛾red =
1
2

(
Q (t) R(t)
R(t) P (t)

)
, (4.44)



Entanglement Production 99

whereQ (t),P (t),R(t) are ℓ by ℓ matrices defined as

Q (t) = | f𝜋 (t) |2𝕀ℓ +
ℓ

N
| ¤f𝜋 (t) |2ℙ,

P (t) = | ¤f0(t) |2𝕀ℓ +
ℓ

N
| ¤f𝜋 (t) |2ℙ,

R(t) = Re
(
f𝜋 (t) ¤f ∗𝜋 (t)𝕀ℓ +

ℓ

N
f0(t) ¤f ∗0 (t)ℙ

)
,

(4.45)

with ℙ j ,k =
1
ℓ
, ∀ j , k = 1, . . . ℓ. Since [P , R] = 0 and [Q , R] = 0 we find

− ( J𝛾red)2 =
1
4

(
PQ − R2 0

0 PQ − R2

)
. (4.46)

Using the fact that Im( fq (t) ¤f ∗q (t)) = 1 and ℙ2 = ℙ we have

PQ − R2 = 𝕀 + ℓΔ(t)ℙ + ℓ2N−2 ℙ, (4.47)

with Δ(t) given by

NΔ(t) = | f𝜋 (t) ¤f0(t) |2 + | f0(t) ¤f𝜋 (t) |2

− 2Re
(
f0(t) ¤f ∗0 (t)

)
Re

(
f𝜋 (t) ¤f ∗𝜋 (t)

)
.

(4.48)

For a finite interval, the last term on the r.h.s. of Eq. (4.47) is negligible while the
second one may become O(1) on a timescale tQ ∼ ln(N ). Then all the eigenvalues
of −( J𝛾red)2 are 1

4 but two which are

1
4
+ ℓ

4
Δ(t). (4.49)

The symplectic spectrum is finally given by

𝜎1 = 𝜎2 =
1
2

√︁
1 + ℓΔ(t) ,

𝜎n =
1
2
∀ n = 3, . . . 2ℓ .

(4.50)

Substituting in Eq. (4.42) , we notice that only the first two eigenvalues, coming from
the resonant mode, do actually contribute to S (t), so that we find a closed expression
for the bipartite Von Neumann Entropy:

S (t) =
(√︁

1 + ℓΔ(t) + 1
)

ln

√︁
1 + ℓΔ(t) + 1

2

−
(√︁

1 + ℓΔ(t) − 1
)

ln

√︁
1 + ℓΔ(t) − 1

2
.

(4.51)
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As expected, the 1/N factor included in the definition ofΔ(t) suppresses the prop-
agation of entanglement unless the q = 0 mode is resonant. Thus, the parametric
resonance results in the production of entanglement on an intermediate time-scale
tQ ∼ lnN (which, has been noticed, remains however accessible even for large many-
particle experiments). The behavior of S (t) in the resonant phase is shown in Fig. 4.3.
S (t) is characterized by periodic bursts on a time-scale tq ∼ lnN , after which it comes
back to its initial value. Lack of equilibration in the system is signaled by the S (t)
function not saturating. This periodic generation of entanglement and its complete
loss due to long-range interactions is evidenced here for the first time. Moreover,
Eq. (4.51) implies that the larger ℓ is, the faster quantum correlations will be estab-
lished. This is in antithesis to the case of local and weak long-range systems, where
the short-time growth of entanglement is independent of ℓ , due to the light-cone-like
structure of the Lieb-Robinson bound [143].

The impact of the number of resonant modes (and thus of effective degrees of
freedom) on the evolution of S (t) is evident as we consider the case of multiple
resonant modes beyond the q = 0 one. In this case, the analytic expression for the
correlation functions in Eq. (4.51) does not apply, and only numerical estimates are
here accessible, as shown in Fig. 4.3. There, the quasi-periodic oscillations of S (t)
are accompanied by the generation of a finite amount of entropy at large times, which
is however smaller than the short-range counterpart. Even though the situation is
way more similar to the short-range one, the quasi-periodic oscillations persist at any
large time, so that no actual equilibration occurs even in the multi-resonant phase.

In summarizing, we can characterize the dynamical phase diagram of the quan-
tumO(n)model after a ground-state quench in terms of the behavior of the bipartite
Von Neumann entropy. We can identify three main phases

1. Classical phase: in the thermodynamic limit, the many-body dynamics corre-
sponds to the one of a single classical particle, representing the effective mass
𝜇(t). Correspondingly, at finite sizes, no entanglement emerges in the system
up to a scale tq ∼ N 𝜁 .

2. Resonant phase: for larger initial energies the oscillations of the effective mass
𝜇(t) trigger a resonance in the lowest q = 0 mode. As a consequence, the en-
tanglement entropy grows in quasi-periodic bursts, the first of which occurs at
a time-scale tq ∼ ln(N ). Yet, following each burst, the amount of entanglement
vanishes, and classical dynamics is restored.

3. Multi-resonant phase: at high energy, the effective mass oscillations generated by
the instantaneous quench are strong enough to generate multiple resonances,
leading to a mosaic of different phases, each characterized by a different num-
ber of active modes in the dynamics. The phenomenology of all these phases
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is analogous to the single resonance one. However, in the long-time limit, the
amount of entanglement generated is finite.

As the present picture can be traced back to the discreteness of the single-particle
spectrum (see Sec. 1.3.1), we expect this picture to apply to generic many-body sys-
tems with non-additive long-range interactions. While this slow growth of entan-
glement may be confused with the one found in finite range and weak long-range
systems [144], the latter is generated by quasi-particle confinement [145] or Bloch
oscillations [146] and, due to its prethermal character, can only be observed at short
times. On the contrary, the current picture follows from the collective character
of long-range interactions, which produces an effective global coupling among the
degrees of freedom in the thermodynamic limit, see Fig. 4.4, stabilizing the afore-
mentioned phases even at large times.

Along the same lines, the collective character of long-range interactions prevents
the divergence of low-energy excitations and stabilizes the 1/n approach employed
to study the dynamics, making it trustworthy also in the thermodynamic limit. As
a result, the effective mass 𝜇(t) acts in all respects as a global drive and generates
the resonant phases in analogy with previous studies of bosonic theories subject to
an external periodic force [147]. Nevertheless, in the present case, the back action of
the resonant modes on the drive prevents the linear growth of the entropy with time.
This is consistent with the isolated nature of the system and, consequently, with the
absence of any external energy source.
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5 | Higher-order time-crystalline phases

Strong long-range interacting systems subjected to a periodic (Floquet) driving are
known to exhibit a spontaneous breaking of the discrete time-translation symmetry,
i.e. to exhibit so-called time-crystalline phases. In this Chapter, we will focus on the
physics of the so-called higher-order time crystals, introducing a new order parame-
ter, 𝜁 , able to give a full characterization of the phases of the model.

The Chapter is based on Ref. [148] and it is structured as follows: in Sec. 5.1 we
introduce the concept of discrete Floquet time-crystal, in Sec. 5.2 we introduce 𝜁 in
the context of the paradigmatic fully-connect Ising Model and in Sec. 5.3 we draw
the corresponding phase diagram. In Sec. 5.4 we show how properties of this phase
diagram for high-frequency driving can be captured analytically, while in Sec. 5.5
we discuss numerically the robustness of our picture against finite size effects.

5.1 | Discrete Floquet Time Crystals

Among the several non-trivial dynamical phases of long-range-interacting systems,
we now focus on the possibility of the emergence of Discrete Floquet Time Crys-
talline (DFTC) phases. Those arise in systems subjected to an external periodic
drivingH (t) = H (t +T ), in which the discrete time-translation symmetry is sponta-
neously broken, so that the expectation values display oscillations with a period being
an integer multiple ofT [149–156].

More precisely, in such a driven system a DFTC phase exists if, taken a class
of states |Ψ⟩ with short-ranged connected correlations [151], it always exists an ob-
servable Ô such that the time-evolved expectation value in the thermodynamic limit
N →∞,

O(t) = lim
N→∞
⟨Ψ(t) |O |Ψ(t)⟩ , (5.1)

satisfies the following conditions [157]:

1. Time-translation symmetry breaking: O(t+T ) ≠ O(t), althoughH (t) = H (t+
T ).
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2. Rigidity: O(t) must display periodic oscillations, with some period 𝜏 , in a finite
and connected region of the Hamiltonian parameters space.

3. Persistence: in the large system size limitN →∞, the oscillations ofO(t) must
persist for infinitely long time.

We refer toO(t) as the order parameter of the time-crystal. The order p of a DFTC
phase is defined as

O(t + pT ) = O(t) , (5.2)

p = 1 corresponding to the trivial non-broken phase, p = 2 to the so-called period
doubling phase.

Let us notice that, being the driving periodic, one can define a Floquet propagator
as

UF =U (t , t +T ) , (5.3)

U (t) being the evolution operator of the system. As a consequence, at stroboscopic
times t = nT , we have that

|Ψ(nT )⟩ =U n
F |Ψ(0)⟩ . (5.4)

The condition of time-translation symmetry breaking can be expressed in terms of
UF by requesting the eigenstates of the Floquet eigenstates to be long-range corre-
lated in space [151].

For generic many-body systems, the conditions above are not satisfied, as the
presence of an external driving would lead to the relaxation toward an completely
mixed state (corresponding to heating toward infinite temperature), ruling out long-
lived oscillations. Protecting ordering against relaxation necessitates a mechanism to
keep the impact of dynamically generated excitations under control, as it seems the
case for strongly disordered systems, subject to localization [151, 153, 155, 158–160].

As seen in Sec. 1.3.3 and in Chapter 4, strong long-range interaction are able
to provide as well such a mechanism, as they are known to enhance the robustness
of collective oscillations [67, 161], avoiding the proliferation of local defects. The
presence of DFTC phases have been actually established in the strong long-range
regime (𝛼 < d) [157, 159, 162, 163], while for 𝛼 > d the oscillations are not persistent
in the N →∞ limit [155, 156, 164, 165].

In order to be more concrete, let us introduce the long-range kicked Ising Model,
which we will use from now on as a paradigmatic example of long-range time-crystalline
behavior. Given a chain ofN spin 1/2 particles, interacting through theℤ2-symmetric
Ising Hamiltonian:

H = − 1
4N𝛼

∑︁
j> j ′

r−𝛼 𝜎̂ j
x 𝜎̂

j ′
x + h(t)

∑︁
j

𝜎̂
j
z , (5.5)
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where 𝜎̂ i
x, 𝜎̂

i
y , 𝜎̂

i
z are the components of the Pauli operators relative to the site j,

r = | j − j′| and
N𝛼 =

∑︁
j≠0

| j |−𝛼 . (5.6)

is the Kac scaling factor [2, 10]. The driving is given by a periodic instantaneous
pulse in the transverse field h(t)

h(t) = 𝜓

∞∑︁
n=1

𝛿 (t − nT ) . (5.7)

Let us notice how the instantaneous pulse in the magnetic field h(t) has the effect of
rotating each spin along the z axis of an angle 2𝜓 . If at t = 0, the system is initialized
in one of the ground states of the h(t) = 0 Hamiltionian, e.g. |Ψ0⟩ = |→ · · · →⟩, and
we choose 𝜓 to be exactly 𝜋/2, then we have that the dynamics simply interpolates
between |Ψ0⟩ and the other ground state |← · · · ←⟩. We thus have trivially period
doubling, as for any ℤ2-odd observable, O(nT ) = (−1)nO(0). At the same time, for
any 𝜓 = 𝜋/2 + 𝜖 with 𝜖 ≠ 0, local excitations will be generated by the dynamics. It
has been shown [165] that, for any 𝛼 > 1, theese will spread, resulting in a damping
in the oscillations ofO(nT ), so that the rigidity property requested for the definition
of a time-crystalline phase is not met.

The situation is different for 𝛼 < 1. In this regime, the spin-wave propagation
is hindered due to the peculiar structure of their dispersion relation, analyzed in
Sec. 1.3.1. It means that the behavior of the system is expected to converge to the
one of 𝛼 = 0 in the thermodynamic limit. The presence of resonances, as analyzed in
Chapter 4, can lead to the breakdown of this picture on mesoscopic timescales. This
possibility has been analyzed in Ref. [166], finding that the time crystalline phase is
robust under such a mechanism.

5.2 | An order parameter for higher-order time crystals

For a long time, the presence of time crystals has been related to the symmetry of the
Hamiltonian, as in the aforementioned case of the Ising model. As a consequence the
possibility of a DFTC phase of order p > 2, was thought to be connected with the un-
derlying ℤp symmetry of the model [157, 159], as one can engineer a Floquet driving
which approximately interpolates between ℤp-connected vacua. Recently, however,
high-order (p > 2) DFTCs were recently observed also in long-range systems with
only ℤ2 symmetry [163, 166, 167] such the kicked Ising model. This phenomenon
was deeper investigated in Ref. [162], where it was pointed out how higher-order
DFTC phases are associated with an emergent ℤp symmetry which is not apparent
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in the original model. Despite these preliminary studies, the understainding of high-
order time crystal phases has been fundamentally hindered by the lack of a unique
order parameter capable of detecting all the DFTC phases simultaneously.

Here we propose a possible candidate for such an order parameter, which has the
advantage to be blind to the order p of the DFTC phase while being easily accessible
from the experimental point of view. To this extent, we consider the fully-connected
(𝛼 = 0) limit of the kicked Ising model (5.5)

H = − 1
4N

∑︁
j , j ′

𝜎̂
j
x 𝜎̂

j ′
x + h(t)

∑︁
j

𝜎̂
j
z , (5.8)

i.e. the kicked LMG model [26], and we choose to investigate the evolution of the
observables

ma (t) =
1
N

∑︁
j

〈
𝜎̂
j
a

〉
(5.9)

(with a = x , y , z) which correspond to the components of the magnetization of the
system. In the N → ∞ limit, it is possible to write a closed evolution equation for
m(t) [66, 124], which leads, in terms of the stroboscopic magnetizationmn ≡ m(nT ),
to the map

mn+1 = f (mn) ≡ Rz (2𝜓)Rx (−mx ,nT )mn , (5.10)

where Rx ,y ,z (𝜉 ) is the rotation matrix of an angle 𝜉 around the corresponding axis
(see Appendix C for the details of the derivation). If at t = 0 we start from the h = 0
ground state |Ψ0⟩ = |→ · · · →⟩ we have m0 = (1, 0, 0). The constraint m2 = 1
is preserved, as consequence of the global angular momentum conservation, so that
the motion takes place on a Bloch sphere [124]. The ℤ2 symmetry of the model is
instead encoded into the dynamical symmetry of Eq. (5.10)

𝜓 → 𝜓 + 𝜋/2
mn → Rz (𝜋n)mn

(5.11)

Depending on the values ofT and 𝜓 we observe different dynamical phases.
In particular, we can pinpoint three different phases:

1. A chaotic phase in whichmn shows an erratic behavior, with a strong sensitivity
to initial conditions.

2. A quasi-periodic phase, in which mn has a non-integer period, sensitive to
small changes in 𝜓 .

3. A periodic phase in which mn exhibits an integer period p, robust with respect
to small changes of 𝜓 , with an additional small quasi-periodic modulation (re-
ferred to as micromotion in Ref. [166]).
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Within the latter scenario we can distinguish the trivial p = 1 case (in which the
discrete time translation symmetry is not broken) the period-doubling DFTC for
p = 2, and the higher-order DFTC phases for p > 2.

Due to the dynamical ℤ2 symmetry of the system, the presence of an order p
DFTC for some 𝜓 automatically implies the presence of DFTC in correspondence
of 𝜓 − 𝜋/2, of order p if p is even, 2p if p is odd.

We want now to introduce a quantity which is able to distinguish between these
phases, and in particular to pinpoint the periodic phase, regardless of the order p of
the DFTC. To this extent we introduce the quantity

𝜁 2 =
1
nmax

nmax∑︁
n=0

(
mx ,n (𝜓 + 𝛿𝜓) − mx ,n (𝜓)

)2 , (5.12)

in the limit 𝛿𝜓 → 0, nmax →∞ with nmax 𝛿𝜓 = O(1) fixed.
Before going on let us now examine more in detail the dynamics induced by the

map (5.10) in order to justify our choice of the quantity (5.12) . We notice first that
the map inherits a Hamiltonian structure, which is manifest in the fact that the area
of any region on the sphere m2 = 1 is preserved by the action of f (m). In terms of
the usual polar coordinates along the z axis,

m = (sin 𝜃 cos 𝜙, cos 𝜃 cos 𝜙, cos 𝜃) (5.13)

such area element can be written as dS = d cos 𝜃d𝜙, so that 𝜙 and I = cos 𝜃 are
natural canonical conjugate variables for our system (see also Sec. (1.3.3) ). This is
coherent with the picture developed in Ref.[124] and can be intuitively understood
by thinking of I as the z component of the angular momentum, and 𝜙 the coordinate
corresponding to a rotation around the z axis.

In particular, in the limitT = 0, the map becomes
In+1 = In ,

𝜙n+1 = 𝜙n + 2𝜓 ,
(5.14)

with I0 = 0, 𝜙0 = 𝜋/2. This correspond to the stroboscopic section of an integrable
dynamics, 𝜙 and I playing the role of an angle-action pair. In terms of the Floquet
phases introduced in our paper, this implies a quasi-periodic evolution of mn, with
period 𝜋/𝜓 .

As a smallT is switched on, it can be treated as a perturbation to the map (5.14) .
In this case, the fate of the system is described by the Kolmogorov-Arnold-Moser
theorem [168–170], according to which the torus I = const is only deformed as long
as the corresponding frequency is not resonant. In turn, this means that the quasi-
periodic phase survives as long as 𝜓 is not close to a rational multiple of 𝜋. In the
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case of 𝜓 close to a q : p resonance, i.e. 𝜓 = 𝜓r ≡ r𝜋, with r = q/p and p and q
coprime integers, according to the Poincare-Birkhoff theorem, pairs of elliptic and
unstable fixed points are expected to arise. In this case the action of the p-iterated
map f p (m) identifies different regions in the phase space (I , 𝜙), corresponding to
different possible behaviors of mn. In particular, if (I0 , 𝜙0) is far from the fixed
points, we have rotation dynamics, with 𝜙 growing from 0 to 2𝜋, and we have a
quasi-periodic behavior. If (I0 , 𝜙0) is close to one of the centers instead, we have
libration dynamics, with 𝜙 oscillating around a finite value. As a consequence, mn+p
remains close to mn, and we have a DFTC phase. At the boundaries between these
two regions, a chaotic region is expected to arise which, as T increases, grows and
possibly swallows the regular ones.

Let us analyze the consequence of this picture on the order parameter 𝜁 : to con-
sider different values of the amplitude, 𝜓 , 𝜓 + 𝛿𝜓 it means that we are considering
two nearby initial conditions on the phase space. Both in the DFTC phase and in
the quasi-periodic one the evolution is not chaotic, so that the two trajectories will
diverge linearly in time. As a consequence

𝜁 2 =
1
nmax

nmax∑︁
n=0

(
mx ,n (𝜓 + 𝛿𝜓) − mx ,n (𝜓)

)2

∼ ℓ

nmax

nmax∑︁
n=0

𝛿𝜓2n2 ∼ ℓ (𝛿𝜓nmax)2 ,

(5.15)

where ℓ depends on the average distance between two randomly chosen points of
the two nearby trajectories. While the r.h.s. of Eq. (5.15) remains finite andO(1) as
nmax → ∞, 𝛿𝜓 → 0, ℓ jumps discontinuously as we pass from the libration regime
(corresponding to a DFTC phase) and the rotation one (corresponding to a quasi-
periodic phase). In particular, as we approach the the fixed point of the iterate map,
i.e. in the regime in which the micro-motion becomes negligible, 𝜁 → 0, so that 𝜁
is able to quantify how far away is our system from the pure crystalline regime. Let
us notice, however, how the other values of 𝜁 in this two phases are not universal, as
they depend on the choice of lim𝛿𝜓→0 nmax 𝛿𝜓 .

In the chaotic phase, instead, the trajectories diverge exponentially, so that after
a time-scale nmax ∼ − ln(𝛿𝜓) the memory of the initial condition is lost. In this case
we can assume each mx ,n (𝜓) and mx ,n (𝜓 + 𝛿𝜓) to be drawn from a set of equally
distributed random variables with zero mean. As a consequence, according to the
central limit theorem, 𝜁 2 is distributed as a Gaussian around the value〈

𝜁 2〉 = 2
〈
m2
x
〉

(5.16)

with a variance O(n−1
max). Assuming furthermore the distribution of the three com-
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Figure 5.1: Left panel: Color plot of the order parameter 𝜁 as a function of the amplitude 𝜓

and the period T of the driving, saturated at the value 𝜁 =
√︁

2/3, with nmax = 300, 𝛿𝜓 =

1, 6 · 10−3. Top-right panel: Normalized occurrence frequency p(𝜁 ) of 𝜁 . The gap between
the DFTC phase, localized around 𝜁 = 0, and the quasi-periodic one, localized around 𝜁 ≈
0.36 is apparent. On the right, the profile of the Gaussian distribution around 𝜁 =

√︁
2/3,

characteristic of the chaotic phase. Bottom-right panel: Detail of theT < 3 region of the phase
diagram. The order of the principal DFTC phases is indicated, along with the theoretical
prediction for small T of the boundaries between the phases (blue, red, green solid lines
respectively for the p = 1, 2, p = 4, p = 3, 6 islands). The prolongation of the boundaries of
the p = 3, p = 6 islands (dashed red line) gives a good estimate of the onset of caos, which
disrupts the time-crystal phases at largeT .

ponents to be isotropic, and taking into account the constraint m2 = 1, we have

〈
m2
x
〉
=

1
3

〈
m2〉 = 1

3
, (5.17)

so that
〈
𝜁 2

〉
= 2/3.

This picture is indeed confirmed by the Fig. (5.1) (top-right panel), in which the
occurrence frequency of different values of 𝜁 is plotted, showing a gap between the
DFTC phase (𝜁 ≲ 0.25) and the quasi-periodic one (𝜁 ≳ 0.36), with an additional
Gaussian peak around 𝜁 =

√︁
2/3 ≈ 0.816, corresponding to the chaotic phase.

We conclude that 𝜁 is not only a natural choice to define the DFTC and measure
its distance from the perfect crystalline case, but it turns out to be a useful choice
in chaos diagnostic as well. These considerations are expected to be very general,
depending only on the geometrical features of the map.
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5.3 | Phase Diagram

Now that we have justified the choice of our order parameter, we can show the cor-
responding phase diagram of the model as a function of 𝜓 andT (i.e. the amplitude
and the period of the motion). The result is shown in Fig. 5.1 (left-panel) show-
ing strikingly complex and convoluted. The symmetry around the 𝜓 = 𝜋/4 is a
consequence of the dynamical ℤ2 symmetry (5.11) . For small values ofT the quasi-
periodic phase is prevalent, while small islands of the periodic phase appear around
the resonant values of 𝜓 which corresponds to rational multiples of 𝜋. Initially, the
size of these islands grows with T and, as they get closer to each other, chaotic re-
gions start to appear around their boundaries. Finally, all the islands corresponding
to a DFTC of order p > 2 disappear gradually as they are swallowed by the chaotic
phase, the last one being the p = 4 one. In correspondence with particular values of
the driving period, we have a revival of the higher-order DFTC phases, especially
visible in correspondence of p = 4.

The boundary between the chaotic and the DFTC phase is not smooth: rather
it presents plenty of self-similar patterns which are repeated at smaller and smaller
scales. This is particularly clear if we consider the detail of the p = 3 island in Fig. 5.2
(left panel). In agreement with the general theory of discrete maps, these boundaries
are indeed expected to exhibit a fractal structure. In order to quantify this fractal
behavior and check the self-similarity of different parts of the phase diagram, we
compute the Minkowski-Bouligand, or box-counting, dimension of the boundary.

This is defined as follows: let us cover our space with and evenly spaced square
grid of side 𝜖 . Said N (𝜖 ) the number of boxes which lies on the boundary, then the
dimension is defined as [171]

dMB ≡ − lim
𝜖→0

lnN (𝜖 )
ln 𝜖

. (5.18)

Since we are interested in the border between the chaotic and the DFTC phases,
we restricted ourselves to the region of Fig. 5.2 (left panel) of the phase diagram in
which only these phases are present (in particular 𝜓 ∈ (0.94, 1.01),T ∈ (2.3, 2.8)).
To precisely define our boundary, we have here to define a threshold 𝜁∗ such that a
point with 𝜁 > 𝜁∗ is considered to belong to the chaotic phase.

Since for any finite nmax the distribution of 𝜁 in the chaotic phase around 𝜁 =

0.816 has a finite width, it is convenient, in this case, to choose 𝛿𝜓 such that, nmax 𝛿𝜓 <<

1. In this regime, indeed, the distribution of 𝜁 in the DFTC phase is sharply peaked
around 0, and the separation of the two phases more pronounced. If, however, we
choose 𝛿𝜓 to be too small, the diagnostic of the chaotic region will not be accurate, as
mn (𝜓) will not forget its initial condition for n ∼ nmax. We checked that the choice
nmax = 300, 𝛿𝜓 = 10−4 is close to the optimal one. The separation between the
different phases, shown in Fig. 5.2, right panel, is clear.
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Figure 5.2: Color plot of the order parameter 𝜁 saturated at the value 𝜁 =
√︁

2/3 with nmax =

300, 𝛿𝜓 = 10−4 (left) and corresponding normalized occurrence frequency p(𝜁 ) of 𝜁 for
this region of the phase diagram.

dMB ≈ 1.42 > 1. (5.19)

By repeating the procedure with slightly different values of nmax and 𝛿𝜓 we get an
uncertainty of order 10−2 on the above result.

In Fig. 5.3 right panel, we reported the behavior of dMB as a function of the
threshold 𝜁∗ for the whole phase-diagram of Fig. 1 of the main text. To rule out the
effect of the quasi-periodic phase, which is now present, we have to restrict ourselves
to the region 𝜁∗ ≳ 0.36. As a consequence, the resulting estimate is far less accu-
rate, and the dependence of dMB on 𝜁∗ is more pronounced. We see, however, that
our previous, local, estimate is fully compatible with the hypothesis that the fractal
dimension of the whole boundary is everywhere given by the value (5.19) .

5.4 | SmallT limit

As already noticed in Ref. [162], the formation DFTC islands can be understood
within the formalism of area-preserving maps [172], and in particular can be linked
to the existence of Arnold tongues [173] (see also [174]). By exploiting this picture,
here we obtain an analytic description of the structure of the phase diagram for small
values ofT .

As in Sec. 5.2, it is convenient to parameterise the magnetization as

m = (sin 𝜃 cos 𝜙, sin 𝜃 sin 𝜙, cos 𝜃) (5.20)

and to introduce the canonical coordinates I = cos 𝜃 , 𝜙. Expanding the map (5.10)
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at the first order inT we obtain

In+1 = In −
T
2
(1 − I2

n+1) sin 2𝜙n +O(T2) ,

𝜙n+1 = 𝜙n + 2𝜓 + T
2
In+1 (1 + cos 2𝜙n) +O(T2) .

(5.21)

Let us notice that the O(T ) terms on the r.h.s. of the above equations, In+1 can
be replaced by In up to higher order corrections. This choice guarantees that our
approximation preserves the symplectic structure of the original map. Eq. (5.21) is
invariant under the discrete translation 𝜙n → 𝜙n + n𝜋; this is a consequence of the
dynamical ℤ2 symmetry of the original model.

Let us now build the equivalent of the map (5.21) for the generic p̃-iterated map
(p̃ being a generic integer). ForT = 0 we have than that the action of the p̃-iterated
map is trivially 

𝜙n+p̃ = 𝜙n + 2p̃𝜓

In+p̃ = In
. (5.22)

Then, by exploiting the identity
p̃−1∑︁
n=0

ei (2𝜙+4np̃𝜓) =
sin 2p̃𝜓
sin 2𝜓

ei (2𝜙n+2(p̃−1)𝜓) , (5.23)

we can write In+p̃,𝜙n+p̃ at the lowest order inT as

In+p̃ = In −
p̃T
2
(1 − I2

n+p)Up̃ (𝜓) sin(2𝜙n + 2(p̃ − 1)𝜓) ,

𝜙n+p̃ = 𝜙n + 2p̃𝜓 + p̃T
2
In+p̃

[
1 +Up̃ (𝜓) cos(2𝜙n + 2(p̃ − 1)𝜓)

]
,

(5.24)
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where

Up̃ (𝜓) =
sin 2p̃𝜓
p̃ sin 2𝜓

. (5.25)

Being T small, in general, the 2p̃𝜓 term in the r.h.s. of the second equation od
Eq (5.24) is going to dominate the evolution so that, we expect to find ourselves in
the quasi-periodic phase. However, as p̃𝜓 ∼ k𝜋 for some integer k we have that this
term becomes small as well, signaling the onset of the Poincaré-Birkhoff mechanism
(for k odd, this is due to the ℤ2 symmetry, which allows us to reabsorb the term by
redefining 𝜙n → 𝜙n + n𝜋).

Let us put ourselves close to a resonance, i.e. let us consider the limit 𝜓 = 𝜓r +𝛿𝜓
with 𝛿𝜓 ≪ 𝜋/p. If p is odd, the smallest choice of p̃ which makes the term p̃𝜓 small
is p̃ = p; if p is even, however, we have to choose p̃ = p/2 (and redefine 𝜙n → 𝜙n +n𝜋.
In this limit the Eq. (5.24) becomes

In+p̃ = In −
p̃T
2
(1 − I2

n+p̃)ar sin(2𝜙n − 2𝜓r) ,

𝜙n+p̃ = 𝜙n + 2p̃𝛿𝜓 + p̃T
2
In+p̃ (1 + ar cos(2𝜙n − 2𝜓r)) ,

(5.26)

where

ar =


1 if p = 1, 2

2(−1) p̃−1 csc(2𝜓r)𝛿𝜓 if p ≥ 3 .
(5.27)

Let us notice how in Eq. (5.26) the evolution of both 𝜙 and I is now slow, signaling
that the p̃-iterated map can be approximated by a continuous flow. In order to do so,
we have to redefine the time scale p̃T → T , such that 𝜙n+p̃ , In+p̃ → 𝜙n+1 , In+1 now
by introducing the time step Δt = p̃T , and expanding

In+1 = In + ¤I T +O(T2)
𝜙n+1 = 𝜙n + ¤𝜙T +O(T2)

(5.28)

We find then

¤I = − ar
2
(1 − I2) sin(2𝜙 − 2𝜓r) ,

¤𝜙 = 2p̃
𝛿𝜓

T
+ 1

2
I (1 + ar cos(2𝜙 − 2𝜓r)) .

(5.29)

In turn, this can have the form of a Hamiltonian flow, generated by

Hp (𝜙, I) = 2
𝛿𝜓

T
I − 1

4
(1 − I2) (1 + ar cos(2𝜙 − 2𝜓r)) . (5.30)
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Let us notice how, for different values of p > 2, the effective Hamiltonian (5.30) is
the same up to a renormalization of the parameter ar , further supporting the hypoth-
esis of a self-similar structure in the phase diagram.

By taking into account our initial condition, namely 𝜙(0) = 𝜋/2, I (0) = 0 we
have that our p-iterated dynamics takes place along the curve

Hp (I , 𝜙) = −
1
4
(1 − ar cos(2𝜓r)) . (5.31)

If this curve is bounded between two finite values of the angle 𝜙, the dynamics will
circle around a fixed point, signaling that we are within the time crystalline phase.
If, instead, the curves cover all the 𝜙 ∈ [0, 2𝜋] interval, we have a quasi-periodic
motion. Finally, close to the separatrix between these two cases, chaos is expected to
arise, so that the boundary between these two regimes in terms ofT , 𝜙 can be taken
as an estimate of the edge of the DFTC for smallT . For p = 1, 2, this criterion gives
the condition

T = 4|𝛿𝜓 |. (5.32)

For p > 2, instead, at the lowest order in 𝛿𝜓 we find, for any 𝜓r < 𝜋/2, the condition

T2 =


8 p̃2 tan𝜓r |𝛿𝜓 | if 𝛿𝜓 < 0 ,

8 p̃2 cot𝜓r |𝛿𝜓 | if 𝛿𝜓 > 0 .
(5.33)

Let us notice how Eq.(5.33) captures both the non-analytic behavior of the boundary
of the DFTC and its lack of symmetry 𝛿𝜓 → −𝛿𝜓 around the resonant value 𝜓r for
r ≠ 1/4. However, in order for the result to be predictable at the quantitative level we
have to impose that the term 𝛿𝜓/T in Hamiltonian (5.30) to be small, this implies
that the steepest curve between the two of Eq. (5.33) is not a good approximation of
the boundary in the whole region |𝛿𝜓 | ∼ 𝜋/p, and its coefficient is not reliable. For
r = 1/4 (p̃ = 2) Eq. (5.33) gives

T2 = 32|𝛿𝜓 | , (5.34)

while for r = 1/6 and r = 1/3 (p̃ = 3) we find that the steepest edge grows respectively
as

T2 = ±24
√

3𝛿𝜓 . (5.35)

Those prediction are checked against the phase diagram of Fig. (5.1) . In particular
we find that the boundaries corresponding to r = 0, 1 are well described for smallT
by Eq. (5.32) (blue solid lines); the ones of the r = 1/4 island by the curve Eq. 5.34;
while Eq. (5.35) describes the right/left boundary respectively of the r = 1/3, r = 1/6
islands (red solid lines).
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According to the criterion introduced by Chirikov [175], the value ofT at which
two of these curves intersect can be taken as an estimate of the thresholdT∗ beyond
which the chaos takes over: this gives the estimate

T∗ = (12𝜋2)1/4 ≈ 3.299 (5.36)

for the onset of chaos in the p = 4 island, which is in excellent agreement with the
numerics.

5.5 | Finite size effects

Our description of the DFTC phases is grounded on the solid foundation of dy-
namical systems theory. This parallelism is granted by the presence of long-range
interactions in the Hamiltonian in (5.5) , which suppress fluctuations and thermaliza-
tion effects in the thermodynamic limit. On the other hand, it was estabilished in
Ref. [157] that the p = 2 DFTC (around 𝜓 = 𝜋/2) survives to finite sizes N . One
may wonder if such a picture can be generalized to higher-order DFTC phases, to
infer the robustness of our thermodynamic description to finite N . To do so, we
performed the exact diagonalization of the 𝛼 = 0 model, explicitly computing the
structure of the Floquet eigenstates |𝜂m⟩.

The fact that the modulus of the total spin S of the system is conserved even
for finite N allows us to restrict ourselves to the subspace with S2 = s(s + 1), with
s = N/2, and thus to consider larger sizes (N = 800) [157, 176]. In Fig. 5.4 we show
the projection of the Floquet eigenstates |𝜂m⟩ onto the spin coherent states

��Ω𝜃 ,𝜙
〉

with s = N/2 (𝜃 , 𝜙 being again the polar coordinates relative to z-axis introduced in
Sec. 5.2) [177].

These eigenstates are qualitatively different in the three different phases of the
system: while no structure is present in the chaotic phase (Fig. 5.4, bottom panel),
in the quasi-periodic phase the eigenstate is localized in a connected region of the
(𝜃 , 𝜙) space (Fig. 5.4,top panel: curves (a) and (c)), while in the p = 4 DFTC phase it
appears localized around four, ℤ4 symmetric, points (Fig. 5.4,top panel: curve (b)).

This behavior can be explained within our picture. Indeed, close to a resonance,
the Floquet evolution can be interpreted semi-classically as a tight-binding hopping
between adjacent wells in the space (𝜙, cos 𝜃) [167], each one localized around 𝜓 =

k𝜓r (with k = 1, · · · p−1), so that the corresponding |𝜂m⟩ will take the form of a Bloch
superposition 〈

Ω𝜃 ,𝜙
��𝜂m〉 = p−1∑︁

k=0

e2i𝜋k/pWm (I , 𝜙 − k𝜓r) (5.37)

of the p wavefunctionsW (I , 𝜙 − k𝜙r), each localized around 𝜙 = k𝜓r and connected
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Figure 5.4: Color plot of the overlap |
〈
Ω𝜃 ,𝜙 |𝜂m

��Ω𝜃 ,𝜙 |𝜂m
〉
|2 with the spin coherent state��Ω𝜃 ,𝜙

〉
for different Floquet eigenstates |𝜂m⟩, corresponding to different phases, for N = 800,

𝜓 = 𝜋/2 + 0.01, T = 1 (top) and T = 10 (bottom). While in the chaotic phase (bottom
panel) the eigenstate has no structure, the eigenstate (b) (top panel), which correspond to the
DFTC phase with p = 4, clearly exhibits the structure of a Bloch wave-function localized
around the ℤ4 symmetric wells. The eigenstate (b) (top panel) has maximum overlap with
the spin coherent state corresponding to the initial conditions cos 𝜃 = 0, 𝜙 = 𝜋/2. Initial
conditions localized around the eigenstates (a) and (c) (top panel) instead correspond to a
quasi-periodic phase.
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to the following by the Floquet propagator:

UFWm (I , 𝜙 − k𝜓r) = ei 𝛽mWm (I , 𝜙 − (k + 1)𝜓r) (5.38)

As a consequence, we expect this quantity to be localized around the fixed points of
the p-iterated evolution in the time-crystalline phase. The agreement obtained be-
tween this semiclassical description and the numerical description obtained by exact
diagonalization proves the validity of our analysis also at finite values of N andT .
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Appendices





A | Recurring integrals

We now derive the low-momentum behavior of the integrals of the form

𝜔(q) =
∫
r>a

d2r J (r)
(
1 − cos(q · r)

)
. (A.1)

and

G (r) =
∫
q<Λ

d2q
(2𝜋)2

(
1 − cos(q · r)

)
𝜔(q) . (A.2)

with Λ = 2𝜋/a. We choose our coupling to be

J (r) = JS (r) + J
r2+𝜎 (A.3)

where JS (r) is fast-decaying and represent the short-range, fast decaying, part of
the coupling, while the second one represent an (eventual) power-law (coupling with
𝜎 > 0) which dominates for r ≫ 1. We have:

𝜔(q) =
∫
r>a

d2rJS (r)
(
1 − cos(q · r)

)
+ J

∫
r>a

d2r
r2+𝜎

(
1 − cos(q · r)

)
. (A.4)

Since, by hypothesis,
∫
r>a d

2r r2 JS (r) is finite, we can Taylor expand the cosine in
the first integral on the r.h.s getting a term proportional to q2 for small values of q.
The same is true for the second terms as well, provided that 𝜎 > 2, so that we can
conclude that

𝜔(q) ∼ q2 ∀ 𝜎 > 2 (A.5)

with some non-universal proportionality constant.
Let us consider now the regime 𝜎 ∈ (0, 2). In this case, the second term of

the r.h.s. of Eq. (A.4) has no ultraviolet divergence, so that we can integrate over
the whole space, up to O(q2) corrections that can be reabsorbed in the contribution
coming from the short-range part of the coupling. We get than

𝜔(q) =
∫

d2r
r2+𝜎

(
1 − cos(q · r)

)
+O(q2) , (A.6)
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which becomes, in polar coordinates

𝜔(q) = 2
∫ ∞

0

dr
r1+𝜎

∫ 2𝜋

0
d𝜃 sin2 qr cos 𝜃

2
+O(q2). (A.7)

In turn posing in term of 𝜌 = qr cos 𝜃

𝜔(q) = q𝜎21−𝜎 J
∫ ∞

0

d 𝜌
𝜌1+𝜎 sin2 𝜌

∫ 2𝜋

0
d𝜃 | cos 𝜃 |𝜎 +O(q2) (A.8)

Then, we find
𝜔(q) = Jc𝜎q𝜎 +O(q2) ∀ 𝜎 ∈ (0, 2) (A.9)

with

c𝜎 = 21−𝜎
∫ ∞

0

d 𝜌
𝜌1+𝜎 sin2 𝜌

∫ 2𝜋

0
d𝜃 | cos 𝜃 |𝜎 =

21−𝜎𝜋 |Γ(− 𝜎
2 ) |

𝜎Γ( 𝜎2 )
. (A.10)

Let us now consider the integral of Eq (A.2) , which definesG (r). We switch to polar
coordinates and exploit the identity∫ 2𝜋

0
cos(qr cos 𝜃) = 2𝜋J0(qr) , (A.11)

J0(x) is the zeroth-order Bessel function of the first kind, obtaining

G (r) = a2
∫ Λ

0

dq
2𝜋

q(1 −J0(qr))
𝜔(q) , (A.12)

For 𝜎 > 2, we have 𝜔(q) ∼ q2, so that

G (r) ∼
∫ Λ

0
dq

1 −J0(qr)
q

=

∫ Λr

0
dx

1 −J0(x)
x

. (A.13)

For large r , the dominant term in the integral above is ln(Λr). We then conclude
that:

G (r) ∼ 𝜂 ln
r
a
+ B, (A.14)

𝜂 and B being two non-universal, cutoff dependent, constants. In particular, if we
assume JS (r) = 0, J (r) = Jr−2−𝜎 , we have 𝜂 , B ∝ J−1, so that we can write

G (r) ∼ 𝜂 ( J ) ln r
a
+ AJ−1 (A.15)

with 𝜂 ( J ) = p/J for some p.
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Let us now consider instead the case J (r) ∼ Jr−2−𝜎 , with 𝜎 ∈ (0, 2). The
expression forG (r) becomes

G (r) ∼ 1
J

∫ Λ

0
dq q1−𝜎 (1 −J0(qr)) (A.16)

which asymptotically goes as

G (r) = AJ−1 +O(r𝜎−2) , (A.17)

for some (non universal) A.
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B | Fractional Laplacian

We want now to provide the definition of the fractional Laplacian, that we used, and
derive the form (2.35) of SLR.

For any 𝜎 ∈ (0, 2), and a function f (x) : ℝd → ℝ one can define ∇𝜎 f (x) as:

∇𝜎 f (x) ≡ 𝛾d ,𝜎

∫
ddr

f (x + r) − f (x)
rd+𝜎

, (B.1)

with

𝛾d ,𝜎 =
2𝜎Γ( d+𝜎2 )
𝜋d/2 |Γ(−𝜎

2 ) |
(B.2)

One can derive an alternative expression for this quantity in the momentum space.
In terms of Fourier transform of f (x), f (q), one finds

∇𝜎 f (x) = −𝛾d ,𝜎

∫
ddq f (q) eiq·x

∫
ddr

1 − eiq·r

rd+𝜎
. (B.3)

and, exploiting the fact that, ∫
ddr

1 − eiq·r

rd+𝜎
= 𝛾−1

d ,𝜎 q
𝜎 , (B.4)

one have
∇𝜎 f (x) = −

∫
ddq q𝜎 f (q)eiq·x. (B.5)

(from which, in the limit 𝜎 → 2 one recovers the usual behavior of the standard
Laplacian).

Let us now notice how the quantity present in Eq (2.34) , namely∫
d2x

∫
r>a

d2r
r2+𝜎 [1 − cos (𝜃 (x) − 𝜃 (x + r))]. (B.6)

naturally fits into the definition of a two-dimensional fractional Laplacian. Indeed,
provided that 𝜎 < 2, one can actually extend the integral on r on the whole space,
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and absorb the contribution coming from the r < a region into the definition of the
SR term. Then, we can write the additional LR term as the real part of∫

d2x
∫

d2r
r2+𝜎 [1 − e

i𝜃 (x+r)−i𝜃 (x)] =

e−i𝜃 (x)
∫
d2x

∫
d2r
r2+𝜎 [e

i𝜃 (x) − ei𝜃 (x+r)].
(B.7)

In turn, this can be rewritten by exploiting the definition (B.1) of the fractional Lapla-
cian,

− 𝛾−1
2,𝜎

∫
d2x e−i𝜃∇𝜎ei𝜃 . (B.8)

The expression above is already real, so that we recover the form of the long-range
term given in Chapter 2.



C | Evolution of the magnetization in
the fully-connected kicked Ising
model

Here we revise the derivation of the dynamic map of Eq. (5.10) of the main text, i.e.
the evolution equation of the magnetization

ma (t) =
1
N

∑︁
j

〈
𝜎̂
j
a

〉
(C.1)

at stroboscopic times tn = nT , in the thermodynamic limit, N →∞. First we notice
how, due to the impulsive nature of the magnetic field h(t), the Floquet propagator
can be written as the product of two different operators:

UF = e−2i𝜓 ŜzeiTŜ
2
x /N , (C.2)

where we introduced the global spin operators

Ŝa =
1
2

∑︁
j

𝜎̂
j
a , (C.3)

with a = x , y , z. Being Ŝx the generator ofO(3) rotations around the x axis, the kick
term e−2i𝜓 Ŝz in Eq.(C.2) acts on the observable m simply as a rotation around the z-
axis. On the other hand, the other term describes the evolution over one periodT of
m induced by the second term on the r.h.s of Eq. (C.2) . The Heisenberg equations
of motion corresponding to such evolution for the operators Ŝa are:

d
dt
Ŝx = 0 ,

d
dt
Ŝy =

J
N

(
ŜxŜz + ŜzŜx

)
,

d
dt
Ŝz = −

J
N

(
ŜxŜy + ŜyŜx

)
.

(C.4)
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According to the general theory developed in Ref. [66], for N → ∞ the spin-spin
correlation become negligible, that is

〈
ŜaŜb

〉
≃

〈
Ŝa

〉 〈
Ŝb

〉
, so that Eqs. (C.4) become

a closed set of equations for ma = 2 ⟨Sa⟩ /N , namely:

¤mx = 0 ,
¤my = Jmxmz ,
¤mz = −Jmxmy .

(C.5)

In turn this results after a timeT in a (clockwise) rotation around the x-axis, of angle
JTmx (t).
Posing J = 1, the overall effect of the Eq. (C.2) on our observable m is the one of
Eq.(4) of the main text.
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