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Dynamics of history-dependent perceptual
judgment
I. Hachen 1,4, S. Reinartz1,2,4, R. Brasselet1,3, A. Stroligo1 & M. E. Diamond 1✉

Identical physical inputs do not always evoke identical percepts. To investigate the role of

stimulus history in tactile perception, we designed a task in which rats had to judge each

vibrissal vibration, in a long series, as strong or weak depending on its mean speed. After a

low-speed stimulus (trial n− 1), rats were more likely to report the next stimulus (trial n) as

strong, and after a high-speed stimulus, they were more likely to report the next stimulus as

weak, a repulsive effect that did not depend on choice or reward on trial n− 1. This effect

could be tracked over several preceding trials (i.e., n− 2 and earlier) and was characterized

by an exponential decay function, reflecting a trial-by-trial incorporation of sensory history.

Surprisingly, the influence of trial n− 1 strengthened as the time interval between n− 1 and n

grew. Human subjects receiving fingertip vibrations showed these same key findings. We are

able to account for the repulsive stimulus history effect, and its detailed time scale, through a

single-parameter model, wherein each new stimulus gradually updates the subject’s decision

criterion. This model points to mechanisms underlying how the past affects the ongoing

subjective experience.
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Introspection tells us that a given sensory event may be
experienced differently at different times, even if the physical
input is replicated. This lack of constancy can be studied in the

laboratory, where the identical physical input can yield different
perceptual judgments across the extended sequence of trials
typical of a controlled experiment. Paralleling the variability in
subjective estimation and decision making, variability in the face
of an unchanging physical input is also found in neuronal
responses at all levels of the sensory pathway and at all levels of
resolution, from single neurons to EEG1–5.

Some studies have been able to link the variability in the judgment
of physical input to the sequence of preceding trials—the trial
history6–15. But trial history is itself complex and multifactorial, for it
consists of previous stimuli, previous choices (expressed as actions),
and previous outcomes (rewards, collected or lost). Recent literature
has focused on dissociating the effect of past stimuli from the effect
of the subject’s own past choices16–18. When compared directly
within the same experiment, the most recent choice (on trial n− 1)
is found to exert an attractive effect on the current choice (trial n);
that is, choices tend to be repeated8,16,18,19. This phenomenon has
been argued to reflect high-level decisional processes16,18. By con-
trast, the most recent stimulus (trial n− 1) is found to exert a
repulsive effect on the next reported percept (trial n). For instance, a
vertical line or grating is judged as slightly tilted to the left if the
previously viewed one was tilted to the right16,18,20,21. Perceptual
repulsion has been argued to originate before the stage of decision
making, being consistent with the phenomenon of sensory adapta-
tion seen at many levels of the ascending sensory pathways22, and
occurs retinotopically17 and independently of the requirements of
the task16. Since even passive exposure to sensory input can cause a
repulsive bias in the subsequent perceptual judgment18, and since
the repulsive effect in trial n has been observed mostly after brief
intervals (even below 1 s)16,18, neuronal short-term adaptation has
been proposed as a mechanism23.

Whether the relevant temporal metric for the repulsion exercised
by past trials is continuous time or the number of elapsed trials is an
open question that must be resolved before characterizing an
underlying mechanism. Repulsive effects have been detected21,24,25
for conditions in which the stimulus exposure in the preceding trial
(n− 1) is long compared to the time between trials (n− 1 to n). In
the current study, we examine the n− 1 effects across time spans
that are much longer than the single stimulus exposures. Our goal is
to track the effect of a single stimulus across an extended string of
trials and, further, across a densely sampled range of inter-trial
durations. We trained rats to judge the vibrissal vibration presented
on each trial as belonging to one of two categories, “strong” or
“weak,” according to a boundary set by the experimenter. By
grouping trials according to three factors—(i) stimulus, (ii) choice,
and (iii) reward—we are able to isolate stimulus-driven sequential
effects. Next, we quantified the influence on trial n of, not only the
most recent stimulus (n− 1), but also stimuli extending farther back
(n− 2 and earlier). By means of a model wherein each new stimulus
causes a gradual updating of the rat’s decision criterion that is played
out on the next trial, we can account for the repulsive stimulus
history effect and its detailed timescale. Using a single free parameter
—the time course of the updating of the decision criterion—this
model predicts rats’ choices significantly better than a model based
on the current stimulus alone. In psychophysics experiments, we
extend these key observations to human subjects, arguing for the
model’s generality as an underlying mechanism to explain how the
past affects the present.

Results
Categorization of vibration speed. To investigate vibration
perception and the effects of stimulus history, we designed a task

in which rats had to judge the presented vibration as belonging to
one of two categories, high-speed or low-speed (in shorthand,
“strong” or “weak”). In Fig. 1a, trial structure is illustrated (upper
tier) along with an example stimulus (middle tier). The rat
initiated the trial (lower tier) by placing its snout in the nose
poke. After a 400-ms delay, a vibration of 500 ms duration was
delivered to the whiskers by a moving plate. Each vibration
consisted of a sequence of speed values sampled from a half-
Gaussian distribution (as in26,27; see Methods). A single vibration
was thus defined by its nominal mean speed, denoted sp. There
were nine Gaussian distributions, yielding nine possible sp values;
the probability, per trial, of selecting a given sp value was uniform
(11.1%), except where stated otherwise. An auditory cue, pre-
sented 400–600 ms after termination of the vibration, instructed
the rat to withdraw from the nose poke and choose between the
two reward spouts. Either the left or right spout was rewarded,
according to whether vibration sp was higher or lower than the
category boundary. Correct choices were rewarded by liquid
delivery (pear juice diluted in water) and accompanied by a
reinforcing sound. For stimuli on the category boundary, reward
was delivered with 0.5 probability for either choice. After a cor-
rect choice, the next trial could be initiated immediately by
another nose poke; after an incorrect choice, reward was not
delivered and the rat had to wait 2–4 s before initiating the next
trial. The elapsed time between successive nose pokes was taken
as the inter-trial interval (ITI; see Fig. 1a).

To correctly classify stimuli, rats needed to create an internal
reference or apply a decision criterion, based on their previous
experience of stimulus/choice/reward contingencies. Their per-
formance was captured through logistic psychometric functions
that assess the probability with which the stimulus was judged
“strong” in relation to sp (see Methods). A logistic function is
illustrated schematically in Fig. 1b in black; it is dependent on the
terms λ (upper lapse rate), γ (lower lapse rate), σ (the standard
deviation of the underlying cumulative Gaussian distribution),
and μ (the stimulus value aligned to the inflection point). In this
form of logistic function, the inflection point is equivalent to the
mean of the underlying Gaussian distribution and we refer to μ as
curve midpoint. The slope of the psychometric function at this
point (gray) is proportional to 1/σ. The point of subjective
equality (PSE) is defined as the stimulus value at which the two
choices are equally likely, i.e., p(“strong”)= 0.5. In the case of
symmetric lapses (λ= γ), the PSE is equal to μ.

Once trained, rats classified vibrations with an accuracy that
increased with the stimulus distance from the category boundary.
Figure 1c shows the psychometric functions for six rats, fitted to
their behavioral data (points), averaged over 40–45 sessions per
rat. The triangles on the upper and lower abscissa depict the curve
midpoints for each rat.

Classification is flexible. How does the psychometric curve
evolve over the course of a session? To assess performance at the
outset of the session, we fit a function separately using only the
first three trials of all sessions, averaged across subjects; we fit
another psychometric function using three randomly selected
trials per session (Fig. 2a, light blue and dark blue, respectively).
The category boundary was 103 mm/s. Acuity was poor at session
onset, as quantified by the maximum slope of the psychometric
curve (ordinate of right panel; within-session improvement is
shown in greater detail in Supplementary Fig. S1a). The early-
session performance exhibited no overall bias toward judging
stimuli in one or the other category, as revealed by the PSE
symmetry about 103 mm/s (abscissa of right panel).

We asked how rats would adjust their choices in response to
changes in range and category boundary. For a subset (n= 2) of

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26104-2

2 NATURE COMMUNICATIONS | ��������(2021)�12:6036� | https://doi.org/10.1038/s41467-021-26104-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the rats who already performed stimulus categorization with a
stable range and boundary (Fig. 1c), we proceeded to vary the
stimulus set from session to session, alternating between low and
high ranges with commensurate shifts in the category boundary
(Fig. 2b). The lowest sp of the high-range stimulus set (43 mm/s)
corresponded to the second lowest sp of the low range.
Analogously, the highest sp of the low-range stimulus set
(148 mm/s) corresponded to the second-highest sp of the high
range. The category boundary also shifted by one step, from
88mm/s (low range) to 103 mm/s (high range). Rats were tested
daily for 6 weeks with alternation every weekday between the two
ranges. We expected them to detect the current session’s rule
(similarly to28, however without cues and without explicit
training for the shift). Of particular interest was whether at the
beginning of a session they would call up the decision boundary
of the previous session, or else form the new boundary ex novo.

The whole-session psychometric curves associated with the two
stimulus ranges are shown in Fig. 2b, averaged across sessions
and rats. The shift in the psychometric curve PSE, with no
accompanying change in slope, reflects the rats’ ability to
conform their behavior to the current stimulus range and/or
boundary (see inset).

To evaluate the time course of this adjustment, Fig. 2c shows
the average psychometric curves of rats across the first three trials
of every session, yielding two main findings. First, at the session
onset the rats showed low performance (shallow logistic functions
and high lapse rates), consistent with the results of Fig. 2a.
Second, the absence of significant separation between the two

curves suggests that the psychometric function of the preceding
session was not carried over to bias choices in the new session. If
it were carried over, the blue curve would have been displaced to
the left of the light green curve, inasmuch as the current low-
range session would initiate with a choice function from the
preceding high-range session, and vice versa. Further analyses
(Supplementary Fig. S1b) showed that the separation between the
curves became statistically significant after about 30 trials (rank-
sum test between PSEs, p < 0.05; after about 50 trials, p < 0.001).
In conclusion, rats initiated the session with poor performance
and without any observable residual influence of the previous
session’s range and/or boundary; their behavior adapted over
time to the current session.

Are psychometric curves modulated by the boundary or by the
stimulus distribution? The difference between light green versus
blue curves in Fig. 2b, c could result from the rats matching their
own decision criterion to the current session’s category boundary.
Alternatively, rats may not form a decision criterion explicitly;
they may instead be influenced only by the stimulus range and
the extraction probability of each sp value within that range. In
both the low- and the high-range sessions, the category boundary
lay exactly at the center of the range, such that “splitting” the
presented stimulus range at its midpoint would give the
appearance of aligning choices to the boundary. To select between
the alternatives, we designed two stimulus sets with boundary at
either 88 mm/s (light green) or 118 mm/s (blue), both of them
off-center with respect to the range (Fig. 2d, e). Range itself was

Fig. 1 Vibrotactile categorization task and overall behavioral data. a Trial configuration. By placing its snout in the nose poke, the rat triggered a whisker
vibration. The rat withdrew upon the go cue, and its turn direction was detected by an optic sensor (red dashed line). b Example psychometric curve,
generated using a cumulative Gaussian distribution function with lapse parameters γ and λ. Slope at inflection point is highlighted (gray segment). c
Psychometric functions fitted to the averaged data of six rats (approximately 15,000 trials per rat). Triangles mark curve midpoints. Source data are
provided as a Source Data file.
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Fig. 2 Rats flexibly adapt to stimulus range during each session. a Psychometric curves for the first three trials of every session (light blue), and three
trials randomly sampled from each session (dark blue). Stimulus range and boundary was the same as in Fig. 1c. Category boundary is illustrated as a
dashed vertical line and point of subjective equality (PSE) as a square. Scatter plot shows the bootstrap of PSE and maximum slope from the same data set.
b Psychometric curves in the “low-range” (light green) and the “high-range” (blue) sessions. Scatterplots show the bootstrap of PSE and average
probability of “strong” judgment (excluding stimulus values of 28 and 163mm/s) estimated from the same data set. Data analyzed by grouping together
trials from two different rats with opposite reward rule. c Psychometric curves obtained by averaging the first three trials of all “low-range” (light green)
and “high-range” (blue) sessions. Scatterplots show the bootstrap of PSE and average probability of “strong” judgment (excluding stimulus values of 28
and 163mm/s) estimated from the same data set. d Psychometric curves in the Boundary 88 (light green) and the Boundary 118 (blue) sessions with equal
ranges and with extraction probability set uniformly across stimulus values. Histograms in d and e depict the stimulus extraction probabilities. Scatterplots
show the bootstrap of PSE and average probability of “strong” judgment estimated from the same data set. e Psychometric curves in the Boundary 88 (light
green) and the Boundary 118 (blue) sessions with equal ranges and with extraction probability held equal for the two categories. Source data are provided
as a Source Data file.
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invariant. In one paradigm, the probability of each sp value was
held uniform at 0.11 (Fig. 2d, upper and lower histograms). This
means that with the boundary at 118 mm/s, the stimuli of the
“strong” category were presented less frequently (7/18 of all trials)
than were the stimuli of the “weak” category (11/18 of all trials).
With the boundary at 88 mm/s, the “strong” and “weak” pro-
portions were reversed.

The second paradigm replicated the first except that the
extraction probability of each sp value was adjusted to yield an
equal number of presentations from the “weak” and “strong”
categories (Fig. 2e, upper and lower histograms). In alternating
sessions, the boundary was moved to the left (light green) and to
the right (blue). Two rats were tested in each paradigm; one rat
participated in both paradigms and two rats participated in just
one paradigm. When the category boundary was shifted and sp
probabilities were held uniform at 0.11, the psychometric
functions were overlapping (Fig. 2d; see inset for quantification)
—the observed decision criterion was insensitive to the session’s
category boundary. In contrast, when the category boundary was
shifted and sp probabilities were altered to equalize category
probability, the psychometric functions were well separated
(Fig. 2e, see inset for quantification). The results suggest that
choices were dictated by stimulus distribution but not by
boundary—the alignment of the rat’s decision criterion to the
session’s category boundary, evident both in Fig. 2b and in
Fig. 2e, seems to be an outcome of the stimulus distribution to
which the rat was exposed, not the reward rule boundary or the
frequency of reward associated with a given category. There likely
exist experimental and real-life conditions in which perceptual
choices are determined as much by reward rule as by stimulus
distribution; however, the present conditions seem to cause rats
to link their decisions to the statistical structure of the stimulus
set. Such stimulus-dependent decision making motivates a
detailed analyses of how past stimulus values generate current
choices.

Local stimulus history influences choice. In the remainder of the
study we focus on the influence of recent stimulus history. In all
further analyses, the stimulus range was fixed (43–163 mm/s
range, as in Fig. 1c) and the extraction probability of each sp value
was uniform. For simplicity, we denote the distance between
stimulus sp and the category boundary as Δspeed, on a scale from
−4 (the lowest sp) to 4 (the highest sp). According to the sign of
Δspeed, either the left or right spout was rewarded as correct.
Figure 3a shows the psychometric curves for trial n, for all rats
merged, sorted according to Δspeed of trial n− 1. This sorting
resulted in a spread across the curves—when trial n− 1 presented
a high Δspeed stimulus, the probability of trial n being categor-
ized “strong” decreased; when trial n− 1 presented a low Δspeed
stimulus, the probability of trial n being categorized “strong”
increased. The effect was graded for intermediate values of trial
n− 1 Δspeed. The PSE computed with all trials merged, uncon-
ditional on n− 1 Δspeed, is given by the black dashed vertical
line.

Since Δspeed and the rat’s choice are correlated, we sought to
determine whether the influence of trial n− 1 on trial n choice
derived from the n− 1 stimulus or the n− 1 choice. The trial
n− 1 choice might cause a bias toward repeating the action in
trial n (“sticking”) or a bias toward changing the action in trial n
(“switching”). Since stimuli closer to the extremes (Δspeed= 4
and −4) yielded greater percentages of correct responses, the
graded effect of the preceding trial’s Δspeed could still derive
from an effect of previous choice. To test for this, we generated
psychometric curves after excluding previous trials in which the
animal made an incorrect choice; the results (Supplementary

Fig. S2) were identical to those of Fig. 3a. To further exclude such
effects, we considered all trials in which n− 1 Δspeed= 0 and
choice was rewarded; from this set, we extracted an equal number
of n− 1 trials with “weak” and “strong” judgments. We then
plotted the trial n psychometric curve according to whether trial
n− 1 was judged as “weak” or “strong” (Fig. 3b). If trial n choice
were related to the preceding action, the two curves would be
significantly separated. Though there may be a trend for trial
n− 1 choice to affect the subsequent choice when trial n stimuli
were weakest (Δspeed −2 to −4), curve parameters were not
statistically different (bootstrap test, 90% confidence level; see
Supplementary Fig. S3a). Instead, the overlap in confidence
intervals argues that the trial n choice was influenced only mildly,
or not at all, by trial n− 1 action or choice.

Reward history is another factor that might influence choice.
Figure 3c shows the probability of trial n being judged “strong” as
a function of trial n− 1 Δspeed, with data separated according to
whether the trial n− 1 choice was correct (green) or incorrect
(violet). All Δspeed values of trial n are pooled. Absence of any
effect of trial n− 1 Δspeed per se would lead to flat curves.
Furthermore, if the bias were driven by the previous choice rather
than the previous stimulus, the violet curve would show a positive
slope, opposite to that of the green curve. Instead, the negative
slope of both curves follows from the “repulsive” effect of trial
n− 1 Δspeed: the greater n− 1 Δspeed, the less likely for n to be
categorized as “strong.” However, to better understand the small
difference between the green and violet curves, we performed
additional analyses of the potential role of reward history
(Supplementary Table T1 and Supplementary Fig. S3b). A logistic
regression model including an interaction term between previous
stimulus and previous reward was fitted to the data. The
interaction weight was statistically significant (p < 0.001; see
Supplementary Table T1), indicating that the repulsive effect of
stimulus n− 1 was slightly reduced if that trial’s choice was not
rewarded (see also Supplementary Fig. S4). Bootstrapping the
parameters of the psychometric curves from Fig. 3c (see
Supplementary Fig. S3b) revealed this phenomenon to be mainly
driven by an increase in lapse probability following an incorrect
trial, suggesting a slight lose-switch tendency that might partly
counterbalance the effect of previous stimulus after incorrect
trials. The absence of a significant overlap (at the 90% confidence
level; Supplementary Fig. S3b) in the slope parameters of the two
curves emphasized again that the stimulus-driven bias seen in
trial n is mostly independent of the outcome (rewarded or not
rewarded) of trial n− 1. The repulsive effect of the preceding
trial, under our experimental conditions, thus appears to depend
primarily on the sensory-perceptual processing of the vibration
itself, while the effects of n− 1 choice (Fig. 3b) or reward (Fig. 3c)
appear considerably less substantial.

What is the nature of the psychometric curve shift evoked by
the preceding trial? In general, a psychometric curve may shift
horizontally, which would have a larger effect on choices when
Δspeed is near 0 than on choices for stimuli close to Δspeed of −4
and 4. A curve may shift vertically, which would affect choices
uniformly across the full range of Δspeed. To select between the
two possibilities, we compared the psychometric curve para-
meters of a grand average psychometric curve of all rats, grouped
according to Δspeed in trial n− 1 (as in Fig. 3a). Changes in PSE
had a stronger linear relation with the horizontal midpoint
parameter, μ (R2= 0.7422) than with the vertical lapse para-
meters, γ− λ (R2= 0.2242). Additional results consistent with a
largely horizontal curve shift are shown in Supplementary Fig. S5.

Given the mainly horizontal shift induced by stimulus n− 1,
the PSE constitutes a robust measure of the history-dependent
bias. On the data set averaged across rats, nine values of the PSE
associated with nine values of n− 1 Δspeed are shown as the blue
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squares in Fig. 3a. These can be considered graded quantities of
history-dependent curve shift, or bias. When the same procedure
is carried out for six individual rats, six data points are associated
with each value of Δspeed on trial n− 1 (Fig. 3d, left panel). The
size of the trial n bias was linearly correlated with trial n− 1
Δspeed (Pearson’s R= 0.869; p < 0.001). This linear correlation
quantifies the n− 1-dependent curve shifts seen in Fig. 3a.

We then asked whether the stimuli in trials preceding n− 1
affected the behavior on trial n. The next three plots of Fig. 3d
(left to right) show trial n bias in relation to Δspeed on trials
n− 2, n− 3, and n− 4. Progressively more distant trials evoked a

progressively less pronounced bias, reflected in the decreasing
slope of the regression lines (see also Fig. 3e).

To visualize more completely the trial-by-trial decay in the
effect of more remote trials, Fig. 3e plots the slope of previous
trial Δspeed versus PSE shift (as in panel 3d), averaged across all
sessions of all rats, for up to eight trials before n. The decay seems
to follow an exponential trend, with a small but significant effect
(white diamonds, p < 0.05) up to the fifth previous trial.

We further investigated how preceding stimuli contribute to
choice by applying a logistic regression model, a more accurate
method than the bias slopes of Fig. 3e. Specifically, we predict the

Fig. 3 Trial-by-trial stimulus-dependent repulsive bias. a Probability of categorizing stimulus n as “strong” as a function of trial n Δspeed, with curves
grouped by Δspeed of trial n− 1. Darker curves correspond to higher n− 1 Δspeed. Blue squares denote PSE. b Trial n psychometric curves, grouped by
trial n− 1 choice, “strong” (red) and “weak” (blue). Transparent shading represents 95% confidence interval of bootstrapped probabilities. c Probability of
categorizing stimulus n as “strong” as a function of the Δspeed of trial n− 1. All Δspeed values of trial n are pooled. The green line corresponds to n− 1
correct trials, the violet line to n− 1 incorrect trials. Transparent shading represents 95% confidence interval of bootstrapped probabilities. d Bias of the
trial n psychometric curve, depending on Δspeed in trial n− 1 (far left plot) to trial n− 4 (far right plot). Shading inside the squares denotes Δspeed in trial
n− 1. Squares correspond to individual rats. e Slope of the regressions shown in panel d, in the eight preceding trials. White denotes slopes different from 0
(p < 0.05, two-tailed t-test). Transparent shading represents standard deviation between rats. f Coefficient values (β) of the GLM including stimuli of up to
10 preceding trials as predictors. White denotes coefficients different from 0 (p < 0.05, two-tailed t-test). Discontinuous ordinate shows large positive
coefficient associated with stimulus n. Transparent shading represents standard error of the mean. Source data are provided as a Source Data file.
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trial n decision by the probit link function:

p strong
! "

n ¼ probit"1ðseqnÞ ð1Þ

where

seqn ¼ β0 þ β1Δspeedn þ β2Δspeedn"1 þ ¼ þ βiΔspeedn"i

ð2Þ

The term seqn represents the linear sum of the current
stimulus, Δspeedn, and a history of up to i preceding stimuli, each
weighted with a coefficient βi while β0 is an intercept term.
Figure 3f shows that up to six preceding trials significantly (white
diamonds, p < 0.05) affected choice on trial n. The weights appear
to decay with an exponential trend similar to that obtained by
estimating each preceding trial’s individual contribution to the
trial n psychometric curve (Fig. 3e).

Trial-by-trial discretized model of history-dependent choices.
The results reported in Fig. 2 indicate that choices were driven by
the session’s stimulus distribution, while those in Fig. 3 suggest
that the most recent stimuli have the strongest influence on the
current choice. Taken together, the findings suggest a model
where choices are the outcome of comparing the percept evoked
on trial n to a decision criterion—a criterion set not by the
investigator’s reward rule (Fig. 2d) but by a weighted combination
of preceding stimulus values. In this scenario, stimulus n− 1
biases the trial n choice by virtue of its “pull” on the decision
criterion. Earlier stimuli exert a progressively less powerful pull.

The psychometric curve midpoint μ, in our data set, is nearly
equivalent to the PSE (see Supplementary Fig. S5), which divides
the stimulus dimension into one range where Δspeed is more
likely to be judged as “weak” and the complementary range where
Δspeed is more likely to be judged as “strong.” We therefore take
μ on trial n as a proxy for the rat’s decision criterion, a model
grounded in signal detection theory29,30. Since the bias carried
over from past stimuli decayed exponentially, we formulated a
recursive model of the criterion on trial n, μn, as an exponentially
weighted average of the history of stimuli up to and including
n− 1:

μn ¼ μn"1 & e
"1

τð Þ þ Δspeedn"1 & ð1" eð"
1
τÞÞ ð3Þ

Δspeedn− 1 and μn− 1 (previous criterion, applied on trial n− 1)
are summed with a relative exponential weight given by the time
constant τ. In this model the only free parameter is τ, providing a
timescale (expressed in units of trial number) for the influence of
preceding trials. (Although such models are often written with a
parameter α= 1/τ, as for example31, we chose this natural
temporal representation for reasons that will become clearer in
the next sections.) The rat’s decision is a binary choice made by
comparing its percept of Δspeedn to the criterion μn. For an
example sequence of stimuli, Fig. 4a shows the trial-by-trial value
of the computed decision criterion and illustrates how the model
can predict some choices of the rat. Circles represent presented
Δspeed values. The dark area covers Δspeed values rewarded as
“strong” while the light area covers Δspeed values rewarded as
“weak”; Δspeed of 0 was rewarded randomly. On trials denoted
by filled and unfilled circles, the rat judged the stimulus as
“strong” and “weak,” respectively. The blue line depicts μn
generated by the model of Eq. (3) and the blue squares highlight
the μn value at the moment of stimulus presentation. Note the
correct predictions on the two trials with Δspeed= 0 (green
asterisks). Because the criterion steps to a new value after each
stimulus, we term this the discretized history model, in contrast
to a subsequent continuous model.

In order to capture the graded effect of previous stimulus on
current choices shown in Fig. 3a, we modeled the probability of

the choice “strong” on trial n by employing the same logistic
function used to fit psychometric curves (see Methods):

pðstrongÞn ¼ γþ ð1" γ" λÞ &
1
2

1þ erf
Δspeedn " μn

σ
ffiffiffi
2

p
$ %& '

ð4Þ

where μn is updated trial-by-trial as the exponentially weighted
average of past stimuli (Eq. (3)). The other three parameters of
the function (γ, λ, σ) are fitted on the entire data set for each rat,
leaving μ as the only history-dependent parameter.

To evaluate the model, we performed a cross-validation by
repeatedly partitioning the sessions into two sets, one used for
setting the time constant τ (80% of sessions), and one for testing
model performance (20% of sessions). In this test of the
discretized history model, the predicted choice is not set by the
criterion as a binary divider, but as a smooth function, centered
on μn, which mirrors the history-dependent logistic function
(Fig. 4b). While the model predicts choice on a given trial by
aligning a smooth logistic function, the rat’s decision is, of course,
binary. To compute the prediction error, we employed the Brier
score32 (see Methods). The Brier score on a single trial can range
from 0, where the logistic function matches the choice, to 1 where
the logistic function value is at the opposite extreme of the
observed choice. In short, the more accurate the prediction of the
model, the lower the Brier score.

For comparison, we also tested a model in which predicted
choice was set by a non-dynamic logistic function that mirrored
the psychometric curve derived from the entire sessions’ sample;
we term this logistic function the no-history model. The
difference in Brier scores is given in Fig. 4c, revealing that the
history model provided a better prediction of the rats’ choices
across the range of Δspeed values. The stronger improvement of
the history model at the center than at the extremes of the
stimulus range reflects the fact that the rats’ classification of
stimuli with Δspeed close to 0 was more influenced by recent
trials. The area under the receiver operating curve (AUROC) of
the history model was 0.84 on average, while for the no-history
model it was 0.83 (Fig. 4d, top), an improvement of around 0.5%
(p < 0.001, corrected resampled t-test; Cohen’s d= 4.1). As
mentioned, Brier score improvement was higher when consider-
ing current stimuli in the center of the range, peaking at
Δspeed=−1 (likely due to a slight imbalance in the rats’
decisions; see Fig. 4c and Supplementary Fig. S5b). Computing
the AUROC for Δspeed=−1 trials (Fig. 4d, bottom), the no-
history and history models had values of 0.52 and 0.58,
respectively (a 10% improvement; p < 0.001, corrected resampled
t-test; Cohen’s d= 3.6).

Dynamics of the shift in decision criterion. Previous sections
showed that rats’ choices can be predicted by a model where
stimulus n− 1 biases the trial n choice by “pulling” the decision
criterion. What are the dynamics of that attraction across the ITI?
(See Fig. 1a for definition of ITI.) The decision criterion might be
updated during stimulus n− 1 presentation and then remain
stable throughout the time span between successive trials, cor-
responding to the discrete, step-like updating of Eq. (3) and
Fig. 4a. On the other hand, the decision criterion could be non-
stationary over the course of the ITI. A time-dependent criterion
shift can be envisaged as taking one of two opposing forms. First,
the criterion might be instantaneously attracted to stimulus n− 1,
before relaxing toward a second attractor, perhaps related to the
central tendency of past stimuli. This would result in stimulus
n− 1 imposing a bias that is initially strong but weakens as time
passes. Alternatively, the criterion might be attracted to stimulus
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n− 1 progressively. This would result in stimulus n− 1 imposing
a bias that is initially weak but strengthens as time passes.

Because the behavioral task was self-paced by the rat, the
distribution of ITIs was roughly normal but with a long tail
(Fig. 5a). We excluded the longest 20% of ITIs from further
analyses (gray bins), as these were associated with task-unrelated
behaviors such as grooming or napping, and we divided the
remaining ITIs into quartiles (Fig. 5a). Next, we assessed how
stimulus n− 1 modulated the trial n psychometric function
parameters in relation to the ITI from n− 1 to n. The slope of the
psychometric function was not significantly modulated by ITI
(GLM interaction test between the effect of ITI and n− 1 Δspeed
on slope, p= 0.47; ITI main effect p= 0.18). Further analyses
(Supplementary Fig. S6) indicated a significant influence of ITI on
psychometric function midpoint but not on lapse rates. Accord-
ing to this analysis, we modeled the effect of the ITI through the
midpoint of the psychometric curves, setting lapse parameters to
the average level of each rat. Figure 5b shows psychometric curves
on trial n, averaged across six rats, separated according to Δspeed
of stimulus n− 1 (−4 or 4) and further separated according to
the ITI from n− 1 to n (shortest quartile in light blue, longest in
dark blue). After a long ITI, n− 1 exerted a stronger effect,
signifying that the shift in decision criterion toward Δspeed of
stimulus n− 1 did not occur in a single step.

Confirming the time-dependent shift in decision criterion,
Fig. 5c reveals that the regression line, fitting the bias on trial n

imposed by stimulus n− 1, was steeper after a long ITI (longest
two quartiles combined) than after a short ITI (shortest two
quartiles) (interaction term between previous Δspeed and ITI
durations, p= 0.014). We performed control analyses excluding
potential confounds (see Supplementary Fig. S7). First, we
replicated Fig. 5b, c after excluding previous incorrect trials
(Supplementary Fig. S7a, b). Furthermore, using only the first 150
trials of each session (when motivation or urgency might be
stronger), the ITI had the same effect on trial n choice as for the
full session. There was a difference of just 50 ms in median ITI for
the first 150 trials of each session compared to the whole session
(7.57 s versus 7.62 s), suggesting that the pace of the task was
stable within sessions. The difficulty of trial n− 1 (i.e., the
closeness of Δspeed to the category boundary) did not affect the
ITI from n− 1 to n (Supplementary Fig. S7c). Finally, a GLM
analysis (Supplementary Table T2) uncovered a significant
repulsive effect of stimulus n− 2, which was reduced with
increasing ITI from stimulus n− 1 to n. This is explained by the
memory of n− 2 being “written over” as n− 1 exerts a
progressively stronger effect. Accordingly, with reduced ITI from
stimulus n− 1 to n the effect of n− 2 was larger. Taken together,
these tests argue against the possibility that slow fluctuations in
ITI during the course of the session co-varied with (and might
partially account for) the trial-by-trial stimulus history effect.

Human subjects received the analogous stimulus set on the
right index finger and judged each vibration as “weak” or

Fig. 4 Discretized trial-by-trial model of criterion updating. a Behavior of the model for a 10-trial sequence; see main text for definitions. b Effect of
Δspeedn− 1 on trial n psychometric curves based on discretized history model. Horizontal shifts were set by µn. Blue squares denote points of subjective
equality (PSE) and the black dashed line illustrates PSE computed with all trials merged. c Prediction improvement (Brier score decrease) using the
discretized history model with respect to the no-history model, for each of the nine stimuli in trial n. Blue line is the median and shaded area the
interquartile range of the cross-validations. d Comparison of the area under the ROC curve (AUROC) of the discretized history model vs. the no-history
model for different cross-validation test sets. The upper histogram shows the AUROC difference computed by considering predictions for all stimuli in trial
n. The lower histogram shows the AUROC difference computed by considering predictions for Δspeedn=−1 (the stimulus value for which the model
afforded the largest benefit). Note the different abscissae scales. Each AUROC value derives from one round of cross-validation and the histograms plot the
outcome of 100 rounds. Source data are provided as a Source Data file.
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“strong,” paralleling the experiments in rats (see Supplementary
Fig. S8). Stimulus n− 1 exerted a repulsive effect on the trial n
choice—a low-speed vibration on trial n− 1 led to increased
likelihood of a “strong” choice on trial n, high-speed n− 1
vibration led to “weak” choice on trial n—and the bias imposed
by the preceding stimulus grew with increasing ITI, generalizing
the key psychophysical findings from rats to humans (Fig. 5d). In
contrast to rats, in humans we also found a prominent attractive
choice effect (in line with previous findings33,34). For the purpose
of isolating the stimulus history effect and its dynamics we
factored out the choice effect (see Supplementary Fig. S9).

Continuous model of history-dependent choices. The time-
dependent shift of the decision criterion toward Δspeedn− 1
requires the model for discrete criterion updating (Eq. (3)) to be
reformulated. The shifting decision criterion, μ(t), is now
described by an exponential convergence toward the stimulus
n− 1 memory trace:

μ tð Þ ¼ μ t0
! "

& e "t
τ

! "
þ Δspeedtrace tð Þ &

!
1" e "t

τ

! "" ð5Þ

where μ(t0) is the decision criterion at the presentation of sti-
mulus n− 1 (equivalent to μn− 1), t is the elapsed time after
presentation of stimulus n− 1, and Δspeedtrace(t) is the stimulus
n− 1 memory trace. The convergence of Δspeedtrace(t) toward

μ(t) is expressed as follows:

Δspeedtrace tð Þ ¼ Δspeedtraceðt0Þ & e
"t
τ

! "
þ μ tð Þ & 1" e "t

τ

! "$ %

ð6Þ

where Δspeedtrace(t0)= Δspeedn− 1. The model posits that sti-
mulus n− 1 instates a neuronal representation that, once used for
the trial n− 1 decision, persists thereafter as a labile memory
trace, a short-term stimulus buffer resembling that demonstrated
in earlier work35,36. By setting t to the ITI between n− 1 and n,
Eqs. (5) and (6) give the estimated decision criterion on trial n.
Reworking these two equations, or using symmetry considera-
tions, one can see that when t goes to infinity, μ(t)= (μ(t0)+
Δspeed(t0))/2; that is, the decision criterion would asymptotically
reach a value midway between its previous value, μ(t0), and the
n− 1 stimulus. While the parameter τ in the initial model
referred to a decay in the weight of past stimuli, discretized as
trial numbers, in the revised model τ is a time-continuous
parameter that dictates how rapidly the decision criterion is
drawn to the memory trace of the most recent stimulus.

The time constant, τ, is the only free parameter in the model
of Eqs. (5) and (6); it is fitted by maximizing the model’s
performance in predicting the rat’s actual choices (see Methods).
Figure 6a shows the trajectory of the computed decision
criterion for the same stimulus sequence to which the discretized
model was applied previously (the discretized model criterion is
carried over from Fig. 4a as light gray dotted line). As before,

Fig. 5 Stimulus-dependent bias builds up between trials. a ITI histograms for each of the six rats, based on all sessions. ITIs were binned into four
quartiles, after long outlier ITIs (gray) were excluded. b Psychometric curves on trial n plotted according to Δspeed of stimulus n− 1 and ITI. Inset shows
the shortest and longest quartiles of ITI for an example rat. Dashed line is the average psychometric curve on all trials. c Slope of the regression line fit
between bias (PSE) and previous trial Δspeed for all rats, separated by shortest two ITI quartiles (light blue) and longest two ITI quartiles (dark blue).
Shading represents 95% confidence intervals. ITIs were split around each rat’s median. d Slope of the regression line fit between bias (PSE) and previous
trial Δspeed for eight human subjects, separated by shortest two ITI quartiles (light blue) and longest two ITI quartiles (dark blue). Regression lines were
fitted on data after ‘short’ and ‘long’ ITIs, after residualizing PSEs from the effect of previous choice. Only previous correct trials were considered. Shading
represents 95% confidence intervals. ITIs were split around each human subject’s median. Inset: ITIs were pooled across subjects to form a single
histogram, and were then divided around the subjects’ grand median. Source data are provided as a Source Data file.
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circles denote presented Δspeed values. The black area covers
Δspeed values rewarded as “strong” while the white area covers
Δspeed values rewarded as “weak.” On trials denoted by filled
and unfilled circles, the rat judged the stimulus as “strong” and
“weak,” respectively. The green trajectories depict the decision
criterion generated by the model, and the green squares
highlight the criterion value at the moment of stimulus
presentation. The purple trajectories depict the memory trace
of the most recent stimulus, Δspeedtrace(t), which approaches the
decision criterion in a symmetrical manner. Correct predictions
on the two trials with Δspeed= 0 are denoted by the green
asterisks.

Figure 6b illustrates how the model captures the “pull”
exercised by stimulus n− 1 on the next trial’s psychometric
function. The gray lines, sorted according to Δspeed of trial n− 1,
show the mean trial n curve midpoints, μn, in real data, as a
function of increasing ITI, generated by pooling all trials from
329 sessions of six rats. The overlying green lines give the model’s
computed decision criterion over time, also sorted according to
Δspeed of trial n− 1.

By formalizing the mutual attraction between the decision
criterion and the most recent memory trace, the model offers
plausible explanations for our previous observations. The trial n
psychometric curve midpoint approaches but never reaches
Δspeedn− 1 (Figs. 3a and 5b) because the n− 1 memory trace is,

at the same time, attracted to and approaching the decision
criterion.

If stimulus n− 1 attracts the criterion that will be applied on
trial n, how do stimuli even earlier than n− 1 exert their effects?
A memory for past stimuli is built into the model, inasmuch as
the criterion upon which stimulus n− 1 acts had been previously
influenced by n− 2, and so on. In other words, stimulus history is
continually built up as new trials are sequentially embedded
within the running value of the criterion.

As with the discretized model, we estimated the probability of
the choice “strong” on trial n. We inserted the criterion, μ(t),
estimated by Eq. (5), as the midpoint parameter of the logistic
function (see Eq. (4)), and then assessed the distance from the
model-based psychometric curve to the rat’s choice. We
performed a cross-validation by repeatedly partitioning the
sessions into two sets, one used for estimating τ (training; 80%
of sessions) and one for testing (20% of sessions), and compared
the continuous model’s predictions to the discretized model’s
predictions for the same data.

When considering all trials in the data set, AUROC was slightly
but significantly higher for the continuous model compared to
the discrete model (0.015% higher; p < 0.001, corrected resampled
t-test; Cohen’s d= 0.66; see Supplementary Fig. S10a). When
considering exclusively the judgments for Δspeed=−1, for
which decisions were the most history-driven (likely due to a

Fig. 6 Continuous model of criterion updating. a Behavior of the model for the same 10-trial sequence illustrated in Fig. 4a. Green trajectories are the
model’s computed decision criterion, with τ= 30 s. For comparison with the continuous model, the discrete model computation is shown by the dotted
line. b Gray traces give the observed trial n psychometric function midpoints, in the manner of Fig. 3a, as the ITI from n− 1 to n grows, smoothed with a
moving average window of 8 bins. Traces are sorted according to Δspeed of stimulus n− 1 (see gray scale). Green traces give the model’s predicted trial n
psychometric function midpoints, as the ITI from n− 1 to n grows. c Comparative performance of the continuous and discretized history models. The same
GLM of Fig. 3f (here shown in gray) was fitted to artificial choices simulated from trial to trial with the discrete and the continuous model. d Optimized time
constants, τ, are estimated in each cross-validation partition and are shown for both discrete and continuous models in six rats. The size of the points
corresponds to the average performance of the rat in the selected subset of sessions. Source data are provided as a Source Data file.
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slight imbalance in the rats’ decisions, see Fig. 4c and
Supplementary Figs. S5b and S6c), the increase in AUROC was
greater (about 0.32%; p < 0.001, corrected resampled t-test;
Cohen’s d= 0.8; see Supplementary Fig. S10b). Brier score was
also significantly lower (corrected resampled t-test, p < 0.001).
Together, these results indicate a higher predictive power of the
continuous model with respect to the discrete model.

To investigate how the trials prior to n− 1 would be expected
to influence trial n choices according to the two models, we
allowed both the discrete and continuous models, with τ already
fitted, to predict rats’ choices for the entire set of trials in their
real temporal order. From the resulting series of choices, we used
the GLM first employed for Fig. 3f to solve for the weighting of
the β coefficients (Eq. 2). In Fig. 6c, it can be seen that for both
models the coefficients decay with an exponential trend. Because
the analysis pools trials with different preceding ITIs, the
continuous and discrete models converge. For comparison, the
GLM coefficient weights fitted on the observed rat data are shown
in gray, carried over from Fig. 3f.

The values of τ derived from the discretized and continuous
models shed light on the strategies employed by the rats. In
Fig. 6d, the data set from each rat was subsampled in partitions of
80% of sessions and for each partition the optimal τ was
computed. For the discretized model, rats’ choices were best fit
with τ in the range of 2.5–7 trials. For the same sessions, τ derived
from the continuous model was highly correlated (R= 0.92,
p < 0.001), ranging from 10 to 50 s. Thus, both models capture the
rats’ relative weighting of past sensory experience in the current
choice. The better predictive power of the continuous model
originates in its ability to factor in the ITI, the time period across
which the most recent stimulus has attracted the decision
criterion.

Under the conditions of this study, the ideal history-dependent
decision criterion would incorporate, with equal weight, all past
trials. Rats did not do so (nor did humans), but performance
across rats (size of points in Fig. 6d) uncovered two clusters of
three rats each—those with shorter τ were more biased by the
most recent trial and performed more poorly while those with
longer τ were closer to ideal observers and performed better. To
further investigate the functional significance of τ, we boot-
strapped the rats’ sessions, fitting τ and estimating sensitivity (σ,
the standard deviation of the underlying cumulative Gaussian
distribution) for each sample. This revealed an overall within-rat
correlation between the time constant and the sensitivity
(R=−0.1, p= 0.015; negative correlation means that for longer
τ there was a higher sensitivity). The fact that rats’ τ magnitudes
correlated with their performances, while being uncorrelated with
the rats’ average ITI durations (R=−0.03, p= 0.42), supports the
view of τ corresponding to a relevant behavioral measure,
explaining a significant degree of accuracy.

Discussion
Sorting out the effects of recent trials. Although it can be
appealing to conceive of sensory-perceptual systems as ideal
observers that reliably map physical inputs onto the appropriate
responses, experimental data frequently reveal variability in per-
ceiving or acting upon separate presentations of an identical
stimulus. Performance of a perceptual task appears to involve less
a rigid stimulus-to-response transformation than a flexible
adjustment to the full experimental context, including the history
of rewards, choices, and stimuli6–8,12–14,16,18,19,34,37–52. By sorting
the sequences of trials according to each of these factors, it
becomes possible to disentangle their contributions.

While at early stages of skill learning and rule learning, choices
are driven by reward contingencies41–43, in tasks that promote

faster decision making, such as when stimulus presentation is
self-terminated by the subject, rewarded choices can attract those
in subsequent trials, known as “win-stay-lose-switch” (e.-
g.,44–46,53). Attractive serial effects also characterize perceptual
judgments based on categorical or object-related sensory
attributes such as orientation or face identity, as if the category
itself were stabilized7,8,12,16,17,47–49. By contrast, studies in which
subjects judge uncertain stimuli distributed in a continuous
manner along a physical gradient8,12 frequently highlight a
repulsive perceptual effect (once the preceding choices per se are
factored out) in that the current stimulus is felt to be more distant
from that of the preceding trial than would be expected if history
were not considered.

In the present task, individual vibrations delivered to the rats’
whiskers had to be categorized according to Δspeed as “weak” or
“strong.” Since the stimuli were distributed along a continuum,
with no qualitatively distinct attractors or qualia, rats were
required to apply an internal threshold, or decision criterion, to
each instance of the stimulus. Under these conditions, a robust
repulsive stimulus history effect prevailed: after a high-speed
stimulus, the next stimulus was judged as weaker than it would
otherwise, and after a low-speed stimulus, the next stimulus was
judged stronger (Fig. 3a).

Trial-by-trial analysis revealed the effects of previous choice
(Fig. 3b) and reward (Fig. 3c) to be minor, leaving the physical
magnitude of the past stimuli as the major factor responsible for
variability in perceptual judgments in the given task.

Dynamics of the shift of the decision criterion. The robustness
of the repulsive stimulus history bias allowed us to focus on its
dynamics across different time scales. While choices at the outset
of each test session were unaffected by the previous session
(Fig. 2c), within a session the stimulus history effect was retained
over several trials (Fig. 3d). At a finer timescale, the repulsive bias
grew with inter-trial duration (Fig. 5b, c), contrary to the intui-
tion that stimulus n− 1 might exert an immediate but transitory
effect on trial n. This unexpected growth led us to hypothesize
that the gradual attraction of the decision criterion, µn, to the
stimulus of trial n− 1, might be the root cause of the repulsive
stimulus history effect. We tested the hypothesis using a model
where a time constant τ, the only free parameter, quantifies the
attraction of the decision criterion toward Δspeedn− 1 (Eqs. (5)
and (6)). With the decision criterion now defined as a time-
dependent variable, µ(t), choices could be modeled by centering a
sigmoid-shaped response probability function on the criterion.
The proposed model significantly improved predictions of the
rats’ actual choices, as compared to a response probability func-
tion that was not shifted according to stimulus history (Figs. 4c, d
and 6c).

The choice boundary in our study resembles the quantity
referred to in the literature by the term decision criterion12,30 or
as implicit standard13. Its calculation as the center of the weighted
distribution of past stimuli resembles the quantity sometimes
termed the prior distribution36,50,54–56.

In earlier work, it was unknown what mechanism might
determine the weighting of past stimuli, especially in specifying
effects as deriving from elapsed time versus the number of
successive stimulus presentations17,51,52. By gathering a broad
range of ITIs, with each interval densely sampled, we were able to
dissociate the two potential mechanisms underlying the repulsive
stimulus history effect. In our formulation, only the most recent
trial acts to update the decision criterion. Each successive
stimulus is thus embedded within the criterion by virtue of its
attractive pull, and the criterion is handed over for the execution
of the next trial, after which it is updated again. No terms are
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required in our model to specify the weights of more distant past
trials; rather than a multifactorial generalized linear
model34,37,44,50, our model is reduced to one variable that
quantifies how rapidly the most recent stimulus pulls the
criterion.

Perceptual bias versus decisional bias. Our model posits that the
stimulus n sensory response is projected onto the decision vari-
able, which converts its sensory input into a choice according to
the current decision criterion, μn (Figs. 4a and 6a). The mapping
function from Δspeedn onto the decision variable is modulated by
preceding stimuli. Two ways in which the brain may mediate the
stimulus-to-decision mapping57 are illustrated in Fig. 7a. In the
left panel, the stimulus presented on trial n (INPUT) evokes a
sensory response (OUTPUT) that is invariant to Δspeedn− 1: gray
(n− 1 weak) and black (n− 1 strong) curves are overlapping.
Suppose that on trial n, Δspeed= 0. The corresponding sensory
response (blue square) is projected horizontally onto the axis of
the decision variable. The criterion (red line) determines the
categorization of the sensory input; inputs above and below the
criterion are judged as strong and weak, respectively. The cri-
terion itself is history-dependent, moving downwards after a weak
n− 1 and upwards after a strong n− 1, echoing the plots of
Figs. 4a and 6a. These criterion shifts lead to opposite choices for
two instances of Δspeedn= 0.

An alternative form of stimulus-to-decision mapping is
illustrated in the right panel of Fig. 7a. Here, stimulus n evokes
a sensory response that varies according to stimulus n− 1: gray
and black curves are separated. Two different, history-dependent
outputs for Δspeedn= 0 (blue squares) are projected onto the
decision variable. The criterion (red bar) is fixed; it is the shifting
sensory representation that leads to opposite choices for two
instances of Δspeedn= 0. The second form of shift calls to mind
the rescaling of the sensory system coding metric according to
ongoing context, a kind of adaptation believed to maximize
information transmission in a varying environment58,59, where
some effects have been shown to decay exponentially over
time60,61.

The two candidate mechanisms of Fig. 7a are both compatible
with our computational model—in Eqs. (3) and (5), μn may be
taken as the decision criterion or, equivalently, as the input/
output curve midpoint. However, they lead to very different
predictions. According to the framework with history-dependent

decision variable (left panel), trial-to-trial sensory responses must
be encoded stably in somatosensory cortex; in later stages of
processing, perhaps corresponding to the frontal cortex targets of
somatosensory cortex, neuronal populations must trigger oppo-
site actions for the same input, in a history-dependent manner.
By contrast, according to the framework with history-dependent
sensory response (right panel), the encoding of stimuli at an early
processing stage will already be influenced by stimulus history. In
later stages of processing, the choice to be triggered is a stable
function of that history-dependent sensory input.

Functional significance of the time constant τ. In both frame-
works, the history-dependent feature, be it at the decision making
stage or at the sensory coding stage, must adapt to the most
recent stimulus by dynamics defined by the time constant τ, a
quantity that is independently observable by behavioral measures.
The values of τ (whether computed by the continuous model or
the highly correlated discretized model) evidence two clusters of
rats (Fig. 6d). Three rats had short time constants, and therefore
expressed high history-dependent choice volatility (“hot rats”)
and the remaining three had longer time constants and corre-
spondingly lower volatility (“cold rats”). Strikingly, the two
clusters are distinguished by their average performance: cold rats
performed better than hot rats. It must be kept in mind, however,
that the long τ that is advantageous for the fixed boundary
condition of the present task (approaching infinity in the ideal
case) is not necessarily ideal for a volatile stimulus context, for
example if the stimulus distribution and reward boundary were
programmed to move every ten trials. In the latter case, a decision
boundary built on the history of only recent stimuli may be
normative if one assumes that perceptual decision-making sys-
tems have selected for mechanisms that allow them to rapidly
adjust to volatile environments, where stimulus range and cate-
gorical boundary may shift unexpectedly. Adaptation to this sort
of environment could be implemented in the brain by hier-
archical Bayesian mechanisms62,63. Is τ fixed for a given rat, or is
it recalibrated according to the statistics of the world? In the latter
case, the long-τ rats in the present experiment would compress
their integration time in a more volatile world; if τ is a fixed,
innate characteristic of the rat, then the short-τ rats in the present
experiment would have an advantage in a more volatile world.
The finding that the volatility of an individual rat’s criterion
varied from session to session (and generated corresponding

Fig. 7 Candidate neuronal mechanisms underlying trial history effects. a Judgment of Δspeed= 0 on trial n may depend on stimulus n− 1 in two ways.
Left: sensory response on trial n is invariant to stimulus n− 1. The criterion μ (red bar) that determines the subject’s categorization of the sensory response
is history-dependent. Right: sensory response on trial n varies according to stimulus n− 1. The criterion μ (red bar) that determines the categorization of
the sensory response is fixed. b In this model, the n− 1 sensory representation is compared (red line) to the decision criterion, µ, and the comparison
outcome is converted to choice. During stimulus presentation, n− 1 is also loaded into a short-term memory buffer, which successively attracts μ with a
time constant, τ. When stimulus n is presented after an inter-trial interval, its sensory representation is compared to the new criterion, which has now been
updated through its attraction to n− 1.
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changes in discrimination performance) suggests that τ is
not rigid.

Model of two interacting modules. The hypothesis of Fig. 7a, left
panel, can be further envisioned as a set of interacting modules
(Fig. 7b). To execute trial n− 1, the corresponding sensory
representation is compared (red line) to the decision criterion μ.
As stimulus n− 1 is encoded, perceived, and acted on, it is
simultaneously loaded into a short-term buffer. Across the ITI,
the buffer attracts the criterion by a time constant, τ (Eq. (5)). The
next stimulus, n, is again compared to the decision criterion,
which has now been updated through its interaction with the
short-term buffer.

The same model may be generalized to account for the effect of
stimulus history in a different perceptual memory behavior. In a
delayed comparison working memory task26,64, the comparison
stimulus (n in our terminology) is measured against the memory
of the base stimulus (n− 1 in our terminology) which is held in
the short-term buffer35,36,65. Memory of the base stimulus is
known to be attracted toward a prior related to preceding stimuli,
a phenomenon known as “contraction bias”6,66. Contraction bias
might be explained if μ exerts an attractive force on the short-
term buffer, reciprocating the attraction exerted by the short-term
buffer on μ (opposing arrows in Fig. 7b). Consistent with this
supposition, the prior can be manipulated separately from the
short-term buffer50. The short-term buffer is not purposefully
engaged in the present reference memory task; nevertheless, it
plays a role by attracting μ (see also67). Complementarily, the
prior (μ) is not purposefully engaged in working memory tasks;
nevertheless, it plays a role by attracting the short-term buffer.
The current form of the model considers the strength of
attraction between the decision criterion, μ(t), and the stimulus
n− 1 memory trace to be equal, causing the short-term and long-
term buffers to converge symmetrically. Future studies will
explore the possibility that the attraction is asymmetric; indeed,
the interaction between μ(t), and the stimulus n− 1 memory
trace might even be task-dependent.

Such interrelations, if further evidenced in a more complete set
of human psychophysical behavioral experiments, could have
relevance to clinical studies68.

Methods
All protocols conformed to international norms and were approved by the Ethics
Committee of SISSA and by the Italian Health Ministry (license numbers 569/
2015-PR and 570/2015-PR).

Subjects. Eight male Wistar rats (Harlan Laboratories, San Pietro Al Natisone)
were trained/handled on a daily basis and caged in pairs. They were regularly
checked for their health and welfare conditions and provided with daily environ-
mental and social enrichment. They were maintained on a 12/12-h light/dark cycle.
To promote motivation in the behavioral task, rats were water-restricted between
daily testing sessions, while continuously having free access to food in the cage.
They were tested on each working day in sessions of about 1 h. Water was freely
available on days not followed by experimental sessions.

Eight human subjects were recruited among university students or employees
through a university mailing list. In order to participate in the experiment, human
subjects received detailed instructions and gave informed consent in written form.

Behavioral task. An LED placed on the nose poke signaled to the rat that a trial
could be initiated by crossing the optical sensor inside the nose poke. In the nose-
poking position, the rat’s right whiskers touched the plate (Fig. 1a). Triggering the
nose poke optical sensor led to a 400 ms delay followed by a 500 ms vibration of the
plate. The vibration was followed by a random delay (400–600 ms), after which an
auditory go cue instructed the rat to withdraw and choose one of the two spouts.
Infrared beams at the entryway to each spout detected the rat’s decision. According
to vibration speed one of the two spouts was enabled to deliver fluid reward, e.g.,
left spout for vibration speeds above the category boundary and right spout for
vibration speeds above the category boundary. No reward was delivered after
incorrect choices. After presentation of the stimulus on the category boundary,
reward was assigned randomly to one of the two spouts. After incorrect choices, the

nose poke sensor was inactivated for 1500–3500 ms, forcing the rat to wait for the
next trial. ITIs were measured from one crossing of the nose poke optical sensor to
the next one (Fig. 1a). Typically, the training or testing session lasted about 1 h and
included ~300 trials. When a rat obtained a consistent threshold of performance,
defined as >75% correct for five consecutive sessions, the training phase was
considered to be completed and the remaining sessions were taken as the data for
analysis.

Human subjects performed a modified version of the same task. After receiving
the stimulus and the go cue, they had to report their choice by pressing one of two
buttons. Buttons were asymmetrically placed in order to minimize motor biases
(see also Supplementary Fig. S8). Subjects received feedback (correct/incorrect) on
each trial through a computer monitor and headphones. The final amount of
money given to each subject was proportional to the percentage of correct trials in
the task, and subjects were informed about this aspect prior to the experiment.
Each subject performed two sessions of 750 trials each. Each session was divided
into three blocks of 250 trials each, separated by 5-min breaks.

Vibrotactile stimuli. For rats, the stimulation medium consisted of a rectangular
plate (20 × 30 mm) connected to a motorized shaker (Bruel and Kjar, type 4808) to
which velocity values were sent as analog signals, moving the plate along the
rostro-caudal axis. Stimuli were vibrations of the plate made of low-pass filtered
white noise, obtained as in26. Velocity values of one stimulus were sampled at
10 kHz from a normal probability distribution function with 0 mean. There were
50 seeds (specific time series) available for each velocity standard deviation. The
noise was low-passed through a Butterworth filter with 150 Hz cutoff, amplified,
and sent as voltage input to the shaker motor. Vibration speed was quantified as
the mean absolute value of velocity (i.e., the mean speed, sp), equal to the normal

distribution’s standard deviation multiplied by
ffiffiffiffiffiffiffiffiffiffiffiffi
2=π
! "q

. This physical feature has

been identified as allowing high acuity discrimination of whisker-mediated vibra-
tions in rats69. In every session, there were nine linearly spaced values of sp. Unless
stated differently, as in the data of Fig. 2, on each trial the software randomly
selected one of these nine mean speeds with a probability of 0.11. In order to
discourage the rat from forming the habit of choosing one side repetitively, not
more than three sequential trials of one category were presented.

For humans, the stimulus was delivered by means of a rounded probe that
vibrated along the axis of the rod, and was controlled by the same model of shaker
motor used in rats (see also27). Stimuli delivered to human subjects on the fingertip
were the same as those used in rats except that the ranges of sp values were chosen
among four different difficulties, depending on the performance on a short set of 75
preparatory trials.

Experimental apparatus. The apparatus, custom-built by CyNexo (https://
www.cynexo.com/), consisted of a Plexiglas box measuring 25 × 25 × 38 cm
(height ×width × length) that was located inside a sound-proof and lightproof
chamber. Reward spouts on each of the two sides of the apparatus, fashioned from
metal tubes with a plastic lip, delivered 0.03 mL of juice/water. They were actuated
by syringes controlled by pressure-pumps, on correct choices. A rounded head-port
on the front wall of the apparatus allowed rats to access the nose poke, a circular
aperture of 0.85 cm diameter. During sessions the box was closed with a Plexiglas
cover and monitored with a camera placed on top of the apparatus. All the software
for the control of the rat and human experiments were written in-house in Lab-
VIEW (National Instruments, Austin, TX).

Psychometric curve estimation. All analyses were performed in MATLAB
(MathWorks, Natick MA). To estimate psychometric functions, we computed for
each stimulus vibration sp, the proportion of trials in which the rat responded by
going to the side corresponding to the “strong” category. We fitted the data with a
probit function including asymmetric lapse parameters:

pðstrongÞ ¼ γþ ð1" γ" λÞ &
1
2

1þ erf
Δspeed" μ

σ
ffiffiffi
2

p
$ %& '

ð7Þ

where Δspeed is a sp value mapped to the scale of −4 to 4 (see Results), μ is the
midpoint parameter, σ the slope parameter, γ and λ the lower and higher
asymptotes of the function, respectively, corresponding to lapse rates (see70).
Parameter values were estimated by maximum-likelihood using the MATLAB
function fmincon. For GLM analyses we employed MATLAB’s fitglm function.

Fitting and cross-validation of recursive models. To fit recursive models to the
rats’ choices as a function of previous stimuli, first, we randomly selected 80% of
the behavioral sessions in the data set. Within each session selected, we recursively
predicted the probability of the rat’s “strong” judgment for each trial, depending on
previous stimuli and ITIs. For fitting and validating the history-dependent logistic
function, we employed the Brier score error term, defined as follows:

BS ¼
1
N

∑
N

n¼1
ðpðstrongÞn " choicenÞ

2 ð8Þ

where N is the total number of trials, p strong
! "

n is the probability of the rat giving
the “strong” response in a specific trial n according to the model’s psychometric
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function on that trial and choicen is the observed outcome for that same trial (a
binary variable equal to either 0 or 1).

To estimate the time constant τ, we approximated the minimum of the Brier
score function by means of a customized simulated annealing algorithm. The
remaining 20% of the behavioral sessions of the same rat served as test sessions for
the model with the τ estimated in the training set. For each rat, we repeated
training and testing 100 times, by selecting different random session samples.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The following data employed in the current study have been deposited in a public
repository (https://osf.io/hux4n): rat behavioral data used for the analyses of the trial-by-
trial history effects and for fitting and evaluating the recursive models of stimulus history.
Human behavioral data used for the analyses of trial-by-trial history effects. Any
additional information will be available from the authors upon reasonable
request. Source Data are provided with this paper.

Code availability
The algorithms employed for predicting behavioral responses according to the discrete
and continuous models of stimulus history (MATLAB), as well as codes used to produce
the main plots analyzing the impact of different history variables on current decision, are
available on OSF (https://osf.io/xkmy5). Any additional information will be available
from the authors upon reasonable request.
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