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Abstract

In this thesis, we study problems related to statistical properties of integrable and
non-integrable Hamiltonian system, focusing on their relations with random matrix
theory.

First, we consider the harmonic chain with short-range interactions. Exploiting
the rich theory of circulant and Toeplitz matrices, we are able to explicitly compute
the correlation functions for this system. Further, applying the so-called steepest
descent method, we compute their long time asymptotic.

In the main part of the thesis, we focus on the interplay between Random Ma-
trix theory and integrable Hamiltonian system. Specifically, we introduce some new
tridiagonal random matrix ensembles that we name α ensembles, and we compute
their mean density of states. These random matrix models are related to the clas-
sical beta ones in the high temperature regime. Moreover, they are also connected
to the Toda and the Ablowitz-Ladik lattice, indeed applying our result on the α
ensembles, we are able to compute the mean density of states of the Lax matrices
of these two lattices.

Next, we focus on the Fermi-Pasta-Ulam-Tsingou (FPUT) system, a non-integrable
lattice. We show that the integrals of motion of the Toda lattice are adiabatic in-
variants, namely statistically almost conserved quantities, for the FPUT system for
a time-scale of order β1´2ε, here ε ą 0, and β is the inverse of the temperature.
Moreover, we show that some special linear combinations of the normal modes are
adiabatic invariants for the Toda lattice, for all times, and for the FPUT, for times
of order β1´2ε.

Finally, we consider the classical beta ensembles in the high temperature regime.
We compute their mean density of states, making use of the so-called loop equations.
Exploiting this formalism, we are able to compute the moments and the linear
statistic covariance through recurrence relations. Further, we identify a new α
ensemble, which is related to Dyson’s study of a disordered chain. Our analysis
supplement the results contained in Dyson’s work.
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Introduction

Overview

In this thesis, we study problems related to integrable and almost integrable Hamil-
tonian systems in connection to Random Matrix Theory (RMT). Specifically, we
study densities of states of particular families of random matrices, and we apply our
results to integrable and almost integrable lattices with random initial data in the
thermodynamic limit. This regime occurs when the number of lattice particles N
goes to infinity at a fixed temperature β´1. In such a limit, the energy per particle
remains finite, and the total energy of the chain goes to infinity.

The study of the thermodynamic limit arises naturally from the study of inter-
acting particles systems with many degrees of freedom. Despite being so relevant,
there are no general tools to study the thermodynamic limit of Hamiltonian sys-
tems. Indeed, the analysis is usually different from model to model; therefore, the
best we can do to study the thermodynamic limit of a specific system is either adapt
techniques exploited in other situations or design new ones tailored for the case at
hand. Specifically, we focus on the following systems:

1. harmonic oscillators with short range interactions;

2. lattice systems with nearest neighbour interactions with potential VT prq “
e´r ` r ´ 1 and VFPUT prq “ r2

2
´ r3

6
` br4

24
;

3. lattice systems with interaction potential depending on both the relative elon-
gation r and the momentum.

In case 2. the potential VT prq corresponds to the Toda lattice [157], that is an
integrable system, while the potential VFPUT prq corresponds to the Fermi-Pasta-
Ulam-Tsingou (FPUT) lattice [50], which is not integrable, and, for low energy,
can be considered as a fourth order perturbation of the Toda lattice. The case 3.
refers to the Ablowitz-Ladik (AL) lattice [2], that is an integrable discretization of
the cubic nonlinear Schrödinger equation. We study each of these systems with
periodic boundary conditions and number of particles equal to N . Introducing the
Gibbs measure at temperature β´1, we study statistical properties of these systems
in the thermodynamic limit.

Regarding case 1., we are able to determine the correlation functions and their
time scaling in the thermodynamic limit for the chain of harmonic oscillators with
short range interactions. Correlation functions are very important physical quan-
tities in statistical mechanics since they encode transport properties of systems.
However, for nonlinear systems the rigorous determination of scaling properties of
correlation functions still remains an open problem, even in the integrable cases.
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Introduction

Regarding case 2., we show that the integrals of motion of the Toda lattice are
adiabatic invariants, namely statistically almost conserved quantities, for the FPUT
system for a certain time-scale related to the temperature β´1. Therefore, we prove
that the FPUT system is not chaotic for the same time-scale. Moreover we computed
the density of states and the averages of the constants of motion of the Toda lattice
in the thermodynamic limit. Regarding case 3., we consider the Ablowitz-Ladik
lattice; also this case we determine the density of states of the Lax matrix and the
averages of the constants of motion of this system in the thermodynamic limit.

The theory of random matrices is essential to our analysis. The novelty of our
approach lies in the fact that we are able to connect the study of the thermodynamic
limit of Hamiltonian systems with the theory of random matrices, more specifically
the Dimitriu-Edelmann β ensembles [42] and the Killip-Nenciu circular β ensemble
[93] at high temperature, namely when the matrix size N goes to infinity and β “
2α

N
, α ą 0. This allows us to exploit several results and techniques typical of

random matrices to obtain new results in the study of Hamiltonian systems in the
thermodynamic limit.

The interplay between randommatrices and integrable systems has inspired us to
define and study a new family of random matrices, which we call α ensembles. These
are tridiagonal random matrix ensembles related to the Gaussian, Laguerre, Jacobi,
and anti-symmetric Gaussian β ensembles at high temperature. We obtain the mean
density of states of the α ensembles and the Gaussian, Laguerre, Jacobi, and anti-
symmetric Gaussian β ensembles at high temperature. Further, for the Gaussian,
Laguerre, and Jacobi β ensembles at high temperature, we also characterized the
monomial linear statistics through recurrence relations.

The structure of the thesis is the following.
In Chapter 1, we analyse the harmonic oscillator chain with short-range in-

teractions. Specifically, we compute the correlation functions for this system and
their long time asymptotics in the thermodynamic limit. The result of this chapter
are taken from our paper “Correlation functions for a chain of short range oscilla-
tors.” Journal of Statistical Physics (2021), made in collaboration with T.Grava,
T. Kriecherbauer, and K. D. T.-R. McLaughlin [75].

In Chapter 2, we introduce three new random matrix ensembles that we called
α ensembles. We explicitly compute their mean density of states, also called mean
eigenvalue density. As a corollary of our construction, we obtain the density of
states of the Lax matrix of the Toda lattice in thermal equilibrium. The result
of this chapter are taken from our paper “On the mean Density of States of some
matrices related to the beta ensembles and an application to the Toda lattice.” arXiv:
2008.04604 (2020) [115].

In Chapter 3, we study the Ablowitz-Ladik lattice. Specifically, we introduce
the Generalized Gibbs ensemble for this lattice, and we are able to compute the gen-
eralized free energy. We also obtain the density of states for this lattice in thermal
equilibrium via a particular solution of the Double Confluent Heun Equation. The
results of this chapter are taken from our paper “Generalized Gibbs ensemble of the
Ablowitz-Ladik lattice, circular β-ensemble and double confluent Heun equation.”
arXiv: 2107.02303 (2021) [116], made in collaboration with T.Grava.

In Chapter 4, we focus on the Fermi-Pasta-Ulam-Tsingou (FPUT) chain. Specif-
ically, we prove that some integral of motion of the Toda lattice are adiabatic invari-
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Introduction

ants for the FPUT system. Moreover, we prove that some linear combinations of the
harmonic energies are also adiabatic invariants for both the FPUT chain, and the
Toda lattice. The result of this chapter are taken from our paper “Adiabatic invari-
ants for the FPUT and Toda chain in the thermodynamic limit.” Communications
in Mathematical Physics, 380 (2020) [76], made in collaboration with T.Grava, A.
Maspero, and A. Ponno.

In Chapter 5, exploiting the theory of loop equations, we produced a unifying
mechanism to characterize the mean density of states for the β ensembles in the
high temperature regime. We also characterize the moments and the covariances
of monomial linear statistics through recurrence relations. Finally, we define the
Gaussian anti-symmetric α ensemble, and we computed its mean density of states
and its mean spectral measure. From the explicit formulas, we are able to sup-
plement analytic results obtained by Dyson in the study of the so-called type I
disordered chain. The result of this chapter are taken from our paper “The clas-
sical beta ensembles with beta proportional to 1/N: from loop equations to Dyson’s
disordered chain.” Journal of Mathematical Physics 62, 073505 (2021) [61], made
in collaboration with P.J. Forrester.

All chapters are independent from each other, so they can be read separately.
We now describe our results in more details, and we put them into context.

Correlation Functions

Correlation functions are an important object in statistical mechanics since they
encode transport properties of the system, such as the thermal conductivity.

To formally introduce them, we consider the even dimensional phase-space M Ď

R2N . We denote by pp,qq PM, where p,q P RN , the vectors in M. On this phase-
space we consider the algebra of smooth real or complex valued functions C8pMq

and a bilinear antisymmetric operation t¨ , ¨u : C8pMq ˆ C8pMq Ñ C8pMq that
satisfies the Jacobi identity, namely ttf, gu, hu ` ttg, hu, fu ` tth, fu, gu “ 0 for all
f, g, h P C8pMq, and the Leibniz’s rule, namely tfg, hu “ tf, hug ` ftg, hu for all
f, g, h P C8pMq . Such operation is called Poisson bracket. Given a real function
Hpp,qq P C8pMq, that we call Hamiltonian, the equations of motion of the system
take the form:

9qj “ tqj, Hu, 9pj “ tpj, Hu, j “ 1, . . . , N , (0.1)

where 9qj :“
d

dt
qj, 9pj :“

d

dt
pj. We denote by pptq and qptq the evolution of pp0q and

qp0q along the Hamiltonian flow (0.1). A function F is a constant of motion if it
commutes with H, namely

9F “ tF,Hu “ 0 .

Further, we assume that
ş

M e´βHpp,qqdpdq is finite so that the classical Gibbs mea-
sure dµH at temperature β´1

dµH “
e´βHpp,qqdpdq

ş

M e´βHpp,qqdpdq
, (0.2)

is well-defined. We notice that this measure is invariant under the Hamiltonian
dynamics.

IV Guido Mazzuca
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We can now define the correlation between two functions F,G P L2pM, dµHq X
C8pMq, which is the space of infinitely many differentiable functions, such that
their modulus squared is integrable with respect to dµH (0.2).

Definition 0.1. Let Hpp,qq P C8pMq be a Hamiltonian such that the Gibbs mea-
sure dµH in (0.2) is well-defined. Let F,G P L2pM, dµHq X C8pMq be two real
or complex valued functions. The correlation function of F ptq “ F ppptq,qptqq and
Gptq “ Gppptq,qptqq is defined as

Cor pF,Gq “ E rF ptqGp0qs ´ E rF p0qsE rGp0qs ,

where E r¨s denotes the expected value with respect to the Gibbs measure (0.2).

As an example, we consider a Hamiltonian system with nearest neighbourhood
interaction

Hpp,qq “
N
ÿ

j“1

ˆ

p2
j

2
` V pqj`1 ´ qjq

˙

,

where V pqq P C8pRq is a function bounded from below and with at least polynomial
growth at ˘8. The Poisson bracket is the canonical one, namely

tqj, qku “ tpj, pku “ 0, tqj, pku “ δjk ,

so the Hamiltonian equations take the standard form:

9qj “ tqj, Hu “
BH

Bpj
“ pj ,

9pj “ tpj, Hu “ ´
BH

Bqj
“ V 1pqj`1 ´ qjq ´ V

1
pqj ´ qj´1q ,

here with 1 we denote the derivative with respect to the argument. We assume
periodic boundary conditions, i.e. pj`N “ pj, qj`N “ qj for all j P Z and N positive
integer. Since the Hamiltonian is translational invariant, we can consider the phase
space M

M :“

#

pp,qq P R2N
ˇ

ˇ

ˇ

N
ÿ

j“1

pj “
N
ÿ

j“1

qj “ 0

+

.

On this phase space, we can introduce the Gibbs measure

dµH “
e´βHpp,qqdpdq

ş

M e´βHpp,qqdpdq
,

here dq “
śN

j“1 dqj, and similarly for p. Notice that our choice of the potential
V implies that

ş

M e´βHpp,qqdpdq is finite. The relevant physical quantities are the

momenta pj, the elongations rj “ qj`1 ´ qj, and the local energy ej “
p2
j

2
` V prjq,

j “ 1, . . . , N . These quantities evolve according to local conservation laws, namely

9pj “ V 1prjq ´ V
1
prj´1q ,

9rj “ pj`1 ´ pj ,

9ej “ ´V
1
prj´1qpj ` V

1
prjqpj`1 ,

Guido Mazzuca V
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where with 1 we denote the first derivative with respect to the argument. We are
interested in computing the following correlation functions

Cor ppj, p0q “ E rpjptqp0p0qs ´ E rpjp0qsE rp0p0qs ,

Cor prj, r0q “ E rrjptqr0p0qs ´ E rrjp0qsE rr0p0qs ,

Cor pej, e0q “ E rejptqe0p0qs ´ E rejp0qsE re0p0qs .

(0.3)

Correlation functions give some insight on how the actual status of a portion
of the system affect the motion of another part. Moreover, the fact that the total
momentum and total energy are conserved gives an idea on how the momentum
and energy spread in the lattice.

The explicit computation of these correlation functions for general dynamical
system is “utterly out of reach” - H. Sphon. Indeed there are no explicit formulas
for correlation functions of hamiltonian system, except for the harmonic oscilla-
tor case [112]. Based on extensive numerical investigations and some preliminary
computations, it is conjectured that, for sufficient long time, the energy-energy
correlations should scale as

Cor pej, e0q »
1

λtγ
G
ˆ

j ´ vt

λtδ

˙

, (0.4)

where v is some characteristic speed of the lattice, G is an analytic function, λ P R`,
and 0 ă γ, δ ď 1. The case γ “ 1

2
is referred to as normal diffusion, and γ ą 1

2
is

referred as super diffusion.
H. Sphon, in a series of papers [119,148–152], argues that for nearest neighbour-

hood, non-linear, and non-integrable Hamiltonian systems the exponents in (0.4)
are γ “ δ “ 2

3
and G is a universal function, meaning that it is the same for all

this class of systems. Specifically G “ FTW , where FTW is the Tracy-Widom dis-
tribution [158]. For nearest neighbourhood, non-linear, and integrable systems, the
decay is expected to be ballistic, meaning that γ “ δ “ 1, and the function G is also
universal, specifically G “ e

´x2

2 {
?

2π, which is just the Gaussian distribution.
Much less in known and conjectured for short range interactions. In chapter 1

we present our work “Correlation functions for a chain of short range oscillators”,
on Journal of Statistical Physics (2021) made in collaboration with T. Grava, T.
Kriecherbauer, and K. D. T.-R. McLaughlin, where we consider systems with short
range interactions with quadratic potential, namely the Hamiltonian system:

HSRpp,qq “
N
ÿ

j“1

˜

p2
j

2
`

m
ÿ

s“1

κs
2
pqj ´ qj`sq

2

¸

, (0.5)

where 1 ď m ! N , κ1 ą 0, κm ą 0, and κs ě 0 for 1 ă s ă m. Periodic boundary
conditions are assumed, i.e. qj`N “ qj, pj`N “ pj, for all j P Z. Our aim is to
explicitly compute the correlation functions (0.3) for this system.

One of the main technical difficulties that we encounter is to find the analogous
quantities to the elongation, and the local energy, whose definitions are intuitive
in the nearest neighbourhood case. We re-write the Hamiltonian system (0.5) in
matrix notation as

HSRpp,qq “
1

2
pp,pq `

1

2
pq, Aqq ,

VI Guido Mazzuca



Introduction

where A is a circulant matrix of band size 2m ` 1, and p¨, ¨q denotes the standard
scalar product in RN .

We find a local, and periodic Toeplitz matrix T of band size m ` 1 such that
A “ T ᵀT , where T ᵀ is the matrix transpose. We define the generalized elongation
as

r “ Tq ,

so that

HSRpp, rq “
N
ÿ

j“1

1

2

`

p2
j ` r

2
j

˘

,

we remark that the previous transformation is non-canonical. The generalized elon-
gation rj extends the concept of elongation in the harmonic oscillators with nearest
neighbourhood interaction. With the linear transformation q Ñ r “ Tq the local

energies take the familiar form ej “
1

2

`

p2
j ` r

2
j

˘

, j “ 1, . . . , N.

The derivation of the matrix T is crucial for our analysis, and it is obtained by
exploiting the rich algebraic structure of circulant and Toeplitz matrices [77].

Thanks to this linear transformation, we are able to explicitly compute the
correlation functions (0.3). Furthermore, applying the steepest descent method
(see e.g. [122]), we analyse the long time asymptotic of the correlation functions in
the large N limit, and we obtain the analogue of formula (0.4) for our case. The
correlation functions are highly oscillatory. There are two fastest peaks travelling
in opposite directions with equal speed. We obtain the asymptotic description for
the scaling in time and shape of these peaks according to (0.4). Specifically, we
show that the time scaling is ruled by the coefficients γ “ 2

3
, δ “ 1

3
, and G “ Ai2,

where Ai is the standard Airy function [38, Eq. 9.5.4]. Moreover, we show that the
correlation functions may have some non-generic slowly decaying peaks. We proved
that their shape is described by the Pearcey integral [38, Eq. 36.2.14].

Density of States of Lax matrices

We consider integrable Hamiltonian lattice systems with 2N degree of freedom.
The Hamiltonian system is Liouville integrable if it admits N constants of mo-

tion independent and in involution. The modern theory of integrable systems was
developed by finding powerful tools to detect integrability. One of these tools is the
Lax pair formulation. In this case, the integrability is inferred by finding a couple
of square matrices L and B such that the equations of motion (0.1) are equivalent
to

9L “ rL;Bs ,

where 9L “
BL

Bt
, and rL;Bs “ LB ´ BL is the commutator between the matrices.

The size of the matrices L and B depends on the specific cases. This formulation
implies that the eigenvalues of the Lax matrix L are conserved. The two prototypical
examples of discrete integrable systems admitting a Lax formulation are

• the Toda lattice that is an Hamiltonian system with nearest neighbour inter-
actions with Hamiltonian

HT pp,qq “
N
ÿ

j“1

ˆ

p2
j

2
` e´pqj`1´qjq

˙

,
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and canonical Poisson bracket. Here p “ pp1, . . . , pNq and q “ pq1, . . . , qNq,
pp,qq PM Ď R2N . We consider periodic boundary conditions qj`N “ qj and
pj`N “ pj for j P Z and N a positive integer. The Toda equations of motions
are

9qj “ pj ,

9pj “ eqj´1´qj ´ eqj´qj`1 .

The corresponding Lax matrix L is a N ˆN periodic Jacobi matrix.

• The Ablowitz-Ladik lattice [2, 3] is a discrete spatial version of the cubic
nonlinear Schrödinger equation (NLS). There are several discretizations of this
equation, and the Ablowtiz-Ladik is among the ones that preserve integrability
[137]. For the Ablowitz-Ladik lattice with periodic boundary conditions the
dependent variables are the complex quantitiesα “ pα1, . . . , αNq where αj P D
with D “ tz P C ||z| ă 1u. The Hamiltonian takes the form

HALpαj, αjq “ ´2
N
ÿ

j“1

<pαjαj`1q ´ 2
N
ÿ

j“1

log
`

1´ |αj|
2
˘

. (0.6)

The Poisson bracket is defined on the space C8pMq with M “ DN as

tf, gu “ i
N
ÿ

j“1

ρ2
j

ˆ

Bf

Bαj

Bg

Bαj
´
Bf

Bαj

Bg

Bαj

˙

ρj “
b

1´ |αj|2.

The Ablowitz-Ladik equations of motions are

9αj “ tαj, HALu “ ipαj`1 ` αj´1 ´ 2αjq ´ i|αj|
2
pαj´1 ` αj`1q , (0.7)

where j P Z, 9αj “
dαj
dt

, and αj`N “ αj, for all j P Z. We remark that the

quantity´2
řN
j“1 log p1´ |αj|

2q is the generator of the shift αjptq Ñ e´2itαjptq,
while H1 “ ´2

řN
j“1 <pαjαj`1q generates the flow

i 9αj “ ´ρ
2
jpαj`1 ` αj´1q, ρj “

b

1´ |αj|2, (0.8)

which is related to the Schur one [73].

The Lax matrix E for the flow (0.8) is a 2N ˆ 2N periodic CMV matrix
[126,147] (See chapter 3).

As before, we consider random initial data sampled according to a Gibbs mea-
sure. Our novel observation is that for integrable systems this measure endows the
entries of the Lax matrix L with a probability distribution. As a consequence L
becomes a random matrix. This observation allows us to study the thermodynamic
limit of integrable system using the techniques and the rich theory of Random
Matrices.
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Our first goal is to study the eigenvalue distribution of the Lax matrix L. Such
eigenvalues are distributed on the contour L Ď C. For the Toda lattice L “ R,
while L “ S1 :“ tz P C | |z| “ 1u for the Ablowitz-Ladik lattice.

Assuming that L is a N ˆN matrix with eigenvalues λ1, . . . , λN , the empirical
spectral distribution of the Lax matrix L is the random probability measure dν

pLq
N

as

dν
pLq
N “

1

N

N
ÿ

j“1

δλj ,

where δλ is the Kronecker delta function centred at λ.
We can now define the mean density of states dνpLq of the matrix L as the

non-random probability measure, such that
ż

L
fdνpLq “ lim

NÑ8

ż

L
fdν

pLq
N ,

for all bounded, and continuous f defined in L, provided that the previous limit
exists.

The mean density of states of the Lax matrix L is used to derive heuristically the
behaviour of the correlation functions using the theory of generalized hydrodynamic
[39], as it has shown by H. Spohn in [151,152].

In Chapter 2, we present our work “On the mean Density of States of some
matrices related to the beta ensembles and an application to the Toda lattice”,
arXiv:2008.04604 (2020). We consider the Toda lattice with periodic boundary
conditions, and we compute the mean density of states of its Lax matrix. As we
have already mentioned, it is a classical result [51,110] that the equations of motion
of the Toda lattice can be rewritten in Lax pair form as

9L “ rB;Ls , (0.9)

where L is the periodic Jacobi matrix of the form:

Lpb, aq :“

¨

˚

˚

˚

˚

˚

˚

˝

b1 a1 0 . . . aN

a1 b2 a2
. . . ...

0 a2 b3
. . . 0

... . . . . . . . . . aN´1

aN . . . 0 aN´1 bN

˛

‹

‹

‹

‹

‹

‹

‚

,

#

bj “ pj

aj “ e´
rj
2

, (0.10)

here rj “ qj`1 ´ qj, and we recall that aj`N “ aj, and bj`N “ bj. The matrix B in
the Lax equation (0.9) is the anti-symmetric matrix

B “
1

2
pL` ´ L

ᵀ
`q ,

where for a matrix X we denote by X`

pX`qij “

"

Xij, j “ i` 1 mod N
0, otherwise

In this case the phase-space M takes the form
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M :“

#

pp, rq P RN
ˆ RN

ˇ

ˇ

ˇ

N
ÿ

j“1

rj “
N
ÿ

j“1

pj “ 0

+

, (0.11)

we consider the Gibbs measure

dµ
pNq
T :“

1

ZT pβq
e´βHT pp,rqdp dr ,

where rj “ qj`1 ´ qj are the elongations, β is the inverse of the temperature, and
ZT is the partition function of the system, namely

ZT pβq :“

ż

M
e´βHT pp,rqdp dr.

This Gibbs measure endows the entries of the matrix L with a probability distri-
bution, thus L becomes a random matrix. We notice that due to the constraints
(0.11) the entries of the matrix L are dependent. Our first result is to prove that
the density of states of L is equal to the density of states dνpHαq of Hα

Hα „
1
?

2

¨

˚

˚

˚

˚

˚

˝

b1 a1

a1 b2 a2

. . . . . . . . .
. . . . . . aN´1

aN´1 bN

˛

‹

‹

‹

‹

‹

‚

,

#

bn „ N p0, 2q
an „ χ2α

, (0.12)

here α is a continuous function depending on β, N p0, 2q is the Gaussian distribution
with mean zero and variance 2, and χ2α is the chi-distribution with parameter 2α,
where α “ αpβq ą 0 (see (4.40)).

Further, we are able to compute the density of states of the matrixHα connecting
it to the Gaussian β-ensemble in the high temperature regime or mean field regime,
i.e. when the parameter β scales as 1{N . More specifically, we proved that the
mean density of states dνpHN q of the matrix

HNpa,bq “
1
?

2

¨

˚

˚

˚

˚

˚

˝

b1 a1

a1 b2 a2

. . . . . . . . .
. . . . . . aN´1

aN´1 bN

˛

‹

‹

‹

‹

‹

‚

,

#

an „ χ2αp1´ n
N q

bn „ N p0, 2q
,

is related to the density of states dνpHαq by the formula

BαpαdνpHN qq “ dνpHαq .

Moreover, since the density of states dνpHN q was explicitly computed in [7, 44] as

dνpHN qpxq :“
e´

x2

2

?
2π

ˇ

ˇ

ˇ

pfαpxq
ˇ

ˇ

ˇ

´2

dx , pfαpxq :“

c

α

Γpαq

ż 8

0

tα´1e´
t2

2 eixtdt ,

we are able to give an explicit expression for the mean density of states dνpHαq.
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Furthermore, we generalize this construction introducing three new tridiagonal
matrix ensembles, that we name Gaussian, Laguerre, and Jacobi α ensembles. They
are related to the classical β ensembles in the so-called high temperature regime or
mean-field limit, i.e. when β Ñ 0 and N , the size of the matrix, approaches infinity
in such a way that βN Ñ 2α, α P R`. For example, the Gaussian α-ensemble is
described by the matrix Hα (0.12). Exploiting their connection to the classical beta
ensembles in the high temperature regime, we are able to explicitly compute their
mean densities of states.

In Chapter 3, we present our work “Generalized Gibbs ensemble of the Ablowitz-
Ladik lattice, circular β-ensemble and double confluent Heun equation”, arXiv: 2107.02303
(2021), made in collaboration with T. Grava. Here, we focus on a problem similar
to the one in chapter 2, namely we consider the Ablowitz-Ladik lattice (0.7). We
introduce the Generalized Gibbs ensemble for the AL lattice, and we connect it to
the Killip-Nenciu [93] matrix circular β-ensemble at high-temperature investigated
by Hardy and Lambert [80]. We consider the Ablowitz-Ladik lattice in thermal
equilibrium, meaning that we considered the Gibbs measure dµAL

dµAL “
1

ZALpβ, ηq
e´

β
2
HAL´

ν
2
H1d2α ,

where HAL is in (0.6) and H1 “ ´2
řN
j“1 <pαjαj`1q. In this setting, we are able to

compute explicitly the mean density of states of the Lax matrix of the Ablowitz-
Ladik lattice as a particular solution of the Double Confluent Heun equation (DCH):

z2v2pzq `
`

´η ` zpβ ` 1q ` ηz2
˘

v1pzq ` ηβpz ` λqvpzq “ 0 ,

where 1 and 2 denote the first and second derivative with respect to the argument,
η “ ν ` β, and λ “ λpη, βq is a transcendental function related to the Painlevé III
equation [53,104].

Adiabatic Invariants

We consider the phase-space M Ď R2N , and a Hamiltonian Hpp,qq, here p “

pp1, . . . , pNq, q “ pq1, . . . , qNq. Further, we assume that it is possible to define the
classical Gibbs measure at temperature β´1.

Let us consider a function on the phase space, namely F : M Ñ C and let
F ptq “ F ppptq,qptqq, where pptq and qptq are the evolution of pp0q and qp0q along
the flow generated by the Hamiltonian Hpp,qq. Our goal is to understand whether
there exists a class of functions F ptq that are statistically almost conserved on a
certain time-scale. Such functions are called adiabatic invariants. The presence of
adiabatic invariants implies that the system is not chaotic for the specified time-
scale. Indeed, having almost conserved quantities implies that the system does not
explore all the phase-space.

The definition of adiabatic invariant is the following

Definition 0.2. Let us consider the phase space M with Hamiltonian Hpp,qq and
Gibbs measure dµH as in (0.2). Let F : M Ñ C, such that F P L2pdµH ,Mq X

L1pdµH ,Mq. F is an adiabatic invariant for the Hamiltonian Hpp,qq if there exist
constants a, b P R` and a continuous function f : R` Ñ R` such that
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P

ˆ

|F ptq ´ F p0q| ą
σF p0q
βa

˙

ď
fptq

βb
,

where the probability is taken with respect to the Gibbs measure dµH (0.2), and
σF p0q is the variance of F p0q with respect to the same measure, that is σF p0q “
E rF 2p0qs ´ E rF p0qs2.

We remark that the previous definition is meaningful if fptq
βb
ă 1, since we are

giving an upper bound on a probability. Further, we notice that the concept of
adiabatic invariants generalize the one of conserved quantities. For non-integrable
systems, the determination of adiabatic invariants is not an immediate task. In
Chapter 4, we present our work “Adiabatic invariants for the FPUT and Toda chain
in the thermodynamic limit.” Communications in Mathematical Physics, 380 (2020),
made in collaboration with T. Grava, A. Maspero, and A. Ponno. Here, we explic-
itly compute some adiabatic invariant for the periodic Fermi-Pasta-Ulam-Tsingou
(FPUT) lattice. The Hamiltonian of this system reads

HFPUT pp,qq “
N´1
ÿ

j“0

ˆ

p2
j

2
` V pqj`1 ´ qjq

˙

, V prq “
r2

2
´
r3

6
` b

r4

24
,

here b ą 0, and we consider periodic boundary condition, i.e. qj`N “ qj, pj`N “ pj
for all j P Z.

This system, which is not integrable, was introduced by Fermi, Pasta, Ulam,
and Tsingou to study the foundations of statistical mechanics. Specifically, they
wanted to obtain some numerical evidence of the so-called ergodic hypothesis : any
non-integrable system would reach an equilibrium state in fairly short-time for any
initial data.

Surprisingly, their numerical experiments showed that the FPUT exhibit a re-
current behaviour for a long time-scale, which is a typical feature of integrable
systems. This was in contrast with what they expected.

In the last 60 years, several scholars tried to explain the FPUT paradox in
different ways. Initially, this phenomenon was interpreted in terms of closeness to
some non-linear integrable system, e.g. the Korteweg-de Vries (KdV) [170], the
Boussinesq equation [171], and the Toda chain [49, 110]. On larger time-scales the
system displays instead an ergodic behaviour and approaches its micro-canonical
equilibrium state (in measure), unless the energy is so low to enter a KAM-like
regime [16,17,85,89,142]. We also mention the works [16,17], where the authors were
able to prove the recurrent behaviour of the FPUT lattice in the regime of specific
energy going to zero, by approximating it by the KdV equation and the Toda lattice
respectively. However, these analytic results do not hold in the thermodynamic
limit, because the energy per particle scales to zero. Adiabatic invariants were
introduced in [29] to overcome this problem, since their presence is usually not
affected by the size of the system.

In the last few years, lots of efforts were put in constructing adiabatic invariants
for the FPUT system see [29,30,68,69,109]. In all these papers, the authors found
some adiabatic invariants by considering the FPUT system as a perturbation of the
harmonic oscillator.
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In Chapter 4 we exploit a different approach by considering the FPUT system as
a fourth order perturbation of the Toda lattice. Using this approach we determine
a new family of adiabatic invariants of the FPUT system. Specifically, we proved
that the integrals of motion of the Toda lattice J pmq “ Tr pLmq, where the Lax
matrix L is defined in (0.10), are adiabatic invariants for the FPUT system for time
of order β1´2ε, ε ą 0.

The advantage of our approach is that the integrals J pmq, also known as Henon
integrals, are explicit in physical variables [82], so we avoid the perturbative con-
struction of [67]. On the other hand, we needed to carefully analyse the algebraic
structure of the integrals J pmq. This is achieved by using ideas coming from Random
Matrix Theory. Indeed, we derive a new explicit formula for the integrals J pmq by
relating them to the so-called Super Motzkin path [130], a well-known combinatorial
object. This observation is fundamental for our analysis.

Loop equations

In the last chapter of the thesis, we present our work “The classical beta ensembles
with beta proportional to 1/N: from loop equations to Dyson’s disordered chain.”
Journal of Mathematical Physics 62, 073505 (2021), made in collaboration with P.J.
Forrester. Here, we focus on a purely random matrix theory problem, namely the
explicit computation of the density of states for the classical beta ensembles in the
high temperature regime [7,8,44,159,160]. Moreover, we characterize their moments
and the linear statistics covariance though recurrence relations. Specifically, we
consider the following probability distribution:

dPG “
1

ZG

N
ź

i‰j“1

pλi ´ λjq
2α
N e´

řN
j“1 λ

2
j , (0.13)

dPL “
1

ZL

N
ź

i‰j“1

pλi ´ λjq
2α
N

N
ź

j“1

λα1
j e

´λj , (0.14)

dPJ “
1

ZJ

N
ź

i‰j“1

pλi ´ λjq
2α
N

N
ź

j“1

λα1
j p1´ λjq

α2e´λj , (0.15)

here, α ą ´1, α1, α2 ą ´1, and ZG, ZL, and ZJ are the norming constants of the
systems, or partition functions.

The joint probability distributions (0.13)-(0.14)-(0.15) are referred to as Gaus-
sian, Laguerre, and Jacobi beta ensembles in the high temperature regime. Each
of these ensembles admits a matrix representation, meaning that there exist three
random matrices such that their eigenvalues are distributed according to (0.13)-
(0.14)-(0.15) respectively. For example, the eigenvalues of the matrix HN

HNpa,bq “
1
?

2

¨

˚

˚

˚

˚

˚

˝

b1 a1

a1 b2 a2

. . . . . . . . .
. . . . . . aN´1

aN´1 bN

˛

‹

‹

‹

‹

‹

‚

,

#

an „ χ2αp1´ n
N q

bn „ N p0, 2q
,
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are distributed according to (0.13).
Our first aim is to compute the density of states for these ensembles. We obtain

this result by making use of the knowledge of the so-called loop equations [23, 25,
63, 123, 166] for the classical beta ensembles. The loop equation formalism allows
determining the coefficients of the large N expansion of the rescaled resolvent

1

N

A

N
ÿ

j“1

1

x´ λi

EG

“ W 0,G
1 pxq `

1

N
W 1,G

1 pxq ` ¨ ¨ ¨ ,

here we used the superscript G to refer to the Gaussian beta ensemble, and λj are
distributed according to (0.13). The expected value is taken with respect to (0.13),
and

W 0,G
1 pxq “

ż 8

´8

ρG
p1q,0pλ;αq

x´ λ
dλ ,

here ρG
p1q,0pλ;αq is the mean density of states of the Gaussian Beta ensemble in the

high temperature regime. We notice that W 0,G
1 pxq is exactly the Stieltjes trans-

form of the mean density of states. By knowing W 0,G
1 pxq it is possible to recover

ρG
p1q,0pλ;αq using the inversion formula [13]:

ρG
p1q,0px;αq “ lim

εÑ0`

1

π
ImW 0,G

1 px´ iεq.

There are analogous structures for the Laguerre and Jacobi case.
Studying the loop equations for these ensembles, we are able to recoverW 0,G

1 pxq,
and the corresponding quantities for the Laguerre, and Jacobi cases. We also char-
acterize the moments of the density of states and the covariance of monomial linear
statistics via recurrence relations.

The explicit expression for the mean density of states for these ensembles were
already known by different methods [7,8,44,159,160]. The novelty of our approach
is the fact that we produce a unifying mechanism to characterize the mean density
of states for all β ensembles in the high temperature regime, making use of loop
equations.

Moreover, following the procedure in [115], we identify a further example of α
ensemble, specified by the following random anti-symmetric tridiagonal matrix

AαN “

¨

˚

˚

˚

˚

˚

˝

0 a1

´a1 0 a2

. . . . . . . . .
´aN´2 0 aN´1

´aN´1 0

˛

‹

‹

‹

‹

‹

‚

, an „ χ̃α,

with χ̃k denoting the square root of the gamma distribution Γrk{2, 1s.
Also in this case, we are able to explicitly compute its mean density of states. It

is worth to mention that the same random matrix ensemble appears in Dyson’s [45]
study of a disordered chain of harmonic oscillators. Our analytic results supplement
those already contained in Dyson’s work.
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Chapter 1

Correlation Functions for a chain of
Short Range Oscillator

In this chapter, we will consider a system of N “ 2M ` 1 particles interacting with
a short range harmonic potential with Hamiltonian of the form

H “

N´1
ÿ

j“0

p2
j

2
`

m
ÿ

s“1

κs
2

N´1
ÿ

j“0

pqj ´ qj`sq
2 , (1.1)

where 1 ď m ! N , κ1 ą 0, κm ą 0, and κs ě 0 for 1 ă s ă m. Throughout this
chapter, we consider periodic boundary conditions, i.e. qN`j “ qj, pN`j “ pj for all
j.

The Hamiltonian (1.1) can be rewritten in the form

Hpp,qq :“
1

2
pp,pq `

1

2
pq, Aqq, (1.2)

where p “ pp0, . . . , pN´1q, q “ pq0, . . . , qN´1q, p ¨, ¨q denotes the standard scalar
product in RN and where A P MatpN,Rq is a positive semidefinite symmetric cir-
culant matrix generated by the vector a “ pa0, . . . , aN´1q namely Akj “ apj´kqmod N

or

A “

»

—

—

—

—

—

–

a0 a1 . . . aN´2 aN´1

aN´1 a0 a1 aN´2
... aN´1 a0

. . . ...

a2
. . . . . . a1

a1 a2 . . . aN´1 a0

fi

ffi

ffi

ffi

ffi

ffi

fl

, (1.3)

where

a0 “ 2
m
ÿ

s“1

κs, as “ aN´s “ ´κs, for s “ 1, . . . ,m and as “ 0 otherwise. (1.4)

Due to the condition κ1 ą 0 we have pq, Aqq “ 0 iff all spacings qj`1 ´ qj vanish.
Therefore, the kernel of A is one-dimensional, with the constant vector p1, . . . , 1qᵀ
providing a basis. This also implies that the lattice at rest has zero spacings every-
where. Observe, however, that one may introduce an arbitrary spacing ∆ for the
lattice at rest by the canonical transformation Qj “ qj ` j∆, Pj “ pj which does
not change the dynamics. The periodicity condition for the positions Qj then reads
QN`j “ Qj ` L with L “ N∆ (see e.g. [148, Sec. 2]).

1
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The harmonic oscillator with only nearest neighbour interactions is recovered by
choosing

a0 “ 2κ1, a1 “ aN´1 “ ´κ1,

and the remaining coefficients are set to zero.
The equations of motion for the Hamiltonian H take the form

d2

dt2
qj “

m
ÿ

s“1

κspqj`s ´ 2qj ` qj´sq, j “ 0, . . . , N ´ 1.

The integration is obtained by studying the dynamics in Fourier space (see e.g.
[107]). We will study correlations between momentum, position and local versions
of energy. Following the standard procedure in the case of nearest neighbour interac-
tions we replace the vector of position q by a new variable r so that the Hamiltonian
takes the form

H “
1

2
pp,pq `

1

2
pr, rq.

Such a change of variables may be achieved by any linear transformation

r “ Tq, (1.5)

with an N ˆN matrix T that satisfies

A “ T ᵀT, (1.6)

where T ᵀ denotes the transpose of T . In the case of nearest neighbour interactions
one may choose rj “

?
κ1pqj`1´qjq corresponding to a circulant matrix T generated

by the vector τ “
?
κ1p´1, 1, 0, . . . , 0q. We show in Proposition 1.2 below that short

range interactions given by matrices A of the form (1.3), (1.4) also admit such a
localized square root. More precisely, there exists a circulant N ˆN matrix T of the
form

T “

»

—

—

—

—

—

—

—

—

—

—

–

τ0 τ1 . . . τm 0 . . . 0
0 τ0 τ1 . . . τm 0

. . . . . . . . . . . .

τm 0
. . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
τ2 . . . τm 0 . . . τ0 τ1

τ1 τ2 . . . τm 0 0 τ0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (1.7)

that satisfies (1.6). The crucial point here is that T is not the standard (symmetric)
square root of the positive semidefinite matrix A, but a localized version generated
by some vector τ with zero entries everywhere, except possibly in the first m ` 1
components. Hence, the jth component of the generalized elongation r defined
through (1.5) depends only on the components qs with s “ j, j ` 1, . . . , j `m. It is
worth noting that 1 “ p1, . . . , 1qᵀ satisfies T1 “ 0 since p1, A1q “ 0. This implies

m
ÿ

s“0

τs “ 0 , rj “
m
ÿ

s“1

τspqj`s ´ qjq and
N´1
ÿ

j“0

rj “ p1, . . . , 1qTq “ 0.
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The local energy ej takes the form

ej “
1

2
p2
j `

1

2
r2
j .

Our goal is to study the behaviour of the correlation functions for the momentum
pj, the generalized elongation rj and the local energy ej when N Ñ 8 and tÑ 8.
Due to the spatial translation invariance of the Hamiltonian Hpp,qq “ Hpp,q `
λ1q, λ P R, that corresponds to the conservation of total momentum, we reduce
the Hamiltonian system by one degree of freedom to obtain a normalizable Gibbs
measure. This leads to the reduced phase space

M :“

#

pp,qq P RN
ˆ RN :

N´1
ÿ

k“0

pk “ 0 ;
N´1
ÿ

k“0

qk “ 0

+

. (1.8)

We endow M with the Gibbs measure at temperature β´1, namely:

dµ “ ZNpβq
´1δ0

˜

N´1
ÿ

k“0

pk

¸

δ0

˜

N´1
ÿ

k“0

qk

¸

e´βHpp,qqdpdq (1.9)

where ZNpβq is the norming constant and δ0pxq is the delta function centred at 0.
For convenience, we introduce the vector

upj, tq “ prjptq, pjptq, ejptqq.

We consider the correlation functions

SNαα1pj, tq “ xuαpj, tquα1p0, 0qy ´ xuαpj, tqy xuα1p0, 0qy , α, α1 “ 1, 2, 3, (1.10)

where the symbol x ¨ y refers to averages with respect to dµ . We calculate the limits

lim
NÑ8

SNαα1pj, tq “ Sαα1pj, tq .

For the harmonic oscillator with nearest neighbor interactions such limits have been
calculated in [112].

In an interesting series of papers, (see e.g. [149], and also the collection [102])
several researchers have considered the evolution of space-time correlation functions,
for "anharmonic chains", which are nonlinear nearest-neighbor Hamiltonian systems
of oscillators. The authors consider the deterministic evolution from random initial
data sampled from a Gibbs ensemble, with a large number of particles and study
the correlation functions SNαα1 .

In addition to intensive computational simulations [98], [120], Spohn and col-
laborators also propose and study a nonlinear stochastic conservation law model
[148], [149]. Using deep physical intuition, it has been proposed that the long-
time behaviour of space-time correlation functions of the deterministic Hamiltonian
evolution from random initial data is equivalent to the behaviour of correlation func-
tions of an analogous nonlinear stochastic system of PDEs. Studying this stochastic
model, Spohn eventually arrives at an asymptotic description of the "sound peaks"
of the correlation functions in normal modes coordinates which are related to Sαα1
by orthogonal transformation:

S̃αα – pλstq
´2{3 fKPZ

`

pλstq
´2{3

px´ αctq
˘

,
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using the notation of [Formula (3.1)] [148]. Here fKPZ is a universal function
that first emerges in the Kardar-Parisi-Zhang equation and it is related to the
Tracy-Widom distribution, [158], (for a review see [32] and also [94]). A common
element to the above cited papers is the observation that such formulae should hold
for non-integrable dynamics, while the correlation functions of integrable lattices
of oscillators will exhibit ballistic scaling , which means the correlation functions
decay as 1

t
for t large. For example, in [98] the authors present the results of

simulations of the Toda lattice in 3 different asymptotic regimes (the harmonic
oscillator limit, the hard-particle limit, and the full nonlinear system). They present
plots of the quantity tSpx, tq as a function of the scaled spatial variable x{t (here
Spx, tq represents any of the correlation functions). The numerical results support
the ballistic scaling conjecture in some asymptotic scaling regimes. Further analysis
in [151] gives a derivation of the ballistic scaling for the Toda lattice. The decay of
equilibrium correlation functions show similar features as anomalous heat transport
in one-dimensional systems [37], [101] [36] which leads to conjecture that the two
phenomena are related [102].

In [119] the authors also pursue a different connection to random matrices, and
in particular to the Tracy-Widom distribution. Over the last 15 years, there has
emerged a story originating in the proof that for the totally asymmetric exclusion
process on a 1-D lattice (TASEP), the fluctuations of the height function are gov-
erned (in a suitable limit) by the Tracy-Widom distribution. Separately, a partial
differential equations model for these fluctuations emerged, which takes the form of
stochastic Burgers equation:

Bu

Bt
“ ν

B2u

Bx2
´ λu

Bu

Bx
`
Bζ

Bx
,

where ζ is a stationary spatio-temporal white noise process. (The mean behaviour

of TASEP is actually described by the simpler Euler equation
Bu

Bt
“ ´λu

Bu

Bx
.).

From these origins there have now emerged proofs, for a small collection of initial
conditions, that the fluctuations of the solution to (1.12) are indeed connected to the
Tracy-Widom distribution (see [32] and the references contained therein). In [119],
the authors considered continuum limits of anharmonic lattices with random initial
data, in which there are underlying conservation laws describing the mean behaviour
that are the analogue of the Euler equation associated to (1.12). By analogy with
the connection between TASEP and (1.12), they proposed that the time-integrated
currents are the analogue of the height function, and should exhibit fluctuations
about their mean described by the Tracy-Widom distribution, again based on the
use of the nonlinear stochastic pde system as a model for the deterministic evolution
from random initial data. As one example, they consider the quantity

Φpx, tq “

ż t

0

jpx, t1qdt1 ´

ż x

0

upx1, 0qdx1 ,

where upx, tq arises as a sort of continuum limit of a particle system obeying a dis-
crete analogue of a system of conservation laws taking the form Btupx, tq`Bxjpx, tq “
0, in which jpx, tq is a local current density for upx, tq. The authors suggest a dual
interpretation of Φpx, tq as the height function from a KPZ equation, and thus arrive
at the proposal that

Φpx, tq » a0t` pΓtq
1{3 ξTW ,
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where a0 and Γ are model-dependent parameters, and ξTW is a random amplitude
with Tracy-Widom distribution.

Our main result is the analogue of the relations (1.11) for the harmonic oscillator
with short range interactions and (1.14) for the harmonic oscillator. For stating our
result, we first calculate the dispersion relation |ωpkq| for the harmonic oscillator
with short range interaction in the limit N Ñ 8 obtaining

fpkq “ |ωpkq| “

d

2
m
ÿ

s“1

κs p1´ cosp2πksqq , (1.15)

see (1.28). The points k “ 0, 1 contribute to the fastest moving peaks of the
correlation functions that have a velocity ˘v0 where v0 “

a

řm
s“1 s

2κs “ f 1p0q{p2πq.
If f2pkq ă 0 for all 0 ă k ď 1{2 then as t Ñ 8 the following holds uniformly in
j P Z (cf. Theorem 1.6 and Figure 1.1):

Sαα1pj, tq “
1

2βλ0t1{3

„

p´1qα`α
1

Ai
ˆ

j ´ v0t

λ0t1{3

˙

` Ai
ˆ

´
j ` v0t

λ0t1{3

˙

`O
`

t´1{2
˘

, α, α1 “ 1, 2

S33pj, tq “
1

2β2λ2
0t

2{3

„

Ai2
ˆ

j ´ v0t

λ0t1{3

˙

` Ai2
ˆ

´
j ` v0t

λ0t1{3

˙

`O
`

t´5{6
˘

,

(1.16)

where Aipwq “ 1
π

ş8

0
cospy3{3 ` wyqdy, w P R, is the Airy function, and λ0 :“

1
2

´

1
v0

řm
s“1 s

4κs

¯1{3

. The above formula is the linear analogue of the Tracy-Widom
distribution in (1.11).

Furthermore, we can tune the spring intensities κs, s “ 1, . . . ,m in (1.15) so
that we can find an pm´ 1q-parameter family of potentials such that for j „ ˘v˚t,
with 0 ď v˚ ă v0, one has

Sαα1pj, tq “ O
ˆ

1

t
1
4

˙

, α, α1 “ 1, 2 , S33pj, tq “ O
ˆ

1

t
1
2

˙

, as tÑ 8 .

In this case the local behaviour of the correlation functions is described by the
Pearcey integral (see Theorem 1.7 and Figures 1.2, 1.3 below).

For example a potential with such behaviour is given by a spring interaction of

the form κs “
1

s2
for s “ 1, . . . ,m and m even (see Example 1.8 below).

In Section 1.3 we study numerically small nonlinear perturbations of the har-
monic oscillator with short range interactions and our results suggest that the be-
haviour of the fastest peak has a transition from the Airy asymptotic (1.16) to
the Tracy-Widom asymptotic (1.11), depending on the strength of the nonlinearity.
Namely the asymptotic behaviour in (1.11) that has been conjectured for nearest
neighbour interactions seems to persist also for sufficiently strong nonlinear pertur-
bations of the harmonic oscillator with short range interactions. Remarkably, our
numerical simulations indicate that the non generic decay in time of other peaks
in the correlation functions persists under small nonlinear perturbations with the
same power law t´1{4 as in the linear case, see e.g. Figures 1.4 and 1.6.

So as not to overlook a large body of related work, we observe that the quan-
tities we consider here are somewhat different than those considered in the study
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of thermal transport, though there is of course overlap. (We refer to the Lecture
Notes [101] for an overview of this research area and also the seminal paper [140].)
As mentioned above, we study the dynamical evolution of space-time correlation
functions and the statistical description of random height functions, where the only
randomness comes from the initial data. By comparison, in the consideration of
heat conduction and transport in low dimensions, anharmonic chains are often con-
nected at their ends to heat reservoirs of different temperatures, and randomness is
present primarily in the dynamical laws, not only in fluctuations of initial data.

This chapter is organized as follows. In Section 1.1 we study the harmonic
oscillator with short range interactions, and we introduce the necessary notation
and the change of coordinates q Ñ r that enables us to study correlation functions.
We then study the time decay of the correlation functions via steepest descent
analysis, and we show that the two fastest peaks travelling in opposite directions
originate from the points k “ 0 and k “ 1 in the spectrum. Such peaks have a decay
described by the Airy scaling. We then show the existence of potentials such that
the correlation functions have a slower time decaying with respect to "Airy peaks".
In Section 1.2 we show that the harmonic oscillator with short range interactions
has a complete set of local integrals of motion in involution and the correlation
functions of such integrals have the same structure as the energy-energy correlation
function. Further, we show that the evolution equations for the generalized position,
momentum can be written in the form of conservation laws which have a potential
function. For the case of the harmonic oscillator with nearest neighbour interaction,
we show that this function is a Gaussian random variable and determine the leading
order behaviour of its variance as t Ñ 8. This may be viewed as the analogue of
formula (1.14) for the linear case. Finally, in Section 1.3 we study numerically the
evolution of the correlation functions after adding nonlinear perturbations to our
model.

1.1 The harmonic oscillator with short range inter-
actions

As it was previously explained, we rewrite the Hamiltonian for the harmonic oscil-
lator with short range interactions

Hpp,qq “
N´1
ÿ

j“0

p2
j

2
`

m
ÿ

s“1

κs
2

N´1
ÿ

j“0

pqj ´ qj`sq
2
“

N´1
ÿ

j“0

˜

p2
j

2
`

1

2

´

m
ÿ

s“1

τspqj`s ´ qjq
¯2

¸

so that we may define a Hamiltonian density

ej “
p2
j

2
`

1

2

´

m
ÿ

s“1

τspqj`s ´ qjq
¯2

,

which is local in the variables pp,qq for fixed m. Namely, if we let N Ñ 8, the
quantity ej involves a finite number of physical variables pp,qq. Recall that the
coefficients τs are the entries of the circulant localized square root T of the matrix
A by which we mean a solution of the equation (1.6) of the form (1.7). The matrix
T will also play a role in constructing a complete set of integrals that have a local
density in the sense that we just described for the energy.
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In order to state our result we have to introduce some notation. First of all, a
matrix A of the form (1.3) with a P RN is called a circulant matrix generated by
the vector a.

Definition 1.1 (m-physical vector and half-m-physical vector). Fix m P N. For
any odd N ą 2m, a vector x̃ P RN is said to be m-physical generated by x “

px0, x1, . . . , xmq P Rm`1 if x0 “ ´2
řm
s“1 xs and

x̃0 “x0 ,

x̃1 “x̃N´1 “ x1 ă 0, x̃m “ x̃N´m “ xm ă 0,

x̃k “x̃N´k “ xk ď 0, for 1 ă k ă m,

x̃k “0, otherwise,

while the vector x̃ P RN is called half-m-physical generated by y P Rm`1 if y0 “

´
řm
s“1 ys and

x̃k “yk, for 0 ď k ď m

x̃k “0, for m ă k ď N ´ 1.

Following the proof of a classic lemma by Fejér and Riesz, see e.g. [141, pg. 117
f], one can show that a circulant symmetric matrix A of the form (1.2) generated
by a m-physical vector a always has a circulant localized square root T that is
generated by a half-m physical vector τ .

Proposition 1.2. Fix m P N. Let the circulant matrix A be generated by an
m-physical vector a, then there exist a circulant matrix T generated by an half-m-
physical vector τ such that:

A “ T ᵀT .

Moreover, we can choose τ such that
řm
s“1 sτs ą 0. Then one has

řm
s“1 sτs “

a

řm
s“1 s

2κs.

Proof. In view of the notation introduced in (1.3), (1.4), and (1.7), we have just to
show that there exist τ0, . . . , τm P R satisfying

řm
s“0 τs “ 0 such that

Qpz´1
qQpzq “ `pzq for all z P Czt0u , (1.17)

where we have defined

Qpzq “ τ0 ` τ1z ` . . .` τmz
m ,

`pzq “ ´κmz
´m
´ . . .´ κ1z

´1
` a0 ´ κ1z ´ . . .´ κmz

m .
(1.18)

The existence of the τj’s is a consequence of the Fejér-Riesz lemma. For the con-
venience, we present a proof following the presentation in [141, pg. 117 f]. Denote
by P the polynomial of degree 2m given by P pzq :“ zm`pzq. Observe that for all
x P R we have

`peixq “ a0 ´ 2
m
ÿ

j“1

κj cospjxq ě a0 ´ 2
m
ÿ

j“1

κj “ 0.

By the positivity of κ1 equality holds in the inequality above iff cospxq “ 1. This
implies that P has no zeros on the unit circle |z| “ 1 except for z “ 1. We denote
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by ηk, 1 ď k ď ră, the zeros of P that lie within the unit disc |ηk| ă 1 and by ξk,
1 ď k ď rą, the zeros of P with |ξk| ą 1, recorded repeatedly according to their
multiplicities, so that

P pzq “ ´κmpz ´ 1qr0
ră
ź

k“1

pz ´ ηkq
rą
ź

k“1

pz ´ ξkq . (1.19)

Using the uniqueness of such a factorization for any polynomial together with the
relation z2mP pz´1q “ P pzq one obtains that ră “ rą and that the zeros can be
listed in such a way that ηk “ ξ´1

k for all 1 ď k ď ră. Moreover, we learn that r0 is
even with 1 ď % :“ r0{2 “ m´ ră. Now it follows from formula (1.19) that

lpzq “ z´mP pzq “ cpz´1
´ 1q%pz ´ 1q%

ră
ź

k“1

pz´1
´ ξkq

ră
ź

k“1

pz ´ ξkq ,

here

c :“ ´κmp´1q%
ră
ź

k“1

p´ξ´1
k q ‰ 0 .

Choosing d P C with d2 “ c we see that Qpzq :“ dpz ´ 1q%
śră

k“1pz ´ ξkq satisfies
(1.17). Next, we show that the coefficients of the polynomial Q are real. To this end,
we observe that P has real coefficients and therefore all non-real zeros of P come
in complex conjugate pairs with equal multiplicities. Therefore, the polynomial
d´1Qpzq “

řm
j“0 sjz

j has only real coefficients sj. Relation (1.17) implies a0 “

d2
řm
j“0 s

2
j . Consequently, d2 is the quotient of two positive numbers and d must

be real. Thus, we have τj “ dsj P R for all 0 ď j ď m. We complete the proof
by arguing that

řm
s“0 τs “ 0 and p

řm
s“1 sτsq

2 “
řm
s“1 s

2κs hold true. This can be
deduced from (1.17) via Qp1q2 “ `p1q “ 0 and ´2Q1p1q2 “ `2p1q “ ´

řm
s“1 2s2κs.

For example, if we consider m “ 1, and a0 “ 2κ1 and a1 “ aN´1 “ ´κ1. The
matrix T is generated by the vector τ “ pτ0, τ1q with τ0 “ ´

?
κ1 and τ1 “

?
κ1.

When m “ 2 and a0 “ 2κ1` 2κ2, a1 “ aN´1 “ ´κ1, a2 “ aN´2 “ ´κ2. The matrix
T is generated by the vector τ “ pτ0, τ1, τ2q with

τ0 “ ´

?
κ1

2
´

1

2

?
κ1 ` 4κ2, τ1 “

?
κ1,

τ2 “ ´

?
κ1

2
`

1

2

?
κ1 ` 4κ2,

so that the quantities rj are defined as

rj “ τ1pqj`1 ´ qjq ` τ2pqj`2 ´ qjq , j “ 0, . . . N ´ 1 .

Next we integrate the equation of motions. The Hamiltonian Hpp,qq represents
clearly an integrable system that can be integrated passing through Fourier trans-
form. Let F be the discrete Fourier transform with entries Fj,k :“ 1?

N
e´2iπjk{N with

j, k “ 0, . . . , N ´ 1. It is immediate to verify that

F´1
“ sF Fᵀ

“ F .
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Thanks to the above properties, the transformation defined by

ppp, pqq “ p sFp,Fqq

is canonical. Furthermore s

ppj “ ppN´j and s

pqj “ pqN´j, for j “ 1, . . . , N ´ 1, while pp0

and pq0 are real variables. The matrices T and A are circulant matrices and so they
are reduced to diagonal form by F :

FAF´1
“ FT ᵀTF´1

“ pFTF´1q
ᵀ
pFTF´1

q .

Let ωj denote the eigenvalues of the matrix T ordered so that FTF´1 “ diagpωjq.
Then |ωj|2 are the (non-negative) eigenvalues of the matrix A and

|ωj|
2
“
?
NpF ãqj, ωj “

?
NpF τ̃ qj, j “ 0, . . . , N ´ 1, (1.20)

where ã is the m-physical vector generated by a and τ̃ is the half m-physical vector
generated by τ according to Definition 1.1. It follows that

ω0 “ 0, ωj “ ωN´j , j “ 1, . . . , N ´ 1,

which implies |ωj|2 “ |ωN´j|2, j “ 1, . . . , N´1. The Hamiltonian H, can be written
as the sum of N ´ 1 oscillators

Hppp, pqq “
1

2

˜

N´1
ÿ

j“1

|ppj|
2
` |ωj|

2
|pqj|

2

¸

“

N´1
2
ÿ

j“1

|ppj|
2
` |ωj|

2
|pqj|

2 .

There are no terms involving pp0, pq0 since the conditions defining M (1.8) imply that
pp0 “ 0 and pq0 “ 0. The Hamilton equations are

$

’

&

’

%

d

dt
pqj “ ppj

d

dt
ppj “ ´|ωj|

2
pqj .

Thus the general solution reads:

pqjptq “ pqjp0q cosp|ωj|tq `
ppjp0q

|ωj|
sinp|ωj|tq ,

ppjptq “ ppjp0q cosp|ωj|tq ´ |ωj|pqjp0q sinp|ωj|tq , j “ 1, . . . , N ´ 1,

(1.21)

and pq0ptq “ 0 and pp0ptq “ 0. Inverting the Fourier transform, we recover the
variables q “ F´1

pq, p “ Fpp and r “ F´1
pr where

prj “ ωjpqj, j “ 0, . . . , N ´ 1 . (1.22)

Correlation Decay

We now study the decay of correlation functions for Hamiltonian systems of the
form (1.2). We recall the definition (1.9) of the Gibbs measure at temperature β´1

on the reduced phase space M, namely:

dµ “ ZNpβq
´1δ0

˜

N´1
ÿ

k“0

pk

¸

δ0

˜

N´1
ÿ

k“0

qk

¸

e´βHpp,qqdpdq
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where ZNpβq is the norming constant of the probability measure. For a function
f “ fpp,qq we define its average as

xfy :“

ż

R2N

fpp,qq dµ.

We first compute all correlation functions (1.10), then we will evaluate the limit
N Ñ 8. We first observe that (1.9) in the variables ppp, pqq :“ p sFp,Fqq becomes

dµ “ ZNpβq
´1

N´1
2
ź

j“1

e´βp|ppj |
2`|ωj |

2|pqj |
2qdppjdpqj (1.23)

where dppjdpqj “ d<ppjd=ppjd<pqjd=pqj and we recall that ppj “ ppN´j, pqj “ pqN´j,
prj “ ωjpqj, for j “ 1, . . . , N ´ 1.

From the evolution of ppj and pqj in (1.21) and (1.22), we arrive at the relations

A

ppjptqppkp0q
E

“

A

ppkp0q
´

ppjp0q cosp|ωj|tq ´ |ωj|pqjp0q sin p|ωj|tq
¯E

“ δj,k
1

β
cosp|ωj|tq,

xppjptqprkp0qy “
A

ωkpqkp0q
´

ppjp0q cosp|ωj|tq ´ |ωj|q̂jp0q sin p|ωj|tq
¯E

“ ´δj,k
ωj
|ωj|β

sin p|ωj|tq ,

xprjptqppkp0qy “

C

ωjppkp0q

˜

pqjp0q cosp|ωj|tq `
ppjp0q

|ωj|
sin p|ωj|tq

¸G

“ δj,k
ωj
|ωj|β

sinp|ωj|tq

A

prjptqprkp0q
E

“

C

ωkωjpqkp0q

˜

pqjp0q cosp|ωj|tq `
ppjp0q

|ωj|
sin p|ωj|tq

¸G

“ δj,k
1

β
cosp|ωj|tq.

Now we are ready to compute explicitly the correlation functions in the physical
variables. We show the computation just for the case SN11pj, tq, since all the other
cases are analogous:

SN11pj, tq “ xrjptqr0p0qy “
1

N

C

N´1
ÿ

k,l“1

prkptqprlp0qe
2πı jk

N

G

“
1

Nβ

N´1
ÿ

l“1

cos p|ωl|tq cos

ˆ

2π
lj

N

˙

“ SN22pj, tq .

(1.24)
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In the same way we have that:

SN12pj, tq “
1

Nβ

N´1
ÿ

l“1

sinp|ωl|tq cos

ˆ

2π
lj

N
` argpωlq

˙

SN21pj, tq “ ´
1

Nβ

N´1
ÿ

l“1

sinp|ωl|tq cos

ˆ

2π
lj

N
´ argpωlq

˙

(1.25)

SN31pj, tq “ SN32pj, tq “ SN13pj, tq “ SN23pj, tq “ 0 (1.26)

SN33pj, tq “
1

2
ppSN11q

2
` pSN22q

2
` pSN12q

2
` pSN21q

2
q `

3pN ´ 1q

2N2β2
. (1.27)

The dispersion relation given by (1.20) takes the form

ω` “ ´
m
ÿ

s“1

τs

ˆ

1´ cos

ˆ

2π
s`

N

˙˙

` i
m
ÿ

s“1

τs sin

ˆ

2π
s`

N

˙

|ω`|
2
“

N´1
ÿ

s“0

ase
´2πi s`

N “ 2
m
ÿ

s“1

κs

ˆ

1´ cos

ˆ

2π
s`

N

˙˙

,

where we substitute for the as their values as in (1.4). We are interested in obtaining
the continuum limit of the above correlation functions. We first define ωpkq to
provide continuum limits of ω` and |ω`|2, namely

ωpkq :“ ´
m
ÿ

s“1

τs p1´ cos p2πskqq ` i
m
ÿ

s“1

τs sin p2πskq

|ωpkq|2 “ 2
m
ÿ

s“1

κs p1´ cosp2πksqq ,

(1.28)

where the variable `{N has been approximated with k P r0, 1s. One may use equa-
tion (1.17) to check the consistency of the two equations of (1.28). To this end
observe that ωpkq “ Qpe´2πikq, Ęωpkq “ Qpe2πikq, and |ωpkq|2 “ `pe2πikq, we recall
that Qpzq, `pzq are defined in (1.18).

Lemma 1.3. Let ωpkq be defined as in (1.28), set fpkq :“ |ωpkq|, and denote
θpkq :“ argpωpkqq for 0 ď k ď 1, where the ambiguity in the definition of θ is settled
by requiring θ to be continuous with θp0q P p´π, πs. Then, for all k P r0, 1s we have

ωp1´ kq “Ęωpkq,

fp1´ kq “ fpkq, (1.29)
θp1´ kq ” ´θpkq pmod 2πq. (1.30)

Furthemore, the functions f and θ ´ π
2
are C8 on r0, 1s and they both possess odd

C8-extensions at k “ 0 which implies in particular θp0q “ π
2
.

Proof. The symmetries follow directly from the definition of ω in (1.28). From (1.28)
we also learn that |ωpkq|2 ě 2κ1p1´ cosp2πkqq ą 0 for k P p0, 1q. Thus the smooth-
ness of f and θ only needs to be investigated for k P t0, 1u. By symmetry we only
need to study the case k “ 0. The smoothness of the function θ may be obtained
from the expansion near k “ 0

cotpθpkqq “ ´kπ

řm
s“1 s

2τs
řm
s“1 sτs

`Opk3
q
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together with
řm
s“1 sτs ą 0 (see Proposition 1.2). Since cotpθp0qq “ 0 and =ωpkq ą 0

for small positive values of k we conclude that θp0q “ π
2
from the requirement

θp0q P p´π, πs. This also implies the existence of a smooth odd extension of θ ´ π
2

at k “ 0 because cotpθpkqq has such an extension. For the function f the claims
follow from the representation

fpkq “ 2πk

˜

m
ÿ

s“1

s2κs sinc2
pπskq

¸1{2

near k “ 0 where sincpxq “ sinpxq
x

denotes the smooth and even sinus cardinalis
function.

Lemma 1.4. In the limit N Ñ 8 the correlation functions have the following
expansion

SNαα1pj, tq `
δαα1

Nβ
“ Sαα1pj, tq `O

`

N´8
˘

, α, α1 “ 1, 2,

SN33pj, tq “ S33pj, tq `O
`

N´1
˘

,

where δαα1 denotes the Kronecker delta,

S11pj, tq “ S22pj, tq “
1

β

ż 1

0

cos p|ωpkq|tq cos p2πkjq dk (1.31)

S12pj, tq “
1

β

ż 1

0

sin p|ωpkq|tq cos p2πkj ` θpkqq dk,

S21pj, tq “ ´
1

β

ż 1

0

sin p|ωpkq|tq cos p2πkj ´ θpkqq dk, (1.32)

S33pj, tq “
1

2
pS2

11 ` S
2
22 ` S

2
12 ` S

2
21q, (1.33)

and θpkq “ argωpkq with ωpkq as in (1.28).

Proof. For any periodic C8-function g on the real line with period 1, gpkq “
ř

nPZ ĝne
2πikn, one has

1

N

N´1
ÿ

`“0

g

ˆ

`

N

˙

“
ÿ

mPZ

ĝmN “

ż 1

0

gpkqdk `O
`

N´8
˘

.

It follows from Lemma 1.3 that the integrands in (1.31)-(1.32) can be extended to
1-periodic smooth functions because we have for small positive values of k that

cos pfp´kqtq cos p´2πkjq “ cos pfpkqtq cos p´2πkjq “ cos pfp1´ kqtq cos p2πp1´ kqjq ,

sin pfp´kqtq cos p´2πkj ˘ θp´kqq “ ´ sin pfpkqtq cos p´2πkj ˘ pπ ´ θpkqqq

“ sin pfp1´ kqtq cos p2πp1´ kqj ˘ θp1´ kqq .

Observing in addition that the summands corresponding to ` “ 0 are missing in
(1.24)-(1.25) the first claim is proved. Together with (1.27) this also implies the
second claim.
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Next we analyse the leading order behaviour (as tÑ 8) of the limiting correla-
tion functions Sαα1pj, tq using the method of steepest descent. In order to explain
the phenomena that may occur we start by discussing S11. Denote

ξ :“
j

t
and φ˘pk, ξq :“ fpkq ˘ 2πξk . (1.34)

With these definitions and using the symmetry (1.29) we may write

S11pj, tq “
1

2β
<
ż 1

0

`

eitpfpkq`2πξkq
` eitpfpkq´2πξkq

˘

dk “
1

β
<
ż 1

0

eitφ´pk,ξqdk . (1.35)

The leading order behaviour (t Ñ 8) of such an integral is determined by the
stationary phase points k0 P r0, 1s, i.e. by the solutions of the equation B

Bk
φ´pk0, ξq “

0 which depend on the value of ξ.
Such stationary phase points do not need to exist. In fact, as we see in Lemma 1.5

b) below, the range of f 1 is given by some interval r´2πv0, 2πv0s so that there are
no stationary phase points for |ξ| ą v0. As in the proof of Lemma 1.4 one can
argue that the integrand <eitφ´pk,j{tq can be extended to a periodic smooth function
of k on the real line with period 1. It then follows from integration by parts that
S11pj, tq decays rapidly in time. More precisely, for every fixed δ ą 0 we have

S11pj, tq “ O
`

t´8
˘

as tÑ 8, uniformly for |j| ě pv0 ` δqt. (1.36)

This justifies the name of sound speed for the quantity v0.
In the case |ξ| ď v0 there always exists at least one stationary phase point k0 “

k0pξq P r0, 1s. Each stationary phase point may provide an additive contribution to
the leading order behaviour of

ş1

0
eitφ´pk, j{tqdk for j near ξt. However, the order of the

contribution depends on the multiplicity of the stationary phase point. For example,
let k0 be a stationary phase point of φ´p¨, ξq, i.e. B

Bk
φ´pk0, ξq “ 0. Denote by ` the

smallest integer bigger than 1 for which B`

Bk`
φ´pk0, ξq ‰ 0. Then k0 contributes a term

of order t1{` to the t-asymptotics of
ş1

0
eitφ´pk, j{tqdk for j in a suitable neighbourhood

of ξt.
Before treating the general situation let us recall the case of nearest neighbour

interactions. There we have

fpkq “ f1pkq “
a

2κ1p1´ cosp2πkqq “ 2
?
κ1 sinpπkq , k P r0, 1s .

The range of f 11 equals r´2πv0, 2πv0s with v0 “
?
κ1. For every |ξ| ď v0 there exists

exactly one stationary phase point k0pξq P r0, 1s of φ´p¨, ξq that is determined by
the relation cospπk0pξqq “ ξ{v0. A straight forward calculation gives

B2

Bk2
φ´pk0pξq, ξq “ f21 pk0pξqq “ ´2π2

b

v2
0 ´ ξ

2 “ 0 ô ξ “ ˘v0 .

Moreover, we have k0pv0q “ 0 and k0p´v0q “ 1 and therefore B3

Bk3φ´pk0p˘v0q,˘v0q “

¯2π3v0 ‰ 0. This implies that in addition to (1.36) we have S11pj, tq “ Opt´1{2q,
except for j near ˘v0t where S11pj, tq “ Opt´1{3q. In order to determine the be-
haviour near the least decaying peaks that travel at speeds ˘v0 we expand f1 near
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the stationary phase points. Let us first consider ξ “ v0 with k0 “ 0. Introducing
λ0 “

1
2π
|f31 p0q{2|

1{3 “ 1
2
v

1{3
0 we obtain

f1pkq “ 2πv0k ´
1

3
p2πλ0kq

3
`Opk5

q , as k Ñ 0.

Substituting y “ 2πλ0t
1{3k leads for k close to 0 to the asymptotic expression

tφ´pk, j{tq “
v0t´ j

λ0t1{3
y ´

1

3
y3
`Opt´2{3

q , as tÑ 8.

Using the well-known representation Aipwq “ 1
π

ş8

0
cospy3{3` wyqdy, w P R, of the

Airy function and performing a similar analysis around the stationary phase point
k0 “ ´1 for ξ “ ´v0 one obtains an asymptotic formula for the region not covered
by (1.36)

S11pj, tq “
1

2βλ0t1{3

„

Ai
ˆ

j ´ v0t

λ0t1{3

˙

` Ai
ˆ

´
j ` v0t

λ0t1{3

˙

`O
`

t´1{2
˘

, tÑ 8, (1.37)

uniformly for |j| ă pv0`δqt, for δ ą 0 (see e.g. [122]). Observe that due to the decay
of Aipwq for w Ñ ˘8, the Airy term is dominant roughly in the regions described
by v0t´ optq ă |j| ă v0t` oppln tq

2{3q.
From the arguments just presented it is not difficult to see that the derivation

of (1.37) only uses the following properties of f “ f1:

f2pkq ă 0 for all 0 ă k ď
1

2
, (1.38)

together with

f2p0q “ 0 , f3p0q ă 0 , and fp1´ kq “ fpkq for all 0 ď k ă
1

2
. (1.39)

Conditions (1.38) and (1.39) imply that statements (1.36) and (1.37) hold with
v0 “

f 1p0q
2π

ą 0 and λ0 “
1

2π
|f3p0q{2|1{3.

It follows from equation (1.29) and from statement a) of Lemma 1.5 below
that the conditions of (1.39) are always satisfied in our model. Condition (1.38),
however, might fail. Indeed, it is not hard to see that there exist open regions in the
κ-space Rm

` where there always exist stationary phase points k0 P p0, 1q of higher
multiplicity, i.e. with f2pk0q “ 0. In this situation the value of v :“ f 1pk0q

2π
lies in

the open interval p´v0, v0q (cf. Lemma 1.5 b). Then the decay rate of S11pj, tq for j
near vt is at most of order t´1{3. The decay is even slower (at least of order t´1{4)
if f3pk0q “ 0 holds in addition. We show in Theorem 1.7 that this may happen
for κ in some submanifold of Rm

` of codimension 1 (see also Examples 1.8 and 1.9).
Nevertheless, if κ2, . . ., κm are sufficiently small in comparison to κ1 then condition
(1.38) is always satisfied as we show in Theorem 1.6 c).

Before stating our main results of this section, Theorems 1.6 and 1.7, we first
summarize some more properties of the function f .

Lemma 1.5. Given pκ1, . . . , κmq with κ1 ą 0, κm ą 0, and κj ě 0 for 1 ă j ă m.
Denote fpkq “ |ωpkq| for 0 ď k ď 1 as introduced in Lemma 1.3 and define v0 :“

p
řm
s“1 s

2κsq
1
2 . Then the following holds:
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a) fp0q “ f2p0q “ 0 , f 1p0q “ 2πv0 , and f3p0q “ ´2π3

v0

řm
s“1 s

4κs .

b) f 1pr0, 1sq “ r´2πv0, 2πv0s. f 1 attains its maximum only at k “ 0 and its
minimum only at k “ 1.

c) Fix κ1 ą 0. Then the map f can be extended as a C8-function of the variables
pk, κ2, . . . , κmq on the set r0, 1s ˆ r0,8qm´1.

Proof. Statement a) follows directly from the last formula in the proof of Lemma 1.3
and from the expansion sinc2pxq “ 1´ x2

3
`Opx4q for small values of x:

fpkq “ 2πk

˜

m
ÿ

s“1

s2κs sinc2
pπskq

¸1{2

“ 2πv0k ´
π3

3v0

˜

m
ÿ

s“1

s4κs

¸

k3
`Opk5

q .

This representation also settles statement c). As we know already f 1p0q “ 2πv0 “

´f 1p1q we may establish statement b) by verifying that |f 1pkq| ă 2πv0 holds for all
k P p0, 1q. To this end we write f “ p

řm
s“1 h

2
sq

1{2 with hspkq “ 2
?
κs sinpπskq. Using

the Cauchy-Schwarz inequality we obtain for 0 ă k ă 1 that

|f 1pkq| “
|
řm
s“1 hspkqh

1
spkq|

p
řm
s“1 h

2
spkqq

1{2
ď

˜

m
ÿ

s“1

ph1sq
2
pkq

¸1{2

“ 2π

˜

m
ÿ

s“1

s2κs cos2
pπskq

¸1{2

ă 2πv0 ,

where the last inequality follows from | cospπkq| ă 1 and κ1 ą 0.

We are now ready to state our first main result in this section.

Theorem 1.6. Let m P N, fix δ ą 0, denote fpkq “ |ωpkq| as introduced in
Lemma 1.3, and set

v0 :“

d

m
ÿ

s“1

s2κs, λ0 :“
1

2

˜

1

v0

m
ÿ

s“1

s4κs

¸1{3

. (1.40)

a) For all α, α1 “ 1, 2, 3 we have rapid decay as t Ñ 8, uniformly for |j| ą
pv0 ` δqt, i.e.

Sαα1pj, tq “ O
`

t´8
˘

.

b) If f2pkq ă 0 for all 0 ă k ď 1{2 then as tÑ 8 the following holds uniformly
for |j| ă pv0 ` δqt:

S11pj, tq “
1

2βλ0t1{3

„

Ai
ˆ

j ´ v0t

λ0t1{3

˙

` Ai
ˆ

´
j ` v0t

λ0t1{3

˙

`O
`

t´1{2
˘

“ S22pj, tq ,

(1.41)

S12pj, tq “
1

2λ0t1{3β

ˆ

Ai
ˆ

´
j ` v0t

λ0t1{3

˙

´ Ai
ˆ

j ´ v0t

λ0t1{3

˙˙

`Opt´
1
2 q “ S21pj, tq ,

S33pj, tq “
1

2β2λ2
0t

2{3

„

Ai2
ˆ

j ´ v0t

λ0t1{3

˙

` Ai2
ˆ

´
j ` v0t

λ0t1{3

˙

`O
`

t´5{6
˘

.

c) For every κ1 ą 0 there exists ε “ εpκ1q ą 0 such that for all pκ2, . . . , κmq P
r0, εqm´1 we have f2pkq ă 0 for all 0 ă k ď 1{2.
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Proof. The rapid decay claimed in statement a) can be argued in the same way as
(1.36) for S11 “ S22. Due to relations (1.26) and (1.33) one only needs to consider
S12 and S21. Indeed, using Lemma 1.3 one may show that the imaginary parts of the
integrands used in the representation of S12 and S21 in (1.42) below have smooth
extensions to all k P R that are 1-periodic. This is all that is needed because
| B
Bk
φ˘pk, j{tq| ą 2πδ by Lemma 1.5 b) uniformly for k P r0, 1{2s and |j| ą pv0` δqt.
We have already argued above that conditions (1.38), (1.39) suffice to derive

the first claim of statement b) with v0 “
f 1p0q
2π

ą 0 and λ0 “
1

2π
|f3p0q{2|1{3. The

expressions for f 1p0q and f3p0q stated in Lemma 1.5 a) justify the definitions of
(1.40).

Using the symmetry relations (1.29) and (1.30) we derive a representation for
S12 and S21 that is suitable for a steepest descent analysis

S12pj, tq “
1

β

ż 1{2

0

´

sinpfpkqt´ 2πkj ´ θpkqq ` sinpfpkqt` 2πkj ` θpkqq
¯

dk

“
1

β
=
ż 1{2

0

´

eitφ´pk, j{tqe´iθpkq ` eitφ`pk, j{tqeiθpkq
¯

dk

S21pj, kq “ ´
1

β
=
ż 1{2

0

´

eitφ´pk, j{tqeiθpkq ` eitφ`pk, j{tqe´iθpkq
¯

dk

(1.42)

where φ˘pk, ξq “ fpkq˘ 2πξk as in (1.34) above. Expanding for k close to zero one
obtains φ˘pk, j{tq “ 2πv0k´

1
3
p2πq3λ3

0k
3˘2πk j

t
`Opk5q. Substituting y “ 2πλ0t

1{3k
leads to the asymptotic expression

tφ˘pk, j{tq “
v0t˘ j

λ0t
1
3

y ´
1

3
y3
`Opt´

2
3 q as tÑ 8.

Keeping in mind that θp0q “ π
2
we obtain

S12pj, tq “
1

2λ0t1{3β

ˆ

Ai
ˆ

´
j ` v0t

λ0t1{3

˙

´ Ai
ˆ

j ´ v0t

λ0t1{3

˙˙

`Opt´
1
2 q “ S21pj, tq .

Regarding the expansion for t Ñ 8 of S33pj, tq it follows immediately from the
expression (1.33) and the expansions of Sαα1pj, tq with α, α1 “ 1, 2.

Statement c) follows from the continuous dependence of the derivatives f2 and
f3 on the parameters pκ2, . . . , κmq (see Lemma 1.5 c) and from simple facts for
the case of nearest neighbour interactions f1pkq “ 2

?
κ1 sinpπkq discussed above.

Indeed, from f2p0q “ 0 and from f31 p0q ă 0 it follows that there exists such an ε ą 0
such that f3pkq ă 0 and hence also f2pkq ă 0 for k in some region p0, δq uniformly
in pκ2, . . . , κmq P r0, εq

m´1. As f21 pkq ă ´2π2?κ1 sinpπδq for all k P rδ, 1{2s we may
prove the claim in this region by reducing the value of ε if necessary.

Theorem 1.6 provides the leading order asymptotics of the limiting correlations
Sαα1pj, tq for t Ñ 8 in the simple situation that the second derivative of the dis-
persion relation is strictly negative on the open interval p0, 1q (cf. condition (1.38)).
Moreover, statement c) shows that there is a set of positive measure in parame-
ter space κ P Rm

` where this happens. For general values of κ, however, different
phenomena may appear. In particular, there might exist stationary phase points of
higher order leading to slower time-decay of the correlations (see discussion before
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the statement of Lemma 1.5). By a naive count of variables and equations one
might expect that decay rates t´1{p3`pq occur on submanifolds of parameter space
of dimension m ´ p. Theorem 1.7 shows that this is indeed the case for p “ 1.
Moreover, we present in this situation a formula for the leading order contribution
of the corresponding stationary phase points to the asymptotics of Sαα1pj, tq. De-
spite being non-generic in parameter space it is interesting to note that decay rates
t´1{4 can be observed numerically (see Figures 1.2 and 1.3). There is also a second
issue that may arise if condition (1.38) fails. Namely, for v P p´v0, v0q there can be
several values of k P p0, 1

2
s satisfying f 1pkq˘ 2πv “ 0 so that the contributions from

all these stationary points need to be added to describe the leading order behaviour
for j near vt.

Theorem 1.7. Recall from (1.28) the formula for the dispersion relation

fpkq “ |ωpkq| “

d

2
m
ÿ

s“1

κs p1´ cosp2πksqq .

a) For m ě 3 there is an pm ´ 1q-parameter family of potentials for which there
exist k˚ “ k˚pκq P p0, 1

2
q with

f2pk˚q “ 0, f3pk˚q “ 0, f pivqpk˚q ‰ 0, and 0 ă v˚ :“
f 1pk˚q

2π
ă v0, (1.43)

with v0 as in (1.40). Set λ˚ :“
1

2π
p|f pivqpk˚q|{4!q

1
4 ą 0. Then for j Ñ 8 and tÑ 8

in such a way that
v˚t´ j

λ˚t
1
4

is bounded, the contribution of the stationary phase point k˚ to the correlation func-
tions is given by:

S11pj, tq, S22pj, tq :
1

2βπλ˚t
1
4

<
ˆ

eitφ´pk
˚,j{tqP˘

ˆ

v˚t´ j

λ˚t
1
4

˙˙

`Opt´
1
2 q, (1.44)

S12pj, tq :
1

2βπλ˚t
1
4

=
ˆ

eitφ´pk
˚,j{tq´iθpk˚qP˘

ˆ

v˚t´ j

λ˚t
1
4

˙˙

`Opt´
1
2 q , (1.45)

S21pj, tq : ´
1

2βπλ˚t
1
4

=
ˆ

eitφ´pk
˚,j{tq`iθpk˚qP˘

ˆ

v˚t´ j

λ˚t
1
4

˙˙

`Opt´
1
2 q , (1.46)

where φ˘pk, ξq “ fpkq ˘ 2πξk, θpkq “ argωpkq as defined in Lemma 1.3, P˘paq
denote the Pearcey integrals, [38],

P˘paq “
ż 8

´8

eip˘y
4`ayqdy, a P R, (1.47)

and P˘ has to be chosen according to the sign of f pivqpk˚q. If j Ñ ´8 with bounded
pv˚t ` jq{pλ˚t1{4q the contributions of the stationary point k˚ can be obtained from
the ones presented in (1.44)-(1.46) by replacing φ´ by φ`, θ by ´θ, and j in the
argument of P˘ by ´j.
b) When k˚ “ 1

2
one has f 1p1{2q “ 0 and f3p1{2q “ 0 by the symmetry (1.29). For

each m ě 2 there is an pm ´ 1q-parameter family of potentials so that f2p1{2q “ 0
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and f pivqp1{2q ‰ 0 holds in addition. In this case the contribution of the stationary
phase point k˚ “ 1{2 to the correlation functions in the asymptotic regime t Ñ 8

with bounded j{t
1
4 is given by (λ˚ defined as in statement a) with k˚ “ 1

2
)

S12pj, tq, S21pj, tq :´ sgn p
ÿ

s odd

τsq
p´1qj

2βπλ˚t
1
4

=
ˆ

eitfp
1
2
qP˘

ˆ

j

λ˚t
1
4

˙˙

`Opt´
1
2 q

S11pj, tq, S22pj, tq :
p´1qj

2βπλ˚t
1
4

<
ˆ

eitfp
1
2
qP˘

ˆ

j

λ˚t
1
4

˙˙

`Opt´
1
2 q

S33pj, tq :
1

4β2π2pλ˚q2t
1
2

ˇ

ˇ

ˇ

ˇ

P˘
ˆ

j

λ˚t
1
4

˙ˇ

ˇ

ˇ

ˇ

2

`Opt´
3
4 q .

(1.48)

Proof. We begin by proving formula (1.44) for the momentum or position correla-
tions S22pj, tq “ S11pj, tq under the assumption that we have found a k˚ P p0, 1{2q
for which all the relations of (1.43) are satisfied. From (1.35) and Lemma 1.3 we
obtain

S11pj, tq “ S22pj, tq “
1

β
<
ż 1

2

0

´

eitpfpkq`2πk j
t
q
` eitpfpkq´2πk j

t
q
¯

dk. (1.49)

In order to compute the contribution of the stationary phase point k˚ to the large
t asymptotics of the integral in (1.49) we expand

fpkq “ fpk˚q ` 2πv˚pk ´ k˚q ` f pivqpk˚qpk ´ k˚q4{4!`Oppk ´ k˚q5q .

Introducing the change of variables

y “ 2πλ˚pk ´ k˚qt
1
4 , λ˚ “

1

2π
p|f pivqpk˚q|{4!q

1
4

one obtains

tfpkq ´ 2πjk “ tfpk˚q ´ 2πjk˚ ` y
v˚t´ j

λ˚t
1
4

˘ y4
`Opt´

1
4 q

where the ˘ sign is determined by the sign of f pivqpk˚q. Then using the Pearcey
integral (1.47), the expansion (1.44) can be derived in a straightforward way from
(1.49). In a similar way the expansions (1.45) and (1.46) are obtained by applying
the above analysis to the expression (1.42).

In the situation k˚ “ 1{2 of statement b) one uses in addition that tφ˘p1{2, j{tq “
tfp1{2q ˘ jπ, ωp1{2q “ ´

řm
s“1 τsp1´ cospπsqq “ ´2

ř

s odd τs, see (1.28), and conse-
quently e˘iθp1{2q “ ´ sgnp

ř

s odd τsq. The leading order contribution of the stationary
phase point k˚ “ 1{2 to the integral representation of, say, S12 in (1.42) is then given
by

´sgn

˜

ÿ

s odd

τs

¸

p´1qj

2βπλ˚t
1
4

=
ˆ

eitfp
1
2
q

ˆ
ż 0

´8

eip˘y
4´wyqdy `

ż 0

´8

eip˘y
4`wyqdy

˙˙

with w “ j

λ˚t
1
4
. In this way and with the help of (1.33) all relations of (1.48) can

be deduced.
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We now show the existence of a codimension 1 manifold in parameter space
that exhibits such higher order stationary phase points in the situation of b) where
k˚ “ 1{2. As we have f3p1{2q “ 0 by symmetry (1.29) we only need to solve

f2
ˆ

1

2

˙

“ 0 which is equivalent to
m
ÿ

s“1

s2
p´1qs`1κs “ 0 . (1.50)

The solution of the above equation is

κm “
p´1qm

m2

m´1
ÿ

s“1

s2
p´1qs`1κs. (1.51)

It is clear from the above relation that for m even, choosing κ1 sufficiently big
one has κm ą 0 while for m odd, it is sufficient to choose κs`1 ą

s2

ps`1q2
κs ą 0, s

odd and 1 ď s ď m ´ 2. Note that in the situation of (1.51) f pivqp1
2
q ‰ 0 holds

iff
řm
s“1 κss

4p´1qs`1 ‰ 0. This condition simply removes an pm ´ 2q-dimensional
plane from our manifold (1.51) which defines a hyperplane in the positive cone of
the m-dimensional parameter space. Therefore we have found an pm´1q-parameter
family of potentials such that the correlation functions decay as in (1.48).

Finally, we show for m ě 4 our claim about the solution set of (1.43). The
case m “ 3 is treated in Example 1.9. Our strategy is to first show that there
exists a κ˚ that satisfies f2p1{4,κ˚q “ 0, f3p1{4,κ˚q “ 0, f 1p1{4,κ˚q ą 0, and
f pivqp1{4,κ˚q ‰ 0. We then invoke the Implicit Function Theorem to show the
existence of the pm´ 1q-dimensional solution manifold, where the stationary phase
point k˚ „ 1{4 may and will depend on the parameters. The conditions f2p1

4
,κq “ 0

and f3p1
4
,κq “ 0 imply

f3
ˆ

1

4

˙

“ 0 Ñ
ÿ

s odd

p´1q
s´1

2 s3κs “ 0, (1.52)

f2
ˆ

1

4

˙

“ 0 Ñ

˜

2
ÿ

s odd

κs ` 2
ÿ

s even

κsp1´ p´1q
s
2 q

¸

ÿ

s even

s2κsp´1q
s
2 ´

˜

ÿ

s odd

sκsp´1q
s´1

2

¸2

“ 0 .

(1.53)

One needs to treat the case m odd and even separately. Here we consider only the
case m even. The odd case can be treated in a similar way. Equation (1.52) gives

κm´1 “
p´1q

m
2

pm´ 1q3

m´3
ÿ

s odd,s“1

p´1q
s´1

2 s3κs.

Ifm “ 2` with ` even, a positive solution κm´1 exists, provided that κ1 is sufficiently
big. If m “ 2` with ` odd then one needs to require 0 ă κs ă

ps`2q3

s3
κs`2 for

s “ 1, 5, 9, . . . ,m´ 5.
The equation (1.53) is a linear equation in κ4 and we solve it for κ4 obtaining

κ4 “
1

32

˜

m´3
ř

s odd,s“1

κsp´1q
s´1

2 sp1´ s2

pm´1q2
q

¸2

m´3
ř

s odd,s“1

κsp1`
s3p´1q

m`s´1
2

pm´1q3
q `

m
ř

s even,s“2

κsp1´ p´1q
s
2 q

`
1

16

m
ÿ

s even,s‰4,s“2

s2κsp´1q
s´2

2 .
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We observe that the first term in the above expression is always positive, while the
second term is positive if we require that κs ą ps`2q2

s2
κs`2 ą 0 for s “ 6, 10, 14, . . . ,m´

2. The remaining two conditions f 1p1{4q ą 0 and f pivqp1{4q ‰ 0 are easy to satisfy:
The sign of f 1p1{4q agrees with the sign of

ř

s odd sκsp´1q
s´1

2 and can be made pos-
itive by choosing κ1 sufficiently large. In the situation where (1.52) and (1.53) hold
the fourth derivative f pivqp1{4q does not vanish iff

ř

s even s
4κsp´1q

s
2 ‰ 0. This can be

achieved by adjusting, for example, the value of κ2. We have now shown that there
exists κ˚ P Rm

` such that the first four derivatives of f have all desired properties at
k “ 1{4. In order to obtain the pm´1q-dimensional solution manifold in parameter
space, we apply the Implicit Function Theorem to F pk,κq :“ pf2pk,κq, f3pk,κqq.
By a straight forward computation on sees that

det

„

BF

Bpk, κ4q
p1{4,κ˚q



“ ´f pivqp1{4,κ˚q
Bf2

Bκ4

p1{4,κ˚q ‰ 0 .

We can therefore solve F pk,κq “ 0 near p1{4,κ˚q by choosing pk, κ4q as functions
of the remaining parameters κj with j ‰ 4.

Example 1.8. m even. Choosing κs “ 1
s2

for s “ 1, . . . ,m one has that conditions
(1.50) are satisfied and f pivq

`

1
2

˘

ă 0.
For κs “ 1

sα
, s “ 1, . . . ,m ´ 1, 2 ă α ă 3, and κm given by (1.51), there is

α “ αpmq such that κm ă κm´1.
m odd. Choosing κs “ 1

s
, for s “ 1, . . .m ´ 1, one has from (1.51) κm “ m´1

2m2 ă

κm´1 and f pivqp1
2
q ą 0.

In all these examples the correlation functions Sαα1pj, tq, α, α1 “ 1, 2 decrease as t´
1
4

near j “ 0.

Example 1.9. We consider the case m “ 3 and we want to get a potential that
satisfies (1.43) with v˚ ą 0. We chose as a critical point of fpkq the point k˚ “ 1

3

thus obtaining the equations

κ2 “
1

8
κ1, κ3 “

7

72
κ1 .

The speed of the peak is v˚ “
?

2κ1

4
and f pivqp1

3
q “ ´68

?
6

6
π4?κ1.

The correlation functions Sαα1pj, tq, α, α1 “ 1, 2 decrease as t´
1
4 and S33pj, tq de-

creases like t´
1
2 as tÑ 8 and j „ v˚t, see Figure 1.3. Note that one may obtain a

2-parameter family of solutions of (1.43) by picking, for example, the particular solu-
tion related to κ1 “ 1 and by showing that the system of equations pf2, f3qpk,κq “ 0
can be solved near (1/3, 1, 1/8, 7/72) by choosing k and κ3 as functions of κ1 and
κ2 using the Implicit Function Theorem in the same way as at the end of the proof
of Theorem 1.7.
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Figure 1.1: Correlation functions Sαα1 for the harmonic oscillator with nearest neigh-
bour interaction with κ1 “ 1 (top left) and the harmonic potential with κs “

1
s2

for s “ 1, 2 in Example1.8 (center left) and the potential of Example 1.9 in the
bottom left. In the second column the Airy scaling (1.41) of the corresponding
fastest moving peaks. The Airy asymptotic is perfectly matching the fastest peak
and capturing several oscillations.
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Figure 1.2: Correlation function S33pj, tq for the potential κs “ 1{s2 for m “ 2 in
Example 1.8 for several values of time on the left. On the right one sees that the
Pearcey scaling provided in (1.48) matches perfectly for the central peak of S33pj, tq.

Figure 1.3: Potential of Example 1.9. The top left figure displays S33pj, tq for
several values of t. The scaling of S33 according to the Airy function in Theorem 1.6
for the fastest moving peak and the scaling of the slower moving peak according
to the Pearcey integral are shown top right and bottom left, respectively. The
corresponding critical points of the derivative of the dispersion function can be seen
in the bottom right figure.
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1.2 Complete set of integrals with local densities,
currents and potentials

1.2.1 Circulant hierarchy of integrals

In this section we construct a complete set of conserved quantities that have local
densities. The harmonic oscillator with short range interaction is clearly an inte-
grable system. A set of integrals of motion is given by the harmonic oscillators in
each of the Fourier variables: pHj “

1
2
p|ppj|

2 ` |ωj|
2|pqj|

2q, j “ 0, . . . N´1
2

. However,
when written in the physical variables p and q, the quantities

pHj “
1

2

N´1
ÿ

k,l“0

Fj,kFj,lppkpl ` |ωj|
2qkqlq

depend on all components of the physical variables. We now construct integrals of
motion each having a density that involves only a limited number of components of
the physical variables and this number only depends on the range m of interaction.

For this purpose, we denote by tekuN´1
k“0 the canonical basis in RN .

Theorem 1.10. Let us consider the Hamiltonian

Hpp,qq “
1

2
pp,pq `

1

2
pq, Aqq ,

with the symmetric circulant matrix A as in (1.2), (1.3). Define the matrices
tGku

M
k“1 to be the symmetric circulant matrix generated by the vector 1

2
pek ` eN´kq

and tSkuMk“1 to be the antisymmetric circulant matrix generated by the vector 1
2
pek´

eN´kq. Then the family of Hamiltonians defined as

Hkpp,qq “
1

2
pᵀGkp`

1

2
qᵀT ᵀGkTq “

1

2

N´1
ÿ

j“0

rpjpj`k ` rjrj`ks , (1.54)

Hk`N´1
2
pp,qq “pᵀT ᵀSkTq “

1

2

N´1
ÿ

j“0

«˜

m
ÿ

`“0

τ`pj``

¸

prj`k ´ rj´kq

ff

, k “ 1, . . . ,
N ´ 1

2

together with H0 :“ H forms a complete family pHjq0ďjďN´1 of integrals of motion
that, moreover, is in involution.

Proof. Observe first that the Hamiltonian H0 “ H is included in the description of
formula (1.54) as G0 equals the identity matrix. Using the symmetries Gᵀ

k “ Gk,
0 ď k ď pN ´ 1q{2, the Poisson bracket tF,Gu “ p∇qF,∇pGq ´ p∇qG,∇pF q may
be evaluated in the form
tHk, H`u “ qᵀ

`

T ᵀGkTG` ´ T
ᵀG`TGk

˘

p , for 0 ď k, ` ď N´1
2

,
tHk, H`u “ pᵀ

`

T ᵀSkTT
ᵀS`T ´ T

ᵀS`TT
ᵀSkT

˘

q , for N`1
2
ď k, ` ď N ´ 1,

tHk, H`u “ qᵀT ᵀGkTT
ᵀS`Tq´ pᵀT ᵀS`TGkp , for 0 ď k ď N´1

2
, N`1

2
ď ` ď N ´ 1.

All these expressions vanish. To see this, it suffices to observe that multiplication
is commutative for circulant matrices and, for the bottom line, that S` is skew
symmetric: Sᵀ

` “ ´S`.
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Now we introduce the local densities corresponding to the just defined integrals
of motion

e
pkq
j “

#

1
2
ppjpj`k ` rjrj`kq , for k “ 1, . . . , N´1

2

p
řm
l“0 τlpj`lq prj`k ´ rj´kq , for k “ N`1

2
, . . . , N .

together with their correlation functions

S
pNq
pk`3,n`3qpj, tq :“

A

e
pkq
j ptqe

pnq
0 p0q

E

´

A

e
pkq
j ptq

EA

e
pnq
0 p0q

E

.

and limits
Sk,npj, tq “ lim

NÑ8
S
pNq
k,n pj, tq.

Following the same ideas as before, it is straightforward to compute those limits
explicitly as

Sk`3,n`3pj, tq “
1

2β2

ż 1

0

ż 1

0

cos pfpxqtq cos pfpyqtq cos p2πxpj ´ nqq cos p2πypj ` kqq

` cos pfpxqtq cos pfpyqtq cos p2πxjq cos p2πypj ` k ´ nqq

` sin pfpxqtq sin pfpyqtq cos p2πxpj ´ nqq cos p2πypj ` kqq cospθpxqq cospθpyqq

` sin pfpxqtq sin pfpyqtq sin p2πxpj ´ nqq sin p2πypj ` kqq sinpθpxqq sinpθpyqqdxdy ,

for k, n ď N´1
2

,

Sn`3,k`3pj, tq “
1

2β2

ż 1

0

ż 1

0

fpxqfpyq sin pfpxqtq sin pfpyqtq sin p2πxjq sin p2πyjq sin p2πxnq sin p2πykq

` f 2
pxq cospfpxqtq cospfpyqtq cos p2πxjq cos p2πyjq sin p2πynq sin p2πykq dxdy ,

for k, n ą N´1
2

and

Sn`3,k`3pj, tq “
1

2β2

ż 1

0

ż 1

0

cos p2πxj ´ θpxqq cos p2πyjq sin p2πykq sin p2πynq sinppfpxq ` fpyqqtq

` cos p2πxj ´ θpxqq sin p2πyjq sin p2πykq cos p2πynq sinppfpxq ´ fpyqqtqdxdy ,

for k ą N´1
2
, n ď N´1

2
.

From these explicit formulas, one can deduce that they have the same scaling
behaviour as the energy-energy correlation function S33 when tÑ 8.

1.2.2 Currents and potentials

In this subsection we write the evolution with respect to time of rj, pj and ej in the
form of a (discrete) conservation law by introducing the currents. Each conservation
law has a potential function that is a Gaussian random variable. In the final part
of this subsection we determine the leading order behaviour of the variance of this
Gaussian random variable as tÑ 8 in the case of nearest neighbour interactions.
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For introducing the currents we recall that r “ Tq with T as in (1.7). Then one
has

9rj “
ÿ

`

Tj `p` “
m
ÿ

`“1

τ`ppj`` ´ pjq, rj`N “ rj

9pj “ ´
ÿ

`

T` jr` “
m
ÿ

`“1

τ`prj ´ rj´`q, pj`N “ pj, j “ 0, . . . , N ´ 1.

(1.55)

To write the above equation in the form of a discrete conservation law we introduce
the local currents

J prq
j :“

m´1
ÿ

s“0

pj`1`s

m
ÿ

`“s`1

τ` , J ppq
j :“

m
ÿ

s“1

rj`1´s

m
ÿ

`“s

τ`.

Then the equations of motion (1.55) can be written in the form

9rj “ J prq
j ´ J prq

j´1

9pj “ J ppq
j ´ J ppq

j´1, j “ 0, . . . , N ´ 1.

From the above equations it is clear that the momentum pj and the generalized

elongation rj are locally conserved. The evolution of the energy ej :“
1

2
p2
j `

1

2
r2
j at

position j takes the form

9ej “ J peq
j ´ J peq

j´1 , J peq
j “

m
ÿ

s“1

τs

s´1
ÿ

`“0

rj`1´s``pj`1``.

We remark that all the currents J prq
j , J ppq

j and J peq
j are local quantities in the

variables q and p. We recall the notation of the introduction

upj, tq “ prjptq, pjptq, ejptqq,

and we introduce the vector of currents Jpj, tq “ pJ prq
j ptq,J ppq

j ptq,J peq
j ptqq . The

equations of motion take the compact form

d

dt
upj, tq “ Jpj, tq ´ Jpj ´ 1, tq.

We define a potential function for the above conservation law

Φpj, tq :“

ż t

0

Jpj, t1qdt1 `
j
ÿ

`“0

up`, 0q.

Then it is straightforward to verify that Φtpj, tq “ Jpj, tq and Φpj, tq ´ Φpj ´
1, tq “ upj, tq. The quantities Φ1pj, tq and Φ2pj, tq can be expressed as sums of
independent centered Gaussian random variables and are therefore also Gaussian
random variables with zero mean and variance xpΦ1pj, tqq

2y and xpΦ2pj, tqq
2y, where

all the averages are taken with respect to the distribution (1.9), see also (1.23). We
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calculate the variance for the case of the harmonic oscillator with nearest neighbour
interactions. In this particular case

Φ1pj, tq “
?
κ1

ż t

0

pj`1pt
1
qdt1 `

j
ÿ

`“0

r`p0q “
?
κ1pqj`1ptq ´ q0p0qq

Φ2pj, tq “
?
κ1

ż t

0

rjpt
1
qdt1 `

j
ÿ

`“0

p`p0q .

(1.56)

After some lengthy calculations one obtains:

lim
NÑ8

xpΦ1pj, tqq
2
y “

2κ1

β

ż 1

0

|ωpkq|´2
r1´ cos p|ωpkq|tq cos p2πpj ` 1qkqs dk (1.57)

lim
NÑ8

xpΦ2pj, tqq
2
y “

2κ1

β

ż 1

0

|ωpkq|´2
p1´ cos p|ωpkq|tqq cos p2πpj ` 1qkqdk `

j ` 1

β
.

(1.58)

Evaluating the r.h.s. of the above expressions in the limit t Ñ 8 we arrive to the
following theorem.
Theorem 1.11. In the limit N Ñ 8 and tÑ 8 the quantities Φ1pj, tq and Φ2pj, tq
defined in (1.56) are Gaussian random variables that have the following large t
behaviour:

lim
NÑ8

Φ1pj, tq “ N p0, σ2
1q and lim

NÑ8
Φ2pj, tq “ N p0, σ2

2q .

The leading order behaviour of the variances σ2
1 and σ2

2 agrees. In the physically
interesting region |j|

t
ď
?
κ1 it is given by

σ2
1 “

t
?
κ1

β
`O

`

t
1
3

˘

“ σ2
2 .

The proof of the above theorem relies on steepest descent analysis of the oscilla-
tory integrals in (1.58). But because the integrand is actually quite large ( „ Ct2)
near k “ 0, we consider the following Cauchy-type integral instead,

F0pzq “
1

2π2β

ż 1{2

´1{2

1´ cos p|ωpkq|tq

pk ´ zq2
cos p2πpj ` 1qkqdk ,

which gives the leading order asymptotic behaviour of the integrals appearing in
(1.58), since

2κ1

β

ż 1{2

´1{2

|ωpkq|´2
p1´ cos p|ωpkq|tqq cos p2πpj ` 1qkqdk ´ F0p0q Ñ 0 as t, j Ñ 8 .

For |j|
t
ă p1 ´ εq

?
κ1, ε ą 0, the analysis of F0pzq is quite straightforward - a

standard stationary phase calculation combined with a contour deformation to per-
mit the evaluation at z “ 0. For t and j growing to 8 such that |j|

t
«
?
κ1, the

analysis is more complicated because the point of stationary phase is encroaching
upon the origin, where the integrand itself is actually large as t Ñ 8. For this
case, one must construct a local parametrix, following quite closely the analysis
presented in [95], and we omit the details of this analysis. In order to analyse Φ1

observe that the difference of the integrals in relations (1.57) and (1.58) is given by
ş1

0
|ωpkq|´2 r1´ cos p2πpj ` 1qkqs dk which can also be treated by a stationary phase

calculation combined with a contour deformation.
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1.3 Nonlinear Regime
In this section, we consider a nonlinear perturbation of the harmonic oscillators
with short range interactions of the form

Hpp,qq “
N´1
ÿ

j“0

p2
j

2
`

m
ÿ

s“1

κs

˜

1

2

N´1
ÿ

j“0

pqj ´ qj`sq
2
`
χ

3

N´1
ÿ

j“0

pqj ´ qj`sq
3
`
γ

4

N´1
ÿ

j“0

pqj ´ qj`sq
4

¸

.

(1.61)
We consider Example 1.8 and Example 1.9 with different strengths of nonlin-

earity namely

m “ 2, κ1 “ 1, κ2 “
1
4
,

#

χ “ 0.01 and γ “ 0.001

χ “ 0.1 and γ “ 0.01

m “ 3, κ1 “ 1, κ2 “
1
8
, κ2 “

7
72
,

#

χ “ 0.01 and γ “ 0.001

χ “ 0.1 and γ “ 0.01
.

We numerically compute and study the correlatios functions for these systems sam-
pling the initial conditions according to the Gibbs measures of just their harmonic
part at temperature β´1 “ 1.

In the weakly nonlinear case, the fastest peaks of the correlation functions scale
numerically according to the Airy parametrices (cf. Theorem 1.6) as can be deduced
from the top pictures in Figures 1.4, 1.5 while for stronger nonlinearity the fastest
peaks seem to scale like t

2
3 in equation (1.11), see bottom figures in Figures 1.4, 1.5.

The non-generic peaks that are present in the linear cases and scale like t1{4 have
a fast decay in the case of strong nonlinearity. However, for weak non-linearities,
the central peak in the top left Figure 1.4, still scales in time like t´

1
4 . Indeed,

performing a regression analysis of the log-log plot one can see a scaling like t´0.267

that is slightly faster than t´
1
4 (see Figure 1.6).

The numerical computations have been implemented with Python software, all
codes are available on GitHub [114]. Fig. 1.1–1.3 are the result of the numerical
evaluation via the standard routine numpy.trapz of the integrals in (1.31)–(1.33)
for various values of j and t and then we just added the Airy function (1.16) and
the Pearcey integral (1.48).

To obtain Fig. 1.4 we proceed in the following way. First, we sampled a random
initial data according to the Gibbs measure defined by the corresponding harmonic
part of (1.61), namely the Hamiltonian of Example 1.8 with m “ 2. We let these
data evolve according to the Hamilton equations of (1.61) and compute the values
of the correlations function. Then we repeated this procedure 4 ˆ 106 times, and
we averaged the values of the correlations functions. On the left panel we plot the
correlation functions, instead on the right one we focus on the extreme peak, and
we guess a proper scaling depending on the size of the perturbation. Fig. 1.5 is
made similarly, where now the nonlinear potential has the same harmonic part as
Example 1.9.

In Fig. 1.6 we focus our attention on the central peak of the chain with potential
as is Fig. 1.4. We follow the same procedure as before and plot in logarithmic scale
the average scaling of the highest peak in the center of the chain. We decide to
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Figure 1.4: Correlation function S
pNq
11 pj, tq for several values of times and for the

Hamiltonian (1.61) with κs as in Example 1.8, χ “ 0.01 and γ “ 0.001 in the
top figure and χ “ 0.1 and γ “ 0.01 in the lower figure. On the right top figure,
the scaling of the fastest peak according to Airy parametrix (see Theorem 1.6 and
Figure 1.1) and according to t´2{3 in the lower figure. The speed ξ0 of the fastest
peak is determined numerically. One can see that the central peak has a low decay
in the top left figure, while in the left bottom figure it is destroyed by the relatively
stronger nonlinearity.
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plot the average height of this peak since it is highly oscillatory, and it is difficult
to precisely track the oscillations.
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Figure 1.5: Correlation function S
pNq
22 pj, tq for several values of times and for the

Hamiltonian (1.61) with κs as in Example1.9, χ “ 0.01 and γ “ 0.001 in the top
figure and χ “ 0.1 and γ “ 0.01 in the lower figure. The right top figure shows the
scaling of the fastest peak compatible with the Airy parametrix and according to
t´2{3 in the lower figure. The speed ξ0 of the fastest peak is determined numerically.
The decay rate of the slower moving peaks that are scaling like t´1{4 in the linear
case (see Figure 1.1), is not very clear due to their highly oscillatory behaviour.
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Figure 1.6: Logarithmic plot of the central peak of the example in Figure 1.4 for
S11pj, tq and S21pj, tq and several values of times. The peak is highly oscillatory
and the oscillations are interpolated by the red line that suggests a scaling of the
correlation function S11pj, tq and S21pj, tq near j „ 0 compatible with t´

1
4 .

Guido Mazzuca 31



Chapter 2

Alpha Ensembles, and the Toda
lattice

In this chapter, we consider some tridiagonal random matrix models related to the
classical β-ensembles [42, 46, 93]. More specifically, we study the mean density of
states of the random matrices in Table 2.1 where the quantity N p0, σ2q is the real

Gaussian random variable with density e
´ x2

2σ2
?

2πσ2
supported on all R, the quantity χ2α is

the chi-distribution with density x2α´1e´
x2

2

2α´1Γpαq
supported on R`, here Γpαq is the gamma

function, and Betapa, bq is the Beta random variable with density Γpa`bqxa´1p1´xqb´1

ΓpaqΓpbq

supported on p0, 1q.
Let us explain some terminology first and then state our result.
A random Jacobi matrix is a symmetric tridiagonal N ˆN matrix of the form

TN :“

¨

˚

˚

˚

˚

˚

˝

a1 b1

b1 a2 b2

. . . . . . . . .
. . . . . . bN´1

bN´1 aN

˛

‹

‹

‹

‹

‹

‚

(2.1)

where taiuNi“1 are i.i.d. real random variables and tbiuN´1
i“1 are i.i.d. positive random

variables independent from the ai. This matrix has the property of having N -
distinct eigenvalues [35]. The empirical spectral distribution of TN is the random
probability distribution on R defined as

dν
pNq
T :“

1

N

N
ÿ

j“1

δ
λ
pNq
j
, (2.2)

where λpNq1 ą . . . ą λ
pNq
N are the eigenvalues of TN and δp¨q is the delta function. The

mean Density of States dνT is the non-random probability distribution, provided
it exists, defined as

ż

fdνT :“ lim
NÑ8

E

„
ż

fdν
pNq
T



,

for all continuous and bounded functions f , here E r¨s stands for the expectation
with respect to the given probability distribution on the matrix entries.
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Gaussian α Ensemble Hα „
1?
2

¨

˚

˚

˚

˝

a1 b1

b1 a2 b2

. . . . . . . . .
bN´1 aN

˛

‹

‹

‹

‚

,

Hα P MatpN ˆN,Rq ,
bn „ χ2α n “ 1, . . . , N ´ 1 ,
an „ N p0, 2q n “ 1, . . . , N ,

Laguerre α Ensemble Lα,γ “ Bα,γB
ᵀ
α,γ, Bα,γ “

1?
2

¨

˚

˚

˚

˝

x1

y1 x2

. . . . . .
yN´1 xN

˛

‹

‹

‹

‚

,

Bα,γ P MatpN ˆM,Rq, M ě N,
xn „ χ 2α

γ
n “ 1, . . . , N,

yn „ χ2α n “ 1, . . . , N ´ 1,

Jacobi α Ensemble Jα “ DαD
ᵀ
α, Dα “

¨

˚

˚

˚

˝

s1

t1 s2

. . . . . .
tN´1 sN

˛

‹

‹

‹

‚

,

Dα P MatpN ˆN,Rq,
tn “

a

qnp1´ pnq, sn “
a

pnp1´ qn´1q,
qn „ Beta pα, α ` a` b` 2q pq0 “ 0q,
pn „ Beta pα ` a` 1, α` b` 1q .

Table 2.1: The Gaussian, Laguerre and Jacobi α-ensembles.

The main result of this chapter is the following Theorem, which gives the explicit
formula for the mean density of states of the Gaussian, Laguerre and Jacobi α-
ensembles introduced in Table 2.1.

Theorem 2.1. Consider the matrices Hα, Lα,γ, and Jα in Table 2.1 with α ě

0, γ P p0, 1q, a ` α ą 0, b ` α ą 0 and a R N. Then their empirical spectral
distributions dν

pNq
H , dν

pNq
L , and dν

pNq
J converge almost surely, in the large N limit,

to their corresponding mean density of states, whose formula are given explicitly by:

dνHpxq “ Bαpαµαpxqqdx , (2.3)

dνLpxq “ Bα pαµα,γpxqq dx , x ě 0, (2.4)

dνJpxq “ Bα pαµα,a,bpxqq dx , 0 ď x ď 1 . (2.5)

Here Bα is the derivative with respect to α and

µαpxq :“
e´

x2

2

?
2π

ˇ

ˇ

ˇ

pfαpxq
ˇ

ˇ

ˇ

´2

, pfαpxq :“

c

α

Γpαq

ż 8

0

tα´1e´
t2

2 eixtdt , (2.6)

µα,γpxq :“
1

Γpα ` 1qΓ
´

1` α
γ
` α

¯

x
α
γ e´x∣∣∣ψ ´

α,´α
γ
;xe´iπ

¯
∣∣∣2 x ě 0 , (2.7)
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with Γpzq the gamma-function and ψpv, w; zq is the Tricomi’s confluent hypergeo-
metric function, for the definition see [38, §13], and

µα,a,bpxq :“
Γpα ` 1qΓpα ` a` b` 2q

Γpα ` a` 1qΓpα ` b` 1q

xap1´ xqb∣∣∣Upxq ` eiπbV pxq∣∣∣2 0 ď x ď 1, (2.8)

where

Upxq :“
Γpα ` 1qΓpa` 1q

Γp1` α ` aq
2F1pα,´α ´ a´ b´ 1,´a;xq ,

V pxq :“
´παΓpα ` a` b` 2q

sinpπaqΓp1` α ` bqΓpa` 2q
p1´ xqb`1xa`1

2F1p1´ α, α ` a` b` 2, 2` a;xq ,

here 2F1pa, b, c; zq is the Hypergeometric function:

2F1pa, b, c; zq :“
8
ÿ

n“0

paqnpbqn
pcqn

zn

n!
, paqn :“ apa` 1q ¨ ¨ ¨ pa` n´ 1q .

Moreover, for any non-trivial polynomial P pxq the following limits hold:

?
N

ˆ
ż

P pxqdν
pNq
H ´

ż

P pxqdνH

˙

d
Ñ N p0, σ2

P q as N Ñ 8, (2.9)

?
N

ˆ
ż

P pxqdν
pNq
L ´

ż

P pxqdνL

˙

d
Ñ N p0, σ2

P q as N Ñ 8,

?
N

ˆ
ż

P pxqdν
pNq
J ´

ż

P pxqdνJ

˙

d
Ñ N p0, rσ2

P q as N Ñ 8, (2.10)

for some constants σ2
P , σ

2
P , rσ

2
P ě 0, here d

Ñ is the convergence in distribution.

In figures 2.1–2.3 we plot the empirical spectral distribution of the α-ensembles
for different values of the parameters, the solid black line is the numericaly estimated
density. All plots are made using Python code available at [113], we made extensive
use of the libraries Seaborn [163] and matplotlib [86].

The measures with density µα, µα,γ and µα,a,b have already appeared in the
literature as the orthogonality measures of the associated Hermite, Laguerre and
Jacobi polynomials [11, 87, 160]. Such measures have also appeared in the study of
the classical β-ensembles [42] (see Table 2.2) in the high temperature regime, namely
in the limit when N Ñ 8, with βN Ñ 2α, α ą 0, [7, 8, 18,44,159,160]. In order to
summarize the results of those papers we recall that for the Jacobi matrix TN in (2.1)
the spectral measure dµ

pNq
T is the probability measure supported on its eigenvalues

λ
pNq
1 , . . . , λ

pNq
N with weights q2

1, . . . , q
2
N where qj “ |xv

pNq
j , e1y| and v

pNq
1 , . . . , v

pNq
N are

the orthonormal eigenvectors:

dµ
pNq
T :“

N
ÿ

j“1

q2
j δλpNqj

. (2.11)
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As the eigenvectors form an orthonormal basis, and ||e1|| “ 1 we get that
řN
j“1 q

2
j “

1. Moreover, the set of finite Jacobi matrix of size N is in one to one correspondence
with the set of probability measure supported on N real points [35].

For the β-ensembles the quantities tqiuNi“1 are independent of the eigenvalues
and are distributed as pχβ, . . . , χβq normalized to unit length [42,46,93]. It follows
that Erq2

j s “
1
N
. Consequently, the mean of the empirical measure (2.2) coincides

with the mean of the spectral measure (2.11), namely

dν̄
pNq
Hβ

“ dµ̄
pNq
Hβ
, dν̄

pNq
Lβ

“ dµ̄
pNq
Lβ
, dν̄

pNq
Jβ

“ dµ̄
pNq
Jβ
,

where Hβ, Lβ and Jβ refer to the Hermite, Laguerre and Jacobi β-ensembles, see
Table 2.2. It is shown in [44] (see also [7, 18]) that the measures dν̄

pNq
Hβ

“ dµ̄
pNq
Hβ

converge weakly, in the limit N Ñ 8, with βN “ 2α, to the non-random probability
measure with density µα defined in (2.6). It is shown in [8,159,160] that the measures
dν̄
pNq
Lβ

“ dµ̄
pNq
Lβ

and dν̄
pNq
Jβ

“ dµ̄
pNq
Jβ

, under some mild assumptions on the parameters,
converge weakly in the limit N Ñ 8, with βN Ñ 2α and N{M Ñ γ P p0, 1q to the
non-random probability measures with density µα,γ and µα,a,b defined in (2.7) and
(2.8) respectively. In [44, 159, 160] it is showed that these measures coincide with
the mean spectral measures of the random matrices Hα, Lα and Jα, see Table 2.1.

The problem of convergence of the empirical spectral distribution of the Gaus-
sian, Laguerre and Jacobi α-ensembles has remained unsolved. In this chapter we
address such problem in Theorem 2.1 by determining the mean Density of States
of such random matrices and their fluctuation. Our strategy to prove the result is
the application of the moment method and an astute counting of the super-Motzkin
paths [130] to calculate the moments of the the Gaussian, Laguerre and Jacobi α
and β-ensembles.

For completeness, we mention also the result in [136] where a different general-
ization of the Gaussian β ensemble is studied. Indeed, in [136] the author examined
the mean spectral measure of a random Jacobi matrix TN such that there exists
a sequence of real number tmkukě0 and m0 “ 1 such that E

“

pb1{N
σqk

‰

Ñ mk as
N Ñ 8 for all fixed k P N, which is a generalization of the classical case where
b1 „ χβpN´1q{

?
2 and σ “ 1{2.

Finally we relate the Gibbs ensemble of the classical Toda chain to the Gaussian
α-ensemble. In particular, we obtain, as a corollary of Theorem 2.1, the mean
density of states of the Toda Lax matrix with periodic boundary conditions when
the matrix entries are distributed accordingly to the Gibbs ensemble and when the
number of particles goes to infinity. This result is instrumental to study the Toda
lattice in the thermodynamic limit. We remark that the mean density of states of
the Toda Lax matrix has already appeared in the physics literature [151]. Here we
present an alternative proof of this result.

2.1 Preliminary results

In this section we summarize some known results and techniques that we will use
along the proof of the main theorem.

The moments of a measure dσ, when they exist, are defined as:
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Gaussian β Ensemble Hβ „
1?
2

¨

˚

˚

˚

˚

˚

˝

a1 b1

b1 a2 b2

. . . . . . . . .
. . . . . . bN´1

bN´1 aN

˛

‹

‹

‹

‹

‹

‚

Hβ P MatpN ˆN,Rq,
bn „ χβpN´nq n “ 1, . . . , N ´ 1,
an „ N p0, 2q n “ 1, . . . , N,

Laguerre β Ensemble Lβ,γ “ Bβ,γB
ᵀ
β,γ, Bβ,γ “

1?
2

¨

˚

˚

˚

˝

x1

y1 x2

. . . . . .
yN´1 xN

˛

‹

‹

‹

‚

,

Bβ,γ P MatpN ˆM,Rq, M ě N,
xn „ χβpM´n`1q n “ 1, . . . , N,
yn „ χβpN´nq n “ 1, . . . , N ´ 1,

Jacobi β Enseble Jβ “ DβD
ᵀ
β, Dβ “

¨

˚

˚

˚

˝

s1

t1 s2

. . . . . .
tN´1 sN

˛

‹

‹

‹

‚

,

Dβ P MatpN ˆN,Rq,
tn “

a

qnp1´ pnq, sn “
a

pnp1´ qn´1q,

qn „ Beta
´

βpN´nq
2

, βpN´nq
2

` a` b` 2
¯

pq0 “ 0q,

pn „ Beta
´

βpN´nq
2

` a` 1, βpN´nq
2

` b` 1
¯

.

Table 2.2: The Gaussian, Laguerre and Jacobi β-ensembles

up`q :“

ż

x`dσ ` P N .

Under some mild assumptions, they totally define the measure itself, indeed the
following Lemma, whose proof can be found in [13, Lemma B.2], holds:

Lemma 2.2. (cf. [13, Lemma B.2]) Let tup`qu`ě0 be the sequence of moments of a
measure dσ. If

lim
lÑ8

inf
pup2`qq

1
2`

`
ă 8 , (2.12)

then dσ is uniquely determined by the moment sequence tup`qu`ě0.

This implies that if two measures have the same moment sequence and (2.12)
holds then the two measure are the same. We will exploit this property, indeed
we will show that the moments of the random matrices Hα, Lα and Jα coincide,
in the large N limit, with the moments of the measure dνHpxq, dνLpxq and dνJpxq
in (2.3)–(2.5) and we will prove that (2.12) holds for all of them. This technique
undergoes the name of moment method.

To apply this idea, we need to compute explicitly the moments of the mean
density of states for the α and β-ensembles. We will use the following identity for
the moments of the mean density of states:
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ż

x`dνT “ lim
NÑ8

1

N
E
“

Tr
`

T `N
˘‰

,

where

Tr
`

T `N
˘

:“
N
ÿ

j“1

T `Npj, jq,

and T `Npj, iq is the entry pj, iq of the matrix T `N and the average is made according
to the distribution of the matrix entries. From now on we will write E rfpa,bqsT
as the mean value of fpa,bq made according to the distributions of the matrix T ’s
entries, here a is a vector of components a1, . . . , aN .

To conclude the computation of the moments, we need an explicit expression
for the terms T `Npj, jq. The following lemma proved in [76], and also in Chapter 4,
provides us their general expressions:

Theorem 2.3. (cf. [76, Theorem 3.1]) For any 1 ď ` ă N , consider the tridiagonal
matrix TN (2.1), then one has

Tr
`

T `N
˘

“

N
ÿ

j“1

h
p`q
j ,

where hp`qj :“ T `Npj, jq is given explicitly for t`{2u ă j ă N ´ t`{2u by

h
p`q
j pb, aq “

ÿ

pn,kqPAp`q
ρp`qpn,kq

t`{2u´1
ź

i“´t`{2u

b2ni
j`i

t`{2u´1
ź

i“´t`{2u`1

akij`i . (2.13)

Here Apmq is the set

Ap`q :“
!

pn,kq P NZ
0 ˆ NZ

0 :

t`{2u´1
ÿ

i“´t`{2u

p2ni ` kiq “ `,

@i ě 0, ni “ 0 ñ ni`1 “ ki`1 “ 0,

@i ă 0, ni`1 “ 0 ñ ni “ ki “ 0
)

.

(2.14)

The quantity N0 “ NY t0u and ρp`qpn,kq P N is given by

ρp`qpn,kq :“

ˆ

n´1 ` n0 ` k0

k0

˙ˆ

n´1 ` n0

n0

˙ t`{2u´1
ź

i“´t`{2u

i‰´1

ˆ

ni ` ni`1 ` ki`1 ´ 1

ki`1

˙ˆ

ni ` ni`1 ´ 1

ni`1

˙

.

Remark 2.4. Formula (2.13) holds for t`{2u ă j ă N ´ t`{2u, for the other values
of j the formula is slightly different. This is because for j ď t`{2u or j ě N ´ t`{2u

the polynomial hp`qj is related to a constrained Super Motzkin path, [111], instead for
t`{2u ă j ă N ´ t`{2u it is related to a classical Super Motzkin path. In any case
the polynomial hp`qj is independent of N for all j.
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We remark that both |A`| and ρp`qpn,kq do not depend on N and j. Moreover,
from the condition

řt`{2u´1
i“´t`{2u

p2ni ` kiq “ ` in (2.14) one gets that

` even ùñ h
p`q
j contains only even polynomials in a,

` odd ùñ h
p`q
j contains only odd polynomials in a.

(2.15)

To prove the almost sure convergence of the empirical spectral distributions
dν
pNq
H , dν

pNq
L and dν

pNq
J to their corresponding mean density of states, we will use

two general results. The first one is the following Theorem proved in [125]:

Theorem 2.5. (cf. [125, Theorem 2.2]) Consider a random Jacobi matrix TN (2.1)
and assume that tanuNn“1 and tbnuN´1

n“1 have all finite moments. Then for any non-
trivial polynomial P pxq:

ż

P pxqdν
pNq
T

a.s.
Ñ

ż

P pxqdνT as N Ñ 8

?
N

ˆ
ż

P pxqdν
pNq
T ´

ż

P pxqdνT

˙

d
Ñ N p0, σ2

P q as N Ñ 8, (2.16)

for some constant σ2
P ě 0. Here a.s.

Ñ is the almost sure convergence and d
Ñ is the

convergence in distribution.

We observe that Theorem 2.5 is not stated in the present form in [125] but this
formulation is more convenient for our analysis. The second result is the following
classical Lemma, whose proof can be found in [9, 44]:

Lemma 2.6. (cf. [44, Lemma 2.2]) Consider a sequence of random probability mea-
sures tdµnu8n“1 and dµ a probability measure determined by its moments according
to Lemma 2.2. Assume that any moment of dµn converges almost surely to the one
of dµ. Then as nÑ 8 the sequence of measures tdµnu8n“1 converges weakly, almost
surely, to dµ, namely for all bounded and continuous functions f :

ż

fdµn Ñ

ż

fdµ a.s as nÑ 8 .

The convergences still holds for a continuous function f of polynomials growth.

Finally, before moving to the actual proof of our main theorem, we summarize
the main results of [7, 8, 44,159,160] in the following theorem.

Theorem 2.7. As N Ñ 8, βN Ñ 2α P p0,8q, N
M
Ñ γ P p0, 1q, a ` α ą 0,

b ` α ą 0 and a R N, the mean spectral measure and the mean density of state of
the Gaussian, Laguerre and Jacobi β-ensembles weakly converge to the non-random
measures with density µαpxq, µα,γpxq and µα,a,bpxq defined in (2.6), (2.7) and (2.8)
respectively. Moreover, (2.12) holds for their moments sequences.

2.2 Proof of the main result
We are now in position to prove our main result. First, we remark that the density
Bαpαµαpxqq, Bαpαµα,γpxqq and Bαpαµα,a,bpxqq define a probability measure since the
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densities µαpxq, µα,γpxq and µα,a,bpxq define a probability measure. Then, since we
want to apply the moment method, we have to compute the moments of the α-
ensembles explicitly. To conclude the proof we will need also an explicit expression
of the moments of the mean density of states of the β-ensembles. The following
lemma lays the ground to conclude both computations.

Lemma 2.8. Fix α P R`zt0u, γ P p0, 1q, a, b ą ´1 and N{2 ą ` P N. Consider
the α and β-ensembles in Table 2.1-2.2, there exist polynomials w`pxq, g`pxq, and
rational and continuous functions r`pxq such that, for N large enough and βN “

2α, N
M
“ γ, the following holds, for t`{2u ă j ă N ´ t`{2u :

E
”

h
p`q
j

ı

Hβ
“

#

w`
`

α
`

1´ j
N

˘˘

`O pN´1q ` even
0 ` odd

, (2.17)

E
”

h
p`q
j

ı

Hα
“

#

w`pαq ` even
0 ` odd

, (2.18)

E
”

h
p`q
j

ı

Lβ
“ g`

ˆ

α

ˆ

1´
j

N

˙˙

`O
`

N´1
˘

,

E
”

h
p`q
j

ı

Lα
“ g`pαq ,

E
”

h
p`q
j

ı

Jβ
“ r`

ˆ

α

ˆ

1´
j

N

˙˙

`O
`

N´1
˘

,

E
”

h
p`q
j

ı

Jα
“ r`pαq .

Proof of Lemma 2.8. We will just prove (2.17)-(2.18) since the proof of the other
cases is similar. Indeed, the only difference in the proofs is that for the Gaussian
and Laguerre α and β-ensembles we use the fact that the expected value of any
even monomial with respect to a χξ-distribution is a monomial in ξ. While for the
Jacobi α and β-ensembles we use the fact that the expected values of any monomial
with respect to a Betapa, bq-distribution is a rational function of the parameters.

First, since a “ pa1, . . . , aNq are normal distributed for both ensembles and
thanks to (2.15) we get that

E
”

h
p`q
j

ı

Hα
“ E

”

h
p`q
j

ı

Hβ
“ 0 , ` odd .

For the Gaussian α ensemble we have that, for t`{2u ă j ă N ´ t`{2u

E
”

h
p`q
j

ı

Hα
“ E

»

–

ÿ

pn,kqPAp`q
ρp`qpn,kq

t`{2u´1
ź

i“´t`{2u

b2ni
j`i

t`{2u´1
ź

i“´t`{2u`1

akij`i

fi

fl

Hα

does not depend on j since bj`i „ χ2α, ai „ N p0, 2q , i “ ´t`{2u, . . . , t`{2u, and the
coefficients ρp`qpn,kq and the set Ap`q are independent of j and N by Theorem 2.3.
Moreover, as already pointed out, the expected values of any even monomial with
respect to a χξ-distribution is a monomial in ξ. Thus, we have that for fixed l P N,
there exists a polynomial w`pαq such that (2.18) holds.

We can apply a similar reasoning for the Gaussian β ensemble, indeed we notice
that if we approximate the distribution of bj`i „ χ2αp1´ j`i

N q
, i “ ´t`{2u, . . . , t`{2u
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with the one of bj „ χ2αp1´ j
N q

we get an error of order N´1 when we evaluate the
expected value. So we can compute

E
”

h
p`q
j

ı

Hβ
“ E

»

–

ÿ

pn,kqPAp`q
ρp`qpn,kq

t`{2u´1
ź

i“´t`{2u

b2ni
j`i

t`{2u´1
ź

i“´t`{2u`1

akij`i

fi

fl

Hβ

“ w`

ˆ

α

ˆ

1´
j

N

˙˙

`O
`

N´1
˘

,

where the only difference from the previous case is that the parameter of the
χ-distribution is 2α

`

1´ j
N

˘

instead of 2α.

Using the above lemma we can conclude the computation of the moments for
the α and β-ensembles:

Corollary 2.9. Fix ` P N, α P R`zt0u, a, b ą ´1 and γ P p0, 1q then in the large
N limit, with Nβ Ñ 2α and N

M
Ñ γ, the following holds:

up`qα :“ lim
NÑ8

E

„

1

N
Tr

`

pH`
βq
˘



Hβ

“

#

ş1

0
w` pαxq dx ` even

0 ` odd
, (2.19)

vp`qα :“ lim
NÑ8

E

„

1

N
Tr

`

H`
α

˘



Hα

“

#

w` pαq ` even
0 ` odd

, (2.20)

up`qα,γ :“ lim
NÑ8

E

„

1

N
Tr

`

L`β
˘



Lβ

“

ż 1

0

g`pαxqdx ,

vp`qα,γ :“ lim
NÑ8

E

„

1

N
Tr

`

L`α
˘



Lα

“ g`pαq ,

u
p`q
α,a,b :“ lim

NÑ8
E

„

1

N
Tr

`

J `β
˘



Jβ

“

ż 1

0

r`pαxqdx ,

v
p`q
α,a,b :“ lim

NÑ8
E

„

1

N
Tr

`

J `α
˘



Jα

“ r`pαq .

Proof. We will just prove (2.19)-(2.20) since the proof of the other cases is analogous.
From Lemma 2.8 and Theorem 2.3 one gets that:

vp`qα “ lim
NÑ8

»

–

1

N

¨

˝

N´t`{2u´1
ÿ

j“t`{2u`1

w`pαq `Op1q

˛

‚

fi

fl “ w`pαq .

Indeed neglecting the terms hp`qj j “ 1, . . . , t`{2u, N ´ t`{2u, . . . , N in the average
of Tr

`

H`
α

˘

we get an error of order Op1q since ` is fixed, so in the summations we
are neglecting a finite number of terms of order Op1q, see Remark 2.4.

For the same reason one gets that:

up`qα “ lim
NÑ8

»

–

1

N

N´t`{2u´1
ÿ

j“t`{2u`1

w`

ˆ

α

ˆ

1´
j

N

˙˙

`OpN´1
q

fi

fl .

Thus taking the limit for N going to infinity one gets the integral in (2.19).
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Remark 2.10. We stress that up`qα , up`qα,γ and up`qα,a,b are respectively the `th moments
of the Gaussian, Laguerre and Jacobi β-ensembles in the high temperature regime.
Analogously, the quantities vp`qα , v

p`q
α,γ and vp`qα,a,b are the `th moments of the Gaussian,

Laguerre and Jacobi α-ensembles respectively.

We can now finish the proof of Thereon 2.1

Proof of Theorem 2.1. From Corollary 2.9 one concludes that for all fixed l P N:

vp`qα “ Bαpαu
p`q
α q , (2.21)

vp`qα,γ “ Bαpαu
p`q
α,γq , (2.22)

v
p`q
α,a,b “ Bαpαu

p`q
α,a,bq .

By Theorem 2.7, Corollary 2.9 and Remark 2.10, the quantities up`qα , up`qα,γ and
u
p`q
α,a,b are the moments of the measures with densities µα, µα,γ and µα,a,b defined in

(2.3), (2.4) and (2.5). Moreover, by formula (2.12) such moments uniquely deter-
mine the corresponding measures.

It follows from relation (2.21) and Lemma 2.2 that the mean density of states
dνH of the Gaussian α-ensemble coincides with Bαpαµαq with µα as (2.3). In a
similar way, by (2.22), the measure Bαpαuα,γq in (2.4) is the mean density of states
dνL of the Laguerre α-ensembles and Bαpαuα,a,bq in (2.5) is the mean density of
states dνH of the Jacobi α-ensembles.

Since for the α-ensembles all tanuNn“1 and tbnuN´1
n“1 have all finite moments, one

can apply Theorem 2.5 getting that the moments of the empirical spectral distribu-
tions of the α- ensembles dν

pNq
H , dν

pNq
L and dν

pNq
J converge almost surely to the ones

of the corresponding mean density of states dνH , dνL and dνJ in (2.3), (2.4) and
(2.5) respectively. Furthermore applying Lemma 2.6 one obtains that the spectral
distributions of the α-ensembles dν

pNq
H , dν

pNq
L and dν

pNq
J converge almost surely to

dνH , dνL and dνJ in (2.3)-(2.4) and (2.5) respectively.
Finally from (2.16) one gets that formula (2.9)–(2.10) hold, namely that the

global fluctuations are Gaussian.

2.2.1 Parameters limit

In this section we study the behavior of α-ensembles when the parameter α goes to
infinity. For this purpose we consider the rescaled version of α-ensembles, i.e. the
matrices defined as 1?

α
Hα,

γ
α
Lα,γ and Jα. The corresponding mean density of states

is rescaled to dνHp
?
αxq, dνL

´

αx
γ

¯

and dνJpxq (see (2.3)–(2.5)).
Now we have to compute the limits of these measures when α Ñ 8. We will

compute these limits using the matrix representations of the normalized α-ensemble
and exploit the following weak limits:

lim
αÑ8

N p0, 2q
?
α

d
Ñ 0 lim

αÑ8

χα
?
α

d
Ñ 1 lim

αÑ8
Betapα, αq d

Ñ
1

2
.

The above relations imply that the mean density of states of the three normal-
ized α-ensembles weakly converges to the mean density of states of the following
matrices:
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H8 “

¨

˚

˚

˚

˚

˚

˝

0 1
1 0 1

. . . . . . . . .
. . . . . . 1

1 0

˛

‹

‹

‹

‹

‹

‚

, L8 “

¨

˚

˚

˚

˚

˚

˝

1
?
γ

?
γ 1` γ

?
γ

. . . . . . . . .
. . . . . . ?

γ
?
γ 1` γ

˛

‹

‹

‹

‹

‹

‚

,

J8 “

¨

˚

˚

˚

˚

˚

˚

˝

1?
2

1
2
?

2
1

2
?

2
1
2

1
4

1
4

. . . . . .

. . . . . . 1
4

1
4

1
2

˛

‹

‹

‹

‹

‹

‹

‚

.

The eigenvalues distributions of the above matrices in the large N limit are given
by

lim
αÑ8

dνHp
?
αxq “

1p´2,2q

π
?

4´ x2
dx , (2.23)

lim
αÑ8

dνL

ˆ

αx

γ

˙

“
1pp1´

?
γq2,p1`

?
γq2q

π
a

4γ ´ px´ 1´ γq2
dx ,

lim
αÑ8

dνJpxq “
21p0,1q

π
a

1´ p2x´ 1q2
dx ,

where 1pa,bq is the indicator function of the interval pa, bq.
We observe that for all the three α-ensembles in the large α limit, the corre-

sponding mean density of states is an arcsine distribution. It would be interesting to
study the behavior of the fluctuations of the max/min eigenvalue of the α-ensembles
in the limit of large α.

2.3 An application to the Toda chain

In this section we will apply Theorem 2.1 to find the mean density of states of
the classical Toda chain [157] with periodic boundary conditions. As we already
mentioned this is an alternative proof of the result in [151].

2.3.1 Integrable Structure

The classical Toda chain is the dynamical system described by the following Hamil-
tonian:

HT pp,qq :“
1

2

N
ÿ

j“1

p2
j `

N
ÿ

j“1

VT pqj`1 ´ qjq , VT pxq “ e´x ` x´ 1 , (2.24)
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with periodic boundary conditions pj`N “ pj, qj`N “ qj, @ j P Z. Its equations
of motion take the form

9qj “
BHT

Bpj
“ pj, 9pj “ ´

BHT

Bqj
“ V 1T pqj`1 ´ qjq ´ V

1
T pqj ´ qj´1q, j “ 1, . . . , N .

(2.25)
It is well known that the Toda chain is an integrable system [82, 157], one way

to prove it is to put the Toda equations in Lax pair form. This was introduced
by Flaschka [51] and Manakov [110] through the following non-canonical change of
coordinates:

aj :“ ´pj , bj :“ e
1
2
pqj´qj`1q ” e´

1
2
rj , 1 ď j ď N , (2.26)

where rj “ qj`1 ´ qj is the relative distance. The periodic boundary conditions
imply

N
ÿ

j“1

rj “ 0 .

Then, defining the Lax operator L as the periodic Jacobi matrix [162]

Lpb, aq :“

¨

˚

˚

˚

˚

˚

˚

˝

a1 b1 0 . . . bN

b1 a2 b2
. . . ...

0 b2 a3
. . . 0

... . . . . . . . . . bN´1

bN . . . 0 bN´1 aN

˛

‹

‹

‹

‹

‹

‹

‚

, (2.27)

and the anti-symmetric matrix B

Bpbq :“
1

2

¨

˚

˚

˚

˚

˚

˚

˝

0 b1 0 . . . ´bN

´b1 0 b2
. . . ...

0 ´b2 0
. . . 0

... . . . . . . . . . bN´1

bN . . . 0 ´bN´1 0

˛

‹

‹

‹

‹

‹

‹

‚

,

a straightforward calculation shows that the equations of motions (2.25) are
equivalent to

dL

dt
“ rB;Ls ,

so the eigenvalues of L are a set of integrals of motion.

2.3.2 Gibbs ensemble and the density of states for the peri-
odic Toda chain

We consider the evolution of the Toda chain on the subspace:

M :“

#

pp, rq P RN
ˆ RN :

N
ÿ

j“1

rj “
N
ÿ

j“1

pj “ 0

+

, (2.28)
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which is invariant for the dynamics. Indeed the condition
řN
j“1 rj “ 0 follows from

the periodic boundary conditions and the condition
řN
j“1 pj “ 0 follows from the

fact that the system is translational invariant and therefore the total momentum
is conserved. We endow the phase space M (2.28) with the Gibbs measure for the
Toda lattice at temperature β´1 as

dνToda :“
1

ZTodapβq
e´βHT pp,rqδřN

j“1 pj
δřN

j“1 rj
dp dr , (2.29)

here ZTodapβq is the partition function which normalize the measure, and δx is the
Kronecker delta function centred at x.

We notice that this ensemble makes L (2.27) into a random matrix, thus it
makes sense to study its mean density of states. However, the matrix entries of L
are not independent random variables because of the constraints (2.28). For this
reason, we introduce the approximate measure drνToda on RN ˆ RN as

drνToda :“
1

rZTodapβq
e´βHT pp,rq´θ

ř

j rjdp dr ,

where rZTodapβq is the partition function which normalizes the measure and θ ą 0 is
chosen in such a way that:

ż

rjdrνToda “ 0 .

The value of θ ą 0 is unique for all β ą 0 since
ż

rjdrνToda “ logpβq ´
Γ1pβ ` θq

Γpβ ` θq
,

which has just one positive solution.
From now on we will write L and rL as the random matrices whose entries are

distributed according to the probability measure dνToda and drνToda respectively. In
particular applying the change of coordinates (2.26) one gets that

rL „
1
?

2β

¨

˚

˚

˚

˚

˚

˚

˝

a1 b1 0 . . . bN

b1 a2 b2
. . . ...

0 b2 a3
. . . 0

... . . . . . . . . . bN´1

bN . . . 0 bN´1 aN

˛

‹

‹

‹

‹

‹

‹

‚

, bj „ χ2pβ`θq , aj „ N p0, 2q j “ 1, . . . , N.

To obtain the mean density of states of the Toda lattice with periodic boundary
conditions we need the following lemma, whose proof can be found in [76]:

Lemma 2.11. (cf. [76, Lemma 4.1]) Fix rβ ą 0 and let f : RNˆRN Ñ R depends on
just K variables and finite second order moment with respect to drνToda, uniformly
for all β ą rβ. Then there exist positive constants C,N0 and β0 such that for all
N ą N0, β ą maxtβ0, β̃u one has

ˇ

ˇ

ˇ

ˇ

ż

fdνToda ´

ż

fdrνToda

ˇ

ˇ

ˇ

ˇ

ď C
K

N

d

ż

f 2drνToda ´

ˆ
ż

fdrνToda

˙2

.
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Applying this Lemma we can conclude that the matrices L and rL have the same
moment sequence in the large N limit. Furthermore, rL is a rank one perturbation
of the matrix 1?

β
Hθ`β in table 2.1. So we can use the following theorem, whose

proof can be found in [13], to show that the mean density of states of the matrices
rL and 1?

β
Hθ`β in the large N limit are the same.

Theorem 2.12. (cf. [13, Theorem A.43]) Let A,B be two N ˆ N Hermitian ma-
trices and FA, FB their empirical spectral density defined as:

FA
pxq :“

1

N
#tj ď N : λj ď xu ,

where λj are the eigenvalues of A. Then

||FA
´ FB

|| ď
1

N
RankpA´Bq ,

where ||f || “ supx |fpxq|.

This implies also that the moment sequence of rL and 1?
β
Hθ`β are the same in

the large N limit, which means that also the moment sequence of L, 1?
β
Hθ`β in

the large N limit are equal. So applying Lemma 2.2 and Theorem 2.1 one gets the
following

Lemma 2.13. Consider the classical Toda chain (2.24) and endow the phase space
M (2.28) with the Gibbs measure dνToda in (2.29), then there exists a constant
β0 ą 0 such that, for all β ą β0 the mean density of states of the Lax matrix L
(2.27) in the limit N Ñ 8 is explicitly given by:

dξ`pxq “
a

βBαpαµαp
a

βxqq|α“β`θdx ,

where µαpxq is given in (2.6).

To conclude, we also remark that if we let the inverse temperature β approach
infinity, in view of (2.23), we obtain that the mean density of states of the classical
Toda chain in this regime is exactly the arcsine law (2.3). From the physical point
of view, the system is at rest.
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Figure 2.1: Gaussian α ensemble empirical spectral density for different values of
the parameters, N “ 500, trials: 5000. The solid black line is the estimated density,
not the actual one.
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Figure 2.2: Laguerre α ensemble empirical spectral density for different values of
the parameters, N “ 500, trials: 5000. The solid black line is the estimated density,
not the actual one.
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Figure 2.3: Jacobi α ensemble empirical spectral density for different values of the
parameters, N “ 500, trials: 5000. The solid black line is the estimated density,
not the actual one.
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Chapter 3

Integrable Discrete Non-Linear
Schrödinger Equation

In this chapter we study the defocusing Ablowitz-Ladik (AL) lattice for the complex
functions αjptq, j P Z and t P R, which is the system of nonlinear equations

i 9αj “ ´pαj`1 ` αj´1 ´ 2αjq ` |αj|
2
pαj´1 ` αj`1q , (3.1)

where 9αj “
dαj
dt

. We assume N -periodic boundary conditions αj`N “ αj, for all
j P Z. The AL lattice was introduced by Ablowitz and Ladik [2, 3] as the spatial
discretization of the cubic nonlinear Schrödinger Equation (NLS) for the complex
function ψpx, tq, x P S1 and t P R:

iBtψpx, tq “ ´
1

2
B

2
xψpx, tq ` |ψpx, tq|2ψpx, tq.

The cubic NLS equation is an infinite-dimensional integrable system [172]. There
are several discretization of the cubic NLS equation and the AL lattice (3.1) is
among the several ones that preserve integrability [137]. For applications of the AL
lattice see the book [4].

The phase shift αjptq Ñ e´2itαjptq transforms the AL lattice into

i 9αj “ ´ρ
2
jpαj`1 ` αj´1q, ρj “

b

1´ |αj|2 , (3.2)

which is related to the Schur flow [73]. It is straightforward to verify that if |αjp0q| ă
1, then |αjptq| ă 1 for all t ą 0, see [73]. We chose the N -dimensional disc DN as
the phase space of the AL system, here D “ tz P C | |z| ă 1u. On DN we introduce
the symplectic form [47,66]

ω “ i
N
ÿ

j“1

1

ρ2
j

dαj ^ dαj , ρj “
b

1´ |αj|2. (3.3)

The corresponding Poisson bracket is defined for functions f, g P C8pDNq as

tf, gu “ i
N
ÿ

j“1

ρ2
j

ˆ

Bf

Bαj

Bg

Bαj
´
Bf

Bαj

Bg

Bαj

˙

.
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The AL equation (3.1) have the Hamiltonian structure

9αj “ tαj, HALu, HALpαj, αjq “ ´2 lnpKp0q
q `Kp1q

`Kp1q, (3.4)

with Kp1q complex conjugate of Kp1q and the conserved quantities Kp0q and Kp1q

are given by

Kp0q :“
N
ź

j“1

`

1´ |αj|
2
˘

, Kp1q :“ ´
N
ÿ

j“1

αjαj`1. (3.5)

We remark that quantity ´2 lnpKp0qq is the generator of the shift αjptq Ñ e´2itαjptq,
while H1 “ Kp1q `Kp1q generates the flow (3.2).

Integrability. The integrability of the AL lattice was proved by Ablowitz and
Ladik by discretizing the 2ˆ2 Zakharov-Shabat Lax pair [1,2], for a comprehensive
review see [4]. The integrability of the Ablowitz Ladik system has also been proved
by constructing a bi-Hamiltonian structure [10,47].

More recently different authors (see [5, 126, 147]) worked on the link between
orthogonal and biorthogonal polynomials on the unit circle and the Ablowitz–Ladik
hierarchy. This is the analogue of the celebrated link between the Toda hierarchy
and orthogonal polynomials on the real line. This link was also generalizes to the
non-commutative case [27]. The connection between orthogonal polynomials on the
unit circle and AL lattice leads to the construction of the so-called “big Lax” matrix
that turns out to be a five-diagonal band matrix. Generalization of this construction
to other integrable equations has been considered in [128,137]. Following [126,147]
we double the size of the chain according to the periodic boundary condition, thus we
consider a chain of 2N particles α1, . . . , α2N such that αj “ αj`N for j “ 1, . . . , N .
Define the 2ˆ 2 unitary matrix Ξj

Ξj “

ˆ

αj ρj
ρj ´αj

˙

, j “ 1, . . . , 2N ,

and the 2N ˆ 2N matrices

M “

¨

˚

˚

˚

˚

˚

˚

˚

˝

´α2N ρ2N

Ξ2

Ξ4

. . .
Ξ2N´2

ρ2N α2N

˛

‹

‹

‹

‹

‹

‹

‹

‚

, L “

¨

˚

˚

˚

˝

Ξ1

Ξ3

. . .
Ξ2N´1

˛

‹

‹

‹

‚

.

Now let us define the Lax matrix

E “ LM , (3.6)
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that has the structure
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

. . . . . .
˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The N -periodic AL equation (3.2) is equivalent to the following Lax equation for
the matrix E :

9E “ i
“

E , E` ` pE`q:
‰

, (3.7)
where : stands for hermitian conjugate and

E`j,k “

$

’

&

’

%

1
2
Ej,j j “ k

Ej,k k “ j ` 1 mod N or k “ j ` 2 mod N

0 otherwise.

The formulation (3.7) implies that the quantities

Kp`q
“

Tr
`

E `
˘

2
, ` “ 1, . . . , N ´ 1, (3.8)

are constants of motion for the defocusing AL system. For example

Kp1q
“ ´

N
ÿ

j“1

αjαj`1, Kp2q
“

N
ÿ

j“1

rpαjαj`1q
2
´ 2αjαj`2ρ

2
j`1s .

Furthermore, Kp0q, Kp1q, . . . , KpN´1q are functionally independent and in involution,
showing that the N -periodic AL system is integrable [1–4,126].

Generalized Gibbs Ensemble for the Ablowitz-Ladik Lattice. The sym-

plectic form ω in (3.3) induces on DN the volume form dvol “
1

Kp0q
d2α, with

d2α “
śN

j“1pidαj ^ dαj q. We observe that
ş

DN dvol “ 8, however we can define
the Gibbs measure with respect to the Hamiltonian HAL in (3.4):

1

Zβ
e´

β
2
HALdvol “

1

Zβ
eβ<pK

p1qq

N
ź

j“1

p1´ |αj|
2
q
β´1d2α, β ą 0, (3.9)

where Zβ “
ş

DN e
β<pKp1qqśN

j“1p1 ´ |αj|
2qβ´1d2α ă 8 is the normalizing constant.

The above probability measure is clearly invariant under the Hamiltonian flow
αjp0q Ñ αjptq associated to the Ablowitz-Ladik equation (3.1).

Since the Ablowitz-Ladik lattice posses several conserved quantities (3.5)-(3.8),
one can introduce a Generalized Gibbs Ensemble on the phase space DN in the
following way. Fix N Q κ ă N ´ 1 and let us define

V pzq “
κ
ÿ

m“1

ηm<pzmq , (3.10)

Guido Mazzuca 51



The IDNLS

where ηm P R are called chemical potentials. Then

Tr pV pEqq “
κ
ÿ

m“1

ηmpK
pmq
`Kpmqq,

where Kpmq are the AL conserved quantities (3.8). The finite volume Generalized
Gibbs measure can be written as:

dPALpα1, . . . , αNq “
1

ZAL
N pV, βq

N
ź

j“1

`

1´ |αj|
2
˘β´1

exp p´Tr pV pEqqq d2α , (3.11)

where ZAL
N pV, βq is the partition function of the system:

ZAL
N pV, βq “

ż

DN

N
ź

j“1

`

1´ |αj|
2
˘β´1

exp p´Tr pV pEqqq d2α . (3.12)

Choosing the initial data of the Ablowitz-Ladik lattice according to the Generalized
Gibbs measure, the Lax matrix E turns into a random matrix. In [119] Mendl and
Spohn study the dynamic of the Ablowitz-Ladik lattice at non-zero temperature.
They study numerically correlation functions and in particular, introducing the
density δj “ <pαj`1αjq, they study the density-density correlation function

E rδjptqδ1p0qs ´ E rδjptqsE rδ1p0qs

where E r¨s is the expectation with respect to Gibbs measure (3.9). They showed
numerically that density-density time correlations in thermal equilibrium have sym-
metrically located peaks, which travel in opposite directions at constant speed,
broaden ballistically and decay as 1{tγ when t Ñ 8, where the scaling exponent
γ is approximately equal to one. This is behaviour is believed to be typical of
integrable nonlinear systems.

More quantitative results have been obtained for linear (integrable) systems
and for the Toda lattice, which is a nonlinear integrable system. It was shown
in [75] that the fastest peaks of the correlation functions of harmonic oscillators
with short range interactions have a Airy type scaling. Namely, the fastest peak of
the momentum-momentum and energy-energy correlation functions scales as t´

1
3 ,

and t´
2
3 respectively and the shape of the peak is described by the Airy function

and its square respectively. Regarding nonlinear integrable systems in [?] Spohn was
able to connect the Gibbs ensemble of the Toda lattice to the Dumitriu-Edelman
β-ensemble [42]. In this way, the generalized Gibbs free energy of the Toda chain
turns out to be related to the β-ensembles of random matrix theory in the mean-
field regime [7, 44]. The behaviour of the correlation functions of the Toda chains
has been derived by applying the theory of generalized hydrodynamic [39, 153].
We mention also the recent work [79], where the authors derive a large deviation
principle for the mean density of states for the Generalized Gibbs measure of the
Toda lattice.

In this chapter we present the results in [116], and we connect the generalized
Gibbs ensemble of the Ablowitz-Ladik lattice to the Killip-Nenciu [93] matrix Cir-
cular β-ensemble at high-temperature investigated by Hardy and Lambert [80]. We
determine the free energy

FALpV, βq “ lim
NÑ8

1

N
logZAL

N pV, βq,
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(see Proposition 3.8) and the density of states µβAL (see Theorem 3.6) of the random
Lax matrix E sampled according to (3.11) in the thermodynamic limit N Ñ 8. The
density of states µβAL is obtained as follows. Consider the functional

F pV,βq
pµq “ 2

ż

T
V pθqµpθqdθ ´ β

ż ż

TˆT
ln sin

ˆ

|θ ´ φ|

2

˙

µpθqµpφqdθdφ

`

ż

T
ln pµpθqqµpθqdθ ` lnp2πq ,

(3.13)

where µ P MpTq with MpTq the space of probability measures on the torus T “
r´π, πs. Such functional has a unique minimizer µβHT pdθq “ µβHT pθqdθ, [145], that
describes the density of states of the β-ensembles at high temperature [80]. For
finite β and smooth potentials V pθq, it has been shown by Hardy and Lambert
in [80] that the minimizer µβHT pdθq has a smooth density and its support is the
whole torus T. The minimizer µβHT pdθq of (3.13) and its minimum value

FHT pV, βq :“ F pV,βq
pµβHT q,

are related to the density of states µβALpθq (Theorem 3.6) and the free energy
FALpV, βq (Proposition 3.8) of the AL lattice by the relations

µβALpθq “ Bβ

´

βµβHT pθq
¯

, FALpV, βq “ Bβ pβFHT pV, βqq ` lnp2q.

The particular case V pθq “ η cos θ corresponds to the free energy associated to
the Schur flow (3.2), and we show that the minimizer of the functional (3.13) is
obtained via a particular solution of the Double Confluent Heun (DCH) equation:

z2v2pzq `
`

´η ` zpβ ` 1q ` ηz2
˘

v1pzq ` ηβpz ` λqvpzq “ 0 ,

where 1 and 2 denote the first and second derivative with respect to the argument.
The density of states µβHT pθq is recovered from the unique smooth solution (up to
a multiplicative non-zero constant) of the DCH equation (see Theorem 3.9) by the
relation

µβHT pθq “
1

2π
`

1

πβ
<
ˆ

eiθv1peiθq

vpeiθq

˙

. (3.14)

The parameter λ “ λpη, βq in (3.36) is a transcendental function that is related to
the Painlevé III equation [53]. For the case V “ 0 it was shown in [80] that the
minimizer is the uniform measure on the circle, while for the case V pθq Ñ βV pθq
and β Ñ 8 the minimizer of (3.13) was considered in [117] and the particular case
βV pθq “ βη cos θ has first been considered by Gross Witten [78] and Baik-Deift-
Johansson [14]. Therefore the measure (3.14) generalizes the result by Gross and
Witten [78] and Baik-Deift-Johansson [14] to the high-temperature regime.

This chapter is organized as follows. In section 3.1 we introduce the Circular
β ensemble and its high-temperature limit. In section 3.2 we state and prove our
main results, namely Theorem 3.6 and Theorem 3.9. Finally, the most technical
part of our arguments is deferred to section 3.3.
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3.1 Circular beta Ensemble at high-temperature
The Circular Ensemble at temperature β̃´1 is a system of N identical particles on
the one-dimensional torus T “ r´π, πs with distribution

dPβ̃pθ1, . . . , θNq “
1

ZCβ̃E
N

ź

jă`

|eiθ` ´ eiθj |
rβdθ, dθ “ dθ1 . . . dθN , (3.15)

where ZCβ̃E
N ą 0 is the norming constant, or partition function of the system. For

β̃ “ 1, 2, 4 Dyson observed that the above measure corresponds to the eigenvalue
distribution of unitary symmetric, unitary and unitary symplectic random matrix
ensembles (see e.g. [54,118]). For general β̃ ą 0, Killip and Nenciu proved that the
Circular beta Ensemble can be associated to the eigenvalue distribution of a random
sparse matrix, the so called CMV matrix, after Cantero, Moral, Velázquez [28]. To
state their result, we need the following definition.

Definition 3.1. A complex random variable X with values on the unit disk D is
Θν-distributed (ν ą 1) if

E rfpXqs “
ν ´ 1

2π

ż

D
fpzqp1´ |z|2q

ν´3
2 d2z .

In the case ν “ 1, let Θ1 be the uniform distribution on the unit circle S1.

We recall that for integer ν ě 2, such measure has the following geometrical
interpretation: if u is chosen at random according to the surface measure on the
unit sphere Sν in Rν`1, then u1 ` iu2 is Θν´distributed. We can now state the
result of Killip-Nenciu.

Theorem 3.2 (cf. [126] Theorem 1). Consider the block diagonal N ˆN matrices

M “ diag pΞ1,Ξ3,Ξ5 . . . , q and L “ diag pΞ0,Ξ2,Ξ4, . . .q ,

where the block Ξj, j “ 1, . . . , N ´ 1, takes the form

Ξj “

ˆ

αj ρj
ρj ´αj

˙

, ρj “
b

1´ |αj|2,

while Ξ0 “ p1q and ΞN “ pαNq are 1ˆ 1 matrices. Define the N ˆN sparse matrix

E “ LM,

and suppose that the entries αj are independent complex random variables with
αj „ Θ

rβpN´jq`1 for 1 ď j ď N ´ 1 and αN is uniformly distributed on the unit
circle. Then the eigenvalues of E are distributed according to the Circular Ensemble
(3.15) at temperature β̃.

We observe that each of the matrices Ξj is unitary, and so are the matrices L
and M . As a result, the eigenvalues of E clearly lie on the unit circle. The matrix
E is a 5-diagonal unitary matrix that takes the form

E “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ᾱ1 ρ1ᾱ2 ρ1ρ2
ρ1 ´α1ᾱ2 ´α1ρ2

ρ2ᾱ3 ´α2ᾱ3 ρ3ᾱ4 ρ3ρ4
ρ2ρ3 ´α2ρ3 ´α3ᾱ4 ´α3ρ4

. . .
. . .

. . .
. . .

ρN´3ᾱN´2 ´αN´3ᾱN´2 ρN´2ᾱN´1 ρN´2ρN´1
ρN´3ρN´2 ´αN´3ρN´2 ´αN´2ᾱN´1 ´αN´2ρN´1

ᾱNρN´1 ´αN´1ᾱN

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (3.16)

We are interested in the probability distribution (3.15) when
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• we add an external field, namely dθi Ñ e´2V pθiqdθi with V : TÑ R a differen-
tiable potential;

• we consider the limit rβ Ñ 0 and N Ñ 8 in such a way that rβN “ 2β, β ą 0.
Since rβ is interpreted as the inverse of the temperature, such limit is called
high-temperature regime.

With the above changes, we arrive at the probability distribution of the Circular
ensemble at high-temperature, and with an external potential:

dPVβ pθ1, . . . , θNq “
1

ZHT
N pV, βq

ź

jă`

|eiθ` ´ eiθj |
2β
N e´2

řN
j“1 V pθjqdθ , (3.17)

where ZHT
N pV, βq is the normalizing constant or the partition function of the system.

Also in this case, we can associate to the above probability distribution a random
CMV matrix. The lemma below has probably already appeared in the literature,
but for completeness we provide the proof.

Lemma 3.3. Let E be the CMV matrix (3.16). Consider the block 2Nˆ2N matrix

rE “ diagpE,Eq , (3.18)

whose entries are distributed according to

dPpα1, . . . , αNq “
1

ZHT
N pV, βq

N´1
ź

j“1

`

1´ |αj|
2
˘βp1´ j

N q´1
e´TrpV p rEqq

N´1
ź

j“1

d2αj
dαN
iαN

.

(3.19)
Then the eigenvalues of rE are all double, they lie on the unit circle and are dis-
tributed according to (3.17).
Moreover

ZHT
N pV, βq “ 21´N Γ

`

β
N

˘N

Γpβq
ZHT
N pV, βq , (3.20)

where ZHT
N pV, βq is the norming constant of the probability distribution (3.19).

Proof. First, we notice that the eigenvalues of rE are all double, since it is a block
diagonal matrix with two identical blocks.

We consider the change of variables αN Ñ eiϕ, thus (3.19) becomes:

dPpα1, . . . , αN´1, ϕq “
1

ZHT
N pV, βq

N´1
ź

j“1

`

1´ |αj|
2
˘βp1´ j

N q´1
e´TrpV p rEqq

N´1
ź

j“1

d2αjdϕ .

(3.21)
Now, let eiθ1 , . . . , eiθN be the eigenvalues of the CMV matrix E endowed with

probability (3.19), and let q1, . . . , qN be the entries of the first row of the unitary
matrix Q such that Q:ΘQ “ E where Θ “ Diagpeiθ1 , . . . , eiθN q and

řN
k“1 |qk|

2 “ 1.
Introduce the variable γj “ |qj|2 for j “ 1, . . . , N , then From [93, Lemma 4.1, and
Proposition 4.2 relation (4.14) ] we have that
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|∆peiθq|2
N
ź

j“1

γj “
N´1
ź

j“1

`

1´ |αj|
2
˘pN´jq

, (3.22)

ˇ

ˇ

ˇ

ˇ

B pα1, . . . , αN´1, ϕq

Bpθ,γq

ˇ

ˇ

ˇ

ˇ

“ 21´N

śN´1
j“1 p1´ |αj|

2q
śN

j“1 γj
, (3.23)

here γ “ pγ1, . . . , γN´1q, and ∆peiθq “
ś

jă`

`

eiθj ´ eiθ`
˘

. Applying the previous
equalities to (3.21) we get that:

dPpα1, . . . , αN´1, ϕqq “
e´TrpV p rEqq

ZHT
N pV, βq

dϕ
N´1
ź

j“1

`

1´ |αj|
2
˘βp1´ j

N q´1
dαjdαj

(3.23)
“

1

ZHT
N pV, βq

21´N

śN
j“1 γj

N´1
ź

j“1

`

1´ |αj|
2
˘βp1´ j

N q e´2
řN
j“1 V pe

iθj qdθdγ

(3.22)
“

1

ZHT
N pV, βq

21´N
|∆peiθq|

2β
N

N
ź

j“1

γ
β
N
´1

j e´2
ř

j V pe
iθj qdθdγ .

Thus, we get the relation

ZHT
N pV, βq “ 21´NZHT

N pV, βq

ż

∆

N
ź

j“1

γ
β
N
´1

j dγ1 . . . dγN´1 ,

here ∆ is the simplex
řN
j“1 γj “ 1.

The above integral is a well-known Dirichlet integral that can be computed
explicitly (see [93, Lemma 4.4])

ż

∆

N
ź

j“1

γ
β
N
´1dγ1 . . . dγN´1 “

Γ
`

β
N

˘N

Γpβq
,

proving (3.20).

Let eiθ1 , . . . , eiθN be the double eigenvalues of the CMV Matrix Ẽ in (3.18),
whose entries are distrbuted according to (3.21). The empirical measure is the
random probability measure

µN “
1

N

N
ÿ

j“1

δeiθj . (3.24)

The mean density of state µβHT is defined as the non-random probability measure
such that

ż

T
fpθqµβHT pdθq “ lim

NÑ8
E

„
ż

T
fpθqµNpdθq



, (3.25)
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for all continuous function f on the torus T, and the expected value is taken with re-
spect to (3.19). In order to discuss the large N limit of µN we have to introduce sev-
eral quantities. LetMpTq be the set of probability measures on the one-dimensional
torus T and for µ PMpTq we consider the logarithmic energy [145]

E pµq :“

ż ż

TˆT

ln

ˇ

ˇ

ˇ

ˇ

sin

ˆ

θ ´ φ

2

˙
ˇ

ˇ

ˇ

ˇ

´1

µpdθqµpdφq .

We define the relative entropy with respect to µ0pdθq “
dθ

2π
as

Kpµ|µ0q :“

ż

T
log

ˆ

µ

µ0

˙

µpdθq P r0,`8s ,

when µ is absolutely continuous with respect to µ0 and otherwise Kpµ|µ0q :“ `8.
The relevant functional is

F pV,βq
pµq :“ βE pµq `Kpµ|µ0q ` 2

ż

T
V pθqµpdθq.

When F pV,βqpµq is finite, it follows that µ is absolutely continuous with respect to
the Lebesgue measure µ0 and we can write µpdθq “ µpθqdθ. We denote by Cn,1pTq
with n “ 0, 1, 2, . . . the space of n-times differentiable functions whose n-derivative
is also Lipschitz continuous.

The following result describes the limiting measure µβHT in (3.25).

Theorem 3.4. (cf. [80, Proposition 2.1 and 2.5]) Let MpTq be the set of probability
measures on the one-dimensional torus and V : TÑ R be a measurable and bounded
function. For any β ą 0 consider the functional F pV,βq : MpTq Ñ r0,8s

F pV,βq
pµq “ 2

ż

T
V pθqµpθqdθ ` βE pµq `

ż

T
ln pµpθqqµpθqdθ ` lnp2πq . (3.26)

Then

(a) the functional F pV,βqpµq has a unique minimizer µβHT pdθq “ µβHT pθqdθ in
MpTq;

(b) µβHT is absolutely continuous with respect to the Lebesgue measure and there
is 0 ă δ ă 1 such that

δ ď
µβHT pθq

2π
ď δ´1, a.e. ;

(c) if V “ 0, then µβHT pdθq “
1

2π
dθ;

(d) if V P Cm,1pTq, then µβHT P Cm,1pTq;

(d) the empirical measure µN in (3.24) converges weakly and almost surely to the
measure µβHT as N Ñ 8.
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From the above theorem when the potential V is at least C2,1pTq the minimizer
of the function F pV,βq is characterized by the Euler-Lagrange equations

δF pV,βq

δµ
“ 2V pθq ´ 2β

ż

T
ln sin

ˆ

|θ ´ φ|

2

˙

µpφqdφ` lnµpθq ` 1 “ CpV, βq (3.27)

where CpV, βq is a constant in θ.
For convenience, we define FHT pV, βq as the value of the functional at the min-

imizer, namely
FHT pV, βq :“ F pV,βq

pµβHT q.

The quantity FHT pV, βq is referred to as free energy of the Circular beta ensemble
at high temperature. It is a standard result that (see e.g. [65])

FHT pV, βq “ ´ lim
NÑ8

1

N
logZHT

N pV, βq (3.28)

where the partition function ZHT
N pV, βq of the Circular beta ensemble at high-

temperature is defined in (3.17).

Remark 3.5. We notice that from (3.20) and (3.28) we can also obtain the free en-
ergy FHT pV, βq from the partition function ZHT

N pV, βq of the CMV matrix ensemble
(3.17), namely:

FHT pV, βq “ ´ lim
NÑ8

lnpZHT
N pV, βqq

N
´ lnp2q .

For completeness, we mention that the literature related to the high-temperature
regime for the classical beta ensemble is wide. In [7,8,44,61,80,159,160] the authors
explicitly computed the mean density of states for the classical Gaussian, Laguerre,
Jacobi, and Circular beta ensemble at high-temperature. In [7,8,61,80] the densities
of states are computed as a solution of some particular ordinary differential equation.
On the other hand, in [44, 159, 160] the authors reconstruct the densities from the
moment generating functions. Several authors [18,99,124,125,131,159] investigated
the local fluctuations of the eigenvalues, they observed that in this regime they are
described by a Poisson process. In particular, in [99] Lambert studied the local
fluctuations for general Gibbs ensembles on N -dimensional manifolds, moreover he
also studied the asymptotic behaviour of the maximum eigenvalue for the classical
beta ensemble at high-temperature. In [57, 61] the loop equations for the classical
beta ensemble at high-temperature are studied, in particular in [57] a special kind
of duality between high and low temperature is underlined. There are also some
results for higher dimensional Coulomb gases [6, 144].

3.2 Statement of the Results
The generalized Gibbs ensemble of the Ablowitz Ladik lattice in (3.11) is very
close to the probability distribution (3.19) of the Circular beta ensemble at high-
temperature with an external source. Indeed, the only difference between the two
ensembles is the exponent of the terms p1´ |αj|q. Our main results are contained
in Theorem 3.6 below which relates the mean density of states of the Ablowitz-
Ladik lattice to the mean density of states of the Circular beta ensemble at high-
temperature, and Theorem 3.9 which derives the mean density of states for the

58 Guido Mazzuca



The IDNLS

potential V pzq “ η<pzq via a particular solution of the double confluent Heun
equation.

Theorem 3.6. Consider β ą 0 and a potential V pzq as in (3.10) smooth and
absolutely bounded on the unit circle T. The mean density of states µβAL of the
Ablowitz Ladik Lax matrix E in (3.6) endowed with the probability (3.11) is absolutely
continuous with respect to the Lebesgue measure and takes the form

µβALpdθq “ µβALpθqdθ , µβALpθq “ Bβ

´

βµβHT pθq
¯

,

where µβHT is the unique minimizer of the functional (3.26) and the derivative is
made in weak sense.

To prove the result, we will use the moment matching technique. We will prove
that the derivative with respect to β of µβHT is well-defined in L2pTq Ă L1pTq,
meaning that there exists a unique function BβpµβHT q P L

2pTq such that

Bβ

ˆ
ż

T
fµβHTdθ

˙

“

ż

T
fBβpµ

β
HT qdθ ,

for all bounded and continuous f , and that the moment sequence of the measure
with density Bβ

´

βµβHT pθq
¯

coincides with the one of the mean density of states of

the Ablowitz-Ladik lattice µβALpθq. Then, we will use the following Lemma to prove
that the two measures coincide.

Lemma 3.7. ( [13, Lemma B.1 - B.2]) Let dσ, dσ1 be two measures with the same
moment sequence tuplqulě0. If

lim
lÑ8

inf
pup2lqq

1
2l

l
ă 8 ,

then dσ “ dσ1.

Next, we define the free energy for the Ablowitz-Ladik lattice as:

FALpV, βq “ ´ lim
NÑ8

1

N
lnZAL

N pV, βq , (3.29)

where the partition function ZAL
N pV, βq is defined in (3.12). The next proposition

shows that the free energy FALpV, βq of the Generalized Gibbs ensemble of the
Ablowitz-Ladik lattice and the free energy FHT pV, βq in (3.28) of the Circular beta
ensemble at high-temperature are related and this fact allows us to calculate the
moments of the mean density of states of the CMV matrix E in (3.16) and of the
Lax matrix E in (3.6).

Proposition 3.8. The free energy FALpV, βq in (3.29) of the AL lattice and the
free energy FHT pV, βq in (3.28) of the Circular beta ensemble at high-temperature
are differentiable with respect to β, and are related by

Bβ pβFHT pV, βqq ` lnp2q “ FALpV, βq. (3.30)

The moments of the density of states µβAL of the Lax matrix E in (3.6) endowed with
the probability measure (3.11) and the moments of the density of states µHT of the
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Circular beta ensemble in the high-temperature regime (3.19) are related to the free
energies FALpV, βq and FHT pV, βq by

ż

T
eiθmµβALpdθq “ BtFAL

ˆ

V `
t

2
<pzmq, β

˙

|t“0

,

ż

T
eiθmµβHT pdθq “ BtFHT

ˆ

V `
t

2
<pzmq, β

˙

|t“0

.

(3.31)

Since the proof of this proposition is rather technical, we postpone it to section
3.3.1. We are now ready to prove the first main Theorem 3.6.

Proof of Theorem 3.6. First, we will prove that the derivative with respect to β of
the density µβHT is well-defined in L2pTq. We notice that, since we are considering
just smooth potential V pzq as (3.10), from Theorem 3.4 point pdq µβHT pθq P C

8pTq,
so we can expand it in Fourier series as

µβHT pθq “
ÿ

nPZ

dne
iθn , (3.32)

where dn “
ş

eiθnµβHT pdθq are the moments of µβHT pdθq and they decay faster than
n´` for any positive integer ` and any β ą 0. Further, since µβHT pθq is a probability
density, then d0 “ 1 and the remaining moments satisfy the symmetry

dn “ d´n, n ě 1.

By Proposition 3.8, we can differentiate the moments dn with respect to β and
therefore we can formally compute the derivative with respect to β of the density
µβHT pθq by differentiating its Fourier expansion term by term

Bβµ
β
HT pθq “

ÿ

nPZ

Bβpdnqe
iθn .

In order to prove that BβµβHT pθq is well-defined, we will show that its Fourier ex-
pansion defines a function in L2pTq.

For this purpose, we define the moments of µβALpdθq as cn “
ş

eiθnµβALpdθq for
all N Q n ě 1. From the definition of mean density of states (3.25), we have that:

cn “ lim
NÑ8

E rTrpEnqs
2N

,

where the expectation is taken with respect to the probability distribution (3.11).
Since the eigenvalues of E lie on the unit circle, we get the following chain of in-
equalities:

|E rTrpEnqs| ď E r|TrpEnq|s ď 2N ,

which implies that:

|cn| ď 1 .

Thus, from Lemma 3.7, we obtain that the measure µβALpdθq is uniquely character-
ized by its moments.
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Further, as a corollary of Proposition 3.8 we have the following equality:

Bβdn “
cn ´ dn
β

,

thus |Bβdn| ď 2β´1.
Differentiating the Euler-Lagrange equation (3.27) at the minimizer µβHT pθq with

respect to θ we obtain the following integral equation (see [80, Proposition 2.5]):

Bθµ
β
HT pθq ` µ

β
HT pθqr2BθpV pθqq ` βHµ

β
HT pθqs “ 0 , (3.33)

where H is the Hilbert transform defined on L2pTq as

HµβHT pθq “ ´p.v.
ż

T
cot

ˆ

θ ´ φ

2

˙

µβHT pφqdφ

and p.v. is the Cauchy principal value, that is the limit as ε Ñ 0 of the integral
on the torus T restricted to the domain |eiθ ´ eiφ| ą ε. We notice that the Hilbert
transform H is diagonal on the bases of exponential teinθunPZ, meaning that

He inθ “ 2πisgnpnqe inθ ,
where sgnp¨q is the sign function with the convention that sgnp0q “ 0.

Therefore, substituting the Fourier expansion (3.32) of µβHT into (3.33) we get
the following equation
ÿ

nPZ

2
κ
ÿ

`“1

η`dn
`

zn`` ´ zn´`
˘

`
ÿ

nPZ

ndnz
n
`2πβ

˜

ÿ

ně1

n
ÿ

s“1

dsdn´sz
n
´

ÿ

ně1

n
ÿ

s“1

d´sds´nz
´n

¸

“ 0 ,

(3.34)
where einθ “ zn and V pzq “

řκ
`“1 η`

`

z` ` z´`
˘

. Equating terms of the same order
in (3.34) we obtain the following recurrence relation for the moments dn:

$

’

&

’

%

řκ
`“1 η`= pd`q “ 0 , n “ 0 ,

2
řκ
`“1 η` pdn´` ´ dn``q ` ndn ` 2πβ

řn
`“1 dn´`d` “ 0 , n ą 0 ,

2
řκ
`“1 η` pdn´` ´ dn``q ` ndn ´ 2πβ

ř|n|
`“1 dn``d´` “ 0 , n ă 0 .

From the above recurrence relation, we notice that the moments dn, n ą κ, are
uniquely defined by the moments d1, . . . , dκ, while the negative moments are ob-
tained by symmetry d´n “ dn. By differentiating the above recurrence relation with
respect to β we get a new recurrence for the sequence tBβdnunPZ:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

řκ
`“1 η` pBβd´` ´ Bβd`q “ 0 , n “ 0

2
κ
ÿ

`“1

η` pBβdn´` ´ Bβdn``q ` nBβdn

` 2π
n
ÿ

`“1

dn´`d` ` 2πβ

˜

n
ÿ

`“1

Bβdn´`d` `
n
ÿ

`“1

dn´`Bβd`

¸

“ 0 , n ą 0

2
κ
ÿ

`“1

η` pBβdn´` ´ Bβdn``q ` nBβdn ´ 2π

|n|
ÿ

`“1

dn``d´`

´ 2πβ

˜

|n|
ÿ

`“1

Bβdn``d´` `

|n|
ÿ

`“1

dn``Bβd´`

¸

“ 0 , n ă 0
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Recalling that definitely |dn| ď n´`, for any ` P N, and |Bβdn| ď 2β´1, we
deduce from the above recurrence expressions that, for n large enough, there exists
a constant rC ą 0 independent of n such that

|Bβdn| ď
rC

n
.

This is equivalent to tBβdnunPZ P `2, thus there exists a unique function in L2pTq
with Fourier coefficients equal to tBβdnunPZ (see for example [164, Chapter 12]). We
conclude that

Bβµ
β
HT pθq P L

2
pTq, (3.35)

for any β ą 0. To conclude the proof of the main Theorem 3.6, we observe that
from Proposition 3.8 we obtain the relation

cn “ Bβ pβdnq

between the moments of the measures µβALpθq and µβHT pθq respectively. This, to-
gether with Lemma 3.7 and (3.35) implies that

µβALpθq “ Bβ

´

βµβHT pθq
¯

.

Our next main result provides an explicit expression of the mean density of
states µHT pθq for the potential V pzq “ η<pzq. This generalizes the result by Gross
and Witten [78] and Baik-Deift-Johansson [14] obtained for finite temperature to
the high-temperature regime.

Theorem 3.9. Fix β ą 0 and let V pzq “ η<pzq, where η is a real parameter. There
exists ε ą 0 such that for all η P p´ε, εq, the minimizer µβHT pdθq “ µβHT pθqdθ of the
functional (3.4) takes the form

µβHT pθq “
1

2π
`

1

πβ
<
ˆ

eiθv1peiθq

vpeiθq

˙

,

where vpzq is the unique solution (up to a multiplicative non-zero constant) of Double
Confluent Heun (DCH) equation

z2v2pzq `
`

´η ` zpβ ` 1q ` ηz2
˘

v1pzq ` ηβpz ` λqvpzq “ 0 (3.36)

analytic for |z| ď r with r ě 1. Such solution is differentiable in the parameter η
and β. The parameter λ “ λpη, βq in (3.36) is determined for η P p´ε, εq by the
solution of the equation

λpR1q11 `
η

β ` 1
pR1q21 “ 0,

with the condition λpη “ 0, βq “ 0. In the above expression pR1qjk is the jk entry
of the matrix R1 which is defined by the infinite product

R1 “M1M2 . . .Mk . . . , Mk “

˜

1` λβη
kpk`βq

η2

kpk`β`1q

1 0

¸

.
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We remark that the solution of the double confluent Heun equation has gener-
ically an essential singularity at z “ 0 and z “ 8, and one needs to tune the
parameter λ to obtain an analytic solution, for a review see [143]. The parameter λ
is called accessory parameter, and it is related to the Painlevé III equation [53], [104].
The proof of Theorem 3.9 is contained in the next section and consists of mainly two
parts: we first derive from the variational equations with respect to the functional
F pV,βq, the double confluent Heun equation (3.36). Then we show that such equation
admits an analytic solution in any compact sets of the complex plane containing
the origin.

3.2.1 Proof of Theorem 3.9

From Theorem 3.4 we know that the density µβHT is characterized as the unique
minimizer of the functional (3.26). We follow the ideas developed in [7, 8, 34, 61]
to find this minimizer explicitly. We consider the Euler-Lagrange equation of the
functional (3.26), namely

δF pV,βq

δµ
“ 2V pθq ´ 2β

ż

T
ln sin

ˆ

|θ ´ φ|

2

˙

µpφqdφ` lnµpθq ` 1 “ CpV, βq , a.e.

where the equation holds almost everywhere and where CpV, βq is a constant de-
pending on the potential and β, but not on the variable θ. As we did in the previous
proof, by differentiating with respect to θ the Euler-Lagrange equation we obtain

Bθµpθq ` µpθqr2BθpV pθqq ` βHµpθqs “ 0 , (3.37)

we recall that H is the Hilbert transform defined on L2pTq as

Hµpθq “ ´p.v.
ż

T
cot

ˆ

θ ´ φ

2

˙

µpφqdφ ,

and p.v. is the Cauchy principal value. Setting eiθ “ z and eiφ “ w, we recognize
the Riesz - Herglotz kernel

z ` w

z ´ w
expressed as

z ` w

z ´ w
“ ´i cot

ˆ

θ ´ φ

2

˙

.

Therefore
ż

T
cot

ˆ

θ ´ φ

2

˙

µpφqdφ “ i` 2

ż

S1

µpwqdw

z ´ w
,

where S1 is the anticlockwise oriented circle, and we used the normalization condi-
tion

ş

T µpφqdφ “ 1. We can recast (3.37) in the form

zBzµpzq ` µpzq

„

2zBzV pzq ´ β ` 2iβp.v.
ż

S1

µpwq
dw

z ´ w



“ 0 .

For z P CzS1 let us define

Gpzq :“

ż

S1

µpwq
dw

w ´ z
“
i

2
´

1

2

ż

T
cot

ˆ

θ ´ φ

2

˙

µpφqdφ ,
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and for z P S1 let G˘pzq “ lim
rzÑz Gprzq for rz inside and outside the unit circle

respectively. Then

G˘pzq “ ˘πiµpzq ` p.v.
ż

S1

µpwq
dw

w ´ z

“ ˘πiµpzq `
i

2
´

2izBzV pzq

2β
´
izBzµpzq

2βµpzq
.

This implies that for z P S1 one has

G`pzq `G´pzq “ i´
2izBzV pzq

β
´
izBzµpzq

βµpzq
,

G`pzq ´G´pzq “ 2πiµpzq .

Multiplying the two previous expressions one gets:

G`pzq
2
´G´pzq

2
“ 2πiµpzq

ˆ

i´
2izBzV pzq

β
´
ziBzµpzq

βµpzq

˙

.

In order to proceed we have to specify our potential V pzq, in our case we will
consider V pzq “ η

2

`

z ` 1
z

˘

. Applying the Sokhtoski-Plemelj formula to the above
boundary value problem one obtains

G2
pzq “ i

ż

S1

µpwq

w ´ z
dw ´

iη

β

ż

S1

pw ´ wqµpwq

w ´ z
dw ´

i

β

ż

S1

wBwµpwq

w ´ z
dw . (3.38)

The second term in the r.h.s. of the above expression gives
ż

S1

pw ´ wqµpwq

w ´ z
dw “

ż

S1

w ˘ z

w ´ z
µpwqdw `

1

z

ż

S1

µpwq

ˆ

´
1

w ´ z
`

1

w

˙

dw

“

ˆ

zGpzq ` iλ´
Gpzq

z
`
i

z

˙

,

where we have defined

λ :“ ´i

ż

S1

µpwqdw, λ P R. (3.39)

The third term in the r.h.s. of (3.38) gives
ż

S1

wBwµpwq

w ´ z
dw “

ż

S1

Bwµpwqdw ` z

ż

S1

Bwµpwq

w ´ z
dw

“ z

ż

S1

µpwq

pw ´ zq2
dw “ zBzGpzq,

where in these last relations we use the results of Theorem 3.4 about the regularity
of µ. Now we can rewrite (3.38) as

G2
pzq “ iGpzq ´

iη

β

ˆ

zGpzq ` iλ´
Gpzq

z
`
i

z

˙

´
izBzGpzq

β
. (3.40)

Remark 3.10. In the above ODE, the parameter λ “ λpη, βq depends via (3.39)
implicitly on the function Gpzq. Our strategy to solve the above equation is to
consider λ as a free parameter that is uniquely fixed by the analytic properties of the
function Gpzq.
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We can now turn the non-linear first order ODE (3.40) into a linear second order
ODE through the substitution

Gpzq “ i`
izv1pzq

βvpzq
, (3.41)

getting:

z2v2pzq `
`

´η ` zpβ ` 1q ` ηz2
˘

v1pzq ` ηβpz ` λqvpzq “ 0 , (3.42)

which is the DCH equation in (3.36). The solutions to this equation have generically
essential singularities at z “ 0 and z “ 8 and the local description near the
singularities depends on the parameter η and β. The quantity λ is usually referred
to as accessory parameter since it does not change the singular behaviour of the
solution. Since Gpzq is analytic in the unit disc and continuous up to the boundary
and Gp0q “ i, we seek for a solution vpzq of the DCH equation that is analytic in
the unit disk and such that vpzq ÝÝÑ

zÑ0
v0, where v0 is a nonzero constant.

Construction of the analytic solution. We look for a solution of (3.42) in the
form

vpzq “
8
ÿ

k“0

akz
k, (3.43)

which implies the following recurrence relations for the coefficients takukPN

ηpa0λβ ´ a1q “ 0 , (3.44)
akpk

2
` kβ ` λβηq ` ηpk ´ 1` βqak´1 ´ ηpk ` 1qak`1 “ 0 , k ą 0 , (3.45)

where we have the freedom to chose λ and a0. Generically, the above recurrence
relation for the coefficients takukPN gives a divergent series in (3.43). To obtain a
convergent series, we follow the ideas in [26,155].

We start by considering the 2ˆ 2 matrices Rpsqk defined as

R
psq
k “MkMk`1 . . .Ms, s ě k, Mk “

˜

1` λβη
kpk`βq

η2

kpk`β`1q

1 0

¸

, (3.46)

which satisfy the recurrence relation Rpsqk “ R
ps´1q
k Ms. The next lemma shows that

the limit of Rpsqk as sÑ 8 exists.

Lemma 3.11. Let Rpsqk be the matrix defined in (3.46). Then the limit of Rpsqk as
sÑ 8 exists and

Rk :“ lim
sÑ8

R
psq
k . (3.47)

The matrices Rk, k ě 1 satisfy the descending recurrence relation:

Rk “MkRk`1 k ě 1 . (3.48)

Furthermore each entry of the matrix Rk “ Rkpβ, η, λq is differentiable with respect
to the parameters β, η, and λ.

Guido Mazzuca 65



The IDNLS

Since the proof of this lemma is rather technical, we defer it to section 3.3.2,
where we gather the most technical results.

Finally, let us define the following function:

ξpη, β, λq :“
`

λ η
β`1

˘

R1

ˆ

1
0

˙

. (3.49)

We are now ready to prove the following result that will give us a necessary condition
to fix the value of λ.

Proposition 3.12. For the values of λ such that

ξpη, β, λq “ 0, (3.50)

where ξpη, β, λq is defined in (3.49), the Double Confluent Heun equation (3.42) ad-
mits a non-zero solution v “ vpz, η, βq defined by the series (3.43) that is uniformly
convergent in |z| ď r with r ě 1. The corresponding coefficients takukPN of the
Taylor expansion (3.43) are given by the relation

a0 “
1

β

`

1 0
˘

R1

ˆ

1
0

˙

, (3.51)

ak “ p´1qk
ηk

k!pk ` βq

`

0 1
˘

Rk

ˆ

1
0

˙

, k ě 1 , (3.52)

where the matrices Rk are defined in (3.47). For each λ satisfying (3.50), the solution
vpzq of the DCH equation (3.42), analytic at zero is unique up to a multiplicative
factor.

Proof. First, we show that choosing ak according to (3.51)-(3.52) we obtain a solu-
tion of the recurrence (3.45). We notice that due to the recurrence relation for the
matrices Rk (3.48), we have that:

`

0 1
˘

Rk

ˆ

1
0

˙

“
`

1 0
˘

Rk`1

ˆ

1
0

˙

.

Thus, applying the previous equation and (3.51)-(3.52), we can recast (3.45) as:
„

p´1qk´1 ηk

pk ´ 1q!

`

1 0
˘

Rk ` p´ηq
k kpk ` βq ` ηλβ

k!pk ` βq

`

1 0
˘

Rk`1

`p´1qk
ηk`2

k!pk ` 1` βq

`

0 1
˘

Rk`1

ˆ

1
0

˙

“
p´ηqk

pk ´ 1q!

”

´
`

1 0
˘

Rk `

´

1` λβη
kpk`βq

η2

kpk`1`βq

¯

Rk`1

ı

ˆ

1
0

˙

“ 0 ,

where in the last equality we have enforced (3.48). Next we can rewrite (3.44) in
terms of the matrix R1 exploiting (3.51)-(3.52), namely

0 “
`

λ η
β`1

˘

R1

ˆ

1
0

˙

“ ξpη, β, λq ,

which is exactly (3.49). Since the entries of the matrices Rk are uniformly bounded,
the solution vpzq “

ř

kě0 akz
k with ak as in (3.52), defines a uniformly convergent

Taylor series in |z| ă r for any r ě 0 and in particular for any r ą 1.
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To show that the solution analytic at z “ 0 is unique up to a constant, we
consider the Wronkstian W pv, ṽqpzq of two independent solution v and ṽ of the
Double Confluent Heun equation (3.42), namely

W pzq “ e´ηpz`
1
z
qz´pβ`1q

pv1pzqṽpzq ´ vpzqṽ1pzqq.

Since W 1pzq “ 0, it follows that W pzq “ C a constant. If by contradiction we
suppose that there are two analytic solutions at z “ 0, then from the above relation
we obtain

e´ηzpv1pzqṽpzq ´ vpzqṽ1pzqq “ Ce
η
z zβ`1 .

If η ‰ 0 the left-hand side of the above equation is analytic and the right-hand side
is not, that is clearly a contradiction. If η “ 0 then (3.42) becomes:

z2v2pzq ` zpβ ` 1qv1pzq “ 0 .

The above equation has two independent solutions, one is the constant solution,
which is analytic, the other one is vpzq “ Cz´β which is not analytic since β ą 0.

Remark 3.13. We observe that the equation (3.50), does not uniquely determined
λ. Indeed as it is shown in Figure 3.1 the function ξpη, β, λq may have several zeros
for given η and β.

Figure 3.1: Plots of ξpη, β, λq for various values of η, β

Guido Mazzuca 67



The IDNLS

Choice of the parameter λ. We will now prove that the parameter λ is uniquely
determined in a neighbourhood of η “ 0 by requiring that the solution v “ vpz, η, βq
depends continuously on the parameter η.

Lemma 3.14. There exists an ε ą 0 such that for all η P p´ε, εq and β ą 0 there
is a unique λ “ λpη, βq such that ξpη, β, λpη, βqq “ 0.

Proof. When η “ 0 the matrix Rj “

ˆ

1 0
1 0

˙

so that the only solution of the

equation (3.50) ξpη “ 0, β, λq “ 0 is λ “ 0. To show the existence of the solution
(3.50) for λ “ λpη, βq near η “ 0, we use the implicit function theorem. We have
to show that Bλξpη, β, λq|p0,β,0q ‰ 0. For the purpose, we need to evaluate

Bλ pMkqpη“0,λ“0q “

ˆ

0 0
0 0

˙

,

where Mk is defined in (3.47). This equation implies that

Bλpξpη, β, λqq|p0,β,0q “
`

1 0
˘

ˆ

1 0
1 0

˙ˆ

1
0

˙

“ 1.

Thus we can apply the implicit function theorem, and we get the claim.

We conclude the proof of Theorem 3.9. When η “ 0 the only analytic solution
of DCH equation is vpzq “ c, c P C. In this case in principle λ is undetermined.
However, from Theorem 3.4 the minimizer µβHT of (3.26) is the uniform measure on
the circle and therefore from equation 3.39 one has λ “ 0. From Lemma 3.14 when
η P p´ε, εq, there exists a unique λpη, βq that satisfies equation (3.50) and such that
λpη “ 0, βq “ 0 and therefore by Proposition 3.12 we obtain for η P p´ε, εq, the
unique solution vpz, η, βq of the DCH equation analytic in any compact set |z| ď r,
with r ą 0 and in particular when r “ 1. Because of lemma 3.11 the solution
vpz, η, βq is differentiable with respect to the parameters η and β.

We remark that vpzq ‰ 0 on the unit disc D because of the relation (3.41)
between the analytic function Gpzq and vpzq.

To complete our proof we recover the explicit expression of µβHT pθq from Gpzq
and vpzq using the Poisson representation formula (see for example [147, Chapter
1]):

µβHT pθq “ ´
1

2π
´

<piGpeiθqq
πβ

“
1

2π
`

1

πβ
<
ˆ

eiθv1peiθq

vpeiθq

˙

.

In Figure 3.2 we plotted the density of states of the Circular beta ensemble in
the high-temperature regime with potential V pzq “ η<pzq. To produce this picture
and Figure 3.1, we used extensively the NumPy [81], and matplotlib [86] libraries.

3.3 Technical results

In this section we collect the most technical parts of this chapter.
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Figure 3.2: The mean density of states µβHT for different parameters.

3.3.1 Proof of Proposition 3.8

First, we prove the relation between the free energies (3.30):

BβpβFHT pV, βqq ` lnp2q “ FALpV, βq , (3.53)

doing that we will also prove that they are differentiable with respect to β.
We notice that the previous expression is equivalent to:

Bβ

ˆ

β lim
NÑ8

lnpZHT
N pV, βqq

N

˙

“ lim
NÑ8

lnpZAL
N pV, βqq

N
.

To prove the previous relation, we will use the so-called transfer operator technique
[92,96,134]. We are considering a potential of the form TrpV pEqq as in (3.10) which
is of finite range K, meaning that it can be expressed as a sum of local quantities,
i.e. depending on a finite number 2K of variables, with K independent of N [126].
For example, if V pzq “ <pzq, then TrpEq “ ´2

řN
j“1 <pαjαj`1q and in this case

the range is K “ 1. Let N “ KM ` L with M,L P N and L ă K. We split the
coordinates pα1, . . . , αNq into M blocks of length K and a reminder of length L,
and we define rαj “ pαKpj´1q`1, αKpj´1q`2, . . . , αKjq. In this notation,

pα1, . . . , αNq “ p

KM
hkkkkkikkkkkj

rα1, . . . , rαM ,

L
hkkkkkkkkikkkkkkkkj

αKM`1, . . . , αNq,

and we can rewrite the potential as

TrpV pEqq “
M´1
ÿ

`“1

W prα`, rα``1q `W prαM , αKM`1, . . . , αN , α1, . . . , αK´Lq ,

whereW is a continuous functionW : DKˆDK Ñ R, andW prα1, rα2q “ W prα2, rα1q.
The last term in the above expression is different from the others since we may have
an off-set of length L, due to periodicity. For convenience, we define

rαM`1 “ pαKM`1, . . . , αN , α1, . . . , αK´Lq.

In the case V pzq “ <pzq, then W pα1, α2q “ ´2<pα1α2q and there is no off-set.
We can now rewrite ZAL

N pV, βq in (3.12) as
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ZAL
N pV, βq “

ż

DN

N
ź

j“1

`

1´ |αj|
2
˘β´1

exp

˜

´

M
ÿ

`“1

W prα`, rα``1q

¸

d2α .

We are now in position to apply the transfer operator technique to compute this
partition function. On L2pDKq we introduce the scalar product

pf, gq “

ż

DK
fpzqgpzqdz , (3.54)

where z “ pz1, . . . , zKq. This scalar product induces a norm on L2pDq and also a
norm on the operators T : L2pDKq Ñ L2pDKq as

||T || :“ sup
f : ||f ||2“1

||Tf ||2 ,

where ||f ||2 is the standard L2 norm.
Let ζ “ pζ1, . . . , . . . ζ2Kq with ζK`j “ ζj ą 0 for j “ 1, . . . , K, we define the

continuous family of transfer operators Tζ : L2pDKq Ñ L2pDKq as

pTζfqprα2q “

ż

DK
fprα1q

2K
ź

j“1

`

1´ |αj|
2
˘

ζj´1

2 exp p´W prα1, rα2qq d2
rα1 . (3.55)

We notice that Tζ is symmetric with respect to the scalar product (3.54), in-
deed pf, T gq “ pT f, gq. Furthermore, Tζ is an integral operator whose kernel
ś2K

j“1 p1´ |αj|
2q

ζj´1

2 exp p´W prα1, rα2qq belongs to L2pDKˆDKq, and therefore Tζ is
an Hilbert-Schimdt operator. We conclude that there exists a complete set of nor-
malized eigenfunctions tψjujě1 with real eigenvalues tλjujě1 in descending order,
differentiable functions of the parameters ζ “ pζ1, . . . , ζ2Kq [91], such that:

pTζψjqpz, V, ζq “ λjpV, ζqψjpz
1, V, ζq (3.56)

8
ÿ

n“1

ψnpz, V, ζqψnpz
1, V, ζq “ δzpz

1
q (3.57)

where δzp¨q is the Dirac delta function at z P DK . Moreover
ř8

j“1 |λjpV, ζq|
2 ă 8.

We artificially rewrite ZAL
N as

ZAL
N pV, βq “

ż

DN`K
δ
rα1pγq

K
ź

`“1

`

1´ |γ`|
2
˘
β´1

2

K
ź

`“1

`

1´ |αj|
2
˘
β´1

2

N
ź

`“K`1

`

1´ |αj|
2
˘β´1

ˆ exp

˜

´

M´1
ÿ

`“1

W prα`, rα``1q ´W prαM , αKM`1, . . . , αN , γ1, . . . , γK´Lq

¸

d2αd2γ ,
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where γ “ pγ1, . . . , γKq and γ P DK . We can use (3.57) with ζ “ β “

2K
hkkkkikkkkj

pβ, . . . , βq to
rewrite the previous equation as:

ZAL
N pV, βq “

8
ÿ

n“1

ż

DN`K
ψnpγ, V,βqψnprα1, V,βq

K
ź

`“1

`

1´ |γ`|
2
˘
β´1

2

ˆ

K
ź

`“1

`

1´ |αj|
2
˘
β´1

2

N
ź

`“K`1

`

1´ |αj|
2
˘β´1

ˆ exp

˜

´

M´1
ÿ

`“1

W prα`, rα``1q ´W prαM , αKM`1, . . . , αN , γ1, . . . , γK´Lq

¸

d2αd2γ .

In the above integral, we can identify the integral operator Tβ where β “

2K
hkkkkikkkkj

pβ, . . . , βq.
We repeatedly apply (3.56) M ´ 1 times to the above integral, to obtain:

ZAL
N pV, βq “

8
ÿ

n“1

pλnpV,βqq
M´1Rn, (3.58)

Rn “

ż

D2K`L

ψnpγ, V,βqψnprαM , V,βq
K
ź

`“1

`

1´ |γ`|
2
˘

β´1
2

MK
ź

`“pM´1qK`1

`

1´ |αj|
2
˘
β´1

2(3.59)

ˆ

N
ź

`“MK`1

`

1´ |αj|
2
˘β´1

exp p´W prαM , αKM`1, . . . , αN , γ1, . . . , γK´Lqq
N
ź

`“pM´1qK`1

d2αj

K
ź

`“1

d2γ` .

The modulus of the reminder |Rn| in (3.59) can be bounded from above and below
by two constants C1, C2 ą 0 independent of N , therefore we conclude from (3.58)
that

FALpV, βq “ ´ lim
NÑ8

1

N
ln
`

ZAL
N pV, βq

˘

“ ´
1

K
ln pλ1pV,βqq .

As a consequence of the previous relation and [169, Theorem 137.4], we get that
FALpV, βq is differentiable with respect to β, since λ1pV, βq is differentiable in β and
strictly positive.

We can apply the same procedure to the partition function ZHT
N pV, βq in (3.19).

Also in this case the potential TrpV p rEqq with V as in (3.10) and the matrix rE
as in (3.18) is of finite range K, meaning that it can be expressed as a sum of
local quantities [126]. More precisely, assuming N “ KM ` L with L ă K and
M,N,L P N we have

TrpV p rEqq “
M´1
ÿ

`“1

W prα`, rα``1q`W p

K´1
hkkikkj

0, . . . , 0,´1, rα1q`W prαM , αKM`1, . . . , αN ,

K´L
hkkikkj

0, . . . , 0q ,

For example for V pzq “ z2 ` z̄2 one has K “ 2 and N “ 2M ` L where L “ 0, 1.
The vector rα` takes the form rα` “ pα2`´1, α2`q for ` “ 1, . . . ,M . In this notation,
we can rewrite the potential as

TrpV p rEqq “
M´1
ÿ

`“1

W prα`, rα``1q ` δL,0W prαM , αN , 0q ` 2<pα2
1 ` 2ᾱ2ρ

2
1q

loooooooomoooooooon

“W p0,´1,α1,α2q
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where in this caseW prα`, rα``1q “ 2<
“
ř1
s“0pα2`´1`sᾱ2``sq

2 ´ 2α2`´1`sᾱ2``1`sρ
2
2``s

‰

.
In this way, the partition function can be written in the form

ZHT
N pV, βq “

ż

DN´1ˆS1

N´1
ź

j“1

d2αj
dαN
iαN

N´1
ź

j“1

`

1´ |αj|
2
˘βp1´ j

N q´1 (3.60)

ˆ exp

¨

˝´

M´1
ÿ

`“1

W prα`, rα``1q ´W prαM , αKM`1, . . . , αN ,

K´L
hkkikkj

0, . . . , 0q ´W p

K´1
hkkikkj

0, . . . , 0,´1, rα1q

˛

‚ .

We want to apply the same technique as in the previous case, but we have to
pay attention to one important detail: in this situation the eigenvalues and the
eigenfunctions of the transfer operators will be dependent on the block number.
Indeed, in this case the exponents of p1´ |αj|2q are not identical, but they depend
on the index j as in (3.60).
For this reason, we define the vector ζp1q P R2K as

ζp1q “
´

β

ˆ

1´
1

N

˙

, β

ˆ

1´
2

N

˙

, . . . , β

ˆ

1´
K

N

˙

, β

ˆ

1´
1

N

˙

, β

ˆ

1´
2

N

˙

, . . . , β

ˆ

1´
K

N

˙

¯

,

and
ζpjq “ ζp1q ´ β

j ´ 1

N
K, j “ 1, . . . ,M ´ 1

where Kj “ K for j “ 1, . . . , 2K. For K integer and K ă N we introduce the
multiplication operator MK : L2pDKq Ñ L2pDKq defined as

pMKfqpαq “
K
ź

j“1

`

1´ |αj|
2
˘´ K

2N fpαq.

We observe that M´K “ pMKq
´1 and the operators Tζpjq : L2pDKq Ñ L2pDKq

defined in (3.55) satisfy the relation

Tζpj`1q “MKTζpjqMK , j “ 1, . . . ,M ´ 1.

We notice that the operators Tζpjq are compact and symmetric.
Let us define the operator

rT “MKTζpM´1qMKTζpM´2q ¨ ¨ ¨ Tζp1q , (3.61)

we notice that it is a compact operator, since all Tζpjq are Hilbert-Schimdt and the
multiplication operator MK is bounded. We will now prove the following technical
proposition:

Proposition 3.15. Let rT as in (3.61) and ZHT
N as in (3.60) then:

lim
NÑ8

1

N
ln

˜

ZHT
N

TrprT q

¸

“ 0 (3.62)
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Proof. We will estimate both ZHT
N , and TrprT q from above and below, then combin-

ing these estimates we will obtain (3.62). We start with ZHT
N .

ZHT
N “

ż

DN´1ˆS1

N´1
ź

j“1

d2αj
dαN
iαN

N´1
ź

j“1

`

1´ |αj|
2
˘βp1´ j

N q´1

ˆ exp

¨

˝´

M´1
ÿ

`“1

W prα`, rα``1q ´W prαM , αKM`1, . . . , αN ,

K´L
hkkikkj

0, . . . , 0q ´W p

K´1
hkkikkj

0, . . . , 0,´1, rα1q

˛

‚

ď C1pV, βq

ż

DN´1ˆS1

N´1
ź

j“1

d2αj
dαN
iαN

N´1
ź

j“1

`

1´ |αj|
2
˘βp1´ j

N q´1
exp

˜

´

M´3
ÿ

`“2

W prα`, rα``1q

¸

,

here C1pV, βq is a constant depending on V, β, but not on N . We can explicitly
integrate in αj for j “ 1, . . . , K and j “ pM ´ 2qK ` 1, . . . , N using the formula

ż

D

`

1´ |z|2
˘t´1

d2z “ πt´1 ,

obtaining that there exists a constant CpV, βq depending on V, β such that :

ZHT
N ďCpV, βqN2K`L´1

ż

DpM´3qK

pM´2qK
ź

j“1

d2αj

pM´2qK
ź

j“K`1

`

1´ |αj|
2
˘βp1´ j

N q´1

ˆ exp

˜

´

M´3
ÿ

`“2

W prα`, rα``1q

¸

.

(3.63)

With analogous computation, we can obtain a lower bound for ZHT
N

ZHT
N ěcpV, βqN2K`L´1

ż

DpM´3qK

pM´2qK
ź

j“1

d2αj

pM´2qK
ź

j“K`1

`

1´ |αj|
2
˘βp1´ j

N q´1

ˆ exp

˜

´

M´3
ÿ

`“2

W prα`, rα``1q

¸

,

(3.64)

here cpV, βq is a constant depending on V, β, but not on N .
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We can proceed analogously to estimate the trace of rT :

TrprT q “
ż

DpM´2qK

K
ź

j“1

`

1´ |αj|
2
˘
β
2 p1´

j
N q´

1
2

K
ź

j“1

`

1´ |αj|
2
˘
β
2 p1´

pM´2qK`j
N q´ 1

2

pM´2qK
ź

j“K`1

`

1´ |αj|
2
˘βp1´ j

N q´1

ˆ exp

˜

´

M´3
ÿ

j“1

W prαj, rαj`1q ´W prαM´2, rα1q

¸

M´2
ź

j“1

d2
rαj

ď rC1pV, βq

ż

DpM´2qK

K
ź

j“1

`

1´ |αj|
2
˘
β
2 p1´

j
N q´

1
2

ˆ

K
ź

j“1

`

1´ |αj|
2
˘
β
2 p1´

pM´2qK`j
N q´ 1

2

pM´2qK
ź

j“K`1

`

1´ |αj|
2
˘βp1´ j

N q´1

ˆ exp

˜

´

M´3
ÿ

j“2

W prαj, rαj`1q

¸

M´2
ź

j“1

d2
rαj

ď rCpV, βq

ż

DpM´3qK

pM´2qK
ź

j“1

d2αj

pM´2qK
ź

j“K`1

`

1´ |αj|
2
˘βp1´ j

N q´1
exp

˜

´

M´3
ÿ

`“2

W prα`, rα``1q

¸

,

(3.65)

here rC1pV, βq , rCpV, βq is a constant depending on V, β, but not on N .
With the same kind of computation, one gets that:

TrpT q ě rcpV, βq

ż

DpM´3qK

pM´2qK
ź

j“1

d2αj

pM´2qK
ź

j“K`1

`

1´ |αj|
2
˘βp1´ j

N q´1
exp

˜

´

M´3
ÿ

`“2

W prα`, rα``1q

¸

,

(3.66)
here rcpV, βq is a constant depending on V, β, but not on N . From (3.63)-(3.64)-
(3.65)-(3.66) we deduce (3.62).

Applying the previous proposition, we can express the Free energy of the Circular
beta ensemble in the high-temperature regime in terms of TrprT q:

FHT pV, βq “ ´ lim
NÑ8

1

N
ln
`

ZHT
N

˘

“ ´ lim
NÑ8

1

N

ˆ

ln

ˆ

ZHT
N

TrpT q

˙

` lnpTrpT qq
˙

“ ´ lim
NÑ8

lnpTrpT qq
N

,

(3.67)

where in the last equality we used Proposition 3.15.
Thus, we have to understand the behaviour of TrprT q, to do that we have to

carefully analyse the compact operators Tζpjq .
Let us define the functions ψnpz, V, ζpjqq to be the eigenfunctions of Tζpjq with cor-

responding eigenvalues λnpV, ζpjqq in descending order. From a generalized version of
Jentzsch Theorem (see [169, Theorem 137.4]), we get that λnpV, ζpjqq ă λ1pV, ζ

pjq
q

for all n ě 2. Moreover, the largest eigenvalues of each Tζpjq is a differentiable
function of the parameters ζpjq, so we can conclude that:
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λ1pV, ζ
pj`1q

q “ λ1pV, ζ
pjq
q

ˆ

1`O

ˆ

1

N

˙˙

.

Furthermore, we claim that
´

ψ1pz, V, ζ
pj`1q

q,MKψnpz, V, ζ
pjq
q

¯

“ δ1,n `O

ˆ

1

N

˙

. (3.68)

Indeed let us consider the integral
´

ψ1pz, V, ζ
pj`1q

q, Tζpj`1qMKψnpz, V, ζ
pjq
q

¯

“

´

ψ1pz, V, ζ
pj`1q

q,MkTζjMKMKψnpz, V, ζ
pjq
q

¯

λ1pV, ζ
pj`1q

q

´

ψ1pz, V, ζ
pj`1q

q,MKψnpz, V, ζ
pjq
q

¯

“ λnpV, ζ
pjq
q

´

ψ1pz, V, ζ
pj`1q

q,MKψnpz, V, ζ
pjq
q

¯

ˆ

1`O

ˆ

1

N

˙˙

,

where in the right-hand side we have expanded in power series of 1{N the opera-
torMK . From the above relation we would obtain λ1pV, ζ

pj`1q
q “ λnpV, ζ

pjq
q
`

1`O
`

1
N

˘˘

for every n which is a contradiction unless (3.68) holds. We also conclude that

Tζpj`1qMKψ1pz, V, ζ
pjq
q “ λ1pV, ζ

pj`1q
qψ1pz, V, ζ

pj`1q
q

ˆ

1`O

ˆ

1

N

˙˙

.

We are now in position to prove the following proposition

Proposition 3.16. Let ψnpz, V, ζpjqq be the eigenfunctions of Tζpjq (3.55) with cor-
responding eigenvalues λnpV, ζpjqq in decreasing order. Consider the operator rT in
(3.61), then the following holds:

lim
NÑ8

1

N
ln

¨

˝

´

ψ1pz, V, ζ
p1q
q, rT ψ1pz, V, ζ

p1q
q

¯

śM´1
j“1 λ1pV, ζ

pjq
q

˛

‚“ 0 , (3.69)

lim
NÑ8

ř

`ě2

´

ψ`pz, V, ζ
p1q
q, rT ψ`pz, V, ζp1qq

¯

śM´1
j“1 λ1pV, ζ

pjq
q

“ 0 . (3.70)

Proof. To simplify the notation, we will drop the V dependence of the eigenvalues
λnpV, ζ

pjq
q, and of the eigenfunctions ψnpz, V, ζpjqq. We will prove by induction on

M that there exists a1, . . . , aM´1 constants independent of N , and so on M , such
that

´

ψ1pz, ζ
p1q
q, rT ψ1pz, ζ

p1q
q

¯

“

M´1
ź

j“1

λ1pζ
pjq
q

´

1`
aj
N

¯

,

if this expression holds, then (3.69) follows.
For M “ 2, we have that rT “MKTζp1q , so we have to compute:
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´

ψ1pz, ζ
p1q
q,MKTζp1qψ1pz, ζ

p1q
q

¯

“ λ1pζ
p1q
q

´

ψ1pz, ζ
p1q
q,MKψ1pz, ζ

p1q
q

¯

.

For N big enough, we have that there exists a constant a1 independent of N such
that:

´

ψ1pz, ζ
p1q
q,MKψ1pz, ζ

p1q
q

¯

“ 1`
a1

N
,

so the first inductive step is proved.
For general M , we have to compute:

´

ψ1pz, ζ
p1q
q,MKTζpM´1q ¨ ¨ ¨MKTζp1qψ1pz, ζ

p1q
q

¯

“ λ1pζ
p1q
q

´

ψ1pz, ζ
p1q
q,MKTζpM´1q ¨ ¨ ¨MKψ1pz, ζ

p1q
q

¯

“ λ1pζ
p1q
q
ÿ

`ě1

´

ψ1pz, ζ
p1q
q, ψ`pz, ζ

p2q
q

¯´

ψ`pz, ζ
p2q
q,MKTζpM´1q ¨ ¨ ¨ Tζp2qψ`pz, ζ

p2q
q

¯

ˆ

´

ψ`pz, ζ
p2q
q,MKψ1pz, ζ

p1q
q

¯

.

(3.71)

We notice that for N big enough, we get that there exists a constant ξ1,` independent
of N such that:

´

ψ`pz, ζ
p2q
q,MKψ1pz, ζ

p1q
q

¯

“

´

ψ`pz, ζ
p2q
q, ψ1pz, ζ

p1q
q

¯

ˆ

1`
ξ1,`

N

˙

.

Defining c1,` “

´

ψ`pz, ζ
p2q
q, ψ1pz, ζ

p1q
q

¯

, we can recast (3.71) as:

´

ψ1pz, ζ
p1q
q,MKTζpM´1q ¨ ¨ ¨MKTζp1qψ1pz, ζ

p1q
q

¯

“ λ1pζ
p1q
q
ÿ

`ě1

|c1,`|
2

ˆ

1`
ξ1,`

N

˙

ˆ

´

ψ`pz, ζ
p2q
q,MKTζpM´1q ¨ ¨ ¨ Tζp2qψ`pz, ζ

p2q
q

¯

.

(3.72)

Since ψ`pz, ζp2qq, ψ`pz, ζp1qq are complete orthonormal bases of L2pDKq, we can
conclude that

ř

`ě1 |c1,`|
2 “ ||ψ1pz, ζ

p1q
q||2 “ 1. Moreover, from (3.68) we get that

there exists a constant χ1 independent of N such that |c1,1|
2 “ 1´χ1{N . Thus, we

deduce that
ÿ

`ě2

|c1,`|
2
“
χ1

N
.

We can rewrite (3.72) in a more convenient way as:
´

ψ1pz, ζ
p1q
q,MKTζpM´1q ¨ ¨ ¨MKTζp1qψ1pz, ζ

p1q
q

¯

“ λ1pζ
p1q
q

´

1´
χ1

N

¯

ˆ

1`
ξ1,1

N

˙

´

ψ1pz, ζ
p2q
q,MKTζpM´1q ¨ ¨ ¨ Tζp2qψ1pz, ζ

p2q
q

¯

` λ1pζ
p1q
q
ÿ

`ě2

|c1,`|
2

ˆ

1`
ξ1,`

N

˙

´

ψ`pz, ζ
p2q
q,MKTζpM´1q ¨ ¨ ¨ Tζp2qψ`pz, ζ

p2q
q

¯

.
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We can apply the inductive hypothesis to the first term of the previous expression,
thus to complete the proof we have just to show that there exists a constant C such
that

ˇ

ˇ

ˇ

ř

`ě2 |c1,`|
2
´

1`
ξ1,`
N

¯´

ψ`pz, ζ
p2q
q,MKTζpM´1q ¨ ¨ ¨ Tζp2qψ`pz, ζ

p2q
q

¯
ˇ

ˇ

ˇ

śM´1
j“1 λ1pζ

pjq
q

ď
C

N
. (3.73)

We notice that there exists a constant rC independent of N such that

ˇ

ˇ

ˇ

´

ψ`pz, ζ
p2q
q,MKTζpM´1q ¨ ¨ ¨ Tζp2qψ`pz, ζ

p2q
q

¯
ˇ

ˇ

ˇ
ď rC

M´1
ź

j“2

λ1pζ
pjq
q , (3.74)

so, from the previous proof, we get that there exists a constant C independent of
N such that:
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

`ě2

|c1,`|
2

ˆ

1`
ξ1,`

N

˙

´

ψ`pz, ζ
p2q
q,MKTζpM´1q ¨ ¨ ¨ Tζp2qψ`pz, ζ

p2q
q

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

N

M´1
ź

j“1

λ1pζ
pjq
q ,

which leads to (3.73), thus we proved (3.69).
To prove (3.70), we rewrite the numerator as:

ÿ

`ě2

´

ψ`pz, ζ
p1q
q, rT ψ`pz, ζp1qq

¯

“
ÿ

`ě2

λ`pζ
p1q
q

´

ψ`pz, ζ
p1q
q,MKTζpM´1q ¨ ¨ ¨ Tζp2qMKψ`pz, ζ

p1q
q

¯

“
ÿ

`ě2

λ`pζ
p1q
q
ÿ

ně1

´

ψ`pz, ζ
p1q
q, ψnpz, ζ

p2q
q

¯´

ψnpz, ζ
p2q
q,MKTζpM´1q ¨ ¨ ¨ Tζp2qψnpz, ζ

p2q
q

¯

ˆ

´

ψnpz, ζ
p2q
q,MKψ`pz, ζ

p1q
q

¯

.

(3.75)

As in the previous case, we notice that for N big enough there exist constants ξn,`
independent of N such that:

´

ψnpz, ζ
p2q
q,MKψ`pz, ζ

p1q
q

¯

“

´

ψnpz, ζ
p2q
q, ψ`pz, ζ

p1q
q

¯

ˆ

1`
ξn,`
N

˙

.

Defining cn,` “
´

ψnpz, ζ
p2q
q, ψ`pz, ζ

p1q
q

¯

, we can recast (3.75) as:

ÿ

`ě2

´

ψ`pz, ζ
p1q
q, rT ψ`pz, ζp1qq

¯

“
ÿ

`ě2

λ`pζ
p1q
q
ÿ

ně1

|cn,`|
2

ˆ

1`
ξn,`
N

˙

´

ψnpz, ζ
p2q
q,MKTζpM´1q ¨ ¨ ¨ Tζp2qψnpz, ζ

p2q
q

¯

.

(3.76)

As before, we have that there exist a constant χ1 independent of N such that
ř

`ě2 |cn,1|
2 “ χ1{N , so, applying (3.74), we get the following estimate for (3.76)

Guido Mazzuca 77



The IDNLS

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

`ě2

´

ψ`pz, ζ
p1q
q, rT ψ`pz, ζp1qq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C1

N
|λ2pζ

p1q
q|

M´1
ź

j“2

λ1pζ
pjq
q `

ˆ

1`
C2

N

˙

|λ2pζ
p1q
q|

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ně2

´

ψnpz, ζ
p2q
q,MKTζpM´1q ¨ ¨ ¨ Tζp2qψnpz, ζ

p2q
q

¯

ˇ

ˇ

ˇ

ˇ

ˇ

,

where we used that |cn,`|2 ď 1 and ξn,` ď C2, here C2 is a constant independent of
N .

Inductively, we get that there exists a constant C independent of N such that:

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

`ě2

´

ψ`pz, ζ
p1q
q, rT ψ`pz, ζp1qq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

N

M´1
ÿ

j“1

˜

j
ź

`“1

λ2pζ
pjq
q

M´1
ź

m“j

λ1pζ
m
q

¸

.

Thus, we get that

lim
NÑ8

ˇ

ˇ

ˇ

ř

`ě2

´

ψ`pz, ζ
p1q
q, rT ψ`pz, ζp1qq

¯ˇ

ˇ

ˇ

śM´1
j“1 λ1pζ

pjq
q

ď lim
NÑ8

C

N

M´1
ÿ

j“1

j
ź

`“1

|λ2pζ
pjq
q|

λ1pζ
pjq
q
“ 0 ,

here in the last equality we used that |λ2pζ
p`q
q| ă λ1pζ

p`q
q for all `, which implies

that the previous sum is not divergent in N . Thus, we got the claim.

Applying Proposition 3.16 to (3.67) we get that:

FHT pV, βq “ ´ lim
NÑ8

1

N
ln
´

TrprT q
¯

“ ´ lim
NÑ8

1

N
ln

˜

ÿ

ně1

´

ψnpz, V, ζ
p1q
q, rT ψnpz, V, ζp1qq

¯

¸

“ ´ lim
NÑ8

1

N

M´1
ÿ

j“1

lnpλ1pV, ζ
pjq
qq .

(3.77)

Since the maximum eigenvalue of each Tζpjq is positive and a continuous function
of the parameters (see [91, 139]), we get that λ1pV, ζ

pjq
q “ λ1

`

V,β
`

1´ jK
N

˘˘

`

OpN´1q. Therefore, we can rewrite (3.77) as

FHT pV, βq “ ´ lim
NÑ8

M´1
ÿ

j“1

ln

ˆ

λ1

ˆ

V,β

ˆ

1´
jK

N

˙˙˙

“ ´
1

K

ż 1

0

ln pλ1 pV,βxqq dx .

This leads to (3.53), moreover, as a consequence of the previous relation, we get
that FHT pV, βq is differentiable with respect to β.

We notice that the proof is heavily based on the assumption that the potential
that we are considering is of finite range, otherwise our approach would not work.

We now prove the moments relations (3.31). Thanks to the symmetries of the
measures (3.19)-(3.11) and the definition of mean density of states (3.25) we get
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that the imaginary part of the moments of µβHT and µβAL is equal to zero, meaning
that:

ż

T
eiθmµβHT pdθq “ lim

NÑ8

E rTrpEmqs

N
“ lim

NÑ8

E r< pTrpEmqqs

N
“

ż

T
cospθmqµβHT pdθq ,

ż

T
eiθmµβALpdθq “ lim

NÑ8

E rTrpEmqs
2N

“ lim
NÑ8

E r< pTrpEmqqs
2N

“

ż

T
cospθmqµβALpdθq ,

where in the first equation the expected values are taken with respect to (3.19) and
to (3.11) in the second one. Therefore, we have just to prove that

ż

T
cospθmqµβHT pdθq “ BtFHT

ˆ

V `
t

2
<pzmq, β

˙

|t“0

, (3.78)

ż

T
cospθmqµβALpdθq “ BtFAL

ˆ

V `
t

2
<pzmq, β

˙

|t“0

. (3.79)

We focus on (3.78). From Remark 3.5, we have that FHT pV, βq “ F pV ;βqpµβHT pθqq,
we recall that µβHT pθq is the density of the mean density of states of Circular beta
ensemble at high-temperature and the functional F pV,βq is defined in (3.26). We
write the Euler-Lagrange equation for this functional, getting that µβHT pθq satisfies:

2V pθq ´ 2β

ż

T
ln

ˆ

sin

ˆ

|θ ´ γ|

2

˙˙

µβHT pγqdγ ` lnpµβHT pθqq ` CpV, βq “ 0 , (3.80)

where CpV, βq is a constant not depending on θ.
Consider the same functional as before, but with potential rV pθq “ V pθq `

t
2

cospmθq:

FpV pθq`
t
2

cospmθq,βqpµq “ 2

ż

T
V pθqµpθqdθ ` t

ż

T
cospmθqµpθqdθ

´ β

ż ż

TˆT
ln sin

ˆ

|θ ´ γ|

2

˙

µpθqµpγqdθdγ `

ż

T
ln pµpθqqµpθqdθ ` lnp2πq .

Also this functional has a unique minimizer µptqpθq, and we notice that µp0qpθq “
µβHT pθq. Evaluating the previous functional at µptqpθq, and computing its derivative
at t “ 0, we get that:
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BtFpV pθq`
t
2

cospmθq,βqpµq|t“0 “ 2

ż

T
V pθqBtµ

ptq
pθq|t“0dθ

`

ż

T
cospmθqµβHT pθqdθ ´ β

ż ż

TˆT
ln sin

ˆ

|θ ´ γ|

2

˙

µβHT pγqBtµ
ptq
pθq|t“0dθdγ

`

ż

T
ln
´

µβHT pθq
¯

Btµ
ptq
pθq|t“0dθ .

(3.81)

Testing (3.80) against Btµptqpθq|t“0 we obtain

2

ż

T
V pθqBtµ

ptq
pθq|t“0dθ ´ β

ż ż

TˆT
ln sin

ˆ

|θ ´ γ|

2

˙

µβHT pγqBtµ
ptq
pθq|t“0dθdγ

`

ż

T
ln
´

µβHT pθq
¯

Btµ
ptq
pθq|t“0dθ “ 0 ,

where we used that
ş

T Btµ
ptqpθqdθ “ 0. Thus, we can simplify (3.81) as :

BtFpV pθq`
t
2

cospmθq,βqpµq|t“0 “

ż

T
cospmθqµβHT pθqdθ ,

which is equivalent to (3.78).
To complete the proof of Proposition 3.8 we have to show that (3.79) holds.

From the definition of mean density of states (3.25) we have that:

ż

T
cospθmqµβALpdθq “ lim

NÑ8

E r< pTrpEmqqs
2N

“ ´ lim
NÑ8

Bt

´

Z
pALq
N

`

V ` t
2
<pzmq, β

˘

¯

|t“0

NZ
pALq
N pV, βq

,

where the expected value is taken with respect to the generalized Gibbs ensemble
of the Ablowitz-Ladik lattice.

Exploiting (3.58) we can rewrite the previous expression as:

´ lim
NÑ8

Bt

´

Z
pALq
N

`

V ` t
2
<pzmq, β

˘

¯

|t“0

NZ
pALq
N pV, βq

“ ´ lim
NÑ8

Bt
`
ř8

`“1 λ
M
`

`

V ` t
2
<pzmq, β

˘˘

|t“0

N
ř8

`“1 λ
M
` pV, βq

“ ´
Btλmax

``

V ` t
2
<pzmq, β

˘˘

|t“0

KλmaxpV, βq

“ Bt

ˆ

FAL

ˆ

V `
t

2
<pzmq, β

˙˙

|t“0

.

Thus, we have completed the proof of Proposition 3.8.

3.3.2 Proof of lemma 3.14

We prove (3.47) for k “ 1 and the cases k ą 1 easily follow.
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Let us define Rpsq1 “

ˆ

fs hs
ps qs

˙

where s ě 1. If follows from (3.46) that

ˆ

fs hs
ps qs

˙

“

ˆ

fs´1 hs´1

ps´1 qs´1

˙

˜

1` λβη
sps`βq

η2

sps`β`1q

1 0

¸

, s ą 1,

where β ą 0 and λ, η P Rzt0u. Note that in the case η “ 0 the lemma is trivially
satisfied. We will show that all the sequences tfs, hs, ps, qsusě1 converge as sÑ 8,
moreover hs, qs

sÑ8
ÝÝÝÑ 0. First of all, we notice that hs “ η2fs´1

sps`β`1q
and qs “ η2ps´1

sps`β`1q
,

thus the convergence to zero of these two sequences follows from the convergence of
ps and fs as s Ñ 8. Moreover, the terms of these last two sequences obey to the
3-terms recurrence:

fs “

ˆ

1`
λβη

sps` βq

˙

fs´1 `
η2

ps´ 1qps` βq
fs´2 ,

and the same holds for ps in place of fs. Thus, we have just to prove that the
sequence tfsusě1 converges. For this purpose we bound |fs| from above as:

|fs| ď

ˆ

1`
2η2 ` |λβη|

sps` βq

˙

max p|fs´1|, |fs´2|q ,

inductively we get that there exists a constant C depending just on the initial
condition such that:

|fs| ď C
s
ź

`“1

ˆ

1`
2η2 ` |λβη|

`p`` βq

˙

ď C
8
ź

`“1

ˆ

1`
2η2 ` |λβη|

`p`` βq

˙

. (3.82)

Since the infinite product on the right-hand side of (3.82) is convergent by a classical
result, see for example [100, Chapter XIII, Lemma 1], this implies that the sequence
tfsusě1 is uniformly bounded. Moreover, we have that:

|fs`1 ´ fs| ď
|fsλβη|

ps` 1qps` 1` βq
`

η2|fs´1|

sps´ 1` βq
ď rC

η2 ` |λβη|

sps´ 1` βq
,

for some constant C̃ ą 0. This last equation implies that the sequence tfsusě1 is
a Cauchy sequence, thus it is convergent. So we get the claim (3.46). The claim
(3.48) easily follows from (3.46).

Regarding the differentiability of the matrix Rk with respect to the parameters,
we consider only the η-dependence and the other cases can be treated in the same
way. We observe that

lim
hÑ0

Rkpη ` hq ´Rkpηq

h
“

8
ÿ

s“k

R
ps´1q
k

ˆ λβ
sps`βq

2η
sps`β`1q

0 0

˙

Rs.

The r.h.s. of the above expression is a convergent sum since each entry of the matrix
Rs and R

ps´1q
k is uniformly bounded because of (3.82).
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Chapter 4

Adiabatic Invariant for the FPUT
chain

The FPUT chain with N particles is the system with Hamiltonian

HF pp,qq “
N´1
ÿ

j“0

p2
j

2
`

N´1
ÿ

j“0

VF pqj`1 ´ qjq , VF pxq “
x2

2
´
x3

6
` b

x4

24
, (4.1)

which we consider with periodic boundary conditions qj`N “ qj , pj`N “ pj and
b ą 0. We observe that any generic nearest neighbourhood quartic potential can
be set in the form of VF pxq through a canonical change of coordinates.

Over the last 60 years, the FPUT system has been the object of intense numerical
and analytical research. Nowadays, it is well understood that the system displays,
on a relatively short time-scale, an integrable-like behaviour, first uncovered by
Fermi, Pasta, Ulam and Tsingou [50] and later interpreted in terms of closeness to
a nonlinear integrable system by some authors, e.g. the Korteweg-de Vries (KdV)
equation by Zabusky and Kruskal [170], the Boussinesq equation by Zakharov [171],
and the Toda chain by Manakov first [110], and then by Ferguson, Flaschka and
McLauglin [49]. On larger time-scales the system displays instead an ergodic be-
havior and approaches its micro-canonical equilibrium state (i.e. measure), unless
the energy is so low to enter a KAM-like regime [85,89,142].

In this chapter, we give a quantitative result of the integrable behaviour of the
FPUT system that hold in the thermodynamic limit. Namely, we show that a
family of first integrals of the Toda system are adiabatic invariants (namely almost
constant quantities) for the FPUT system. We bound their variation for times of
order β1´2ε, ε ą 0, where β is the inverse of the temperature of the chain. Such
estimates hold for a large set of initial data with respect to the Gibbs measure of
the chain and they are uniform in the number of particles, thus they persist in the
thermodynamic limit. In this way we show that the FPUT chain has, in measure,
an integrable-like behaviour on time scales of order β1´2ε, thus we give an insight
of the so-called FPUT paradox.

In the last few years, there has been a lot of activity in the problem of con-
structing adiabatic invariants of nonlinear chain systems in the thermodynamic
limit, see [29, 30, 68, 69, 108, 109]. In particular, adiabatic invariants in measure for
the FPUT chain have been recently introduced by Maiocchi, Bambusi, Carati [108]
by considering the FPUT chain a perturbation of the linear harmonic chain. Our
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approach is based on the remark [49,110] that the FPUT chain (4.1) can be regarded
as a perturbation of the (nonlinear) Toda chain [156]

HT pp,qq :“
1

2

N´1
ÿ

j“0

p2
j `

N´1
ÿ

j“0

VT pqj`1 ´ qjq , VT pxq “ e´x ` x´ 1 , (4.2)

which we consider again with periodic boundary conditions qj`N “ qj , pj`N “ pj.
The equations of motion of (4.1) and (4.2) take the form

9qj “
BH

Bpj
“ pj, 9pj “ ´

BH

Bqj
“ V 1pqj`1´qjq´V

1
pqj´qj´1q, j “ 0, . . . , N´1, (4.3)

where H stands for HF or HT and V for VF and VT respectively.
According to the values of b in (4.1), the Toda chain is either an approximation of
the FPUT chain of third order (for b ‰ 1), or fourth order (for b “ 1). We remark
that the Toda chain is the only nonlinear integrable FPUT-like chain [41,146].

The Toda chain admits several families of N integrals of motion in involution
(e.g. [52, 84, 162]). Among the various families of integrals of motion, the ones
constructed by Henon [82] and Flaschka [51] are explicit and easy to compute,
being the trace of the powers of the Lax matrix associated to the Toda chain. In
the following, we refer to them simply as Toda integrals and denote them by J pkq,
1 ď k ď N (see (4.13)).

As the J pkq’s are conserved along the Toda flow, and the FPUT chain is a
perturbation of the Toda one, the Toda integrals are good candidates to be adiabatic
invariants when computed along the FPUT flow. This intuition is supported by
several numerical simulations, the first by Ferguson-Flaschka-McLaughlin [49] and
more recently by other authors [19, 21, 31, 72, 135]. Such simulations show that the
variation of the Toda integrals along the FPUT flow is very small on long times for
initial data of small specific energy. In particular, the numerical results in [19,21,72]
suggest that such phenomenon should persist in the thermodynamic limit and for
“generic” initial conditions.

Our first result is a quantitative, analytical proof of this phenomenon. More
precisely, we fix an arbitrary m P N and provided N and β sufficiently large, we
bound the variations of the firstm Toda integrals computed along the flow of FPUT,
for times of order

β1´2ε

ppb´ 1q2 ` C1β´1q
1
2

, (4.4)

where ε ą 0 is arbitrary small and C1 is a positive constant, independent of β,N .
Such a bound holds for initial data in a set of large Gibbs measure. Note that the
bound (4.4) improves to β

3
2
´2ε when b “ 1, namely when the Toda chain becomes

a fourth order approximation of the FPUT chain. Such analytical time-scales are
compatible with (namely smaller than) the numerical ones determined in [19–21].

An interesting question is whether the Toda integrals J pkq’s control the normal
modes of FPUT, namely the action of the linearized chain. It turns out that this
is indeed the case: we prove that the quadratic parts J p2kq2 (namely the Taylor
polynomials of order 2) of the integral of motions J p2kq, are linear combinations of
the normal modes. Namely, one has

J p2kq “
N´1
ÿ

j“0

pc
pkq
j Ej `Opppp, pqq

3
q,
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where Ej is the jth normal mode (see (4.18) for its formula), ppp, pqq are the dis-
crete Hartley transform of pp,qq (see definition below in (4.16)) and pcpkq are real
coefficients.

So we consider linear combinations of the normal modes of the form
N´1
ÿ

j“0

pgjEj (4.5)

where ppgjqj is the discrete Hartley transform of a vector g P RN which has only
2tm

2
u ` 2 non-zero entries with m independent of N , here tm

2
u is the integer part

of m
2
. Our second result shows that linear combinations of the form (4.5), when

computed along the FPUT flow, are adiabatic invariants for the same time-scale as
in (4.4).
Actually, exploiting the fact that the Toda integrals are invariant for the Toda
dynamics, we deduce also that the linear combinations in (4.5), when computed
along the flow of Toda chain, are adiabatic invariants for all times. This is our
third result.
Examples of linear combinations (4.5) that we control are

N
ÿ

j“1

sin2`

ˆ

jπ

N

˙

Ej,
N
ÿ

j“1

cos2`

ˆ

jπ

N

˙

Ej, @` “ 0, . . . ,
Ym

2

]

. (4.6)

These linear combinations weight in different ways low and high energy modes.
Our results are mainly based on two ingredients. The first one is a detailed study

of the algebraic properties of the Toda integrals. The second ingredient comes from
adapting to our case, methods of statistical mechanics developed by Carati [29] and
Carati-Maiocchi [30], and also in [68,69,108,109].

4.1 Statement of results

4.1.1 Toda integrals as adiabatic invariants for FPUT

We come to precise statements of the main results of the present chapter. We
consider the FPUT chain (4.1) and the Toda chain (4.2) in the subspace

M :“

#

pp,qq P RN
ˆ RN :

N´1
ÿ

j“0

qj “ L ,
N´1
ÿ

j“0

pj “ 0

+

, (4.7)

which is invariant for the dynamics. Here L is a positive constant.
Since both HF and HT depend just on the relative distance between qj`1 and

qj, it is natural to introduce on M the elongations rj’s as

rj :“ qj`1 ´ qj, 0 ď j ď N ´ 1 , (4.8)

which are naturally constrained to

N´1
ÿ

j“0

rj “ 0 , (4.9)
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due to the periodic boundary condition qN “ q0. We observe that the change of
coordinates (4.8) together with the condition (4.9) is well-defined on the phase space
M, but not on the whole phase space RN ˆRN . In these variables the phase space
M reads

M :“

#

pp, rq P RN
ˆ RN :

N´1
ÿ

j“0

rj “
N´1
ÿ

j“0

pj “ 0

+

. (4.10)

We endow M by the Gibbs measure of HF at temperature β´1, namely we put

dµF :“
1

ZF pβq
e´βHF pp,rq δ0

˜

N´1
ÿ

j“0

rj

¸

δ0

˜

N´1
ÿ

j“0

pj

¸

dp dr, (4.11)

where as usual ZF pβq is the partition function which normalize the measure, namely

ZF pβq :“

ż

RNˆRN
e´βHF pp,rq δ0

˜

N´1
ÿ

j“0

rj

¸

δ0

˜

N´1
ÿ

j“0

pj

¸

dp dr.

Given a function f : M Ñ C, we will use the probability (4.11) to compute its
average xfy, its L2 norm }f}, its variance σ2

f defined as

xfy :“ E rf s ”

ż

R2N

fpp, rq dµF ,

}f}2 :“ E
“

|f |2
‰

”

ż

R2N

|fpp, rq|2 dµF ,

σ2
f :“ }f ´ xfy }2.

In order to state our first theorem, we must introduce the Toda integrals of
motion. It is well known that the Toda chain is an integrable system [82,156]. The
standard way to prove its integrability is to put it in a Lax-pair form. The Lax form
was introduced by Flaschka in [51] and Manakov [110] and it is obtained through
the change of coordinates

bj :“ ´pj , aj :“ e
1
2
pqj´qj`1q ” e´

1
2
rj , 0 ď j ď N ´ 1 .

By the geometric constraint (4.9) and the momentum conservation
řN´1
j“0 pj “ 0

(see (4.7)), such variables are constrained by the conditions

N´1
ÿ

j“0

bj “ 0,
N´1
ź

j“0

aj “ 1 .

The Lax operator for the Toda chain is the periodic Jacobi matrix [162]

Lpb, aq :“

¨

˚

˚

˚

˚

˚

˚

˝

b0 a0 0 . . . aN´1

a0 b1 a1
. . . ...

0 a1 b2
. . . 0

... . . . . . . . . . aN´2

aN´1 . . . 0 aN´2 bN´1

˛

‹

‹

‹

‹

‹

‹

‚

. (4.12)
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We introduce the matrix B “ L`´L
ᵀ
` where for a square matrix X we call X` the

upper triangular part of X

pX`qij “

"

Xij, i “ j ` 1 mod N
0, otherwise

A straightforward calculation shows that the Toda equations of motions (4.3) are
equivalent to

dL

dt
“ rB,Ls.

It follows that the eigenvalues of L are integrals of motion in involutions.
In particular, the trace of powers of L,

J pmq :“
1

m
Tr pLmq , @1 ď m ď N (4.13)

are N independent, commuting, integrals of motions in involution. Such integrals
were first introduced by Henon [82] (with a different method), and we refer to them
as Toda integrals. We give the first few of them explicitly, written in the variables
pp, rq:

J p1qppq :“ ´
N´1
ÿ

i“0

pi, J p2qpp, rq :“
N´1
ÿ

i“0

„

p2
i

2
` e´ri



,

J p3qpp, rq :“ ´
N´1
ÿ

i“0

„

1

3
p3
i ` ppi ` pi`1qe

´ri



,

J p4qpp, rq :“
N´1
ÿ

i“0

„

1

4
p4
i ` pp

2
i ` pipi`1 ` p

2
i`1qe

´ri `
1

2
e´2ri ` e´ri´ri`1



.

Note that J p2q coincides with the Toda Hamiltonian HT .

Our first result shows that the Toda integral J pmq, computed along the Hamil-
tonian flow φtHF of the FPUT chain, is an adiabatic invariant for long times and for
a set of initial data in a set of large Gibbs measure. Here is the precise statement:

Theorem 4.1. Fix m P N. There exist N0, β0, C0, C1 ą 0 (depending on m), such
that for any N ą N0, β ą β0, 0 ă ε ă 1

4
, one has

P

ˆ

ˇ

ˇJ pmq ˝ φtHF ´ J
pmq

ˇ

ˇ ą
σJpmq

βε

˙

ď
C0

β2ε
, (4.14)

for every time t fulfilling

|t| ď
β1´2ε

´

pb´ 1q2 ` C1β´1
¯1{2

. (4.15)

In (4.14) P stands for the probability with respect to the Gibbs measure (4.11).

We observe that the time-scale (4.15) increases to β
3
2
´2ε for b “ 1, namely if the

Toda chain is a fifth order approximation of the FPUT chain.
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Remark 4.2. We observe that our estimates in (4.14) and (4.15) are independent
of the number of particles N . Therefore, we can claim that the result of theorem 4.1
holds true in the thermodynamic limit, i.e. when limNÑ8

xHF y
N

“ e ą 0 where xHF y

is the average over the Gibbs measure (4.11) of the FPUT Hamiltonian HF . The
same observation applies to theorem 4.4 and theorem 4.5 below.

Our Theorem 4.1 gives a quantitative, analytical proof of the adiabatic invari-
ance of the Toda integrals, at least for a set of initial data of large measure. It
is an interesting question whether other integrals of motion of the Toda chain are
adiabatic invariants for the FPUT chain. Natural candidates are the actions and
spectral gaps.

Action-angle coordinates and the related Birkhoff coordinates (a cartesian ver-
sion of action-angle variables) were constructed analytically by Henrici and Kap-
peler [83,84] for any finite N , and by Bambusi and one of the author [16] uniformly
in N , but in a regime of specific energy going to 0 when N goes to infinity (thus
not the thermodynamic limit).
The difficulty in dealing with these other sets of integrals is that they are not ex-
plicit in the physical variables pp, rq. As a consequence, it appears very difficult to
compute their averages with respect to the Gibbs measure of the system.

Despite these analytical challenges, recent numerical simulations by Goldfriend
and Kurchan [72] suggest that the spectral gaps of the Toda chain are adiabatic
invariants for the FPUT chain for long times also in the thermodynamic limit.

4.1.2 Packets of normal modes

Our second result concerns adiabatic invariance of some special linear combination
of normal modes. To state the result, we first introduce the normal modes through
the discrete Hartley transform. Such transformation, which we denote by H, is
defined as

pp :“ Hp, Hj,k :“
1
?
N

ˆ

cos

ˆ

2π
jk

N

˙

` sin

ˆ

2π
jk

N

˙˙

, j, k “ 0, . . . , N ´ 1

(4.16)
and one easily verifies that it fulfils

H2
“ 1, Hᵀ

“ H.

The Hartley transform is closely related to the classical Fourier transform F , whose
matrix elements are Fj,k :“ 1?

N
e´i2πjk{N , as one has H “ <F ´=F . The advantage

of the Hartley transform is that it maps real variables into real variables, a fact which
will be useful when calculating averages of quadratic Hamiltonians (see Section
4.4.2).

A consequence of (4.16) is that the change of coordinates

RN
ˆ RN

Ñ RN
ˆ RN , pp,qq ÞÑ ppp, pqq :“ pHp,Hqq

is a canonical one. Due to
ř

j pj “ 0,
ř

j qj “ L, one has also pp0 “ 0, pq0 “ L{
?
N .

In these variables the quadratic part H2 of the Toda Hamiltonian (4.1), i.e. its
Taylor expansion of order two nearby the origin, takes the form

H2ppp, pqq :“
N´1
ÿ

j“1

pp2
j ` ω

2
j pq

2
j

2
, ωj :“ 2 sin

ˆ

π
j

N

˙

. (4.17)
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We observe that (4.17) is exactly the Hamiltonian of the Harmonic Oscillator chain.
We define

Ej :“
pp2
j ` ω

2
j pq

2
j

2
, j “ 1, . . . , N ´ 1 , (4.18)

the jth normal mode.
To state our second result, we need the following definition:

Definition 4.3 (m-admissible vector). Fix m P N and rm :“
X

m
2

\

, where
X

m
2

\

is the
integer part of m

2
. For any N ą m, a vector x P RN is said to be m-admissible if

there exists a non-zero vector y “ py0, y1, . . . , y rmq P R rm`1 with K´1 ď
ř

j |yj| ď K,
K independent of N , such that

xk “ xN´k “ yk, for 0 ď k ď rm and xk “ 0 otherwise.

We are ready to state our second result, which shows that special linear combi-
nations of normal modes are adiabatic invariants for the FPUT dynamics for long
times. Here is the precise statement:

Theorem 4.4. Fix m P N and let g “ pg0, . . . , gN´1q P RN be an m-admissible
vector (according to Definition 4.3). Define

Φ :“
N´1
ÿ

j“0

pgjEj, (4.19)

where pg is the discrete Hartley transform (4.16) of g, and Ej is the harmonic energy
(4.18). Then there exist N0, β0, C0, C1 ą 0 (depending on m), such that for any
N ą N0, β ą β0, 0 ă ε ă 1

4
, one has

P

ˆ

ˇ

ˇΦ ˝ φtHF ´ Φ
ˇ

ˇ ą
σΦ

βε

˙

ď
C0

β2ε
,

for every time t fulfilling (4.15).

Again, when b “ 1 the time-scale improves by a factor β
1
2 .

Finally, we consider the Toda dynamics generated by the Hamiltonian HT in
(4.2). In this case we endowM in (4.10) by the Gibbs measure ofHT at temperature
β´1, namely we put

dµT :“
1

ZT pβq
e´βHT pp,rq δ

˜

ÿ

j

rj “ 0

¸

δ

˜

ÿ

j

pj “ 0

¸

dp dr, (4.20)

where as usual ZT pβq is the partition function which normalize the measure, namely

ZT pβq :“

ż

RNˆRN
e´βHT pp,rq δ

˜

ÿ

j

rj “ 0

¸

δ

˜

ÿ

j

pj “ 0

¸

dp dr.

We prove that the quantity (4.19), computed along the Hamiltonian flow φtHT of
the Toda chain, is an adiabatic invariant for all times and for a large set of initial
data:
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Theorem 4.5. Fix m P N; let g P RN be an m-admissible vector and define Φ
as in (4.19). Then there exist N0, β0, C ą 0 such that for any N ą N0, β ą β0,
0 ă ε ă 1

2
, one has

P

ˆ

ˇ

ˇΦ ˝ φtHT ´ Φ
ˇ

ˇ ą
σΦ

βε

˙

ď
C

β1´2ε
, (4.21)

for all times.

Remark 4.6. It is easy to verify that the functions Φ in (4.19) are linear combi-
nations of

N´1
ÿ

j“0

cos

ˆ

2`jπ

N

˙

Ej, ` “ 0, . . . ,
Ym

2

]

(choose g` “ gN´` “ 1, gj “ 0 otherwise). Then, using the multi-angle trigonomet-
ric formula

cosp2nxq “ p´1qnT2npsinxq, cosp2nxq “ T2npcosxq,

where the Tn’s are the Chebyshev polynomial of the first kind, it follows that we can
control (4.6).

Let us comment about the significance of Theorem 4.4 and Theorem 4.5. The
study of the dynamics of the normal modes of FPUT goes back to the pioneering
numerical simulations of Fermi, Pasta, Ulam and Tsingou [50]. They observed that,
corresponding to initial data with only the first normal mode excited, namely initial
data with E1 ‰ 0 and Ej “ 0 @j ‰ 1, the dynamics of the normal modes develops
a recurrent behavior, whereas their time averages 1

t

şt

0
Ej ˝φ

τ
HF

dτ quickly relaxed to
a sequence exponentially localized in j. This is what is known under the name of
FPUT packet of modes.

Subsequent numerical simulations have investigated the persistence of the phe-
nomenon for large N and in different regimes of specific energies [19,21,22,64,105,
129] (see also [15] for a survey of results about the FPUT dynamics).

Analytical results controlling packets of normal modes along the FPUT system
are proven in [16, 17]. All these results deal with specific energies going to zero as
the number of particles go to infinity, thus they do not hold in the thermodynamic
limit. Our result controls linear combination of normal modes and holds in the
thermodynamic limit.

4.1.3 Ideas of the proof

The starting point of our analysis is to estimate the probability that the time
evolution of an observable Φptq, computed along the Hamiltonian flow of H, slightly
deviates from its initial value. In our application Φ is either the Toda integral of
motion or a special linear combination of the harmonic energies and H is either the
FPUT or Toda Hamiltonian. Quantitatively, Chebyshev inequality gives

P
´

|Φptq ´ Φp0q| ą λσΦp0q

¯

ď
1

λ2

σ2
Φptq´Φp0q

σ2
Φp0q

, @λ ą 0. (4.22)
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So our first task is to give an upper bound on the variance σΦptq´Φp0q and a lower
bound on the variance σΦp0q. Regarding the former bound, we exploit the Carati-
Maiocchi inequality [30]

σ2
Φptq´Φp0q ď

@

tΦ, Hu2
D

t2, @t P R, (4.23)

where tΦ, Hu, denotes the canonical Poisson bracket

tΦ, Hu :“ pBqΦqᵀBpH ´ pBpΦqᵀBqH ”

N´1
ÿ

i“0

BqiΦ BpiH ´ BpiΦ BqiH.

Next we fixm P N, consider themth Toda integral J pmq, and prove that the quotient
@

tJ pmq, HF u
2
D

σ2
Jpmq

(4.24)

scales appropriately in β (as β Ñ 8) and it is bounded uniformly in N (provided N
is large enough). It is quite delicate to prove that the quotient in (4.24) is bounded
uniformly in N and for the purpose we exploit the rich structure of the Toda integral
of motions.

This chapter is organized as follows. In section 3 we study the structure of the
Toda integrals. In particular, we prove that for any m P N fixed, and N sufficiently
large, the mth Toda integral J pmq can be written as a sum 1

m

řN
j“1 h

pmq
j where each

term depends only on at most m consecutive variables, moreover hpmqj and h
pmq
k

have disjoint supports if the distance between j and k is larger than m. Then we
make the crucial observation that the quadratic part of the Toda integrals J pmq are
quadratic forms in p and q generated by symmetric circulant matrices. In section
3 we approximate the Gibbs measure with the measure were all the variable are
independent random variables. and we calculate the error of our approximation. In
section 4 we obtain a bound on the variance of J pmqptq´J pmqp0q with respect to the
FPUT flow and a bound of linear combination of harmonic energies with respect to
the FPUT flow and the Toda flow. Finally in section 5 we prove our main results,
namely Theorem 4.1, Theorem 4.4 and Theorem 4.5. In section 4.6 we describe the
more technical results.

4.2 Structure of the Toda integrals of motion
In this section we study the algebraic and the analytic properties of the Toda
integrals defined in (4.13). First we write them explicitly:

Theorem 4.7. For any 1 ď m ď N ´ 1, one has

J pmq “
1

m

N
ÿ

j“1

h
pmq
j , (4.25)

where hpmqj :“ rLmsjj is given explicitly by

h
pmq
j pp, rq “

ÿ

pn,kqPApmq
p´1q|k| ρpmqpn,kq

rm´1
ź

i“´ rm

e´nirj`i
rm´1
ź

i“´ rm`1

pkij`i , (4.26)
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where it is understood rj ” rjmodN , pj ” pjmodN and Apmq is the set

Apmq :“
!

pn,kq P NZ
0 ˆ NZ

0 :
rm´1
ÿ

i“´ rm

p2ni ` kiq “ m,

@i ě 0, ni “ 0 ñ ni`1 “ ki`1 “ 0,

@i ă 0, ni`1 “ 0 ñ ni “ ki “ 0
)

.

(4.27)

The quantity rm :“ tm{2u, N0 “ NY t0u and ρpmqpn,mq P N is given by

ρpmqpn,kq :“

ˆ

n´1 ` n0 ` k0

k0

˙ˆ

n´1 ` n0

n0

˙

rm´1
ź

i“´Ăm
i‰´1

ˆ

ni ` ni`1 ` ki`1 ´ 1

ki`1

˙ˆ

ni ` ni`1 ´ 1

ni`1

˙

.

(4.28)

We give the proof of this theorem in section 4.6.1.

Remark 4.8. The structure of J pNq is slightly different, but we will not use it here.

We now describe some properties of the Toda integrals, which we will use sev-
eral times. The Hamiltonian density h

pmq
j pp, rq depends on the set Apmq and the

coefficient ρpmqpn,kq which are independent of the index j. This implies that hpmqj

is obtained by hpmq1 just by shifting 1 Ñ j; we formalize this property below with
the notion of cyclic functions.

A second immediate property, as one sees inspecting the formulas (4.27) and
(4.28), is that there exists Cpmq ą 0 (depending only on m) such that

|Apmq| ď Cpmq, ρpmqpn,kq ď Cpmq,

namely the cardinality of the set Apmq and the values of the coefficients ρpmqpn,kq
are independent of N .

The last elementary property, which follows from the condition 2|n| ` |k| “ m
in (4.27), is that

m even ùñ h
pmq
j contains only even polynomials in p,

m odd ùñ h
pmq
j contains only odd polynomials in p.

Now we describe three other important properties of the Toda integrals, which
are less trivial and require some preparation. Such properties are

piq cyclicity;

piiq uniformly bounded support;

piiiq the quadratic parts of the Toda integrals are represented by circulant matrices.

We first define each of these properties rigorously, and then we show that the Toda
integrals enjoy them.
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Cyclicity. Cyclic functions are characterized by being invariant under left and
right cyclic shift. For any ` P Z, and x “ px1, x2, . . . , xNq P RN we define the cyclic
shift of order ` as the map

S` : RN
Ñ RN , pS`xqj :“ xpj``qmodN . (4.29)

For example S1 and S´1 are the left respectively right shifts:

S1px1, x2, . . . , xNq :“ px2, . . . , xN , x1q, S´1px1, x2, . . . , xNq :“ pxN , x1, . . . , xN´1q.

It is immediate to check that for any `, `1 P Z, cyclic shifts fulfils:

S` ˝ S`1 “ S```1 , S´1
` “ S´`, S0 “ 1, S``N “ S`.

Consider now a a function H : RN ˆRN Ñ C; we shall denote S`H : RN ˆRN Ñ C
as the operator

pS`Hqpp, rq :“ HpS`p, S`rq, @pp, rq P RN
ˆ RN .

Clearly S` is a linear operator. We can now define cyclic functions:

Definition 4.9 (Cyclic functions). A function H : RN ˆRN Ñ C is called cyclic if
S1H “ H.

It is clear from the definition that a cyclic function fulfils S`H “ H @` P Z.
It is easy to construct cyclic functions as follows: given a function h : RN ˆRN Ñ C
we define the new function H by

Hpp, rq :“
N´1
ÿ

`“0

pS`hqpp, rq.

H is clearly cyclic, and we say that H is generated by h.

Support. Given a differentiable function F : RN ˆRN Ñ C, we define its support
as the set

suppF :“

"

` P t0, . . . , N ´ 1u :
BF

Bp`
ı 0 or

BF

Br`
ı 0

*

and its diameter as

diam psuppF q :“ sup
i,jPsuppF

dpi, jq ` 1,

where d is the periodic distance

dpi, jq :“ min p|i´ j|, N ´ |i´ j|q .

Note that 0 ď dpi, jq ď tN{2u.
We often use the following property: if f is a function with diameter K P N,

and K ! N , then

dpi, jq ą K ùñ suppSjf X suppSif “ H, (4.30)

where Sj is the shift operator (4.29). With the above notation and definition, we
arrive to the following elementary result.
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Lemma 4.10. Consider the Toda integral J pmq “ 1
m

řN
j“1 h

pmq
j , 1 ď m ď N in

(4.25). Then J pmq is a cyclic function generated by 1
m
h
pmq
1 , namely

J pmqpp, rq “
1

m

N
ÿ

j“1

Sj´1h
pmq
1 pp, rq. (4.31)

Further, each term h
pmq
j has diameter at most m. In particular, hpmqj and hpmqk have

disjoint supports provided dpj, kq ą m.

Circulant symmetric matrices. We begin recalling the definition of circulant
matrices (see e.g. [77, Chap. 3]).

Definition 4.11 (Circulant matrix). An N ˆN matrix A is said to be circulant if
there exists a vector a “ pajq

N´1
j“0 P RN such that

Aj,k “ apj´kqmodN .

We will say that A is represented by the vector a.

In particular, circulant matrices have all the form

A “

»

—

—

—

—

—

–

a0 aN´1 . . . a2 a1

a1 a0 aN´1 a2
... a1 a0

. . . ...

aN´2
. . . . . . aN´1

aN´1 aN´2 . . . a1 a0

fi

ffi

ffi

ffi

ffi

ffi

fl

where each row is the right shift of the row above.
Moreover, A is circulant symmetric if and only if its representing vector a is even,
i.e. one has

ak “ aN´k , @k. (4.32)
One of the most remarkable property of circulant matrices is that they are all
diagonalized by the discrete Fourier transform (see e.g. [77, Chap. 3]). We show
now that circulant symmetric matrices are diagonalized by the Hartley transform:

Lemma 4.12. Let A be a circulant symmetric matrix represented by the vector
a P RN . Then

HAH´1
“
?
N diagtpaj : 0 ď j ď N ´ 1u, (4.33)

where pa “ Ha.

Proof. First remark that a circulant matrix acts on a vector x P RN as a periodic
discrete convolution,

Ax “ a ‹ x, pa ‹ xqj :“
N´1
ÿ

k“0

aj´k xk, 0 ď j ď N ´ 1,

where it is understood a` ” a`modN . As the Hartley transform of a discrete convo-
lution is given by

rHpa ‹ xqsk “

?
N

2

´

ppak ` paN´kqpxk ` ppak ´ paN´kqpxN´kq
¯

,

we obtain (4.33), using that the Hartley transform maps even vectors (see (4.32))
to even vectors.
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Our interest in circulant matrices comes from the following fact: quadratic cyclic
functions are represented by circulant matrices. More precisely, consider a quadratic
function of the form

Qpp, rq “
1

2
pᵀAp`

1

2
rᵀBr` pᵀCr,

where A,B,C are N ˆN matrices. Then one has

Q is cyclic ðñ A,B,C are circulant . (4.34)

This result, which is well known (see e.g. [77]), follows from the fact that Q cyclic
is equivalent to A,B,C commuting with the left cyclic shift S1, and that the set of
matrices which commute with S1 coincides with the set of circulant matrices.

We conclude this section collecting some properties of Toda integrals. Denote by
J
pmq
2 the Taylor polynomial of order 2 of J pmq at zero; being a quadratic, symmetric,

cyclic function, it is represented by circulant symmetric matrices. We have the
following lemma.

Lemma 4.13. Let us consider the Toda integral

J pmqpp, rq “
1

m

N
ÿ

j“1

Sj´1h
pmq
1 pp, rq.

Then hpmq1 pp,qq has the following Taylor expansion at p “ r “ 0:

h
pmq
1 pp, rq “ ϕ

pmq
0 ` ϕ

pmq
1 pp, rq ` ϕ

pmq
2 pp, rq ` ϕ

pmq
ě3 pp, rq (4.35)

where each ϕpmqk pp, rq is a homogeneous polynomial of degree k “ 0, 1, 2 in p and r

of diameter m and coefficients independent from N . The reminder ϕpmqě3 pp, rq takes
the form

ϕ
pmq
ě3 pp, rq :“

ÿ

pk,nqPApmq
|k|ě3

p´1q|k|ρpmqpn,kqpk

ˆ

1´ nᵀr`
1

2
pnᵀrq2 `

pnᵀrq3

2

ż 1

0

e´sn
ᵀr
p1´ sq2 ds

˙

,

(4.36)
with Apmq and ρpmq defined in (4.27) and (4.28) respectively. Moreover the Taylor
expansion of J pmqpp, rq at p “ r “ 0 takes the form

J pmqpp, rq “ J
pmq
0 ` J

pmq
2 pp, rq ` J

pmq
ě3 pp, rq,

where

- J pmq0 “

#

c P R, m even
0 , m odd .

- J pmq2 pp, rq is a cyclic function of the form

J
pmq
2 pp, rq “

#

pᵀApmqp` rᵀApmqr, m even
pᵀBpmqr, m odd

(4.37)

with Apmq, Bpmq circulant, symmetric N ˆN matrices; their representing vec-
tors apmq, bpmq are m-admissible (according to Definition 4.3) and

a
pmq
k “ a

pmq
N´k ą 0, b

pmq
k “ b

pmq
N´k ą 0, @0 ď k ď rm :“

Ym

2

]

. (4.38)
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- The reminder J pmqě3 is a cyclic function generated by ϕ
pmq
ě3

m
.

The proof is postponed to section 4.6.2. We conclude this section giving the
definition of m-admissible functions, and we prove a lemma that characterize them
in terms of tJ plq2 u

N
l“1:

Definition 4.14. G1, G2 : RN ˆ RN Ñ RN are called m-admissible functions of
the first and second kind respectively if there exists a m-admissible vector g P RN

such that

G1 :“
N´1
ÿ

j,l“0

glpjrj`l , G2 :“
N´1
ÿ

j,l“0

gl ppjpj`l ` rjrj`lq .

Remark 4.15. From definition 4.14 and (4.34) one can deduce that both G1 and
G2 can be represented with circulant and symmetric matrices. Indeed we have that
G1 “ pᵀG1r where pG1qjk “ gpj´kqmodN and similarly for G2.

An immediate, but very useful, corollary of Lemma 4.13 , is the fact that the
quadratic parts of Toda integrals are a basis of the vector space of m-admissible
functions.

Lemma 4.16. Fix m P N and let G1 and G2 be m-admissible functions of the
first and second kind defined by a m-admissible vector g P RN . Then there are
two unique sequences tcju rmj“0, tdju

rm
j“0, with maxj |cj|, maxj |dj| independent from N ,

such that:

G1 “

rm
ÿ

l“0

clJ
p2l`1q
2 , G2 “

rm
ÿ

l“0

dlJ
p2l`2q
2 ,

where J pmq2 is the quadratic part (4.37) of the Toda integrals J pmq in (4.25).

Proof. We will prove the statement just for functions of the first kind. The proof
for functions of the second kind can be obtained in a similar way. Let J p2l`1q

2 “

pᵀBp2l`1qr where the circulant matrix Bp2l`1q is represented by the vector bp2l`1q

and let G1 “ pᵀG1r where pG1qjk “ gpj´kqmodN . Then

G1 “

rm
ÿ

l“0

clB
p2l`1q

ùñ gk “
rm
ÿ

l“0

b
p2l`1q
k cl .

From Lemma 4.13 the matrix B “ rb
p2l`1q
k s rmk,l“0 is upper triangular and the

diagonal elements are always different from 0 (see in particular formula (4.38)).
This implies that the above linear system is uniquely solvable for pc0, . . . , c rmq.

4.3 Averaging and covariance
In this section, we collect some properties of the Gibbs measure dµF in (4.11). The
first property if the invariance with respect to the shift operator. Namely, for a
function f : RN ˆ RN Ñ R; we have that

xSjfy “ xfy , @j “ 0, . . . , N ´ 1 ,

which follows from the fact that pSjq˚dµF “ dµF .
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It is in general not possible to compute exactly the average of a function with
respect to the Gibbs measure dµF in (4.11). This is mostly due to the fact that
the variables p0, . . . , pN´1 and r0, . . . , rN´1 are not independent with respect to the
measure dµF , being constrained by the conditions

ř

i ri “
ř

i pi “ 0.
We will therefore proceed as in [108], by considering a new measure dµF,θ on

the extended phase space according to which all variables are independent. We
will be able to compute averages and correlations with respect to this measure, and
estimate the error derived by this approximation.

For any θ P R, we define the measure dµF,θ on the extended space RN ˆ RN by

dµF,θ :“
1

ZF,θpβq
e´βHF pp,rq e´θ

řN´1
j“0 rj dp dr, (4.39)

where we define ZF,θpβq as the normalizing constant of dµF,θ. We denote the ex-
pectation of a function f with respect to dµF,θ by xfyθ. We also denote by

}f}2θ :“

ż

R2N

|fpp, rq|2 dµF,θ.

If }f}θ ă 8 we say that f P L2pdµF,θq.

The measure dµF,θ depends on the parameter θ P R and we fix it in such a way
that

ż

R
r e´θr´βVF prq dr “ 0. (4.40)

Following [108], it is not difficult to prove that there exists β0 ą 0 and a compact set
I Ă R such that for any β ą β0, there exists θ “ θpβq P I for which (4.40) holds true.
We remark that (4.40) is equivalent to require that xrjyθ “ 0 for j “ 0, . . . , N ´ 1

and as a consequence
A

řN´1
j“0 rj

E

θ
“ 0. We observe that

A

řN´1
j“0 rj

E

“ 0 with
respect to the measure dµF .

The main reason for introducing the measure dµF,θ is that it approximates av-
erages with respect to dµF as the following result shows.

Lemma 4.17. Fix rβ ą 0 and let f : RNˆRN Ñ R have support of size K (according
to Definition 4.2) and finite second order moment with respect to dµF,θ, uniformly
for all β ą rβ. Then there exist positive constants C,N0 and β0 such that for all
N ą N0, β ą maxtβ0, β̃u one has

|xfy ´ xfyθ| ď C
K

N

b

xf 2yθ ´ xfy
2
θ .

The above lemma is an extension to the periodic case of a result from [108], and
we shall prove it in section 4.6.3. As an example of applications of Lemma 4.17, we
give a bound to correlations functions.

Lemma 4.18. Fix K P N. Let f, g : RN ˆ RN Ñ C such that :

1. f, g and fg P L2pdµF,θq,

2. the supports of f and g have size at most K P N.
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Then there exist C,N0, β0 ą 0 such that for all N ą N0, β ą β0

|xfgy ´ xfy xgy| ď 2}f}θ }g}θ `
CK

N

´

}f}θ }g}θ ` }fg}θ

¯

. (4.41)

Moreover, if f and g have disjoint supports, then

|xfgy ´ xfy xgy| ď
CK

N

´

}f}θ }g}θ ` }fg}θ

¯

. (4.42)

Proof. We substitute the measure dµF with dµF,θ and then we control the error by
using Lemma 4.17. With this idea, we write

xfgy ´ xfy xgy “ xfgy ´ xfgyθ (4.43)
` xfgyθ ´ xfyθ xgyθ (4.44)
` xfyθ xgyθ ´ xfy xgy , (4.45)

and estimate the different terms. We will often use the inequality

|xfyθ| ď }f}θ , (4.46)

valid for any function f P L2pdµF,θq.
Estimate of (4.43): By Lemma 4.17, and the assumption that fg depends on at
most 2K variables,

|xfgy ´ xfgyθ| ď C
2K

N

b

xpfgq2yθ ´ xfgy
2
θ ď

C 1K

N
}fg}θ .

Estimate of (4.44): By Cauchy-Schwartz and (4.46) we have

|xfgyθ ´ xfyθ xgyθ| ď 2}f}θ}g}θ .

Estimate of (4.45): We decompose further

xfyθ xgyθ ´ xfy xgy “ xgyθ pxfyθ ´ xfyq ` pxgyθ ´ xgyq xfyθ ` pxgyθ ´ xgyq pxfy ´ xfyθq ,

again by Lemma 4.17 and (4.46) we obtain

|xfyθ xgyθ ´ xfy xgy| ď C
K

N
}g}θ}f}θ .

Combining the three bounds above and redefining C “ maxtC,C 1u one obtains
(4.41). To prove (4.42) it is sufficient to observe that if f and g have disjoint
supports, then xfgyθ “ xfyθ xgyθ and consequently (4.44) is equal to zero.

In order to make Lemma 4.18 effective, we need to show how to compute averages
according to the measure (4.39).

Lemma 4.19. There exists β0 ą 0 such that for any β ą β0, the following holds
true. For any fixed multi-index k, l,n, s P NN

0 and d, d1 P t0, 1, 2u, there are two
constants Cp1qk,l P R and Cp2qk,l ą 0 such that

C
p1q
k,l

β
|k|`|l|

2

ď

C

pk rl
ˆ
ż 1

0

e´ξn
ᵀr
p1´ ξq2dξ

˙dˆż 1

0

e´ξs
ᵀr
p1´ ξq3dξ

˙d1
G

θ

ď
C
p2q
k,l

β
|k|`|l|

2

where pk “
śN

j“1 p
kj
j and rl “

śN
j“1 r

lj
j . Moreover:
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(i) if ki is odd for some i then Cp1qk,l “ C
p2q
k,l “ 0;

(ii) if ki, li are even for all i then Cp1qk,l ą 0.

The lemma is proved in section 4.6.4.

Remark 4.20. Actually all the results of this section hold true (with different con-
stants) also when we endow M with the Gibbs measure of the Toda chain in (4.20)
and we use as approximating measure

dµT,θ :“
1

ZT,θpβq
e´βHT pp,rq e´θ

řN´1
j“0 rj dp dr;

here θ is selected in such a way that
ż

R
r e´θr´βVT prq dr “ 0. (4.47)

We show in section 4.6.4 that it is always possible to choose θ to fulfil (4.47) (see
Lemma 4.35) and we also prove Lemma 4.19 for Toda. In section 4.6.3 we prove
Lemma 4.17 for the Toda chain.

4.4 Bounds on the variance

In this section, we prove upper and lower bounds on the variance of the quantities
relevant to prove our main theorems.

4.4.1 Upper bounds on the variance of J pmq along the flow of
FPUT

In this subsection, we only consider the case M endowed by the FPUT Gibbs
measure. We denote by J pmqptq :“ J pmq ˝φtHF the Toda integral computed along the
Hamiltonian flow φtHF of the FPUT Hamiltonian. The aim is to prove the following
result:

Proposition 4.21. Fix m P N. There exist N0, β0, C0, C1 ą 0 such that for any
N ą N0, β ą β0, one has

σ2
Jpmqptq´Jpmqp0q ď C0N

ˆ

pb´ 1q2

β4
`
C1

β5

˙

t2, @t P R.

Proof. As explained in the introduction, applying formula (4.23) we get

σ2
Jpmqptq´Jpmqp0q ď

@

tJ pmq, HF u
2
D

t2, @t P R.

Therefore we need to bound
@

tJ pmq, HF u
2
D

. For the purpose, we rewrite this term
in a more convenient form. Since x¨y is an invariant measure with respect to the
Hamiltonian flow of HF , one has

@

tJ pmq, HF u
D

“ 0. (4.48)
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Furthermore, since J pmq is an integral of motion of the Toda Hamiltonian HT , we
have

 

J pmq, HT

(

“ 0. (4.49)

We apply identities (4.48) and (4.49) to write
A

 

J pmq, HF

(2
E

“

A

 

J pmq, HF ´HT

(2
E

´
@

tJ pmq, HF ´HT u
D2
. (4.50)

The above expression enables us to exploit the fact that the FPUT system is a
fourth order perturbation of the Toda chain. To proceed with the proof we need
the following technical result.

Lemma 4.22. One has

tJ pmq, HF ´HT u “

N
ÿ

j“1

H
pmq
j , (4.51)

where the functions Hpmq
j fulfil

(i) Hpmq
j “ Sj´1H

pmq
1 @j, moreover the diameter of the support of Hj is at most

m;

(ii) there exist N0, β0, C, C
1 ą 0 such that for any N ą N0, β ą β0, any i, j “

1, . . . , N , the following estimates hold true:

}H
pmq
j }θ ď C

ˆ

pb´ 1q2

β4
`
C 1

β5

˙1{2

, }H
pmq
i H

pmq
j }θ ď C

˜

pb´ 1q4

β8
`
C 1

β10

¸1{2

.

(4.52)

The proof of the lemma is postponed at the end of the subsection.
We are now ready to finish the proof of Proposition 4.21. Substituting (4.51) in
(4.50) we obtain

A

 

J pmq, HF

(2
E

“

N
ÿ

j,i“1

”A

H
pmq
i H

pmq
j

E

´

A

H
pmq
i

EA

H
pmq
j

Eı

. (4.53)

Therefore estimating
A

 

J pmq, HF

(2
E

is equivalent to estimate the correlations be-

tween H
pmq
i and H

pmq
j . Exploiting Lemma 4.18 and observing that if dpi, jq ą m

then Hpmq
i and Hpmq

j have disjoint supports (see Lemma 4.22 piq and (4.30)), we get
that there are positive constants that for convenience we still call C and C 1, such
that @N, β large enough

ˇ

ˇ

ˇ

A

H
pmq
i H

pmq
j

E

´

A

H
pmq
i

EA

H
pmq
j

E
ˇ

ˇ

ˇ
ď C

ˆ

pb´ 1q2

β4
`
C 1

β5

˙

, @i, j, (4.54)

ˇ

ˇ

ˇ

A

H
pmq
i H

pmq
j

E

´

A

H
pmq
i

EA

H
pmq
j

Eˇ

ˇ

ˇ
ď
C

N

ˆ

pb´ 1q2

β4
`
C 1

β5

˙

, @i, j : dpi, jq ą m.

(4.55)
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From (4.53) we split the sum in two terms:
A

 

J pmq, HF

(2
E

“
ÿ

dpi,jqďm

”A

H
pmq
i H

pmq
j

E

´

A

H
pmq
i

EA

H
pmq
j

Eı

`
ÿ

dpi,jqąm

”A

H
pmq
i H

pmq
j

E

´

A

H
pmq
i

EA

H
pmq
j

Eı

.

We now apply estimates (4.54), (4.55) to get

A

 

J pmq, HF

(2
E

ď NC

ˆ

pb´ 1q2

β4
`
C 1

β5

˙

`N2
rC

N

ˆ

pb´ 1q2

β4
`
C 1

β5

˙

ď NC1

ˆ

pb´ 1q2

β4
`
C2

β5

˙

for some positive constants C1 and C2.

Proof of Lemma 4.22

We start by writing the Poisson bracket tJ pmq, HF ´HT u in an explicit form. First,
we observe that for any 1 ď m ă N one has from (4.13)

BJ pmq

Bpj´1

“
1

m

BTr pLmq
Bpj´1

“ Tr
ˆ

Lm´1 BL

Bpj´1

˙

“ ´rLm´1
sj,j “ ´h

pm´1q
j ,

for all j “ 1, . . . , N . In the above relation hpm´1q
j is the generating function of the

m´ 1 Toda integral defined in (4.26).
Next we observe that

HF pp,qq´HT pp,qq “
N´1
ÿ

j“0

Rpqj`1´qjq, Rpxq :“
x2

2
´
x3

6
`b

x4

24
´pe´x´1`xq.

This implies also that

 

J pmq, HF ´HT

(

“

N
ÿ

j“1

h
pm´1q
j pR1prj´2q ´R

1
prj´1qq

“

N
ÿ

j“1

ph
pm´1q
j ´ h

pm´1q
j p0,0qq pR1prj´2q ´R

1
prj´1qq

where, to obtain the second identity, we are using that hpm´1q
j p0,0q is by (4.31) and

(4.35) a constant independent of j and the second term in the last relation is a
telescopic sum. Define

H
pmq
j :“

´

h
pm´1q
j pp, rq ´ h

pm´1q
j p0,0q

¯

pR1prj´2q ´R
1
prj´1qq , j “ 1, . . . , N ;

(4.56)
then item (i) of Lemma 4.22 follows because clearlyHpmq

j “ Sj´1H
pmq
1 . Furthermore,

since hpm´1q
j has diameter bounded by m´ 1, the same property applies to Hpmq

j .
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To prove item piiq we start by expanding R1prj´1q ´R
1prjq in Taylor series with

integral remainder. Since

R1pxq “
pb´ 1q

6
x3
`
x4

6

ż 1

0

e´ξxp1´ ξq3dξ ,

we get that

R1prj´2q ´R
1
prj´1q “

pb´ 1q

6
Sj´1ψ3prq `

1

6
Sj´1ψ4prq , (4.57)

where explicitly

ψ3prq :“ r3
N´1 ´ r

3
0 , (4.58)

ψ4prq :“ r4
N´1

ż 1

0

e´ξrN´1p1´ ξq3dξ ´ r4
0

ż 1

0

e´ξr0p1´ ξq3dξ .

Combining (4.35) with (4.57) we rewrite Hpmq
j in (4.56) in the form

H
pmq
j “

Sj´1

6

´

pϕ
pmq
1 ` ϕ

pmq
2 ` ϕ

pmq
ě3 q

´

pb´ 1qψ3 ` ψ4

¯¯

,

where ϕpmqj , j “ 0, 1, 2, are defined in (4.35). Thus the squared L2 norm of Hj is
given by (we suppress the superscript to simplify the notation)

}Hj}
2
θ “

1

36
pb´ 1q2

´

2
ÿ

`,`1“1

@

ψ2
3 ϕ` ϕ`1

D

θ
`

@

ψ2
3ϕě3 pϕě3 ` 2ϕ1 ` 2ϕ2q

D

θ

¯

(4.59)

`
b´ 1

18

´

2
ÿ

`,`1“1

xψ3ψ4 ϕ` ϕ`1yθ ` xψ3ψ4ϕě3 pϕě3 ` 2ϕ1 ` 2ϕ2qyθ

¯

(4.60)

`
1

36

2
ÿ

`,`1“1

@

ψ2
4 ϕ` ϕ`1

D

θ
`

1

36

@

ψ2
4 ϕě3 pϕě3 ` 2ϕ1 ` 2ϕ2q

D

θ
. (4.61)

Consider now the terms in (4.59); by (4.37),(4.36) and (4.58), we know that each
element is a linear combination of functions of the form

pk rl
ˆ
ż 1

0

e´ξn
ᵀr
p1´ ξq2dξ

˙dˆż 1

0

e´ξs
ᵀr
p1´ ξq3dξ

˙d1

, (4.62)

with |k| ` |l| ě 6 ` ` ` `1 ě 8, d, d1 P t0, 1, 2u. The number of these functions and
their coefficients are independent of N (see Lemma 4.13). By Lemma 4.19 it follows
that there exists a constant C ą 0, depending only on m, such that

|r.h.s. of (4.59)| ď C pb´ 1q2 β´4. (4.63)

Analogously, line (4.60) is a linear combination of functions of the form (4.62) with
|k| ` |l| ě 9, d, d1 P t0, 1, 2u. Applying Lemma 4.19 we get the estimate

|(4.60)| ď C 1 |b´ 1| β´9{2 (4.64)

for some constant C 1 ą 0. Similarly, the expression (4.61) is a linear combination
of functions of the form (4.62) with |k| ` |l| ě 10, d, d1 P t0, 1, 2u. Applying Lemma
4.19 we get the estimate

|(4.61)| ď C2 β´5 , (4.65)
for some constant C2 ą 0. Combining (4.63),(4.64) and (4.65) we obtain estimate
(4.52) for }Hj}θ. The estimate for }Hpmq

i H
pmq
j }θ can be proved in an analogous way.
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4.4.2 Lower bounds on the variance of m-admissible func-
tions

From now on we consider M endowed with either the FPUT or the Toda Gibbs
measure; the following result holds in both cases.

Proposition 4.23. Fix m P N, let G be an m-admissible function of the first or
second kind (see Definition 4.14). There exist N0, β0, C ą 0 such that for any
N ą N0, β ą β0, one has

σ2
G “

@

G2
D

´ xGy2 ě C
N

β2
. (4.66)

Proof. We first prove (4.66) when G “ G1 “ pᵀG1r where G1 is a circulant, sym-
metric matrix represented by the m-admissible vector a P RN . We now make the
change of coordinates pp, rq “ pHpp,Hprq which diagonalizes the matrix G1 (see
(4.33)), getting

G1ppp,prq “
?
N

N´1
ÿ

j“0

pgjppjprj.

So we have just to compute

σ2
G1
“ N

C

N´1
ÿ

i,j“0

pgjpgippjppipriprj

G

´N

˜C

N´1
ÿ

j“0

pgjppjprj

G¸2

“ N
N´1
ÿ

i,j“0

pgjpgi xppjppiy xpriprjy ´N

˜

N´1
ÿ

j“0

pgj xppjy xprjy

¸2

, (4.67)

where we used that ppk, prj are random variables independent of each other.
We notice that pp1, pp2, . . . , ppN´1 are i.i.d. Gaussian random variable with variance

β´1, pp0 “ 0 (see (4.7)), so that we have xppjy “ 0 and xppjppiy “
δi,j
β
i, j “ 1, . . . , N ´1

(remark that this holds true both for the FPUT and Toda’s potentials as the p-
variables have the same distributions).
As a consequence, (4.67) becomes:

σ2
G1
“
N

β

N´1
ÿ

j“1

pg2
j

@

pr2
j

D

“
1

β

@

prᵀHG2
1Hpr

D

“
1

β

@

rᵀG2
1r
D

. (4.68)

Since G1 is circulant symmetric matrix so is G2
1 and its representing vector is d :“

g ‹ g.

Next we remark that the identity
B

´

řN´1
j“0 rj

¯2
F

“ 0 implies

xrjriy “ ´
1

N ´ 1

@

r2
0

D

, @i ‰ j .

Applying this property to (4.68) we get

σ2
G1
“

1

β

N´1
ÿ

j,l“0

dl xrjrj`ly “
N

β

@

r2
0

D

d0 `
1

β

N´1
ÿ

j,l
l‰0

dl xrjrj`ly

“
1

β

@

r2
0

D

˜

Nd0 ´
N

N ´ 1

N
ÿ

l‰0

dl

¸

. (4.69)
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By Lemmas 4.17 and 4.19 we have that, for N sufficiently large, xr2
0y ě cβ´1.

Finally, since the vectors g, d are m-admissible and 2m-admissible respectively, we
have that

d0 “ pg ‹ gq0 “
rm
ÿ

j“0

g2
j ě cm,

N´1
ÿ

l‰0

dl “
2 rm
ÿ

l‰0

dl ď Cm, (4.70)

for some constants cm ą 0 and Cm ą 0. Plugging (4.70) into (4.69) we obtain (4.66)
for the case of m-admissible functions of the first kind.

For the case of admissible functions of the second kind, one has G2 “ pᵀG2p `
rᵀG2r with G2 circulant, symmetric and represented by an m-admissible vector.
Since p and r are independent random variables one gets

σG2 “ σpᵀG2p`rᵀG2r “ σpᵀG2p ` σrᵀG2r ě σpᵀG2p.

Then arguing as in the previous case one gets (4.66).

By applying Proposition 4.23 to the quantity J pmq2 that is an m-admissible func-
tion of the first or second kind, depending on the parity ofm, we obtain the following
result.

Corollary 4.24. The quadratic part J pmq2 of the Taylor expansion of the Toda in-
tegral J pmq near pp, rq “ p0, 0q satisfies

σ2

J
pmq
2

ě C
N

β2
,

for some constant C ą 0.

Similarly, we obtain a lower bound on the reminder J pmqě3 of the Taylor expansion
of the Toda integral J pmq near p “ 0 and r “ 0.

Lemma 4.25. Fix m P N. There exist N0, β0, C ą 0 such that for any N ą N0,
β ą β0, one has

σ2

J
pmq
ě3

ď C
N

β3
. (4.71)

Proof. Recall from Lemma 4.13 that J pmqě3 is a cyclic function generated by rh
pmq
1 :“

1
m
ϕ
pmq
ě3 . Thus, denoting hpmqj :“ Sj´1

rh
pmq
1 , we have J pmqě3 “

řN
j“1

rh
pmq
j and its variance

is given by

σ2
Jě3
m
“

N
ÿ

i,j“1

A

rh
pmq
i

rh
pmq
j

E

´

A

rh
pmq
i

EA

rh
pmq
j

E

. (4.72)

We can bound the correlations in (4.72) exploiting Lemma 4.18, provide we estimate
first the L2pdµF,θq and L2pdµT,θq norms of rhpmqi and rh

pmq
i

rh
pmq
j . Proceeding with the

same arguments as in Lemma 4.22, one proves that there exists C̃ ą 0 such that
for any N ą N0, β ą β0,

}rh
pmq
i }θ ď C̃β´3{2, }rh

pmq
i

rh
pmq
j }θ ď C̃β´3.
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By Lemma 4.13, the function rh
pmq
1 has diameter at most m, so in particular if

dpi, jq ą m, the functions rhpmqi and rh
pmq
j have disjoint supports (recall (4.30)).

We are now in position to apply Lemma 4.18 and obtain

ˇ

ˇ

ˇ

A

rh
pmq
i

rh
pmq
j

E

´

A

rh
pmq
i

EA

rh
pmq
j

E
ˇ

ˇ

ˇ
ď
C 1

β3
, @i, j (4.73)

ˇ

ˇ

ˇ

A

rh
pmq
i

rh
pmq
j

E

´

A

rh
pmq
i

EA

rh
pmq
j

E
ˇ

ˇ

ˇ
ď

C 1

Nβ3
, @i, j : dpi, jq ą m, (4.74)

for some constant C 1 ą 0. Thus we split the variance in (4.72) in two parts

σ2

J
pmq
ě3

“
ÿ

dpi,jqďm

A

rh
pmq
i

rh
pmq
j

E

´

A

rh
pmq
i

EA

rh
pmq
j

E

`
ÿ

dpi,jqąm

A

rh
pmq
i

rh
pmq
j

E

´

A

rh
pmq
i

EA

rh
pmq
j

E

and apply estimates (4.73), (4.74) to get (4.71).

Combining Corollary 4.24 and Lemma 4.25 we arrive to the following crucial
proposition.

Proposition 4.26. Fix m P N. There exist N0, β0, C ą 0 such that for any N ą N0,
β ą β0, one has

σ2
Jpmq ě C

N

β2
. (4.75)

Proof. By Lemma 4.13, we write J pmq “ J
pmq
0 ` J

pmq
2 ` J

pmq
ě3 with J pmq0 constant. By

Corollary 4.24 and Lemma 4.25 we deduce that for N and β large enough,

σJpmq “ σ
J
pmq
2 `J

pmq
ě3
ě σ

J
pmq
2
´ σ

J
pmq
ě3
ě

?
N

β

˜

?
C 1 ´

d

C

β

¸

,

which leads immediately to the claimed estimate (4.75).

4.5 Proof of the main results

In this section, we give the proofs of the main theorems of our paper.

4.5.1 Proof of Theorem 4.1

The proof is a straightforward application of Proposition 4.21 and 4.26. Having
fixed m P N, we apply (4.22) with Φ “ J pmq and λ “ β´ε to get

P
´

ˇ

ˇJ pmqptq ´ J pmqp0q
ˇ

ˇ ě
σJpmqp0q
βε

¯

ď
C1

C

ˆ

|b´ 1|2

β2
`
C2

β3

˙

β2εt2

from which one deduces the statement of Theorem 4.1.
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4.5.2 Proof of Theorem 4.4 and Theorem 4.5

The proofs of Theorem 4.4 and Theorem 4.5 are quite similar and we develop them
at the same time. As in the proof of Theorem 4.1, the first step is to use Chebyshev
inequality to bound

P p|Φptq ´ Φ| ą λσΦq ď
1

λ2

σ2
Φptq´Φ

σ2
Φ

, (4.76)

where the time evolution is intended with respect to the FPUT flow φtF or the Toda
flow φtT . Accordingly, the probability is calculated with respect to the FPUT Gibbs
measure (4.11) or the Toda Gibbs measure (4.20).

Next we observe that the quantity Φ :“
řN´1
j“1 pgjEj defined in (4.19) can be

written in the form

Φpp, rq “
N´1
ÿ

j“1

pgjEj “
1

2
?
N

N´1
ÿ

j,l“0

gl ppjpj`l ` rjrj`lq “
1

2
?
N
G2pp, rq,

where g P RN is a m-admissible vector and G2pp, rq is a m-admissible function of
the second kind, as in Definition 4.14. As the inequality (4.22) is scaling invariant,
prove (4.76) is equivalent to obtain that

P p|G2ptq ´G2| ą λσG2q ď
1

λ2

σ2
G2ptq´G2

σ2
G2

.

Applying Proposition 4.23 we can estimate σ2
G2
. We are then left to give an upper

bound to σ2
G2ptq´G2

. By Lemma 4.16, there exists a unique sequence tcju rm´1
j“0 , with

maxj |cj| independent from N , such that G2pp, rq “
ř

rm´1
l“0 clJ

p2l`2q
2 , where J p2l`2q

2

are defined in (4.37). Hence we bound

σG2ptq´G2p0q ď

rm´1
ÿ

l“0

|cl|σJp2l`2q
2 ptq´J

p2l`2q
2 p0q

.

Next we interpolate J p2lq2 with the integrals J p2lq and exploit the fact that they
are adiabatic invariants for the FPUT flow and integrals of motion for the Toda
flow. More precisely

σ
J
p2lq
2 ptq´J

p2lq
2 p0q

ď σ
J
p2lq
2 ptq´Jp2lqptq

` σ
Jp2lqp0q´J

p2lq
2 p0q

` σJp2lqptq´Jp2lqp0q. (4.77)

By the invariance of the two measures with respect to their corresponding flow and
Lemma 4.25, we get both for FPUT and Toda the estimate

σ
J
p2lq
2 ptq´Jp2lqptq

“ σ
J
p2lq
2 p0q´Jp2lqp0q

“ σ
J
p2lq
ě3
ď

d

C̃1N

β3
,

for some constant C̃1 ą 0 and for β ą β0 and N ą N0. As (4.77) is zero for the
Toda flow (being J p2lqptq constant along the flow), we get

σ2
G2˝φtT´G2

ď
C1N

β3
, (4.78)
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for some constant C1 ą 0 and for β ą β0 and N ą N0. Combing Proposition 4.23
with (4.78) we conclude that

P
`
ˇ

ˇG2 ˝ φ
t
T ´G2

ˇ

ˇ ą λσG2

˘

ď
C1

λ2β

and by choosing λ “ β´ε with 0 ă ε ă 1
2
we arrive to the expression (4.21), namely

we have concluded the proof of Theorem 4.5.
We are left to estimate (4.77) for FPUT, but this is exactly the quantity bounded

in Proposition 4.21. We conclude that

σ2
G2˝φtF´G2

ď
C1N

β3
` C3N

ˆ

|b´ 1|2

β4
`
C2

β5

˙

t2, (4.79)

for some constant Cj ą 0, j “ 1, 2, 3 and for β ą β0 and N ą N0.
Combing Proposition 4.23 with (4.79) we obtain

P
`
ˇ

ˇG2 ˝ φ
t
F ´G2

ˇ

ˇ ą λσG2

˘

ď
C1

λ2β
`
C3

λ2

ˆ

|b´ 1|2

β2
`
C2

β3

˙

t2. (4.80)

Choosing λ “ β´ε with 0 ă ε ă 1
4
, (4.80) is equivalent to

P

ˆ

ˇ

ˇG2 ˝ φ
t
F ´G2

ˇ

ˇ ą
σG2

βε

˙

ď
C1

β2ε
,

for some redefine constant C1 ą 0 and for every time t fulfilling

|t| ď
β1´2ε

´

pb´ 1q2 ` C2β´1
¯1{2

.

We have thus concluded the proof of Theorem 4.4.

4.6 Technical Results

4.6.1 Proof of Theorem 4.7

In this subsection we prove Theorem 4.7. From the structure of the matrix Lax
matrix L in (4.12), we immediately get

rLmsjjpa,bq “ Sj´1 prL
m
s11pa,bqq ,

where Sj is the shift defined in (4.29), thus we have to prove formula (4.26) just for
the case j “ 1.

To accomplish this result we need to introduce the notion of super Motzkin
path and super Motzkin polynomial, that generalize the notion of Motzkin path
and Motzkin polynomial [130,154].

Definition 4.27. A super Motzkin path p of size m is a path in the integer plane
N0 ˆ Z from p0, 0q to pm, 0q where the permitted steps from p0, 0q are: the step up
p1, 1q, the step down p1,´1q and the horizontal step p1, 0q. A similar definition
applies to all other vertices of the path.
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The set of all super Motzkin paths of size m will be denoted by sMm.
In order to introduce the super Motzkin polynomial associated to these paths we

have to define their weight. This is done in the following way: to each up step that
occurs at height k, i.e. it joins the points pl, kq and pl ` 1, k ` 1q, we associate the
weight ak, to a down step that joins the points pl, kq and pl` 1, k ´ 1q we associate
the weight ak´1, to each horizontal step from pl, kq to pl ` 1, kq we associate the
weight bk. Since k P Z, the index of ak and bk are understood modulus N .

At this point we can define the total weight wppq of a super Motzkin path p to be
the product of weights of its individual steps. So it is a monomial in the commuting
variables pb, aq “ pb´ rm, . . . , b rm, a´ rm, . . . , a rmq, where rm “ tm{2u. We remark that
the total weight do not characterize uniquely the path. We are now ready to give
the definition of Motzkin polynomial:

Definition 4.28. The super Motzkin polynomial sPmpa,bq is the sum of all weight
of the elements of sMm:

sPmpa,bq “
ÿ

pPsMm

wppq . (4.81)

We are now ready to relate the Toda integrals to the super Motzkin polynomial
sPmpa,bq.

Proposition 4.29. Given the Lax matrix L in (4.12) then:

rLms1,1 pa,bq “ sPmpa,bq .

where the super Motzkin polynomial sPmpa,bq is defined in (4.81) and aj ” ajmodN , bj ”
bjmodN .

Proof. In general we have that:

rLms1,1 “
ÿ

jPNm´1

L1,j1Lj1,j2 . . . Ljm´1,1

To every element of the sum we associate the path with vertices

p0, 0q, p1, rj1 ´ 1, q, p2, rj2 ´ 1q, . . . , p`, rj` ´ 1q, . . . , pm´ 1,rjm´1 ´ 1q, pm, 0q

where

rjk “

#

jk if jk ă rm

jk ´N if jk ě rm

This is a super Motzkin path pj and we can associate the weight wppjq as in the
description above therefore we have

L1,j1Lj1,j2 . . . Ljm´1,1 “ wppjq

This is clearly a bijection. The sum of the weights of all possible super Motzkin
paths, is defined to be the super Motzkin polynomial sPmpa,bq and thus we get the
claim.

Proceeding as in [130, Proposition 1], we are able to prove the following result,
which together with Proposition 4.29 proves Theorem 4.7:

Guido Mazzuca 107



Adiabatic Invariant

Proposition 4.30. The super Motzkin polynomial of size m is given explicitly as

sPmpa,bq “
ÿ

pn,kqPApmq
ρpn,kq

rm
ź

i“´ rm

a2ni
i bkii

where Apmq is the set

Apmq :“
!

pn,kq P Nm
0 ˆ Nm

0 :
rm
ÿ

i“´ rm

p2ni ` kiq “ m,

@i ě 0, ni “ 0 ñ ni`1 “ ki`1 “ 0,

@i ă 0, ni`1 “ 0 ñ ni “ ki “ 0
)

, (4.82)

where rm “ tm{2u and ρpmqpn,mq P N is given by

ρpmqpn,kq :“

ˆ

n´1 ` n0 ` k0

k0

˙ˆ

n´1 ` n0

n0

˙

rm
ź

i“´Ăm
i‰´1

ˆ

ni ` ni`1 ` ki`1 ´ 1

ki`1

˙ˆ

ni ` ni`1 ´ 1

ni`1

˙

.

Proof. For a give super Motzkin path p starting at p0, 0q and finishing at p0,mq
let ki be the number of horizontal steps at height i and let ni be the number of
step up from height i to i ` 1. We remark the number ni of step up from height
i to i ` 1 is equal to the number of step down from i ` 1 to i. We define the
vectors k “ pk´ rm, k´ rm`1, . . . , k rmq and n “ pn´ rm, n´ rm`1, . . . , n rmq and we associate
the product

rm
ź

i“´ rm

a2ni
i bkii .

Next we need to sum over all possible super Motzkin path p of length m connecting
p0, 0q to p0,mq. Since the number of steps up is equal to the number of steps down,
one necessarily have

rm
ÿ

i“´ rm

p2ni ` kiq “ m.

Furthermore since the path is connected it follows that it is not possible to have
a vertex at height i ` 1 without have a vertex at height i ą 0 and the other way
round if i ă 0. Therefore one has

@i ě 0, ni “ 0 ñ ni`1 “ ki`1 “ 0,

@i ă 0, ni`1 “ 0 ñ ni “ ki “ 0 .

This proves the definition of the set Apmq in (4.82). The final step of the proof is
to count the number of paths associated to the vectors k “ pk´ rm, k´ rm`1, . . . , k rmq

and n “ pn´ rm, n´ rm`1, . . . , n rmq. We want to show that this number is equal to
ρpmqpn,kq.

A horizontal step at height i can occur just after a step up to height i, another
horizontal step at height i, or a step down to height i. This leaves a total of ni`ni`1
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different positions at which a horizontal step at height i can occur. Since we have
ki of horizontal steps, the number of different configurations with these step counts
is the number of ways to choose ki elements from a set of cardinality ni`ni`1 with
repetitions allowed, i.e.

`

ni`ni`1`ki´1
ki

˘

.
The number of different configurations with ni steps at height i and ni`1 at

height i ` 1 is given by the number of multi-sets of cardinality ni`1 taken from a
set of cardinality ni and this number is equal to

`

ni`ni`1´1
ni`1

˘

.
For the horizontal steps at height 0, they can also occur at the beginning of the

path, this increase the number of possible positions by 1, so the number of these
configurations with these steps counts is

`

n0`n´1`k0

k0

˘

. In this way we have obtained
the coefficient ρpmqpn,kq.

4.6.2 Proof of Lemma 4.13

In order to prove Lemma 4.13 we describe more specifically the Toda integrals and
characterize their quadratic parts. Equation (4.31) follows by the explicit expression
of hpmqj in (4.26), as the coefficients ρpmqpn,kq do not depend on the index j. We
recall that hpmq1 takes the form

h
pmq
1 pp, rq “

ÿ

pk,nqPApmq
p´1q|k|ρpmqpn,kqpke´n

ᵀr ,

with

supp k, supp n Ď Bd
rmp0q :“ tj : dp0, jq ď rmu, |k| ` 2|n| “ m.

In particular it is clear that hpmq1 has diameter 2rm ď m.
Now we Taylor expand around r “ 0 the exponential with integral remainder:

e´n
ᵀr
“ 1´ nᵀr`

1

2
pnᵀrq2 `

pnᵀrq3

2

ż 1

0

e´sn
ᵀr
p1´ sq2 ds

and we substitute it in hpmq1 , obtaining an expansion of the form:

h
pmq
1 pp, rq “

ÿ

pk,nqPApmq
p´1q|k|ρpmqpn,kqpk

ˆ

1´ nᵀr`
1

2
pnᵀrq2 `

pnᵀrq3

2

ż 1

0

e´sn
ᵀr
p1´ sq2 ds

˙

.

We can rewrite the above expression in the form

h
pmq
1 pp, rq “ ϕ

pmq
0 ` ϕ

pmq
1 pp, rq ` ϕ

pmq
2 pp, rq ` ϕ

pmq
ě3 pp, rq ,

where ϕpmq` , ` “ 0, 1, 2, are the Taylor polynomials at pp, rq “ p0,0q. Their explicit
expressions read

ϕ
pmq
0 “

ÿ

p0,nqPApmq
ρpmqpn,0q , ϕ

pmq
1 “ ´

ÿ

p0,nqPApmq
ρpmqpn,0qnᵀr ´

ÿ

pk,nqPApmq
|k|“1

ρpmqpn,kqpk,

ϕ
pmq
2 “

ÿ

p0,nqPApmq
ρpmqpn,0q

pnᵀrq2

2
`

ÿ

pk,nqPApmq
|k|“1

ρpmqpn,kqpknᵀr`
ÿ

pk,nqPApmq
|k|“2

ρpmqpn,kqpk.
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We deduce from these explicit formulas that if m is odd then ϕpmq0 ” 0 as well
as the first sum defining ϕpmq1 and the first and last one defining ϕpmq2 . Indeed the
sums are carried on an empty set. If m is even the second sum defining ϕpmq1 and
the second one defining ϕpmq2 are zero for the same reason. Concerning ϕpmqě3 , it has
a zero of order greater than 3 in the variables pp, rq, and it has the form

ϕ
pmq
ě3 pp, rq :“

ÿ

pk,nqPApmq
|k|ě3

p´1q|k|ρpmqpn,kqpk

ˆ

1´ nᵀr`
1

2
pnᵀrq2 `

pnᵀrq3

2

ż 1

0

e´sn
ᵀr
p1´ sq2 ds

˙

.

These, together with the explicit formula of ρpmqpn,kq, prove (4.35).
It is easy to see that defining

J
pmq
0 :“

1

m

N´1
ÿ

j“0

Sjϕ
pmq
0 , J

pmq
1 :“

1

m

N´1
ÿ

j“0

Sjϕ
pmq
1 ,

J
pmq
2 :“

1

m

N´1
ÿ

j“0

Sjϕ
pmq
2 , J

pmq
ě3 :“

1

m

N´1
ÿ

j“0

Sjϕ
pmq
ě3 ,

we immediately get that

J pmq “ J
pmq
0 ` J

pmq
1 ` J

pmq
2 ` J

pmq
ě3 .

Clearly J
pmq
0 it is a constant that is zero for m odd; moreover thanks to the

boundary condition (4.10) and the linearity of J pmq1 we have that J pmq1 “ 0. Further,
J
pmq
ě3 is clearly a cyclic function. In order to get (4.37) and (4.38) for J pmq2 we have

to split the proof in two different cases.

Case m odd. In this case thanks to the property of ϕpmq2 , the definition of J pmq2

and (4.34) we get that there exists a cyclic and symmetric matrix Bpmq such that:

J
pmq
2 “ pᵀBpmqr.

Moreover since the diampkq, diampnq defining ϕpmq2 are at most rm (see Remark 4.10)
we have that the vector bpmq representing the matrix Bpmq is m-admissible and from
(4.28) we have that bpmqj “ b

pmq
N´j are positive integers for all j “ 0, . . . , rm.

Case m even. As before there exist two matrices Apmq, Dpmq represented by m-
admissible vectors such that:

J
pmq
2 “ pᵀApmqp` rᵀDpmqr , a

pmq
k “ a

pmq
N´k P N , d

pmq
k “ d

pmq
N´k P N , 0 ď k ď rm.

We have just to prove that the two matrices are equal; to do this we exploit the
involution property of the Toda integrals. Indeed we know that

 

J pjq, J pkq
(

“ 0, for
any j, k. It follows easily that also their quadratic parts must commute:

!

J
pkq
2 , J

pjq
2

)

“ 0, @ k, j. (4.83)
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To compute explicitly the Poisson bracket we change coordinates via the Hartley
transform (4.16) getting that:

J
pmq
2 “

?
N

N´1
ÿ

j“1

pajpp
2
j `

pdjpr
2
j “

?
N

N´1
ÿ

j“1

pajpp
2
j `

pdjω
2
j pq

2
j ,

J
p2q
2 “

1

2

ÿ

j

pp2
j ` ω

2
j pq

2
j ,

where ωj “ 2 sin
`

π j
N

˘

. As the Hartley transform is a symplectic map, by (4.83) we
get

0 “
!

J
p2q
2 , J

pmq
2

)

“
?
N

N´1
ÿ

j“1

ω2
j

´

paj ´ pdj

¯

ppjpqj,

which implies that paj “ pdj for all j ‰ 0. To prove that also pa0 “
pd0 we come back

to the original variables getting that:

a
pmq
j “

1
?
N
pa0 `

1
?
N

N´1
ÿ

k“1

paj

ˆ

cos

ˆ

2π
jk

N

˙

` sin

ˆ

2π
jk

N

˙˙

,

d
pmq
j “

1
?
N

pd0 `
1
?
N

N´1
ÿ

k“1

paj

ˆ

cos

ˆ

2π
jk

N

˙

` sin

ˆ

2π
jk

N

˙˙

,

@ j.

This means that apmqj ´ d
pmq
j “ pa0´ pd0?

N
for all j “ 0, . . . , N ´ 1. Since apmq, dpmq

are m-admissible it follows that apmq
rm`1 “ d

pmq
rm`1 “ 0 so that

pa0 ´
pd0

?
N

“ a
pmq
rm`1 ´ d

pmq
rm`1 “ 0,

which proves the statement.

4.6.3 Measure approximation

In this section we show how to approximate the measure dµ, in which the variables
are constrained, with the measure dµθ, where all variables are independent. The
proof follows the construction of [108] (where it is done for Dirichlet boundary
conditions) which applies both to the Gibbs measure of FPUT (4.11) and Toda
(4.20). To simplify the construction we consider a general potential V : RÑ R and
make the following assumptions:

(V1) There exist β0 ą 0 and a compact interval I Ă R such that for any β ą β0,
there exists θ ” θpβq P I such that

ż

R
r e´θr´βV prq dr “ 0. (4.84)

(V2) There exist β0, C1, C2 ą 0 such that for any β ą β0, with θ “ θpβq of (V1),
one has

C1

βk{2
ă

ż

R
|r|k e´θr´βV prq dr ă

C2

βk{2
, k “ 0, . . . , 4. (4.85)

In particular the moments up to order 4 are finite.
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(V3) There exists β0 ą 0 such that @β ą β0, with θ “ θpβq of (V1), one has

inf
rPR
|θr ` βV prq| ą ´8,

namely the function r ÞÑ θr ` βV prq is bounded from below.

Both the FPUT potential VF pxq and the Toda potential VT pxq satisfy the as-
sumptions (V1)–(V3) by the results of section 4.6.4.

We define the constraint measure dµV on the restricted phase space M as

dµV :“
1

ZV pβq
e´β

řN
j“1

p2j
2 e´β

řN
j“1 V prjq δ

˜

ÿ

j

rj “ 0

¸

δ

˜

ÿ

j

pj “ 0

¸

dp dr,

and the unconstrained measure dµVθ on the extended phase space RN ˆ RN as

dµVθ :“
1

ZV,θpβq
e´β

řN
j“1 p

2
j {2 e´β

řN
j“1 V prjq e´θ

řN
j“1 rj dp dr;

as usual ZV pβq and ZV,θpβq are the normalizing constants of dµV , dµVθ respectively
. We denote the expectation of f with respect to the measure dµV as xfyV , and
with respect to the measure dµVθ as xfyV,θ.

We also denote by }f}V,θ :“
@

f 2
D1{2

V,θ
the L2 norm of f with respect to the measure

dµVθ .
The main result is the following one:

Theorem 4.31. Assume that (V1)–(V3) hold true. Fix K P N and assume that
f : RN ˆ RN Ñ R have support of size K (according to definition 4.2) and finite
second order moment with respect to dµVθ . Then there exist C,N0 and β0 such that
for all N ą N0, β ą β0 one has

ˇ

ˇ

ˇ
xfyV ´ xfyV,θ

ˇ

ˇ

ˇ
ď C

K

N

b

xf 2yV,θ ´ xfy
2
V,θ. (4.86)

Proof of Theorem 4.31

Introduce the structure function

ΩNpxq :“

ż

x1`...`xN“x

e´β
řN
j“1 V pxjq dx1 . . . dxN , @x P R.

The important remark is that ΩNpxq is N -times the convolution of the function
e´βV pxq with itself, thus it is the density function of the sum of N iid random
variables distributed as e´βV pxq.

Next, for θ P R, we define the conjugate distribution

U
pθq
N pxq :“

1

pzθpβqq
N
e´θx ΩNpxq, zθpβq :“

ż

R
e´βV pxq´θx dx, (4.87)

As before, we remark that U pθqN pxq it is N -times the convolution of the function
e´βV pxq´θx with itself thus it is the density function of the sum of N iid random
variables tY pθqn pβqu1ďnďN distribute as

Y pθqn pβq „ Y pθq :“
1

zθpβq
e´βV pxq´θx dx,
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moreover thanks to (4.84) we know that
@

Y pθq
D

“ 0.

The central limit theorem says that the rescaled random variable
1

σ
?
N

N
ÿ

n“1

Y pθqn pβq

converges in distribution to a normal N p0, 1q. We want to apply a more refined ver-
sion of this result, called local central limit theorem, which describes the asymptotic
of this convergence.

In particular we will use a local central theorem whose proof can be found
in [133, Theorem VII.15]; to state it, we first define the functions

qνpxq :“
1
?

2π
e´

x2

2

ÿ

Bpνq

Hj`2spxq
ν
ź

d“1

1

kd!

ˆ

γd`2

pd` 2q!σd`2

˙kd

(4.88)

where Hj is the j-th Hermite polynomial, γd is the d-th cumulant1 of Y pθqn pβq, and
Bpνq is the set of all non-negative integer solutions k1, . . . , kν of the equalities k1 `

2k2 ` ¨ ¨ ¨ ` νkν “ ν, and s “ k1 ` k2 ` ¨ ¨ ¨ ` kν .

Theorem 4.32 (Local central limit). Let tXnu be a sequence of iid variables such
that

(i) For any 1 ď n ď N , one has E rXns “ 0.

(ii) There exists k ě 3 such that E
“

|Xn|
k
‰

ă `8 for all n. Moreover σ2 :“
E rX2

ns ą 0.

(iii) The random variable 1
σ
?
N

řN
n“1Xn has a bounded density pNpxq.

Then there exists C ą 0 such that

sup
x

ˇ

ˇ

ˇ

ˇ

ˇ

pNpxq ´
1
?

2π
e´

x2

2 `

k´2
ÿ

ν“1

qνpxq

N ν{2

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

N pk´2q{2
,

where the qν’s are defined in (4.88).

Applying this theorem in case Xn “ Y
pθq
n pβq , one gets the following result:

Corollary 4.33. Assume (V1)–(V3). There exist N0, β0, C ą 0 such that for all
N ě N0, β ą β0 one has

ˇ

ˇ

ˇ

ˇ

ˇ

U
pθq
N pxq ´

1
?

2πσ2N
exp

ˆ

´
x2

2σ2N

˙

`

2
ÿ

ν“1

qνpx{σ
?
Nq

N pν`1q{2σ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

N3{2σ
. (4.89)

Proof. We verify that the assumptions of Theorem 4.32 are met in case Xn “

Y
pθq
n pβq.

Item piq and piiq hold true thanks to assumptions (V1) and (V2), in particular

piiq is true with k “ 4. To verify piiiq, we note that
1

σ
?
N

N
ÿ

n“1

Y pθqn pβq has den-

sity given by σ
?
N U

pθq
N pσ

?
Nxq. This last function is N -times the convolution

1We recall that γd “
ř

Cpdq d!p´1q
m1`...`md´1 pm1 ` . . .`md ´ 1q!

śd
l“1

α
ml
l

ml!pl!q
ml

where αl is
the lth moment of the random variable and Cpdq is the set of all non-negative integer solution of
ř

l lml “ d.
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of gθprq :“ e´θr´βV prq. By assumption (V3), gθ P L8pRq and by (V2) it belongs
also to L1pRq. So Young’s convolution inequality implies that σ

?
N U

pθq
N pσ

?
Nxq is

bounded uniformly in x, hence piiiq of Theorem 4.32 is verified.
We apply Theorem 4.32 with pNpxq “ σ

?
N U

pθq
N pσ

?
Nxq, then rescale the variable

x to get (4.89).

We study also the structure function

rΩNpξq :“

ż

ξ1`...`ξN“ξ

e´
β
2

řN
j“1 ξ

2
j dξ1 . . . dξN .

and the normalized distribution

rUNpξq :“
1

przθpβqq
N

rΩNpξq, rzθpβq :“

ż

R
e´

β
2
ξ2

dξ. (4.90)

We have the following result:

Lemma 4.34. For any N ě 1, any β ą 0, one has

rUNpξq “

c

β

2πN
exp

ˆ

´
βξ2

2N

˙

. (4.91)

Proof. The function rUN is theN -times convolution of Gaussian functions of the form
gpξq :“

b

β
2π
e´

β
2
ξ2 . Since convolution of Gaussians is a Gaussian whose variance is

the sum of the variances, (4.90) follows.

We can finally prove Theorem 4.31:

Proof of Theorem 4.31. The proof follows closely [108]. We assume that f is sup-
ported on 1, . . . , K, the other cases being analogous. Using that

ZV pβq “ ΩNp0q rΩNp0q,

and denoting rp :“ pp1, . . . , pKq and rr :“ pr1, . . . , rKq, we write

xfprp,rrqyV “

ż

RKˆRK

fprp,rrq
ΩN´K

´

´
řK
j“1 rj

¯

ΩNp0q

rΩN´K

´

´
řK
j“1 pk

¯

rΩNp0q
drµ

where drµ :“ exp
´

´β
řK
j“1

p2
j

2
´ β

řK
j“1 V prjq

¯

drpdrr. As, by (4.87) and (4.90),

ΩN´Kpxq

ΩNp0q
“
U
pθq
N´Kpxq

U
pθq
N p0q

eθx

pzθpβqqK
,

rΩN´Kpξq

rΩNp0q
“

rU
pθq
N´Kpξq

rU
pθq
N p0q

1

przθpβqqK
,

we write the difference xfyV ´ xfyV,θ as

xfyV ´ xfyV,θ “

ż

RKˆRK

fprp,rrq
e´θ

řK
j“1 rj

pzθpβqqK przθpβqqK
Upθqprp,rrq drµ
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where

Upθqprp,rrq :“
U
pθq
N´K

´

´
řK
j“1 rj

¯

U
pθq
N p0q

rU
pθq
N´K

´

´
řK
j“1 pj

¯

rU
pθq
N p0q

´ 1.

Now we use that

ż

RKˆRK

e´θ
řK
j“1 rj

pzθpβqqK przθpβqqK
Upθqprp,rrq drµ “ x1yV ´ x1yV,θ “ 0

so that we can write the difference xfyV ´ xfyV,θ as

xfyV ´ xfyV,θ “

ż

RKˆRK

´

fprp,rrq ´ xfyV,θ

¯ e´θ
řK
j“1 rj

pzθpβqqK przθpβqqK
Upθqprp,rrq drµ

Using Cauchy-Schwartz we obtain that
ˇ

ˇ

ˇ
xfyV ´ xfyV,θ

ˇ

ˇ

ˇ
ď }f ´ xfyV,θ }V,θ }U

pθq
}V,θ,

so in order to prove (4.86) we are left to show that uniformly in N and β one has

}Upθq}V,θ ď C
K

N
. (4.92)

Using (4.89) and (4.91), we have that

ˇ

ˇ

ˇ

ˇ

ˇ

U
pθq
N´K pxq

U
pθq
N p0q

rU
pθq
N´K pξq

rU
pθq
N p0q

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ďC
´

ˇ

ˇ

ˇ

ˇ

e
´ x2

2σ2pN´Kq
´

βξ2

2pN´Kq ´ 1

ˇ

ˇ

ˇ

ˇ

`
N

pN ´Kq3{2
q1

ˆ

ˆ

x

σ
?
N ´K

˙

`
K

N ´K

¯

Next we use that |e´a2´b2 ´ 1| ď a2 ` b2, the explicit expression

q1pxq “
1
?

2π
e´

x2

2 px3
´ 3xq

γ3

6σ3
,

the estimate
γ3

6σ3
ď C for some C independent of β (which follows by (4.85) as in our

case γ3 ď Cβ´3{2), to obtain that there exists C ą 0 such that @N ě N0, @β ě β0,

ˇ

ˇ

ˇ

ˇ

ˇ

U
pθq
N´K pxq

U
pθq
N p0q

rU
pθq
N´K pξq

rU
pθq
N p0q

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

N

ˆ

K ` βξ2
`
x

σ
`
x2

σ2
`

x3

σ3N

˙

.

Substituting x ” ´
řK
j“1 rj, ξ ” ´

řK
j“1 pj, and computing the L2 norm (with

respect to dµVθ ) of the terms in the r.h.s. of the last formula give the claimed
estimate (4.92).
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4.6.4 Proof of Lemma 4.19

We prove the lemma for both the FPUT and Toda measure.
First, we observe that for d, v “ 2, 3:

1

4d

ź

jPSuppn

min
`

e´dnjrj , 1
˘

ď

ˆ
ż 1

0

e´ξn
ᵀr
p1´ ξqvdξ

˙d

ď
1

3d

ź

jPSuppn

max
`

e´dnjrj , 1
˘

.

This means that we have actually to prove that for any fixed multi-index k, l,n P
NN

0 there exist two constants Cp1qk,l P R and Cp2qk,l ą 0 such that:

C

pkrl
ź

jPSuppn

min
`

e´njrj , 1
˘

G

θ

ě C
p1q
k,lβ

´
|k|`|l|

2 ,

C

pkrl
ź

jPSuppn

max
`

e´njrj , 1
˘

G

θ

ď C
p2q
k,lβ

´
|k|`|l|

2 .

Moreover since for the two measures dµF,θ, dµT,θ all p and r are independent
random variables and moreover the pj are independent and normally distributed
according to N p0, β´1q, it follows

C

pkrl
ź

jPSuppn

min
`

e´njrj , 1
˘

G

θ

“
@

pk
D

θ

C

rl
ź

jPSuppn

min
`

e´njrj , 1
˘

G

θ
C

pkrl
ź

jPSuppn

max
`

e´njrj , 1
˘

G

θ

“
@

pk
D

θ

C

rl
ź

jPSuppn

max
`

e´njrj , 1
˘

G

θ

where

@

pk
D

θ
“

C

ź

i

pkii

G

θ

“

$

’

&

’

%

ź

i

pki ´ 1q!!

β
ki
2

, ki all even

0, some ki odd

Here k!! denotes the double factorial. Instead the distribution of the rj is different
for the two measures, so we need to calculate it separately for the FPUT and Toda
chain.

FPUT chain. Let’s start considering
@

rl min pe´nr, 1q
D

θ
:

@

rl min
`

e´nr, 1
˘D

θ
“

ş

R´ r
le
´θr´β

´

r2

2
` r3

3
` r4

4

¯

dr `
ş

R` r
le´nre

´θr´β
´

r2

2
` r3

3
` r4

4

¯

dr
ş

R e
´θr´β

´

r2

2
` r3

3
` r4

4

¯

dr

“ β´
l
2

ş

R´ r
le
´ θ?

β
r´

´

r2

2
` r3

3
?
β
` r4

4β

¯

dr `
ş

R` r
le
´ n?

β
r
e
´ θ?

β
r´

´

r2

2
` r3

3
?
β
` r4

4β

¯

dr
ş

R e
´ θ?

β
r´

´

r2

2
` r3

3
?
β
` r4

4β

¯

dr

ě β´
l
2

ş

R´ r
le
´ θ?

β
r´

´

r2

2
` r3

3
?
β
` r4

4β

¯

dr
ş

R e
´ θ?

β
r´

´

r2

2
` r3

3
?
β
` r4

4β

¯

dr
.

116 Guido Mazzuca



Adiabatic Invariant

Since for β large enough θpβq is uniformly bounded, it follows that there is a
positive constant Cl such that:

@

rl min
`

e´nr, 1
˘D

θ
ě p´1ql

Cl

β
l
2

. (4.93)

We notice that if l is even then the right end side of (4.93) is positive. The proof
for

@

rl max pe´nr, 1q
D

θ
follows in the same way so we get the claim for the FPUT

chain.

Toda chain. For the Toda chain the computation is a little bit more involved, so
we prefer to split it in different parts.

Lemma 4.35. Consider the measure 4.39, then there exists a β0 ą 0 such that for
all β ą β0 there exists θ ” θpβq P r1{3, 2s such that

@

rkj
D

θ
“

$

&

%

0 k “ 1

O
ˆ

1

β
k
2

˙

k ‰ 1
.

Proof. First we prove that, for any β large enough, we can chose θpβq in a compact
interval I such that xrjyθ “ 0. We notice that:

@

rk
D

θ
“ p´1qk

Bkθ

ş

R e
´pθ`βqr´βe´rdr

ş

R e
´pθ`βqr´βe´rdr

pe´r“xq
“ p´1qk

Bkθ

ş

R` x
θ`β´1e´βxdx

ş

R` x
θ`β´1e´βxdx

“ p´1qk
Bkθ

Γpβ`θq
βθ

Γpβ`θq
βθ

,

(4.94)
where Γpzq is the usual Gamma function and we used the following equality:

ż 8

0

tz´1e´xtdt “
Γpzq

xz
.

In the case k “ 1 one obtains

xryθ “ logpβq ´
Γ1pθ ` βq

Γpθ ` βq
. (4.95)

Introducing the digamma function ψpzq “ Γ1pzq
Γpzq

[106] and using the inequality

log x´
1

x
ď ψpxq ď log x´

1

2x
, @x ą 0,

it is easy to show that there exists β0 ą 0 such that @β ą β0 one has

ψ

ˆ

1

3
` β

˙

ď log

ˆ

1

3
` β

˙

´
1

2p1{3` βq
ď log β

and
ψp2` βq ě logp2` βq ´

1

2` β
ě log β.
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Since x ÞÑ ψpxq is continuous on p1,`8q, by the intermediate value theorem there
exists θpβq P r1{3, 2s fulfilling ψpθ ` βq “ log β which implies by (4.95) that

xrjyθ “ logpβq ´
Γ1pθ ` βq

Γpθ ` βq
“ 0. (4.96)

We will prove the remaining part of the claim by induction; (4.94) leads in the case
k “ 2 to:

@

r2
D

θ
“

βθ

Γpθ ` βq
Bθ

ˆ

Γ1pθ ` βq ´ lnpβqΓpθ ` βq

βθ

˙

“
βθ

Γpθ ` βq
Bθ

ˆ

βθ

Γpθ ` βq
pψpθ ` βq ´ lnpβqq

˙

“ xrjyθ pψpθ ` βq ´ lnpβqq ` ψp1qpθ ` βq

“ ψp1qpθ ` βq,

where ψpsq is the sth polygamma function defined as ψpsqpzq :“
Bsψpzq

Bzs
. For x P R

it has the following expansion as xÑ `8 :

ψpsqpxq „ p´1qs`1
8
ÿ

k“0

pk ` s´ 1q!

k!

Bk

xk`s
, s ě 1 , (4.97)

where Bk are the Bernoulli number of the second kind. Therefore
@

r2
D

θ
“ ψp1qpθ ` βq

βąβ0
“ O

ˆ

1

β

˙

.

So the first inductive step is proved. Next suppose the statement true for k and
let us prove it for k ` 1.

@

rk`1
D

θ
“ p´1qk`1 βθ

Γpθ ` βq
B
k
θ

ˆ

Γ1pθ ` βq ´ lnpβqΓpθ ` βq

βθ

˙

“ p´1qk`1 βθ

Γpθ ` βq
B
k
θ

ˆ

βθ

Γpθ ` βq
pψpθ ` βq ´ lnpβqq

˙

“ p´1qk`1 βθ

Γpθ ` βq
B
k
θ

ˆ

βθ

Γpθ ` βq

˙

pψpθ ` βq ´ lnpβqq

` p´1qk`1 βθ

Γpθ ` βq

k
ÿ

n“1

ˆ

k

n

˙

B
k´n
θ

ˆ

βθ

Γpθ ` βq

˙

B
n
θψpθ ` βq

“ 0`
k
ÿ

n“1

ˆ

k

n

˙

p´1qn`1
@

rk´n
D

θ
B
n
θψpθ ` βq “ O

ˆ

1

β
k
2

˙

,

where we used (4.96) and (4.97).

We are now ready to prove the last part of Lemma 4.19 for the Toda chain:

@

rl maxp1, e´nrq
D

θ
“

ş

R` r
le´pθ`βqr´βe

´r
dr `

ş

R´ r
le´pθ`β´nqr´βe

´r
dr

ş

R e
´θr´βe´rdr

ď

ş

R` r
le´pθ`βqr´βe

´r
dr

ş

R e
´pθ`βqr´βe´rdr

.
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The last integral can be estimated in the same way as in the previous lemma,
moreover the lower bound follows in the same way, so we get the claim also for the
Toda chain.
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Chapter 5

Loop equation for the classical Beta
ensembles in the high-temperature
regime, and the Dyson disordered
chain

The Gaussian β-ensemble refers to the eigenvalue probability density function (PDF)
proportional to

N
ź

l“1

e´λ
2
l

ź

1ďjăkďN

|λk ´ λj|
β. (5.1)

Upon the scaling of the eigenvalues by setting

λl “
a

βNxl, (5.2)

it is a well known fact that the eigenvalue density ρp1qpxq, normalized to integrate
to unity, has the limiting form of the Wigner semi-circle law (see e.g. [54, 1.4.2])

lim
NÑ8

ρp1qpxq “
2

π
p1´ x2

q
1{2χ|x|ă1, (5.3)

where χA “ 1 for A true and χA “ 0 otherwise. The use of the scaling variables
(5.2) — often referred to as corresponding to the global regime; see e.g. [55] —
also leads to many other consequences. For example, introduce the linear statistic
A “

řN
j“1 apxjq for apxq smooth and bounded. The average with respect to (5.1)

then permits the 1{N expansion [90]

E

«

N
ÿ

j“1

apxjq

ff

“ N

ż 8

´8

apxqρp1q,0pxq dx`

ż 8

´8

apxqρp1q,1pxq dx`O
´ 1

N

¯

, (5.4)

where
ρp1q,1pxq “

´ 1

β
´

1

2

¯´1

2
pδpx´ 1q ` δpx` 1qq ´

1

π
?

1´ x2

¯

. (5.5)

Equivalently, the smoothed eigenvalue density (i.e. effective eigenvalue density
upon integrating over a smooth test function), ρs

p1qpxq say, admits an expansion in
1{N powers,

ρs
p1qpxq “

8
ÿ

j“0

ρp1q,jpxqN
´j,
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where the first two terms are given by (5.3) and (5.5) respectively.
Furthermore, (see e.g. [132])

lim
NÑ8

VarA “

ż 1

´1

dx

ż 1

´1

dy
´apxq ´ apyq

x´ y

¯2

rp2q,0px, yq, (5.6)

where
rp2q,0px, yq “

1

4π2

1´ xy
?

1´ x2
a

1´ y2
.

The global regime is characterized by the spacing between the eigenvalues tend-
ing to zero, at such a rate that the statistical properties like those reviewed in
the above paragraph have a well-defined limit. This latter property is also shared
by another choice of limit, corresponding to a scaled high temperature regime, as
specified by setting

β “ 2α{N, α ą ´1 fixed, (5.7)

before taking the large N limit. The study of this limit was introduced in the
context of the Gaussian β-ensemble in [7]. Later was considered for the Laguerre
and Jacobi variants of (5.1) [8, 159, 160], i.e. the primary examples of the classical
ensembles in random matrix theory. Related to the β-ensembles with the scaling
(5.7) are certain classes of random tridiagonal matrices, with i.i.d. entries along the
diagonal, and (separately) along the leading diagonal, now referred to as specifying
α-ensembles [115].

After making the N , β-independent change of scale λj “ xj{
?

2 in (5.1), upon
the limit (5.7) the density ρp1q,0pxq “ ρp1q,0px;αq is specified by the functional form
[7,44,115]

ρp1q,0px;αq “
e´x

2{2

?
2π
|f̂αpxq|

´2, f̂αpxq “

c

α

Γpαq

ż 8

0

tα´1e´t
2{2eixt dt. (5.8)

While it is to be anticipated that a 1{N expansion of the form (5.4) will again hold
— and thus with the first term known by way of (5.8) the task remaining is to
characterize the analogue for ρp1q,1pxq — results from [124, 161] (see also [80]) tell
us that in relation to the variance

1

N
VarA (5.9)

has a well-defined limit. Note that the factor of 1{N is absent on the LHS of (5.6).
However, it remains to obtain explicit formulas in relation to A.

In this chapter, we introduce a new approach — making use of knowledge of the
loop equations for the classical β-ensembles [23,25,63,123,166] — to systematically
study the high temperature scaling (5.7). Choosing the Gaussian β-ensemble for
definiteness in this Introduction, the loop equation formalism allows for a systematic
quantification of the coefficients in the large N -expansion of the resolvent

1

N
E

«

N
ÿ

j“1

1

x´ λi

ffG
ˇ

ˇ

ˇ

β“2α{N
“ W 0,G

1 pxq `
1

N
W 1,G

1 pxq ` ¨ ¨ ¨ ,

where

W 0,G
1 pxq “

ż 8

´8

ρG
p1q,0pλ;αq

x´ λ
dλ, W 1,G

1 pxq “

ż 8

´8

ρG
p1q,1pλ;αq

x´ λ
dλ, (5.10)
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as well as in the large N -expansion

1

N
Cov

´

N
ÿ

i“1

1

x´ λi
,
N
ÿ

i“1

1

y ´ λi

¯Gˇ
ˇ

ˇ

β“2α{N
:“ W 0,G

2 px, yq `
1

N
W 1,G

2 px, yq ` ¨ ¨ ¨ ,

where Cov p¨, ¨q denotes the covariance of the respective linear statistics, and we
use the superscript “G” to indicate the Gaussian ensemble in the scaling limit with
β “ 2α{N . Note that from knowledge of W 0,G

1 pxq as specified in (5.10), which is
the Stieltjes transform of ρG

p1q,0pλ;αq, the corresponding inversion formula gives

ρG
p1q,0px;αq “ lim

εÑ0`

1

π
ImW 0,G

1 px´ iεq. (5.11)

For the classical ensembles generally, we will show that the loop equation for-
malism implies W 0

1 can be computed as the solution of a differential equation. This
fact is already known in the Gaussian and Laguerre cases, but not for the Jacobi en-
semble. This then allows for the computation of the leading order scaled density via
(5.11). The differential equation characterization also allows for the corresponding
moments of the spectral density to be determined via a recurrence. Again specializ-
ing to the Gaussian ensemble for definiteness, we see from performing an appropriate
geometric series expansion in the first expression of (5.10) that

W 0,G
1 pxq “

1

x

8
ÿ

p“0

mG
p,0

xp
, mG

p,0 “

ż 8

´8

xpρG
p1q,0px;αq dx, (5.12)

where the formula for mG
p,0 in terms of ρG

p1q,0px;αq tells us that tmG
p,0u are the mo-

ments of the limiting eigenvalue density.

Proposition 5.1. (Duy and Shirai [44, Prop. 3.1].) The moments tmG
p,0up even

satisfy the recurrence

mG
p`2,0 “ pp`1qmG

p,0`α

p{2
ÿ

s“0

mG
p´2s,0m

G
2s,0, mG

0,0 “ 1, pp “ 0, 2, 4, . . . evenq, (5.13)

while the odd moments all vanish by symmetry.

The loop equation formalism shows that WG
2,0px1, x2q satisfies a partial differen-

tial equation involvingWG
1,0pxiq (i “ 1, 2). No closed form solution is to be expected,

but analogous to (5.12) if we expand about infinity by noting

W 0,G
2 px1, x2q “

1

x1x2

8
ÿ

p,q“0

µG
pp,qq,0

xp1x
q
2

, µG
pp,qq,0 “ lim

NÑ8
β“2α{N

Cov
´

N
ÿ

i“1

xpi ,
N
ÿ

i“1

xqi

¯G

, (5.14)

then the partial differential equation allows tµG
pp,qq,0u to be determined by a coupled

recurrence involving tmG
p,0u, already determined by (5.13).

Proposition 5.2. (Equivalent to Spohn [152, Eqns. (5.14), (5.15)].) For p, q ě 1
of the same parity, meaning that they are either both even or odd, we have

µG
pp,qq,0 “ pp´ 1qµG

pp´2,qq,0 ` qm
G
p`q´2,0 ` 2α

tp{2´1u
ÿ

s“0

mG
2s,0µ

G
pp´2´2s,qq,0. (5.15)

If p “ 0, or q “ 0, or p, q have the opposite parity, µG
pp,qq,0 “ 0.
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Our study of W 1,G
1 pxq proceeds analogously. Introducing the expansions

W 1,G
1 pxq “

1

x

8
ÿ

p“1

mG
2p,1

x2p
, (5.16)

W 0,G
2 px, xq “

1

x2

8
ÿ

p“1

µ̃G
2p,0

x2p
, µ̃G

2p,0 “
ÿ

p1`q1“2p

µG
pp1,q1q,0

, (5.17)

from the loop equations, we can determine that tmG
2p,1u satisfies a coupled recurrence

with tµ̃G
2p,0u and tmG

2p,0u.

Proposition 5.3. We have

mG
2pp`1q,1 “ ´αp2p`1qmG

2p,0`p2p`1qmG
2p,1`αµ̃

G
2p,0`2α

p´1
ÿ

s“0

mG
2s,0m

G
2pp´sq,1, mG

0,1 “ 0,

(5.18)
where tmG

2p,0u are determined by the recurrence (5.13), and tµ̃G
2p,0u by the recurrence

(5.47) below.

After revising relevant results relating to the loop equation formalism for the
classical ensembles in Section 5.1, we proceed in Sections 5.2, 5.3, 5.4 respectively
to derive Propositions 5.1–5.3 and their analogues for the Gaussian, Laguerre and
Jacobi β-ensembles with high temperature scaling (5.7). Our strategy also gives a
unifying method to derive the functional form of the limiting density, given by (5.8)
in the Gaussian case; for the Jacobi ensemble this is new. Thus, the loop equations
give a particular Riccati equation for the Stieltjes transform of the limiting density,
which implies a linear second order differential equation when the latter is written
as a logarithmic derivative. In the Jacobi case, the linear second order differential
equation is a hypergeometric differential equation, which leads to a functional form
for the limiting density in terms of a linear combination of Gauss hypergeometric,
in agreement with a recent result of Trinh and Trinh [160].

In the recent work, [115] the classical β-ensembles in the high temperature
limit have been used to construct a family of tridiagonal matrices referred to as
α-ensembles. Moreover, an application was given to the study of generalized Gibbs
ensembles associated with the classical Toda lattice [152]. In section 5.5, begin-
ning with the anti-symmetric Gaussian β-ensemble we identify a further example
of an α-ensemble, specified as a random anti-symmetric tridiagonal matrix, with
i.i.d. gamma distributed random variables. Knowledge of the limiting spectral den-
sity for the Laguerre β-ensemble in the scaled high temperature limit can be used
to determine the limit spectral density of this particular α-ensemble. It is pointed
out that the same random matrix ensemble appears in Dyson’s [45] study of a disor-
dered chain of harmonic oscillators. Our analytic results supplement those already
contained in Dyson’s work.
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5.1 Preliminaries

5.1.1 Quantities of interest in the loop equation formalism

Introduce the notation MEβ,N rws to denote a matrix ensemble with eigenvalue PDF
proportional to

N
ź

l“1

wpλlq
ź

1ďjăkďN

|λk ´ λj|
β, (5.19)

where wpλq is referred to as the weight function. Collectively, the terminology β-
ensemble is used in relation to (5.19), and the name associated with the weight
is specified as an adjective. Thus, for example, MEβ,N re´λ

2
s is referred to as the

Gaussian β-ensemble, in agreement with the terminology used in relation to (5.1).
Let ρp1qpλq denote the corresponding eigenvalue density, specified by the requirement
that

şb

a
ρp1qpλq dλ be equal to the expected number of eigenvalues in a general interval

ra, bs. Its Stieltjes transform is given by

U1pxq “

ż 8

´8

ρp1qpλq

x´ λ
dλ.

Note that

U1pxq “ E

«

N
ÿ

j“1

1

x´ λj

ff

MEβ,N rws

“ E
“

Tr pxIN ´Hq´1
‰

MEβ,N rws
, (5.20)

where in the second average H “ diag pλ1, . . . , λNq. In matrix theory pxIN ´Hq´1

is referred to as the resolvent. It is thus by abuse of terminology that U1pxq itself
is often referred to as the resolvent. The average in the first equality in (5.20) is an
example of a one-point correlator. Its generalization to an n-point correlator is

W npx1, . . . , xnq “ E

«

N
ÿ

j1,...,jn“1

1

px1 ´ λj1q ¨ ¨ ¨ pxn ´ λjnq

ff

MEβ,N rws

. (5.21)

A feature of (5.20) is that for a large class of weights w, there is a scale x “ cNs
such that in the variable s and as N Ñ 8 the eigenvalue support is a finite interval,
and moreover W 1pcNsq can be expanded as a series in 1{N [24]

cNW 1pcNsq “ N
8
ÿ

`“0

W
`

1psq

pN
?
κq`

, κ “ β{2, (5.22)

where tW l

1psqu are independent of N . For example, from (5.2), in the case of the
Gaussian β-ensemble cN “

?
βN . An analogous expansion holds true in relation to

the n-point statistic (5.21), but only after forming appropriate linear combinations
of W n. These are the connected components of Un, specified by

W 1pxq “ U1pxq

W 2px1, x2q “ U2px1, x2q ´ U1px1qU1px2q

W 3px1, x2, x3q “ U3px1, x2, x3q ´ U2px1, x2qU1px3q ´ U2px1, x2qU1px2q

´ U2px2, x3qU1px1q ` 2U1px1qU1px2qU1px3q, (5.23)

124 Guido Mazzuca



Loop equation, and Dyson chain

with the general case W k being formed by an analogous inclusion/ exclusion con-
struction. Going in the reverse direction, and thus specifying tU ju in terms of tW ju,
the inductive relation

Unpx1, Jnq “ W npx1, Jnq `
ÿ

H‰JĎJn

W n´|J |px1, JnzJqU |J |pJq, (5.24)

where
Jn “ px2, . . . , xnq, J1 “ H,

holds true (see e.g. [167, pp. 8-9]). The utility of the connected components W n is
that (5.22) admits the generalization [24],

cnNW npcNs1, . . . , cNsnq “ N2´nκ1´n
8
ÿ

l“0

W l
nps1, . . . , snq

pN
?
κql

, (5.25)

where again κ “ β{2. Thus as n increases by one, the large N form decreases by a
factor of 1{N , with all lower order terms given by a series in 1{N .

5.1.2 Explicit form of the loop equations for the classical
ensembles

Consider first the Gaussian β-ensemble MEβ,N re´λ
2{2s (here the rescaling of the

eigenvalues λ ÞÑ λ{
?

2 is for convenience; recall the text above (5.7)). With Jn as
in (5.24) the nth loop equation is [23,25,123,166]

0 “

„

pκ´ 1q
B

Bx1

´ x1



W npx1, Jnq `Nχn“1

` χn‰1

n
ÿ

k“2

B

Bxk

"

W n´1px1, . . . , x̂k, . . . , xnq ´W n´1pJnq

x1 ´ xk

*

` κ

«

W n`1px1, x1, Jnq `
ÿ

JĎJn

W |J |`1px1, JqW n´|J |px1, JnzJq

ff

. (5.26)

Here the notation x̂k indicates that the variable xk is not present in the argument,
and thus W n´1px1, . . . , x̂k, . . . , xnq “ W n´1ptxju

n
j“1ztxkuq.

Consider next the Laguerre β-ensemble MEβ,N rxα1e´xχxą0s. The nth loop equa-
tion is [63, Eq. (3.9)]

0 “

„

pκ´ 1q
B

Bx1

`

ˆ

α1

x1

´ 1

˙

W npx1, Jnq ` χn“1
N

x1

` χn‰1

n
ÿ

k“2

B

Bxk

"

W n´1px1, . . . , x̂k, . . . , xnq ´W n´1pJnq

x1 ´ xk
`

1

x1

W n´1pJnq

*

` κ

«

W n`1px1, x1, Jnq `
ÿ

JĎJn

W |J |`1px1, JqW n´|J |px1, JnzJq

ff

. (5.27)
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Finally, consider the Jacobi β-ensemble MEβ,N rxα1p1 ´ xqα2χ0ăxă1s. The nth
loop equation is [63, Eq. (4.6)]

0 “

ˆ

pκ´ 1q
B

Bx1

`

ˆ

α1

x1

´
α2

1´ x1

˙˙

W npx1, Jnq ´
n´ 1

x1p1´ x1q
W n´1pJnq

`
χn“1

x1p1´ x1q
rpα1 ` α2 ` 1qN ` κNpN ´ 1qs ´

χn‰1

x1p1´ x1q

n
ÿ

k“2

xk
B

Bxk
W n´1pJnq

` χn‰1

n
ÿ

k“2

B

Bxk

"

W n´1px1, . . . , x̂k, . . . , xnq ´W n´1pJnq

x1 ´ xk
`

1

x1

W n´1pJnq

*

` κ

«

W n`1px1, x1, Jnq `
ÿ

JĎJn

W |J |`1px1, JqW n´|J |px1, JnzJq

ff

. (5.28)

5.2 Solving the loop equations at low order with
β “ 2α{N — the Gaussian β-ensemble

Our interest is in the scaling of β proportional to the reciprocal of N , as specified
by (5.7). As a modification of (5.25), we make the ansatz for the large N expansion
of W n to have the form

W npx1, . . . , xnq “ N
8
ÿ

l“0

W l
npx1, . . . , xnq

N l
. (5.29)

Note that this N dependence is consistent with both (5.4) and the factor of 1{N in
(5.9). We will consider each of the three ensembles separately, beginning with the
Gaussian β-ensemble.

Consider (5.26) with n “ 1. Upon the substitution (5.29), by equating terms
OpNq we read off the equation for W 0

1 “ W 0,G
1

´

´
d

dx
´ x

¯

W 0,G
1 pxq ` 1` αpW 0,G

1 pxqq2 “ 0. (5.30)

Equating terms Op1q gives an equation relating W 0,G
1 pxq,W 1,G

1 pxq,W 0,G
2 px, xq,

α
d

dx
W 0,G

1 pxq`
´

´
d

dx
´x

¯

W 1,G
1 pxq`2αW 0,G

1 pxqW 1,G
1 pxq`αW 0,G

2 px, xq “ 0. (5.31)

For the appearance of Riccati equations specifying the Stieltjes transform W 0
1 of

other random matrix models in the context of loop equations, see [48].
We next consider (5.26) with n “ 2. Equating terms OpNq gives an equation

relating W 0,G
2 px1, x2q to W 0,G

i pxiq (i “ 1, 2). Thus
´

´
B

Bx1

´x1

¯

W 0,G
2 px1, x2q`

B

Bx2

"

W 0,G
1 px1q ´W

0,G
1 px2q

x1 ´ x2

*

`2αW 0,G
1 px1qW

0,G
2 px1, x2q “ 0.

(5.32)
Note that withW 0,G

1 pxq specified by (5.30), (5.32) then allows us to specifyW 0,G
2 px1, x2q.

In relation toW 0,G
2 px, xq appearing in (5.31), we can first take the limit x1 Ñ x2 “ x

in (5.32) to deduce
´

´
1

2

d

dx
´ x

¯

W 0,G
2 px, xq `

1

2

d2

dx2
W 0,G

1 pxq ` 2αW 0,G
1 pxqW 0,G

2 px, xq “ 0,
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where in the derivation use has been made of the symmetryW 0,G
2 px1, x2q “ W 0,G

2 px2, x1q.
WithW 0,G

2 px, xq so now specified (albeit in terms ofW 0,G
1 pxq), substituting in (5.31)

then allows for W 1,G
1 pxq to be specified.

Let us now carry through this program, and in particular, quantify to what
extent it is possible to specify the quantities of interest. With regards to W 0,G

1 , the
differential equation (5.30) was first obtained in the present context in [7], having
appeared much earlier in the orthogonal polynomial literature [11] where it relates
to so-called associated Hermite polynomials (for a different line of work in the
recent random matrix theory literature relating to associated Hermite polynomials,
see [74]). It is an example of a Ricatti nonlinear equation, and as such can be
linearised by setting

W 0,G
1 pxq “ ´

1

α

d

dx
log upxq, upxq „

|x|Ñ8

A1

xα
, (5.33)

for some constant A1. This substitution gives the second order linear equation for
upxq,

u2 ` xu1 ` αu “ 0. (5.34)

The solution of (5.34) satisfying the asymptotic condition in (5.33) is [7] (see also
[168])

upxq “ A2e
´x2{4D´αpixq,

where D´αpzq is the so-called parabolic cylinder function with integral representa-
tion

D´αpzq “
e´z

2{4

Γpαq

ż 8

0

tα´1e´zt´t
2{2 dt. (5.35)

Substituting in (5.33) it follows

W 0,G
1 pxq “

x

2α
´

1

α

d

dx
logD´αpixq. (5.36)

According to (5.10) at leading order in N , W 0,G
1 pxq is the Stieltjes transform of

ρG
p1q,0px; cq. The inversion formula (5.11), with W 0,G

1 pxq given by (5.36), implies [7]
the explicit form of the density (5.8), or equivalently, upon recalling (5.35)

ρG
p1q,0px;αq “

1
?

2πΓp1` αq

1

|D´αpixq|2
.

Remark 5.4. Suppose in (5.30) we scale x ÞÑ
?
αy and W 0,G

1 pxq ÞÑ 1?
α
W 0,G

1 pyq.
Then for large α (5.30) reduces to the quadratic equation

´yW 0,G
1 pyq ` 1` pW 0,G

1 pyqq2 “ 0,

with solution obeying W 0,G
1 pyq „ 1{y as y Ñ 8

W 0,G
1 pyq “

y ´ py2 ´ 4q1{2

2
.

The inversion formula (5.11) then implies

lim
αÑ8

?
αρG

p1q,0p
?
αy;αq “

1

π
p4´ y2

q
1{2, |y| ă 2,

which up to scaling is the Wigner semi-circle law (5.3)); see also [7] for a discussion
of this limit.
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Knowledge of the functional form (5.36) is not itself of practical use to specify
W 0,G

2 px1, x2q from (5.32). Instead we view (5.30) as specifying the coefficients tmG
p,0u

in the expansion about x “ 8 of W 0,G
1 pxq (5.12)). Since the density ρG

p1q,0px;αq is
even in x, we see that

mG
p,0 “ 0, for p odd. (5.37)

Substituting in (5.30) gives the recurrence (5.13). An alternative specification of
tmG

2p,0u follows by substituting the known x Ñ 8 expansion of D´αpixq [38, Eq.
12.9] in (5.36). This shows

W 0,G
1 pxq “

1

x
´

1

α

d

dx
log

´

1`
8
ÿ

s“1

pαq2s
s!p2x2qs

¯

“
1

x
`
p1` αq

x3
`
p3` 5α ` 2α2q

x5
`
p15` 32α ` 22α2 ` 5α3q

x7
` ¨ ¨ ¨(5.38)

and thus (extending (5.38)) to include the term Op1{x9q)

mG
2,0 “ 1` α

mG
4,0 “ 3` 5α ` 2α2

mG
6,0 “ 15` 32α ` 22α2

` 5α3

mG
8,0 “ 105` 260α ` 234α2

` 93α3
` 14α4. (5.39)

Remark 5.5. 1. For even p ě 2 the recurrence (5.13) can be rewritten

mG
p`2,0 “ pp` 1` 2αqmG

p,0 ` α

p{2´1
ÿ

s“1

mG
p´2s,0m

G
2s,0. (5.40)

Indeed for even p ě 2 we can rewrite (5.13) as

mG
p`2,0 “ pp` 1qmG

p,0 ` α

p{2
ÿ

s“0

mG
p´2s,0m

G
2s,0

“ pp` 1qmG
p,0 ` 2αmG

p,0m
G
0,0 ` α

p{2´1
ÿ

s“1

mG
p´2s,0m

G
2s,0

“ pp` 1` 2αqmG
p,0 ` α

p{2´1
ÿ

s“1

mG
p´2s,0m

G
2s,0,

where in the last equality we used that mG
0,0 “ 1. According to (5.39) mG

2,0 “ p1`αq,
so it follows from (5.40) that

mG
2n,0 “ p1` αqm̃

G
n,0, n ě 1,

where m̃G
n,0 is a polynomial in α of degree n´ 1 satisfying the recurrence

m̃G
n`1,0 “ p2n` 1` 2αqm̃G

n,0 ` αp1` αq
n´1
ÿ

s“1

m̃G
n´s,0m̃

G
s,0, m̃G

1,0 “ 1, pn P Nq.

For combinatorial interpretations, see [40].
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2. As is well known in the theory of the Selberg integral (see [54, Chapter 4.1])
the PDF (5.1) specifying the Gaussian β-ensemble is well defined for β ą ´2{N ,
implying that the scaling (5.7) is well defined for α ą ´1 as stated; see also [7, 8].
In particular this implies all the moments are non-negative for α ą ´1. From point
1. above, we see that exactly at α “ ´1 all the moments m̃G

2p,0 vanish for p ě 1.
3. For the ensemble MEβ,Npe´x

2{2q the moments mpGq
2k are polynomials in N of

degree pk ` 1q. We know from [42,123,166] the explicit forms

m
pGq
2 “ κ

´

N2
`Np´1` κ´1

q

¯

m
pGq
4 “ κ2

´

2N3
` 5N2

p´1` κ´1
q `Np3´ 5κ´1

` 3κ´2
q

¯

m
pGq
6 “ κ3

´

5N4
` 22N3

p´1` κ´1
q `N2

p32´ 54κ´1
` 32κ´2

q

`Np´15` 32κ´1
´ 32κ´2

` 15κ´3
q

¯

, (5.41)

where κ :“ β{2; in fact [166] gives the explicit form of all moments up to and
including mpGq

20 . It follows from (5.41) that

m
pGq
2

ˇ

ˇ

ˇ

κ“α{N
“ p1` αqN ´ α

m
pGq
4

ˇ

ˇ

ˇ

κ“α{N
“ p3` 5α ` α2

qN ´ 5αp1` αq `
3α2

N

m
pGq
6

ˇ

ˇ

ˇ

κ“α{N
“ p15` 32α ` 22α2

` 5α3
qN ´ 2αp16` 27α ` 11α2

q `
32α2p1` αq

N
´

15α3

N2
.

(5.42)

We see that the polynomials in α multiplied by N in these expansions agree with the
leading moments in the scaling limit with β specified by (5.7) as displayed in (5.39).

To see the utility of (5.12) in relation to the equation (5.32) relatingW 0,G
2 px1, x2q

to W 0,G
1 pxq, analogous to (5.12) introduce the coefficients tµG

pp,qq,0u in the expansion
about x1, x2 “ 8 (5.14). We remark that the reasoning behind the formula in (5.14)
expressing µG

pp,qq,0 in terms of the covariance is to first note from (5.21) with n “ 2,
and the second equation in (5.23), that

W
G

2 px1, x2q “ E
”´

Apx1q ´ E rApx1qs

¯´

Apx2q ´ E rApx2qs

¯ıG

“: Cov pApx1q, Apx2qq
G

where Apxq “
řN
j“1 1{px ´ λjq. Expanding about x1, x2 “ 8 and taking the limit

N Ñ 8 with β specified by (5.7) gives (5.14).
The definition in (5.14) implies the symmetry property

µG
pp,qq,0 “ µG

pq,pq,0. (5.43)

It is also immediate that
µG
p0,qq,0 “ µG

pp,0q,0 “ 0. (5.44)

In addition, the symmetry of the PDF (5.1) under the mapping λl ÞÑ ´λl (l “
1, . . . , N) implies

µG
pp,qq,0 “ 0, for p, q of different parity.
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We substitute both (5.14) and expansion of (5.12) in (5.32). After straightfor-
ward manipulation, this shows

1

x2
1

8
ÿ

p,q“0

pp` 1q
µG
pp,qq,0

xp1x
q
2

´

8
ÿ

p,q“0

µG
pp,qq,0

xp1x
q
2

`
1

x1x2

8
ÿ

p“0

mG
p,0

p
ÿ

s“0

ps` 1q

xs2x
p´s
1

`
2α

x2
1

8
ÿ

q“0

1

xq2

8
ÿ

k“0

1

xk1

k
ÿ

s“0

mG
s,0 µ

G
pk´s,qq,0 “ 0. (5.45)

Taking into consideration the vanishing properties (5.37) and (5.44), we can further
manipulate (5.45)) to read

8
ÿ

p“3,q“1

pp´ 1q
µG
pp´2,qq,0

xp´1
1 xq´1

2

´

8
ÿ

p,q“0

µG
pp,qq,0

xp´1
1 xq´1

2

`

8
ÿ

r“0

mG
2r,0

2r
ÿ

s“0

ps` 1q

xs2x
2r´s
1

` 2α
8
ÿ

q“1

1

xq´1
2

8
ÿ

k“2

1

xk´1
1

tk{2´1u
ÿ

s“0

mG
2s,0 µ

G
pk´2´2s,qq,0 “ 0.

Equating coefficients of px´p`1
1 x´q`1

2 q throughout gives the recurrence (5.15).

Corollary 5.6. Let tmG
p,0u be specified by (5.37) and (5.13). For q P Z` we have

µG
p1,qq,0 “ qmG

q´1,0

µG
p2,qq,0 “ qmG

q,0

µG
p3,qq,0 “ 2p1` αqqmG

q´1,0 ` qm
G
q`1,0

µG
p4,qq,0 “ p3` 2αqqmG

q,0 ` qm
G
q`2,0. (5.46)

Remark 5.7. 1. The symmetry (5.43) is not apparent in (5.15), and thus not in
(5.46) either. Nonetheless, on a case-by-case basis, the evaluations (5.48) can be
checked to be consistent with (5.43). As an example, for µG

p2,4q,0 “ µG
p4,2q,0, the

equality of the corresponding expressions in (5.46) requires mG
4,0 “ p3 ` 2αqmG

2,0

which from (5.39) is seen to hold true.
2. The covariances tµG

pp,qq,0u have been studied in a recent work of Spohn [152], where
they were specified by a certain matrix equation with entries permitting a recursive
evaluation. In fact the entry pp, qq (0 ď p ď qq of the matrix equation can be checked
to be equivalent to the recurrence (5.15).

We now turn our attention to the relation (5.32). Setting x1 “ x2 “ x in (5.14)
gives the expansion about x “ 8 (5.17). Substituting this and (5.12) in (5.32) gives
the recurrence for tµ̃G

2p,0u

µ̃G
2p`2,0 “ pp`1qµ̃G

2p,0`p2p`1qpp`1qmG
2p,0`2α

p
ÿ

l“1

µ̃G
2l,0m

G
2pp´lq,0, µ̃G

0,0 “ 0, (5.47)

valid for p “ 0, 1, 2, . . . . Here tmG
2pu are input, having been determined by (5.13).

The first three non-zero values implied by (5.17) are

µ̃G
2,0 “ 1

µ̃G
4,0 “ 8pα ` 1q

µ̃G
6,0 “ 3pα ` 1qp23` 16αq. (5.48)
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Each can be checked to be consistent with the relationship between tµ̃G
2p,0u and

tµG
pp1,q1q,0

u as specified in (5.17).
With knowledge of both tW 0

1 pxqu as determined by (5.12), (5.37), (5.13) and
tW 0,G

2 px, xqu as determined by (5.17)), (5.47)), introducing the expansion (5.16)
the equation (5.31) can be used to deduce a recurrence specifying tmG

2p,0u, which is
(5.18) in Proposition 5.3 above. Iterating shows

mG
2,1 “ ´α

mG
4,1 “ ´5αpα ` 1q

mG
6,1 “ ´2αp16` 27α ` 11α2

q,

which we see are all in agreement with the term independent of N in the expansions
(5.42).

5.3 Solving the loop equations at low order with
β “ 2α{N — the Laguerre β-ensemble

For the Laguerre β-ensemble MEβ,Npxα1e´xq, α1 ą ´1 , let the moments of the
spectral density be denoted mpLq

j . Analogous to (5.41), each mpLq
j is a polynomial

of degree j in N and κ (and also in α1). A listing of tm̃pLq
j uj“1,2,3 is given in [63,

Prop. 3.11] (see also [121]), where

m̃
pLq
j “ pNκq´jm

pLq
j .

We read off that

αm̃
pLq
1

ˇ

ˇ

ˇ

κ“α{N
“ p1` α ` α1q ´

α

N

α2m̃
pLq
2

ˇ

ˇ

ˇ

κ“α{N
“

´

p2` 3α1 ` α
2
1q ` αp4` 3α1q ` 2α2

¯

´
α

N

´

p4` 3α1q ` 4α
¯

`O
´ 1

N2

¯

α3m̃
pLq
3

ˇ

ˇ

ˇ

κ“α{N
“

´

p6` 11α1 ` 6α2
1 ` α

3
1q ` αp17` 21α1 ` 6α2

1q ` α
2
p16` 10α1q ` 5α3

¯

´
α

N

´

p17` 21α1 ` 6α2
1q ` αp33` 21α1q ` 16α2

¯

`O
´ 1

N2

¯

. (5.49)

Note that here, in distinction to the case of fixed N, β, after taking the scaling limit
with β “ 2c{N setting α1 “ ´1 is now well defined. This is of importance for our
application of the final section.

In view of this expansion we hypothesise that the functionsW n again exhibit the
N´1 expansion (5.29). We begin by enforcing this expansion in the loop equation
(5.27) with n “ 1. Equating terms OpNq we read off the equation for W 0

1 “ W 0,L
1

(the use of the superscript “L” is to indicate the Laguerre ensemble in the scaling
limit with β “ 2c{N),

´
d

dx
W 0,L

1 pxq `
´α1

x
´ 1

¯

W 0,L
1 pxq `

1

x
` α

´

W 0,L
1 pxq

¯2

“ 0. (5.50)

Equating terms Op1q gives an equation relating W 0,L
1 pxq,W 1,L

1 pxq,W 0,L
2 px, xq,

α
d

dx
W 0,L

1 pxq´
d

dx
W 1,L

1 pxq`
´α1

x
´ 1

¯

W 1,L
1 pxq`αW 0,L

2 px, xq`2αW 0,L
1 pxqW 1,L

1 pxq “ 0.

(5.51)
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We next consider the substitution of (5.29)in (5.27) with n “ 2. Equating terms
OpNq gives an equation relating W 0,L

2 px1, x2q to W 0,L
i pxiq (i “ 1, 2). Thus

´
B

Bx1

W 0,L
2 px1, x2q `

ˆ

α1

x1

´ 1

˙

W 0,L
2 px1, x2q

`
B

Bx2

#

W 0,L
1 px1q ´W

0,L
1 px2q

x1 ´ x2

`
W 0,L

1 px2q

x1

+

` 2αW 0,L
2 px1, x2qW

0,L
1 px1q “ 0 .

(5.52)

We notice that the differential equation (5.50) — a particular Ricatti equation
— can be solved explicitly. This was studied by Allez and collaborators in [8],
and also appeared earlier in the orthogonal polynomial literature in the context of
associated Laguerre polynomials [103]. Analogous to (5.33), the substitution

W 0,L
1 pxq “ ´

1

α

d

dx
log upxq, upxq „

|x|Ñ8

B1

xα
, (5.53)

for some constant B1, gives rise to the second order differential equation,

u2 `
´

1´
α1

x

¯

u1 `
α

x
u “ 0.

The required solution is given by [8, Eq. (3.41), α ÞÑ ´2α1, ζ “ α ` α1{2, µ “
p1` α1q{2]

upxq “ B2e
´x{2x´α1{2W´α´α1{2,p1`α1q{2p´xq,

for some constant B2, where Wζ,µpzq denotes the Whittaker function. Substituting
in (5.53) shows

W 0,L
1 pxq “

1

2α
`

α1

2αx
´

1

α

d

dx
logW´α´α1{2,p1`α1q{2p´xq, (5.54)

and this, upon substituting the known large x form of the Whittaker function [38,
Eq. 13.19] implies

W 0,L
1 pxq “

1

x
´

1

α

d

dx
log

´

1`
8
ÿ

s“1

pαqsp1` α1 ` αqs
s!

1

xs

¯

“
1

x
`
p1` α1 ` αq

x2
`
p1` α1 ` αqp2α ` 2` α1q

x3

`
p1` α1 ` αqp6` 11α ` 5α2 ` 5p1` αqα1 ` α

2
1q

x4
` ¨ ¨ ¨ (5.55)

Analogous to (5.12) W 0,L
1 pxq is the moment generating function of the corre-

sponding Laguerre α-ensemble density,

W 0,L
1 pxq “

1

x

8
ÿ

p“0

mL
p,0

xp
, mL

p,0 “

ż 8

0

xpρL
p1q,0px;α1, αq dx. (5.56)

We thus read off from (5.55) that

mL
1,0 “ p1` α1 ` αq

mL
2,0 “ p1` α1 ` αqp2α ` 2` α1q

mL
3,0 “ p1` α1 ` αqp6` 11α ` 5α2

` 5p1` αqα1 ` α
2
1q. (5.57)

132 Guido Mazzuca



Loop equation, and Dyson chain

These are all in agreement with the leading terms (in N) on the RHS of (5.49).
Furthermore, by substituting the expansion (5.56) in the differential equation (5.50)
we see tmL

p,0u satisfies the recurrence

mL
p`1,0 “ pp` 1` α1 ` αqm

L
p,0 ` α

p´1
ÿ

s“0

mL
s,0m

L
p´s,0, mL

0,0 “ 1.

An immediate corollary is that mL
p,0 is a polynomial of degree p in both α1, α, as

seen in the tabulation (5.57) for the low order cases. Moreover, analogous to point
1. of Remark 5.5, writing

mL
p,0 “ p1` α1 ` αqm̃

L
p,0, p ě 1

we see that m̃L
p,0 is a polynomial of degree p´1 in both α1, α, satisfying the recurrence

m̃L
p`1,0 “ pp`1`α1`2αqm̃L

p,0`αp1`α1`αq
p´1
ÿ

s“1

m̃L
s,0m̃

L
p´s,0, m̃L

1,0 “ 1. (5.58)

The density ρL
p1q,0px;α1, αq in (5.56) can be deduced from knowledge of W 0,L

1 as
specified by (5.54), together with the analogue of the inversion formula (5.11). One
finds [8, Eq. (3.49), λ ÞÑ 2x, ζ “ α ` α1{2, µ “ p1` α1q{2]

ρL
p1q,0px;α1, αq “

1

Γpα ` 1qΓpα ` α1 ` 1q

1

|W´α´α1{2,p1`α1q{2p´xq|
2
, (5.59)

supported on x ą 0.
In relation to (5.52), introduce the Laguerre analogue of (5.14)

W 0,L
2 px1, x2q “

1

x1x2

8
ÿ

p,q“1

µL
pp,qq,0

xp1x
q
2

, µL
pp,qq,0 “ lim

NÑ8
β“2α{N

Cov
´

N
ÿ

i“1

xpi ,
N
ÿ

i“1

xqi

¯L

.

Proceeding as in the derivation of (5.15) shows

µL
pp`1,qq,0 “ pp` 1` α1qµ

L
pp,qq,0 ` qm

L
p`q,0 ` 2α

p´1
ÿ

s“0

mL
s,0µpp´s,qq,0

“ pp` 1` α1 ` 2αqµL
pp,qq,0 ` qm

L
p`q,0 ` 2α

p´1
ÿ

s“1

mL
s,0µpp´s,qq,0. (5.60)

Corollary 5.8. Let tmL
p,0u be specified by (5.56) and (5.58). For q P Z` we have

µL
p1,qq,0 “ qmL

q,0

µL
p2,qq,0 “ p2` α1 ` 2αqqmL

q,0 ` qm
L
q`1,0

µL
p3,qq,0 “ p3` α1 ` 2αqµL

p2,qq ` 2αp1` α1 ` 2αqqmL
q,0 ` qm

L
q`2,0. (5.61)

Remark 5.9. As with tµG
pp,qq,0u, the recurrence (5.60) is not symmetric upon the

interchange p Ø q, yet from the definition µL
pp,qq,0 has this symmetry. As observed

in Remark 5.7 in the Gaussian case, on a case-by-case basis this symmetry can be
checked from the explicit forms, in particular those in Corollary 5.8 combined with
the tabulation (5.57).
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The equation (5.51) for W 1,L
1 requires knowledge of W 0,L

2 px, xq. In regards to
this quantity, letting x1 Ñ x2 “ x in (5.52) shows

´
d

dx
W 0,L

2 px, xq ` 2
´α1

x
´ 1

¯

W 0,L
2 px, xq `

d2

dx2
W 0,L

1 pxq `
2

x

d

dx
W 0,L

1 pxq

` 4αW 0,L
2 px, xqW 0,L

1 pxq “ 0.

(5.62)

Introducing the expansion about x “ 8

W 0,L
2 px, xq “

1

x2

8
ÿ

p“1

µ̃L
p,0

xp
, µ̃L

2p,0 “
ÿ

p1`q1“p

µL
pp1,q1q,0

(5.63)

(cf. (5.17)), as well as the analogous expansion for W 0,L
1 from (5.56), reduces (5.62)

to the recurrence

µ̃L
p`1,0 “

1

2
pp` 2` 2α1 ` 4αqµ̃L

p,0 `
ppp` 1q

2
mL
p,0 ` 2α

p´1
ÿ

s“1

µ̃L
s,0m

L
p´s,0. (5.64)

As done in relation to (5.47), the implied evaluations for members of tµ̃L
p,0u can be

checked, for small p at least, to be consistent with the relationship to tµG
pp1,q1q,0

u,
and thus the tabulation (5.61), as required by the second equation in (5.63).

With tmL
p,0u determined by (5.55) or the recurrence (5.58), and tµ̃L

p,0u determined
by the recurrence (5.64), by introducing the expansion

W 1,L
1 pxq “

1

x

8
ÿ

p“1

mL
p,1

xp

we see from (5.51) that tmL
p,1u can be determined by the recurrence

mL
p`1,1 “ ´αpp` 1qmL

p,0 ` pp` 1` α1 ` 2αqmL
p,1 ` αµ̃

L
p,0 ` 2α

p´1
ÿ

l“1

µ̃L
l,0m

L
p´l,0,

valid for p “ 1, 2, . . . with initial condition mL
0,1 “ 0. In particular, iteration shows

mL
1,1 “ ´α

mL
2,1 “ ´α

´

p4` 3α1q ` 4α
¯

mL
3,1 “ ´α

´

p17` 21α1 ` 6α2
1q ` αp33` 21α1q ` 16α2

¯

,

which we see are all in agreement with the term independent of N exhibited in the
expansions (5.49).

5.4 Solving the loop equations at low order with
β “ 2α{N — the Jacobi β-ensemble

For the Jacobi β-ensemble MEβ,Npxα1p1 ´ xqα2q, let the moments of the spectral
density be denoted mpJq

j . In distinction to the Gaussian and Laguerre β-ensembles,
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the moments of the Jacobi β-ensemble spectral density are no longer polynomials
in N and κ, but rather rational functions. The first two are given explicitly in [121,
App. B]. From these we deduce

1

N
m
pJq
1 “

α1 ` 1` α

α1 ` α2 ` 2` 2α
´

1

N

αpα2 ´ α1q

pα1 ` α2 ` 2` 2αq2
`O

´ 1

N2

¯

1

N
m
pJq
2 “

p1` α ` α1q

´

p2` α1qp2` α1 ` α2q ` αp7` 3α1 ` 2α2q ` 3α2
¯

p2` 2α ` α1 ` α2q
2p3` 2α ` α1 ` α2q

`
α

N

Q1pα1, α2, αq `Q2pα1, α2, αq

p2` 2α ` α1 ` α2q
3p3` 2α ` α1 ` α2q

2
`O

´ 1

N2

¯

, (5.65)

where

Q1pα1, α2, αq “ ´p1`α`α1qp2`2α`α1`α2qp3`2α`α1`α2qp9`7α`4α1`2α2q,

Q2pα1, α2, αq “
´

p2` α1qp2` α1 ` α2q ` αp7` 3α1 ` 2α2q ` 3α2
¯

ˆ

´

13` 21α1 ` 2α2 ` p6α1 ´ α2qpα1 ` α2q ` αp23` 17α1 ` 3α2q ` 10α2
¯

.

As in the Gaussian and Laguerre cases, to solve the Jacobi β-ensemble loop
equations (5.28) in the regime β “ 2α{N we will make the ansatz (5.29). We see
that with n “ 1 the latter is consistent with the form of the expansions (5.65).
Equating the terms of order OpNq gives the particular Riccati type equation for
W 0,J

1 ( here we use the superscript ”J” to indicate the Jacobi ensemble in the scaling
limit with β “ 2c{N)

´
d

dx
W 0,J

1 pxq`

ˆ

α1

x
´

α2

1´ x

˙

W 0,J
1 pxq`

1

xp1´ xq
p1` α1 ` α2 ` αq`α

´

W 0,J
1 pxq

¯2

“ 0.

(5.66)
Being a Riccati type equation, it is most natural to proceed in the analysis of

(5.30) and (5.50) and perform the change of variables

W 0,J
1 pxq “ ´

ψ1pxq

αψpxq
, ψpxq „

|x|Ñ8

C1

xα
(5.67)

for some constant C1. We see that ψpxq satisfies the second order linear differential
equation

xpx´ 1qψ2pxq ` pα1 ´ pα1 ` α2qxqψ
1
pxq ´ α p1` α ` α1 ` α2qψpxq “ 0,

this being a particular hypergeometric differential equation [38, Eq. 15.10]. Due to
the condition (5.67) we have for the general solution

ψpxq “ C1x
´α

2F1

`

α, α ` α1 ` 1, 2α ` α1 ` α2 ` 2;x´1
˘

,

where 2F1 denotes the usual Gauss hypergeometric function. After some algebraic
manipulations, this implies

W 0,J
1 pxq “

1

x
`

α ` α1 ` 1

2α ` α1 ` α2 ` 2
2F1 pα ` 1, α` α1 ` 2, 2α ` α1 ` α2 ` 3;x´1q

x2
2F1 pα, α ` α1 ` 1, 2α ` α1 ` α2 ` 2;x´1q

“ ´
2F1pα ` 1, α` α1 ` 1, 2α ` α1 ` α2 ` 2; 1{xq

x 2F1pα, α ` α1 ` 1, 2α ` α1 ` α2 ` 2; 1{xq
. (5.68)
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This latter form was given recently by Trinh and Trinh [160], using a different set of
ideas stemming from the theory of associated Jacobi polynomials [165], and making
no direct use of differential equations.

Since analogous to (5.12) and (5.56)

W 0,J
1 pxq “

1

x

8
ÿ

p“0

mJ
p,0

xp
, mJ

p,0 “

ż 1

0

xpρJ
p1q,0px;α1, α2, αq dx, (5.69)

we can use (5.68) (with the help of computer algebra) to compute tmJ
p,0u

8
p“1, at least

for small p. Agreement with the leading order (in N) rational functions known from
(5.65) is found.

It is furthermore the case that substitution of (5.69) in (5.66) implies a recurrence
for tmJ

p,0u
8
p“1. Thus we find

mJ
p,0 “

1

p` 1` α1 ` α2 ` 2α

´

p1`α1`αq´α2

p´1
ÿ

s“1

mJ
s,0´α

p´1
ÿ

s“1

mJ
s,0m

J
p´s,0

¯

, (5.70)

valid for p “ 1, 2, . . . and subject to the initial condition mJ
0,0 “ 1. We can verify

that iterating for small p (p “ 1, 2) reproduces the leading order terms from (5.65),
and is thus in agreement with (5.68).

Remark 5.10. 1. Moving the denominator in the RHS of (5.70) to the LHS, re-
placing p by p ` 1, then subtracting from the form without this latter replacement
shows

mJ
p`1,0 “

1

p` 2` α1 ` α2 ` 2α

´

pp`1`α1qm
J
p,0´α

p
ÿ

s“1

mJ
s,0m

J
p`1´s,0`α

p
ÿ

s“0

mJ
s,0m

J
p´s,0

¯

.

This recurrence was obtained recently in the work [160, Eq. (15)], which as in the
derivation of (5.68) in that work uses a different set of ideas.
2. Changing variables x “ pX ` 1q{2 in (5.66) shows

´
d

dX
W 0,J˚

1 pXq `

ˆ

α2

1´X
´

α2

1`X

˙

W 0,J˚

1 pXq `
1

1´X2
p1` α1 ` α2 ` αq

` α
´

W 0,J˚

1 pXq
¯2

“ 0,

(5.71)

where

W 0,J˚

1 pXq “

ż 1

´1

ρJ˚

p1q,0pY ;α1, α2, αq

X ´ Y
dY.

Here ρJ˚

p1q,0 denotes the density for the Jacobi β-ensemble with high temperature scal-
ing (5.7) relating to the weight p1 ´ Xqα1p1 ` Xqα2 supported on p´1, 1q. In the
case α1 “ α2 “ a (symmetric Jacobi weight) the corresponding moments, as for
the Gaussian ensemble, must vanish for p odd. It follows from (5.71) that the even
moments tmJ˚

2p,0u satisfy the recurrence

mJ˚

2p,0 “
1

2p` 2α ` 2a` 1

´

p1` αq ´ 2a
p´1
ÿ

s“1

mJ˚

2s,0 ´ α
p´1
ÿ

s“1

mJ˚

2s,0m
J˚

2pp´sq,0

¯

, (5.72)
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valid for p “ 1, 2, . . . with initial condition mJ˚

0,0 “ 1. Moments for the symmetric
Jacobi β-ensembles, with β “ 1, 2 or 4 have been the subject of the recent work [62].
In fact a number of recent works in random matrix theory have identified recurrences
for moments and also distribution functions; see e.g. [12,33,58–60,70,71,97,138].

Manipulation of (5.72) as in the derivation of (5.70) shows

mJ˚

2pp`1q,0 “
1

2p` 2α ` 2a` 3

´

p2p`1qmJ˚

2p,0´α
p
ÿ

s“1

mJ˚

2s,0m
J˚

2pp`1´sq,0`α
p
ÿ

s“0

mJ˚

2s,0m
J˚

2pp´sq,0

¯

.

(5.73)
Scaling x ÞÑ x{

?
2a in the definition of the symmetric moment mJ˚

2k,0 shows

mJ˚

2k,0 “
1

p2aqk`1{2

ż

?
a

´
?
a

x2kρJ˚

p1q,0px{
?

2a; a, αq dx „
1

p2aqk`1{2
mG

2k,0,

where the asymptotic relation follows from the elementary limit p1´x2{2aqa Ñ e´x
2

as xÑ 8. Using this to equate leading order terms in (5.73) reclaims (5.13).

The work [160, Th. A.4] also contains an explicit formula for the density ρJ
p1q,0.

This is derived not from (5.67) and an inversion formula analogous to (5.11), but
rather by using theory relating to the asymptotic of associated Jacobi polynomials
[88] and general relations between tridiagonal matrices and orthogonal polynomials
[127]. With

Upxq “
Γpα ` 1qΓpα1 ` 1q

Γp1` α ` α1q
2F1pα,´α ´ α1 ´ α2 ´ 1,´α1;xq,

V pxq “
´παΓpα ` α1 ` α2 ` 2q

sinpπα1qΓp1` α ` α2qΓp2` α1q
p1´ xq1`α2x1`α1

2F1p1´ α, 2` α ` α1 ` α2, 2` α1;xq,

we read off from [160] that

ρJ
p1q,0px;α1, α2, αq “

Γpα ` 1qΓpα ` α1 ` α2 ` 2q

Γpα ` α1 ` 1qΓpα ` α2 ` 1q

xα1p1´ xqα2

|Upxq ` eπiα1V pxq|2
, (5.74)

supported on 0 ă x ă 1.
Knowledge of (5.67) and (5.68), together with the inversion formula

ρJ
p1q,0px;α1, α2, αq “ lim

εÑ0`

1

π
ImW 0,J

1 px´ iεq, (5.75)

can in fact be used to derive (5.74). The starting point is to make use of the
connection formula [38, Eq. 15.10(ii)]

eπiαψpxq “ Upxq ` e´πiα1V pxq.

Substituting in (5.67), then substituting the result in (5.75) shows

ρJ
p1q,0px;α1, α2, αq “ C2

u1pxqvpxq ´ v1pxqupxq

|Upxq ` e´πiα1V pxq|2
(5.76)

where
C2 “ ´

1

pα1 ` 1q

Γpα ` 1qΓpα ` α1 ` α2 ` 2q

Γp1` α ` α1qΓp1` α ` α2q

Guido Mazzuca 137



Loop equation, and Dyson chain

and

upxq “ 2F1pa, b, c;xq, vpxq “ x1´c
2F1pa´ c` 1, b´ c` 1, 2´ c;xq

with
a “ α, b “ ´pα ` α1 ` α2 ` 1q, c “ ´α1. (5.77)

Here upxq, vpxq satisfies the same hypergeometric differential equation. We can use
this to show

u1pxqvpxq ´ v1pxqupxq “ pc´ 1qxap1´ xqc´a´b´1. (5.78)

Substituting (5.78) with parameters given by (5.77) in (5.76) we reclaim (5.74).

Remark 5.11. From the relationship between the Jacobi and Laguerre weights we
must have

lim
α2Ñ8

1

α2

ρJ
p1q,0px{α2;α1, α2, αq “ ρL

p1q,0px;α1, αq.

Starting from (5.74), and upon making sue of standard asymptotics for the gamma
function and the hypergeometric function confluent limit formula

lim
bÑ8

2F1pa, b, c;x{bq “ 1F1pa, c;xq

we see that

lim
α2Ñ8

1

α2

ρJ
p1q,0px{α2;α1, α2, αq “

Γpα ` 1q

Γpα ` α1 ` 1q

xα1e´x

|Ũpxq ` eπiα1Ṽ pxq|2
, (5.79)

where

Ũpxq “
Γpα ` 1qΓpα1 ` 1q

Γp1` α ` α1q
1F1pα,´α1;´xq

Ṽ pxq “ ´
πα

sinpπα1qΓp2` α1q
x1`α1e´x 1F1p1´ α, 2` α1;xq.

We see that (5.79) is consistent with (5.59) if it is true

1

Γpα ` 1q
|Ũpxq ` eπiα1Ṽ pxq| “ xα1{2e´x{2|W´α´α1{2,p1`α1q{2p´xq|

By writing the Whittaker function in terms of the Tricomi hypergeometric function,
then writing the latter in terms of the confluent hypergeometric function (see [159,
below Lemma 2.1]) this is indeed seen to be valid.

Coming back to the loop equation for the Jacobi ensemble, applying (5.28) with
n “ 2 and equating the terms of OpNq we get a partial differential equation for
W 0,J

2 in terms of W 0,J
1 ,

´
B

Bx1

W 0,J
2 px1, x2q`

ˆ

α1

x1

´
α2

1´ x1

˙

W 0,J
2 px1, x2q´

1

x1p1´ x1q

´

1`x2
B

Bx2

¯

W 0,J
1 px2q

`
B

Bx2

#

W 0,J
1 px1q ´W

0,J
1 px2q

x1 ´ x2

`
W 0,J

1 px2q

x1

+

` 2αW 0,J
2 px1, x2qW

0,J
1 px1q “ 0 . (5.80)
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Introducing

W 0,J
2 px1, x2q “

1

x1x2

8
ÿ

p,q“1

µJ
pp,qq,0

xp1x
q
2

, µJ
pp,qq,0 “ lim

NÑ8
β“2α{N

Cov
´

N
ÿ

i“1

xpi ,
N
ÿ

i“1

xqi

¯J

.

Proceeding as in the derivation of (5.15) and (5.60) shows

µJ
pp,qq,0 “

1

pp` α1 ` α2 ` 2α ` 1q

´

qpmJ
q,0 ´m

J
p`q,0q ´ α2

p´1
ÿ

s“1

µJ
ps,qq,0 ´ 2α

p´1
ÿ

s“1

mJ
s,0µ

J
pp´s,qq,0

¯

.

(5.81)

Note that this is consistent with the requirement that µJ
p0,qq,0 “ µJ

pp,0q,0 “ 0. Beyond
this, the simplest case is p “ 1 which gives

µJ
p1,qq,0 “

q

pα1 ` α2 ` 2α ` 2q
pmJ

q,0 ´m
J
p`1,0q.

Thus, for example, making use of knowledge of mJ
1,0 and mJ

2,0 as implied by (5.70),
or as can be read off from (5.65), we have

µJ
p1,1q,0 “

p1` α ` α1qp1` α ` α2qp2` α ` α1 ` α2q

p2` 2α ` α1 ` α2q
3p3` 2α ` α1 ` α2q

.

We remark that iterating (5.81) with the help of computer algebra, we can check
the required symmetry µJ

pp,qq,0 “ µJ
pq,pq,0 in low order cases.

Finally, we return to the Jacobi ensemble loop equation (5.28) in the case n “ 1.
With β “ 2α{N and the ansatz corresponding to (5.29), equating the terms of order
Op1q gives the equation relating W 0,J

1 ,W 1,J
1 ,W 0,J

2 (the latter at coincident points)

α
d

dx
W 0,J

1 pxq ´
d

dx
W 1,J

1 px1q `

ˆ

α1

x
´

α2

1´ x

˙

W 1,J
1 pxq ´

α

xp1´ xq

` αW 0,J
2 px, xq ` 2αW 0,J

1 pxqW 1,J
1 pxq “ 0.

(5.82)

In relation to W 0,J
2 px, xq herein, letting x1 Ñ x2 and redefining x2 “ x in (5.80)

shows

´
1

2

d

dx
W 0,J

2 px, xq `

ˆ

α1

x
´

α2

1´ x

˙

W 0,J
2 px, xq ´

W 0,J
1 pxq

xp1´ xq
´

1

1´ x

d

dx
W 0,J

1 pxq

`
1

2

d2

dx2
W 0,J

1 pxq `
1

x

d

dx
W 0,J

1 pxq ` 2αW 0,J
2 px, xqW 0,J

1 pxq “ 0 . (5.83)

As with (5.17) and (5.63), introducing the expansion about x “ 8

W 0,J
2 px, xq “

1

x2

8
ÿ

p“1

µ̃J
p,0

xp
, µ̃J

p,0 “
ÿ

p1`q1“p

µJ
pp1,q1q,0

, (5.84)

together with the analogous expansion of W 0,J
1 from (5.69), we obtain from (5.83)

the recurrence

µ̃J
p,0 “

1

α1 ` α2 ` 2α ` 1` p{2

ˆ p´1
ÿ

s“1

smJ
s,0´

pp´ 1qp

2
mJ
p,0´α2

p´1
ÿ

s“1

µ̃J
s,0´2α

p´1
ÿ

s“1

µ̃J
s,0m

J
p´s,0

˙

.

(5.85)
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With the help of computer algebra, we can check in low order cases that the se-
quence tµ̃J

p,0up“1,2,... generated by this recurrence is consistent with its relationship
to tµJ

pp1,q1q,0
u as implied by the second equation in (5.84).

In (5.82) we have now have tmJ
p,0u determined by the recurrence (5.70), and

tµ̃J
p,0u determined by the recurrence (5.85). Now introducing the expansion

W 1,J
1 pxxq “

1

x

8
ÿ

p“2

mJ
p,1

xp

we see that tmJ
p,1u can be determined by the recurrence

mJ
p,1 “

1

p` 1` α1 ` α2 ` 2α

ˆ

αpp`1qmJ
p,0´αpµ̃p,0`1q´2α

p´1
ÿ

s“1

mJ
s,1m

J
p´s,0´α2

p´1
ÿ

s“1

mJ
s,1

˙

,

(5.86)
valid for p “ 1, 2, . . . with initial condition mJ

0,1 “ 0. By the aid of computer
algebra, it can be checked that (5.86) correctly reproduces the values of mJ

p,1 for
p “ 1 and p “ 2 as implied by (5.65).

5.5 Application to Dyson’s disordered chain

5.5.1 Anti-symmetric Gaussian β-ensemble in the high tem-
perature regime

Starting with the work [42], it has been known how to construct random tridiag-
onal matrices whose eigenvalue probability density function realises the classical β
ensembles and thus have functional form given by (5.19) for appropriate wpxq. A
systematic discussion in the context of the high temperature regime as specified
by the relation (5.7) is given in [115]. Our interest for subsequent application is a
particular tridiagonal anti-symmetric matrix that gives rise to a variant of (5.19) in-
volving the Laguerre weight, but with squared variables. This is the anti-symmetric
Gaussian β-ensemble introduced in [43]. With χ̃k denoting the square root of the
gamma distribution Γrk{2, 1s, the latter random tridiagonal matrix is specified by
with entries directly above the diagonal being distributed by

pχ̃pN´1qβ{2, χ̃βpN´2q{2, . . . , χ̃β{2q. (5.87)

It was shown in [43] that the eigenvalue PDF can be explicitly determined, with the
precise functional form depending on the parity of N . Replacing N by 2N`1 so the
size of the matrix is odd, there is one zero eigenvalue, with the remaining eigenvalues
coming in pairs t˘ixjuNj“1, xj ą 0. Their squares x2

j “: yj are distributed according
to the PDF proportional to

N
ź

l“1

y
3β{4´1
l e´yl

ź

1ďjăkďN

|yk ´ yj|
β,

and is thus an example of the Laguerre β-ensemble with α1 “ 3β{4´ 1.
As observed in the recent work [56], it follows from the theory of the Laguerre

β-ensemble with high temperature scaling (5.7) that the anti-symmetric Gaussian
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β-ensemble too permits a well defined high temperature limit specified by the scaling
(5.7) with α ą 0. Specifically, taking the limit of (5.59) for α1 Ñ ´1, we get that
that the limiting density of the squared eigenvalues is given in terms of a particular
Whittaker function according to

ρ
(a-s)2

p1q,0 py;αq “
1

Γpα ` 1qΓpαq

1

|W´α`1{2,0p´yq|2
, (5.88)

supported on y ą 0. This relates to the density of the eigenvalues themselves
(i.e. without squaring) by the simple relation

ρa-s
p1q,0px;αq “ 2xρ

(a-s)2

p1q,0 px
2;αq. (5.89)

In particular, combining this with (5.57) shows
ż 8

0

x2ρa-s
p1q,0px;αq dx “

ż 8

0

yρ
(a-s)2

p1q,0 py;αq dy “ α.

The result (5.88) in the form implied by (5.89) it is illustrated through numerical
simulation of the eigenvalue density of the anti-symmetric Gaussian β-ensemble
scaled by (5.7) in Figure 5.1. To tabulate (5.88) for α R Z, use is made of the
connection formula for the Whittaker function

Wk,µpzq “ ´
W´k,µp´zqΓp

1
2
` µ` kq

Γp1
2
` µ´ kq

e´pµ`
1
2qπi `

Γp1
2
` µ` kqekπi

Γp1` 2µq
M´k,µp´zq,

where Mk,µpzq is the second solution of the Whittaker equation [38, Eq. 13.14(i)].

5.5.2 Anti-symmetric Gaussian α-ensemble

We define the anti-symmetric Gaussian α-ensemble, with α ą 0, in analogy with
the other α-ensembles defined in the recent work [115]. This is done by noting that
in the high temperature regime the entries in the top left corner of the tridiagonal
realization of the classical β-ensembles are to leading order independent of the
row and thus i.i.d. The prescription then is to construct a random tridiagonal
matrix with these random variables. In the case of the anti-symmetric Gaussian β-
ensemble, where the off diagonal distributions before the high temperature scaling
(5.7) are given by (5.87), this gives for an element of anti-symmetric Gaussian α-
ensemble as the random N ˆN tridiagonal matrix

AαN “

¨

˚

˚

˚

˚

˚

˝

0 a1

´a1 0 a2

. . . . . . . . .
´aN´2 0 aN´1

´aN´1 0

˛

‹

‹

‹

‹

‹

‚

, an „ χ̃α, (5.90)

Following the same idea as in [115], the limiting mean spectral measure and
mean density of states can be determined.
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Figure 5.1: Simulation of anti-symmetric Gaussian β-ensemble density of states in
the high temperature regime, n “ 5000, trials “ 500 . The density smoothly goes
to zero outside the plotted area.

Theorem 5.12. Consider the matrix AαN in (5.90), α P R`, then the mean spectral
measure of AαN has density ρa-s

p1q,0px;αq as specified in (5.88) and (5.89), and the
mean density of states of AαN has density µa-s

α where

µa-s
α pxq “

B

Bα
pαρa-s

p1q,0px;αqq.

Consequently, with µ(a-s)2

α pyq the density in squared variables, y “ x2, we have

µ(a-s)2

α pyq “
B

Bα

ˆ

1

|ΓpαqW´α`1{2,0p´yq|2

˙

. (5.91)

We give a sketch of the proof, which in fact is a combination of two lemmas.

Lemma 5.13. Consider the matrix AαN in (5.90), α P R`, then the mean spectral
measure of AαN has density ρa-s

p1q,0px;αq as specified in (5.88) and (5.89).

Proof. Denote by Bnpβq the top nˆ n sub-block of the random tridiagonal matrix
specified by the distribution of its leading diagonal (5.87). One just has to realize
that for any fixed κ P N, κ ă n the κ ˆ κ upper left block of Bnp2α{nq weakly
converges to the corresponding one of Aαn. This implies that the two matrices have
the same spectral measure, so applying the result of the previous subsection we get
the claim.

Lemma 5.14. Consider the matrix AαN in (5.90), α P R`, let va-s
` pαq be the `th

moment of the mean spectral measure of AαN , and wa-s
` pαq the `th moment of the
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mean density of states. We have

wa-s
` pαq “

B

Bα
pαva-s

` pαqq.

Equivalently, with reference to the mean spectral measure, and mean density of states
in squared variables

w
(a-s)2

` pαq “
B

Bα
pαv

(a-s)2

` pαqq “
B

Bα
pαmL

`,0q

ˇ

ˇ

ˇ

α1“´1
. (5.92)

Proof. The argument of [115, Lemma 3.1 – Corollary 3.2] is valid in this case too.

Proof of Theorem 5.12. The first part of the claim follows immediately from Lemma
5.13. Regarding the second part of the claim, from Lemma 5.14 we have that, in
the same notation as before,

wa-s
` pαq “

B

Bα
pαva-s

` pαqq .

This relation must carry over to relate the densities µa-s
α pxq of the mean density of

states and ρa-s
p1q,0px;αq of the mean spectral measure according to

µa-s
α pxq “

B

Bα
pαρa-s

p1q,0px;αqq ,

and the claim follows.

Combining (5.92) with (5.57) shows

w
(a-s)2

1 pαq “ 2α

w
(a-s)2

2 pαq “ 2αp1` 3αq

w
(a-s)2

3 pαq “ 2αp2` 9α ` 10α2
q.

5.5.3 Dyson’s disordered chain

As a mathematical model of a disordered system, Dyson [45] made a study of the
distribution of the squared frequencies for N coupled oscillators along a line, in the
circumstance that the spring constants, and/or the masses are random variables
(for some example of lattices with random initial data see [75,76] and the references
therein). Let Kj denote the spring constant of the jth spring, and let mj denote
the attached mass. With free boundary conditions it was shown in [45] that the
allowed frequencies ω of the chain are given by the pN ´ 1q positive eigenvalues
of the matrix iΛ, where Λ is the p2N ´ 1q ˆ p2N ´ 1q anti-symmetric tridiagonal
matrix specified by having the diagonal above the main diagonal with entries

pλ
1{2
1 , λ

1{2
2 , . . . , λ

1{2
2N´1q, λ2j´1 “ Kj{mj, λ2j “ Kj{mj`1. (5.93)

This matrix also has one zero eigenvalue, in keeping with the choice of free boundary
conditions.

As observed in [45], the structure (5.93) implies that the simplest type of disor-
der is to choose tλju from a common probability distribution, giving rise to what
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was termed a a Type I disordered chain. Moreover, with the common probability
distribution equalling the gamma distribution Γrα, 1{κs, Dyson was able to obtain
a number of analytic results. Substituting the gamma distribution in (5.93), up
to scaling by a factor of 1{

?
κ, we see that Dyson was in fact studying matrices

from the anti-symmetric Gaussian α-ensemble (5.90). One of the analytic results
obtained in [45, Eq. (63))] was, in the case α P N, an explicit functional form for the
integrated mean density of states in squared variables. Our Theorem 5.12 general-
izes the result of Dyson by giving a special function evaluation of the mean density
of states for general α ą 0.

Two features of Dyson’s exact solution have received particular prominence as
illustrating universal features, shared by models beyond the solvable case (see the
recent review [55] for a discussion and references). One is the functional form of the
singularity xÑ 0` [45, consequence of (72)]:

µpa-sq2
α pxq „

c

x| lnpxq|3
,

for some constant c “ cα ą 0, now referred to as the Dyson singularity. For the
constant, Dyson’s result implies that for α P N

cα “ 2

ˆ

π2

6
´

α´1
ÿ

l“1

1

l2

˙

. (5.94)

We can also recover this result from the explicit expression (5.91). First, we require
knowledge of the asymptotic behaviour of theWhittaker function [38, Eq. (13.14.19)]
for xÑ 0`,

|W´α`1{2,0p´xq| „

?
x

Γpαq
| lnpxq ` ψpαq ` 2γ ` iπ|,

where ψpαq denotes the digamma function and γ denotes Euler’s constant. This
substituted in (5.91) show that for xÑ 0`

µpa-sq2
α pxq „

2

x

ψ1pαq

| lnpxq|3
. (5.95)

From the explicit formula for the trigamma function

ψ1pαq “
8
ÿ

n“0

1

pα ` nq2

we see that the constant of proportionality in (5.95) reduces to Dyson’s result (5.94)
for α P N.

The other prominent feature of Dyson’s exact solution solution relates to the
(scaled) limit αÑ 8, which corresponds to weak disorder; see the discussion of [55,
Chapter 3.4] for more details and references. Proceeding analogously to the analysis
of Remark 5.4 in the Gaussian case, we see that upon the scaling x ÞÑ κy and
W 0,L

1 pxq ÞÑ 1
κ
W 0,L

1 pyq, for κ, αÑ 8 with κ{α “ Op1q (5.50) reduces to the quadratic
equation

W 0,L
1 pyq `

1

y
`
α

κ
pW 0,L

1 pyqq2 “ 0.
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Subject to the requirement that for large y this behaves as 1{y, the solution of this
quadratic equation is

W 0,L
1 pyq “

κ

2α

´

1´ p1´ 4α{κyq1{2
¯

.

Consequently, in the same limit,

κρL
p1q,0py;α1, αq Ñ

κ

2πα
p4α{κy ´ 1q1{2, 0 ă y ă 4α{κ.

But ρL
p1q,0py;α1, αq|α1“´1 “ ρ

ppa´sq2

p1q,0 py;αq and so according to (5.92)

κµpa´sq2q
α pκyq Ñ

κ

2π

B

Bα
p4α{pκyq´ 1q1{2 “

1

π
p4αy1{2

{κ´ yq´1{2, 0 ă y ă 4α{κ.

With κ “ α, this is in precise agreement with the limiting result obtained by
Dyson [45, Eq. (43)].
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