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Growth of entanglement entropy under local projective measurements
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Nonequilibrium dynamics of many-body quantum systems under the effect of measurement protocols is
attracting an increasing amount of attention. It has been recently revealed that measurements may induce an
abrupt change in the scaling law of the bipartite entanglement entropy, thus suggesting the existence of different
nonequilibrium regimes. However, our understanding of how these regimes appear and whether they survive in
the thermodynamic limit is much less established. Here we investigate these questions on a one-dimensional

quadratic fermionic model: this allows us to reach system sizes relevant in the thermodynamic sense. We show
that local projective measurements induce a qualitative modification of the time growth of the entanglement
entropy which changes from linear to logarithmic. However, in the stationary regime, the logarithmic behavior
of the entanglement entropy does not survive in the thermodynamic limit and, for any finite value of the
measurement rate, we numerically show the existence of a single area-law phase for the entanglement entropy.
Finally, exploiting the quasiparticle picture, we further support our results by analyzing the fluctuations of the

stationary entanglement entropy and its scaling behavior.
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I. INTRODUCTION

Recently, there has been great interest in studying the
quench dynamics of isolated quantum many-body systems,
where a global parameter of the Hamiltonian is suddenly
changed and the initial state is left to evolve unitarily. In this
scenario the quantum entanglement represents an invaluable
tool to access the intrinsic nature of underlying states and
their nonequilibrium properties [1-3]. In the case of unitary
evolution, for local short-ranged Hamiltonians, the spread-
ing of correlation typically scales in time, the front being
bounded by a maximum propagation velocity of the infor-
mation (as predicted by the Lieb-Robinson bound [4]). As
a consequence, the bipartite entanglement of a semi-infinite
subsystem will grow unbounded: for integrable models, where
particle excitations are stable and propagate ballistically, the
entanglement growth is linear in time, as predicted by the
celebrated Cardy-Calabrese quasiparticle picture [5-8]. In this
case, the system thermalizes (in a generalized Gibbs sense)
and it is characterized by highly entangled eigenstates, i.e.,
states following an extensive (with the volume) scaling of
their entanglement entropy [9-11].

Many factors may affect the nonequilibrium dynamics, and
the scaling behavior of entanglement entropy could vary in
out-of-equilibrium driving [12-15]. A paradigmatic exam-
ple is that of many-body localization (MBL), in which the
entanglement transition is driven by the strength of a local
disordered potential [16-22]. As a result of avoiding ther-
malization in the MBL, the stationary state exhibits area-law
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entropy for the short-entangled systems, and the entanglement
entropy grows logarithmically in time, which is in contrast
with linear growth in the thermalized case [22,23].

Recently, an alternative way to realize nonthermalizing
states has been proposed by the use of projective measure-
ments that influence the entanglement dramatically [24,25].
In particular, it has been established that quantum systems
subjected to both measurements and unitary dynamics offer
another class of dynamical behavior described in terms of
quantum trajectories [26], and well explored in the context
of quantum circuits [27—44], quantum spin systems [45-54],
trapped atoms [55], and trapped ions [56—58]. In this context,
the most celebrated phenomenon is the quantum Zeno effect
[59-63] according to which continuous projective measure-
ments can freeze the dynamics of the system completely.
This question has been addressed in many-body open systems
[24,64—69] whose dynamics is described by a Lindblad master
equation [70-72].

In light of these developments, here we study the competi-
tion between the unitary dynamics and the random projective
measurements in a noninteracting spinless fermion system.
In particular, we investigate how the bipartite entanglement
entropy and its fluctuations are affected by the monitoring
of local degrees of freedom in a true Hamiltonian extended
model.

As a main result, we find that the volume-law phase is
absent for any measurement rate to subextensive entanglement
content. In particular, during the initial time-dependent tran-
sient, any finite measurement rate induces an abrupt change
of the entanglement, whose linear ramp suddenly changes to
logarithmic growth. Moreover, we have numerical evidence
that the average of the stationary entanglement entropy shows

©2022 American Physical Society
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a single transition from the volume- to the area-law phase for
any measurement rate in the thermodynamic limit. However,
for any finite subsubsystem size, a remnant of a logarithmic
scaling is observed, and a characteristic scaling law at a size-
dependent measurement rate is established.

II. PROTOCOL

Let us consider a quantum many-body system in one di-
mension, whose total Hilbert space H = j H;, is the tensor
product of the single-particle Hilbert spaces # ;. The system
is originally isolated from the environment and the dynamics
obeys the Schrodinger equation |W(¢)) = exp{—itl—? HW¥(0)),
where, in our protocol, the initial state is not an eigenstate of
the Hamiltonian H, and it is typically a very short-correlated
state, e.g., a product state |W(0)) = ®j ;).

In our protocol, the unitary dynamics is perturbed by ran-
dom interactions with local measuring apparatus: namely,
each single local (in real space) Hilbert space H; is coupled
for a very short period of time with the environment, and a
local observable O; = Z,’;l okﬁ](.k) is measured. Here oy is a
possible outcome of the measurements, and ﬁ;k) is the pro-
jector to the corresponding subspace, with Zle ﬁ;k) =1 j-
Given a time step dt and a characteristic rate 1/7, each single

local degree of freedom is independently monitored; the state
|W) is projected according to the Born rule

PO w)
+/ Pk '

with probability p, = (W|P{"|W).

In practice, a random number p € (0, 1] is extracted,
and a projection to the kth subspace is performed whether

f;,l pr<p< Z;‘:, p;- Under this dynamical protocol, the
many-body state |W(¢)) is therefore conditioned by the set of
measurement events and subsequent outcomes, but it remains
pure all along the protocol.

Let p; denote the density operator for the particular quan-
tum trajectory 7;, p; being a projector. Let O[p] be a general
functional of the density operator. In the following, O will
denote the average over all the trajectories. In general,
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where N is the number of quantum trajectories. Let p =
1%/25\,:1 i be the average density operator: O = O[p] only
if O is a linear functional of p.

Let us mention that, although the stochastic nature of the
measurement events remains, the probabilistic outcome of a
quantum projective measure can be circumvented by intro-
ducing the statistical mixture; indeed, if a measurement is
performed but the result of that measurement is unknown, the
state is not pure anymore and transforms according to p —
Yot PVDPY, where at the beginning 5(0) = |W(0))(W(0).
The two approaches are indistinguishable as far as we are
considering observables which are linear functionals of the
density operator p(t).

A. Hopping fermions

Specifically, we apply our protocol to noninteracting spin-
less fermions hopping on a ring with L lattice sites. The
Hamiltonian with periodic boundary conditions (PBC) reads
as

~
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A=-
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which is diagonal in terms of the fermionic Fourier modes
i = %L Zf;(i e 2mkilLe ;- with single-particle energies €, =
—cos(2rwk/L). The Hamiltonian commutes with the to-
tal number of particles N =Y, 4; =Y, 7ifik. Due to its
quadratic nature, the unitary dynamics preserves the Gaus-
sianity of the state, i.e., Wick theorem applies. In practice, in
case of closed quantum systems, whenever no measurement
occurs, the two-point function C;;(t) = (él‘ ()¢;(1)) evolves
according to C(t 4+ s) = RT(s) C(t) R(s), where the elements
of the matrix R(s) are

L/2—1
IRm”(S) — Z Z e—i27‘[(m—n)j/L—iE/S (4)
j=—-L/2

~ " on(s) for L~ oo, 5)
Jix(z) being the Bessel function of the first kind.

We focus on a dynamical protocol where we measure the
local occupation number 7; = 6;6 i, which is quadratic in the
fermions. Projective measurements could in principle destroy
the Gaussian property of the state; however, we shall demon-
strate that these particular measurements do not spoil such
a property. By hypothesis, p o XM where M is given
coefficient matrix. Due to the spectral decomposition, 7i; =
1- }3;1) +0- 13;0). Moreover, 71; is a hypermaximal Hermitian

operator and, thus, 1 = 13;1) + PJ(.O). In this way, we have just
proved that each local number operator is itself a projector
(nj = 13;1) and 1, —f; = ﬁ;o)). Second, 13;1) and ﬁ; ) can
be written as the limit of Gaussian operators, namely, 7; =
limg—, o0 €% /(¢* — 1) and ij- — ;= limg_, o0 e~ Finally,
e o eey gy — oYy G8 here K is a new matrix
whose elements are given by the Baker-Campbell-Hausdorff
formula. Therefore, our protocol preserves the Gaussianity of
the state.

Since occupation operators acting on different lattice sites
commute, we can apply the following projecting procedure
in any arbitrary order; specifically, if at time ¢ the kth site
has been measured, following the prescription in Eq. (1),
if the outcome is 1 then the state projects as |W(z)) —
() /(W) | W(t)), otherwise (outcome () the state
projects [W(t)) — (1 — AW (@) // (W1 — A [W(1)). The
resulting state remaining Gaussian, we can thus focus on
the two-point function C;;(¢) which completely characterizes
the entire system. The recipe is the following: for each time
step dt and each chain site k, we extract a random number
qx € (0, 1] and only if g; < dt/t we take the measurement
of the occupation number #;. In such case, we extract an-
other random number p; € (0, 1]: if pp < Cii(t) = (Ar (1)),
then thanks to the Wick theorem, the two-point function
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FIG. 1. Evolution of particle density: The local particle density after quenching the Néel state. The different panels represent a typical
trajectory where random projective measurements of the local occupation 7; occur with different rates 1/7.

transforms as

Cir(0)Cr (1)

i 88 () —
C](t)_) kjk+CJ(t) (Dkk(t)

; (6)

otherwise, if py > Cg (), one obtains

[8ix —

N e - Ci 181 — Cy; ()]
Clj(t) — 5tkajk + Clj(t) + 1— (I:kk(t) .

@)

Let us mention that, if we lose the result of the measurements,
thus introducing a statistical mixture at every measurement,
this will definitively spoil the Gaussian nature of the dynam-
ics. Therefore, we would lose the great advantage of working
with a noninteracting theory. For such reason, we will always
consider pure-state evolution along quantum trajectories.

In Fig. 1 we show the typical evolution of the particle den-
sity when starting from the Néel product state ]_[L/ >t AT |O)
for a system with L =200 lattice sites. Wlthout measure-
ments, the evolution follows the ordinary melting dynamics,
and the states relax (in a local sense) toward the infinite
temperature density matrix. Typically, local measurements,
when very dilute in time (tr >> 1), generate spikes on top

of the infinite temperature landscape, provided that correla-
tion functions are characterized by a typical finite relaxation
time. However, such local excitations, namely, 7; or 1 — 7i;
with almost equal probability, propagates, and survive for
“infinite” time; indeed, when a local measurement occurs
in the infinite-temperature background, the local density at
the measured site will relax as (71;(¢)) = [1 £ Jo(2t)]/2, with
Jo(2t) ~ t~/2; moreover, the connected correlation func-
tion (A;(1)Ao(t))e = (A;(1)g(1)) — (A; (1)) (Ao(r)) = J}(21)/4
spreads ballistically and the front of the light cone (at
Jj = 2t) behaves as (fiy (¢)g(t)). ~ t~>/3. Since free quasi-
particles have an infinite lifetime, they do modify the
infinite-temperature landscape at arbitrary distances; as a con-
sequence, we may expect that local projective measurements
should affect the unitary dynamics even for infinitesimally
small rate 1/7, due to the power-law decay of such ballisti-
cally propagating excitations.

B. Entanglement entropy dynamics

One quantity which is definitively affected by the random
projective measurements is the bipartite entanglement entropy
(EE). For a pure state | W), the EE between a subsystem S, and
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FIG. 2. Entanglement entropy vs time: EE after quenching the Néel state for a system with size L = 500. Lines, from bottom to top,
represent increasing subsystem sizes / € {10n : n € N A n < 10}. The results for finite values of 7 € {2, 10, 50, oo} have been obtained by

averaging over 1000 different quantum trajectories.

the rest of the system S*, is given by S = —Trg[ps In ps],
where ps = Trs«|W) (V| is the reduced density matrix.

In the hopping fermion case, where the dynamical protocol
preserves the Gaussianity of the state, the time-dependent
entropy, for a subsystem consisting of / contiguous lattice sites
can be evaluated as [5,73-75]

Sit) = — Z{ M) In A (1) + [1 = A ()] In[1 — A ()]},
k
®)

where A () are the eigenvalues of the subsystem two-point
correlation function C(¢)|;. C(¢)|; is an [ x [ matrix such that
Cij (Ol = Cyj(t) Vi, j €[0,1).

When no measurements occur, the dynamics when starting
from the Néel state is typically characterized by a linear in-
crease for t < [/2 (quasiparticle velocity ¢ = 1), followed by
a regime where the entropy is saturating toward an extensive
stationary value equal to / In(2). In the opposite case, namely,
when 7 — 0 and we keep measuring the system everywhere
at every time, the state remains completely factorized and the
EE is identically vanishing.

In general, a finite rate of random projective measurements
should lower the entanglement production. However, it is
much less clear how this in practice takes place: In particular,
are both regimes affected in the same way? Is there any abrupt

change in the qualitative behavior of the entanglement, or this
change smoothly depends on the measurements rate 7 ~'?

We systematically study these questions by analyzing the
dynamics of the bipartite EE for different subsystems of sizes
I, embedded in a system of size L. We performed averages
over 200-1000 different quantum trajectories depending on
the specific protocol and system size. At the time ¢ = O the
system is prepared in the Néel state.

In Fig. 2, we show the typical behavior of the bipartite
EE for [ € {10n : n € N A n < 10} and system size L = 500.
Maximum time and subsystem sizes have been chosen in such
a way that data are not affected by finite-L effects.

For t = oo [Fig. 2(a)], the entropy increases linearly in
time and then saturates at asymptotic values which increase
linearly with the subsystem size, thus manifesting the ex-
pected extensive behavior of the stationary EE in accordance
with a volume law / In(2). Decreasing 7, the linear growth
of the EE suddenly changes to a logarithmic growth [see
Figs. 2(b) and 2(c)] in accordance to S;(t) = aInt + b,
which eventually saturates at large time. Finally, for very
small value of 7 [see Fig. 2(d)], we have numerical evidence
that the EE shows a rapid saturation to a plateau which is
independent of the subsystem size. Moreover, from the bi-
partite EE at | = L/4 we extract the parameter a, by fitting
the data with ¢ € [0, L/8]. In Fig. 3 we show a, as a func-
tion of the measurement rate 1/7, for different system sizes
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FIG. 3. Logarithmic growth: Logarithmic slope of the EE ex-
tracted from S,(t) = a. Int + b, at [ = L/4 as a function of 7 for
different system sizes (L = 200, 300, 400). It shows that when 7 is
getting larger, the expected linear increase of the entanglement is
restored. On the contrary, when v — 0, a, is getting closer to zero,
suggesting an area-law phase.

L € {200, 300, 400}. As expected, a, is growing when 7 is
getting larger, eventually diverging for T — o0, so as to re-
store the expected linear increase of the entanglement when
no measurement occurs. On the contrary, for t — 0, a, is
vanishing.

Of course, the larger 7, the larger the times and the larger
the subsystems have to be in order to appreciate the deviation
from the standard linear growth. Notice that, since for smaller
T much more measures occur, in principle, one needs to take
averages over a larger number of quantum trajectories in order
to smooth down the random fluctuations.

Interestingly, a finite rate of projective measurements also
affects the scaling of the stationary value of the EE. From
a qualitative inspection of the data, the stationary value of
the EE undergoes a qualitative change as well: from being
extensive when T = o0, it shows an area-law scaling for high
rates 1/t. However, it is less clear if the area-law behavior also
applies for any finite measurement rate or not. Does another
phase exist between those two asymptotic cases? In other
terms, does it exist a critical measurement rate at which we
observe a new logarithmic phase? If yes, can we determine
its value? In the following, we go deep to give a definitive
answer.

C. Stationary entanglement entropy

We start our analysis of the stationary behavior of the bipar-
tite EE as a function of the subsystem sizes and measurement
rates 1/7. Within the zero entanglement when 7 = 0 and the
volume-law scaling when T = oo, we want to study if the
stationary EE shows the intermediate logarithmic behavior
when 7 is tuned and the possible existence of a finite critical
parameter 7, > 0 which may separate the logarithmic regime
from the area-law regime.

To address this question, we inspect the stationary EE as
a function of the subsystem size /, and different system sizes
L. By convention and in order to reduce the fluctuations, we

also take the time average over the time window [fmin, fmax]
wherein the entanglement is almost constant, where fy;, >
[/2 and ty,,x < (L — 1)/2 have been chosen so that the entropy
is weakly affected by finite-size effects; in fact, in that interval,
the EE has essentially entered the stationary regime and is
not affected by the motion of particles under PBC on a finite
ring. In the following, (-) will denote the time average of any
functional in that time interval.

By an analysis of the data, we conclude that the entangle-
ment entropy saturates to a constant value independent on /
for a sufficiently small value of t; in other words, the mea-
surement rate is so high that the time-evolved system cannot
escape from a short correlated state. We can safely say that the
system is in a Zeno-type regime in which the measurements
have suppressed the entanglement, giving rise to an area-law
scaling.

In order to verify if the asymptotic scaling acquires a
logarithmic dependence with the subsystem size for increas-
ing values of the parameter t, we make use of a linear fit
r In(l) + k of the data with [ € [l i, Imax] and we extract the
parameter r: it gives an estimate of the asymptotic logarithmic
slope of the entanglement, namely, [3;(S;(00)), as a function
of the measurement rates 1/7. Here, /iy, and [, have been
chosen depending on the system size L in order to stay in the
correct regime.

In Fig. 4(b) we plot the best-fit parameter r for v € [1, 10],
and different system sizes L € {200, 400, 800}. This quantity
is an indicator of a possible sharp transition between different
regimes in the asymptotic scaling of the EE. Similarly to what
has been observed for the scaling of the entropy in the time-
dependent regime, the logarithmic slope r for every system
size L decreases when going toward T = 0. In particular, for
every size L, we can identify a critical value 7; such that, for
T < 17, r shows a fast convergence toward zero. To estimate
7/ we perform a best fit of r for every system size whose
intercept with the axis r = 0 gives the critical value 7/ sepa-
rating the area-law phase from the logarithmic regime. Indeed,
if the limit lim; _, o 7/ = t° converges to a finite value, the
logarithmic phase manifests also in the stationary regime and
7. captures the phase transition point between logarithmic and
area-law phase. However, the data in the inset of Fig. 4(b)
suggest that 7/ is linearly growing with L, and therefore the
only stationary-EE phase that survives in the thermodynamic
limit is indeed the area-law phase.

This statement is strongly supported by the study of the EE
as a function of t for different subsystem sizes as shown in
Fig. 5. For very high measurement rates 1/7, the stationary
EE is independent on the subsystem size / with a very good
approximation. As t increases, the stationary EE becomes [
dependent and changes its concavity at T = 7. In particular,
our data show a logarithmic growth of the inflection point
7} with the subsystem size /. This observation allows us to
introduce a correlation length £(r) which increases expo-
nentially with t and affects very much the behavior of the
stationary EE. In fact, if £(t) < [, then only the chain’s sites
close to the boundary of the subsystem are correlated with
the rest of the quantum system. For this reason, the EE is /
independent. As £(t) gets larger and larger, more and more
sites are involved in generating correlation with the rest of
the chain. When [ ~ £(7) the EE shows a logarithmic scaling
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FIG. 4. The stationary entanglement: (a) Stationary EE for L €
{200, 300, 400, 500, 800} (different symbols) and different measure-
ment rates 1/t (different colors), as a function of the subsystem
size | € [1,200], is plotted in log-linear scale. (b) Logarithmic slope
of the stationary EE extracted from different system sizes L as a
function of the measurement rates t. The inset shows a finite-size
scaling of the critical value 7/ revealing its divergence increasing the
system size L; see main text for details.

with the subsystem size; however, this region moves in the
parameter space T — [ such that it eventually tends to infinity
in the thermodynamic limit, thus disappearing. Finally, for
&(t) > [ the entire subsystem contributes to the EE and this
essentially results in a volume-law behavior.

D. Entanglement entropy scaling

As well known, the generalized hydrodynamic (GHD)
[76-80] makes use of a quasiparticle picture [6—8] to explain
qualitatively the behavior of the entanglement dynamics. Let
x1 and x; be two general points of the chain: they define the
subsystem Z = [xy, x] of interest for the EE (|x; — x| =1 <
L). For weakly entangled and excited quantum states, the EE
under unitary time evolution is [24]

Sz(f)—/

f dxs(x —v(k), k,0), O]
(o))

T T T T T
107t 10° 10t 10? 10° 104 10°
T

FIG. 5. Stationary entanglement entropy vs t: The stationary EE
as a function of t for different subsystem sizes / and L = 400. The
entropy is approximately independent on / for small values of the
parameter . The inset shows the divergence of the inflection point
7/ for L = 400 as a function of the subsystem size [.

where v(k) = sin(k) is the group velocity of the quasiparti-
cles, s(x, k, t) represents the contribution to the EE for a pair
of quasiparticles at positions x and x — 2v(k)t, and Q, =
(xeZ | x—2vlk) ¢&1}.

It is interesting to notice that, in the continuous limit (dt —
0), the time evolution of the average density operator is given
by the Lindblad equation (where the jump operators coin-
cide with the local number operators) of which the stochastic
Schrodinger equation (SSE) is an unraveling. In other terms,

—CL L
dp 1 —CL
= —i P — i, [7;, s 10
- 1A, - - ; ol 2 1L 10
—CL . . . .
where p ~  is the average density operator in the continuous

limit (CL).

In the CL, we can use the quasiparticle picture and the
postulates for the entanglement growth in presence of con-
tinuous measurements, where 1/t represents the monitoring
rate of each quasiparticle.! As put forward in Ref. [24], the
idea is based on the possibility that the ballistic motion may
be stopped by a random measure event which destroys a pair
of quasiparticles and generates a new excitation which starts
spreading from the position of one of the two old partners
with the same probability % The new quasiparticles travel
with random momenta 4k where |k| is chosen uniformly in

[0, ]. Let S ! (‘L’ t) denote the average EE in the CL. Using
the prescriptions in [24] with the physical measurement rate

l/t, we get
v/ / / dx,
— %,

Y

§ICL(1',I — 00) = ln(Z)/
0

Note that the rate used in [24] is two times bigger than the rate we
deduce from (10).
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FIG. 6. Scaling of the stationary entanglement entropy: Scaling
of the stationary EE: A = [/t on the x axis; (S;(7))/(S;(t = 00))
on the y axis. The dashed line is the function f(A) given by the
GHD. Note that (S;(7)) has been computed by taking the average in
[tmin» tmax J: it means that (S;(t = 00)) is very well approximated by
/In(2) only if | « L. The inset shows the same data in log-log scale
to emphasize the differences between the models for high rates.

whose asymptotic behavior reads as

I, A

ECL(I t — 00)
2T ), f()v)“{k—l, A>1

Si(t = 00) 12
where L =1/7, and S;(r = 00) = In(2)/ is the asymptotic
value of the EE under free time evolution. Since our protocol
differs from the one in Ref. [24], it is worth investigating
whether our recipe agrees with their scaling result. Actually,
assuming dt < 1, the EE in our discrete model is very well
captured by the CL description when df/t <« 1. Even if we
expect to have a good prediction by the GHD only for t > 1,
we see in Fig. 6 that the agreement is excellent in a much
wider range of measurement rates. Figure 6 also shows the
same ratio for different chain sizes L € {400, 800} to empha-
size that it is weakly affected by finite-size effects. However,
using bigger chains ensures better agreement between data
and theoretical predictions, as expected.

E. Stationary entanglement entropy fluctuations

In order to further support the results of the previous sec-
tions, we decided to analyze the EE fluctuations (012(1)) =

(S2,(1)) — (S;(t)?). From the numerical results, we see the
following: (i) the variance is / independent for very high mea-
surement rates; (ii) it approximately decays as ~1/t for very
low rates (see Fig. 7). The behavior at low 7 is not surprising:
for very high rates, we are close to the Zeno regime and then
we do expect that also higher momenta of the EE are size
independent. The behavior at high values of T may be easily
understood if we look at the proprieties of the Poisson distri-
bution, as detailed below. Indeed, suppose t is large enough
in order to satisfy Ldt/t < 1; in this case, the probability to
have multiple measurement events after each time step dr is
approximately zero. Under this assumption, the measurement
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FIG. 7. Fluctuations of the stationary entanglement entropy:
Fluctuations of the stationary EE as a function of the parameter ©
for L = 400. The absolute maximum point {o2).x and its position
Tmax 1NCrease linearly with the subsystem size /, as shown in the inset
on the left. The inset on the right shows some fit functions (dashed
lines) with their data; the green curve interpolates their maximum
points.

process becomes a Poisson process and k = TL/t is the av-
erage number of measurements in the time interval [0, T']. It
follows that

S, T) =)  P(OAGn,T), (13)

J

where P(j) = k/e /! is the probability to take j measure-
ments in [0, 7] and A, (j, n, T) is the weighted average of the
nth momentum over all the quantum trajectories which can be
generated in [0, 7] with fixed number of measurements j. The
variance is thus given by

o (t,T) = 8% (x,T) — (Si(z, T))
~Fi(T)(rt, Tk <1 (14)

where F(T)=A1,2,T)-240,1, T)AQ,1,T)+
A;(0,1, T)%. Of course, we are interested in computing
the stationary variance and thus 7 has to be large
enough. It is interesting to notice that, in this regime,
ol(t,hT) = of(t, T) with h > 1. In fact, we can show that
Fi(hT)= Fi(T)/h and k(t, hT) = hx(z, T).

The term A;(1, n, T) represents the contribution for one
single measurement and then it is not surprising that it
can be written in terms of small perturbations with respect
to the O-measurement case. In other terms, JF;(T) is ap-
proximately proportional to /> and thus the ratio g(/, 1) =
(012(1: ))/(S;(7))? is essentially / independent and proportional
to 1/t for very low measurement rates. This behavior is em-
phasized in Fig. 8.

In addition to the interesting asymptotic behaviors, the
variance shows a double-peak structure (see Fig. 7) which
might be evidence of the existence of two different processes
generating fluctuations. Note that this double-peak structure
also affects the ratio g(/, ) = (olz(t))/(gl(r))z, as shown in
Fig. 8.
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FIG. 8. Scaling of the fluctuations for small measurement rates:
The ratio g(I, t) = (o(t))/(S;())? as a function of the parameter
t for L = 400. The dashed line represents the asymptotic behavior
obtained by theoretical argues; see main text for details.

Our data suggest that the position of the peak on the left
scales logarithmically with the subsystem size [: this is not
surprising because, in that regime, fluctuations reflect the be-
havior of the inflection point 7;* of the EE which also scales
logarithmically. Despite the fact that the number of simulated
trajectories is not sufficient to proceed with a thorough analy-
sis, it seems that the peak’s position of the absolute maximum
Tmax and its value (02)max = (02 (Tmax)) increase linearly with
the subsystem size /, as shown in the inset of Fig. 7. In order
to estimate the maximum points and their positions, we fit the

data with a linear combination of two functions obtained by
the square of the relation (11) and the square of the average
contribution to the EE of the new pairs of particles randomly
created by measurements [which appears in the argument of
the integral (11)]. By optimizing the parameters of these fit
functions, we obtain a very good interpolation of the data,
as shown in the inset of Fig. 7. This might suggest that it
is possible to describe the processes generating fluctuations
making use of the quasiparticle picture.

III. DISCUSSION AND CONCLUSION

In this work, we investigated the quantum quench dynam-
ics in a free-fermion chain under projective measurements of
occupation numbers. By computing the EE of the system dur-
ing the time evolution, we found that the entanglement shows
a logarithmic growth in time before reaching the stationary
value. Furthermore, thanks to the experimental progress, this
logarithmic regime that emerges for finite-size systems can be
also addressed in the laboratory [81-84].

Moreover, we also investigated the properties of the sta-
tionary EE as a function of the measurement rate 1/t and we
studied a volume- to area-law transition that emerges for any
value of 7. Finally, we studied the scaling of the stationary EE,
the fluctuations, and the ratio between the variance and the
square of the stationary EE as a function of the measurement
rate, finding out a linear asymptotic behavior. We found a very
intriguing phenomenon where the EE fluctuations are gener-
ated by two distinct processes which are both qualitatively
captured by the quasiparticle picture.
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