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Abstract

In this thesis we study orientifolds and D-branes at toric Calabi-Yau singularities
using dimer model techniques. We present new general results concerning orien-
tifold projections and we apply them, constructing the first example of fully stable
dynamical supersymmetry breaking model.

The thesis is divided into three parts.

In the first part we present mostly background material. We start with a short
review of the Gauge/Gravity duality and generalizations. In particular we consider
D3-branes at the tip of singular toric Calabi-Yau threefolds, introducing the idea
of quiver theory and its natural generalization, dimer models. We then present
known results obtained using this tool to explore orientifold projections. Finally,
we review two dynamical supersymmetry breaking models, that are the simplest
ones that can be engineered on D3-branes in this framework and which will play
a prominent role in the last part of the thesis.

The second part focuses on orientifolds. We present two new results: the
first one links the geometry of the Calabi-Yau variety and the chiral anomaly
of the orientifolded theory, in particular we will provide a criterium to determine
whether an orientifold projection can be safely performed, i.e. without introducing
uncancelled anomalies. The second concerns a new kind of orientifold projection
related to glide involutions of the dimer model. This construction has the property
to preserve superconformal invariance in the projected theory.

In the third and last part of this thesis, we investigate dynamical supersym-
metry breaking vacua obtained by D-branes at Calabi-Yau singularities. We first
review known models and we show that all those theories have instabilities along
N = 2 Coulomb branches. We then show that this instability can be overcome,
with suitable generalizations of the models presented in the first part. Finally,
using the results of the second part, we will show how to constrain the possible
geometries able to host dynamical supersymmetry breaking models free of any
instabilities. This will select a singular Calabi-Yau, that we dubbed the Octagon,
which furnishes the first instance of a model able to host a fully stable dynamical
supersymmetry breaking model within the Gauge/String correspondence.



Forward

This thesis is divided into three parts. In the first one I revise some background ma-
terial about Gauge/Gravity duality and the tools we used in our research, namely
dimer models and orientifolds. In the second part I present new results obtained
studying orientifolded toric Calabi-Yau singularities. In the final part I use the
tools developed in the second section to build stable dynamical supersymmetry
breaking models in the framework on Gauge/Gravity duality.
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Part I
Background

Introduction

The Quantum Theory of Fields (QFT), and in particular, the Standard Model,
provides the most complete description of fundamental interactions. At the per-
turbative level, it is able to predict scattering amplitudes, decay rates and particle
production with an impaired precision. In the last century, not only it was able
to reproduce many observed phenomena, but also allowed the prediction of new
particles, e.g. the Higgs Boson. Despite this huge success, there are still some
open and fundamental questions we are not able to answer:

e First of all we lack an analytical formulation of strongly coupled systems.
Yang-Mills’ mass gap, chiral symmetry breaking, confinement are just a few

examples of observed properties of matter which are not fully explained in
the context of QFT.

e Second, the Standard Model provides a description of all observed fundamen-
tal forces but gravity, which, upon quantization, leads to non-renormalizable
observables, making impossible to give any reliable prediction.

In order to address these problems, physicists tried to generalize the tools provided
by QFT and the first instance of this work is Supersymmetry.

Supersymmetry is a special kind of symmetry which relates bosons and fermions.
The presence of such symmetry strongly constrains the content and interactions of
a theory, allowing reliable computations also at strong coupling. Using the power
of holomorphicity and non-renormalization theorems, many results were achieved
in the context of supersymmetric field theory, such as the computation of partition
functions via localization and the proof of confinement for supersymmetric QCD.
However, no sign of supersymmetry has been found yet. This opened a new direc-
tion of research, both formal and phenomenological, for mechanisms which could
lead to supersymmetry breaking, if present in nature.

A second great revolution in the field of theoretical physics came with the ad-
vent of String Theory. Born as a model to describe the confinement of quarks,
String Theory was soon recognized to be a candidate to describe all fundamental
interactions, including gravity. It consists in a quantum field theory where the fun-
damental objects are not point like particles, but extended strings, propagating in
space-time. In fact, it was later realized, [6], that String Theory not only describes
one dimensional strings, but also extended objects, called D-branes. The study of



these objects allowed to engineer all kinds of field theory in various dimensions in
a simple and clear language. Most important, D-branes were one of the crucial
ingredient to understand one of the deepest property of String Theory: all various
realizations of Supersymmetric String Theory are connected via a web of duali-
ties, all describing some regimes of an underlying theory in which the fundamental
objects are not only the strings, but also extended objects.

Finally, the discovery of D-branes paved also the path to what is probably
the most striking development in theoretical physics in the last decades, namely
the Gauge/Gravity or Gauge/String correspondence. In its original formulation,
Gauge/Gravity duality relates a d + 1-dimensional theory of gravity and a d-
dimensional quantum field theory. One interesting aspect of this duality is that
it is a strong/weak duality, relating the regime in which the gauge theory is at
strong coupling to the regime in which the gravity dual is weakly coupled (and
vice versa). The two theories have the same partition function and thus describe
the same physics. In the late nineties, in his seminal work, [7], Maldacena explicitly
constructed the first example of a theory admitting such a duality. This example
was then further generalized and lead to the development of new tools to study not
only the strong coupling regime of gauge theories, but also quantum corrections
to gravitational systems.

The use of Gauge/Gravity duality to explore non-perturbative phenomena is
well established in the context of supersymmetric field theories. Indeed, it is
possible to study effects such as chiral symmetry breaking and confinement using
the gravity dual. A natural question is weather it is possible to do the same also
for non-supersymmetric theories. To this end we need to find models displaying
dynamical supersymmetry breaking (DSB) in the framework of the Gauge/Gravity
duality.

Finding DSB models with a gravity dual would be of great relevance both in
the context of the Gauge/Gravity duality and, even more interestingly, in string
compactifications. In this latter set-up they could be used for model building in
GKP-like constructions [§]. Eventually, they might also have an impact on the
swampland program [9, [10} [IT] and recent related conjectures such as [12, 13} [14].

This thesis deals with the problem of constructing DSB models in the frame-
work of Gauge/Gravity duality. Using known geometrical and physical results,
we were able to obtain new and interesting ones in the context of model build-
ing, mostly thanks to the use of dimer models and orientifold projections. These
results are then applied to solve the problem of constructing DSB models in the
Gauge/Gravity framework.



1 Gauge/Gravity duality

One of the first examples of Gauge/Gravity duality was realized in [7] considering
type IIB string theory with a stack of N coincident D3-branes placed in a 10 di-
mensional Minkowski space-time. This model admits two alternative descriptions.

From the branes point of view, if we limit ourselves to the study of the low
energy theory, the only accessible modes are the massless ones. On the closed
string side we have that the graviton decouples in the limit in which the string
length goes to zero. On the other end, the open modes on the branes describe an
N = 4 super Yang-Mills (SYM) gauge theory.

The degrees of freedom are thus

Free graviton in flat space + ' = 4 SYM (1)

From the gravity point of view, we need to solve Einstein equation of motions
in the presence of D3-branes which have both gravitational and electric charge,
the second one under the Ramond-Ramond fields. Such a solution can be find in
terms of a warped metric

ds? = f(r)"V2(=dt? + da® + dy® 4 d2?) + f(r)Y?(dr? + r2dQs) (2)
where
R4
fr) =1+ 0. )

with R a constant that depends on the string coupling, string length and number of
branes, while d€25 is the infinitesimal five dimensional solid angle. We now consider
two limits, » — oo and r — 0. In the first case the solution is asymptotically flat
space. Near r — 0, instead, we can perform the substitution » — %, and the

metric becomes
1
ds? = —2(—dt2 + dz? + dy® + d2? + dv?) + R*d€s, (4)
v

describing an AdSs x S% space, where now R corresponds to the common radius
of AdSs and S°.

In the low energy limit, gravitons with large enough energy do not feel the AdS
geometry any more, effectively decoupling from the system. Excitations coming
from r — 0, instead, are redshifted at infinity such that the physics close enough
the AdS throat does not affect the one at large distance. The system is now
described by

Free graviton in flat space + Type IIB on AdSs x S°. (5)



Looking at the right hand side of eq. and eq. (5)), Maldacena conjectured
that the two should be one and the same. Identifying the corresponding partition
functions, he was the first to establish the equivalence between N' = 4 SYM and
type 1IB string theory on AdSs x S°.

From this duality, one can construct a dictionary between operators in the
gauge theory and fields in the theory of gravity. For example the graviton is dual
to the energy momentum tensor and the gravitino to the supersymmetric current.
Moreover, the global symmetries of the field theory are matched by the isometries
of the gravity theory. Indeed the SO(6) R-symmetry of N' =4 SYM correspond
to the isometries of S5, while the conformal symmetry group SO(2,4) of the gauge
theory is the isometry group of the AdSs space.

In the next sections we will explore generalizations of this duality, introducing
new geometries, with the property of reducing the number of supersymmetries
of the theories living on branes, and new kind of branes, the so called fractional
branes, which break the confromal invariance of the world volume theory. The
discussion of orientifolds in this framework, a crucial ingredient for the construction
of DSB models using D-branes, is postponed to section [2| where the language of
dimers makes more easy their construction.

1.1 Quiver theories

Maldacena’s duality can be generalized to systems with less supersymmetries. This
is achieved considering D3-branes at the tip of a singular non compact Calabi-Yau
(CY) threefold.

The metric on the CY can be written as

d(CY3)? = dr? + r2dSEs, (6)

where SF5 is a five dimensional Sasaki-Einstein manifold.

Because of the CY geometry, the theory on the world volume of branes is, in
general, an N’ = 1 gauge theory. On the other side of the duality, we have that
the gravitational dual is given by Type IIB on AdS5 x SFEs.

Because of the holographic dictionary, theories engineered using D3-branes at
the singular locus of CY threefold can be expected to be conformal, because of the
AdS5 factor in the gravitational theory. However, the isometry group of S Ej is not
SO(6) any more and supersymmetry is reduced to N = 2 or N’ = 1, depending
on the geometry of the CY.

The first examples of this kind of construction where 4d N' = 2 theories, where
the number of supersymmetries highly constrains not only the field contents of the
theory on the branes, but also possible interactions.



A simple example is to consider the geometry C'Y3 = C x C?/Z,. This singu-
larity is obtained as an orbifold of flat space via the action

(2’1, 29, 23) — (21, =22, —23), (7)

where z; are the complex coordinates of the Calabi-Yau manifold.
This induces an action on the Chan-Paton factors of the open string sector,
which allows us to compute the massless spectrum of the theory,

A 0 0 X 0 Yo Z1 0 (8)
0 A2 ’ X21 0 ’ }/21 0 ’ 0 Z2 ’

Here the A; represent the gauge fields of the gauge group SU(N) x SU(N), X;;
and Y;; are bifundamental fields and the Z; are adjoint fields. The adjoint scalars
and the vectors combine into an N' = 2 vector multiplet, while the bifundamentals
combine into hyper multiplets. Given the matter content and the number of super-
symmetries, the lagrangian for this theory is fully determined. We can summarize
the matter content and gauge group of the theory, in a graphical way, fig. [1}

Figure 1: Quiver of C?/Z,.

This kind of oriented graph is called a quiver. To every node we associate a
gauge group SU(N), the number in the node gives the rank of the gauge group,
and to every oriented arrow a bifundamental field, charged under the two gauge
groups it is connecting. For general orbifold C?/T", where T is a discreet subgroup
of SU(2), the quivers are known to be related to the affine Dynkin diagram of the
group I'.

This result holds only for theories with N' = 2 supersymmetry. For a generic
threefold, the theory on the branes’ world volume is an N' = 1 gauge theory.
For such theory, even if the quiver can be obtained by geometrical means, the
superpotential cannot be uniquely determined.

Computing the full spectrum and interactions of 4d N = 1 theories on D3-
branes at Calabi-Yau singularities is a really hard problem that nowadays still
doesn’t have a complete answer. However, for a special class of geometries, known
as toric, the corresponding field theory can be fully determined.

A toric threefold is a variety with an U(1)? isometry. The simplest examples of
toric geometries are flat space orbifolds. Starting from this geometry, it is possible
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to perform partial resolutions and obtain new varieties that will still be toric. We
are interested in these geometries because we can easily compute the theory living
on branes at the tip of an orbifold singularity. Once we obtain the field theory
corresponding to flat space orbifold, partial resolutions are realized in field theory
language via Higgsing specific fields. This provides a systematic way construct the
field theory for any toric variety. This procedure allowed to construct an infinite
number of 4d A" =1 SCFT.

We do not give an example of how this procedure works, since we will provide
much stronger tools to investigate the relation between geometry and field theory,
namely dimer models, in section [2]

1.2 Fractional branes

Thanks to the rich geometrical struncture of Sasaki-Einstein manifolds, we can
construct effective D3-branes by wrapping D5 and D7-branes on, respectively, 2
and 4 shrinking cycles of the toric Calabi-Yau. Shrinking cycles are cycles that,
at the singularity of the Calabi-Yau, have zero volumes. Brane wrapped on them
source an NS 2-form flux through the cycle, stabilizing it. The wrapped brane is
now an effective D3-brane, with less degrees of freedom, since it is stuck at the tip
of the singularity.

We focus on Db5-branes wrapping 2-cycles whose dual 4-cycle is non compact.
This allows to the flux sourced by the wrapped brane to escape at infinity, avoid-
ing possible RR-tadpoles. These kind of branes have the remarkable property of
breaking conformal invariance on the world volume theory. This is because, as we
already mentioned, they are stuck at the singularity. This has the effect of setting
to zero some modes on the branes, resulting on a reduced symmetry of the brane
system. In order to understand this fact more clearly, let us look at the field theory
description of these objects.

In the quiver framework, every node corresponds to an SU(N) gauge group and
every arrow to a bifundamental. Rank assignments that are free of chiral anomaly
corresponds to fractional branes. If we consider again the theory obtained from
the singularity C?/Z,, we see that there is such an assignment, fig. .

ORE>)

v

Figure 2: Quiver of C?/Z, with a non anomalous rank assignment.
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Upon computing the S-function of the model, we see that it is indeed non
vanishing

B = 3(N + M) —%(4N+2(N+M)) — oMM ()
By = 3N — %(2N+4(N+M)) _ oM. (10)

As stated in [I5], fractional branes can be classified according to the effects
they have on the dynamics of the field theory. Their classification is as follows:

e N =2 branes

Geometrically, they correspond to D5-branes wrapped on shrinking 2-cycles
whose singular locus is a whole complex line inside the Calabi-Yau. An
example is the C?/Z, singularity previously discussed. In this case, the only
shrinking cycle is free to move along the C line in the threefold at zero energy.
This corresponds to give a VEV to the adjoint scalar in the vector multiplet.
In this configuration, the theory on the world volume of the fractional brane
is a 4d N = 2 theory.

e Deformation branes

In this case, the shrinking cycle has zero volume only at the tip of the Calabi-
Yau. The presence of this kind of fractional branes triggers a cascade of
Seiberg dualities in the field theory, as described in [16]. At the bottom of
the cascade, these fractional branes causes some 3-cycles to develop a non
vanishing volume, corresponding to a complex structure deformation in the
geometry, thus the name “deformation branes”. On the field theory side, at
the bottom of the cascade the gauge groups confine, and the strong coupling
scale is related to the volumes of the 3-cycles.

e DSB branes

Any other kind of anomaly free rank assignment usually leads to a dynami-
cally generated superpotential and hence breaks supersymmetry dynamically
[17] (though into a runaway direction). These branes are called DSB frac-
tional branes.

12



2 Dimer Models

Thanks to the development in the description of supersymmetric gauge theories
from D-branes at CY singularities, a simple and powerful link was established
between toric geometry and quiver gauge theories: Dimer Models.

This tool not only allowed faster and easier computations of field theory starting
from toric diagrams, with respect to previous approaches, but also gave a new
combinatiorial perspective to the theory, making more intuitive operations such
has Higgsing, Seiberg duality as well as the addition of orientifolds.

In this section we delve into the origin and the formal aspects of dimer models,
recalling know results and introducing new ones. All the tools we develop now will
be used in the reminder of the thesis.

Perfect matchings

Toric diagram Dimer model

Zig-Zag path

Figure 3: A picture representing the link between toric diagram, i.e. geometry,
and dimer models, i.e. field theory. The link between the two is provided by ZZP
and perfect matchings.

2.1 Brane tiling

In order to motivate the use of dimer models to study gauge theories on D3-branes
at CY singularities, we start discussing systems of D5-branes and NS5-branes. In
this context, the notion of bipartite graph, related to the concept of dimer model,
arises naturally.

In the general setting, we have D5-branes in flat space which intersect NS5-
branes along an holomorphic Riemann surface. Since it is hard to extract informa-
tions on the field theory living on the branes in this picture, we consider, instead,
the strong coupling limit of this configuration, i.e. g; — oo. In this limit, the
D5-branes are parallel to the NS5-branes along 0123 directions, while along 45 we
have that NS5-branes can either be parallel or perpendicular to the D5-branes, as
depicted in table [I]

13



NDS) x X X x x X
NS5 X X X X X X
NSy x X X X X X

Table 1: System of D5 branes and NS5. D5 and the NS5-branes are parallel along
directions 0123. Along 4 we have D5 and NS5 parallel, NS5 are perpendicular,
while along 5 the converse is true.

If we now take direction 4 and 5 to be compact, the bound states of D5-NS5-
branes cut this torus into distinct regions. The regions are classified as follows:
(N,0) are regions on which we have only N parallel D5-branes, (N, £1) are re-
gions where both NS5 and D5 are parallel, respectively in the same or opposite
orientation, see fig. [4| for an example.

(N,0)
(N,0)
(N/'l)
3
(N,1)
(N,0) Y
(N,0)

Figure 4: An example of tiling. The oriented lines represent the NS5 branes
meeting the D5, the convention is that on the left of the arrow the NS5 is parallel
to the D5, on the right antiparallel.

Since the bound state of branes is wrapping a torus, the net charge of the branes
must be single valued, thus winding of both a and [ cycles of the torus, taken
with sign, must sum to zero. This imposes a topological constraint on the bound
states. Given a, = (p,,q,), the vector whose components are winding numbers of
branes on the torus, we have

> a,=0. (11)

I

We now want to determine the gauge theory on the world volume of the D5-
branes. It can be shown, [I§], that the coupling of the gauge theory is proportional
to the compactification radius, R, the string length, [, and the string coupling,

14



R4

(08 .
gsl?

A

(12)

We now consider the limit in which the radius of the torus and the string length
vanish, R,[, — 0, keeping the gauge coupling fixed. In this limit, the theory can
be read as follows: every (N, 0) region gives a SU(N) factor; points where two of
such regions meet give rise to tensionless strings, producing bifundamental matter;
every (N,+£1) region gives a non-dynamical SU(N) factor and can be interpreted
as a tree-level disk amplitude corresponding to a superpotential term, whose sign
depend on the charge of the D5-NS5 bound state, see for example fig. [f]

Figure 5: The solid lines are bound states of D5-NS5 and the dashed ones are the
edges of the fundamental cell of the torus in directions 4-5.

Upon T-duality along the direction 4 and 5, the brane configuration becomes

0O 1 2 3 4 5 6 7 8 9

D3 x x x X
CY; - - - - - -

Table 2: After T-duality, the system of D5-branes and NS5-branes becomes the
desired configuration of D3-branes at the singularity of a CY threefold.

which is precisely the desired configuration of D3-branes probing the CY threefold.

In particular, as we will see in the next section, the previous example is the complex
cone over the zeroth Hirzebruch surface, Fy.

15



2.2 Bipartite graph

The previous picture gives us a hint on how to summarize the information of the
brane tiling. We can associate to every (NN, £1) region a vertex, colored with white
for +1 and black for —1. Every (N, 0) region is now a face, and the contacts points
between different faces are edges. What we described just now is a bipartite graph.

3 4 3
@ O

2 1 2
O @

3 4 3

Figure 6: The bipartite graph corresponding to the tiling of fig. .

For a graph, being bipartite means that every edge starts on a vertex of one
colour and end on one of the opposite colour. Since every edge is a bifundamental
field and each vertex is a superpotential term, every field appears exactly twice in
the superpotential with opposite sign

W=Y(X1... X)) =Y (Z1...Z0) + ... (13)

which ensures that the moduli space of the theory is toric. Indeed, a definition of
toric variety is that the algebraic equations that define it are of the form ”mono-
mial=monomial”. This is guaranteed by the structure of the superpotential.

Every vertex is at least three-valent. This is becasue a one-valent vertex has no
sense, both from diagrammatical and the fivebrane point of view, and two-valent
vertex corresponds to a mass term for some fields, which can be integratded out
in the low energy limit.

Finally, the bipartite graph must be on a genus one surface in order for the
theory to be conformal. Let us consider the S-function for every gauge factor

Ba=2+) (Ri—1)=0, (14)

16



’ Brane Tiling \ Quiver Gauge Theory ‘

Face U(N;) gauge factor
Edge between faces | Chiral superfield in the bifundamental representa-
¢ and j tion of groups i and j (adjoint representation if

i = j). The chirality, i.e. orientation, of the bi-
fundamental is such that it goes clockwise around
black nodes and counter-clockwise around white

nodes.

k-valent node Superpotential term made of &k chiral superfields.
Its sign is +/— for a white/black node, respec-
tively.

Table 3: Dictionary relating brane tilings to quiver gauge theories.

where R; is the R-charge of the fields, a runs over the number of gauge groups and
1 over the number of fields. Since every edge, i.e. a field, belongs to two faces, i.e.
a gauge group, we have, summing all the § functions,

2F +2) R; —2F, (15)

and imposing that the R-charge of every superpotential term is exactly 2, we have
2F +2V —2F = 0. (16)

This is nothing but the Euler identity, F' — E +V = 2g — 2, telling us that the
surface under consideration has genus one. There is only one orientable surface of
genus one, which is, in fact, the torusE].

For a complete proof of the correspondence between tilings and bipartite graphs,
and in particular dimer models, see [19].

2.3 Dimer models

Despite being able to create a dictionary between bipartite graphs and field theory,
table [3] we still need a way to connect the probed geometry with the graph. To
solve these questions we introduce dimer models.

Given a bipartite graph we can define a perfect matching. This is a collection
of edges such that no two edges share a vertex and every vertex is touched by one
of these selected edges.

The collection of all perfect matchings of a graph is called Dimer Model.

'The non orientable one, the Klein Bottle, will be explored in section
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Figure 7: In purple, two possible choice of perfect matchings.

This object has been extensively studied in statistical physics and we can bor-
row some of these results, see [20] for an introduction, to help us in understanding
how dimer models are related to the probed geometry.

It is possible to define the partition function of the dimer model. This is
obtained summing over all perfect matchings, weighted by the number of times,
with orientation, that perfect matchings intersects the fundamental cell. This is
just the determinant of the Kasteleyn matrix of the dimer model, for detail see
[21].

The partition function can be cast in the following form

P(z,y) =) cja'y’, (17)
i

where x, y are the weight of the perfect matchings in the dimer and the coefficients
¢;; count the number of perfect matchings of weight (7, j). The Newton Polygon
associated to the polynomial P(x,y) is nothing but the toric diagram of the CY
singularity producing the dimer model.

In fig. [7] there is example of two perfect matchings of height zero. It is easy to
compute all the others and their weights. This leads to the polynomial

Plz,y) =o' 4y ' +a+y+4, (18)

and the associated Newton Polygon gives the toric diagram of the cone over Fy,
the toric CY corresponding to the dimer model, see fig.

This analysis allows us to go from the bipartite graphs to the geometry. To
complete the picture given in fig. [3] we need a way to construct a dimer model
starting from a toric diagram. To this end we introduce a new tool: the Zig-Zag
path.

Given two external consecutive points on the perimeter of the toric diagram, we
can compute the formal difference between the corresponding perfect matchings.
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Figure 8: On the left the dimer model with coloured perfect matching correspond-
ing to the colored vertices on the toric diagram, on the right

This gives a loop in the graph with winding number given precisely by (by —
by, a; —az), where a;, b; are the coordinates of the two vertices of the toric diagram.
This loop is called a Zig-Zag path (ZZP). These objects allow to construct the
dimer model given a toric diagram.

To do so, we need to associate to every external edge in the toric diagram the
corresponding ZZP. Then we must follow Thurston’s triple crossings procedure,
described in [22], in order to get a consistent graph. Eventually, we end up with
a graph that is said to be non minimal, meaning that there are some two-valent
nodes. Upon integrating out the massive fields, we end up with the desired dimer

model.
/ / \/
P °
////,//{
7\

Figure 9: On the left the ZZP associated to the edges of the toric diagram. On the
right we draw the ZZP on the fundamental cell, this reproduces the brane tiling,
as the ZZP reproduce the NS5 branes intersection pattern.

This procedure, described for the first time in [23], allows to construct dimer
models from a toric diagram, but the result it is not unique. Indeed, the dimer
produced by this algorithm is unique up to Seiberg duality.
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2.4 Branes constructions with dimers

In this section we show how to use the tool we introduced previously, i.e. dimer
models, to study field theories engineered within toric geometries. Our focus will
be mostly on fractional branes and orientifolds.

2.4.1 Fractional branes

As we already mentioned, there exist three classes of fractional branes, which
differ by the IR dynamics they trigger: confinement, effective N' = 2 SYM or
supersymmetry breaking. The existence of fractional branes, and their nature,
can be argued directly from the dimer, as summarized below.

e Deformation branes:

These branes correspond to isolated faces in the dimer touching each other
at nodes (so, only gauge groups and no bifundamental fields are involved)
or to isolated clusters of faces surrounding a given node. The gauge theory
is then either a set of decoupled SYM theories, or SYM theories coupled via
a superpotential term, respectively. In both cases, the low energy effective
theory leads to confinement and the geometry undergoes a complex structure
deformation.

Two examples of deformation branes are reported in figure {10}

Figure 10: The dimer of the d P3 singularity, which admits both classes of deforma-
tion branes. Left figure: deformation fractional branes corresponding to isolated
nodes. Right figure: deformation fractional branes corresponding to loops in the
quiver.
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e N = 2 branes

These other fractional branes correspond to paths along faces keeping, in our
conventions, white nodes on the left and going across the unit cell without
making any closed loop. This implies that the gauge invariant operator
constructed along the closed path does not appear in the superpotential. The
VEV of such operator is unconstrained and parametrizes a one-dimensional
moduli space, along which the dynamics has N’ = 2 supersymmetry.

A simple such example is shown in figure

Figure 11: The dimer of the C?/Z, x C singularity with its N' = 2 fractional branes.

e DSB branes

Any other kind of anomaly free rank assignment leads to DSB fractional
branes. In thi case there is no general pattern to recognize them in the
dimer.

Dimer techniques allow the easy construction of these fractional branes. To
this end we now review a method for finding anomaly-free rank assignments on
the dimers based on ZZPs [24].

We can regard every ZZP as defining an “anomaly-free wall” on the dimer.
This is because, due to its definition, every time a ZZP overlaps with a face in the
dimer, it does so over exactly a pair of consecutive edgesﬂ These two consecutive
edges correspond to an incoming and an outgoing arrow in the quiver for the
gauge group associated to the face under considerationEl This implies that if we
add some constant to the ranks of all the faces on one side of the ZZP, the anomaly
cancellation condition (ACC) of the gauge group associated to the faces on the
other side of the ZZP does not change, as illustrated in Figure

2By overlapping with a face, we mean sharing an edge with it, not just touching it at a node.
3More generally, a ZZP might overlap with a given face more than once. Every overlap
involves a pair of consecutive edges, so the previous discussion still applies.
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Figure 12: A ZZP as an anomaly wall. If all the ranks on the faces on the right
of the ZZP are increased by a constant, the ACC is not modified. This is because
all contributions from the edges along the ZZP are equal and with opposite sign.

s
s

With this insight, one recovers the algorithm to construct anomaly-free rank
assignments for dimer models outlined in [24]:

1. The set of ZZPs is given by {(pr,qr)|I' =1,...,n}, where pr and gr are the
winding numbers of the ZZP T', with respect to a fixed unit cell. To every
(pr, qr) assign an integer coefficient vp.

2. Choose one face and assign rank zero to it.

3. In going from face a to an adjacent face b, the rank of the latter will be

Nb:Na+vF_UA7 (19)

where vr is the coefficient of the ZZP moving to the left with respect to the
path from a to b, and v is the one in the opposite direction. This operation
is well defined since we are working on an oriented surface, which implies
that we can consistently speak of “right” and “left” of a ZPP.

4. Finally, one must impose two constraints which ensure that the rank assign-
ment is single valued. Consider, for instance, moving along a loop along one
of the two cycles of the fundamental cell. When returning to the initial face,
the rank should be unchanged. This is granted by imposing

A:ZUFPI‘:O, M:Z’UFQFZO. (20)
r r

We will refer to these two conditions as the A and M topological constraints.
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Every choice of values for the vr’s consistent with the topological constraints
eq. gives rise to an anomaly-free rank assignment. Moreover, notice that, by
construction, every rank assignment is invariant under a global shift vp — vr + k.
One may use this freedom to fix one of the vr’s (equivalently, one of the ZZPs is
not independent). There are thus two constraints and one redundancy to be fixed,
giving a total of

#77Ps — 3 = #Fractional Branes . (21)

This kind of analysis will prove to be useful in the reminder of the thesis, where
we will apply it to the case of orientifolded singularities.

2.4.2 Orientifold in dimer

We now discuss orienfitolding in the framework of D3-branes at CY singularities
and, in particular, how this operation is realized in the framework of dimer models.

This operation, from the brane picrture, is defined by modding out the spec-
trum of the theory by QR(—1)f% where 2 is the world sheet parity, R is a geomet-
ric Zy isometry of the CY3 and F, the left-moving fermion number in spacetime.
Extended objects are located at the fixed point of the R action and are called
O-planes or orientifolds. They are non-dynamical objects which, however, have
tension and an RR charge as D-branes do. The Z, symmetry acts holomorphically
on the internal coordinates. This translates to an action on the Kahler form J and
the holomorphic 3-form 23, that defines the CY, as follows

J—J and Q3 — —Qg, (22)

where the — sign is necessary in order for the O-plane to preserve some common su-
percharges with the D3-branes. The resulting gauge theory is obtained by looking
at the projected open string spectrum. The orientifold projection on Chan-Paton
factors is essentially free. If we denote by A the Chan-Paton matrix, the orientifold
acts with a unitary matrix ~vq:

QA= A0t (23)

Orientifold projections on D-branes at singularities and their description on
dimers were studied in [25]. In this framework, the orientifold projection cor-
responds to a Z, involution acting on the torus that identifies faces, edges and
vertices in an appropriate way. The authors studied involutions with fixed loci
(see Figure [13| for examples) resulting in a set of rules needed to construct the
projected theory that we now summarize.
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Figure 13: (a) Orientifold of C?/Z, with fixed points. (b) Orientifold of C?/Z,
with fixed lines.

1. Self-identified faces project to SO/USp groups, depending on the O-plane
charge, + or — respectively. All other faces are identified with their image,
merging to one SU group.

2. Every edge on top of a fixed locus becomes a symmetric or antisymmetric
tensor (or their conjugate), depending on the O-plane charge, + or — re-
spectively. The remaining edges are identified with their images, merging
to bifundamental fields. More concretely, bifundamentals are identified as
(04, 0;)~ (0O, Oy) — (04, O;), where 7/, j" are the images of gauge
groups i, j.

3. The superpotential is found upon projection of the fields.

The introduction of orientifold planes is crucial for model building purposes,
and in particular for DSB models.

Not only orientifold, as fractional branes, break, in general, conformal invari-
ance, but also the projected theory admits different gauge groups from the unitary
one, namely symmetric and symplectic, and field in different representations, such
has symmetric and antisymmeric.

Orientifold projections will be heavily studied and generalized in the second
part of this thesis, while on the third one they will be used to build DSB model
in the context of Gauge/Gravity duality.

Before dealing with new results, and in order to get familiar with orientifolds
in dimer models, we present in detail two examples of orientifold projections.

Fixed Points. In an orientifold of this type, there are four fixed points in a unit
cell. In order to preserve supersymmetry, their signs must satisfy the so-called sign
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rule: their product must be (—1)""/2 where nyy is the number of superpotential
terms.

In the example of Figure , we chose the signs (— + —+), starting with the
fixed point at the origin of the unit cell and going clockwise. Face 1 is identified

with face 2, meaning that the resulting theory will have only one gauge group
SU(N). The bifundamental fields are identified as follows

Yio ~ Yo — E , Xoy ~ Xop — [
Yor ~ Yy — B , Xig~ Xpp — @
ZH NZQQ—> AdJ

and the superpotential is given by
W = Xi2Yn 211 — Xo1Y12211 (24)

where we implicitly take a trace over gauge indices.

To be sure that this projection preserves some supersymmetry, we need to check
the action of the involution on €23. To do so, we compute the mesonic moduli space
of the theory, which correspond to the singularity D3-branes are probing. Mesonic
operators are given by

r = XpXo, y = YiYy,
wy; = YiXo1, wy = Y5 X, (25)
21 = Zi1 Z2 = Ly .

F-term equations impose w; = wy = w and z; = 2z = 2z, and the classical
relation between the fields gives xy = wyws = w?. Thus, the mesonic moduli
space is the symmetric product of N copies of the A; singularity, zy = w?, where
N is the number of probe D3-branes. The three form, €23, can be easily computed
using the Poincaré residue formula:

deANdyAdw Adz  de Ady Adz
23 = Res = .

w? — xy 2w

(26)

Under the involution, the fields are mapped in the following way

r—T, Y—Uy,

w—= —w, zZ—z,

where the sign taken by a meson is given by the product of the fixed point charges it
crosses. The orientifold action on the holomorphic 3-form is thus odd, Q23 — —3,
meaning that the O-plane in compatible with the supersymmetry charges preserved
by the D3-branes. It is easy to see that sign configurations not respecting the sign
rule are not supersymmetric.
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Fixed Lines. In the example of Figure we have two fixed lines, each one
coming with a sign, + or —, which is now unconstrained. We chose to assign —
to the bottom line and + to the other. The faces are self-identified, leading to a
gauge group USp(N7) x SO(N,). The identification of fields gives

Y12NX21—>Q%2, X12N}/§1—>Q%Q
Zun~2Zu— H ., Zar~Zyp— . (27)

and the superpotential is given by

W= (Q%QQ%% - Q%QQ%?)ZH + ( %gQ%Q - ng%Q)ZQQ . (28)

The mesons are the same as in the previous example, since the geometry is the
same, but the action of the orientifold is different and given by

T <y,

w— —w, 22— —z,

where the fixed line exchanges two mesons and introduces a sign to the self-mapped
mesons given by the product of the signs of the two fixed lines crossed. We can
again see that the SUSY condition is respected

_dz AdyAdz _)dy/\da:/\dz

Q
3 2w 2w

— Q. (29)

In particular, we see that the signs of the fixed lines play no role in the last relation.
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3 Dynamical Supersymmetry Breaking

We now briefly revise some models displaying DSB vacua that will play a central
role in the last part of the thesis.

As all symmetries, supersymmetry can be broken by various means. The most
interesting one is when supersymmetry is broken spontaneously by the strong
coupling dynamics of the theory.

It is a well known fact, [26], that the tree level superpotential of supersymmetric
gauge theories in 4d is quantum exact at the perturbative level, meaning that it
does not get renotmalized by contribution coming from perturbative dynamics.

If we do not what to break supersymmetry explicitly, namely via the tree level
superpotential, we need to consider non-perturbative contributions.

In [I7], thanks to supersymmetry, such contributions to the superpotential were
computed exactly. In particular, one of the effects of the condensation of gauge
groups is to produce a non-perturbative superpotential term, called the Affleck-
Dine-Seiberg (ADS) superpotential.

This superpotential usually leads to a runaway vacuum, meaning that the
minimum of the potential is reached at infinity in the moduli space of the theory.
However, the combination of tree level terms and the ADS one can lead to a stable,
non zero, minimum of the potential, meaning that the theory sits in a non zero
energy vacuum, effectively breaking supersymmetry.

In order to better understand this effect, let us go through two examples, the
so called 3-2 models and SU(5).

o 3-2
This is an SU(3) x SU(2) N = 1 gauge theory with matter content given by
Q=(s0), U=0, D=0, L=0, (30)

where [J; is the fundamental representation under gauge group 7, and J; is
the antifundamental.

The theory also has a tree level superpotential
W = ADQL , (31)

where )\ is a coupling constant.

The minimum of the theory can be ground by imposing D and F-term equa-
tions. The space of D-flat directions is parametrized by

X, =QDL, X, = QUL,Y = det(QUQD). (32)
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This space is modified by the F-term equations. For L, the F-term equation
is

ow —

— =)DQ =0, 33

[ =DQ (3)
contracting with L and QU the previous equation implies that Xy =Y = 0,
as VEVs in the moduli space. Imposing the F-term equation for D and
contracting with U sets X; = 0 as well. This classical anlysis shows that the
theory admits a supersymmetric vacuum at the origin of the moduli space.

We now have to consider the low energy regime, where the SU(3) or the
SU(2) factors could condense, given the number of flavours and colours.

Let us consider the regime in which SU(3) condenses. In this case a non-
perturbative ADS superpotential is generated

Aj

=3 (34)

Wnon—pert =

This extra term allows the system to break supersymmetry dynamically.

In fact, it is easy to see that, in term of low energy degrees of freedom, there is
no solution to the F-term equations, once the non-perturbative contribution
is taken into account

7

A
M@H::AXT+3§. (35)

Hence supersymmetry is broken.

The analysis can be repeated for a regime in which is the SU(2) factor who
condenses first, as well as when both reach strong coupling at comparable
energies, leading to one and the same result, namely supersymmetry is bro-
ken.

SU(5)
This is an SU(5) N = 1 gauge theory with matter content given by

A=H,Q=m7, (36)

without superpotential.

No gauge invariant operator can be constructed and no D-flat direction hence
is present. At the origin of the moduli space, where the gauge group is
unbroken, there is a supersymmetric vacuum and the theory most likely
confines.
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Even if it is really hard to perform any reliable computation, we can infer
that supersymmetry is broken at low energies.

A sufficient condition for supersymmetry breaking is that a theory, with
no classical flat directions, has a broken global symmetry. The UV theory
has two global non-anomalous U(1) symmetries, under which the fields have
charge A = (—1,1) and Q = (3, —9), imposed by the cancellation of chiral
anomalies. Once the theory undergoes confinement, the low energy degrees
of freedom should reproduce the 't Hooft anomalies of the UV theory. To
achieve this the number of fields is at least five, with rather bizarre charges, if
we ask for charges smaller then ~ 50. This rather peculiar charge assignment
can be interpreted as the actual impossibility of matching the anomalies of
the IR and UV theory, leading to the conclusion that the global symmetry
should be broken.

If the global U(1) symmetry is broken, we have a theory without classical flat
directions and with a broken global symmetry, which, as said, is a sufficient
condition for supersymmetry breaking.

We will show, in the following of this thesis, that these two models are the
simplest that can be engineered in the context of branes at orientifolded Calabi-
Yau singularities. Moreover, some of their variants will play a crucial role in the
quest of constructing stable DSB models using D-branes.
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Part 11
Orientifolds in Dimer Models:
general aspects

4 Anomaly Cancellation Conditions in Orientifolds

In this section we investigate the relation between geometry and anomalies. In
particular we study the ACC of orientifolded theories in the absence of flavour
branes, providing and algorithmical approach that allows to link them with the
Z7P of the dimer model of the theory at hand.

Our result permits to discriminate whether an orientifold projection will be
anomalous, or not, looking directly at the geometry of the singularity under con-
sideration, without going through the, sometimes, painful task of finding the cor-
responding dimer model.

As we will see in next sections, this result will prove to be useful in model build-
ing scenarios, giving severe constraints on which singularities can be consistently
orientifolded without the need of flavour branes.

4.1 Systematic approach to anomalies

Determining whether an orientifolded theory admits anomaly-free solutions and, if
so, finding them is a relatively straightforward task in a case by case basis. Indeed,
writing down the set of anomaly equations for every gauge group and looking for
solutions is not more complicated than for non-orientifolded models. In this section
we systematize this calculation, introducing an algorithm for finding anomaly-free
solutions in the presence of orientifolds. This, in turn, will allow us to relate the
calculation to the one in the unorientifolded theory and, at a later stage, to extend
the geometric determination of solutions in terms of zig-zag paths to orientifolds.

In what follows, we will refer to the original, unorientifolded theory as the
mother theory. Similarly, we will dub the orientifolded theory the daughter theory.
We also define the matrix A;;, whose entry are the number of bifundamental,
i.e. edges, which are antifundamental with respect to I and fundamental with
respect to J. It’s antisymmetric part, which we dub as the adjacency matriz,
corresponds to the ACC of the gauge groups. Finding anomaly-free rank assign-
ment amounts to find the kernel of the adjacency matrix. When considering the
daughter theory, tensor matter modifies the ACC, dovetailing the contribution
of the O-planes to the RR-charges that must cancel in compact homology. In
general, the anomaly /tadpole problem of orientifolded theories corresponds to a
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non-homogeneous linear system of the form:
A-N=Ff, (37)

where A is the adjacency matrix of the daughter theory, and f stands for the
additional contribution of tensor matter. The difference between two solutions of
the system eq. is a solution of the corresponding homogeneous one, i.e. it is in
the kernel of A. If one knows a particular solution Ny of eq. , every solution
N can be expressed as:

N = Nhom + Npart ) (38)

where Npom is a solution of the homogeneous system A - N pom = 0.

Remarkably, we will show that whether eq. has solutions or not can be
directly determined from the toric diagram of the singularity under consideration.
In other words, we will establish a geometric criterion for the satisfiability of the
ACC in orientifolded theories.

4.1.1 The Adjacency Matrix of Orientifolded Theories

Consider a toric singularity and a corresponding dimer admitting a Z, involution.
We can divide the n, gauge groups of the mother theory into two sets: pairs of faces
identified under the involution, and self-identified ones. Therefore, the adjacency

matrix of the mother theory, A;; with I, J =1,...,n,, can be suitably rearranged
as follows:
B Bis Bis } i
A= Bgl B22 B23 } 1+ k . (39)
Bz Bss B } a
J Jj+k b
Here faces 7,5 = 1,...,k are the surviving ones out of those in the pairs of

faces that are mapped into each other (for every pair, we are free to keep any of
the two faces). Faces i + k,j + k, with 4,5 = 1,..., k, are their images. Finally,
the remaining faces a,b = 1,...,n, — 2k are those that are self-identified. The B
matrices are the adjacency matrices between these different subsets. For example,
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B3 is the adjacency matrix between surviving faces and self-identified faces, while
Bays is the adjacency matrix between the image faces and the self-identified ones.
The matrix A is by definition antisymmetric, which in terms of the submatrices B
implies that
By =—B{,, Byx=-Bj,, Bs3=—Bj,
B12 = _Bgl7 B13 = _Bg,—‘lv B23 = _Bg; .
The Z; symmetry of the phase under consideration endows it with further sym-
metry properties. The Z, projection acts on the bifundamental fields as follows:

Mother theory

(40)

Daughter theory

(Eza Dj)7 (D]ika |:|1+k) — (QMEJ)
(03, Oji), (5 Qi) — (0i, ;)
(D_iJrk? Dj)? (_Dj+k7 Dl) — (D“ DJ) (41)
(Ea;lji)a (Ei-ﬁ-kal:'a) - (DaaEi)
(|:|_7«7 Da)u (D_aa DH—k) — (DCU Dl)
(Da, Db)7 (Db, Da) — (Da, Db)
These projections imply that:
Bii = Bj,, Bi=Bl,, By =By, (42)
Bs1 = Bj;, Biz=Bj,, Bs;=Bj;.
We can apply eqgs. and together to find further relations between the B’s,
By = =By, Bijs=—Bsy,
11 22 12 21 (43)
Bi3 = =B, DBs1=—DBs, B3 =0,

so that eventually the adjacency matrix is entirely determined by Bi;, Bis and
B13Z
By B2 Bz
A= | =B —Bu —bBiz | . (44)
-BL, BL 0
In order to illustrate these relations, let us consider the complex cone over
PdPsy,, as studied in [I]. The dimer, which is shown in fig. admits a Z,
symmetry with two fixed lines. The numbering of the faces has already been
chosen such that the adjacency matrix reads

0O 1|-1 0] 1 -1
-1 0|0 1|1 -1
1 00 —-1/-1 1
0O -1} 1 0}]-1 1
-1 —-1{1 1 ]0 O
1 1 }-1 =110 O

(45)
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Figure 14: Dimer diagram for PdP3, with two horizontal fixed lines (dotted red).

which showcases the general structure in egs. , and .
Let us now turn our attention to the daughter theory. To compute the ACC

for the orientifolded theory we first note that SO/USp groups are automatically
anomaly-free and play no role. Further, for the ACC of the non-self-identified faces
we have to take into account both the contributions from fields such as (O;, ),
that are counted by By, and fields such as (J;, J;) and (OJ;, ;) that are counted
by Bis, see eq. (A1)). This leads to the homogeneous ACC for the projected theory
given by

Z = BH + Blg Blg . (46)

Applying this to the PdPs, example we get
-1 1|1 -1
:(—1 11—1)' (47)

4.1.2 The Homogeneous Problem

5N

In the previous section, we have constructed the homogeneous part of the ACC for
an orientifolded theory. We now show how solutions to the homogeneous problem,
namely elements of ker(A), are obtained from symmetric rank assignments of the
mother theory, which form a subspace of ker(A). This will allow us to extend the
method explained in section to the homogeneous problem of orientifolded
theories.

We say that a rank assignment of the mother theory Ny is symmetric with
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respect to the Z, involution if it satisfies

N7 =N£,, NJ free. (48)

7 (3

If this rank assignment is anomaly-free in the mother theory (i.e. if it is in the
kernel of A), we have

ANj =0, (49)

where here and henceforth, summation over repeated indices is understood.
Expanding this equation in terms of the B matrices and exploiting the sym-
metry properties given in eq. , it becomes

(B11 + B12)ijNJS + (Bls)z‘aNaS =0,

(Ba1 + B22)ijN]$ + (323)mNas =0, (50)

(Bs1 + Bgz)aijS + (Bs3)ayNy = 0.
From eq. , we conclude that the first two equations are actually one and the
same, while the third equation is trivially satisfied for any symmetric rank assign-
ment. From the first two equations we learn that any symmetric rank assignment

N? in the mother theory which satisfies the ACC, defines a solution of the ho-
mogenous ACC system of the daughter theory given in eq. :

Nhom = (NzS|Nf) : (51)
Equation indeed implies that such a vector satisfies:
A Nyom = 0. (52)

Conversely, if one starts with a vector (N;|NZ) satisfying eq. (52)), the vector
(NF|NELINS) is a symmetric rank assignment of the mother theory. The definition
of A in eq. implies that the equations in eq. 1} hold for (NJ|NZ,|NZ), ie.
that the latter satisfies the ACC of the mother theory. Hence, we have proved the
following;:

Rank assignments in the daughter theory which satisfy the homogeneous ACC
are in one-to-one correspondence with symmetric rank assignments in the
mother theory which satisfy the ACC.

In the special case where tensors are absent from the daughter theory, the
ACC are actually a homogeneous problem and the symmetric rank assignments in
the mother theory provide directly the orientifold solutions. The regular brane is
such a solution that always exists, and thus guarantees that an orientifold without
tensors always admits a non-anomalous solution.
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4.1.3 The Non-Homogeneous Problem

Finding solutions to the ACC in orientifolded theories with tensors is not trivial
because their very existence is not guaranteed, since the full system of ACC given
in eq. (37) has a non-homogeneous part coming from the tensor matter. The
Rouché-Capelli theorem gives us a criterion for its solvability: a non-homogeneous
system,

AN=F, (53)
admits a solution if and only if
rank(A) = rank(A|f), (54)

where (A|f) is the matrix obtained appending the column f to the matrix A.
For us f encodes the contribution to the ACC of the tensor matter, i.e. of the
self-identified chiral fields.

In other words, every set of numbers r; such that

holds for all J = j, a, must satisfy
rifi=0 (56)

for the system to be solvable. In this section we show that the coefficients r; which
satisfy eq. correspond precisely to the antisymmetric rank assignments of the
mother theory.

Suppose that some coefficients r; satisfying eq. exist. Using eq. for
J = j, one can show that it implies

Ti(Bll)ij - 7”1‘(321)ij =0. (57)
Using eq. , this is equivalent to

7"1'(312)1‘]‘ - Ti(B22)ij =0. (58)
For J = a, using eq. (43, we find that

7i(B13)ia — 1i(B23)ia = 0. (59)
We write

Ni* = (ri] = 7,]0), (60)
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and equations eq. to eq. can be expressed as
N{A;; =0= AN}, (61)

where the second equality merely uses the antisymmetry property of A. Hence,
we have proved that any set of r; satisfying eq. defines an antisymmetric rank
assignment N7 of the mother theory, which satisfies the mother ACC.
Conversely, starting with an antisymmetric rank assignment N7' in the mother
theory
Nt =-N,, NA=o, (62)

(2 7

which satisfies the ACC, one can use equations eq. to eq. backwards, and
thus obtain a set of r; such that eq. holds for all J = j, a.

Let us emphasize that while symmetric rank assignments in the mother the-
ory are in one-to-one correspondence with solutions of the homogeneous system
of ACC in the daughter theory (which by definition form the kernel of A), the
antisymmetric rank assignments in the mother theory correspond rather to the
elements of the cokernel of A, that we will see merely as technical tools. They
are useful for determining whether a given daughter theory admits an anomaly-
free rank assignment, since the elements in the cokernel of A encode the relations
between the lines of A, from which one can row-reduce A.

Coefficients of trivial linear combination of lines of A are in one-to-one cor-
respondence with the anomaly-free antisymmetric rank assignments in the
mother theory.

To rephrase what we wrote at the beginning of the section, there are anomaly-
free rank assignments in the daughter theory if and only if

Nif;=0 (63)

for every antisymmetric solution N7 of the mother theory, where f is easily com-
puted from the dimer and its orientifold. We call this the “Rouché-Capelli condi-
tion.”

In general, note that any rank assignment N; can be split into a symmetric
and an antisymmetric component,

1 1
(N;i|Niyx|No) = §(Ni + Nik|Nitr + Ni|2N,) + é(Ni — Nitg|Nipr, — N;|0). (64)

Both parts are then half-integer valued. Multiplying such a possibly unphysical (in
the case it is half integer-valued) rank vector by an even number yields a physical
rank vector with the required (anti)symmetry. All of the reasoning of the last two
subsections is pure linear algebra, and does not know about the need of integrality
for rank assignments, which entirely comes from physics.
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4.2 A Zig-Zag Algorithm for Orientifolds

We will now generalize the procedure discussed in section to find (anti)symmetric
rank assignments in orientifolded theories. The precise details of the algorithm de-
pend on whether the Z, involution leaves fixed lines or points. This difference
comes from the fact that involutions with fixed lines map nodes to nodes of the
same color, while involutions with fixed points map nodes to nodes with opposite
color.

We illustrate this difference in Figure [L5, There we can see that ZZPs around
a node make a clockwise or counterclockwise loop. If a node is mapped to a node
of the same color it means that the orientation of the loop is preserved, while, in
the opposite case, it is reversedﬁ This observation will become crucial when we
define (anti)symmetric rank assignment in both the case of fixed lines and points.

Figure 15: The orientifold actions with fixed points (a) and fixed lines (b). p is
a path from one face to an adjacent one, and p’ its image. In (a) the red and
blue ZZPs are self-identified, while the green ones are mapped into each other. In
(b), the red and blue ZZPs are mapped into each other, and the green ones are
self-identified.

For the forthcoming analysis, we find it useful to introduce the notation {I'} =
{a,@,v} to describe the set of ZZPs: every pair («, @) corresponds to ZZPs
mapped into each other under the orientifold projection, while v labels self-identified
77Ps.

4We recall that under both involutions, a dimer is sent to a dimer with all ZZPs going in
the opposite direction. The map between ZZPs is understood after additionally reversing the
direction of every ZZP, as in [27].
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4.2.1 Fixed Line Orientifolds

Due to how they act on ZZPs, orientifolds with fixed lines in the dimer correspond
to toric diagrams with axes of Z, reflection symmetryf| fig. illustrates the
general structure of such axes and the map between a ZZP and its image in the
cases of orientifolds with diagonal and horizontal O-lines (which is analogous to
the case with vertical O-lines). Let us elaborate on this kind of figure. Naively,
the orientation of the reflection axis in these toric diagrams can be modified by
an SL(2,Z) transformation, potentially eliminating the distinction between the
diagonal and vertical /horizontal O-line cases. However, the toric diagram after
such SL(2,2Z) transformation would no longer be symmetric with respect to the
axis. Alternatively, we can think about the toric diagrams with reflection axes
as coming from specific dimers with fixed lines. In this context, an SL(2,2)
transformation translates into a change of the unit cell of the dimer. But the
unit cell is fixed by the specific orientifold under consideration: not any SL(2,Z)
transformation is permitted once we have chosen an orientifold identification. In
other words, the orientifold obstructs SL(2,Z) transformations.

(p,a) (-p,a)

o]
—>

(b)

Figure 16: The toric diagrams for fixed line orientifolds have an axis of reflection
symmetry. The corresponding axes for: (a) diagonal and (b) horizontal O-lines.
In both cases we show in blue a generic ZZP and its image.

Symmetric rank assignments. For Z, involutions with fixed lines, symmetric
rank assignments correspond to symmetric ZZP value assignments:

Vo = Vg, U, free (65)

SWe will refer to such lines of reflection symmetry in the toric diagram as azes in order to
avoid confusion with the fixed lines in the dimer (which we also call O-lines).
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First, recall from section that the difference between the ranks of any two
faces in the dimer is equal to a sum (with signs) of the values of the ZZPs one
crosses as one goes between the two faces. ACC at each face of the dimer ensure
that the value of this sum is invariant under smooth (homological) deformations
of the path one follows. Furthermore, the topological constraints guarantee that
the value of the sum is independent of the homology class of the path on the torus.

Consider two faces i and j and a path p connecting them, and i, j* and p’ their
respective images under the Z, symmetry. Every time p crosses a ZZP «, its image
p’ crosses o/, and these two crossings have the same sign, since the orientation is
preserved. From this, it is clear that, if the ZZP value assignment is symmetric,
the rank assignment generated by the method in section is also symmetric.

In the case of dimer models with involutions fixing lines, symmetric rank as-
signments correspond bijectively to symmetric ZZP value assignments (up to
the global shift in the values, and such that the topological constraints are
satisfied).

For symmetric value assignments, the topological constraints read:

e Diagonal line (pg = —Ga,a = —Pa):

0=A=3tlpe—aa) + 5 D valpy — ) = ~M =0 (66)

e Vertical lines (ps = —Pas 9 = Ga):

M:2Zvaqa—|—zyﬁ,q7:0,
a ¥
A=0, (67)

The case of horizontal lines follows exchanging pr with gr and A with M.

We can now compute the total number of symmetric rank assignments. If the
dimer under consideration has n ZZPs, symmetric rank assignments correspond to
a choice of vr, such that v, = v, and such that topological constraints hold. We
also have the freedom to shift the rank of all gauge groups, since regular branes
respect the required symmetry. Putting all this together, the number of indepen-
dent symmetric rank assignments modulo some (possibly half-integer) number of

regular branes is
— 1
dim(ker(A)) — 1 = 5(71 +ns) — 2, (68)

where n, is the number of self-identified ZZPs.
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Antisymmetric rank assignments. Antisymmetric rank assignments are found
in a similar fashion, by imposing the antisymmetry explicitly on the ZZP values,
i.e. vr = —uor, or equivalently

Vo = —Vg, Uy, =0. (69)

This follows from the same reasoning as in the symmetric case: due to the geomet-
ric action of the symmetry, it is clear that antisymmetric ZZP value assignments
lead to antisymmetric rank assignments in the dimer. Furthermore, if the ZZP
value assignment is not antisymmetric up to a shift, it is straightforward to see
that the rank assignment cannot be antisymmetric either.

In this case there is a subtlety that was not present in the symmetric case.
First, the ZZP value method only knows about differences of ranks in the dimer.
Equivalently, it only describes anomaly-free rank assignments up to some (half-
integer) number of regular branes. The relevant point here is that regular branes
are not antisymmetric. Hence, starting from an antisymmetric value assignment,
it can well be that the rank assignment one constructs is not antisymmetric per
se, but merely antisymmetric after having added some number of regular branes
(we will see examples of this later). Then, in the method of section [2.4.1] a global
shift of the ZZP values does not change the resulting rank assignment. The global
shift does not preserve antisymmetry, so among the family of value assignments
corresponding to a given rank assignment (modulo regular branes), there is a spe-
cial representative which is an antisymmetric value assignment. Thus instead of
focusing on the bijection between the set of antisymmetric rank assignments up to
a (half-integer) number of regular branes, and the set of ZZP value assignments
which satisfies the topological constraints, and which can be transformed into anti-
symmetric value assignments thanks to the global shift, one can consider the only
representative of such a class of ZZP value assignments, which is antisymmetric.
We have proven the following:

In the case of dimer models with involutions fixing lines, antisymmetric rank
assignments correspond bijectively to antisymmetric ZZP value assignments
which satisfy the topological constraints.

When combined with eq. (69)), the topological constraints A = M = 0 again
merge into a single constraint, regardless of the type of fixed line orientifold. The
surviving combination however depends on the nature of the fixed lines:

e Diagonal line:

A:Zva(pa—kqa):—M:O. (70)
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e Vertical lines:

AzZZvapazo,

M=0. (71)
For horizontal lines we merely need to exchange p, with ¢,, and A with M.

The number of antisymmetric rank assignments is easily computed to be

dim(coker(A)) = %(n —ng) —1 (72)
Adding eq. and eq. , we find that the total number of independent either
symmetric or antisymmetric anomaly-free rank assignments is n — 3, as should be
the case since it is the number of anomaly-free rank assignments in the mother
theory, up to (half) regular branes.
Below we illustrate these ideas with a few explicit examples, containing both
diagonal and vertical /horizontal fixed lines.

No Anomaly-Free Solution: PdP,; with Diagonal Fixed Line

Consider PdP;. Figure |17 shows the dimer and toric diagram for the orientifold
under consideration. The anomaly-free rank assignments of the mother theory are
given by:
N = (—v7,v2,v6 — v1, —V1, Vg, V2 — v7,0). (73)
The topological constraints are:
AZU4+U3:U6+U7, (74)
MZU4+U5:Ul+U2. (75)

Adjacency matrices. The adjacency matrices of the mother and daughter the-
ories are:

0 0 1]|-1 -1 0]1

0 0 1 |-1 -1 011

-1 -1 0|0 0 1|1 —1 -1 1]1]—-4
A= 1 1 0]0 0 —-1|-1, Alfy= -1 =1 1[1|-4

1 1 0|0 0 —-1]-1 —1 =1 1|1]|+4

0 0 —-1|{1 1 0]|-1

-1 -1 —-1[1 1 1[0

(76)

where, for concreteness, we have assumed that the sign of the orientifold line is
negative.
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Figure 17: (a) Dimer diagram for PdP, with a diagonal fixed line (dotted red). We
show the ZZPs and the rank assignments coming from them. (b) The toric/web
diagram with the corresponding symmetry axis.

Symmetric rank assignments. Impose v = vs, v9 = vg, v1 = wv7. The
constraints M = 0, A = 0 combine into vy = v; + v5 — v3. We can use the global
shift freedom to set vy = 0, which leads to vS = (vy,v2, v1 + v, 0, v1 + Vo, V2, v1).
The resulting symmetric rank assignments in the mother and daughter theories
are

NS = (—’Ul, V2, V2 — VU1, —VU1,VU2,V2 — Vq, 0)

S
N = (—vl,vg,vg—vl,O) .

(77)

Note that N should be understood as the column vector whose first three elements
refer to the faces 1-3 that have an image, while the last refers to the self-identified
face 7. When considered as a row vector, one should drop the last element.

Antisymmetric rank assignments. Impose v; = —v7, v9 = —vg, V3 = —U5 =
0, vy = 0. We also need to impose the constraint v; + v9 = —wv3 with no global
shift freedom. We then find a two-parameter family of antisymmetric assignments
for the vp, v& = (v1, V9, —U1 — Vg, 0,01 + vg, —v9, —v1). The corresponding anti-
symmetric rank assignment is

NA = (v, v, —v1 — Vg, —V1, —Va, V1 + 2,0) . (78)
In the daughter theory, this rank assignment gives rise to the two row vectors

Ni = (1,0,—1)v;, Na =(0,1,—1)v, (79)

Let us denote by f = (—4,—4,4)" the inhomogeneous part of (A|f). We find

Nf -f = -8 and N? -f = —8. We conclude that anomalies cannot be cancelled
in this theory.
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An Anomaly-Free Example: PdP;, with Two Fixed Lines

Figure |18 shows the dimer and toric diagram for an orientifold of PdPs, with two
fixed lines. This theory was studied in [I], where it was shown that the daughter
theory admits an anomaly-free rank assignment if the two O-lines have opposite
signs. Note that the horizontal fixed lines in the dimer correspond to a vertical
axis of symmetry in the toric diagram.

(b)

Figure 18: (a) Dimer diagram for PdPs, with two horizontal fixed lines (dotted
red). We show the ZZPs and the rank assignments coming from them. (b) The
toric/web diagram with the corresponding symmetry axis.

Adjacency matrices. The adjacency matrices of the mother and daughter the-
ories are:

0 —1] 1 0|-1 1
1 0]0 —1|-1 1
| =ro o T = (1 =1|—=1 1|—4-sign(B)
A=l o 121 0|1 1| <A|f)_(1 —1| -1 1+4-sign(A))’
I 1 [-1 —1] 0 0
~1 1|1 1[0 0

(80)

where sign(A), sign(B) are the signs of the two O-lines. Let us now turn to the
study of symmetric and antisymmetric rank assignments.

Symmetric rank assignments. Let us impose v, = v, vg = v3. The constraint
A = 0 is trivially satisfied, while M = 0 becomes (keeping v; and v3):

20; — vy = 5. (81)
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Setting vy, = 0, we get
vS = (vy,v1,03,0, 201, v3) (82)
giving in turn
N® = (—vs, —v1, —v3, —v1,v1 — v3,0) . (83)

Projecting down this vector, we obtain the solutions to the homogeneous problem
in the daughter theory.

Antisymmetric rank assignments. We now impose v9 = —vy, U3 = —vg, Vg =
vs = 0. As expected, M is trivially satisfied and one just needs to impose A = 0,
which reads v3 = v;. Remember that the global shift has already been fixed. We
then find a one-dimensional family of antisymmetric assignments for the vr:

VA - (Ula —U1, V1, 07 07 _U1> . (84)

The corresponding antisymmetric rank assignment is N4 = (vy, —vy, —v1,v1,0,0).

In the daughter theory this rank assignment gives N = (1, =1)vy. One may
now use it to row reduce A. Denote by f = (—4 - sign(B), +4 - sign(A))” the

inhomogeneous part of (A|f). We find N f=—4. sign(B) — 4 - sign(A). If

N # 0, the theory is anomalous, so we need sign(A) = —sign(B), as anticipated.

Anomaly-free rank assignments. As explained in the introduction of the cur-
rent section, since we have a parametrization of the symmetric rank assignments,
we merely need a single solution of the tadpole-cancellation system to write all of
them.

Looking at the adjacency matrix of the daughter theory in eq. with
sign(A) = + and sign(B) = —, a straightforward solution to the rank assign-
ment is Ny = 4 and Ny = N5 = Ny = 0 (in the daughter theory we keep faces
1,2,5 and 6). This gives the following three-parameter family of solutions to the
ACC, where we have added N + v; + v3 regular branes:

N1 = N+U1+4
N2 = N+U3

N5 = N+2’Ul

N6 = N"‘Ul—i‘?}g.

(85)

These examples consist of an orientifold with a diagonal fixed line and an
orizontal one. The first case turned out to lead to a theory in which anomalies
cannot be cancelled, while the second one admitted a solution to the ACC. This
is not by chance, in section we will provide a general criterion for orientifold
with fixed lines.
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4.3 Fixed Point Orientifolds

In orientifolds with fixed points, every ZZP is mapped to a ZZP with the same
winding numbers [27]. The image of a ZZP can therefore be either itself or another
Z7P, if more than one ZZP with the same winding numbers exist.

Contrarily to the cases with fixed lines, in fixed point orientifolds nodes in the
dimer are mapped to nodes of the opposite color. In analogy with the case of line
orientifolds, let us consider a path p going from a face i to a face j, and its image p’
going from the image of i to the image of j. If p crosses a ZZP «, then p’ crosses its
image o, but since the color of the nodes is inverted in the image, the signs of the
crossings are opposite. This implies that a symmetric, respectively antisymmetric,
rank assignment is associated to an antisymmetric, respectively symmetric, value
assignment for the ZZP. We therefore have:

In dimer models with fixed point involutions, symmetric rank assignments
up to (half)-regular branes correspond bijectively to antisymmetric ZZP value
assignments which satisfy the topological constraints. Similarly, antisymmetric
rank assignments correspond bijectively to symmetric ZZP value assignments
which satisfy the topological constraints and up to a global shift.

We have seen that in the cases of fixed point orientifolds, symmetric rank
assignments correspond to ZZP value assignments such that:

Vo = —Vg, Uy =0. (86)

One can easily verify that the topological constraints are always satisfied by this
choice of vr, hence the number of symmetric rank assignment is:

— 1
dim(ker(A)) = §(n —ny) . (87)
Antisymmetric rank assignments, conversely, correspond to:
Vo = Ug, Uy = free. (88)

In this case both topological constraints A and M are not trivial:

A= Zpava—i-Z}%va—i-prvw—2Zpava+2p7v7—0
ZQava+ZQava+Zq'yUfy—22(]&1}(1‘"2(]7’07—0

This leads to:

(89)

dim(coker(A)) = %(n +mns) —3. (90)

Upon summing the contributions of symmetric and antisymmetric rank assign-
ments, we retrieve the total number of fractional branes, n — 3, modulo regular
branes.
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4.3.1 An Example: PdPs,

We now consider Pd Py, as an example for our algorithm in the case of fixed points.

Figure 19: Dimer diagram for PdPs, with fixed points. We show the ZZPs and
the rank assignments coming from them.

Adjacency matrices. The adjacency matrices of the mother and daughter the-
ories are:

-1 1 0 +4 - sign(C)

A= , Alf)=| -1 1 0 —4 - sign(B)

(91)
where sign(A) to sign(D) are the signs of the O-points. Note that the ZZPs 4
and 5 are interchanged by the projection, while all other ZZPs are mapped to
themselves. Let us now turn to the study of antisymmetric and symmetric rank
assignments.

Symmetric rank assignments. This time we start with antisymmetric ZZP
assignments, since for point orientifolds they provide symmetric rank assignments.
Let us impose vy = —vs5, v1 = vy = v3 = vg = 0. As already said, the topological
constraints are both trivially satisfied. Note that there is no global shift to fix.
We obtain a one-parameter family of vr assignments:

(0,0,0,1,—1,0)vy. (92)
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The corresponding rank assignment is:
N® = (1,1,0,1,1,0)y, (93)

which is symmetric, as expected. Projecting down this vector, one obtains the
solutions to the homogeneous problem in the daughter theory.

Antisymmetric rank assignments. We now turn to symmetric ZZP assign-
ments, responsible for the antisymmetric rank assignments. We only need to im-
pose vg = v5. We further fix the global shift by choosing v, = 0. The topological
constraints become:

L:vs=v1 —vy+ g,

94
M :vy=—vy . (94)
We find a two-dimensional family of symmetric assignments for the vr:
(1,-1,2,0,0,0)v; 4+ (0,0,1,0,0,1)vg . (95)
The corresponding antisymmetric rank assignments are:
N4 =(0,-2,-1,-1,1,0)v; + (—1,—1,—1,0,0,0)vg . (96)
Which, up to half regular branes is equal to:
A U1 Ve
N :(17_37_17_17371>5+<_17_17_1717171>57 (97)

which is antisymmetric, as expected. Let us split it into two vectors and project
them down to the daughter theory to obtain,

A U1 A Vg

N, = (1,—3,—1)5, N, =(-1,-1,-1) 5 (98)

Again, let us use these rank assignments to row reduce A by denoting f = (44 -
sign(C), —4 - sign(B), —4 - sign(A) + 4 - sign(D))”. One finds that, for the theory
to admit non-anomalous solutions, one must satisfy,

N f :% (sign(C) + 3sign(B) + sign(A) — sign(D)) =0 , )
N? =0 (—sign(C') + sign(B) + sign(A) —sign(D)) =0 .

2
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Anomaly-free rank assignments. The solution to eq. depends on the
sign choices for the four fixed points. Consider for example

sign(A) = sign(C) =+, sign(B) =sign(D) = —, (100)

which is consistent with the sign rule for fixed point orientifolds. In this case, we
go back to eq. to find a two-parameter family of solutions:

N1 = N+U4
N2 = N+U4+4 (101)
Ny = N.

4.4 General Criteria for Anomaly-Free Orientifolds

In this section we present a general study of the solutions to the non-homogeneous
system of ACC of the daughter theory. Remarkably, we can exploit the algorithm
of the previous section to determine the existence of such solutions directly from
toric data, regardless of the particular phase of the theory. This gives a purely
geometric criterion determining whether an orientifolded theory may admit a toric
phase with non-anomalous rank assignments.

4.4.1 Diagonal Line Orientifolds

Let us consider orientifolds with a diagonal fixed line. Without loss of generality,
we assume that the fixed line has winding numbers (1, 1) in the fundamental cell of
the dimer. The mapping of ZZPs in this kind of orientifolds has been studied in [27]
and we presented a preliminary discussion in section [£.2.1 The diagonal fixed line
in the dimer translates into a reflection symmetry axis in the toric diagram with
slope —1, as we already illustrated in fig. [[6a] This 90° rotation of the symmetry
axis of the toric diagram with respect to the fixed line in the dimer was explained
in [28§].

Reflection with respect to the axis of the toric diagram maps a ZZP with
winding (p, q), to a ZZP with winding (—q,—p). fig. shows an example of a
generic toric diagram with a diagonal line orientifold.

e Let [ be the number of pairs {v,, v5z} ,with a = 1,..,1, of ZZPs mapped one
to another, which are not parallel to the symmetry axis of the toric diagram.

o Let /| be the number of self-identified ZZPs {v,} for v = 1,...,[, which are
parallel to the symmetry axis of the toric diagram.

From the previous section, we know how to produce the coefficients of the trivial
linear combinations of rows. They are the ranks of the projected SU groups that
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Figure 20: A generic toric diagram with a diagonal axis symmetry.

result from imposing the following conditions on the vr:

Vo = Vg,

v, = 0 (102)

for all a and +’s. The topological constraints A and M are given by:

A= (VaPa+ Vapa) = Y Valpa + ) = =M (103)
where we used pgz = —¢q.

We now recall the Rouché-Capelli theorem: A non-homogeneous linear system
has solution iff the rank of the associated homogeneous matrix is equal to the rank
of the matrix associated to the full system. A trivial linear combination of rows of
the homogenous matrix is still trivial when considering the matrix associated to
the full system. This can be stated as:

> Nifi=0 (104)

where f; is the non-homogeneous contribution to the ACC matrix of the orien-
tifolded theory, coming from the tensor matter.

We now need to derive an expression for NV; in terms of the vr. The Rouché-
Capelli theorem tells us that the ACC system admits a solution iff eq. holds

for every value of vr consistent with the topological constraints.

Faces with at Most One Tensor

Let us first focus on the simpler case where every gauge group has at most one
tensor field. This result will be easily extended later to cases with more tensors.
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Consider a face of the mother theory with an edge on top of a fixed line. The rank
assignment providing the coefficients for row reduction is given by the condition
N; = — N1k, v4 = —vg, and the difference between the ranks of two adjacent faces
is given by N; — N; r = v, — vg. Combining these two results, we obtain

2Nz = ]Vz - Ni+k = Vo — Vg — 2,001 . (105)

Let us now determine the f; from the toric data. The method we are going to
discuss below can be regarded as a generalization to orientifolds of the algorithm
for finding the (minimal) matter content of a quiver in terms of basic knowledge
of the (p, ¢) winding numbers of its ZZPs (equivalently of the external legs of the
(p,q) web dual to the toric diagram). The intersection number between a given
Z7P and the fixed line is

det (Z D =p—q. (106)

At every such crossing this ZZP, if not self-identified, will intersect its image on
the line. The edge on which they cross will produce a tensor or conjugate tensor
field, depending on the orientation of the crossing. This is depicted in fig.

Figure 21: Crossing between a ZZP (and its image) over an edge on top of a
diagonal fixed line. We show the corresponding bifundamental field in the mother
theory.

From the discussion above, it is clear that the non-vanishing components of f;
are exactly those corresponding to the faces with a tensor, for which we have just
determined the rank in terms of the ZZP values. Taking into account that the
same ZZP can be related to p, — g, tensors, this allows us to write eq. as

Zszz = (i4> Zva(pa - qa) =0, (107)

«

where we have factorized the choice of sign for the diagonal O-line.

It is worth noting that the intersection with sign is a topological quantity that
counts the minimal number of intersections of the ZZP with the fixed line in the
dimer. This is, in fact, a homological invariant. In principle, more intersections
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are allowed, but they will come in pairs, one with positive and one with negative
intersection, as shown in fig. When computing the total contribution they
cancel, leaving us with eq. , which does not depend on the particular phase
we are considering.

Figure 22: When ZPPs are deformed, additional intersections are added in pairs.
We show the corresponding bifundamental fields in the mother theory.

We use the topological constraint eq. (103)) to express the value assigned to vy,

as
1

U1 = — Z Ua(pa + qa) . (108)

P+ a@ s

Plugging this expression into eq. (107)) and rearranging the terms, we reach the
following equality:

> o (Pat — P16a) = 0. (109)
a#l
Then, the Rouché-Capelli theorem can be satisfied for generic v, iff
Padi — P1ga = det (po‘ pl) =0, (110)
o q1

which implies that p, = p1, g. = q1 for every a. We dub the corresponding class of
toric diagrams the trapezoids. An example of such a trapezoid is shown in fig. 23|
Among trapezoids, we of course include also triangles.

Note also that there is a subset of trapezoids for which eq. is trivially
satisfied. They have p, = ¢, for every a so we refer to them as the rectangles, and
describe orbifolds of Fp. See fig. [24] as an example. We remark that rectangles are
the toric diagrams that give rise to line orientifolds without tensors in the spectrum.
Thus, we recover the result that the latter always admit a non-anomalous solution.
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Figure 23: An example of a trapezoid for which you can find a non-anomalous
diagonal line orientifold.

Figure 24: An example of a rectangle toric diagram with its diagonal axis of
symmetry.

Preliminary result for diagonal line orientifolds: Unless the toric di-
agram of the singularity under consideration is a trapezoid, any orientifold
theory obtained from a dimer symmetric with respect to its diagonal, and in
which every face has at most one edge along this diagonal, does not admit
anomaly-free solutions.

Faces with Multiple Tensors

Faces with multiple tensors arise in examples as simple as the conifold or C?/Zy,, 4
orbifolds, upon orientifolding with respect to a diagonal line. We now discuss how
the previous discussion is extended to these cases. We start by considering how
multi-tensor faces may be embedded in the dimer. We will see that there are
restrictions on the number of tensors a face can have. Moreover, their existence
is non-trivial and imposes constraints on the toric diagrams. The analysis of this
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case is slightly different from the one in the previous section but will lead to the
same result.

Interestingly, it is possible to find an upper bound on the number of tensors a
face in the dimer can have. Figure[25[shows a face with two self-identified edges on
the same side of the O-line. If they were adjacent, they would be connected at a
2-valent node, which corresponds to a mass term and then they could be integrated
out. Naively, we might imagine that this can be avoided by introducing additional
structure between the two edges, which is represented as a blob in fig. 25 But the
Z7Ps generating the edges on the line are the only ones that participate in the
blob. In other words, the orange and purple ZZPs in fig. [25| must be identified with
the blue and green ZZPs, with the precise identification depending on the number
of intermediate edges. Therefore, the blob can only correspond to a sequence of
edges connected by mass terms. After integrating them out, we are left with either
zero or one tensor for an even or odd number of edges, respectively. This implies
that a given face can only support more than one tensor in two cases: if they
belong to different O-lines or if they belong to the same O-line but are coming
from different copies of the unit cell as illustrated in fig. 26l In both cases, the
previous analysis applies to each instance that the face touches a fixed line, so we
conclude that the maximum possible number of tensors at a given face is two. The
total number of tensors in the full theory is, however, unrestricted.

Figure 25: Two edges of a given face on a fixed line, separated by a general
structure.

From fig. 26| we see that there can be three types of ZZPs: ZZPs parallel to
the fixed line, which are forbidden since they would have to go through the face
with two tensors, spoiling it; ZZPs orthogonal to the fixed line, i.e. self-identified
77Ps, which do not give rise to tensors; finally, ZZPs which intersect in pairs on
self-identified edges giving rise to tensors. Thus, the singularity can only have
self-identified ZZPs, those of the v kind, and at most two couples of ZZPs of the
a kind. Moreover, the (p,¢) numbers of the latter are also subject to constraints.
They cannot cross faces 7 and i’ otherwise than passing by the O-lines, so they can
intersect the grey dotted axis in fig. 20| at most twice if only one couple of ZZPs «
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Figure 26: Faces with edges on top of the fixed line at different copies of the unit
cell.

is involved:
Pa+ o] <2 fora=1, (111)

and once in the case of two couples:
Do + Gl =1 fora=1,2. (112)

Those relations apply both for ZZPs « and &, for which the sums are respectively
negative and positive.

If there is only one couple, the singularity corresponds to a trapezoid as the
ones discussed in the previous section. Indeed, we have only one couple of ZZPs
of the a kind and the topological constraint imposes v; = 0 for them, turning the
RC condition into a trivial equation.

For two couples, the topological constraints and eq. impose

v = —Us. (113)

This is the counterpart of the fact that faces ¢ and ¢’ in fig. [26| have to be of opposite
ranks, following section Now, we can write the RC condition allowing faces
to support one or two tensors in terms of v; only:

ZNifi = (:l:4)(U1(P1 - Ch) - U1<p2 - Q2)) =0. (114)

Knowing eq. (112]), the only solution is (p1,q1) = (p2, ¢2) so that we recover trape-
zoids. Let us note that the last equation considered with eq. (113]) can be brought
to the form of eq. (109) for two couples of ZZPs «, hence it is not surprising that
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a subset of trapezoids appears again as solutions in this context. For instance, the
conifold does not provide a non-anomalous diagonal line orientifold while C?/Zy,, 1
orbifolds do.

We conclude with a general result for diagonal line orientifolds:

Diagonal line orientifolds: Unless the toric diagram of the singularity is a
trapezoid, any orientifold theory obtained from a dimer with a diagonal O-line
is anomalous.

See fig. [27] for more examples.

Figure 27: Examples of trapezoids, which admit anomaly-free fixed line orien-
tifolds.

4.4.2 Horizontal/Vertical Line Orientifolds

In this section we consider horizontal fixed lines. The case of vertical lines is
trivially related by rotation. The reasoning is essentially the same as the one
described previously for the case of diagonal lines. This allows us to go fast to the
main result for this class of orientifolds. In particular, we will not comment here
about rectangles and faces with many tensors since the previous results are easily
generalized.

Horizontal symmetry lines in the dimer correspond to a vertical symmetry in
the toric diagram. The Z, action maps a ZZP with winding (p, ¢) to a ZZP with
winding (—p, q). Again, we distinguish two different types of ZZPs:

e Pairs of ZZPs {v,, vz} for a = 1, ..., 1, where v, and vg are exchanged under
the symmetry, thus not parallel to the axis of symmetry.

o Self-identified ZZPs {v,} for v = 1,...,{), with winding numbers (0,1) or
(0,—1).
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Figure 28: A generic singularity with a vertical axis symmetry.

A general illustration of this is depicted in fig. 28

In order to find the antisymmetric solutions to the ACC, we need to look
at the antisymmetric value assignments of the ZZPs and impose the topological
constraint

E=2) v.pa=0. (115)

Let us now consider the Rouché-Capelli condition. A ZZP of type o with winding
numbers (p, q) crosses both fixed lines —¢ times, counted with sign. The Rouché-
Capelli condition can be expressed as

Z Nifi == vaga(4 sign(A) + 4 sign(B)) = 0, (116)

«

where sign(A) and sign(B) indicate the signs of the two fixed lines. Unlike the
case of diagonal lines, the Rouché-Capelli condition in eq. becomes trivial
as soon as sign(A) and sign(B) are different. In that case, the orientifold theory
is always anomaly-free.

If the two fixed lines have the same sign, eq. (115]) allows us to express vy in
terms of the remaining v,, as in the case of diagonal lines. Plugging this expression

into Equation (116 leads to

> o (Pat — P16a) = 0. (117)
a#l

With the same analysis of the previous section, we find that singularities with two
horizontal lines of the same sign admit a solution to the ACC only if they are
trapezoids, just as in the case of diagonal lines. See Figure [29| for examples.
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Horizontal /vertical line orientifold: Toric diagrams symmetric with re-
spect to a horizontal/vertical axis always lead to anomaly-free orientifold the-
ories when the two O-lines have opposite signs. When the signs are the same,
instead, in order to yield a non-anomalous orientifold theory the toric diagram
of the singularity must be a trapezoid.

Figure 29: Examples of trapezoids, which admit anomaly-free horizontal fixed line
orientifolds.

4.4.3 Fixed Point Orientifolds

Finally, we address the case of fixed point orientifolds. We should state right
away that the results in this case are less conclusive than for fixed lines. Indeed,
one can easily anticipate that having a larger number of signs to fix (at the four
fixed points), it will be straightforward to satisfy the ACC just by a wise choice,
similarly to the case with horizontal /vertical line. On the other hand, if one sticks
with a ‘wrong’ choice, the restriction on the allowed geometries is not as nicely
characterizable as in the previous case.

As already explained in section [4.2] the action of the orientifold on every ZZP
is to map it either to itself or to another ZZP with the same winding numbers.
We thus divide the ZZPs into two sets:

e Pairs of distinct ZZPs {v,, vg} for o = 1,--- |k that are exchanged.
o Self-identified ZZPs {v,}, for y =1,--- L

The total number of ZZPs is n = 2k + 1.

In this kind of orientifolds, tensors arise whenever a pair of self-identified ZZPs
intersect over a fixed point. Moreover, a ZZP going through a fixed point neces-
sarily goes through a second fixed point [27]. As a result, it is easy to convince
oneself that the number of tensors, if present at all, must be between 2 and 4, and
it coincides with the total number of self-identified ZZPs that cross a fixed point.
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In order to find the antisymmetric solutions to the ACC, we need to consider
symmetric value assignments for the ZZPs, as explained in section .2} subject to
the topological constraints

A = 2Zavapa+2»yv’yp’y - Oa
M= 2%, v + v =
The RC equation becomes

ZNfZ_ D vy —vy)(£4) = 0. (119)

vEY

(118)

where the sum in the middle runs over the tensors. The signs depend on the sign
of the fixed points and on the orientations of the self-identified edges. Depending
on which of the two faces adjacent to the edge we preserve in the projection, we
get tensors or their conjugates, contributing with opposite signs to the ACC.

We recall that the signs of the fixed points, in contrast with fixed lines, are
constrained by the sign rule [25]. The rule prescribes that the product of the four
signs is (—1)""/2 with ny the number of superpotential terms.ﬂ

We now consider the different possibilities, i.e. [ = 2, 3 and 4 tensors. Our
analysis is general and does not distinguish between faces with single or multiple
tensors.

e [ = 2: In this case we have two tensors, meaning that two ZZPs cross each
other on two fixed points. Equation ((119) reads

(v1 — v9)(£14) £ (v1 — v9)(F£24) =0, (120)

where the +; indicate the signs of the fixed points, while the additional 4
signs depends on whether the tensors are conjugated or not.

Since only two fixed points are involved in this case, their signs can always
be chosen such that this equation is trivially satisfied, while satisfying the
sign rule. However, it is interesting to consider whether there are other ways
to satisfy this constraint. We can impose v; = vy using the two equations
of the topological constraint. Expressing v; and vy as function of the other
VoS we get

U1 = Z Valdo — 42 Z Uapa )

plQQ - p2Q1 o

2
vy = —————(¢1 ) VaPa = P1 Y Vada) (121)

D192 — P2

e} «

6Generically, it is not known whether the parity of ny /2 can be deduced from the toric
diagram.
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where we have assumed p1qa — p2q1 # 0. Equating v; and v,, we obtain

> talpala + @) = galpr +p2) = 0. (122)

07

Since this equation must hold for all v,, the only possibility is that all terms
in the summation vanish, thus p,(q; + ¢2) = ga(p1 + p2) for all a. Solutions
are of the form p; = —py and p, = 0, up to SL(2,Z) transformations. Those
correspond to trapezoids (not necessarily symmetric with respect to any axis)
with an even number of ZZPs on each base and only one ZZP on each side.

If p1ga — poqi = 0, it means that (p1,¢q1) = —(p2, g2), since the two ZZPs
are parallel and, in order to intersect in a consistent way, they must have
opposite winding numbers. In this case, the topological constraint imposes
vy = vy if Pager — GaPor = 0 where a # . It means that all non self-
identified ZZPs have to be either parallel or anti-parallel to each other. This
condition is satisfied by all toric diagrams with the shape of a rectangle or
a parallelogram where there is an even number of non self-identified ZZPs.
Together with the solutions of the previous paragraph, they constitute a class
of trapezoids for which any sign assignment for the fixed points leads to an
anomaly free theory when two tensors are involved.

As an illustration, consider fixed point orientifolds of C*/Zg with actions
(1,1,4) and (1,2,3), whose toric diagrams are shown in fig. Both of them
admit an orientifold with two tensors. Our analysis implies that only the first
one admits tensors with any sign, as it can easily be checked by explicitly
solving the ACC.

(a) (b)

Figure 30: The toric diagrams for the C3/Zg orbifolds with actions: (a) (1,1,4)
and (b) (1,2,3).

An interesting scenario is when tensors arise from the orientifold projection
of adjoints in the mother theory, namely from edges separating self-identified
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faces. In this case, the ACC of the self-identified gauge group is trivially zero,
since it is either SO or USp. In this situation, the two self-identified ZZPs
intersect all other ZZPs only once. This can be understood as follows. Let
us consider a line passing through the fixed points under consideration. All
the non self-identified ZZPs must be parallel to this line, since otherwise
their intersections with the line would imply that they go through the self-
identified face, which in turn would spoil the fact that it is self-identified.
The C?/Z,,, orbifolds are examples in this class, see fig. .

Figure 31: The toric diagram of C?/Zg, as an example of the C?/Z,,, family.

e [ = 3: In this case we have three tensors, i.e. three ZZPs intersecting on
three fixed points. Equation (|119) reads

(01 — va)(£14) = (09 — v3)(£24) £+ (03 — v1)(£44) =0 . (123)

Since only three of the fixed points are involved, it is possible to pick their
signs such that this equation is trivially satisfied. These choices in turn
determine the sign of the fourth fixed point due to the sign rule.

If instead we have a different combination of signs, we end up with an equa-
tion of the form
vy — vy =0, (124)

with v and 4 two of the three ZZPs above. The missing v.,» in the previous
equation depends on the choice of fixed point signs in eq. (I2F]). Therefore, in
order to have a solution for all possible fixed point sign assignments we need
to impose v; = vy = v3 with the topological constraint. This means that the
Z7Ps have winding numbers of the form (py,0), (—p1, ¢2) and (0, —go), up to
SL(2,2Z) transformations. The only solution is p; = go = 1, corresponding
to C?, i.e. flat space.

A face with multiple tensors imposes constraint(s) of the form v; — vy =
+(ve — v3), leading to an RC constraint of the form

(’Ul — UQ)(:E14) + (Ul - UQ)(:l:24) + <U3 - Ul)(ﬂ:34) =0. (125)

Again, the existence of solutions depends on the signs of the fixed points.
Solutions for generic signs can be obtained only when vy = vy = v3, i.e. for
flat space.
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o [ =4:

This case, in contrast with the previous ones, does not always admit a solu-
tion to the ACC. The reason for this is that the four fixed points are used,
their signs are constrained by the sign rule and we no longer have the freedom
of unused fixed points.

The RC equation can take two different forms, depending on the ZZP inter-
sections:

(Ul — ’Ug)(j:14) + (Ug — ’U3)(j:24) + (’Ug — U4)(j:34) + (’U4 — ’Ul)(:l:44) =0 s

(Ul — UQ)(:EI4) + (Ul — UQ)(:EQZ.L) + (Ug — U4)(:t34) + (Ug — ’U4)<:|:44) =0.
(126)

Since the signs of the fixed points are constrained, it is not always possible
to trivially solve the RC equation.

Moreover, it is also impossible to find general non-trivial solutions by using
the topological constraint to force some of the v; to be equal. For the first
equation, we need all the v; to be equal. To do so, we need at least three
equations, but the topological constraint provides only two. In the second
case, we can impose v; = v9 and vs = vy with the following ZZPs: (1,0),
(—=1,0), (0,1) and (0,—1), which define the conifold singularity. Unfortu-
nately, the conifold gives rise to an RC of the first kind, not of the second
one.

To conclude, this partial analysis retained only one toric diagram that can
accommodate any signs for its fixed points: flat space. We eventually found some
particular trapezoids for which we can freely chose the signs of the tensors when
only two are present, but those singularities also allow in principle for fixed point
orientifolds with four tensors, where our analysis showed its limits. Thus, we
cannot say in general that they provide every kind of anomaly-free orientifolds.
As an illustrative example, one can check that the orientifold of fig. with
four tensors does not allow for every combination of signs satisfying the sign rule,
although it does with only two tensors.

It would be interesting to investigate further whether it is possible to determine
the solvability of the ACC from the toric diagram. We leave this question for
future work. In the meantime, orientifolds with four self-identified ZZPs need to
be studied in a case by case basis.

4.5 Conclusions

In this section we studied anomalies in gauge theories living on D-branes prob-
ing orientifolds of toric singularities, focusing on pure D3-brane theories, namely
without the addition of extra flavors.
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We introduced a new, geometric algorithm for finding anomaly-free solutions
based on zig-zag paths. The main virtue of this procedure is not so much its
practicality over the direct solution of the ACC in explicit examples, but the fact
that it allows us to make general statements regarding anomalies directly from
geometry. Indeed, we managed to derive stringent no-go theorems that establish
the conditions for anomaly-free solutions in these orientifolds. Such results are
extremely useful, since until now the cancellation of anomalies in this class of
theories was analyzed on a case-by-case basis.

We can summarize our findings as follows, from the most stringent case to the
less conclusive one:

e For orientifolds with a fixed diagonal line, for which one has to choose only
one sign, we find that only singularities whose toric diagram is a trapezoid
with respect to the diagonal axis of symmetry allow for a non-anomalous
D-brane gauge theory.

e For orientifolds with fixed horizontal lines, we have two signs to choose. All
singularities lead to anomaly-free theories if the two signs are chosen to be
opposite to each other. If the singularity has a toric diagram which is a
trapezoid with respect to the vertical axis of symmetry, then the theory is
non-anomalous also for equal signs.

e For orientifolds with fixed points, there are four signs to choose, up to a
constraint on their product. Moreover, the relation between the fixed points
in the dimer and the toric diagram of the singularity is less direct. Because
of these two facts, it is more difficult to summarize the few instances where a
restriction is indeed obtained on the singularities that lead to non-anomalous
theories. The particular cases have been detailed in section [4.4.3

As an illustration of the power of the ideas introduced in this section, in sec-
tion [7] we will use them to guide the search of models of D-branes at singularities
that display dynamical supersymmetry breaking.
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5 New orientifold projections: the Klein bottle

In this section we construct a new orientifold projection in dimer models corre-
sponding to a glide involution of the fundamental cell. This projection has the
remarkable property that the orientifolded theory is superconformal, despite the
presence of O-planes.

The result of this chapter completes the dictionary between orientifold projec-
tions and smooth toric involutions.

5.1 Torus involutions

There are five inequivalent non-trivial smooth involutions [29], i.e. involutive dif-
feomorphisms, on a torug’| Three of them have a fixed locus and the two others
do not. To list all of them we consider a square torus, with complex structureﬂ
7 =1. We take z as the complex coordinate on the torus, the periodicity condition
is 2 ~ z4+m + ni, with m,n € Z. The involutions are given by:

1. Two fixed lines: z — Z. The fixed loci are two parallel lines located at
Im(z) = 0,1/2 along the real axis. Under this involution the torus is pro-
jected to an annulus.

2. Single fixed line: z — iz. The fixed line is Re(z) = Im(z), corresponding to
a diagonal line of the unit cell. The resulting surface is a Moebius strip.

3. Fixed points: z — —z. In this case we have four fixed points, z = 0,1/2,4/2
and (1 +14)/2. The resulting topology is that of a sphere.

4. Glide reflection: z — z+1/2. There are no fixed loci. The resulting topology
is that of a Klein bottle.

5. Shift: z — z + 1/2. Again, the involution has no fixed loci. The torus is
projected to another torus.

As already mentioned, and [3| are involutions with fixed loci correspond
to orientifold operations already studied in the literature. In this section, we will
focus on [4] the glide reflection, studying the consistency of such projection and its
properties. Regarding involution [5, we will show that the shift is not compatible
with the required properties to preserve supersymmetry.

"They are classified by the topology of their orbit set which is always one of the parabolic
2-orbifolds listed in [30].

8We are interested only in smooth involutions, the complex structure doesn’t play any role
in the analysis, thus we fixed it to a handy value. The use of complex coordinates will be useful
for later observations.
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Let us ad some comments on the properties involutions should respect. First,
involutions with fixed loci teach us that if the involution is holomorphic, z —
f(2), nodes in the dimer are mapped to nodes of opposite color, while if it is
antiholomorphic, z — f(2), nodes are mapped to nodes of the same color. This
is a requirement from the orientifold mapping of chiral superfields. It gives us a
hint for the unexplored involutions. Indeed, we expect |5[ to be consistent with an
orientifold identification only if nodes are mapped to nodes of the opposite color,
while [4] would be consistent only if the mapping is between vertices of the same
color. Second, we stress that the involution should be not only a symmetry for the
torus, but also for the embedded dimer model. In particular, a generic fundamental
cell for a dimer model has the shape of a parallelogram. The symmetry may be
present in the abstract graph, but in order to be shown explicitly, consider the
case of say [2| one has to deform the embedding in such a way that the resulting
fundamental cell is now a rhombus, displaying a symmetry with respect to one
of the diagonals. From this observation we conclude that in order to display a
glide symmetry, the fundamental cell must be a rectangle. Third, a Z, glide
reflection with diagonal axis is described by the map z — iz + (1 + 4)/2 which
has R(z) = (2) + 1/2 as fixed line, hence they are nothing else than reflections
about a diagonal axis. In particular, they do not correspond to a class of smooth
involutions not listed above.

5.2 Glide Orientifolds

In this section we investigate glide reflection orientifolds. We start with orbifold
examples, motivating our results in the dimer from the open string projection on
the Chan-Paton indices. We also explicitly check that it preserves supersymmetry,
in particular, it acts on the CY 3-form as Q3 — —3. We extend our results to
orbifolds of the conifold, considering the cascade in the presence of deformation
fractional branes. Finally, we discuss anomalies, or rather their absence, and
conformality in the presence of these orientifolds.

5.2.1 Orbifold C?/Z,

We consider the recipe directly applied in the dimer and then check that it is
indeed predicted by open-string computation.

Projection on the dimer model. We present in fig. the dimer for the
orbifold C?/Z, where the glide reflection is a combined operation of a horizontal
shift by one half of the length of the unit cell followed by a reflection with respect
to the dashed red horizontal axis. Nodes are mapped to nodes of the same color,
as we want from the analysis in section [5.1] Note that this operation leaves no
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Figure 32: (a) Dimer diagram for the orbifold C?/Z, x C. The unit cell and the
reflection axis are depicted in blue and red respectively. (b) The Klein bottle we
obtain with the orientifold projection.

fixed loci in the unit cell. The projected theory is embedded in a Klein Bottle
drawn on one half of the original unit cell, as illustrated in fig. [32b]

The edge X5 is identified with Yo, X9 with Y5, and Zq; with Z5,. Following
the rules summarized in section , the resulting theory has gauge group SU(N ),
with matter content given by two tensorsﬂ and one adjoint field. Note that the
tensor fields are not in an irreducible representation, so we split them in their
symmetric and antisymmetric parts;

Xga= 1, 91,
Vsa= 1, Hi. (127)

The superpotential is obtained by explicitly projecting the original one and keeping
half of the terms,

W =XYVET —YXZ = X\ Vs Z — XsVuZ . (128)

In a SUSY-preserving orientifold in type IIB, the holomorphic 3-form must
map to minus itself. This is easy to check by noting that the orientifold action on
the mesons is

Ty w— w zZ—=z. (129)

The action on the 3-form is then
_dz AdyAdz . dy ANdzAdz
N 2w 2w N

Q3 —Q3. (130)

9The two tensors are of the form (1, 1) and (01, [ 1).
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It is also clear from the matter content and the first equality of eq. that the
gauge theory preserves N = 2 supersymmetry[]

It is worth noting that the theory, unlike many examples of projections with
fixed loci, is free from any local gauge anomaly, regardless of the gauge group
rank. Although this example is rather trivial, we will see that this feature is
general and related to tensor fields being absent or coming in pairs, symmetric and
antisymmetric, cancelling each other’s contribution to the anomaly cancellation
conditions (ACC). We also note that the projected theory is actually conformal.
Indeed, the S-function of the gauge group can be shown to be zero. The fact that
these orientifolds naturally lead to SCFT’s will be discussed in section [5.4

Open string projection. We now consider the orientifold projection on the
Chan-Paton indices of the open string spectrum. For D-branes localized on the
C?/Z, x C singularity the open string spectrum is obtained by promoting the flat
space one to 2N x 2N matrices with a restricted set of non-zero entries:

. Alp, 0 o 0 X12 . 0 }/12 o le 0
Au - ( 0 AZM ) ) (I)l - < le 0 ) CI)2 - }/21 0 3 (DS - 0 Z22 )

(131)
where the gauge group is SU(N); x SU(N )2 and matther fields transform in the
following representations,

Xﬁ,Y;'j = ( s, ] j), Z” = AdJZ . (132)
Decomposing the C? fields the orbifold superpotential becomes,

W — [(I)l, (132] (Dg
= X12}/§IZII - 5/21X12222 + X211/12222 - Y12X21211 ) (133)

where an overall trace over gauge indices is understood.
A general orientifold projection on the C? fields acts as,

Ay = —1edg (134)
¢; = Rij')/ﬂcb?’}/gzla (135)

where v is a 2N x 2N matrix acting on gauge group (Chan-Paton) indices and R;;
acts on space indices 7, j running from 1 to 3. Different choices for these matrices

10The attentive reader might have noticed that this orientifolded theory is identical to the
one obtained with fixed points in section although the involution acts differently on the
coordinates. This is however an artifact of the orbifold C%/Z, since glide reflections will not
provide tensors in general.
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lead to different orientifold projections. In order to reproduce the glide reflection
orientifold, we specifically choose

01 01 0
’m:(l 6V> and R=|1 0 0 |, (136)
N 00 1

so that ®; and ®, coordinates are exchanged by the orientifold. Section [5.2.1
translates into

Ay, = —A] (137)

2u
which tells us that the two gauge groups are now identified as one SU(N); in the
orientifolded theory. Section [5.2.1) maps the superfields in the following way:

Xig = Y1€ = XA,Sa
Yo = X3, = VYas, (138)
ZH = Z2TQ = Z.

We recognise the same field content of the theory obtained with the dimer tech-
nique. It is easy then to show that we recover the superpotential advertised in
eq. (up to an irrelevant numerical factor). We thus conclude that the glide
reflection on the dimer reproduces the orientifold projection we just computed in
string theory.

In the following, we discuss the dimer construction in more involved examples.
It is clear that not all dimer models have the required symmetry, and in section 5.6
we provide a necessary condition for a given toric CY3 to admit a glide reflection
directly from its toric diagram.

5.2.2 More orbifold examples

The previous example has so much symmetry that it could be misleading. Let us
start our journey to less symmetric theories by considering C?/Z,, whose dimer
model and relevant involution we present in fig. [33] From the four initial gauge
groups, only two of them are kept after the projection, SU(N;); x SU(Ny),. The
surviving fields are

X12:(il7 52)7 )(21:(@2, il)a y21:(i27D1)’

. . 139
V= (01, O2), Zy = Adj, Z9o = Adj, . (139)

and the resulting superpotential is found to be
W = X201 211 — Vo1 X122 + X V12 Z0s — Vi X1 2] . (140)
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Figure 33: Dimer diagram for the orbifold C?/Z,. The unit cell is depicted in blue
and we show in red the Klein bottle obtained from the orientifold projection.

The open string projection computation for this example can be found in ap-
pendix @ Note that despite its similarities with the orbifold C*/Z, (without ori-
entifold), this model has a different matter content, which cannot be obtained from
dimer models.

The mapping of the mesons is the same as for C?/Z, so that the holomorphic
3-form transforms as follows:

_dx/\dy/\dz_)dy/\dx/\dz

Q
3 43 4w3

=—Q3, (141)
and hence suggests that our projection is indeed supersymmetric and the resulting
gauge theory preserves N' = 2 supersymmetry. Note that the usual orientifold
techniques in the dimer, fixed points and line(s), are not able to reproduce it.

Our observations make it clear that any orbifold C?/Zs, x C will admit a glide
reflection, for any integer n. More general orbifolds, such as C*/Z,, or C3/Z, x Z,,
can also enjoy the glide reflections, see an example in Figure [36al In section
we will discuss the general geometric condition a singularity should meet in order
to admit such orientifold.

N = 2 fractional branes. Let us briefly comment on the fractional branes of
the orientifolded theory [I5]. The glide orientifold of C?/Z, is free of local gauge
anomalies for any rank N; and N,. Hence, it has a fractional brane. We find that
it is an ' = 2 fractional brane corresponding to a subset of the N' = 2 fractional
branes of the parent theory. In section we will discuss this fact in detail.
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5.3 Conifold-like singularities

As we will explain in section [5.6] the conifold C itself does not admit a glide reflec-
tion, but conifold-like singularities like its orbifold C/Z, or the zeroth Hirzebruch
surface Fjy do. We now study those examples in turn.

Non-chiral orbifold of the conifold C/Z;. The dimer model and the glide
orientifold of C/Z, are shown in fig. . The resulting gauge theory has gauge

Figure 34: Dimer diagram for the orbifold of the conifold C/Z,. The unit cell is
depicted in blue and we show in red the Klein bottle obtained from the orientifold
projection.

group SU(N;y) x SU(Ns) with matter content given by

= (E]IJEQ)J B = (D17D2)7

A
— — 142
C = (D17D2)7 D = (DhDQ)u ( )

Note in passing that the ACC do not impose any constraint on the ranks, so that
N; and Ny may be chosen independently. The superpotential reads

W = ABCD — BACTD" (143)

For details of computations using worldsheet techniques and a proof that the 3-
form is odd under the orientifold action, see appendix [E.1]

Zeroth Hirzebruch surface F;. We show the dimer model and the glide orien-
tifold of Fy in fig.[35] After projection the gauge group becomes SU(N;) x SU(Ns),
while the matter content is given by

X = (Dl,ilz), Y = (04, 029),

_ 144
Usa = 1, H1, Zsa s, Hoa, (144)
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Figure 35: Dimer diagram for the Hirzebruch surface Fy. The unit cell is depicted
in blue and we show in red the Klein bottle obtained from the orientifold projection.

In this case the ACC impose non-trivial constraints on the gauge group ranks, in
particular they must be the same, N; = N,. The superpotential reads

W =XUsY"Z4— X" ZsYUy. (145)

The Chan-Paton computation and a proof that the 3-form is odd under the orien-
tifold action are found in appendix [E.2|

Deformation fractional branes. We have seen that the C/Z, glide reflection
admits fractional brane since the ranks of the two gauge groups may be chosen
freely. It is in fact a deformation brane [15, 24] of the parent theory that survives
the orientifold projection, in the precise sense described in [3]. A natural question
is whether such fractional branes may trigger a non-trivial RG-flow giving rise to
a cascade of Seiberg dualities |31} [32]. We study this process in appendix and
verify that the cascade steps are: SU(N + M); x SU(N)y — SU(N — M)y x
SU(N)y, with the same matter content and superpotential, as we flow towards the
IR. For N being a multiple of M, the deep IR of this gauge theory is expected to
reproduce the same features as for a deformed conifold. Notably, on the baryonic
branch one finds the vacuum of SYM, displaying confinement and chiral symmetry
breaking.

We will see later that it is a fact that the orbifolds of the conifold C/Z,, x Z,,
compatible with the glide projection preserve some of their deformation branes.
The compatibility of fractional branes of the parent theory with the glide reflection
is discussed in section [5.6

5.4 General properties

As we have seen, and since the glide reflection leaves no fixed loci, we don’t expect
any self-identified face (i.e. SO or USp gauge group) to show up in the dimer
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projection. This restricts the number of gauge groups of the parent theory to be
even. A further consequence of not having fixed loci is that there are no self-
identified bifundamentals, therefore, tensor matter, if present, always comes in
antisymmetric-symmetric pairs, cancelling the contributions to the chiral anomaly.
This is precisely what happens in the C2/Z, orbifold, where two edges, charged
under two identified groups, are identified, leading to a reducible two index tensor,
which splits into the sum of a symmetric and an antisymmetric one. We now see
how these facts translates in the absence of non-homogenous terms in the anomaly
cancellation conditions, allowing always a solution to the latter, and how such
projected theories are actually SCFTs.

Borrowing the notation of [3], we know that the ACC matrix of the projected
theory is deduced from that of the parent theory. Denote the latter as,

By By B3 } i
A - BQl BQQ Bzg } Z + k , (].46)
Bz Bss Bss } a
J Jj+k b
where indices 7,7 = 1,...,k label the gauge groups surviving the orientifold

projection and the corresponding entries represent the anomaly contribution of the
field between faces ¢ and j. Indices i + k and j + k represent gauge groups that are
identified with ¢ and j under the orientifold action, respectively. The a,b indices
label the self identified gauge groups. Finally, the ACC system takes the form

A-N=0, (147)

where IV is a vector whose entries, N(jjj+kla) are the ranks of the corresponding
gauge group.

From what we said earlier, we know that B,3 = Bs, = B33 = 0, since there
are no self-identified gauge groups. Furthermore, we have no net contributions
from tensors to the ACC, meaning that there are no non-homogenous terms in the
projected theory ACC. From [3], we know that the projected ACC can be written
as

A-N=(Bu+Byp) -N=0. (148)
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It is then easy to see that the all-equal-rank solution in the parent theory is still a
solution. Indeed, a general solution for the orientifolded theory has a trivial part,
corresponding to a stack of regular branes in the parent theory, and a non-trivial
part, corresponding to “symmetric” fractional branes of the parent theory.

Fixed loci orientifolds have the remarkable property of producing, in general,
non-conformal theories. However, this is not true for glide orientifolds. The theory
they describe is an SCFT when the ranks of the gauge groups are all the same.
This fact can be seen as follows, consider the S-function of the parent theory with
N probes D-branes,

—~ N
Bsuy, =3N =) 5(1—7) =0, (149)
=1

where v; are the anomalous dimensions of the matter fieldd"] From this we can
read the [-function of the projected theory whose general form is

~ N + b,
Bsuwy, =3N =) 5

i=1

(1 =), (150)

where the coefficients b; vanish for fundamental fields and are 42 for, respectively,
symmetric or antisymmetric fields. If we assume that the anomalous dimensions
of the fields are the same up to 1/N corrections and, since all tensors come in pairs
of opposite parity, we see that the S-function of the gauge groups of the projected
theory vanishes as long as all ranks are equal. This dovetails the fact that a Klein
Bottle has zero Euler characteristic and, as explained in [19], such surfaces may
embed a dimer model describing an SCFTF_TL Franco and Vegh pointed out that
the Franklin graph would be a good candidate to be embedded in a Klein Bottle
and host a SCF'T not embedded in a torus. Indeed, it can be readily found via a
glide reflection of C3/Z;5, see fig. . This not only confirms their intuition, but
it is, to the best or our knowledge, the first instance of such a construction within
string theory.

5.5 Type IIA picture and the brane tiling

Fixed loci in the dimer have been related to actual orientifold planes in the physical
realization of the dimer [21] 35]. In fact, one may consider the D3-branes probing
a singularity with an orientifold and track the position of the orientifold in the

We consider Adj fields as couple of anti-fundamentals fields charged under the same gauge

group.
120ther kind of surfaces obtained from orientifolds with fixed loci were found to accommodate
SCFTs in [33] 34].
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(a) (b)

Figure 36: (a) Dimer diagram for the orbifold C3/Z;5 with action (1,5,6). The
unit cell and the Klein bottle are depicted in blue and red respectively. (b) The
Franklin graph.

ambient space to the fixed loci in the dimer through T-dualities. An immediate
puzzle arises in the case of glide orientifolds, since there are no fixed loci on the
torus, i.e. in the brane tiling. In this section we look at C?/Z, and argue that
these orientifolds, which have 8-dimensional fixed loci in the D3 picture (they are
O7-planes), don’t have a fixed locus in the tiling in the precise sense of [30] [37]. In
the latter reference, the shift action is deduced to be T-dual to a pair of opposite
charge O-planes on a circle.

Let us again consider N D3-branes at the tip of a singular toric CY3. As
reviewed in the introduction, the dimer presented in fig. |32] is physically realized
as a web of D5 and NS5-branes. It is obtained by T-duality along two of the three
toric cycles of the toric variety. In particular along those corresponding to mesonic
symmetries in the field theory, rather than R-symmetry. Focusing on the case at
hand, C?/Z, x C, one may take local coordinates such that 7, z¢ correspond to
the two toric cycles that are to be T-dualized. The D-brane configuration is then
as in table [4] which, after two T-duality should become that of table [5] Note that
we have avoided including an orientifold plane in the T-dual, as the dimer shift
seems to suggest.

After T-duality one finds D5-branes wrapping the dual cycles with local co-
ordinates x4, zy. These are in turn identified as the coordinates of the torus T2
where the 5-brane web lives.

To study the location of the O-plane in the singular geometry, let us introduce
the coordinates 21,2z, and z3 of flat space C3. We define the coordinates of the
variety transverse to the D3-branes, C*/Zy x C, by constructing invariants under
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C?/z, X X X X
D3 X X X X
o7 X X X X X X X X

Table 4: D3-branes sitting at the tip of C*/Z, in the presence of O7-planes.

0 1 2 3 456 7 8 9

NS5 x X X X - - -
D x X x x X X

Table 5: The brane tiling. ¥ is the holomorphic curve in the 67'89-space wrapped
by the NS5-brane.
the orbifold action:
r==z, y==z, w=2z2, and z=23, (151)
with the following relation holding,
Ty = w?. (152)

As explained in section the orientifold action on the dimer implies that it
acts on 21, 20,23 as z; <> zo,. In terms of the orbifold invariant coordinates the
orientifold action is then,

r <y, wand z fixed. (153)

Thus, the orientifold plane extends on the surface defined by z = y = ¢, t? = w?
From eq. (152)) we read two toric U(1) isometries of the orbifold:

Ul)e: x—€%z, y—e ™y, w—ow,

Ul : x—eéPz, y—ely, w — ePw . (154)

We can think about these two isometries as generators of two 1-cycles, a, 3. We
can introduce local coordinates parametrizing these cycles, defined whenever they
are non-singular,

Oa

N~ N~

(Arg(z) — Arg(y)) (155)

05 = 5 (Arg(x) + Arg(y)) (156)
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NS5

8,9 - — :
| — D4’s
7/

//w

Figure 37: Type ITA picture with the orientifold mapping given by a 7 rotation
along 27 (in green).

We can now identify these two coordinates in terms of the coordinates in table [}
(0a,05) ~ (z7,25). The action of the orientifold on these two cycles, T-dual to the
physical torus, are just 6, — —0,, 03 — 03. We thus learn that the orientifold
plane spans x5 and is located at x7 = 0, 7. In fact, there are two orientifold planes
of opposite charge such that the total flux cancels with no further sources. One
may also argue for the signs being opposite by noting the absence of net RR-charges
coming from the O-planes in the dimer picture. This can be seen in the absence
of SO/USp groups and the corresponding lack of non-homogeneous terms in the
ACC, which can be thought of as Gauss law for compact cycles. Quite remarkably,
the T-dual of such a cycle with opposite-charge O-planes, is known to be precisely
an orientifold acting as a shift on the T-dual cycle. The absence of fixed loci for
this action translates into the absence of O-plane in the dual geometry. This is
described in [37] where T-duality acts as a sort of Fourier transform: the O-planes
of opposite charge are related to delta function whose transform are constant and
opposite, cancelling each other. This interpretation nicely match the Gauss law
analogy we presented earlier.

After one T-duality along x7, the T-dual Type IIA construction is analogous
to the ones studied in [38, 139, 140, [41} 42]. The relevant information is encoded
in a cycle 27 where D4-branes are suspended between two NS5-branes. As we
explained before, the orientifold action acts now as a shift, rotating halfway the
configuration, see fig. |37, This action is consistent with the mapping of gauge
groups and matter fields on the dimer model.
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Finally, if we further T-dualize along the direction spanned by NS5-branes xg,
we get to the tiling picture. After the last T-duality, the orientifold acts on zf
as a reﬂectionm. Together with the shift on %, these actions reproduce the glide
reflection that we see on the tiling.

5.6 Involutions and Zig-Zag Paths

In this section, we first develop, in section , a condition the toric diagram (or
equivalently, the ZZP’s) of a singularity must satisfy to be compatible with the
glide reflection. This enlarges the dictionary between orientifold projections of a
given toric singularity and its ZZPs content, as initiated by [27]. Secondly, and with
the help of ZZP techniques [24], we show in section how to detect the presence
of fractional branes in the orientifolded singularity. Finally, in section we give
a general proof that the “would be” shift orientifold projection is incompatible
with the requirement to preserve SUSY.

5.6.1 Glide Orientifold from the Toric Diagram

A glide reflection can be seen as a combination of a shift and a reflection in the
dimer model, even if each of them is not a symmetry per se. Starting from what
we learned in our examples and using this simple observation, we can understand
how this involution acts on the ZZP content of the toric diagram.

First of all, we notice that the shift and the reflection are performed along
the same axis. Consider, for instance, a horizontal shift and axis of reflection
as in fig. 38 The action of the glide reflection reverts the horizontal component
of each ZZP. Actually, the glide reflection leaves no fixed ZZPs, since even those
perpendicular to the axis are mapped among themselves because of the shift part
of the glide reflection.

Putting the two observations together we can say that: if the glide reflection is
composed by a horizontal shift and a reflection azis, directed as (1,0) in the dimer,
Z7Ps are mapped as follows: (p, q) is sent to (—p, q) when p # 0, while all other
ZZPs of the form (0,+£1) are mapped to one another, preserving the orientation,
meaning that they come in even numbers. In our example of fig. 39 the orange
(1,1) and purple (—1,1) ZZPs are interchanged. The same is true for the blue and
green ZZPs of the (0, —1) type.

Similarly, in order to construct a Klein bottle with a vertical shift and reflection
azis, the toric diagram should have ZZPs (1,0) and (—1,0) in even numbers,
possibly different, and ZZPs (p, q¢) with ¢ # 0 paired with ZZPs (p, —q).

13This is a standard fact of orientifolds. Upon T-duality along a direction spanned by the
O-plane, an Op-plane is mapped to an O(p — 1)-plane, with action § — —6 on the dual cycle.
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Figure 38: The glide orientifold maps together nodes of the same color. The
dashed blue line delineates the unit cell of the parent theory, while the red frame
represents the orientifold. The ZZPs 1,2,3 are mapped to 1’,2, 3 respectively.

£ 1 P
R
K¢

/o
o

Figure 39: The Klein bottle obtained from the dimer of C?/Z, x C and the corre-
sponding ZZPs.

These statements can be summarized by saying that the toric diagram should
be symmetric with respect to a vertical or horizontal axis. Moreover, each ZZP
has to be mapped to another one, imposing that each kind of ZZP parallel to the
axis of reflection in the toric plane should come in even numbers. We show in
fig. [40] that our examples of section [5.2] satisfy this criterion.

Lastly, an important remark is that this condition may not be satisfied in some
of the SL(2,Z) “frames” of the toric diagram, or equivalently, the unit cell in the
dimer model may not be symmetric with respect to the glide reflection. Thus,
we should state that a generic toric diagram can admit a glide orientifold if it
satisfies the conditions above up to a SL(2,Z) action that can bring its unit cell
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(a) (b) (c)

Figure 40: Toric diagrams for singularities that satisfy our necessary criterion
to admit one (with an axis of reflection in red) or two (with the second axis of
reflection in blue) glide projections: (a) orbifold C?/Zy, (b) conifold-like C/Z,, and
(c) zeroth Hirzebruch surface Fy.

to a symmetric form with respect to the glide.

5.6.2 Fractional branes

As already mentioned in section these orientifolded theories may admit non-
trivial rank assignments, i.e. fractional branes. Their presence can be deduced
from the symmetries of the toric diagram and they can be seen as inherited from
the “parent” theory. Following [24] [3], in what we dub “Butti’s Algorithm”, we
can assign a value vr to each of the n ZZPs of the toric diagram. These values
give rise to anomaly free rank assignments, given that they satisfy the following
constraints,

2 vrpr =0 (157)
Zr vrqr =0 ’

where the (pr, gr) are the winding numbers of the ZZP associated to wvr.

Since we know how the glide reflection acts on the ZZPs, we may follow the
procedure of [3] to see which fractional branes survive the projection. As explained
there, only symmetric fractional branes survive, in the sense that, given two ZZPs
v, and vy mapped to each other under the glide reflection, only rank assignments
satisfying the following identification survive,

Vo = Vg - (158)

The orientifold projection thus reduces the number of variables vr to the subset
of v,. Moreover, one can check that eq. (157) leaves only one non-trivial relation:

D vala =0. (159)
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Butti’s algorithm has a redundancy that allows to perform a global shift on the
v, without affecting the ranks of the gauge groups. Hence, we end up with

#fractional branes = n/2 — 2 (160)

in the orientifolded theory.

Butti’s algorithm also tells how to construct different kind of fractional branes
in the parent theory by specifying a set of vp. We now apply this method to
theories with a glide reflection orientifold to see when may N = 2 and deformation
fractional branes arise.

e N = 2 fractional branes: The parent theory admits such fractional branes
whenever the toric diagram hosts k£ > 1 ZZPs with the same winding num-
bers, say (py, ). They are turned on whenever only some of these v,,, among

the whole set of ZZPs {vr}, are non-vanishing. Following eq. (157]), one has

k
ZUW = 0, and Uy = 0 if (pw QV) 7é (p/u Q,U) . (161)

i=1

This condition is compatible with eq. only if the k ZZPs are sent to
77Ps with the same winding numbers by the glide reflection, restricting to
(0,1) or (0,—1) when (p,q) is mapped to (—p,q). Moreover, k should be a
multiple of 4, since for each couple of ZZPs with a symmetric assignment
v, we need a second couple with assignment —v in order to satisfy the sum
in eq. . In the examples of section , we found that the singularity
C?/Z, satisfies this criterion, see fig. [41al

e Deformation fractional branes: The parent theory will have a deformation
fractional brane if there is a subset of m ZZPs in equilibrium {v,} C {vr}:

m

> (Poir0,) = 0. (162)

=1

The deformation brane is turned on whenever all v, have the same non-zero
value and all other v, ¢ {v,} are vanishing. A glide reflection orientifold
theory will have a deformation brane if there is a subset of m ZZPs in equi-
librium where each ZZP is accompanied by its image under the glide action,
and where m is smaller than n. In the examples of section [5.2, we found
that C/Z, satisfies this criterion while the zeroth Hirzebruch surface Fy does

not, see fig. and fig.
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Figure 41: Symmetric fractional branes in the parent theory lead to fractional
branes in its glide orientifolded version. Couples of ZZPs paired by the glide
action are drawn in the same color. (a) N' = 2 fractional brane in C?/Z,, (b)
deformation fractional brane in C/Z,, and (c) the zeroth Hirzebruch surface Fj
admits only the regular brane as a symmetric fractional brane.

5.7 Shift Orientifolds

So far we have only considered orientifolds acting as glide reflections on the dimer.
Now we address those acting as a simple shift. We have not discussed these
orientifolds earlier because they always break supersymmetry, as we show in the
following. In particular, we will see that the holomorphic 3-form (23 is even under
such an orientifold action, contradicting the rule of thumb that it should be odd.

As we observed in Section [5.1] the shift involution must identify nodes of oppo-
site colors on the dimer, in order to be consistent with the orientifold identification
rules. Under such a shift, each ZZP is mapped to a ZZP of opposite winding num-
bers, (p,q) — (—p, —¢). This can be easily deduced from Figure [42]

From the toric diagram, it is possible to obtain the equations defining associated
toric variety probed by the D-branes. To do so we need to compute the integer
generators of the dual cone to the toric diagram. This procedure is standard in
toric geometry and we refer to [43] for all the details. From the lattice vertices on
the boundary of the toric diagram (7, s;), we obtain the generators of the cone
given by m; = (4, s;,1). The dual cone is then given by

SY ={neR®m;-n>0}, (163)

from which it is easy to see that the vectors n are of the form (p, ¢, a), where (p, q)
are the windings of the ZZPs and a is an integer. Indeed, the generators of the dual
cone are nothing but the inward pointing vectors, normal to the faces of the cone
generated by the m;. We now need to add the extra generators to span the dual
integer cone, 0¥ = SY N Z3. This is achieved by computing linear combinations
of the generators with positive rational coefficient and adding all integer vectors
we obtain this way. Finally, the equations defining our singularity are given by
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Figure 42: The shift orientifold maps white nodes to black nodes, and vice-versa.
The dashed blue line delineates the unit cell of the parent theory, while the red
frame represents the orientifold. The ZZPs 1, 2,3 are mapped to 1’,2’,3’ respec-
tively.

associating complex coordinates to the generators of the integer dual cone and the
relations among them are obtained with the following identification,
ny+ng+---=ng+ns+--- —  22g-= 2425 . (164)

For example, let us consider the toric diagram of the conifold, which we place
in Z? as the square with vertices (0,0), (0,1), (1,1),(0,1). The associated cone is

0 0 1 1
0:< o, (1|, (1],[o0 >CW, (165)
1 1 1 1

and its dual is

oV = (n; = (1,0,0),n5 = (0,1,0),n3 = (—1,0,1),n4 = (0, —1,1)) C (R*)*,
(166)
from which it is easy to read the equation defining the singularity:

Ny +ns=mng+ng — 2123 = 2224. (167)

As a second example let us consider the toric diagram of dP; and the cone it
generates:

0 1 1 0 -1 -1
0:< 1, -1 |,{o .t 1), 1 |.[ o >cR?(m&

1 1 1 1 1 1



(0,1,1y (1,11

(0,0,1) (1,0,1)

Figure 43: The toric diagram of the conifold.

It is dual to oV which is the cone:

<n1 = (O, 1, 1),712 = (-1,0, 1),7’1,3 = (—1, —1, 1),77,4 = (O, —1, 1),
ns = (1,0,1),n¢ = (1,1,1),10 = (0,0,1)) , (169)

where we added the vector ng = (0,0,1) since ny + ny = 2ngy, meaning that we
where missing an integer generator. The equations of the variety are

(-1,1,00 (0,1,1)

(-1,p,1) ,0,1)

(0-1,1) (1,-1,0)

Figure 44: The toric diagram of dPs.

Z1R4 — R9Z5 — Z32¢ — Zg

Z1R3%5 = 29746 - (170)

We can use the fact that under the shift involution each ZZP is mapped to
a Z7ZP of opposite winding, hence the corresponding toric diagram must be sym-
metric under the reflection about its center of mass. Such center of mass has, in
general, half-integer coordinates («, $). Under such a reflection, a generic point
in the lattice with coordinates (r,s) € Z? is sent to (2 — r,23 — s). Under this
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operation, the generators of the cone are mapped according to

~1 0 2o
m= 0 -128|-m (171)
0 0 1

which maps a generator m = (a,b,1) to m' = (2a — r,2 — s,1). The dual cone
SV is in turn invariant under the (right) action of that matrix, which acts as

-1 0 0
n' = 0 -1 0 | n, (172)
20 20 1
or simply,
n=(p,qa) — n'=(-p,—q2ap+2Bq+a). (173)

From these observations, we deduce the following properties:

1. All generators of the dual cone, obtained via eq. (163)), n; = (p;, ¢;, a), come
paired with another generator n; = (—p;, —¢;, @’), for some integer a while o’
is obtained via eq. (173)).

2. Given a generator n; = (p;,¢i,a) and its shift image n, = (—p;, —¢;, d),
we see that a new integer generator that we were missing can be added
no = (0,0, 1), since

ni+n;, = (a+a)ng. (174)

This generator is invariant under the shift.

3. All other extra generators come in pairs. Given an extra generator n; such
that
N+ 404 =bny, (175)

with b integer, by a symmetry argument, we also need to add nj, since we

havd™
n;+..._|_nj+...:bn;' (176)

We now rearrange the generators into two sets: the set of n; with ¢ = 1,..., k
and the set n; = n! of their images under the shift. Moreover we have ny which
is the invariant generator. To each generator n; we associate a complex coordinate
z;. We have 2k + 1 of them, related by 2k — 2 relations, that define the toric 3-fold.
We divide these relations in two kinds. The k first kind relations are of the form

ZiZigk — zg“/ =0, (177)

“The transformation law in eq. (173)) acts linearly on eq. (175)) such that we obtain eq. (176).
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and come from eq. (174). We use it to relate every image z;., to its partner z;
and to zg. The second kind relations relate all remaining z; and zy together. For
example, they may look like

21220 — 212m25 =0, (178)

for some integers b and c.

Under the shift, relations of the first kind are invariant, those of the second
kind are not. However, we can build more symmetric expressions for the latter.
As we did when going from eq. to eq. , eq. becomes, under the
shift,

zi+kzj+kz2+k — Zi4kZmikzg = 0. (179)
We can now multiply eq. by a term (24524 x20 ) and use the last equation
to find
(zizg2n) (Zenzmn) 26 — (202m) (Zirn2jn i) 26 = 0,4 (180)
which is now symmetric up to a sign under the shift. We dub these relations the
symmetrized second kind relations.

To describe our Calabi-Yau 3-fold, we start with 2k + 1 variables. From the
equations of the first kind we can express all the z;,; in terms of the z; and zy, fixing
k variables. Then we can use the symmetrized second kind relations to fix k — 2
equations, leaving us with only 3 independent variables. Now, the non-vanishing
holomorphic 3-form €23 is obtained as the Poincaré residue along the CY3 of the
meromorphic (2k + 1)-form in the ambient space C?**+1:

dzy Ao Adze AL A dzg A dzg
ko k-2
(HB HQ¢>
=1 i=1

where the P; are equations of the first kind, while @); are of the symmetrized second
one.

Under the action of the shift, the numerator of the 3-form is multiplied by
(—1)*, since the shift acts on the coordinates exchanging them in pairs. From
the denominator we get a factor (—1)*~2 coming from the symmetrized second
kind equations, cancelling the factor at the numerator and leaving the 3-form
invariant. This means that such orientifold projection does not preserve the same
supersymmetry as the D3-branes.

Let us finish this section working out an explicit example. In the case of dPs,
one has k& = 3, and the holomorphic 3-form is the residue of the meromorphic
7-form.

23 = Res : (181)

dzi A ... Adzg A dzg

(2124 — 28) (2225 — 28) (2326 — 23) (212325 — 222426)

(23 = Res

(182)
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Under the involution, the numerator is multiplied by (—1)*. The first three rela-
tions are invariants while for the fourth one takes a minus sign. In the end, 3
is even under the symmetry, and hence there cannot be any supersymmetric shift
orientifold of dPs.

5.8 Conclusion

In this section we have studied orientifolds on D3-branes at toric CY3 singularities
using dimer models. We established a classification in terms of smooth involutions
of the dimer torus, which allowed us to find the last supersymmetric possibility, the
glide reflection orientifold. This possibility may also be reached by directly per-
forming the orientifold projection on the open string spectrum. A last possibility
existed, a shift orientifold, but it breaks all supersymmetries, as explicitly argued
by studying its action on the holomorphic 3-form. Note that these two cases, not
considered before, leave no fixed loci. This exhausts the possible orientifolds acting
smoothly on the dimer torus.

Given a toric gauge theory and its associated dimer, one may find the projected
theory with the same dictionary as orientifolds with fixed loci. The resulting
theories have properties strikingly similar to non-orientifolded theories.

e Unlike orientifold theories with fixed loci, glide reflection orientifolds are
guaranteed to satisfy the anomaly cancellation conditions for some rank as-
signment. In fact, these theories are non-chiral. This fact is non-trivial, see
[3], and granted by the absence of fixed loci in the glide orientifold that would
give raise to tensor matter that could spoil the ACC. From the geometric
point of view this boils down to the absence of net RR fluxes sourced by
these orientifolds, as there are no fixed loci that can be interpreted as an
O-plane. T-duality sheds further light, since the glide orientifold turns to a
pair of oppositely charged O-planes on a circle, in the sense of [36, [37].

e Again, contrary to intuition, these theories are conformal, as shown by ex-
plicit computation of the one loop S-function, that vanishes identically.

e Some of these theories admit AV = 2 or deformation fractional branes. The
latter trigger a cascade of dualities a la Klebanov-Strassler, with a constant
step that allows for a UV completion purely in terms of field theory. This is
unlike the orientifolds with fixed loci in the literature [44] and opens up the
possibility of a simple supergravity dual.

e The glide reflection orientifold may be understood in the T-dual and mirror
picture, at least for C?/Z,, providing a unifying picture.
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The results of this section close the analysis of orientifolds of brane tilings,
or at least those acting as smooth involutions on the torus. However, one may
consider other kinds of involutions. For example, involutions not respecting the
color mapping presented in section [5.1{ or non smooth involutions, can lead to new
projections of the tiling, different from the usual orientifold. One may also look for
quotients of higher order, in the spirit of what has been done with S-folds [45] [46],
and their connection with dimer models. These directions are yet to be explored.

Orientifolds have found extensive use in phenomenological applications by al-
lowing for non-perturbatively generated superpotentials or opening the door to
SUSY breaking, for instance. We hope our results may shed light in these and
related issues.
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Part 111
Orientifolds in Dimer Models:
applications

6 The quest for a DSB model

As we already reviewed, D3-branes probing a non compact toric CY geometry
have, on their world sheet, degrees of freedom describing, in general, an N = 1
SCFT. The introduction of fractional branes has the property of breaking confor-
mal invariance, triggering a non trivial RG flow. The low energy effective dynamics
depends on the nature of the fractional branes, as explained in section [I.2]

Using fractional branes, of the DSB kind, it was possible to construct theories
admitting supersymmetry breaking behavior at the end of the RG flow. However,
the DSB model is of the runaway type, [47, 15| [4§].

This instability issue was addressed and overcome with the use of orientifold
projections. As opposed to purely geometric backgrounds, orientifolds are known
to allow for a variety of non-generic dynamical effects (see [49] for a review),
including the possibility of lifting massless moduli [50, 51]. Indeed, in [25] two
instances of fractional brane configurations at orientifold singularities reproducing
exactly the matter content of the so-called uncalculable SU(5) DSB model [52]
were provided.

These models stood out as the only D-brane constructions leading to a reliable
stable DSB vacuum, until in [14] it was shown that these DSB vacua were actually
not stable. This happens as one tries to embed the supersymmetry breaking
configuration in a decoupled, UV complete D-brane system (which is realized as a
cascade or, more generally, a large-N gauge theory). Adding N regular D3-branes
to the supersymmetry breaking configuration one can see that a Coulomb branch
runaway direction opens up and the vacuum energy is set to zero, i.e. the lowest
energy state is a supersymmetric vacuum.

The problem of finding stable supersymmetry breaking states in well-defined
string theory set-ups is of course of the utmost importance, both in the context
of string compactifications, in which such configurations arise as warped throats,
as well as in the gauge/gravity duality framework. The evidence provided in [14]
was taken as a negative result and an indication in favor of a new swampland
conjecture, dubbed locally AdS weak gravity ConjectureE]

In this section, we aim at understanding how generic is the situation analyzed

15See [9] for the original idea about the swampland and [10} [IT] for recent reviews, plus refer-
ences therein.
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n [14], by finding more set-ups with a putative DSB vacuum, and then checking
whether they also display some instability towards a supersymmetric vacuum. We
will restrict to toric singularities with an orientifold projection which is necessary,
as argued above, to allow for DSB models on fractional brane configurations.

6.1 DSB vacua and their instability

It is natural to ask first which DSB models have a chance of being engineered with
D3-branes at orientifolded toric CY. Known DSB models are rather specific gauge
theories, and we have to match their properties to the ones of the gauge theories
one can engineer with branes.

We now briefly revise the models discussed in section [3}

SU(5) one family model This model [52] has an SU(5) gauge group and one

GUT-like chiral family H @ O (or in other words 10 ¢ 5). No chiral gauge
invariant can be written, hence it has no superpotential and no classical
flat directions. From arguments based on 't Hooft anomaly matching, its
vacuum is believed to break supersymmetry in a purely strongly coupled
fashion. The supersymmetry breaking vacuum energy density is given in
terms of its dynamical scale, Fuy. ~ A‘éU(S).

3-2 model This other model [53] involves two gauge groups, SU(3) and SU(2) re-
spectively, and one chiral family, resembling the ones of the Standard Model:
under SU(3) x SU(2) matter fields transform as (3,2)®(3,1)®(3,1)® (1, 2).
This model has a number of flat directions, but a cubic superpotential lifts
them all. After taking into account non-perturbatively generated contribu-
tions to the superpotential, it turns out there is a conflict between F-terms
and D-terms so that no supersymmetric vacuum can be found. The actual
minimum breaks supersymmetry dynamically, where now F,. ~ A%U(B) or

AgU(z), depending on which group confines first.

The SU(5) model has a matter field in the anti-symmetric representation, hence
to recover it an orientifold projection is necessary. It turns out that also for recov-
ering the 3-2 model an orientifold is needed. This is related to the fact that the two
matter fields in the (3, 1) representation are set apart by the superpotential. While
in non-orientifolded quivers such pairs of similar fields always come in doublets of
a global symmetry, in an orientifolded theory they can simply be taken apart by
identifying one of the anti-fundamentals of SU(3) as being in the anti-symmetric
representation. Hence, we conclude that in order to recover the basic features of

both the SU(5) and the 3-2 models we need to have an orientifold projection.
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After the orientifold projection, it turns out that, generically, the anomaly
cancellation conditions result in constraints on the various ranks of the form

> ONi=) Ny+4, (183)
i 7'

where the two sums run on two different sets of gauge theory nodes, and strictly
speaking the Ns are not the ranks but the dimensions of the fundamental repre-
sentation of SU(N)[| SO(N) or USp(N) groups (the latter two possibilities being
possible only after the orientifold projection). The imbalance of 4 units in eq.
is due to the orientifold charge, which contributes to tadpole cancellations.

Two simple ways to satisfy eq. are the following. We can take one N; = 5,
one Ny = 1 and all other ranks to vanish, so that the remaining gauge group
is SU(5) x SU(1) or SU(5) x SO(1). The trivial factor actually allows for a
bifundamental between the two nodes to be interpreted as a (anti)fundamental of
SU(5). If the latter also has an anti-symmetric matter field, then the field content
is exactly the one of the SU(5) DSB model.

The other simple solution to eq. is to take one N; = 3, another one
Njz; = 2, one Ny = 1, and again all other factors to vanish, leading to the gauge
group SU(3) x SU(2)/USp(2) x SU(1)/SO(1). The 3-2 model is recovered if
there are bifundamentals linking the three gauge groups, together with a cubic
superpotential term, and in addition an antisymmetric of SU(3) which provides
for the remaining (anti)triplet, necessary for anomaly cancellation.

In some of the examples that we will review below, some additional decoupled
gauge singlets will be present, or even additional decoupled gauge sectors, which
themselves do not break supersymmetry. We will even encounter an example with
two decoupled SU(5) models.

The conclusion we will draw is that there is a sizable number of orientifold
singularities that allow for configurations with a small number of fractional branes
reproducing a gauge theory with a stable DSB vacuum.

After building the DSB model, we will address the problem of its stability
after considering their stringy UV completions. This is achieved adding regular
D3-branes at the CY singularity. This corresponds to increasing by a common
factor IV the ranks of all gauge groups. As one can check, the anomaly cancellation
conditions eq. (183)) are still satisfied. It is then easy to show that because of the
underlying superconformal fixed point of the parent (non-orientifolded) theory, if
one performs scale matching on the node that eventually drives supersymmetry
breaking in the IR, one finds that

A]R = AUV . (184)

16 As usual in quiver gauge theories derived from branes at singularities, we assume that all
the U(1) factors have become free at low enough energies, hence acting as global symmetries.
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In other words, moving the regular D3-branes out of the singularity is still a
flat direction, even in the presence of the fractional branes generating the DSB
vacuum energy. Note that adding regular D3-branes can also be related, in the
models that allow for it, to a duality cascade, though the analysis in the presence
of an orientifold can be subtle, see [44] for a discussion. The upshot is that regular
D3-branes do not destabilize the DSB vacuum.

On the other hand, we anticipate that in all examples of DSB we have found,
a mechanism similar to the one discussed in [14] takes place. I turns out that in
all singularities we will discuss in this section, every time a DSB model can be
constructed, the geometry allow for D3-branes to split into two complementary
fractional branes of the A/ = 2 kind. The latter have a one-dimensional Coulomb
branch that takes them out of the singularity. One can then see what happens
when higgsing the quiver in two steps, putting the two sets of N/ = 2 branes on
their Coulomb branches one after the other. In the partially higgsed configuration,
the scale matching depends on the VEV v related to the position of the first set
of branes. The second VEV v/, related to the position of the second set of branes,
will then compensate the first so that the final scale matching reads

v\
A = (;) Ayv (185)

where « is some model-dependent non-vanishing number. If the two sets of branes
move together as a regular brane, v = v’ and we recover eq. . But if the two
sets split, then we see that for a positive there is a runaway towards a supersym-
metric vacuum with zero energy at v’ = 0 or equivalently v = oo, viceversa for
a negative. We thus conclude that the models are unstable in their UV comple-
tion, because the vacuum energy can be brought to zero by moving in (or out) the
singularity some A = 2 fractional branes.

In the rest of the section we analyze a series of singularities, showing how the
general pattern described above emerges. We also provide a proof that the decay
mechanism related to the presence of N' = 2 fractional branes is general and does
not depend on the specific CY realizing the model.

6.2 The C3/Z; singularity

As a warm-up, let us start considering the (fixed point) orientifold of the orbifold
C3/Zg, already analyzed in [14]. The orbifold action is defined by the Zg acting
on the complex coordinates of C? as

0 : z — e™ig (186)
with 4 = 1,2,3 and v = (1,2,3)/6. The dimer associated to the C?/Z4 orbifold
singularity is reported in fig. [45] including the fixed points with respect to which
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we will eventually take the orientifold projection.

Figure 45: The C3/Zg dimer. The theory is chiral, with 6 gauge factors and 18
bifundamental chiral superfields X;;. The parallelogram is a possible choice of unit
cell. Red crosses represent fixed points under the orientifold action.

From the dimer one can read the field content of the theory as well as the
superpotential which is

W = Xiso + Xz + Xoza + Xosz + Xosa + Xjoa
—Xos2 — Xog1 — X142 — Xoag — Xosz — Xisa (187)

where, for the ease of notation, we have defined Xj,,,,, = X1, Xn X, and X, is
in the (3;,0,,) representation, where [,m,n = 0,1,...,5. Following the general
rules summarized in section [2.4.1] one can see that there do not exist deformation
fractional branes, but only N = 2 fractional branes. For instance, the strip 0-2-4
and its complement 1-3-5, are N’ = 2 fractional branes.

We now perform an orientifold projection via point reflection. The unit cell
has an even number of white nodes hence, following section [2.4.2] we have to
choose orientifold charges with an even number of + signs. A convenient choice
is (+, 4+, —, —) starting from the fixed point on face 0 and going clockwise. The
orientifold projection gives the following identifications between faces

0 < 0 1l <=5 2 <— 4 3 — 3. (188)

The daughter theory has hence gauge group
SO(Ny) x SU(Nyp) x SU(N3) x USp(Ns) (189)

and matter in the following representations

X1 = (00,01) , Xo=(o,02) , X3=(To,03),
Yl == (Dl,Dg) s Yé = (DQ,D3) s Zl = (Dl,ljz)
Zy=(On0s) , W=(0n02) , A=y , S=0y,  (190)
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where the subscript indicates under which gauge group the fields are charged.
Imposing anomaly cancellation condition on the two SU factors we get

No4+ Ny —Ny—Ns+4=0  SU(N)
No+ Ny —No—Ny+4=0  SU(N,)

which is one and the same condition, that is

No+ Ny —Ny—Ny+4=0. (191)

SU(5) model

An interesting choice of ranks compatible with the constraint eq. is Ny =
1, Ny = 0, Ny = 5, N3 = 0. With this choice, the theory becomes exactly the one
describing the uncalculable SU(5) DSB model (the SO(1) becomes a flavor index),
which breaks supersymmetry dynamically in a stable vacuum. The corresponding
quiver is reported in fig. [46|

. . A
Xa :}
sO(1) SU(5)

Figure 46: The quiver of the SU(5) model at the C3/Z orbifold singularity. Matter
fields follow the definitions in eq. [I90] The asterisk refers to the anti-symmetric
representation.

As recently argued in [I4], in the decoupling limit this DSB vacuum becomes
actually unstable. In such limit the effective matter-coupled gauge theory becomes

SO(N +1) x SU(N) x SU(N +5) x USp(N) |, (192)

which actually corresponds to adding N regular D3-branes at the singularity. This
is a much richer theory than SO(1) x SU(5) and it might have, possibly, many
vacua. One should then ask whether in the larger moduli space of there are
instabilities which make the supersymmetry breaking vacuum unstable. This can
be easily understood by scale matching.

The vacuum energy of the putative supersymmetry breaking vacuum will be
~ A*, with A the intrinsic scale of the SU(5) model. The higgsing of the N regular
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branes can be obtained giving a VEV of scale v to the gauge invariant operatorﬂ
O =Tr(X;WY,X1) . (193)

This makes the theory flow to SO(1) x SU(5), namely the DSB SU(5) model.

We can match the UV and IR scales evaluating the § functions of the relevant
SU factor above and below the scale ’UE Note that because the orbifold theory is a
projection of N' = 4 SYM, fundamental fields do not acquire anomalous dimensions
(equivalently, all superpotential terms are cubic). With obvious notation, we have
(here, and in similar formulas thereafter, we omit a factor of 872 for clarity of
exposition)

LI {3(N+5) - % (6N+4)] In (AL) = 13In (L)

9?9U(5+N) uv Ayy
; { (1 3)] X X
= (I5—(=4+=)|In(+)=13In({-) .
95U () 2 2 (A) (A)

Matching the gauge coupling at p = v we get
A=Ayy . (194)

This shows that the effective potential does not depend on the VEV of &, meaning
that regular brane dynamics does not change the nature of the supersymmetry
breaking vacuum and its stability (there is no force acting on the N regular branes).

In fact, it turns out that there exists a different instability channel. This has
to do with moduli associated to A/ = 2 fractional branes, which are massless
classically, but become runaway once non-perturbative corrections are taken into
account. From the dimer in figure [45| we see that a regular brane can be seen as
a bound state of two N/ = 2 fractional branes corresponding to the strips 0-2-4
and 1-3-5, respectively. The classical flat directions correspond to the 2, fixed line
that is left invariant by 6°, see eq. (186)). Locally, this is a C?/Z; singularity. Both
these fractional branes survive the orientifold projection, becoming 0-2 and 1-3

1"Hereafter, we assume that all fields appearing in the gauge invariants have a rank N piece
in the upper left part, to ensure the correct higgsing pattern. If the rank N pieces are all
proportional to the identity, then an SU(NN) diagonal gauge group is preserved. It can be
checked to have N = 4 SUSY to a good approximation, and to decouple from the rest of the
quiver. We will not consider it further.

8The exact B function of SU(N,) supersymmetric gauge theory coupled to chiral matter
fields ®; with anomalous dimensions ~; is 8(872/g%) = 3N, — >, N;T(p;)(1 — ~;), where N;
is the number of fields in the representation p;, and T([J) = % and T(H) = 2(N. —2). The
absence of the denominator with respect to the usual NSVZ expression [54] is due to a choice of
normalization for the vector superfield which differs from the canonical one by a factor of 1/¢2,
as usual in the framework of the gauge/gravity correspondence.
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strips. Note that (135) and (024) are closed loops which represent operators not
present in the superpotential. Hence, their VEVs represent motion along classical
flat directions. In the daughter theory these directions are given by the operatorﬂ

d = Tr(X,AXH? | & =Tr(JY,SY})?, (195)

and we will denote the scale of their VEVs as v and ', respectively. The higgsing
pattern is theﬂ

SO(N +1) x SU(N) x SU(N +5) x USp(N) -
SO(1) x SU(N) x SU(5) x USp(N) - SO(1) x SU(5) . (196)
Above and below the scale v the gauge couplings run as

o [3(1\7 +5) — % (6N + 4)} In (AL> ~13In (L)

2
9su(s+n) uv

1 1 1 f )
= [15—=UN+4)|In|{— | =(13—2N)In — | .
gg‘U(5)N [ 2 ( )} (AN) ( ) (AN

Matching them at pu = v we get

ALY — VAR, (197)
Repeating the same computation above and below the scale v" we have

2 1 _ {15_%(4N+4)} In (%) = (13 —-2N)In <Ai>

9Isu(5)n N N

L e (G m(g) — (k)

9?9U(5)

and in turn A}?_QN = v/ 72N A3 The end result is then

13 AR 13
AP = p Apy - (198)

The potential of the theory, V', is expected to be proportional to the strong coupling
scalﬂ since no superpotential is present nor can be generated. From this fact,

19 Ag before, we assume that the fields in the gauge invariants have a rank N upper left piece,
and we do not consider the decoupled effective N' = 2 diagonal gauge group. Note that the traces
involve squares since Tr(X>AX%) = 0 because of antisymmetry of A, while Tr(JY;SY}) = 0
because of antisymmetry of the USp-invariant J.

20This pattern occurs for v > v/. One can check that the end result does not change when
inverting the order of the two scales.

21Tt is expected to scale as V = |A[%.
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we see that the DSB vacuum is unstable. Indeed There exists a one-dimensional
supersymmetric moduli space sitting at v = 0 and parametrized by v. Indeed,
one can estimate the minima of the potential in a (v, v") plane and check that any
point at v,v" # 0 is driven to the v = 0 axis. The gradient flow is reported in

fig.

S
WONON Y R Y
VV‘
. Y
‘‘‘‘‘‘‘‘‘‘
NN \

N N
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N

Figure 47: Plot of —Grad(V) as a function of v and v’. The flow goes towards v' =
0, suggesting that the system, eventually, relaxes to a supersymmetry preserving
vacuum at finite distance in field space.

In principle, one might try to obtain the SU(5) by a different UV completion.
For instance, one can add to the DSB configuration M fractional branes populating
the second and fourth gauge factors only, corresponding to the strip 1-3-5 in the
mother theory, which becomes 1-3 after orientifolding. The theory in this case has

gauge group
SO(1) x SU(M) x SU(5) x USp(M) . (199)

This configuration does not change much the fate of the DSB vacuum. Previ-
ous analysis shows that, lacking one modulus, v in our conventions, the one-
dimensional moduli space of supersymmetry preserving vacua becomes an isolated
vacuum. This agrees with known field theory results [55]: the SU(5) factor has
extra vector-like matter and the theory does not lead to a supersymmetry breaking
vacuum to start with.

If one instead populates nodes 0 and 2, Ng = M, N; =0, Ny = M +4,N3 =0
which in the mother theory corresponds to adding M N = 2 fractional branes
associated to the strip 0-2-4, the theory has a runaway direction associated to v.
Note that this last system has the same gauge and matter content of a known,
stable, DSB model [52, [55], but it lacks a crucial cubic term in the superpotential
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whose effect is indeed to stop the runaway associated to v. The special case M =1
is the only stable DSB model (our original brane construction, in fact).

To sum up, the C3/Z4 singularity does admit fractional brane configurations
whose low energy open string dynamics enjoys stable DSB vacua. However, once
coupled to regular branes, the supersymmetry breaking vacuum becomes unstable
towards supersymmetry preserving ones. The C3/Z4 singularity can be embedded
into a larger singularity which admits deformation branes [56] and, as such, a
cascade (dual to a warped throat [57, 58, 59]). So the above analysis suggests
that, at least within this construction, it is not possible to embed the SU(5) DSB
model into a warped throat keeping it stable [14].

3-2 model

Looking at eq. one can see that another possible anomaly free rank assignment
is given by Ny = 1, Ny = 0, Ny = 3, N3 = 2 which corresponds to the following
gauge theory

SO(1) x SU(3) x USp(2) . (200)

Using the fact that USp(2) = SU(2) and that for SU(3) H= 0, from eq. {190 we
see that the matter content is

Xy = (0o,02) = D, X3 = (0o,03) = L,
Yy = (0p,03) = Q, A=0,=T, (201)
with tree level superpotential
W = DQL . (202)

This reproduces exactly the DSB 3-2 model [53]! The corresponding quiver is
reported in figure 48]

Again, one could ask what is the fate of this DSB vacuum in the full theory. In
the present model, we have to perform the scale matchings on the gauge group that
is most strongly coupled, since the DSB vacuum energy will be expressed in terms
of its dynamical scale. We start by considering a regime where supersymmetry
breaking is driven by the non-perturbative contributions in the SU(3) gauge group
[17].

As in the SU(5) model, upon adding regular branes and higgsing them, the
vacuum shows no instability. Indeed, giving a VEV to ® = Tr(X;WY2X}), the
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Figure 48: The quiver of the 3-2 model at the C3/Zg orbifold singularity. Matter
fields follow the definitions in eq.[I90} Arrows are indicated only when needed (for
USp(2) = SU(2) the fundamental and anti-fundamental are equivalent represen-
tations). The asterisk refers to the anti-symmetric representation, as in fig. |46

gauge coupling running above and below the matching scale is

1 ; 5
— = [3(N+3)—=(6N+4)|In| — | =T7In | —
9??U(3+N) { ( ) 2 ( )} (AUV Ayy

1 o)) - (3)
= 9—(=+=-+1||In{—|=7"Tn(— ],
gg‘U(3) { (2 2 >] (A3 As

and hence A = Ayy.
However, the theory has N' = 2 fractional branes, and following the same
two-steps higgsing pattern as before, namely

SO(N +1) x SU(N) x SU(N +3) x USp(N +2) —
SO(1) x SU(N) x SU(3) x USp(N + 2) - SO(1) x SU(3) x USp(2) (203)

we get, above and below the scale v
! [3(N+3) 1(6N+4)}1 ( a ) 71 ( K )
- — - n - — n -
g?qU(g_,_N) 2 Apy Ayy

1 1 P 7
= [9— (AN +4 1n(—)=7—2N 1n<—> ,
95U(3)n { 2 ( )} Ay ( ) Ay

and, at scale v/

ggUl(:a)N - {9 - % (4N + 4)} In (ﬁ) =(7T—2N)In (ﬁ)

; 3 Iu) <M)
— o (z4-41){m(E)=rm (L),
g%U(iﬁ) { <2 2 )] <A3 As




which gives in the end

UI 2N
A = (;) Ay (204)

We can now repeat the analysis when the supersymmetry breaking dynamics
is driven by the strong coupling scale of SU(2). We have

S {S(N;4>—%(3N+4)] 1n<AL>=41n(AL)

2
JUSp(N+2) uv uv

: +3)| (£ = ()
= 16— (42} | m (L) =am (L),
It sp(2) { <2 2)} (A2 Ay

and hence Ay = Ay by higgsing the N regular branes. Along the N' = 2 directions
we get instead the matching

LI {3M BN+ 4)1 In (L> —41n <L>
5y 2 2 Ayy Ayy

m - {3%_%”*44 1ﬂ(&) =(4+N)1n(ﬁ)

at scale v and

L {3(N+4) —1(N+4)] In (i) :(4+N)1n(i)

g2USp(2+N)N 2 2

1 1 3 1 "
o () () <am(2).
953;;(2) [ (2 2 ) } Ay Ay

at scale v’. The final relation one gets between the UV and IR scale is now

4 vANN
AL = (U—> AL (205)
This result is analogous to the one obtained before (even though the roles of v and
v" are exchanged). We conclude that the Coulomb branch is unstable and it is so
independently of the regime in which the 3-2 model finds itself.

6.3 The PdP4 singularity

We now want to consider a different model, based on the pseudo del Pezzo 4
singularity, PdP4 for short. We choose, for definiteness, the phase I, following
the conventions of [60], where pseudo del Pezzo singularities were introduced. The
dimer is depicted in figure fig. [49]
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Figure 49: PdP4 dimer. Red crosses represent fixed points under the orientifold
action.

As for the orbifold model, from the dimer one can extract the field theory
content and the corresponding superpotential, which now reads

W = Xisa3 + Xsrs + Xieaz + Xsore — Xise — Xveas — Xsaor — X536, (206)

with by now familiar index conventions. Note that the superpotential admits also
quartic terms now, implying that (some) fundamental fields have large anomalous
dimensions. This is related to an important qualitative difference with respect
to the previous example. In this model there exist deformation fractional branes,
together with N' = 2 ones. For instance, the strip 1-3-5 is a /' = 2 brane, while
2-6 and 1-2-5 are two different kinds of deformation branes.

Upon point reflection with charges (4, —, 4, —) starting on the fixed point on
face 5 and going clockwise, we get the following identifications between faces

1 < 3 2 —= 7 4 <= 6 b < 5. (207)

The daughter theory has hence gauge group

SO(N5) x SU(Ny) x SU(Ny) x SU(Ny) , (208)
and matter in the following representations
X1 = (01,05), Xy = (05, 02), Xy = (Os,04),
Y1 = (O4,01), Yy = (04,02), Z = (Oa,04),
A =, Ay =, Sp=0T0, . (209)

The anomaly cancellation conditions for the three SU factors are

N2+N1—N5—N4—4:O SU(Nl)
Ns+ Ny — Ny — N +4=0 SU(Ny)
N5—N1—N2+N4+4:0 SU(N4)
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which is the unique condition

Ni+Ny—Ny—Ns—4=0. (210)

SU(5) model

The constraint eq. allows to obtain an effective SU(5) DSB model, as for the
theory studied in the previous section, by choosing N5 =1, Ny =5, Ny = N, = OH

We can now proceed as for the orbifold C3/Zs and add to the aforemen-
tioned DSB brane configuration N regular D3-branes, which change the theory
to SO(N + 1) x SU(N 4+ 5) x SU(N) x SU(N) (with the corresponding matter
and superpotential terms).

As already noticed, differently from the orbifold case, where the tree level
potential of the parent theory contains only cubic terms, and hence the anomalous
dimensions of all fields are zero, in this model we have both cubic and quartic
terms, and so we have to take into account non-trivial anomalous dimensions. We
can compute such anomalous dimensions in the parent theory. They are fixed by
populating the dimer with regular branes and imposing vanishing 8 functions and
R-charge equal 2 to all superpotential terms (in the present case this corresponds
to 7+8=15 equations).

The symmetries of the dimer help in simplifying the system one has to solve.
In particular there exist three Z, symmetries acting on faces as 2 <» 3, 1 <> 7
and (4,1,2) < (6,3,7), respectively. Using these symmetries the number of in-
dependent anomalous dimensions is just 5 which gives back only 4 independent
equations one has to solve, implying in the end a solution with one unfixed modu-
lus. This can be fixed by a-maximization [61] giving finally, for the fields eq. ,
the following result

2 2 4
7X1 - 57 ,yXQ = 57 /yX4 = _gv
4 4 4
v = _gu Ty, = _57 Yz = _gu
4 4 2
YA = _ga YAy = _gv Vs, = g ) (211)

where A; = 1 + %%. The orientifold projection may provide 1/N corrections to
these anomalous dimensions, as fractional branes similarly do. Here and in the
following, we will consistently neglect both of them.

We can now proceed as in the previous example by adding N regular branes to
the DSB system, higgsing and doing scale matching. The gauge coupling associated

22We note that there is also the configuration Ny = 1, N; = 5, No = N5 = 0 that leads to a
SU(5) DSB model, with the extra decoupled singlet S4. The analysis goes through very similarly.
Further interchanging the roles of nodes 1 and 2 provides two more trivially equal examples.
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to face 1 above and below the scale v of the VEV of the gauge invariant operator
¢ = Tr(X,Y>2ZX;) runs as

1 N+1 2 N 4 N 4
- = {3(N+5)—<—(1——>+—(1+—>+—(1+—)+
IEusen) 2 5 2 5 2 5

? <1+§) )} In (ALUV> —12In (A%)
() )

9?9U(5)

Matching the scale at = v we get
A=Ayy . (212)

Again, the matching of the two scales is exact, i.e. A does not depend on v.

Let us now investigate other possible decay channels. In the parent theory, a
regular brane can be seen as a bound state of a N/ = 2 brane associated to the strip
1-3-5 and its complement, 2-4-6-7. Upon orientifolding these two fractional branes
become a 1-5 and a 2-4 strips, respectively. We can see that also in this theory,
after the orientifold projection, the two types of N' = 2 fractional branes behave
differently, one leading to a supersymmetric vacuum and the other triggering su-
persymmetry breaking into runaway. The details are similar to the orbifold case,
and we refrain to repeat the analysis here. The end result, after scale matching, is

N N
v 5
AP = (-) Ay (213)

The dynamics is qualitatively the same as for the C3/Zs case. The theory enjoys
a one-dimensional moduli space of supersymmetry preserving vacua at v' = 0,
parametrized by v.

3-2 model

Also this orientifold admits a 3-2 DSB model. Indeed, a different rank assignment
which satisfies the anomaly cancellation condition is N5 = 1, Ny = 3, Ny = 2, N, =
0 which gives a SU(3) x SU(2) x SO(1) gauge theory with matter content

Xi = (01,05) = D, Xy = (05,02) = L, ) Z = (02,h) = Q,
Alzglzv, AQZHQZS, (214)

where we used again that the two index antisymmetric representation of SU(3) is
equal to the antifundamental, and that the two index antisymmetric of SU(2) is
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actually the singlet representation. The matter content is precisely the one of the
3-2 model (up to a decoupled singlet S) and, from eq. [206 one can also see that
the only term surviving in the superpotential is precisely

W = DQL . (215)

As for the SU(5) model, the addition of regular branes does not destabilize the
DSB vacuum. As before, however, the theory has N' = 2 fractional branes, which
eventually do destabilze the vacuum, as in the orbifold case. In particular, it is
possible to show, by scale matching, that the strong coupling scale which controls
the DSB vacuum energy (As of the SU(3) factor or Ay of the SU(2) factor) is
affected by the higgsing procedure and the vacuum energy relaxes to zero. The
scale matchings give, in the two cases

6 AN 6 3 v\ N 3
A3: (;) AUV7 AQZ(&) AUV (216)

which, again, show that the vacuum is unstable, eventually.

The PdP4 case is different from the previous orbifold case in that it has a
natural warped throat UV completion. Indeed, it contains deformation fractional
branes, so that the parent theory admits a cascade of Seiberg dualities. For in-
stance, in the conformal case, N; = N for any 1, it is straightforward to show that
starting from node 1 and following the sequence 1 -2 -4 -5 —-6 -7 — 3
we get back to the starting point. Then, if we add M (deformation) fractional
branes on nodes 1-2-5, we trigger a cascade. Performing the previous sequence six
times, we find that the number of regular branes is diminished by seven times the
number of fractional ones

(S ]

SUl(N,—f‘M) X SUQ(N,+M) X SU3<N,)><
SU4<N/) X SU5(N/+M) X SUﬁ(N/) X SU7(N/>

where N’ = N — 7M. Upon orientifoldingﬂ the fractional brane configuration
that could give rise to the one containing the 3-2 model discussed above should in
fact be

Ns=1+42M N, =3+M No=2+M N, =0, (217)

which is indeed compatible with the anomaly condition eq. 210, This can be
seen in the parent theory as a bound state of M fractional branes 1-2-5 and M
fractional branes 3-5-7, both of deformation type, one mirror of the other through
the orientifold projection. Now, however, this superposition of deformation branes

23Gee again [44] for the subtleties of performing a duality cascade in an orientifolded theory.
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can be alternatively seen as being composed of two sets of N’ = 2 fractional branes,
1-3-5 and 2-5-7, whose Coulomb branch survives the orientifold projection. A
straightforward repetition of the scale matchings previously discussed shows that
even this different UV completion has a Coulomb branch instability, eventually.

6.4 Other DSB set-ups

In this section we want to generalize the previous analysis and show that the DSB
SU(5) and 3-2 models arise in a large class of CY orientifold singularities, either C3
orbifolds or Pseudo del Pezzo’s, of which previous examples are protoypes. As we
will see, in all these models the same instability channel displayed above emerges.

6.4.1 del Pezzo singularities

We start focusing on non-orbifold singularities, like the one discussed in section[6.3]
and limit ourselves to toric CY’s whose dual gauge theories admit at most eight
gauge factors. The complete list of corresponding toric diagrams and dimers can
be found in [62], to which we refer for details.

Most of these singularities are obtained as blow ups of del Pezzo singularities.
Toric CYs at del Pezzo singularities are complex cones over del Pezzo surfaces dPn
withn =0,...,3 [21]. By blowing up at smooth points of the del Pezzo one obtains
larger CY singularities, dubbed Pseudo del Pezzo’s, following the terminolgy of
[60]. The blow up corresponds to unhiggsing in the dual field theory.

Within this class, we list below those singularities which, after suitable orien-
tifold projection, admit an anomaly free rank assignment giving a SU(5) or 3-2
dynamical supersymmetry breaking model.

For each singularity we present the dimer, including the unit cell and the
orientifold action. Orientifold charges are reported as a string of plus and minus
signs with the following conventions. For point reflection, by starting from the
bottom left corner of the unit cell and going clockwise. For lines, the first sign is
for the central line and the second for the one on the edge of the fundamental cell.
We also present the gauge group and the matter content of the orientifolded theory,
the anomaly cancellation conditions (ACC) for the SU gauge factors and the rank
assignment leading to interesting DSB configurations (as far as the 3-2 model, it is
understood that also the correct cubic superpotential term is reproduced). Finally,
for each singularity, we indicate the Coulomb branch directions whose quantum
dynamics we have analyzed, following the two-steps Higgsing pattern discussed in
previous sections. For the sake of clarity, these are indicated in terms of faces of
the dimer after the orientifold action has been taken into account. Our end results
are summarized in the table below.
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SU(5) model

3-2 model

PdP3,

@)

PdP3(line)

PdP3(point)

PdP4,

PdP5

PdP5,

PdpP5,

o|o|lO|O|O|O|O]|O

X|X|X|X]o|X]|X

PdP5),

- Gauge group:

SO(Ny) x USp(Ng) x SU(N3) x SU(Ny)

- Matter content:

- ACC:

Xl — (Dlal:‘?))y
)/1 - (D47D1)7
Z4 2547

{N4—N1+N2—N3—4:0

- DSB configurations:

Xy = (O3,02),
)/2 - (D27E|4)7
§3 :E\_jg.
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Figure 50: PdP3. dimer with orientifold points.

SU(N3) and SU(Ny)

(218)

(220)



SU(5) model: Ny =1, Ny =5; N3 =1, Ny =5 gives an additional singlet,

Ss.
3-2 model: N1 = 1, N2 =2 and N4 = 3.

- Coulomb branch directions:

o PdP3, (+, —)

Figure 51: PdP3, dimer with orientifold lines.

- Gauge group:

SO(N1> X USp(Ng) X SU(Ng) X SU(N4)

- Matter content:

Z = (0y,0,), X1 = (01,03), Xy = (03,02)
V - (D37D4)7 }/2 - (547D2)7 }/l - (D17D4)7
§4 :D_:|47 A3 _53

- ACC:

{Nl CNo+ Ny~ N, —4=0  SU(Ns) and SU(N,)

- DSB configurations:

(221)

(222)

(224)

SU(5) model: N3 =5 and Ny = 1. This model has an extra singlet due to

the symmetric tensor of SU(Ny), §4.

24Nz =5 and Ny = 1 is not a valid configuration since N, being related to a USp group, has

to be even.
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- Coulomb branch directions:

3-4, 1-2 (225)

Note that this is the only example we found of a line orientifold admitting
an anomaly free rank assignment leading to a DSB configuration.

PdP3, (+,—,+,—)

Figure 52: PdP3, dimer with orientifold points.

- Gauge group:

SU(Ny) x SU(N3) x SU(N5s) (226)
- Matter content:
Z = (05, 0s), X1 = (01,03), Xo = (01,005)
Y1 = (03,01), Yy = (0s,01),
S, =T, A, =H,,
Ss = s, Az = 93. (227)
- ACC:
{Ns=Ns—4=0  SU(N.), SU(Ny) and SU(N) (228)

- DSB configurations:

SU(5) model: N3 =5 and N5 = 1. This model has an extra singlet due to
the symmetric tensor of SU(Nj), Ss.

- Coulomb branch directions:

3-5, 1 (229)



Figure 53: PdP4, dimer with orientifold points.

o PdP4, (—, —,+,+)
- Gauge group:

SU(Ny) x SO(Ng) x SU(N3) x SU(Ny) (230)
Matter content:
X = ([a,01), X3 = (0g,03), Xy = (4,02)
Y1 = (0s,01), Yo = (01,04), Zy = (Os,04),
Zy = (04,03), Zs = ([4,03),
4, =, Sy =T, A =H,. (231)

- ACC:
{Mi=No =Ny + Ny—4=0  SU(N)), SU(N3) and SU(Ny) (232)

- DSB configurations:
SU(5) model I: Ny =5 and Ny = 1; equivalently Ny =5 and Ny = 1.

SU(5) model I1I: N; = 5 and N3 = 1. This model has an extra singlet due
to the symmetric tensor of SU(Ns), Ss.

3-2 model: Ny =3, Ny =1 and Ny = 2. There is again an extra singlet due
to the antisymmetric tensor of SU(Ny), A4. The roles of nodes 1 and 4 can
be interchanged, providing another equivalent model.

- Coulomb branch directions:

1-2, 3-4 (233)



Figure 54: PdP5 dimer with orientifold points.

e PdP5 (—,+,+,—)
- Gauge group:

- Matter content:

Xy = (04,05), Xy = (05,06), X3 = (04,06)
Xy = (O2,1), X5 = (0q,05), Xe = (O2,0s),
A2 = HQ; S6 = Djﬁ; S5 = D:I57 Al = l31 ) (235)

- ACC:

N1 -+ N2 — N5 - N6 —4=0 SU(Nl) s SU(NQ) s SU(N5) and SU(NG)
(236)
- DSB configurations:

SU(5) models: Ny =5or Ny =5 and N5 = 1 or Ng = 1. In all configurations
there is an additional singlet arising from the symmetric representation at
nodes 5 or 6.

Note also that in this model it is straightforward to exclude the existence of
a 3-2 model, since the superpotential is purely quartic.

- Coulomb branch directions:

, 2—0 (237)
As a side remark, note that PdP5 is actually an orbifold of the conifold, hence
it inherits some of its features, such as all anomalous dimensions being equal

to v = —1/2. This makes the scale matching simpler to check.
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Figure 55: PdP5, dimer with orientifold points.

e PdP5, (+,—,—,+)
- Gauge group:
- Matter content:
X = (O1,09), Xy = (O1,04), X3 = (01,05),
Y: = (04,09), Y, = (0z,05), Zy = (04,05),
Zy = (Os,4), Zs = (O4,05),
Ay ZHh S5 = [, Sy =y, A4:H4 . (239)

- ACC:
{Mi=No— N+ Ny—4=0  SU(N)), SU(Ny), SU(Ny) and SU(N5240)

- DSB configurations:

SU(5) models: N3 =5 and Ny =1, or Ny =5 and N5 = 1, or Ny = 5 and
Ny = 1. They all include a singlet related to the symmetric of the SU(1)
node.

- Coulomb branch directions:
, 4-5 (241)
This exhausts Pseudo del Pezzo’s properly defined. Below we consider two

more models in the list reported in [62] (corresponding to the toric diagrams 15
and 16 of their table 6, respectively).
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Figure 56: PdP5! dimer with orientifold points.

® PdP5iz (_>+a+a_)
This singularity can be obtained by unhiggsing PdP3..
- Gauge group:

SU(Ny) x SU(N3) x SU(Ny) x SU(N5) (242)
- Matter content:
X, = (@s,04), Xo = (O4,04), X3 = (05,04)
Yl == (53755)7 Y2 == (54753)7 Zl == <i57|:|4)7
Zy = (04,05), Zs = (04,05)
A= Hh S5 = s, Sy = 13, Ay = 54 ., (243)

- ACC:

%W—A@—NHJ%—4:O SU(Ny) and SU(N;) (244)

Nl—N3+N4—N5—4:0 SU(N4) andSU(N5)
leading to N1 = N3 + 4, N4 = N5.
- DSB configurations:

SU(5) model: N; =5 and N3 = 1. There is an additional singlet given by
S3.

- Coulomb branch directions:

1-3, 4-5 (245)



Figure 57: PdP5; dimer with orientifold points.

hd Pdp‘%) (_7+7_7+>
This singularity is again an unhiggsing of PdP3..
- Gauge group:

- Matter content:
Xy = (01,09), Xo = (O4,04), X3 = (01,03)
}/1 = (52753)7 }/2 = (54752)7 Z = (D47D3)7
A= Hl; Ay = Hz, S3 =13, Sy=04, (247)

- ACC:

(248)

Nl—N2+N3—N4—4:O SU(Nl) andSU(N4)
N1+N2—N3—N4—4IO SU(N2) andSU(Ng)

leading to Nl = N4 + 4, N2 = Ng.
- DSB configurations:
SU(5) model: N; =5 and N, = 1. We have again the additional singlet .

- Coulomb branch directions:

, 2-3 (249)

One can continue the unhiggsing process and look for more and more singu-
larities admitting fractional brane configurations described by SU(5) or 3-2 DSB
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models at low energy. The procedure is easy to understand from the point of view
of toric diagrams and we refer the interested reader to [62].

The above analysis shows that the DSB SU(5) and the 3-2 models are not spe-
cific to the PdP4 example discussed in section but actually arise in a large (in
principle infinite, see above comment) class of (blown-up) del Pezzo singularities,
sensibly enlarging the landscape of D-brane configurations enjoying a stable DSB
vacuum at low energy.

Similarly to the PdP4 case, one can then ask what is the fate of these vacua in
a large N completion. As anticipated, one can show that the Coulomb branch di-
rections we have indicated and that all these singularities possess, become runaway
at the quantum level, and the true vacua are in fact supersymmetric.

6.5 Orbifolds

In this subsection we want to generalize the analysis of section and present
other instances of (orientifolds of ) C* orbifold singularities displaying DSB models.
The corresponding dimers can be obtained from the hexagonal tiling of C* with
algorithms that can be found in [63]. We report below a scan of both C3/Z,, and
C*/Z, x Z, orbifolds.

6.5.1 Orbifolds C?/Z,

Following the same logic of the C?/Z, case, we extended our analysis to higher
orders of the cyclic group Z,,. DSB models can again be found for some orientifold
projections. Interestingly, no DSB models were found for n odd. We summarize
our scan for n as large as 30 in the table below.

Action on C3 | SU(5) model | 3-2 model
Zs | (1.25) 5 X
212 (1,4,7) o X
Zw | (1,10,19) 5 X

In the above table, a triplet (i, j, k) refers to an orbifold action defined as
0 : z — Wiy (250)

with w = (a, b, ¢)/n, where a + b+ ¢ = n. It turns out that a necessary condition
for allowing interesting DSB models is to focus on orientifold point reflection with
two points on top a face. This has the effect of giving an orientifoled theory with
two SO/USp gauge factors and (n — 2)/2 SU factors as

SO/USp x SU x --- x SU x SO/USp . (251)

Let us summarize the specific features of each case.
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Figure 58: C?/Zg dimer with orientifold points.

Z8 (+7 ) +7 _)
- Gauge group:

- Matter content:

- ACC:

(04,03), (O1,04),
(5271:'5)7 (D27D3)7
(Os,04), (04,05),

Ny + Ny —2N3 — Ny + N5 —4=0

Nl—N5:0

NI—N2—2N3+N4+N5+4:0

leading to NQ = N4 + 4, N1 = N3 = N5.

- DSB configurations:

H, . (253)

SU(N>)
SU(Ny) (254)
SU(Ny)

SU(5) model: Ny =5 and Ny = 1, with an additional singlet at node 4.

- Coulomb branch directions:

212 (_7 +7 B +)

24, 1-3-5
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Figure 59: C*/Z, dimer with orientifold points.

- Gauge group:

USp(N1> X SU(NQ) X SU(N3) X SU(N4) X SU(N5) X SU(NG) X SO(N7)

(256)
- Matter content:
(Dlvl:‘?)v (D17D5)a (DbiG)? (D27D4)
(52755)7 <D27D7)7 (527]:'6)7 (D27D3)
(O3,04), (O3,06), (Os,07), (Os,04)
(04,05), (O4,06), (O4,05), (Os,06)
(567D7)7 3 l:\_:|5' (257)
- ACC:
(Ni+ Ny—= N5+ N:—Ng— N3 =0 SU(N>)
No —2N4+ Ng—N;+N;3—4=0 SU(N3)
No— Ng=0 SU(Ny) (258)
Nl—N2+2N4—N6—N5—4:O SU(N5)
\NI—NQ—N3+N4—N5+N7:0 SU(N(;)

leading to NQ = N4 = N67 N1 = N5 + 4, N3 = N7 + 4.
- DSB configurations:
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SU(5) model: N3 =5, N; =1 and N; = 4. This is actually an anomaly-free
SU(5) x USp(4) gauge theory, with matter charged under the SU(5) factor
only. The USp(4) pure SYM condenses leaving exactly the uncalculable
SU(5) DSB model at low energy.

- Coulomb branch directions:

3-7,1-5, 2-4-6 (259)

Z3O

Due to the large order of this orbifold, we will refrain from listing all its
characteristics (and displaying the dimer), but just comment on the outcome.

Upon orientifolding, the gauge group reduces to sixteen gauge groups and
the ACC allows for the following choice of non-vanishing ranks

SO(1); x SU(5)e x SU(4)3 x SU(4)4 x SU(4)5 x USp(4)s , (260)
with matter content
Q = (01,02), X = (04,03), Y = (05,04),
Z = (Os,05), A=,, (261)
and tree level superpotential
W=YXZ. (262)

Each SU(4) factor has four flavors and they all condense on the baryonic
branch. Supposing that, say, SU(4)s condenses first, the superpotential be-
comes a mass term for the meson M = X Z and the field Y, which can then
be integrated out. The remaining two SU(4)s become pure SYM at low
energy and condense, too, leaving again a DSB SU(5) model at low energy.

The analysis for orbifolds of order higher than 30 is more complicated, hence

we stop our scan at this level. We just mention that, for instance, a Z,q orbifold
seems to possess an SU(5) DSB model configuration, though it comes together
with a decoupled sector involving 6 more gauge groups. A preliminary analysis
suggests that the extra sector eventually confines in a supersymmetric vacuum,
but a detailed analysis is clearly beyond the scope of the present scan.

All above examples have also the usual Coulomb branch instability that desta-

bilizes the DSB vacua. Being orientifolds of orbifolds, all anomalous dimensions
vanish and it is a simple exercise to check that the scale matchings lead to a
dependency on the VEVs in the DSB vacuum energy.
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6.5.2 Orbifolds C3/Z, x Z,

One may also consider the product of cyclic groups, i.e. the Z, x Z, orbifold action.
Also within this class, at least within our scan, one can find DSB SU(5) models
as well as 3-2 models. The end results, for some of the cases we have analyzed,

are summarized in the table below.

Action on C3 | SU(5) model | 3-2 model
Zo X Zy | [(0.1,1),(1,0,3)] o x
Z3 x Z3 | [(0,1,2),(1,0,2)] o o
Zy x Zg | [(0,1,1),(1,0,5)] 00 X

Starting from C3, the orbifold action is now defined by two triplets, corre-
sponding to Z,, and Z, actions, respectively, both defined as eq. . Similarly,
following the conventions of [63], to which we refer for details, faces in the dimer
have a double-index notation associated to the two independent orbifold actions.

From the dimer one can look for suitable orientifold projections and DSB
anomaly free rank assignments. Again, in all cases a Coulomb branch runaway
direction is present as soon as one tries to embed the D-brane configurations in a

large-N theory.

In the following we list the properties of each case.

[ 22 X Z4 (—,+,

_’+)

Figure 60: C3/Zy x Z4 dimer with orientifold points.
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We denote the surviving faces by ¢ = (1,4) with i =1...4.
- Gauge group:

SU(Nyp) x SU(Ny) x SU(N3) x SU(Ny) (263)
- Matter content:
(Cy,02), (Cy,03), (T4, 04), (Cy,02)
(O1,09), (Os,03), _(52,54), (O3,04)
O304, @304, i, o s Ha.  (264)

- ACC:

N1 —|—N4 — N2 — N3 —4=0 SU(N1>, SU(NQ), SU(Ng) and SU(N4)
(265)

- DSB configurations:

SU(5) model: Ny =5 and N3 =1, or Ny = 5 and Ny = 1. Both models
have an additional singlet at nodes 3 or 2, respectively.

- Coulomb branch directions:

1-3, 2—4 (266)

L4 Z3 X Z3 (_7_)+a_)

Figure 61: C*/Z3 x Z3 dimer with orientifold points.
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We denote the surviving faces as follows

1=(1,1) < (2,2) 2=(1,2) <= (2,1)
3=(1,3) < (2,3) 4=(3,1) < (3,2) (267)
5=(3,3)
- Gauge group:
- Matter content:
(O1,02), (O1,05), (O1,04), (D1,05)
(01,002), (O2,003), (O2,004), (O2,004)
(D2ﬁi3)v (Di’nD‘l)a (E3>D5)7 (i4,D5),
H,, Hs, H, . (269)

- ACC:
Nl — QNQ + Ng + N4 — N5 —4=0 SU(Nl) s SU(Ng) and SU(N4) (270)

while the ACC on SU(Ns) is trivially satisfied.
- DSB configurations:
SU(5) models: N5 =1 and either Ny =5, N3 =5 or Ny = 5.

3-2 models: Ny = 3, N3 = 2 and N5 = 1, and any other permutation of
nodes 1, 3 and 4. There is an additional decoupled singlet related to the
antisymmetric at the SU(2) node.

- Coulomb branch directions:

1-5, 2-3—4 (271)

Z2 X Z6 (_7_7+a+)

Upon the following face identifications

1=(1,1) < (2,2 2=(1,3) < (2,6)
3=(1,5) < (2,4) 41=(1,2) < (2,1) (272)
5=(1,6) < (2,3) 6=(1,4) < (2,5)
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Figure 62: The dimer of the orbifold C3 /Zy x Zg with orientifold points.

the gauge group is H? SU(N;) with matter in the following representations

(D17D2)7 (D27E|3)7
(E‘lamf))v (DSaD3)a
(EQ7D4)7 <i47]:|1>7
(d2,05), (02,05),
Bla 3

The ACC reads
NQ—N5—|—N4—N1+4:O
NQ—N5+N6—N3+4:O
Nl—Ng—N4+N6:0

(04,05) (

(O3, 06) (C6,02)

O1,04), G104,  (273)
(O3, 06) (O3, 06)

SU(N;) and SU(Ny)
SU(N3) and SU(Ng) . (274)
SU(Ny) and SU(Nj)

The solution to the ACC allows for a choice of ranks leaving a non-anomalous

theory with gauge group

SU(5), x SU(1); x SU(5)s (275)
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and matter content given by
X: (Dl,l:‘g), Al :Hl, Y: (ig,ig), AQIHQ<276)

We then end up with two decoupled SU(5) DSB models. Since we now
have two independent contributions to the vacuum energy, one could think
that the different higgsing scales can conspire in a non-trivial way, possibly
leading to a non-zero minimum.

Again, higgsing by regular branes does not destabilize the supersymmetry
breaking vacua. Performing the following (three steps, now) N’ = 2 brane
higgsing pattern

SUB+ N); x SU(1+ N)y x SU(B+ N)3g x SU(N)y x SU(N)5 x SU(N)g
5 SU(5)y x SU(1+ N)y x SU(5+ N)3 x SU(N)s x SU(N)g

5 SU(5)1 x SU(L+ N)y x SU(5)3 x SU(N)s
2 SUB), x SU(L)s x SU(5);

we get instead the following scale matching

13 v\ 13 13 v\ 13
AI,IR: " A1,Uv and A3,IR: o A3,UV7 (277)

for the two SU(5) factors, respectively. The potential hence scales as

4 4
N N/13 V" N/13
) ()

When trying to minimize the potential with respect to v, v and v”, the
minimum is reached at v” = 0, and it is a supersymmetry preserving one.
In other words, there is no compensation between the two factors in the
potential, as one could have in principle hoped for.

+ (278)

This ends the list of examples we wanted to present. As anticipated, in all
orbifold models we have discussed, similarly to the models of section [6.4.1] the
supersymmetry breaking vacua are destabilized once one tries to embed the DSB
configurations in a large N theory. As one can easily check, the mechanism is
again the same: while regular branes correspond to exact flat directions, N' = 2
fractional brane directions become runaway once the dependence of the vacuum
energy on the Coulomb branch modulus is taken into account.
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6.6 A no-go theorem and how to avoid it

In previous sections we presented several models which allow for brane configura-
tions giving DSB vacua, both at orbifold and del Pezzo-like singularities. However,
when properly UV completed, all models include runaway directions, associated to
N = 2 fractional branes, which destabilize the non-supersymmetric minima. One
might wonder whether it is possible to get rid of such an ubiquitous instability
channel.

The first question one could ask is under which conditions the dangerous
Coulomb branch direction can remain flat at the quantum level. In order for
this to hold it suffices that the coefficient o in eq. eq. vanishes

a=0. (279)

Let us then see if this can happen. Let us start considering the gauge theory prior
to the orientifold projection. Generically, if considering N regular D3-brane at the
singularity the theory is a SCFT and all 8 functions vanish, that is for each gauge
factor the following holds

n

N
BSU(N) =3N — 5 ;(1 — ’)/i) =0 s (280)

where ; are the anomalous dimensions of the bi-fundamental fields charged under
the given gauge group (recall that in the unorientifolded theory all matter fields
are in bifundamental representations).

Let us now add M fractional branes to the N regular ones and focus on those
gauge groups to which the fractional branes couple to. The corresponding £ func-
tion changes as

k

N N+ M
Bsuv+an =3(N + M) = - > - 79 - 5 > (- vy, (281)

i=1 i=1

where 7(0)

;~ are the anomalous dimensions of bifundamental fields charged under

groups not coupling to the fractional branes while %(1) are those of fields charged
under grougs coupling to the fractional branes. Using eq. and the identity
S — ") #3271 = 49) = S27(1 — ;) the above expression can be re-written

as

Bsvavann = = 3 (1 =1 (282)
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which does not vanish since fractional branes do not support a SCFT. Hence we
conclude that

J

S99 #0. (283)

=1

Let us now consider the orientifold action and start with a configuration with

regular D3-branes, only. One important point is that § functions are now affected

by the fact that some ranks are finitely shifted to balance the O-plane charge. For

example, in the PdP4 model discussed in section the orientifolded theory with

N regular branes has gauge group SO(N + 1) x SU(N +5) x SU(N) x SU(N).
Compared to eq. the expression for the § function becomes

n n

3(N+c)—2(1—%)N";b" :3(:—2(1—%)%, (284)

i=1 i=1

where c is the extra coefficient of the gauge group we are considering and b; those
of the gauge groups under which bifundamental matter is charged (in our PdP4
example ¢ = 5 for the SU(N + 5) group, and bifundamental matter charged also
under the SO(N + 1) group has b = 1). Note that the § function is no longer
vanishing, due to the O-plane charge, and its coefficient does not depend on N.

Let us now perform the two-steps Higgsing which N = 2 fractional branes
make possible, as in all models previously considered. Using the same conventions
as in previous sections, the gauge coupling running at different scales is

e UV (above scale v)

b (3(N+c) . i(l —%)N;b“) In (L)

9?9U(N+c) P Ayy

— (30 — zn:(l - %)%) In (ALUV) : (285)

=1

e Intermediate scale (below scale v and above scale v')

e (5 SRS SR UEE T I 0y

2
9s5U(e)n i=1 i=1

— (30 =) (- %)% -y (- %@)g) In (&) . (286)

i=1 i=1
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e IR (below scale v')

Lo (&:-i(l—%)%) (%) . (287)

gg‘U(c)

=1

Note that this pattern holds for all groups and all kinds of matter. Indeed, the
presence of (anti)symmetric representations gives factors of the form % in the
p-function, the same as having fundamental matter charged under a SU(N + b)
flavor group.

Matching the scale at = v and p = v’ gives

n b; v (CEtL Be—307, (1-7) 3
ASC—Z«L:l(l_’Yi)?Z — (;) AUV =t 7 ) (288)
which implies that
’ )y IV
11—~ — . 289
o Z< %)% (289)

In order for a to vanish we need that 37(1 — Z»(O)) = 0, which is in contradiction

with eq. eq. (283)). This shows that whenever N = 2 fractional branes couple
to the DSB nodes, they inevitably become runaway and destabilize the otherwise
stable DSB vacuum.

This result suggests that in order to avoid this instability channel one could try
to look at singularities which, unlike those we have analyzed, admit deformations
or DSB branes and no N’ = 2 ones, and see whether there could be room for DSB
models there.

A comprehensive survey of toric singularities up to eight gauge groups is pro-
vided in [62] and we have analyzed, in this finite class, all singularities having
deformation and/or DSB fractional branes only (note that C* orbifolds do not be-
long to this class, since at these singularities a basis of fractional branes, if there
are any, always includes N = 2 ones).

More specifically, following the list provided in [62], the singularities not admit-
ting N' = 2 fractional branes are the following ones: for toric diagrams of area 2
(Table 1) singularity number 2; for toric diagrams of area 4 (Table 2) singularities
number 6 and 7; for area 5 (Table 3) number 5, for area 6 (Table 4), number 8, 9,
10, 12 and 13; for area 7 (Table 5), number 7, 8 and 9; for area 8 (Table 6), number
1,3,4,5, 7,8, 13 and 17. In order to obtain the dimer, we used the techniques of
[23].

Starting from these singularities, one has to see which do admit orientifold
point or line projections. This can be done using the criteria spelled out in [27]. If
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an orientifold projection is admitted, one performs it and then checks the anomaly
cancellation conditions. The latter often do not have any solutions (barring the
addition of flavors). If they do have solutions, instead, one has then to see if the
corresponding orientifold admits a configuration reproducing a DSB model.

The upshot of our scan is that there exist several possible point and line re-
flections and in some cases one can also satisfy anomaly cancellation conditions
without the addition of extra flavors. When this is the case, however, it turns out
that there do not exist configurations leading to any known DSB model and in
fact all solutions lead to supersymmetric vacua. This result seems to suggest that
the presence of line singularities (i.e. N/ = 2 fractional branes) is a key property
a CY singularity should have to allow for DSB low energy dynamics but, at the
same time, the one that eventually makes the vacua unstable. In the next section
we will elaborate further on this point.
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7 Octagon, you are my only hope

As discussed in the previous section, the presence on N = 2 fractional branes can
lead to instability in DSB models. These kind of fractional branes are present when
the singularity has more than one ZZP with the same winding number. Figure
shows an example, based on the PdP; geometry [60} [I]. The collection of phases
shaded in blue defines an N/ = 2 fractional brane (its complement is obviously
also an N/ = 2 fractional brane). These faces stretch between the parallel red and
green ZZ7ZP.

Using this simple observation, we will see how one can to put constraints on
the geometry in order to find the minimal requirements for a stable DSB model.

Figure 63: a) Dimer model for phase b of PdP;. b) Toric diagram for PdP; showing
the two parallel legs of the (p, ¢)-web associated to the ZZP under consideration.

7.1 SU(5) Models

Let us first consider the SU(5) model. This theory has an SU(5) gauge group and

one GUT-like chiral family H @ O . The presence of the antisymmetric represen-
tation implies that if one wants to engineer such a model by D-branes at a CY
singularity, an orientifold projection is necessary. Moreover, one has to consider
two gauge groups in order to get the antifundamental representation [, which can
be generated by either an SU(1) or an SO(1) flavor group [1].

Using the dimer formalism, there are two classes of orientifolds, depending on
whether they have fized points or fized lines [25]. We will analyze them in turn.
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7.1.1 Fixed Point Orientifolds

Let us remind that fixed point orientifolds are associated to dimers which enjoy a
point reflection. It is always possible to choose the unit cell of the dimer in such a
way that its corners coincide with a fixed point. Additionally, due to the dimer’s
toroidal periodicity, there will also be fixed points at the center of the boundaries
of the unit cell, and in the center of the unit cell itself, see fig. [64]

Figure 64: A schematic representation of a dimer unit cell with orientifold fixed
points. The shaded points are the periodic images of the four basic ones.

As we now review, we not only need a fixed point on one edge of the SU(5)
face, but a second fixed point is needed to avoid anomalies in the face providing
the (anti)fundamental matter field.

The first possibility is to directly avoid the anomaly in the flavor group by
having it SO or USp. USp is ruled out since it would give always an even number
of antifundamentals, hence more than one. We are then left with SO(1).

e SO flavor group

Figure [65|shows the generic structure of a local configuration of a dimer lead-
ing to the SU(5) model, including the signs for the two relevant fixed points.
The dotted lines and nodes represent a completely general configuration for
the rest of the dimer, only constrained by its compatibility with the point
reflections. The blue dotted line indicates that it is possible to choose the
unit cell such that the two fixed points live on one of the four segments that
form its boundary. This comment will be relevant later.

Assigning arbitrary ranks to the gauge groups, V; for face i in the dimer, the
anomaly cancellation conditions (ACC) have a solution in which Ny = Ny, =
5, N; = 1 and the rest of the faces are empty@ This choice leads exactly
to the SU(5) model. Face 1 becomes the SU(5); gauge group. Since face 2
has a fixed point with a positive sign on top of it, becomes the SO(1), flavor

group.

250f course whether the ACC of the empty nodes are also satisfied depends on the details of
the boundary of the cluster of faces under consideration. This observation also applies to the
examples that follow.
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Figure 65: Fixed point orientifold realizing the SU(5) model with SO(1) flavor
group. The dotted part of the graph indicates the rest of the dimer, which is
completely general and not necessarily hexagonal as shown.

A second possibility is that the flavor group is of SU type, with its anomaly
(when regular branes are added) being canceled by the presence of symmetric
matter on a different edge of the face.

e SU flavor group with symmetric

Figure |66 shows the local configuration of a dimer leading to another real-
ization of the SU(5) model in a fixed point orientifold. Once again, the ACC
have a solution in which N; = Ny = 5, Ny = No = 1 and the rest of the
faces are empty. The resulting theory is the SU(5) model, plus a decoupled
singlet corresponding to the symmetric associated to the edge between face
2 and its image.

T e o “or”

Figure 66: Fixed point orientifold realizing the SU(5) model with SU(1) flavor
group.

Note that the SU(1) group has no anomaly, but the symmetric is necessary
to cancel the anomaly when all the ranks are increased by N (corresponding
to the addition of N regular D3-branes which populate the dimer democrat-
ically). By construction, the additional (white) faces with rank N will not
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contribute to the anomaly. In order to cancel the N 4 5 antifundamentals
coming from face 1, we need to have a symmetric of SU(N + 1) at face 2. It
reduces to a decoupled singlet when N = 0.

A third possibility is that the flavor group is of SU type, and its anomaly
(when regular branes are added) is canceled by 5 fundamentals attached to an
SO(5) group. This configuration is shown in fig. The low-energy theory of this
configuration is an SU(5) model together with a decoupled SO(5) SQCD with
one flavor. The latter theory develops an ADS superpotential [53], so that we
have a runaway behavior (on top of the DSB of the SU(5) model), and hence no
true vacuum. We thus discard this possibility since it is already unstable at this
low-energy field theory level.
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Figure 67: Fixed point orientifold realizing the SU(5); model with SU (1), flavor
group and an additional SO(5)3 factor. SO(5); develops an ADS superpotential
and leads to a runaway behavior.

A fourth possibility is that the flavor group is again of SU type, but now its
anomaly is canceled by the presence of a replica of the SU(5) group with its own
antisymmetric. We will call this possibility twin SU(5) model.

e SU flavor group with twin SU(5)

Figure shows the local configuration of a dimer leading to yet another
realization of the SU(5) model in a fixed point orientifold. The ACC have
a solution in which Ny = Ny = 5, Ny = Noy = 1, N3 = N3 = 5 and
the rest of the faces are empty. The resulting theory corresponds to two
SU(5) models sharing one and the same SU(1) flavor group which provides
their (anti)fundamentals. Since SU(1) is actually empty, and in any case
no chiral gauge invariants can be written for each SU(5) model, the twins
are effectively decoupled and thus their low-energy dynamics is completely
independent.
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Figure 68: Fixed point orientifold realizing the twin SU(5) model.

In principle, we could go on with further possibilities. Indeed, the anomaly
of the second SU(5) gauge group at face 3 can be canceled with a fundamental,
instead of an antisymmetric. The simplest possibility is that the fundamental is
attached to an SO(1) face, however it could also be an SU(1) with a symmetric, or
further an SU(1) with 5 antifundamentals given by an SO(5), or another SU(5).
The possibilities already discussed above repeat themselves. What is important
to notice is that the gauge theory on face 3 would always be an SU(5) with one
flavor, hence developing an ADS superpotential and leading to runaway behavior.

We thus conclude that the only possibilities to engineer an SU(5) model, which
is stable at low-energies, in a dimer with fixed points are the three bullets above:
SO flavor group, SU flavor group with a symmetric and SU flavor group with
twin SU(5).

An important remark is that in all the examples above the following holds:
there can be a long chain of gauge groups to eventually cancel the anomaly of the
initial SU(5) gauge group, but it always ends with an orientifold fixed pointm
As a consequence, we do not have to look far in order to identify an N = 2
fractional brane in these dimers. Remarkably, in all cases the SU(5) model is
fully supported on a set of faces that corresponds to an N = 2 fractional brane
in the parent (i.e., non-orientifolded) theory. From fig. , fig. and fig. . we
see that in all cases the SU(5) model indeed lives on a stripe that gives rise to
a gauge invariant not contained in the superpotential. The expectation value of
such operator parametrizes the corresponding Coulomb branch.

We conclude that an SU(5) model cannot be obtained for this class of orien-
tifolds if the parent theory does not contain line singularities, i.e. N' = 2 fractional

26We are ignoring more ramified possibilities. For instance, for an SU(1) flavor at face 2, we
could imagine providing the 5 fundamentals from more than one SO gauge group. That would
lead to the need of more than one extra fixed point. The other cases can be treated similarly.
Thus a more precise statement is that we always need at least another fixed point to cancel the
anomaly of the SU(5) at face 1.
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branesm The previous discussion implies that the no-go theorem in [I] cannot be
avoided for this class of orientifolds.

Let us discuss how the instability is realized in these models in more detail. We
start with the model with SO flavor, fig. [65] After adding N regular D3-branes,
the relevant gauge group becomes

SU(N +5); x SO(N + 1), . (290)
Let us denote
A - Hl ) @ = (ljl’DQ) (291)

where A corresponds to the edge in the dimer between face 1 and its orientifold
image and @ corresponds to the edge between faces 1 and 2. The Coulomb branch
is parametrized by the expectation value of the gauge invariant going around the
stripe. In principle we can build an SU(N + 5); gauge invariant as

= Q@A (292)

where i, j are fundamental indices of SU(N +5); and a, b are fundamental indices
of SO(N +1)3. Note that it is in the antisymmetric representation of SO(N +1)a,
hence it does not exist for N = 0, and it has vanishing trace for N > 1.

As discussed in [I], we actually need to go twice around the stripe in order to
have a non-vanishing gauge invariant given by

(070" by’ b’} (293)

parametrizing the Coulomb branch. That the gauge invariant still vanishes auto-
matically for N = 0, is consistent with the fact that the SU(5) model does not
have a moduli space and that the additional regular branes are necessary for the
instability.

We now consider the case with SU flavor and a symmetric, fig.[66] After adding
N regular D3-branes, the gauge group becomes

SU(N +5); x SU(N + 1), . (294)
We denote

A=H , Q=@.m) , S=r (295)

2TThis result is consistent with an observation made in [27], namely that singularities with
deformation branes are incompatible with point projections.
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where now S corresponds to the edge between face 2 and its image under the
second fixed point. The SU(N + 5); gauge invariant is

o = Q,QyAi; (296)
where now a, b are fundamental indices of SU(N + 1),. It is in the antisymmetric

representation of SU(N + 1), hence again it does not exist for N = 0, and for

N > 1 it cannot be contracted with S* which is symmetric. A non-vanishing
gauge invariant is given by

—ac—=bd
(575 o5 o ) (297)

which now parametrizes the Coulomb branch. The same remarks as in the previous
case apply.

Finally, let us discuss the last case of the twin SU(5), where the gauge group
becomes

SU(N +5); x SUN + 1)y x SUN +5)5 . (208)

We denote
A= . Q=@.0) , P=@nmy) , A=0 (209

where now P corresponds to the edge between faces 2 and 3, and A to the edge
between face 3 and its image under the second fixed point. The SU(N + 5); and
SU(N + 5)3 gauge invariants are

—— —ab —a—=b—a
b = Qu@iAy ¢ =PLPLA (300)

where «, § are fundamental indices of SU(N +5)3. They are in the antisymmetric
and conjugate antisymmetric representation of SU(N + 1)s, respectively. They do
not exist for N = 0, but for NV > 1 the simplest gauge invariant is given by

(Gt | (301)

which parametrizes the Coulomb branch in this case. The same remarks as in the
previous cases apply. Further, note that this last case allows for a simpler gauge
invariant parametrization of the Coulomb branch because it is the only one where
the two fixed points (giving rise to A and A) have the same sign, see fig. . In
the two previous cases the fixed points have opposite signs, and we have to take
the loop twice.
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Double SU(5) Models

In some cases, the structure of the dimer is such that it could be possible to use
all four fixed points to generate a pair of SU(5) models. Figure [69| shows the
general structure for a dimer giving rise to two SU(5) models with SO(1) flavor
nodes. Other possibilities, for instance two models with SU(1) flavor nodes, an
SU(1)/SO(1) combination or two twin SU(5) models, are also feasible. The same
logic of previous examples applies to each of the two stripes of blue faces, so we
conclude that each of these models contain N/ = 2 fractional branes and hence are
not stable.
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Figure 69: General structure of a fixed point orientifold realizing a double SU(5)
with SO(1) flavor group model.

The different cases considered so far illustrate the general strategy that we
will apply to most of the other models we will be considering. While the DSB
models under consideration are relatively simple, we are considering here their
embedding into arbitrarily complicated toric singularities. Therefore, establishing
the existence of N' = 2 fractional branes (which implies the instability of the DSB
model) might naively seem an intractable problem since, generically, the majority
of the dimer model will be unknown. However, as it occurred in the previous
examples, the necessary interplay between the region of the dimer that makes
up the DSB model and the orientifold fixed points (or fixed lines, as we will see
shortly), implies that we fully know the dimer model along a “short direction” of
the unit cell. This is sufficient to identify an N/ = 2 fractional brane. In even
simpler terms, in these cases the DSB models are actually supported on faces of
the dimer that define an N’ = 2 fractional brane. We will see that there is only
one specific way to circumvent this argument.
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7.1.2 Fixed Line Orientifolds

A second possibility is that dimers admit line reflection. We can have orientifolds
with either two independent fixed lines or a single diagonal fixed line.

R e L Lk Ty pepp— |
\
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’
’

Figure 70: A schematic representation of orientifold fixed lines going through the
dimer unit cell: two fixed lines on the left, a single fixed line on the right.

An orientifold with two fixed lines is such that the unit cell of the dimer can
be taken to be rectangular, and the dimer is further invariant under a reflection
leaving fixed the lines going along one of the boundaries of the unit cell. By the
periodicity of the dimer, there must be a second fixed line parallel to the first one,
and going through the middle of the unit cell. Vertical and horizontal fixed lines
will be considered on the same footing here.

Orientifolds with a single fixed line are such that the unit cell can be taken to
have the shape of a rhombus, and the dimer is invariant under reflections about a
fixed line which goes along one of the diagonals of the rhombus. The periodicity of
the dimer does not imply the presence of other fixed lines in the unit cell. Again,
we will not make the distinction between the two diagonals. Both situations are
depicted in fig. [70] In the following, we will use the two nomenclatures “double
and single” or “horizontal/vertical and diagonal fixed lines” interchangeably.

DSB Models between Two Fixed Lines

The cases with two fixed lines are basically identical to the orientifolds considered
in the previous section, with the exchange of fixed points for fixed lines. We
therefore present them succinctly.

e SO flavor group

Figure[71]shows the local configuration realizing the SU(5) model with SO(1)
flavor group, including the signs of the fixed lines. This is achieved by setting
N; = Ny =5, Ny = 1 and vanishing ranks for all other faces. Since the two
lines have opposite signs, this configuration is only possible in orientifolds
with two independent fixed lines.
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Figure 71: Two fixed lines orientifold realizing the SU(5) model with SO(1) flavor
group.

e SU flavor group with symmetric
Figure|72|shows the local configuration realizing the SU(5) model with SU(1)

flavor group and a symmetric. This corresponds to Ny = Ny = 5, Ny =
Ny = 1 and vanishing ranks for all other faces. Since the two lines have
opposite signs, this configuration is only possible in orientifolds with two
independent fixed lines.
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Figure 72: Two fixed lines orientifold realizing the SU(5) model with SU(1) flavor
group.

e SU flavor group with twin SU(5)

Figure[73|shows the local configuration realizing the SU(5) model with SU(1)
flavor group and a twin SU(5) model. This corresponds to Ny = Ny = 5,
Ny = Nyy = 1, N3 = N3y = 5 and vanishing ranks for all other faces. In
this case the two lines have the same sign, hence it is possible to find this
configuration both in orientifolds with two independent fixed lines or with a
single diagonal fixed line. Note that in the latter case, we have to consider
the situation in which the strip goes from one line to a second one, in a
contiguous unit cell.
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Figure 73: Two fixed lines orientifold realizing the twin SU(5) model.

Using the same arguments as for the fixed point orientifolds in section [7.1.1}
we conclude that in all these cases the models are supported on a stripe of faces
of the dimer that define an N' = 2 fractional brane.

Multiple SU(5) Models

We previously saw that fixed point orientifolds can give rise to double SU(5)
models. Similarly, orientifolds with fixed lines can produce multiple SU(5) models,
as shown in fig. [74 In this case, the number of models is not restricted to two.
It is important to note that, unlike in the example shown in the Figure, it is
possible for different stripes to use the two fixed lines in different ways, for instance
simultaneously leading to models with both SO(1) and SU(1) flavor groups, when
the two lines have opposite signs. Once again, our general discussion applies to
each individual stripe of blue faces, so we conclude that N' = 2 fractional branes
exist for each individual stripe and hence the models are not stable.

DSB Models on a Single Fixed Line: the Twin SU(5)

There is one additional way in which an SU(5) model could be engineered. This
is when both the projection needed for the antisymmetric of SU(5) and the one
for canceling the anomaly due to the antifundamental, are provided by the same
fixed line. This could be realized both in orientifolds with a diagonal fixed line,
and in orientifolds with two fixed lines. What is important is that only one line is
needed to define the relevant cluster of faces.

Importantly, since the orientifold line cannot change sign along the dimer, this
possibility is effective only when the two projections have the same sign. Then the
only case that fits the bill is the twin SU(5) model, as the one in fig.

Basically, the chain of gauge groups represented by faces 1, 2 and 3 has to bend
and end on the same line. There are now two possibilities. Either all the black
nodes at the bottom of the edges between faces 1, 2 and 3 are one and the same,
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Figure 74: An example of the general structure of a portion of a dimer with two
fixed lines giving rise to multiple SU(5) models.

or the chain 1-2-3 and their images enclose some (unoccupied) faces of the dimer.
The latter case is inconsistent from the dimer point of view: such a chain cannot
be a fractional brane in the parent theory. We are thus left with the former case,
which in the dimer corresponds to a hexagonal cluster of faces around a node, as

depicted in fig.

Figure 75: The hexagonal cluster with six faces on an orientifold line. All faces
are here depicted with four edges, but some of them could have more.

Interestingly, such a collection of faces surrounding a node corresponds to a
deformation fractional brane in the classification of [I5]. It is reassuring that
unlike in the cases with fixed points, deformation branes are compatible with line
orientifolds [27].

The analysis of this case is similar to what we carried out for the twin SU(5)
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model previously, leading to a gauge group
SU(N +5); x SUN + 1)y x SU(N +5)3 . (302)

The difference is that now the node at the center of the hexagonal cluster corre-
sponds to a sextic superpotential term. Using the same notation as in eq. (299)),
we have

W = trAQPAP' Q' = trog . (303)

For N = 0, the superpotential vanishes and we are left with two SU(5) models
sharing an SU(1) flavor node, in which both surviving SU(5) factors break super-
symmetry dynamically into a stable vacuum. Unlike the other realizations of the
twin SU(5) model, in the present one there is no indication that the dimer must
contain an N = 2 fractional brane.

Combining the analysis in section [7.1.1] and section [7.1.2] we conclude that
engineering a single SU(5) DSB model without instabilities at an orientifold of a
toric singularity is impossible. Conversely, our analysis implies that engineering
a minimal SU(5) model requires non-isolated singularities with curves of C?/Z,
singularities passing through the origin, which in turn result in the instability. This
means that, the toric diagram must contain internal points on its boundary edges.
On the other hand, our analysis shows that an instance of a DSB model, the twin
SU(5) model, actually exists which is compatible with an orientifold projection
with fixed line(s). We should now understand whether such sub-dimer can actually
be embedded into a consistent dimer and, if so, whether such dimer can be free of
N = 2 fractional branes. We investigate these questions in section [7.3]

7.2 3-2 Models

Let us now turn to the 3-2 model, another prominent example of DSB that was
recovered within brane setups at orientifold singularities in [I]. The model has
gauge group SU(3)x.SU(2). Its matter content is reminiscent of one SM generation

Q:<D3,E|2>,U:ig,bzig,L:DQ, (304)

where the subindices indicate the corresponding gauge group in an obvious way.
In addition, the theory has the following superpotential

W =DQL . (305)

In principle, the above field content (SU gauge groups, (bi)fundamental mat-
ter, together with a cubic superpotential) does not seem to require an orientifold
projection. As it will become clear in the following, such a projection is nev-
ertheless necessary in order to allow for a fractional brane (i.e. an anomaly free
configuration) with the desired ranks for the gauge groups.
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7.2.1 General Features

Let us think more carefully about the basic features of the D-brane realization of
this model. In this subsection we enumerate all different ways to recover the 3-2
model from fractional branes at an orientifold singularity. The structure of these
models is more intricate than that of the SU(5) model, so it is convenient to draw
the corresponding quivers.

The candidate models are presented in fig. [70 In the figure, we have kept the
ranks of the gauge group general by introducing N;, 2 = 1,...,4. These additional
integers account for more general configurations of D-branes at the singularity,
e.g. the addition of regular or fractional D3-branes, and we posit that anomaly
cancellation must hold even in those cases. The 3-2 model arises when all N; and
the ranks of additional gauge groups, which depend on the specific singularity and
are not shown in these quivers, vanish.

SU(N;+3) - SON+1) USp(N,+2)

[
Yo

U

or or

SO(N,+1) SUNNs#3) SU(N,+2)
D S

Q

Figure 76: Four quivers giving rise to the 3-2 model when all N; = 0. All these
models use three orientifold fixed loci.

For similar reasons as in the case of the SU(5) model, we need at least an
additional gauge group factor, which we will call node 1, to serve as a flavor group
providing the D and L fields. Both D and L should be connected to the same
node for the superpotential eq. to be possible. In dimer terminology, we
identify the smallest building block of a 3-2 model as three faces connected by a
trivalent vertex. In this sense 3-2 model realizations are necessarily more involved
than SU(5) model realizations, since the latter only required a building block of
two faces.

The quivers in fig. should be interpreted as follows. For each of the two
endpoints of the quiver, we have presented two possibilities. The two options on
the left correspond to realizing U as an antisymmetric of node SU(3) or via a fourth
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gauge group acting as a flavor node. The two options on the right correspond to
the fact that node 2 can be either USp(2) or SU(2). All possible combinations of
these endpoints realize the desired 3-2 model, therefore fig. [76] accounts for four
models.

In principle, the flavor nodes 1 and 4 in fig. [76] could be SU or SO. However, if
these nodes were of SU type, their ACC in the case of general ranks would require
additional nodes, that come to life when regular D-branes are added. Generically,
these gauge groups will give rise to new matter fields charged under the nodes
of the original quiver. Such fields would contribute to and potentially help in the
cancellation of anomalies. However, for N regular D3-branes, it is easy to show that
for neither node the anomaly would cancel, as there would still be an imbalance of
one or three units for nodes 1 and 4, respectively. In order to cancel the anomalies
there are then only two options. The first is to introduce an orientifold projection.
It turns out that setting both nodes to be SO is the simplest such option, and
without loss of generality we will stick to it in the following. The second option is
to compensate the anomaly by a mirror construction. We defer the treatment of
the latter possibility to the last subsection.

It is worth noting that in two of the four models described by fig. [76] those
for which the second gauge group is SU(N, + 2), we have also introduced an
antisymmetric tensor A,. This field is necessary for satisfying the ACC for the
more general ranks that arise when regular D3-branes are added (see appendix [C]).
It becomes a singlet when Ny = 0, so it decouples and does not affect the IR
physics.

A final option is to get the two antifundamentals of the SU(3), U and D from
the same flavor SO(1) group. However, in order to realize the 3-2 model, the
structure of the dimer model should be such that a UQL term is not present in
the superpotential. This possibility is then obtained by simply identifying nodes
1 and 4 in fig. [76]

We thus reach the conclusion that we need no less than three orientifold pro-
jections to realize a 3-2 model: one for the SO(1) flavor group (thus with a +
sign), one for node 2 which is either USp(2) or SU(2) with an antisymmetric (in
both cases, with a — sign), and one for node 3, either with an antisymmetric (—
sign) or with the SO(1) flavor node 4 (4 sign). Of course some of these projections
can be given by the same object, in the case of an orientifold line, provided they
require the same sign@

All quivers described by fig. [76| are viable as stand-alone gauge theories. How-
ever, as for the SU(5) model, we need to verify whether the theories remain

281t is worth noting that in all the realizations of the 3-2 model found in [1], node 3 has an
antisymmetric, node 1 is of SO type, while node 2 is USp(2) in the Zgs orbifold and in PdP;y,
and SU(2) with an antisymmetric in PdPs., PdPy, and the Z3 x Z3 orbifold.
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anomaly free upon the addition of regular and/or fractional D3-branes. It turns
out that the SO(N; + 1) x SU(Ng +2) x SU(N3 + 3) x SO(N4 + 1) model does
not pass this test, as shown in appendix [C]

Below we investigate the realization of these models in terms of fixed point and
fixed line orientifolds.

7.2.2 Fixed Point Orientifolds

Interestingly, for the purpose of establishing the existence of an N/ = 2 fractional
brane, and hence the instability of the supersymmetry breaking vacuum, it is
sufficient to focus on a very small part of all these theories. In particular, all of
them contain one of the following two subsectors:

o SO(Nl + 1) X USp(NQ + 2)
e SO(N; +1) x SU(Ny + 2) with the tensor A,.

Knowledge of the dimer around gauge groups 1 and 2 will be enough for our
purposes. Let us consider the general structure of the dimers associated to these
two possibilities.

e SO(Ny + 1) x USp(Nsg + 2) C 3-2 model

fig. [77] shows the general structure of the relevant part of the dimer model.
The edge between faces 1 and 2 represents the L field. Clearly, faces 1 and
2 define a stripe that winds around the unit cell of the parent dimer, giving
rise to a gauge invariant that is not in the superpotential. Therefore, they
correspond to an N = 2 fractional brane.

,,,,,,,,,,,

Figure 77: A piece of the dimer for a fixed point orientifold realizing the 3-2 model
with an SO(N; 4 1) x USp(Ns + 2) subsector.

o SO(N; +1) x SU(N; + 2) with A, C 3-2 model
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fig. shows the part of the dimer that we are interested in. The edge
between faces 1 and 2 corresponds to L, while the one between face 2 and
its image gives rise to A,. Once again, we see that faces 1, 2 and 2’ define
an N = 2 fractional brane in the parent dimer. It is interesting to note that

this picture is identical to fig. |65| for the SU(5) model.

bN

Figure 78: A piece of the dimer for a fixed point orientifold realizing the 3-2 model
with an SO(N; + 1) x SU(Ny + 2) with A subsector.

From the previous discussion, we conclude that all realizations of the 3-2 model
at fixed point orientifolds suffer from an A = 2 fractional brane instability.

Models with more than one type of N' = 2 fractional branes

Before moving on, let us consider the models in Figures [77 and in further
detail. As we have already mentioned, in all these cases the portion of the dimer
realizing the 3-2 model involves three fixed points. For concreteness, let us focus
on the case in which U is an antisymmetric of node 3 and node 2 if of USp type.
All other combinations are analogous and lead to the same conclusions. fig.
shows the general structure of the dimer model. Interestingly, in this case we can
identify yet another A/ = 2 fractional brane, in addition to the one covered by
our previous analysis. This new fractional brane corresponds to faces 1, 3 and
3’ in the parent dimer and is shown in pink in fig. [f9) We conclude that when
sub-dimers as in Figures [77] and [78| are embedded in a complete dimer model, the
corresponding toric singularity has at least two different types of N’ = 2 fractional
branes. Explicit models illustrating this phenomenon were constructed in [1J.
Another interesting fact we would like to notice has to do with the intertwining
between SU(5) and 3-2 models realizations. fig. shows that in any such con-
figuration realizing a 3-2 model, an SU(5) model can also be realized, by simply
turning off the rank of node 2, while pumping up the rank of node 3 to SU(5).
Even more, 3-2 model realizations like the one of fig. [78| allow for two alternative
SU(5) model realizations, the other one being by turning off node 3 and setting
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Figure 79: General structure of the dimer model for one of the models in fig. .
This model contains two different A/ = 2 fractional branes. They are shown in
blue and pink, with the striped face belonging to both of them.

node 2 to SU(H), as already noticed when commenting the figure. Multiple ex-
plicit examples of this connection can be found in [I]. The only realization of a
3-2 model that does not lead directly to a realization of the SU(5) model would
be one with USp(2) at node 2 and a node 4 to compensate the anomaly of node
3. Unfortunately, no examples of this exist in the literature, and it is beyond our
scope to find one here, as we have in any case shown that it would be afflicted by
an N = 2 fractional brane instability.

Double 3-2 Models

It is natural to ask whether fixed point orientifolds can lead to a pair of 3-2 models.
In this case, each of the models should use two of the four fixed points. However, all
the models of fig. [76| need three different projections, and thus three different fixed
points. One could still think about the case where nodes 1 and 4 are identified,
where only two identifications are actually required. However in order for node 3
to have two different connections with node 1, the faces corresponding to this 3-2
model realization end up being spread across all the unit cell, so that again two
such models cannot coexist P

7.2.3 Fixed Line Orientifolds

We now consider the realization of the 3-2 models in orientifolds with fixed lines.

29Tt would be interesting to investigate whether such model can actually be engineered in terms
of dimers. Again, since we have already proven that all realizations of the 3-2 models at fixed
point orientifolds are unstable, we do not pursue this challenging question any further.
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The analysis in the case in which the 3-2 model uses two different orientifold
fixed lines is identical to the one for fixed points. In particular, it is sufficient to
focus on faces 1 and 2. We simply need to replace fixed points by fixed lines in
the previous discussion.

e SO(N;+ 1) x USp(Ny +2) C 3-2 model

Figure [80| shows the relevant part of the dimer. We immediately identify an
N = 2 fractional brane in the parent dimer consisting of faces 1 and 2.

,,,,,,,,,

Figure 80: A piece of the dimer for an orientifold with two fixed lines realizing the
3-2 model with an SO(N; + 1) x USp(N;3 + 2) subsector.

o SO(N; +1) x SU(N; + 2) with A, C 3-2 model

Figure [81] shows the part of the dimer that we focus on. Faces 1, 2 and 2’
form an N = 2 fractional brane in the parent dimer.
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Figure 81: A piece of the dimer for an orientifold with two fixed lines realizing the
3-2 model with an SO(N; + 1) x SU(N;, + 2) with A, subsector.

Multiple 3-2 Models

Orientifolds with fixed lines can in principle give rise to multiple 3-2 models, stack-
ing them as we did in fig. [74|{for SU(5). In this case, the projection needed for node
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3 can be provided either by the line with a — sign, in case of an antisymmetric,
or by the line with a + sign, in case of a flavor node 4. Our previous arguments
show that each of these models contain (at least) an A/ = 2 fractional brane and
are hence unstable.

SU(5) - 3-2 Mixed Models

At this point it is interesting to point out that our arguments for multiple models,
in the case of fixed lines, indicate that we can also have models that realize a
combination of SU(5) and 3-2 models. Once again, our arguments from section [7.1]
and this section show that each DSB sector would be independently unstable.

Twin 3-2 models?

We are now left to investigate the possibility that the anomalies of the 3-2 model
are cancelled in a twin realization, along the lines of what was done for the SU(5)
model in Figures [68 and [73] Further, we would like to know if there is a realization
similar to the one of fig.[75] i.e. on a single fixed line, which would not automatically
imply the presence of NV = 2 fractional branes.

As already alluded to, we can cancel the anomalies of a node 1 of SU nature,
and/or node 4, if in the configuration there is a twin copy of the 3-2 model sharing
the SU(1) node. Note that in compensating the anomaly with a twin, it is impor-
tant that the two models are decoupled. If we were to use the same mechanism to
compensate the anomaly of node 2, the non-zero coupling of node 2 itself would
couple the twins and alter the low-energy physics of the models (typically destroy-
ing the stable supersymmetry breaking dynamics). Hence whatever we do, node 2
will always require a projection. As a consequence, if such twin model is realized
in a way that it extends between two different fixed points or fixed lines, by the
same arguments used around fig. [68| and fig. there will be N/ = 2 fractional
branes that render the DSB model eventually unstable. We will thus refrain from
investigating further the feasibility of such a configuration.

Finally, we would like to see if it is possible to realize a twin 3-2 model on a
single fixed line. Given that node 2 and its twin require a — sign, in principle
we have two options. Either both node 3 and its twin have an antisymmetric by
ending-up on the same fixed line, or they compensate the anomaly by sharing an
SU(1) node 4. It is easy to draw the minimal requirements for the portion of the
dimer that would translate these properties, see respectively fig. [82| and fig. |83|

Naively, these configurations look consistent and one can find a choice of ranks
satisfying the ACC. These are the following. For fig. [82] N3 = Ny = N3 = N3 =
M3+ 3, Ny = Noy = N3 = N3y = My +2 and Ny = Nyv = My + M3+ 1. For fig. [83]
N3 = Ny = N3 = N3 = Ms+3, Ny =Ny =M +1, Ny = Ny = M{ + 1 and
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Figure 82: A tentative sub-dimer for a twin 3-2 model where the SU(3) faces have
an antisymmetric flavor.

Figure 83: A tentative sub-dimer for a twin 3-2 model where the SU(3) faces share
a flavor SU(1),.

Ny = N3 = My + M| + 2.

Assuming that in the parent theory every rank parameterizing the solutions
above can be taken independently large, we observe that both situations would
imply the existence of a fractional brane described by a ring of faces with equal
ranks (up to the usual O(1) corrections) surrounding a hole. These are obtained
by setting M, = 0 in fig. 82 and M, = 0, M| = M; in fig. B3] The ring-shaped
would-be fractional brane is depicted in both figures by the yellow-shaded faces.
As shown in appendix [A] this is an inconsistent dimer. We conclude that unlike
the SU(5) model, there is no way to build a stable twin version of the 3-2 model
on a single orientifold line.

7.3 The Rise of the Octagon

In section and section we have shown that the only alternative for an a
priori consistent realization of a DSB model which does not automatically imply
the presence of an N/ = 2 fractional brane, and hence is potentially stable in the
decoupling limit, is the twin SU(5) living on a single fixed line of an orientifold.
The twin SU(5) model is described by the hexagonal cluster depicted in fig. [75]
Now we want to understand if such cluster can be embedded in a fully consistent
dimer and if such dimer can be free of N’ = 2 fractional branes.
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Let us first argue that in the full theory the hexagonal cluster is associated to
a fractional brane. From fig. [75] we see that the ACC are satisfied for N; = N3 =
N + 4 and Ny, = N. Namely, we are free to choose any value of N while all other
faces of the dimer sharing an edge with the faces of the hexagonal cluster have
vanishing rank. This freedom is associated to the presence of a fractional brane.
The twin SU(5) is obtained for N =1, i.e. a single fractional brane.

Now we can ask whether this fractional brane is of deformation or runaway
DSB type, in the parent theory (we already know we do not want it to be of
N = 2 type). If it were a runaway DSB brane some other regions of the dimer,
besides the hexagon, would be populated and the corresponding faces would have
ranks with different multiples of N [15], 48]. This is the key ingredient to generate
an ADS superpotential and hence a runaway behavior, and this will still be true
after orientifolding. Thus a runaway DSB brane in the parent theory, if it survives
the orientifold, will still be of runaway type. Populating the dimer with regular
branes, the runaway sector will communicate with the twin SU(5) sector, destabi-
lizing the vacuum. The other possibility is that the hexagonal cluster corresponds
to a deformation brane in the parent theory and that it survives the orientifold
projection. This has no instability in the parent theory, and thus we expect it to
remain stable also upon orientifolding.

It is known [I5, 24] that deformation fractional branes are related to ZZP.
We are looking for a dimer containing a six-valent node inside a cluster of faces.
The corresponding toric diagram must contain at least 6 edges whose associated
ZZP are ordered around the relevant node [64, [65]. Those edges need to be in
equilibrium, and once removed the rest of the (p, ¢)-web must be in equilibrium,
too. This implies that we need at least two extra ZZP in equilibrium, for a total of
eight. Absence of N/ = 2 fractional branes in the dimer further requires that there
cannot be more than one ZZP with a given winding (p, ¢) of the unit cell. This
corresponds to toric diagrams with no more than two consecutive points which are
aligned on an external edge.

Since we are looking for a singularity admitting line orientifolds, we consider
toric diagrams with line symmetry, either vertical /horizontal or diagonal.

e Diagonal line

From fig. we see that we need two antisymmetric fields, in Hl and Hg
representations, respectively. Even if dimer models containing the required
deformation can be engineered, it turns out that there is no solution to
the ACC of the full dimer, as it happens for all the theories (but a very
special family, which however contains AN/ = 2 fractional branes) obtained
as orientifolds of dimers with a diagonal fixed line, as proven in section [4]
Thus, such cases are excluded.
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Figure 84: The toric diagram of the Octagon singularity.

e Vertical/horizontal lines

As discussed in section [7.1] the freedom in choosing different charges for the
two fixed lines is a crucial difference with respect to diagonal line orientifolds.
In fact, it guarantees the existence of solutions to the ACC after orientifold-
ing, exactly balancing the contribution from the different tensor fields. As
discussed in section [4], this is ensured by noticing that tensor fields come in
pairs in the dimer, one in each of the two lines. Assigning opposite signs to
the two lines grants that the two contributions cancel, yielding an anomaly
free theory. If the two signs are chosen the same, the situation is the same
as with diagonal lines.

The upshot is that having vertical /horizontal lines, with opposite signs for the
two orientifold lines, is the only option which can lead to viable twin SU(5) models
and it is what we are going to focus on in the following.

The need for two tensor fields is a stringent constraint on the ZZP, and therefore
on the toric diagram. In particular, it implies that two couples of ZZP must have
the correct intersection number among themselves and with the fixed lines, as
computed from the toric diagram, see section [4]

Remarkably, the aforementioned necessary conditions provide substantial guid-
ance for where to look for a model that works, as we now explain. The simplest
example of a toric diagram with the required eight ZZP, with the correct intersec-
tion numbers, no N = 2 fractional branes and the necessary horizontal symmetry
is the toric diagram depicted in fig. [84] that we dub the Octagon.

Using standard techniques one can associate a dimer to a toric diagram, one for
cach different toric phase [21), [66]. A generic toric phase does not display the sym-
metry required to perform the orientifold projection. In the present case, however,
one can find a symmetric toric phase where the vertical fixed lines are manifest
and which realizes the twin SU(5) model as described above. The corresponding
dimer is depicted in fig. [85] where the hexagonal cluster is described by the white
dot in the center of the unit cell. A quick and direct way to check that the dimer in
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Figure 85: The (unit cell of the) dimer describing the symmetric phase of the Octagon.
Orientifold lines are in red. Each orientifold line has a sign associated to it, which in
this case needs to be opposite one another.

Figure |85 does correspond to the toric diagram in Figure|84]is by the Fast Forward
Algorithm [21], as detailed in Appendix [A]

Let us look at the orientifold gauge theory more closely. The orientifold pro-
jection identifies faces (1,...,6) with faces (14,...,9) while faces 7 and 8 are
self-identified. Hence, D-branes at such orientifold singularity are described by
a matter coupled supersymmetric gauge theory with six SU factors, one SO
and one USp factors. The twin SU(5) model is given by the rank assignment
SU(5); x SU(1)y x SU(5)3 with all other faces being empty but face 7 which is
a decoupled pure SYM with gauge group SO(5) and hence confines on its own.
ACC and self-consistency of such rank assignment follow the general discussion in
section [T.11

More details on the Octagon and its physical properties can be found in sec-
tion[7.4l Here it suffices to say that this model represents a concrete example of an
orientifold singularity which allows DSB by a D-brane bound state which is free
of any known instability, in particular the A/ = 2 fractional brane decay channel
or the runaway behavior typical of DSB branes. The absence of N' = 2 fractional
branes is clear from the toric diagram in fig. 84 which does not have internal
points on boundary edges. This model therefore provides a realization (the first,
to our knowledge) of stable DSB with D-branes at CY singularities and suggests
for an extension of the string theory landscape as it is currently known.
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7.4 Stability of the octagon

Let us now study the physics of the Octagon. We choose opposite signs as in
fig. 85l For this sign configuration, there is a rank assignment which is anomaly
free: SU(N + M + 4) for faces 1 and 3, SU(N + M) for face 2, SO(N + M + 4)
for face 7, SU(N) for faces 4, 5 and 6, and USp(N) for face 8. Setting N = 0 we
obtain a gauge theory with an isolated SO(M + 4); SYM theory, which confines
on its own, together with a quiver gauge theory based on the group SU(M +4); X
SU(M)y x SU(M + 4)3 with matter fields and a superpotential that we proceed
to analyze.
The theory gauge group is

SU(M +4); x SU(M)y x SU(M +4)3, (306)

the matter content
A = Hl: X9 = (041,02), Xoz = (09,03), As = 53, (307)

with superpotential
W = A1X12X23A3X§3Xi2 . (308)

The superpotential can be interpreted as follows. The gauge invariant X1, A; X1o

of group 1 and the gauge invariant Xo3A3 X%, of group 3 are respectively in the Hg

and Hg of gauge group 2, with W above providing a bilinear in these two invari-
ants, thus akin to a mass term. It is obvious that the antisymmetrics of SU(M),
can exist as such only if M > 2. In this case, one can show that strongly cou-
pled dynamics generates superpotential terms that, together with the tree level
one, eventually lead to supersymmetric vacua. For M = 0 one gets instead two
decoupled theories at faces 1 and 3 both having gauge group SU(4) and one chi-
ral superfield in the antisymmetric, which have a runaway behavior. The case of
interest is M = 1.

For M = 1 node 2 becomes trivial (SU(1) is empty) and, more importantly,
the superpotential actually vanishes. Indeed, both nodes 1 and 3 are SU(5) gauge

theories with matter in the H @ O representations, and there is no chiral gauge
invariant that can be written in this situation [52]. Hence the two gauge theories
are effectively decoupled, and their IR behavior can be established independently.
Both happen to be the SU(5) model for stable DSB. Since the SO(5) SYM on
node 7 just confines, we thus determine that this configuration displays DSB in
its vacuum. Quite interestingly, this DSB vacuum may then arise at the bottom
of a duality cascade (possibly more complicated with respect to the simpler unori-
entifolded case, due to the orientifold projection which would modify it, see [44]),
hence within a stringy UV completed theory.
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Is this DSB vacuum stable? In principle, there can be different sources of
potential instabilities.

First, one could be concerned about stringy instantons, whose presence may
affect the low energy dynamics. Indeed, the D-brane configuration giving rise to
the twin SU(5) DSB model, N = 0, M = 1, contains both a USp(0) and an SU(1)
factor coupling to the SU(5) gauge groups. These are the two instances where
contributions to the low-energy effective superpotential are allowed (see [50] and
[67], respectively). However, no such contributions can be generated in our model
simply because there are no chiral gauge invariants that can be written which can
contribute to the superpotential. We thus conclude that stringy instantons cannot
alter the DSB dynamics.

A second source of instability is the one discussed in [14] [I]. In fact, as can
be readily seen from the toric diagram of fig. [84] this singularity does not admit
N = 2 fractional branes. The latter arise when the singularity can be partially
resolved to display, locally, a non-isolated C?/Z, singularity and a Coulomb-like
branch associated to it. This translates into the presence of points inside some of
the edges along the boundary of the toric diagram. The Octagon does not have
this property. Hence, without the presence of N/ = 2 fractional branes, there is no
vacuum expectation value on which the energy of the DSB vacuum can depend
on, or equivalently there is no Coulomb branch along which the energy can slide
to zero value.

A third possible source of instability comes from the baryonic branch. It is
indeed possible to build gauge invariant dibaryon operators from the bifundamental
fields of our theory. The VEV of these operators parametrizes the baryonic branch
of the theory’s moduli space. Suitable values of these VEV can lead to partial
resolutions of the CY manifold, effectively changing it and, in principle, opening
the possibility for N/ = 2 fractional branes in the resolved geometry. As we will
discuss in appendix [F] these resolutions are obstructed by the presence of both O-
planes and fractional branes, thus preventing instabilities in the baryonic branch.

A final source of instability may come from the N' = 4 Coulomb branch rep-
resented by regular D3-branes. As in the previously analyzed cases [14] [1], one
can easily show that this is a non-supersymmetric flat direction, essentially be-
cause of the conformality of the parent (non-orientifolded, large N) gauge theory.
Therefore, there are no supersymmetric vacua along this branch m

30Flat directions are usually not expected in a non-supersymmetric vacuum. Subleading 1/N
corrections to anomalous dimensions of matter fields, which could lift such flat direction, are
not easily calculable, particularly in a complicated singularity such as the Octagon. However,
they should neither change the number of supersymmetric vacua nor modify the behavior of the
potential at infinity, at least for sufficiently large N.
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7.5 Conclusions

In the third part of this thesis we studied possible realizations of DSB models
in the framework of D-branes at toric CY singularities. In section [0, we reviewed
known constructions of the SU(5) model and provided new examples of singularity
hosting it. Moreover, for the first time, we constructed the 3-2 model, the first
example of a computable model built within this framework. We then studied
the stability of these models under the decay mechanism introduced in [I4]. We
showed that all analysed models are affected by the same kind of instability and we
provided the proof of a general no-go theorem, stating that DSB models engineered
at non-isolated singularities are always unstable.

In section [7, we studied how to overcome such no-go theorem. We explored all
possible embeddings of the SU(5) a nd 3-2 models, proving that trivial realizations
are always coupled to N/ = 2 fractional branes and thus unstable. In order to avoid
this decay mechanism we explored different realization of DSB models, proving
that the twin SU(5) model is the only possible configuration compatible with the
stability requirements. Using the results of section [d, we were able to restrict the
set of possible singularities that can contain the twin SU(5) model, finding the
simplest example in the singularity dubbed “the Octagon”. Finally, we showed
that a specific toric phase of the Octagon, compatible with orientifold projections,
contains the twin SU(5) model , which is the first instance, to our knowledge, of
a stable DSB configuration of fractional branes. We discussed the main sources of
instability that could affect the model and it avoids all of them.

With this example, we have shown, contrary to common lore, that stable DSB
can be engineered by brane configurations at CY singularities. The Octagon is
just the simplest example we could find satisfying all the requirements needed
for stability. It is possible that similar models can be found in more complex
singularities. Given the remarkable properties of this family of models, we consider
it important to study them in further detail.

These models can be embedded into warped throat without instabilities, it
would be thus of great interest to compute the gravity dual of such models, allow-
ing the study of strong coupling phenomena, such as supersymmetry breaking and
gauge group condensation, using a theory of gravity at weak coupling. Moreover,
the study of compact versions of the same geometry, can be used to reproduce sce-
narios with supersymmetry breaking and hidden gravity sectors or put to the test
swampland conjectures, such as the Local AdS-Weak Gravity Conjecture presented
in [14].
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A Holes in the Dimer and Zig-Zag Paths

In the following we present an argument forbidding the presence of holes of reduced
rank inside a specific sub-dimer which appears in different twin models. We rely
on ZZP techniques for anomaly cancellation developed in [3], 24]. One associates
a value v; to every ZZP in the dimer and then assigns an arbitrary rank to a
given face in the dimer. The remaining ranks are set by requiring that the rank
differences between two adjacent faces m,n obey N,, — N,, = v; —v; where 4, j are
the ZZP separating them.

Consider a ring-shaped sub-dimer of rank N + O(1). We assume that as we
go along it, from one of its faces to another, we only cross edges with identical
orientation, see fig. [86al We now show that the region inside the ring, the “hole”,
is inconsistent if of reduced rank.

Figure 86: (a) Generic ring of rank N + O(1) surrounded by faces of rank O(1)
with a hole of rank O(1). (b) Face 2 edges with zig-zag paths.

Consider a face of the ring, as face 2 in fig. 86b] The intersections between the
Z7P 1, 2, 3 and 4 yield
Nl—Ngzvl—UgN(), NQ—N3:U4—U3N0, (309)

where ~ means “equal up to O(1)”. Since the hole is supposed to be of rank O(1),
the intersections with Zig-Zags that separate it from the ring give

N~vy—vg, —Ne~vg—v4, = Uy~ uy. (310)

Changing the number of edges between face 2 and the hole can only be done by
adding/removing pairs of edges and will not change the fact that

V1~ Uy~ U3~ Uy and vg~ v — N, (311)

where vy is understood as any ZZP that comes with the pair of edges added
between the hole and face 2. One can repeat the reasoning for every face of the
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ring and find that its internal edges will be always produced by ZZP ~ v;. This
is in contradiction with the presence of ZZP v, ~ v; — N since there are only ZZP
~ vy entering the hole. It implies that vy is circular or not present. The first option
is forbidden in dimer models and the second spoils the presence of the hole itself.
Hence the presence of an anomaly-free hole inside such a ring is inconsistent.

As a comment, let us notice that to reach this conclusion we did not assume
anything about the exterior of the ring. If one does not look at the hole but asks
that the exterior has a reduced rank, it implies that ZZP v, on its border, see
fig. [B6D] will satisfy

’UaN’Ul—i‘NN’U:g—i—N, (312)

and thus we recover the result of eq. using eq. (309). Again, it can be
shown that this result does not depend on the number of edges in contact with
the exterior of the ring. The cluster (hexagonal or otherwise) is now viable only
with ranks N + O(1), because it is made only of ZZP ~ v;.

B The Octagon and its Symmetric Phase

As discussed in [68], 69] [70], to any dimer model one can associate a weighted,
signed adjacency matrix, known as the Kasteleyn matrix, whose determinant is
the characteristic polynomial of the dimer model from which one can extract the
toric data. This procedure is known as the Fast Forward Algorithm and is reviewed
in [21].

To obtain the Kasteleyn matrix one assigns a sign to every edge such that for
every face in the dimer the product of signs is +1 if its number of edges is 2 mod 4
and —1 if its number of edges is 0 mod 4. One then constructs two closed oriented
(gauge invariant) paths 7,7, with holonomy (0, 1) and (1,0). Every edge crossed
by these paths is multiplied by w or 1/w, depending on the relative orientation
(respectively by z or 1/z). The resulting graph for the Octagon is shown in fig. [87

The adjacency matrix of the graph with such weights is the Kasteleyn Matrix
and, for the Octagon, it reads
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D

Figure 87: Dimer diagram of the Octagon with weights (in red) for building the
Kasteleyn matrix. White and black nodes have been numbered. Two fundamental
paths are shown in blue.

1 2 3 4 5 6 7 8 9
1| w 1 0 w 1 -1 0 0 0
2 1 0 1 -1 0 0 0 0 0
3 0 1 1 0O -1 0 0 0 0
4 0 0 0 —w 1 1 0 0 0

K= 5 o 0 0 w 0 1 wz 0 O (313)

6 0 0 1 1 1 0 -z -z =z
7 0 0 0 0 1 -1 0 z 0
8| —1 0 0 0 0 0 1 0 1
9 0 1 0 0 0 0 0 1 1

where rows and columns correspond to white and black nodes in the dimer, re-
spectively. Its determinant is

det(K) = w2? +w? 2 +w?2* —24w? 22 + 26w 2 —w? + w2 + 24w 2% + 26wz +w— 2%+ 2 .

(314)
One may compute the Newton Polygon of the above expression and it should
correspond to the toric diagram of the dimer one is dealing with [70]. For every
monomial a w’z¢ one draws a point in a 2d lattice with coordinates (b,c). As
expected, one obtains the toric diagram depicted in fig. Nicely, there is a
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single perfect matching for each of its external points, thus ensuring that the
dimer meets a necessary condition of minimality.

C ACC for 3-2 Quivers

Not all of the quivers presented in fig. [76] are free of anomalies when N; # 0. In
this appendix we check this explicitly. Our calculations also motivate the choice
of the antisymmetric tensor A, to satisfy the ACC. Below we summarize the ACC
for each of these models. For completeness, we added here as different cases also
the two models where node 1 and 4 are identified.

o SO(N; + 1) x USp(Ns +2) x SU(Ns + 3) with Cy:

Node 3: (N3+3—4)— (N1 +1)+(N2+2) = 0. (315)

o SO(N) +1) x SU(Ny +2) x SU(Ns + 3) with :

Node 2: —(Ny+2—-4)+ (N +1)—(N3+3) =0,

Node 3:  (N;+3—4)— (Ny+1)+ (N2 +2) =0. (316)

Note that the choice of conjugate representation for the antisymmetric tensor
of SU(Ns + 2) is fixed by the first equation, in order to satisfy it when all
N; = 0.

For these two first models, the ACC reduce to

Ny = Ny + Ns. (317)

o SO(N; + 1) x USp(Ny + 2) x SU(N3 + 3) x SO(Ny + 1):

Node 3: — (N;+1)+ (Na+2)— (Nys+1)=0. (318)
In this case, N3 is not constrained by the ACC, which can be rewritten as

Ny = Ny + Ny. (319)

° SO(Nl + 1) X SU(NQ + 2) X SU(Ng + 3) X SO(N4 + 1)

Node 2: —(No+2—4)+ (Ny+1)— (N;+3) =0,

Node 3: —(Ni+ 1D+ (Ny+2)— (Ny+1) =0. (320)
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This translates to the two conditions

le N2+N3,

21
No= N, + N, (321)

implying N3 = —N,. This in turn sets N3 = N, = 0, since all N; must be
positive and potentially large. In principle this issue does not rule out the
possible engineering of these models, since the corresponding dimers might
give rise to additional gauge groups and fields when regular D3-branes are
added, in a way that anomalies are cancelled. Assuming that at least some
fractional branes are needed in order to turn on all the ranks of the 3-2 model
(i.e. even for N; = 0), then such models are excluded.

SO(Nl + 1) X USp(NQ + 2) X SU(Ng + 3) with 2(E|3,E|1)2

—2(N; + 1)+ (N2 +2) =0, (322)
which is simply

Ny = 2N . (323)

SO(N; + 1) x SU(Ny +2) x SU(N3 + 3) with 2(CIs,0;):

Node 2: —(No+2—-4)+ (N +1)—(N;+3) =0,

Node 3: AN+ 1)+ (Na+2) =0. (324)
This can be simplified into
NQ — 2N1 5
Ny— —N, . (325)

which has no solution beyond N; = 0 in the absence of additional ingredients
coming from the full dimer.

The results of this appendix can be summarized in the following table:

>
Q
Q

Gauge groups
SO(N; +1) x USp(Ns +2) x SU(Ny + 3) with
SO(N, + 1) x SU(Ny +2) x SU(N; + 3) with [
SO(Nl + 1) X USp(NQ + 2) X SU(N3 + 3) X SO(N4 + 4)
SO(Ny +1) x SU(Ny+2) x SU(N3 + 3) x SO(Ny+4)
SO(Nl + 1) X USp(NQ + 2) X SU(Ng + 3) with 2(53,D1)

X N> NN N
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D Worldsheet analysis for the Klein bottle pro-
jection of C?/Z,

In this appendix, we present the worldsheet computations for the glide orientifold
of C?/Z,4 presented in Section m

The open sector of strings on the orbifold before the orientifold projection is
obtained as follows:

Ay, 0 0 0 0 X 0 0
4 0 Ay 0 0 o 0 0 Xy O

m 0 0 Ay 0 oo 0 0 0 Xy |7
0 0 0 Ay Xa 0 0 0

(326)

0 0 0 Yy Zu 0 0 0
G, _ | Yu O 0 0 G| 0 Z2 0 0
2 0 Yy 0 0 ’ 3 0 0 Zs3 0
0 0 Y O 0 0 0 Zuy

The appropriate orientifold projection, defined as in Equations section [5.2.]]
and section is given by

0
Yo = 1(; 8 8 16V , and R= zég . (327)
0 1y 0 0
It gives the following identification of gauge bosons
Ay, =—A35, and Ay, =—A],, (328)

the resulting gauge group is SU(N); X SU(N)s. The matter content follows from

X = Y = Xp € (01, 02),

X23 = Yig = Xgl € (iz, il),

You = X§, = Yu € (02 O1), (329)
Y3 = Xfl = Yo € (O1,02),

Zn = Zng = 2 € Adj,

ZQQ = ZL = ZQQ € AdJ2 .

One can check that the superpotential is the one advertised in Equation eq. (140)).

E Computations for the orbifolds of the conifold

In this appendix we study the glide orientifold of orbidolds of the conifold, both
chiral and non chiral. In particular we focus on C/Z, and the cone over Fj, the
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zeroth Hrizebruch surface. Moreover, we provide an analysis of the duality cascade
of the orientifold theory of C/Z,, which mimics the one of the conifold.

E.1 Orbifold of the conifold C/Z,

Let be a non-chiral orbifold of the conifold, C/(Z; x Z,,). The general action is
given by

79‘/1,2/79_1 = ‘/1,2
WgAﬂg_l =74, WgAﬂg_l = Ay (330)
VgBWg_l =e By, 793279_1 = By,

and

79%,27;1 = V1,2
”YgAl’Y;1 = e¥™IMm A, ’YgAz’Y;1 = Ay (331)
’YgBl’Yg_l = By, ’YgB2’Yg_1 =e ™/MB,,

where V) 5 are the two adjoint vectors related to the gauge groups. In the case of
our first example, C/Z,, the action gives the following fields

Vi 0 Vo 0 0 Ay
' ( 0 Vi ) ? ( 0 Vi ) ! ( Az 0 > (332)
A, — Ao 0 B, — B 0 B, — 0 Bas
? 0 Ay ) 7t 0 By )’ ? By 0 ’
with a superpotential given by
W = A1B1ABy — A1 By Ay By . (333)

We consider the following orientifold projection in order to reproduce the glide
projection.

Vig = —VQVf,Fz%_zl )

Az =v0Bl ", (334)
with
0 1y

= ) 335
The action on mesons, x = (A;B1)? y = (A3B3)?, 2 = A1 By and w = Ay By, is

Ty, Z =z, w— w,

dx Ady A dz dy Adx Adz

Qy=——"2 " 3O =—""""" " =_0 336
5 2uwz2 B 2wz2 3 (336)
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which means that the action preserves supersymmetry on the branes.
The gauge group is SU(Ny); X SU(Ns), and matter content given by

A14 - ng

= A = ( i 1, i 2) )
B41:A§QE B = (Dl DQ)
_ ’ 337
Ap=BL= C = (51,92), (337)
By =Ai= D = (01, 09),
with superpotential
W = ABCD — BACT D" . (338)
E.2 Zeroth Hirzebruch surface F
In this case we take the following actions on the fields
YV127, " = Vie (339)
YAy = —A
79A27;1 = _A2
B, = B
79327;1 = Bs,
leading to
(Vi 0 (Va0 B 0 A,
‘/1 - 0 ‘/E% 9 ‘/2 - 0 ‘/;1 ) Al - A':ng 0 9
_( 0 AL _(Bn O _ (B4 0
A?‘(A@ o )0 P=Lo By) =10 m
The orientifold action maps 1 — 4 and 2 — 3, it can be summarized as
VY1,2 = _IVQV;TQ’Y(;l )
A =04375" (340)
By =7aB; 75"
with
 (1y 0
Yo = ( 0 1N> . (341)
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The resulting gauge group is SU(N); x SU(N)y and the matter content is given
by

Ay =A71 = Usa = D1, H1,
A3 =A% = Zsa = [Ma, Ho, (342)
By=Bf = X = (01,09,
By =B = Y = (0O, 0,),
with the following superpotential,
W =XUsY"Zy— XTZsYUy. (343)

In order to compute the action the 3-form, we compute the equations defin-
ing the singularity using the geometrical approach described in Section [5.7} The
singularity is described by the following equations in C°

2
Z1R3 = 2274 = Zq,

2 2
2170 = 25 , 2923 = 27, (344)
2 2
R1724 = Zg R34 = Zg .
The action on mesons is
21 4> 29, 23 <> 24, 26 <> 27 (345)

while all other coordinates are invariant. The action on the 3-form is
dzy Adzo Adzg Adzg Adzs Adzg Adzy Adzg A dzg
es

L. P

since the polynomials are invariant and in the numerator we are exchanging three
pairs of coordinates, resulting in an overall minus sign.

E.3 A cascade in the glide projection of C/Z,

For a generic choice of ranks, SU(N 4+ M); x SU(N )y, one finds that the gauge
theory has a non-trivial RG-flow and SU(N + M); goes more rapidly to strong
coupling as we approach the infrared regime of the theory:

pr=3M, [r=-3M. (347)
The mesons of the first gauge group are

M, =BA M,=BC, M;=C"D" and M,= DA, (348)
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and one thus finds that this gauge theory is Seiberg dual [31] to SU(N — M); x
SU(N ), with a matter content given by the mesons M;, My, M3 and M, in addition
to the following list of bifundamental fields:

a:<D17D2)7 b:(D17D2)7 CZ<D1752) and d:(ilﬂm2)<349)
The superpotential is given by

W = MyMy;— M;M;+ Myab+ Mych + Mzd® ¢ + Myad
= abd"c" — badc (350)

where the mesons have been integrated out using F-term relations.

The new gauge theory SU(N — M); x SU(N), ends up with the same matter
content and superpotential (up to an overall sign) as the initial SU(N + M), x
SU(N)y. This can be seen easily with the following mapping;:

A—=b, B—a, C—d and D —c. (351)

The M deformation branes thus trigger a cascade of Seiberg dualities a la Klebanov-
Strassler [32]. In particular, for N being an integer multiple of M, we expect the
cascade flow down to SU(2M) x SU(M) where the physics should the same as
for the deformed conifold. Indeed, we can schematically define baryonic operators
B= [ACT}M, B = [BDT}M, and a 2M x 2M squared matrix M in terms of the
mesonic operators of eq. that should obey a relation of the form

detM — BB = Aj)] (352)

where Agyy is the strong coupling scale of SU (2M). Going on the baryonic branch
B = B = A2l one finds that the mesons decouple, leaving a SYM SU(M)
dynamics displaying confinement and chiral symmetry breaking.

F Baryonic branch instabilities

In this appendix we investigate the possible instabilities of the Octagon model when
exploring the baryonic branch. These directions in the moduli space correspond to
the VEV of dibaryons operators. Moving along these directions has the geometric
effect of partially resolve the singularity.

In fig. |88 we depict the toric diagram of the Octagon singularity and the corre-
sponding dimer diagram with the fractional brane configuration which gives rise,
upon orientifolding, to our DSB model. Neighboring faces with different colors
indicate the fact that the rank of gauge groups are different in the considered
configuration.
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(a) (b)

Figure 83: The Octagon (a) Toric diagram, (b) Dimer diagram with the deforma-
tion brane in grey. Red lines represent the orientifold lines.

We list in fig. [89] the first partial resolutions of the Octagon that preserve the
orientifold symmetry, as explained in [27]. In order to cause instabilities, the re-
sulting toric diagram has to remain symmetric with respect to the orientifold line
and allow for the presence of N/ = 2 fractional branes. Further partial resolu-
tions consistent with the orientifold projection inexorably lead to orbifolds of the
conifold, for which our comments on the case of fig. will remain valid.

o O oo

@ o o e o6 o o

e (O *—O e o o o
o (O o—=0

(a) (b) (c)

Figure 89: First partial resolutions of the orientifolded Octagon admitting N = 2
fractional branes.

The corresponding dimer diagrams are obtained following Gulotta’s algorithm,
[64], and are presented in fig. The algorithm operates the partial resolution
by “merging” some ZZP within the dimer diagram of fig. [88b] This action is
equivalent to assigning a VEV to the edges on which these ZZP cross each other.

In the cases of fig. and fig. [90D], we see that the partial resolution is in
obstruction with the very nature of our deformation brane because it implies the
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fusion of faces of different ranks already at the level of the non-orientifolded theory.
In the case of fig. [90c, instead, the partial resolution is obstructed because it
is obtained giving a VEV to edges separating faces of ranks that differ by the
orientifold charge, for example the edge separating faces 1 and 2.

Therefore, we conclude that any partial resolutions of the Octagon singularity
which opens-up N' = 2 fractional brane directions is indeed obstructed in our
model.

Figure 90: Dimer diagrams after partial resolutions.
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