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Summary
As writing systems are a relatively novel invention (slightly over 5K years ago1), they could not

have influenced the evolution of our species. Instead, reading might recycle evolutionary older
mechanisms that originally supported other tasks2,3 and preceded the emergence of written language.
Accordingly, it has been shown that baboons and pigeons can be trained to distinguish words from
nonwords based on orthographic regularities in letter co-occurrence4,5. This suggests that part of
what is usually considered reading-specific processing could be performed by domain-general visual
mechanisms. Here we tested this hypothesis in humans: if the reading system relies on
domain-general visual mechanisms, some of the effects that are often found with orthographic
material should also be observable with non-orthographic visual stimuli. We performed three
experiments using the same exact design, but with visual stimuli that progressively departed from
orthographic material. Subjects were passively familiarized with a set of composite visual items, and
tested in an oddball paradigm for their ability to detect novel stimuli. Participants showed robust
sensitivity to the co-occurrence of features (“bigram” coding) with strings of letter-like symbols, but
also with made-up 3D objects and sinusoidal gratings. This suggests that the processing mechanisms
involved in the visual recognition of novel words also support the recognition of other novel visual
objects. These mechanisms would allow the visual system to capture statistical regularities in the
visual environment6-9. We hope that this work will inspire models of reading that, while addressing its
unique aspects, place it within the broader context of vision.

Keywords: Visual word recognition, vision, orthographic processing, reading, object recognition,
neuronal recycling, open data.

Results
In this work we propose that if the human reading system relies on domain-general visual

mechanisms, effects that are often found within the domain of visual word processing should also be
observable with non-orthographic visual stimuli. We tested whether an effect typically studied in
orthographic processing, i.e., participants' sensitivity to bigram frequencies, is also found when the
stimuli consist of sequences of pseudofonts or arrangements of non-orthographic visual features.
Bigrams have been proposed to serve as an intermediate step between single graphemes and
words10-12. While the role of bigram frequencies in reading is open to debate (see13 and14 for two
opposite views), fMRI15,16 and human intracranial recordings17 have shown that the left fusiform gyrus
is sensitive to this factor. Together with the aforementioned animal research literature which
manipulated bigram frequencies as a variable of interest4,5,18, this makes sensitivity to bigram
frequencies a suitable effect to be replicated with non-orthographic visual stimuli.

Participants are sensitive to the bigram frequencies of orthographic-like stimuli

Experiment 1 used words written using pseudofont as stimuli, which while resembling real
letters, are completely unfamiliar to the participants. Concretely, we used the Brussels Artificial
Character Set (BACS19, specifically BACS-2 serif, see Figure 1A). While the use of novel words written
with pseudofont is a considerable simplification compared to real life reading, it also implies a
number of important advantages. As pseudofonts lack any connection to phonology or meaning,
results only depend on visual/orthographic processing. Furthermore the use of an unfamiliar script
allowed us to avoid the influence of participants' particular history of exposure to orthographic
material. This approach has been widely and successfully used in the field of psycholinguistics to study
diverse aspects of reading [e.g.13,19-22].



Figure 1: Examples of representative stimulus sets. (A) Three-character words used in experiment 1.
Character pairs making up high pair-frequency deviants are shared with standard words (here marked in red for
illustration purposes). (B) Objects used in experiment 2. Each pair of shapes composing high pair-frequency
deviant objects was shared with a standard object. (C) Circular gratings used in experiment 3. Each pair of visual
feature values (spatial frequency, orientation and contrast) defining high pair-frequency deviant gratings was
shared with a standard grating. See also Figure S1.

A different subset of 9 BACS characters was randomly selected to construct the stimuli for each

participant. These characters were used to build 6 three-character combinations (e.g.,abc), which

were used as standard words. Next, two different deviant words were constructed. A "high
pair-frequency" deviant was constructed using bigrams (pairs of characters) that were present in the

standard words. For example, the deviant def is made up of the first bigram from the standard

word deg, the second bigram from the standard word hef and the open bigram10 from the

standard word dif. A "low pair-frequency deviant" was instead constructed using bigrams that

were never present in standard words. For example, the devianthig is made of characters present

in the aforementioned standard words but in a unique combination. Therefore, all words used the
same characters, but while standard words and high pair-frequency deviants shared bigrams, low
pair-frequency deviants did not.

Participants first completed a learning block in which only standard stimuli were presented. They
were instructed to pay attention and try to learn them. After this, the experiment followed a visual
oddball design. Standard stimuli were presented intermixed with deviants and participants were
asked to classify them as either "Correct" (standard) or "Mistaken" (deviant). Standard words were
presented in 90% of the trials (15% each token) and deviants were presented in 5% of the trials each.

This design allowed us to separately manipulate two variables. On one hand, the frequency of
occurrence of each individual word (token frequency) was 15% for the standard stimuli and 5% for
each deviant stimuli. On the other hand, the mean pair-frequency (mean of the frequency of
occurrence of the composing bigrams) of each word was high for standard stimuli (5.27%) and high
pair-frequency deviants (6.66%), but low for low pair-frequency deviants (1.66%). This is because
while high pair-frequency deviants shared bigrams with standard stimuli, the bigrams composing low
pair-frequency deviants were unique to them.



Our task requested participants to distinguish words by their token frequency; therefore, high
and low pair-frequency deviants should be equally rejected. However, if participants are sensitive to
the frequency with which pairs of characters appear together, the detection of high pair-frequency
deviants should be harder.

We characterized participants' performance by computing their Sensitivity Index or d-prime (d')23.
All effect sizes reported are Hedges' g24,25. Confidence intervals reported between square brackets are
95% CI.

While the mean d' for the high pair-frequency deviant was 0.84 [0.24, 1.45], it was 2.02 [1.44,
2.59] for the low pair-frequency deviant. Therefore, high pair-frequency deviants were harder to
detect. The difference in d' between deviants was 1.17 [0.60, 1.74] (t(21) = 4.30, p = 0.00016, g = 0.86
[0.36, 1.37]). This effect was present in the majority of the participants (86.36% [65.09%, 97.09%], or
19 out of 22, one-sided binomial test: p = 0.00043), which implies that the effect is highly reliable (see
Figure 2A).

Figure 2: Participants are sensitive to the co-occurrence of visual features across different types of stimuli.
On each graph, the x and y axes represent sensitivity (d') to high pair-frequency and low pair-frequency deviants
respectively. While each dot represents a participant, the coloured dot represents the mean of the group. The
shaded area around the mean denotes group-level within participants 95% CI. Projected on each axis, a coloured
dot indicates the mean performance for the respective deviant, while the error bar represents 95% CI. Note that
the majority of the participants in all of the experiments lay above the diagonal. (A) Experiment 1 (3 character
word-like stimuli). (B) Experiment 2 (visual objects). (C) Experiment 3 (sinusoidal gratings). See also Figure S1.

These results were replicated in an additional experiment, in which the novel words presented to
the participants were six-character long (see Figure S1). The effect found in this experiment was of
similar magnitude as the one reported in experiment 1 (Table 1). This is particularly notable, because
longer words were presumably more difficult to learn as chunks, and therefore one would have
expected participants to rely more heavily on letter statistics. The fact that an effect of equivalent
magnitude emerges regardless of word length suggests that bigram coding is not a strategic,
task-specific effect; rather, it seems to be an intrinsic aspect of novel word coding.

In brief, the detection of deviants that shared pairs of characters with the standard words
resulted more challenging, which implies that participants were sensitive to words' bigram
frequencies.



Comparison across stimuli types BF01 Hedges’ g

Three-character words vs. objects 4.21 0.16 [-0.36, 0.68]

Three-character words vs. sinusoidal gratings 4.89 -0.02 [-0.56, 0.51]

Objects vs. sinusoidal gratings 4.43 -0.16 [-0.62, 0.29]

Six-character words vs. objects 3.37 0.24 [-0.27, 0.76]

Six-character words vs. sinusoidal gratings 4.86 0.05 [-0.47, 0.58]

Three-character words vs. six-character words 4.31 -0.09 [-0.68, 0.49]

Table 1: Comparison of participants' sensitivity to feature co-occurrence across experiments. Because we
were also interested in evidence for the null (i.e., the difference between high and low pair-frequency detection
might not differ across stimulus types), we performed a series of Bayesian independent-samples tests (JZS Bayes
Factor26-28) comparing the effect of interest (i.e., d' to low pair-frequency deviant minus d' to high pair-frequency
deviant) across experiments. All comparisons across experiments yielded BF01 values above 3, which implies
substantial evidence in favor of the null compared to the alternative hypothesis.

Participants are sensitive to the co-occurrence of shape features in visual objects

Experiment 2 had exactly the same design as the preceding experiment, with the exception that
the stimuli consisted now of 2-dimensional renderings of 3-dimensional objects. These objects were
composed by a central Y-shaped body and a distinctive shape attached to each of three branches
(similar to the stimuli in Baker et al.29, see Figure 1B). While the overall objects play the role of words
in experiments 1, the terminal shapes play a role analogous to characters.

These objects differed from written words in two ways. First, rather than being formed by
adjacent but independent graphemes, the parts conforming the objects were physically connected.
Second, the constituent parts followed a radial spatial arrangement, rather than the linear
arrangement typical of orthographic material.

We selected 9 distinctive shapes, with which we constructed 6 standard objects and the same
two different types of deviants employed in experiment 1. The first of such deviant objects was
composed of pairs of shapes that were all present in the standard objects (high pair-frequency
deviant). The second deviant object was instead constructed with pairs of shapes that were not
present in any standard object (low pair-frequency deviant). Two different sets of images were
created, and each participant was exposed to one of them. An example stimulus set can be seen in
Figure 1B.

As in experiments 1, high pair-frequency deviants were harder to detect. The average d' for the
high pair-frequency deviant was 0.65 [0.16, 1.15] and it was 1.58 [1.14, 2.03] for the low
pair-frequency deviant. The difference in d' between deviants was 0.93 [0.44, 1.43] (t(38) = 3.81, p =
0.00025, g = 0.64 [0.27, 1.01]). The effect of interest was present in 74.36% [57.87%, 86.96%] of the
participants (29 out of 39, one-sided binomial test: p = 0.0017; see Figure 2B).

These results show that an effect akin to sensitivity to bigram frequencies can also be observed
when participants are presented with novel visual stimuli that are clearly non-orthographic.

Participants are sensitive to the co-occurrence of low-level visual features

These results of experiment 2 show that participants' sensitivity to bigram frequencies can be
observed outside the domain of orthographic processing. Yet, the stimuli used were similar to reading
material insofar as higher-level units (words or objects) were made up of lower-level parts (characters
or shapes) arranged in space. Therefore, to test the generality of our findings, we performed a third



experiment, where the stimuli were instead circular sinusoidal gratings defined by combinations of
low-level visual features. These features (which played the same role as the characters in experiments
1) were spatial frequency, orientation and contrast (Figure 1C).

In experiment 1, each of the 3 character positions defining a word could be occupied by 1 out of
3 possible characters. In the same way, each low-level visual feature defining the sinusoidal gratings
could take 3 different values. We used these values to construct stimuli with a statistical structure in
all identical to that of experiments 1. For example, the high pair-frequency deviant in Figure 1C shares
spatial frequency and contrast with the top left standard, orientation and contrast with the middle
left standard, and spatial frequency and orientation with the bottom left standard. So, this deviant
shares all its ``bigrams'' with standard stimuli. Instead, the low pair-frequency deviant is defined by
feature values in a unique combination. A different shuffling of feature values was used for each
participant.

In experiment 3, mean d' was 1.01 [0.42, 1.60] for the high pair-frequency deviant and 2.22 [1.69,
2.74] for the low pair-frequency deviant. Once more, high pair-frequency deviants were harder to
detect. The difference in d' between deviants was 1.21 [0.61, 1.81] (t(34) = 4.12, p = 0.00011, g = 0.74
[0.33, 1.14]). The majority of the participants (82.86% [66.35%, 93.44%], 29 out of 35. One-sided
binomial test: p = 5.8e-05) showed an effect in the direction of the hypothesis (see Figure 2C).

These results show that a “bigram frequency” effect is even present when the features that
defines the stimuli are non-spatially-segregated low-level visual properties.

Participant's sensitivity to feature co-occurrence across stimuli types

We performed a Bayesian analysis to compare the magnitude of the effects across experiments,
which showed that participants' performance was biased by the co-occurrence of features to an
equivalent extent irrespective of the type of stimuli used (see Table 1; a summary of participants' hit
and false alarm rates in all experiments can be found in Table 2). Despite different mechanisms could
in principle produce effects of equivalent magnitude purely by chance, this evidence may suggest that
the data described here are the result of a unique, domain-general visual mechanism.

Experiment High P-F deviant hits Low P-F deviant hits Standard false alarms

Three-character words 0.47 [0.33, 0.62] 0.78 [0.68, 0.89] 0.23 [0.16, 0.30]

Objects 0.46 [0.35, 0.58] 0.70 [0.60, 0.81] 0.25 [0.20, 0.30]

Sinusoidal gratings 0.45 [0.32, 0.58] 0.76 [0.66, 0.86] 0.17 [0.11, 0.22]

Six-character words 0.40 [0.26, 0.53] 0.74 [0.66, 0.83] 0.26 [0.18, 0.33]

Table 2: Hit rates and False Alarm rates in all experiments. Hit rates and false alarm rates were comparable
across experiments.

Discussion
Letter co-occurrence and models of visual word identification

As we mentioned earlier, the role of bigram frequencies in reading is at the center of a heated
debate. Recently, Grainger30 proposed the coexistence of location-invariant and location-specific
coding as the marker of orthographic processing—bigram and bigram frequencies were not
considered as a defining feature. Schmalz and Mulatti14 have reviewed and studied the effect of



bigram frequencies in reading times. Using Bayesian analysis the authors conclude that there is
evidence against a modulation of reading times by bigram frequencies. Chetail13 conducted instead a
systematic revision covering 20 papers on bigram frequency, and arrived to the conclusion that
sensitivity to orthographic regularities such as bigram frequencies may influence visual word
recognition at all levels of processing.

It is worth mentioning that the putative bigram effect seems to be easier to obtain in
experiments using pseudowords or unfamiliar scripts which are novel to the participants (e.g.,
Chetail31 and Lelonkiewicz et al.32), even if it is not clear how much familiarity with a novel
alphabet/lexicon is required before this and other signs of mature orthographic processing emerge33.
In experiment 1, we provide new evidence in this line, showing that when readers are confronted
with novel words written in an unfamiliar script, they encode for the statistics of co-occurrence
between letters quite soon, and capitalize on it to identify such words.

Several models of visual word identification propose that orthographic processing builds on
letter co-occurrence statistics. Seminal work on Parallel Distributed Processing models explicitly
suggested that the nature of sublexical representations depend on orthographic regularities34. More
recently, models were proposed that suggests a hierarchy where higher-order units are based on the
statistics of co-occurrence between lower level units (e.g., Dehaene et al.11). Some of these models
have been implemented computationally35,36, and have proven to account for several experimental
findings in visual word identification. Some of these models explicitly commit to the existence of
bigram representations11; this is obviously in line with the results illustrated here, although we did not
contrast different coding schemes (e.g., edit distance; spatial coding),37 and therefore we cannot
speak in this respect. It is worth noting that high pair-frequency deviants shared bigrams with the
standard words/objects, which might have contributed, in addition to bigram frequency, to make
these kinds of stimuli more confusable. Note however that regardless of the coding scheme, our
results unambiguously show that participants are sensitive to the presence of orthographic
regularities.

Visual "word" identification of non-orthographic stimuli

While the models mentioned in the previous section successfully account for a number of
experimental findings in the context of reading, they share a common limitation. By dealing only with
orthographic stimuli, they do not place reading within the broader context of visual perception. As a
result, they consider reading as domain-specific (either explicitly or implicitly). In sharp contrast, the
results of our experiments 2 and 3 strongly suggest that at least some of the mechanisms at play
during visual word identification are not specialized for reading.

The presence of an effect akin to sensitivity to bigrams' frequencies in the case of stimuli
radically different from orthographic material implies that the mechanism at play might be
domain-general. This is in agreement with the proposal that cultural inventions such as writing recycle
preexisting domain-general cognitive processes2,3. Furthermore, our results suggest that in the case of
reading, one mechanism that is recycled is the visual system's ability to extract statistical regularities
in the co-occurrence of lower-level visual features, and integrate them into higher-level multifeatural
representations.

Our intention is not to claim that every aspect of visual word identification is domain-general.
Certainly some effects found in the literature seem to reveal letters' special status. For example,
transposed–letter strings (e.g., NDTF for NTDF) are considerably more confusable than strings of
non–letters symbols (e.g., %$&£ for %&$£;38); the accuracy profile in letter identification across
different positions within strings is unique to letters (e.g., Tydgat and Grainger39); and attention is
preferably deployed to the beginning of letter strings, but not to the beginning of strings of other
symbols (e.g., Scaltritti and Balota40). In experiment 2, the shapes defining the novel objects were



arranged radially, and the notion itself of spatial arrangement cannot be applied at all to the
sinusoidal gratings used in experiment 3. Therefore, some of the above-mentioned letter specific
effects, which require a linear spatial arrangement, are fundamentally not replicable with these
stimuli. However, the existence of effects that are specific to orthographic material does not justify
the conception of visual word identification as purely domain-specific. A successful model of reading
should account for these letter-specific effects, but consider the broader framework of vision.

Word recognition in the bigger context of vision

Our results are in agreement with two major theoretical frameworks in visual neuroscience. The
first asserts that visual object information is extracted along a largely feedforward hierarchy, where
tuning for progressively more complex visual features is built up incrementally41. That is, units in a
given layer of the hierarchy integrate inputs from units of the previous layer, gaining selectivity for
the combination of features encoded by the input neurons. For instance, inputs from simple edge
detectors can be combined to produce tuning for corners and curved boundaries.

These ideas have been instantiated in a number of neural network models, starting from
Fukushima’s Neocognitron42 and Riesenhubber’s and Poggio’s HMAX model43, to arrive to modern
deep convolutional neural networks44. These models not only achieve extraordinary accuracies at
classifying visual images, but can also account for key trends in the tuning properties of ventral
neurons in humans, monkeys and rats45-50, as well as human and monkey performance in object
recognition tasks51-56. Our findings are highly consistent with these models, since they show how
distinct visual features (no matter whether characters, shapes, or low-level visual properties) are
hierarchically integrated into progressively more complex combinations (e.g., bigrams or pairs of
features) before being represented as full “objects”.

Interestingly, in our experiments such hierarchical feature integration took place spontaneously,
via exposure to the statistics of the stimulus sets. This resonates with another important theoretical
principle that has been called into cause to explain why visual neurons develop certain kinds of tuning
properties. This principle postulates that the tuning of sensory neurons is determined by adaptation
to the statistics of the signals they need to encode7,9,57. Starting from the pioneering intuitions of
Attneave and Barlow58,59, such efficient coding principle has been instantiated in a number of
computational models that are able to learn key properties of the visual system through unsupervised
exposure to the spatio-temporal regularities of the visual input60-62.

Solid causal evidence has been gathered to show that visual neurons adaptively change their
tuning depending on the statistics of the visual stimuli they have been exposed to, both during
postnatal development63-65 and adult life66,67. At the perceptual level, human sensitivity to
higher-order image statistics closely matches the informational content of such statistics in natural
scenes68,69, thus suggesting a developmental adaptation of visual perception to the regularities of the
visual world.

Moreover, exposure to altered object statistics has been shown to affect human performance in
object recognition tasks54,70,71, implying that unsupervised adaptation to visual input statistics
continuously sculpt visual perception, even in adult life. Our findings add further behavioral evidence
to this conclusion, by showing that enhanced sensitivity to specific pairs of visual features emerges as
a result of their mere frequency of occurrence within a given stimulus set.

Final conclusions

The results presented in this work suggest that a fundamental processing mechanism behind the
processing of visual words also supports the recognition of other visual objects. This implies that such
mechanism is indeed of general–purpose, and confirms the view that reading builds on evolutionarily



older cognitive structures2,3. This mechanism would enable the statistical learning of regularities in
the visual environment (e.g., Frost et al.,6 Olshausen and Field,7 Saffran et al.,8 and Simoncelli
and Olshausen9). In this view, specialization for letter and letter clusters would emerge in skilled
readers via the heavy exposure to written language that is characteristic of modern society (e.g.,
Perea et al.72,73). To conclude, we hope this work will help to inspire models of reading that profit
from the body of knowledge amassed in the broader field of visual neuroscience.
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Resource Availability

Lead contact

Further information and requests for resources and reagents should be directed to and will be
fulfilled by the Lead Contact, Davide Crepaldi (dcrepaldi@sissa.it, @CrepaldiDavide).

Materials availability

The stimuli used in experiments 1, S1 and 2 can be found at the following Open Science
Framework (OSF) repository: osf.io/3tyeu/

The stimuli used in experiment 3 were generated programmatically.

Data and code availability

The data from all experiments, as well as the code used to perform the statistical analysis can be
found at osf.io/3tyeu/.

Experimental Model and Subject Details

Participants

All participants were self-reported right handed, Italian native speakers, and were recruited from
the city of Trieste via on-line advertisement. They all had normal or corrected-to-normal vision and no
language-related impairments. Participants provided informed consent and received a monetary
compensation of 10€. The experiment was approved by SISSA’s Ethical Committee.

Twenty-two participants (5 male and 17 female) took part in experiment 1 (mean age = 23.4,  =
2.21 years); 40 participants (12 male, 28 female) took part in experiment 2 (mean age = 24.22,  =
2.57 years) and 36 participants (8 male, 28 female) took part in experiment 3 (mean age = 23.22,  =
3.37 years).

Method Details

Procedure and experimental design

The 4 experiments presented in this work followed the same procedure and used the same
experimental design, differing only in the stimuli used. Participants sat in a sound-attenuated testing
booth at around 70cm of a 27'' computer monitor (BenQ XL2720Z). The experiments were
programmed and run in MATLAB (2015b, MathWorks, Inc., Natick, MA, USA) using the Psychophysics
Toolbox (v3) extensions74,75.

As described in the Results section, participants first completed a learning block where 200
standard stimuli were presented. During this block they were instructed to pay attention and try to
learn the stimuli. Stimuli were presented one at a time and remained on screen for 1.5 to 2 seconds.
After the learning block, participants completed 6 testing blocks, where standard stimuli were
presented intermixed with deviant stimuli. On each of these blocks, participants were presented with
180 standard stimuli (90% of the trials; 15% each of the 6 standard tokens) and 20 deviant stimuli
(10% percent of the trials; 5% each deviant condition).

Stimuli order of presentation was pseudorandom. Each test block started with 12 standard
stimuli, after which deviants were presented allowing 6 to 12 standard stimuli in between each
deviant presentation. Stimuli repetitions were only allowed after 2 other stimuli were presented (e.g.,
s2 s3 s1 s2).

mailto:dcrepaldi@sissa.it
https://twitter.com/CrepaldiDavide
https://osf.io/3tyeu/
https://osf.io/3tyeu/


Participants had a maximum of 2 seconds to classify each stimulus as either "Correct" (standard)
or "Mistaken" (deviant) by pressing one of two keys on a keyboard. Key mapping was
counterbalanced across participants. In case of timeout, the next trial started without any feedback.
Participants were not informed about the amount and type of deviants. Overall, each participant was
asked to classify 1080 instances of standard stimuli, and 60 instances of each deviant stimuli. Each
block lasted on average 7 minutes and the entire experiment had an approximated duration of 50
minutes.

Stimuli sets

The stimuli used in experiment 1 (and in the supplemental experiment reported in Figure S1)
were words constructed using the Brussels Artificial Character Set (BACS-2 serif19), whose characters
have perimetric complexity, number of strokes, junctions and terminations matched to the English
alphabet. We picked 23 out of the 26 available characters in BACS-2 with serifs. The 3 characters

excluded were j which resembles a "?", p, which is a vertical mirror flip image ofb, andw which

resembles closelyv.

The stimuli used in experiment 2 were not orthographic. Instead, we used images of 3D objects
created using the software Blender (version 2.79b77). Two different sets of images with the same
statistical structure were created, and each participant was exposed to one of them. This had the goal
of ruling out the possibility that the effects were driven by some idiosyncratic feature of a given set of
shapes.

Finally in experiment 3, the stimuli used were circular sinusoidal gratings defined by different
values of three low level visual features. These features were spatial frequency (.4, .8 and 1.6 cycles
per degree of visual angle), contrast (20%, 60% and 100%) and orientation (0, 45 and 90 degrees).

Note that in all experiments, although the high pair-frequency deviants shared 2 features with 3
of the standard stimuli, they shared none with the other three. On the other hand, the low
pair-frequency deviants shared 1 feature with each of the 6 standard stimuli. Thus the average
number of shared features between deviants and standard stimuli was 1 for both types of deviants.
Furthermore for each participant, stimuli were constructed using a different shuffling characters
(experiment 1) and feature values (experiment 3), but always respecting the same statistical structure.
Similarly, in experiment 2, we constructed 2 different stimuli sets using different combinations of
shapes. These measures make it impossible to correctly classify stimuli based on single characters,
shapes or feature values, and extremely unlikely to be able to do it based on values of individual
pixels.

The statistical structure of the stimuli sets was based on the one used in Endress and Mehler78.

Quantification and Statistical Analysis

Data and participants exclusion criteria

As we stated earlier, during the testing blocks participants had a time limit of 2 seconds to
provide an answer. Trials in which participants did not provide an answer were excluded from the
analyses, and participants with more than 20% of such trials for any stimulus category were excluded
altogether.

In experiment 1, all participants provided enough trials in all conditions. Participants failed to
provide an answer in 1.68% of the standard trials, 2.88% of the high pair-frequency deviant trials and
2.58% of the low pair-frequency deviant trials. Overall participants provided an answer in 98.21% of
the trials. Two participants had to be excluded from the analysis in experiment S1. The remaining



participants failed to provide an answer in 3.25% of the standard trials, 3.55% of the high
pair-frequency deviant trials and 3.7% of the low pair-frequency deviant trials. Participants provided
an answer in 96.71% of all trials. In experiment 2, one participant was excluded from the analysis. The
rest of the participants failed to provide an answer in 2.05% of the standard trials, 2.74% of the high
pair-frequency deviant trials and 2.65% of the low pair-frequency deviant trials. Of all trials, 97.88%
were answered within the time limit. Finally, one participant was excluded from the analysis in
experiment 3. The remaining participants failed to provide an answer in 1.42% of the standard trials,
1.76% of high pair-frequency deviant trials and 2% of the low pair-frequency deviant trials.
Participants provided an answer in 98.53% of all trials.

Measure of performance

To better characterize the participants’ ability to detect deviant stimuli, we resorted to Signal
Detection Theory and computed an independent sensitivity index (d-prime score or d') for each
deviant type and for each participant. This measure of performance takes into account possible
response biases23. Participants' responses were classified as "hit" (deviant stimuli classified as
"mistaken") or "false alarm" (standard stimuli classified as "mistaken"). Next, for each deviant type, d'
was calculated as

d' = Z(HitRate) - Z(FalseAlarmRate)

where Z(…) is the inverse of the cumulative standard normal distribution. This takes into
consideration the overall bias towards a “correct” or a “mistaken” response. As this function does not
output a finite value if either the hit rate or the false alarm rate are either 0 or 1, and considering the
total amount of trials of each type, hit rate was capped between 1/60 and 59/60, and false alarm rate
was capped between 1/1080 and 1079/1080.

Statistical analysis

Statistical comparisons within each experiment were performed using paired-samples Student's
t-test when comparing d' scores across deviants. Comparisons across experiments were performed
using Bayesian independent samples tests (JZS Bayes Factor26-28). This test measures the relative
evidence between the null and alternative hypotheses, allowing to assess evidence in favour of the
null. Tests were performed using a Cauchy prior with scale value of r = 1. The code for this analysis
was written by Sam Schwarzkopf79.

All effect sizes reported are Hedges' g24,25, which is more precise than Cohen's d, as it applies a
correction for small sample sizes. Effect sizes were calculated using the Measures of Effect Size
Toolbox76. All confidence intervals reported between square brackets are 95% CIs. In the case of
Figure 2, as data is paired, the CI around the dot representing the mean performance at the group
level is a within participants CI calculated using the normalization method proposed by Morey80.
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Supplemental Information

Figure S1: Sensitivity to bigram frequencies in six-character words. Related to Figure 1 and Figure
2. Twenty-five additional participants (9 male, 16 female; mean age = 25.04, σ = 3.1 years) completed an
experiment that was in all identical to experiment 1, except that the stimuli were six-character words. (A)
Example stimulus set. Because of the increased length of the words (and the concomitant increase in the number
of bigrams), all bigram frequencies were exactly 1/3 of the frequencies in experiment 1. Critically, however, the
ratio of mean pair-frequencies across deviants remained equal. Character pairs making up high pair-frequency
deviants are here marked in red only for illustration purposes. (B) As in experiment 1, the detection of high
pair-frequency deviants turned out to be more challenging. Average d’ were 0.41 [-0.19, 1.00] for the high
pair-frequency deviant and 1.71 [1.13, 2.29] for the low pair-frequency deviant. The difference in d’ between
deviant types was 1.30 [0.70, 1.91] (t(22) = 4.49, p = 9.1e-05, g = 0.94 [0.41, 1.48]). This effect was present
in 86.96% [66.41%, 97.22%] of the participants (20 out of 23, one-sided binomial test: p = 0.00024).


