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Abstract
We introduce and study a surface defect in four-dimensional gauge theories supporting
nested instantons with respect to the parabolic reduction of the gauge group at the
defect. This is engineered from aD3/D7-branes system on a non-compact Calabi–Yau
threefold X . For X = T 2× T ∗Cg,k , the product of a two torus T 2 times the cotangent
bundle over aRiemann surface Cg,k withmarked points, we propose an effective theory
in the limit of small volume of Cg,k given as a comet-shaped quiver gauge theory on
T 2, the tail of the comet being made of a flag quiver for each marked point and the
head describing the degrees of freedom due to the genus g. Mathematically, we obtain
for a single D7-brane conjectural explicit formulae for the virtual equivariant elliptic
genus of a certain bundle over the moduli space of the nested Hilbert scheme of points
on the affine plane. A connection with elliptic cohomology of character varieties and
an elliptic version of modified Macdonald polynomials naturally arises.

Keywords Non-perturbative effects · Supersymmetric gauge theories ·Moduli
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1 Introduction and discussion

The study of defects can be used to characterize the behavior of physical theories and
the related mathematical structures. In this paper we are interested in surface defects
in four-dimensional supersymmetric gauge theories; namely, real codimension two
submanifolds were a specific reduction of the gauge connection taking place. This
kind of defects has been widely investigated in many contexts from various different
perspectives. The study of the rôle of defects in the classification of the phases of gauge
theorieswas pioneered by ’t Hooft [1]. Surface defectswere introduced byKronheimer
and Mrowka [2,3] in the study of Donaldson invariants, while their rôle in the context
of geometric Langlands correspondence was emphasized in [4]. The correspondence
with two-dimensional conformal field theories [5] prompted a systematic analysis of
surface defects and highlighted their relevance for quantum integrable systems [6,7]
and for the study of isomonodromic deformations and Painlevé equations [8–10]. In
this paper we introduce and study surface defects supporting nested instantons with
respect to the parabolic reduction of the gauge group at the defect. These defects are
engineered from a D7/D3 brane system on a local compact complex surface S. The
brane engineering naturally leads to a description of these defects and their effective
supersymmetric field theories in terms of moduli spaces of representations of quivers
in the category of vector spaces, the objects being the branes and morphisms the open
strings suspended among them. Supersymmetric partition functions of these systems
provide conjectural formulae for topological invariants of these moduli spaces, more
precisely, since these are generically not smooth, for virtual invariants of them.
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The brane system we consider is D7/D3 on a local fourfold embedded in the ten
dimensional IIB superstring supersymmetric background, the D3-branes wrapping the
non-contractible cycle S. The D3-branes effective theory is the topologically twisted
Vafa–Witten (VW) theory [11] with two extra chiral multiplets in the fundamental
describing the D7/D3 open string sector. The D7 branes gauge theory is related to
(equivariant) Donaldson–Thomas theory [12] on the fourfold. Actually, we consider
these theories in a non-trivial �-background corresponding to the equivariant param-
eters associated with rotations along the non-compact directions of the fourfold. This
leads to a refinement of the above mentioned gauge theories. We focus on the case
S = T 2 × C, the last being a Riemann surface with punctures {pi }. Surface operators
of this four-dimensional gauge theory are real codimension two defects located at
T 2 × {pi }.

The effective theory describing the dynamics of such surface defects is obtained in
the limit of small area of C and turns out to be a quiver gauged linear sigma model
which flows in the infrared to a nonlinear sigma model of maps from T 2 to the moduli
space of nested instantons. This is a generalization of the usual ADHM instanton
moduli space, structured on the decomposition of the gauge connection at the surface
defect. It is obtained from the usual ADHM instanton moduli space by implementing
a suitable orbifold action which generates the fractional fluxes of the gauge field at the
defect. The partition function of the D7/D3 effective theory computes the equivariant
(virtual) elliptic genus of this moduli space in the presence of matter content dictated
by the topology of C, which, for genus g amounts to g-hypermultiplets in the adjoint
representation. Their contribution is encoded in a bundle Vg over the moduli space of
nested instantons. The general formula for the elliptic genus is (2.16) which, in the
particular case r = 1 and k = 1, calculates the virtual elliptic genus of the bundle Vg

over the nested Hilbert scheme of points on C
2. The explicit combinatorial expression

of (2.16) is given by (3.57) in terms of nested partitions.
We also study the circle reduction of this system, which leads to a T-dual D6/D2

quantum mechanics. In this case, we find that the generating function of the defects,
obtained by summing over all possible decompositions of the connection at the punc-
ture, or in other terms over all possible tails of the quiver, displays a very nice
polynomial structure in the equivariant parameters.

The partition function of the D-brane system is computed in twoways. One, worked
out in Sect. 3.1, makes use of superlocalization formulae [13] directly leading to a
sum over fixed points with weights computed from the character of the torus action on
the nested instanton moduli space. An alternative derivation is performed in Sect. 3.2,
where the T 2 partition function is evaluated via a higher dimensional contour integral
à la [14]. This can be also prescribed via Jeffrey–Kirwan residue method [15,16],
as it was used in the study of D1/D7 BPS bound state counting on C

3 in [17]. We
remark that although the residue method is computationally more demanding, it has
the advantage of allowing for the study of wall crossing among spaces with different
stability conditions by changing the integration contour [18,19].

When one considers a single D7 brane, the nested instanton moduli space reduces
to the nested Hilbert scheme of points on C

2. Our brane construction provides a
conjectural description of this space as the moduli space of representations of the
quiver considered in Sect. 2.6. Moreover, in this case the summation over the tails of
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the quiver gives rise to polynomials related to the modified Macdonald polynomials,
and the whole partition function is related to the generating function introduced in [20]
to describe the cohomology of character varieties. The analog result for the full T 2

partition function gives rise to special combinations of elliptic functions which can be
regarded as an elliptic lift of these polynomials. We display few examples in equations
(3.96), (3.99), (3.102). These formulae should encode the elliptic cohomology of
character varieties and can be viewed as an elliptic virtual refinement of the generating
function of [20].We remark that theD6/D2quantummechanical systemand its relation
with [20] was studied in [21] via a different approach based on topological string
amplitudes on orbifold Calabi–Yau.

The relation with character varieties can be understood from the fact that Vafa–
Witten theory on S = T 2×C is known to reduce in the small C limit to a GLSM on T 2

with target space the Hitchin moduli space over C [22]. This in turn is homeomorphic
[23] to the character variety of C, namely themoduli space of representations of the first
fundamental group of C\{pi } into GLn(C) with fixed semisimple conjugacy classes
at the punctures.

There are some open questions to be discussed about the above construction. Actu-
ally, the 2d (2, 0) D3/D7 quiver gauge theory that we consider is anomalous, the
D3/D7 open string modes breaking (2, 2) to (2, 0) and generating an R-symmetry
anomaly. Indeed instantons in the D7 brane gauge theory are sourced from D3 branes.
The mathematical counterpart is that Donaldson–Thomas (DT) theory on fourfold
has positive virtual dimension and requires the insertion of observables to produce the
appropriate measure on themoduli space [24,25]. To cure this, we introduce new fields
with opposite representations with respect to the gauge group and global symmetries.
These are sources of the insertion of suitable observables which compensate the R-
symmetry anomaly. Actually, the extra fields we consider can be thought as arising
from coupling of D3-branes to D7-branes. It was recently conjectured [26] that D7/D7
system undergoes tachyon condensation leaving behind D3-branes. This proposal is
a generalization of the known condensation [27] of D5/D5 into D3s. Indeed in our
calculations we find that, at special values of the equivariant parameters, the contri-
bution of the D3/D7 and D3/D7 modes to the elliptic genus cancels out, in line with
the above expectations. It would be extremely interesting to further analyze a possible
application of our technique to the string field theoretic description of D-branes/anti
D-branes annihilation.

The mathematical implication of all this is that DT theory on the local surface four-
fold should reduce to VW theory on the complex surface S itself, the corresponding
partition function providing conjectural formulae for VW invariants on S in the pres-
ence of surface defects. We aim to further investigate this reduction in the future and
to analyze the elliptic genus of the nested instanton moduli space and in particular of
the nested Hilbert scheme of points on toric surfaces. This can be obtained via gluing
the contributions of the local patches [28–30]. Let underline that our computations
concern a refined version of VW theory, a refinement being given by the mass m of the
adjoint hypermultiplet. Therefore, by studying the limit atm →∞, with appropriately
rescaled gauge coupling, we reduce to pure twisted N = 2 gauge theory computing
higher rank equivariant Donaldson invariants of S. Moreover, while in this paper we
considered S = T 2 × C, non-trivial elliptic fibrations or other product geometries
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can be studied. In this way our approach could be used to generalize the results on
Donaldson invariants of [31,32]. The general modular properties of these generating
functions are worth to be analyzed [11,33].

The surface defects considered in this paper are directly related to Hitchin sys-
tem with regular singularities. It would be obviously interesting to consider the case
of irregular singularities, in particular the ones related to Argyres–Douglas points of
gauge theories [9,34], and investigate their rôle and contribution to the above men-
tioned differential invariants [35].

Moreover, the relation of our results to representation theory andquantum integrable
systems should be explored, in particular investigating whether the cohomology of the
nested instanton moduli space hosts representations of suitable infinite dimensional
Lie algebra, generalizing the results of [36–38]. Also the characterization of the poly-
nomials appearing in the quantum mechanical limit is to be worked out, by studying
recurrence relations and/or difference equations they satisfy. This would possibly open
a window on the relation with quantum integrable systems. For example, in [39,40],
the relation between D1/D5 systems on P

1 and quantum Intermediate Long Wave
hydrodynamics was studied, finding that the mirror of the associated GLSM provides
the Bethe ansatz equations of the latter. Analogous relations between the mirror of
the 2d comet-shaped quiver gauge theories and suitable integrable systems are worth
to be explored. Finally, the F-theory uplift of our construction would help to study
dualities of these defect gauge theories and to generalize them to other gauge groups.

The rest of the paper is structured in two main Sections. In the first one we provide
the general brane setup and a detailed derivation of the comet-shaped quiver from D-
branes on orbifolds. We then discuss the reduction to quiver quantum mechanics and
the relation to character varieties. In the second, we perform explicit computations of
the relevant partition functions and the relation with modifiedMacdonald polynomials
of the reduced quantum mechanical quiver theory.

2 D-branes, geometry and quivers

2.1 Preliminaries

Let us start by discussing the geometric D-branes setup.
We consider a Type IIB supersymmetric general background built as the total space

of a rank three complex vector bundle V 3
S on a complex surface S

X5 = tot
(

V 3
S

)
(2.1)

where supersymmetry requires the Calabi–Yau condition detV 3
S = KS , where KS is

the canonical bundle over S. To place a D3−D7 system in such a background, we
assume that V 3

S has the following simplified structure

V 3
S = KS ⊗ det−1V 2

S ⊕ V 2
S
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where the rank two bundle V 2
S is otherwise unconstrained.

Let us therefore consider the theory of N D3-branes wrapping the complex surface
S in the background of r D7-branes along the local surface fourfold tot

(
V 2

S

)
.

The low-energy dynamics of the N D3-branes can be obtained as usual by dimen-
sional reduction of theN = 1 D = 10 supersymmetricYang–Mills theory on X5 down
to their world volume. This produces a topologically twisted version of the N = 4
D = 4 theory on S [41] whose boson content is given by the gauge connection A, a
section�L of the line bundleL = KS⊗det−1V 2

S and a doublet�V 2 which is a section
of V 2

S , the latter describing the transverse motion of the D3-branes in the ambient X5.
All these fields are in the adjoint representation of the U (N ) gauge group. The above
setup reduces to the Vafa–Witten topologically twisted N = 4 D = 4 on S if the
rank two vector bundle V 2

S = C
2 is trivial and therefore X5 = tot (KS)× C

2. In this
case, the above construction indeed gives the gauge connection A on S, a complex
(2, 0)-form �S valued in the fiber of KS describing the transverse D3-branes motion
within the local surface X3 = tot (KS), while the motion along the remaining C

2

transverse directions is described by two other complex scalars Bi , with i = 1, 2.
The effect of the additional r background D7-branes on the D3-branes is kept into

account by a further set of two complex scalars I and J in the bifundamental N × r̄
and r × N̄ of the gauge symmetry group U (N ) and flavor global U (r) group. These
are sections, respectively, ofOS and detV 2

S in general. This follows from the fact that
these fields are in the positive chiral spinorial representation of the transverse SO(4)
and are therefore sections of S+ ∼ �(even,0)(V 2

S ), for S a Kahler surface.
The continuous symmetries of this geometric setup in the transverse directions to

the D3-branes are the (C∗)3-action on the C
3 fiber of V 3

S with respective weights
(ε1, ε2, m). These are the global symmetries of the gauge theory on S which can be
uses to define the relevant �-background after turning on the relative background
gauge fields. The parameter m introduces a mass for the adjoint hypermultiplet of
the four-dimensional theory inducing the supersymmetry breaking from the N = 4
Vafa–Witten theory to its N = 2∗ refined version.

In the following, we will study the above general system in the case in which the
complex surface is in the product form S = T 2 × C, where C is a Riemann surface
and V 2

S is trivial. In this case, the canonical bundle over S reduces to the holomorphic
cotangent bundle over C and

X5 = tot
(
T ∗C

)× T 2 × C
2 .

In order to introduce surface defects in the gauge theory, we’re going to generalize
the above setup to the case in which C is punctured at the points where the defects are
located. More precisely, the parabolic reduction of the gauge bundle at the punctures
is encoded in an orbibundle structure. The effective two-dimensional field theory
describing the dynamics of the defect is obtained from the above setup in the chamber
of smallCvolume leading to a quiver gauged linear sigmamodel describing the relevant
open string modes. In the IR this reduces to a nonlinear sigma model of maps from
T 2 to the moduli space of representation of the quiver above.
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2.2 D-branes on the orbicurve and defects

Let us now generalize the above setup to the case in which C is an orbicurve, that is,
a Riemann surface with elliptic singular points. This means that the local geometry
at some marked points {Pα} of C is that of the Zsα quotient of a disk D acted by
zα → ωαzα with ω

sα
α = 1.

Placing D-branes on an orbicurve consists in excising a regular cylinder out of
the total space of the corresponding regular vector bundle and prescribing new local
transition functions defining the lift of the discrete group action to the total space of
the vector bundle. This operation extends the vector bundle to an orbibundle.

Let us therefore consider the geometry of the D-branes in the vicinity of a marked
point P of order s with local coordinate z. The action on the D-brane Chan–Paton
factors induces amodification of the gauge symmetry due toD-branes fractionalization
[42]. Let γ	 be the number of D-branes in the 	th sector, namely the one corresponding
to the charge 	 representation z	 ofZs . This corresponds to prescribe the new transition
function at the excised disk as

gP =
s−1⊕
	=0

z	1γ	

and, correspondingly the local behavior of the gauge connection as

AP = g−1P dgP =
(
d z

z

) s−1⊕
	=0

	 1γ	
=
(
d z̃

z̃

) s−1⊕
	=0

	

s
1γ	

,

where z̃ = zs . This finally induces the local prescription on the curvature F = dA as

FP/(2π) = √−1δ(z̃)dz̃ ∧ d ¯̃z
s−1⊕
	=0

(
	

s

)
1γ	

which implements the realization of the real codimension two defect in the four-
dimensional gauge theory. Let us remark that from the algebraic geometry viewpoint
this corresponds to study sheaves on root stacks, which is a natural framework were
fractional Chern classes appear [43].

One can better describe the resulting gauge theory structure of the local D-brane
configuration from the viewpoint of the geometry of the covering disk with local
coordinate z̃ = zs (Fig. 1).

In the s-covering of the quotient disk, the γ	 D-branes in the 	th sector and their
images span 	 Riemann sheets. As a consequence the 	th Riemann sheet is spanned
by an overall number of n	 = ∑s−1

	′=	 γ	′ D-branes. Let us notice that the outward of
the quotient disk is joined to the rest of the Riemann surface by the first Riemann sheet
which is consistently covered by all the n0 =∑s−1

	′=0 γ	′ = N D-branes.
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Fig. 1 The “brane cake” describing the covering structure the D3-branes on the local orbifold disk

Fig. 2 Quiver gauge theory
arising from the
compactification on Cg,0

2.3 Two-dimensional quiver GLSM from the reduction to small C volume: bulk
part

Let us consider now the reduction to small C volume of the system above. This leaves
behind a gauge theory on the leftover T 2 world volume whose spectrum can be com-
puted by harmonic analysis. We denote by g the genus of C.

Let us first discuss the reduction on a regular Riemann surface and then the more
general situation in which C is an orbicurve.

The complex scalars I and J get simple dimensional reduction and stay scalars in
the bifundamental, the gauge connection A on S = C × T 2 leaves behind the gauge
connection A on T 2 and g complex scalars in the adjoint, while other g complex
scalars in the adjoint arise from the reduction of the transverse field �S . These will be
denoted as B(i)

3 and B(i)
4 , where i = 1, . . . , g.

The other two complex scalar fields in the adjoint, namely B1 and B2, get simply
dimensionally reduced.

This field content results in the quiver in Fig. 2.
The relations of this quiver can be read from the reduction of the F-term equations

in “Appendix A” (A.1) and (A.3) by expanding in harmonic modes along the curve C.
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More explicitly, the �S field and the component of the gauge connection AC along C
give rise to the g hypers in the adjoint representation (B(i)

3 , B(i)
4 ), where i = 1, . . . , g,

obeying the BPS equations

[B1, B2] + I J = 0 , [Bi
3, B j

4 ] = 0

[B1, Bi
3] = 0 , [B1, Bi

4] = 0 , [B2, Bi
3] = 0 , [B2, Bi

4] = 0

Bi
3 I = 0 , J Bi

3 = 0 , Bi
4 I = 0 , J Bi

4 = 0 (2.2)

The above equations are equivalent to g commuting copies of the ADHM equations
for gauge theory with one adjoint hypermultiplet [13], as it can be shown by a simple
squaring argument.

In the general �-background the supersymmetry of the D3-brane system reduced
on T 2 is (2, 2), while the combined D3/D7-brane system reduced on T 2 has (0, 2)
supersymmetry due to the presence of the chiral fields I and J and the above field
content, augmented by the relevant fermions, form the corresponding multiplets.

Let us underline that this theory itself suffers of aU (1)R-symmetry anomaly due to
its chiral unbalanced field content. This can be immediately understood from the fact
that the D3-branes profile produces an instanton background in the D7-brane gauge
theory inducing chiral symmetry breaking. From the mathematical viewpoint it is
known that the Donaldson–Thomas theory on fourfold has positive virtual dimension
which implies that one has to introduce observables matching the dimension counting.
We propose that the suitable set of observables is given by a compensating sector of
opposite charges—given by Ī , J̄ and other fields associated with the g-hypers to
be specified later—which cancels the anomaly. This sector may be interpreted as a
background antiD7-brane system.

2.4 Two-dimensional GLSM of the defect: the nested instanton quiver

When the curve C is extended to an orbicurve, at each orbifold point the gauge sym-
metry is reduced and further 2D degrees of freedom are present. These correspond to
the open strings stretching between the twisted D-branes and, from the gauge theory
viewpoint, to the degrees of freedom defining the codimension two defect prescribed
by the singular behavior of the gauge curvature at the orbifold points.

To obtain the effective low-energy quiver description, we excise a disk around each
puncture of C and discuss the local behavior of the D-branes system at the orbifold
points computing the associated low-energy quiver gauge theory. We then glue back
the disks to the bulk Riemann surface obtaining the full description of the gauge theory
with defects reduced to two dimensions by the small C-volume limit. This procedure
is pictorially described in Fig. 3.

The relevant open strings degrees of freedom can be inferred from the D-branes
distribution as in Fig. 1. More precisely, see for example [44,45], the Chan–Paton
space of the D-brane system decomposes into irreducible representations R	 of the
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Fig. 3 Disk excision and gluing

local discrete group Zs as

V =
s−1∑
	=0

V	 ⊗ R	 (2.3)

W =
s−1∑
	=0

W	 ⊗ R	 (2.4)

where each of the D3- and D7-brane charged sectors is denoted as

V	 = C
γ	 , W	 = C

β	 . (2.5)

As depicted in Fig. 1, the 	th Riemann sheet of the covering hosts a net number of
n j ≡ ∑s−1

	= j γ	 D3-branes and of r j ≡ ∑s−1
	= j β	 D7-branes so that the open string

degrees of freedom are represented as linear maps among the spaces

Vj =
s−1∑
	= j

V	 (2.6)
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Fig. 4 Quiver gauge theory
arising from the
compactification on Cg,1

W j =
s−1∑
	= j

W	 (2.7)

Let us now discuss the corresponding quiver gauge theory. This consists of a (0, 2)
quiver gauge theory on T 2 with gauge group ⊗ j=0,...,s−1U (n j ), each node being

coupled to two chiral multiplets in the adjoint B j
1 , B j

2 ∈ EndVj and each pair of
successive nodes by a chiral in the bifundamental F j ∈ Hom

(
Vj , Vj+1

)
for j =

0, . . . , s − 1. The D3−D7 open strings modes are described by the linear maps I j ∈
Hom

(
Vj , W j

)
and J j ∈ Hom

(
W j , Vj

)
. Summarizing, the local D3−D7 system is

effectively described by

B j
1 , B j

2 ∈ EndVj , F j ∈ Hom
(
Vj , Vj+1

)

I j ∈ Hom
(
Vj , W j

)
and J j ∈ Hom

(
W j , Vj

)
(2.8)

As is shown in “Appendix A” these fields obey the relations

[B j
1 , B j

2 ] + I j J j = 0 , B j
1 F j − F j B j+1

1 = 0

B j
2 F j − F j B j+1

2 = 0 , J j F j = 0. (2.9)

Therefore, the resulting quiver describing the local D3−D7 system at the defect is
given in Fig. 4.

Themoduli spaceNr ,λ,n,μ of its representations describes nested instantons. Indeed
the n D3 branes realize an n-instanton profile for theU (r)D7 gauge fields, preserving
the flag structure at the puncture. The partitions λ = (λ1 ≥ λ2 ≥ · · · ) of r and
μ = (μ1 ≥ μ2 ≥ · · · ) of n describe, respectively, the decomposition of the D7 and
D3 Chan–Paton vector spaces into representations of the Zs group. More precisely,
as shown in Fig. 4, one gets the quiver of the flag manifold realized by the Chan–
Paton vector spaces of the D3-branes Vs−1 ⊂ Vs−2 ⊂ · · · ⊂ V0 with dimensions
n j = n0 −∑ j

l=1 μl framed by the D7 branes vector spaces with dimensions r j =
r0−∑ j

l=1 λl . The heights of the columns of each partition is obtained from an ordering
of the data of the dimensions vector spaces β	 and γ	 of (2.5). Indeed, these can
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Fig. 5 Chain-saw quiver

be ordered by using Weyl symmetry of D3 and D7 branes gauge groups such that
γ0 ≥ γ1 ≥ · · · ≥ γs−1 and β0 ≥ β1 ≥ · · · ≥ βs−1.

The moduli space of nested instantons has a natural projection to the standard
ADHM instanton moduli space Mr ,n

π : Nr ,λ,n,μ →Mr ,n (2.10)

which is realized by setting all the open string twisted sectors to be empty, namely
by setting to zero all the fields F j , j = 0, . . . , s − 1 and (I j , J j , B j

1 , B j
2 ) for j =

1, . . . , s − 1.

2.5 Relation to other quiver defect theories

Some comments are in order regarding the quiver theory of the defect we obtain in
our construction with respect to other quiver defect theories. The quiver we study
is derived from a Dp/Dp+4 system via an orbifold action which affects a transverse
direction to both the brane types. In this respect, it is different from the chain-saw
quiver describing affine Laumon spaces [46], where the orbifold acts instead on the
coordinates B1, B2 describing the motion of Dp branes inside the Dp+4. This induces
a different quiver with a different set of relations. A quiver which relates to the one in
[46] can be obtained by considering a different specialization of the general geometric
background for the D3/D7 system described in section 2.1. More precisely, one can
consider T 2 × X6 × Cε1 , where X6 = tot [O(p)⊕O(−p + 2g − 2)]Cg,k

is the total
space of a sum of two line bundles on the orbicurve such that the Calabi–Yau condition
is satisfied. In such a geometry we can consider the D3-branes along T 2 × Cg,k and
the D7 say along T 2×Y4×Cε1 , where Y4 = tot [O(p)]Cg,k

and the fiber still hosts the
torus action corresponding to the ε2-parameter of the Omega-background. For p > 0
in the vicinity of the orbifold points the geometry in the fiber direction is sensitive to
the orbifold group.

Since the corresponding modes in the open string sector get twisted, the quiver
changes. Instead of an adjoint multiplet per node, one gets a new bifundamental,
while the fields Ji will now point from the gauge node ni to the nearby framing node
ri+1. The resulting local quiver at the defect is then the chain-saw quiver, as displayed
in Fig. 5.
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Fig. 6 Quiver gauge theory for
D3-branes at a single puncture

Fig. 7 Nested Hilbert scheme
quiver

This can be also obtained from a D1/D5 system with both D1 and D5 wrapping
Cg,k via a double T-duality along transverse directions to both.

Since on the other hand both quivers are describing the parabolic reduction of
the gauge connection on a surface defect, it is conceivable to expect that a relation
can be found between the associated partition functions at least in some limit or
suitable parameterization. This could require non-trivial combinatorial identities on
the partition functions themselves, similarly to what discussed in [47] concerning the
relation between orbifold and vortex-like defects.

Moreover, when decoupling the D7 branes by setting I j = 0, J j = 0, the descrip-
tion of the D3-branes at the defect leads to the quiver in Fig. 6 which describes a flag
manifold with extra adjoint hypers at each node.

We notice that also the T SU [N ] quivers for defects studied [48–53] are based
on flag manifold quivers but display a different field content. It should be possible
to compare the two kind of defect gauge theories in suitable limits by finding an
appropriate dictionary.

2.6 Nested Hilbert scheme of points

The nested instanton moduli space is expected to reduce for a single D7-brane r =
r0 = 1 to the moduli space of the nested Hilbert scheme of points on C

2, Hilbn,μ(C2).
In this particular case the quiver described in the previous subsection reduces to the
one of Fig. 7 with relations

[B0
1 , B0

2 ] + I 0 J 0 = 0 , [B j
1 , B j

2 ] = 0 , j ≥ 1

B j
1 F j − F j B j+1

1 = 0 B j
2 F j − F j B j+1

2 = 0 , J 0F0 = 0. (2.11)
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Fig. 8 The comet-shaped quiver

The moduli space of representations of this quiver is expected to provide an explicit
description of Hilbn,μ(C2). This has been indeed proven for the particular case of
two-step nested Hilbert scheme n j = 0 for j ≥ 2 in [54], where it is also shown that
this variety is smooth for n1 = 1. Indeed it is known that for n1 > 1 the two-step
nested Hilbert scheme is singular. Moreover, nested Hilbert schemes with more than
two steps are always singular, and a fortiori also the nested instanton moduli space.
The D3/D7 partition functions we will evaluate via localization will then compute
virtual invariants of these moduli spaces, since a perfect obstruction theory for them
is expected to exist.

2.7 Comet-shaped quiver

Finally, the description of the D3/D7 system on the full geometry gives rise to the
comet-shaped quiver in Fig. 8.

This is obtainedbygluing the nested instantonmoduli quivers describing the decom-
positions of the branes at the defects to the bulk quiver in Fig. 2. The number of tails
in the comet quiver is equal to the number of punctures of the Riemann surface, while
their length is related to the flag structure due to the parabolic reduction of the con-
nection at each puncture. All in all, the effective theory describing the D3−D7 system
on T 2 reduces to a GLSM with target space the total space of the bundle

Vg ≡ π∗ ((T ∗Mr ,n
)⊕g ⊗ (det T)1−g

)
(2.12)

over the moduli space of nested instantonsNr ,λ,n,μ, where the collection of partitions

λ = (λ1, . . . , λk) and μ = (μ1, . . . , μk) describe the decomposition of D7 and D3
branes, respectively, under the cyclic groups Zsi , i = 1, . . . k acting at the punctures.
The physical interpretation of the above bundle is the following: The first factor is
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simply the contribution of the g hypermultiplets in the adjoint representation of the
bulk theory described in Sect. 2.3. Regarding the second factor, let us remark that the
couplings of the D3/D7 brane system turns on a background line bundle describing
the determinant bundle of the Dirac zero modes in the instanton background. This is
given by the determinant of the tautological bundle T overMr ,n . The power (1−g) is
due to the multiplicity of fermionic zero modes on the Riemann surface C. In the limit
of degeneration of the T 2 to a circle this leads to a Chern–Simons interaction term for
the resulting D2/D6 system. This term is essential in the comparison with results on
character varieties and will be discussed in detail in Sect. 2.9, while in the next one we
will briefly recall some basic definitions about character varieties that will be useful
for the subsequent discussion.

2.8 Character varieties

Given a Riemann surface C of genus g with k punctures D = ∑k
i=1 pi , one defines

the GLn(C) character variety as the moduli space of representations of the first fun-
damental group of C\D into GLn(C)

Gσ = {ρ ∈ Hom (π1 (C\D) , GLn(C)) |ρ(γi ) ∈ Ci } //PGLn(C) (2.13)

where C1, . . . , Ck ⊂ GLn(C) are semisimple conjugacy classes of type σ 1, . . . , σ k ,
namely the parts of the partition σ i , (σ i

1 ≥ σ i
2 ≥ · · · ), describe the multiplicities of

the eigenvalues of any matrix in the conjugacy class Ci .
When non-empty (2.13) is a smooth projective variety of dimension

dσ = n2(2g − 2+ k)−
∑
i, j

(
σ i

j

)2 + 2

To describe the cohomology of (2.13), Hausel–Letellier–Rodriguez–Villegas [55]
introduced the k punctures, genus g Cauchy function

�(z, w) =
∑
σ∈P

Hσ (z, w)

k∏
i=1

H̃ i
σ (xi ; z2, w2) (2.14)

where P is the set of partitions, H̃ i
σ (xi ; z2, w2) are refined Macdonald polynomials

and

Hσ (z, w) =
∏
s∈σ

(z2a(s)+1 − w2l(s)+1)2g

(z2a(s)+2−w2l(s)
)(z2a(s) − w2l(s)+2)

. (2.15)

where a(s), l(s) are, respectively, the arm and leg length of the s box of the Young
diagram σ representing the partition (see Fig. 9). Equation (2.14) turns out to be the
generating function of the cohomology polynomials of GLn(C) character varieties,
summed over n.
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Fig. 9 Arm and leg length of a
box in a Young diagram

Let us now outline the connection with the brane construction described in the
previous subsections. The dynamics of D3-branes on the local surface S is refined
Vafa–Witten theory. When S = T 2×C, this reduces in the limit of small area of C to a
gauged linear sigma model from T 2 to Hitchin’s moduli space on C [22]. On the other
hand, in [23] it was proved that (2.13) is homeomorphic to the moduli space of Higgs
bundles with parabolic reduction on the divisor D = ∑k

i=1 pi . In presence of D7
branes, the non-perturbative effects on their dynamics are obtained by summing over
the D3-branes partition functions. One then naturally obtains a generating function of
the elliptic cohomology of GLn(C) character varieties. Summarizing the T 2 partition
function of the D3−D7 comet-shaped quiver reads

ZT 2 =
∑

n

∑

μ∈P(n)k

(qμ)rEllvir
(
Nr ,λ,n,μ,Vg

)
, (2.16)

with (qμ)r =∏k
i=1

∏si−1
α=0

(
q
|μi

α |
i, α

)r i
α

and

Ellvir
(
Nr ,λ,n,μ,Vg

)
= Ell(T virN)ch

(
Vg
) ∩

[
Nr ,λ,n,μ

]vir
. (2.17)

For a single D7 brane r = r0 = 1, the above formulae can be understood as an elliptic
virtual generalization of the generating function introduced by LHRV. Indeed, we will
show in the following that in the limit of degeneration of T 2 to a circle, one obtains
LHRV formulae, or more precisely a virtual refinement of them.

2.9 Reduction to quantummechanics, Chern–Simons term and LHRV formulae

In this subsectionwe summarize the reduction of theD3/D7 systemonT 2 to a quantum
mechanical system in a T-dual picture. More precisely, if the two torus factorizes as
T 2 = S1× S1 and one of the two circles is taken to be very small, our D-brane system
can be T-dualized along the small circle and reduced to a corresponding D2/D6 system
on C × S1. This corresponds to the quantum mechanics of the comet-shaped quiver
with a Chern–Simons coupling, given by a phase factor eim

∫
C S(A,F) = eim

∫
dxμAμ

so that the particle is coupled to an external vector potential. Let us briefly recall how
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this works in the standard ADHM case [56] in order to then generalize it to the nested
instanton moduli space. The partition function is the equivariant index

ZS1 =
∑

n

qnr Ind
(
Mr ,n,L⊗m) , (2.18)

where L is the determinant line bundle L = Det /D, whose fiber on the space of con-
nectionsA/G is (det ker /D A)∗⊗(det ker /D†

A). Bymaking use theADHMconstruction
for the moduli space of ASD connections, the n-dimensional vector space V0 is actu-
ally the space of fermionic zero modes. In order to compute the Chern–Simons level,
we make use of the Atiyah–Singer index theorem for a vector bundle E → M

Ind(M, E) = Ind( /D) =
∫

M
Â(T M) ∧ ch E, (2.19)

which gives the index of the Dirac operator twisted by E , ie D : S ⊗ E → S ⊗ E , S
being the spin bundle over M . To compute the CS level in the case at hand one has to
consider the geometric background S1 × T ∗C × C

2 × R. Because of the twisting of
the supersymmetric theory along C, the /D operator along C reduces to the ∂ operator
and the roof genus Â(T M) to the Todd class. Thus, when we take the effective theory
obtained by shrinking the size of C, Ind(∂)C gives the multiplicity of the fermionic
zero modes, according to the decomposition �(0) = ψ

(0)
C ⊗ψ

(0)
C2 . The index theorem

along C reads

Ind(∂)C =
∫

C
Td(TC) = 1− g, (2.20)

which determines the level of the Chern–Simons interaction to be m = 1− g. Finally,
the partition function is given by the following equivariant (virtual) index

ZS1 =
∑

n

∑
μ∈P(n)

(qμ)r Ind
(
Nr ,λ,n,μ,Det( /D)⊗(1−g)

)
, (2.21)

where we use the notation qμ = qn0(μ)
0 · · · qns−1(μ)

s−1 and

Ind
(
Nr ,λ,n,μ,Det( /D)⊗(1−g)

)
= Â(T virN) ch

(
Det( /D)⊗(1−g)

)
∩ [Nr ,λ,n,μ

]vir
.

(2.22)

In the quiver representation of the nested instantonmoduli space, the /D operator onC
2

appearing in the above equation is given by the pull-back of the tautological bundle T
on the ADHM moduli spaceMr ,n , so that its determinant line bundle coincides with
the one of T, which will be used in the equivariant localization formulae.

In the following Sect. 3 we will show that the above partition function, when
computed for the particular case of the nested Hilbert scheme of points on C

2, gives
a virtual generalization of LHRV formulae and reduces precisely to them when the
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nested Hilbert scheme is smooth. Let us remark that the quantum mechanical system
of the nested Hilbert scheme of points and its relation with LHRV formulae has been
studied in [21] via a different approach based on topological string amplitudes on
orbifold Calabi–Yau.

3 Partition functions

In this section we proceed to the evaluation of the partition function of the effective
quiver gauge theories of the D3/D7-system discussed in the previous section in the
limit of small volume of the wrapped curve C. This is performed by making use of
supersymmetric localization which is a version of equivariant localization formulae
[57] for super-manifolds which allows a generalization to supersymmetric path inte-
grals in quantum field theories. The only configurations contributing to the latter are
the fixed loci of the supersymmetry transformations. When these are isolated points,
the path integral reduces to a sum over themweighted by one-loop super-determinants
of the tangent bundle T at those points, that is,

∑
x∈{F P}

e−S(x)

SdetTx
(3.1)

where {F P} is the set of fixed points, S(x) is the value of the action at x ∈ {F P} and
Tx = T |x is the restriction of T at x .

In the following we will implement the above computational scheme by calculating
the above data for the relevant quiver gauge theories on T 2. We will first focus on the
contribution of a single defect on the sphere encoding the parabolic reduction of the
connection at a given point, which is described by a single legged quiver. Then, wewill
consider the case of higher genus Riemann surface and combine all the contributions
in the comet-shaped quiver theory partition function.

3.1 Contribution of a single surface defect on the sphere

3.1.1 Field content and superpotential

Thematter content of the GLSMwe are interested in is the one summarized in Table 1,
where G = U (n0) × U (n1) × · · · × U (ns−1) and �i denotes the Young diagram
corresponding to the fundamental representation of U (ni ).

The relations satisfied by the quiver GLSM are enforced by the superpotential W
in (3.2).

W = Tr0
[
χ0([B0

1 , B0
2 ] + I J )

]
+

N∑
i=1

Tri
[
χi [Bi

1, Bi
2] + χ

B1
i (Bi−1

1 Fi − Fi Bi
1)

+χ
B2
i (Bi−1

2 Fi − Fi Bi
2)
]
+ χJ F J F1.

(3.2)
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Table 1 Field content for quiver in Fig. 10

Gauge G Flavor U (1)×U (1)2 Twisted mass R-charge

Bi
1 �i ⊗�i 1(1,0) −ε1 q

Bi
2 �i ⊗�i 1(0,1) −ε2 q

I �0 �(0,0) −a q + p

J �0 �(1,1) a − ε q − p

Fi �i ⊗�i−1 1(0,0) 0 0

χ i �i ⊗�i 1(−1,−1) ε −2q

χ
B1
i �i ⊗�i−1 1(−1,0) ε1 −q

χ
B2
i �i ⊗�i−1 1(0,−1) ε2 −q

χJ F �1 �(1,1) ε − a p − q

Let us notice that, as we already pointed out, the locus cut out byW through the D-term
equations is overdetermined. Thus, we still have to introduce s − 1 additional chiral
fields Qi , i = 1, . . . , s − 1 taking care of the relations over the constraints. These
additional fields will transform in the �i ⊗�i−1 representation of U (ni )×U (ni−1).
We will assign them R-charge 2q and they will be charged under the U (1)2 flavor
symmetrywith charge (1, 1). The relations over the constraints inducedby these chirals
are

0 = [Bi−1
1 , Bi−1

2 ]Fi + Bi−1
2 (Bi−1

1 Fi − Fi Bi
1)− (Bi−1

1 Fi − Fi Bi
1)Bi

2

+ (Bi−1
2 Fi − Fi Bi

2)Bi
1 − Bi−1

1 (Bi−1
2 Fi − Fi Bi

2)− Fi [Bi
1, Bi

2],
(3.3)

when i > 1, while

0 = ([B0
1 , B0

2 ] + I J )F1 + B0
2 (B0

1 F1 − F1B1
1 )− (B0

1 F1 − F1B1
1 )B1

2

+ (B0
2 F1 − F1B1

2 )B1
1 − B0

1 (B0
2 F1 − F1B1

2 )− I (J F1)− F1[B1
1 , B1

2 ]
(3.4)

covers the remaining case i = 1.
The chiral supersymmetry transformations of the above fields are

Q I = μI , QμI = DA I + φ0 I − I a (3.5)

Q J = μJ , QμJ = DA J − Jφ0 + a J − ε J (3.6)

Q Bi
l = Mi

l , QMi
l = DA Bi

l + [φi , Bi
l ] − εl Bi

l (3.7)

Qψ i
F = Fi , QFi = DAψ i

F − φiψ i
F + ψ i

Fφi+1 (3.8)

Qχi = hi , Qhi = DAχi + [φi , hi ] + εhi (3.9)

QχJ F = h J F , Qh J F = DAχJ F + [φ0, χJ F ] + (ε − a)χJ F (3.10)

Qχ
Bl
i = hBl

i , QhBl
i = DAχ

Bl
i + φiχ

Bl
i − χ

Bl
i φi+1 + εlχ

Bl
i (3.11)

QχQi = hQi , QhQi = DAχQi + φi−1χQi − χQi φ
i + εχQi (3.12)
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Q Ā = η , Qη = FA , Q A = 0 (3.13)

where (A, Ā) is the connection on T 2 in holomorphic coordinates and FA its curvature
two-form, εl , l = 1, 2 are the equivariant weights of the U (1)2 rotation group acting
on C

2 and ε = ε1 + ε2. Moreover, φi , i = 0, . . . , s − 1 are the zero modes of the
A-connection implementing global U (ni ) gauge transformations of the i th-node. The
fixed points of the above supersymmetry transformation impose that the connection
(A, Ā) is flat. Then, by a standard squaring argument one can show that the other fields
must be constant so that the supersymmetry fixed locus reduces to the fixed locus of
the U (1)(r+2)-torus action on the nested instanton moduli space, where U (1)r is the
Cartan torus of the U (r) gauge group with equivariant parameters ab, b = 1, . . . , r .

3.1.2 Anomaly and observables

As we already discussed at the end of Sect. 2.3, the (0, 2) D3/D7-branes theory
displays a U (1)R anomaly whose compensation can be obtained via the insertion of
suitable observables. To this endwe introduce a sector of additional degrees of freedom
Ī and J̄ with opposite gauge global charges w.r.t. I and J which, once integrated out,
produces the insertion of the observables. These will be properly taken into account
in the following computations.

3.1.3 Fixed points

The characterization of the fixed locus of the torus action on the moduli space of
nested instantons N(r , n0, . . . , ns−1) � Nr ,[r1],n,μ(n) is most easily understood by
describing it as the moduli space of (suitably defined) stable representations of the
quiver in Fig. 10. In this setting we associate to the quiver in Fig. 10 the vector spaces
W and Vi , in addition to the space

X = End(V0)
⊕2 ⊕ Hom(V0, W )⊕ Hom(W , V0)

⊕
[

s−1⊕
i=1

(
End(Vi )

⊕2 ⊕ Hom(Vi , Vi − 1)
)]

of the morphisms of the quiver corresponding to the matter fields Bi
1,2, Fi , I and J .

In this language, the quiver in Fig. 10 would be represented graphically as the one in
Fig. 11.

On X we have a natural action of G = GL(V0)×· · ·×GL(Vs−1), which preserves
the subscheme X0 of those points satisfying the relations (2.11). Then, given a framed
representation (W , V0, . . . , Vs−1, X), X ∈ X0 of the quiver in Fig. 11, one can prove
that there is a suitable definition of stability such that, in a particular chamber of the
parameters at play, semi-stability is equivalent to stability (also as a GIT quotient), so
that it makes sense to talk about the moduli space of stable framed representations of
the quiver in Fig. 11 without any further specification. This space will be denoted by
N(r , n0, . . . , ns−1) := X0//χG, for some suitable choice of an algebraic character χ

of G.
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Fig. 10 Low-energy GLSM
quiver in the case of g = 0,
k = 1

Fig. 11 General representation of quiver in Fig. 10

By means of this construction one can show that there is a sum decomposition
V0 = Vi ⊕ Ṽi and Vi = Vi+1 ⊕ V̂i+1, such that Ṽi = V̂i ⊕ Ṽi−1. This splitting also
induces the following block matrix decomposition of the morphisms B0

1,2, I and J in
(3.14),

B0
1 =

(
Bi
1 B

′i
1

0 B̃i
1

)
, B0

2 =
(

Bi
2 B

′i
2

0 B̃i
2

)
, I =

(
I
′i

Ĩ i

)
, J = (0 J̃ i

)
. (3.14)

such that (W , Ṽi , B̃i
1, B̃i

2, Ĩ i , J̃ i ) is a stable ADHM datum.
Once an equivariant action of a torus T � N(r , n0, . . . , ns−1) is introduced in the

natural way suggested by the SUSY construction of the quiver in Fig. 10, the previous
observations make it possible to characterize the T -fixed locus ofN(r , n0, . . . , ns−1)
in terms of those of some moduli spaces of stable ADHM data. This is all summarized
in the following proposition

Proposition 1 The T -fixed locus [N(2, 3, 2, 1)]T of N(r , n0, . . . , ns−1) is described
by s-tuples of nested colored partitions µ1 ⊆ · · · ⊆ µs−1 ⊆ µ0, with |µ0| = n0 and
|µi>0| = n0 − ni .

Example 1 As an example, consider the moduli space N(2, 3, 2, 1). Its fixed point
locus will be described by the following couples of nested partitions,

[N(2, 3, 2, 1)]T ↔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
11, 21, 31; ∅) , (11, 21, 21; 11) , (11, 21; 11, 11, 11) , (11, 11, 21; 11, 11) ,
(
11; 11, 21, 21) , (11, 11, 11; 11, 21) , (11, 11; 11, 11, 21) , (∅, 11, 21, 31) ,
(
11, 21, 2111; ∅) , (∅; 11, 21, 2111) , (11, 12, 2111; ∅) , (∅; 11, 12, 2111) ,
(
11, 12, 13; ∅) , (11, 12, 12; 11) , (11, 12; 11, 11) , (11, 11, 12; 11, 11) ,
(
11; 11, 12, 12) , (11, 11, 11; 11, 12) , (11, 11; 11, 11, 12) , (∅; 111213) ,
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where each term on the rhs has to be interpreted as a couple of nested partitions, e.g.

(
12, 2111, 3121; ∅

)
←→ ⊕∅ ←→

(
↪→ ↪→

)
⊕ ∅.

The notation we use for a partition μ ∈ P is descriptive of its corresponding Young

diagram in the following sense: [μi1
1 · · ·μ

i j
j · · · ] denotes the partition

P � [μi1
1 · · ·μ

i j
j · · · ] = (μ1, . . . , μ1︸ ︷︷ ︸

i1

, . . . , μ j , . . . , μ j︸ ︷︷ ︸
i j

, . . . ),

or, in other words, i j counts the number of rows of length μ j stacked one over the
other.

3.1.4 Character computation

The super determinant weighting the contribution of each fixed point can be computed
from the character decomposition of the torus action on the (virtual) tangent space:

T vir
Z N(r , n0, . . . , ns−1) = End(V0)⊗ (Q − 1−�2Q)+ Hom(W , V0)+ Hom(V0, W )⊗�2Q+

− Hom(V1, W )⊗�2Q+

+
s−1∑
	=1

[
End(V	)− Hom(V	, V	−1)

]⊗ (Q − 1−�2Q)

(3.15)

where Q denotes the representation T1 + T2 in the representation ring R(T ). In the
previous presentation of the virtual tangent space, thefirst line accounts for the standard
ADHM quiver (B0

1 , B0
2 , I , J ) and their constraints, the second line for the constraint

J F1 = 0 and the third line for the maps in the tail, their constraints and the relations
among them.

By decomposing the vector spaces Vi in terms of characters of the torus action
T � Nr ,[r1],n,μ we can then study the character decomposition of the virtual tangent
space to the moduli space of nested instantons and obtain

T vir
Z Nr ,[r1],n,μ = TZ̃Mr ,n0 +

r∑
a,b=1

M(a)
0∑

i=1

N (b)
0∑

j=1
Rb R−1

a

(
T

i−μ
(b)
1, j

1 − T i
1

)(
T
− j+μ

(a)′
1,i +1

2 +

−T
− j+μ

(a)′
0,i +1

2

)
−

M(a)
0∑

i=1

μ
(a)′
0,i −μ

(a)′
1,i∑

j=1
T i
1 T

j+μ
(a)′
1,i

2 +

+
s−1∑
k=2

⎡
⎢⎣

r∑
a,b=1

M(a)
0∑

i=1

N (b)
0∑

j=1
Rb R−1

a

(
T

i−μ
(b)
k, j

1 − T
i−μ

(b)
k−1, j

1

)

(
T
− j+μ

(a)′
k,i +1

2 − T
− j+μ

(a)′
0,i +1

2

)]
+ (s − 1)(T1T2),

(3.16)
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where the fixed point Z is to be identified with a choice of a sequence of colored
nested partitions µ1 ⊆ µN−1 ⊆ · · · ⊆ µs−1 ⊆ µ0, as in proposition 1, Z̃ ↔ µ0, μ

′
denotes the partition transposed to μ and Ti , Ra are the generators of the torus action
of U (1)r+1. Let us also point out that the last term, namely (s − 1)(T1T2), has been
added in order to take into account the over-counting in the relations [Bi

1, Bi
2] = 0

due to the commutator being automatically traceless.

3.1.5 Determinants

Having the character decomposition of the virtual tangent space to the moduli space of
nested instantons enables us to easily compute the 2d N = (0, 2) partition functions
of the low-energy GLSM of Sect. 2.4 in terms of the eigenvalues of the torus action,
which wewill do in the particular case of r = 1 for the sake of simplicity. The partition
function we want to compute on the sphere C0 = S2 with 1 marked point will take the
form

Zell
1 (S2; q0, . . . , qs−1) =

∑
μ1⊆···⊆μ0

q |μ0|
0 q |μ0\μ1|

1 · · · q |μ0\μs−1|
s−1 Z ell

(μ0,μ1,...,μs−1),

(3.17)

with |μi \μ j | = |μi |−|μ j | denoting the number of boxes in the skew Young diagram
Yμi\μ j , while Z ell

(μ0,...,μs−1) is the contribution at a fixed instanton profile.
In particular, once we fix an instanton configuration by choosing a sequence of

nested partitions μ1 ⊆ · · · ⊆ μs−1 ⊆ μ0 we can write the torus partition function as

Z ell
(μ0,μ1,...,μs−1) = Lell

μ0
Nell

μ0
Nell

μ0
Tellμ0,μ1

Tellμ0,μ1
Well

μ0,...,μs−1 , (3.18)

where

Lell
μ0
=
∏

s∈Yμ0

exp
[
− vol(T 2) (φ(s)− ξ)

]
, (3.19)

Nell
μ0
=
∏

s∈Yμ0

1

θ1(τ |E(s))θ1(τ |E(s)− ε)
, (3.20)

Nell
μ0
=

∏
s∈Yμ0\�

θ1(τ |φ(s)− ã)θ1(τ |φ(s)− ã + ε), (3.21)

Tellμ0,μ1
=

M0∏
i=1

μ0,i−μ1,i∏
j=1

θ1(τ |ε1i + ε2( j + μ′
1,i )), (3.22)

Tellμ0,μ1
=

∏
s∈Yμ0\μ1

1

θ1(τ |φ(s)− ã + ε)
, (3.23)

Wμ0,...,μs−1 =
s−2∏
k=0

⎡
⎣

M0∏
i=1

N0∏
j=1

θ1(τ |ε1(i + μk, j )+ ε2(μ
′
k+1,i − j + 1))

θ1(τ |ε1(i − μk+1, j )+ ε2(μ
′
k+1,i − j + 1))
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M0∏
i=1

N0∏
j=1

θ1(τ |ε1(i − μk+1, j )+ ε2(μ
′
0,i − j + 1))

θ1(τ |ε1(i − μk, j )+ ε2(μ
′
0,i − j + 1))

⎤
⎦ , (3.24)

and for any box s in a Young diagram Yμ we defined φ(s) to be the quantity (3.25)

φ(s) = a + (i − 1)ε1 + ( j − 1)ε2, (3.25)

and

E(s) = −ε1a(s)+ ε2(l(s)+ 1), (3.26)

with a(s) and l(s) being, respectively, the arm and leg length of s in Yμ.

Notice thatNell
μ0

is the elliptic analog of the Nekrasov partition function, whileNell
μ0

is its ADHM analog due to the D7 coupling, and by ã wemean its Coulomb parameter.
As in [58,59] the D7-branes get stabilized in the presence of a B-field flux, so that
their presence does not break supersymmetry and the low energy description of the
D7/D7 system is that of aU (N |N ) gauge theory, [60–62]. Moreover, the contributions

from the functions Tellμ0,μ1
, Tellμ0,μ1

and Wμ0,...,μs−1 altogether encode the contribution

of the surface defect insertion. Finally, Lell
μ0

encodes the CS-like term we discussed
in Sects. 2.7 and 2.9 . This is interpreted as a CS-term contribution when the limit
to QM is taken, and a 5d partition function on R

4 × S1 is retrieved. In any case, it
comes from the coupling to a background connection on the determinant line bundle
Det /D encoding fermionic zero modes. This background connection is mirrored by
the presence of ξ in (3.19), which is intended to be later specialized to ξ → a.

Because of the previous observations it is instructive to perform the summation
over all the sequences of s nested partitions in two steps. First we sum over all the
smaller partitions μ1 ⊆ · · · ⊆ μs−1 ⊆ μ0 at fixed μ0 ∈ P. It will prove useful for
what we will do later to define the rational function Pell

μ0
as in (3.27).

Pell
μ0

=
∑

μ1⊆···⊆μs−1
Tellμ0,μ1

Tellμ0,μ1
Well

μ0,...,μs−1q |μ0\μ1|
1 · · · q |μ0\μs−1|

s−1 . (3.27)

Finally, by summing also over the μ0 partitions we can rewrite the full partition
function as in (3.28),

Zell
1 (S2; q0, . . . , qs−1) =

∑
μ0

q |μ0|
0 Yell

μ0
Pell

μ0
, (3.28)

where we defined

Yell
μ0
= Lell

μ0
Nell

μ0
Nell

μ0
, (3.29)

and Pell
μ0

are particular elliptic functions which can be regarded as an elliptic virtual
uplift of modifiedMacdonald polynomials. The first few examples are listed in (3.96),
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(3.99), (3.102). As a useful remark, we want to point out that by taking the limit

qi>0 → 0 we can effectively switch off the tail of the quiver, since Pell
μ0

qi>0→0−−−−→ 1, and
we recover the partition function on the sphere with one puncture of trivial holonomy,
Zell
0 (S2; q0).

3.2 An alternative derivation: contour integral formulae

In this section we will be explicitly computing the partition functions of the low-
energy theory coming from the D3/D7 system described in Sect. 2.4 by reducing the
supersymmetric path integral to a contour integral via supersymmetric localization
[15,16].

The model we are interested in gives rise to a 2d N = (0, 2) GLSM on T 2. The
mechanism of supersymmetry breaking from the maximal amount to N = (0, 2) in
the reduction to the low-energy theory leaves us with a matter content comprised of
chiral fields corresponding to the morphisms in the representation theory of quiver in
Fig. 7 in the category of vector spaces, and Fermi fields implementing the Lagrange
multipliers in the superpotential. Let us first study the partition function for the quiver
GLSM of Fig. 10, having fixed the numerical type of the quiver to (1, n0, . . . , ns−1).
In this case the localization formula is given by

ZT 2 = 1

(2π i)N

∮

C
ZT 2,1−loop(τ, z, x) (3.30)

where C is a real N -dimensional cycle in the moduli space of flat connections on
T 2 to be fixed with the Jeffrey–Kirwan prescription, x denotes the collection of the
(exponentiated) coordinates we are integrating over and

ẐT 2,1−loop(τ, z, x) = Z̃

⎛
⎝

n0∏
i �= j

θ1(τ |u0
i j )θ1(τ |u0

i j − zq + ε)

θ1(τ |u0
i j + zq/2− ε1)θ1(τ |u0

i j + zq/2− ε2)

n0∏
i=1

1

θ1(τ |u0
i + z(q + p)/2− a)θ1(τ |u0

i − z(q − p)/2− a + ε)

)

s−1∏
k=1

⎛
⎝

nk∏
i �= j

θ1(τ |uk
i j )θ1(τ |uk

i j − zq + ε)

θ1(τ |uk
i j + zq/2− ε1)θ1(τ |uk

i j + zq/2− ε2)

nk∏
i=1

nk−1∏
j=1

θ1(τ |uk
i − uk−1

j − zq/2+ ε1)θ1(τ |uk
i − uk−1

j − zq/2+ ε2)

θ1(τ |uk−1
j − uk

i )θ1(τ |uk−1
j − uk

i + zq − ε)

⎞
⎠

n1∏
i=1

θ1(τ |u1
i + z(p − q)/2− a + ε),

(3.31)
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with

Z̃ =
s−1∏
i=0

[
1

ni !
(

2πη2(τ )θ1(τ | − zq + ε)

θ1(τ |zq/2− ε1)θ1(τ |zq/2− ε2)

)]
(η2(τ ))n0

(iη(τ))n1
. (3.32)

Aswas already pointed out in Sect. 2.3, the coupling of the D3-branes to the D7-branes
makes the theory anomalous. This chiral anomaly is encoded in the contributions
dependent on the fields coupled to the framing, namely I and J , which break a chi-
ral half of the original N = (2, 2) supersymmetry. From the point of view of the
localization formula this is most easily made manifest by studying the transformation
properties of the integrand under shifts along the generators of the torus. Let us the
recall that the Jacobi θ1(τ |z) function is defined in terms of the exponentiated modular
parameter q = e2π iτ , �τ ≥ 0, and y = e2π iz as

θ1(τ |z) = q1/8y−1/2(q, q)∞θ(τ |z),

where θ(τ |z) = (y, q)∞(qy−1, q)∞ and (a, q)∞ = ∏∞
k=0(1 − aqk) is the q-

Pochhammer symbol. By this definition it is easy to see that the Jacobi function
θ1(τ |z) is odd in z, i.e. θ1(τ |− z) = −θ1(τ |z), and that it is quasi-periodic under shifts
z → z + a + bτ , a, b ∈ Z:

θ1(τ |z + a + bτ) = (−1)a+be−2π ibze−iπb2τ θ1(τ |z), ∀a, b ∈ Z.

The anomaly then comes from the fact the integrand is unbalanced in terms of the
theta functions, exactly due to the presence of I and J (indeed their contribution
appears in the second and last lines in Eq. (3.31)). The part of the 1-loop determi-
nant coming from adjoint and bifundamental fields does not contribute to the gauge
anomaly, as it comes from an N = (2, 2) multiplet. As we already explained in
Sect. 2.3, we take care of this anomaly by introducing extra Fermi fields I and J ,
which we think can be interpreted as accounting for interactions with D7-branes. In
this way we get that the T 2 partition function is corrected by the presence of the D7
as

Ẑ D3/D7/D7
T 2,1−loop (τ, z, x) = Ẑ

⎛
⎝

n0∏
i �= j

θ1(τ |u0
i j )θ1(τ |u0

i j − zq + ε)

θ1(τ |u0
i j + zq/2− ε1)θ1(τ |u0

i j + zq/2− ε2)

n0∏
i=1

θ1(τ |u0
i + z RI /2− a)θ1(τ |u0

i + z RJ /2− a + ε)

θ1(τ |u0
i + z(q + p)/2− a)θ1(τ |u0

i − z(q − p)/2− a + ε)

)

s−1∏
k=1

⎛
⎝

nk∏
i �= j

θ1(τ |uk
i j )θ1(τ |uk

i j − zq + ε)

θ1(τ |uk
i j + zq/2− ε1)θ1(τ |uk

i j + zq/2− ε2)
(3.33)
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nk∏
i=1

nk−1∏
j=1

θ1(τ |uk
i − uk−1

j − zq/2+ ε1)θ1(τ |uk
i − uk−1

j − zq/2+ ε2)

θ1(τ |uk−1
j − uk

i )θ1(τ |uk−1
j − uk

i + zq − ε)

⎞
⎠

n1∏
i=1

θ1(τ |u1
i + z(p − q)/2− a + ε)

θ1(τ |u1
i + z RJ F/2− a + ε)

,

with

Ẑ = (−1)n1
s−1∏
i=0

[
1

ni !
(

2πη2(τ )θ1(τ | − zq + ε)

θ1(τ |zq/2− ε1)θ1(τ |zq/2− ε2)

)ni
]

. (3.34)

Two observations are due here:

1. An appropriate choice of the R-charges RI and RJ (which also determines the R-
charge RJ F relative to the multiplier for the constraint J F = 0) makes it possible
to overcome completely the anomaly issue in the integration variables and in the
U (1)R fugacity. However, asking for the double periodicity of the integrand forces
us also to impose a constraint on the twistedmasses a and a, namely ã = a−a ∈ Z.
This condition is responsible for the fact that introducing the extra fields needed
to cure the anomaly does not change the fixed point structure of the localization
computation. The procedure we adopted has one additional beneficial side effect.
In fact, even though the theory involving the D7 branes is different from the one
we started with, however it is still an interesting quantity, as it should compute a
generating functions for insertions of observables, as it was proposed in the D8/D8
case by Nekrasov in [63].

2. As for the second remark, it is interesting to study the QM limit (τ → i∞) of
the partition function at hand. In fact when we shrink one S1 in T 2 to a point, we
can decouple the contribution of the D7 branes by taking very large values of a
and by then rescaling the relevant gauge coupling. By doing this we recover the 5d
partition function one can independently compute onR

4×S1, apart from an overall
normalization factor. This will give us the equivariant Euler number of the nested
Hilbert scheme of points on C

2, possibly twisted by a power of the determinant
line bundle of the Dirac /D operator.

Now, in order to explicitly compute the partition function we need to remember
that the Jacobi θ1(τ |z) function does not have any pole; however, it has simple zeros
on the lattice z ∈ Z + τZ. Moreover, it is simple to verify that θ(τ |z)−1 has residue
in z = α + βτ given by the following formula

1

2π i

∮

z=α+βτ

1

θ1(τ |z) =
(−1)α+βeiβ

2τ

2πη3(τ )
. (3.35)

In general a careful analysis of singularities would be needed in order to understand
which poles are giving a non-vanishing contribution to the computation of the partition
function on T 2. In our particular case the poles contributing to the residue computation
will be classified in terms of nested partitionsμ1 ⊆ · · · ⊆ μs−1 ⊆ μ0. In principle this
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Table 2 Poles and zeros for {u0j }
and {u1j } in (3.33)

Poles Zeros

u0j = a u0j = a

u0j = a − ε u0j = a − ε

u0i j = ε1 u0i j = 0

u0i j = ε2 u0i j = −ε

u1j = u0i u1j = u0i − ε1

u1j = u0i − ε u1j = u0i − ε2

u1j = a − ε u1j = a − ε

u1i j = ε1 u1i j = 0

u1i j = ε2 u1i j = −ε

result couldbeobtainedvia the systematic approachof Jeffrey–Kirwan.Herewe follow
an alternative procedure by giving a suitable imaginary part to the twisted masses (for
example through the R-charges via a redefinition of the relevant parameters, as in
[64]) and by closing the integration contour in the lower-half plane. In this particular
setting we take care of redefining a, εi in such a way that �a, �εi < 0 and �a > �ε.
By the requirement on the Cartan parameters of the D7-branes, namely a − a ∈ Z,
we also have �a = �a < 0. It is sufficient to study the pole structure of the first two
integrations (namely {u0

j } and {u1
j }) in (3.33), whose poles and zeros are schematically

shown in Table 2.
The integration over the {u0

j } is standard, as it is has the same pole structure of the
standard Nekrasov partition function [64,65], and the poles contributing to the residue
computation will be described by partitions μ0. Each box in μ0 will then encode
the position of a pole for the first n0 integrations. As for the integrations over the
{u1

j } variables we first point out that the 1-loop determinant due to the D7-brane, as
a − a ∈ Z and the corresponding pole falls out of the integration contour. In the same
way also poles of the 1-loop determinant of Qi give a vanishing contributions, because
of one out of two different reasons: Either the singularity falls out of the integration
contour, or its contribution is annihilated by a zero coming from the determinants of
χ

Bi
1 . Any pole that might fall outside the Young diagram associated with μ0 must

also be excluded from the computations, because of the flag structure of the quiver
in Fig. 10. These considerations lead us to the classification of poles of the {u1

j }
integrations in terms of partitions as follows: By choosing the order of the integration
to be u1

1, u1
2, . . . , u1

n1 poles are chosen by successively picking outer corners of Yμ0 so
that the complement in Yμ0 is still a Young diagram corresponding to a partition μ1,
with |μ1| = n0 − n1. The procedure we just described is depicted in Fig. 12.

Any successive integration is done in the same way, and the poles contributing to
the integration are classified by sequences of nested partitions, as we discussed in
Sect. 3.1.3.

Boxes in the skew partitions μ0 \ μ j will denote positions for poles in the j th
integration, according to the following rule: A box of Yμ0\μk located at position (i, j)
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Fig. 12 Procedure for picking poles of {u1j } from Yμ0

inside Yμ0 (this is required by the nesting phenomenon) corresponds to the coordinate

u(k)
l = a+ (i −1)ε1+ ( j −1)ε2. One thing to be pointed out is that the assignment of

a certain Young diagram configuration do in fact specify a particular pole only up to
Weyl permutations of the coordinates: Because of this we choose a particular ordering
of the coordinates and neglect the counting factor (n0! · · · ns−1!)−1 in Ẑ.

The partition function Z D3/D7/D7
T 2 will then take the following form

Z D3/D7/D7
T 2 = Ẑres

∑
μ1⊆···μs−1⊆μ0

(
Zμ0 (ε1, ε2, a)Z J F

μ1,μ0
(ε1, ε2, a)

s−2∏
i=0

Zμi+1,μi (ε1, ε2, a)

)
,

(3.36)

with

Ẑres = (−1)n1
s−1∏
i=0

[
1

ni !
(

θ1(τ | − zq + ε)

θ1(τ |zq/2− ε1)θ1(τ |zq/2− ε2)η(τ )

)ni
]

(3.37)

Zμ0 (ε1, ε2, a) =
∏

s∈μ0\�

θ1(τ |φ(s)− a)θ1(τ |φ(s)− a + ε)

θ1(τ |φ(s))θ1(τ |φ(s)+ ε)
·

·
∏

s �=s′
s,s′∈μ0

(
θ1(τ |φ(s)− φ(s′))

θ1(τ |φ(s)− φ(s′)− ε1)

θ1(τ |φ(s)− φ(s′)+ ε)

θ1(τ |φ(s)− φ(s′)− ε2)

)
(3.38)

Zμk+1,μk (ε1, ε2, a) =
∏

s �=s′
s,s′∈μ0\μk+1

(
θ1(τ |φ(s)− φ(s′))θ1(τ |φ(s)− φ(s′)+ ε)

θ1(τ |φ(s)− φ(s′)− ε1)θ1(τ |φ(s)− φ(s′)− ε2)

)
·

·
∏

s∈μ0\μk+1
s′∈μ0\μk

(
θ1(τ |φ(s)− φ(s′)+ ε1)θ1(τ |φ(s)− φ(s′)+ ε2)

θ1(τ |φ(s′)− φ(s))θ1(τ |φ(s′)− φ(s)− ε)

)
(3.39)

Z J F
μ1,μ0

(ε1, ε2, a) =
∏

s∈μ0\μ1
s′∈μ0

θ1(τ |φ(s)+ ε)

θ1(τ |φ(s)− a + ε)
(3.40)

These formulae are to be compared with the contribution of a quiver with fixed numer-
ical type to Zell

1 (S2; q0, . . . , qs−1), in particular the contribution at each fixed point
will be the same as Z ell

(μ0,...,μs−1), which was defined in Sect. 3.1.5, but in principle
one could use the same technique in order to compute partition functions in the more
general case of a genus g Riemann surface Cg .
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Fig. 13 Low-energy GLSM quiver for a general Cg,1

3.3 General Riemann surfaces

Whenwe switch from thegenus 0 case to a genericRiemann surfaceCg with 1puncture,
we are effectively turning on a matter bundle corresponding to the contribution of g
adjoint hypermultiplets, and the quiver in Fig. 10 describing theGLSMwe are studying
gets modified into quiver in Fig. 13.

This GLSMencodes theADHMconstruction ofNr ,[r1],n,μ with additional g hyper-
multiplets in the adjoint representation, all of them with twisted mass m, which
reproduces anN = (0, 2)∗ theory.1 In the same spirit as in [13], from the point of view
of the matter fields this consists in introducing 2g adjoint chirals and 2g fundamental
chirals, with appropriate relations dictated by the brane system. As it was the case for
the theory without any adjoint hypermultiplet, each of the fundamentals we introduce
makes the theory anomalous by breaking a chiral half of the supersymmetry, and this
phenomenon can be cured by insertion of observables, encoded in D7 contributions.
The additional field content of Table 1 is summarized in Table 3, while the ADHM
relation on the n0 node must be modified

[B0
1 , B0

2 ] +
g∑

i=1
[Bi†

3 , Bi†
4 ] + I J = 0 (3.41)

and the relations (3.42)–(3.45) must be enforced through χ
(3,4),i
0 , Ki and Li .

Eadj3,i = [B1, Bi
3] − [B†

2 , Bi†
4 ] (3.42)

Eadj4,i = [B1, Bi
4] − [B†

2 , Bi†
3 ] (3.43)

EfunKi
= Bi

3 I − Bi†
4 J † (3.44)

1 Strictly speaking we are dealing with an N = (0, 2)∗ theory only in the case in which C is a g = 1
Riemann surface. In the same spirit we might want to point out that the 5d partition function to which the
elliptic index is reduced in the QM limit is not really computing the equivariant virtual χy -genus of the
vector bundle Vg , but rather the equivariant virtual Euler characteristic of an antisymmetric power of Vg .
This also means that the torus partition function is not, strictly speaking, the (equivariant virtual) elliptic
genus as it is defined in [66], as it is instead an elliptic generalization of the virtual Euler characteristic.
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Table 3 Hypermultiplet additional fields for quiver in Fig. 13

Gauge G Flavor U (1)×U (1)2 Twisted mass R-charge

Bi
3 �0 ⊗�0 1(0,0) m −q + t

Bi
4 �0 ⊗�0 1(−1,−1) ε − m −q − t

Ki �0 �(0,0) a − m −p − t

Li �0 �(1,1) −a + ε − m p − t

χ
(3),i
0 �0 ⊗�0 1(0,1) ε1 − m −t

χ
(4),i
0 �0 ⊗�0 1(−1,0) m − ε2 t

Efun
L†

i
= Bi

4 I + Bi†
3 J † (3.45)

The partition function for a general genus g Riemann surface Cg with one puncture
will now read (we take the r = 1 case for the sake of simplicity)

Zell
1 (Cg; q0, . . . , qs−1) =

∑
μ1⊆···⊆μ0

q |μ0|
0 q |μ0\μ1|

1 · · · q |μ0\μs−1|
s−1 Z ell,g

(μ0,μ1,...,μs−1),(3.46)

with

Z ell,g
(μ0,μ1,...,μs−1) = Lell

μ0
Nell

μ0
Nell

μ0
Eellg,μ0

Eellg,μ0
Tellμ0,μ1

Tellμ0,μ1
Well

μ0,...,μs−1 , (3.47)

where we defined

Eellg,μ0
=
∏

s∈Yμ0

θ
g
1 (τ |E(s)− m)θ

g
1 (τ |E(s)− ε + m), (3.48)

Eellg,μ0
=

∏
s∈μ0\�

1

θ
g
1 (τ |φ(s)− ã − m)θ

g
1 (τ |φ(s)− ã + ε − m)

. (3.49)

We remark that by setting g = 0 we readily recover the function Z ell
(μ0,...,μs−1) which

is needed in order to compute the partition function Zell
1 (S2; q0, . . . , qs−1).

In the same way as we did in Sect. 3.1.5, we can compute the full partition function
Zell
1 (Cg; q0, . . . , qs−1) by first summing over the nested partitions μ1 ⊆ · · · ⊆ μs−1

and use the definition (3.27) of Pell in order to get

Zell
1 (Cg; q0, . . . , qs−1) =

∑
μ0

q |μ0|
0 Yell

g,μ0
Pell

μ0
, (3.50)
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Fig. 14 Comet-shaped quiver

with the following definition of Yell
g,μ0

Yell
g,μ0

= Lell
μ0
Nell

μ0
Nell

μ0
Eellg,μ0

Eellg,μ0
. (3.51)

Again we remark that Pell
μ0

qi>0→0−−−−→ 1 so that Zell
1 (Cg; q0, . . . , qs−1)

qi>0→0−−−−→
Zell
1 (Cg; q0).

3.3.1 Comet-shaped quiver

Finally, we are interested in computing the partition function on a Riemann surface
Cg with k punctures of generic holonomy, whose low-energy GLSM is in general
described by the quiver in Fig. 14.

We will start from the case of C0 = S2, which will take the form (3.52)

Zell
k (S2; q0, {qi

1, . . . , qi
s−1}) =

∑
μ0

q |μ0|
0

∑

{μi
1⊆···⊆μi

s−1}ki=1

k∏
j=1

(
q
|μ0\μ j

1 |
1 · · ·

· · · q |μ0\μ j
s−1|

s−1
)

Z ell
(μ0,{μi

1,...,μ
i
s−1})

.

(3.52)
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In this case the virtual tangent space to Nr ,[r1],n,μ in (3.15) will be modified to be of
the form (3.53).

T vir
Z N(r , {ni

0, . . . , ni
s−1}) = End(V0)⊗ (Q − 1−�2Q)+ Hom(W , V0)

+ Hom(V0, W )⊗�2Q −
k∑

i=1
Hom(V (k)

1 , W )⊗�2Q

+
k∑

i=1

s−1∑
	=1

[ (
End(V (k)

	 )− Hom(V (k)
	 , V (k)

	−1)
)
⊗

⊗ (Q − 1−�2Q)

]
.

(3.53)

By a simple generalization of the computations leading to (3.16) it is possible to see
that Zell

k (S2; q0, {qi
1, . . . , qi

s−1}) takes a form similar to (3.28), as is shown in (3.54)

Zell
k (S2; q0, {qi

1, . . . , qi
s−1}) =

∑
μ0

q |μ0|
0 Yell

μ0

k∏
i=1

Pell,i
μ0

, (3.54)

with

Pell,i
μ0

=
∑

μi
1⊆···⊆μi

s−1

Tell
μ0,μ

i
1
Tellμ0,μ

i
1
Well

μ0,...,μ
i
s−1

(
qi
1

)|μ0\μi
1| · · ·

(
qi

s−1
)|μ0\μi

s−1|
,

(3.55)

and the functions Tell
μ0,μ

i
1
, Tellμ0,μ

i
1
andWμ0,...,μ

i
s−1

take the same form as in Eqs. (3.19)–

(3.24).
By a completely analogous procedure we can get that partition function of the low-

energy theory relative to a general Riemann surface of genus g, possibly g = 0. By
using the results of Sect. 3.3, we easily see that

Zell
k (Cg; q0, {qi

1, . . . , qi
s−1}) =

∑
μ0

q |μ0|
0

∑

{μi
1⊆···⊆μi

s−1}ki=1

k∏
j=1

(
q
|μ0\μ j

1 |
1 · · ·

· · · q |μ0\μ j
s−1|

s−1
)

Z ell,g
(μ0,{μi

1,...,μ
i
s−1})

.

(3.56)

By turning on the matter bundle described in Sect. 3.3 on the moduli space of nested
instantonsN(r , n0, {ni

1, . . . , ni
s−1}), whose virtual tangent space is given in Eq. (3.53)
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as an element of the representation ring of the torus R(T ), the suspersymmetric local-
ization theorem (or equivalently the equivariant one) gives us (3.57),

Zell
k (Cg; q0, {qi

1, . . . , qi
s−1}) =

∑
μ0

q |μ0|
0 Yell

g,μ0

k∏
i=1

Pell,i
μ0

, (3.57)

where Pell,i
μ0

is defined in (3.55) and Yell
g,μ0

is the same one as in Eq. (3.51).
A couple of final remarks are due here. First of all we notice that we can switch off

any number of the contributions of the tails of the comet-shaped quiver in Fig. 14 by
taking the limit to 0 of the respective instanton counting parameters. Then, given any
k′ < k we have that

Zell
k (Cg; q0, {qi

1, . . . , qi
s−1})

q j
i →0−−−−−−−→

i=1,...,s−1
j=k′+1,...,k

Zell
k′ (Cg; q0, {qi

1, . . . , qi
s−1}). (3.58)

Moreover,we expect our partitions functions to be computing the equivariant elliptic
cohomology of the moduli spaces of stable representations of quivers in Figs. 10, 11,
12 and 14, as in [67].

3.4 Limit to supersymmetric quantummechanics

We now want to study a particular dimensional reduction of the 2d N = (0, 2) system
we studied on T 2 in the previous subsections. By reducing on a circle we get theWitten
index of anN = 2 SQM. This dimensional reduction can be obtained from the elliptic
case we just studied by taking the limit e2π iτ → 0. In this scaling limit we can use the
fact that θ1(τ |z) → 2q1/8 sin(π z) as q = e2π iτ → 0. In the resulting theory on S1

we can decouple the D7 branes by taking very large values of the Cartan parameter a
and then rescaling the gauge coupling. Moreover, the quantum mechanical partition
function can be obtained by itself via localization, and the result agrees with the
decoupling procedure we just described. Indeed, the D7-branes only act as a source
of observables matching the anomaly, so they do not give rise to new poles in the
localization integral. Moreover, the observables they generate do not contribute in the
dimensionally reduced theory, whose moduli space is zero-dimensional, i.e. it does
not display unbalanced fermionic zero modes. As we already anticipated, we will see
how the results we obtain by this procedure compute particular equivariant virtual
invariants of the bundle Vg over the moduli space of nested instantons Nr ,[r1],n,μ,
which is described by the stable representations of the quiver in Fig. 13. A bit of care
is required in order to take the correct scaling limit, and in particular one has to require
that q → 0, while vol(T 2) → β = rS1 . Moreover, one should take into account
that in the S1 theory twisted masses are also rescaled by β, so that the result may be
expressed in terms of q1 = eβε1/2, q2 = eβε2/2 and y = e−βm .

The geometric interpretation of the Witten index of the quiver gauge theories
described in the previous section is the equivariant (virtual) Euler characteristic of
a given bundle over the moduli space of nested instantons. Then, computing the Wit-
ten index geometrically amounts to studying the stable representations in the category
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of vector spaces of the quiver in Fig. 4 under suitable stability conditions. This proce-
dure has the advantage of letting us compute the weight decomposition of the virtual
tangent space T vir

Z Nr ,[r1],n,μ at the fixed points Z in the representation ring of the torus.
The way in which this is done is very briefly described in Sect. 3.1.3. As it is shown in
Sect. 3.1.3, the fixed locus of the torus action consists only of isolated points, which are
characterized in terms of s-tuples of nested colored partitions µ1 ⊆ · · ·µs−1 ⊆ µ0,
such that |µ0| = n0 = n, while |µ j | = n0 − n j .

Once the fixed point locus has been completely characterized and a weight
decomposition of the virtual tangent space is at hand, one can in full generality
define an s-parameter family of partition functions on Nr ,[r1],n,μ, with parameters
p = (p0, p1, . . . , ps−1) ∈ Z

s . In terms of the quiver vector spaces (W , V0, . . . , Vs−1)
one can introduce (s + 1)-tautological bundles W and Vi , i = 0, . . . , s − 1, with
W = ONr ,[r1],n,μ

. We can then define Li = det Vi , Lp = ⊗
i L

⊗pi
i and compute the

virtual Euler characteristic of the bundle S ⊗ Lp over Nr ,[r1],n,μ, with S an arbitrary
irreducible representation of T . The generating function of the virtual Euler charac-
teristics of the moduli space of nested instantons in (3.59) will then reproduce the QM
partition function 2.21, when p = (1− g, 0, . . . , 0).2

Zvir
p (q1, q2, x) =

∑
n∈Zs≥0

chT χvir
T

(
Nr ,[r1],n,μ,Lp

) s∏
i=1

xni
i . (3.59)

In the following we use the notation chT to denote the T -equivariant Chern character
of a vector bundle, which has a very convenient representation in the representation
ring R(T ). The usual Chern character is defined as follows: If E is rank r vector bundle
over X , with Chern roots x1, . . . , xr , then one defines

ch(E) =
r∑

i=1
exi , (3.60)

which can be equivariantly extended to a ring homomorphism chG : K i
G(X) →

Hi
G(X̂ , C), where X̂ = {(x, g) ∈ X × G|xg = x} = ∐

g X g and Hi
G(X̂ , C) �[⊕

g Hi (X g, C)
]G

. The effect of chG can be concretely characterized as follows:

If E is a G-equivariant vector bundle on X , for each x ∈ X g , we can compute the
eigenvalues (supposed to be distinct)λ1, . . . , λr of theG-action, and the corresponding
eigenspaces E1

x , . . . , Er
x , so that E |X g can be represented as the direct sum of vector

bundles

EX g = E1 ⊕ · · · ⊕ Er . (3.61)

2 It is interesting to compare the role of this line bundle L to the way in which the Chern–Simons term was
introduced in Sect. 2.9. In particular it turns out that the vector space V0 can be recognized to be the space
of fermionic zero modes, [56,68,69], so that the identification of L(1,0,...,0) = det V0 with Det /D is in fact
quite natural.
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Finally, one defines chg(E) =∑i λi ch(Ei ), so that

chG(E) =
⊕
g∈G

chg(E) ∈
⎡
⎣⊕

g∈G

H ev(X g, C)

⎤
⎦

G

. (3.62)

TheChern character, and also the equivariant Chern character, satisfies some impor-
tant properties which we will use extensively in the following:

ch(E ⊕ F) = ch E + ch F, ch(E ⊗ F) = ch E ch F . (3.63)

If we restrict to the case p = (p0, 0, . . . , 0), the fiber of Lp at a fixed point Z ↔
µ1 ⊆ · · · ⊆ µs−1 ⊆ µ0 will be given by (3.64),

LZ = Lµ0 =
⎛
⎜⎝

r∏
α=1

M(a)
0∏

i=1

μ
(a)′
0,i∏

j=1
Taα T−i+1

1 T− j+1
2

⎞
⎟⎠

p0

, (3.64)

where (T1, T2, Ta1 , . . . , Tar ) denote the fundamental characters of T × (C∗)r acting
on Nr ,[r1],n,μ and M (a)

0 = μ
(a)′
0,1 , N (a)

0 = μ
(a)
0,1.

Then, supersymmetric localization (equivalently equivariant localization) can be
exploited in order to compute partition functions (equivalently virtual equivariant
Euler characteristics). If we start from the case g = 0 we get

chT

[
χvir

T

(
N(r ,n),Lp

)] =
∑

Z∈NT
r ,[r1],n,μ

chT LZ

�−1
[
T vir

Z N∨
r ,[r1],n,μ

]

=
∑

µ1⊆···⊆µs−1⊆µ0

(
Lµ0(q1, q2)

�−1
[
TZ̃M

∨
r ,n0

]Tµ0,µ1(q1, q2)·

·Wµ0,...,µs−1(q1, q2)

)
,

(3.65)

with�t (E) =∑i≥0 t i�i E for any (equivariant) vector bundle E onNr ,[r1],n,μ, while
Lµ0(q1, q2), Wµ0,...,µs−1(q1, q2) and Tµ0,µ1(q1, q2) are given by Eqs. (3.66)–(3.68),

Lµ0(q1, q2) =
⎛
⎜⎝

r∏
a=1

M(a)
0∏

i=1

μ
(a)′
0,i∏

j=1
ρaqi−1

1 q j−1
2

⎞
⎟⎠

p0

(3.66)

Tµ0,µ1(q1, q2) =
r∏

a=1

M(a)
0∏

i=1

μ
(a)
0,i −μ

(a)
1,i∏

j=1

(
1− ρaq−i

1 q
− j−μ

(a)′
1,i

2

)
(3.67)
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Wµ0,...,µs−1(q1, q2) =
s−2∏
k=0

r∏
a,b=1

M(a)
0∏

i=1

N (b)
0∏

j=1

⎛
⎜⎝ (1− ρaρ−1b q

μ
(b)
k, j−i

1 q
j−μ

(a)′
k+1,i−1

2 )

(1− ρaρ−1b q
μ

(b)
k+1, j−i

1 q
j−μ

(a)′
k+1,i−1

2 )

(1− ρaρ−1b q
μ

(b)
k+1, j−i

1 q
j−μ

(a)′
0,i −1

2 )

(1− ρaρ−1b q
μ

(b)
k, j−i

1 q
j−μ

(a)′
0,i −1

2 )

⎞
⎟⎠ (3.68)

with ρi = ch Tai and similarly qi = ch Ti .
The generalization to the case of a general Riemann surface Cg of genus g is

immediate, as it only amounts to computing the “virtual Hirzebruch χy-genus” of the
bundle π∗Vg → Nr ,[r1],n,μ. This is obviously the same as turning on a matter bundle
relative to additional g adjoint hypermultiplets, whose twisted mass m is naturally
identified with y in the Hirzebruch genus by exponentiation.

chT χT ,vir
y

(
π∗Vg,Nr ,[r1],n,μ

) =
∑

µ1⊆···⊆µs−1⊆µ0

(
chT (Lµ0 ) chT �y[(Tµ0M∨

r ,n0 )
⊕g]

chT �−1[Tµ0M∨
r ,n0 ]

·

·Tµ1,µ0 (q1, q2)
s−2∏
i=0

Wµ0
µi+1,µi

(q1, q2)

)
.

(3.69)

Surprisingly enough, explicit computations suggest that the partition function of each
choice of numerical type for the nested instantons quiver should consists of a usual
Nekrasov partition function multiplied by a polynomial in the torus characters. This
observation is summarized in the following conjecture.

Conjecture 1 he function
∑

µi>0
Tµ0,µ1(q1, q2)Wµ0,...,µs−1(q1, q2) is a polynomial in

q = q−11 and t = q−12 with rational coefficients in the {ρi }1≤i≤r , while it is a polyno-
mial with integer coefficients when r = 1.

3.5 Comparison to LHRV formulae

The Nekrasov partition function on R
4 × S1 is known to have the following form

ZR
4×S1

k,N =
∑
Yk

N∏

λ,λ̃=1

∏
s∈Yλ

sinh
[

β
2 (E(s)− m))

]
sinh

[
β
2 (E(s)− ε + m)

]

sinh
[

β
2 E(s)

]
sinh

[
β
2 (E(s)− ε)

] , (3.70)

where E(s) = aλλ̃−ε1h(s)+ε2(v(s)+1), and given twoYoung diagramsYλ, Yλ̃ ∈ Yk

the quantities h(s) and v(s) are defined to be h(s) = νiλ − jλ and v(s) = ν̃′jλ −
iλ. We will be interested in the specialization of the Nekrasov partition function to
the case N = 1, so that h(s) and v(s) will become, respectively, the arm length
a(s) and leg length l(s) for the box s in the Young tableaux classifying a given pole
configuration. Now, following the conventions of [55], let x1 = {x1,1, x1,2, . . . } and
xk = {xk,1, xk,2, . . . } be k infinite sets of variables and letmoreover�(x1), . . . , �(xk)
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be the corresponding rings of symmetric functions. Given a partition λ, H̃λ(x; q, t) ∈
�(x)⊗ZQ[q, t]will denote the modifiedMacdonald symmetric function. The k-point
genus g Cauchy function �(z, w), with coefficients in Q[z, w] ⊗Z �(x1, . . . , xk), is
defined as follows:

�(z, w) =
∑
λ∈P

Hλ(z, w)

k∏
i=1

H̃λ(xi ; z2, w2), (3.71)

with

Hλ(z, w) =
∏
s∈λ

(z2a(s)+1 − w2l(s)+1)2g

(z2a(s)+2−w2l(s)
)(z2a(s) − w2l(s)+2)

. (3.72)

The modified Macdonald polynomials H̃λ(x; q, t) are defined as

H̃λ(x; q, t) =
∑
μ

K̃μλ(q, t)sμ(x), (3.73)

where sλ(x) are the usual Schur functions, while K̃λμ(q, t) denotes the modified
Kostka polynomials, which are expressed in terms of the usual Kostka polynomials
as

K̃λμ(q, t) = tn(μ)Kλμ(q, t−1), (3.74)

with n(μ) =∑l(μ)
i=1 μi (i−1), and Kλμ(q, t) can be interpreted as being a deformation

of the Kostka coefficients Kλμ appearing in the expansion of the Schur polynomials
in terms of the monomial symmetric functions:

sλ(x) =
∑
μ

Kλμmμ(x). (3.75)

Moreover, the modified Macdonald polynomials can be viewed as a q-deformation
of the standard Hall–Littlewood polynomials, and are related in a non-trivial way to
theMacdonald polynomials Pμ(x; q, t), which are eigenfunctions of the trigonometric
Ruijsenaars–Schneider Hamiltonian [70,71]:

H̃λ[X; q, t] = tn(λ) Jλ

[
X

1− 1/t
; q, 1/t

]
, (3.76)

where X denotes the plethystic substitution X = x1 + x2 + x3 + · · · , the square
brackets are to be intended as a plethystic insertion and

Jλ(x; q, t) =
∏
s∈λ

(
1− qaλ(s)t lλ(s)+1) Pλ(x; q, t). (3.77)
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The modified Macdonald polynomials are also eigenfunctions of a linear operator �,
[72], which acts on a symmetric function f as

� f = f

[
X + (1− q)(1− t)

z

]
�[−zX ]

∣∣∣∣
z0

, (3.78)

where �[X ] =∑∞
n=0 hn(X) and (•)|z0 denotes the constant part in z.

We will think to �(z, w) as being a function associated with a genus g Riemann
surface with k punctures. Moreover, if we are give µ = (μ1, . . . , μk) ∈ Pk we can
define the following function

Hµ(z, w) = (z2 − 1)(1− w2)〈PL�(z, w), hµ〉, (3.79)

where hµ = hμ1(x1) · · · hμk (xk) ∈ �(x1, . . . , xk) are the complete symmetric func-
tions, and 〈·, ·〉 is an extension of the Hall pairing. The interest in Hµ(z, w) lays in
the fact that it encodes information both about GLn(C) character varieties Mµ of
k-punctured genus g Riemann surfaces with generic semisimple conjugacy classes of
typeµ at the punctures and about comet-shaped quiversQµ with g loops and k tails of
length defined by µ. It is in fact conjectured that through the knowledge of Hµ(z, w)

we can get the mixed Hodge polynomial and the E-polynomial (and thus the Euler
characteristic) of both these character varieties and quiver varieties.

If we now study the particular case of comet-shaped quivers with k = 1, l(μ) = 1
and g = 1, whose corresponding quiver is the Jordan quiver, we can specialize x =
(T , 0, . . . ) for some variable T and H̃λ(T , 0, . . . ; z, w) = T |λ|, so that

�(z, w) =
∑

k

∑
|λ|=k

∏ (
z2a(s)+1 − w2l(s)+1)2

(
z2a(s)+2 − w2l(s)

) (
z2a(s) − w2l(s)+2)T |λ|. (3.80)

If we now compare (3.80) to (3.70) in the case N = 1, with m = ε/2, we can

immediately see how closely�(z, w) resembles to
∑

k ZR
4×S1

k,1 qk as long as we make

the identifications z2 = eβε1 , w2 = eβε2 and T = q, q being the instanton counting
parameter.

If we next take g to be arbitrary, but still take k = 1 and l(μ) = 1 a generalization of
our previous observations is straightforward. In fact, as we already pointed out in the
previous sections, adding loops to the Jordan quiver has the net effect of introducing
2g+ 2 matter fields B1, B2, B(i)

3 , B(i)
4 (with i = 1, . . . , g) transforming in the adjoint

representation of the gauge groupU (k). The role played by each of the B(i)
3 , B(i)

4 fields
is analogous to the one of B3 and B4 in the ADHM linear sigma model with adjoint
matter. Since all of these fields do not contribute with poles to the residue computation
of the localization formula, if we choose their twisted masses and R-charges to be the
same as the ones for B3 and B4 their net effect will be that of introducing a gth power
to the numerator of (3.70) (which really is the meaning of turning on a matter bundle
for g adjoint hypermultiplets twisted by their mass m).
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Actually one needs to turn on a Chern–Simons coupling in order to exactly repro-
duce �(z, w) starting from a gauge theory. In fact we can rewrite (3.80) as

�(z, w) =
∑

k

∑
|λ|=k

∏
s∈λ

[
(−1)g−1 (z2a(s)+1w2l(s)+1)g

z2a(s)+2w2l(s)+2 ·

· (1− z−2a(s)−1w2l(s)+1)g(1− z2a(s)+1w−2l(s)+1)g

(1− z−2a(s)−2w2l(s))(1− z2a(s)w−2l(s)−2)
T |λ|

] (3.81)

and we can easily see that

∏
s∈λ

(z2a(s)+1w2l(s)+1)g

z2a(s)+2w2l(s)+2 = 1

(zw)|λ|
∏
s∈λ

(z2a(s)+2w2l(s)+2)g−1

= 1

(zw)|λ|
(

z2
∑

s (a(s)+1)w2
∑

s (l(s)+1)
)g−1

= 1

(zw)|λ|
(

z2
∑

s i(s)w2
∑

s j(s)
)g−1

= (zw)|λ|(2g−2)

ea(g−1)|λ|(zw)|λ|
∏
s∈λ

(
eaz2(i(s)−1)w2( j(s)−1))g−1

,

which apart from a harmless overall normalization, is the contribution of a Chern–
Simons interaction at level 1− g, [56]. Thus, we conclude that the partition function
for the 5d N = 1∗ ADHM quiver theory with g adjoint hypermultiplets and a Chern–
Simons term at level 1 − g reproduces the Cauchy function (3.82) when resummed
over all the instanton sectors (see also [73]).3

�(z, w) =
∑

k

∑
|λ|=k

∏ (
z2a(s)+1 − w2l(s)+1)2g

(
z2a(s)+2 − w2l(s)

) (
z2a(s) − w2l(s)+2)T |λ|. (3.82)

As it was shown in [21,48], one interesting thing to point out in Eq. (3.82) is that
it computes a generating function for a geometric index. It is actually known that the
moduli space of stable representations for the ADHM data (3.83) is isomorphic to the
Hilbert scheme of dim(V ) = n points in C

2 when dim(W ) = 1.

V W

B1

B2

J

I
, [B1, B2] + I J = 0 (3.83)

3 The 5d N = 1∗ theory here is intended to be abelian (as we focused only on the case N = 1 after eq.
(3.70)) and it amounts to a free theory of g adjoint hypermultiplets, as displayed in Eq. (3.72).
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Then, �λ(q1, q2) such that �(z, w) = ∑
k �λ(z2, w2)T |λ| is computing the Hirze-

bruch χy-genus of a vector bundle over (C2)[n]. In particular we have [21,74]

∑
λ∈P(n)

�λ(q1, q2, y) = chT χy

[(
T∨(C2)[n]

)⊕g ⊗ (det T)1−g , (C2)[n]
]

=
∑

λ∈P(n)

chT (det T)1−g chT �y
[
(T∨

λ (C2)[n])⊕g
]

chT �−1
[
T∨

λ (C2)[n]
] ,

(3.84)

where det T denotes the determinant line bundle on (C2)[n] and y = e−m .
It was proved in [21] that a similar result holds true also for the genus g Cauchy

function relative to punctured Riemann surfaces with non-trivial holonomy around
the punctures. In the case of a single puncture (assumed to be generic) of type μ, the
Cauchy function at fixed |λ| = n computes the residual equivariant Hirzebruch genus
of a vector bundle over a nested Hilbert scheme of n points N1,[11],n,µ on C

2:

∑
λ∈P(n)

Hλ(z, w)H̃λ(x; z2, w2) = chT χy
[
π∗Vg,N1,[11],n,µ

]
, (3.85)

where π : N1,[11],n,µ → (C2)[n] is the natural projection of the nested Hilbert scheme

to the underlying Hilbert scheme of n points on C
2, and Vg = (

T∨(C2)[n]
)⊕g ⊗

(det T)1−g . Moreover, the rhs of (3.85) can be computed in terms only of characters
of vector bundles over (C2)[n] = Hilbn(C2) due to a result by Haiman, [21,75], and
we have that

chT χy
[
π∗Vg,N1,[11],n,µ

]

=
∑

λ∈P(n)

chT (det T)1−g chT �y
[
(T∨

λ (C2)[n])⊕g
]

chT �−1
[
T∨

λ (C2)[n]
] chT (Pγ

μ), (3.86)

wherePγ is a vector bundle over (C2)[n] whose fibers over closed points [I ] ∈ (C2)[n]
are isomorphic to permutation representations of Sn .

By virtue of what we showed in Sect. 3.4, we expect our results to give a virtual
refinement of the formulae found in [21,55]. For the sake of simplicity, let us start
from studying the case of a quiver consisting of only two gauge nodes and r = 1,
corresponding to a complex curve C of genus g = 0.We already computed in Sect. 3.4
the partition function relative to any generic quiver of the type shown in Fig. 4, with
(r0, r1, . . . , rs−1) = (r , 0, . . . , 0). We will then be computing the generating function

Z (p0,p1)
vir =

∑

n∈Z2≥0

Z (p0,p1)
n

1∏
i=0

xni
i =

∑

n∈Z2≥0

chT χvir
T

(
N1,[11],n,γ (n),L(p0,p1)

) 1∏
i=0

xni
i ,

(3.87)
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where γ (n) is the ordered sequence determined by ni determining the relevant quiver
variety of numerical type (1, n̂0, n̂1).

We will restrict our attention to p = (p0, 0), in which case the restriction LZ of
L(p0,0) to the fixed point under T � N1,[11],n,γ (n) is

LZ =
⎛
⎝

M1∏
i=1

ν′i∏
j=1

T−i+1
1 T− j+1

2

⎞
⎠

p0

. (3.88)

The result obtained in Sect. 3.4 by means of SUSY localization then specializes in
this case to the form (3.89):

Z (p0,0)
n =

∑
Z=(ν,μ)

(|ν|,|μ|)=γ (n)

chT LZ

�−1
[
T vir

Z N∨
1,[11],n,γ (n)

]

=
∑

Z=(ν,μ)
(|ν|,|μ|)=γ (n)

Lν(q1, q2)W̃(ν,μ)(q1, q2)

�−1
[
TZ̃M

∨
1,n0

] , (3.89)

with

Lν(q1, q2) =
⎛
⎝

M1∏
i=1

ν′i∏
j=1

qi−1
1 q j−1

2

⎞
⎠

p0

, (3.90)

and

W̃(ν,μ) =
M1∏
i=1

N1∏
j=1

(1− q
μ j−i
1 q

j−ν′i−1
2 )(1− q−i

1 q
j−μ′i−1
2 )

(1− q
μ j−i
1 q

( j−μ′i−1
2 )(1− q−i

1 q
j−ν′i−1
2 )

M1∏
i=1

ν′i−μ′i∏
j=1

(1− q−i
1 q

− j−μ′i
2 )

(1− q−11 q−12 )
,

(3.91)

where as usual, q1 = chT T1 and q2 = chT T2.
In order to support our conjecture that the quiver we studied so far do indeed provide

an ADHM-type construction for the nested Hilbert scheme of points on C
2 we will

show some relevant examples in the following. In the two-step quiver case this is true
by a result of [54], which moreover implies that the non-abelian quiver provides an
ADHM description for the moduli space of framed torsion-free flags of sheaves on
P
2. A very brief review of the result of [54] which are useful for what follows can

be found in “Appendix C.” Even in the two-step case we can still compare the results
coming from direct localization computations to the formulae in [21,55]. In particular,
since the nested Hilbert scheme of points is known to be non-smooth except for the
case (n0, n1) = (n, 1) or (n0, n1) = (n, 0), the polynomials we get multiplied by
the Nekrasov partition function order by order are expected to reproduce the modified
Macdonald polynomials H̃λ(x; q, t)when n1 = 1. For the sake of ease of comparison,
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in what followswewill use the notationN(r , n0, . . . , ns−1), which is found in [21,54],
instead of Nr ,[r1],n,μ.

Example 2 If n = (n, 0) we need to compute the partition function forN(1, n, 0), and
obviously the partition function reproduces the result in Eq. (3.82), for g = 0.

Example 3 Take n = (1, 1), so thatF(1, 1, 1) � N(1, 2, 1) � Hilb(1,2)(C2), [54]. We
have two different choices for the fixed points:

(ν, μ) = = (21, 11) or (ν, μ) = = (12, 11) (3.92)

and we have for the partition function

Z (1−g,0)
n (x; q, t) =

∑
ν

Z (1−g,0)
n,ν (x; q, t)

= x0x1

⎧
⎨
⎩
∑
(ν,μ)

Lν(q−1, t−1)W̃(ν,μ)(q−1, t−1)
�−1

[
TZ̃M

∨
1,n0

]
⎫
⎬
⎭ (3.93)

with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Z (1−g,0)
n,21

(x; q, t) = L21(q
−1, t−1)

�−1
[
T21M∨

1,n0

] (1+ q)x0x1

Z (1−g,0)
n,12

(x; q, t) = L12(q
−1, t−1)

�−1
[
T12M∨

1,n0

] (1+ t)x0x1

(3.94)

By putting together with the previous example, we have that

Z1−g,0
|n|=2 =

∑
ν∈P(2)

Lν(q−1, t−1)
�−1

[
TνM∨

1,n0

] H̃ν(x0, x1; q, t)

=
∑

ν∈P(2)

Hg=0
ν (z, w)H̃ν(x0, x1; z2, w2)

(3.95)

We want to point out that the elliptic counterpart to the polynomials determined by
W̃(ν,μ) are the following

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pell(x; ε1, ε2)
∣∣∣∣∣
x0x1

= θ1(τ |2ε1)
θ1(τ |ε1) ,

Pell(x; ε1, ε2)
∣∣∣∣∣
x0x1

= θ1(τ |2ε2)
θ1(τ |ε2) ,

(3.96)

which obviously reduce to the corresponding modified Macdonald polynomials coef-
ficients when τ → i∞.
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Example 4 Let’s now consider n to be such that n0 + n1 = 3. The only quantity we
need to compute is related to n = (2, 1), which corresponds to N(1, 3, 1). We have
the following possibilities for the fixed points:

{(ν, μ)} =
⎧⎨
⎩ , , ,

⎫⎬
⎭ (3.97)

and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

W̃ (q−1, t−1) = (1+ q + q2)

W̃ (q−1, t−1)+W (q−1, t−1) = (1+ q + t)

W̃ (q−1, t−1) = (1+ t + t2)

(3.98)

As in the previous example, we can exhibit explicitly the elliptic counterparts to these
modified Macdonald polynomials, which read:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pell (x; ε1, ε2)
∣∣∣∣∣
x20 x1

= θ1(τ |3ε1)
θ1(τ |ε1) ,

Pell(x; ε1, ε2)
∣∣∣∣∣
x20 x1

=
(

θ1(τ |2ε1 − ε2)

θ1(τ |ε1 − ε2)
+ θ1(τ |2ε2 − ε1)

θ1(τ |ε2 − ε1)

)
,

Pell(x; ε1, ε2)
∣∣∣∣∣
x20 x1

= θ1(τ |3ε2)
θ1(τ |ε2) .

(3.99)

Example 5 As a final example of a smooth nested Hilbert scheme of points we will
take N(1, 4, 1), so that the fixed points will be

{(ν, μ)} =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

, , , , , ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.100)
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by which we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W̃ (q−1, t−1) = (1+ q + q2 + q3)

W̃ (q−1, t−1)+ W̃ (q−1, t−1) = (1+ q + q2 + t)

W̃ (q−1, t−1) = (1+ q + t + qt)

W̃ (q−1, t−1)+ W̃ (q−1, t−1) = (1+ t + t2 + q)

W̃ (q−1, t−1) = (1+ t + t2 + t3)

(3.101)

which again reproducemodifiedMacdonald polynomialswhich can be found tabulated
in the mathematical literature. Their elliptic counterpart is now given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pell (x; ε1, ε2)
∣∣∣∣∣
x30 x1

= θ1(τ |4ε1)
θ1(τ |ε1) ,

Pell (x; ε1, ε2)
∣∣∣∣∣
x30 x1

=
(

θ1(τ |2ε1)
θ1(τ |ε1)

θ1(τ |3ε1 − ε2)

θ1(τ |2ε1 − ε2)
+ θ1(τ |2ε2 − 2ε1)

θ1(τ |ε2 − 2ε1)

)
,

Pell(x; ε1, ε2)
∣∣∣∣∣
x30 x1

=
(

θ1(τ |2ε1)
θ1(τ |ε1)

θ1(τ |2ε2)
θ1(τ |ε2)

)
,

Pell(x; ε1, ε2)
∣∣∣∣∣
x30 x1

=
(

θ1(τ |2ε2)
θ1(τ |ε2)

θ1(τ |3ε2 − ε1)

θ1(τ |2ε2 − ε1)
+ θ1(τ |2ε1 − 2ε2)

θ1(τ |ε1 − 2ε2)

)
,

Pell(x; ε1, ε2)
∣∣∣∣∣∣
x30 x1

= θ1(τ |4ε2)
θ1(τ |ε2) .

(3.102)

The following is the easiest example of a non-smooth nestedHilbert scheme, namely
N(1, 4, 2), and we can see how in this case our computation does not reproduce the χy

genus of [21], hence the formulae of [55], giving instead their virtual generalization.

Example 6 Take (n0, n1) = (4, 2). The prescription for the fixed points gives us

{(ν, μ)} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

, , , , , , ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.103)
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by which we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W̃ (q−1, t−1) = 1+ q + 2q2 + q3 + q4 − q2t − q3t − 2q4t − q5t − q6t

W̃ (q−1, t−1)+ W̃ (q−1, t−1) = 1+ q + 2q2 + t + qt − q2t − q3t

− q4t − qt2 − q2t2 − q3t2

W̃ (q−1, t−1)+ W̃ (q−1, t−1) = 1+ q + q2 + t + qt + t2 − q2t − qt2

− 2q2t2 − q3t2 − q2t3

W̃ (q−1, t−1)+ W̃ (q−1, t−1) = 1+ q + t + qt + 2t2 − q2t − qt2

− q2t2 − qt3 − q2t3 − qt4

W̃ (q−1, t−1) = 1+ t + 2t2 + t3 + t4 − qt2 − qt3 − 2qt4 − qt5 − qt6

.(3.104)

The polynomials above contain the coefficients for the modified Macdonald polyno-
mials which in this case read

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H̃ (q, t)|x20 x21
= 1+ q + 2q2 + q3 + q4

H̃ (q, t)|x20 x21
= 1+ q + 2q2 + t + qt

H̃ (q, t)|x20 x21
= 1+ q + q2 + t + qt + t2

H̃ (q, t)|x20 x21
= 1+ q + t + qt + 2t2

H̃ (q, t)|x20 x21
= 1+ t + 2t2 + t3 + t4

(3.105)

As a final remark let us point out that, even though the GLSM partition function is
naturally computing virtual invariants, as the moduli spaceN(r , n0, n1) is in general a
singular quasi-projective variety, [76], however one should be able to use equivariant
localization to compute usual topological invariants also for singular varieties [77,78].
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Appendices

A Low-energy theory forD3/D7

Let us here sketch a derivation of the low-energy effective theory of the D3−D7
system at an orbifold point by studying the equations of motion reduced on T 2 × C.
This amounts to solve the BPS equations

F (2,0) = 0, ∂A�S = 0, ∂A Bi = 0, ∂A I = 0, ∂A J = 0 (A.1)

ω · F + [Bi , B†
i ] + [�S,�

†
S] + I † I − J J † = ζ1N (A.2)

while we minimize the super potential

W = Tr {�S ([B1, B2]+ I J )} . (A.3)

Let us now focus in the vicinity of the orbifold point, where the local geometry of C
is C/Zs and that of T ∗C is the ALE quotient C

2/Zs . There the Chan–Paton bundle
of the open string modes decomposes in Zs-representations as already discussed in
Sect. 2. (A.1) admit vortex solutions centered at the orbifold point, whose vorticity
is fixed by the order of the cyclic group. On the vortex background, the gauge field
along C/Zs becomes massive due to the Higgs mechanism and decouples from the
low-energy spectrum.

Unpacking the open strings moduli in the Vj twisted sectors one gets the degrees of
freedom in (2.8) and the relations (2.9). Let us now discuss how these arise. Themodes
B j
1 and B j

2 come from the Zs representation of the B1 and B2 fields and analogously
I j and J j from I and J . The further degrees of freedom arise from �S , that is,
the one-form in the adjoint. Since these are describing open string modes in twisted
directions under the Zs group, the fields which arise from �S are homomorphisms
between nearby twisted sectors. Explicitly from the reduction of �S one gets the
bifundamental modes F j ∈ Hom

(
Vj , Vj+1

)
.

The BPS vacua equations of this system therefore are obtained from the reduction
to the constant modes of (A.1) and the minimization of the super potential

[B j
1 , B j

2 ] + I j J j = 0 , B j
1 F j − F j B j+1

1 = 0 B j
2 F j − F j B j+1

2 = 0 , J j F j = 0.

B Flags of framed torsion-free sheaves on P
2

Aswe already pointed out theQMpartition function obtained as the trigonometric limit
of our D3/D7 system computes virtual invariants of a certain T -equivariant bundle
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over the moduli space N(r , n0, . . . , ns−1) of stable representations of the quiver in
Fig. 10. When the quiver is two-step it is called in the mathematical literature the
enhanced ADHM quiver and the moduli space of its stable representations of type
(r , n0, n1) has been identified in [54] with the moduli space of flags of framed torsion-
free sheaves on P

2, F(r , n0 − n1, n1). These are defined as follows. Once a line
	∞ ⊂ P

2 is fixed, a framed flag of sheaves consists of a triple (E, F, ϕ), where F is

a rank−r torsion-free sheaf on P
2, framed at 	∞ via ϕ : F	∞

�−→ O⊕r
	∞ , while E is a

subsheaf of F such that the quotient F/E is supported away from 	∞. This triple is
characterized by three numerical invariants: r = rk E = rk F , n = c2(F) and l such
that c2(E) = n + l. The moduli space of flags of framed torsion-free sheaves on P

2 is
thus parameterized by these three numerical invariants, and it is denoted byF(r , n, l).
Moreover, ifM(r , n) denotes the moduli space of framed torsion-free sheaves on P

2,
M(r , n) �Mr ,n , one has that F(r , n, l) ↪→M(r , n)×M(r , n+ l) as an incidence
variety.

These moduli spaces are of particular interest to us because of the following theo-
rem 1.

Theorem 1 (von Flach-Jardim, [54]) The moduli space N(r , n0, n1) � F(r , n0 −
n1, n1) of stable representations of the enhanced ADHM quiver is a quasi-projective
variety equipped with a perfect obstruction theory. The following T -equivariant com-
plex C(X)

Q ⊗ End(V0)

⊕ �2Q ⊗ End(V0)
Hom(W , V0) ⊕

End(V0) ⊕ Q ⊗ Hom(V1, V0)

⊕ �2Q ⊗ Hom(V0, W ) ⊕ �2Q ⊗ Hom(V1, V0)

End(V1) ⊕ �2Q ⊗ Hom(V1, W )

Q ⊗ End(V1) ⊕
⊕ �2Q ⊗ End(V1)

Hom(V1, V0)

d0 d1 d2

(B.1)

with

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d0(h0, h1) =
([h0, B0

1 ], [h0, B0
2 ], h0 I ,−Jh0, [h1, B1

1 ], [h1, B1
2 ], h0F − Fh1

)

d1(b
0
1, b02, i, j, b11, b12, f ) = ([b01, B1

2 ] + [B0
1 , b02] + i J + I j, B0

1 f + b01F − Fb11 − f B1
1 ,

B0
2 f + b02F − Fb12 − f B1

2 , j F + J f , [b11, B1
2 ] + [B1

1 , b12]
)

d2(c1, c2, c3, c4, c5) = c1F + B0
2c2 − c2B1

2 + c3B0
1 − B1

1c3 − I c4 − Fc5

encodes the structure of the perfect obstruction theory for N(r , n0, n1). The infinites-
imal deformation space and the obstruction space at any X will be isomorphic to
H1[C(X)] and H2[C(X)], respectively. When r = 1,N(1, n0, n1) is smooth iff n1 = 1,
[76].
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Moreover, it is shown in [54] that there exists a surjective morphism

q : (W , {Vi , Bi
1, Bi

2}, I , J , F) �→ (W , V , B ′
1, B ′

2, I ′, J ′)

mapping the enhanced ADHMdata of type (r , n0, n1) to the ADHMdata of numerical
type (r , n0 − n1). This morphism is moreover compatible with the natural forgetting
morphism η : N(r , n0, n1) → M(r , n0), so that we have two different maps send-
ing the moduli space of stable representations of the enhanced ADHM quiver to the
moduli space of stable representations of ADHM data. The situation is depicted by
the following commutative diagram which enables us to characterize T -fixed points

N(r , n0, n1) M(r , n0)

M(r , n0 − n1)

η

q
f̃

ofN(r , n0, n1) in terms of fixed points ofM(r , n0) andM(r , n0− n1). Consistently
with what we found in the more general case of a quiver with an arbitrary number of
nodes, the fixed point locus consists of isolated non-degenerate points which can be
described be couples of nested partitions P(n0 − n1) � μ ⊆ ν ∈ P(n0).

C Fixed points and virtual dimension

The characterization of the fixed points we described in Sect. 3.1.3 makes it clear
that the T -fixed locus in Nr ,[r1],n,μ consists only of isolated non-degenerate points.
Moreover through a simple computation it’s now very easy to compute the virtual
dimension of N(r , n0, . . . , ns−1). Altogether these facts get summarized by the fol-
lowing proposition, which for the sake of simplicity we state in the simple case of the
two-step quiver.

Proposition 2 The T -fixed locus of the moduli space N(r , n0, n1) consists only of
isolated non-degenerate points, which are into 1− 1 correspondence with r-tuples of
colored nested partitions. Moreover, vdN(r ,n0,n1) = 2rn0 − rn1 + 1.

Proof A very brief sketch of how to prove the statement about the fixed points was
previously given in Sect. 3.1.3, so now we will only focus on computing the virtual
dimension ofN(r , n0, n1). Using the description provided by quiver in Fig. 11 we see
that the number of variables involved in the computation is #var = 2n2

0+2n2
1+2n0r+

n0n1, with r = dim W . Moreover, the number of constraints we need to implement
is #constr = n2

0 + n2
1 − 1 + n0n1 + n1r , where we also took into account that the

constraints are not independent. Finally, we account for the fact that we take the GIT
quotient by the action of GL(n0)×GL(n1), which contributes by #symm = n2

0+n2
1.

Then,

“ dimN(r , n1, n2)” = #var− #constr− #symm = 2n0r − n1r + 1. (C.1)

123



34 Page 50 of 53 G. Bonelli et al.

In order to directly compute the virtual dimension of the nested Hilbert scheme of
points on C

2, we use the character decomposition of T vir
Z N(1, n0, n1) at a generic

fixed point under the torus action. Then,

vdN(1,n0,n1) = lim
Ti→1

⎡
⎣TZ̃M(1, n0)+

M1∑
i=1

N1∑
j=1

(T
i−μ j
1 − T i

1 )(T
− j+μ′i+1
2 − T

− j+ν′i+1
2 )

−
M1∑
i=1

ν′i−μ′i∑
j=1

T i
1 T

j+μ′i
2 + T1T2

⎤
⎦

= 2n0 − n1 + 1,

(C.2)

which in the case of a smooth nested Hilbert scheme of points, coincides with the com-
putation of [54]. A completely analogous computation can be carried out in the generic
(non necessarily smooth) case, by using the character decomposition we computed for
T vir

Z N(r , n0, n1), which in turn coincides with the representation of the virtual tangent
space to the nested Hilbert scheme of points (when r = 1) given in [79].  "
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