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Entanglement entropy of two disjoint intervals and the
recursion formula for conformal blocks

Paola Ruggiero1, Erik Tonni1, Pasquale Calabrese1,2

1 SISSA and INFN, via Bonomea 265, 34136 Trieste, Italy
2 International Centre for Theoretical Physics (ICTP), I-34151, Trieste, Italy

Abstract. We reconsider the computation of the entanglement entropy of two disjoint
intervals in a (1+1) dimensional conformal field theory by conformal block expansion of the
4-point correlation function of twist fields. We show that accurate results may be obtained
by taking into account several terms in the operator product expansion (OPE) of twist fields
and by iterating the Zamolodchikov recursion formula for each conformal block. We perform
a detailed analysis for the Ising conformal field theory and for the free compactified boson.
Each term in the conformal block expansion can be easily analytically continued and so this
approach also provides a good approximation for the von Neumann entropy.
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1. Introduction

The study of the entanglement content of extended quantum systems such as quantum field
theories and many-body systems in condensed matter became a central research field which
allowed to uncover many new features about the fundamental laws of nature, see e.g. Refs.
[1–4] as excellent reviews and introduction to the subject. For a pure quantum state |ψ〉, the
bipartite entanglement is measured by the entanglement entropy, which is defined as follows.
We consider a bipartition of the entire system in a subsystem A and its complement Ā and we
introduce the reduced density matrix of the subsystem A as ρA ≡ TrĀρ, where ρ ≡ |ψ〉〈ψ| is
the density matrix of the entire system. Then the entanglement entropy between A and Ā is
defined as the von Neumann entropy of ρA:

SA ≡ −TrρA ln ρA. (1)

It turned out that the entanglement entropy provides fundamental information about the
systems, especially when dealing with a conformal field theory (CFT) [5–10].

2



In a generic quantum field theory, the entanglement entropy may be computed via a
replica trick [7], that works as follows: one first calculates the moments of ρA (i.e. TrρnA for
integer values of n) and then gets the entanglement entropy as

SA = − lim
n→1

∂

∂n
TrρnA, (2)

once n has been analytically continued to arbitrary complex values. However, the knowledge
of all the moments of the reduced density matrix not only gives the entanglement entropy, but
provides information about the entire spectrum of ρA [11], which is known as entanglement
spectrum [12].

In the ground state of a (1+1) dimensional quantum field theory, the moments TrρnA may
be computed in the path integral formalism and they are equivalent to partition functions Zn
of the theory on an n-sheeted Riemann surface [7,8]. Moreover, one can equivalently work in
a replicated (or n-copy) theory, where, instead of having a single field ϕ living on the Riemann
surface, one works with n non-interacting copies (ϕ1, · · · , ϕn) living on the complex plane
but with appropriate boundary conditions at the entangling surface. In such a theory, the
branch point twist fields Tn and T̃n are introduced [7, 9]. These local fields implement the
structure of the Riemann surface through the monodromy conditions of the fields {ϕi}. In
this way the problem of computing TrρnA is mapped to the problem of computing correlation
functions of such fields. If the subsystem A consists of N intervals, A =

⋃N
i=1(ui, vi), then

the moments can be written as 2N -point functions:

TrρnA =
〈 N∏
i=1

Tn(ui, 0)T̃n(vi, 0)
〉
. (3)

Twist fields are particularly useful in the context of (1+1) dimensional CFT, where they
transform under conformal transformations as primary fields with scaling dimension ∆n ≡
∆Tn = ∆T̃n = c/24(n − 1/n) [7, 8]. Therefore in the case of a single interval (i.e. N = 1)
embedded in the infinite line, the determination of the moments is equivalent to a 2-point
function whose form is completely fixed by global conformal invariance to be [7]

TrρnA = cn`
− c

6(n− 1
n), (4)

where ` = |vi − ui| is the length of the interval, c is the central charge of the CFT, and cn is
a non-universal normalisation factor (see however [13]). In the replica limit, this leads to the
famous formula SA = (c/3) ln ` [5, 7].

The calculations are much more complicated in the case of more disjoint intervals.
Indeed, global conformal invariance does not completely fixes the twist fields correlation
functions for N ≥ 2. For example, for N = 2 the required 4-point correlation function can
be written as

TrρnA = c2
n

(
(u2 − u1)(v2 − v1)

(v1 − u1)(v2 − u2)(v2 − u1)(v1 − u2)

) c
6

(n−1/n)

Fn(x), (5)
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where Fn(x) is a model dependent universal function of the cross ratio

x ≡ (u1 − v1)(u2 − v2)

(u1 − u2)(v1 − v2)
. (6)

A large literature has been devoted to the analytical and numerical determination of the
functions Fn(x) [7, 14–39], but exact results are known only for few models. However, even
in those few cases when Fn(x) is analytically known for arbitrary integer n, the analytic
continuation of the parameter n from integers to complex values, needed in order to get
the entanglement entropy, is a very hard unsolved problem. This is due to the fact that
the n dependence of the function Fn(x) is extremely complicated (two examples will be
reported in the following). Some results are also known for disconnected regions in higher
dimensions [40], also in holographic settings [41, 42].

A viable and practical way to to overcome the difficulties in the analytic continuation has
been proposed in Refs. [43, 44] and consists in performing the continuation numerically by
proper rational interpolations for several values of n. While this technique may provide rather
accurate results in some instances [44], it is definitively not satisfactory from a theoretical
point of view and we would prefer to have an analytic handle on the analytic continuation.
To this aim, an alternative is to consider an expansion of the function Fn(x) in which each
term shows a manageable dependence on n, with a feasible analytic continuation. This has
been considered e.g. in [20], where a general expression for the expansion in powers of the
parameter x has been worked out. Unfortunately, this expansion generically converges slowly,
so that it is very difficult, if not impossible, to get a reliable approximation of the entanglement
entropy for all values of x ∈ [0, 1]. In [14] Gliozzi and Rajabpour suggested that the expansion
in powers of the elliptic variable q(x) (see below for a definition) provides an accurate
approximation of the entanglement entropy already at the lowest order. The main idea was to
use of the fusion algebra of twist fields (already introduced in [20]) and consider a conformal
blocks expansion [45, 46], as usually done to deal with 4-point functions. Each conformal
block is obtained from the recursion formula originally proposed by Al. B. Zamolodchikov
[47], which is an expansion in q(x) and provides an extremely rapid convergence for the
conformal block itself. We must mention that other systematic expansions have also been
considered, but focusing on the semiclassical limit of conformal blocks (i.e. in the limit
of large central charge) and its relation to the holographic result [48–50]. Furthermore, the
Zamolodchikov recursion formula has been used in Ref. [51] to study the time evolution of
the entanglement entropy starting from locally excited states for large central charge.

In this work, we reconsider the technique introduced in [14] and we show how the results
obtained there may be improved by including more fusion channels, i.e., further conformal
families in the OPE of twist fields, and, when possible, by considering a better approximation
of each conformal block through the iteration of the Zamolodchikov recursion formula.

The paper is organised as follows. In Section 2, we start by recalling the main steps
needed for the expansion in conformal blocks of a generic 4-point function of a CFT (Section
2.1), and we then generalise to the case of twist fields (Section 2.2). In Section 3 we introduce
the Zamolodchikov recursion relation, stressing some of its properties and discussing the
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approximations that we are going to use. In Section 4 we summarise some known results
about the 4-point twist-field correlations which we need as a reference to test the truncations
of conformal block expansion. In Section 5 and 6 we apply this technique to the computation
of TrρnA for the Ising conformal field theory and for the compactified boson respectively. For
these two models, we obtain for generic n analytic expansions of the functions Fn(x) which
approximate the exact results. These expansions have a simple n dependence, so that the
analytic continuation n → 1 can be straightforwardly worked out. The resulting predictions
for the entanglement entropy reasonably match available numerical results. In Section 7 we
critically discuss our findings and stress some unsolved issues deserving further investigation.

2. Conformal blocks expansion of twist fields correlation functions

2.1. Standard conformal blocks expansion: main steps for the derivation.

In a generic CFT, global conformal invariance fully fixes the dependence on the positions of
the operators in the 2-point and 3-point functions, but the 4-point correlation is only fixed up
to a function of the cross ratios

x ≡ z12z34

z13z24

, x̄ ≡ z̄12z̄34

z̄13z̄24

. (7)

In fact, making use of a Moebius transformation, which maps four generic points as

(z1, z2, z3, z4) → (∞, 1, x, 0), (8)

the correlation of four generic scaling (quasi-primary) fields

〈φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3)φ4(z4, z̄4)〉, (9)

can be related to the function

F̃(x, x̄) ≡ lim
w,w̄→∞

w2∆1w̄2∆̄1〈φ1(w, w̄)φ2(1, 1)φ3(x, x̄)φ4(0, 0)〉

= 〈∆1, ∆̄1|φ2(1, 1)φ3(x, x̄)|∆4, ∆̄4〉, (10)

which is not fixed by global conformal invariance, but depends on the dynamical input
specifying the theory, i.e. the structure constants Ck

ij or equivalently the OPE coefficients of
primary fields. Furthermore, F̃(x, x̄) can be written as a sum of conformal blocks as [45, 46]

F̃(x, x̄) =
∑
p

Cp
12C

p
34F̃ (x, c,∆p,∆)F̃ (x̄, c, ∆̄p, ∆̄), (11)

where ∆ ≡ {∆1,∆2,∆3,∆4}, the sum is over all the primary fields of the theory and
F̃ (x, c,∆p,∆) are the conformal blocks.

The crucial ingredient to prove (11) is the fact that the fields form an algebra, i.e. for any
pair of fields we can write an operator product expansion

φ3(x, x̄)φ4(0, 0) =
∑
p

Cp
34

x∆p−∆3−∆4x̄∆̄p−∆̄3−∆̄4
φp(0, 0), (12)
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where {φk} is a basis of scaling fields. Moreover, since the scaling fields can be collected
in conformal families denoted as [φp] (i.e. the set formed by a primary field φp and all its
descendants), Eq. (12) can be rewritten as

φ3(x, x̄)φ4(0, 0) =
∑
p

Cp
34

x∆p−∆3−∆4x̄∆̄p−∆̄3−∆̄4
[φp(0, 0)], (13)

where we used the proportionality between the OPE coefficients of a primary operator with
its own descendants. Plugging this OPE into Eq. (10), we get

F̃(x, x̄) =
∑
p

Cp
34

x∆p−∆3−∆4x̄∆̄p−∆̄3−∆̄4
〈∆1, ∆̄1|φ2(1, 1)[φp(0, 0)]|0〉. (14)

Exploiting the factorisation in holomorphic and antiholomorphic parts, the comparison of the
above equation with Eq. (11) determines the conformal block

F̃ (x, c,∆p,∆) ≡ [Cp
12]−1/2 〈∆1, ∆̄1|φ2(1, 1)[φk(0, 0)]|0〉|hol

x∆p−∆3−∆4
, (15)

and analogously for the antiholomorphic term.
In Eq. (11), the sum over p is a sum over conformal families showing that the

only independent OPE coefficients are the ones of the primary fields. In particular, the
contribution of the descendants is encoded in the conformal block F̃ (x). If one knows all the
proportionality constants relating the OPE coefficients of primaries and their descendants, the
conformal block can be computed explicitly, but their computation is not generically feasible.
As we shall show, it is instead convenient to exploit the property that the conformal blocks
only depends on few variables (∆p,∆, c), which are the true dynamical inputs.

In the case we are interested in, the four fields have the same scaling dimension
∆i = ∆̄i = ∆ and the points zi are real zi = z̄i (implying x = x̄). Hence, we get the
simplified expression for the 4-point correlation function

〈φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3)φ4(z4, z̄4)〉 =

∣∣∣∣ z13z24

z14z23z12z34

∣∣∣∣4∆

F(x), (16)

where, using the freedom we have on the definition of the function of the cross ratio, and
according to the convention used for the prefactor in [20] (which we are going to use in the
following), we defined

F(x) ≡ [x(1− x)]4∆/3F̃(x). (17)

With this notation, the conformal blocks expansion from (11) and (17) we get

F(x) =
∑
p

Cp
12C

p
34F (x, c,∆p,∆)F (x, c, ∆̄p, ∆̄). (18)

2.2. Fusion algebra of twist fields and generalised conformal block expansion

In this manuscript we are interested in the entanglement entropy of two disjoint intervals
which is a 4-point correlation function of twist fields (cf. Eq. (3)). Since under conformal
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transformations twist fields behave like primary fields, we expect that the conformal block
expansion could be applied to such a correlation function. The key ingredient is the operator
algebra of the twist fields which have an OPE with a generalised form derived in [20] and
which reads

Tn(z)T̃n(w) =
∑
{kj}

Ckj

n⊗
j=1

φkj

(
z + w

2

)
, (19)

where the sum is over the scaling fields {φk1 ⊗ · · · ⊗ φkn} of the n-copy Hilbert space
Htot ≡ ⊗nj=1Hj . Eq. (19) tells that the monodromy of the product Tn(z)T̃n(w) does not
affect the state for distance much larger than |z − w| and therefore it is possible to expand
Tn(z)T̃n(w) in a basis of the fields of the n-copy theory (where we have n identical decoupled
fields).

One could then classify the fields entering the OPE according to the global symmetries
of the theory. In fact, the theory we are dealing with, defined by n copies of the mother CFT,
of central charge c, is itself a CFT with central charge nc, being invariant under conformal
transformations generated by the total stress-energy tensor T =

∑n
i=1 T

i (the sum of the
stress tensors of each replica); the associated Virasoro generators are the modes of T , i.e.,
Ltot
k =

∑n
j=1 L

(j)
k . Therefore, in the expansion in conformal blocks of any 4-point correlation

function for this CFT, each block will include the contribution of a primary operator and its
descendants with respect to this total Virasoro algebra. Thus, Eq. (19) can be recast in the
form

Tn(z)T̃n(w) =
∑
α

Cα[Φα] + · · · , (20)

where Φα are primary fields with respect to the total Virasoro algebra, i.e., they are defined by
the property

Ltot
m Φα = 0 ∀m > 0, (21)

and Cα are the associated OPE coefficients, that can be computed with a method introduced
in [20] (i.e. through the computation of n-point correlation function of the primaries on the
n-sheeted Riemann surface, see [20] for details), generalized in [30] to deal with general
primaries of the theory.

Moreover, for a generic number of intervals it holds Zn ≡ 〈TnT̃n · · · TnT̃n〉, thus the
correlation functions of twist fields have the same symmetries of the partition function
Zn. For the case of one interval, Zn = 〈TnT̃n〉 is symmetric under cyclic permutations
generated by the group Zn, hence only Zn-symmetric combinations of fields can enter the
OPE TnT̃n. In particular tensor products of primary fields of the single copy algebras (plus
cyclic permutations) belong to this class of fields. But they are not the only ones: more
primaries can be constructed from the linear combination of tensor products of primary and
descendants fields in different copies (in the following sections we will give explicit examples
in concrete models).

Note also that, generally speaking, in this enlarged CFT there exist degenerate fields,
i.e., fields with the same scaling dimensions and this is not a condition under which
Zamolodchikov formula (Section 3) is derived. The obvious example would be to consider
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multiplets charged under permutation symmetry. However, as a consequence of the symmetry
considerations above, just a combination of them enter the OPE (20) and therefore the
conformal blocks expansion, thus excluding the presence of this kind of degeneracies. Still,
we cannot exclude the presence of other degeneracies at higher order. This possibility
surely deserves more investigation. However, for our analysis this is not an issue, since the
leading fusion channels we are going to consider do not show any degeneracy, so that the
Zamolodchikov recursion formula holds

The fusion algebra of twist fields (20) allows us to derive (following the exact same steps
of Sec. 2) an expansion in conformal blocks. Making use of global conformal invariance, we
can factorise the 4-point correlation function as (in the notations of [20])

〈Tn(u1)T̃n(v1)Tn(u2)T̃n(v2)〉 =

(
(u2 − u1)(v2 − v1)

(v1 − u1)(v2 − u2)(v2 − u1)(u2 − v1)

)4∆n

Fn(x). (22)

The function Fn(x) can thus be expanded as

Fn(x) =
∑
α

(
Cα
TnT̃n

)2

F (x, nc,∆α,∆n)F (x, nc, ∆̄α, ∆̄n), (23)

where ∆n ≡ {∆n,∆n,∆n,∆n} and the structure constants Cα
TnT̃n

can be related to the
coefficients of the small x expansion given in [20]. The first terms have also been already
computed (see [20, 52]).

3. Zamolodchikov recursion formula

The computation of conformal blocks is an old problem in CFT. To this aim, one of the most
powerful techniques is the Zamolodchikov recursion formula [47] which turns out to be very
useful in our case, because it provides an expansion where each term can be analytically
continued to n = 1.

The Zamolodchikov formula is an expansion in the elliptic variable

q(x) = eiπτ(x), τ(x) = i
K(1− x)

K(x)
, (24)

where K(x) is the complete elliptic integral of first kind and x the usual four-point ratio (6).
Clearly, small q corresponds to small x, and the small x expansion can be recast in terms of
small q expansion. Anyhow, it turned out that the expansion in q(x) converges for finite x
much faster than the direct x expansion [14].

According to the Zamolodchikov formula (under the hypothesis of non-degenerate
fields), the conformal block F (x, c̃,∆l,∆) satisfies the following recursion relation

F (x, c̃,∆l,∆) = (16q)∆l− c̃−1
24 x

c̃−1
24 (1− x)

c̃−1
24 θ3(τ)

c̃−1
2
−4

∑4
i=1 ∆iH(c̃,∆l,∆, q), (25)

H(c̃,∆l,∆, q) = 1 +
∑
m,n

(16q)mn
Rmn(c̃,∆)

∆l −∆mn(c̃)
H(c̃,∆mn +mn,∆, q), (26)

where
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• ∆mn(c̃) = c̃−1
24

+ (β+m+β−n)2

4
,

• β± = 1√
24

(
(1− c̃)1/2 ± (25− c̃)1/2

)
,

• θ3 is the Jacobi elliptic function,

• Rmn(c̃,∆) = −1
2

∏′
ab

1
λab

∏
p,q(λ1 + λ2 − λpq

2
)(−λ1 + λ2 − λpq

2
)(λ3 + λ4 − λpq

2
)(λ3 −

λ4 − λpq
2

),

• λpq = pβ+ − qβ−,

• ∆i = c̃−1
24

+ λ2
i ,

• the range of the indices run over

p = −m+ 1,m+ 3, · · · ,m− 3,m− 1,

q = − n+ 1,−n+ 3, · · · , n− 3, n− 1,

a = −m+ 1,−m+ 2, · · · ,m− 1,m,

b = − n+ 1,−n+ 2, · · · , n− 1, n,

•
∏′

ab means (a, b) 6= (0, 0), (m,n).

The function H can be given as an expansion in power of q(x)

H(c̃,∆l,∆) = 1 +
∑
k=1

hk(c̃,∆l,∆)(16q)k. (27)

The first orders can be explicitly written plugging (27) into (26), obtaining:

- k = 1

h1(c̃,∆l,∆) =
R11(c̃,∆)

∆l −∆11

; (28)

- k = 2

h2(c̃,∆l,∆) =
R21(c̃,∆)

∆l −∆21

+
R12(c̃,∆)

∆l −∆12

+
R2

11(c̃,∆)

∆l −∆11

; (29)

- k = 3

h3(c̃,∆l,∆) =
R31(c̃,∆)

∆l −∆31

+
R13(c̃,∆)

∆l −∆13

+

+
R21(c̃,∆)

∆l −∆21

R11(c̃,∆)

∆21 + 2−∆11

+
R12(c̃,∆)

∆l −∆12

R11(c̃,∆)

∆12 + 2−∆11

+

+
R11(c̃,∆)

∆l −∆11

(
R21(c̃,∆)

∆11 + 1−∆21

+
R12(c̃,∆)

∆11 + 1−∆12

+R2
11(c̃,∆)

)
. (30)

However, as shown in Appendix A, for correlation functions of fields with the same conformal
dimensions (as in the case we are interested in) only the even powers appear in Eq. (27), which
therefore takes the form

H(c̃,∆l,∆) = 1 +
∑
k=1

h2k(c̃,∆l,∆)(16q)2k. (31)

Note that in Eq. (26) the dimensions of the fusion channels appear in the denominator of
Zamolodchikov formula so that singularities could be present for

∆l = ∆mn(c̃). (32)
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In particular, when c̃ = 1, the denominator vanishes also for the identity channel (since
∆l = ∆11(c̃ = 1) = 0). Moreover, still in the case c̃ = 1, all the factors Rmn with (m ·n) ≥ 2

show null denominator and hence all hk≥2 do the same. We encounter this problem in both the
examples considered here: for the function F2(x) in the Ising model (c̃ = nc = 1, if n = 2)
and in the limit n → 1 for the compact boson (c̃ = nc = 1 for n = 1). However, we will
show that in these two cases the limit c̃→ 1 exists, so that there is no problematic issue.

3.1. Truncations of Zamolodchikov recursion formula

In the previous section we discussed how the conformal block technique can be generalised
in order to compute the function Fn(x) for the 4-point correlation function of twist fields, as
already pointed out in [14]. Eq. (23) is in fact a rewriting of the entire correlation function
in terms of conformal blocks as building blocks. However, it is still unknown and probably
impossible to resum the entire series, even for the easiest models. In the practical world, we
are just able to truncate this formula, but there are several levels of truncations that can play a
role, as we are going to discuss in the following.

The first one is a truncation of the conformal block expansion, Eq. (23). In a general
model, the sum over the fusion channels is actually a series. Moreover the expansion involves
more and more channels as the replica label n increases (as it should be clear from the structure
of the generalised OPE of twist fields, cf. Eq. (19)). Therefore, when interested to generic
n, we must truncate this sum to the first leading terms, depending on the accuracy we wish
to reach (in the following we will see how to order the contributions of the different channels
from the most to the less relevant). In [14], for the Ising model, a truncation to the first
two leading channels was considered, and it provided a good approximation of F2 and F3

only. In the following, we are going to keep more terms in this expansion discussing how the
final result for the entanglement entropy at n = 1 (which requires the knowledge of Fn as a
function of n) may be improved.

The second truncation is in the order in the recursion formula, i.e. in Eq. (26) we must
fix a k̄ ∈ N s. t.

H(∆l,∆) ∼ 1 +
k̄∑
k=1

h2k(16q(x))2k. (33)

Also in this case, the most important issue is to understand whether the first few terms in this
series are enough to get a good approximation. For example, for the Ising model, it turned
out [14] that a good approximation is obtained already at the zeroth-order H(∆l,∆) ∼ 1.
Here we will show that by keeping more terms in (33) it is possible to practically get
convergence of the function, so that this truncation is minimally affecting the final result.

4. An overview of some exact results for the entanglement entropy of two disjoint
intervals in CFT

In the following sections we will apply the Zamolodchikov recursion formula to entanglement
entropies of the critical Ising model (akaM3 minimal model) and of the massless compact
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boson, which are CFTs with central charge equal to 1/2 and 1 respectively. In this section we
report the known exact results for the moments of the reduced density matrices for these two
models since we will repeatedly compare our truncated expressions with them.

For the free boson compactified on a circle of radius R, the scaling function Fn(x) for
general integers has been calculated in Ref. [19] (generalising the result at n = 2 in [17]) and
it reads

Fn(x) =
Θ
(
0|ηΓ

)
Θ
(
0|Γ/η

)
[Θ
(
0|Γ
)
]2

, (34)

where η = 2R2, Γ is an (n− 1)× (n− 1) matrix with elements [19]

Γrs =
2i

n

n−1∑
k= 1

sin

(
π
k

n

)
βk/n cos

[
2π
k

n
(r − s)

]
, (35)

βy =
2F1(y, 1− y; 1; 1− x)

2F1(y, 1− y; 1;x)
, (36)

and Θ is the Riemann-Siegel theta function

Θ(0|Γ) ≡
∑

m∈Zn−1

exp
[
iπ mt · Γ ·m

]
. (37)

For the Ising model, the scaling function Fn(x) is [20]

Fn(x) =
1

2n−1Θ(0|Γ)

∑
ε,δ

∣∣∣∣∣Θ
[
ε

δ

]
(0|Γ)

∣∣∣∣∣ . (38)

Here Θ is the Riemann theta function with characteristic defined as

Θ

[
ε

δ

]
(z|Γ) ≡

∑
m∈Zn−1

exp
[
iπ(m + ε)t · Γ · (m + ε) + 2πi (m + ε)t · (z + δ)

]
, (39)

where z ∈ Cn−1 and Γ is the same as in Eq. (35). ε, δ are vector with entries 0 and 1/2. The
sum in (ε, δ) in Eq. (38) is intended over all the 2n−1 vectors ε and δ with these entries. This
result generalises the one for n = 2 in [24].

Finally, the universal scaling function FvN(x) for the Von Neumman is usually defined
as

FvN(x) ≡ SA1 + SA2 − SA1∪A2 −
c

3
ln(1− x) , (40)

where A1 and A2 are the two intervals we are focusing on. Notice that the combination of
entropy in the rhs is nothing but the mutual information which indeed is scale invariant.

5. Ising model

In this section we apply the machinery of the conformal blocks expansion and the
Zamolodchikov recursion formula to the minimal model M3, corresponding to the CFT
describing the critical Ising model.

11



5.1. OPE of twist fields

For the M3 CFT, the mother theory contains only a finite number of primary fields with
natural working basis

I, σ, ε, (41)

with I the identity, σ the spin operator, and ε the energy density operator with dimensions
∆I = 0, ∆σ = 1/16, and ∆ε = 1/2. However, since we now consider n decoupled copies
of the theory, the associated central charge is c̃ = nc ≥ 1 (if n ≥ 2), therefore, as argued
in [53], the number of primaries fields is in principle infinite (even if it may be reduced when
taking into account the Zn symmetry due to the boundary conditions connecting the different
copies).

The OPE of TnT̃n takes the general form (20), which for the Ising case reduces to

TnT̃n = 1 + ([σiσj] + perm) + ([εiεj] + perm) + ([σiσjεk] + perm) + · · · (42)

where perm stands for all possible permutations of the indices from 1 to n. In this notation,
the insertion of an operator in the family of the identity is implicit each time a given sheet is
not explicitly indicated (see explicit examples below).

Since as we increase the number of sheets, there are more and more choices of operators,
the families that must be considered depend on n. For example, for the lowest values of n, we
have

• n = 2:
I1I2, σ1σ2, ε1ε2. (43)

Terms with only a single copy of any fields (e.g. (σ1I2) , (ε1I2)) are not present, as
already stressed in [14]; also the term (σ1ε2) is not there by symmetry. In this case it has
been shown [54] that these families complete the OPE.

• n = 3:
I1I2I3, σ1σ2I3, ε1ε2I3, σ1σ2ε3, (L−1σ)1σ2I− σ1(L−1σ)2I, (44)

and permutations. Terms like σ1σ2σ3 and ε1ε2ε3 vanish (due to the vanishing structure
constants Cσ

σσ and Cε
εε [46]). Note that the last example in Eq. (44) is still a primary

operator according to definition (21) but is not in the form of a tensor product: in principle
the associated OPE coefficient could be computed using the generalised formula in [30]
but the calculation is more involved, therefore we do not include it in what follows.
Other primaries of this type may in principle occur. All the other terms in Eq. (44) will
be included in our approximation.

In the following we are going to denote as

Ck,l(n), (45)

the coefficient of the generic term

(σ1 · · ·σkεk+1 · · · εk+lIl+1 · · · In + perm), (46)
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in the expansion in conformal blocks. It can be related to the coefficient sk,l(n) entering the
small x expansion [20] as ( x

4n2

)2(k∆σ+l∆ε)

sk,l(n). (47)

In particular, one can show that it holds

Ck,l(n)2 =

(
1

4n2

)2(k∆σ+l∆ε)

sk,l(n). (48)

Eq. (47) also provides a criterion to order the different fusion channels from the most to
the less relevant ones, by looking to the order at which they enter in the 4-point correlation
function in the small x expansion.

5.2. The explicit results from recursion formula and comparison with the exact ones

In this section we explicitly build the universal function Fn(x) for the M3 minimal model
for various n and at several different orders in the truncation of Zamolodchikov formula.
We compare our results with the exact function Fn(x) for increasing values of n. We also
analytically obtain a truncation for the Von Neumann entropy scaling function FvN(x) via
replica trick and compare it with the very accurate results from numerical simulation in [24].

0-th order in the Zamolodchikov recursion formula. We start by truncating the
Zamolodchikov recursion formula to the 0-th order (corresponding to H ∼ 1 in [14]) and
we proceed by including more and more terms in the OPE expansion of twist fields to
reach a reasonable approximation of the function Fn(x), for a given n. As already stressed,
the number of terms expected from the OPE is increasing quickly with n. Thus a good
approximation requires more and more terms as n increases.

In Figure 1 (a), (b) and (c), we report the result for the zeroth order (green curves) for
n = 2, 3, 6. We compare this zeroth order truncation (including several channels in the OPE)
with the known exact results, with the truncation of [14] (which includes the first two channels
only), and with the small x expansion of [20]. It is evident that including more channels in the
OPE considerably improves the approximation which is extremely close to the exact result.
In the figures we denoted by (k, l) the truncation with the inclusion of the fusion channel
[σ1 · · ·σkε1 · · · εlIk+l+1 · · · In] (and all its permutations).

It is evident that for some values of x, our approximation gives a curve which is slightly
larger than the exact result. We will see that the curve will be moved downward by the
inclusion of higher terms in the recursion formula.

The von Neumann entropy can be obtained at a given order by analytic continuation. The
first few terms leads to the truncation for the scaling function

F
(0-th)
vN (x) = θ

− 1
2

3 (q)

(
x(1− x)

16q

)− 1
24

×

×
[
−5

6
ln θ3(q) +

1

24
ln

(
x(1− x)

16q

)
+ s′2,0(1)(4q)

1
4 + s′4,0(1)(4q)

1
2 + · · ·

]
. (49)
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Figure 1. The best approximation we derived for Fn(x) (n = 2, 3, 6) and for the
entanglement entropy FvN(x) in the Ising model, still at the 0-th order in the Zamolodchikov
formula. The dots represent the exact functions. The red line is the curve derived with the
approximation in [14]. The green curve is our approximation (the fusion channels included
in the OPE of twist fields are listed with (k, l) denoting the inclusion of the fusion channel
[σ1 · · ·σkε1 · · · εlIk+l+1 · · · In] and all its permutations). The cyan curve is the expansion in
power of x derived in [20].

The coefficients s′k,l(1) are calculated in Appendix B by analytic continuation. All the other
fusion channels give an additive contribution implicit in the dots above. Note that, even if
a finite number of terms in the Zamolodchikov expansion may exactly reproduce Fn(x) for
finite n, the same is not true for FvN(x), since an infinite number of terms contributes to the
analytic continuation.

In panel (d) of Figure 1 we report the von Neumann entropy scaling function FvN(x) (49)
and we compare it with the results from numerical simulations in [24] (we only report data for
x < 0.5, the other half is better reproduced exploiting the symmetry x → 1 − x). We notice
that the agreement of the truncation with the numerical data is reasonable, but not as good
as those at finite n. In fact, although we included a number of terms reproducing well Fn(x)
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up to n = 6, the truncation for the entanglement entropy deviate considerably from the exact
numerical data, but it is still a much better approximation than the one considered in [14].

M -th order in the Zamolodchikov recursion formula. We now discuss how the
approximation improves by taking into account more iterations in the Zamolodchikov
recursion formula. It turns out that the Zamolodchikov series converges extremely fast for
the functions Fn(x): the truncation to the first 2 orders in q(x) (namely H ∼ 1 + h2q(x)2)
is practically indistinguishable from the function we obtain by summing up numerically the
whole series. The results of this improved truncation are shown in Figure 2 (a), (b) and (c)
for n = 2, 3, 6 respectively. In the figure, the results are compared to those computed at
the 0-th order in the recursion formula and to the exact results. It is evident that the already
very accurate truncation at zeroth order is further improved by the iteration of the recursion
formula for n = 2, 3. In particular for n = 2 the approximated result is indistinguishable
from the exact one: this fact does not come unexpected because this is the only case where
we know the OPE of twist fields to be complete (cf. Eq. (43)) and the recursion formula has
converged. For n = 6 instead the agreement is imperceptibly worse.

We can also improve the truncation for the von Neumann entropy. The scaling function
FvN(x), as derived via replica trick, at the 2-nd order in the recursion formula takes the form

F
(2-nd)
vN (x) = θ

− 1
2

3 (q)

(
x(1− x)

16q

)− 1
24

×

×
[(
−5

6
ln θ3(q) +

1

24
ln

(
x(1− x)

16q

))
(1 + 2h

(0,0)
2 (1)(16q)2)+

+ 2h
(0,0)
2

′(1) (16 q)2 + s′2,0(1)(4q)
1
4

(
1 + 2h

(2,0)
2 (1) (16 q)2

)
+

+s′4,0(1)(4q)
1
2

(
1 + 2h

(4,0)
2 (1) (16 q)2

)
+ · · ·

]
, (50)

where the coefficients h(k,l)
2 (n) are a shortcut for the coefficients of the expansion in Eq. (27)

h
(k,l)
2 (n) ≡ h2(nc,∆(k,l),∆n), (51)

for a given conformal family (identified by (k, l), with ∆(k,l) its conformal dimension), which
takes the simple form

h
(k,l)
2 (n) =

(−nc+ (nc− 32∆n)2 + 2∆(k,l)(1 + nc− 32∆n)(5 + nc− 32∆n))

(512(nc+ 2∆(k,l)(−5 + 8∆(k,l) + nc)))
(52)

This higher order truncation is shown in panel (d) of Figure 2: we notice that it does not
provide an improvement of the zeroth-order result of FvN(x) for large values of x.

6. Compact boson

In this section we apply the Zamolodchikov recursion formula to the truncation of the
entanglement entropies in the conformal field theory of a free massless boson compactified
on a circle of radius R, which has central charge c = 1.
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Figure 2. The best approximation we derived for Fn(x) (n = 2, 3, 6) and the von Neumann
entropy FvN(x) in the Ising model, by including further terms in the Zamolodchikov formula.
The dots represent the exact functions. The green curve is our approximation at the 0-th order.
The orange curve is the approximation at the 2-nd order. The fusion channels included in the
OPE of twist fields are the same as in Figure 1.

6.1. OPE of twist fields

As for the Ising model, the starting point of our analysis is the OPE of twist fields which is
always of the form (20). The main difference with respect to the Ising model is that, while for
the latter a basis of local field in the single copy theory is given by a set of three fields only
(I, σ, ε), for the compact boson we have an infinite set already in the mother theory.

The most relevant fields we consider are the derivative operators

∂zϕ(z), and ∂z̄ϕ̄(z̄), (53)

whose conformal weights are (1, 0) and (0, 1) respectively, and the vertex operators, which
are uniquely identified by a pair of integers (m,n)

V(m,n) ≡ : exp(iαm,nϕ(z) + iᾱm,nϕ̄(z̄)) :, (54)
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where αm,n and ᾱm,n are the holomorphic and antiholomorphic charges

αm,n =

(
m√
2η

+ n

√
η

2

)
, ᾱm,n =

(
m√
2η
− n

√
η

2

)
. (55)

where η = 2R2 is a function of the compactification radius R. They are associated to the
vertex operators of conformal dimensions

hm,n = α2
m,n/2 h̄m,n = ᾱ2

n,m/2. (56)

Of course for the replicated theory, the primary fields with respect to the total Virasoro
algebra are infinitely many. However, many of them do not appear in the fusion algebra of
TnT̃n. For example, for primaries constructed as tensor product of vertex operators on each
copy, the structure constants are proportional to the correlator [20]

C{mj ,nj} ∝ 〈
∏
j

V(mj ,nj)(e
2πij/n) 〉C, (57)

which due to the neutrality condition [46] vanishes unless∑
i

αmi,ni = 0
∑
i

ᾱni,mi = 0. (58)

In our analysis we will not consider the contribution toFn(x) from the two point function
of the derivative operators because of their complicated analytic structure. Indeed, since the
derivative operator has non zero conformal spin s = 1, as shown in [20], its contribution
vanishes unless 4s/n ∈ Z. As a consequence, also the analytic continuation at n = 1 is
highly non-trivial.

The non-vanishing primary terms that we consider are of the form

(V(m,0) · · ·V(m,0)︸ ︷︷ ︸
k

V(−m,0) · · ·V(−m,0)︸ ︷︷ ︸
k

+ perm), (59)

with k ≤ n/2. At the leading order in the small x expansion of the conformal block, they
contribute as xkm2/2η, meaning that their contribution to the 4-point correlation function is of
order xkm2/η. Similarly, operators of the form

(V(0,n) · · ·V(0,n)︸ ︷︷ ︸
l

V(0,−n) · · ·V(0,−n)︸ ︷︷ ︸
l

+ perm), (60)

contribute in the 4-point correlation function as xln2η. Consequently, the most general non
vanishing combination of vertex operators in the small x expansion gives rise to terms of
order

xk
m2

η
+ln2η. (61)

In the present case then, the relevance of the different contributions depend not only on the
number of copies n, but also on the parameter η and consequently it is less obvious how to
order them. The leading contribution either comes from the fusion channel

([V(1,0)V(−1,0)] + perm), (62)
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if η < 1, or from
([V(0,1)V(0,−1)] + perm), (63)

if η > 1. Since there is a symmetry η → 1/η [46], we continue by discussing only η < 1, for
which a next-to-leading term is

([V(1,0)V(−1,0)V(1,0)V(−1,0)] + perm). (64)

For later convenience we define the coefficient of terms of the form

(V(p,0) · · ·V(p,0)︸ ︷︷ ︸
k

V(−p,0) · · ·V(−p,0)︸ ︷︷ ︸
k

V(0,q) · · ·V(0,q)︸ ︷︷ ︸
l

V(0,−q) · · ·V(0,−q)︸ ︷︷ ︸
l

+ perm), (65)

as
C

(p,q)
k,l (n), (66)

which turns out to be related to the coefficients of the small x expansion s(p,q)
2k,2l(n) (introduced

in analogy to the ones for the Ising model, cfr. Eq. (47) and Eq. (48))

C
(p,q)
k,l (n)2 =

(
1

4n2

) k
η

+lη

s
(p,q)
2k,2l(n). (67)

The inclusion of such a fusion channel is denoted in the figures by (p, q; k, l).

6.2. The explicit results from recursion formula and comparison with the exact ones

As for the critical Ising model, in this section we explicitly build the universal function Fn(x)

for various n and at several different orders in the truncations of the Zamolodchikov formula.
We compare our results with the exact function Fn(x) for increasing values of n. We also
analytically obtain a truncation for the Von Neumann entropy scaling function FvN(x) via
replica trick and compare it with the simulations in [25].

We first consider the truncation of the Zamolodchikov formula to the first trivial order
(i.e. H ∼ 1 in [14]) and we include the contributions from the first leading conformal blocks.
The results of this truncation are shown in Figure 3. In the figure the three panels in the top
show F2(x) for three values of η while the two panels in the bottom display F3(x) and F4(x)

at fixed η = 1/2. The included families for each panel are listed in the caption of the figure.
In all panels the truncated results are compared with the exact results from [19]. It is evident
that the approximation improves upon increasing the number of the fusion channels in the
OPE (red versus green curves). It is also to be notice that the quality of the approximation of
the function Fn depends on the value of the parameter η. Moreover, like for the Ising model,
as n increases a higher number of conformal blocks are required to well approximate Fn.

We also considered the 2-nd order approximation in the recursion formula. However, in
this case, the correction to the 0th-order is so small that the two curves are undistinguishable
and therefore we do not show it here.
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Figure 3. The function F2(x) for different values of the compactification radius (η =

1/3, 1/2, 0.7) and the functionF3(x) andF4(x) with η = 1/2 for a compactified boson. In all
cases the truncation in the Zamolodchikov formula is at the 0-th order. Two different approx-
imations in the OPE are considered: the fusion channels included are (0, 0; 0, 0), (1, 0; 1, 0)

for the red curves and (0, 0; 0, 0), (1, 0; 1, 0), (1, 0; 2, 0), (0, 1; 0, 1), (2, 0; 1, 0), (0, 2; 0, 1) for
the green curves (with (p, q; k, l) denoting the inclusion of the term in Eq. (65)). The dots
represent the exact functions.

Figure 4. The continuous lines represent the approximation of the Von Neumann entropy
FvN(x) for a compactified boson in Eq. (68). The dots are the numerics of the XXZ chain in
the gapless regime obtained via TTN techniques [25].
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Finally, also for the compact boson, we derived the von Neumann entropy via analytic
continuation. For η < 1, the best approximation we were able to derive is given by

F
(0-th)
vN (x) = −5

3
log θ3(q) +

1

12
log

(
x(1− x)

16q

)
+ s

(1,0)′

2,0 (1)(4q)η + s
(1,0)′

4,0 (1)(4q)2η. (68)

We report this truncation as function of x for several values of η in Figure 4. In the Figure, the
truncation is compared with numerical simulations presented in Ref. [25]. These simulations
have been obtained from tree tensor networks (TTN) techniques [25] of the XXZ spin chain
with hamiltonian

HXXZ(∆) =
∑
j

[σxj σ
x
j+1 + σyjσ

y
j+1 + ∆σzjσ

z
j+1]. (69)

The model is critical for ∆ ∈ [−1, 1] and its scaling limit is described by the compact boson
with radius

η = 2R2 =
Arcos(−∆)

π
. (70)

Also in this case the agreement for the various η is satisfactory. Furthermore, the sign of the
difference clearly depends on η.

Surprisingly, for the Von Neumann entropy the introduction of further terms (both in the
OPE of twist fields and in the recursion relation) seems to worsen the agreement. The origin
of this behaviour is unclear and its understanding deserves further investigation, in particular
in relation to the convergence of the Zamolodchikov series.

7. Conclusions

In this work we reconsider the approach introduced in Ref. [14] for the calculation of the
entanglement entropy of two disjoint intervals by means of conformal blocks expansion
and Zamolodchikov’s recursion formula. We showed that the inclusion of further fusion
channels in the OPE of twist fields in most cases improves the approximation for the scaling
functions of the Rényi entropies Fn(x) and of the entanglement entropy FvN(x). Moreover,
in those cases where the approximation is not good enough, we traced back the origin
of the disagreement to the truncation of the OPE, rather than to the convergence in the
Zamolodchikov’s recursion formula for each block (which at at the second order appears
already very stable). Interestingly, in the only case where the complete form of the OPE is
known (i.e., n = 2 in the Ising model), our approximation perfectly reproduces the exact
result [24]. In this respect a complete classification of the fusion channel appearing in the
OPE of twist fields, which is still missing in all the other cases, would be important.

Finally, as a future research direction, it would be interesting to investigate the possibility
of using conformal blocks expansion and Zamolodchikov’s recursion formula to obtain a
feasible truncation of so-called logarithmic negativity [55] (related, in the framework of CFT,
to the same 4-point correlation function of twist fields, with points ordered in a different
way [56]). The latter is an entanglement measure in mixed states, that shows an essential
singularity for small x [56,57]. Such singularity is not yet analytically understood and maybe
conformal blocks expansion could shed some light on it.
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Appendix A. Vanishing of odd terms in the recursion formula

In this appendix we show that when the Zamolodchikov recursion formula (27) is specialised
to the case of a correlation function of four fields with the same conformal dimensions ∆i

(and therefore same λi), then only the even powers appear, as also noticed in [51]. Given the
product structure

Rmn(c̃,∆) = −1

2

′∏
ab

1

λab

∏
p,q

(λ1 +λ2−
λpq
2

)(−λ1 +λ2−
λpq
2

)(λ3 +λ4−
λpq
2

)(λ3−λ4−
λpq
2

)

(A.1)
it is sufficient that one term is zero in order for the whole coefficient to vanish.

As first example, let us consider (m,n) = (1, 1), for which the explicit product is

R11(c̃,∆) = −1

2

(λ1 + λ2)(λ2 − λ1)(λ3 + λ4)(λ3 − λ4)

λ01(c̃) λ10(c̃)
. (A.2)

Thus if λ2 = λ1 or λ3 = λ4, then R11(c̃,∆) = 0 and therefore h1 vanishes.
What about the other terms? Consider h3 in Eq. (30): the second and third lines vanish

because R11 is factored out. In the first line we should find the coefficients R13 and R31. For
these, among the allowed valued for p and q in the product in Eq. (A.1), there is also the pair
(p, q) = (0, 0) which makes the whole coefficients vanish, leading to h3 = 0. Actually, the
same reasoning applies to all h2k+1: each Rmn with odd (m · n) vanishes because of the term
(p, q) = (0, 0) appearing in the same product. h2k+1 is written as sums of terms in which at
least one Rmn with (m · n) odd is factored out.

Appendix B. Approximation method for OPE coefficients

In order to get the analytic continuation for the Von Neumann entanglement entropy, the
knowledge of the functions sk,l(n) and s

(p,q)′

k,l (n) (defined for the Ising model and for the
compactified boson for n integer, Section 5 and Section 6 respectively) is not enough. In
fact, one needs their derivatives with respect to n and therefore their analytic continuation to
n ∈ R. However, up to now the analytic continuation is known only for the leading term
s2,0(n) in Ising and for s(1,0)

(2,0) in the compactified boson. In order to get the contribution of
subleading terms, in Ref. [14] a numerical approximation method has been introduced, which
we briefly recall below.

The main idea of Ref. [14] is to approximate the analytic continuations of sk,l(n) and
s

(p,q)′

k,l (n) with a polynomial in n, of which we know some zeros at integer numbers. The
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unknown coefficients are fixed by fitting the values for the non-zero values in n. This is better
understood with a practical example: we write the coefficient s4,0(n) for the Ising model as

s4,0(n) = n(n− 1)(n− 2)(n− 3)(d0 + d1n+ d2n
2 + d3n

3 + · · · ), (B.1)

where we used that s4,0(n) vanishes for n = 0, 1, 2, 3. It is now straightforward to take the
derivative in n.

In [14] the coefficient s′4,0(1) has been found by fitting four free parameters d0, d1, d2, d3.
Here instead, we use the same method but we take into account as many parameters as needed
to observe convergence for the value of s′k,l(1). In practice, we determine s′k,l(1) with varying
the number nMAX of terms in the fit. We increase nMAX until s′k,l(1) is stable. In Table B1
we report the results (with varying nMAX) for s′4,0(1), s′2,1(1) and s′6,0(1) for the Ising model,
whereas in Table B2 we report the result for s(1,0)

4,0
′(1) for the compactified boson, for different

values of η (aka ∆).

nMAX s′4,0(1) s′2,1(1) s′6,0(1)

5 0.119 - 0.138 0.536
6 0.112 - 0.134 0.505
7 0.107 - 0.131 0.486
8 0.104 - 0.129 0.475
9 0.102 - 0.128 0.468

10 0.100 - 0.127 0.471
11 0.099 - 0.127 0.474
12 0.098 - 0.126 0.478
13 0.098 - 0.126 0.482
14 0.098 - 0.126 0.486
15 0.098 - 0.126 0.489
16 0.098 - 0.126 0.493
17 0.098 - 0.126 0.496

Table B1. Some coefficients s′k,l(1) for the Ising
model from Eq. (B.1) with nMAX coefficients.

nMAX ∆ = 0 ∆ = −0.3 ∆ = 0.2 ∆ = 0.6

5 0.350 0. 408 0.310 0.250
6 0.335 0.381 0.310 0.288
7 0.328 0.365 0.312 0.313
8 0.326 0.355 0.316 0.329
9 0.326 0.349 0.320 0.340

10 0.327 0.346 0.323 0.347
11 0.328 0.344 0.326 0.351
12 0.328 0.343 0.328 0.354
13 0.329 0.343 0.329 0.356
14 0.329 0.343 0.329 0.355
15 0.330 0.343 0.330 0.357
16 0.343 0.329 0.356
17 0.343 0.329 0.356

Table B2. The coefficients s(1,0)4,0
′(1) in the

compactified boson for different values of ∆.
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[35] F. Liu and X. Liu, Two intervals Rényi entanglement entropy of compact free boson on torus, JHEP 01
(2016) 058

[36] A. Belin, C. A. Keller, and I. G. Zadeh, Genus two partition functions and Rényi entropies of large c
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