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Abstract

In this thesis, we study problems related to statistical properties of integrable and
non-integrable Hamiltonian system, focusing on their relations with random matrix
theory.

First, we consider the harmonic chain with short-range interactions. Exploiting
the rich theory of circulant and Toeplitz matrices, we are able to explicitly compute
the correlation functions for this system. Further, applying the so-called steepest
descent method, we compute their long time asymptotic.

In the main part of the thesis, we focus on the interplay between Random Ma-
trix theory and integrable Hamiltonian system. Specifically, we introduce some new
tridiagonal random matrix ensembles that we name « ensembles, and we compute
their mean density of states. These random matrix models are related to the clas-
sical beta ones in the high temperature regime. Moreover, they are also connected
to the Toda and the Ablowitz-Ladik lattice, indeed applying our result on the «
ensembles, we are able to compute the mean density of states of the Lax matrices
of these two lattices.

Next, we focus on the Fermi-Pasta-Ulam-Tsingou (FPUT) system, a non-integrable
lattice. We show that the integrals of motion of the Toda lattice are adiabatic in-
variants, namely statistically almost conserved quantities, for the FPUT system for
a time-scale of order $'~%, here ¢ > 0, and /3 is the inverse of the temperature.
Moreover, we show that some special linear combinations of the normal modes are
adiabatic invariants for the Toda lattice, for all times, and for the FPUT, for times
of order 3172,

Finally, we consider the classical beta ensembles in the high temperature regime.
We compute their mean density of states, making use of the so-called loop equations.
Exploiting this formalism, we are able to compute the moments and the linear
statistic covariance through recurrence relations. Further, we identify a new «
ensemble, which is related to Dyson’s study of a disordered chain. Our analysis
supplement the results contained in Dyson’s work.
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Introduction

Overview

In this thesis, we study problems related to integrable and almost integrable Hamil-
tonian systems in connection to Random Matrix Theory (RMT). Specifically, we
study densities of states of particular families of random matrices, and we apply our
results to integrable and almost integrable lattices with random initial data in the
thermodynamic limit. This regime occurs when the number of lattice particles N
goes to infinity at a fixed temperature 3~1. In such a limit, the energy per particle
remains finite, and the total energy of the chain goes to infinity.

The study of the thermodynamic limit arises naturally from the study of inter-
acting particles systems with many degrees of freedom. Despite being so relevant,
there are no general tools to study the thermodynamic limit of Hamiltonian sys-
tems. Indeed, the analysis is usually different from model to model; therefore, the
best we can do to study the thermodynamic limit of a specific system is either adapt
techniques exploited in other situations or design new ones tailored for the case at
hand. Specifically, we focus on the following systems:

1. harmonic oscillators with short range interactions;

2. lattice systems with nearest neighbour interactions with potential Vi(r) =
2

—r _ _ 2 _ o bt
e +r 1 and VFPUT(T) =3 6 + YR

3. lattice systems with interaction potential depending on both the relative elon-
gation r and the momentum.

In case 2. the potential Vi (r) corresponds to the Toda lattice [157], that is an
integrable system, while the potential Vepyr(r) corresponds to the Fermi-Pasta-
Ulam-Tsingou (FPUT) lattice [50], which is not integrable, and, for low energy,
can be considered as a fourth order perturbation of the Toda lattice. The case 3.
refers to the Ablowitz-Ladik (AL) lattice [2], that is an integrable discretization of
the cubic nonlinear Schrédinger equation. We study each of these systems with
periodic boundary conditions and number of particles equal to N. Introducing the
Gibbs measure at temperature 371, we study statistical properties of these systems
in the thermodynamic limit.

Regarding case 1., we are able to determine the correlation functions and their
time scaling in the thermodynamic limit for the chain of harmonic oscillators with
short range interactions. Correlation functions are very important physical quan-
tities in statistical mechanics since they encode transport properties of systems.
However, for nonlinear systems the rigorous determination of scaling properties of
correlation functions still remains an open problem, even in the integrable cases.
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Introduction

Regarding case 2., we show that the integrals of motion of the Toda lattice are
adiabatic invariants, namely statistically almost conserved quantities, for the FPUT
system for a certain time-scale related to the temperature 3~!. Therefore, we prove
that the FPUT system is not chaotic for the same time-scale. Moreover we computed
the density of states and the averages of the constants of motion of the Toda lattice
in the thermodynamic limit. Regarding case 3., we consider the Ablowitz-Ladik
lattice; also this case we determine the density of states of the Lax matrix and the
averages of the constants of motion of this system in the thermodynamic limit.

The theory of random matrices is essential to our analysis. The novelty of our
approach lies in the fact that we are able to connect the study of the thermodynamic
limit of Hamiltonian systems with the theory of random matrices, more specifically
the Dimitriu-Edelmann § ensembles [42| and the Killip-Nenciu circular § ensemble

[93] at high temperature, namely when the matrix size N goes to infinity and § =

200
N a > 0. This allows us to exploit several results and techniques typical of

random matrices to obtain new results in the study of Hamiltonian systems in the
thermodynamic limit.

The interplay between random matrices and integrable systems has inspired us to
define and study a new family of random matrices, which we call a ensembles. These
are tridiagonal random matrix ensembles related to the Gaussian, Laguerre, Jacobi,
and anti-symmetric Gaussian  ensembles at high temperature. We obtain the mean
density of states of the o ensembles and the Gaussian, Laguerre, Jacobi, and anti-
symmetric Gaussian [ ensembles at high temperature. Further, for the Gaussian,
Laguerre, and Jacobi [ ensembles at high temperature, we also characterized the
monomial linear statistics through recurrence relations.

The structure of the thesis is the following.

In Chapter [I we analyse the harmonic oscillator chain with short-range in-
teractions. Specifically, we compute the correlation functions for this system and
their long time asymptotics in the thermodynamic limit. The result of this chapter
are taken from our paper “Correlation functions for a chain of short range oscilla-
tors.” Journal of Statistical Physics (2021), made in collaboration with T.Grava,
T. Kriecherbauer, and K. D. T.-R. McLaughlin [75].

In Chapter 2, we introduce three new random matrix ensembles that we called
a ensembles. We explicitly compute their mean density of states, also called mean
eigenvalue density. As a corollary of our construction, we obtain the density of
states of the Lax matrix of the Toda lattice in thermal equilibrium. The result
of this chapter are taken from our paper “On the mean Density of States of some
matrices related to the beta ensembles and an application to the Toda lattice.” arXiv:
2008.04604 (2020) [115].

In Chapter [3] we study the Ablowitz-Ladik lattice. Specifically, we introduce
the Generalized Gibbs ensemble for this lattice, and we are able to compute the gen-
eralized free energy. We also obtain the density of states for this lattice in thermal
equilibrium via a particular solution of the Double Confluent Heun Equation. The
results of this chapter are taken from our paper “Generalized Gibbs ensemble of the
Ablowitz-Ladik lattice, circular B-ensemble and double confluent Heun equation.”
arXiv: 2107.02303 (2021) [116], made in collaboration with T.Grava.

In Chapter[d] we focus on the Fermi-Pasta-Ulam-Tsingou (FPUT) chain. Specif-
ically, we prove that some integral of motion of the Toda lattice are adiabatic invari-
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Introduction

ants for the FPUT system. Moreover, we prove that some linear combinations of the
harmonic energies are also adiabatic invariants for both the FPUT chain, and the
Toda lattice. The result of this chapter are taken from our paper “Adiabatic invari-
ants for the FPUT and Toda chain in the thermodynamic limit.” Communications
in Mathematical Physics, 380 (2020) 76|, made in collaboration with T.Grava, A.
Maspero, and A. Ponno.

In Chapter [5] exploiting the theory of loop equations, we produced a unifying
mechanism to characterize the mean density of states for the § ensembles in the
high temperature regime. We also characterize the moments and the covariances
of monomial linear statistics through recurrence relations. Finally, we define the
Gaussian anti-symmetric « ensemble, and we computed its mean density of states
and its mean spectral measure. From the explicit formulas, we are able to sup-
plement analytic results obtained by Dyson in the study of the so-called type I
disordered chain. The result of this chapter are taken from our paper “The clas-
sical beta ensembles with beta proportional to 1/N: from loop equations to Dyson’s
disordered chain.” Journal of Mathematical Physics 62, 073505 (2021) [61], made
in collaboration with P.J. Forrester.

All chapters are independent from each other, so they can be read separately.
We now describe our results in more details, and we put them into context.

Correlation Functions

Correlation functions are an important object in statistical mechanics since they
encode transport properties of the system, such as the thermal conductivity.

To formally introduce them, we consider the even dimensional phase-space M <
RV, We denote by (p,q) € M, where p,q € RY, the vectors in M. On this phase-
space we consider the algebra of smooth real or complex valued functions C*(M)
and a bilinear antisymmetric operation {-, -} : C*(M) x C*(M) — C*(M) that
satisfies the Jacobi identity, namely {{f, g}, h} + {{g, h}, f} + {{h, f}, g} = 0 for all
f,9,h € C*(M), and the Leibniz’s rule, namely {fg,h} = {f,h}g + f{g, h} for all
f,9,h € C*(M) . Such operation is called Poisson bracket. Given a real function
H(p,q) € C*(M), that we call Hamiltonian, the equations of motion of the system
take the form:

¢ ={a;, H}, pj={p;,H}, j=1,....N, (0.1)

d d
where ¢; := el pj = pral We denote by p(t) and q(t) the evolution of p(0) and

q(0) along the Hamiltonian flow (0.1). A function F' is a constant of motion if it
commutes with H, namely

F={FH}=0.

Further, we assume that § ™ e AH(P.9)dpdq is finite so that the classical Gibbs mea-
sure duy at temperature Bt

e_IBH(p7q) dpdq
SM e—ﬁH(PH)dpdq ’

is well-defined. We notice that this measure is invariant under the Hamiltonian
dynamics.

IAY Guido Mazzuca
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We can now define the correlation between two functions F, G € L*(M, dp) N
C* (M), which is the space of infinitely many differentiable functions, such that
their modulus squared is integrable with respect to dug (0.2)).

Definition 0.1. Let H(p,q) € C*(M) be a Hamiltonian such that the Gibbs mea-
sure dug in (0.2) is well-defined. Let F,G € L*(M,dug) n C*®(M) be two real
or complex valued functions. The correlation function of F(t) = F(p(t),q(t)) and
G(t) = G(p(t),q(t)) is defined as

Cor(F,G) = E[F(O)G(0)] - E[F(O)]E[G(0)]
where E[-] denotes the expected value with respect to the Gibbs measure (0.2)).

As an example, we consider a Hamiltonian system with nearest neighbourhood
interaction

H(p,q) = ﬁl (pg + V(gjs1 — qj)) :

where V(q) € C*(R) is a function bounded from below and with at least polynomial
growth at +£0o0. The Poisson bracket is the canonical one, namely

{%‘7%} = {pjapk} =0, {ijpk} = 5jka

so the Hamiltonian equations take the standard form:

oH
q g, Hy = — =p;,
J { J } apj J
. oH
pj=A{p;, H} = arie V' (gje1 — ;) = V(g5 — qj-1) ,
J

here with ’ we denote the derivative with respect to the argument. We assume
periodic boundary conditions, i.e. pj.n = pj, ¢j+n = ¢; for all j € Z and N positive
integer. Since the Hamiltonian is translational invariant, we can consider the phase

space M
N N
M = {(p,q)eRQN’ ij = qu 20} :
j=1 j=1

On this phase space, we can introduce the Gibbs measure

e PH(P.9)dpdq
S.M e—ﬁH(P,Q)dpdq ’

dug =

here dq = Hj\[:l dg;, and similarly for p. Notice that our choice of the potential
V implies that §,, e ?#®9dpdq is finite. The relevant physical quantities are the

2
momenta p;, the elongations r; = gj11 — q;, and the local energy e; = % + V(rj),
j=1,...,N. These quantities evolve according to local conservation laws, namely

pj=V'(ry) = V'(r;_1),
rj = Dj+1 —Dj,
€; = =V'(ri—1)p; + V'(r))pjs1

Guido Mazzuca Vv



Introduction

where with ’ we denote the first derivative with respect to the argument. We are
interested in computing the following correlation functions

Cor (pj,po) = E [p;(t)po(0)] — E [p;(0)] E[po(0)] ,
Cor (r,70) = E[r;(t)ro(0)] = E[r;(0)] E [ro(0)] , (0.3)
Cor (ej,e0) = E[e;(t)eo(0)] — E[e;(0)] E[eo(0)] -

Correlation functions give some insight on how the actual status of a portion
of the system affect the motion of another part. Moreover, the fact that the total
momentum and total energy are conserved gives an idea on how the momentum
and energy spread in the lattice.

The explicit computation of these correlation functions for general dynamical
system is “utterly out of reach” - H. Sphon. Indeed there are no explicit formulas
for correlation functions of hamiltonian system, except for the harmonic oscilla-
tor case |112|. Based on extensive numerical investigations and some preliminary
computations, it is conjectured that, for sufficient long time, the energy-energy
correlations should scale as

j—ut
Cor (e, €9) =~ Ath( VG ) ; (0.4)

where v is some characteristic speed of the lattice, G is an analytic function, A € R*,
and 0 < v, 0 < 1. The case v = % is referred to as normal diffusion, and ~ > % is
referred as super diffusion.

H. Sphon, in a series of papers [119,/148-152], argues that for nearest neighbour-
hood, non-linear, and non-integrable Hamiltonian systems the exponents in ((0.4))
are 7 = 0 = % and G is a universal function, meaning that it is the same for all
this class of systems. Specifically G = Fry, where Fry is the Tracy-Widom dis-
tribution [158|. For nearest neighbourhood, non-linear, and integrable systems, the

decay is expected to be ballistic, meaning that v = § = 1, and the function G is also

universal, specifically G = e_'TrQ /+/2m, which is just the Gaussian distribution.
Much less in known and conjectured for short range interactions. In chapter
we present our work “Correlation functions for a chain of short range oscillators”,
on Journal of Statistical Physics (2021) made in collaboration with T. Grava, T.
Kriecherbauer, and K. D. T.-R. McLaughlin, where we consider systems with short
range interactions with quadratic potential, namely the Hamiltonian system:

Hsr(p;q) Z < i % = Qs 2) : (0.5)

where 1 <m « N, k1 >0, k,, > 0, and k5 > 0 for 1 < s < m. Periodic boundary
conditions are assumed, i.e. ¢jyn = ¢;, pj+n = Dj, for all 7 € Z. Our aim is to
explicitly compute the correlation functions for this system.

One of the main technical difficulties that we encounter is to find the analogous
quantities to the elongation, and the local energy, whose definitions are intuitive
in the nearest neighbourhood case. We re-write the Hamiltonian system in
matrix notation as

1 1
Hsr(p,q) = §(p,p) + §(q, Aq),

VI Guido Mazzuca
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where A is a circulant matrix of band size 2m + 1, and (-, -) denotes the standard
scalar product in RY.
We find a local, and periodic Toeplitz matrix T of band size m + 1 such that
A =T7T, where TT is the matrix transpose. We define the generalized elongation
as
r= Tq7

so that
N

Hsp(p,r) = ).

7=1

(vj +73)

N | —

we remark that the previous transformation is non-canonical. The generalized elon-
gation r; extends the concept of elongation in the harmonic oscillators with nearest
neighbourhood interaction. With the linear transformation q — r = T'q the local
energies take the familiar form e; = % (pj2 + rj?), j=1,...,N.

The derivation of the matrix T is crucial for our analysis, and it is obtained by
exploiting the rich algebraic structure of circulant and Toeplitz matrices |77].

Thanks to this linear transformation, we are able to explicitly compute the
correlation functions (0.3). Furthermore, applying the steepest descent method
(see e.g. [122]), we analyse the long time asymptotic of the correlation functions in
the large N limit, and we obtain the analogue of formula for our case. The
correlation functions are highly oscillatory. There are two fastest peaks travelling
in opposite directions with equal speed. We obtain the asymptotic description for
the scaling in time and shape of these peaks according to . Specifically, we
show that the time scaling is ruled by the coefficients v = %, 0 = %, and G = Ai’,
where Ai is the standard Airy function 38, Eq. 9.5.4]. Moreover, we show that the
correlation functions may have some non-generic slowly decaying peaks. We proved
that their shape is described by the Pearcey integral |38, Eq. 36.2.14].

Density of States of Lax matrices

We consider integrable Hamiltonian lattice systems with 2N degree of freedom.

The Hamiltonian system is Liouwville integrable if it admits N constants of mo-
tion independent and in involution. The modern theory of integrable systems was
developed by finding powerful tools to detect integrability. One of these tools is the
Lax pair formulation. In this case, the integrability is inferred by finding a couple
of square matrices L and B such that the equations of motion are equivalent
to

L=[L;B],

. 0L
where L = ks and [L; B] = LB — BL is the commutator between the matrices.

The size of the matrices L and B depends on the specific cases. This formulation
implies that the eigenvalues of the Lax matrix L are conserved. The two prototypical
examples of discrete integrable systems admitting a Lax formulation are

e the Toda lattice that is an Hamiltonian system with nearest neighbour inter-
actions with Hamiltonian

N p2
Hy(p,q) = ), (53 + e(q“l"j)) :
j=1

Guido Mazzuca VII
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and canonical Poisson bracket. Here p = (pi,...,pn) and q = (¢1,...,qn),
(p,q) € M = R*N. We consider periodic boundary conditions ¢;;n = ¢; and
pj+n = p; for j € Z and N a positive integer. The Toda equations of motions
are

p‘j — 6(1]‘71*(1]‘ _ er*ijJrl .

The corresponding Lax matrix L is a N x N periodic Jacobi matrix.

e The Ablowitz-Ladik lattice |2,|3] is a discrete spatial version of the cubic
nonlinear Schrodinger equation (NLS). There are several discretizations of this
equation, and the Ablowtiz-Ladik is among the ones that preserve integrability
[137]. For the Ablowitz-Ladik lattice with periodic boundary conditions the
dependent variables are the complex quantities o = (ay, ..., ay) where o; € D
with D = {z € C||z| < 1}. The Hamiltonian takes the form

Hap(aj,@;) = =2 ) R(0a.) — 2 Z log (1 — |ay[?). (0.6)

j=1

The Poisson bracket is defined on the space C*(M) with M = DV as
N
: of og  Of dg
= 2 — C= a1 — |2
g} Z;Ipf (aajaaj by ow,) VTl

The Ablowitz-Ladik equations of motions are

dj = {Oéj, HAL} = i(OéjJrl + Oéj,1 — 2C¥j) — Z.‘Oéj|2(C(j,1 + Odj+1) , (07)

dovs
&, and o n = aj, for all j € Z. We remark that the

where j € Z, o = o
quantity —2 Z;VZI log (1 — |ay]?) is the generator of the shift a;(t) — e~ "oy (t),

while H; = —2 Zjvzl R(a;a;41) generates the flow

id; = —pilajn +aja),  py=a/1- oyl (0.8)

which is related to the Schur one |73].

The Lax matrix £ for the flow is a 2N x 2N periodic CMV matrix
[126,147] (See chapter (3]).

As before, we consider random initial data sampled according to a Gibbs mea-
sure. Our novel observation is that for integrable systems this measure endows the
entries of the Lax matrix L with a probability distribution. As a consequence L
becomes a random matrix. This observation allows us to study the thermodynamic
limit of integrable system using the techniques and the rich theory of Random
Matrices.
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Our first goal is to study the eigenvalue distribution of the Lax matrix L. Such
eigenvalues are distributed on the contour £ < C. For the Toda lattice £L = R,
while £ = St := {z € C||z| = 1} for the Ablowitz-Ladik lattice.

Assuming that L is a N x N matrix with eigenvalues Ay, ..., Ay, the empirical
spectral distribution of the Lax matrix L is the random probability measure duj(\,L)
as

1 N

L

dvy’ = 5 20
j=1

where 9y is the Kronecker delta function centred at \.
We can now define the mean density of states dv'®) of the matrix L as the
non-random probability measure, such that

J fdv™® = lim f fduj(\f),
c c

N—o0

for all bounded, and continuous f defined in L, provided that the previous limit
exists.

The mean density of states of the Lax matrix L is used to derive heuristically the
behaviour of the correlation functions using the theory of generalized hydrodynamic
[39], as it has shown by H. Spohn in [151},/152].

In Chapter [2| we present our work “On the mean Density of States of some
matrices related to the beta ensembles and an application to the Toda lattice”,
arXiv:2008.04604 (2020). We consider the Toda lattice with periodic boundary
conditions, and we compute the mean density of states of its Lax matrix. As we
have already mentioned, it is a classical result [51,110] that the equations of motion
of the Toda lattice can be rewritten in Lax pair form as

L=[B;I], (0.9)

where L is the periodic Jacobi matrix of the form:

by a; O ay
a; by as . : b=,
Lba):=| 0 a b . 0 [, {az _ (0.10)
aN-—1
ay ... 0 an_1 by

here r; = ¢;+1 — q;, and we recall that a;;n = a;, and b;;xy = b;. The matrix B in
the Lax equation is the anti-symmetric matrix

1
B:§(L+_L1J-r)7

where for a matrix X we denote by X,

(X4)y; = { 0, otherwise

In this case the phase-space M takes the form
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M = {(p,r)eRNxRN‘ Zq«jzzpjzo}, (0.11)

Jj=1 J=1

we consider the Gibbs measure

e = 705

where r; = ¢;41 — ¢; are the elongations, 3 is the inverse of the temperature, and
Zr is the partition function of the system, namely

1
(N) . e—BHT(p,r)dp dr,

Zr(B) = f e PAT®Y qp dr,
M

This Gibbs measure endows the entries of the matrix L with a probability distri-
bution, thus L becomes a random matrix. We notice that due to the constraints
the entries of the matrix L are dependent. Our first result is to prove that
the density of states of L is equal to the density of states dvf*) of H,

b1 aq
a; by ap N
~ 2
Hy~ S S NO2) (0.12)
V2 L Gn ™~ X2a

anN—1
aN—1 by

here « is a continuous function depending on 3, N(0, 2) is the Gaussian distribution
with mean zero and variance 2, and Yy, is the chi-distribution with parameter 2a,
where a = () > 0 (see (4.40))).

Further, we are able to compute the density of states of the matrix H, connecting
it to the Gaussian (-ensemble in the high temperature regime or mean field regime,
i.e. when the parameter § scales as 1/N. More specifically, we proved that the
mean density of states dvI~) of the matrix

by
a; by ay

1 . . . Qp ~ X2a(1—£)
Hy(a,b) = — U - 7 N ’
vab) =75 | {bn~N(0,2)
aN-1
aN-—1 by

is related to the density of states dv¥*) by the formula

On(adp )y = qpHe)

2
2

Moreover, since the density of states dv(#~) was explicitly computed in |7,44] as
e

7 -2 n o ” a— _2 it
o | a, fa($)1=4/m£)t =% ety

we are able to give an explicit expression for the mean density of states dv(e).

du(HN)(x) =
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Furthermore, we generalize this construction introducing three new tridiagonal
matrix ensembles, that we name Gaussian, Laguerre, and Jacobi o ensembles. They
are related to the classical 8 ensembles in the so-called high temperature regime or
mean-field limit, i.e. when § — 0 and NNV, the size of the matrix, approaches infinity
in such a way that SN — 2a, a € RT. For example, the Gaussian a-ensemble is
described by the matrix H, . Exploiting their connection to the classical beta
ensembles in the high temperature regime, we are able to explicitly compute their
mean densities of states.

In Chapter [3] we present our work “Generalized Gibbs ensemble of the Ablowitz-
Ladik lattice, circular B-ensemble and double confluent Heun equation”, arXiv: 2107.02303
(2021), made in collaboration with T. Grava. Here, we focus on a problem similar
to the one in chapter [, namely we consider the Ablowitz-Ladik lattice (0.7). We
introduce the Generalized Gibbs ensemble for the AL lattice, and we connect it to
the Killip-Nenciu [93| matrix circular S-ensemble at high-temperature investigated
by Hardy and Lambert [80]. We consider the Ablowitz-Ladik lattice in thermal
equilibrium, meaning that we considered the Gibbs measure duay,

_
ZaL(B,n)

where H,;, is in and H; = —2 Z;V:1 R(c;aj11). In this setting, we are able to
compute explicitly the mean density of states of the Lax matrix of the Ablowitz-
Ladik lattice as a particular solution of the Double Confluent Heun equation (DCH):

_B _v
dpar = e 2 Marmshq?e,

20(2) + (—n+ 2(B+ 1) +n2°) V' (2) + nB(z + Av(z) =0,
where ' and ” denote the first and second derivative with respect to the argument,
n=v+f,and A = A\(n, 5) is a transcendental function related to the Painlevé III
equation [53,(104].

Adiabatic Invariants

We consider the phase-space M < R?", and a Hamiltonian H(p,q), here p =
(p1,--.,oN), 4 = (q1,-..,qn). Further, we assume that it is possible to define the
classical Gibbs measure at temperature 5~1.

Let us consider a function on the phase space, namely F' : M — C and let
F(t) = F(p(t),q(t)), where p(t) and q(t) are the evolution of p(0) and q(0) along
the flow generated by the Hamiltonian H (p,q). Our goal is to understand whether
there exists a class of functions F'(t) that are statistically almost conserved on a
certain time-scale. Such functions are called adiabatic invariants. The presence of
adiabatic invariants implies that the system is not chaotic for the specified time-
scale. Indeed, having almost conserved quantities implies that the system does not
explore all the phase-space.

The definition of adiabatic invariant is the following

Definition 0.2. Let us consider the phase space M with Hamiltonian H(p,q) and
Gibbs measure duy as in (0.2). Let F : M — C, such that F € L*(dpy, M) N
LY (dpg, M). F is an adiabatic invariant for the Hamiltonian H(p,q) if there exist
constants a,b € R™ and a continuous function f : Rt — R* such that
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_ oro\ _ f()

P (1F@ - Fo) > 252 < 2

where the probability is taken with respect to the Gibbs measure dug , and
op) s the variance of F(0) with respect to the same measure, that is op@y =
E[F2(0)] - E[F(0)]".

We remark that the previous definition is meaningful if % < 1, since we are
giving an upper bound on a probability. Further, we notice that the concept of
adiabatic invariants generalize the one of conserved quantities. For non-integrable
systems, the determination of adiabatic invariants is not an immediate task. In
Chapter [4 we present our work “Adiabatic invariants for the FPUT and Toda chain
in the thermodynamic limit.” Communications in Mathematical Physics, 380 (2020),
made in collaboration with T. Grava, A. Maspero, and A. Ponno. Here, we explic-
itly compute some adiabatic invariant for the periodic Fermi-Pasta-Ulam-Tsingou
(FPUT) lattice. The Hamiltonian of this system reads

N-1 p2 1,,2 7,,3 r4
= -J s - —
Hrrortp) = 3 (5 + Vo —0)) Vi =5 oo

here b > 0, and we consider periodic boundary condition, i.e. ¢j+n = ¢;, Pj+N = Dj
for all j € Z.

This system, which is not integrable, was introduced by Fermi, Pasta, Ulam,
and Tsingou to study the foundations of statistical mechanics. Specifically, they
wanted to obtain some numerical evidence of the so-called ergodic hypothesis: any
non-integrable system would reach an equilibrium state in fairly short-time for any
initial data.

Surprisingly, their numerical experiments showed that the FPUT exhibit a re-
current behaviour for a long time-scale, which is a typical feature of integrable
systems. This was in contrast with what they expected.

In the last 60 years, several scholars tried to explain the FPUT paradox in
different ways. Initially, this phenomenon was interpreted in terms of closeness to
some non-linear integrable system, e.g. the Korteweg-de Vries (KdV) [170], the
Boussinesq equation [171], and the Toda chain [49,|110]. On larger time-scales the
system displays instead an ergodic behaviour and approaches its micro-canonical
equilibrium state (in measure), unless the energy is so low to enter a KAM-like
regime |164/17,85,89,142]. We also mention the works [16,(17]|, where the authors were
able to prove the recurrent behaviour of the FPUT lattice in the regime of specific
energy going to zero, by approximating it by the KdV equation and the Toda lattice
respectively. However, these analytic results do not hold in the thermodynamic
limit, because the energy per particle scales to zero. Adiabatic invariants were
introduced in [29] to overcome this problem, since their presence is usually not
affected by the size of the system.

In the last few years, lots of efforts were put in constructing adiabatic invariants
for the FPUT system see [29,30,68,69,[109]. In all these papers, the authors found
some adiabatic invariants by considering the FPUT system as a perturbation of the
harmonic oscillator.
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In Chapter |4 we exploit a different approach by considering the FPUT system as
a fourth order perturbation of the Toda lattice. Using this approach we determine
a new family of adiabatic invariants of the FPUT system. Specifically, we proved
that the integrals of motion of the Toda lattice J™ = Tr (L™), where the Lax
matrix L is defined in (0.10)), are adiabatic invariants for the FPUT system for time
of order 5172¢, ¢ > 0.

The advantage of our approach is that the integrals J™, also known as Henon
integrals, are explicit in physical variables [82], so we avoid the perturbative con-
struction of [67]. On the other hand, we needed to carefully analyse the algebraic
structure of the integrals J™. This is achieved by using ideas coming from Random
Matrix Theory. Indeed, we derive a new explicit formula for the integrals J(™ by
relating them to the so-called Super Motzkin path [130], a well-known combinatorial
object. This observation is fundamental for our analysis.

Loop equations

In the last chapter of the thesis, we present our work “The classical beta ensembles
with beta proportional to 1/N: from loop equations to Dyson’s disordered chain.”
Journal of Mathematical Physics 62, 073505 (2021), made in collaboration with P.J.
Forrester. Here, we focus on a purely random matrix theory problem, namely the
explicit computation of the density of states for the classical beta ensembles in the
high temperature regime |7,8,44/159[160]. Moreover, we characterize their moments
and the linear statistics covariance though recurrence relations. Specifically, we
consider the following probability distribution:

1 N 2a
dPg = — 1_[ (N — )\j)ﬁe—ﬁv:l)‘? , (0.13)
2 i#j=1
1 & 20 T
dPL=—- [[ =) ¥ [[A5e™, (0.14)
Lizi=1 j=1
1 20 T
Py = — [[ =) ¥ [[A @ —ay)me™, (0.15)
Tizj=1 j=1

here, « > —1, ay,a0 > —1, and Zg, 21, and Zj are the norming constants of the
systems, or partition functions.

The joint probability distributions (0.13])-(0.14)-(0.15) are referred to as Gaus-
sian, Laguerre, and Jacobi beta ensembles in the high temperature regime. Each
of these ensembles admits a matrix representation, meaning that there exist three
random matrices such that their eigenvalues are distributed according to (0.13)-

(0.14)-(0.15]) respectively. For example, the eigenvalues of the matrix Hy

b
a; by ay

HN(a, b) =

-

™ Xaa(1-%)
" by ~ N(0,2)

anN-—1
aN-—1 bn
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are distributed according to .

Our first aim is to compute the density of states for these ensembles. We obtain
this result by making use of the knowledge of the so-called loop equations |23}25,
63,[123,/166| for the classical beta ensembles. The loop equation formalism allows
determining the coefficients of the large N expansion of the rescaled resolvent

€xr —

1 /9 1 \¢ 1
(D ==5) = W@ + W@ + -
=1 ’

here we used the superscript G to refer to the Gaussian beta ensemble, and A; are
distributed according to (0.13). The expected value is taken with respect to (0.13)),

and G (o)
00 .
p 1) 0 ) «
WiS(z) = J HO
1 (l’) 0 T — )\ Y

here pgm()\; «) is the mean density of states of the Gaussian Beta ensemble in the

high temperature regime. We notice that VVIO G(m) is exactly the Stieltjes trans-
form of the mean density of states. By knowing WIO G(:v) it is possible to recover
pg)’o()\; «) using the inversion formula [13|:

pﬁ) o(z; ) = lim lIm WG (x —ie).

’ e—0t T
There are analogous structures for the Laguerre and Jacobi case.

Studying the loop equations for these ensembles, we are able to recover Wlo ’G(x),
and the corresponding quantities for the Laguerre, and Jacobi cases. We also char-
acterize the moments of the density of states and the covariance of monomial linear
statistics via recurrence relations.

The explicit expression for the mean density of states for these ensembles were
already known by different methods [7],8,44,159,160]. The novelty of our approach
is the fact that we produce a unifying mechanism to characterize the mean density
of states for all § ensembles in the high temperature regime, making use of loop
equations.

Moreover, following the procedure in [115], we identify a further example of «
ensemble,; specified by the following random anti-symmetric tridiagonal matrix

0 aq

—anN-2 0 aN-—1
—aN—-1 0

with X; denoting the square root of the gamma distribution I'[k/2, 1].

Also in this case, we are able to explicitly compute its mean density of states. It
is worth to mention that the same random matrix ensemble appears in Dyson’s [45]
study of a disordered chain of harmonic oscillators. Our analytic results supplement
those already contained in Dyson’s work.
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Chapter 1

Correlation Functions for a chain of
Short Range Oscillator

In this chapter, we will consider a system of N = 2M + 1 particles interacting with
a short range harmonic potential with Hamiltonian of the form

N—-1_2 m
b; Rs
H=) 5+275 2 -6 (1.1)
where 1 < m « N, k1 >0, k,, > 0, and ks = 0 for 1 < s < m. Throughout this
chapter, we consider periodic boundary conditions, i.e. gni; = q;, pn+j = p; for all
7.
The Hamiltonian (1.1)) can be rewritten in the form

1 1

H(p,q) := §(p,p) + §(q,Aq), (1.2)

where p = (po,...,pn-1), 4 = (qo,---,qn-1), (-, -) denotes the standard scalar
product in RY and where A € Mat(N,R) is a positive semidefinite symmetric cir-
culant matrix generated by the vector a = (ao, ...,ay—1) namely Ay = @(j—k)jmoa v

or - ~
Qg 451 anN-2 aN-1
anN—1 Qo ay aN—2
A= anN—1 ao (13)
a2 a1
| a1 a2 an—1 aop |
where
m
ag = 22 Ks, Gs=aN—s= —Kg, fors=1,...,m and a, =0 otherwise. (1.4)
s=1

Due to the condition x; > 0 we have (q, Aq) = 0 iff all spacings gj11 — ¢; vanish.
Therefore, the kernel of A is one-dimensional, with the constant vector (1,...,1)T
providing a basis. This also implies that the lattice at rest has zero spacings every-
where. Observe, however, that one may introduce an arbitrary spacing A for the
lattice at rest by the canonical transformation @); = ¢; + jA, P; = p; which does
not change the dynamics. The periodicity condition for the positions (); then reads
Qnyj = Qj + L with L = NA (see e.g. [148, Sec. 2|).

1



Correlations Functions

The harmonic oscillator with only nearest neighbour interactions is recovered by
choosing

ap = 2K1, a1 =an—1 = —kKi,

and the remaining coefficients are set to zero.
The equations of motion for the Hamiltonian H take the form

d> — .
a2l = Z Ks(@jes —2q5 + ¢j—s5), j=0,....,N—1.

s=1
The integration is obtained by studying the dynamics in Fourier space (see e.g.
[107]). We will study correlations between momentum, position and local versions
of energy. Following the standard procedure in the case of nearest neighbour interac-
tions we replace the vector of position q by a new variable r so that the Hamiltonian

takes the form
1 1

H = 5(p,p) + 5(r,1).

Such a change of variables may be achieved by any linear transformation

r =1Tq, (1.5)
with an N x N matrix T that satisfies

A=TT, (1.6)

where TT denotes the transpose of T'. In the case of nearest neighbour interactions
one may choose r; = \/k1(gj+1—¢;) corresponding to a circulant matrix 7" generated
by the vector T = /k1(—1,1,0,...,0). We show in Proposition|1.2below that short
range interactions given by matrices A of the form , (1.4) also admit such a
localized square root. More precisely, there exists a circulant N x N matrix 7" of the
form

™ T ... Tm 0 ... 0
0O o 7nn ... Tn O
T=\7, 0 . . . - ) (1.7)
T .. T, 0 ... T 7
| 2 ... T O 0 70|

that satisfies (1.6]). The crucial point here is that T is not the standard (symmetric)
square root of the positive semidefinite matrix A, but a localized version generated
by some vector T with zero entries everywhere, except possibly in the first m + 1
components. Hence, the j* component of the generalized elongation r defined
through depends only on the components ¢; with s = 7,7+ 1,...,5+m. It is
worth noting that 1 = (1,...,1)T satisfies 71 = 0 since (1, A1) = 0. This implies

m m N—-1
27320, TjZZTs(Qj+s—Qj> and erz(l,...,l)quo.
5=0 7=0

s=1
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The local energy e; takes the form

L

€j = §pj +
Our goal is to study the behaviour of the correlation functions for the momentum
pj, the generalized elongation r; and the local energy e; when N — o0 and ¢ — o0.
Due to the spatial translation invariance of the Hamiltonian H(p,q) = H(p,q +
A1), A € R, that corresponds to the conservation of total momentum, we reduce
the Hamiltonian system by one degree of freedom to obtain a normalizable Gibbs
measure. This leads to the reduced phase space

1 2
ET]- .

N-1 N-1
M;:{(p,q)eRNxRN: Zpk=0;2qk=0}- (1.8)
k=0 k=0

We endow M with the Gibbs measure at temperature 57!, namely:

N-—1 N—-1
dp = Zn(8) 100 (2 pk> 8o (2 qk> e PP dpdq (1.9)

k=0 k=0

where Zx () is the norming constant and dy(x) is the delta function centred at 0.
For convenience, we introduce the vector

u(g;t) = (r;(8), p;(1), ¢;(1)).

We consider the correlation functions
S (4:8) = Ctta (G, )11 (0, 0)) = (a5, 1)) (e (0,0)), @v,0” = 1,2,3, (L.10)
where the symbol (- ) refers to averages with respect to dp . We calculate the limits
lim S0 (5,1) = Saw(j,1)

For the harmonic oscillator with nearest neighbor interactions such limits have been
calculated in [112].

In an interesting series of papers, (see e.g. |149], and also the collection |102])
several researchers have considered the evolution of space-time correlation functions,
for "anharmonic chains", which are nonlinear nearest-neighbor Hamiltonian systems
of oscillators. The authors consider the deterministic evolution from random initial
data sampled from a Gibbs ensemble, with a large number of particles and study
the correlation functions S ,.

In addition to intensive computational simulations [98], [120], Spohn and col-
laborators also propose and study a nonlinear stochastic conservation law model
[148], [149]. Using deep physical intuition, it has been proposed that the long-
time behaviour of space-time correlation functions of the deterministic Hamiltonian
evolution from random initial data is equivalent to the behaviour of correlation func-
tions of an analogous nonlinear stochastic system of PDEs. Studying this stochastic
model, Spohn eventually arrives at an asymptotic description of the "sound peaks"
of the correlation functions in normal modes coordinates which are related to S,
by orthogonal transformation:

Soa = Ast) ™ fepy (A ™3 (z — act))
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using the notation of [Formula (3.1)] [148]. Here fipy is a universal function
that first emerges in the Kardar-Parisi-Zhang equation and it is related to the
Tracy-Widom distribution, [158], (for a review see [32] and also [94]). A common
element to the above cited papers is the observation that such formulae should hold
for non-integrable dynamics, while the correlation functions of integrable lattices
of oscillators will exhibit ballistic scaling, which means the correlation functions
decay as % for ¢ large. For example, in [98] the authors present the results of
simulations of the Toda lattice in 3 different asymptotic regimes (the harmonic
oscillator limit, the hard-particle limit, and the full nonlinear system). They present
plots of the quantity ¢S(x,t) as a function of the scaled spatial variable x/t (here
S(z,t) represents any of the correlation functions). The numerical results support
the ballistic scaling conjecture in some asymptotic scaling regimes. Further analysis
in [151] gives a derivation of the ballistic scaling for the Toda lattice. The decay of
equilibrium correlation functions show similar features as anomalous heat transport
in one-dimensional systems [37], [101] [36] which leads to conjecture that the two
phenomena are related [102].

In [119] the authors also pursue a different connection to random matrices, and
in particular to the Tracy-Widom distribution. Over the last 15 years, there has
emerged a story originating in the proof that for the totally asymmetric exclusion
process on a 1-D lattice (TASEP), the fluctuations of the height function are gov-
erned (in a suitable limit) by the Tracy-Widom distribution. Separately, a partial
differential equations model for these fluctuations emerged, which takes the form of
stochastic Burgers equation:

ou *u ou ¢

_ = PR R + -,
ot~ ox? Yor " oz
where ( is a stationary spatio-temporal white noise process. (The mean behaviour
0 0
of TASEP is actually described by the simpler Euler equation 8_12 = —)\ua—u.).
x

From these origins there have now emerged proofs, for a small collection of initial
conditions, that the fluctuations of the solution to are indeed connected to the
Tracy-Widom distribution (see [32] and the references contained therein). In [119),
the authors considered continuum limits of anharmonic lattices with random initial
data, in which there are underlying conservation laws describing the mean behaviour
that are the analogue of the Euler equation associated to . By analogy with
the connection between TASEP and ([I.12)), they proposed that the time-integrated
currents are the analogue of the height function, and should exhibit fluctuations
about their mean described by the Tracy-Widom distribution, again based on the
use of the nonlinear stochastic pde system as a model for the deterministic evolution
from random initial data. As one example, they consider the quantity

(. 1) — fj(;c,t')dt' - f w(!, 0)da’ |

0 0
where u(x,t) arises as a sort of continuum limit of a particle system obeying a dis-
crete analogue of a system of conservation laws taking the form d,u(z, t)+0,j(z,t) =
0, in which j(z,t) is a local current density for u(z,t). The authors suggest a dual
interpretation of ®(x,t) as the height function from a KPZ equation, and thus arrive
at the proposal that

(I)(l', t) ~ aot + (Ft)1/3 gTW s
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where ay and I' are model-dependent parameters, and &7y is a random amplitude
with Tracy-Widom distribution.

Our main result is the analogue of the relations for the harmonic oscillator
with short range interactions and for the harmonic oscillator. For stating our
result, we first calculate the dispersion relation |w(k)| for the harmonic oscillator
with short range interaction in the limit N — oo obtaining

s=1

F(k) = |w(k)| = \/2 > kg (1 = cos(2mks)) (1.15)

see (|1.28)). The points k£ = 0,1 contribute to the fastest moving peaks of the
correlation functions that have a velocity +vy where v = /> 0" | %k, = f(0)/(27).
If f"(k) <0 for all 0 < k < 1/2 then as ¢ — o the following holds uniformly in

j € Z (cf. Theorem [1.6] and Figure [L.1)):
. . 1 atal A j—l)()t . j+U0t ~-1/2 o
Saa/<j7t) = W [(—1) Ai (W) + Ai <—W)] +O(t ), o, = 1,2

. 1 o (J — vot o [ J+ ot —5/6
S33<],t) = W [AI <W) +A1 (— /\0t1/3 >—| +O(t /) )

(1.16)

where Ai(w) = 1{*cos(y?/3 + wy)dy, w € R, is the Airy function, and )\ :=

oo

1(1 m

1/3
3 (% > s'ks) . The above formula is the linear analogue of the Tracy-Widom

distribution in (1.11]).

Furthermore, we can tune the spring intensities ks, s = 1,...,m in SO
that we can find an (m — 1)-parameter family of potentials such that for j ~ +v*¢,
with 0 < v* < vg, one has

1 1
Saar(j,t) = O (t—l) ;o =1,2, S33(j,t) =0 (t_1> , ast— 0.

In this case the local behaviour of the correlation functions is described by the

Pearcey integral (see Theorem and Figures below).
For example a potential with such behaviour is given by ring interaction of
8

the form kg = = for s =1,...,m and m even (see Example |1.8| below).

In Section [I.3] we study numerically small nonlinear perturbations of the har-
monic oscillator with short range interactions and our results suggest that the be-
haviour of the fastest peak has a transition from the Airy asymptotic to
the Tracy-Widom asymptotic , depending on the strength of the nonlinearity.
Namely the asymptotic behaviour in that has been conjectured for nearest
neighbour interactions seems to persist also for sufficiently strong nonlinear pertur-
bations of the harmonic oscillator with short range interactions. Remarkably, our
numerical simulations indicate that the non generic decay in time of other peaks
in the correlation functions persists under small nonlinear perturbations with the
same power law ¢~ /% as in the linear case, see e.g. Figures and .

So as not to overlook a large body of related work, we observe that the quan-
tities we consider here are somewhat different than those considered in the study

Guido Mazzuca 5



Correlations Functions

of thermal transport, though there is of course overlap. (We refer to the Lecture
Notes |101] for an overview of this research area and also the seminal paper [140].)
As mentioned above, we study the dynamical evolution of space-time correlation
functions and the statistical description of random height functions, where the only
randomness comes from the initial data. By comparison, in the consideration of
heat conduction and transport in low dimensions, anharmonic chains are often con-
nected at their ends to heat reservoirs of different temperatures, and randomness is
present primarily in the dynamical laws, not only in fluctuations of initial data.

This chapter is organized as follows. In Section we study the harmonic
oscillator with short range interactions, and we introduce the necessary notation
and the change of coordinates q — r that enables us to study correlation functions.
We then study the time decay of the correlation functions via steepest descent
analysis, and we show that the two fastest peaks travelling in opposite directions
originate from the points £ = 0 and £ = 1 in the spectrum. Such peaks have a decay
described by the Airy scaling. We then show the existence of potentials such that
the correlation functions have a slower time decaying with respect to "Airy peaks".
In Section we show that the harmonic oscillator with short range interactions
has a complete set of local integrals of motion in involution and the correlation
functions of such integrals have the same structure as the energy-energy correlation
function. Further, we show that the evolution equations for the generalized position,
momentum can be written in the form of conservation laws which have a potential
function. For the case of the harmonic oscillator with nearest neighbour interaction,
we show that this function is a Gaussian random variable and determine the leading
order behaviour of its variance as t — co. This may be viewed as the analogue of
formula for the linear case. Finally, in Section [1.3| we study numerically the
evolution of the correlation functions after adding nonlinear perturbations to our
model.

1.1 The harmonic oscillator with short range inter-
actions

As it was previously explained, we rewrite the Hamiltonian for the harmonic oscil-
lator with short range interactions

N—-1 p2 m P N-1 N-1 p2 1 m 2
Hp.a)= 3, 5+ 2,5 2, (4= a)” = )] §]+§<Zn(qj+s—qj)>
=0 s=1 % j=0 =0 s=1

so that we may define a Hamiltonian density
2 m
D; 1 2
ej = EJ §<ZTs(qj+s_Qj>> )
s=1
which is local in the variables (p,q) for fixed m. Namely, if we let N — oo, the
quantity e; involves a finite number of physical variables (p,q). Recall that the
coefficients 7, are the entries of the circulant localized square root 1" of the matrix
A by which we mean a solution of the equation (1.6)) of the form (1.7)). The matrix
T will also play a role in constructing a complete set of integrals that have a local
density in the sense that we just described for the energy.
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In order to state our result we have to introduce some notation. First of all, a
matrix A of the form (1.3 with a € RY is called a circulant matrix generated by
the vector a.

Definition 1.1 (m-physical vector and half-m-physical vector). Fiz m € N. For
any odd N > 2m, a vector X € RY is said to be m-physical generated by x =
(o, @1, ..y T) € R 4f g = =237 2 and

Ty =xp,
1 =Tn_1 =21 < 0, fm = j:N—m =Ty < O,
.f'k ZfN,kZl'kgO, f07‘1<k<m,

T, =0, otherwise,

while the vector X € RN is called half-m-physical generated by y € R™ ! if yo =
— > ys and

Tk =Yg, for0 <k <m
k<

Zr =0, form < N —1.

Following the proof of a classic lemma by Fejér and Riesz, see e.g. [141} pg. 117
f], one can show that a circulant symmetric matrix A of the form generated
by a m-physical vector a always has a circulant localized square root 7T' that is
generated by a half-m physical vector 7.

Proposition 1.2. Fiz m € N. Let the circulant matrix A be generated by an
m-physical vector a, then there exist a circulant matrix T generated by an half-m-

physical vector T such that:
A=TTT.

Moreover, we can choose T such that )" sts > 0. Then one has Y. | sTs =
m 9
V2 82k

Proof. In view of the notation introduced in ((1.3)), (1.4), and (1.7]), we have just to
show that there exist 79, ..., 7, € R satisfying >."" , 7, = 0 such that

Q(zHQ(2) = £(2) for all z € C\{0}, (1.17)
where we have defined

Q(z) =70+ Tz + ...+ Tp2™,

m

(1.18)

U2) = —Kmz ™ — ... — k12 Pt ag— K1z — ... — Kp2™.

The existence of the 7;’s is a consequence of the Fejér-Riesz lemma. For the con-
venience, we present a proof following the presentation in 141, pg. 117 f]. Denote
by P the polynomial of degree 2m given by P(z) := z™{(z). Observe that for all
x € R we have

(™) = ag — 2 Z kjcos(jr) = ag—2 Z kj = 0.
j=1 j=1
By the positivity of k; equality holds in the inequality above iff cos(x) = 1. This
implies that P has no zeros on the unit circle |z| = 1 except for z = 1. We denote
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by nx, 1 < k < r-, the zeros of P that lie within the unit disc |n;| < 1 and by &,
1 < k < r., the zeros of P with [§| > 1, recorded repeatedly according to their
multiplicities, so that

P(2) = —im(z = )P [ [ =m0 [ (- — &) (1.19)
k=1 k=1

Using the uniqueness of such a factorization for any polynomial together with the
relation 2*™P(27!) = P(z) one obtains that r— = r- and that the zeros can be
listed in such a way that n; = §k_1 for all 1 < k < r_—. Moreover, we learn that r is
even with 1 < g :=1¢/2 = m — r-. Now it follows from formula that

I(2) = 27"P(2) = c(z7" = 1)%(z — 1)91_<[(z’1 — &) ﬁ(z — &),
k=1 k=1

here

r<

ci= —mm(—l)gl—[(—@;l) #0.
k=1
Choosing d € C with d* = ¢ we see that Q(z) := d(z — 1)2[[,Z,(z — &) satisfies
. Next, we show that the coefficients of the polynomial () are real. To this end,
we observe that P has real coefficients and therefore all non-real zeros of P come
in complex conjugate pairs with equal multiplicities. Therefore, the polynomial
d7'Q(z) = Xj.,s;% has only real coefficients s;. Relation implies ap =
d? 377" s7. Consequently, d* is the quotient of two positive numbers and d must
be real. Thus, we have 7; = ds; € R for all 0 < j < m. We complete the proof
by arguing that >7" 7, = 0 and (31", s75)® = D", s’k hold true. This can be
deduced from via Q(1)? = ¢(1) = 0 and —2Q'(1)? = ¢"(1) = — X | 2s?Ks.

O

For example, if we consider m = 1, and ay = 2k; and a; = ay_1 = —k1. The
matrix 7' is generated by the vector 7 = (79, 7) with 79 = —,/k; and 7, = \/K;.
When m = 2 and ag = 2k1 + 2k9, a1 = any_1 = —K1, G2 = AN_2 = —Ko. The matrix

T is generated by the vector T = (19, 71, 72) with

$

— N =

T = ——~— —

9 V K1 +4K/27 1 = \/R1,

A/ K
Ty = —Tl + 5\/ K1 + 4%2,

so that the quantities r; are defined as

ri =g —¢) + (g2 —¢), j=0,...N—-1.

Next we integrate the equation of motions. The Hamiltonian H(p,q) represents
clearly an integrable system that can be integrated passing through Fourier trans-
form. Let F be the discrete Fourier transform with entries Fj, := \/Lﬁe_m“jk/ N with
4, k=0,...,N —1. It is immediate to verify that

Fl1=F F=F
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Thanks to the above properties, the transformation defined by
(9.4) = (Fp, Fq)

is canonical. Furthermore ﬁj = pn—; and c?] = qn—j, for j =1,..., N — 1, while py
and ¢ are real variables. The matrices T' and A are circulant matrices and so they
are reduced to diagonal form by F:

FAF? = FI'"TF' = (FTF ) (FTF™).

Let w; denote the eigenvalues of the matrix T ordered so that FTF ! = diag(w;).
Then |w;|? are the (non-negative) eigenvalues of the matrix A and

w;? = VN(Fa);, w; =VN(FF),;, j=0,...,N—1, (1.20)

where a is the m-physical vector generated by a and 7 is the half m-physical vector
generated by 7 according to Definition It follows that

wo 220, Wy =:&hv,j, j ::1,...,PV—— L

which implies |w;|? = |wy—;|?, 7 = 1,..., N—1. The Hamiltonian H, can be written
as the sum of N — 1 oscillators
H(p,q) = 5 (2 ;1" + |wj\2@|2) = 2 1B + lwslP1a
j=1 j=1
There are no terms involving py, o since the conditions defining M ([1.8) imply that
po = 0 and gy = 0. The Hamilton equations are

d. =
=P
d N 2~
2P = Wil
Thus the general solution reads:

b;(0)

050) = 30)cos(esle) + im0 L
p;(t) = §;(0) cos(lwyt) — |wslg;(0) sin(lwslt), 5 =1,...,N 1,
and qo(t) = 0 and po(t) = 0. Inverting the Fourier transform, we recover the
variables q = F~!q, p = Fp and r = F~!T where
P=wid,j=0,... N—1. (1.22)

Correlation Decay

We now study the decay of correlation functions for Hamiltonian systems of the
form (1.2)). We recall the definition (1.9)) of the Gibbs measure at temperature 371
on the reduced phase space M, namely:

N—-1 N-1
dp = Zn(8)"d (Z pk) & (Z qk> e PHP9dpdq

k=0 k=0
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where Zx (/) is the norming constant of the probability measure. For a function
f = f(p,q) we define its average as

i | fo.a) dn

We first compute all correlation functions , then we will evaluate the limit
N — 0. We first observe that (L.9) in the Varlables (P,4d) := (Fp, Fq) becomes

‘2
N

dp = Zy(B)"! e—ﬂ(lﬁj|2+\Wj\2|§j\2)dﬁjd§j (1.23)

<.
Il
—_

where dp;dg; = dRp;dSp;dRG;dSq; and we recall that p; = Py_j, @ = Gn_;»
r; = w;qj, for j=1,...,N —1.

From the evolution of p; and ¢; in (1.21) and (|1.22)), we arrive at the relations

P O0) ) = (Be(0) (5;(0) cos((ws 1) — lesl3 (0 sim (Jsl)) ) = 60 cos(les ),
B

BiOR0) = (edi(0) (P2(0) cosllslt) ey GT0)sin (5l0)) ) = ~jag £ 5in (s ),

FB(0)) = <%pk <qj<>c0s<\wjrt> (j)sin<\wj\t>>> el sinlles )

(R = <wkquk (q]<>cos<|wj|t> |<|>sm<|w]|t>>>_ i cos( ).

Now we are ready to compute explicitly the correlation functions in the physical
variables. We show the computation just for the case S1y(j,t), since all the other
cases are analogous:

SN (1) = (ry(t)ro 2 Pt >

ki=1 (1.24)

N—

ly .
Z (|wr|t) cos (2#%) = SP(j,1).
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In the same way we have that:

1 & lj
SN (4,1 N_ ; n(|w|t) cos (QWN + arg(wl))
N-— i’
SN, 1) Z n(|wt) cos (QWNJ - arg(wl)> (1.25)

SN (.1) = s§é< ) = S5(.1) = 8. 1) = 0 (1.26)
S = SSHP + (S92 + (S + (sy?) + 2N =)

IN2[32
The dispersion relation given by (|1.20)) takes the form

2 (1 — cos (%—)) + 12 7, sin (27r—>

|we|? = Z ase e~2miR — 22 K <1 — COS (27rﬁg)> ,

where we substitute for the a, their values as in (|1.4] . We are interested in obtaining
the continuum limit of the above correlation functions. We first define w(k) to
provide continuum limits of w, and |w,|?, namely

(1.27)

Z (1 — cos (2msk)) + 12 Ts sin (27 sk)
o o= (1.28)
w(k)|? = Z (1 — cos(2mks)) ,

where the variable ¢/ N has been approximated with k& € [0,1]. One may use equa-
tion to check the consistency of the two equations of . To this end
observe that w(k) = Qe 2™*), w(k) = Q(e2™*), and |w(k)|* = £(e*™*), we recall
that Q(z), £(z) are defined in (|1.18]).

Lemma 1.3. Let w(k) be defined as in (1.28)), set f(k) := |w(k)|, and denote
0(k) := arg(w(k)) for 0 < k < 1, where the ambiguity in the definition of 0 is settled
by requiring 0 to be continuous with 0(0) € (—m,w|. Then, for all k € [0, 1] we have

w(l—k) =w(k),
f(L=k) = f(k), (1.29)
01 —k)=—0(k) (mod 2m). (1.30)

Furthemore, the functions f and 0 — %5 are C* on [0,1] and they both possess odd

C*-extensions at k = 0 which implies in particular 6(0) = 7 .

Proof. The symmetries follow directly from the definition of w in . From
we also learn that |w(k)|* = 2k1(1 — cos(27k)) > 0 for k € (0,1). Thus the smooth-
ness of f and @ only needs to be investigated for k € {0,1}. By symmetry we only
need to study the case & = 0. The smoothness of the function # may be obtained
from the expansion near k = 0

_ Z;nzl 5T, 3
cot(0(k)) = —km N + O(k?)
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together with > | s7, > 0 (see Proposition. Since cot(A(0)) = 0 and Sw(k) > 0
for small positive values of k& we conclude that 6(0) = 7 from the requlrement
0(0) € (—m,m]. This also implies the existence of a smooth odd extension of 6 — 7
at k = 0 because cot(d(k)) has such an extension. For the function f the claims
follow from the representation

. 1/2
f(k) =27k (Z sk sinc2(7rsk)>

s=1

sin

near k = 0 where sinc(z) = xx denotes the smooth and even sinus cardinalis
function. u

Lemma 1.4. In the limit N — oo the correlation functions have the following
eTPansion

. 6040/ _
Saa’( )+N6 _Saa’(
Séé(]a t) = S33(j7t) + O (Nil) )

where dq, denotes the Kronecker delta,

Jt)+O(N™), ad =1,2,

S11(4,t) = Saa(j,t) = BJ cos (Jw(k)|t) cos (2mky) dk (1.31)
Sia(ji ) = —f sin (| (k)|t) cos (2rkj + 6(k)) dk,

So1(4,t) = —%L sin (|w(k)|t) cos (2rkj — 0(k)) dk, (1.32)
Ss3(j:t) = (Sfl + S35+ Sy + 55), (1.33)

and 0(k) = argw(k) with w(k) as in (1.28).

Proof. For any periodic C*-function ¢ on the real line with period 1, g(k) =
> ez Gn€®™ 1 one has

%]:Z_:g(%) T;ng]v_f k)dk + O (N™) .

It follows from Lemma that the integrands in ((1.31))-(1.32)) can be extended to

1-periodic smooth functions because we have for small positive values of k that
cos (f(—k)t)cos (—2mkj) = cos(f(k)t)cos(—2mkj) = cos(f(1—k)t)cos(2m(1—k)j),
sin (f(—k)t) cos (—2mkj + 0(—k)) = —sin(f(k)t)cos(—2nkj + (7 —0(k)))
= sin(f(1—k)t)cos(2n(1 —k)j £ 6(1 —k)) .
Observing in addition that the summands corresponding to ¢ = 0 are missing in

(1.24)-(1.25) the first claim is proved. Together with ((1.27)) this also implies the
second claim. N
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Next we analyse the leading order behaviour (as ¢t — o) of the limiting correla-
tion functions S, (J,t) using the method of steepest descent. In order to explain
the phenomena that may occur we start by discussing S7;. Denote

g::% and o (k,€) = f(k) + 2mk. (1.34)

With these definitions and using the symmetry ((1.29)) we may write
I 1 ("
Su(j,t) = =R J (et R)F2meh) 4 it (R)=2mek)) gl — —ERJ e~k gk . (1.35)
’ 28 Jo B J

The leading order behaviour (f — o0) of such an integral is determined by the
stationary phase points kg € [0, 1], i.e. by the solutions of the equation %gb,(k:o, ) =
0 which depend on the value of &.

Such stationary phase points do not need to exist. In fact, as we see in Lemma/l.5
b) below, the range of f’ is given by some interval [—27vg, 2mvg] so that there are
no stationary phase points for |{| > vy. As in the proof of Lemma one can
argue that the integrand Re??-(*7/%) can be extended to a periodic smooth function
of k on the real line with period 1. It then follows from integration by parts that
S11(4,t) decays rapidly in time. More precisely, for every fixed § > 0 we have

Su(j,t) =0 (™) ast— oo, uniformly for [j| = (vy + 0)t. (1.36)

This justifies the name of sound speed for the quantity vy.

In the case || < vy there always exists at least one stationary phase point ko =
ko(§) € [0,1]. Each stationary phase point may provide an additive contribution to
the leading order behaviour of Sé e?- (k3N dk for j near £t. However, the order of the
contribution depends on the multiplicity of the stationary phase point. For example,
let kg be a stationary phase point of ¢_(-,§), i.e. a—igb_(ko,f) = 0. Denote by ¢ the
smallest integer bigger than 1 for which aa—lfzqﬁ_(ko, €) # 0. Then kq contributes a term

of order t'/¢ to the t-asymptotics of S(l) e''®- (/M dk for j in a suitable neighbourhood
of &t.

Before treating the general situation let us recall the case of nearest neighbour
interactions. There we have

f(k) = fi(k) = A/2r1(1 — cos(2mk)) = 24/my sin(nk), ke [0,1].

The range of f] equals [—27vy, 2vg| with vy = \/k1. For every |£| < vy there exists
exactly one stationary phase point ky(§) € [0, 1] of ¢_(-,£) that is determined by
the relation cos(mko(€)) = &/vg. A straight forward calculation gives

(’/32

0 (n(€). ) = H(ko(§) = 2w\ /id — €2 = 0 = € = vy,

Moreover, we have ky(vg) = 0 and ko(—vg) = 1 and therefore %qﬁ,(k’o(ivo), tug) =
F2m3vy # 0. This implies that in addition to (1.36) we have Si;(j,t) = O(t~2),
except for j near +vot where Si1(j,t) = O(t71/3). In order to determine the be-
haviour near the least decaying peaks that travel at speeds +vy we expand f; near
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the stationary phase points. Let us first consider ¢ = vy with kg = 0. Introducing
Xo = | f7(0)/2]"3 = Luy/* we obtain

1
fl(l{?) = 27TUO]€ — §(27T)\0k)3 + O(/{?E)) y as k — 0.

Substituting y = 27 \ot"/?k leads for k close to 0 to the asymptotic expression

- vot —J L g -2/3
to_(k, j/t) = ———=y — =y + O(t , ast— oo.
¢ (k, j/t) WA ")
Using the well-known representation Ai(w) = 1 {* cos(y*/3 + wy)dy, w € R, of the
Airy function and performing a similar analysis around the stationary phase point
ko = —1 for £ = —wvy one obtains an asymptotic formula for the region not covered

by (30)

: 1 . (J— vot [ g+t ~1/2
Snlit) = 5537 [Al(wu3 ) + Ai (f pWaTE )] +O(t?), t - o, (1.37)

uniformly for [j| < (vg+0)t, for & > 0 (see e.g. [122]). Observe that due to the decay
of Ai(w) for w — +o0, the Airy term is dominant roughly in the regions described
by vot — o(t) < || < vot + o((Int)?3).

From the arguments just presented it is not difficult to see that the derivation
of only uses the following properties of f = fi:

f"(k) <0 forall 0<k< (1.38)

[\3|>—l

together with
1
f"(0)=0, f"(0)<0, and f(1—4k)=f(k) forall 0<k< 3 (1.39)

Conditions ) and ((1.39) imply that statements and ( - ) hold with
vo = L9 > 0 and )\0 = 217T|f”’( )/2[1/3.

It follows from equation (1.29) and from statement a) of Lemma below
that the conditions of are always satisfied in our model. Condition ,
however, might fail. Indeed, it is not hard to see that there exist open regions in the
k-space R7 where there always exist stationary phase points kg € (0,1) of higher
multiplicity, i.e. with f”(ky) = 0. In this situation the value of v := flé— lies in
the open interval (—vg, vg) (cf. Lemma[L.5b). Then the decay rate of Si1(j,t) for j
near vt is at most of order t~/3. The decay is even slower (at least of order t—/4)
if f”(ko) = 0 holds in addition. We show in Theorem that this may happen
for k in some submanifold of R} of codimension 1 (see also Examples [1.§ and [1.9)).
Nevertheless, if ko, ..., k,, are sufficiently small in comparison to x; then condition
(1.38) is always satisfied as we show in Theorem c).

Before stating our main results of this section, Theorems and [1.7] we first

summarize some more properties of the function f.

Lemma 1.5. Given (ki,...,kp) with k1 > 0, Ky, >0, and k; =0 for 1 < j < m.
Denote f(k) = |w(k)| for 0 < k < 1 as introduced in Lemma[1.5 and define vy :=
(X7 | s%k,)2. Then the following holds:
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a) f(0)=f"(0)=0, f(0)=2rvy, and f"(0) = -2 3" sk,

b) f/([0,1]) = [—27wo,27mv]. f' attains its mazimum only at k = 0 and its
mintmum only at k = 1.

c) Fix k1 > 0. Then the map f can be extended as a C*-function of the variables
(k,Ka, ..., Km) on the set [0,1] x [0,00)™ L.

Proof. Statement a) follows directly from the last formula in the proof of Lemma
and from the expansion sinc?(z) = 1 — %2 + O(z*) for small values of z:

m

1/2 s /m
_ 2, 2 _ 4 4 3 5
f(k) = 2mk (Z $°Ks sinc (71'8/{2)) = 2mvok — 300 (Z s l'is) k> + O(k”).

s=1 s=1

This representation also settles statement c¢). As we know already f'(0) = 27vy =
—f'(1) we may establish statement b) by verifying that |f’(k)| < 2wv, holds for all
k € (0,1). To this end we write f = (37| h?)Y? with h,(k) = 2./ks sin(rsk). Using

the Cauchy-Schwarz inequality we obtain for 0 < k < 1 that

1/2 1/2
ol IS B (B N (L N

where the last inequality follows from |cos(7k)| < 1 and x; > 0. O

s=1 s=1
We are now ready to state our first main result in this section.

Theorem 1.6. Let m € N, fiz 6 > 0, denote f(k) = |w(k)| as introduced in
Lemmall.5, and set

pooy m 1/3
1(1
Vg 1= A /Z 2K, Ao 1= 5 (— Z S4HS> : (1.40)
s=1 Yo s=1

a) For all a, o/ = 1,2,3 we have rapid decay as t — o, uniformly for |j| >
(vo +0)t, i.e.
Saar (J, 1) = O (%) .

b) If f"(k) <0 for all 0 < k < 1/2 then as t — oo the following holds uniformly
for |7] < (vo + d)t:

. 1 . j — Uot . ] + ’U(]t _ .
S11(7,t) = STWIE lAz( JWATE ) + Ai (_W)] +0 (t 1/2) = S92(J, 1),
(1.41)

. 1 . j + U(]t X j — Uot 1 i
S12(J,1) = YWIER: (AZ (—W) — Ai (W)) +O0(t72) = Su(4,t),
. 1 9 j — ’U(]t 2 ] + Uot _5/6
Sgg(j,t) = W |:AZ ( )\Otl/3 ) + AZ (— )\Otl/?’ >:| + O (t / ) .

c) For every k1 > 0 there exists ¢ = e(k1) > 0 such that for all (Ka,...,Kkn) €
[0,&)™ 1 we have f"(k) <0 for all 0 < k < 1/2.
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Proof. The rapid decay claimed in statement a) can be argued in the same way as
for Si; = S9s. Due to relations and one only needs to consider
S12 and Ssp. Indeed, using Lemmal[l.3 one may show that the imaginary parts of the
integrands used in the representation of Si, and Sy; in below have smooth
extensions to all £k € R that are 1-periodic. This is all that is needed because
|01 (K, j/t)] > 276 by Lemmab) uniformly for k € [0,1/2] and |j| > (vo + I)t.

We have already argued above that conditions , suffice to derive
the first claim of statement b) with vy = % > 0 and A\g = =|f”(0)/2|'/3. The
expressions for f/(0) and f”(0) stated in Lemma a) justify the definitions of
(11.40)).

Using the symmetry relations ((1.29) and we derive a representation for
S1o and Ss; that is suitable for a steepest descent analysis

1
S15(j,1) :5 f sin(f(k)t — 2mkj — 0(k)) + sin(f(k)t + 2rkj + 6(k))>dk
J m;s (.3 /1) gi0(k) eitm(k,j/t)ez‘o(k)) dk (1.42)

Sa1(j, k) = — Bsf ( itd—(k,3/1) i0(R) | it (k3/1) ,—i0(k )dk:

0

where ¢+ (k,§) = f(k) £ 27k as in (1.34) above. Expanding for k close to zero one
obtains ¢4 (k,j/t) = 2mvok— £ (2m)3\k* + 21k + O(k®). Substituting y = 27 Aot"/3k
leads to the asymptotic expression

t+ 1 1 2
toy (k,j/t) = ==y — S0 ast— o
)\Qt?’

Keeping in mind that §(0) = 7 we obtain

. 1 . J + vt . (7 — vot _1 .
Si2(j,t) = YWIR] (Al (W) —Ai (W)) +O0(t72) = Sn(),1).

Regarding the expansion for t — oo of Ss3(j, 1) it follows immediately from the
expression and the expansions of S,/ (j,t) with a,/ = 1,2.

Statement c) follows from the continuous dependence of the derivatives f” and
f” on the parameters (kg,...,kKy,) (see Lemma ¢) and from simple facts for
the case of nearest neighbour interactions fi(k) = 2,/k1sin(7wk) discussed above.
Indeed, from f”(0) = 0 and from f"(0) < 0 it follows that there exists such an e > 0
such that f”(k) < 0 and hence also f”(k) < 0 for k in some region (0,d) uniformly
n (Ko,...,Em) € [0,6)™ 1 As f{(k) < —2n%\/ky sin(md) for all k € [6,1/2] we may
prove the claim in this region by reducing the value of ¢ if necessary. m

Theorem provides the leading order asymptotics of the limiting correlations
Saar(j,t) for t — oo in the simple situation that the second derivative of the dis-
persion relation is strictly negative on the open interval (0, 1) (cf. condition (1.38)).
Moreover, statement c) shows that there is a set of positive measure in parame-
ter space k € R where this happens. For general values of k, however, different
phenomena may appear. In particular, there might exist stationary phase points of
higher order leading to slower time-decay of the correlations (see discussion before
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the statement of Lemma . By a naive count of variables and equations one
might expect that decay rates t~/3+P) occur on submanifolds of parameter space
of dimension m — p. Theorem [I.7] shows that this is indeed the case for p = 1.
Moreover, we present in this situation a formula for the leading order contribution
of the corresponding stationary phase points to the asymptotics of Sua/(j,t). De-
spite being non-generic in parameter space it is interesting to note that decay rates
t=1/4 can be observed numerically (see Figures and . There is also a second
issue that may arise if condition fails. Namely, for v € (—wg, vg) there can be
several values of k € (0, 1] satisfying f’(k) + 27v = 0 so that the contributions from
all these stationary points need to be added to describe the leading order behaviour
for j near vt.

Theorem 1.7. Recall from (1.28)) the formula for the dispersion relation

f(k) = |w(k)| = \/2 Z ks (1 — cos(2mks)) .

a) For m = 3 there is an (m — 1)-parameter family of potentials for which there

exist k* = k*(k) € (0, 1) with

f' (k)

™

(k) =0, f"(k*) =0, fOE*)#0, and 0<v*:=

< o, (143)

with vy as in (1.40). Set X\* := %(|f(i“)(k*)|/4!)i > 0. Then for j — o0 andt — o
m such a way that
vt — g
Nt
1s bounded, the contribution of the stationary phase point k* to the correlation func-
tions 1s given by:

. . 1 ; * s vt —j _1
S11(4,t), S (4, 1) : ———=R | ete-F"/0p < - )) +O(t72), (1.44
11(J,1), S22(4, 1) QBTN < + Vot (t72), ( )
S1a(j,t) 1 ———— S [ eito-tr /=it p (“ : )> +O@E), (145
12(] ) 28N ( + Nt ( ) ( )
S21(j, 1) - 1 5 <eit¢><’f*’j/t>“9<’f*>7>+ (”*t —J )> + Ot 2), (1.46)
’ 2Bm At T\ ’

where ¢4 (k, &) = f(k) + 2n&k, 0(k) = argw(k) as defined in Lemma Pi(a)
denote the Pearcey integrals, |38/,

0
Py (a) = J S gy g e R, (1.47)

—00

and Py has to be chosen according to the sign of f@)(k*). If j — —oo with bounded
(v¥t + §)/(N\*t/*) the contributions of the stationary point k* can be obtained from

the ones presented in (1.44)-(1.46) by replacing ¢_ by ¢4, 0 by —0, and j in the
argument of P+ by —j.

b) When k* = % one has f'(1/2) = 0 and f"(1/2) = 0 by the symmetry (1.29). For
each m = 2 there is an (m — 1)-parameter family of potentials so that f"(1/2) =0

Guido Mazzuca 17
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and f(i”)(l/Q) # 0 holds in addition. In this case the contribution of the stationary
phase point k* = 1/2 to the correlation functions in the asymptotic regime t — oo
with bounded j/t1 is given by (\* defined as in statement a) with k* = )

S12(j, 1), S (j, 1) = = sgn () Ts)(_—l)jlg (6itf(é)73+ < j1>> +O(t2)

A 0B At A*t

S11(J,8), S22(7, 1) (_—Wﬂ% <€itf(%)73i< i)) (1.48)

)\ 1:4

Proof. We begin by proving formula ([1.44]) for the momentum or position correla-
tions Sea(j,t) = S11(J,t) under the assumption that we have found a k* € (0,1/2)
for which all the relations of ([1.43)) are satisfied. From (|1.35) and Lemma we

obtain

Sas(jit) i —
33('] ) 4527-[-2()\*)%5

S1(jt) = Se2(y,t) = —%J () +2mk) g it (k) =2mk3) )dk‘ (1.49)

In order to compute the contribution of the stationary phase point k* to the large
t asymptotics of the integral in ((1.49) we expand

fk) = f(&*) + 2mv* (k — k*) + fOK*) (k — k*)* /4! + O((k — k*)°).

Introducing the change of variables
1 )
y = 2w\ (k= k7)eE, A = (|0 (k) /4D
T

one obtains

*

tF(k) — 2mjk = tf(K*) — 2mjk* + y”; t_lj
4

+yt+ O(t7)

where the + sign is determined by the sign of f)(k*). Then using the Pearcey
integral (1.47)), the expansion ([1.44)) can be derived in a straightforward way from

(1.49). In a similar way the expansions (1.45) and ([1.46)) are obtained by applying
the above analysis to the expression ((1.42]).

In the situation £* = 1/2 of statement b) one uses in addition that t¢4 (1/2, j/t) =
tf(1/2) & jm, w(1/2) = = > 7s(1 —cos(ms)) = =23, g Ts» see (1.28)), and conse-

quently e*?(1/2) = —gon(>" 7). The leading order contribution of the stationary
phase point k* = 1/2 to the integral representation of, say, Sio in ((1.42)) is then given
by
; 0 0
—sen 2 T (_—1)]1g <€itf(§) (J ei(iy‘**wy)dy +J ei(iy4+wy)dy>)
odd 20mA\*t1 —o0 —

with w = . In this way and with the help of ((1.33)) all relations of (|1.48 - can
be deduced
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We now show the existence of a codimension 1 manifold in parameter space
that exhibits such higher order stationary phase points in the situation of b) where
k* =1/2. As we have f”(1/2) = 0 by symmetry (1.29) we only need to solve

1 m
1" (5) =0 which is equivalent to Z s2(—1)*k, = 0. (1.50)
s=1

The solution of the above equation is

mE 1)k (1.51)

It is clear from the above relation that for m even, choosing x; sufficiently big
. e . . 2
one has k,, > 0 while for m odd, it is sufficient to choose kg1 > ( rEhs > 0, s

m

s+1
odd and 1 < s — 2. Note that in the situation of (L.51) f@)() # 0 holds
iff 7", mss4(—1)5+1 # 0. This condition simply removes an (m 2) dimensional

plane from our manifold (1.51)) which defines a hyperplane in the positive cone of
the m-dimensional parameter space. Therefore we have found an (m — 1)-parameter
family of potentials such that the correlation functions decay as in (|1.48)).

Finally, we show for m > 4 our claim about the solution set of . The
case m = 3 is treated in Example Our strategy is to first show that there
exists a k* that satisfies f”(1/4,k*) = 0, f"(1/4,k*) = 0, f'(1/4,k*) > 0, and
f@)(1/4,k*) # 0. We then invoke the Implicit Function Theorem to show the
existence of the (m — 1)-dimensional solution manifold, where the stationary phase
point £* ~ 1/4 may and will depend on the parameters. The conditions f” (i, K)=0
and f”(5,k) = 0 imply

F" G) =0— > (-1)F s’ =0, (1.52)

s odd

2) oo s Bt 5 omi- (i)

sodd seven seven sodd
(1.53)

One needs to treat the case m odd and even separately. Here we consider only the
case m even. The odd case can be treated in a similar way. Equation (1.52)) gives

(_1) s—1 3
Fom—1 = ————= (1) 2 sk,
(m - 1)3 sm;s 1

vf3

m—3

If m = 2¢ with /£ even, a positive solution k,,_; exists, provided that ; is sufﬁciently
big. If m = 2¢ with ¢ odd then one needs to require 0 < Ky < (S+ &
s=1,5,9,...,m—5.

The equation (|1.53) is a linear equation in x4 and we solve it for k4 obtaining

S Kgyo for

1 sodd,s=1 1 m o
T3 mes s(-1)™ m AT DI
B B s § ey o
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We observe that the first term in the above expression is always positive, while the
second term is positive if we require that kg, > 22)2 Ksio > 0fors =6,10,14,...,m—
2. The remaining two conditions f/(1/4) > 0 and f(%)(1/4) # 0 are easy to satisfy:
The sign of f'(1/4) agrees with the sign of > . .. sks(— 1)z and can be made pos-
itive by choosing k4 sufﬁaently large. In the situation where ((1.52)) and ( - hold
the fourth derivative f(*)(1/4) does not vanish iff > s*ks(— 1) # 0. This can be
achieved by adjusting, for example, the value of k5. We have now shown that there
exists k* € R’ such that the first four derivatives of f have all desired properties at
k = 1/4. In order to obtain the (m —1)-dimensional solution manifold in parameter
space, we apply the Implicit Function Theorem to F(k,k) := (f"(k, &), f"(k,K)).
By a straight forward computation on sees that

et | g /)| = =1 AR TE /AR 2.0

We can therefore solve F'(k,k) = 0 near (1/4, k*) by choosing (k, x4) as functions
of the remaining parameters x; with j # 4.

]

Example 1.8. m even. Choosing ks = S% for s =1,...,m one has that conditions
are satisfied and @ (1) <O0.

For kg = Sia, s=1,...m—1,2 < a < 3, and k,, gwen by , there 1s
a = a(m) such that Kny, < Kp_1.
m odd. Choosing ks = %, fors =1,...m —1, one has from (L.51) K, = 5— m_l
Km—1 and f(3) > 0.
In all these examples the correlation functions Saw (j, 1), a, o/ = 1,2 decrease as ta
near j = 0.

Example 1.9. We consider the case m = 3 and we want to get a potential that
satisfies (1.43)) with v* > 0. We chose as a critical point of f(k) the point k* = %
thus obtaining the equations

1 7
Ro = —Kq, Ry = —<K1 .

3 72

v 2 .
The speed of the peak is v* = 41{1 and fU)(3) = —%EW‘K/FTL

The correlation functions Saa (J, 1), a, 8/ = 1,2 decrease as t=4 and Ss3(j,t) de-
creases like t™2 ast — o0 and j ~ v*t, see Figure . Note that one may obtain a
2-parameter family of solutions of by picking, for ezample, the particular solu-
tion related to k1 = 1 and by showing that the system of equations (f”, f")(k,k) =0
can be solved near (1/3, 1, 1/8, 7/72) by choosing k and k3 as functions of k1 and
ko using the Implicit Function Theorem in the same way as at the end of the proof

of Theorem [1.7
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Figure 1.1: Correlation functions S, for the harmonic oscillator with nearest neigh-

bour interaction with x; = 1 (top left) and the harmonic potential with x, = &

for s = 1,2 in Exampl (center left) and the potential of Example in the

1

bottom left. In the second column the Airy scaling (1.41) of the corresponding
fastest moving peaks. The Airy asymptotic is perfectly matching the fastest peak
and capturing several oscillations.
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Correlation Ss3

Pearcey scaling Ss3
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Figure 1.2: Correlation function Ss3(j, ) for the potential r, = 1/s? for m = 2 in
Example [L.§ for several values of time on the left. On the right one sees that the
Pearcey scaling provided in ([1.48)) matches perfectly for the central peak of S33(j, ).
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Figure 1.3: Potential of Example . The top left figure displays Ss3(j,t) for
several values of . The scaling of S35 according to the Airy function in Theorem
for the fastest moving peak and the scaling of the slower moving peak according
to the Pearcey integral are shown top right and bottom left, respectively. The
corresponding critical points of the derivative of the dispersion function can be seen
in the bottom right figure.
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1.2 Complete set of integrals with local densities,
currents and potentials

1.2.1 Circulant hierarchy of integrals

In this section we construct a complete set of conserved quantities that have local
densities. The harmonic oscillator with short range interaction is clearly an inte-
grable system. A set of integrals of motion is given by the harmonic oscillators in
each of the Fourier variables: H; = 1 (1p;* + |w;]?(@;[*), j = 0,... %1, However,

when written in the physical variables p and q, the quantities

N-1
H; = % > FinTiaprp + |wil’qea)
k,l=0
depend on all components of the physical variables. We now construct integrals of
motion each having a density that involves only a limited number of components of
the physical variables and this number only depends on the range m of interaction.
For this purpose, we denote by {ek},ivz’ol the canonical basis in RV,

Theorem 1.10. Let us consider the Hamiltonian
1 1
H(p,q) = §(p,p) + §(q, Aq),

with the symmetric circulant matriz A as in , . Define the matrices
{Gi}rL, to be the symmetric circulant matriz generated by the vector 5(ey + en—r)
and { S}, to be the antisymmetric circulant matriz generated by the vector %(ek —
en_x). Then the family of Hamiltonians defined as

N-1

1 1 1
Hi(p,q) =5P'Gwp + 54" TGy Tg = 5 D pipjek + 1irier] (1.54)
j=0
- 1 N-1 m N—1
Hy v (p,q) =pTT75,Tq = 3 ST DS mepjwe | (i —rimi) | k=1, —
i=o | \izo

together with Hy := H forms a complete family (H;)o<j<n—1 of integrals of motion
that, moreover, is in involution.

Proof. Observe first that the Hamiltonian Hy = H is included in the description of
formula (1.54) as Gy equals the identity matrix. Using the symmetries G|, = Gy,
0 <k < (N —1)/2, the Poisson bracket {F, G} = (VqF,VpG) — (V4G, Vo F) may
be evaluated in the form

{Hp,H)} =q"(T7Gy TG, —TTG,TGy)p, for 0 < k, 0 < ¥4,
{Hy,H)} =pT(I7STTTS,T — T7S,TT"S,T)q, for L <k, (< N -1,
{Hy,H)) =qT7GLTTTS,Tq—p'T7S,TGrp, for0<k <2 M << N-1

All these expressions vanish. To see this, it suffices to observe that multiplication
is commutative for circulant matrices and, for the bottom line, that S, is skew
symmetric: S} = —5;.

m
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Now we introduce the local densities corresponding to the just defined integrals
of motion
(k): %(pjpj+k—|—rjrj+k),forkzl,...,%
o i) (rjsk — rjm), for k=2 0N,

together with their correlation functions

S 1) = (e 0e”(0) ) = () (ef(0) ) -
St t) = Jim 5705 8).

Following the same ideas as before, it is straightforward to compute those limits
explicitly as

and limits

Susaneali) =53 | | cos (F(a)e)cos () cos (2ma(j —m) s (2my (7 + )
(f(x)t)cos (f(y)t) cos (2mxj) cos (2my(j + k —n))

+ sin (f(z)t) sin (f(y
+ sin (f(x)t) sin (f(y

+ cos
)t) cos (2mz(j —n)) cos (2my(j + k)) cos(6(z)) cos(6(y))
)t)sin (27x(j —n)) sin 27y (5 + k)) sin(6(z)) sin(0(y))dzdy ,

fOI‘k’ n < T

Sn+sk+s(d,t) 262 f J f(z)f(y)sin (f(x)t)sin (f(y)t) sin (27rxj) sin (27yj) sin (2rxn) sin (27yk)

x) cos(f(z)t) cos(f(y)t) cos (2mxj) cos (2myj) sin (2wyn) sin (2ryk) dzedy ,

for k,n > % and

Surarnalist) = 5 j f cos (2j — 0()) cos (2my;) sin (2myk) sin (2myn) sin(((z) + F(4))1)
+ cos (2mxj — O(x)) sin (2myj) sin (2wyk) cos (2myn) sin((f(x) — f(y))t)dzdy,

for k > %, n < %
From these explicit formulas, one can deduce that they have the same scaling

behaviour as the energy-energy correlation function S33 when t — co.

1.2.2 Currents and potentials

In this subsection we write the evolution with respect to time of r;, p; and e; in the
form of a (discrete) conservation law by introducing the currents. Each conservation
law has a potential function that is a Gaussian random variable. In the final part
of this subsection we determine the leading order behaviour of the variance of this
Gaussian random variable as ¢ — o0 in the case of nearest neighbour interactions.
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For introducing the currents we recall that r = T'q with 7" as in ([1.7)). Then one
has

m

Ty = ZTNW = ZTE(pj—M —Pj); Ti+N =T
‘ = (1.55)

—ZTMW = ZTe(Tj —7Tj—¢), Dj+N=Dj, j=0,...,N—1
7 -

To write the above equation in the form of a discrete conservation law we introduce
the local currents

2 Pj+1+s 2 Te k7j(p) = Z Tjt1—s 2 Ty.
s=1 l=s

l=s+1

Then the equations of motion ((1.55)) can be written in the form

From the above equations it is clear that the momentum p; and the generalized
1 1
elongation r; are locally conserved. The evolution of the energy e; := —pj + =72 at

2 27
position j takes the form

€; = ..7j(e) - jj(f)l, \7j(e Z Z Tit1—s+LPj+1+¢-

We remark that all the currents jj(r), \Yj(p ) and \7]'(6) are local quantities in the
variables q and p. We recall the notation of the introduction

’ll,(j, t) = (Tj<t)apj(t>7€j(t))7
and we introduce the vector of currents J(j,t) = (jj(r)(t),jj(p) (t),jj(e) (t)). The

equations of motion take the compact form

d_t’u’(ja t) = J(]v t) - J(] - 17t)'

We define a potential function for the above conservation law

®(j,1) ::J J(j,t/)dt’+2u(€,0).
0 0=0

Then it is straightforward to verify that ®(j,t) = J(j,t) and ®(j,t) — ®(j —
1,t) = u(j,t). The quantities ®;(j,t) and P5(j,¢) can be expressed as sums of
independent centered Gaussian random variables and are therefore also Gaussian
random variables with zero mean and variance {(®(7,))%) and {(®4(j,t))?), where

all the averages are taken with respect to the distribution ((1.9)), see also (1.23]). We
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calculate the variance for the case of the harmonic oscillator with nearest neighbour
interactions. In this particular case

B1(7:0) = Vi | ppea(®)de + 3 10(0) = V(a1 (6) ~ (0)

. ; (1.56)
Dy (4,t) = \/l?lf ri(tdt" + Zpg(O)
0 =0
After some lengthy calculations one obtains:
Jim ((®,(7.0)% = 2L f (k)| [1 — cos ([w(k)|£) cos (2x(j + D)k)]dk (1.57)
i (@:(3.0)°) = o 28 [ 17201 cos (R cos 2nt + D+ 22
(1.58)

Evaluating the r.h.s. of the above expressions in the limit ¢ — co we arrive to the
following theorem.

Theorem 1.11. In the limit N — oo and t — o the quantities ®1(j,t) and Po(7, 1)
defined in (1.56) are Gaussian random variables that have the following large t

behaviour:

lim ®,(j,t) = N(0,0})  and lim ®5(j,t) = N(0,03).
N—o N—©

The leading order behaviour of the variances o? and o3 agrees. In the physically
nteresting region m < (/K1 it is given by

st = s o) -

The proof of the above theorem rehes on steepest descent analysis of the oscilla-
tory integrals in (1.58)). But because the integrand is actually quite large ( ~ Ct?)
near k = 0, we consider the following Cauchy-type integral instead,

1/2 "
Fo(2) =53 Bf — oo |w)(2 )1t cos (2m(7 + 1)k)dk ,
which gives the leading order asymptotlc behaviour of the integrals appearing in

(L.58), since

o 1/2

B J i

For % < (1 — €)y/k1, € > 0, the analysis of Fy(z) is quite straightforward - a
standard stationary phase calculation combined with a contour deformation to per-
mit the evaluation at z = 0. For t and j growing to co such that % ~ /K1, the
analysis is more complicated because the point of stationary phase is encroaching
upon the origin, where the integrand itself is actually large as t — oo. For this
case, one must construct a local parametrix, following quite closely the analysis
presented in |95], and we omit the details of this analysis. In order to analyse ®;
observe that the difference of the integrals in relations and is given by
Sé lw(k)|72[1 — cos (27 (j + 1)k)] dk which can also be treated by a stationary phase
calculation combined with a contour deformation.

lw(k)|72(1 — cos (Jw(k)|t)) cos (2n(j + 1)k)dk — Fy(0) — 0 ast,j — .
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1.3 Nonlinear Regime

In this section, we consider a nonlinear perturbation of the harmonic oscillators
with short range interactions of the form

N-1 p2 m 1 N-1 X N— 7 N—
H(p,q) = Z EJ+2 KR <§ (qj - qj+s g Z Qj+s Z 2 q]+$ ) .
Jj=0 §=0 j=0

s=1 7=0
(1.61)
We consider Example and Example with different strengths of nonlin-
earity namely

x = 0.01 and v = 0.001
x = 0.1 and v = 0.01

x = 0.01 and v = 0.001
x = 0.1 and v = 0.01

We numerically compute and study the correlatios functions for these systems sam-
pling the initial conditions according to the Gibbs measures of just their harmonic
part at temperature 5! = 1.

In the weakly nonlinear case, the fastest peaks of the correlation functions scale
numerically according to the Airy parametrices (cf. Theorem|1.6|) as can be deduced
from the top pictures in Flgures 1.4 - whlle for stronger nonhnearlty the fastest
peaks seem to scale like t5 in equation (|1.11f), see bottom figures in Figures|l.
The non-generic peaks that are present in the linear cases and scale like tl/ 4 have
a fast decay in the case of strong nonlinearity. However, for weak non-linearities,
the central peak in the top left Figure , still scales in time like ¢4, Indeed,
performing a regression analysis of the log-log plot one can see a scaling like ¢ ~0-267
that is slightly faster than =1 (see Figure .

The numerical computations have been implemented with Python software, all
codes are available on GitHub [114]. Fig. are the result of the numerical
evaluation via the standard routine numpy.trapz of the integrals in (|1.31])—(1.33))
for various values of 7 and t and then we just added the Airy function and
the Pearcey integral .

To obtain Fig. we proceed in the following way. First, we sampled a random
initial data according to the Gibbs measure defined by the corresponding harmonic
part of (1.61), namely the Hamiltonian of Example [1.§ with m = 2. We let these
data evolve according to the Hamilton equations of and compute the values
of the correlations function. Then we repeated this procedure 4 x 10° times, and
we averaged the values of the correlations functions. On the left panel we plot the
correlation functions, instead on the right one we focus on the extreme peak, and
we guess a proper scaling depending on the size of the perturbation. Fig. is
made similarly, where now the nonlinear potential has the same harmonic part as
Example [T.9}

In Fig. we focus our attention on the central peak of the chain with potential
as is Fig. [I.4. We follow the same procedure as before and plot in logarithmic scale
the average scaling of the highest peak in the center of the chain. We decide to
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Figure 1.4: Correlation function Sﬁv) (7,t) for several values of times and for the
Hamiltonian (1.61)) with k, as in Example , x = 0.01 and v = 0.001 in the
top figure and y = 0.1 and v = 0.01 in the lower figure. On the right top figure,
the scaling of the fastest peak according to Airy parametrix (see Theorem and
Figure and according to t~2/3 in the lower figure. The speed &, of the fastest
peak is determined numerically. One can see that the central peak has a low decay
in the top left figure, while in the left bottom figure it is destroyed by the relatively
stronger nonlinearity.
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plot the average height of this peak since it is highly oscillatory, and it is difficult
to precisely track the oscillations.
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0o S22, x=0.01, y=0.001 Scaling extreme peak S,,, x=0.01, y=0.001
. s — t=1388
0.15 ik A\ — t=592
— t=796
0.10
~ 0.05
o
< 000
-0.05
-0.10
-0.06 -0.15
-0.4 -0.2 .0'0 0.2 0.4 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
N (j— Eot)/(NE5)
S22, x=0.10, y=0.010 Scaling extreme peak S,,, x=0.10, y=0.010
08 Y — t=2388
0.6
~ 04
-~
0.2
0.0
-0.2
-0.4 -0.2 ‘00 0.2 0.4 -1.00 -0.75 -0.50 -0.25 0.00 0225 0.50 0.75 1.00
JIN (j = Eot)/(NE3)

Figure 1.5: Correlation function S;ZQV) (7, t) for several values of times and for the
Hamiltonian with ks as in Exampl x = 0.01 and v = 0.001 in the top
figure and y = 0.1 and v = 0.01 in the lower figure. The right top figure shows the
scaling of the fastest peak compatible with the Airy parametrix and according to
t=2/3 in the lower figure. The speed &, of the fastest peak is determined numerically.
The decay rate of the slower moving peaks that are scaling like ¢t~%/* in the linear
case (see Figure , is not very clear due to their highly oscillatory behaviour.
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Figure 1.6: Logarithmic plot of the central peak of the example in Figure for
S11(7,t) and Sy;(7,t) and several values of times. The peak is highly oscillatory
and the oscillations are interpolated by the red line that suggests a scaling of the
correlation function Siq(j,t) and Sa;(j,t) near j ~ 0 compatible with 4.
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Chapter 2

Alpha Ensembles, and the Toda
lattice

In this chapter, we consider some tridiagonal random matrix models related to the
classical (-ensembles [42,146,/93]. More specifically, we study the mean density of
states of the random matrices in Table Where the quantity N(0, 0?) is the real

Gaussian random variable with density f/;fr% supported on all R, the quantity ya, is

_a?

the chi-distribution with density % supported on R*, here I'(«) is the gamma

function, and Beta(a, b) is the Beta random variable with density F(a+b)1f((;;((2)_x)b71

supported on (0, 1).
Let us explain some terminology first and then state our result.
A random Jacobi matrix is a symmetric tridiagonal N x N matrix of the form

aq b1
bl a9 bg

Ty = RPN (2.1)

by—1
bno1  an

where {a;}¥, are i.i.d. real random variables and {b;} ;! are i.i.d. positive random
variables independent from the a;. This matrix has the property of having N-
distinct eigenvalues [35]. The empirical spectral distribution of T is the random
probability distribution on R defined as

N
) . _ 1
mjfﬁZ%m (2.2)
j=1
where A§N) > > )\g\j,v) are the eigenvalues of Ty and 4.y is the delta function. The

mean Density of States dvp is the non-random probability distribution, provided

it exists, defined as
. N
fdeT = Alfl_rgoE [del/:(p )] ,

for all continuous and bounded functions f, here E[-] stands for the expectation
with respect to the given probability distribution on the matrix entries.
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Gaussian o Ensemble | H, ~

by-1 an
H, € Mat(N x N,R),
by ~X2a n=1,...,N—1,
a, ~N(0,2) n=1,...,N,

D eMatNxN]R)

=V Qn pn Sp = \/pn 1_Qn 1

~Beta(0z a+a+b+2) (0—0
n~Beta(a—|—a+1,a—|—b—|—1).

L1
| X2
Laguerre o Ensemble | Ly, = Boy Bl ., Bay = 7 ’
Yn-1 TN
Bav € Mat(N x M,R), M > N,
~ X2a n= 1 7N7
Y
Yn ~ X2aa N = 1a N 1
51
tl S9
Jacobi a Ensemble Jo=D,DI, D,= ,
IN-1 SN

Table 2.1: The Gaussian, Laguerre and Jacobi a-ensembles.

The main result of this chapter is the following Theorem, which gives the explicit
formula for the mean density of states of the Gaussian, Laguerre and Jacobi a-

ensembles introduced in Table 2.11

Theorem 2.1. Consider the matrices Hy, Lo, and Jo in Table with o =
0, ve (0,1), a+a >0,b+a >0 and a ¢ N. Then their empirical spectral
distributions dV}iN),duéN), and dVSN) converge almost surely, in the large N limit,
to their corresponding mean density of states, whose formula are given explicitly by:

vy (2) = Oalapta(z))dz,
dvp(z) = Oa (fiar(2))dz, x>0,
=0

>
dvy (1) = 04 (Waap(r))dr, 0<z<1.

Here 0, is the derivative with respect to o and

2

(l‘) e 67% ‘]/C\ (:L,)‘i f ta 1 — = zxtdt
Ha . \/% o'
1 e
Ha (@) = ;720
Do+ 1)T (1 +2 4 a) ‘¢ <&7 ~%; e 17r> ‘

Guido Mazzuca
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(2.7)

33



Alpha Ensembles, and Toda

with T'(z) the gamma-function and (v, w; z) is the Tricomi’s confluent hypergeo-
metric function, for the definition see [38, §13/, and

MNa+D(a+a+b+2) 241 —x)°
la+a+ D (a+b+1) Ulz) + eV (z) 2

,ua,a,b(x) =

where

_ I'la+1)I(a+1)
- T(l+a+a)
—mal(a +a+b+2)

Vv = 1 — b+1 a+1F1_ b9 .
(7) Sin(ﬂa)r(1+a+b)r(a+2)( x) T By ( a,a+a+b+22+a;x),

QFl(oz,—oz—a—b—l,—a;x),

here o F(a, b, c; z) is the Hypergeometric function:

0 prg

o Fi(a,b,c;2) (@), :=ala+1)---(a+n—1).

Moreover, for any non-trivial polynomial P(x) the following limits hold:

[ —
W( P(z)dvi)) — dz/H> 4L N(0,06%) as N — o, (2.9)
J J
[ I
\/N< P(x)dvt™ — | P(z)dv ) L N(0,52)  as N — o,
J J
[ N
\/N( P(x)dugN) dw) = N(0 as N — oo, (2.10)
J J

d
for some constants 0%,5p, 0% = 0, here = is the convergence in distribution.

In figures we plot the empirical spectral distribution of the a-ensembles
for different values of the parameters, the solid black line is the numericaly estimated
density. All plots are made using Python code available at [113], we made extensive
use of the libraries Seaborn [163] and matplotlib [86].

The measures with density fiq, fla, and fiqqp have already appeared in the
literature as the orthogonality measures of the associated Hermite, Laguerre and
Jacobi polynomials [11},87,160]. Such measures have also appeared in the study of
the classical S-ensembles [42] (see Table[2.2)) in the high temperature regime, namely
in the limit when N — oo, with SN — 2a, a > 0, [7,8,18./44,/159.|160]. In order to
summarize the results of those papers we recall that for the Jacobi matrix T in (2.1)

the spectral measure d,u(TN) is the probability measure supported on its eigenvalues
AN ,/\S\],V) with weights ¢7,...,¢% where ¢; = ’<U§N), er)| and vtV ... U](VN) are

the orthonormal eigenvectors:

dpt Z 0y0- (2.11)
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As the eigenvectors form an orthonormal basis, and ||e;|| = 1 we get that Zjvzl q =
1. Moreover, the set of finite Jacobi matrix of size N is in one to one correspondence
with the set of probability measure supported on N real points [35].

For the B-ensembles the quantities {g;}), are independent of the eigenvalues
and are distributed as (xg, ..., xs) normalized to unit length [42,46}93|. It follows
that [qJQ] = % Consequently, the mean of the empirical measure coincides
with the mean of the spectral measure , namely

(N (N _(N _(N _(N _(N
dl/l(qﬁ) = dug{ﬂ), dl/éﬂ) = du(Lﬁ), dvgﬂ) = duf,ﬂ),

where Hg, Lg and Js refer to the Hermite, Laguerre and Jacobi B-ensembles, see

Table . It is shown in [44] (see also [7,[18]) that the measures dﬁg\;) = dﬂg\;)
converge weakly, in the limit N — oo, with SN = 2a, to the non-random probability
measure with density /i, defined in (2.6). It is shown in [§[159/160] that the measures
dl?g;[) = dﬁ(L]Z) and dﬁgg) = dﬂf,];f), under some mild assumptions on the parameters,
converge weakly in the limit N — oo, with SN — 2a and N/M — ~ € (0,1) to the
non-random probability measures with density jiq -, and fis 45 defined in (2.7) and
(2.8) respectively. In [441/159}/160] it is showed that these measures coincide with
the mean spectral measures of the random matrices H,, L, and J,, see Table 2.1]

The problem of convergence of the empirical spectral distribution of the Gaus-
sian, Laguerre and Jacobi a-ensembles has remained unsolved. In this chapter we
address such problem in Theorem by determining the mean Density of States
of such random matrices and their fluctuation. Our strategy to prove the result is
the application of the moment method and an astute counting of the super-Motzkin
paths [130] to calculate the moments of the the Gaussian, Laguerre and Jacobi «
and [-ensembles.

For completeness, we mention also the result in [136] where a different general-
ization of the Gaussian  ensemble is studied. Indeed, in [136] the author examined
the mean spectral measure of a random Jacobi matrix T such that there exists
a sequence of real number {my}r=o and mg = 1 such that E[(b1/N?)*] — my, as
N — oo for all fixed k € N, which is a generalization of the classical case where
b ~ Xpv—1)/V2 and o = 1/2.

Finally we relate the Gibbs ensemble of the classical Toda chain to the Gaussian
a-ensemble. In particular, we obtain, as a corollary of Theorem [2.1] the mean
density of states of the Toda Lax matrix with periodic boundary conditions when
the matrix entries are distributed accordingly to the Gibbs ensemble and when the
number of particles goes to infinity. This result is instrumental to study the Toda
lattice in the thermodynamic limit. We remark that the mean density of states of
the Toda Lax matrix has already appeared in the physics literature [151]|. Here we
present an alternative proof of this result.

2.1 Preliminary results
In this section we summarize some known results and techniques that we will use
along the proof of the main theorem.

The moments of a measure do, when they exist, are defined as:
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aq bl
b1 a9 bQ

Gaussian § Ensemble | Hg ~

Sl

Hps e Mat(N x N,R),
bn“XB(an) n=1,...,N—1,
an ~N(0,2) n=1,...,N,

X
Y1 T2
Laguerre 5 Ensemble | Lg., = BﬁﬁBE,w Bg = \% )
YnNn-1 TN
By, € Mat(N x M,R), M > N,
Tn ~ XB(M—n+1) nzl,...,N,
yn"“XB(N—n) n = 1,...,N—1,
S1
1 So
Jacobi 3 Enseble Js = DgD}, Dg = A ,
IN-1 SN

Dg e Mat(N x N, R),

bn =/ Gn(1 = pn), 80 = V Pl = Gn-1),

qn ~ Beta —’8(]\[2*”),—’8(]\[27")+a+b+2> (g0 =0),
B(N—n) B(N—n)
pn~Beta T+a+17T+b+1>

Table 2.2: The Gaussian, Laguerre and Jacobi S-ensembles

u? = fodU {eN.
Under some mild assumptions, they totally define the measure itself, indeed the
following Lemma, whose proof can be found in |13, Lemma B.2], holds:
Lemma 2.2. (cf. [15, Lemma B.2]) Let {u'9} 5o be the sequence of moments of a

measure do. If

(20)) 35
lim inf ()2 < o,
l—00 I

(2.12)

then do is uniquely determined by the moment sequence {u'®} .

This implies that if two measures have the same moment sequence and
holds then the two measure are the same. We will exploit this property, indeed
we will show that the moments of the random matrices H,, L, and J, coincide,
in the large N limit, with the moments of the measure dvg(z),dv(z) and dv;(z)
in (2.3)-(2.5) and we will prove that holds for all of them. This technique
undergoes the name of moment method.

To apply this idea, we need to compute explicitly the moments of the mean
density of states for the o and [-ensembles. We will use the following identity for
the moments of the mean density of states:

36 Guido Mazzuca



Alpha Ensembles, and Toda

J#@ng&NEU%U@],
where

N
Tr (Tx) == Y Tx(j. 4),
j=1

and T (4,1) is the entry (j,4) of the matrix T% and the average is made according
to the distribution of the matrix entries. From now on we will write E[f(a,b)],
as the mean value of f(a,b) made according to the distributions of the matrix 7”’s
entries, here a is a vector of components aq, ..., ay.

To conclude the computation of the moments, we need an explicit expression
for the terms T (4, 7). The following lemma proved in 76|, and also in Chapter ,
provides us their general expressions:

Theorem 2.3. (cf. [76, Theorem 3.1]) For any 1 < { < N, consider the tridiagonal
matriz T (2.1), then one has

N
Tr(T5) = ). R,
j=1

where hy) = TX(5,7) is given explicitly for [£/2| < j < N —|£/2] by

1/2]-1 l¢/2]-1
4 ; i
Boba) = > p"(nk) Ol I (2.13)
(n,k)eA® i=—|4/2]| i=—0/2]+1
Here A™) s the set
/2] -1
AO = {(n, k) e NZ x NZ (2n; + ki) = ¢,
1 (2.14)
Vi=0, n;=0=n =k =0, .
Vi <0, niH:O:ni:ki:O}.

The quantity Ng = N U {0} and p¥ (n, k) € N is given by

£/2]—1
p(é)(n k) o (n—l + ng + k?[)) <n_1 + ”0) Li_J[ <nz + i1+ kig1 — 1> (TL, + Njp1 — 1)
) . ko o )

B Kiv1 Nit1
i1

Remark 2.4. Formula holds for [£/2| < j < N — /2], for the other values
of j the formula is slightly different. This is because for j < |€/2]| or j = N —|{/2]
the polynomial hy) is related to a constrained Super Motzkin path, [111)], instead for
|0/2] < j < N —|€/2] it is related to a classical Super Motzkin path. In any case
the polynomial hy) is independent of N for all j.
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We remark that both |A,| and p'¥(n, k) do not depend on N and j. Moreover,
.. 0/2]— .
from the condition ZE :/ iJWlQJ (2n; + k;) = £ in (2.14]) one gets that

{even — hy) contains only even polynomials in a, (2.15)

{odd = hy) contains only odd polynomials in a.

To prove the almost sure convergence of the empirical spectral distributions
dl/qu), duéN) and dugN) to their corresponding mean density of states, we will use
two general results. The first one is the following Theorem proved in [125]:

Theorem 2.5. (cf. (125, Theorem 2.2]) Consider a random Jacobi matriz T (2.1))
and assume that {a,}N_, and {b,})_! have all finite moments. Then for any non-
trivial polynomial P(x):

JP(x)du;N) Y| P(x)dvy  as N —

VN (J P(z)dvi) — fp(x)ﬂ) L N(0,0%) as N>,  (2.16)

a.s. . d .
for some constant 0% > 0. Here “5 is the almost sure convergence and > is the
convergence in distribution.

We observe that Theorem is not stated in the present form in [125] but this
formulation is more convenient for our analysis. The second result is the following
classical Lemma, whose proof can be found in [9,44]:

Lemma 2.6. (cf. [44, Lemma 2.2]) Consider a sequence of random probability mea-
sures {du,}r_, and dp a probability measure determined by its moments according
to Lemmal[2.3. Assume that any moment of du,, converges almost surely to the one
of du. Then as n — oo the sequence of measures {du,}>_, converges weakly, almost
surely, to du, namely for all bounded and continuous functions f:

ffd,unﬁjfd,u a.s as m — 0.
The convergences still holds for a continuous function f of polynomials growth.

Finally, before moving to the actual proof of our main theorem, we summarize
the main results of [7,[8,/44}/159,160] in the following theorem.

Theorem 2.7. As N — 0,BN — 2a € (0,0),2: — v € (0,1), a + a > 0,
b+ a >0 and a ¢ N, the mean spectral measure and the mean density of state of
the Gaussian, Laguerre and Jacobi 3-ensembles weakly converge to the non-random

measures with density fi(x), la~(T) and paqp(x) defined in (2.6), (2.7) and (2.8)
respectively. Moreover, (2.12)) holds for their moments sequences.

2.2 Proof of the main result

We are now in position to prove our main result. First, we remark that the density
Oalapto()), Oa(apian(2)) and On(pia,qaps(x)) define a probability measure since the
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densities 1o (), pla~(z) and piq qp(z) define a probability measure. Then, since we
want to apply the moment method, we have to compute the moments of the a-
ensembles explicitly. To conclude the proof we will need also an explicit expression
of the moments of the mean density of states of the [-ensembles. The following
lemma lays the ground to conclude both computations.

Lemma 2.8. Fiz a € R*"\{0}, v € (0,1),a,b > —1 and N/2 > { € N. Consider
the a and (-ensembles in Table there exist polynomials we(x), g¢(x), and
rational and continuous functions ry(x) such that, for N large enough and SN =
2a, & =, the following holds, for |¢/2| < j < N —|{/2] :

E[p0] _ ) we (a(1=4))+0(NY 1 eveny (2.17)
7 1my, 0 ¢ odd
()] { even
E[5® _ we(e) 2.1
9 L, {0 0 odd (2.18)
B0 - - N
7L, gg(oz< N +O (N,
E hy) L= ge(@),
o] J 1
E_hj_JB—rg(a(l—N>)+O(N ),
E h;é) L= re(a) .

Proof of Lemma[2.8 We will just prove (2.17))-(2.18)) since the proof of the other

cases is similar. Indeed, the only difference in the proofs is that for the Gaussian
and Laguerre o and f-ensembles we use the fact that the expected value of any
even monomial with respect to a y¢-distribution is a monomial in {. While for the
Jacobi a and [-ensembles we use the fact that the expected values of any monomial
with respect to a Beta(a, b)-distribution is a rational function of the parameters.
First, since a = (ay,...,ay) are normal distributed for both ensembles and

thanks to (2.15)) we get that
E[n’| —B[1’] -0, toda.
Ha Hg

For the Gaussian « ensemble we have that, for (/2] < j < N —|¢/2]

le/2]-1 [£/2]-1
Bn| -E| Y smk [ on ] o
“ (n,k)eA®) i=—|4/2| i=—|0/2]+1

He

does not depend on j since bj; ~ x2a,a; ~ N(0,2), 7= —[(/2],...,]|¢/2], and the
coefficients p(¥)(n, k) and the set A®) are independent of j and N by Theorem [2.3|
Moreover, as already pointed out, the expected values of any even monomial with
respect to a x¢-distribution is a monomial in . Thus, we have that for fixed [ € N,
there exists a polynomial w,(«) such that holds.

We can apply a similar reasoning for the Gaussian [ ensemble, indeed we notice
that if we approximate the distribution of b;;; ~ Xoa(1-i1); i=—0/2],...,]¢/2]
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with the one of b; ~ Xoa(1-4) We get an error of order N~! when we evaluate the
N

expected value. So we can compute

le/2]-1 le/2]-1

B[], -B| ¥ ok [] om [ o

(n,k)eA® i=—[¢/2] i=—[£/2|+1

= wy <a (1—%)) +O (N7,

where the only difference from the previous case is that the parameter of the

x-distribution is 2« (1 — %) instead of 2.

Hpg

O
Using the above lemma we can conclude the computation of the moments for

the a and [-ensembles:

Corollary 2.9. Fiz { € N, o € R"\{0}, a,b > —1 and v € (0,1) then in the large
N limit, with NS — 2« and % — 7, the following holds:

1 ! d l

ug) — lim E l_ TT’((Hé)):| _ SO Wy (OA’E) x even 7 (219)
1 ¢

v® .= lim E [— mr(H) | = (a) cven (2.20)

N—0

1
= f ge(ax)dx
0

. 1
= lim E lﬁ Tr(LY)

N—o

|
u) = lim E[%TT(L@]
|
)

Proof. We will just prove ([2.19))-(2.20)) since the proof of the other cases is analogous.
From Lemma [2.§ and Theorem 2.3 one gets that:

N—|¢/2]-1
w=dm | X wl@)+ o) || = wa).
j=le/2)+1

Indeed neglecting the terms hy) jg=1,...,1¢/2|,N —|¢/2], ..., N in the average
of Tr (H%) we get an error of order O(1) since ¢ is fixed, so in the summations we
are neglecting a finite number of terms of order O(1), see Remark [2.4]

For the same reason one gets that:

| MLz ;
0 _ 1 _ _ L -1
uy ]\lfl_rgo & Z wy (a (1 N)) + O(N™)

j=£/2]+1

Thus taking the limit for N going to infinity one gets the integral in (2.19). [
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Remark 2.10. We stress that u ,uﬁf)ﬂy and u(j)ab are respectively the (" moments
of the Gaussian, Laguerre and Jacobi [3- ensembles in the high temperature regime.
Analogously, the quantities v((f), vﬁf% and v b are the (" moments of the Gaussian,

Laguerre and Jacobi c-ensembles respectwely
We can now finish the proof of Thereon
Proof of Theorem [2.1] From Corollary 2.9 one concludes that for all fixed [ € N:

v = 0,(au?), (2.21)
¢ ¢

U&ZY = 805(04%7),7) , (2.22)

Vaas = Cal0t )

By Theorern . Corollary [2.9| and Remark - the quantities ulf ), uEfL and
ul? | are the moments of the measures with densmes Has faqy and figqp defined in

ab
-, and ( . Moreover, by formula such moments uniquely deter-

mine the Correspondmg measures.

It follows from relation and Lemma that the mean density of states
dvy of the Gaussian a-ensemble coincides with Oa(aupte) with p, as . In a
similar way, by (2.22), the measure dy (@, ) in (2-4) is the mean density of states
dv;, of the Laguerre a-ensembles and 0, (Qtgqp) in is the mean density of
states dvy of the Jacobi a-ensembles.

Since for the a-ensembles all {a,}"_; and {b,}2 ' have all finite moments, one
can apply Theorem [2.5] gettlng that the moments of the empirical spectral distribu-
tions of the a- ensembles dI/H ), dl/éN) and dvt™ 5 Converge almost surely to the ones
of the corresponding mean density of states dvyg,dr; and dv; in , and
(2.5)) respectively. Furthermore applying Lemma one obtains that the spectral

distributions of the a-ensembles dué,N), dyéN) and duSN)

dvyg,dry and dvy in (2.3))-(2.4) and (2.5)) respectively.

Finally from (2.16)) one gets that formula (2.9)—(2.10) hold, namely that the
global fluctuations are Gaussian. n

converge almost surely to

2.2.1 Parameters limit

In this section we study the behavior of a-ensembles when the parameter o goes to
infinity. For this purpose we consider the rescaled version of a-ensembles, i.e. the
matrices defined as \/%;Ha, 2Lq and J,. The corresponding mean density of states

is rescaled to dvy(v/ax),dvy, (%) and dv;(z) (see (2.3)-(2.5)).

Now we have to compute the limits of these measures when a — o0. We will
compute these limits using the matrix representations of the normalized a-ensemble
and exploit the following weak limits:

0 lim X A

N(0,2 1
lim N(0.2) <, m == > 1 lim Beta(a, «) A
a—0 o oa—>00 (0% a—>00 2

The above relations imply that the mean density of states of the three normal-
ized a-ensembles weakly converges to the mean density of states of the following
matrices:
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0 1 1 NG
1 0 1 VYO TEy W
HOO: ) LOO: B )
1 NG
1 0 VYo 1T+y
41
N G
24/2 2 4
Jw: All ’
T
1 1
1 2

The eigenvalues distributions of the above matrices in the large N limit are given

by

L L 22
lim dv ar) = ————duz, 2.23
Jim du(vaz) I (223)
Tia-
lim dvy, (O‘x> - LD g ;
a0 Y T4y — (1 —1— )2

21
lim dv;(z) = 1)

a—o0 /1 — (22 — 1)?

where 144 is the indicator function of the interval (a,b).

We observe that for all the three a-ensembles in the large « limit, the corre-
sponding mean density of states is an arcsine distribution. It would be interesting to
study the behavior of the fluctuations of the max/min eigenvalue of the a-ensembles
in the limit of large a.

dz,

2.3 An application to the Toda chain

In this section we will apply Theorem to find the mean density of states of
the classical Toda chain [157] with periodic boundary conditions. As we already
mentioned this is an alternative proof of the result in [151].

2.3.1 Integrable Structure

The classical Toda chain is the dynamical system described by the following Hamil-
tonian:

1Y N »
5 Z j2 Z QJ—H - QJ ) VT(Z‘) =e"+x—1, (224)
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with periodic boundary conditions p;.n = pj, ¢j+n = q;, Vj € Z. Its equations
of motion take the form

é‘HT . a]¥T
=Pj5 Pj= 7= —
apj J J aqj

= V:ﬁ(Qj—&-l - Qj) - VT/(Qj —qj-1), j=1,....,N.

(2.25)

It is well known that the Toda chain is an integrable system [82,/157|, one way

to prove it is to put the Toda equations in Lax pair form. This was introduced

by Flaschka [51] and Manakov [110] through the following non-canonical change of
coordinates:

i =

aj == —pj, b; = e2(6—0+1) = e~a7i, I<j<N, (2.26)

where 7; = ¢j41 — ¢; is the relative distance. The periodic boundary conditions

imply
N
Z Ty = 0.
j=1

Then, defining the Lax operator L as the periodic Jacobi matrix [162]

ap by 0 ... by
by ay by . :
L(b,a) := 0 by az - 0 , (2.27)
S - by
by ... 0 by an

and the anti-symmetric matrix B

0 b 0 ... —by
' by 0 by . :
B(b>r=§ 0 —b, 0 . 0 :
T
by ... 0 —by, O

a straightforward calculation shows that the equations of motions (2.25) are

equivalent to

dL
— = [B;L
i~ Bl

so the eigenvalues of L are a set of integrals of motion.

2.3.2 Gibbs ensemble and the density of states for the peri-
odic Toda chain

We consider the evolution of the Toda chain on the subspace:

N N
M:={<p,r>eRNxRN: Zm=2pj=0}7 (2.28)
=1 =1
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which is invariant for the dynamics. Indeed the condition Zjvzl r; = 0 follows from

the periodic boundary conditions and the condition Zjvzl p; = 0 follows from the
fact that the system is translational invariant and therefore the total momentum
is conserved. We endow the phase space M (2.28)) with the Gibbs measure for the

Toda lattice at temperature 57! as

b
ZToda(ﬁ)

here Zroqq.() is the partition function which normalize the measure, and ¢, is the
Kronecker delta function centred at z.

We notice that this ensemble makes L into a random matrix, thus it
makes sense to study its mean density of states. However, the matrix entries of L
are not independent random variables because of the constraints . For this
reason, we introduce the approzimate measure dbp,q, on RY x RY as

dVToda = e_ﬁHT(pvr)(SzN p'éz‘é\’:1 r; dp dI‘ s (229)

j=1DPj

~ 1
dVToda ==

efﬁHT(pvr)fezj Tj dp dr ,
ZToda(ﬁ)

where ZToda(ﬂ) is the partition function which normalizes the measure and 6 > 0 is
chosen in such a way that:

frjdﬁToda =0.
The value of 8 > 0 is unique for all 5 > 0 since

! 0
Jrjd;Toda = IOg(ﬂ) - %7

which has just one positive solution.

From now on we will write L and L as the random matrices whose entries are
distributed according to the probability measure dvy,q, and dvr.g, respectively. In
particular applying the change of coordinates one gets that

aq bl 0 e bN
1 by ax by :
LN\/—Q? 0 '()2 .ag 0 R bj~X2(5+9),aj~N(O,2) j=1,...,N.
: .. .. . bN—l
bN c. 0 bN—l an

To obtain the mean density of states of the Toda lattice with periodic boundary
conditions we need the following lemma, whose proof can be found in [76]:

Lemma 2.11. (¢f. (76, Lemma 4.1]) Fiz B >0 and let f: RY xRY — R depends on
Just K wariables and finite second order moment with respect to dvreds, uniformly
for all B > B. Then there exist positive constants C, Ny and (y such that for all

N > Ny, 8> max{f, 3} one has
2
< C%\/ f 2o - (J fdaToda) .
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Applying this Lemma we can conclude that the matrices L and L have the same
moment sequence in the large N limit. Furthermore, L is a rank one perturbation
of the matrix %BH9+5 in table . So we can use the following theorem, whose

proof can be found in [13|, to show that the mean density of states of the matrices
L and \/LBHQW in the large N limit are the same.

Theorem 2.12. (cf. (15, Theorem A.4}3]) Let A, B be two N x N Hermitian ma-
trices and FA, FP their empirical spectral density defined as:

L.
PA) = L # <N )y <},

where \; are the eigenvalues of A. Then

1
|FA — FB|| < v Rank(A — B),
where || f|| = sup, | f(z)].

This implies also that the moment sequence of L and \/LBHngﬁ are the same in

the large N limit, which means that also the moment sequence of L, \/LBHGJrB in
the large N limit are equal. So applying Lemma [2.2] and Theorem [2.1] one gets the
following

Lemma 2.13. Consider the classical Toda chain and endow the phase space
M with the Gibbs measure dvreg, in (2.29), then there exists a constant
Bo > 0 such that, for all 8 > By the mean density of states of the Lax matriz L
i the limit N — oo is explicitly given by:

d_&(x) = \/EaCY(OC/La(\/Bx))\a:ﬂwdx?
where o (z) is given in (2.6).

To conclude, we also remark that if we let the inverse temperature § approach
infinity, in view of , we obtain that the mean density of states of the classical
Toda chain in this regime is exactly the arcsine law . From the physical point
of view, the system is at rest.
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Figure 2.1: Gaussian a ensemble empirical spectral density for different values of
the parameters, N = 500, trials: 5000. The solid black line is the estimated density,
not the actual one.
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Figure 2.2: Laguerre a ensemble empirical spectral density for different values of
the parameters, N = 500, trials: 5000. The solid black line is the estimated density,
not the actual one.
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Figure 2.3: Jacobi a ensemble empirical spectral density for different values of the
parameters, N = 500, trials: 5000. The solid black line is the estimated density,
not the actual one.
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Chapter 3

Integrable Discrete Non-Linear
Schrodinger Equation

In this chapter we study the defocusing Ablowitz-Ladik (AL) lattice for the complex
functions «;(t), j € Z and t € R, which is the system of nonlinear equations

ZC(J = —(Oéj+1 + aj_1 — 2C(j) + ’Oéj‘Z(Oéj,1 + Oéj+1), (31)
. dOéj ST .-
where &; = —=. We assume N-periodic boundary conditions oy = «;, for all

j € Z. The AL lattice was introduced by Ablowitz and Ladik [2,3] as the spatial
discretization of the cubic nonlinear Schrodinger Equation (NLS) for the complex
function ¥ (z,t), z € S* and t € R:

i (2, 1) — —%aiw(x,t) (e, )2 B).

The cubic NLS equation is an infinite-dimensional integrable system [172]. There
are several discretization of the cubic NLS equation and the AL lattice (3.1) is
among the several ones that preserve integrability [137]. For applications of the AL
lattice see the book [4].

The phase shift «;(t) — e ?"q;(t) transforms the AL lattice into

ZO./] = _pg(aj-i-l + Ozj_l), Pi = A/ 1-— |Oéj|2, (32)

which is related to the Schur flow |73]. It is straightforward to verify that if |a;(0)| <
1, then |a;(t)] < 1 for all ¢ > 0, see [73]. We chose the N-dimensional disc DV as
the phase space of the AL system, here D = {z € C||z| < 1}. On D" we introduce
the symplectic form [47],66|

N
1
wziz —da; Ada;, p;=4/1—|a;]% (3.3)

j=1 Pj

The corresponding Poisson bracket is defined for functions f, g € C*(D") as

N
| of o9 of dg
— 2 -
{fag}—Zij (aajaaj aajan) .
=
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The AL equation (3.1) have the Hamiltonian structure
&j = {aj, Har}, Har(ay,@;) = —2In(K9) + KU + KO, (3.4)

with K1) complex conjugate of K and the conserved quantities K and K™
are given by

N N
1 — |Oéj| K(l) = Z Oéjaj+1. (35)
j=1

j=1

We remark that quantity —2 In(K®) is the generator of the shift a;(t) — e~%%a;(t),
while H; = KM + K1) generates the flow (3.2).

Integrability. The integrability of the AL lattice was proved by Ablowitz and
Ladik by discretizing the 2 x 2 Zakharov-Shabat Lax pair |1}2], for a comprehensive
review see [4]. The integrability of the Ablowitz Ladik system has also been proved
by constructing a bi-Hamiltonian structure [10,47].

More recently different authors (see [5,/126,/147]) worked on the link between
orthogonal and biorthogonal polynomials on the unit circle and the Ablowitz—Ladik
hierarchy. This is the analogue of the celebrated link between the Toda hierarchy
and orthogonal polynomials on the real line. This link was also generalizes to the
non-commutative case [27]. The connection between orthogonal polynomials on the
unit circle and AL lattice leads to the construction of the so-called “big Lax” matrix
that turns out to be a five-diagonal band matrix. Generalization of this construction
to other integrable equations has been considered in [128}|137]. Following [126),147]
we double the size of the chain according to the periodic boundary condition, thus we
consider a chain of 2N particles a, ..., asn such that a; = oy for j=1,..., N.
Define the 2 x 2 unitary matrix =,

J <p] _aj) ) J ) ) )
and the 2N x 2N matrices

—QaN P2N

ZoN-2 ZoN-1
P2N QN

Now let us define the Lax matrix

£=LM, (3.6)
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that has the structure

* * * *
* * * *

* ¥ % %

* EE T

The N-periodic AL equation (3.2]) is equivalent to the following Lax equation for
the matrix &:

E=il&.&F+ (N, (3.7)
where T stands for hermitian conjugate and
36 =k

Eh=1&xr k=j+1mod Nork =j+2mod N

0 otherwise.

The formulation (3.7)) implies that the quantities

Tr (&
K(@:#, (=1,...,N—1, (3.8)
are constants of motion for the defocusing AL system. For example
N
KW = Z a1, K =3 [(0,@41)° = 205055007,4]
Jj=1 j=1
Furthermore, K© K® . K®-1 are functionally independent and in involution,

showing that the N-periodic AL system is integrable [1-41|126].

Generalized Gibbs Ensemble for the Ablowitz-Ladik Lattice. The sym-

1
. . . N _ 2 .
plectic form w in induces on DV the volume form dvol = Wd o, with

2o =TTV o (idayg A daj) We observe that {ov dvol = co, however we can define
the Gibbs measure with respect to the Hamiltonian H 4y, in (3.4):

1 1 0T
e Mrdvol = P [T~ JoyP) P, 50, (3.9)

8 8 il

where Zg = (v PRIED) HJ L(1 = |oy]?)P~1d%a < oo is the normalizing constant.
The above probability measure is clearly invariant under the Hamiltonian flow
a;(0) — a;(t) associated to the Ablowitz-Ladik equation (3.1)).

Since the Ablowitz-Ladik lattice posses several conserved quantities (3.5)-(3.8),
one can introduce a Generalized Gibbs Ensemble on the phase space DV in the
following way. Fix N3 x < N — 1 and let us define

= i nmyﬁ(zm), (310)

m=1
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where 7, € R are called chemical potentials. Then

)= 3 (K 4 Km),
m=1
where K™ are the AL conserved quantities (3.8)). The finite volume Generalized
Gibbs measure can be written as:

N
APaL (o, ..., ay) = ZALLfﬁ [T =105 )7 exp (<Tr (V (€))) 2, (3.11)
j=1

where Z{L(V, B) is the partition function of the system:

ZAV, B) = JDN]_[ 1— |oy]?)"  exp (=Tr (V (€))) da. (3.12)

Choosing the initial data of the Ablowitz-Ladik lattice according to the Generalized
Gibbs measure, the Lax matrix £ turns into a random matrix. In [119] Mendl and
Spohn study the dynamic of the Ablowitz-Ladik lattice at non-zero temperature.
They study numerically correlation functions and in particular, introducing the
density 6; = R(cj4+1@;), they study the density-density correlation function

E[0;(t)0:(0)] = E[0;(t)] E[6:(0)]

where E [-] is the expectation with respect to Gibbs measure . They showed
numerically that density-density time correlations in thermal equilibrium have sym-
metrically located peaks, which travel in opposite directions at constant speed,
broaden ballistically and decay as 1/t when ¢ — o0, where the scaling exponent
~ is approximately equal to one. This is behaviour is believed to be typical of
integrable nonlinear systems.

More quantitative results have been obtained for linear (integrable) systems
and for the Toda lattice, which is a nonlinear integrable system. It was shown
in |75] that the fastest peaks of the correlation functions of harmonic oscillators
with short range interactions have a Airy type scaling. Namely, the fastest peak of
the momentum-momentum and energy-energy correlation functions scales as t 3,
and 3 respectively and the shape of the peak is described by the Airy function
and its square respectively. Regarding nonlinear integrable systems in [?] Spohn was
able to connect the Gibbs ensemble of the Toda lattice to the Dumitriu-Edelman
f-ensemble [42]. In this way, the generalized Gibbs free energy of the Toda chain
turns out to be related to the f-ensembles of random matrix theory in the mean-
field regime [7,[44]. The behaviour of the correlation functions of the Toda chains
has been derived by applying the theory of generalized hydrodynamic [39,/153].
We mention also the recent work [79]|, where the authors derive a large deviation
principle for the mean density of states for the Generalized Gibbs measure of the
Toda lattice.

In this chapter we present the results in [116], and we connect the generalized
Gibbs ensemble of the Ablowitz-Ladik lattice to the Killip-Nenciu [93] matrix Cir-
cular S-ensemble at high-temperature investigated by Hardy and Lambert [80]. We
determine the free energy

.1
Fa(V.B) = lim —log Z{H(V, )
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(see Proposition and the density of states uﬁ ;, (see Theorem of the random
Lax matrix £ sampled according to (3.11)) in the thermodynamic limit N — co. The
density of states 11, is obtained as follows. Consider the functional

FYB () =2 L V(0)u(0)do — 3 J fmln sin (@) 1(0) u(9)dfd

(3.13)
+Lln (11(0)) 11(0)d + In(27),

where p € M(T) with M(T) the space of probability measures on the torus T =
[—7,7]. Such functional has a unique minimizer z5,(d6) = p5(6)d6, [145], that
describes the density of states of the f-ensembles at high temperature [80]. For
finite 8 and smooth potentials V'(#), it has been shown by Hardy and Lambert
in |80] that the minimizer x%.,(d6) has a smooth density and its support is the
whole torus T. The minimizer ji,,(d6) of and its minimum value

Fur(V, B8) := FYD (1),

are related to the density of states p%, () (Theorem and the free energy
Far(V, ) (Proposition of the AL lattice by the relations

#100) = 0 (Bufir(0)) . Far(ViB) = 8 (BFur(V,)) + In(2).

The particular case V(0) = ncos@ corresponds to the free energy associated to
the Schur flow (3.2), and we show that the minimizer of the functional (3.13)) is
obtained via a particular solution of the Double Confluent Heun (DCH) equation:

220" (2) + (—77 +2(6+1)+ 7722) v'(2) +nB(z + Nv(z) =0,

where ' and ” denote the first and second derivative with respect to the argument.
The density of states M%T(Q) is recovered from the unique smooth solution (up to
a multiplicative non-zero constant) of the DCH equation (see Theorem [3.9) by the
relation

8 _i i eiﬂvl(eie)
i (0) = 5+ 5% <—U(ew) ) . (3.14)

The parameter A = A(n, 5) in is a transcendental function that is related to
the Painlevé III equation [53|. For the case V' = 0 it was shown in [80] that the
minimizer is the uniform measure on the circle, while for the case V(0) — gV (6)
and 3 — oo the minimizer of was considered in [117] and the particular case
BV (0) = Bncosf has first been considered by Gross Witten [78] and Baik-Deift-
Johansson [14]. Therefore the measure generalizes the result by Gross and
Witten [78] and Baik-Deift-Johansson [14] to the high-temperature regime.

This chapter is organized as follows. In section we introduce the Circular
B ensemble and its high-temperature limit. In section [3.2 we state and prove our
main results, namely Theorem and Theorem [3.9 Finally, the most technical
part of our arguments is deferred to section .
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3.1 Circular beta Ensemble at high-temperature

The Circular Ensemble at temperature B‘l is a system of IV identical particles on
the one-dimensional torus T = [—7, 7| with distribution

dP5(01,....0n) = — ]_[ e — %40, dO = db; ...d0y, (3.15)
Z Jj<t
where Z](\’;B £~ 0 is the norming constant, or partition function of the system. For

B = 1,2,4 Dyson observed that the above measure corresponds to the eigenvalue
distribution of unitary symmetric, unitary and unitary symplectic random matrix
ensembles (see e.g. [54,|118]). For general 3 > 0, Killip and Nenciu proved that the
Circular beta Ensemble can be associated to the eigenvalue distribution of a random
sparse matrix, the so called CMV matrix, after Cantero, Moral, Velazquez [28]. To
state their result, we need the following definition.

Definition 3.1. A complex random variable X with values on the unit disk D is
©,-distributed (v > 1) if

E[f(X 2)(1— |2} a2

In the case v =1, let © be the uniform distribution on the unit circle S*.

We recall that for integer ¥ > 2, such measure has the following geometrical
interpretation: if u is chosen at random according to the surface measure on the
unit sphere S¥ in R¥*!, then wu; + iuy is ©,—distributed. We can now state the
result of Killip-Nenciu.

Theorem 3.2 (cf. [126] Theorem 1). Consider the block diagonal N x N matrices
M = dZ.CLg(El,Eg,Eg)...,) and L= diag(Eo,Eg,E4,...) s
where the block =;, j = 1,..., N — 1, takes the form

= (Y P R P
j (pj —aj>’ Pj a2,

while Zy = (1) and Zx = (ay) are 1 x 1 matrices. Define the N x N sparse matriz
E = LM,

and suppose that the entm’es a; are independent complex random wvariables with
aj ~ ®B(N i1 for 1 < j < N —1 and ay s uniformly distributed on the unit
circle. Then the ezgenvNalues ofE are distributed according to the Circular Ensemble
(3.15) at temperature [3.

We observe that each of the matrices Z; is unitary, and so are the matrices L

and M. As a result, the eigenvalues of E clearly lie on the unit circle. The matrix
E is a 5-diagonal unitary matrix that takes the form

ay p1a2 p1P2
P1 —ay a2 —a1p2
p2Ga3 —Qaa3 P30y P3P4
P2pP3 —Qa2p3  —a3ly —Qa3py
E= A _ A A . (3.16)
PN-3OGN—2 —ON_3GN_2 PN—2GN_—-1 PN—2PN—1
PN—3PN—-2 —QN_3PN-2 —QAN_2GN_-1 —ON_2PN-1
ANPN-1 —anN_1aN

We are interested in the probability distribution (3.15)) when
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e we add an external field, namely df; — e~ 2V(#)df, with V : T — R a differen-
tiable potential;

e we consider the limit B — 0 and N — o in such a way that EN =206, 8> 0.
Since [ is interpreted as the inverse of the temperature, such limit is called
high-temperature regime.

With the above changes, we arrive at the probability distribution of the Circular
ensemble at high-temperature, and with an external potential:

dPY (6y,...,0) = ZHT H i — 5| ¥ e 25 V049 (3.17)

]<Z

where ZI7(V, 3) is the normalizing constant or the partition function of the system.
Also in this case, we can associate to the above probability distribution a random
CMV matrix. The lemma below has probably already appeared in the literature,
but for completeness we provide the proof.

Lemma 3.3. Let E be the CMV matriz (3.16)). Consider the block 2N x 2N matriz

E = diag(E, E), (3.18)

whose entries are distributed according to

dP(ay, ..., ay) = ; ]hl (1 _ |a~|2)5(1_%)_1 o~ (v (E)) ]hl d2a-dO‘N .
7 , Z]I\_{T(‘/v’ /B) j:1 ! j:1 J ZO{N
(3.19)

Then the eigenvalues of E are all double, they lie on the unit circle and are dis-

tributed according to (3.17)).

Moreover

B N
2w =2 ), (3.20

where ZHT(V, B) is the norming constant of the probability distribution (3.19)).
Proof. First, we notice that the eigenvalues of E are all double, since it is a block

diagonal matrix with two identical blocks.
We consider the change of variables ay — €', thus (3.19) becomes:

N—1 _ N—-1
— —1 _qﬁ =
dP(aq,...,an_1,p) = ZHT V 5 H 1 — |a]| %) e LI(V(E)) d®a;dyp
7j=1 Jj=1
(3.21)
Now, let e"e1 ,...,e"% be the eigenvalues of the CMV matrix £ endowed with

probability (3.19) , and let ¢p,...,qy be the entries of the first row of the unitary
matrix ) such that Q'0Q = E where © = Diag(e'’1, ..., e") and Z]kV:1 lge|* = 1.
Introduce the variable v; = |¢;|* for j = 1,..., N, then From [93, Lemma 4.1, and
Proposition 4.2 relation (4.14) | we have that
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N—1
.
A H =TTy, (3.22)
Jj=1 J=1

1
B 21,NH]':1 (1- ’ajP)
— N ’

Hj:l Vi

‘5(&1,..-,04N—1790) (3.23)

a(6,7)

here v = (71,...,vv_1), and A(e??) = [T (¢" — ¢e'). Applying the previous
equalities to (3.21]) we get that:

B23) 1 21 v = nB(1-%) 2 i

2 1 — |ay] L= V() 40dy
ZﬁT(V,ﬁ) H;V=1 ; ]1:]1: ( J )

B322) 1 21-N|A( 0)|25 ﬁ %, 25, V() 494

= )N [ e Y-
ZIT(V. B) 117

Thus, we get the relation
HT 1-N zHT S
Zy (V.B) =272y (V. B) f H’YjN dy...dyn-1,
A j=1

here A is the simplex Zj\;l v; = 1.
The above integral is a well-known Dirichlet integral that can be computed
explicitly (see |93, Lemma 4.4])

JH’VN d’h cdynog = F(ﬁ)

proving (3:20).
O

Let €, ... ¢ be the double eigenvalues of the CMV Matrix E in (3.18),
whose entries are distrbuted according to (3.21). The empirical measure is the
random probability measure

1 N
NZ‘ 0, (3.24)

The mean density of state u?{T is defined as the non-random probability measure
such that

[ sOsrta0) = i 8 | [ @ntan)| (3.25)
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for all continuous function f on the torus T, and the expected value is taken with re-
spect to . In order to discuss the large NV limit of u we have to introduce sev-
eral quantities. Let M(T) be the set of probability measures on the one-dimensional
torus T and for € M(T) we consider the logarithmic energy [145]

- (0=0\|"
E(p) := In [sin 5 p(do)p(de) .
TxT
. . do
We define the relative entropy with respect to jg(df) = oy as
s

K(ulp) 5= [ 1o (ﬂ) u(do) e [0,+],

Ho

when g is absolutely continuous with respect to o and otherwise K (pfpg) := +00.
The relevant functional is

FOD )i BE) + K o) +2 | VO)u(a0)

When FV8) () is finite, it follows that y is absolutely continuous with respect to
the Lebesgue measure o and we can write u(df) = u(6)df. We denote by C™!(T)
with n = 0,1,2,... the space of n-times differentiable functions whose n-derivative
is also Lipschitz continuous.

The following result describes the limiting measure 15, in (3-25).

Theorem 3.4. (c¢f. [80, Proposition 2.1 and 2.5]) Let M(T) be the set of probability
measures on the one-dimensional torus andV : T — R be a measurable and bounded
function. For any B > 0 consider the functional FV9 : M(T) — [0, 0]

FOO ) =2 |

] V(0)u(0)do + BE(u) + f In (u(0)) u(6)do + In(27) . (3.26)

T

Then

(a) the( fl)mctional FVB (1) has a unique minimizer 1o (d0) = pb..(0)d6 in
M(T);

(b) 113 is absolutely continuous with respect to the Lebesque measure and there
is 0 <06 <1 such that

B
5 < MH2T(‘9) <ot ae.
s

(c) if V =0, then p}p(d0) = do;
(d) if Ve C™(T), then u?., € C™(T);

(d) the empirical measure py in (3.24) converges weakly and almost surely to the
measure ugT as N — o0.
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From the above theorem when the potential V' is at least C*!(T) the minimizer
of the function F(*#) is characterized by the Euler-Lagrange equations

SFW.B)
op

where C(V, ) is a constant in 6.
For convenience, we define Fyr(V, 5) as the value of the functional at the min-
imizer, namely

=2V (0) — QﬁJTln sin (@> p(o)de +Inp(d) +1=C(V,5) (3.27)

Fur(V,8) := FYD ().

The quantity Fyr(V, ) is referred to as free energy of the Circular beta ensemble
at high temperature. It is a standard result that (see e.g. [65])

1
Fiur(V,8) = — lim —log Za*(V, B) (3.28)
N—wo N
where the partition function ZET(V,3) of the Circular beta ensemble at high-

temperature is defined in (3.17).

Remark 3.5. We notice that from (3.20) and (3.28)) we can also obtain the free en-
ergy Fur(V, B) from the partition function ZIT(V,B) of the CMV matriz ensemble

(3-17), namely:

In(Zy"(V, B))
— N " In(2) .

For completeness, we mention that the literature related to the high-temperature
regime for the classical beta ensemble is wide. In [7,8,44]61,80,[159,160| the authors
explicitly computed the mean density of states for the classical Gaussian, Laguerre,
Jacobi, and Circular beta ensemble at high-temperature. In |7,8./61,80] the densities
of states are computed as a solution of some particular ordinary differential equation.
On the other hand, in [44}/159,160| the authors reconstruct the densities from the
moment generating functions. Several authors [18]99./124,125/131}[159] investigated
the local fluctuations of the eigenvalues, they observed that in this regime they are
described by a Poisson process. In particular, in [99] Lambert studied the local
fluctuations for general Gibbs ensembles on N-dimensional manifolds, moreover he
also studied the asymptotic behaviour of the maximum eigenvalue for the classical
beta ensemble at high-temperature. In [57,/61] the loop equations for the classical
beta ensemble at high-temperature are studied, in particular in [57] a special kind
of duality between high and low temperature is underlined. There are also some
results for higher dimensional Coulomb gases [6,(144].

Fyr(V, ) = - lim

N—00

3.2 Statement of the Results

The generalized Gibbs ensemble of the Ablowitz Ladik lattice in is very
close to the probability distribution of the Circular beta ensemble at high-
temperature with an external source. Indeed, the only difference between the two
ensembles is the exponent of the terms (1 — |o;|). Our main results are contained
in Theorem below which relates the mean density of states of the Ablowitz-
Ladik lattice to the mean density of states of the Circular beta ensemble at high-
temperature, and Theorem which derives the mean density of states for the
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potential V(z) = n¥R(z) via a particular solution of the double confluent Heun
equation.

Theorem 3.6. Consider 5 > 0 and a potential V(z) as in (3.10) smooth and
absolutely bounded on the unit circle T. The mean density of states ,uiL of the
Ablowitz Ladik Lax matriz € in (3.6 endowed with the probability (3.11)) is absolutely

continuous with respect to the Lebesgue measure and takes the form

WAL(d0) = 5, (0)d0, L (0) = 8 (B3 (0))

where pﬁlT is the unique minimizer of the functional (3.26) and the derivative is
made in weak sense.

To prove the result, we will use the moment matching technique. We will prove
that the derivative with respect to 8 of ub, is well-defined in L*(T) < L'(T),
meaning that there exists a unique function ds(y5,) € L*(T) such that

s (L fMJBLITd9> = JT faﬁ(ﬂg:r)de )

for all bounded and continuous f, and that the moment sequence of the measure
with density Js (ﬁ u?{T(Q)) coincides with the one of the mean density of states of

the Ablowitz-Ladik lattice pf‘ (8). Then, we will use the following Lemma to prove
that the two measures coincide.

Lemma 3.7. ( [13, Lemma B.1 - B.2[) Let do,do’ be two measures with the same
moment sequence {u}=q. If

205
lim inf u < w0,
l—00 l

then do = do’.

Next, we define the free energy for the Ablowitz-Ladik lattice as:
1 AL
Far(V,B) = — lim —InZy"(V,5), (3.29)
N—o N

where the partition function ZaF(V, B) is defined in (3.12). The next proposition
shows that the free energy Far(V, ) of the Generalized Gibbs ensemble of the
Ablowitz-Ladik lattice and the free energy Fyr(V, ) in of the Circular beta
ensemble at high-temperature are related and this fact allows us to calculate the
moments of the mean density of states of the CMV matrix E in (3.16]) and of the
Lax matrix £ in (3.6)).

Proposition 3.8. The free energy Far(V,3) in (3.29) of the AL lattice and the
free energy Fur(V,5) in (3.28) of the Circular beta ensemble at high-temperature
are differentiable with respect to 3, and are related by

0 (BEuT(V, B)) +In(2) = Far(V, B). (3.30)

The moments of the density of states pﬁL of the Lax matriz € in (3.6)) endowed with
the probability measure (3.11)) and the moments of the density of states pgr of the
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Circular beta ensemble in the high-temperature regime (3.19)) are related to the free
energies Far(V,B) and Fyr(V,3) by

' t

J elemuiL(d6> = atFAL (V + 5%(27”)75) )
. t = (3.31)

f eszM%T(dQ) = atFHT (V + 5%(27”)’5>
T

lt=0

Since the proof of this proposition is rather technical, we postpone it to section
3.3.1L We are now ready to prove the first main Theorem

Proof of Theorem[3.6. First, we will prove that the derivative with respect to 3 of
the density ,u’f{T is well-defined in L?*(T). We notice that, since we are considering

just smooth potential V(z) as , from Theorem point (d) y..(0) € C°(T),

so we can expand it in Fourier series as

pir(0) = . dye™, (3.32)

neZ

where d,, = Sew”,u%T(dG) are the moments of 117,,.(df) and they decay faster than
n~¢ for any positive integer ¢ and any 3 > 0. Further, since ,U%T(Q) is a probability
density, then dy = 1 and the remaining moments satisfy the symmetry

d_nzd_n, n = 1.

By Proposition [3.8] we can differentiate the moments d, with respect to § and
therefore we can formally compute the derivative with respect to [ of the density
M%T(H) by differentiating its Fourier expansion term by term

st (0) = Z 0p(dy)e’™ .

neZ

In order to prove that (%M%T(Q) is well-defined, we will show that its Fourier ex-
pansion defines a function in L*(T).

For this purpose, we define the moments of 15, (df) as ¢, = § ey, (d6) for
all N> n > 1. From the definition of mean density of states , we have that:

E|[Tr(E)]
= lim -+ A
Cn = Hm ——rr—=,

where the expectation is taken with respect to the probability distribution (3.11]).
Since the eigenvalues of £ lie on the unit circle, we get the following chain of in-
equalities:

[E[Tr(E")]] < E[|Te(E")]] < 2N,
which implies that:

len] < 1.

Thus, from Lemma we obtain that the measure ,ui ;(d#) is uniquely character-
ized by its moments.
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Further, as a corollary of Proposition |3.8| we have the following equality:

Cn_dn

5 b

Dpdy =

thus |0pd,| < 2671
Differentiating the Euler-Lagrange equation ([3.27) at the minimizer u%T(Q) with
respect to 6 we obtain the following integral equation (see [80, Proposition 2.5]):

okl (8) + iy (O)[280(V/(6)) + BHuyr(6)] = 0, (3.33)
where H is the Hilbert transform defined on L?(T) as
0 —
H plyp(0) = —p.V-f cot <T¢) Hor()do

T
and p.v. is the Cauchy principal value, that is the limit as ¢ — 0 of the integral
on the torus T restricted to the domain |e? — ¢?| > e. We notice that the Hilbert
transform H is diagonal on the bases of exponential {eme}nez, meaning that

He™® = 2misgn(n)e™
where sgn(-) is the sign function with the convention that sgn(0) = 0.

Therefore, substituting the Fourier expansion (|3.32) of M?{T into (3.33]) we get
the following equation

> 2i Medy (2" = 2"0) ) ndy 2" +2mB (Z 2 dydy—s2" = > 2 d_sds_nz“> —0,

neZ (=1 neZ n=1s=1 n=1s=1
(3.34)

where €™’ = 2" and V(z) = D7, (zg + z‘z). Equating terms of the same order
in (3.34) we obtain the following recurrence relation for the moments d,,:

2SS (de) =0, n=0,

230 e (g — dpye) + ndy + 27835 dned; =0, n >0,

25 (dng — dysr) + ndy — 27BN dped_y =0, n<0.
From the above recurrence relation, we notice that the moments d,, n > k, are
uniquely defined by the moments dy, ..., d,, while the negative moments are ob-

tained by symmetry d_,, = d,,. By differentiating the above recurrence relation with
respect to  we get a new recurrence for the sequence {0gd,, }nez:

(01 e (Opd—¢ — pdy) =0, n =0
2 27’]@ (ﬁﬁdn_g — 65dn+5) + nagdn

(=1

+ 27 Z Ap_ydp + 2703 (Z agdn_gdg + Z dn_4§5d5> =0, n>0
3 =1 (=1

=1
n|

2 Z’f]g (agdn_g — ﬁgan) + nagdn — 27 Z dn_,_gd_g
=1 (=1

In| |n|
—2np (Z éﬁdn+gd_5 + Z dn+gagd_g) =0, n<0
\ {=1 (=1
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Recalling that definitely |d,| < n™*, for any ¢ € N, and |dsd,| < 287!, we
deduce from the above recurrence expressions that, for n large enough, there exists
a constant C' > 0 independent of n such that

|Oadn| <

=R}

This is equivalent to {Jgd,}nez € €%, thus there exists a unique function in L?*(T)
with Fourier coefficients equal to {0sd,, }nez (see for example [164, Chapter 12]). We
conclude that

Ospgyr(6) € L*(T), (3.35)

for any 8 > 0. To conclude the proof of the main Theorem (3.6, we observe that
from Proposition 3.8 we obtain the relation

Cn = 86 (6dn)

between the moments of the measures 1, (8) and p7,.(6) respectively. This, to-
gether with Lemma and (3.35)) implies that

1 (0) = 05 (ﬂu?{T(Q)) :
0

Our next main result provides an explicit expression of the mean density of
states ppr(6) for the potential V(2) = n¥(z). This generalizes the result by Gross
and Witten [78] and Baik-Deift-Johansson [14] obtained for finite temperature to
the high-temperature regime.

Theorem 3.9. Fiz > 0 and let V(z) = nR(2), where n is a real parameter. There
exists € > 0 such that for alln € (—¢,¢), the minimizer j5,(d0) = u%..(0)d6 of the
functional (3.4) takes the form

1 1 eievl(eie)
br0)=—+—=—R(—~2
K (0) o + 3 ( v(e?) '
where v(z) is the unique solution (up to a multiplicative non-zero constant) of Double
Confluent Heun (DCH) equation

20"(2) + (—n+ 2(B+ 1) +n2%) V'(2) + nB(z + Av(z) =0 (3.36)

analytic for |z| < r with r = 1. Such solution is differentiable in the parameter n
and . The parameter X = X(n, B) in (3.36)) is determined for n € (—e,e) by the
solution of the equation

n
AR + —1—(Ry)ay = 0,
(Ri)u 5+1( 1)21

with the condition A\(n = 0,3) = 0. In the above expression (Ry);, is the jk entry
of the matrix Ry which is defined by the infinite product

14 -ABn n’*
R, = MlMQ...Mk..., Mk; = ]i(k'f‘fg) k(k""oﬁ""l) .
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We remark that the solution of the double confluent Heun equation has gener-
ically an essential singularity at z = 0 and z = o0, and one needs to tune the
parameter A to obtain an analytic solution, for a review see |143|. The parameter A
is called accessory parameter, and it is related to the Painleveé I1I equation |53, [104].
The proof of Theorem [3.9]is contained in the next section and consists of mainly two
parts: we first derive from the variational equations with respect to the functional
FWH)  the double confluent Heun equation (3.36). Then we show that such equation
admits an analytic solution in any compact sets of the complex plane containing
the origin.

3.2.1 Proof of Theorem [3.9

From Theorem we know that the density /@T is characterized as the unique
minimizer of the functional (3.26)). We follow the ideas developed in |7,18,34,61]
to find this minimizer explicitly. We consider the Euler-Lagrange equation of the

functional (3.26)), namely

(V.8) —
55;“ _ 21 (9) - 28 f msm('e 2¢')u<¢>d¢+mu<e>+1=c<v,6>,

where the equation holds almost everywhere and where C(V, ) is a constant de-
pending on the potential and (3, but not on the variable . As we did in the previous
proof, by differentiating with respect to 6 the Euler-Lagrange equation we obtain

Oopp(0) + p(0)[20(V (0)) + BHp(0)] = 0, (3.37)

we recall that H is the Hilbert transform defined on L?(T) as

cot (U) u(6)do,

Hu(0) = —p.V.J >

T

and p.v. is the Cauchy principal value. Setting ¢ = 2 and e® = w, we recognize
z+w

the Riesz - Herglotz kernel expressed as

Z— W

Therefore

Lcot <¥) p(p)do =i + QJ M’

g1 2 —W

where S! is the anticlockwise oriented circle, and we used the normalization condi-
tion {, pu(@)dp = 1. We can recast (3.37)) in the form

Z—w

20.u(2) + p(2) l228zV(z) — B+ 2iBp.v. JSI ()2 ] ~0.

For z € C\S* let us define

6= [ wtw) 2 = 5 [ eon (P52 tedas,
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and for z € S' let G4(z) = limz,, G(Z) for Z inside and outside the unit circle
respectively. Then

d
Gi(z) = £mip(z) + p.v. Ll /L(w)w iUz
L i 2020,V (z)  izd,u(z)
—imu(z)+§— 25 IO

This implies that for z € S one has
2020,V (z)  iz0.p(2)

B Bu(z)
Gi(z) —G_(z) =2miu(z).

Gi(2)+G_(z) =1i—

Multiplying the two previous expressions one gets:

2iz0,V(2) zi&w(z))
B Bu(z) )
In order to proceed we have to specify our potential V(z), in our case we will

consider V(z) = 2 (2 +1). Applying the Sokhtoski-Plemelj formula to the above
boundary value problem one obtains

G, (2)? = G_(2)* = 2miu(2) (2 -

G2(z)=iL ) = 0 (o m @) g8 [ wuw) g g

LW — 2 B Js w—z ] g1 W—2

The second term in the r.h.s. of the above expression gives

I e ] ey P

where we have defined

A= —z'f pww)dw, A eR. (3.39)
S1
The third term in the r.h.s. of (3.38]) gives
f w&w—u(w)dw = | Opp(w)dw + zf aw'u—(w)dw
s WwW—Z g1 §1 W—2

= zf (Mﬂdw = 20,G(z),

w — z)?

where in these last relations we use the results of Theorem about the regularity
of u. Now we can rewrite (3.38) as
i

' G 120,G
G*(2) = iG(z) — % (zG(z) +il — Ej) + ;) — %
Remark 3.10. In the above ODE, the parameter A = \(n, ) depends via ([3.39))
implicitly on the function G(z). QOur strategy to solve the above equation is to

consider \ as a free parameter that is uniquely fixed by the analytic properties of the
function G(z).

(3.40)
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We can now turn the non-linear first order ODE (3.40)) into a linear second order
ODE through the substitution

(3.41)

getting:
20"(2) + (—n+ 2B+ 1) +n2°) V' (2) + nB(z + Nv(z) = 0, (3.42)

which is the DCH equation in . The solutions to this equation have generically
essential singularities at z = 0 and z = oo and the local description near the
singularities depends on the parameter  and 5. The quantity A is usually referred
to as accessory parameter since it does not change the singular behaviour of the
solution. Since G(z) is analytic in the unit disc and continuous up to the boundary
and G(0) = i, we seek for a solution v(z) of the DCH equation that is analytic in
the unit disk and such that v(z) — vy, where vy is a nonzero constant.

z—0

Construction of the analytic solution. We look for a solution of (3.42)) in the

form
o0

v(z) = Z apz”®, (3.43)

k=0

which implies the following recurrence relations for the coefficients {ay}xen

n(apAs —ay) =0, (3.44)
ap(k* + kB + ABn) +n(k — 1+ Bag_1 —n(k + Vags =0, k>0, (3.45)

where we have the freedom to chose A and ag. Generically, the above recurrence
relation for the coefficients {ay}ren gives a divergent series in (3.43)). To obtain a
convergent series, we follow the ideas in |26,/155].

We start by considering the 2 x 2 matrices R,(:) defined as

® 1 4 -ABn n’?
Rks = Mk;Mk-i-l ce MS, s = k?, Mk = kl(k+ﬂ) k(k+()f8+1) s (346)

which satisfy the recurrence relation R,(f) = R,(f_l)MS. The next lemma shows that
the limit of R,(:) as s — o0 exists.

Lemma 3.11. Let R,&s) be the matriz defined in (3.46). Then the limit of R,(f) as

s — o0 exists and

Ry := lim R\, (3.47)

§—00

The matrices Ry, k > 1 satisfy the descending recurrence relation:
Ry = MyRp,w k>=1. (348)

Furthermore each entry of the matriz Ry, = Ry (5,71, \) is differentiable with respect
to the parameters 3, n, and \.
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Since the proof of this lemma is rather technical, we defer it to section |3.3.2]
where we gather the most technical results.
Finally, let us define the following function:

En BN = (0 24) R, (g) | (3.49)

We are now ready to prove the following result that will give us a necessary condition
to fix the value of A.

Proposition 3.12. For the values of A such that

5(77757 >‘) =0, (350)

where £(n, B, A) is defined in , the Double Confluent Heun equation (3.42) ad-
mits a non-zero solution v = v(z,n, ) defined by the series that is uniformly
convergent in |z| < r with r = 1. The corresponding coefficients {ay}ren of the
Taylor expansion (3.43) are given by the relation

1 1
a0 =73 (1 0)R, <o> : (3.51)
(_”kﬁ (0 1) Ry ((1)) k=1, (3.52)

where the matrices Ry, are defined in (3.47)). For each A satisfying (3.50)), the solution
v(z) of the DCH equation (3.42), analytic at zero is unique up to a multiplicative
factor.

Proof. First, we show that choosing a; according to (3.51))-(3.52)) we obtain a solu-
tion of the recurrence (3.45). We notice that due to the recurrence relation for the
matrices Ry (3.48]), we have that:

(0 1) Ry ((1)) = (1 0) Rk (é) :

Thus, applying the previous equation and (3.51))-(3.52)), we can recast (3.45) as:

ap =

L A
. nk+2 1
Vg © DA (o)

(—n)" ] )
T (k-1 [_ (1 0) Ry + (1 + k&iﬂﬁ) k(kf1+ﬁ)> R,m] 0) =0

where in the last equality we have enforced (3.48). Next we can rewrite (3.44) in
terms of the matrix Ry exploiting (3.51))-(3.52)), namely

1
0= (0 50 A (o) = €050,
which is exactly (3.49)). Since the entries of the matrices Ry are uniformly bounded,

the solution v(z) = >}, axz” with a; as in (3.52)), defines a uniformly convergent
Taylor series in |z| < r for any r > 0 and in particular for any r > 1.
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To show that the solution analytic at z = 0 is unique up to a constant, we
consider the Wronkstian W (v, 0)(z) of two independent solution v and ¥ of the
Double Confluent Heun equation (3.42), namely

W(z) = e+ =B (o (2)5(2) — v(2)T(2)).

Since W'(z) = 0, it follows that W(z) = C a constant. If by contradiction we
suppose that there are two analytic solutions at z = 0, then from the above relation
we obtain

e (0 (2)0(2) — v(2)T(2)) = Ce? 27!

If n # 0 the left-hand side of the above equation is analytic and the right-hand side
is not, that is clearly a contradiction. If n = 0 then (3.42)) becomes:

220"(2) + 2(B + 1)V'(2) = 0.

The above equation has two independent solutions, one is the constant solution,
which is analytic, the other one is v(z) = Cz~# which is not analytic since 8 > 0.
O

Remark 3.13. We observe that the equation (3.50), does not uniquely determined
A. Indeed as it is shown in Figure the function £(n, 5, \) may have several zeros
for given n and (.

n=125, B=5.00 n=1.50, B=5.00
0.4 — &(n,B.A) 0.4 — &(n,B.A)

0.2 / 0.2
‘o ‘o |
J /

-0.2 0.0 -1.0 -08 -06 -04 -0.2 0.0

n=2.00, B = 5.10‘0 |

0.4 — &n.B.A) 0.4 — &n.B.A) -
/ /
/ J

~_
—-0.4 -0.4

-10 -08 -06 -04 -02 00 -1.0 -08 -06 -04 —02 0.0
A A

Figure 3.1: Plots of &(n, 8, \) for various values of n, 8
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Choice of the parameter \. We will now prove that the parameter A is uniquely
determined in a neighbourhood of = 0 by requiring that the solution v = v(z,n, 3)
depends continuously on the parameter 7.

Lemma 3.14. There exists an € > 0 such that for all n € (—¢,¢) and 5 > 0 there
is a unique X = X(n, 5) such that £(n, 5, \(n, B)) = 0.

Proof. When n = 0 the matrix R; = 1 8) so that the only solution of the

equation (3.50) £(n = 0,5,A) = 01is A = 0. To show the existence of the solution
(3.50) for A = A(n, B) near n = 0, we use the implicit function theorem. We have

to show that \§(n, B, A)| .0 # 0. For the purpose, we need to evaluate

00
O (Mk)(n=o,,\=o) - (0 0) ’

where M}, is defined in (3.47]). This equation implies that

O(E(, B, N0 = (1 0) (} 8) (g) 1

Thus we can apply the implicit function theorem, and we get the claim. O

We conclude the proof of Theorem [3.9, When 7 = 0 the only analytic solution
of DCH equation is v(z) = ¢, ¢ € C. In this case in principle A is undetermined.
However, from Theorem the minimizer ,u’ZT of is the uniform measure on
the circle and therefore from equation [3.39 one has A = 0. From Lemma |3.14] when
n € (—¢,¢), there exists a unique A(7, 5) that satisfies equation and such that
A(n = 0,5) = 0 and therefore by Proposition we obtain for n € (—¢,¢), the
unique solution v(z,n, ) of the DCH equation analytic in any compact set |z| < r,
with » > 0 and in particular when » = 1. Because of lemma the solution
v(z,m, ) is differentiable with respect to the parameters n and £.

We remark that v(z) # 0 on the unit disc D because of the relation (3.41)
between the analytic function G(z) and v(z).

To complete our proof we recover the explicit expression of ugT(ﬁ) from G(z)
and v(z) using the Poisson representation formula (see for example [147, Chapter

1)):
1 REGEE?) 1 1 [ (e)
’“‘%T@:_%_T:%*ﬁ (W) ‘

O

In Figure [3.2] we plotted the density of states of the Circular beta ensemble in
the high-temperature regime with potential V' (2) = n®(z). To produce this picture
and Figure [3.1] we used extensively the NumPy [81], and matplotlib [36] libraries.

3.3 Technical results

In this section we collect the most technical parts of this chapter.
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n=125=500,A=-0216 ~ n=1.50, f=5.00,A= —0.23]

0.40

0.35 0.35

0.30 0.30

0.25 0.25

Hiir 0.20 Wiir 0.20
0.15 0.15

0.10 0.10

0.05 0.05

- —n/2 8 +m/2 +r(1)'00 - —n/2 g +11/2 +r(1)'00

Figure 3.2: The mean density of states M?{T for different parameters.

3.3.1 Proof of Proposition
First, we prove the relation between the free energies (3.30)):

ds(BFur(V,B8)) +In(2) = Far(V,B), (3.53)

doing that we will also prove that they are differentiable with respect to .
We notice that the previous expression is equivalent to:

In(ZHT(V, In(Zg(V,
To prove the previous relation, we will use the so-called transfer operator technique
[92/96][134]. We are considering a potential of the form Tr(V(£)) as in which
is of finite range K, meaning that it can be expressed as a sum of local quantities,
i.e. depending on a finite number 2K of variables, with K independent of N [126].
For example, if V(z) = R(z), then Tr(€) = —2 Z;V:1 R(a;a;41) and in this case
the range is K = 1. Let N = KM + L with M,L € N and L < K. We split the
coordinates (ayq,...,ay) into M blocks of length K and a reminder of length L,

and we define &; = (ax(j—1)+1, ¥k (j—1)+2; - - - » Ok;). In this notation,
KM I
K_J% A
=z ~ - -
(Oél,.-.,OéN) - (aly-"aaM7aKM+17'"7aN)7

and we can rewrite the potential as

W, 0r1) + W(n, O a1y -+ AN, QL ooy L)

HME

where W is a continuous function W : DX xDX — R, and W (&, &) = W (o, &).
The last term in the above expression is different from the others since we may have
an off-set of length L, due to periodicity. For convenience, we define

ApN+1 = (a/KM-i-l) s, N, O, .. 7aK—L)'

In the case V(z) = R(z), then W(ay, as) = —2R(a1@2) and there is no off-set.
We can now rewrite ZaX(V, 3) in (3.12) as
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N M
ZaE(V,B) = JN H 1 - \04]| eXp ( Z (g, Qpyn ) d*a.
D

j=1 /=1

We are now in position to apply the transfer operator technique to compute this
partition function. On L?*(D¥) we introduce the scalar product

(.9) = | f(@g(z)dz, (3:54)

where z = (z1,...,2x). This scalar product induces a norm on L?(D) and also a
norm on the operators T : L*(DX) — L?(D¥) as

1Tl := sup ||T ]2,

fillfllz=1

where || f||2 is the standard L? norm.
Let ¢ = (C1y--+y...Cox) With (xy; = ¢ > 0 for j = 1,..., K, we define the
continuous family of transfer operators 7¢ : L?*(D) — L2(ID)K )

2K Ci—1

(Tef)(@) = | F@TT (o) oxp (-W(@n, &) . (359)

j=1

We notice that 7T¢ is symmetric with respect to the scalar product ([3.54), in-
deed (f,Tg) = (Tf,g). Furthermore, 7; is an integral operator whose kernel
1

C —_
H?fl (1-— |ozj|2)]T exp (—W (&, &o)) belongs to L2(DX x D), and therefore T¢ is
an Hilbert-Schimdt operator. We conclude that there exists a complete set of nor-
malized eigenfunctions {v;};>1 with real eigenvalues {)\;},;>1 in descending order,

differentiable functions of the parameters ¢ = ((1,. .., (k) |91], such that:

(Tewoj)(2,V,€) = \(V, Q)7 V. ¢) (3.56)
2 (2, V,O)pn(2,V, &) = 6,(2)) (3.57)

where ,(-) is the Dirac delta function at z € D*. Moreover 32 | [A;(V,¢)|* < 0.
We artificially rewrite Z4~ as

K K N
Ao = [ s [0-h) = [T0 - ] 0-lep)™
=1 =1 =K+1

M—
X eXp ( Z W a€7a€+1 W<aM7aKM+17' < ON, YLy e e 7’VK—L)> dzad277
(=1
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2K

—
where v = (71, ...,7k) and v € DX. We can use (3.57) with ¢ = 8 = (3,...,0) to

rewrite the previous equation as:

Z(V,B) = ZJ
T T 1=y

{=1 {=K+1

K
Gy Vo B)n@, V. B [ (1 - el ™
/=1

N+K

M-—1
X eXp <_ Z W(&fa a‘@rl) - W(&M7 OKM+1y- - AN, Y1y - - 77KL)> d2ad27
/=1

2K

. . . . f_%
In the above integral, we can identify the integral operator T where 8 = (0, ..., ).
We repeatedly apply (3.56) M — 1 times to the above integral, to obtain:

ZAV, B) = Z (V,B)M'R,, (3.58)
) K MK 51
Ri= | Vi@ v [0-hd) = ] (- lP)E
D2K+L =1 (=(M—1)K+1
N 51 N K
X H (1—oy?)" exp (=W (&, rms1, - - QN Vs - VK1) H d*a; Hd2w-
(=MK+1 =(M—1)K+1 =1

The modulus of the reminder |R,| in (3.59) can be bounded from above and below
by two constants C7,Cy > 0 independent of N, therefore we conclude from (3.58]

that

Fuu(V,8) = = Jim <1 (Z(V, 8)) =~ (V. 9))
As a consequence of the previous relation and [169, Theorem 137.4], we get that
Far(V, B) is differentiable with respect to 3, since A;(V, ) is differentiable in § and
strictly positive.

We can apply the same procedure to the partition function Z&(V, 3) in (3.19).
Also in this case the potential Tr(V(E)) with V as in (3.10) and the matrix E
as in (3.18) is of finite range K, meaning that it can be expressed as a sum of
local quantities [126]. More precisely, assuming N = KM + L with L < K and

M, N,L e N we have

M1 K-1 K—L

Tr(V(E)) = Z W(ay, osr)+W(0,...,0, =1, 00)+W (&, agpsa, - - - an,0,...,0),

=1
For example for V(z) = 2% + 2% one has K = 2 and N = 2M + L where L = 0, 1.
The vector o, takes the form oy = (o1, ) for £ = 1,..., M. In this notation,
we can rewrite the potential as

R M-1

Te(V(E)) = Y, W(@u, 1) + 01.0W (&, ay, 0) + 2R(af + 2a2p1)
=1 ~
=W(0,—1,a1,a2)
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where in this case W(ay, ay1) = 2R [ZS o2 14500045)% — 2042@,1+3642g+1+3p§g+s].
In this way, the partition function can be written in the form

N—-1 N— j
ZyN(V. B) = : H 1—|oy[?)° (1=%)-1 (3.60)
pN-1xg1 I=1 =
M— K—-L K-1
~ — —
X exp Z ag,a“l W(aM,ozKMH,...,aN,O,...,O)—W(O,...

We want to apply the same technique as in the previous case, but we have to
pay attention to one important detail: in this situation the eigenvalues and the
eigenfunctions of the transfer operators will be dependent on the block number.
Indeed, in this case the exponents of (1 — |«;|*) are not identical, but they depend
on the index j as in (3.60)).

For this reason, we define the vector ¢ 1) e R2K a5

- (1-R)o () a8
o)) 5)

szcm_ﬁ%x, =1, M—1

and

where K; = K for j = 1,...,2K. For K integer and K < N we introduce the
multlphcatlon operator M : LQ(ID)K ) — L*(DX) defined as

K

(M f)(ex (1-|a;[) ™ f(a).

Jj=1

We observe that M_x = (Mk)~" and the operators 7. : L*(DF) — L2(DX)
defined in (3.55)) satisfy the relation

Teen = MgTeo Mk, j=1,...,M—1.

We notice that the operators TC(” are compact and symmetric.
Let us define the operator

% = MK'TC(M—nMK'TC(M—z) - '72(1) , (3.61)

we notice that it is a compact operator, since all 72@-) are Hilbert-Schimdt and the
multiplication operator Mg is bounded. We will now prove the following technical
proposition:

Proposition 3.15. Let T as in (3.61) and Z27 as in (3.60) then:

HT
lim - In ZNN =0 (3.62)
N—w N r(T)
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Proof. We will estimate both Z{#*, and Tr(’7~') from above and below, then combin-
ing these estimates we will obtain (3.62)). We start with ZH7T.

N-1

N-1 ;
T g
pN-1yg1 J=1 V=1
M— K-L K-1
— —

X exp Z O(g,ag+1 W(&M,QKM+1,...,&N,O,...,O)—W(O,...,O,—l,&l)

N-1 N— : M-3
e [ oo T 0 o (- S wiaa).
j=1 =1

DN—1xS1

here C(V, ) is a constant depending on V, /3, but not on N. We can explicitly
integrate in oy for j =1,..., K and j = (M —2)K + 1,..., N using the formula

J (1- |z[2)t_1 A’z =mt !,
D

obtaining that there exists a constant C'(V, ) depending on V, 3 such that :

(M-2)K (M-2)K ;
Z]I\}IT <C(V, B)N2K+L71 J H anJ H (1 . |aj|2)6(1—ﬁ)_1
Do o .63
M-3
X €Xp <_ Z W(&Z;&Hl)) .
=2
With analogous computation, we can obtain a lower bound for Z&T
(M-2)K ;
Zjl\j]rT >c(V, ﬁ)N2K+L71 J H dQOéJ H (1 o ‘aj‘2)5<1—ﬁ>_1
pare T (3.64)

M-3
X exXp <— Z W(ae,&zﬂ)) ,

here ¢(V, ) is a constant depending on V, 3, but not on N.
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We can proceed analogously to estimate the trace of T

N K W E(-2) L T oy & (1- 2K ) 1 (MK A1
Te(T) = J [T 1o)™Y 2 [T (1 = leyl?)? * T (=l
D(M—2)K J=1 Jj=1 j=K+1
M-3 M-2
X exp <— W (&, &11) — W(&ara, a1)> [ &,
j=1 j=1
~ K 2 (1-4)-1
<G | 0 jap)it
D(M-2)K J=1
K (M—2)K
B 1 (M—2)K+j 1 5 1 —1
T =yl 2 T (=) )
j=1 j=K+1
M-3 M—2
X exp <— W(&j’&j+1)> H d*a;
j=2 J=1

here C’l(V B), (V f) is a constant depending on V, , but not on N.
With the same kind of computation, one gets that:

(M-2)K (M—2)K _ M-
Te(T) = &V, ) f [T & J] (1—|aj|2)ﬁ“‘“exp( Z aeyam)»

j=K+1

DM=3)K j=1

(3.66)
here ¢(V, ) is a constant depending on V, 3, but not on N. From ({3.63)-(3.64)-

(B-65)-(3-66) we deduce (3:62). 0

Applying the previous proposition, we can express the Free energy of the Circular
beta ensemble in the high-temperature regime in terms of Tr(7):

Fyr(V,B) = — lim %m (Z{") = — lim 1 (m (§£> + ln(Tr(T))>

Noo N—w N (T) (3.67)
o (T
N—w N ’

where in the last equality we used Proposition |3.15]
Thus, we have to understand the behaviour of Tr(7), to do that we have to
carefully analyse the compact operators ’TC(J-).

Let us define the functions ¢, (z, V, { G )) to be the eigenfunctions of Tc(j) with cor-

responding eigenvalues A, (V, ¢V )) in descending order. From a generalized version of
Jentzsch Theorem (see [169, Theorem 137.4]), we get that \,(V,¢Y) < A\ (V,¢W)
for all n > 2. Moreover, the largest eigenvalues of each 72(]-) is a differentiable

function of the parameters ¢\, so we can conclude that:
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MV = M (Vi) (1 +0 <%>) .

Furthermore, we claim that

<w1(Z, V, CUTDY My, (2, V, Cm)) =01, +0O (N) : (3.68)
Indeed let us consider the integral

<¢1(Z V C G+1) ) C(3+1)MK¢H(Z V C ))
- (%(z’ V, C(JH ), MchjMKMKwn(Z, v, C(J‘)))

MV EU) (915, V€O, M2,V )
= A6 (0102 V.60 ) Mt .6 (140 () )

where in the right-hand side we have expanded in power series of 1 /N the opera-
tor M. From the above relation we would obtain A, (V Uy = A\, (V, ¢ (1 +0 (%))
for every n which is a contradiction unless (3.68]) holds. We also conclude that

TC(1+1)MK77/11(Z, V7C(j)> - M (V, C(j+1))1/11(z7 V7C(j+1)) (1 +0 (%)) .

We are now in position to prove the following proposition

Proposition 3.16. Let 1, (z,V,¢Y) be the eigenfunctions of Tew (3-55) with cor-

responding eigenvalues A\, (V,¢Y) in decreasing order. Consider the operator T in
(3.61)), then the following holds:

A CCCA CO). T v )

lim ~1n 0.0 ~0, (3.69)
S (00l V.E), Tl v,

lim T o) =0. (3.70)

N—a0 szl /\1(V, C / )

Proof. To simplify the notation, we will drop the V' dependence of the eigenvalues
(V. ¢ G )), and of the eigenfunctions ¢, (z,V, ¢ U )). We will prove by induction on
M that there exists aq,...,ay 1 constants independent of N, and so on M, such
that

(wz,c“)),m €M) = HAl ) (1+ %)

if this expression holds, then (3.69)) follows.
For M = 2, we have that T = MK7-C(1), so we have to compute:
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(112 €). MicTantn(2.¢) ) = M(€®) (w2 €0), Mictia(2.¢))

For N big enough, we have that there exists a constant a; independent of N such
that:

(¢1(Za C(l))7 Mle(Zv C(l))> =1+ % )

so the first inductive step is proved.
For general M, we have to compute:

(12, €") Mic T -+ MicTetn (2,.€)) = M (€®) (w2 ¢O), MicTeor - Micin (2,.¢")
= (¢ Y (0102, ¢), 02, ¢D) ) (il €2, Mic T -+ Temte(2,¢ )

=1

X <W(Z,C(2)),MK%(Ld”)) :
(3.71)

We notice that for N big enough, we get that there exists a constant &; , independent
of N such that:

<¢£(Z’C(2))’Mle(Z7C(1))> N <¢£(Zac(2))a¢1(Z,C(l))> <1 + %) .

Defining ¢ o = (z/Jg(z, ¢, 1y (z, C(l))>, we can recast (3.71)) as:

(0102, €Y, My -+ MicTeenten (2,60 ) = M(¢™) Y lewf? (1 + &>
7.

Since (2, ¢?), (2, ¢V) are complete orthonormal bases of L?(DX), we can
conclude that Y, [c1]* = |41 (z, ¢M)||s = 1. Moreover, from (3.68) we get that
there exists a constant x; independent of N such that |c11[*> = 1 — x1/N. Thus, we
deduce that

Z |01,e\2 = % .

=2
We can rewrite (3.72)) in a more convenient way as:
(wl(za C(1)>7 MK,]-C(M*U T MK7-C(1)¢1 (Za C(l))>
= (W) (1-3) (1 + %) (12, ¢), My Trsy -+ et (2,¢))

+ (M) Y lenel? (1 + %) (el ¢), MicTors -+ Tentn(, ¢
(=2
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We can apply the inductive hypothesis to the first term of the previous expression,
thus to complete the proof we have just to show that there exists a constant C' such
that

‘2422 ’Clvf|2 <1 + %) (QW(Z» C(2))a MK7Z(M—1) t '72(2)17/}g(z, C(z))>’
[T5 M¢)

C
< —. (3.73
CONNERE)
We notice that there exists a constant C' independent of N such that

M-1
(02 ¢ MicTermns -+ Tertin(2, ) )| < € TT M), (3.74)
j=2

so, from the previous proof, we get that there exists a constant C' independent of
N such that:

2|Q

Dlerel? (1 + @) (W( ¢, Mg Teon -+ Tewbe(z, ¢P) >

=2

which leads to (3.73)), thus we proved (3.69).
To prove (3.70)), we rewrite the numerator as:

Z < ¢, Teho(z ) Z Ae(¢ ( (z,¢W), Mg T -+ Tee) Miibe(z, C(l))>

(=2

Z 2 (W (Za C(Q))) <¢n(z7 C(Q))a MK7Z*(M*1) te 72(2)¢n<z7 C(Q))>

= n=1

x (wz,c ), Micto(z, ¢ >>) .
(3.75)

As in the previous case, we notice that for NV big enough there exist constants &,
independent of N such that:

(1€ Ml €)= (w6 )n ) (14 5 )

Defining ¢, = <1Z)n(z, ¢, y(z, C(l))>, we can recast (3.75)) as:

> (velz ¢), Tenlz <))

=2

o Z /\Z Z |Cn €|2 (1 + %) (Qpn(Z) C(Q)), MK7Z-(M—1) cee 72(2)¢n(z, C(Q))> .
=2 n>1
(3.76)

As before, we have that there exist a constant y; independent of N such that

Ysa el = x1/N, so, applying (3.74)), we get the following estimate for (3.76)

Guido Mazzuca 77



The IDNLS

> <W(Z, C(l))y%W(Z,C(l)))‘

=2

Cl M—-1
< Soale TT (e + (14 52 ) ate®)

n=2

where we used that |Cn’g‘2 1 and &, < Cb, here (5 is a constant independent of
N.
Inductively, we get that there exists a constant C' independent of N such that:

> (w2, €M), Tz, ¢™))

=2

Thus, we get that

‘Z€>2 (¢£ C(l)) %W(%C(l)))‘ < 1
NHOO H A(CY) N=o N3 e M(¢Y)

here in the last equality we used that [Ao(¢®)] < A1 (¢®) for all ¢, which implies
that the previous sum is not divergent in N. Thus, we got the claim. O]

Applying Proposition to (3.67) we get that:

Fur(V.5) = — lim —1n (Te(7)) =~ Jim %m (Z (V. €C). T v,g“))))

N—o
n=1

M—

R

(3.77)

Since the maximum eigenvalue of each ’Tc(j) is positive and a continuous function

of the parameters (see [91},/139]), we get that A\(V C(j)) =\ (V,B( — JWK)) +
O(N™1). Therefore, we can rewrite (3.77) as

Fur(V. ) = _]@wﬂg In <)\1 (v,g (1 - %))) _ Il{ O (V. Br)) da

This leads to , moreover, as a consequence of the previous relation, we get
that Fyr(V, ) is differentiable with respect to 3.

We notice that the proof is heavily based on the assumption that the potential
that we are considering is of finite range, otherwise our approach would not work.

We now prove the moments relations . Thanks to the symmetries of the

measures (3.19)-(3.11) and the definition of mean density of states (3.25) we get
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that the imaginary part of the moments of ugT and ui ; 1s equal to zero, meaning
that:

[ emiiygtan) = i PEEE gy BOCHE [ cosompiy (ao).
[ ey tao) = i EEEN — iy EECHEI [ contomp, (ao).

where in the first equation the expected values are taken with respect to (3.19)) and
to (3.11)) in the second one. Therefore, we have just to prove that

LCOS(Qm)M?{T(dQ) — 0 Fyr (V + %é)%(zm), B) , (3.78)

L cos(Om)yi’., (d6) = 6,F s (v IR, 5) | (3.79)

e tocus on ([3.78)). From Remark(3.0, we have that Fyr(V, I
We f (3.78). From Remark|3.5, we have that Fyr(V, 8) = FV&) (u?.(8)),

we recall that ji;;(6) is the density of the mean density of states of Circular beta
ensemble at high-temperature and the functional F('#) is defined in (3.26). We
write the Euler-Lagrange equation for this functional, getting that M%T(H) satisfies:

0-2 [ (sm(‘ 2”')>u )y + (i (0)) + C(V, 8) = 0, (3.80)

where C'(V, 3) is a constant not depending on 6.

Consider the same functional as before, but with potential V(6) = V() +
£ cos(mb):

FVO) 5 cosmo).8) () — 9 f V(0)u(9)do + tf cos(mf)u(6)dd

_ 3 f L nsin (@) 1(0) ()0 + L In (4(0)) (0)d6 + In(2r)

Also this functional has a unique minimizer p) (), and we notice that 1(?(9) =
113..(9). Evaluating the previous functional at x®)(6), and computing its derivative
at t =0, we get that:
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QF O ) = [ VOO 0),000
T

| costmb)r(0)a0~ 5 [ [ msin ('9 - ”') Wi (1 (0),,_,d6dy
T TxT

+ J In (u?{T(e)) o (6),,_,d6.
: (3.81)

Testing (3.80) against d;u®(6),_, we obtain

0 —
2 [ VO 0005 [ | msin (' . 7') o ()0 (0),, 06
T TxT
+ J In (,ﬁn(e)) 2w (8),,_,d0 = 0,
T
where we used that § d,uY(0)d8 = 0. Thus, we can simplify (3.81) as :

6t}"(V(9)+%COS(m9)’ﬁ> (1W))ee = J cos(m@)u%T(Q)dQ,
T

which is equivalent to (3.7§]).
To complete the proof of Proposition we have to show that (3.79) holds.
From the definition of mean density of states (3.25) we have that:

(AL) t m
; om0 (A (VHREN.9)
cos(Om)p’y; (df) = lim = — lim
T N—ow 2N N—ow NZ](\;L‘L)O/, ﬂ)
where the expected value is taken with respect to the generalized Gibbs ensemble
of the Ablowitz-Ladik lattice.
Exploiting (3.58)) we can rewrite the previous expression as:

lt=0

o (20 (v + 4RGm.)) 0 (SN (V + 5RE,9)),

— 1 =—li
N NZ](\‘;‘L)(V, ) N NNV B)
at/\rnax ((V + %%(Zm>7ﬁ))|t:0

KAmax(‘/: 5)

i (v )

Thus, we have completed the proof of Proposition [3.8 [

3.3.2 Proof of lemma [3.14
We prove ([3.47)) for k£ = 1 and the cases k > 1 easily follow.
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Let us define R(” = (f ° hs) where s > 1. If follows from (3.46]) that

S qS
A8 n?
Jo hs) _ (Jor Do) (L4555 Smmm | s> 1

s Qs Ps—1 4s—1 1 0
where 5 > 0 and \,n € R\{0}. Note that in the case n = 0 the lemma is trivially
satisfied. We will show that all the sequences {f;, hs, ps, Gs}s>1 converge as s — o0,

— . . 2 2

moreover hg, ¢ —— 0. First of all, we notice that hy = S(ngjrll) and ¢ = S(Zf;jjrll),
thus the convergence to zero of these two sequences follows from the convergence of
ps and fy as s — o0. Moreover, the terms of these last two sequences obey to the

3-terms recurrence:

B ABn n?
O ) e L

and the same holds for p, in place of f,. Thus, we have just to prove that the
sequence {fs}s>1 converges. For this purpose we bound |fs| from above as:

2% + [\Bn]
= (1 2

inductively we get that there exists a constant C' depending just on the initial
condition such that:

fol < H( %Z—JA;"Q Cﬁ( %Z—m> (3.82)

Since the infinite product on the right-hand side of (3.82)) is convergent by a classical
result, see for example [100, Chapter XIII, Lemma 1], this implies that the sequence
{fs}s=1 is uniformly bounded. Moreover, we have that:

| fs\Bn] 0?| foi] ~ 1* + [ABn]
[forr = fol < (s+1)(s+1+p) * s(s—140) < s(s—1+p3)’

) max (| fs—1/, | fs=2]) ,

for some constant C' > 0. This last equation implies that the sequence {fs}s>1 is
a Cauchy sequence, thus it is convergent. So we get the claim . The claim
easily follows from .

Regarding the differentiability of the matrix R; with respect to the parameters,
we consider only the n-dependence and the other cases can be treated in the same
way. We observe that

0 B 2n
lim Ry, (n + h Z (8 1) ( s(s+8) s(s+B+1)> R..

h—0 0

The r.h.s. of the above expression is a convergent sum since each entry of the matrix
Rs and R ) is uniformly bounded because of (3.82] . m
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Chapter 4

Adiabatic Invariant for the FPUT
chain

The FPUT chain with N particles is the system with Hamiltonian

3 4

N— 2 N— 2
p] T T T
r(P,q) Z 5 T Z (g1 —q;) , Ve(zr) = T bﬂ ; (4.1)

which we consider with periodic boundary conditions ¢j+n = ¢;, pj+~ = p; and
b > 0. We observe that any generic nearest neighbourhood quartic potential can
be set in the form of Vg (z) through a canonical change of coordinates.

Over the last 60 years, the FPUT system has been the object of intense numerical
and analytical research. Nowadays, it is well understood that the system displays,
on a relatively short time-scale, an integrable-like behaviour, first uncovered by
Fermi, Pasta, Ulam and Tsingou [50| and later interpreted in terms of closeness to
a nonlinear integrable system by some authors, e.g. the Korteweg-de Vries (KdV)
equation by Zabusky and Kruskal [170], the Boussinesq equation by Zakharov [171],
and the Toda chain by Manakov first [110|, and then by Ferguson, Flaschka and
McLauglin [49]. On larger time-scales the system displays instead an ergodic be-
havior and approaches its micro-canonical equilibrium state (i.e. measure), unless
the energy is so low to enter a KAM-like regime [85}89,/142].

In this chapter, we give a quantitative result of the integrable behaviour of the
FPUT system that hold in the thermodynamic limit. Namely, we show that a
family of first integrals of the Toda system are adiabatic invariants (namely almost
constant quantities) for the FPUT system. We bound their variation for times of
order 3172, ¢ > 0, where 3 is the inverse of the temperature of the chain. Such
estimates hold for a large set of initial data with respect to the Gibbs measure of
the chain and they are uniform in the number of particles, thus they persist in the
thermodynamic limit. In this way we show that the FPUT chain has, in measure,
an integrable-like behaviour on time scales of order 8172¢, thus we give an insight
of the so-called FPUT paradox.

In the last few years, there has been a lot of activity in the problem of con-
structing adiabatic invariants of nonlinear chain systems in the thermodynamic
limit, see [29,:30,/68,69,/108},109]. In particular, adiabatic invariants in measure for
the FPUT chain have been recently introduced by Maiocchi, Bambusi, Carati [108]
by considering the FPUT chain a perturbation of the linear harmonic chain. Our
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approach is based on the remark [49,110] that the FPUT chain (4.1]) can be regarded
as a perturbation of the (nonlinear) Toda chain [156]

1 . —z
—éihﬁ+§ﬁ@@ﬂ—%>,vﬂwze +r—1, (4.2)
- =

which we consider again with periodic boundary conditions g;+n = ¢;, pj+n = Pj-
The equations of motion of and take the form
. 0H ) 0H
U=y, P BT 5,
where H stands for Hr or Hy and V' for Vg and V7 respectively.
According to the values of b in ([4.1)), the Toda chain is either an approximation of
the FPUT chain of third order (for b # 1), or fourth order (for b = 1). We remark
that the Toda chain is the only nonlinear integrable FPUT-like chain [41}]146].

The Toda chain admits several families of N integrals of motion in involution
(e.g. [52,)84,/162]). Among the various families of integrals of motion, the ones
constructed by Henon [82] and Flaschka [51| are explicit and easy to compute,
being the trace of the powers of the Lax matrix associated to the Toda chain. In
the following, we refer to them simply as Toda integrals and denote them by J®*),
1 <k <N (see (4.13))).

As the J®)’s are conserved along the Toda flow, and the FPUT chain is a
perturbation of the Toda one, the Toda integrals are good candidates to be adiabatic
invariants when computed along the FPUT flow. This intuition is supported by
several numerical simulations, the first by Ferguson-Flaschka-McLaughlin [49] and
more recently by other authors [19}21}31,72,[135]. Such simulations show that the
variation of the Toda integrals along the FPUT flow is very small on long times for
initial data of small specific energy. In particular, the numerical results in [19}21,72]
suggest that such phenomenon should persist in the thermodynamic limit and for
“generic” initial conditions.

Our first result is a quantitative, analytical proof of this phenomenon. More
precisely, we fix an arbitrary m € N and provided N and g sufficiently large, we
bound the variations of the first m Toda integrals computed along the flow of FPUT,
for times of order

B1725

(b—1)+ 132
where € > 0 is arbitrary small and C is a positive constant, independent of 3, V.
Such a bound holds for initial data in a set of large Gibbs measure. Note that the
bound improves to 32~% when b = 1, namely when the Toda chain becomes
a fourth order approximation of the FPUT chain. Such analytical time-scales are
compatible with (namely smaller than) the numerical ones determined in [19-21].
An interesting question is whether the Toda integrals J*)’s control the normal
modes of FPUT, namely the action of the linearized chain. It turns out that this
is indeed the case: we prove that the quadratic parts JQ(%) (namely the Taylor
polynomials of order 2) of the integral of motions J) are linear combinations of
the normal modes. Namely, one has

= Vl(Qj+1_QJ)_V/<QJ_QJ71>J j = 07 ey N_17 (43)

(4.4)

&§E+O a)%),
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where Fj is the j™ normal mode (see for its formula), (p,q) are the dis-
crete Hartley transform of (p,q) (see definition below in (4.16))) and ¢*) are real
coefficients.

So we consider linear combinations of the normal modes of the form

N—-1
> GE; (4.5)
=0

where (g;); is the discrete Hartley transform of a vector g € RY which has only

2|7 + 2 non-zero entries with m independent of N, here |%] is the integer part
of %. Our second result shows that linear combinations of the form ([@.5), when
computed along the FPUT flow, are adiabatic invariants for the same time-scale as
in (@.4).

Actually, exploiting the fact that the Toda integrals are invariant for the Toda
dynamics, we deduce also that the linear combinations in (4.5), when computed
along the flow of Toda chain, are adiabatic invariants for all times. This is our
third result.

Examples of linear combinations (4.5]) that we control are

N , N '
JZ:lsin% <]N7T> E; j;cos?f (%) E;, Vl=0,..., {%J (4.6)

These linear combinations weight in different ways low and high energy modes.

Our results are mainly based on two ingredients. The first one is a detailed study
of the algebraic properties of the Toda integrals. The second ingredient comes from
adapting to our case, methods of statistical mechanics developed by Carati [29] and
Carati-Maiocchi 30|, and also in [68,/69}/108},109].

4.1 Statement of results

4.1.1 Toda integrals as adiabatic invariants for FPUT

We come to precise statements of the main results of the present chapter. We
consider the FPUT chain (4.1)) and the Toda chain (4.2)) in the subspace

N-1 N-1
M::{(p,q)eRNXRN: qu:[,,ij:O}, (4.7)
3=0 J=0

which is invariant for the dynamics. Here £ is a positive constant.
Since both Hr and Hp depend just on the relative distance between ¢;4; and
q;, it is natural to introduce on M the elongations r;’s as

rii=qiy—q, 0<j<N-1, (4.8)

which are naturally constrained to
N-1
diri=0, (4.9)
7=0
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due to the periodic boundary condition ¢y = ¢o. We observe that the change of
coordinates (4.8)) together with the condition (4.9) is well-defined on the phase space
M., but not on the whole phase space RY x RY. In these variables the phase space

M reads
N-1 N-1
M= {(p,r)eRNxRN: ETj:ij=O}. (4.10)
j=0 7=0

We endow M by the Gibbs measure of Hp at temperature 37!, namely we put

1 N-1 N-1
dpp := —— e PHrPY) 5 ri | 6 | dpdr, 411
HE ZF(B) 0 ZE) J 0 ;} Dj p ( )

where as usual Zg () is the partition function which normalize the measure, namely

N1 N—1
Zp(B) = JRN . e PHF(PT) 5 <Z 7"j> do (Z pj) dpdr.

j=0 j=0

Given a function f: M — C, we will use the probability (4.11) to compute its
average (f), its L* norm [ f|, its variance o} defined as

D =Blf= [ 1o du

IfIZ:=E[lfF] = f |[f(p,)|* dper,
R2N
of = |f = (O

In order to state our first theorem, we must introduce the Toda integrals of
motion. It is well known that the Toda chain is an integrable system [82}|156]. The
standard way to prove its integrability is to put it in a Lax-pair form. The Lax form
was introduced by Flaschka in [51] and Manakov [110] and it is obtained through
the change of coordinates

bj := —pj, aj = 26~ %+1) = =273 0<j<N-1.
By the geometric constraint (4.9) and the momentum conservation Z;y:_ol pj =0
(see (4.7))), such variables are constrained by the conditions

N—

N-1
ijzo, Hajzl.
i=0 /

J=

—_

The Lax operator for the Toda chain is the periodic Jacobi matrix [162]

b() ap 0 . anN—1

Qg by

L<b7 CL) = 0 aj bg . 0 : (412)
. . . . AN
anN—-1 ... 0 anN—2 bN—l
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We introduce the matrix B = L, — L} where for a square matrix X we call X, the
upper triangular part of X

(X4)y = { 0, otherwise

A straightforward calculation shows that the Toda equations of motions (4.3)) are

equivalent to

dL
— = |B, L]
dt [7]

It follows that the eigenvalues of L are integrals of motion in involutions.
In particular, the trace of powers of L,

1
Jm = —_Tr(L™), Vi<m<N (4.13)

m
are N independent, commuting, integrals of motions in involution. Such integrals
were first introduced by Henon [82] (with a different method), and we refer to them
as Toda integrals. We give the first few of them explicitly, written in the variables

(p,7):

N—-1 N—-1 p2
J(l)(p> = Z Di, J(2)(p7r) = Z [?Z + G_Ti] 3

=0 =0
-1
i

J®(p,r) = — Z

1 N
[gpf + (pi + pir1)e ’} ;
=0
J®(p,r) := [Zp? + (7 + pipi1 + Pi)e T + 56_2” + e_”_”“] :

=0

=

Note that J® coincides with the Toda Hamiltonian Hr.

Our first result shows that the Toda integral J™), computed along the Hamil-
tonian flow qthF of the FPUT chain, is an adiabatic invariant for long times and for
a set of initial data in a set of large Gibbs measure. Here is the precise statement:

Theorem 4.1. Fiz m € N. There exist Ny, 5y, Co, C1 > 0 (depending on m), such

that for any N > Ny, > [y, 0 <e < i, one has

w\ _ C
P(um%¢h_qu>ﬁ;)<B%, (4.14)

for every time t fulfilling
ﬁ1—2a
(b — 12+ C1571)

In (4.14) P stands for the probability with respect to the Gibbs measure (4.11).

] < (4.15)

1/2 "

We observe that the time-scale (4.15) increases to 3 372 for b = 1, namely if the
Toda chain is a fifth order approximation of the FPUT chain.
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Remark 4.2. We observe that our estimates in and are independent
of the number of particles N. Therefore, we can claim that the result of theorem[{.1]
holds true in the thermodynamic limit, i.e. when limy_, <7\f> = e > 0 where (Hp)
1s the average over the Gibbs measure of the FPUT Hamiltonian Hp. The
same observation applies to theorem [{.4) and theorem [{.5 below.

Our Theorem gives a quantitative, analytical proof of the adiabatic invari-
ance of the Toda integrals, at least for a set of initial data of large measure. It
is an interesting question whether other integrals of motion of the Toda chain are
adiabatic invariants for the FPUT chain. Natural candidates are the actions and
spectral gaps.

Action-angle coordinates and the related Birkhoff coordinates (a cartesian ver-
sion of action-angle variables) were constructed analytically by Henrici and Kap-
peler [83,84] for any finite N, and by Bambusi and one of the author [16] uniformly
in IV, but in a regime of specific energy going to 0 when N goes to infinity (thus
not the thermodynamic limit).

The difficulty in dealing with these other sets of integrals is that they are not ex-
plicit in the physical variables (p,r). As a consequence, it appears very difficult to
compute their averages with respect to the Gibbs measure of the system.

Despite these analytical challenges, recent numerical simulations by Goldfriend
and Kurchan [72| suggest that the spectral gaps of the Toda chain are adiabatic
invariants for the FPUT chain for long times also in the thermodynamic limit.

4.1.2 Packets of normal modes

Our second result concerns adiabatic invariance of some special linear combination
of normal modes. To state the result, we first introduce the normal modes through
the discrete Hartley transform. Such transformation, which we denote by H, is
defined as

1 . .
p:=Hp, Hji:= \/_N (cos <27r‘%) + sin (2#%)) , g k=0,...,N—1
(4.16)
and one easily verifies that it fulfils

H? =1, HT = H.

The Hartley transform is closely related to the classical Fourier transform F, whose
matrix elements are Fj, 1= \/Lﬁe_i%jk/ N as one has H = RF — SF. The advantage
of the Hartley transform is that it maps real variables into real variables, a fact which
will be useful when calculating averages of quadratic Hamiltonians (see Section
1.4.9).

A consequence of is that the change of coordinates

RY xRY > RY xRY, (p,q) — (P.4) := (Hp, Hq)

is a canonical one. Due to Zj p; =0, Zj ¢; = L, one has also py =0, go = L/VN.
In these variables the quadratic part H, of the Toda Hamiltonian (4.1)), i.e. its
Taylor expansion of order two nearby the origin, takes the form

N—-1 ~2 29 .
A D —|—w.q. )
HQ(pvq) = Z %7 Wy 1= 2sin <7T%) . (417)

7j=1
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We observe that (4.17)) is exactly the Hamiltonian of the Harmonic Oscillator chain.
We define - .
D; + wiq; .
Ej::]T“; jzl,...,N—l, (418)
the 5% normal mode.
To state our second result, we need the following definition:
Definition 4.3 (m-admissible vector). Fiz m € N and m := | 2|, where | 2] is the
integer part of 5. For any N > m, a vector X € RY s said to be m-admissible if
there exists a non-zero vector'y = (Yo, 1, ..., ym) € R with K1 < Xyl < K,
K independent of N, such that

Tp = TN_kp =Yg, for 0 < k <m and x = 0 otherwise.

We are ready to state our second result, which shows that special linear combi-
nations of normal modes are adiabatic invariants for the FPUT dynamics for long
times. Here is the precise statement:

Theorem 4.4. Fiz m € N and let g = (go,...,gn-1) € RY be an m-admissible
vector (according to Definition . Define

N-1
®:= > G, (4.19)
j=0

where g is the discrete Hartley transform (4.16) of g, and Ej; is the harmonic energy
(4.18)). Then there exist Ny, By, Co,C1 > 0 (depending on m), such that for any

N>N0,,B>BO,O<5<%, one has

C,
P<‘<D0¢§{F—d>‘>%) <5—206,

for every time t fulfilling (4.15)).

Again, when b = 1 the time-scale improves by a factor B%.

Finally, we consider the Toda dynamics generated by the Hamiltonian H7 in
. In this case we endow M in by the Gibbs measure of Hy at temperature
Bt namely we put

1
dpr = e AHr(pr) 5 ri=0] 0 ;=0 dpdr, 4.20
pr = Z]: : ;pg p (4.20)

where as usual Z7(() is the partition function which normalize the measure, namely

e~ BHT(PX) § (Z r; = 0) ) (ij = O) dpdr.
N xRN J J

We prove that the quantity (4.19)), computed along the Hamiltonian flow gthT of
the Toda chain, is an adiabatic invariant for all times and for a large set of initial
data:

Zr(B) = f

R
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Theorem 4.5. Fiz m € N; let g € RV be an m-admissible vector and define ®
as in (4.19). Then there exist Ny, By, C > 0 such that for any N > Ny, 8 > [y,

0<5<%, one has

P (‘(I)ogbi% —P| > ‘;—‘I’) < 5% (4.21)

for all times.

Remark 4.6. It is easy to verify that the functions ® in (4.19) are linear combi-

nations of
N-1 .
205 m
2T g e[
]Zocos( N) j 0 5

(choose go = gn—i = 1, gj = 0 otherwise). Then, using the multi-angle trigonomet-
ric formula

cos(2nz) = (—1)"Ty,(sinx), cos(2nx) = Ty, (cos ),

where the T, ’s are the Chebyshev polynomial of the first kind, it follows that we can

control (4.6)).

Let us comment about the significance of Theorem and Theorem [£.5] The
study of the dynamics of the normal modes of FPUT goes back to the pioneering
numerical simulations of Fermi, Pasta, Ulam and Tsingou |50]. They observed that,
corresponding to initial data with only the first normal mode excited, namely initial
data with E; # 0 and E; = 0 Vj # 1, the dynamics of the normal modes develops
a recurrent behavior, whereas their time averages % Sé Ejo ¢y, dr quickly relaxed to
a sequence exponentially localized in j. This is what is known under the name of
FPUT packet of modes.

Subsequent numerical simulations have investigated the persistence of the phe-
nomenon for large N and in different regimes of specific energies [19}21],22,|64} 105,
129] (see also [15] for a survey of results about the FPUT dynamics).

Analytical results controlling packets of normal modes along the FPUT system
are proven in [16,]17]. All these results deal with specific energies going to zero as
the number of particles go to infinity, thus they do not hold in the thermodynamic
limit. Our result controls linear combination of normal modes and holds in the
thermodynamic limit.

4.1.3 Ideas of the proof

The starting point of our analysis is to estimate the probability that the time
evolution of an observable ®(t), computed along the Hamiltonian flow of H, slightly
deviates from its initial value. In our application ® is either the Toda integral of
motion or a special linear combination of the harmonic energies and H is either the
FPUT or Toda Hamiltonian. Quantitatively, Chebyshev inequality gives

1 T (t)-a(0)

2 I

P(2(t) = 2(0)] > Aa)) < 13—
50

VA > 0. (4.22)
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So our first task is to give an upper bound on the variance og)—a) and a lower
bound on the variance og ). Regarding the former bound, we exploit the Carati-
Maiocchi inequality [30]

Ta) < {@,HP)t?, Vt e R, (4.23)

where {®, H}, denotes the canonical Poisson bracket

N-1
{@,H} := (0q®)T0p H — (0p®)T0gH = | 05, @ 0, H — 0, ® 0y, H.

=0

Next we fix m € N, consider the m** Toda integral J™, and prove that the quotient

<{J(m), HF}2>

J(m)

(4.24)

scales appropriately in 3 (as § — o) and it is bounded uniformly in N (provided N
is large enough). It is quite delicate to prove that the quotient in is bounded
uniformly in NV and for the purpose we exploit the rich structure of the Toda integral
of motions.

This chapter is organized as follows. In section 3 we study the structure of the
Toda integrals. In particular, we prove that for any m € N fixed, and N sufficiently

large, the m** Toda integral J™ can be written as a sum + Z] 1 ; ™ where each

term depends only on at most m consecutive variables, moreover hjm) and h,gm)
have disjoint supports if the distance between j and k is larger than m. Then we
make the crucial observation that the quadratic part of the Toda integrals J™ are
quadratic forms in p and q generated by symmetric circulant matrices. In section
3 we approximate the Gibbs measure with the measure were all the variable are
independent random variables. and we calculate the error of our approximation. In
section 4 we obtain a bound on the variance of J™(¢) — J™(0) with respect to the
FPUT flow and a bound of linear combination of harmonic energies with respect to
the FPUT flow and the Toda flow. Finally in section 5 we prove our main results,
namely Theorem [.1], Theorem [4.4] and Theorem [4.5] In section [4.6] we describe the
more technical results.

4.2 Structure of the Toda integrals of motion

In this section we study the algebraic and the analytic properties of the Toda
integrals defined in (4.13). First we write them explicitly:

Theorem 4.7. For any 1 <m < N — 1, one has

N

1
m) _ (m)
S = (4.25)
7j=1
where h( m = [L™];; is given explicitly by
m—1 m—1
hgm)(p,r) = Z (—1) pm (n, k) H —nirji 1—[ phis, (4.26)
(n,k)e A(m) P9 e a
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where it is understood 1; = Tjmod N, Pj = Djmod N and A s the set

A = {(mk)eN% x N2 . Z (2n; + ki) = m,

4.2
W) = O, n; = 0= Niy1 = kiJrl = 0, ( 7)

Vi <0, niH:O:ni:ki:O}.

The quantity m := |m/2|, Ng = N U {0} and p'™ (n,m) € N is given by

p(m)(n k) L <TL_1 + ng + ]{?0) (n_l + no) ﬁﬁ (nz + MNiv1 + ki+1 — 1> (nz + Nijy1 — 1
’ o ko U

Palie® Kis1 Ti+1
i#A—1

(4.28)
We give the proof of this theorem in section [4.6.1

Remark 4.8. The structure of JN) is slightly different, but we will not use it here.

We now describe some properties of the Toda integrals, which we will use sev-
eral times. The Hamiltonian density hg-m)(p, r) depends on the set A and the

coefficient p(™(n, k) which are independent of the index j. This implies that h§m)
is obtained by hgm) just by shifting 1 — 7; we formalize this property below with
the notion of cyclic functions.

A second immediate property, as one sees inspecting the formulas (4.27) and
([@.2§)), is that there exists C™ > 0 (depending only on m) such that

A < 0 0 (n, k) < O™,

namely the cardinality of the set A and the values of the coefficients p™ (n, k)
are independent of N.
The last elementary property, which follows from the condition 2|n| + |k| = m

in (4.27)), is that

m even @— h§m)

contains only even polynomials in p,

m)

modd = hg contains only odd polynomials in p.

Now we describe three other important properties of the Toda integrals, which
are less trivial and require some preparation. Such properties are

(1) cyclicity;
(73) uniformly bounded support,
(7i1) the quadratic parts of the Toda integrals are represented by circulant matrices.

We first define each of these properties rigorously, and then we show that the Toda
integrals enjoy them.
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Cyclicity. Cyclic functions are characterized by being invariant under left and
right cyclic shift. For any £ € Z, and x = (21, 2o, ...,2x) € RY we define the cyclic
shift of order ¢ as the map

Sp: RY - RV, (Se); = T(j+0)mod N- (4.29)
For example S; and S_; are the left respectively right shifts:
Si(x1, 29, ..., xN) = (T2, ..., TN, 21), S_1(z1, 29, ..., xN) = (TN, T1, .-, TN_1)-
It is immediate to check that for any ¢, ¢’ € Z, cyclic shifts fulfils:
Seo Se = Seqer, St =54, So =1, Seyn = Sy

Consider now a a function H: RY x RY — C; we shall denote S;H: RY x RY — C
as the operator

(SeH)(p,r) := H(Sip, Sr), Y(p,r) e RY x RV,
Clearly Sy is a linear operator. We can now define cyclic functions:

Definition 4.9 (Cyclic functions). A function H: RY x RN — C is called cyclic if
S1H = H.

It is clear from the definition that a cyclic function fulfils S;H = H V/ € Z.
It is easy to construct cyclic functions as follows: given a function h: RY x RV — C
we define the new function H by

N-1
H(p,r) := Z (Seh)(p,1).
=0
H is clearly cyclic, and we say that H is generated by h.

Support. Given a differentiable function F': RY x RY — C, we define its support
as the set

oF oF
supp F' := {ﬁe{O,...,N—l}: — #£0 or —%0}
Ope ory
and its diameter as
diam (supp F') := sup d(i,j) + 1,
i,jesupp F

where d is the periodic distance

Note that 0 < d(7,7) < |N/2].
We often use the following property: if f is a function with diameter K € N,
and K « N, then

d(i,j) > K = suppS;f nsuppS;f = &, (4.30)

where S; is the shift operator (4.29). With the above notation and definition, we
arrive to the following elementary result.
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Lemma 4.10. Consider the Toda integral J™ = %Z;-Vzlhg-m) , 1 <m < Nn
A25). Then J'™ is a cyclic function generated b lh(m), namel
Yy Y Y Yy

1 & m
J™(p,1) = -~ DSk (p, ). (4.31)
j=1

Further, each term h;m) has diameter at most m. In particular, hg-m) and h,(j") have
disjoint supports provided d(j, k) > m.

Circulant symmetric matrices. We begin recalling the definition of circulant
matrices (see e.g. |77, Chap. 3]).

Definition 4.11 (Circulant matrix). An N x N matriz A is said to be circulant if
there exists a vector a = (aj)é.v:_ol e RY such that

Aj,k = Q(j—k)mod N -
We will say that A is represented by the vector a.

In particular, circulant matrices have all the form

Qg anN-—1 e (05} aq
ai ap  AN-1 az
A= ay Qo
aN-—2 - - GN-1
| AN—1 AN-—2 . aq ap |

where each row is the right shift of the row above.
Moreover, A is circulant symmetric if and only if its representing vector a is even,
i.e. one has

ap = aN—k , Vk. (432)
One of the most remarkable property of circulant matrices is that they are all

diagonalized by the discrete Fourier transform (see e.g. |77, Chap. 3]). We show
now that circulant symmetric matrices are diagonalized by the Hartley transform:

Lemma 4.12. Let A be a circulant symmetric matrix represented by the vector
aeRY. Then
HAH ™' = v/ Ndiag{a,: 0<j<N—1}, (4.33)

where a = Ha.
Proof. First remark that a circulant matrix acts on a vector x € RY as a periodic
discrete convolution,

N-1

Ax = ax X, (a*x)j:=2aj_kxk, 0<j<N -1,

k=0
where it is understood ay = aymean. As the Hartley transform of a discrete convo-
lution is given by

VN

[H(axx)) = 5= (@ + G n)2s + (@ — av-)Ev ) ).
we obtain (4.33), using that the Hartley transform maps even vectors (see (4.32)))
to even vectors. O
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Our interest in circulant matrices comes from the following fact: quadratic cyclic
functions are represented by circulant matrices. More precisely, consider a quadratic
function of the form

1 1
Qp,r) = §pTAp + irTBr +p'Cr,
where A, B, C' are N x N matrices. Then one has

Q is cyclic <= A, B,C are circulant . (4.34)

This result, which is well known (see e.g. [77]), follows from the fact that @ cyclic
is equivalent to A, B, C' commuting with the left cyclic shift S;, and that the set of
matrices which commute with S; coincides with the set of circulant matrices.

We conclude this section collecting some properties of Toda integrals. Denote by
JQ(m) the Taylor polynomial of order 2 of J™ at zero; being a quadratic, symmetric,
cyclic function, it is represented by circulant symmetric matrices. We have the
following lemma.

Lemma 4.13. Let us consider the Toda integral
1 o
Jtm = — > S 4h{" :
(p,r) m & j-1hi (P, 1)

Then hg’") (p,q) has the following Taylor expansion at p =1 = 0:

h™ (p,r) = o™ + o™ (p,1) + 05 (p, 1) + 9% (p, ) (4.35)

where each golgm)(p, r) is a homogeneous polynomial of degree k = 0,1,2 in p and r
of diameter m and coefficients independent from N. The reminder go(;;) (p,r) takes

the form

(m)

2
(k,n)e.A(m) 0

|k|>3

(4.36)
with A™ and p™ defined in (&27) and [@.28) respectively. Moreover the Taylor
expansion of J'™ (p,r) at p =r = 0 takes the form

J™(p,r) = 15" + 5" (p,r) + L (b, ),
where

(m) ceR, m even
0, m odd .

- JZ(m)(p,r) is a cyclic function of the form

I (p,r) = {

pTA™p + rTA™yr  m even

p’B™r, m odd (437)

with A™ B circulant, symmetric N x N matrices; their representing vec-
tors a'™  b(™ are m-admissible (according to Deﬁnition and

A g S0, W™ B S0, VO < k< {%J (4.38)
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(m)

- The reminder Jgg) 15 a cyclic function generated by @%3.
The proof is postponed to section [£.6.2l We conclude this section giving the
definition of m-admissible functions, and we prove a lemma that characterize them

in terms of {JQ(Z)}{L:

Definition 4.14. G1,Gy : RY x RY — RY are called m-admissible functions of
the first and second kind respectively if there exists a m-admissible vector g € RN
such that

N-1 N1
Gy := Z 95T j+1 Gy = Z 9 (Dipj+1 + 7i7j41) -
51=0 J1=0

Remark 4.15. From definition and (4.34) one can deduce that both Gy and
G5 can be represented with circulant and symmetric matrices. Indeed we have that
G1 = pTGir where (G,)jk = Gj—k)ymod N and similarly for G.

An immediate, but very useful, corollary of Lemma [4.13], is the fact that the
quadratic parts of Toda integrals are a basis of the vector space of m-admissible
functions.

Lemma 4.16. Fix m € N and let G; and Gy be m-admissible functions of the
first and second kind defined by a m-admissible vector g € RY.  Then there are
two unique sequences {c;}7, {d;}7y, with max; |¢;|, max; |d;| independent from N,
such that:

m

Gl _ Z ClJ2(2l+1), G2 _ Zdl:]2(2l+2),
=0

1=0
where JQ(m) is the quadratic part [I.37) of the Toda integrals J'™ in (4.25)).

Proof. We will prove the statement just for functions of the first kind. The proof
for functions of the second kind can be obtained in a similar way. Let J2(21+1) =
pTB@+ Dy where the circulant matrix B®*V is represented by the vector bZ+1)

and let G; = pTGir where (G,);kx = g(j—k)modn- Then

G — ZCZB(zzH) G Z b,
1=0 1=0

From Lemma K.13| the matrix B = [bf“”]@zo is upper triangular and the
diagonal elements are always different from 0 (see in particular formula (4.38))).
This implies that the above linear system is uniquely solvable for (co,...,c5). O

4.3 Averaging and covariance

In this section, we collect some properties of the Gibbs measure dup in (4.11). The
first property if the invariance with respect to the shift operator. Namely, for a
function f: RY x RV — R; we have that

<S]f>:<f>7 VJZO,,N—l,

which follows from the fact that (S;).dur = dup.
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It is in general not possible to compute exactly the average of a function with
respect to the Gibbs measure dup in . This is mostly due to the fact that
the variables pg, ..., py_1 and rq,...,ry_1 are not independent with respect to the
measure d/p, being constrained by the conditions ), 7, = > p; = 0.

We will therefore proceed as in [108|, by considering a new measure dupg on
the extended phase space according to which all variables are independent. We
will be able to compute averages and correlations with respect to this measure, and
estimate the error derived by this approximation.

For any 6 € R, we define the measure durg on the extended space RY x RY by

1

dpipg = ~OHE(®r) 057507 dp d 4.39

where we define Zpg(f) as the normalizing constant of dupy. We denote the ex-
pectation of a function f with respect to dpgg by (f),. We also denote by

5= [ 1P dur
RQN
If | fllo < oo we say that f e L*(durg).

The measure dupp depends on the parameter 6 € R and we fix it in such a way
that

f re AV qr = 0. (4.40)
R

Following [108], it is not difficult to prove that there exists 5y > 0 and a compact set
Z < R such that for any g > fy, there exists § = () € Z for which (4.40)) holds true.
We remark that (4.40) is equivalent to require that {r;), = 0for j =0,...,N -1

and as a consequence <Z;V:_Ol rj>9 = 0. We observe that <Z;V:_Ol rj> = 0 with
respect to the measure dup.

The main reason for introducing the measure dupg is that it approximates av-
erages with respect to dur as the following result shows.

Lemma 4.17. Fiz 3 > 0 and let f: RY xRY — R have support of size K (according
to Definition and finite second order moment with respect to dupg, uniformly

for all B> B. Then there exist positive constants C, No and By such that for all
N > Ny, 8> maz{fo, B} one has

[ — Dol < O P20 — D%

The above lemma is an extension to the periodic case of a result from [108], and
we shall prove it in section [£.6.3] As an example of applications of Lemma [£.17], we
give a bound to correlations functions.

Lemma 4.18. Fiz K e N. Let f,g: RY x RY — C such that :

1. f,g and fge L*(dury),

2. the supports of f and g have size at most K € N.
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Then there exist C, Ny, Sy > 0 such that for all N > Ny, 5 > By

19— Iy <ol < 20flololo + (1 lolallo + Ifale). (441)

Moreover, if f and g have disjoint supports, then

19— <Dl < (1o lalo + 1£glo). (4.42)

Proof. We substitute the measure dup with dppp and then we control the error by
using Lemma [£.177] With this idea, we write

Fg) =gy ={f9) = {fa)e (4.43)
+{f 99 = {9 <90 (4.44)
+{olpe = <)< (4.45)
and estimate the different terms. We will often use the inequality
[<Fel < 1 £1le (4.46)

valid for any function f € L*(dupy).
ESTIMATE OF (4.43)): By Lemma , and the assumption that fg depends on at
most 2K variables,

19— oyl < CEonJ (o, — (9% <
ESTIMATE OF (4.44): By Cauchy-Schwartz and we have
<909 = (e <900l < 2IIfHeHglle-
ESTIMATE OF : We decompose further
o lare = {F2<9) =92 (Do = (D) + (gg —<a)) {f Do + ({905 — <)) ({f) = <SDs)
again by Lemma and we obtain

[KF20<929 = <) <)l < C%\g!ef\e-

Combining the three bounds above and redefining C' = max{C, C’} one obtains
(4.41).  To prove (4.42)) it is sufficient to observe that if f and g have disjoint

supports, then {fg), = {f),{9), and consequently (4.44]) is equal to zero. O

In order to make Lemmaeffectlve we need to show how to compute averages

according to the measure .

Lemma 4.19. There exists Sy > 0 such that for any 8 > By, the following holds
true. For any fived multi-index k,1,n,s € NI and d,d" € {0,1,2}, there are two

constants C’l({ll) e R and Cl(<21) > 0 such that

C(l) 1 d 1 d 0(2)
@ < <pk rl (J e—ﬁnTr(l N S)Qdf) (J e—fsTr(l . g)Sdg) > < ‘kl‘zlm
B 5 0 0 0 B 2

N K N
where p¥ = [[;=1p; and rl = [[=i 7] Moreover:
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(i) if k; is odd for some i then C’l({ll) = Cl(<21) =0;

(ii) if ki, l; are even for all i then C’l({l) > 0.
The lemma is proved in section [4.6.4]

Remark 4.20. Actually all the results of this section hold true (with different con-
stants) also when we endow M with the Gibbs measure of the Toda chain in (4.20)

and we use as approrimating measure

1
Zro(B)

here 8 is selected in such a way that

durg == e BHT(PT) 6_925'\];01 "7 dpdr;

J re r=AVr() qr = 0. (4.47)
R

We show in section that it is always possible to choose 6 to fulfil (4.47)) (see

Lemma and we also prove Lemma for Toda. In section we prove
Lemma [f. 17 for the Toda chain.

4.4 Bounds on the variance

In this section, we prove upper and lower bounds on the variance of the quantities
relevant to prove our main theorems.

4.4.1 Upper bounds on the variance of J(™ along the flow of
FPUT

In this subsection, we only consider the case M endowed by the FPUT Gibbs
measure. We denote by J™ (t) := J™ o ¢!, the Toda integral computed along the
Hamiltonian flow gzﬁquF of the FPUT Hamiltonian. The aim is to prove the following
result:

Proposition 4.21. Fiz m € N. There exist Ny, 3y, Co, C1 > 0 such that for any
N > Ny, B> [y, one has

-1 G
03<m>(t)_J(m>(o) < CGoN ( 51 + & £, Vit e R.

Proof. As explained in the introduction, applying formula (4.23]) we get

Therefore we need to bound <{J m) H F}2>. For the purpose, we rewrite this term

in a more convenient form. Since (-) is an invariant measure with respect to the
Hamiltonian flow of Hy, one has

(I Hp}y = 0. (4.48)
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Furthermore, since J™ is an integral of motion of the Toda Hamiltonian Hrp, we
have
{7t Hr} = 0. (4.49)

We apply identities (4.48)) and (4.49)) to write

({0, 1) = ({99, Hp = B} ) = (), Hp = Hy}Y . (450)

The above expression enables us to exploit the fact that the FPUT system is a
fourth order perturbation of the Toda chain. To proceed with the proof we need
the following technical result.

Lemma 4.22. One has

(JU Hp — Hp} = (4.51)

0=
=

where the functions H fulﬁl

(i) H; (m) _ Si- 1H(m) V3, moreover the diameter of the support of H; is at most
m)

(ii) there exist Ny, o, C,C" > 0 such that for any N > Ny, B > [y, any i,j =
1,..., N, the following estimates hold true:

(m) b-12 "\ (m) 77(m) p-1' o\
(4.52)

The proof of the lemma is postponed at the end of the subsection.
We are now ready to finish the proof of Proposition [4.21| Substituting (4.51) in
(4.50)) we obtain

(o my'y = 33 (o~ ).

Therefore estimating <{J m) H F}2> is equivalent to estimate the correlations be-

tween H, (™) and H (M) " Exploiting Lemma [4.18 and observing that if d(i,j) > m

then H ) and H ) have disjoint supports (see Lemma [4.22 (i) and (4.30])), we get
that there are posmve constants that for convenience we still call C' and C’, such
that VN, 8 large enough

(- (| <o (B D)0 v sy
o) = Gy ()| < 5 (B35 +55) - viss a2

(4.55)
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From (4.53)) we split the sum in two terms
7= () ()

()= % (e
o DR

d(4,5)>m
We now apply estimates (4.54)), (4.55) to get
. (b—1)2 ¢ C ((b-12
<{J( H}> N(J( ot E +N2N T
(b—-1)
<o (B5h 2
O

for some positive constants C and Cj
, Hr — Hr} in an explicit form. First

Proof of Lemma [4.22]
We start by writing the Poisson bracket {.J(™
we observe that for any 1 < m < N one has from (4.13))
1 0T (L™ oL e
r( ) :Tr(Lm la : ) — [ m—l]]]:_hg 1)7
Pji—1

o0.J(m)
5]?;‘—1 T m a]9j—1

is the generating function of the

N. In the above relation h

forall j =1,...,N.
— 1 Toda integral defined in (4.26))
Next we observe that
N—1 2 3 4
T4 x T _m
Hp(p,a)—Hr(p,q ZR%-H_QJ R(z) = 26 bﬂ_(e —1+z)
7=0
This implies also that
N
{70, Hp —Hr} = 3 0" (R (rjm2) = R(r;1))
j=1
7(0,0)) (R'(rj-2) = R'(r;1))

(m=1) _ ;(m

B

<
Il
Jut

a constant independent of j and the second term in the last relation is a
' j— ) ) = P N7
(4.56)

where, to obtain the second identity, we are using that hg.m_ )(0 0) is by - and
(p.1) = A" 0(0,0)) (R(ry2) = R(rj1)), j=1

4.35

telescopic sum. Define
then item ( ) of Lemma {4.22 follows because clearly H;™ (m) =S, H™ (M) Furthermore,
) has diameter bounded by m — 1, the same property applies to H ;m) :

since hj
Guido Mazzuca
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To prove item (i) we start by expanding R'(r;_1) — R'(r;) in Taylor series with
integral remainder. Since
b—1 4 1
e L'
6 6 J,
we get that

R(rj o) — R(rj1) = © g 1>Sj71¢3(r) +

i), ()

where explicitly
Us(r) =1y =75, (4.58)

1 1
wile) =k, [ e gfag - fréfo €1~ €)de.

0
Combining (4.35)) with (4.57) we rewrite H ](m) in (4.56)) in the form
m S'—l m m
H™ = 220 (™ + o + 05 (o= s +4) )

where <p§m), Jj =0,1,2, are defined in ([£.35). Thus the squared L? norm of H; is
given by (we suppress the superscript to simplify the notation)

1
|H;l5 = -1 ( Z (U3 e oey, + (W3ps3 (023 + 201 + 20 >6> (4.59)
0,0 =
+ 101_8( Z (W3tha pepeyg + Wsthapss (93 + 201 + 2¢2)>0> (4.60)
0.0 =
+ 36 Z Wi proe), + o s (0ms + 201+ 202)), . (461)
0.0 =

Consider now the terms in (4.59)); by (4.37),(4.36) and (4.58)), we know that each

element is a linear combination of functions of the form

prr! ( j (g §)2d€)d ( f (1 5>3d5> " (4.62)

with |k| + 1] =6+ ¢+ ¢ =8, d,d €{0,1,2}. The number of these functions and
their coeflicients are independent of N (see Lemma4.13)). By Lemma it follows
that there exists a constant C' > 0, depending only on m, such that

r.hus. of ([1.59)] < 2B (4.63)

Analogously, line (4.60)) is a linear comblnatlon of functions of the form (4.62)) with
k| + 1| =9, d,d €{0,1,2}. Applying Lemma we get the estimate

(@E60)| < C'[o— 1] 5~ (4.64)

for some constant C’ > 0. Similarly, the expression (4.61]) is a linear combination
of functions of the form (4.62)) with k| + [I| > 10, d,d’ € {0,1,2}. Applying Lemma

.19 we get the estimate
(@) <2, (4.65)

for some constant C” > 0. Combining (4.63)),(4.64) and (4.65) we obtain estimate
(A52) for | H;||p. The estimate for |H™ H ;m)Hg can be proved in an analogous way.
O
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4.4.2 Lower bounds on the variance of m-admissible func-
tions

From now on we consider M endowed with either the FPUT or the Toda Gibbs
measure; the following result holds in both cases.

Proposition 4.23. Fix m € N, let G be an m-admissible function of the first or
second kind (see Definition . There exist Ny, By, C' > 0 such that for any
N > Ny, B> By, one has

N
E.
Proof. We first prove (4.66) when G = G7 = p'Gir where G; is a circulant, sym-
metric matrix represented by the m-admissible vector a € RY. We now make the

change of coordinates (p,r) = (Hp,HTr) which diagonalizes the matrix G; (see
(4.33)), getting

0% ={(G*) — (G’ = C (4.66)

So we have just to compute

N-1 N-1 2
oG, =N ﬁj@'ﬁj@ﬁ?j> - N << @jﬁj?j>>
i.j=0 =0

N

N-1 —1 2
= N > 9;9:Dipiy Fitj) — N <Z 9j <ﬁj><?j>> 7 (4.67)
i,j=0 j=0
where we used that py, r'; are random variables independent of each other.

We notice that py, pa, ..., pn_1 are i.i.d. Gaussian random variable with variance
B, Do = 0 (see ([L.7)), so that we have (p;) = 0 and (p;p;) = % hwj=1,...,N—1
(remark that this holds true both for the FPUT and Toda’s potentials as the p-

variables have the same distributions).
As a consequence, (4.67) becomes:

N 1 1
0%, = = > (Y = Z (FTHGIHE) = - (r"Gir). (4.68)
5= B E

Since G, is circulant symmetric matrix so is G7 and its representing vector is d :=
g*8. )
Next we remark that the identity <(Z;V= _01 T’j) > = 0 implies
B 1 2 Vi 2 i
<’I"j7“i>——m<7"0>, Z?éj

Applying this property to (4.68)) we get

1 N-—1 N 1 N-—1

O'él = B Z dl <Tjrj+l> = F<T§> do + B 2 dl <rjrj+l>
4yl
1#0

J,t=0

1#0

:%@@<N%_Nﬁ72m>. (4.69)
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By Lemmas and we have that, for N sufficiently large, (r2) > cf7'.
Finally, since the vectors g, d are m-admissible and 2m-admissible respectively, we

have that

m N-1 2m
do=(g*8o= Y0} >cm, D, di=)di<Cp, (4.70)
Jj=0 1#0 1#0

for some constants ¢,,, > 0 and C,, > 0. Plugging into (4.69) we obtain (4.66))
for the case of m-admissible functions of the first kind.

For the case of admissible functions of the second kind, one has Gy = pTGop +
rTGor with Gy circulant, symmetric and represented by an m-admissible vector.
Since p and r are independent random variables one gets

0Gy = OpTGap+rTGor = OpTGop T OrTGor 2 OpTGap-

Then arguing as in the previous case one gets (|4.66]). ]

By applying Proposition m to the quantity JQ(m) that is an m-admissible func-
tion of the first or second kind, depending on the parity of m, we obtain the following
result.

Corollary 4.24. The quadratic part Jém) of the Taylor expansion of the Toda in-
tegral J™ near (p,r) = (0,0) satisfies

for some constant C' > 0.

Similarly, we obtain a lower bound on the reminder J;’;j) of the Taylor expansion
of the Toda integral J™ near p = 0 and r = 0.

Lemma 4.25. Fiz m € N. There exist Ny, By, C > 0 such that for any N > Ny,
8 > By, one has

N
Proof. Recall from Lemma that Jgg) is a cyclic function generated by A\™ :=
%gpgg). Thus, denoting h;m) = S h{™, we have Jgn) = Z;VZI ?Lg-m) and its variance

is given by
N
= 37 (R (RS (R 4m)
ij=1

We can bound the correlations in exploiting Lemmal4.18 provide we estimate
first the L2(djupy) and L2(dpre) norms of h™ and %gm)ﬁjm . Proceeding with the
same arguments as in Lemma one proves that there exists C' > 0 such that
for any N > Ny, 8 > (o,

[ < CB732, R RS < OB,
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By Lemma , the function ﬁgm) has diameter at most m, so in particular if
d(4,§) > m, the functions 1™ and hﬁm) have disjoint supports (recall (4.30])).
We are now in position to apply Lemma and obtain

CRMR™ ) = (R ) (R )| < % Vi, j (4.73)

‘<%§m)%§m)> - <%§’")><E§m)>‘ < ]\%3, Vi j:d(i,j) >m,  (4.74)

for some constant C’ > 0. Thus we split the variance in (4.72) in two parts

2 _ 7 (m)7(m) T(m)\ /7 (m) 7 (m)7 (m) 7m)\ /7 (m)
m 5 GGG S G- G ()
d(4,5)>m

d(ig)<m

and apply estimates (4.73]), (4.74) to get (4.71)). O]

Combining Corollary [£.24] and Lemma we arrive to the following crucial
proposition.

Proposition 4.26. Fizm € N. There exist Ny, 5y, C' > 0 such that for any N > Ny,

B > By, one has

N
2

5 (4.75)

Proof. By Lemma , we write J(™) = Jém) + JQ(m) + J;’;}) with Jém) constant. By
Corollary and Lemma we deduce that for N and f large enough,

vIN e
O jim) = 0-J2(m)+J§r§) = O-Jz(m) —UJ(;;:) = 7 (’\/C - E) ,

which leads immediately to the claimed estimate (4.75)). O

4.5 Proof of the main results

In this section, we give the proofs of the main theorems of our paper.

4.5.1 Proof of Theorem [4.1]

The proof is a straightforward application of Proposition [.21] and [£.26l Having
fixed m € N, we apply (#.22) with ® = J™ and X\ = 57° to get

m m T em) Cy ([b—12 C 5
P<|J( )(t)fj( )(0)‘2‘]?(0))<61(’ 52‘ +5_§)52t2

from which one deduces the statement of Theorem (.11
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4.5.2 Proof of Theorem 4.4l and Theorem [4.5|

The proofs of Theorem [£.4] and Theorem [4.5] are quite similar and we develop them
at the same time. As in the proof of Theorem [4.1] the first step is to use Chebyshev
inequality to bound

1 00—
P (19(t) — | > how) < 35 e (4.76)
0%

where the time evolution is intended with respect to the FPUT flow ¢ or the Toda
flow ¢.. Accordingly, the probability is calculated with respect to the FPUT Gibbs
measure or the Toda Gibbs measure (4.20)).

Next we observe that the quantity ¢ := ij_ll g;E; defined in can be
written in the form

N-1 N-1
1 1

®(p,r) = Z gk = —= Z 91 (pjpj+1 + 1j7j51) = —=G2(p, 1),

o 2VN = 2V N

where g € RY is a m-admissible vector and G5(p,r) is a m-admissible function of
the second kind, as in Definition As the inequality (4.22)) is scaling invariant,
prove (4.76)) is equivalent to obtain that

2
1 oG-
P (|Ga(t) — Gaf > Mog,) < 35— 25—

O-G2

Applying Proposition we can estimate oéz. We are then left to give an upper
bound to gé’g(t)ng' By Lemma 4.16| there exists a uniqwue sequence {cj}?"”:_ol, with
max; |¢;| independent from N, such that Gy(p,7) = S7," clJ2(2l+2), where J2(2l+2)
are defined in (4.37)). Hence we bound

m—1
<
TG (t)~Ga2(0) S ZZ;) [l 021024y _yge140 0)-

Next we interpolate JQ(QI) with the integrals J@ and exploit the fact that they
are adiabatic invariants for the FPUT flow and integrals of motion for the Toda
flow. More precisely

T30 0)-1800) S TuB w-sen @y T 050 ©)-10)
+ O'J(2l)(t)_J(2l)(0). (477)

By the invariance of the two measures with respect to their corresponding flow and
Lemma [4.25] we get both for FPUT and Toda the estimate

CiN
T @) = s o-sene) = s S\ T
for some constant Cy > 0 and for § > By and N > N,. As (.77) is zero for the
Toda flow (being JV(t) constant along the flow), we get
CiN
O‘éQO(b%—GQ < /83 ) (478)
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for some constant C; > 0 and for § > y and N > Ny. Combing Proposition [4.23
with (4.78) we conclude that

Cy
¢
P <|G2 o ¢T — G2| > )\OGQ) < W
and by choosing A = f7¢ with 0 < e < % we arrive to the expression (4.21)), namely
we have concluded the proof of Theorem [4.5

We are left to estimate (4.77) for FPUT, but this is exactly the quantity bounded
in Proposition We conclude that

C\N b—12 C
OCryodt—Gy ? + C3N (' 5 | + ﬂ—g) 2 (4.79)

for some constant C; > 0, 7 = 1,2,3 and for 8 > y and N > Nj.
Combing Proposition with (4.79) we obtain

Ci  Cy([p—-1? C
P(‘Ggo¢}—G2‘>)\aG2)<ﬁ+)\—;(’ 62| +ﬁ—§)t2. (4.80)

Choosing A = 7° with 0 < ¢ < %, (4.80) is equivalent to

t G Cl
P<‘G20¢F_G2‘> ﬁ;) gﬁ,
for some redefine constant C; > 0 and for every time t fulfilling
ﬁl—Qs

1] <

<(b —1)2 + 026‘1>1/2'

We have thus concluded the proof of Theorem [4.4]

4.6 Technical Results

4.6.1 Proof of Theorem

In this subsection we prove Theorem [4.7] From the structure of the matrix Lax
matrix L in (4.12)), we immediately get

[L™];;(a,b) = S;—1 ([L™]11(a, b)),

where S is the shift defined in (4.29)), thus we have to prove formula just for
the case j = 1.

To accomplish this result we need to introduce the notion of super Motzkin
path and super Motzkin polynomial, that generalize the notion of Motzkin path
and Motzkin polynomial [130,(154].

Definition 4.27. A super Motzkin path p of size m is a path in the integer plane
Ny x Z from (0,0) to (m,0) where the permitted steps from (0,0) are: the step up
(1,1), the step down (1,—1) and the horizontal step (1,0). A similar definition
applies to all other vertices of the path.
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The set of all super Motzkin paths of size m will be denoted by sM,,.

In order to introduce the super Motzkin polynomial associated to these paths we
have to define their weight. This is done in the following way: to each up step that
occurs at height &, i.e. it joins the points (I, k) and (I + 1,k + 1), we associate the
weight ay, to a down step that joins the points (I, k) and (I + 1,k — 1) we associate
the weight ax_;, to each horizontal step from (I, k) to (I + 1,k) we associate the
weight bg. Since k € Z, the index of a; and b, are understood modulus N.

At this point we can define the total weight w(p) of a super Motzkin path p to be
the product of weights of its individual steps. So it is a monomial in the commuting
variables (b,a) = (b_sm,...,bm, 0, ..., as), where m = |m/2|. We remark that
the total weight do not characterize uniquely the path. We are now ready to give
the definition of Motzkin polynomial:

Definition 4.28. The super Motzkin polynomial sP,,(a,b) is the sum of all weight
of the elements of sM,,:

sPn(a,b) = > w(p). (4.81)

peSMm,

We are now ready to relate the Toda integrals to the super Motzkin polynomial
sP,(a,b).

Proposition 4.29. Given the Laxz matriz L in (4.12) then:
[Lm]L1 (a,b) = sP,(a,b).
where the super Motzkin polynomial sP,,(a,b) is defined in (4.81)) and a; = ajmodan, bj =
bj mod N -
Proof. In general we have that:

(L™= ), Lialjgs-Li,1a

jENm—l

To every element of the sum we associate the path with vertices

(0,0), (1,51 —1,), (2,52 —1),....(t,jo—1),...,(m =1, Fm1 — 1), (m,0)

where

> ]k if jk <m

S A
This is a super Motzkin path p; and we can associate the weight w(p;) as in the
description above therefore we have

Ll,lejl,jz s ijq,l = w(pj)

This is clearly a bijection. The sum of the weights of all possible super Motzkin
paths, is defined to be the super Motzkin polynomial sP,,(a, b) and thus we get the
claim. =

Proceeding as in [130, Proposition 1|, we are able to prove the following result,
which together with Proposition [4.29] proves Theorem [4.7}
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Proposition 4.30. The super Motzkin polynomial of size m is given explicitly as

sP,(a,b) = Z p(n, k) ﬁ a"ipli

(n,k)eA(m)

=

where A™) s the set

A {(mk) eNg x Ny : > (2ni+ k) =m,

Viz0, ni=0=mni1=rki1=0" (4.82)

VZ<O, nl+1203n22k120}

where m = |m/2] and p™ (n,m) € N is given by

(m)(nk).: n_i+mng+ko\ (n-1+ no ﬁ n; +nip1 +kivr — 1\ (n; +ni1 — 1
P K- ko o

i1 N1

i=—m

it—1

Proof. For a give super Motzkin path p starting at (0,0) and finishing at (0, m)
let k; be the number of horizontal steps at height ¢ and let n; be the number of
step up from height 7 to 7 + 1. We remark the number n; of step up from height
1 to i + 1 is equal to the number of step down from 7z + 1 to i. We define the
vectors k = (k_p, k_mi1, .-, km) and n = (n_z, n_my1,--.,Ny) and we associate

the product
H azm bfl
Next we need to sum over all possible super Motzkin path p of length m connecting

(0,0) to (0,m). Since the number of steps up is equal to the number of steps down,
one necessarily have

m

Z (2n; + ki) =m.

i=—mh
Furthermore since the path is connected it follows that it is not possible to have

a vertex at height ¢ + 1 without have a vertex at height ¢+ > 0 and the other way
round if ¢ < 0. Therefore one has

Viz0, ni=0=mn; =k =0,

VZ<0, n1+1=O:>nz=k:Z=O

This proves the definition of the set A in (4.82). The final step of the proof is

to count the number of paths associated to the vectors k = (k_zm, k_mi1,-- -, kn)
and n = (n_m, N_pma1,..-,Nm). We want to show that this number is equal to
pt™ (n, k).

A horizontal step at height i can occur just after a step up to height 7, another
horizontal step at height ¢, or a step down to height 7. This leaves a total of n; +n;,1
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different positions at which a horizontal step at height i can occur. Since we have
k; of horizontal steps, the number of different configurations with these step counts
is the number of ways to choose k; elements from a set of cardinality n; + n; 1 with
repetitions allowed, i.e. ("ﬁ"””k .

The number of different Conﬁguratlons with n; steps at height ¢ and n;,; at
height ¢ + 1 is given by the number of multi-sets of cardinality n;,; taken from a
set of cardinality n; and this number is equal to (”ZTZT 1)

For the horizontal steps at height 0, they can also occur at the beginning of the
path, this increase the number of possible positions by 1, so the number of these

configurations with these steps counts is ("“"‘ﬁko). In this way we have obtained

ko
the coefficient p(™ (n, k).
[l

4.6.2 Proof of Lemma [4.13

In order to prove Lemma [4.13| we describe more specifically the Toda integrals and
characterize their quadratic parts. Equation (4.31]) follows by the explicit expression

of hg-m) in (.26)), as the coefficients p(™ (n,k) do not depend on the index j. We
recall that hg’”) takes the form

KW p,r) = > (—1)Mp™(n k) pke ™™,
(k,n)eAlm)

with
suppk, suppn € B%(0) := {j: d(0, ) < m}, k| + 2|n| =m

In particular it is clear that hgm) has diameter 2m < m.
Now we Taylor expand around r = 0 the exponential with integral remainder:

1 )3 !
e ™ =1—n'r+ é(nTr)2 + %J e (1 —s)?ds
0

and we substitute it in hgm), obtaining an expansion of the form:

e = % oM mgpk (1o g+ 08 e gras)

(k,n)eAlm)

We can rewrite the above expression in the form

W™ (p,r) = o™ + o™ (p, 1) + o5 (p,r) + o1 (p, 1)

where gpe )£ =0,1,2, are the Taylor polynomials at (p,r) = (0,0). Their explicit
expressions read

e’ = Y Mmoo, e == 3 pMmom— 3 ) k)pk
(0,n)eAlm) (0,n)eAlm) (k,n)eA(m)
k=1
(m) _ Z ™) (n, 0) (n'r)? . Z ™) (0, K)p*nTr + Z (™) (n, k) p
Yo = prn, 5 pr i, Kjpnr pr o, K)p.
(OJ))EA(”") (k,x‘mlz‘ei(m) (k,x‘mlz‘e:g(m)
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m)

We deduce from these explicit formulas that if m is odd then (,0 = 0 as well

as the first sum defining gol ) and the first and last one defining gpg Indeed the

sums are carried on an empty set. If m is even the second sum defining gogm) and

the second one defining cpém) are zero for the same reason. Concerning cp(;;), it has

a zero of order greater than 3 in the variables (p,r), and it has the form

(m) _ O 1 ok (1 ate o Lt . A g
A= Y ()M (k) p (1 e a2 B[
(k’T)\EA(M) 0
k|=3

These, together with the explicit formula of p(™ (n, k), prove (4.35).
It is easy to see that defining

) 1¢ m . LN o m)
Jom = — Z j(po , Jlm = — 5]901m 5
m =0 m 7=0
m 1S m 1S
Js )= ooy Z J;?)) o = SJ'@(%):

we immediately get that
T = J& 4+ 1 4 5 4 gLy

Clearly Jém) it is a constant that is zero for m odd; moreover thanks to the
boundary condition (#.10) and the linearity of J'™ we have that J{™ = 0. Further,

Jg) is clearly a cyclic function. In order to get (.37) and (£.38) for J\™ we have
to split the proof in two different cases.

Case m odd. In this case thanks to the property of gozm) the deﬁnition of J ™)
and (| - we get that there exists a cyclic and symmetric matrix B such that:

Jim = pTBMy,

Moreover since the diam(k) diam(n) defining gogm) are at most M (see Remark [4.10)
we have that the vector b reI))resenting the matrix B is m-admissible and from
(4.28]) we have that b are positive integers for all 7 = 0,...,m.

Case m even. As before there exist two matrices A D™ represented by m-
admissible vectors such that:

J Z AW D0 o™ o c N ™ g N, 0<k <
We have just to prove that the two matrices are equal; to do this we exploit the

involution property of the Toda integrals. Indeed we know that {J @, J (’“)} = 0, for
any j, k. It follows easily that also their quadratic parts must commute:

{JQ(’“), Jgj)} 0, Vkj (4.83)
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To compute explicitly the Poisson bracket we change coordinates via the Hartley

transform (4.16]) getting that:
\/»26]]3? \/>Zajpj+dwqj,
2 ~
) = ij + w;

where w; = 2sin (ﬂ'%) As the Hartley transform is a symplectic map, by (4.83)) we

0={J2, } \FZ ( )p]qj,

which implies that a; = c/l\] for all 7 # 0. To prove that also ay, = c/l\o we come back

to the original variables getting that:
ik jk
+sin (275 ) ),
s ) sin ( 7 N>)

1
N-1 .

d;’ = —do+ — a; | cos|2n— ] +s 27r— ,

YN YN &Y N N

(m) _ qm) — ao* o for all j =0,...,N — 1. Since a™,d(™

are m-admissible it follows that a1 ) = d( = () so that

P

I
=~

Q)

<)

+
==
o =2
Il |

&
N\

(@)

o

2
/N

[\

==

Y j.

>

This means that a;

aO_dO :a(wm) _d(wm) -0

\/N m+1 m+1

which proves the statement.

4.6.3 Measure approximation

In this section we show how to approximate the measure dy, in which the variables
are constrained, with the measure dug, where all variables are independent. The

proof follows the construction of [108| (where it is done for Dirichlet boundary
conditions) which applies both to the Gibbs measure of FPUT (4.11) and Toda

(4.20). To simplify the construction we consider a general potential V': R — R and
make the following assumptions:

(V1) There exist Sy > 0 and a compact interval Z < R such that for any 5 > S,
there exists 6 = 0(3) € Z such that

J re AV dr = 0. (4.84)
R

(V2) There exist Sy, C1,Co > 0 such that for any 5 > [y, with § = 6(5) of (V1),
one has

C o BV Cy
W<JR‘T|]€€06V()(1T<W, k=0,..., 4. (4.85)

In particular the moments up to order 4 are finite.
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(V3) There exists 5y > 0 such that V3 > [y, with 6 = 0(5) of (V1), one has

inf |0r + SV (r)| > —o0,
reR

namely the function r — 6r + SV (r) is bounded from below.

Both the FPUT potential Vr(z) and the Toda potential Vr(z) satisfy the as-
sumptions (V1)—(V3) by the results of section [4.6.4]
We define the constraint measure du'” on the restricted phase space M as

1 N P? N
d \% = e*BZj:1 5 efﬁijl Vi(r;) 5 r. =20 (S p; = 0 dp dI‘,
. Zy () Z]: ’ Z]: ’

and the unconstrained measure dyuj, on the extended phase space RY x R as

1
Zve(B)

as usual Zy(8) and Zyy(3) are the normalizing constants of du"’, du) respectively
. We denote the expectation of f with respect to the measure du'" as (f),, and
with respect to the measure duy as (f)y,.
We also denote by | f|ve := <f2>¥z
dpy .

The main result is the following one:

Theorem 4.31. Assume that (V1)-(V3) hold true. Fiz K € N and assume that
f:RY x RY — R have support of size K (according to definition and finite
second order moment with respect to duy . Then there exist C, Ny and 3y such that
for all N > Ny, B > [y one has

Dy~ Pova| < O[T — D (4.86)

dljfg c= 6_6 Z;'Vzl p?/2 6_6 Z;'Vzl V(Tj) 6_92;'\7:1 Tj dp dr’

the L? norm of f with respect to the measure

Proof of Theorem [4.31]

Introduce the structure function

On(x) := J e BtV () dzy...dzy, Vz e R.
r1+..ftrN=T

The important remark is that Quy(z) is N-times the convolution of the function
e V(@) with itself, thus it is the density function of the sum of N iid random
variables distributed as e=#V(®),

Next, for # € R, we define the conjugate distribution

Uz(ve)(m) = W e % Qu (), 29(f) = JR e AV@=0 qq. (4.87)

As before, we remark that U ](\f)(:v) it is N-times the convolution of the function
e V(@) =97 wwith itself thus it is the density function of the sum of N iid random
variables {Yn(e) (B)}1<n<n distribute as

1
y (@) B) ~ y© .— o BV (x)—0x dz,
(6) zp(B)
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moreover thanks to (4.84) we know that (Y'?) = 0.

N
The central limit theorem says that the rescaled random variable L Z Yn(g) (8)
O-\/N n=1
converges in distribution to a normal N (0, 1). We want to apply a more refined ver-
sion of this result, called local central limit theorem, which describes the asymptotic
of this convergence.

In particular we will use a local central theorem whose proof can be found
in [133, Theorem VII.15]; to state it, we first define the functions

-z 1 Yd+2 ha
Q(z) = Z Hjios( H kd (W) (4.88)

B(v)

where H; is the j-th Hermite polynomial, 74 is the d-th cumulan of v\ (8), and
B(v) is the set of all non-negative integer solutions k1, ..., k, of the equalities k; +
2ky + -+ vk, =v,and s=ki + ko + - + k,.

Theorem 4.32 (Local central limit). Let {X,} be a sequence of iid variables such
that

(i) For any 1 <n < N, one has E[X,] =0.

(it) There exists k > 3 such that E[|X,|*] < +o for all n. Moreover o :=
E[X?] > 0.

(#ii) The random variable #ﬁ SN X, has a bounded density py ().
Then there exists C' > 0 such that

C

S N (k—2)/2°

6 %—’_Z NV/2

sup |py(x) —

T

where the q,’s are defined in (4.88]).
Applying this theorem in case X, = v, (B) , one gets the following result:

Corollary 4.33. Assume (V1)-(V3). There exist Ny, Bo,C > 0 such that for all
N = Ny, B > [y one has

1 (z/oV/N)
0) au(
Uy (2) = JorgeN P ( ) Z N+D/2,

Proof. We verify that the assumptions of Theorem [£.32] are met in case X,

(9)
Y (B).
Item (i) and (i) hold true thanks to assumptions (V1) and (V2), in particular
N

C
= ON32g°

(4.89)

(71) is true with £ = 4. To verify (éii), we note that Z Y ¥(3) has den-
-1

sity given by ov/N U ](\?) (00/Nz). This last function is N-times the convolution

my
'We recall that v4 = 2 dl(=1)ymtetma=l (my 4 mg —1)! Hle W where « is

the I** moment of the random variable and C(d) is the set of all non-negative integer solution of

Zl lml =d.
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of go(r) := e =AY By assumption (V3), gy € L*(R) and by (V2) it belongs
also to L'(R). So Young’s convolution inequality implies that o/ N U ](\?)(Ux/ﬁ x) is
bounded uniformly in x, hence (iii) of Theorem is verified.

We apply Theorem @ with py(z) = o/ N U](\?) (0+/Nz), then rescale the variable
T to get . O

We study also the structure function

Qn () = J e 35N dgy . dey.

&1+ +EN=E

and the normalized distribution

r7 - 1 0 =z = e_§§2 . .
OO = oy Ov(E). () JR a¢ (4.90)

We have the following result:

Lemma 4.34. For any N > 1, any 8 > 0, one has

Un(&) = \/%IN exp (—g—f;) . (4.91)

Proof. The function Uy is the N-times convolution of Gaussian functions of the form

_Be2 . . . . . . .
g(&) := 4/ % e~2%". Since convolution of Gaussians is a Gaussian whose variance is

the sum of the variances, (4.90)) follows. ]
We can finally prove Theorem [£.31}

Proof of Theorem[{.31. The proof follows closely [108]. We assume that f is sup-
ported on 1,..., K, the other cases being analogous. Using that

Zv(8) = Qn(0) Qn(0),

and denoting p := (p1,...,px) and T := (11, ...,7g), We write

fP,T)y = J £5.5) On-_K é;(%:)j_l 7’]’) On_k éN(ZO:)jI pk)

dp

where dfi := exp <—B Zszl p; — 62;21 V(rj)> dpdr. As, by (4.87) and (4.90)),

v x(w) _Uy'glz) e Qv k(©) _UNk® 1
Qn(0) U (0) (z0(8)% O (0) U9 0) (Z(8)"”

we write the difference (f);, —{f)y, as

7021'(:1741'
— = p,T S O®,7
Dv=Dva= | 16D e VB

RE xRE
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where

0 K ~(0 K
0) /x ~ UJ(V)fK <_ ijl 7’j) U](VZK (_ Zj:l pj)
" (p,r) := Q
N

Uy (0) Uy (0)

Now we use that

K
6792]’:1 Tj

JRK < (20(8))% (Z6(8))

I U (P, 1) dpp = (L)y, — <1>V,9 =0
so that we can write the difference (f);, — (f)y4 as

K
6*923‘:1 Tj

O (3. du
S OE Gk 0 B

Dv=Dra= | (1B =) -

RE xRE

Using Cauchy-Schwartz we obtain that

Py = Dva| <1 = v lve 109 v

so in order to prove (4.86) we are left to show that uniformly in N and § one has

K
0y < O (4.92)

Using (4.89) and (4.91)), we have that

22 362
e 202(N—-K) 20N-K) _ 1| +

N
(N — k)™

<C<

X(ﬁdiK>+NfK>

—a?—b?

Next we use that |e — 1| < a® + b?, the explicit expression

1 o2
a(z) = —e 7 (2% - 333)ﬁ

\ 27 603’

the estimate % < C for some C independent of 5 (which follows by (4.85]) as in our
o
case 3 < C37%2), to obtain that there exists C' > 0 such that YN > Ny, V3 > f,

U 1 (2) U 1 (€)
UuP0) TY(0)

Substituting x = —Z;il ri, &€ = —Z]K:lpj, and computing the L? norm (with
respect to duy ) of the terms in the r.h.s. of the last formula give the claimed

estimate (4.92)). O
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4.6.4 Proof of Lemma [4.19

We prove the lemma for both the FPUT and Toda measure.
First, we observe that for d,v = 2, 3:

1 : —dn;r; ' —énTr v ‘ 1 —dn;r;
e H mln(ed“,l)é(JegT(l—é)dé“) <@ H max (e~ 1) .
JESuppn 0 jESuppn
This means that we have actually to prove that for any fixed multi-index k,1,n €
N}’ there exist two constants C’l((ll) e R and C’l(fl) > 0 such that:

pkrl H min (e—njrj, 1)> > Cl(il)ﬁfwk\;m ’
0

jESuppn
—njr; 2) H— Lkl+
<pkr1 H max (e ”JTJ,1)> < C’li,l)ﬁ 2.
jESupp n 9

Moreover since for the two measures dupg,dpre all p and r are independent
random variables and moreover the p; are independent and normally distributed
according to N'(0, 371), it follows

<pkrl 1 mm<e—nm,1>>e=<pk>9<rl [ mm<e—nm,1)>9

JESuppn JESuppn
<pkr1 1_[ max (e_”j’”j, 1)> = <pk>9 <r1 1_[ max (e‘”ﬂj, 1)>
jeSuppn 0 jeSuppn 0
where (k1)
A k; all even
(P*), = <Hp§“> = H 5%
g 0 0, some k; odd

Here E!! denotes the double factorial. Instead the distribution of the r; is different
for the two measures, so we need to calculate it separately for the FPUT and Toda
chain.

FPUT chain. Let’s start considering (r' min (e="",1)),:

rle_er_6<§+§+%>dr + {gs rle_"re_er_ﬂ(éJréJr%) dr
4

i, 670r75(§+§+%)dr

<7“l min (e*m’, 1)>9 = SR_

7i7-,(ﬁ+i+ﬁ) — 7LT,(L+ r_
7SR,rle\/B 2 T3/B 4B dT+SR+rle VB e VB \273/8748

1
= /8 g [’} r2 r3 ré
§e e‘ﬁ’“‘(?* \/E"’E)dr
2 3
1S rle~ve (% +3rﬁ+zﬁ)dr
> 72
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Since for § large enough () is uniformly bounded, it follows that there is a
positive constant C; such that:

C
{r'min (e7", 1)>9 > (—1)l—ll .
bz
We notice that if [ is even then the right end side of (4.93) is positive. The proof
for (' max (e™"", 1)>9 follows in the same way so we get the claim for the FPUT
chain.

(4.93)

]

Toda chain. For the Toda chain the computation is a little bit more involved, so
we prefer to split it in different parts.

Lemma 4.35. Consider the measure then there exists a 3y > 0 such that for
all B> By there exists 0 = 0(B) € [1/3,2] such that

0 k=1

LA -
<130 = o(%) kA1
B2

Proof. First we prove that, for any (3 large enough, we can chose 0(3) in a compact
interval Z such that {(r;), = 0. We notice that:

o7 . 1 —Bg kT(8+0)
(#, = (-1 et RN Gt NP § Nt B -
o~ (g e~ O+0r=be"qy B (i a0tF-Lle—Pady (6+9) ’

(4. 94)

where I'(2) is the usual Gamma function and we used the following equality:

o0
I
J t*le o dqt = (—z) .
0

xZ
In the case k = 1 one obtains

I'(0 + )

(r)e = log(B) — NGEYR

(4.95)

Introducing the digamma function ¥ (z) = and using the inequality

1 1
logz — — < ¢(x) <logx — —, Vo >0,
T 2x

it is easy to show that there exists Sy > 0 such that V3 > (5, one has
(0 = + 8 <1 = + 3 ! < log 8
3 &\3 21/3+5) - 8

Y2+ B) =log(2+ B) — 57— = log 8.

and
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Since x — 1(z) is continuous on (1, +o0), by the intermediate value theorem there
exists 0(5) € [1/3,2] fulfilling ¥(0 + B) = log # which implies by (4.95)) that

"0+ B)
<TJ>9 lOg( ) (04‘6)

We will prove the remaining part of the claim by induction; (4.94)) leads in the case
k =2 to:

~ 0. (4.96)

2 "0 + 8) —In(B)L'(6 + B)
"= 9 + 5)59 ( 5 )
/30 69
-t (T WO+ 9 -
= (g (V(0 + B) = In(B)) + v (0 + )
where ¥(®) is the s polygamma function defined as () (z) := 055(52). For z € R
it has the following expansion as x — +0 : :
() ~ (e P IR Z DB oy (197

k=0

where Bj, are the Bernoulli number of the second kind. Therefore

(G, =006+ p) "2 o <6>

So the first inductive step is proved. Next suppose the statement true for k£ and
let us prove it for k + 1.

o e B (T(O+5) ~W(ETO+ )
= 0 8 7 )
- i (e 00+ ) )
0 0
= (- <96+ 0t (g ) 00+ 9) = m()

H g B () (e ) v

=0+ Z < )(—1)7”r1 <rk*”>9 op(@+pB)=0 (é) ,
n=1 n 52
where we used and . O

We are now ready to prove the last part of Lemma for the Toda chain:

SR+ ,r,le—(ﬂ-‘rﬁ)r—ﬁe*Tdr + S]R— Tle—(9+,3—n)r—ﬂe’rdr
e 0r=redr

S 7t —(9+/3)7“—667Td7,

< R

= (e @HBr=fer gy

(r' max(1, ")), =
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The last integral can be estimated in the same way as in the previous lemma,
moreover the lower bound follows in the same way, so we get the claim also for the
Toda chain. O]
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Chapter 5

Loop equation for the classical Beta
ensembles 1n the high-temperature
regime, and the Dyson disordered
chain

The Gaussian S-ensemble refers to the eigenvalue probability density function (PDF)

proportional to
N

[Te™ [T =17 (5.1)
=1 1<j<k<N

Upon the scaling of the eigenvalues by setting

)\l = \/5N$l, (52)

it is a well known fact that the eigenvalue density p(;)(z), normalized to integrate
to unity, has the limiting form of the Wigner semi-circle law (see e.g. [54, 1.4.2])

N—o

L 2
lim 7 (7) = ;(1 — x2)1/2)(‘x|<1, (5.3)

where ya = 1 for A true and ys = 0 otherwise. The use of the scaling variables
(5.2) — often referred to as corresponding to the global regime; see e.g. [55] —
also leads to many other consequences. For example, introduce the linear statistic
A= Zjvzl a(z;) for a(z) smooth and bounded. The average with respect to
then permits the 1/N expansion [90]

E [i a(xj)] - N f:o a(2)By o) du + JOO a(2)py () da + o(%), (5.4)

—00

where
1 1

Pl = (5-3) (506 ~1) + 6z +1)) - ﬁ) (5.5)

Equivalently, the smoothed eigenvalue density (i.e. effective eigenvalue density
upon integrating over a smooth test function), p5) () say, admits an expansion in
1/N powers,

o0
Pay(r) = 2?(1),3*(@]\7737
=0
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where the first two terms are given by ((5.3]) and (5.5)) respectively.
Furthermore, (see e.g. [132])

lim Var A = J_ll dx f_ll dy (%:;L@)QT@),O(IE, Y), (5.6)

N—o0

where

(2.7) 1 1—ay
r x,Y) = — .
(2)70 Yy 47T2 \/1 . xQ\/l _ y2

The global regime is characterized by the spacing between the eigenvalues tend-
ing to zero, at such a rate that the statistical properties like those reviewed in
the above paragraph have a well-defined limit. This latter property is also shared
by another choice of limit, corresponding to a scaled high temperature regime, as
specified by setting

S =2a/N, a > —1 fixed, (5.7)

before taking the large N limit. The study of this limit was introduced in the
context of the Gaussian (-ensemble in [7]. Later was considered for the Laguerre
and Jacobi variants of [8,(159,/160], i.e. the primary examples of the classical
ensembles in random matrix theory. Related to the [-ensembles with the scaling
are certain classes of random tridiagonal matrices, with i.i.d. entries along the
diagonal, and (separately) along the leading diagonal, now referred to as specifying
a-ensembles [115].

After making the N, f-independent change of scale \; = x;/ V2 in , upon
the limit the density pa)o(z) = payo(z; ) is specified by the functional form
[7,144.|115]

o2 - A = oo
P(1>,o($;&)=ﬁ\fa(w)\ ’ fa(:c)zmmj0 o le et gt (5.8)

While it is to be anticipated that a 1/N expansion of the form ({5.4]) will again hold
— and thus with the first term known by way of the task remaining is to
characterize the analogue for () ;(7) — results from [124},|161] (see also [80]) tell
us that in relation to the variance

%VarA (5.9)

has a well-defined limit. Note that the factor of 1/N is absent on the LHS of (5.6).
However, it remains to obtain explicit formulas in relation to A.

In this chapter, we introduce a new approach — making use of knowledge of the
loop equations for the classical S-ensembles [23,25,/63}123}[166] — to systematically
study the high temperature scaling . Choosing the Gaussian [-ensemble for
definiteness in this Introduction, the loop equation formalism allows for a systematic
quantification of the coefficients in the large N-expansion of the resolvent

L [& o1 ¢ 1
—E ‘ — WG — WG
N [Z o )\i] B=2a/N Wi (o) + NWl (z) + ;

j=1

© pG (A e o pG (I a
W6 (z) = J M ), WG (z) = f Md)\, (5.10)
e T —A e T — A
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as well as in the large N-expansion

1 Y1 & 1 \¢ 0. 1 .a
NCOV(Z'I_)\i’i_ly_/\i> ‘B—QQ/N = W2 <x7y)+ﬁw2 (xvy)+7

where Cov (-, -) denotes the covariance of the respective linear statistics, and we
use the superscript “G” to indicate the Gaussian ensemble in the scaling limit with
B = 2a/N. Note that from knowledge of W "% (z) as specified in (5-10), which is
the Stieltjes transform of 108),0(/\5 «), the corresponding inversion formula gives

1

pgw(x; a) = El_i)lg{r %Im W% (z — ie). (5.11)
For the classical ensembles generally, we will show that the loop equation for-
malism implies W) can be computed as the solution of a differential equation. This
fact is already known in the Gaussian and Laguerre cases, but not for the Jacobi en-
semble. This then allows for the computation of the leading order scaled density via
. The differential equation characterization also allows for the corresponding
moments of the spectral density to be determined via a recurrence. Again specializ-
ing to the Gaussian ensemble for definiteness, we see from performing an appropriate

geometric series expansion in the first expression of that

0

1 & mé
0,G ,0 .
W (z) = - E :1317)’ , m;(j,o :f xppgm(x, «)dx, (5.12)
p=0

—0Q0

where the formula for mgo in terms of p(Gl) o(z; ) tells us that {mgo} are the mo-
ments of the limiting eigenvalue density.

Proposition 5.1. (Duy and Shirai [44, Prop. 3.1].) The moments {mgo}peven
satisfy the recurrence

p/2
m;(;}+2,0 = (p+1)mgo+oz Z m§_2570m5570, mgo =1,(p=0,2,4,...even), (5.13)
s=0
while the odd moments all vanish by symmetry.

The loop equation formalism shows that Wi (1, x2) satisfies a partial differen-
tial equation involving W% (z;) (i = 1,2). No closed form solution is to be expected,
but analogous to ((5.12)) if we expand about infinity by noting

1 o0 M(G 10 N N a
Wy (1, x9) = DA ue o= lim Cov ( z?, xf) , (5.14
2 (71, 72) 12 p,qzzo T 00 Pk ; ; 514)

then the partial differential equation allows {,ug’7 2 o} to be determined by a coupled
recurrence involving {mS}, already determined by (5.13).

Proposition 5.2. (Equivalent to Spohn [152, Eqns. (5.14), (5.15)].) For p,q =1
of the same parity, meaning that they are either both even or odd, we have

|p/2—1]
Ng),q),o =(p— 1)#8;72@),0 + qm;(irquo + 2a Z mg}s,oﬂgafzs,q),o (5.15)
s=0

If p=20, or ¢ =0, or p,q have the opposite parity, “g,q),o = 0.
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Our study of Wll’G(:L’) proceeds analogously. Introducing the expansions

1 & m§
1,G . 2p,1
Wi (x) = - E e (5.16)
p=1
0,G 1 & fig G G
: _ 2 : P, ~G
Wy (z,2) = 72 220 Papo = Z P p1,a1),00 (5.17)
p=1 p1+q1=2p

from the loop equations, we can determine that {m%’l} satisfies a coupled recurrence
with {i5) o} and {mg) ;}.

Proposition 5.3. We have

p—1
G G G el G .G G
Mopy1)1 = _04<2p+1)m2p,0+(2P+1)m2p,1+aﬂzp,o+2a2 Mg 0M3(p—s)1,  Mo1 = 0,
s=0

(5.18)
where {mg), o} are determined by the recurrence (5.13), and {fi5}, o} by the recurrence

(5.47) below.

After revising relevant results relating to the loop equation formalism for the
classical ensembles in Section [5.1} we proceed in Sections [5.2] [5.3] respectively
to derive Propositions 5.1 and their analogues for the Gaussian, Laguerre and
Jacobi f-ensembles with high temperature scaling . Our strategy also gives a
unifying method to derive the functional form of the limiting density, given by
in the Gaussian case; for the Jacobi ensemble this is new. Thus, the loop equations
give a particular Riccati equation for the Stieltjes transform of the limiting density,
which implies a linear second order differential equation when the latter is written
as a logarithmic derivative. In the Jacobi case, the linear second order differential
equation is a hypergeometric differential equation, which leads to a functional form
for the limiting density in terms of a linear combination of Gauss hypergeometric,
in agreement with a recent result of Trinh and Trinh [160].

In the recent work, |115] the classical S-ensembles in the high temperature
limit have been used to construct a family of tridiagonal matrices referred to as
a-ensembles. Moreover, an application was given to the study of generalized Gibbs
ensembles associated with the classical Toda lattice [152|. In section begin-
ning with the anti-symmetric Gaussian (§-ensemble we identify a further example
of an a-ensemble, specified as a random anti-symmetric tridiagonal matrix, with
i.i.d. gamma distributed random variables. Knowledge of the limiting spectral den-
sity for the Laguerre S-ensemble in the scaled high temperature limit can be used
to determine the limit spectral density of this particular a-ensemble. It is pointed
out that the same random matrix ensemble appears in Dyson’s [45] study of a disor-
dered chain of harmonic oscillators. Our analytic results supplement those already
contained in Dyson’s work.
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5.1 Preliminaries

5.1.1 Quantities of interest in the loop equation formalism

Introduce the notation MEg y[w] to denote a matrix ensemble with eigenvalue PDF

proportional to
N
[Jww) [T =Nl (5.19)

=1 1<j<k<N

where w(\) is referred to as the weight function. Collectively, the terminology S-
ensemble is used in relation to , and the name associated with the weight
is specified as an adjective. Thus, for example, MEg N[e"\Q] is referred to as the
Gaussian (-ensemble, in agreement with the terminology used in relation to (/5.1).
Let pay(A) denote the corresponding eigenvalue density, specified by the requirement

that SZ pa)(A) dA be equal to the expected number of eigenvalues in a general interval
[a,b]. Tts Stieltjes transform is given by

Note that
N

Uy(z) = E [Z ! A'] =E[Tr(aly — H) "y, g (5.20)
MEg, n [w]

=t T
where in the second average H = diag (\1,...,Ay). In matrix theory (xly — H)™!
is referred to as the resolvent. It is thus by abuse of terminology that U;(x) itself
is often referred to as the resolvent. The average in the first equality in ([5.20)) is an
example of a one-point correlator. Its generalization to an n-point correlator is

N

IVAmwnﬁm):E[ > L . . (5.21)

e (T = X5) o (@ ME, v [u]

A feature of (5.20)) is that for a large class of weights w, there is a scale x = cys
such that in the variable s and as N — oo the eigenvalue support is a finite interval,
and moreover W (cys) can be expanded as a series in 1/N [24]

—E

enWi(ens) i K= /2, (5.22)

where {Wll(s)} are independent of N. For example, from (5.2), in the case of the
Gaussian -ensemble cy = 4/BN. An analogous expansion holds true in relation to
the n-point statistic , but only after forming appropriate linear combinations
of W,. These are the connected components of U,,, specified by

Wi(z) = Ui(z)
Wz, 29) = Ug(z1, 22) — Ur(21)U, (2)
W3($1,$2,$3) U ( 1,I2,l’3) U2( )Ul(iv?,) —U2($1,$2)U1(l’2)
— Us(29, 23) U1 (11) + 2U 1 (21) U1 (22) U (3), (5.23)
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with the general case W}, being formed by an analogous inclusion,/ exclusion con-
struction. Going in the reverse direction, and thus specifying {U;} in terms of {W},
the inductive relation

Un(xlajn) = Wn(xl,Jn) + Z Wn—|J\<x17Jn\J)U|J|(J)7 (524)
B#ISIn

where

Jn:(.TQ,...,l’n), J1=@,

holds true (see e.g. [167, pp. 8-9]). The utility of the connected components W, is
that (5.22) admits the generalization [24],

ee}
AW (enst, ..., ensy) = N>R ”Z Sl’ d ), (5.25)
1=0

where again k = [3/2. Thus as n increases by one, the large N form decreases by a
factor of 1/N, with all lower order terms given by a series in 1/N.

5.1.2 Explicit form of the loop equations for the classical
ensembles

Consider first the Gaussian S-ensemble MEg y[e */?] (here the rescaling of the
eigenvalues A — \/4/2 is for convenience; recall the text above (5.7)). With J, as
in ((5.24)) the n'® loop equation is [23,25}123,/166]

0 __
0= |:(K“ - 1)—\_ - $1:| Wn($1a Jn) + Nanl
ox
n—1 xl,...,a?k,...,xn) _anl(u]n)
+ Xn#1 Z { pra—
+ K [Wnﬂ(ﬂfl,l”l, Z W iger (@1, J)Woyg (24, Jn\J)] . (5.26)
JCJn

Here the notation z; indicates that the variable z; is not present in the argument,
and thus W, _y(z1,. ., 3k, oo, ) = W ({25172 \ {7k }).

Consider next the Laguerre S-ensemble MEg y[2% e %Y ,0]. The n'* loop equa-
tion is [63, Eq. (3.9)]

(3 a _— N
0= l(/ﬁ — 1)6301 + (I'_l — 1)] Wn<.’13'1, Jn) + Xn:1x—1

Y0 (Wi (21, &gy ey ) — W1 (U, 1
+Xn¢126xk{ 1 - ) i )+x_1Wn—l(Jn)}

k=2 1= Tk

+ K [WnJrl(.ﬁEl, Zy, Jn) + Z W|J|+1(l’1, J)Wn,‘(”(fl?l, Jn\J)] . (527)
JCSJn
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Finally, consider the Jacobi B-ensemble MEg y[2° (1 — 2)*2X0<z<1]. The n'"
loop equation is [63, Eq. (4.6)]

0= ((heD=-2 4 (%2 \\Wo(on ) — — =L W ()
(e ()

T ].—1'1 .%'1(1 —I1>
+ L [(041 + o + 1)N + /iN(N — 1)] — & i xkiwn,l(Jn)
x1(1 — 1) x1(1 — xq) = oxy,
50 (Wasa(n, ooy gy ) = Wi () 1 —
+ Xn#1 Z a { l(xl Tk i ) 1( ) + _Wnl(:]n>}
k=2 L1 — Tk Z1
+ K [Wn+1(271, 1'1, Z WlJH.l(.fCl, J)W _|J|(.T1, JH\J)] . (528)
JSJn

5.2 Solving the loop equations at low order with
B =2a/N — the Gaussian -ensemble

Our interest is in the scaling of g proportional to the reciprocal of N, as specified
by (5.7). As a modification of ([5.25)), we make the ansatz for the large N expansion
of W,, to have the form

Wo(tn,. .., on i :1:1 Tn). (5.29)

Note that this N dependence is consistent with both and the factor of 1/N in
. We will consider each of the three ensembles separately, beginning with the
Gaussian B—ensemble

Consider with n = 1. Upon the substltutlon ), by equating terms
O(N) we read off the equation for W0 = w¢

d
<———x>W10G( )+ 1+ a(WC(2))? = 0. (5.30)
. : : : 0.G 1,G 0,G
Equating terms O(1) gives an equation relating W7 (x), W, (x), Wy (z, x),
d d
WS @)+ (=) W (2)+ 200 S )W (@) + W) (w,2) = 0. (5:31)

i

For the appearance of Riccati equations specifying the Stieltjes transform W7 of
other random matrix models in the context of loop equations, see [48].

We next consider (5.26) with n = 2. Equating terms O(N) gives an equation
relating Wy (z1, 5) to W,"%(2;) (i = 1,2). Thus

0 o (W% (ay) — W€
<———x1)W20’G(x1,x2)+—{ (o) ! (m)}+2an’G(I1)W§’G(9€1,x2)=0.

oy 0xa T1 — T2
(5.32)

Note that with W (z) specified by ( 5.30), (5.32)) then allows us to specify WY (21, 29).
In relation to WQO’G(x, x) appearing in ([5.31]), we can first take the limit 1 — x5 = x

in (5.32)) to deduce

1d 0,G 1 d? 0,G 0,G 0,G B
—s——xz|W, (x,$)+—7W1 (z) + 2aW ™ (2)Wy (2, 1) = 0,
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where in the derivation use has been made of the symmetry Wy (21, 25) = Wo% (24, 21).
With W% (x, ) so now specified (albeit in terms of W% (z)), substituting in
then allows for W,"%(z) to be specified.

Let us now carry through this program, and in particular, quantify to what
extent it is possible to specify the quantities of interest. With regards to VV1O G the
differential equation (5.30) was first obtained in the present context in [7], having
appeared much earlier in the orthogonal polynomial literature [11] where it relates
to so-called associated Hermite polynomials (for a different line of work in the
recent random matrix theory literature relating to associated Hermite polynomials,
see [74]). It is an example of a Ricatti nonlinear equation, and as such can be
linearised by setting

1d Ay

WP’G(x) = —a%k’gu(@a u(z) afa0 29

(5.33)

for some constant A;. This substitution gives the second order linear equation for
u(z),

u" 4+ zu' + au = 0. (5.34)
The solution of (5.34)) satisfying the asymptotic condition in ((5.33]) is |7] (see also
[168])

_ —22/4 .
u(z) = Age D_,(ix),

where D_,(z) is the so-called parabolic cylinder function with integral representa-
tion

6—22/4 0 )
D_o(2) = % B J o tem= 12 gy (5.35)
0
Substituting in ([5.33)) it follows
x 1d .
WS (z) = o~ —=-log D_q(iz). (5.36)

According to (5.10)) at leading order in N, W (z) is the Stieltjes transform of
,08)’0(3:; ¢). The inversion formula (5.11)), with W () given by (5.36)), implies [7]
the explicit form of the density (5.8), or equivalently, upon recalling (|5.35))

6 (nia) 1 1
PO Y =B (1 + @) |Doaliz)2
Remark 5.4. Suppose in (5.30) we scale x — \/ay and Wlo’G(x) — \/ianoG(y)

Then for large o (5.30) reduces to the quadratic equation

—yW%(y) + 1+ (WPC(y))* = 0,

with solution obeying W% (y) ~ 1)y as y — o
2 _ g1

WS (y) = L= (y2

The inversion formula (5.11)) then implies

] 1
Jim vapl)o(Vayia) = —(4=y")" Jyl <2,

which up to scaling is the Wigner semi-circle law (5.3) ); see also [7] for a discussion
of this limit.

Guido Mazzuca 127



Loop equation, and Dyson chain

Knowledge of the functional form ({5.36]) is not itself of practical use to specify
WG (x1, 25) from (5.32). Instead we view (5.30)) as specifying the coefficients {mSo}
in the expansion about = = o of W%(z) (5.12))). Since the density pﬁm(x; a) is
even in x, we see that

m&, =0, for p odd. (5.37)

p,0

Substituting in (5.30) gives the recurrence (5.13)). An alternative specification of
{szp,o} follows by substituting the known z — oo expansion of D_,(iz) [38, Eq.

12.9] in (5.36)). This shows

0.G 1 1d S ()
W) = - g loe (1 Z s!(2m2)8>
1

1 345 202 15+ 32 2202 + 50
_ +( +oz)+(—i—oz+ oz)+( + 32a + oz+oz)+'(5'38)
x x3 x® x’

and thus (extending (5.38)) to include the term O(1/2?))

mgjO:l—l-a

m§0=3+5a+2a2
mgo =15 + 32a + 220° + 50
mgo = 105 + 260cr + 2340’ + 930® + 140, (5.39)

Remark 5.5. 1. For even p = 2 the recurrence (5.13|) can be rewritten

p/2—1
myiog = (p+1+2a)my+a Z My o M5 0- (5.40)

s=1
Indeed for even p = 2 we can rewrite (5.13)) as

p/2
G _ a G G
my o= (p+1)m),+a Z My, 25,0250
s=0
p/2—1
_ a G . G G G
= (p+ m, + 2am,ymgy + « Z My _9s.0M25.0
s=1
p/2—1
_ G G el
= (p+1+2a)m,, +a 2 My 96 0Mas 05
s=1

where in the last equality we used that m§y = 1. According to (5.39) m§y = (1+ ),
so it follows from (5.40)) that

G ~ G
My, o = (1+ )y, o, n=>1,
where rhﬁo 1s a polynomial in o of degree n — 1 satisfying the recurrence
n—1
Mg 1o = (2n+ 14 2a)my o+ a(l+a) Y my_ gy, — mig=1, (neN).
s=1

For combinatorial interpretations, see [40].
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2. As is well known in the theory of the Selberg integral (see [54, Chapter 4.1])
the PDF (5.1)) specifying the Gaussian (-ensemble is well defined for B > —2/N,
implying that the scaling is well defined for o > —1 as stated; see also [7,8].
In particular this itmplies all the moments are non-negative for o > —1. From point
1. above, we see that exactly at a« = —1 all the moments anGp,O vanish for p > 1.

3. For the ensemble MEg y(e=*"/?) the moments mgi) are polynomials in N of

degree (k + 1). We know from [42,|125,160] the explicit forms
mgG) = /<:<N2 + N(-1+ /4_1))
S (2N3 FENA(—14 kY + N3 — bkt + 35*2))
mi® = k3 (5N + 22N (=1 + 571) + N3(32 - 54x ™" + 32672)
+FN(—15+ 32+ — 3252 + 15/1_3)>, (5.41)

where Kk = [/2; in fact [166] gives the explicit form of all moments up to and
including mgg). It follows from (5.41) that

(@)
=1+a)N -
my ol (1+a) a
m® = (3+5a+a*)N —b5a(l+a)+ 307
k=a/N N
2 3
(@) 9 3 9 32« (1 + Oé) 15
= (15 + 32 22 b’ )N — 2a(16 + 27 11 - .
me al (15 + 32c + 220 + 5ar”) a(16 + 27a + 11a7) + N e

(5.42)

We see that the polynomials in o multiplied by N in these expansions agree with the
leading moments in the scaling limit with 5 specified by (5.7) as displayed in (5.39)).

To see the utility of in relation to the equation relating W% (1, 25)
to W% (z), analogous to (5.12)) introduce the coefficients {ugj’ g0) i the expansion
about x1, s = o0 . We remark that the reasoning behind the formula in (|5.14))
expressing HS), g0 I terms of the covariance is to first note from with n = 2,
and the second equation in , that

We (1,7) = E [(A(:vl) ~E[A(z)] ) <A(:zc2) ~E[A(z)] )]G —: Cov (A(z1), A(2))C

where A(x) = Zjvzl 1/(x — A;). Expanding about z1,z, = o and taking the limit

N — oo with g specified by (5.7)) gives (5.14)).
The definition in ([5.14)) implies the symmetry property

a el
H(p,g),0 = H(gp),0° (5-43)

It is also immediate that
1.0 = Moo = O- (5.44)

In addition, the symmetry of the PDF (5.1) under the mapping \; — —X\; (I =
1,...,N) implies

ng,q),o =0, for p, g of different parity.
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We substitute both ([5.14) and expansion of (5.12)) in (5.32). After straightfor-
ward manipulation, this shows

1< ”8),!1)70 - “8%(1),0 1 < G S (s+1
x_% Z_] (p+ 1)—x%q — 2 —x’fxg +—w1x2§m},702—] =
1
_q
)

~—

w

2
x

|8

12 p,q=0 0 s
0 0 1 k
> 2—,{2 m iG_ag0 = 0. (5.45)
q=0 k=0 =0

Taking into consideration the vanishing properties (5.37)) and ([5.44)), we can further
manipulate (5.45))) to read

_l’_

=N

0 0 G 0 2r
Z “(p 241)0 _ Z F(p.g),0 i Zme (s+1)
— 1 p—1 g—1 2r,0 xstT*S
p=3,q=1 x2 pg=0 L1 T2 r=0 s=0 271
o0) 1 oe) 1 |k/2—1]
G G _
+ 20 Z -1 1 Z M50 Hik-2-2s9).0 = 0-

=1T2 =1 5=0

Equating coefficients of (z;?"'2;%™") throughout gives the recurrence (5.15)).
Corollary 5.6. Let {mgo} be specified by (5.37) and (5.13). For g€ Z" we have

M0 = TMg-10

M(Ciq) 0= qm?o

'ug’uq),o =2(1+ O‘)qmg’—l,o + C]m?ﬂ,o

IU’(Ci,q),O =3+ 20‘)‘1””20 + qquJrQ,o‘ (5.46)

Remark 5.7. 1. The symmetry 1s not apparent in , and thus not in
(5.46|) either. Nonetheless, on a case-by-case basis, the evaluations (5.48|) can be
checked to be consistent with . As an example, for ,u(GQA)’O = u&z)’o, the
equality of the corresponding expressions in (5.46) requires mﬁo = (3 + 2a)m§0
which from 18 seen to hold true.

2. The covariances {u&qm} have been studied in a recent work of Spohn [152], where
they were specified by a certain matrix equation with entries permitting a recursive
evaluation. In fact the entry (p,q) (0 < p < q) of the matriz equation can be checked
to be equivalent to the recurrence (5.15|).

We now turn our attention to the relation (5.32). Setting z; = 25 = x in ({5.14])

gives the expansion about = = oo ([5.17)). Substituting this and ((5.12) in (5.32)) gives
the recurrence for {5 ,}

p
ﬂzG;;+2,o = (p+1)/]2Gp70+(2p+1>(p+1)m§p70+2a2IELQGZ,OmZG(p—l),O7 ﬂ(?,o =0, (5.47)
=1

valid for p = 0,1,2,.... Here {m2 } are input, having been determined by (5.13} -
The first three non-zero values implied by - are

ﬂz,o =1
ﬂ4,0 =8(a+1)
figo = 3(a +1)(23 + 16a). (5.48)
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Each can be checked to be consistent with the relationship between {/Z%O} and
{u%hql)yo} as specified in (5.17]).

With knowledge of both {W?(z)} as determined by (5.12), (5.37)), (5.13) and
{(W3S(x,2)} as determined by (5.17)), (5.47)), introducing the expansion

the equation (5.31)) can be used to deduce a recurrence specifying {mg} o}, which is

(5.18) in Proposition above. Iterating shows

mg, = —ba(a+ 1)
mg, = —20(16 + 27a + 11a?),

which we see are all in agreement with the term independent of N in the expansions

(5.42).

5.3 Solving the loop equations at low order with
B =2a/N — the Laguerre -ensemble
For the Laguerre f-ensemble MEg y(z*e™™), al > —1 , let the moments of the

spectral density be denoted méL). Analogous to , each m () is a polynomial

of degree j in N and k (and also in 7). A hstlng of {m }J 123 is given in |63,
Prop. 3.11] (see also [121]), where

(L _i (L
mg» ) = (Nk) jm§» ),
We read off that

- (L) Cltatan- &
am k=a/N ( @ Oél) N
2 o ( (2 + 301 + a2) + a4 + 3a1) + 2a ) . N((ﬁl +3a1) + 4a) + o<N2>
bl / < (6 + 11as + 602 + ) + (17 + 21ay + 6a2) + a2(16 + 10a1) + 5a )
r=a/N

1
- ((17 + 210y + 602) + (33 + 21ay) + 16a2) + O(m) (5.49)

Note that here, in distinction to the case of fixed N, 3, after taking the scaling limit
with 8 = 2¢/N setting a; = —1 is now well defined. This is of importance for our
application of the final section.

In view of this expansion we hypothesise that the functions W, again exhibit the
N~! expansion - We begin by enforcing this expansion in the loop equation
(5.27) with n = 1. Equating terms O(N) we read off the equation for W9 = Ww"
(the use of the superscript “L” is to indicate the Laguerre ensemble in the scaling
limit with 8 = 2¢/N),

R Qaq 0,L 1 0,L )2 .
— W)+ (S =) @)+ — o (WP@) =0 (5.50)
Equating terms O(1) gives an equation relating W' (z), Wit (z), W (z, ),
d d
a%WP’L(x)—%Wf’L(:U)—i— (% - 1) Wt (@) +aWyt (z, z)+2aW " ()W () = 0.

(5.51)
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We next consider the substitution of ([5.29)in (5.27)) with n = 2. Equating terms
O(N) gives an equation relating Wy (1, z5) to W™ (x;) (i = 1,2). Thus
0

T on

(0%
WS’L(ILZL‘Q) + (—1 — 1) WZO’L(CCl,l'g)

1

%iwﬂmeWm+M%w

} + QOZWQ(lL(ZEl,l'Q)WlO’L(ZEl) =0.
0:32

X1 — T2 1

(5.52)

We notice that the differential equation (5.50) — a particular Ricatti equation

— can be solved explicitly. This was studied by Allez and collaborators in [§],

and also appeared earlier in the orthogonal polynomial literature in the context of

associated Laguerre polynomials [103]|. Analogous to (5.33)), the substitution
1d By

0,L _ - -~
WPHe) = —-logu(e).  ulx) ~ =k

(5.53)

for some constant By, gives rise to the second order differential equation,
u” + (1—ﬂ> "+ S =0
T x '
The required solution is given by [8, Eq. (3.41), o — —2ay, ( = a4+ ay/2, u =
(1+ aq)/2]
u(m) = B2€_z/2ZL’_al/2W_a_a1/27(1+a1)/2(—ZL’),

for some constant Bs, where W ,(z) denotes the Whittaker function. Substituting
in ((5.53) shows

1 (0%} 1d

+— — ——log W_a_a1/27(1+a1)/2(—:)3), (554)

oL _ 1
(@) 200 2ax  adx

and this, upon substituting the known large = form of the Whittaker function |38,
Eq. 13.19] implies

W (z) =

1d o (@)s(1+ a1 +a), 1
(Hz(a)( o a) )
1 s! s
(1+a;+a)2a+2+ ay)
x? x3
(1+a; + )6+ 1la+ 5a% + 5(1 + a)ay + af)
+ = -
Analogous to (5.12) W} L(m) is the moment generating function of the corre-
sponding Laguerre a-ensemble density,

. (5.55)

0L 1 My L Z oL
W™ (z) = - Z b myo = f zPpyy o(T; 1, @) dz. (5.56)
p=0 0

We thus read off from (5.55)) that

mIf,O =1+ a;+a)
myo = (1+ a1+ a)(2a+2+ o)
myo = (14 o1+ a)(6 + 1la + 5a” + 5(1 + a)oy + oF). (5.57)
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These are all in agreement with the leading terms (in N) on the RHS of (5.49).
Furthermore, by substituting the expansion ([5.56) in the differential equation ((5.50)

we see {my,} satisfies the recurrence

p—1
L L L L L
my0=@P+1+a+a)m;,+a Z Mg 0My_s 05 mgo = 1.
s=0

An immediate corollary is that mII;’O is a polynomial of degree p in both ay, «, as
seen in the tabulation (5.57)) for the low order cases. Moreover, analogous to point
1. of Remark [5.5] writing

mio =14+ + a)mlz;yo, p=1

we see that rh;jo is a polynomial of degree p—1 in both a;, o, satisfying the recurrence

p—1
o= P+ 1+ar+2a)my+a(l+a;+a) Z My omy_g o, my, = 1. (5.58)
s=1

The density p(L1)70 (z; 01, ) in (5.56) can be deduced from knowledge of W} T as
specified by (5.54)), together with the analogue of the inversion formula (5.11)). One
finds [8, Eq. (3.49), A — 2z, ( =a+ /2, p= (14 aq)/2]

1 1
F(Oz + I)F(Oz + o1 + 1) |VV,OZ,OH/27(1+0[1)/2(*iL‘)|27

(5.59)

P(L1),o($§ @) =

supported on x > 0.
In relation to (5.52), introduce the Laguerre analogue of ([5.14))

p - q L
2.3t

-

JR—— N(L ),0
0,L . P,4), L — i

pq=1 B=2a/N i=1 i=1
Proceeding as in the derivation of ([5.15)) shows
p—1
Hipria0 = P+ 14 QD)0 0+ Mo + 200 Y Mot -0
s=0
p—1
=(p+l+a+ 204),u(Lp’q)70 +qmy, .0+ 20 Z M ofh(p—sq)0- (5.60)
s=1
Corollary 5.8. Let {mlz;yo} be specified by (5.56) and (5.58). For q € Z" we have
MI(1,q),o = qu(;,o
L _ L L
Liag0 = (2 + a1+ 2a)gmy o+ gmgiq o

Lgo = (34 o1+ 20)ufh ) + 20(1 + ay + 2a)qmy + gmiy,o,.  (5.61)

Remark 5.9. As with {,u((; o0} the recurrence (5.60) is not symmetric upon the

interchange p < q, yet from the definition u{“p 0.0 has this symmetry. As observed
in Remark[5.7 in the Gaussian case, on a case-by-case basis this symmetry can be
checked from the explicit forms, in particular those in Corollary combined with

the tabulation (5.57)).
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The equation (5.51)) for W,"" requires knowledge of W ’L(x, x). In regards to
this quantity, letting z; — xo = z in ((5.52)) shows

d 2d

d>

—£W0L(:c x)+2 (? — 1) Wyt (x, ) + WWOL( x) + E@WPL(JJ)
+ 4aWyt (z, )W (z) = 0.
(5.62)

Introducing the expansion about z = oo
OL 1< ﬂ
Wy (z, @ :_22_ M2p0— Z /’Lplql (5.63)
p=1 P1+q1=p

(cf. (5.17))), as well as the analogous expansion for W{"" from (5.56), reduces (5.62)

to the recurrence

p—1

mio + 2« Z ﬁ&,omlﬁfs,o (5.64)

s=1

p(p+1)

- 1 -
Nﬁﬂ,o = §(p + 24 204 + 404)@12;70 + 5

As done in relation to (5.47), the implied evaluations for members of { [Lpo} can be
checked, for small p at least to be consistent with the relationship to {u ()0}
and thus the tabulation | , as required by the second equation in ((5.63]).

With {m o} determined by (5.59)) or the recurrence (5.58), and {/};,} determined
by the recurrence ([5.64)), by introducing the expansion

we see from (5.51)) that {mj},} can be determined by the recurrence

RIH

p—1
L L L ~L ~L L
My = —a(p+ 1)mp,0 +(p+14+a+ 204)mp71 + afly g+ 2a Z oM 105
=1

valid for p = 1,2, ... with initial condition mal = (0. In particular, iteration shows

mil = —Q
my, = —a<(4 + 3aq) + 4a>

mk, = —a((17 + 2101 +6a3) + a(33 + 21) + 1602),

which we see are all in agreement with the term independent of N exhibited in the

expansions (|5.49)).

5.4 Solving the loop equations at low order with
B =2a/N — the Jacobi S-ensemble

For the Jacobi f-ensemble MEg y (2% (1 — x)*?), let the moments of the spectral

(J

density be denoted m; ). In distinction to the Gaussian and Laguerre -ensembles,
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the moments of the Jacobi f-ensemble spectral density are no longer polynomials
in N and &, but rather rational functions. The first two are given explicitly in [121]
App. B|. From these we deduce

lm(‘]) _ amt+l+a 1 alay — ay) (L)
N'' ot +24+2a N(ag+as+ 2+ 2a)? N2
1 o (1+a+a) ((2 + )2+ a1 + ag) + (7 + 3ag + 2a9) + 3a2)
N2 T (24 20+ o1 + 2)2(3 + 20 + oy + an)
1
Lo Q1(a1, a2, ) + Qa(aq, a2, @) n O(—), (5.65)
N (24 20+ a1 + @2)3(3 + 200 + o + ap)? N2
where

Q1(aq,a9,a) = —(1+a+a1)(24+2a+ a1 +a2)(3+2a+aq + a2)(9+ Ta+4ag + 2a),

Q2(ay, g, ) = ((2 + a1)(2 4+ a1 + ag) + a7 + 3aq + 2a9) + 3a2>
X (13 + 21y + 200 + (61 — as)(ar + as) + (23 + 17a; + 3as) + 10a2).

As in the Gaussian and Laguerre cases, to solve the Jacobi -ensemble loop
equations in the regime = 2o/ N we will make the ansatz . We see
that with n = 1 the latter is consistent with the form of the expansions .
Equating the terms of order O(NV) gives the particular Riccati type equation for
W' ( here we use the superscript ”J” to indicate the Jacobi ensemble in the scaling
limit with 8 = 2¢/N)

d o «
—@va](xw(—l B >W10’J(x)+

T 11—z

ﬁ (14 o+ as+ a)+a (Wlo’J(:v)>2 =0.
(5.66)

Being a Riccati type equation, it is most natural to proceed in the analysis of
(5.30) and (5.50) and perform the change of variables

W) = )

for some constant C;. We see that ¢(z) satisfies the second order linear differential
equation

r(x = 1DY"(2) + (a1 = (o + ax)z) () —a (1 + o+ a1 + a) ¥(z) = 0,

&

~
|z| =00 XY

(5.67)

this being a particular hypergeometric differential equation [38, Eq. 15.10]. Due to
the condition (5.67) we have for the general solution

Y(z) = Cia™ " F (,a+ar + 1,20 + a; + as + 2;271),

where o F} denotes the usual Gauss hypergeometric function. After some algebraic
manipulations, this implies

WO () = 1+ atar+1 oF (a+1l,a+a;+2,2a+a; +as+3;271)
L T 204y +ay+2 22F (oo + 1,200+ o + g + 2;171)
B _2F1(a+1,a+a1+1,2a+a1+a2+2;1/x)

roF (,a+a;+ 1,204+ oy +as + 2;1/x)

(5.68)

Guido Mazzuca 135



Loop equation, and Dyson chain

This latter form was given recently by Trinh and Trinh [160|, using a different set of
ideas stemming from the theory of associated Jacobi polynomials [165], and making
no direct use of differential equations

Since analogous to and (| -

© J

1S m !
Wlo"](ac) = Z p,O’ mf,’o = L xppflm(x;ozl,ag,a) dz, (5.69)

P
p=0 v

we can use (with the help of computer algebra) to compute {m; ;}> ;. at least
for small p. Agreement with the leading order (in N) rational functions known from
(5.65)) is found.

It is furthermore the case that substitution of in implies a recurrence

for {mJ o}»2,. Thus we find

-1

((1+a1+a a22m astomg so> (5.70)

1
J
m. =
PO p+ 1+ an +as+ 20

valid for p = 1,2,... and subject to the initial condition mgjo = 1. We can verify

that iterating for small p (p = 1, 2) reproduces the leading order terms from (/5.65)),
and is thus in agreement with (/5.68]).

Remark 5.10. 1. Moving the denominator in the RHS of (5.70) to the LHS, re-
placing p by p + 1, then subtracting from the form without this latter replacement
shows

1
J
m =
PO 12 fag + ag + 20

p p
J J o J o
<(p+1+a1)mp,0—a Z M oMy g0 HC Z ms,Ompfs,O) )
s=1 s=0

This recurrence was obtained recently in the work (160, Eq. (15)], which as in the
derivation of (5.68) in that work uses a different set of ideas.
2. Changing variables x = (X + 1)/2 in (5.66) shows

d 0,J% (6] (6] 0,J*
—— X X 1
dXW ()+(1_X 1+X>W (>+1—X2( + a1 + a4+ Q)
* 2
o (WP (X)) =0,
(5.71)
where

1 A J* .
* p(l)o(Y7a17a27a)
WP (X) = ’ dy.
(x) f —

Here p‘]fw denotes the density for the Jacobi B-ensemble with high temperature scal-
ing relating to the weight (1 — X)* (1 + X)** supported on (—1,1). In the
case a1 = ag = a (symmetric Jacobi weight) the corresponding moments, as for
the Gaussian ensemble, must vanish for p odd. It follows from that the even
moments {mgzﬁo} satisfy the recurrence

* 1
m‘;pp = ( +a) —2a Z m230 « Z m230 s 0) (5.72)

2p 4+ 2a+ 2a + 1
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valid for p = 1,2,... with initial condition mgz = 1. Moments for the symmetric

Jacobi B-ensembles, with B = 1,2 or 4 have been the subject of the recent work [62].

In fact a number of recent works in random matrix theory have identified recurrences

for moments and also distribution functions; see e.g. [12,135,58460,70,71,/97,138).
Manipulation of as in the deriwation of shows

my !
20400 7 9 1 20 + 2a + 3

*
<(2p+1)m2p 0« Z m%s omz (p+1-s),0 T Z mj, om )

. (5. 73)

Scaling x — x/+/2a in the definition of the symmetric moment m3270 shows

‘ 1 va ] 1
Mo = (2a)+172 f\/a 2l o(w/V2a; a, ) dx ~ ngk,o,

where the asymptotic relation follows from the elementary limit (1 —2%/2a)* — e’

as x — . Using this to equate leading order terms in (5.73)) reclaims (5.13)).

The work [160, Th. A.4] also contains an explicit formula for the density ,0‘(]1)’0.
This is derived not from and an inversion formula analogous to , but
rather by using theory relating to the asymptotic of associated Jacobi polynomials
[88] and general relations between tridiagonal matrices and orthogonal polynomials
[127]. With

[a+ D (ag +1)
M1+ a+ a)
—mal'(a+ ag + a + 2)
sin(mo ) I'(1 4+ o + a2)I'(2 + o)

Ulz) =

2F1(047 —a— o —ag — 1, _al;x)a

V(z) = (1—z)t e (1 —a, 2+ a+ o + 9,2 + ag; 2),

we read off from [160] that

Fla+ DI (a+ar +ax+2) z*(1—x)*

J
; = , 5.74
Pol@ian e Q) = mo T e T L ) [T s v Y
supported on 0 < x < 1.
Knowledge of (5.67) and ([5.68]), together with the inversion formula
1
PZ]1),0($§ o, g, @) = lim =Im W (z — ie), (5.75)

e—0+t T

can in fact be used to derive (5.74). The starting point is to make use of the
connection formula |38, Eq. 15.10(ii)]

e™(x) = U(z) + e ™V ().
Substituting in (5.67)), then substituting the result in (5.75)) shows

u'(z)v(z) — v (z)u(z)

UG) + eV () 570

pg1),0(x§ a, O, Oé) = 02

where
1 T(a+DI'(a+ o +a+2)

G2 = (a+ DT+ a+ a1+ a+ ay)
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and
u(z) = 2Fi(a,b,c; x), v(r) =2 R (a—c+1,b—c+1,2—cx)
with
a=q, b=—(a+a; +as+1), c=—a. (5.77)

Here u(x),v(z) satisfies the same hypergeometric differential equation. We can use
this to show
u'(z)v(z) — v (2)u(z) = (c — 1)z*(1 — 2) 201, (5.78)

Substituting (5.78)) with parameters given by (5.77) in (5.76)) we reclaim ({5.74)).

Remark 5.11. From the relationship between the Jacobi and Laguerre weights we
must have

1
1. — J N = L * .
Jim - Py o(T/ag; ar, an, ) = py (500, Q)

Starting from (5.74)), and upon making sue of standard asymptotics for the gamma
function and the hypergeometric function confluent limit formula

blim oFi(a,b,c;x/b) = 1Fi(a,c;x)
—00

we see that
1 I'a+1) e "
lim —p! ; = = = :
aats O@p(l)jo(x/ozz, a1, 02, 0) Dla+ o+ 1) |U(x) + ema V (z)]? (5.79)
where
-~ a4+ 1) (g + 1)
Ux) = Fi(a, —ay; —
(SC) I‘(1+a—|—a1) 1 1(067 aq; SC)
Viz) = e e R (1 - a,2 + ag; x).

sin(rog)D(2 + o)

We see that (5.79)) is consistent with (5.59)) if it is true

1

[(a+1) (@) + eV (@)] = 2™ Woamayz arana(—2)

By writing the Whittaker function in terms of the Tricomi hypergeometric function,
then writing the latter in terms of the confluent hypergeometric function (see [159,
below Lemma 2.1]) this is indeed seen to be valid.

Coming back to the loop equation for the Jacobi ensemble, applying ((5.28)) with
n = 2 and equating the terms of O(N) we get a partial differential equation for
W2O’J in terms of Wlo"],

1
x1(1— 1

0 o o
_a—leng(l‘l, $2)—|— <$—1 _ : _2x1> W207J($1, :L‘Q)_

9 {Wf*’w — W) | W ()

) <1+xgaix2> W ()

0xs T, — Xy )

} + 20W (@1, )W (1) = 0. (5.80)
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Introducing
0 N N
J
0,J :“ 0 )
Wy (1, xa) (p.9) w = lim Cov ¥ xl) .
2 ) D_q (»,9),0 i i
p,q=1 B=2a/N i=1 i=1

Proceeding as in the derivation of (5.15)) and ([5.60]) shows

1 =
J J J ]
Ppa)0 = (p+o1 + g+ 20+ 1) (q(mq,O p+q0 T2 Z “(s g0 ~ 20 Z ms,oy’(p—s,q),0>‘

T s

Note that this is consistent with the requirement that /L‘(]O7q)70 = :w(]p,o),o = (. Beyond
this, the simplest case is p = 1 which gives

J 4q (J J)

= Mm,og—mM .
Ho.00 = (o] T as + 2a 1 2) a0~ Met10

Thus, for example, making use of knowledge of m‘lljo and mg’o as implied by (5.70)),
or as can be read off from (5.65]), we have

J _(1+a+a1)(1+a+a2)(2+a+a1+a2)
Fan.o (2420 + a1 + )33 + 20 + a; + o)

We remark that iterating with the help of computer algebra, we can check
the required symmetry ,w(]p’ D0 = ng,p),O in low order cases.

Finally, we return to the Jacobi ensemble loop equation in the case n = 1.
With g = 2a/N and the ansatz corresponding to (5.29), equating the terms of order
O(1) gives the equation relating W7 W? W7 (the latter at coincident points)

d 0,J d 1, aq &%) 1,J «
adm (@) de 1 (1) + - Wi (x) 2(1—7)

AWy (z,z) + 2aW Y ()W (z) = 0.

(5.82)

In relation to WQO’J(x, x) herein, letting x; — x5 and redefining 25 = x in (5.80))
shows

1d Wy 1 d
g + (2 ) W) - - )

2 dx 1-x z(l-2) 1-wds
L ooy + L Liwi ) 4 o0 (e, Wi () 0. (559
2ar ! v du s o

As with (5.17) and (5.63)), introducing the expansion about x = oo

1 & i
WQ x x = x_ Z L /’L}J’),O = Z /’Lgphql),O’ (584)

p1+q1=p

together with the analogous expansion of W, 7 from (5.69), we obtain from (15.83))
the recurrence

i 1 S ot 0,3 20 3
= My g— — m?
Hpo o+ o+ 20 + 14 p/2 5:13 s0 2 ;00 - Fisg as 1“50 p=s,0
(5.85)
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With the help of computer algebra, we can check in low order cases that the se-
quence {ﬂg}o}pzlyg,m generated by this recurrence is consistent with its relationship
to {,u‘(]pl’ql)’o} as implied by the second equation in ([5.84)).

In (5.82) we have now have {m],} determined by the recurrence (5.70), and

{ [Lgvo} determined by the recurrence ([5.85). Now introducing the expansion
o
p=2 P

we see that {m],} can be determined by the recurrence

Wi (v2) =

8=

1 p—1 p—1
J J ~ J o J
me, = a(p+l)m, ,—« +1)—2a » m,m -« m ,
p,1 D+ 1+ a4+ ao+ 206( (p ) p,0 (NP,O ) ;1 5,1Mp—5.0 2; s,1>
(5.86)
valid for p = 1,2,... with initial condition mg’l = 0. By the aid of computer

algebra, it can be checked that (5.86|) correctly reproduces the values of mz‘;l for

p=1and p =2 as implied by (5.65].

5.5 Application to Dyson’s disordered chain

5.5.1 Anti-symmetric Gaussian -ensemble in the high tem-
perature regime

Starting with the work [42], it has been known how to construct random tridiag-
onal matrices whose eigenvalue probability density function realises the classical
ensembles and thus have functional form given by for appropriate w(z). A
systematic discussion in the context of the high temperature regime as specified
by the relation is given in [115]. Our interest for subsequent application is a
particular tridiagonal anti-symmetric matrix that gives rise to a variant of in-
volving the Laguerre weight, but with squared variables. This is the anti-symmetric
Gaussian [S-ensemble introduced in [43]. With x; denoting the square root of the
gamma distribution I'[k/2, 1], the latter random tridiagonal matrix is specified by
with entries directly above the diagonal being distributed by

(X(N=1)8/25 XB(N—2)/25 - - - » XB/2)- (5.87)

It was shown in [43] that the eigenvalue PDF can be explicitly determined, with the
precise functional form depending on the parity of N. Replacing N by 2N +1 so the
size of the matrix is odd, there is one zero eigenvalue, with the remaining eigenvalues
coming in pairs {+iz;},, x; > 0. Their squares 2% =: y; are distributed according
to the PDF proportional to

N
4-1 _

Hyl&@/ Lo—u H ’yk_yj‘ﬂ

1=1 1<j<k<N

and is thus an example of the Laguerre S-ensemble with oy = 33/4 — 1.
As observed in the recent work [56], it follows from the theory of the Laguerre
f-ensemble with high temperature scaling (5.7 that the anti-symmetric Gaussian
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f-ensemble too permits a well defined high temperature limit specified by the scaling
with a > 0. Specifically, taking the limit of for a; — —1, we get that
that the limiting density of the squared eigenvalues is given in terms of a particular
Whittaker function according to

p(a_S)Q (y Oé) _ 1 1
(1),0 \F (o + DI (@) [Woaii/20(—y)

(5.88)

supported on y > 0. This relates to the density of the eigenvalues themselves
(i.e. without squaring) by the simple relation

2
a-

P ol @) = 22p() (2% ). (5.89)

)

In particular, combining this with (5.57]) shows

o0 ) ] o0 (a_s)2
|| atisowsards = | ol ) dy =
0 0

The result in the form implied by it is illustrated through numerical
simulation of the eigenvalue density of the anti-symmetric Gaussian [-ensemble
scaled by in Figure 5.1l To tabulate for o ¢ 7, use is made of the
connection formula for the Whittaker function

_W—k’,,u(_z)]-—‘(% + % + kf) e—(lﬂr%)m' F(% + ! + k.)ekﬂi
PG +p—k) {1+ 2p)

Wk,y(z) =

—k”u(_'z)?

where M, ,(2) is the second solution of the Whittaker equation [38, Eq. 13.14(i)|.

5.5.2 Anti-symmetric Gaussian a-ensemble

We define the anti-symmetric Gaussian a-ensemble, with a > 0, in analogy with
the other a-ensembles defined in the recent work [115]. This is done by noting that
in the high temperature regime the entries in the top left corner of the tridiagonal
realization of the classical -ensembles are to leading order independent of the
row and thus i.i.d. The prescription then is to construct a random tridiagonal
matrix with these random variables. In the case of the anti-symmetric Gaussian (-
ensemble, where the off diagonal distributions before the high temperature scaling
are given by , this gives for an element of anti-symmetric Gaussian a-
ensemble as the random N x N tridiagonal matrix

0 aq

A(]XVZ ) an“’f(om (590)
—an—_2 0 an—1
—aN—1 0

Following the same idea as in [115], the limiting mean spectral measure and
mean density of states can be determined.
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—— Theoretical 2.01 —— Theoretical
mmm Numeric ' mmm Numeric
41
1.51
1.0
2,
0.51
o -2 0 2 0.0° -2 0 2
1s; a=2.500 a=3.500
) —— Theoretical —— Theoretical
mmm Numeric 1.00+ mmm Numeric
1.0’ 0.75’
0.50+
0.5
H 0.251 h
00 -2 0 2 000 -2 0 2

Figure 5.1: Simulation of anti-symmetric Gaussian -ensemble density of states in
the high temperature regime, n = 5000, trials = 500. The density smoothly goes
to zero outside the plotted area.

Theorem 5.12. Consider the matriz A% in (5.90), o € R*, then the mean spectral
measure of A has density pf;j(z; ) as specified in (5.88) and (5.8Y), and the

mean density of states of A}, has density p* where

-S a a-s
po*(x) = %(O‘P(l oz ).

2

2
Consequently, with ;L,Q“‘S) (y) the density in squared variables, y = z°, we have

a-s)? _ 0 1
e () = a_a(\r<a>w_a+1/2,o(—y>|2>‘ (5.9

We give a sketch of the proof, which in fact is a combination of two lemmas.

Lemma 5.13. Consider the matriz A in (5.90), o € RT, then the mean spectral
measure of A% has density pf; o(z; @) as specified in (5.88) and (5.89).

Proof. Denote by B, () the top n x n sub-block of the random tridiagonal matrix
specified by the distribution of its leading diagonal . One just has to realize
that for any fixed k € N, k < n the k x k upper left block of B,(2a/n) weakly
converges to the corresponding one of A%. This implies that the two matrices have
the same spectral measure, so applying the result of the previous subsection we get
the claim. O

Lemma 5.14. Consider the matriz AS, in (5.90), a € RT, let v¥s(a) be the (*
moment of the mean spectral measure of A%, and wis(a) the (™" moment of the
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mean density of states. We have

(v ().

wi(a) = +

Equivalently, with reference to the mean spectral measure, and mean density of states
m squared variables

a-32 a a-s (3
w™ (@) = 2= (avf" (a)) = =~ (am],)

(5.92)

ar=-—1
Proof. The argument of [115, Lemma 3.1 — Corollary 3.2| is valid in this case too. [J

Proof of Theorem[5.13 The first part of the claim follows immediately from Lemma
.13, Regarding the second part of the claim, from Lemma we have that, in
the same notation as before,

0

wi™(a) = =~

~—(avi™(a)) .

This relation must carry over to relate the densities p2°(x) of the mean density of
states and p{}) o(x; ) of the mean spectral measure according to

and the claim follows. O

Combining (5.92)) with (5.57)) shows
wi'“f(a) =2
wéa'S)Q(a) = 2a(1 + 3a)

2a(2 + 9a + 10a?).

5.5.3 Dyson’s disordered chain

As a mathematical model of a disordered system, Dyson [45] made a study of the
distribution of the squared frequencies for N coupled oscillators along a line, in the
circumstance that the spring constants, and/or the masses are random variables
(for some example of lattices with random initial data see |75,76] and the references
therein). Let K; denote the spring constant of the j spring, and let m; denote
the attached mass. With free boundary conditions it was shown in [45] that the
allowed frequencies w of the chain are given by the (N — 1) positive eigenvalues
of the matrix iA, where A is the (2N — 1) x (2N — 1) anti-symmetric tridiagonal
matrix specified by having the diagonal above the main diagonal with entries

()\1/2 )\1/2 . 7)\%\?71)7 )\2]',1 = Kj/mj, )\2]‘ = Kj/ij. (593)

This matrix also has one zero eigenvalue, in keeping with the choice of free boundary
conditions.

As observed in [45], the structure implies that the simplest type of disor-
der is to choose {)\;} from a common probability distribution, giving rise to what
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was termed a a Type I disordered chain. Moreover, with the common probability
distribution equalling the gamma distribution I'[a, 1/k], Dyson was able to obtain
a number of analytic results. Substituting the gamma distribution in ([5.93)), up
to scaling by a factor of 1/4/k, we see that Dyson was in fact studying matrices
from the anti-symmetric Gaussian a-ensemble . One of the analytic results
obtained in [45, Eq. (63))| was, in the case a € N, an explicit functional form for the
integrated mean density of states in squared variables. Our Theorem [5.12| general-
izes the result of Dyson by giving a special function evaluation of the mean density
of states for general o > 0.

Two features of Dyson’s exact solution have received particular prominence as
illustrating universal features, shared by models beyond the solvable case (see the
recent review |55] for a discussion and references). One is the functional form of the
singularity  — 07 [45, consequence of (72)]:

(s ¢

for some constant ¢ = ¢, > 0, now referred to as the Dyson singularity. For the
constant, Dyson’s result implies that for « € N

Co = 2(%2 - ai %) (5.94)

=1

We can also recover this result from the explicit expression ((5.91)). First, we require
knowledge of the asymptotic behaviour of the Whittaker function |38, Eq. (13.14.19)]

for x — 0",
T .
W o= ~ 2L [ n(z) + () + 2y + i,

[(a)
where () denotes the digamma function and « denotes Euler’s constant. This
substituted in (5.91]) show that for z — 0%

From the explicit formula for the trigamma function

/ = 1
W () = Z()—(a e

we see that the constant of proportionality in reduces to Dyson’s result
for o € N.

The other prominent feature of Dyson’s exact solution solution relates to the
(scaled) limit o« — o0, which corresponds to weak disorder; see the discussion of [55]
Chapter 3.4] for more details and references. Proceeding analogously to the analysis
of Remark in the Gaussian case, we see that upon the scaling = — ky and
Wt (z) — %Wlo’L(y), for K, — oo with k/a = O(1) (5.50) reduces to the quadratic
equation

1 a
WY (y) + ; + ;(WE’L(Z/))Q =0.

144 Guido Mazzuca



Loop equation, and Dyson chain

Subject to the requirement that for large y this behaves as 1/y, the solution of this
quadratic equation is

0L K (1 1-4 1/2)_
Wi (y) = 20 \F T (1 —da/ky)
Consequently, in the same limit,

K
KPI@),()(?/;OQ,&) — %(ZM/;W —1)¥2, 0 <y <da/k.

a—s 2 .
But pl(lw(y; a1, Q) |ay =1 = pgm ) (y; ) and so according to ((5.92))

Kk O

1
Rl ) — 2= (daf (k) =)V = ~(day'?/r—y) V2 0 <y <dafs

T
With k = «, this is in precise agreement with the limiting result obtained by
Dyson [45, Eq. (43)].
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