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Motivated by Hilbert’s 16th problem we discuss the probabilities of topological features

of a system of random homogeneous polynomials. The distribution for the polynomials

is the Kostlan distribution. The topological features we consider are type-W singular

loci. This is a term that we introduce and that is defined by a list of equalities

and inequalities on the derivatives of the polynomials. In technical terms a type-W

singular locus is the set of points where the jet of the Kostlan polynomials belongs

to a semialgebraic subset W of the jet space, which we require to be invariant under

orthogonal change of variables. For instance, the zero set of polynomial functions or the

set of critical points fall under this definition. We will show that, with overwhelming

probability, the type-W singular locus of a Kostlan polynomial is ambient isotopic to

that of a polynomial of lower degree. As a crucial result, this implies that complicated

topological configurations are rare. Our results extend earlier results from Diatta

and Lerario who considered the special case of the zero set of a single polynomial.

Furthermore, for a given polynomial function p we provide a deterministic bound for

the radius of the ball in the space of differentiable functions with center p, in which the

W-singularity structure is constant.
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2 P. Breiding et al.

1 Introduction

Hilbert’s 16th problem was posed by David Hilbert at the Paris ICM in 1900 and, in its

general form, it asks for the study of the maximal number and the possible arrangement

of the components of a generic real algebraic hypersurface of degree d in real projective

space. Since Hilbert had posed his question, many mathematicians have contributed to

the subject: Hilbert [14], Rohn [34], Petrovsky [33], Rokhlin [35], Gudkov [9], Nikulin [29],

Viro [42–44], Kharlamov [16–18], and more.

Hilbert’s problem not only concerns the topology of the hypersurface but also

the way it is embedded inside the projective space. The difference between these

two sides of the problem can be illustrated by considering the sextic polynomials

P1(x0, x1, x2) = (x4
1 +x4

2 −x4
0)(x2

1 +x2
2 −2x2

0)+x5
1x2 and P2(x0, x1, x2) = 10(x4

1 +x4
2 −x4

0)(x2
1 +

x2
2 − 2x2

0)+ x5
1x2 and and their zero sets, which are shown in Figure 1. Both of them have

two connected components and so their topological types agree. But their rigid isotopy

types are different, because one cannot move, in the projective plane, the inner oval on

the left picture outside without crossing the outer oval. Being rigidly isotopic means

that P1 and P2 belong to the same connected component of R[x0, x1, x2](6)\�, where �

denotes the set of singular curves.

In this article we approach this classical topic from a probabilistic point of view.

That is, we assume a probability distribution on the space of polynomials and consider

statistical properties of topological configurations. Moreover, we do not only consider

the topology of zero sets. In fact, the case of the zero set of a single polynomial was

already considered in [6]. Rather, we consider type-W singular loci. We give a rigorous

definition below. Among others, those singular loci include the following:

(1) The zero set of p : Sn → R
k in the unit sphere Sn.

(2) The set of critical points of p : Sn → R on Sn.

(3) The set of nondegenerate minima of p : Sn → R on Sn.

Fig. 1. The zero sets of P1 (on the left) and P2 (on the right) plotted on the affine chart x0 = 1.
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Quantitative Singularity Theory 3

(4) The set of points where a polynomial map p = (p1, p2) : S2 → R
2 has a

Whitney cusp.

Notice that in this list we have switched from the real projective space to the unit sphere.

The reason is that polynomials define functions on the sphere, but (unless the degree

is even) they do not define functions on the projective space. For this reason, in the

following, we will exclusively consider loci inside the sphere Sn and not in projective

space; however, we observe that, since the latter is double covered by the former, the

study of the spherical case can be related to the projective one using standard algebraic

topology techniques.

In this article, we follow the same philosophy of [6] and we focus on tail

probabilities. We want to show that a system of m Kostlan polynomials (P1, . . . , Pm)

rarely has a set of point from the list above that has “complicated topology.” A Kostlan

polynomial of degree d is defined as

Pk(x0, . . . , xn) =
∑

α0+···+αn=d

ξ (k)
α0,...,αn

√
d!

α0!···αn! xα0
0 · · · xαn

n , (1)

where the ξ
(k)
α0,...,αn are independent and identically distributed standard Gaussian

random variables. By “complicated topology” we mean configurations that can’t be

realized by polynomials of lower degree.

We show in Theorem 4 below that with high probability the type-W singular

locus of a system of Kostlan polynomials (P1, . . . , Pm) with maximal degree d :=
max{deg(P1), . . . , deg(Pm)} is ambient isotopic to the singular locus of a system of

polynomials of degree approximatively
√

d log d. By this we mean that there exists

a continuous family of diffeomorphisms ϕt : Sn → Sn with ϕ0 = idSn that at time

t = 1 brings the singular locus of the 1st system to the singular locus of the 2nd one.

The notion ambient isotopy is weaker than the notion rigid isotopy that Hilbert used.

However, we can’t work with rigid isotopies in our setting, because this is not defined

for pairs of polynomials that live in different spaces—on the one hand, polynomials of

degree d and on the other hand polynomials of degree
√

d log d. We need to compare

those polynomials in the space of all C∞ functions!

In particular, our results also imply that maximal configurations, that is,

type-W singularities that can’t be realized by polynomials of lower degree, have

exponential small probability as d → ∞. They are virtually non-existent under the

Kostlan distribution. This has implications for numerical experiments: for large d it is
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4 P. Breiding et al.

impossible to find maximal configurations by sampling Kostlan polynomials. For zero

sets this was already observed in [19].

Sarnak [36] suggested using the probabilistc point of view in 2011. Since then

the research area has seen much progress [6, 8, 10–12, 23–27, 30, 31, 36, 39]. Today,

the merging of algebraic geometry and probability theory goes under the name of

random algebraic geometry. The motivation behind taking a statistical point of view

is that already for curves in the plane the number of rigid isotopy types grows super-

exponentially as the degree of the curve goes to infinity [32]. Therefore, a deterministic

enumeration of all possibilities is a hopeless endeavor. On the other hand, it was

shown in [6] that for Kostlan curves there are only few types that appear with

significantly high probability. This result motivated the more general study in this

article.

1.1 The Kostlan distribution

Our choice of the Kostlan distribution (1) has several reasons. The 1st is that Kostlan

polynomials are invariant under orthogonal change of variables: if P is a Kostlan

polynomial in n + 1 variables, then for any orthogonal (n + 1) × (n + 1)-matrix R

we have P ◦ R ∼ P. We believe that a reasonable probability distribution should

have this property, since we are considering topological features of geometric sets.

Following Klein [20] those should be defined being invariant under orthogonal change

of coordinates of the ambient space. However, Kostlan polynomials are not the only

orthogonally invariant probability distribution. We need more reasons to justify this

choice. A 1st possible one is that the Kostlan distribution is particularly suited for

comparing real algebraic geometry with complex algebraic geometry: in fact if one

considers complex Kostlan polynomials (defined by taking complex Gaussians in (1)),

the resulting distribution is the unique gaussian distribution (up to multiples), which

is invariant under unitary change of coordinates. Ultimately, this connection is why

random real algebraic geometry behaves as the “square root” of complex algebraic

geometry, see [27]. Moreover, up to multiples, the Kostlan distribution is the unique,

among the orthogonally invariant ones, for which we can write a random polynomial

as a linear combination of the monomials with independent gaussian coefficients—

thus it is “simple” to write a Kostlan polynomial. Finally, another reason is that among

the orthogonally invariant probability distributions on the space of polynomials the

Kostlan distribution behaves well under a certain projection, which is the key part in

the proof of our main result Theorem 4 on the tail probabilities.
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Quantitative Singularity Theory 5

1.2 Singularities

The examples of singular loci above can be summarized under the following technical

definition involving the jet space Jr(Sn,Rm). We recall the precise definition of the jet

space in Section 3.1. One may think of points in Jr(Sn,Rm) as lists of derivatives of

functions at a point. Those lists are called jets. In this interpretation, each function

f ∈ Cr(Sn,Rm) defines a map jrf : Sn → Jr(Sn,Rm), called the r-th jet prolongation,

which maps x to the list of derivatives of f at x. The precise definition of this is given

in Definition 9 below.

The key aspect is that Jr(Sn,Rm) has a natural semialgebraic structure and we

can therefore define semialgebraic sets therein.

Definition 1 (The type-W singular locus). We call a subset W ⊆ Jr(Sn,Rm) a

singularity type, if it is semialgebraic and invariant under diffeomorphisms induced

by orthogonal change of variables. Given f ∈ Cr(Sn,Rm), the subset U = jrf −1(W) ⊆ Sn

is called the type-W singular locus of f .

The semialgebraic sets describing the above examples are as follows.

(1) W = Sn × {0} ⊂ J0(Sn,Rm).

(2) W = {df = 0} ⊂ J1(Sn,R).

(3) W = {df = 0, d2f > 0} ⊂ J2(Sn,R).

(4) W ⊂ J3(S2,R2) gives conditions on the derivatives of f : S2 → R
2 up to

order three, such that in some local coordinates f has the form (x1, x2) 
→
(x1, x3

2 − x1x2) (see [4]).

Definition 2 (Ambient isotopic pairs). Let C0, C1 be stratified subcomplexes of the

sphere Sn. We say that the two pairs are ambient isotopic, denoted

(Sn, C0) ∼ (Sn, C1),

if there exists a family of diffeomorphisms (ϕt : Sn → Sn)0≤t≤1 with ϕ0 = idSn and

ϕ1(C0) = C1.

1.3 Organization of the article

The rest of the article is now organized as follows. In the next section we state our

main results. In Section 3 we recall the definition of jet space and use it for defining
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6 P. Breiding et al.

the discriminant locus of a singularity type. Then, in Section 4, we recall the definition

of harmonic polynomials and the decomposition of the space of polynomials into the

harmonic basis and define several norms for polynomials, which will be used in the

next sections. In Section 5 we prove our result on quantitative stability from Theorem 7

and in Section 6 we prove Theorem 4. Finally, in Section 7, we discuss what our results

imply for maximal configurations.

2 Main Results

Having clarified in the previous section what we mean by type-W singular locus of a

map, we can now state our main results.

2.1 Main result 1: low-degree approximation

The 1st result essentially tells that most real singularities given by polynomial equa-

tions of degree d are ambient isotopic to singularities given by polynomials of degree

O(
√

d log d). This means that for any singularity type W the probability of the following

event goes to one as d → ∞: let p : Sn → R
m be given as the restriction to the sphere

of a system of Kostlan polynomials. There exists a polynomial q of degree O(
√

d log d)

such that (Sn, jrq−1(W)) ∼ (Sn, jrp−1(W)). The new polynomial q can be thought as a

low-degree approximation of p.

The approximation procedure is constructive in the sense that one can read

the approximating polynomial q from a linear projection of the given one. It is also

quantitative in the sense that the approximating procedure will hold for a subset of

the space of polynomials with measure increasing very quickly to full measure as the

degree goes to infinity.

To be more specific, we denote by Pn,d = R[x0, . . . , xn](d) the space of homoge-

neous polynomials of degree d. We recall from Section 4.1 below that this space admits

a decomposition:

Pn,d =
⊕

d−�∈2N

‖x‖d−�Hn,� (2)

where Hn,� denotes the space of homogeneous, harmonic polynomials of degree �. Given

P ∈ Pn,d, we denote by p : Sn → R its restriction to the unit sphere and for L ∈ {0, . . . , d}
we define p|L = ∑�≤L, d−�∈2N p�, where p� is the restriction to Sn of the polynomial

appearing in the decomposition P = ∑� P� given by (2). Given polynomials p1, . . . , pm
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Quantitative Singularity Theory 7

with deg(pi) = di, we can form the polynomial map p = (p1, . . . , pm) : Sn → R
m and for

L ∈ {0, . . . , d} we can define

p|L = (p1|L, . . . , pm|L). (3)

We will denote by d = (d1, . . . , dm) and by d = max di.

Definition 3 (Low-degree approximation event). Let W ⊆ Jr(Sn,Rm) be a singularity

type. Let p = (p1, . . . , pm) be a random polynomial map and L ∈ {0, . . . , d}. We can

consider

AL =
{(

Sn, jrp|−1
L (W)

) ∼ (Sn, jrp−1(W)
)} ⊂ Pn,d

(i.e., the type-W singularities of p and p|L are ambient isotopic). We call AL the low-

degree approximation event for type-W singularities.

Here is our 1st main theorem.

Theorem 4 (Low-degree approximation of type-W singular locus). Let W ⊆ Jr(Sn,Rm)

be a singularity type (as defined in Definition 1). Let P = (P1, . . . , Pm) be a system

of homogeneous Kostlan polynomials in n + 1 many variables and of degrees d =
(d1, . . . , dm), and denote by d = max di. Let p = P|Sn be the restriction of P to the sphere

Sn. For an integer 0 ≤ L ≤ d let us denote by AL the event that the type-W singular

locus of p and p|L are ambient isotopic (in the sense of Definition 2). Then, we have the

following behavior for three different regimes of L:

1. There exists b0 > 0 such that for all b ≥ b0 there exist a1, a2 > 0 with the

property that, choosing L = b
√

d log d we have P(AL) ≥ 1 − a1d−a2 .

2. For every 1
2 < b < 1, there exist a1, a2 > 0 (with 0 < a2 < 1), such that

choosing L = db we have P(AL) ≥ 1 − a1e−da2 .

3. For every 0 < b < 1 there exist a1, a2 > 0 such that choosing L = bd we have

that P(AL) ≥ 1 − a1e−a2d.

Conversely:

4. For all a > 0, there exists b > 0, such that choosing L = b
√

d log d we have

P(AL) ≥ 1 − d−a for d large enough.

5. For all 0 < a < 1, there exists 0 < b < 1, such that choosing L = db we have

for large enough d that P(AL) ≥ 1 − e−da
.
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8 P. Breiding et al.

6. For all a > 0, there exists b > 0, such that choosing L = bd we have P(EL) ≥
1 − e−ad for d large enough.

We call the 2nd and the 3rd regime in the theorem “exponential rarefaction

of maximal configurations” because the result tells that maximal configurations, that

is, polynomials of degree d whose singular loci are not ambient isotopic to that of

a polynomial of smaller degree, have exponentially small probability in the space of

all polynomials. In order to get an insight of these results, we will provide some

applications of them for the explicit case of the singularities described in Section 1.2,

in the last section of this paper.

2.2 Main result 2: stable neighborhoods and quantitative stability

A key step in proving Theorem 4 is proving a deterministic bound on the size of the

stable neighborhood of P. In order to state the result we first give two definitions.

Definition 5. Let f ∈ Cr+1(Sn,Rm), and W ⊆ Jr(Sn,Rm) be a singularity type. We

fix a semialgebraic stratification W = ∐k
i=1 Wi into smooth semialgebraic strata. The

r-jet map jrf is called transversal to the stratum Wi if for all x ∈ Sn we either have

jrf (x) /∈ Wi, or

jrf (x) ∈ Wi and dx(jrf )(TxSn) + Tjrf (x)Wi = Tjrf (x)J
r(Sn,Rm).

Here, dx(jrf ) is the differential of jrf (i.e., the induced map at the level of the tangent

spaces). The r-jet map jrf is called transversal to W if it is transversal to all the strata

of W =∐k
i=1 Wi. We write

jrf � W

when jrf is transversal to W.

Observe that we need f ∈ Cr+1 in order to talk about transversality of its r-jet to

W: in fact, if f ∈ Cr+s(Sn,Rm), the jet extension jrf : Sn → Jr(Sn,Rm) is of class Cs (see

[15, page 61]). Therefore, since the transversality condition involves the differential of

jrf , we need this map to be at least C1, that is, f to be at least Cr+1.

Definition 6 (Stable neighborhood). Let W ⊆ Jr(Sn,Rm) be singularity type, and let f ∈
Cr+1(Sn,Rm) with the property that jrf is transversal to W. The W-stable neighborhood
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Quantitative Singularity Theory 9

of f in Cr+1(Sn,Rm) is

SN( f , W) := {g ∈ Cr+1(Sn,Rm) | f and g are W − transversely homotopic}

(i.e., there is a homotopy ft in Cr+1(Sn,Rm) between f0 = f and f1 = g such that for every

t ∈ [0, 1] the r-th jet extension jrft is transversal to W).

Note the departure from polynomials to general Cr+1-functions in this defini-

tion. In general, it is infeasible to prove bounds on the size of a stable neighborhood.

But, if f is given by a polynomial f = P |Sn , we can measure how non-degenerate its

jet with respect to W is. This measure is the distance between P and the so-called

discriminant (see also (7))

�W,d = {P ∈ Pn,d | jrp is not transversal to W, where p = P |Sn}.

The distance measure we take is the Bombieri–Weyl distance distBW(·, ·) from

Section 4.2.1. This distance is particulary tied to Kostlan polynomials. It is interesting

to observe that both the approximation result from [6] as well as our Theorem 4 are

very special of the Kostlan distribution. The reason for this is the behavior of this

distribution under the projection onto the spaces of harmonic polynomials. In fact,

the results from [6] are related to the more general problem: the estimation of the

probability for the projection of P to the subspace of harmonic polynomials of degree

L to be stable in the sense of Definition 6. In the process of proving Theorem 4 we will

also face this more general problem. The following theorem, which is our 2nd main

result, is the central piece in this process.

Theorem 7 (Quantitative stability). There exists a constant c1 > 0 (depending on W)

such that, given P /∈ �W , and writing p = P |Sn , if d1, . . . , dm ≥ r + 1 then we have

{
f ∈ Cr+1(Sn,Rm) | ‖f − p‖Cr+1 < c1 distBW(P, �W,d)

} ⊆ SN(p, W).

To appreciate the subtlety of the this result, we remark that the f in the

statement is not a polynomial but rather can be any Cr+1-function. The space of

polynomials of a given degree is finite dimensional, and as all norms on finite-

dimensional spaces are equivalent, this implies the existence of a constant c > 0 for

which the above statement holds for all polynomials f ; the crucial point here is that the

estimate can be made uniform over the whole infinite-dimensional space of Cr+1 maps.
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10 P. Breiding et al.

And that the bound only depends on the distance of p to the discriminant �W,d within

the space of polynomials.

3 Jet Spaces and Discriminants

In this section, we briefly introduce some notations and background facts on jet spaces

and discriminants. We refer the reader to the textbooks [15, 41] for more details and

generalizations.

3.1 Jet spaces

We recall now the definition of jet manifolds, following [15]. Given two smooth

manifolds N and M, an r-jet from N to M is an equivalence class of triples (x, f , U)

where U ⊂ N is an open set, x ∈ U and f : U → M is a Cr map; the equivalence relation

is as follows: two pairs (x, f , U) and (y, g, V) are equivalent if and only if x = y and in

any pair of charts adapted (Given f : N → M and x ∈ N, we say that two charts (Cx, ψ) (a

chart on a neighborhood Cx of x) and (Bf (x), ϕ) (a chart on a neighborhood Bf (x) of f (x))

are adapted to f around x if f (Cx) ⊂ Bf (x).) to f around x the maps f and g have the same

derivatives up to order r. The equivalence class of the triple (x, f , U) is denoted by jrf (x)

and called the r-jet of f at x; the point x is called the source of the jet and f (x) the target.

The set of all r-jets from N to M is denoted by Jr(N, M) and the set of all jets with source

x is denoted by Jr
x(N, M).

The most important cases in this paper are N = R
n+1, M = R

m and N = Sn, M =
R

m. The next example shows how to think of the former.

Example 8. Let N = R
n+1 and M = R

m. We can represent an r-jet of f : U → R
m at a

point x by the list of derivatives of f at x. Therefore, the jet space Jr(Rn+1,Rm) has an

explicit manifold structure given by

Jr(Rn+1,Rm) ∼= R
n+1 ×

r⊕
j=0

R
mNj , Ni =

(
n + 1 + j

j

)
, (4)

such that

jrf (x) = (x, f (x), Df (x), . . . , Dkf (x), . . . , Drf (x)),

where Dkf (x) ∈ R
mNj is the tensor of the order-k partial derivatives of f at x. That is,

Jr(Rn+1,Rm) can be seen as the vector bundle over Rn+1, where at each point x we attach
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Quantitative Singularity Theory 11

all derivatives of polynomials at x up to degree r. Another useful interpretation is seeing

the symmetric tensors as polynomials.

Jr(Rn+1,Rm) ∼= R
n+1 ×

r⊕
i=0

(Pn,i)
×m, (5)

such that jrf (x) = (x, f (x), f (1)
1 (x), . . . , f (r)(x)), where

f (i)(x) =
∑

α0+···+αn=i

[(
∂

∂y0

)α0

· · ·
(

∂

∂yd

)αd

f (y)

] ∣∣∣∣
y=x

xα0
0 · · · xαn

n .

The manifold structure on Jr(N, M) is defined as follows. Given open charts

(U, ψ) and (W, ϕ) on N and M respectively we have the bijection

θ : Jr(U, V) → Jr(ψ(U), ϕ(V)), jrf (x) 
→ jr(ϕ ◦ f ◦ ψ−1)(ψ(x)).

By (4), Jr(ψ(U), ϕ(V)) is an open subset of a real vector space. We declare (Jr(U, V), θ) to

be a chart on Jr(N, M) and the set of all such charts gives an atlas, hence a differentiable

structure, on Jr(N, M). The map θ gives local coordinates for the r-jet of f .

When N and M are real algebraic manifolds, the manifold charts on the jet space

are real algebraic as well and the jet space Jr(N, M) is also a real algebraic manifold;

as a consequence we can define semialgebraic subsets therein, see [3, Remark 3.2.15]:

W ⊂ Jr(N, M) is semialgebraic if and only if θ(W ∩ Jr(U, V)) is semialgebraic for every

chart (Jr(U, V), θ).

Definition 9. Let f : N → M. The r-jet prolongation jrf : N → Jr(N, M) of f is given by

jrf : x 
→ jrf (x).

If N and M are smooth, the jet prolongation is smooth, see [15, Chapter 2.4].

Now, we discuss how to think of the jet space J(X,Rm), where X ↪→ R
n+1 is a

submanifold. Although the case X = Sn is of main interest to us, it is illustrative to

consider a general submanifold. First, we consider the subset of J(Rn+1,Rm) where the

base points are points in X:

Jr(Rn+1,Rm)|X ∼= X ×
r⊕

j=0

R
mNj .
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12 P. Breiding et al.

Then, we have the commutative diagram

(6)

where ρ projects the list of derivatives of a function f at x ∈ X to the list of derivatives

restricted to TxX. In the coordinates from (5) this operator takes the following form. Let

(x, f (x), f (1), . . . , f (r)) ∈ R
n+1×⊕r

i=0(Pn,i)
×m be a point representing the r-jet of a function

f . Then,

ρ
(
x, f (x), f (1), . . . , f (r)) = (x, f (x), f (1)|TxX , . . . , f (r)

∣∣
TxX

)
.

That is, ρ restricts the polynomial functions f (i) to TxX.

3.2 The W-discriminant

Recall from Definition 1 that we call W ⊆ Jr(Sn,Rm) a singularity type, if it is

semialgebraic and invariant under orthogonal change of variables. Recall also the

notion of transversality to W from Definition 5.

Now, we are ready to introduce the W-discriminant. It is important to realize

that on the one hand W is defined to be a subset of the r-th jet space, while on the other

hand the associated discriminant lives in the space of Cr+1 functions!

Definition 10 (The W-discriminant). Let W ⊆ Jr(Sn,Rm) be a singularity type.

�W := { f ∈ Cr+1(Sn,Rm) | jrf is not transversal to W
} ⊂ Cr+1(Sn,Rm)

is called the W-discriminant.

The W-discriminant for polynomial systems with degree pattern d is defined as

�W,d := �W ∩ Pn,d. (7)
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Quantitative Singularity Theory 13

It follows from the definition that

�W =
⋃

x∈Sn

�W(x), and �W,d =
⋃

x∈Sn

�W,d(x), (8)

where �W(x) is the set of Cr+1 functions f whose associated map jrf is not transversal

to W at the point x ∈ Sn, and �W,d(x) := �W(x) ∩ Pn,d.

The discriminant �W,d has the structure of a semialgebraic set with codim�W ≥
1. Moreover, considering the natural induced action of the orthogonal group G := O(n +
1) on Jr(Sn,Rm) and �W , since W is G−invariant, for every g ∈ G we have

g · �W(g−1x) ∼= �W(x) and g · �W,d(g−1x) ∼= �W,d(x). (9)

3.3 The degree of the W-discriminant

The next lemma estimates the degree of the W-discriminant �W,d ⊂ Pn,d as a function

of d = max di. The estimate is a polynomial in d. For example, when � ⊂ Pn,d is the

discriminant for a polynomial having degenerate zero set, then its degree is (n + 1)(d −
1)n = O(dn). Later we will use this estimate on the degree for bounding the probability

of a system of Kostlan polynomials to be close to the discriminant �W,d.

Proposition 11 (Degree bound). Let W ⊆ Jr(Sn,Rm) be a semialgebraic set and d =
(d1, . . . , dm) with d = max di. There exists a constant u > 0, which depends on W, and

a nonzero polynomial Q : Pn,d → R of degree bounded by u · du such that �W,d ⊂ Z(Q),

where Z(Q) is the zero set of Q.

Proof. Fix a point x0 ∈ Sn. We first show that �W,d(x0) is a semialgebraic subset of

Pn,d defined by polynomials of degree bounded by some constant α1 > 0 depending on

W only.

Recall that �W(x0) ⊂ Cr+1(Sn,Rm) is the set of Cr+1 functions whose r-th jet is

not transversal to W at the point x0:

�W(x0) = { f ∈ Cr+1(Sn,Rm) | jrf (x0) ∈ W and im(dx0
jrf ) + Tjrf (x0)W �= Tjrf (x0)J

r(Sn,Rm)
}
.

(15)

Since W is defined by semialgebraic conditions, we see that �W(x0) is given by a

semialgebraic condition on the list of the 1st r + 1 derivatives (i.e., the (r + 1)-jet) of
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14 P. Breiding et al.

f : Sn → R
m at x0 (the derivative of jrf involves jr+1f (x0)):

�W(x0) =
⎧⎨⎩f ∈ Cr+1(Sn,Rm)

∣∣∣∣ a⋃
i=1

bi⋂
j=1

ŝi,j

(
jr+1f (x0)

) ∗i,j 0

⎫⎬⎭ ,

where a, bi are some constants, ŝi,j are polynomials and ∗i,j ∈ {<, =, >}; all these data

depend on W only. Now, the map ĵ : Pn,d → Jr+1
x0

(Sn,Rm) associating to every polynomial

map its (r + 1)-jet at x0 is linear. Moreover, �W,d(x0) = �W(x0) ∩Pn,d. Taking si,j := ŝi,j ◦ ĵ

we can therefore write

�W,d(x0) =
a⋃

i=1

bi⋂
j=1

{si,j ∗i,j 0}.

We have deg(si,j) = deg(̂si,j), because ĵ is linear. This implies that the degrees of the

polynomials si,j are bounded by some constant α1 > 0, which only depends on W (but

not on d).

We now proceed with proving the claim of the proposition. Let I be the set of all

the pairs (i, j) such that ∗i,j equals “=” and consider the algebraic set

ZW,d(x0) =
⋃

(i,j)∈I

{si,j = 0} ⊂ Pn,d.

By construction, �W,d(x0) ⊂ ZW,d(x0). Since the si,j are defined in terms of W only, the

cardinality of I is bounded by some constant � depending only on W. By (8) we have

�W,d =⋃x∈Sn �W,d(x) and therefore, by (9), we have

�W,d =
⋃

g∈O(n+1)

g · �W,d(x0) ⊆
⋃

g∈O(n+1)

g · ZW,d(x0).

Let us denote Z := ⋃g∈O(n+1) g · ZW,d(x0). To finish the proof it is enough to find a

polynomial Q that vanishes on Z and to bound its degree.

Let G = GL(Rn+1) be the general linear group, and ρ : G → GL(Pn,d) be its

representation in the space of polynomial maps given by change of variables. That

is, ρ(g)P(x) = P(g(x)). The representation ρ extends to a map between spaces of

endomorphisms ρ : R(n+1)×(n+1) → R
N×N , simply by declaring ρ(g) to be the linear map
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Quantitative Singularity Theory 15

that to a polynomial P associates the new polynomial ρ(g) · P = P(gx). We denote by

hi,j : R(n+1)×(n+1) × R
N → R the polynomial defined by

hi,j(g, P) = si,j(ρ(g) · P),

and we define the incidence set

Ẑ = {(g, P) ∈ R
(n+1)×(n+1) × Pn,d | ∀(i, j) ∈ I : hi,j(g, P) = 0

}
.

Since the components of the representation ρ have degree at most d, and the degrees of

the polynomials si,j are all bounded by α1, the degree of each hi,j is bounded by α1(d+1) ≤
α2d, for some α2 > 0 (depending on W only and not on d). Therefore, Ẑ is defined by at

most � equations of degree bounded by α2d.

In order to produce our polynomial Q, we move first to the complex numbers

and consider the algebraic set ẐC defined by the same equations as Ẑ:

ẐC = {(g, P) ∈ C
(n+1)×(n+1) × PC

n,d | ∀(i, j) ∈ I : hi,j(g, P) = 0
}
.

Here, PC

n,d denotes the space of complex polynomial systems with degree pattern d.

Denoting by π : C(n+1)×(n+1) × PC

n,d → PC

n,d the projection on the 2nd factor, note that

Z ⊆ π(ẐC) ∩ Pn,d.

Therefore, in order to get a polynomial vanishing on Z, we can sufficiently find a real

polynomial Q vanishing on π(ẐC).

Write the algebraic set ẐC as

ẐC =
⋃
k≥0

ẐC

k (10)

where each ẐC

k is the union of all irreducible components of ẐC of dimension k, namely

ẐC

k =
γk⋃

i=1

ẐC

k,i with ẐC

k,i irreducible.

Observe that C
(n+1)×(n+1) × PC

n,d is irreducible and therefore, by [38, Corollary 2, page

75], the dimension of each component of ẐC is bounded below by (n + 1)2 + N − �, where
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16 P. Breiding et al.

N = dimC PC

n,d. Therefore, the previous union (10) can be written as

ẐC =
⋃

k≥(n+1)2+N−�

ẐC

k .

Fix a number (n + 1)2 + N − � ≤ k ≤ (n + 1)2 + N (the number k is in range of the possible

dimensions for the components of ẐC

k ) and observe that

γk∑
i=1

deg(ẐC

k,i) = deg
(
ẐC

k

)
≤ (α2d)�.

The reason for this is that, when defining the degree of ẐC

k , we need to intersect it with

a generic linear space L of dimension t = (n + 1)2 + N − k and this dimension is bounded

above by �, because k ≥ (n+1)2 +N −�. Therefore, L∩ ẐC

k consists of finitely many points

in L � C
t, and these points are defined by at most � equations. Each of those equations

has degree at most α2d, because the defining equations in (3.3) have degree at most α2d.

Consequently, the number of such points is bounded by (α2d)t ≤ (α2d)�.

We use now [13, Lemma 2]: since each ẐC

k,i is irreducible and the projection π is

linear we have deg(π(ẐC

k,i)) ≤ deg(ẐC

k,i). In particular, this implies

deg
(
π
(
ẐC

k

)) = γk∑
i=1

deg
(
π
(
ẐC

k,i

)) ≤ γk∑
i=1

deg
(
ẐC

k,i

) ≤ (α2d)�.

Let us denote by δi,k the degree of π(ẐC

k,i); since ẐC

k,i is irreducible, then π(ẐC

k,i) is

irreducible as well and we can apply [13, Proposition 3] to find a polynomial Fk,i of

degree bounded by δk,i vanishing on π(ẐC

k,i). Set now

Fk := Fk,1 · · · Fk,γk
.

The polynomial Fk vanishes on π(ẐC

k ) and has degree bounded by

deg(Fk) =
γk∑

i=1

deg(Fk,i) ≤
γk∑

i=1

δk,i ≤ (α2d)�.

Define the polynomial

F :=
∏

k≥(n+1)2+N−�

Fk (11)
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Quantitative Singularity Theory 17

and observe that, because there are at most � factors in (11), then the degree of F is

bounded by �(α2d)�. The polynomial F is not yet what we want, because it might not be

real. To fix this, write F = Re(F) + iIm(F) and define

Q := (Re(F))2 + (Im(F))2 .

Then Q vanishes on ZC (therefore on Z and on � ⊂ Z) and its degree is bounded by

deg(Q) ≤ 2�(α2d)� ≤ udu

for some constant u, which depends on W only. This finishes the proof of the

proposition. �

4 Norms and Polynomials

In this section, we first introduce the decomposition of the space of homogeneous

polynomials into the so-called harmonic basis. Then we define several norms on the

space of polynomials, which will be used in the proofs later.

4.1 Harmonic polynomials

The switch from the monomial basis to the harmonic basis will be the key to obtain a

low-degree approximation of singular loci.

Definition 12. Let 0 ≤ � ≤ d the space of homogeneous harmonic polynomials is

Hn,� :=
{

P ∈ Pn,�

∣∣∣∣ n∑
i=0

∂2

∂x2
i

P = 0

}
.

The space Pn,d can be decomposed as

Pn,d =
⊕

d−�∈2N

‖x‖d−�Hn,�. (12)

The decomposition (12) has two important properties (see [21]):

(i) Given a scalar product that is invariant under the action of O(n + 1) on Pn,d

by change of variables, the decomposition (12) is orthogonal for this scalar

product.
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18 P. Breiding et al.

(ii) The action of O(n + 1) on Pn,d preserves each Hn,� and the induced

representation on the space of harmonic polynomials is irreducible. In

particular, there exists a unique, up to multiples, scalar product on Hn,�

which is O(n + 1)-invariant.

4.2 Norms of polynomials

We continue this section by defining several norms on the space of polynomials Pn,d

realized as a subspace of Cr(Sn,R). In general, we give Pn,d the structure of a normed

space by endowing each space Pn,di
with a norm ‖ · ‖di

. The norm on Pn,d is

‖P‖ :=
(

m∑
i=1

‖Pi‖2
di

)1/2

for P = (P1, . . . , Pm) ∈ Pn,d.

We identify Pn,d with its image in Cr(Sn,R) given by Sn,d := {p : Sn → R | p = P|Sn , P ∈
Pn,d}. The decomposition (12) induces a decomposition

Sn,d =
⊕

d−�∈2N

Vn,� with Vn,� = Hn,�|Sn . (13)

Writing P = ∑� P� with each P� ∈ ‖x‖d−�Hn,� as in (12), when taking restrictions to the

unit sphere we have p = ∑� p� with each p� the restriction to Sn of a polynomial of

degree �: in other words, the restriction to the unit sphere “does not see” the ‖x‖d−�

factor, which is constant on the unit sphere.

Here follows the definition of some relevant norms that we will use in this

paper. The 1st three of them are induced by an orthogonally invariant scalar product:

by property (i) above the decomposition (13) is orthogonal for all of them.

4.2.1 The Bombieri–Weyl norm

Let P =∑α0+···+αn=d aα0,...,α0

√
d!

α0!···αn! xα0
0 · · · xαn

n be homogeneous polynomial of degree d.

The Bombieri–Weyl norm of P is defined by

‖P‖2
BW :=

∑
α0+···+αn=d

(aα0,...,α0
)2.

Comparing with (1), we see that Kostlan polynomials are given by a multivariate

standard Gaussian distribution with respect to the Bombieri–Weyl product. This is the
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Quantitative Singularity Theory 19

“close connection” we have mentioned earlier in the paper. The Bombieri–Weyl distance

is dBW(P, Q) = ‖P − Q‖.

4.2.2 The L2-norm

This norm is the L2-norm of p defined by

‖P‖2
L2 :=
∫

Sn
p(x)2 dx,

where “dx” denotes integration with respect to the standard volume form of the sphere.

4.2.3 The Sobolev q-norm

Let P =∑� P� be the decomposition into the harmonic polynomials basis; see (12). Then

the Sobolev q-norm is defined by

‖P‖2
Hq := ‖P0‖2

L2 +
∑

d−�∈2N

�2q‖P�‖2
L2 .

Note that ‖P0‖2
L2 = 0 when d is odd. Moreover, ‖ · ‖H0 = ‖ · ‖L2 .

4.2.4 Cr-norm

The Cr norm is defined for all Cr functions. The Cr norm for polynomials is then just the

restriction to the space of polynomials. We give the general definition.

We fix an orthogonal invariant norm ν on the vector space
⊕r

j=0 R
mNj . Moreover,

we let π : Jr(Rn+1,Rm) → ⊕r
j=0 R

mNj be the projection that removes the base point.

Then, we define the norm of a jet to be ν(z) := ν(π(z)); that is, the norm of a jet is the

norm of the point in the fiber. For a given η ∈ Jr
x(Sn,Rm) we define

ν̂(η) = inf
z∈Jr

x(Rn+1,Rm): ρ(z)=η
ν(z), (14)

where ρ is the restriction map from (6), and for a function f ∈ Cr(Sn,Rm) we then set

‖ f ‖ν
Cr := sup

x∈Sn
ν̂
(

jrf (x)
)
. (15)

Remark 13. The definition of the Cr norm includes the choice of a norm ν. Yet, the

topology it induces is independent of this choice. This is because ν is a norm on a finite-

dimensional real vector space, and all norms on finite-dimensional real vector spaces
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20 P. Breiding et al.

are equivalent; we call this topology the Cr topology. Here is another way for obtaining

it. Consider the natural map jr : Cr(Sn,Rm) → C0(Sn, Jr(Sn,Rm)). Because the sphere

Sn is compact, the strong and the weak topology on C0(Sn, Jr(Sn,Rm)) coincide and by

[15, Chapter 2, Theorem 4.3] the image of this map is closed in the strong topology. In

particular we can immediately induce a topology on the space Cr(Sn,Rm), which is the

Cr topology, [15, page 62, before Theorem 4.4].

4.3 An inequality between the Cr norm and the Sobolev norm

In the last part of this section we want to prove an inequality between the Cr norm

and the Sobolev norm. This inequality will be useful for the proofs in the next section.

We note that by endowing Pn,d with the product norm, in order to compare norms on

Pn,d, we can sufficiently reduce to comparison of the corresponding norms for a single

polynomial P ∈ Pn,d rather than a vector of polynomials.

We first recall the following result from [37]:

Theorem 14. Let α = (α0, . . . , αn) be a list of nonnegative integers and ∂α = ∂
α0
x0 . . . ∂

αn
xn

be the associated differential operator. There are constants β(α,n) that only depend on α

and n such that

∫
Sn

|∂αP(x)|2dx ≤ β(α,n)�
2|α|
∫

Sn
|P(x)|2dx for every P ∈ Hn,�,

where |α| = α0 + . . . + αn.

The following proposition connects the Cr-norm with the Sobolev q-norm.

Proposition 15. Let ν be the norm defining the Cr norm in equation (15). There exists

a constant c = c(r, n, ν) > 0 depending on r, n and ν such that, if q ≥ r + n−1
2 , we have

‖P‖ν
Cr ≤ c

√
d ‖p‖Hq .

Proof. Let p = P|Sn and p = ∑
d−�∈2N p� be the decomposition of p in the

harmonic basis from (13). By definition (15) of the Cr-norm, we have ‖p�‖Cr ≤
supx∈Sn ν(jrP�(x)). Moreover, there exists a constant c1 = c1(r, n, ν) such that ν(jrP�(x)) ≤
c1 supx∈Sn(

∑
|α|≤r |∂αP�(x)|), where ∂α = ∂

α0
x0 . . . ∂

αn
xn and |α| = α0 + . . . + αn. This is because

the right-hand side of the equation is a multiple of the L1-norm on the fibers of the jet
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Quantitative Singularity Theory 21

space, and all norms on a finite-dimensional vector space are equivalent. Summarizing,

we have

‖p�‖ν
Cr ≤ c1 sup

x∈Sn

⎛⎝∑
|α|≤r

|∂αP�(x)|
⎞⎠ . (16)

Recall from (13) the definition of Vn,� = Hn,�|Sn . For every � = 0, . . . , d the space

Vn,� with the L2-scalar product is a reproducing kernel Hilbert space, that is, there exists

Z� : Sn × Sn → R such that for every h� ∈ Vn,�:

∂αh�(x) =
∫

Sn
h�(θ)∂αZ�(x, θ)dθ . (17)

The function Z� (the “zonal harmonic”) is defined as follows: letting {y�,j}j∈J�
be an L2-

orthonormal basis for Vn,� we set Z�(θ1, θ2) =∑j∈J�
y�,j(θ1)y�,j(θ2) (written in this way (17)

is easily verified, see [1, Chapter 5] and [1, Proposition 5.27] for more properties of the

Zonal harmonic). Then from this it follows that

‖Z�(θ1, ·)‖2
L2 = 〈Z�(θ1, ·), Z�(θ1, ·)〉L2 = Z�(θ1, θ1) = dim(Vn,�)

vol(Sn)
= O(�n−1), (18)

where the last identity follows from (The constant “ 1
vol(Sn)

” appears because in [1] the

normalized L2(Sn) space is used, that is, the convention vol(Sn) = 1 is adopted.) [1,

Proposition 5.27 (d)] and [1, Proposition 5.8]. Writing p� := P�|Sn we obtain the following:

2|∂αP�|Sn(x)| =
∣∣∣∣∫

Sn
p�(θ) ∂αZ�(x, θ)|dθ

∣∣∣∣ , by (17)

≤ ‖p� ‖L2

(∫
Sn

|∂αZ�(x, ·)|2
)1/2

by the Cauchy–Schwarz inequality

≤ c2(α, n) �|α|+ n−1
2 ‖P�‖L2 , by Theorem 14 and (18), (19)

where c2(α, n) is a constant that depends on α and n. From the above inequalities it

follows that

2‖P‖ν
Cr ≤

∑
d−�∈2N

‖p�‖Cr , by the triangle inequality

≤
∑

d−�∈2N

c1 sup
x∈Sn

⎛⎝∑
|α|≤r

|∂αP�(x)|
⎞⎠ , by (16)

≤ c3

∑
d−�∈2N

�r+ n−1
2 ‖p�‖L2 , by (19), (20)
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22 P. Breiding et al.

where c3 is a constant that depends on r, n, ν (the dependence on α has been moved

into the dependence on r). Then, we use the Cauchy–Schwarz inequality for v1 =
(�r+ n−1

2 ‖p�‖L2)d−�∈2N and v2 = (1, . . . , 1) so that

∑
d−�∈2N

�r+ n−1
2 ‖p�‖L2 = 〈v1, v2〉

≤ ‖v1‖‖v2‖

=
⎛⎝ ∑

d−�∈2N

�2r+n−1‖p�‖2
L2

⎞⎠1/2⎛⎝ ∑
d−�∈2N

1

⎞⎠1/2

≤ √
d

⎛⎝ ∑
d−�∈2N

�2r+n−1‖p�‖2
L2

⎞⎠1/2

.

Plugging this into (20) we obtain ‖P‖ν
Cr ≤ c3

√
d ‖P‖Hq for q ≥ r + n−1

2 . This finishes the

proof. �

5 Proof of the Quantitative Stability Theorem

In order to prove Theorem 7 we need to recall Thom’s isotopy lemma. We give a variant

that uses our notation. Recall from (15) the definition of the Cr norm ‖ · ‖ν
Cr . We denote

the associated distance function distν
Cr+1(·, ·). Furthermore, recall from Definition 5 that

jrf � W means that jrf is transversal to W.

Lemma 16 (Isotopy Lemma). Let f , g ∈ Cr+1(Sn,Rm) such that

jrf � W and ‖ f − g‖ν
Cr+1 < distν

Cr+1( f , �W).

Then g ∈ SN( f , W).

Proof. The condition stated guarantees that the homotopy ft = (1 − t)f + tg has

the property that for every t ∈ [0, 1] the jet jrft is transversal to W. Thus we have an

induced homotopy of maps between smooth manifolds jrft : Sn → Jr(Sn,Rm), which is

transversal to all the strata of W ⊆ Jr(Sn,Rm) for every t ∈ [0, 1]. In particular, this

holds for g = f1 and the conclusion follows from the definition of stable neighborhood

in Definition 6. �

We also need the following helpful lemma.
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Lemma 17. Let P =∑α0+···+αn=d cα xα ∈ Pn,d and p = P|Sn . Furthermore, let T : Pn,d →
Pn,d and Y : Pn,d → Pn,d be the linear maps defined by

T(P) =
∑

|α0|≤d−r−2

cα xα and Y(P) =
∑

|α0|≥d−r−1

cα xα,

and let τ(p) and γ (p) be the restrictions of T(P) and Y(P) to Sm and e0 = (1, 0, . . . , 0) ∈ Sn.

Then, jr+1p(e0) = jr+1γ (p)(e0).

Proof. Note first that P = Y(P) + T(P). All the derivatives of order up to r + 1 of T(P)

vanish at e0, and consequently the restrictions of the corresponding polynomials to

Te0
Sm will also be zero. �

Now we are ready to prove Theorem 7.

Proof of Theorem 7. For every x ∈ Sn let

ZW(x) := {jr+1f (x) | jrf is not transversal to W at x} ⊂ Jr+1
x (Sn,Rm);

that is, ZW(x) = jr+1(�W(x)). For d1, . . . , dm ≥ r + 1, the map Sn × Pn,d → Jr+1(Sn,Rm)

given by (x, P) 
→ jr+1p(x), where p = P|Sn , is a submersion (see [7, Section 1.7]) and

therefore ZW(x) can be defined using only polynomial functions:

ZW(x) = jr+1(�W,d(x)). (21)

Now, let distν̂ be the distance function induced by the norm ν̂ on Jr+1
x (Sn,Rm) as defined

in (14). The idea of the proof is to show the two inequalities

inf
x∈Sn

distν̂
(

jr+1p(x), ZW(x)
) ≤ distν

Cr+1( p, �W) (22)

and

distBW(P, �W,d) ≤ c′
1 inf

x∈Sn
distν̂
(

jr+1p(x), ZW(x)
)
, (23)

for some c′
1 > 0. The result will follow from these two inequalities. In fact, setting

c1 = (c′
1)−1 and combining (23) with (22) we therefore will have

‖ f − p‖ν
Cr+1 < c1distBW(P, �W,d) �⇒ ‖ f − p‖ν

Cr+1 < distν
Cr+1( p, �W) �⇒ f ∈ SN( p, W),
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where for the 2nd implication we have used the definition of stable neighborhood

(Definition 6) and Lemma 16 above.

Let us prove the two inequalities, starting from (23). For every x ∈ Sn let gx ∈
O(n + 1) be an orthogonal transformation mapping x to e0 = (1, 0, . . . , 0) and define Px

to be the polynomial

Px := (P1 ◦ gx, . . . , Pm ◦ gx), where P = (P1, . . . , Pm).

Then, using �W,d =⋃x∈Sn �W,d(x), we can write

distBW(P, �W,d) = inf
x∈Sn

distBW(P, �W,d(x)) = inf
x∈Sn

distBW(Px, �W,d(e0));

the last inequality due to the orthogonal invariance of the Bombieri–Weyl norm. Writing

out the definition of the distance we have

distBW(P, �W,d) = inf
x∈Sn

inf
Q∈�W,d(e0)

‖Px − Q‖BW.

Let T, Y, τ , γ be as in Lemma 17. This lemma implies that, if Q ∈ �W,d(e0) is in the

discriminant, any other polynomial of the form Q̃ = Q + T(F), for F ∈ Pn,d, is also in the

discriminant �W,d(e0), because all the derivatives of T(F) up to order r + 1 vanish at e0.

In particular, if we want to minimize the quantity ‖Px − Q‖BW for Q ∈ �W,d(e0), we can

restrict ourself to the polynomials Q such that: T(Q) = T(Px) and Y(Q) ∈ �W,d(e0) (notice

that Y(P) and T(Q) are orthogonal for any pairs of polynomials P and Q). Therefore,

we get

distBW(P, �W,d) = inf
x∈Sn

inf
Q∈�W,d(e0)

(
m∑

i=1

∥∥∥∥Y(Px
i ) − Y(Qi)

∥∥∥∥2
BW

)1/2

(24)

For i = 1, . . . , m, let

Px
i (y) =

∑
α1+···+αn=d

cα(Px
i ) yα and Q(y) =

∑
α1+···+αn=d

cα(Qi) yα
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be the expansions of Px
i = Pi ◦ gx and Qi (the i-the entry of Q) in the monomial basis.

Then, following (24), we have

distBW(P, �W,d) = inf
x∈Sn

inf
Q∈�W,d(e0)

⎛⎝ m∑
i=1

∑
|α0|≥d−r−1

|cα(Px
i ) − cα(Qi)|2

α0! · · · αn!

d!

⎞⎠1/2

≤ inf
x∈Sn

inf
Q∈�W,d(e0)

⎛⎝ m∑
i=1

∑
|α1|+...+|αn|≤r+1

|cα(Px
i ) − cα(Qi)|2

⎞⎠1/2

.

Let q =Q|Sn and px =Px|Sn . Observe now that
(∑m

i=1
∑

|α1|+...+|αn|≤r+1 |cα(Px
i ) − cα(Qi)|2

)1/2

is the Frobenius norm of π(jr+1(px − q)(e0)), where, as before, π is the projection on

Jr+1
e0

(Sn,Rm) that removes the base point. Since all norms on finite-dimensional spaces

are equivalent, there exists c′
1 such that

⎛⎝ m∑
i=1

∑
|α1|+...+|αn|≤r+1

|cα(Px
i ) − cα(Qi)|2

⎞⎠1/2

≤ c′
1ν̂
(

jr+1( px − q)(e0)
)
.

In particular, we have

distBW(P, �W,d) ≤ c′
1 inf

x∈Sn
inf

Q∈�W,d(e0)
ν̂e0

(
jr+1(px − q)(e0)

)
= c′

1 inf
x∈Sn

distν̂
(

jr+1px(e0), ZW(e0)
)

by the definition of ZW(e0) in (21),

= c′
1 inf

x∈Sn
distν̂
(

jr+1p(x), ZW(x)
)

by orthogonal invariance.

This proves (23).

For the proof of (22) we argue as follows. Recalling the definition of �W(x) given

in (8) we have

inf
x∈Sn

distν̂
(

jr+1p(x), ZW(x)
) = inf

x∈Sn
inf

f ∈�W (x)
ν̂
(

jr+1( p − f )(x)
)

≤ inf
x∈Sn

inf
f ∈�W (x)

sup
y∈Sn

ν̂
(

jr+1( p − f )(y)
)
.
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26 P. Breiding et al.

By definition of the Cr norm (15) we have supy∈Sn ν̂( jr+1( p − f )(y)) = ‖ f − p‖ν
Cr+1 , and

therefore

distBW(P, �W,d) ≤ inf
x∈Sn

inf
f ∈�W (x)

‖ f − p‖ν
Cr+1

= inf
x∈Sn

distν
Cr+1( p, �W(x))

= distν
Cr+1( p, �W),

where in the last line we have used the fact that �W =⋃x∈Sn �W(x). This gives (22). �

6 Low-Degree Approximation

The goal of this section is proving Theorem 4. For this we need to estimate the proba-

bility for the following projection of a polynomial stay inside the stable neighborhood.

Let us recall from the introduction our definition of the projection operator on

polynomial maps of smaller degree. For an integer L ∈ {0, . . . , d}, we set

p|L :=
∑

�≤L, d−�∈2N

p�.

where p = ∑d−�∈2N p� is the harmonic decomposition of (each component of) p = P|Sn .

We extend this definition to polynomial maps p = (p1, . . . , pm) as done in (3). Next, we

define the event of this projection to stay inside the stable neighborhood.

Definition 18 (Stability event). Let W ⊆ Jr(Sn,Rm) be a singularity type and c1 > 0 be

the constant given by the quantitative stability Theorem 7. For an integer L ∈ {0, . . . , d},
we denote by EL the event EL = {P ∈ Pn,d | ‖p − p|L‖Cr+1 < c1 distBW(P, �W)}, where, as

before, p = P|Sn .

Notice that the quantitative stability Theorem 7 implies that EL ⊆ AL (the low-

degree approximation event defined in Definition 3) and in particular a lower bound on

the probability of EL serves also as a lower bound for the probability of AL.

Lemma 19. With the above notations, we have EL ⊆ AL.

Proof. Let P ∈ EL and p = P|Sn . Theorem 7 implies p|L ∈ SN(p, W). Then jrp and

jrp|L are connected by a homotopy transversal to W. The conclusion follows from

[40, Théorème 2.D.2]. �
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Quantitative Singularity Theory 27

Note that type-W singular locus of polynomials in the event AL is ambient

isotopic to the type-W singular locus of a polynomial of degree L. In other words,

polynomials in EL and in AL “look like” polynomials of lower degree.

For obtaining a bound on the probability of EL we first need to prove the next

proposition.

Proposition 20. Let W ⊆ Jr(Sn,Rm). There exist constants a1, a2, a3 > 0, which depend

on W, such that the following holds. For every s ≥ a1 da2 we have for systems of Kostlan

polynomials P = (P1, . . . , Pm) ∈ Pn,d, with d = (d1, . . . , dn),

P
{‖P‖BW ≤ s distBW(P, �W)

} ≥ 1 − a3da2

s
,

where d = max di.

Proof. The proof of this proposition is the same as the proof of [6, Proposition 4], of

which the current statement is just a simple generalization. Let Q be the polynomial

given by Proposition 11. Then �W is contained in Z(Q), the zero set of Q, and we can

apply [2, Theorem 21.1] as follows.

Let N = dim(Pn,d) = ∑m
k=1

(dk+n
n

) ≤ dnm and D = deg(Q). Denoting by dsin the

sine distance in the sphere, [2, Theorem 21.1] tells that there exists a constant C3 > 0

such that for all s ≥ 2DN we have

vol
({

p ∈ SN−1 such that 1
dsin(p,�)

≥ s
})

vol(SN−1)
≤ C3DNs−1.

Taking the cone over the set {p ∈ SN−1 such that 1
dsin(p,�)

≥ s}, we can rewrite the previous

inequality in terms of the Kostlan distribution, obtaining that for all s ≥ 2DN:

P

{
‖p‖BW ≥ s · distBW(P, �W)

}
≤ C3DNs−1. (25)

By Proposition 11, we have D ≤ udu. This implies that for some constants a1, a2, a3 > 0

we have

2DN ≤ a1da2 and C3DN ≤ a3da2 .

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa274/5921738 by SISSA user on 09 M

arch 2022



28 P. Breiding et al.

In particular (25) finally implies that for all s ≥ a1da2 :

P

{
‖p‖BW ≤ s · distBW(P, �W)

}
≥ 1 − a3da2s−1.

This finishes the proof. �

The following theorem estimates the probability that the stability event holds.

Theorem 21 (Probability estimation). There exist constants c2, c3, c4 > 0 (depending

on W) such that for every L ∈ {0, . . . , d} with d − L ∈ 2N we have

P(EL) ≥ 1 − c2dc3Lc4e− L2
3d .

Proof. By Proposition 15 there exists a constant c = c(�, n, ν) depending on �, n, ν such

that

‖p − p|L‖ν
C�+1 ≤ cd1/2‖p − p|L‖Hq = (∗)

Moreover, observe that the proof of [6, Proposition 2] works also for a polynomial list

and gives the existence of a constant c2 = c2(n) > 0 (which depends on n) such that for

all t, q ≥ 0 and for every L ∈ {0, . . . , d} we have that

(∗) ≤ cd1/2t‖p‖BW holds with probability P1 ≥ 1 − c2
d− 3n

2 +1L2q+n−2e− L2
d

t2 .

At the same time, by Proposition 20, for every s ≥ a1da2 :

‖p‖BW ≤ s · distBW(P, �W) holds with probability P2 ≥ 1 − a3
da2

s
.

Now, choosing s, t as in the proof of [6, Theorem 5], there exist constants c1, c′
2, c′

3, c′
4 > 0

such that for every σ ≥ 0 we have ‖p − p|L‖Cr+1 < c1 dist(P, �W) with probability

P(EL) ≥ 1 − (1 − P1) − (1 − P2) ≥ 1 −
(

c′
2dc′

3Lc′
4e− L2

d σ 2 + 1

σ

)
. (26)

Let us denote now α(d, L) = c′
2 dc′

3Lc′
4e− L2

d , so that we can rewrite (26) as

P(EL) ≥ 1 −
(

α(d, L)σ 2 + 1

σ

)
,
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for all σ > 0. In particular

P(EL) ≥ 1 − inf
σ>0

(
α(d, L)σ 2 + 1

σ

)
.

The above infimum is actually a minimum that is reached at

σ0 = (2α(d, L))−
1
3

and equals to 3
(

α(d,L)
4

)1/3
. Plugging the value of the infimum into (26) gives the claim.

�

The above estimate is very general, and one has to consider that we would like

to have L as small as possible and at the same time σ as large as possible. We approach

this issue as follows.

First, we choose L to be of the order O(
√

d log d) and we prove that with fast

growing probability p|L stably approximates p; in particular, Theorem 7 implies that

for a given W, the W-type singular locus of a random Kostlan polynomial of degree d,

with high probability as d grows rapidly, is ambient isotopic to the W-type singular

locus of a polynomial of degree O(
√

d log d). In the 2nd step, we deal with exponential

rarefactions of maximal configurations. More precisely, when choosing L to be a root or

a fraction of d, we can tune σ so that the probability of stably approximate goes to 1

exponentially fast.

This distinction is the motivation for having three different regimes in

Theorem 4. Now we give a proof for this Theorem.

Proof of Theorem 4. Since EL ⊆ AL, and by Theorem 21 we have

P(AL) ≥ P(EL) ≥ 1 − c2dc3Lc4e− L2
3d .

In the rest of the proof we plug in different values for L and evaluate the right hand side

of this inequality. �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa274/5921738 by SISSA user on 09 M

arch 2022



30 P. Breiding et al.

Proof of Theorem 4.1. Let L = b
√

d log d. We see that with this choice

P(AL) ≥ 1 − c2dc3(b
√

d log d)c4e− b2 log d
3

= 1 − c2bc4dc3+c4/2−b2/3(log d)c4/2

≥ 1 − c2bc4dc3+c4−b2/3. (27)

Thus, if b > b0 := √3(c3 + c4), then we have

P(AL) ≥ 1 − a1d−a2 ,

where a1 = c2bc4 > 0 and a2 = −(c3 + c4 − b2/3) > 0. This proves the 1st part of the

theorem. �

Proof of Theorem 4.2 Let L = db for some b ∈ (1/2, 1). With this choice we have

P(AL) ≥ 1 − c2dc3+bc4e− d2b−1
3 = 1 − c2

dc3+bc4

e
d2b−1

6

e− d2b−1
6 .

Since 2b − 1 > 0, we have that dc3+bc4

e
d2b−1

6

is bounded and so

P(AL) ≥ 1 − a1e−da2

for some a1, a2 > 0 with a2 < 1, because 2b − 1 < 1. This proves the 2nd part of the

theorem. �

Proof of Theorem 4.3. Let L = bd with b ∈ (0, 1). With this choice we have

P(AL) ≥ 1 − c2bc4dc3+c4e− b2d
3 = c2bc4

dc3+c4

e
b2d

6

e− b2d
6 .

We have that dc3+c4

e
b2d

6

is bounded and so

P(AL) ≥ 1 − a1e−a2d

for some a1, a2 > 0. This proves the 3rd part of the theorem. �
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Proof of Theorem 4.4. Let a > 0 and set L = b
√

d log d. As in (27) we get

P(AL) ≥ 1 − c2bc4dc3+c4−b2/3.

If we pick b and d large enough, such that c2bc4dc3+c4+a−b2/3 ≤ 1, then

P(AL) ≥ 1 − d−a.

This proves the fourth part of the theorem. The proof of points (5) and (6) proceeds along

the same lines. �

7 Maximal Configurations Are Rare Events

In this section we provide a couple of examples of tail probabilities, proving exponential

rarefaction of maximal configurations. For a semialgebraic set Y, we denote by b(Y) the

sum of its Betti numbers (this sum is finite by semialgebraicity).

Proposition 22 (Exponential rarefaction of maximal configurations). Let W ⊆
Jr(Sn,Rm) be a singularity type. For every C > 0 there exist a1, a2 > 0 such that

P

({
p ∈ Pn,d | b

(
jrp−1(W)

) ≥ Cdn
})

≤ a1e−a2d.

Proof. Let W ⊆ Jr(Sn,Rm). We recall that if q : Sn → R
m is a polynomial map with

degree bounded by L such that jrq � W, the following estimate is proved in [27] for the

sum of the Betti numbers of jrq−1(W):

b
(

jrq−1(W)
) ≤ C1Ln.

In particular we see that if for p ∈ Pn,d we have jrp � W (which happens with probability

1 by [27, Theorem 1, point (4)]) and b(jrp−1(W)) ≥ Cdn, then if moreover p ∈ AL (the

stability event from Definition 3) we must have L ≥
(

C
C1

)1/n
d. Set now

L = min

{
d,

⌊(
C

C1

)1/n

d

⌋
+ 1

}
.

Then for every p ∈ AL, we have

b
(

jrp−1(W)
) = b
(

jrp|−1
L (W)

)
< Cdn.
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In particular, we must have

{
b
(

jrp−1(W) ≥ Cdn} ⊆ (AL)c (28)

(the complement of the stability event AL). Point (3) of Theorem 4 implies that there

exists constants a1, a2 > 0 such that P(AL) ≥ 1 − a1e−a2d, which combined with (28)

gives

P
({

b
(

jrp−1(W) ≥ Cdn}) ≤ a1e−a2d.

This proves the proposition. �

We can apply the previous result to the examples discussed in the Introduction.

1. In the case W = Sn × {0} ⊂ J0(Sn,Rm), Harnack’s bound implies that

b
(

j0p−1(W)
) = b
({ p = 0}) ≤ O(dn)

and the probability that b({p = 0}) ≥ C3dn is exponentially small. This

example is extensively discussed in [6].

2. In the case W = {j1f = 0} ⊂ J1(Sn,R) then j1f −1(W) is the set of critical

points of p : Sn → R; by [5] for a polynomial P of degree d

#j1p−1(W) ≤ 2(d − 1)n + · · · + (d − 1) + 1

(this bounds follows from complex algebraic geometry), and this estimate

was recently proved to be sharp by Kozhasov [22]. In this context [27,

Theorem 14] tells that the expected number of critical points is of the order

�(dn/2) and Theorem 22 implies that for every C > 0 there exists a1, a2 > 0

such that the probability that a random polynomial of degree d has at least

Cdn many critical points is smaller than a1e−a2d.

3. W = {df = 0, d2f > 0} ⊂ J2(Sn,R), and j2f −1(W) is the set of non-

degenerate minima of f : Sn → R; the same argument can be applied

here: the expectation of the number of minima is of the order �(dn/2)

([27, Theorem 14]). There are polynomials of degree d with �(dn) many

non-degenerate minima, but the measure of the sets of such polynomials

becomes exponentially small ad d grows.
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4. W = {Whitney cusps} ⊂ J3(S2,R2), and j3f −1(W) is the set of points where

f : S2 → R
2 has critical points of type Whitney cusp, that is, in some

coordinates near this point the map has the form (x1, x2) 
→ (x1, x3
2 − x1x2),

see [4] (we need a condition on the 3rd jet in order to make sure that

this local form exists). The number of such cusps, for a polynomial map

of degree d, is O(d2). On average there are �(d) many of them and the

probability of having �(d2) Whitney cusps becomes exponentially small as

d grows.

Remark 23. By applying points (1) and (2) from Theorem 4 one can obtain other similar

tail probabilities. For example, choosing L = b
√

d log d as in Theorem 4 we get that

b(Z(p)) ≤ O((d log d)n/2) with P → 1 as d → ∞.

This result follows using the same ideas as before, combined with the deterministic

estimate b(Z(Q)) ≤ O(Ln) for the sum of the Betti numbers of the zero set of a polynomial

Q of degree L in projective space (see [28]).
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