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ABSTRACT
We probe the accuracy of linear ridge regression employing a three-body local density representation derived from the atomic cluster expan-
sion. We benchmark the accuracy of this framework in the prediction of formation energies and atomic forces in molecules and solids. We
find that such a simple regression framework performs on par with state-of-the-art machine learning methods which are, in most cases, more
complex and more computationally demanding. Subsequently, we look for ways to sparsify the descriptor and further improve the compu-
tational efficiency of the method. To this aim, we use both principal component analysis and least absolute shrinkage operator regression
for energy fitting on six single-element datasets. Both methods highlight the possibility of constructing a descriptor that is four times smaller
than the original with a similar or even improved accuracy. Furthermore, we find that the reduced descriptors share a sizable fraction of their
features across the six independent datasets, hinting at the possibility of designing material-agnostic, optimally compressed, and accurate
descriptors.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0052961

I. INTRODUCTION

The advent of machine learning (ML) methods in atom-
istic simulation and modeling is benefiting a wide array of dis-
ciplines, e.g., it has become an important tool in the field of
structure–property predictions.1–3 As paradigmatic examples, accu-
rate data-driven prediction of properties from structures has been
developed for NMR shieldings in molecules and molecular crys-
tals,4,5 polarization of small to medium molecular systems,6 sol-
vation and efficacy of drugs,7–9 and activity of homogeneous and
heterogeneous catalysts.10–12 By the same token, and in relation to
the development of force fields (FFs), representative achievements
may be found in the simulation of reactions in solutions explic-
itly accounting for the solvent,13,14 the assessment of the stability of
multi-phase materials relevant, e.g., to storage and conversion,15–17

electronic devices,18–20 geology,21 and the realistic modeling of com-
plex systems in soft matter and biophysics.22–24

An open issue of particular importance in data-driven
approaches for atomistic systems lies in the choice of the represen-
tation of the atomistic system itself. As a witness of the relevance of

this problem, a multitude of atomic environment descriptors have
been proposed in the last 15 years.25–31 Among the most success-
ful representations in the field, we find local density representations.
In a nutshell, these representations hinge on a construction where
atom-centered distributions are represented in a vector form using a
many-body expansion.25–30 Recently, a general formulation of such
a local density representation, named “atomic cluster expansion“
(ACE), has been proposed by Drautz.32–34 The ACE representation
is symmetric with respect to rotation, translation, and permuta-
tion of identical atoms. It is furthermore differentiable with respect
to atomic coordinates and complete, that is, in its generalized for-
mulation, it leads to a descriptor body-order, which is iteratively
expanded up to the desired one, hence satisfying the uniqueness
principle.

In this work, we discuss the performance on two benchmark
datasets of three-body representations following the ACE repre-
sentation, used in conjunction with a ridge regression fitting pro-
cedure. In Sec. II, we present the ACE descriptor,32 the scaled
(SC) and non-scaled (NSC) versions of the Chebyshev radial basis
functions, and the simplified spherical Bessel (SSB) radial basis
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functions, first introduced by Kocer et al. for local atomic envi-
ronments.35 We then introduce the regression algorithm used to
predict atomic forces and total energies throughout the manuscript
in Subsection II B. The proposed descriptor-regression framework
resembles the Spectral Neighbor Analysis Potentials (SNAPs) first
introduced by Thompson et al. but relies on power spectrum coef-
ficients rather than bispectrum coefficients, making it a three-body
potential in the sense of Ref. 36 rather than a four-body potential
(4 + 7-body in the case of quadratic SNAPs). Our regression frame-
work is then benchmarked on two publicly available datasets in
Sec. III. First, in Subsection III A, we consider the QM9 dataset,
which contains atomic structures and properties, such as forma-
tion energy, of 134k small molecules.27,37 We show that a simple
ridge regression framework yields predictions for molecular sys-
tems that display an accuracy comparable to the one of more com-
plex, and computationally demanding, regression methods. Similar
to other local density representation methods, we observe a trade-
off between the computational cost and accuracy, where accurate
enough predictions are found only for a sufficiently large dimension
of the descriptor; this verifies regardless of whether we employ SC,
NSC, or SSB polynomials as the set of radial basis functions in the
descriptor. Nevertheless, we observe that SSB functions enable more
accurate predictions than the other two radial basis functions when a
low number of radial basis functions are employed. Second, in Sub-
section III B, we look at the fitting of a FF for six single-element crys-
talline systems utilizing the dataset of forces and energies introduced
by Ref. 38. We find again that the proposed learning framework can
perform on par with other state-of-the-art approaches and that its
accuracy depends on the dimension of the representation. Interest-
ingly, we find that employing SSB radial basis functions is often opti-
mal for compact representations. In Sec. IV, we discuss methods to
reduce the dimension of descriptors employed to fit energies in the
example case of the database containing six single-element periodic
systems.38 We find that through both principal component anal-
ysis (PCA) dimensionality reduction and least absolute shrinkage
operator (LASSO) regression feature selection, we are able to match,
and sometimes outperform, the accuracy obtained when using the
full descriptor while reducing its dimension by a factor of ∼4. The
features selected by PCA and LASSO across the six single-element
datasets are furthermore partially redundant, revealing an underly-
ing material-agnostic structure to the relevant directions in the data
space. This insight could guide the informed design of optimally
compact, and computationally efficient, local atomic environment
descriptors. Finally, the conclusions summarize the results and offer
an outlook for future research aimed at improving the algorithm
proposed in this manuscript.

II. METHODS
A. Atomic environment representation

To construct the local atomic environment descriptor q(ρ)
used throughout this manuscript, we first define the local atomic
density ρ(r), through a standard procedure, as a sum of Dirac delta
functions δ(rji − r) centered on each atom surrounding a central
atom i within a cutoff rc,

ρi(r) = ∑
j∣rji≤rc

δ(rji − r), (1)

where rji indicates the vector (rj − ri) and rji is the magnitude of rji.
The local atomic environment representation in Eq. (1) is already
invariant to permutations of identical atoms and translations, but
not to rotation; it is, moreover, not trivial to transform such a rep-
resentation into a finite-size descriptor. To overcome these prob-
lems, the local atomic density is first approximated via a truncated
expansion in spherical harmonics and radial basis functions,

ρi(r) ∼ ∑
j∈ρi

nMAX

∑
n=0

lMAX

∑
l=0

l

∑
m=−l

cj
nlmgn(rji)Ylm(r̂ji), (2)

where r̂ji is the unit vector of rji, gn are the elements of a set of
nMAX radial basis functions, Y lm are the elements of a set of spher-
ical harmonics, nMAX indicates the truncation limit for the radial
basis set, and lMAX is the truncation limit for the angular basis set.
We note that the elements gn should also depend on the angu-
lar expansion coefficient l. We, here, remove the coupling between
angular and radial parts following the approach of Ref. 35, as it was
shown that such simplification significantly reduces the complexity
of evaluating g(rij) without noticeable decreases in the prediction
accuracy.35,39 In principle, one could use the array of coefficients
Cnlm = ∑j∈ρi

cj
nlm as a descriptor, but it would not be invariant to rota-

tions of the local atomic environment. To solve this issue, products
of N coefficients cj

nlm that correspond to a reducible representation
of the identity of the rotation group are taken. The resulting descrip-
tors are of order (N + 1), i.e., they can encode the interaction of
up to N + 1 atoms at once.30,32 One advantage of ACE descriptors
is given by the linear scaling of the computational cost for their eval-
uation in the number of atoms M in the neighborhood of i for any
order N. This is not the case, e.g., for explicit N-body descriptors,
where summations over groups of N neighbors have to be consid-
ered, therefore causing the computational cost of their evaluation
to scale as 𝒪 (MN−1), i.e., more than linearly in M whenever N > 2.
The linear scaling in M of ACE descriptors, therefore, enables a large
computational speed-up when compared to explicit N-body descrip-
tors, especially for densely packed systems. In this manuscript, we
employ three-body descriptors, where components qn1 ,n2 ,l of q are
computed as

qn1 ,n2 ,l(ρi) = ∑
j∈ρi

∑
k∈ρi

m=+l

∑
m=−l
(−1)mcj

n1 lmck
n2 l−m. (3)

The representation in Eq. (3) is expected to strike a good bal-
ance between descriptiveness and efficiency,19,40 as the computa-
tional complexity of evaluating the three-body descriptor is 𝒪 (M
⋅ (nMAX ⋅ l2

MAX + n2
MAX ⋅ lMAX)). Nevertheless, we expect that the

inclusion of four- and higher-body descriptors, following the proce-
dure in Ref. 32, will enable us to reach even higher accuracies, albeit
at an increased computational cost. The equations reported so far
hold for single-element systems. If S > 1 atomic species are present,
we employ S2 independent descriptors qa,b(ρi), where a refers to the
type of the central atom i, and only surrounding atoms of type b
contribute to the value of qa,b(ρi).

In the first manuscript introducing the so-called atomic clus-
ter expansion, Drautz proposes an ensemble of SC polynomials as
the orthonormal radial basis set gn(r),32 which had been also previ-
ously used to expand 2- and 3-body correlation functions and chart
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structure-to-property mappings in Ref. 41. We report here the SC
radial basis set as defined in Ref. 32,

g0(x) = 1,

g1(x) =
1
2
[1 + cos(πr/rc)],

gn(x) =
1
2
[1 − Tn−1(x)]

1
2
[1 + cos(πr/rc)],

(4)

where the Chebyshev polynomials of the first kind Tn(x) are defined
recursively as

T0(x) = 1,
T1(x) = x,

Tn+1(x) = 2xTn(x) − Tn−1(x),
(5)

and the scaled distance function is

x = 1 − 2( e−λ(r/rc−1)

eλ − 1
), (6)

where λ is a coefficient, set to 5 as in Ref. 32.
Beside the SC radial basis, we look at possible changes in per-

formance originating from the use of different radial basis in the
ACE expansion: a set of SSB functions of the first kind, introduced in
Ref. 35, and a NSC radial basis set. The NSC radial basis set is defined
by Eq. (4), where x is x = 2r/rc − 1. The SSB functions of the first
kind basis set gn(rij), introduced in Ref. 35, is defined recursively as

gn(r) =
1√
dn
( f n(r) +

√
en

dn−1
gn−1(r)),

dn = 1 − en

dn−1
,

en =
n2(n + 2)2

4(n + 1)4 + 1
,

(7)

where d0 = 1, d1 = 1, g0(r) = 1, g1(r) = f 0(r), and

f n(r) = (−1)n
√

2π
r3/2

c

(n + 1)(n + 2)√
(n + 1)2 + (n + 2)2

⋅ [sinc(r
(n + 1)π

rc
) + sinc(r

(n + 2)π
rc

)]. (8)

In Fig. 1, we display the terms g1 to g5 for the three radial basis
function sets, where rc was set to 1.

Additionally, independent of the choice of the radial basis set,
we have found that appending the element-wise squared descriptor
q2 to q yields a sizable increase in prediction accuracy, with negligi-
ble computational cost. The further inclusion of q3, or higher-order
powers of q, element-wise square-root, or sigmoid, of the origi-
nal descriptor q, did not appear to yield any significant accuracy
increase.

B. Regression algorithm
To carry out the supervised learning task, we adopt ridge

regression (RR), one of the simplest and most computationally

FIG. 1. Visualization of the terms g1 to g5 of (top to bottom) the SSB, SC, and NSC
radial basis function sets. The cutoff radius was set to 1 Å for the three plots.

efficient fitting algorithms. RR recasts the learning problem into the
following closed formula:

Y = Q W + ε, (9)

where Y is the matrix of dependent variables, Q is the matrix of
explanatory variables, W is the parameter matrix that weights Q, and
ε is a vector of error terms, which accounts for possible hidden vari-
ables influencing Y that are not contained in Q. Given a training set
𝒟 = {Yi, Qi} i = 1, . . . , D, we obtain the weights W analytically as

W = (QTQ + γ I)−1QTY, (10)

where γ is the ridge parameter. When both forces and energies are
used to train the algorithm, Y is a 2D matrix with elements Yd
pertaining to structure d containing S atoms,
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Yd = [Ed, f x
1, f y

1, f z
1, . . . , f x

S, f y
S, f z

S], (11)

where f c
s indicates the c-component of the force vector acting on

atom s of structure d. Similarly, the matrix of explanatory variables
Q becomes a 3D tensor with elements Qd pertaining to structure d,

Qd = [qd,−∂qd
∂x1

,−∂qd
∂y1

,−∂qd
∂z1

, . . . ,−∂qd
∂xS

,−∂qd
∂yS

,−∂qd
∂zS
], (12)

where qd is defined as the sum over all atoms i in structure d of the
local atomic environment descriptor q(ρi). Whenever only energies
are used to fit the algorithm, such as in the case of the QM9 dataset,
both the elements of the matrix of explanatory variables and the ele-
ments of the matrix of dependent variables simplify to, respectively,
Qd = qd and Yd = Ed.

Two main advantages arise from the choice of employing RR
over more complex learning algorithms, such as artificial neural
networks (ANNs) or Gaussian Process (GP) regression. First, RR
has a lower computational cost than ANNs or GP regression, since
once the descriptor Q has been calculated, the prediction of Y
requires a single matrix product. Second, RR models, similar to GPs,
can be trained in closed form and, therefore, without the need for
slow gradient descent algorithms, which also introduce additional
hyper-parameters that require careful tuning.

III. RESULTS
A. Energy prediction in the QM9 dataset

As a first benchmark, we look at one of the most widely stud-
ied datasets in our community, the QM9 dataset,27,37,42 and aim to
predict the formation energy for each molecule in the database. The
QM9 encompasses a relatively large number (133 885) of molecules
with a total of up to five chemical species, with each molecule con-
taining up to nine heavy atoms of C, N, O, or S, and any number
of H atoms. In the top panel of Fig. 2, we report the mean absolute
error (MAE) incurred on total energy predictions by three sets of
RR models employing different radial basis functions for a fixed set
of descriptor hyperparameters: rC = 4.5, nMAX = 8, lMAX = 10, and,
therefore, a fixed descriptor’s dimensionality. A black dashed line
in the plot indicates the target of 1 kcal/mol, often referred to as
the target chemical accuracy for the prediction of formation ener-
gies for molecules. Among the three radial basis expansions under
scrutiny, the SSB basis set performs best at any point on the train-
ing curve, and it reaches chemical accuracy, even when fewer than
the maximum number of training structures (107 800, 80% of the
total dataset) are used. We hypothesize that this result is a conse-
quence of the higher spatial resolution of Bessel polynomials with
respect to (scaled and non-scaled) Chebyshev polynomials for low
values of nMAX , as discussed in the supplementary material, Sec. A.
The convergence error for the RR model here presented, employ-
ing SSB radial functions with nMAX = 8 and lMAX = 10, is 0.78 ± 0.02
Kcal/mol. Other methods are able to incur lower MAEs, such as
neural networks, reaching 0.14 Kcal/mol in Ref. 43, or Gaussian pro-
cess regression, reaching 0.14 Kcal/mol in Ref. 44. The lower error
incurred by the aforementioned methods is, however, paralleled by
a much higher computational cost and complexity. Furthermore, we
are not aware of any linear method, which has been successfully used

FIG. 2. Validation MAE on total formation energy for the QM9 dataset incurred
by potentials, as a function of the number of training structures used with nMAX
= 8 and lMAX = 10 (top panel) and as a function of the number of features in the
representation, with lMAX = nMAX + 2 and nMAX = 2, . . . , 8 and using 107 800
training structures (bottom panel). The standard deviation of each measure across
three independent runs is displayed, where the validation and training set were
randomly selected and the size of the validation set was kept fixed at 26 777 (20%
of the total dataset). The black dashed line indicates a MAE of 1 Kcal/mol, typically
indicated as a target for chemical accuracy in structure energy prediction.

for the prediction of formation energies for the QM9 dataset, i.e.,
displaying a MAE on par with chemical accuracy.

As stated in Sec. II A, the computational cost of the atomic clus-
ter expansion descriptor strongly depends on the choice of nMAX
and lMAX , which, in turn, affects the descriptor’s dimension. For
this reason, the investigation of the validation error as a function
of the descriptor’s dimension reveals the accuracy/cost trade-off
of the algorithm and can lead to increased efficiency. The bottom
panel of Fig. 2 displays the validation MAE incurred by RR trained
on 107 800 structures for the QM9 dataset as a function of the
descriptor’s dimension when employing SSB, SC, and NSC radial
basis functions. In this instance too, RR FFs employing the SSB
basis set reach chemical accuracy (1 Kcal/mol) at smaller descrip-
tor dimensions than the other two basis sets and, more specifically,
at nMAX = 6 and lMAX = 8. This paradigmatic example shows that
the choice of the most efficient basis may be key when develop-
ing surrogate models for databases, which encompass a large num-
ber of data and chemical species. For an analysis of the impact
on prediction accuracy of the balance between nMAX and lMAX ,
the interested reader is directed to the supplementary material,
Sec. B.
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B. Force and energy prediction in materials
In the previous paragraph, we benchmarked the accuracy of our

method while fitting on formation energies only. While energy pre-
diction is of great importance, e.g., for structure search methods, it is
often the case that both forces and energies are required, e.g., when
running molecular dynamics (MD) simulations using a ML FF. In
this second example, we consider the database containing forces
and energies for six single-element periodic systems, first introduced
in Ref. 38. The dataset contains perfect and deformed crystalline
structures for two group IV semiconductors (Si and Ge), two body-
centered-cubic (BCC) metals (Li and Mo), and two face-centered-
cubic (FCC) metals (Ni and Cu); for additional details on the meth-
ods used to generate the data, the interested reader is referred to
Ref. 38. We thus assess the accuracy of our framework hinging
on RR fitting and a three-body ACE representation to produce a
FF, given each of the six single-element datasets. Tables I and II
report the performance of the proposed ML framework using a SSB
radial basis employing nMAX = 8 and lMAX = 10 and using the same
system dependent cutoffs rc used in Ref. 38 (Mo = 5.2 Å, Si = 4.7 Å,
Ge = 5.1 Å, Cu = 3.9 Å, Ni = 4.0 Å, Li = 5.1 Å). For reference,
we also report the results from Ref. 38, which benchmarked other
widespread state-of-the-art ML frameworks. Notwithstanding the
simplicity and computational efficiency inherent to a linear fit, the
proposed approach displays performances comparable to the most
accurate methods discussed in the literature.

Similar to the case of the QM9 dataset, we look at the interplay
between the number of radial and angular basis employed and the
corresponding fitting accuracy. Figures 3 and 4 show the root mean
squared error (RMSE) incurred by the proposed ML framework on
forces and on energies, respectively, in each system, as a function
of the descriptor’s dimension. An increase in the descriptor extrin-
sic dimension corresponds to a decrease in the model RMSE, as
expected. For most systems, the RMSE does reach a plateau around
a descriptor’s dimension of 102, indicating that more compact, and
thus more computationally efficient, basis sets can be employed with
negligible accuracy loss. These trends are in agreement with the
ones previously reported in the literature for other formulations of
the local atomic density representations.45 In particular, descriptors
employing nMAX = 5 and lMAX = 7 incur in RMSEs on forces and
energies that are, on average, respectively, 0.003 ± 0.003 eV/Å and
1.77 ± 1.41 meV/atom higher than the ones incurred by the larger
descriptor. In turn, using nMAX = 5 and lMAX = 7 is approximately
four times faster than nMAX = 8 and lMAX = 10. Different to the case

TABLE I. Minimum RMSE on forces (eV/Å) incurred by our three-body RR poten-
tial employing SSB polynomials as radial basis functions for the six single-element
datasets from Ref. 38. The symbol ∗ indicates the results from Ref. 38, which are
included for comparison.

Material Our method GAP∗ MTP∗ NN-BP∗ SNAP∗ qSNAP∗

Ni 0.03 0.04 0.03 0.07 0.08 0.07
Cu 0.02 0.02 0.01 0.06 0.08 0.05
Li 0.01 0.01 0.01 0.06 0.04 0.04
Mo 0.16 0.16 0.15 0.20 0.37 0.33
Si 0.13 0.12 0.09 0.17 0.34 0.29
Ge 0.09 0.08 0.07 0.12 0.29 0.20

TABLE II. Minimum RMSE on energies (meV/atom) incurred by our three-body linear
potential employing SSB polynomials as radial basis functions for the six single-
element datasets from Ref. 38. The symbol ∗ indicates the results from Ref. 38,
which are included for comparison.

Material Our method GAP∗ MTP∗ NN-BP∗ SNAP∗ qSNAP∗

Ni 1.74 0.62 0.74 2.25 1.17 1.04
Cu 1.19 0.56 0.52 1.68 0.87 1.16
Li 1.23 0.63 0.76 0.98 1.31 0.85
Mo 4.00 3.55 3.89 5.67 9.06 3.96
Si 5.16 4.18 3.02 9.95 8.06 6.28
Ge 11.62 4.47 3.68 10.95 10.96 10.55

of the QM9 dataset, in Figs. 3 and 4, the difference in the perfor-
mance of the descriptors employing the three radial basis sets is
marginal, even for small descriptor sizes.

The current Python implementation of the algorithm favors
code interpretability over efficiency. For a thorough discussion
on the computational speed of the ACE framework, we refer the

FIG. 3. RMSE on forces incurred by our RR potential trained and tested on data
from Ref. 38 as a function of the number of features in the representation using
nMAX = 2, . . . , 8 and lMAX = nMAX + 2. Color coding refers to the radial basis
functions as in Fig. 2.
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FIG. 4. RMSE on atomic energies incurred by our RR potential trained and tested
on data from Ref. 38 as a function of the number of features in the representation
using nMAX = 2, . . . , 8 and lMAX = nMAX + 2. Color coding refers to the radial basis
functions as in Fig. 2.

interested reader to Ref. 46, where it is shown that an efficient C++
implementation of this representation generally leads to predictions
whose accuracy and speed are both highly competitive with other
state-of-the-art methods.

IV. DESCRIPTOR COMPRESSION
We have showcased how the use of efficient local atomic envi-

ronment descriptors can yield a satisfying prediction accuracy, even
when employing linear, and thus computationally cheap, regres-
sion algorithms. Nonetheless, the descriptors employed up to this
point contain hundreds to thousands of elements, and the ques-
tion of whether such a large number of variables are really neces-
sary to describe the data naturally arises. Indeed, widely employed
local atomic environment descriptors, such as the smooth overlap
of atomic positions (SOAP) and atomic symmetry functions (ASF),
can be compressed without loss of accuracy for the case of Gaussian
process FFs and artificial neural networks FFs, respectively.47 Here,

we address this question by applying two different techniques, prin-
cipal component analysis (PCA) and least absolute shrinkage and
selection operator (LASSO) regression, to reduce the dimension of
the descriptors employed for energy-only fitting on the six single-
element datasets analyzed in Sec. III B. For all the six datasets, we
compute descriptors Q using nMAX = 8 and lMAX = 8, we employ the
SSB radial basis function, and we avoid augmenting the descriptor
with the element-wise square of each element to simplify the analy-
sis of the results. Figures mirroring the ones shown in the Secs. IV A
and IV B, but for the case of SC and NSC radial basis functions, can
be found in the supplementary material, Secs. C and D, respectively.

A. PCA dimensionality reduction
PCA is a well-known data analysis algorithm,48 often used to

draw low-dimensional projections of high-dimensional objects, such
as the features derived from local density representations.49 In a nut-
shell, PCA fits an ellipsoid to the data (in our case, the descriptors Q),
therefore allowing for the identification of the directions of highest
variance in the dataset. Dimensionality reduction can then be per-
formed by employing only the projections of the original data Q
on the P orthogonal directions displaying the highest variance of
the aforementioned ellipsoid. The reduced descriptor is, therefore,
obtained as

QPCA
P = Q ⋅ CP, (13)

where CP is a matrix with the P directions of maximum variance
of the data as columns. In the top panel of Fig. 5, we showcase the

FIG. 5. Top panel: data unexplained variance as a function of the number of
PCA components accounted for. Bottom panel: RMSE on energies incurred by
RR potentials employing the reduced descriptor QPCA

P on the validation set, as a
function of the number of PCA components P.
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fraction of variance of the descriptors Q, which is not explained by
the reduced descriptor QPCA

P as a function of the number P of PCA
components used, in a log–log scale. We notice that around P ∼ 80,
for all systems, the curve of unexplained variance sharply changes
slope, indicating that the inclusion of components over P ∼ 80 in
the reduced vector QPCA

P will yield a negligible improvement in the
explained variance. This is confirmed by the bottom panel of Fig. 5,
where we report the RMSE on the validation energy prediction of
the RR potential employing reduced descriptors QPCA

P containing
P PCA components (solid lines and circles) and the non-reduced
descriptor Q (crosses) as a function of P. For all elements, the RMSEs
have a minimum around P ∼ 80. Moreover, for the elements display-
ing a higher RMSE, namely, Mo, Si, and Ge, the RMSE increases
for P > 80; this suggests that the inclusion of components beyond
P ∼ 80 introduces noise in the descriptor, lowering the validation
accuracy.

Using PCA feature selection, we are therefore able to con-
struct an 80-dimensional descriptor that, for each material, performs
on par with, and sometimes better than, the full 360-dimensional
descriptor. To investigate the similarity between the matrices CP
among the six datasets, we look at the dimension of the intersec-
tion between the sub-spaces defined by the rows of CP; details on
this procedure are available in the supplementary material, Sec. E. In
Fig. 6, we report the fraction of shared dimensions between the sub-
spaces defined by CP with P = 80. Elements on the diagonal are 1,
as a sub-space shares all of its dimensions with itself, while ele-
ments on the last row and column are 0, as these report the fraction
of shared dimensions between the sub-spaces defined by CP (with
P = 80) and a sub-space defined by 80 360-dimensional randomly
generated orthogonal vectors. The off-diagonal elements of all but
the last rows have a mean value of 0.69, indicating that, on aver-
age, 55 of the 80 dimensions of the matrix CP are shared among a

FIG. 6. Heatmap displaying the fraction of dimensions shared by the sub-spaces
generated by the first 80 PCA-selected directions of the descriptors Q among
a couple of single-element datasets. The random label indicates a sub-space
generated by taking 80 random orthogonal vectors in the space of the Q vectors.

couple of single-element descriptor sets. Similar results are observed
when using SC and NSC basis functions, where the average fraction
of dimensions of the matrix CP that are shared among the couple of
single-element descriptor sets is 0.93 and 0.78, respectively, as shown
in Secs. C and D of the supplementary material. This indicates strong
redundancy of the feature selection performed by PCA on the differ-
ent materials, hinting at an underlying material-agnostic structure in
the manifold the Q vectors live in.

B. LASSO LARS feature selection
We now look at LASSO least angle regression (LARS) as a way

to inform the selection of sparse features in the descriptor vector.50,51

LASSO LARS is a linear regression algorithm that employs L1 reg-
ularization, together with a tunable penalty term. Here, we refer to
the features of the original descriptor, which have an associated non-
zero weight vector in the LASSO LARS linear model, as the features
that were “selected” by the model.52–54 In the top panel of Fig. 7,
we show the inverse correlation existing between the LASSO LARS
penalty term and the number of selected features. A sharp transition
is found for penalty terms around 10−5, and after this transition, at
most 132 out of the 360 features are selected, independently of the
material and of the value of the penalty term. This behavior strongly
suggests that a substantial fraction of the original descriptor contains
redundant information or noise. This intuition is supported by the
lower panel of Fig. 7, where the validation RMSE on atomic energy
displays a minimum when ∼80 features of the original descriptor are
employed, for all six materials.

FIG. 7. Top panel: LASSO penalty term as a function of the number of LASSO com-
ponents accounted for. Bottom panel: RMSE on energies incurred by RR potentials
employing the reduced descriptor QLASSO

P on the validation set as a function of the
number of LASSO components P.
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FIG. 8. Heatmap displaying the fraction of components selected via LASSO
regression that are shared between two materials, with the penalty term set to
5 ⋅ 10−4. The random label indicates a set of 65 randomly selected components
out of the available 360.

To check whether the same set of features is used for L1 regres-
sion across the six materials, we calculate the number of times each
descriptor feature is selected by the algorithm when the LASSO
penalty term is set to 5 ⋅ 10−4, i.e., when the average validation
RMSE on atomic energy is lowest. In Fig. 8, we report the fraction of
features selected by the LASSO algorithm shared between each pair
of single-element datasets. On average, 37% of the LASSO-selected
features are shared between each single-element dataset, while only
20% of features are shared between each single-element set and a
randomly sampled set of 65 features. Similar results emerge also for
the case of SC and NSC radial basis functions, where the percent-
age of LASSO-selected features that are shared between each single-
element dataset is 42% and 32%, respectively (see the supplementary
material, Secs. C and D, respectively). The above observations align
with the outcome of PCA and indicate that the number of informa-
tive features is much smaller than the dimensionality of the descrip-
tor and that these features are, at least partially, shared between dif-
ferent materials. These results, together with the observations drawn
from the PCA dimensionality reduction analysis, suggest the possi-
bility of constructing an efficient, low-dimensional descriptor that
captures the most relevant features of a local atomic environment.

V. CONCLUSIONS
We systematically probe the accuracy of a three-body repre-

sentation derived from the “atomic cluster expansion” to predict
atomic forces and formation energies in solids and molecules. We
furthermore expand the “atomic cluster representation” descrip-
tor by employing Bessel polynomials as radial basis function sets
and show that they often display better accuracy than non-scaled
Chebyshev and scaled Chebyshev polynomials when a low number
of radial basis functions are employed. We demonstrate that this
representation, coupled with a simple linear regression algorithm,

yields a satisfactory prediction accuracy on the QM9 dataset27,37 and
an accuracy on par with other state-of-the-art representations and
statistical learning methods for six single-element datasets.38

In the second instance, we focus on methods to reduce the
dimension of the representation. We consider both a dimensionality
reduction scheme (PCA) and a regression algorithm encompassing a
feature selection mechanism (LASSO LARS). We study the interplay
between accuracy and representation dimensionality in the database
of Ref. 38, which comprises FCC metals, BCC metals, and group
IV semiconductors. We find that it is possible to obtain more com-
pact local atomic environment descriptors with no loss in accuracy.
Furthermore, we find that there exists an ideal number of PCA com-
ponents or LASSO LARS selected features for which the accuracy in
the prediction actually improves while yielding a fourfold decrease
in the dimension of the descriptor. We then study the structure of
the representation resulting from both PCA dimensionality reduc-
tion and LASSO LARS feature selection. We find that more than 64%
of the first 80 directions of maximum variance of the descriptors
are shared between each pair of single-element datasets. Similarly,
we observe that several descriptor features are relevant (according to
a LASSO LARS selection) for the representation of solids of differ-
ent nature. While this result was drawn from databases containing
only hundreds of structures, these were comprised of elements with
diverse chemistry. In turn, we envision that our approach could
inform the design of extremely compact and fast to compute, yet
informative, atomic environment descriptors in a material-agnostic
fashion.

SUPPLEMENTARY MATERIAL

A discussion on how well the Bessel, scaled Chebyshev, and
Chebyshev radial basis sets approximate a Dirac delta function;
details on the accuracy trade-off between radial and angular com-
ponents of the employed local atomic density descriptor; and details
on the computation of the dimension of the intersection of two sub-
spaces can be found in the supplementary material. Furthermore, it
contains the same plots shown in Figs. 5–8, but for the case of SC
and NSC radial basis functions.
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