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The first principle is that you must not fool yourself – and you are the easiest person to fool.
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Introduction

Many-body quantum systems are the archetypal framework for the study of collective phenomena and quan-
tum matter at a macroscopic scale [1, 2]. Their complexity stems from the combination of a large number
of degrees of freedom, and quantum-mechanical effects, including coherence and entanglement.

The study of many-body systems bridges heterogeneous communities ranging from statistical mechan-
ics [3] to quantum information [4], from high-energy [5] to condensed matter physics [6, 7]. For instance,
it covers the study of exotic equilibrium phases of matter, including superconductivity and superfluidity,
topological insulators and quantum spin liquids, and out-of-equilibrium phenomena [8], such as quantum
thermalization in isolated systems [9, 10], ergodicity [11, 12], and open quantum systems [13, 14].

In the past decades, a variety of new methods and tools have been proven successful to uncover complex
patterns of many-body quantum physics. One of the most remarkable developments has been the emergence
of entanglement as a tool to characterize and classify states of matter, by quantifying specific forms of non-
local correlations in the system [15–18].

Defined as the non-separability of a state in its componing parts, entanglement has been first attached
to foundational questions of quantum mechanics and nowadays is an active field of research in a variety
of disciplines[19]. From a quantum computing perspective, entanglement is believed to be a fundamental
resource in the quantum physics, allowing to perform tasks impossible in a classical world (e.g. teleporta-
tion), and providing new technological breakthroughs potentially relevant for everyday life (e.g. quantum
cryptography). Furthermore, entanglement plays an important role in condensed matter physics [20], where
it serves as a probe of phases and phase transitions. At equilibrium, the ground state of gapped systems
exhibits entanglement between a region A with its complementary, proportional to the area of its boundary
@A . This so-called area law is the reason for the success of numerical methods such as tensor network
and density matrix renormalization group [21, 22]. Out of equilibrium, entanglement growth exhibits uni-
versal features which are insensible to the microscopic deatails, and depends on the localizing and ergodic
properties of the system [23]. For example, thermalizing systems show a linear increase of entanglement
entropy with time [24], while many-body localizing phases exhibit a logarithmic relaxation [11]. Lastly, the
breakthroughs in cold atoms and trapped ions made it possible to prepare, manipulate and measure atoms
with high fidelity, thus allowing to explore the blueprints of entanglement in experiments [25–28].

In parallel to the aformentioned conceptual developments, the technological advancement of algorithmic
design, parallel machines and GPUs has largely revolutionized computational methods. Machine learning
has become a pillar of modern data science and has been recently applied to classical and quantum physical
systems [29–31]. For quantum systems, the main applications are two: to encode complex wave patterns
through suitably designed neural network architectures [32] or decode these patterns in intelligible infor-
mation [33], via unsupervised learning and variational autoencoders. For example, the data structure of
statistical and quantum systems has been investigated through unsupervised and supervised learning meth-
ods [34, 35]. Similarly, tensor networks have become a standard tool in the exploration of many-body
physics [21, 36]. Originally developed on renormalization group ideas, they provide an efficient approxi-
mation to certain classes of quantum states, with remarkable successes in fermionic systems, lattice gauge
theories, and topological quantum matter. These methods provide alternative, and often complementary,
pathways to exact diagonalization and quantum Monte Carlo, which are the main numerical resource for a
large class of many-body problems. For instance, exact diagonalization allows the study of highly excited
states, thus playing a fundamental role in many-body localization and thermalization [9–11, 37], whereas
quantum Monte Carlo allows the study of correlations and entanglement in two (or higher) dimensional
bosonic quantum systems [38, 39].
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In this thesis, we employ these methods to inquire a variety of many-body problems, ranging from
strongly correlated systems at equilibrium, to monitored quantum dynamics in the presence of environment
probing. Entanglement, correlations, and data structure – as well as the relationship between them serve as
the lens for the investigation of these thematics and constitute the leitmotif of the present thesis. Specifically,
we aim to contribute to the following questions: (1) Does a single eigenstate contain the full information on
its parent Hamiltonian? (2) How does entanglement behave in the presence of critical disorder? (3) Does the
configuration space of a statistical mechanics system directly detect critical behavior? (4) How is the system
unitary evolution altered by the presence of a monitoring environment? Following the preceding subjects,
for the sake of clarity, we divide the thesis into four chapters; each one presents a detailed introduction on
the specific problem and of the literature, and is self-consistent, in that it can be read without the knowledge
of the other ones.

In Chapter 1 we propose an entanglement-guided method to address the open problem of finding parent
Hamiltonian of variational wavefunctions. The success of variational states is motivated by phenomena as
the fractional quantum Hall effect and the high-Tc superconductors, where the microscopic Hamiltonian
governing the processes is not known. More in general, this top-down approach which starts from a Hamil-
tonian and diagonalizes it is not always accessible to quantum spin liquids, which are strongly correlated
quantum phases exhibiting topological order and gauge theory structure. Our method is based on the par-
ticular structure of the non-local correlation and entanglement, proper of the ground state of Hamiltonian
systems, and relies on a well-known field theory result (the Bisognano-Wichmann theorem). The additional
assumption is the system should be described by an effective field theory with relativistic invariance.

After general remarks on the nature of the problem, in Chapter 1 we present the algorithm, benchmarking
it suitably chosen and known situations, and subsequently apply this technology to reconstruct approximate
parent Hamiltonian of the ubiquitous class of Jastrow-Gutzwiller wave function, of which the Laughlin wave
function is a particular instance.

In Chapter 2 we investigate entanglement and correlations in critical disordered quantum spin chains. A
system with quench disorder is usually difficult to treat analytically and numerically, due to its inhomogene-
ity which makes the system hard to solve. We consider the random singlet phase, characterizing the ground
state properties of the random bond XX and XXZ chain, and study the negativity spectrum and the symme-
try resolved entanglement entropy. The negativity spectrum is the spectrum of the partial transposed density
matrix of the system, which encodes the entanglement of a mixed state. By itself, the negativity spectrum
is not a measure of entanglement, but it can be used to construct via simple algebraic functions, experi-
mentally relevant entanglement witness. The symmetry resolved entanglement entropy is the entanglement
content of each symmetry sector for a system displaying an additive symmetry, such as the conservation of
total polarization or the number of particles. It has been experimentally estimated for many-body localizing
systems with a cold-atoms platform, and for a long-range XX chain in a trapped ions platform.

In particular, we use strong disorder renormalization group methods to compute exactly both negativity
spectrum and symmetry resolved entanglement in the scaling limit of large systems, and benchmark our
results with ab initio numerical methods and with numerical renormalization group.

In Chapter 3 we study the connection between classical critical phenomena and data structures, by
investigating geometric properties of the system configuration space. Specifically, we propose the intrinsic
dimension, which is the dimension of the encoding manifold in data-space, as an order parameter for phase
transitions. Due to the curse of dimensionality, the precise characterization of the intrinsic dimension is a
hard task, as the density of data points in a data manifold is densely packed in its borders. This is the case
for partition functions of statistical ensembles, which present a thermodynamic number of configurations
for their degrees of freedom, and is naturally present in the exponential nature of quantum data. We use a
state-of-the-art algorithm to estimate the intrinsic dimension of a dataset, which assumes the data follows
a continuous distribution. This method is independent of the density, and it relies on the ratio between
distances of data points. We find the method is not only successful in identifying first- and second-order
phase transitions, but can predict with percent level precision a BKT transition already at modest system
sizes.

The first three chapters treat equilibrium problems. In Chapter 4 we investigate data structure and en-
tanglement for the dynamics of non-unitary systems. The simplest setting of these systems, on which we
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focus in this thesis, is that of a unitary-evolving quantum dynamics coupled to a measuring environment,
that stochastically and locally probes the system. The state evolution describes a stochastic process or
quantum trajectory in the Hilbert space, driven by the competition between unitary dynamics, that generate
entanglement, and local measurement, which due to their collapsing nature, destroy non-local correlations.
In particular, the quantum trajectory exhibits different structural properties compared to the average state.
As an illustrative example, the von-Neumann entropy over the average state is typically extensive (exclud-
ing fine-tuned instances), whereas the conditional average von-Neumann entropy over the trajectories may
present extensive or sub-extensive scaling depending on the frequency/strength of the measurements. For
low-measurement rates, the stationary state is highly entangled and robust against the probing of the en-
vironment which acts as a noise in the system. For these reasons, this dynamical phase is denoted the
error-correcting phase. Instead, for high-measurement rates, the system is constantly collapsed to a reduced
subspace of the Hilbert space (quantum Zeno phase). We investigate the interplay between unitary dynam-
ics and measurements in Chapter 4 for three different setups. Starting from the results presented in Ch. 3,
we consider 1+1D random unitary circuits with stochastic measurements, and explore, employing princi-
pal component analysis and intrinsic dimension estimation, how the space encoding the quantum trajectory
exhibits (critically) structural changes. We find that the difference between the error-correcting phase and
the Zeno phase leaves marks in the behavior of the first principal components, and in the scaling of the
intrinsic dimension. We then explore the role of dimensionality in hybrid random circuits by examining
the 2+1D Clifford hybrid circuits. To probe the universality of the transition, we consider two protocols,
where the environment implements respectively rank-1 or rank-2 local projective measurements. The for-
mer has a strong disentangling effect, as the projection is onto a single qubit, whereas the latter presents a
remnant entanglement since they project onto a Bell pair. For both these protocols we find a phase transi-
tion, with different critical points (which depends on the microscopical detail of the system), but the same
critical exponents. Furthermore, our numerical evidence suggests at criticality a scaling with multiplicative
logarithmic violations, which resembles the one of Fermi liquids and U(1) lattice gauge theories in 2+1D.
Lastly, to understand the role of the measurement, we consider the quantum Ising Hamiltonian coupled to a
weakly measuring environment. In this setup, the effective description is in terms of stochastic Schödinger
equations. We consider the limit of weak and continuous monitoring, corresponding to independent Brow-
nian stochastic measurements, and the no-click limit, where we post-select only trajectories without any
measurement, and the environment acts as a backreaction in the evolution operator. In this limit, the dy-
namics are generated by a non-Hermitian Hamiltonian. We find that despite quantitative differences, these
limits reproduce the same qualitative behavior and pinpoint the same critical transition.
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2.3.2 Moments Ê↵ and logarithmic negativity . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.3 Moments E↵ and renewal equation for the negativity spectrum . . . . . . . . . . . . 48
2.3.4 Application to adjacent intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3.5 Numerical tests for adjacent intervals . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Symmetry resolved entanglement in the random singlet phase . . . . . . . . . . . . . . . . . 56
2.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.4.2 Entanglement equipartition for Sm . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.4.3 Entanglement equipartition of eSm . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



Contents 8

2.4.4 Entanglement equipartition for bSm . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.4.5 The number entropy and the log-log term . . . . . . . . . . . . . . . . . . . . . . . 62
2.4.6 Numerical SDRG results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.6 Appendix: Additional detail and results for the negativity spectrum . . . . . . . . . . . . . . 72

2.6.1 Universality of the SDRG data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.6.2 Fermionic negativity moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.7 Appendix: Moments of the size of the symmetry block Im . . . . . . . . . . . . . . . . . . 76

Bibliography 79

3 Data Structure of Many-Body Systems 90
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.2 Intrinsic Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.3.1 How to characterize partition functions as data sets . . . . . . . . . . . . . . . . . . 96
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4.1 Second-order phase transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.4.2 Berezinskii-Kosterlitz-Thouless (BKT) phase transition . . . . . . . . . . . . . . . . 98
3.4.3 First-order phase transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.5.1 Why the Id exhibits a singular behavior in the vicinity of Tc? . . . . . . . . . . . . . 101
3.5.2 Why Id exhibit universal scaling behavior? . . . . . . . . . . . . . . . . . . . . . . 104

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.7.1 The TWO-NN method and comparison with principal component analysis (PCA) . . 108
3.7.2 Scaling of the Id with the number of configurations . . . . . . . . . . . . . . . . . . 109
3.7.3 Data collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.7.4 Definition of the winding number . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Bibliography 114

4 Measurement-Induced Criticality in Non-Unitary Quantum Systems 118
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.1.1 Measurement-induced criticality in hybrid random circuits . . . . . . . . . . . . . . 120
4.1.2 Measurement-induced criticality in the quantum Ising chain . . . . . . . . . . . . . 121

4.2 Stabilizer states and Clifford unitary gates . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.3 Measurement-induced criticality as a data-structure transition . . . . . . . . . . . . . . . . . 125

4.3.1 Hybrid non-unitary dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.3.2 Principal component analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.3.3 Intrinsic dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.4 Measurement-induced criticality in 2+1D hybrid random circuits . . . . . . . . . . . . . . . 131
4.4.1 Model and observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.4.2 Entanglement dynamical phases and universal criticality . . . . . . . . . . . . . . . 133
4.4.3 Rank-2 measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.4.4 Discussion and open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.5 Measurement-induced entanglement transition in the monitored quantum Ising chain . . . . 141
4.5.1 Model and Measurement Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150



Contents 9

4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.6.1 Continuous measurements and stochastic Schrödinger equations . . . . . . . . . . . 151
4.6.2 Free fermion techniques and numerical implementation . . . . . . . . . . . . . . . . 155

Bibliography 158



10

Chapter 1

Entanglement Guided Search of Parent
Hamiltonians

This chapter is based on the following pubblications:

[1] Xhek Turkeshi, Tiago Mendes-Santos, Giuliano Giudici, and Marcello Dalmonte,
Entanglement guided search for parent Hamiltonians,
Phys. Rev. Lett. 122, 150606 (2019).

[2] Xhek Turkeshi, and Marcello Dalmonte,
Parent Hamiltonian Reconstruction of Jastrow-Gutzwiller Wavefunctions,
SciPost Phys. 8, 042 (2020).

1.1 The quest of parent Hamiltonians

Which came first: the egg or the chicken?

Variational wave functions have played a pivotal role in the investigation of strongly interacting sys-
tems [3–5], where the coordination of long-range entanglement and non-perturbative correlation patterns
hinder traditional Hamiltonian methods, such as Monte Carlo simulations [6] and semiclassical approxima-
tions [7]. Among the notable examples are the Laughlin wave functions [8, 9], which serve as a phenomeno-
logical ansatz for fractional quantum Hall physics [10], and the resonating valence bond states[11–14]. More
in general, variational wave functions have been a central tool in exploring quantum spin liquids [7, 15, 16],
either with tensor network approaches [17], or in Monte Carlo studies [18–21].

The success of ansatz wave functions has naturally motivated the search for the corresponding parent
Hamiltonians [22], with considerable achievements in several context, such as topological matter [23–25]
and low-dimensional systems [24, 26–38]. Furthermore, the recent experimental progresses in quantum
engineering and synthetic systems [39–43] have opened an additional perspective in the search for parent
Hamiltonians: thanks to the high degree of interactions tunability, these experiments provide a clean route
toward the realization of tailored quantum simulations.

This has stimulated recent renewed theoretical interest, culminated in a series of work aiming to a sys-
tematic reconstruction of Hamiltonians [44–50] having the input state as an eigenstate. In these approaches,
given an input state | i, the goal is to reconstruct an Hamiltonian H that has the input state as an eigenstate
(not necessarily in the low-lying part of the energy spectrum). In this respect, these methodologies have
been named inverse problem, in contrast to the forward problem, which is to find (part of) the spectrum of
a given Hamiltonian, and reflects the idea that an eigenstate encodes highly non-trivial content of the full
system [51]. A key assumption is that the target Hamiltonian is local, i.e., with interactions decaying rapidly
with the separation between degrees of freedom: this requirement, which is physically motivated and rele-
vant for certain experimental platforms, rules out fine tuned situations, e.g., the parent Hamiltonian being a
non-local projection onto the input state. Within this setup, the techniques introduced in Ref. [44, 46, 50]
reconstruct target Hamiltonians in polynomial computational resources, and, remarkably, using only limited
information on the state, such as local correlation functions. Interestingly, these method are generic, and has
been successfully applied also to disordered systems [44, 48].
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procedure Reconstruction(�, {O↵,r})
Initialization: �w

(0), error = 10, � = 4

Compute:
�

r r�O↵,ri�
while error < threshold do

Compute:
�

r r�O↵,ri�w(n)

Compute: �↵S

Compute: �w
(n+1) = �w

(n) � ��S

if ||�w(n+1) � �w
(n)|| >error then

� = �/2
error = ||�w(n+1) � �w

(n)||
return Hrec =

�
↵,r w

(N)
↵ O↵,r

Figure 2.1: Left. Algorithm for the parent Hamiltonian search. Right. Schematics of the parent
Hamiltonian search. The starting point is the wave-function of interest | i (with a half-partition reduced
density matrix ⇢), a set of local operators {O↵,r}, and an initial guess for their coefficients w0

↵. The
relative entropy S between ⇢ and an ansatz Bisognano-Wichmann reduced density matrix �({O↵,r, wn

↵})
is evaluated at each step of the minimization procedure. The procedure is then stopped once the desired
accuracy (✏) is reached: the final outcome are the couplings w⇤

↵ of the parent Hamiltonian, and the
entanglement inverse temperature �. The inset shows a sample of our results for the bilayer Heisenberg
model at the critical point (see text). Different lines correspond to minimization from different initial
sets ~w0. Convergence within 0.1% of the correct value of g (interlayer coupling; blue and green) and �
(red lines) is typically reached after 30 (grey area) and '200 steps, respectively.

1) Input: Given a lattice input state | i and a local basis of hermitian operators {O↵,r}
labeled by a lattice index r and an internal index ↵, our goal is to find the coefficients ~w? of the
linear combination:

H(~w) =
X

↵

w↵,rO↵,r, (2.3)

such that the input state is its ground state. We call this local operator the reconstructed
Hamiltonian Hrec = H(~w?). Here, we focus on translationally invariant Hamiltonians, and thus
set w↵,r = w↵.

2) Minimization: In order to construct Hrec, we propose an optimization procedure based on
minimizing the relative entropy [54, 55] utilizing as trial reduced density matrix the BW one.
The relative entropy between two density matrices ⇢ and � is defined as [39, 56]:

S(⇢|�) = Tr(⇢ log ⇢) � Tr(⇢ log �). (2.4)

For our purpose here, this function has two key features: it is non-negative, i.e. S(⇢|�) � 0, with
the equality holding if ⇢ = �; and it is joint-convex. This latter property ensures the uniqueness
of a global minimum for the function S(⇢|�) with fixed ⇢.

In the context of our problem, the left argument ⇢ encodes the input data, that is, ⇢ =
TrB| ih |. The right argument � is the reduced density matrix of the GS of H(~w), which
returns the parent Hamiltonian at the end of the procedure. We thus express � by using the
Bisognano-Wichmann density matrix in eq. (2.1):

�BW(~w) =
e�HBW(~w)

ZA(~w)
; ZA(~w) = TrAe�HBW(~w), (2.5)

FIGURE 1.1: Schematics of the parent Hamiltonian search. The starting point is the wave-function
of interest | i (with a half-partition reduced density matrix ⇢), a set of local operators {O↵,r}, and an
initial guess for their coefficients w0

↵. The relative entropy S(⇢|�BW) between the state and an ansatz
Bisognano-Wichmann reduced density matrix is evaluated at each step of the minimization procedure.
The procedure is iterated until convergence with a certain tolerance ✏: the final outcome are the coupling
w?

↵ of the parent Hamiltonian, and the entanglement inverse temperature �. The inset shows a sample
of our results for the bilayer Heisenberg model at the critical point (cfr. Sec. 1.3). Different lines
corresponds to minimization from different initial values ~w0. Convergence within 0.1% of the correct
value of g (interlayer coupling; blue and green) and � (red lines) is typically reached after 30 (grey
area) and 200 steps, respectively.

In this chapter we discuss a variation of the inverse problem, where we search Hamiltonians having the
input state in the ground state manifold. We propose a method to determine parent Hamiltonians guided
by Lorentz invariant field theory, which heavily relies on the entanglement structure of the ground states
of local Hamiltonians. The first key element of our strategy is to connect the reduced density matrix ⇢ on
a half-partition of | i to an ansatz inspired by the Bisognano-Wichmann theorem [52–55] adapted to the
lattice [56, 57]. As we detail below, and schematically illustrate in Fig. 1.1, this provides an immediate con-
nection between the input vector | i and its Lorentz invariant parent Hamiltonian H through ⇢. The second
key element is to combine this ansatz to a minimization procedure based on the relative entropy [58, 59]:
this guarantees, for the Bisognano-Wichmann ansatz Hamiltonian a convex optimization scheme, with a
unique solution, up to numerical tolerance. (Note, however, that no statement can be made on the con-
vergence rate to the right solution). Furthermore, the entire procedure can be carried out using different
theoretical methods, that rely on evaluating expectation values at finite inverse (entanglement) temperature,
including finite-temperature density matrix renormalization group (TDMRG) [60, 61] and quantum Monte
Carlo methods [62], as we explicitly demonstrate.

Our method is applicable to a broad range of wave functions which can be thought as ground states of
lattice Hamiltonians, described at low energies by quantum field theories with emergent Lorentz invariance
– thus encompassing physical phenomena as diverse as quantum criticality with z = 1, topological matter,
and quantum antiferromagnets, to name a few.

This chapter is organized as follows. In Sec. 1.2.1 we discuss the general framework, which we name
Bisognano-Wichmann Ansatz (BWA), and illustrate the details of the algorithms. In Sec. 1.3 we benchmark
the method by reconstructing the parent Hamiltonian of: (i) conformal phases in the one-dimensional XXZ
chain, (ii) the Haldane chain as an epitome of symmetry protected topological phase, and (iii) an example
of strongly coupled critical point, the two-dimensional bilayer Heisenberg antiferromagnet. In Sec. 1.4 we
instead consider the open problem of determining the parent Hamiltonian of Jastrow-Gutzwiller variational
states, which are archetypal of Laughlin wave functions and ubiquitously employed in quantum spin liquids.
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1.2 Bisognano-Wichmann theorem and parent Hamiltonian reconstruction

1.2.1 Bisognano-Wichmann theorem and lattice models

The parent Hamiltonian search we propose is guided by a set of field theory results, which go under the name
of Bisognano-Wichmann theorem [52, 53]. While it is well known that for local Hamiltonians the ground
state contains (potentially complete) information about the Hamiltonian spectrum, this theorem allows to
quantitatively establish this correspondence at the field theoretic level. Here we first state the theorem and
its consequences, and afterwards, we discuss the Bisognano-Wichmann ansatz we use in lattice models.

Given a pure state | i, and a bipartition A [ B, the reduced density matrix ⇢A = trB| ih | is a
positive operator, which can be parametrized as ⇢A ⇠ exp(�KA). The operator KA is known as modular
or entanglement Hamiltonian, and is in general highly non-local, as it is the logarithm of the non-local
operator ⇢A. Remarkably, Bisognano and Wichmann proved that the entanglement Hamiltonian acquire a
local density when considering the ground state of a relativistic quantum field theory, when the space is
partitioned into two (connected) halves. Moreover, the density of this modular operator is proportional to
the density of the Hamiltonian operator of the theory. The statement is the following.

Theorem 1. Given a local relativistic quantum field theory in D+1 spacetime dimensions, described by an
Hamiltonian H =

R
dDxh(x), the half-space reduced density matrix of the ground state (vacuum) |⌦i is

⇢A = trB|⌦ih⌦| =
e��entKA

ZA

,

KA =

Z

A

dDxx1h(x), ZA = trA⇢A. (1.1)

Here A and B are respectively the manifolds A = {x 2 RD : x1 � 0} and its complementary, ZA ensures
the norm of the density matrix is trA⇢A = 1, while �ent = 2⇡/v is the inverse entanglement temperature,
which is inverse proportional to the sound velocity of the relativistic excitations.

More recently, this result has been revisited in the context of holography and many-body physics [63–
70], and it has been extended to systems with conformal invariance in 1 + 1-dimensions [64], and in D + 1-
dimensions [71, 72].

An important observation is that, when considering lattice systems exhibiting relativistic low-lying exci-
tations, the discretization of Eq. (1.1) gives a fine approximation of the reduced density matrix [56, 57, 73–
77], with discrepancies due to the lattice structure disappearing in the scaling limit. (We mention also that
for certain model which can be solved through corner transfer matrix, exact solutions exists also at the lattice
level [78, 79].) This motivates the core idea behind the BWA method: to find optimal BW entanglement
Hamiltonian describing the reduced density matrix of the state of interest. For concreteness, we conclude
this subsection with stating the form of the discretized Bisognano-Wichmann Hamiltonian for D = 1 with
L sites and A = {1, . . . , L/2} (the result extends trivially to D > 1)

�BW
A =

e��KA

ZA

, ZA = trA⇢A, H =
X

r=1,...,L/2

hr

KA =
X

r=1,...,L/2

rhr. (1.2)

Here r labels the sites, hr is the lattice density of the Hamiltonian H , while KA is the corresponding modular
operator. Occasionally we omit the partition subscript A when no confusion arises.

1.2.2 Basis of local operators

From Eq. (1.2), it is clear that a fundamental ingredient is the specific choice of the local operators hr. On
one hand, the choice of the basis of operators fixes the concept of locality for the lattice model. On the other,
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different choices of such a basis give generally rise to other parent Hamiltonian models. In the following
we describe how the basis is defined, and how the Bisognano-Wichmann Hamiltonian Eq. (1.2) reads in this
basis. For ease, we consider the D = 1 setting, with trivial extensions in D > 1 space dimensions.

Following Ref. [44–46], we say an operator is k-local if either (1) it has finite domain k-nearby few
body operators, or (2) it is written as a linear combination of the latter. Furthermore, we require k to be
constant for any finite system size L we consider. If these conditions are not fulfilled, we say the operator is
non-local 1.

We define a basis of k-local operators as the set of matrices {Oµ,r}µ2I,r2⇤. Here I is a set of internal
indices, while ⇤ ⇢ ⇤ is a set of sub-lattice ones. Depending on the values of I and ⇤, these basis span
different vector spaces of local operators, whose generic element is

H =
X

↵2I,r2⇤

w↵,rO↵,r. (1.3)

The dimension of these spaces is thus given by the combined cardinality of the label sets D = |I||⇤|. For
the sake of clarity, we list below few examples of the above notation. First, we consider the Pauli algebra
Sx/y/z at each site r 2 ⇤ = ⇤

B1 = {1r, S
x

r , Sy

r , Sz

r }r2⇤ with O0,r = 1r, O1,r = Sx

r , O2,r = Sy

r , O3,r = Sz

r . (1.4)

The generic linear combination is

H =
X

r2⇤

3X

↵=0

w↵,rO↵,r. (1.5)

We see the total dimension is D = 4L in this case. A less trivial example is the two-body nearest neighboring
interactions

B2 = B1 [ {Sx

r Sx

r+1, S
x

r Sy

r+1, . . . S
y

r Sy

r+1, . . . , S
z

r Sz

r+1}r2⇤. (1.6)

Here ↵ covers, in addition to the elements in Eq. (1.4), the following two-body operators at each site r

O4,r = Sx

r Sx

r+1, O5,r = Sx

r Sy

r+1, . . . , O10,r = Sz

r Sy

r+1, O11,r = Sz

r Sz

r+1, (1.7)

with dimension D = 12L. The basis presented consider different operators for each site, and hosts a operator
space which also include inhomogeneous systems [48]. However, for the problem at hand, translational
invariance is required by the Bisognano-Wichmann hypothesis. This can be achieved equivalently by either
considering a reduced basis, which automatically implement the symmetry constraints, or imposing the
constraint at the level of coupling constants, hence viewing the target operator space as embedded in a
larger manifold. For notational simplicity, we choose the latter, and replace the couplings w↵,r 7! w↵.

The resulting manifold has dimension D ⇠ O(k) in system size, hence it is independent of the number
of sites, and is proportional to the domain of the most extended basis operator. Thus, in the following we are
going to consider only translational invariant system and Bisognano-Wichmann Hamiltonians, respectively

System : H =
X

↵2I

w↵

X

r2⇤

O↵,r ⌘
X

↵

w↵h̃↵, BW : H =
X

↵2I

w↵r
X

r2⇤

O↵,r ⌘
X

↵

w↵h̃↵. (1.8)

In the above equation, we defined the operators h↵ =
P

r
O↵,r and h̃↵ =

P
r
rO↵,r.

If additional symmetries are imposed, the number of independent coupling constants is further reduced.
For instance, imposing U(1) invariance, and restricting to only interactions at most between nearest neigh-
boring sites, we have

Bk(U(1)) =
�
S+

r S�

r+k�1 + S�

r S+
r+k�1, S

z

r Sz

r+k�1, S
z

r

 
r2⇤

(1.9)

1Notice that by this convention, inverse law power-law interacting model are considered non-local; however, as it is the case for
such systems, for large value of the exponent governing the interaction, the system is effectively a short-range model. We discuss
more about this when treating the Jastrow-Gutzwiller wave functions in Sec. 1.4.
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The corresponding target Hamiltonian is still in the form Eq. (1.8), but the index ↵ takes only three values
(D = 3).

1.2.3 Bisognano-Wichmann Ansatz algorithm and parent Hamiltonian reconstruction

We are now in position to present the Bisognano-Wichmann Ansatz algorithm. Let ⇢input
A

be the half-system
reduced density matrix of the the input state. Our goal is to minimize a cost function d(⇢|�), and to find
optimal coefficients w↵ in Eq. (1.8) such that

w?

↵ = arg min d(⇢input
A

|�BW

A ({w↵})) ) ⇢input
A

' �BW

A ({w?

↵}). (1.10)

It is important to stress that the choice of the cost function is a crucial aspect of the algorithm. A simple
choice of cost function such as the Kullback-Leibler divergence between participation spectra of the reduced
density matrices [80] has the advantage of being trivially implementable in higher spacetime dimensions,
but in general fails to guarantee the implication in Eq. (1.10). (However, it guarantees the diagonal parts are
the same when the Kullback-Leibler divergence is zero). To simplify the discussion, here we fix the cost
function in Eq. (1.10) to have a distance interpretation in the density matrix space. For the class of models
described in Eq. (1.6), any convex cost function acting on the space of density matrices leads to a convex
optimization problem, hence with a unique solution up to numerical tolerance. Among these, we have found
particularly useful for the simple form of the corresponding gradient, the relative entropy

S(⇢|�) = tr(⇢ log ⇢) � tr(⇢ log �). (1.11)

This function quantifies the distance between between ⇢ and �, it is non-negative S(⇢|�) � 0 (with the
equality holding only if ⇢ = �) and it is jointly convex. In particular, its restriction to a single argument is a
convex function. With this choice d(⇢|�) ⌘ S(⇢|�), we optimize the relative entropy and obtain the optimal
coefficients in Eq. (1.10).

For the numerical implementation, we evaluate a gradient descent on the relative entropy. Introducing
the notation @↵ = @/@w↵ and the expectation values

hOiGS ⌘ Tr(O⇢A), hOiBW,~w ⌘ Tr(O⇢BW
A

(~w)), (1.12)

the gradient of the relative entropy reads

@↵S(⇢A|⇢BW
A

(~w)) = hh̃↵iGS � hh̃↵iBW,~w(n) . (1.13)

In the last equation, we used the notation introduced in Eq. (1.8). We conclude this section with few com-
ments. First, we note the actual input needed is just the expectation value over the ground state and over the
”thermal” BW density matrix. While the former can sometimes computed analytically (as for the Jastrow-
Gutzwiller wave functions in Sec. 1.4), the latter can be implemented with different numerical methods,
including quantum Monte Carlo when no sign problem is present. Furthermore, it is easy to prove the
convex nature of the problem. In fact, the Hessian of the relative entropy

@↵S(⇢A|⇢BW
A

(~w)) = hh̃↵hh̃�iBW,~w(n) � hh̃↵iBW,~w(n)hh̃�iBW,~w(n) ⌘ ⌅↵,� . (1.14)

is a quantum covariance matrix, and thus it is a positive semi-definite operator ⌅ � 0.
Lastly, it is worth pointing out that the method is not immediately suited to simple wave functions,

where correlations vary at the lattice spacing level (like a product state). This is due to the field theoretical
assumption we employ, which might fail in these regimes. Another potential limitation is that it is not
possible to capture parent Hamiltonians with quadratic spectra, such as ferromagnets. (See Sec. 1.4 for a
discussion in the context of Jastrow-Gutzwiller wavefunctions). Failure is in principle straightforward to
diagnose, as the relative entropy minimum will attain a large value, indicating an incorrect result.
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FIGURE 1.2: Spin chain of interest. We compute the reduced density matrix by tracing out the partition
B.

1.3 Parent Hamiltonians of conformal, critical and topological phases

In this section we benchmark the BWA algorithm by reconstructing parent Hamiltonian of known states.
Specifically, we consider three exemplar model wave functions: (i) the ground state of the XXZ spin-1/2
chain, (ii) the symmetry protected topological (SPT) ground state of the Haldane chain, and the ground state
of a two-dimensional quantum critical model, the 2D bilayer Heisenberg model.

1.3.1 Parent Hamiltonians of conformal phases

The class of wave functions we consider are the c = 1 conformal field theory (CFT) ground state of the 1D
XXZ chain

H =
X

i

Sx

i Sx

i+1 + Sy

i
Sy

i+1 +�Sz

i Sz

i+1. (1.15)

In the above equation, S↵

i
are the spin-1/2 operators acting on the i-th site, whereas the coupling constant

� control the phase of the system. The model hosts a gapless phase for �1 < �  1, described at low-
energies by a Luttinger liquid. In addition, it displays a ferromagnetic (antiferromagnetic) phase for�  �1
(� > 1). Both the gapless and the antiferromagnetic phase shall be captured by our approach.

To test our method, we choose as ansatz wave functions the ground state of Eq. (1.15) for various
values of �, and the basis Eq. (1.6). We define the convergence parameters as w↵ = �J↵, i.e. factoring
the entanglement temperature, and consider open boundary conditions. We find convenient to vary the
internal label index as ↵ 2 {x, y, z, xx, xy, . . . , zz}, which naturally relate to the operator content (e.g.,
wxy ! Sx

r Sy
r . The reduced density matrix is obtained by tracing half-chain, see cartoon in Fig. 1.2.

Given an initial configuration, we perform the minimization and evaluate the error as

✏ = ||⌘rS(⇢|�BW(~w)|| (1.16)

where ⌘ is the control parameter of the gradient descent. For the sake of convenience, we consider a tolerance
of 10�3 for the error, that we see already return accurate results for the parent Hamiltonian. (In Ref. [1] we
present results down to a tolerance 10�9, which does not vary the qualitative results.)

We present the results of the BWA algorithm implemented with exact diagonalization (L  12), and
TDMRG (L  24) in Fig. 1.3. In panel (a), we plot w↵ as a function of the steps for different initial guesses
~w0, chosen in the range w0

↵ 2 [2, 6]: the symmetries of the state are rapidly identified, and the couplings
of the parent Hamiltonian converge to the correct ratios after few steps, while the entanglement temperature
converges slower. We note that the overall prefactor (the inverse entanglement temperature) is not important
at the level of parent Hamiltonian search, as it only sets the energy scale of the model. However, in this
section we use it to benchmark the Bisognano-Wichmann hypothesis and hence our method.

The relative entropy indicating vicinity to the exact solution (Fig. 1.3b) displays few plateaux, and
eventually converges exponentially fast to the correct solution. In Fig. 1.3c, we plot the converged value of
�, averaged over initial configurations ~w0, with a relative error with respect to the exact value of percent
level. Finally, in Fig. 1.3d we show how the number of steps required for the minimization scale with system
size. As the system is enlarged, the field theory predictions become more robust, and the convergence rate
is faster. The abrupt change at � = 1.5 is an artifact of the minimization and is removed by considering
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FIGURE 1.3: Parent Hamiltonian search for the XXZ chain using exact diagonalization. (a) Ratios
J↵ = w↵/� (blue lines) and � (red lines) as a function of the minimization steps. We compare with
the exact coupling and entanglement temperature. Here, L = 12 and� = 1. No U(1) symmetry is im-
posed, hence the number of w↵ for the chosen basis is 12. (See text). (b) Error as defined in Eq. (1.16),
as a function of the minimization steps; the value � label the different input state used, ground state
of the respective XXZ Hamiltonian Eq. (1.15). (c) Reconstructed � = wzz/� averaged over initial
realizations of the coupling constants ~w0, as a function of system size. (d) Average convergence steps
over initial realizations of the coupling as a function of system size. The convergence rate typically im-
proves with system size. (e) Landscape of the relative entropy S(⇢,�BW(�,�)) between the reduced
density matrix of the ground state at � = wzz/� = 1 and the Bisognano-Wichmann Hamiltonian. The
insets show a planar cut (� = 1) for different system sizes.

FIGURE 1.4: Converged parameter versus system size for different values of� for the XXZ chain. We
use exact diagonalization to obtain the data, and average the converged values over the initial guesses
~w0, with elements w0

↵ 2 [�1, 1] uniformly picked. Other values have been investigated in Ref. [1], but
are not presented here to for presentation purposes.

smaller values of the threshold error. Our results are fully consistent with the relative entropy landscape
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FIGURE 1.5: Parent Hamiltonian search for the Haldane chain with L = 8. (a) J↵ = w↵/� and �
as functions of the minimization steps; the initial state is at � = 1. The inset shows a magnification
up to 14 steps of |1 � w↵/�|: convergence to the correct solution at a precision of 0.01% is typically
achieved achieved after 6 steps. (b) Error as a function of the minimization steps for different values of
�.

depicted in Fig. 1.3e.
As we have shown above, the coupling associated to the operators in the local basis not sharing the

symmetry-content of the chosen input state converge quickly to zero. It is however important to discuss
what happens when we enlarge the operator content within the symmetry preserving sectors. We therefore
consider the BW Hamiltonian in the basis of nearest neighboring and next nearest neighboring operators.
The resulting target BW Hamiltonian we consider is

HBW =
X

a=x,y,z

X

r2A

r(wNN
ab

Sa

r Sa

r+1 + wNNN
ab

Sa

r Sa

r+2) + wz
X

r2A

rSz

r . (1.17)

The simulations show that the new next nearest neighboring terms attain a finite value, which is smeared
out in the finite size scaling Fig. 1.4. While this trend is rapid in the conformal phase, where the correlation
of the system diverges, deeply in the massive case � = 1.5 the system presents deviation of order 10% for
the system size we reach. This is not unexpected, since for the massive case the ground state has very strong
spatial order, and the BWA suffers from slightly larger finite size effects [57].

1.3.2 Parent Hamiltonian of a symmetry protected topological phase

As a model with non-trivial topological phase, we discuss here the Haldane chain [5, 23], described by
the Hamiltonian Eq. (1.15) but with spin-1 operators. For 0 < � . 1.2, the model supports a Haldane
phase. We use exact diagonalization with adaptive gradient descent to determine the parent Hamiltonian for
different values of �. In this case, we have chosen a subset of the full basis of local hermitian operators
up to two body terms {O↵, r} = {Sa

r Sb

r+1, S
a
r }a,b=x,y,z (i.e. we do not include spin-1 local operators as

(S↵
r )2). The result of the minimization procedure are shown in Fig. 1.5.

In full analogy with the spin-1/2 case, the couplings quickly converge to the correct results, while the
entanglement temperature convergence is slower. In all instances we studied, the relative entropy converged
faster to 0 in the gapped, topological regime (Fig. 1.5b).

1.3.3 Parent Hamiltonian of a two-dimensional quantum critical point

We finally test our approach on strongly coupled quantum systems, by reconstructing the parent Hamiltonian
for the bilayer Heisenberg model characterized by the ratio of inter-to-intra layer coupling g [81]

Hbilayer =
X

l=1,2

X

h~i,~ji

~S~i,l
· ~S~j,l

+ g
X

~i

~S~i,1 · ~S~i,2. (1.18)
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FIGURE 1.6: Cartoon of the two-dimensional geometries employed for the bilayer Heisenberg model.

Here~i and~j label the sites within the planes (square lattice), l are the label of the planes, and we introduced
the notation h , i for the sum over nearest neighboring sites. We consider nearest neighboring basis operators
{O↵, r} = {Sa

~r
Sa

neigh(~r)}a,b=x,y,z;~r2⇤, with neigh(~r) denoting the neighboring sites of ~r, and consider a
lattice which has the cylinder geometry, with size L ⇥ L/2 (see cartoon in Fig. 1.6, where we also present
the partition considered).

The Hamiltonian Eq. (1.18) at g = 0 corresponds to the ground state of two uncoupled planes with
antiferromagnetic long-range order, while g = gc = 2.52210(5) [82] separates the antiferromagnetic phase
from a singlet phase. At the criticality, the system is described by a non-linear �-model.

As previously stated, the input parameters needed for the algorithm to work are the expectation value of
the basis operator chosen. Hence, we use stochastic series Monte Carlo with loop updates to compute the
expectation values of the operators

P
r
rSa

~r
Sa

neigh(~r) on the ground state (cfr. Eq. (1.14)).
During the gradient descent minimization part, we consider the BW ansatz for the entanglement Hamil-

tonian of the ground-state half-bipartition

HBW = �c

X

l=1,2

X

~i,�

ix~S(ix,iy),l · ~S(ix+�,iy),l + �c

X

l=1,2

X

~i,�

(ix � 1/2)~S(ix,iy),l
~S(ix,iy),l

+ �cg
X

l=1,2

X

~i,�

(ix � 1/2)~S~i,l
~S~i,l

, (1.19)

where ix > 0 and the shift is done in such a way that the distance from the entanglement cut is computed
from the center of the support of the operator.

Before considering the BWA on the bilayer Hamiltonian, we first investigate the convergence to one of
the layers of the model at g = 0, i.e. the Heisenberg model in two-dimensions. Specifically we check the
feasibility of the approach in 2D by considering as only free parameter the inverse entanglement temperature.
As presented in Fig. 1.7a, the error ✏ features a minimum at the expected value of � = 2⇡/v = 3.792, weakly
dependent on system size.

Next, we switch on the inter-to-intra layer coupling g and preliminary check the relative entropy mani-
fold as a function of g at fixed � = �c = 3.307 (Fig. 1.7b). We find that the minimum of the error coincide
with the correct coupling g = gc at percent level.

We lastly apply two different procedures: in the first one we fix the entanglement temperature and let
the coupling g free (red lines in Fig. 1.7c), while in the second we let both g and � vary (blue lines). In both
cases, the error ✏ quickly diminishes (slower in the second case due to more parameters to be optimized).
Most importantly, at the end of the minimization, the value of g is close to the correct one at percent level
(see Fig. 1.7d), with a finite size scaling with the linear dimension of the system trending toward the expected
thermodynamic limit. Given the complexity of the system wave function, this serve as a strong benchmark
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FIGURE 1.7: (a-b) Error between the exact and the BW reduced density matrix as a function of
temperature for the 2D Heisenberg model (a), and as a function of g for the bilayer Heisenberg model
at � = 3.3 (b). (c) Error as a function of the minimization step for L = 8. (d) Converged inter-to-intra
layer coupling versus linear system size.

for our strategy: reconstructing the parent Hamiltonian in this case takes only few tens of steps, each one
corresponding to a Monte Carlo simulation of the BW entanglement Hamiltonian.
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1.4 Parent Hamiltonians of Jastrow-Gutzwiller variational wavefunctions

In the previous section, to benchmark the Bisognano-Wichmann Ansatz algorithm, we considered a variety
of a priori known models, and checked if the output reconstructed operator coincided with the initial Hamil-
tonian. In this section we instead consider an open problem, and apply the BWA to the one-dimensional
Jastrow-Gutzwiller (JG) variational wave functions, which are paradigmatic states appearing in several con-
texts, from integrability to topology, to quantum spin liquids. They are characterized by an extensive super-
position of spatially local states, with weights captured by analytic algebraic functions of the basis coordi-
nate, and which in general present long-range correlation patterns. Despite their common appearance, their
parent Hamiltonians are not known except for a few fine-tuned cases, amenable to exact solutions.

In the following we first discuss introduce the JG wave functions by analyzing their participation spec-
trum, their entanglement content and their correlation functions, to preliminary identify a suitable range
of applicability of the BWA algorithm. Then, we employ the BWA on different operator basis, and test the
results with different proxies. Given the reconstructed Hamiltonian, we compute the relative entropy and the
overlap between the input JG state and their ground state, as well as we compare their correlation functions.
For the system size considered, we obtain fidelities ranging between 95% and 99%. Finally, we compute the
relative error between the ground state energy and the JG variational energy of the reconstructed Hamilto-
nian. In all the considered cases, the relative error is less than 2%, even in the extrapolated thermodynamic
limit. Our finite size analysis suggest the obtained Hamiltonian are approximate, and that the exact parent
Hamiltonian require a different operatorial content.

1.4.1 Jastrow-Gutzwiller wave functions

Model wave functions

Throughout this section, we consider a one-dimensional chain ⇤ of L sites and with periodic boundary
conditions. We introduce the variables ni 2 {0, 1} defined at each site i 2 ⇤. In the basis {|n1n2 . . . nLi},
and define the JG wave functions as

| JGi =
X

PN{n}

 ↵({n}) |n1n2 . . . nLi ,

 ↵({n}) =
1

Z
(�1)

PL
i=1 ini

LY

1i<jL

sin
⇣⇡

L
(j � i)

⌘
↵ninj

. (1.20)

Here the sum is over combinations PN{n} constrained by
P

i
ni = N . Pictorially, the {ni} variables are

occupation numbers of hard-core bosons living on the lattice, with a filling fraction set by ⌫ = N/L. The
parameter ↵ and the filling fraction ⌫ = N/L control the properties of the system, and for fine tuned values
of them there exists exact solutions [37, 38, 83, 84]. In the following we fix ⌫ = 1/2 and vary only the
parameter ↵. This is already sufficient to capture both ferromagnetic and antiferromagnetic pattern.

From the form of the wave functions Eq. (1.20), we identify two relevant limit. At ↵ = 0, the system
is unitary equivalent to an equal weight superposition of all basis states with ⌫ = 1/2, and can be proved
to be the ground state of the XXZ chain (cfr. Eq. (1.15)) at � = �1. The point ↵ = 1 is instead a Slater
determinant, which identifies a model of free fermions, or equivalently, the XXZ chain at � = 0. A less
trivial limit is ↵ = 2, where Eq. (1.20) is the ground state of the Haldane-Shastry Hamiltonian [28, 29]

HHS =
⇡2

L2

X

m<n

~Sm · ~Sn

sin2(⇡(m � n)/L)
. (1.21)

These three points represent the known exactly solvable models for ↵.
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Participation spectroscopy To obtain insights for generic values of↵, it is instructive to rephrase Eq. (1.20)
in the language of participation spectrum [85–88], i.e. rewriting the wave functions in a pseudo-energy fash-
ion

 ↵({n}) = hn1n2 . . . nL| JGi ⌘ e�H↵[{n}]

p
Z↵

, (1.22)

H↵[{n}] = ↵
X

1i<jL

ninjV (i, j) + E0[{n}], (1.23)

V (i, j) = � log
��� sin

⇣⇡
L

(j � i)
⌘ ���, (1.24)

E0[{n}] = log cos
⇣X

⇡ini

⌘
. (1.25)

We see that H↵ is a classical Hamiltonian, with a constant energy shift E0 and logarithmic interactions
between particles V (i, j). Since the sites i, j takes only discrete (integer) values and due to the boundary
condition choice, we note that H↵ describes a 2D Coulomb gas constrained in a 1D [83, 89]. Analogously,
we can introduce the Boltzmann weights and read Z↵ in Eq. (1.20) as a partition function

p↵({n}) = | ↵({n})|2 =
e�2H↵[{n}]

Z↵

, (1.26)

Z↵ =
X

PN ({n})

p↵({n}) =
X

PN ({n})

e�2H↵ . (1.27)

Eq. (1.26) suggests the spectrum "({n}) of H↵ determine the relevant weights in the JG wave functions, as
well as the sign of the inverse temperature ↵. For ↵ > 0 the Coulomb gas Hamiltonian Eq. (1.23) favors
repulsion among particles, whereas for ↵ < 0 favors aggregation, modulo the imposition of filling and
lattice constraints. Consequently in the limit of large values of ↵ positive and negative the states of the
system is easily identified as the following cat states

lim
↵�1

| JGi =
1p
2
(|01010 . . . i + |10101 . . . i), (1.28)

lim
↵⌧�1

| JGi =
1p
L

LX

i=1

| . . . 0i�11i1i+1 . . . 1i+L/20i+L/2+1 + . . . i, (1.29)

where, in the last equation, periodic boundary conditions are implicitly understood. For convenience, we
dub the state Eq. (1.28) as Néel cat state (as it is the sum of the Néel and anti-Néel states), and the state
Eq. (1.11) as ferromagnetic cat state.

Apart from this limiting regimes, the form of the JG wave function depends on the balance between the
competing interactions. However, as we further argue subsequently via entanglement entropy and correla-
tion functions, the qualitatively ferromagnetic nature of the states for ↵ < 0 suggest this regime is unsuitable
for the BWA algorithm, which in general have a quadratic dispersion relation.

Hence, we focus on the regime ↵ > 0 in the remaining of this section. We first compute the participation
gap G = "min � "1st between the ground state and first-excited state of H↵. It is convenient to introduce
the number of ferromagnetic domain walls as the number of consecutive occupied/unoccupied sites Ndws

2.
The configurations contributing to Eq. (1.28) are the only ones with Ndws = 0, which also define the "min.
In Fig. 1.8 we present the participation spectrum for ↵ = 2 and ↵ = 6 at L = 16. The participation gap
increases with ↵ linearly G = gL↵, with gL a numerical constant whose thermodynamic value is

g1 = 2 lim
L!1

log

 
sin(2⇡/L)

QL/2�2
r=1 sin(2r⇡/L)

sin(⇡/L)
QL/2�2

r=1 sin((2r + 1)⇡/L)

!
' 0.9031654195 . . . . (1.30)

2For example Ndws(|010101i) = 0, while Ndws(|011001i) = 2
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FIGURE 1.8: Participation spectrum " at L = 16 for ↵ = 2 (Left), and ↵ = 6 (Center). The
spectrum is indexed using the number of domain walls Ndws, and the color is darker (lighter) for lower
(higher) degeneracy of the pseudo-energies. The participation gap G increases linearly with ↵, with the
coefficient g1 in the text. (Right) Pseudo-energy differences between two domain walls as a function
of wall separation r at L = 64. The dashed black lines are the Luttinger liquid prediction [87], with
Luttinger parameter K = 1/↵.

For finite length of the chain, small system size corrections are present which for L � 16 give |gL � g1| <
0.1%. These results confirm the previous analytic argument for ↵ � 1, and suggest that the configuration
associated to the excited states of H↵ can be captured systematically in a perturbative expansion on domain
walls.

Finally, from the substructure of the Ndws = 2 sector, we can extract how the domain walls interact.
We compute the pseudo-energy difference �"2dw = "2dw(r) � "2dw(2) between domains walls separated
by a distance r or close together (r = 2). This quantity has been considered for antiferromagnetic quantum
Hamiltonian systems to distinguish between critical and symmetry broken phases of matter. In the former
case, the domain walls are logarithmically confined with the separation distance; instead, in the latter this
confining is linear. Moreover, the prefactor of this potential is related to the Luttinger parameter for Luttinger
liquids [87, 90].

Because of the explicit form of the classical Hamiltonian density H↵, the interaction between two do-
main walls is always expected logarithmic with their separation distance (Fig. 1.8). We also note the Lut-
tinger parameter K = 1/↵ describes their logarithmic confining potential, and hence suggests that for
↵ > 0 the JG wave functions may host Luttinger liquid states. This hypothesis is supported by CFT ar-
guments [91], and by analysis on the Resta polarization [92]. In the latter study, the author estimate the
presence of a Luttinger Liquid phase between 0 < ↵  4.

We note that our analysis on the participation spectrum does not show any transition. This is an artifact
of the definition of the JG state. While in quantum Hamiltonian systems, symmetry broken phases usually
lead to disjoint configurations, in the present setting, the definition of the Jastrow-Gutzwiller wave functions
Eq. (1.20) forces coherent superposition on the states. (See also the analysis on the correlation functions
below). Furthermore, the participation spectrum is insensitive to coherences, as it is related to the square
modulo of the wave function coefficients (In this respect, it plays a similar role to the diagonal ensemble).
Next, we discuss the entanglement entropy and the correlation functions, which complement the proposed
analysis.

1.4.2 Physical properties of the Jastrow-Gutzwiller wave functions

Entanglement entropy

To investigate the entanglement content of the Jastrow-Gutzwiller wave functions we consider the entan-
glement entropy [93]. For a given state | i, and a bipartition ⇤ = A [ B, the entanglement entropy is
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FIGURE 1.9: (Left) Entanglement entropy of the Jastrow-Gutzwiller wave function at different system
sizes and values of ↵. The dashed lines corresponds to the limit log L (cfr. Eq. (1.32)), whereas at
large values of ↵ correspond to log 2 (cfr. Eq. (1.32)). (Center) The rescaled entanglement entropy
Eq. (1.35), and its data collapse Eq. (1.36) at ⌫ = 4.6(3),↵c = 4.04(5) and ⇣ = 0.31(1) (inset).
(Right) Phase diagram extrapolated from the entanglement entropy.

computed as the von Neumann entropy over the reduced density matrix

⇢A = trB| ih |, SvN(⇢A) = �trA⇢A log ⇢A. (1.31)

We compute this quantity numerically through exact diagonalization, and compare with the analytic predic-
tion for the Néel and ferromagnetic cat state

S(⇢A) =↵�1 log 2, S(⇢A) =↵⌧�1 log L. (1.32)

The results are plotted in Fig. 1.9. We see a good agreement in the region ↵ < 0 even for modest system
sizes, whereas the limit large ↵ is reached for the system sizes at handle at ↵ ' 8.

The region 0 . ↵ . 4 is compatible with a logarithmic scaling

S =
c

3
log L + const, (1.33)

with coefficient (central charge) c = 1. This is expected for ↵ = 1 and ↵ = 2, as the wave function describes
a Luttinger liquid. Our numerical results suggest that this conformal phase is extended in a finite range of
values of ↵, which we determine in the following.

The left limit is ↵ = 0, and at this point the system exhibits a jump in the entanglement entropy due
to an emergent permutation symmetry. (In fact, as already suggested by the participation spectroscopy, the
system at ↵ = 0 is in an equal weight superposition of all spin states respecting the constraint

P
i
ni = N ).

At this point the entanglement entropy can be computed by counting and have the system size scaling

S(⇢A) =
1

2
log L + const, (1.34)

which signals an abrupt transition in the entanglement. To determine the right boundary, we consider the
variable

S̃ =
S � log 2

log L � log 2
, (1.35)

which in the thermodynamic limit decays to zero in the antiferromagnetic region characterized by the Néel
cat state, while converge to 1 and 1/3 in the ferromagnetic and conformal phases respectively.
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We performe a finite system size scaling, with the hypothesis

S(↵, L) = L⇣/⌫f((↵� ↵c)L
1/⌫), (1.36)

and obtain the optimal collapse with ↵c = 4.04(5), ⌫ = 4.6(3), ⇣ = 0.31(1). The raw and collapsed values
of S̃(⇢A) are shown in Fig. 1.9(center), where we also present a phase diagram based on the entanglement
content Fig. 1.9(right): For ↵  0 the system is ferromagnetic, for 0 < ↵  4.04 the system is a Luttinger
liquid, while for ↵ > 4.04 the system is an antiferromagnet. The analysis on the correlation function
supports this picture.

Correlation functions We conclude this subsection by the analysis of the correlation function. We com-
pute the one-body and two-body spin correlation functions of the operators {Sz, S+, S�}. These correla-
tions are needed as input of the BWA algorithm, hence their analytic form is relevant for the reconstruction.
Specifically, we consider only U(1) invariant functions, consistently with the symmetry of the JG wave
functions. Recalling Sz = 2n � 1, with n the number operator we consider

hSz

i i =
X

PN ({n})

(2ni � 1)
�� ↵({n})

��2, (1.37)

hSz

i Sz

j i =
X

PN ({n})

(2�(ni, nj) � 1)
�� ↵({n})

��2, (1.38)

h{S+
i

, S�

j
}i =

X

PN ({n})

(1 � �(ni, nj)) ↵({n}) ↵(Fij{n}). (1.39)

At half-filling Eq. (1.37) is identically zero, while Eq. (1.38) and Eq. (1.39) are non trivial to compute
analytically for generic choice of values ↵, and hence, we obtain numerically.

The correlation length can be extrapolated through finite size scaling of the connected correlation func-
tion hSz

i
Sz

i+L/2ic

hSz

i Sz

j ic ⌘ hSz

i Sz

j i � hSz

i ihSz

j i = a
e|i�j|/⇠

|i � j|� , (1.40)

1

⇠
= � lim

L!1

log
⇣
hSz

i
Sz

i+L/2ic

⌘

L/2
⌘ lim

L!1

1

⇠L
(1.41)

Here a is a constant, while � characterizes the algebraic decay, and periodic boundary conditions applies.
Let us stress that Eq. (1.40) is well defined only when the cluster decomposition principle holds, and hence
is not suited for Schrödinger cat state (as for ↵ < 0 and ↵ > 4). In fact, the latter exhibits in general an
O(1) correlation function with distance

hSz

0Sz

j ic =↵<0= 2
���1 � 2j

L

���� 1, hSz

0Sz

j ic =↵�1 (�1)j , (1.42)

and it an artifact of their definition. We show the results for the correlation functions and the correlation
length in Fig. 1.10. We see the correlation functions decays algebraically in the critical range 0 < ↵  ↵c,
in full agreement with the analysis previously proposed through participation spectrum and entanglement
entropy.
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FIGURE 1.10: (Left) Connected correlation function against 1/L. The seemingly algebraic decay
suggests the the cluster decomposition requirement is fulfilled for the considered ↵. These are chosen
representatives of the critical phase. (Right) Inverse correlation length for different values of ↵ in the
critical phase. For both plots, we considered chains of lengths 4  L  36. To avoid odd/even effects,
we present only L multiples of four.

1.4.3 Reconstruction of Jastrow-Gutzwiller local parent Hamiltonians

We consider the BWA reconstruction algorithm with Hamiltonians of variable but finite range interactions

Hk =
X

r

k�1X

p=1

Jp

2
(S+

r S�

r+p
+ h.c.) +�z

pS
z

r Sz

r+p. (1.43)

These target Hamiltonian generalize the spin-1/2 XXZ introduced in Eq. (1.11) with the introduction of
additional hopping and two-body interaction terms connecting spins at a distance k. For instance k = 2 is
the XXZ chain, whereas the k = 3 encompass as a particular instance, the J1 � J2 model [20]. We consider
an error threshold ✏th = 10�4 and initial configurations uniformly drawn in the interval [�2, 2] 3. Our
preliminary analysis in Sec. 1.4.2 has identified the optimal regime for reconstruction 0 < ↵  4, where
the system shows diverging correlation length and critical entanglement entropy. Within this regime, we
employ exact diagonalization to find the parent Hamiltonians of the form Eq. (1.43) for L 2 {4, . . . 20}.

If a p-local Hamiltonian exists, we expect k > p to decay to zero enlarging the system size. When
this is not the case, we argue the parent Hamiltonian we find are approximate in the basis chosen, and an
exact parent Hamiltonian would require additional operators. We consider the systematic reconstruction for
k = 2, 3, 4. Throughout this section, we are not interested in the precise value of the inverse entanglement
temperature, as it only corresponds to a rescaling of the energy spectrum. Hence, we consider the ratios
�p/J1 and Jp/J1, where 1  p  k � 1. The numerical results of our analysis are given in Fig. 1.11 and
Fig. 1.12.

When k = 2 the system is the XXZ chain (cfr. Eq. (1.11)). We see that for 0 < ↵  2 the system
falls in the critical region of the XXZ chain (�1 < w  1), while interestingly for ↵ > 2 our results shows
Hamiltonian in the antiferromagnetic (massive) phase. Combining these findings with our analysis on the
entropy Sec. 1.4.2, we conclude that the ↵ > 2 require additional couplings.

This intuition is confirmed by the results on k = 3 and k = 4. For k = 3 the J2/J1 and �2/J1 ratios
shows finite but small values for 1.5  ↵  2.5, while sensibly larger values for ↵ > 2.5. This hint that
the exact parent Hamiltonian has weak long-range features for ↵ . 2.5, and strong long range features for
↵ & 2.5. The picture is supported by the k = 4 reconstruction, where we see that the converged values of
the coupling constants are systematically smaller but finite. Lastly, we notice that at the point ↵ = 0 the

3We have tested the stability by changing the error threshold in the range ✏ = 10�3 ÷ 10�6 and other distribution of initial
couplings, without any qualitative change.
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FIGURE 1.11: System size scaling of the output nearest-neighbor coupling for the Hamiltonian Hk in
Eq. (1.43) for various values of ↵. The shaded region corresponds to the XXZ coupling in the critical
region �1 < �1/J1  1, while the dashed lines correspond to the thermodynamic limit.

FIGURE 1.12: System size scaling of the ratios of: the converged couplings�2/J1 and J2/J1 for the
k = 3 and k = 4 Hamiltonians in Eq. (1.43); the converged couplings �3/J1 and J3/J1 for H4. The
dashed lines represent the extrapolated thermodynamic limits.

reconstructed coupling constants attain a finite value which is of the same order of magnitude of J1. At this
point, which corresponds to a ferromagnetic regime the BWA is expect to perform worse.

Diagnosis of the reconstruction To verify our results we consider different proxies. First, we evaluate the
relative entropy S(⇢JG|�BW) between the converged Bisognano-Wichmann reduced density matrix and the
exact Jastrow-Gutzwiller one (Fig. 1.13). We see a systematic improvement increasing k in the quality of
our results. This is consistent with the observed reconstructed coupling w = {�p/J1, Jp/J1}, and suggest
the exact parent Hamiltonian of the JG wave function is long-range.
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FIGURE 1.13: Relative entropy of the JG reduced density matrix and the BW converged one. We see
that enlarging the domain of the operator involved, the quality of the results increases. The line ↵ = 1
corresponds to a free fermions gas.

FIGURE 1.14: Superposition between the ground state of the reconstructed parent Hamiltonian and
the JG input wave function. We see that enlarging the domain of the operator involved, the quality of
the results increases. The line ↵ = 1 corresponds to a free fermions gas.

This analysis is also supported by the superposition between the ground state of the reconstructed Hamil-
tonian Hrec| reci = Egs| reci and the JS state in Eq. (1.20) (Fig. 1.14). Interestingly, we notice the line
↵ = 1 is numerically exact for k = 2. This point in fact corresponds to the free fermion limit, which is the
exact ground state of the XXZ chain for �1 = 0. The observation is also consistent with the compatibility
with zero of the converged couplings at L ! 1 for ↵ = 1 and k > 2.

We crosscheck these findings with the performance over correlation functions and variational energy. In
Fig. 1.15 we compare the exact correlation functions with the numerically computed ones over the ground
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FIGURE 1.15: Eq. (1.44) at various values of ↵ and k, and for different system sizes.

state of the reconstructed Hamiltonian | reci. Specifically we consider the cumulative information

V (| JGi|| reci) =
1p
L

vuut
L�1X

j=1

⇣
hSz

0Sz

j
irec � hSz

0Sz

j
iJG

⌘2
, (1.44)

where the factor 1/
p

L renders this object non-extensive. At a fixed value of k, V (| JGi|| reci) seems to
saturate at some finite value. Being such an object, a deviation measure from a standard value, it roughly
gives how much on percentage the correlation functions change at a fixed site. In the worse scenario of our
results, this attains a value of 10%. One may compare our findings with the exact results of the Haldane-
Shastry model and the antiferromagnetic Heisenberg chain [28, 29]
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2 0.225706 0.2427.

(1.45)

From the last equations, we read the relative error of the nearest neighboring correlation functions, and
next-nearest neighboring ones, respectively of 2% and of 8%.

Instead, our results show that V (| JGi|| reci) slightly increases when including higher k-terms. This
is counterintuitive, since we observe that a larger basis leads to states that are more similar to the JG wave
functions (Fig. 1.13 and Fig. 1.14). With the present analysis, we are not able to fully characterize if this
trend is due to finite size effects, or it has a more systematic nature. A possible explanation would be hidden
in the BWA algorithm: since it optimizes over the short range correlations, the large distance correlation
functions are less controlled and subject to frustration effects. Within this interpretation, these discrepancies
may suggest that longer range terms are required in the optimization to faithfully reconstruct an exact parent
Hamiltonian.

The above interpretation is supported by the study of the relative error between the ground state energy
of the reconstructed Hamiltonian Egs and the variational energy of the reconstructed Hamiltonian over the
JG wave function

Evar = h JG|Hrec| JGi, (1.46)

which we compare using the relative error

Error[%] =
|Evar � Egs|

|Egs|
. (1.47)
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FIGURE 1.16: Relative energy error between the JG variational energy and the ground state energy of
the reconstructed parent Hamiltonian for different values of ↵.

We find (Fig. 1.16) that the frustration effect play a relevant role in the determining the physical properties
of the reconstructed model, with the relative error increasing at larger values of k, although bounded at the
thermodynamic limit by 1 ÷ 2%.

In conclusion, our analysis suggest that, except for ↵ = 1 where a short range Hamiltonian exists and
correspond to H2 with �1 = 0, the exact parent Hamiltonian of the Jastrow-Gutzwiller wave function is
presently unknown and most likely long-range in nature, and our findings provide accurate by approximate
parent Hamiltonians.

Reconstruction of Jastrow-Gutzwiller parent Hamiltonian with power law interactions We conclude
the analysis by considering the model Hamiltonian

HLR =
⇡2

L2

X

r<m

1

sin2 (⇡(m � r)/L)

✓
J

2
(S+

r S�

m + h.c.) +�Sz

r Sz

m

◆
. (1.48)

This class of Hamiltonians is known to be the exact parent Hamiltonian for ↵ = 2 (at the corresponding
value � = 1), and has been conjectured to be the parent Hamiltonian [83] for generic ↵ JG wave functions
for with � = �(↵). Our numerical results are summarized in Fig. 1.17. Our comparison with the relative
entropy between the converged BW density matrix and the reduced density matrix of the JG wave function
show that for ↵ ' 2 the relative entropy decreases with system size, with a thermodynamic extrapolation
compatible with zero, suggesting that in fact, the reconstruction is exact for the Haldane-Shastry model.

Instead, the converged quantity is worse for other values of ↵, which therefore rule out the possibility
of exact reconstruction, and certify only an approximate HLR as approximate parent Hamiltonians for the
Jastrow-Gutzwiller wave functions.

Our results suggest the long-range pattern of the exact parent Hamiltonian of the Jastrow-Gutzwiller
wave functions is not captured by the long-range XXZ chain, except for ↵ = 2 where the Haldane Shastry
Hamiltonian is exact.
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FIGURE 1.17: (Top-Left) Relative entropy landscape at different values of ↵ and L. (Bottom-Left)
System size dependence of the relative entropy, with extrapolation to the thermodynamic limit for
↵ = 1.5 and ↵ = 2. (Right) Converged coupling ratio with system size. The shaded region is the
long-range XXZ chain proposed in Ref. [83] as the class of exact parent Hamiltonians for the JG
wavefunctions. We see clearly that already at moderate system sizes, the Haldane-Shastry Hamiltonian
(� = 1) fully captures the physics of the JG wavefunction with ↵ = 2.

1.5 Conclusive remarks

In this chapter we introduced an entanglement guided algorithm for parent Hamiltonian reconstructions.
The method is based on field theory results, as it relies on the lattice adaptation of the Bisognano-Wichmann
theorem.

We have benchmarked the feasibility of our strategy by using several input wave functions, describing
conformal phases in 1D and 2D, symmetry protected topological order, or non-linear sigma models.

We then reconstructed approximate parent Hamiltonian for the one-dimensional Jastrow-Gutzwiller
wave functions. We have preliminary identified a region in parameter space where the wave functions
display critical features compatible with a Luttinger liquid. Outside this interval, the JG wave functions are
well described by Schrödinger cat states, either ferromagnetic or antiferromagnetic depending on the sign
of the control parameter, and describing symmetry broken phases.

In the critical phase, we reconstructed k-local and power law parent Hamiltonian. The analysis of several
quantities show that the reconstruction is approximate for general values of ↵ (exception made for the fine
tuned known points), and that the Jastrow-Gutzwiller exhibits non-trivial long-range patterns.

Nevertheless, finite-size results are of value for Hamiltonian engineering and quantum simulations for
the present quantum deviced. Indeed, the Bisognano-Wichmann ansatz algorithm provides inherently finite-
size optimization and control on the basis chosen and on the quality of the outputs. In particular, one can
choose experimentally implementable operator, such as two-body hopping terms. The fact that our tech-
nique is easily adaptable to include fully-long-ranged interactions may also be used in a different manner,
that is, to certify and validate quantum simulators aimed at finding ground states of spin models including
slowly decaying power-law interactions, which are realized in both trapped ions [42], and Rydberg experi-
ments [40].

It will be interesting to check whether the adapted strategy can be connected to Boltzmann machine
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methods, due to the form of the Bisognano-Wichmann ansatz, and hence adapt machine learning method-
ologies to the estimation of parent Hamiltonian reconstruction, or to extend the method to lattice gauge
theories, which play a pivotal role in the understanding of a variety of equilibrium and out-of-equilibrium
phases of matter. The redundancies due to the gauge symmetry impose additional constraints in the structure
of the Bisognano-Wichmann wave functions, which need to be included with more refined approaches.

Concerning the choice of input state, the primary goal is to apply the BWA methods on two-dimensional
wave functions, such as the Laughlin wave functions. As we have presented, two-dimensional model can be
approached with our method, as far as no sign-problem is present.
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Chapter 2

Negativity Spectrum and Entanglement
equipartition in Disordered Critical Spin Chains

This chapter is based on the following publications:

[1] Xhek Turkeshi, Paola Ruggiero, and Pasquale Calabrese,
Negativity Spectrum in the Random Singlet Phase,
Phys. Rev. B 101, 064207 (2020)

[2] Xhek Turkeshi, Paola Ruggiero, Vincenzo Alba, and Pasquale Calabrese,
Entanglement equipartition in critical random spin chains,
Phys. Rev. B 102, 014455 (2020)

2.1 Introduction

Entanglement plays a fundamental role in characterizing quantum phases of matter [3–6]. For isolated
many-body systems at zero temperature, key results have been derived for the entanglement entropy [7–10]
and the entanglement spectrum [11–13]. For example, the entanglement entropy of gapped one dimensional
systems with local interactions follows an area law, whereas gapless systems present a logarithmic scaling
in subsystem size with a universal prefactor related to the central charge of the underlying conformal field
theory (CFT).

Entanglement properties have been intensively investigated also in quantum systems with quenched
disorder. When considering quenched disorder, static and dynamic properties of a system drastically change
compared to the clean case. In fact, randomness usually plays a relevant role in the renormalization group
sense. Remarkable examples are Anderson and many-body localization [14–17]. Other well studied systems
include a class of quantum spin chains where disorder induces a novel quantum critical phase [18–23]. This
phase is characterized by the formation of spin singlets spreading over arbitrarily large distances, and for
this reason, it is dubbed random singlet phase (RSP). Its features can be analytically accessed by the strong
disorder renormalization group (SDRG) technique [22, 23]. When the low-energy physics of these models
is captured by an infinite disorder fixed point, these systems display a logarithmic entanglement entropy
scaling which resembles that of a CFT [24–32], although this analogy breaks down in many respects, such as
a different scaling of entanglement in other circumstances [33–36] and the absence of a c-theorem [37, 38].

In this Chapter we discuss other information measures in critical systems with quenched disorder.
Specifically, we consider the negativity spectrum, an information quantifier for mixed state (see below for
details), which extends the entanglement negativity in the same fashion the entanglement spectrum extends
the von-Neumann entropy, and the symmetry resolved entanglement entropy, that is the entanglement en-
tropy of each symmetry sector when an additive charge is present. This Chapter is organized as follows.
In this Section, we give an overview of key definition and results concerning entanglement in clean and
disordered systems. In Sec. 2.2 we given an overview on the physical systems of interest, the random sin-
glet phase, which we derive from the strong disorder renormalization group, starting form the prototypical
disordered Heisenberg model. The negativity spectrum is resolved, in the scaling limit, in Sec. 2.3. Our
results are tested against numerical simulations, both ab initio and through numerical renormalization. The
symmetry resolved entanglement entropy is instead presented in Sec. 2.4. As the role of disorder is more
subtle for the symmetry resolved quantities, we have considered three different proxies of the statistical
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properties of the system, and prove they fulfill entanglement equipartition. Our conclusion are summarized
in Sec. 2.5, where we also present some outlooks. In the Appendix 2.6 we give additional details for the
negativity spectrum: we give some numerical evidence of the universality of the SDRG, and we present the
fermionic negativity spectrum. In Appendix 2.7 we detail the main computation for the analytical results
for the symmetry resolved entanglement entropy.

2.1.1 Entanglement entropy and entanglement spectrum

By partitioning a system into two parts A [ B, the bipartite entanglement of a pure state | i is fully en-
coded in its reduced density matrix ⇢A = trB (| ih |). The spectrum of ⇢A, known as entanglement spec-
trum, has been proven of fundamental value in a variety of frameworks, including topological properties of
quantum matter [11, 39–48], symmetry-broken phases [49–53] and many-body localization [54–56]. For
one-dimensional critical systems with an underlying conformal invariance, the distribution of eigenvalues of
⇢A obeys a universal scaling law, depending only on the central charge [12, 13, 57–60]. This distribution is
of high importance to understand the effectiveness of some tensor network algorithms [61–63]. The entan-
glement spectrum can be accessed by studying the scaling of the Rényi entropies [12, 64], which correspond
to the momentum of the eigenvalue distribution of ⇢A:

Sm(⇢A) =
1

1 � m
ln trA (⇢m

A ) , (2.1)

that for m ! 1 provide the renowned von Neumann (entanglement) entropy

S(⇢A) ⌘ lim
m!1

Sm(⇢A) = �trA (⇢A log ⇢A) . (2.2)

For one-dimensional quantum systems in the scaling limit, the above can be computed using the replica
trick [4, 9]. In 1+1d CFT (with central charge c), explicit results can be obtained in many different situations.
When A is a finite interval of length ` embedded in an infinite line, one has the well known formula [7–10]

SCFT
m (⇢A) =

c

6

m + 1

m
ln `+ O(`0), (2.3)

The subleading terms are in general non-universal. Using conformal transformations, Eq. (2.3) can be
generalized to finite systems [9], finite temperature [9], and quench dynamics as well [65].

2.1.2 Negativity and negativity spectrum

The situation is more complicated when considering a bipartition of a system in a mixed state. Here the
Rényi entropies Eq. (2.1) do not distinguish between classical and quantum correlations, and thus, they fail
to characterize entanglement. The same issue arises when considering the mutual entanglement between
subregions of a multipartite pure state. For concreteness, let us consider a tripartition A1 [A2 [B of a pure
state | i 2 H = HA1 ⌦ HA2 ⌦ HB . Tracing out B, we obtain the reduced density matrix ⇢A describing
the subsystem A = A1 [ A2. The quantum correlations between A1 and A2 are encoded in the partially
transposed reduced density matrix [66–72] ⇢T2

A
and in its negative eigenvalues. The definition of ⇢T2

A
is

huv|⇢T2
A

|u0v0i ⌘ huv0|⇢A|u0vi, with {u} and {v} being local bases of respectively HA1 and HA2 . From ⇢T2
A

one can extract measures of mutual entanglement such as the entanglement negativity N and the logarithmic
negativity E [73–76]

N =

����⇢T2
A

����� 1

2
, E = log

����⇢T2
A

����, (2.4)

where
����⇢
���� = tr

p
⇢⇢† is the trace norm. For any given state, clearly E = log(2N + 1). The (logarith-

mic) negativity has been studied in several contexts, ranging from harmonic chains and lattices [77–86] to
quantum spin models [87–98], from conformal and integrable field theories [99–108] to non-equilibrium
situations [103, 109–114] and intrinsic and symmetry-protected topological orders [115–121, 121–123].
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For fermionic models, it has been shown that a similar operation known as partial time-reversal transpose
is a more appropriate object to characterise the entanglement in mixed states [122–131]. Finally, also
experimental proposals for the measurement of negativity have recently appeared [132, 133].

It is not a surprise that the spectral density of ⇢T2
A

contains more information about the entanglement
between A1 and A2 than the negativities in Eq. (2.4). Such spectral density is usually referred to as negativity
spectrum [134] and is fully characterized through the moments

MT2
↵ = tr

⇣
⇢T2

A

⌘
↵

. (2.5)

In the following we will refer to MT2
↵ as negativity moments. Notice that the trace norm in Eq. (2.4) may be

obtained as the replica limit [99, 100]
����⇢T2

A

���� = lim↵!1/2 MT2
2↵

.
The negativity spectrum has been investigated in clean systems in Ref. [134–136]. In Sec. 2.3 we extend

these consideration to the disordered case, by focusing on the random singlet phase. In the spirit of Ref. [34]
we use renewal equations to find analytic formulae for the negativity moments. In particular, we work out
analytic results for the the case of adjacent intervals which we test against a numerical implementation of
the SDRG for the XXX model and against ab-initio simulations for the random XX spin-chain. Among
the other results, we find that the logarithm and the average disorder do not commute, in the sense that
log MT2

2↵
6= log MT2

2↵
even in the limit ↵ ! 1/2. A maybe surprising consequence is that the negativity and

its logarithmic analogue are not trivially related after disorder average in the RSP. This is in contrast with
the case of the entanglement entropy, where the logarithm and the disorder average commute in the replica
limit ↵ ! 1 [34].

2.1.3 Symmetry resolved entanglement entropy

For a system with additive conservation laws, it is possible to probe different contributions to the entangle-
ment, directly related to the entanglement within different symmetry sectors [137] (see below for details).

Consider a system possessing a global additive conserved charge Q. For instance, this symmetry could
be abelian such as the total magnetization in spin systems. The reduced density matrix of a subsystem
can be decomposed into a direct sum of orthogonal sectors. To be specific, let us consider a bipartition
of the system as A [ B and a state ⇢ in a given representation of Q. The additivity of Q implies that
Q = QA ⌦ 1B + 1A ⌦ QB and can be used to show that

[⇢A, QA] = 0. (2.6)

Thus the reduced density matrix is block diagonal in the quantum numbers of QA. Denoting with ⇧q the
projector into the subspace relative to the eigenvalue q, we have

⇢A = �q (⇧q⇢A⇧q) = �qpA(q)⇢A(q). (2.7)

In the last equality we factorized the term pA(q) = trA(⇧q⇢A), and defined

⇢A(q) ⌘ ⇧q⇢A⇧q

pA(q)
, tr(⇢A(q)) = 1. (2.8)

Here pA(q) is the probability for the subsystem to be in a specific symmetry sector. In fact, only the global
state possesses a definite charge, while the subsystem fluctuates between the QA-sectors due to quantum
effects.

The total von Neumann entanglement entropy of the system naturally splits in two parts

S(⇢A) = SQ + Sconf , (2.9)
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with

SQ = �
X

q

pA(q) log pA(q), (2.10)

Sconf =
X

q

pA(q)S(q), (2.11)

Here S(q) ⌘ �Tr⇢A(q) ln ⇢A(q) defines the symmetry-resolved entanglement entropy, meaning the contri-
bution to the entanglement entropy of the q-sector. SQ is known as the number (or fluctuation) entropy,
since it is related to the number of excitations carrying a quantum of symmetry charge, which fluctuates
in a subsystem. Despite its classical Shannon form, it originates from tunneling effects [137]. We men-
tion here that the link between entanglement and subsystem’s fluctuations (for instance, of spin or particle
number in lattice models with a U(1) current) has been widely studied [138–151]. Sconf is named config-
urational entropy, as it depends on the many-body coherence pattern of the subsystem configurations in a
given symmetry sector.

Similarly, one can define the symmetry-resolved Rényi entropies, Sm(q). First, we introduce the
symmetry-resolved moments:

Zm(q) ⌘ pm(q)Tr(⇢m

A (q)). (2.12)

Note that Z1(q) = pA(q). Then, we have

Sm(q) =
1

1 � m
log

✓
Zm(q)

Zm

1 (q)

◆
. (2.13)

They are related to S(q) by the usual limit m ! 1.
Such symmetry resolution is natural in computational methods like exact diagonalization and tensor net-

work, and has been discussed in earlier papers [57, 152]. In particular, the authors of Ref. [152] suggested,
using a quantum-thermal correspondence argument, that the entanglement entropy in Luttinger liquids is
the same for all symmetry sectors. Lately, this conjecture has been dubbed entanglement equipartition and
it has has been proven for conformal [153] and integrable systems [154]. Computing Zm(q) is in general a
non-trivial task. A fundamental observation for its derivation is that Zm(q) is the Fourier transform of the
charged moment Zm(↵) = trA

�
⇢m

A
eiQA↵

�
[155], i.e.,

Zm(↵) =
X

q

eiq↵Zm(q), Zm(q) =

Z
⇡

�⇡

d↵

2⇡
Zm(↵). (2.14)

In some setting, the calculation of Zm(↵) can be easily performed and then, by Fourier transform,
symmetry-resolved Rényi entropies are obtained. This is the case for example for 1+1d CFTs, where the
charged moments are easily expressed in path integral language [155]. For Luttinger liquids, a particular
class of CFTs with central charge c = 1 and characterized by a parameter K (Luttinger parameter), one
finds

Zm(q) ' `�
1
6(m�

1
m)
r

n⇡

2K ln `
e�

n⇡2q2

2K ln ` , (2.15)

leading to

Sm(q) = SCFT
m � 1

2
ln (K ln `) + O(`0). (2.16)

Here SCFT
m is given by (2.3). Eq. (2.16) shows that the entanglement entropies of the different symmetry

sectors are the same at leading orders in the subsystem size `, i.e., Luttinger liquids exhibit entanglement
equipartition. Corrections to this scaling are in general non-universal and model dependent [154, 156, 157].

The symmetry resolution of entanglement has been copiously discussed in several context for clean
systems [57, 152–154, 154–156, 156–168]. In Sec. 2.4 we study the symmetry resolved entanglement for
the random singlet phase, and prove that an entanglement equipartition theorem holds.
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2.2 Strong Disorder Renormalization Group and the Random Singlet Phase

In this Section we discuss the strong disorder renormalization group and the key characterizations of the
random singlet phase. For concreteness, we consider the antiferromagnetic disordered Heisenberg spin chain
(Sec. 2.2.1) as a representative model for the phase, and discuss how through real-space renormalization we
can access the random singlet phase (Sec. 2.2.2). In particular, we discuss the structure of the density
matrix (Sec. 2.2.3), which factorizes in a product of arbitrary distant singlets. The scaling of the number of
shared singlets between two partitions, which governs the entanglement properties of the phase, is detailed
in Sec.2.2.4.

2.2.1 Antiferromagnetic Heisenberg spin chain

The spin-1/2 antiferromagnetic Heisenberg chain is defined by the Hamiltonian

HL =
LX

i=1

Ji(S
x

i Sx

i+1 + Sy

i
Sy

i+1 +�Sz

i Sz

i+1), (2.17)

where � is the anisotropy parameter, and Sx,y,z

i
are spin-1/2 operators. Here Ji are positive random cou-

plings distributed according to a given distribution P (J). In the absence of disorder, i.e., P (J) ⇠ �(J � J0)
for some fixed value J0, the ground state of the model is in a Luttinger liquid phase at any �1 < �  1.
Thus, the scaling of the ground-state entanglement entropy is described by the CFT formula Eq. (2.3) with
c = 1. In the presence of random antiferromagnetic couplings Ji, the ground state of the system is described
by an Infinite-Randomness Fixed Point (IRFP), irrespective of the initial distribution P (J) and, therefore,
of the initial disorder strength [169]. More generally, all the long-wavelength properties of the disordered
Heisenberg chain are expected to be universal. The ground state of Eq. (2.17) is in the random singlet phase
(RSP), which is the simplest example of IRFP. The structure of the RSP can be understood by using the
SDRG method.

2.2.2 Strong-Disorder RG and random singlet phase

For disordered spin systems, the usual space-block decimation [170] fails due to the inhomogeneity in
the Hamiltonian (see e.g. Eq.(2.17) ) within a single disorder realization. A better rationale is instead to
decimate through an energetic principle, where, at each renormalization step, the sites connected by the
strongest coupling are projected onto their local ground state, i.e., the singlet state. These are effectively
decoupled by the rest of the system, while the edge sites are connected by a renormalized coupling.

We illustrate this decimation procedure, which allows us to obtain the low-energy description of our
model. We start by considering a 4-sites isotropic Heisenberg Hamiltonian (cf. (2.17), with � = 1). We
split H as

H ⌘ H(0)
2 + H(1)

2 , (2.18)

H(0)
2 = ⌦~S2

~S3, (2.19)

H(1)
2 = JL

~S1
~S2 + JR

~S3
~S4. (2.20)

Here we assume that ⌦ > JL, JR is the strongest coupling. Then we can treat the Hamiltonian H(1)
2 as a

perturbation to H(0)
2 . The spins in sites (2, 3) bond forming a singlet (the local ground state)

|si =
|"#i � |#"ip

2
. (2.21)
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This also provides an effective coupling for spins (1, 4). Indeed, using second order perturbation theory we
obtain an effective Hamiltonian He↵

2 for spins (1, 4)

Heff
2 = hs|H(0)

2 + H(1)
2 |si +

X

t

|ht|H(1)
2 |si|2

Es � Et

(2.22)

= E0 + J̃ ~S1
~S4, J̃ = ⌘

JLJR

⌦
, (2.23)

where the sum is over the triplet states of two spins, |ti = | ""i, | ##i, (| "#i + | #"i)/
p

2, and Et = ⌦/4,
Es = �3⌦/4. E0 is an unimportant energy constant, and ⌘ = 1 for � = 0, whereas ⌘ = 1/2 for 0 <
�  1. Note that Heff

2 in (2.23) is still Heisenberg-like, so that the previous steps translate in an effective
renormalization of the couplings.

The procedure can then be easily generalized to a many-body hamiltonian with L spins such as Eq. (2.17).
At each renormalization step, the pair interacting through the strongest coupling ⌦ = max{Ji} forms a sin-
glet which is decimated, and the set of couplings changes according to

(. . . , JL,⌦, JR, . . . )
L

!
✓

. . . , ⌘
JLJR

⌦
, . . .

◆

L�2

. (2.24)

This is known as Ma-Dasgupta rule [18, 19]. In Eq. (2.24) we specified that the chain length reduced
from L to L � 2 in one renormalization step. Therefore, for a finite chain, the RG terminates when all
sites are decimated. The resulting state, known as random singlet phase (RSP)„ is a product of singlets
ranging arbitrary far in the system and approximates the ground state of the system. Its structure is the same
irrespective of the chain anisotropy�, i.e., chains with different� belong to the same universality class. In
the scaling limit L ! 1, the SDRG procedure is asymptotically exact and a flow equation emerges. For
convenience, we introduce the variables

�m

i = log
⌦(m)

J (m)
i

, �(m) = � log⌦(m). (2.25)

Here ⌦(m) and J (m)
i

are respectively the strongest bond and the couplings at site i at renormalization step
m. Intuitively, � set the energy scale of the strongest coupling at a successive step, while � is a measure of
the broadness of the coupling distribution around it.

The Ma-Dasgupta rule (2.24) rewritten in terms of the � variables is �̃ = �L + �R + log ⌘. It induces a
flow for the probability distribution of the couplings P (�,�)

d

d�
P (�,�) =

@

@�
P (�,�) + P (0,�)

Z
1

0
d�2

Z
1

0
d�1�(�1 + �2 + log ⌘ � �)P (�1,�)P (�2,�). (2.26)

Iterating the renormalization procedure, � grows indefinitely and it is safe to drop out the factor log ⌘ in the
above equation. Within this assumption, Eq. (2.26) can be solved analytically [20], leading to

P?(�,�) =
e��/�

�
. (2.27)

This function is a universal attractor, irrespective of the distribution of the couplings [20, 21, 30]. More-
over, variables distributed according to Eq. (2.27) are closely packed around J? ' 0+, and this a posteriori
justifies the perturbative treatment. To conclude, we note that Eq. (2.27) is independent from ⌘ in Eq. (2.24),
hence the phase is the same for � > 0 (interacting many-body system) and � = 0, which is a quadratic
system and can be exactly diagonalized within polynomial times.
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A1 A2 BB

FIGURE 2.1: Pictorial illustration of the Random Single Phase (RSP). The links connect the spins
forming a singlet. (Left) We show the bipartition A [ B. The entanglement entropy S is proportional
to the number of singlets shared between A and B. (Right) Cartoon of the random singlet phase in a
tripartite setting A1 [ A2 [ B. The special case of two adjacent intervals (in red) embedded in a larger
system is depicted.

2.2.3 Structure of the reduced density matrix and its partial transpose

The RSP emerges naturally as an infinite disorder critical point, and it is characterized by singlets spreading
among arbitrary far regions of the system (see Fig. 2.1). Below we introduce the elementary building blocks
of the associated density matrix and its partially transpose. They are (i) the density matrix of a singlet, ⇢2s,
(ii) its reduced density matrix for one of the spins, ⇢s, (iii) the partial transpose of ⇢2s with respect to one of
the sites, ⇢T2

2s . In the basis |""i, |"#i, |#"i, and |##i, the above objects read

⇢2s =
1

2

0

BB@

0 0 0 0
0 1 �1 0
0 �1 1 0
0 0 0 0

1

CCA , ⇢s =
1

2

✓
1 0
0 1

◆
, ⇢T2

2s =
1

2

0

BB@

0 0 0 �1
0 1 0 0
0 0 1 0

�1 0 0 0

1

CCA . (2.28)

For concreteness, we consider the partition of the system B [ A. We denote with nX:Y the number of
singlets shared between X and Y . This is symmetric nX:Y = nY :X and additive nX:Y [Z = nX:Y + nX:Z .
The density matrix of the RSP takes the form

⇢RSP =
nA:AO

m=1

⇢2s

nA:BO

n=1

⇢2s

nB:BO

l=1

⇢2s. (2.29)

Tracing out B does not affect the nA:A singlets within A, but affects the spins of the nA:B shared singlets.
We obtain

⇢A =
nA:AO

m=1

⇢2s

nA:BO

n=1

⇢s, (2.30)

which is depicted in Fig. 2.1 (Left). The eigenvalues of this density matrix are equal to 1/2, with a degen-
eracy that depends on the number of in-out singlets. In particular, it is evident that for each realization one
has

Sm = S = nA:B ln 2. (2.31)

For later convenience, let us define ⇢in/out as

⇢in/out =
nA:BO

n=1

⇢s. (2.32)

The definition Eq. (2.32) will be useful in Sec. 2.4 when we discuss the symmetry resolution.
If instead we consider a tripartite system with A[B and A = A1[A2 (Fig. 2.1 (Right)), after tracing out

B and obtaining Eq. (2.30), we can compute the partial traspose over one of the partitions. For concreteness
we consider the partial transpose over A2, which results in

⇢T2
A

=

nA1:A1O

q=1

⇢2s

nA2:A2O

r=1

⇢2s

nA1:A2O

p=1

⇢T2
2s

nA:BO

n=1

⇢s. (2.33)
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Here we have used the fact that ⇢T2
s = ⇢s for a single site, and that ⇢T2

2s = ⇢2s when both the ends of a bond
are in the same subsystem Ai (i = 1, 2). The spectrum of Eq. (2.33) is denoted as negativity spectrum and
is discussed in Sec. 2.3.

2.2.4 Scaling of the number of shared singlets and bipartite entanglement

The density matrix of a single random configuration and all the quantities that can be derived from it are
fully characterized by the number of shared singlets nX:Y . Occasionally we refer to this quantity as the
number of in-out bonds. Consequently, the scaling of these quantities is crucial in the study of the spectrum
of the reduced density matrix of the RSP and of its partial transpose. The knowledge of all the nX:Y can
be extracted through the solution of a simple set of linear equations, relying on the additivity property
of nX:Y . Hereafter we denote by `X the length of an interval X , and Xc its complement. Consider a
2k-multipartite system

S
X2G0

X with G0 = {A1, B1, . . . , Ak, Bk}. We define G as the set of all possible
compact subintervals of the chain. For each X 2 G one can decompose the number of singlets nX:Xc as

nX:Xc =
X

Y,Z2G

nX\Y :Xc\Z . (2.34)

Despite these relations hold for any single disorder realization, a great dealt of information can be extracted
by their statistical proxies. In particular, many of our results require the disorder average; after this operation
denoted throughout this Chapter with � or h�i, we have a set of linear equations, whose solution gives nX:W

for any X,W 2 G0

nX:Xc =
X

Y,Z2G

nX\Y :Xc\Z . (2.35)

The left hand side has been previously computed within the RSP [24]

nX:Xc =
bX:Xc

6
log `X + k, (2.36)

where bX:Xc is the number of edges shared by X and Xc, and k is a non-universal constant of order O(1)
in the subsystem size `X . For the leading logarithmic term, we then have

bX:Xc

6
log `X =

X

Y,Z2G

nX\Y :Xc\Z . (2.37)

This set of equations can be straightforwardly solved for the variables n, and a unique solution can be
extracted for any partition of the system. (See Ref. [35] for several explicit examples.) For concreteness
we recall the result for the partition in Fig. 2.1 (Left)

hnA:Bi =
1

3
ln `+ O(`0). (2.38)

More refined insights are instead obtained from the generating function of the stochastic variable nA:B ,
defined as

g(�) =
X

nA:B

P (nA:B)e�nA:B�, (2.39)

where � is real parameter and P (nA:B) is the full distribution of the shared singlets. Specifically, from
(2.39), we can compute any moment

hnk

A:Bi =
dkg(�)

d�k

����
�=0

. (2.40)

Note that after replacing the summation with an integral, Eq. (2.39) is the Laplace transform of P (nA:B).
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Importantly, in the scaling limit of large `, g(�) can be calculated within the SDRG framework (by using
a renewal-equation approach, see Ref. [34] for details). The result reads

g(�) = e�3/2µ

"
cosh

 p
5 + 4e��

2
µ

!
+

3p
5 + 4e��

sinh

 p
5 + 4e��

2
µ

!#
, (2.41)

where
µ = 3hnA:Bi +

1

3
. (2.42)

Eq. (2.41) holds in the scaling limit ` ! 1. Away from the scaling limit, corrections due to finite ` are
expected [34].

We now discuss the consequences for the entanglement entropies. In particular, we introduce two dif-
ferent definitions of disorder-averaged entropies. In the first, the average over the disorder is taken after
the logarithm of the moments of the reduced density matrix, i.e., we average Eq. (2.1). This defines the
entropies S and Sm as

S ⌘ �htrA⇢A ln ⇢Ai, (2.43)

Sm ⌘ 1

1 � m
hln trA⇢

m

A i. (2.44)

with h•i =
P

1

n=0 P (n) • being the disorder average. It is straightforward to see that there is a trivial
dependence on the Rényi index m, i.e,

Sm = S 8m. (2.45)

Moreover, Eq. (2.31) depends only on the average number of shared singlets nA:B . Therefore, by using
Eq. (2.38), we get

Sm = hnA:Bi ln 2 =
ln 2

3
ln `+ O(`0). (2.46)

The disorder averaged version of eq. (2.1), is not sufficient to study the full entanglement spectrum [34].
To further investigate the entanglement structure of random singlet phase, it is custom to define

eSm ⌘ 1

1 � m
lnhtrA⇢

m

A i, (2.47)

where the average is taken before the logarithm, i.e., it is the logarithm of the averaged partition function.
Now, eSm depend on the full distribution of in-out singlets P (nA:B), which encodes the full entanglement
content of the random singlet phase. Note that, by making use of the following identity

lim
m!1

1

1 � m
ln f(m) = �@mf(m)|m=1, (2.48)

valid for any function f(m) such that f(1) = 1, one can show that, in the limit m ! 1, eSm and Sm coincide,
i.e.

lim
m!1

eSm = lim
m!1

Sm = S. (2.49)

More generally, from the definition of g(s) in Eq. (2.39), it is straightforward to obtain the Rényi entropies
in Eq. (2.47) as

eSm =
1

1 � m
ln g((m � 1) ln 2). (2.50)

By using g(s) in Eq. (2.41), we obtain

eSm =

p
5 + 23�m � 3

2(1 � m)
ln `+ O(`0). (2.51)
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The subleading term is non-universal and disorder dependent. Importantly, from (2.51), we recover

lim
m!1

eSm =
ln 2

3
ln `+ O(`0), (2.52)

which is consistent with (2.49).
We mention that SDRG methods can be used also to derive predictions for the entanglement scaling in

other phases of matter more complicated than RSP [171–180].
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2.3 Negativity spectrum

2.3.1 Logarithmic negativity and negativity moments

The central object of this Section is the spectral density of the operator ⇢T2
A

in Eq. (2.33)

P(�) =
X

i

�(�� �i), (2.53)

where the sum is over the eigenvalues of ⇢T2
A

. From the knowledge of P(�), we can infer the negativity
moments (2.5)

tr(⇢T2
A

)↵ =
X

i

�↵

i =

Z
d�P(�)�↵. (2.54)

The converse is also true, in that the knowledge of all the negativity moments gives access to the function
�P(�) through an inverse Stieltjes transform [134, 136]. For this reason, with a slight but standard abuse of
language, we will refer also to the whole set of moments as the negativity spectrum.

Most of the derivations presented in this Section are valid for a very general tripartition A1 [ A2 [ B of
an infinite chain (with some caveat which will be clearer in the course of the calculation). For concreteness
and benchmarks, in Sec. 2.3.4 we will specialize to the usual partition depicted in Fig. 2.1 (Right) with two
adjacent blocks.

Within a single disorder realization, the negativity moments depends only on nA:B and nA1:A2 . The
partial transpose ⇢T2

A
in Eq. (2.33) is straightforwardly diagonalized and the eigenvalues are

�± = ±2�nA:B�nA1:A2 , (2.55)

with degeneracies

d� = 2nA:B+nA1:A2�1(2nA1:A2 � 1), (2.56)

d+ = 2nA:B+2nA1:A2 � d�. (2.57)

Consequently, the negativity moments for this given disorder realization are

MT2
↵ = 2(nA:B+nA1:A2 )(1�↵)

(
2nA1:A2 ↵ even
1 ↵ odd.

(2.58)

Notice that the moments MT2
↵ depends on both nA:B and nA1:A2 . Hence, as well known, they are not direct

measures of the mutual entanglement between A1 and A2. However, the dependence on nA:B cancels in the
limit 2↵ ! 1, as a consequence of the fact that the negativity is a good entanglement measure also in the
RSP [35].

Nevertheless, in the same spirit of the entanglement spectrum compared to the entanglement entropy [11],
the moments (2.58) encode more information about the mutual entanglement than the (logarithmic) nega-
tivity itself, as we shall see.

Till now we have been discussing what happens for a single disorder realization, but the physical relevant
quantities are the averages over the quench disorder. From the knowledge of the moments, we can define
two different averaged quantities, each one providing useful information about the entanglement. Indeed,
since the average of the logarithm and the logarithm of the average are not at all equivalent, we can define

Ê↵ = log MT2
↵ , (2.59)

E↵ = log MT2
↵ . (2.60)

These two quantities are expected to behave very differently, as it happens for the analogous averages for
the entanglement spectrum [34] (i.e. log tr⇢↵

A
and log tr⇢↵

A
). Anyhow, we are going to show that Ê↵ and E↵
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are related through a linear transformation at the leading order in `.

2.3.2 Moments Ê↵ and logarithmic negativity

We start by considering the average of the logarithm of the moments Ê↵ (↵ > 0) in Eq. (2.59). This is the
easiest quantity to calculate because it depends linearly on nA:B and nA1:A2 . Hence, straightforwardly from
Eq. (2.58), we get

Ê↵ = log 2

(
(1 � ↵)nA:B + (2 � ↵)nA1:A2 ↵ even,
(1 � ↵)(nA:B + nA1:A2) ↵ odd.

(2.61)

We observe that, because of the linear structure, Ê↵ depends only on the averages n̄X:Y and not on the full
distribution of the singlets shared between the partitions. We recall that one of the main reasons why we are
interested in Ê↵ is that they are the replica quantities to access the average logarithmic negativity [35]

E = lim
↵!1/2

Ê2↵ = nA1:A2 log 2. (2.62)

We stress that (2.61) are valid for arbitrary tripartition of the chain and not only for adjacent intervals. Notice
that since the moments Ê↵ depend only on the averages n̄X:Y , they do not encode more information than
the entanglement negativity and entropy.

2.3.3 Moments E↵ and renewal equation for the negativity spectrum

The logarithm of the average of the moments in Eq. (2.60) is the quantity more directly related to the true
negativity spectrum (i.e. the distribution of eigenvalues of the partial transpose). Its calculation is, however,
much more cumbersome compared to Ê↵ because of the non-linear dependence on nX:Y : it requires the
knowledge of the entire distribution of singlets and not only of the average. We focus on the tripartition
A = A1 [ A2 and B = Ac. Denoting as P (nA:B, nA1:A2) the joint probability distribution of nA:B and
nA1:A2 , we introduce the generating function for the probability distribution of in-out bonds [34, 181].

g(t, s) ⌘ loghetnA:B+snA1:A2 i = log
X

nA:B ,nA1:A2

enA:Bt+nA1:A2sP (nA:B, nA1:A2). (2.63)

The knowledge of g(t, s) is equivalent to that of the negativity spectrum, in the sense that it univocally
determines the negativity moments.

The asymptotic behavior of generating function g(t, s) (in a RG sense that will be clearer later on)
may be accessed following the phenomenological approach introduced in Ref. [34] for the entanglement
spectrum. The starting observation is that, within SDRG, the singlets form at a constant rate with respect
to the RG time µ. This rate is responsible for the logarithmic scaling of nX:Xc for a single interval X . The
probability distribution of waiting times for a decimation to occur across a bond since the last decimation is
[24]

f(µ) =
1p
5

⇣
e�

3�
p

5
2 µ � e�

3+
p

5
2 µ

⌘
. (2.64)

This expression is true only for asymptotically large µ because non-universal terms related to the initial
distribution of disorder have been neglected in its derivation [24]. For the following, it is useful to explicitly
introduce f̃(x) as the Laplace transform of f(µ)

f̃(x) =
1p
5

 
1

x + 3�
p

5
2

� 1

x + 3+
p

5
2

!
. (2.65)

At this point, in order to compute g(t, s) one would need to know and quantify all the possible processes
between two RG times. The renormalization flow generate several of these processes, but the most probable
one is clearly the formation of isolated singlets [34]. Thus, in a first approximation, expected to be correct
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in the limit of large µ, we can write a renewal equation for the generating function Eq. (2.63), considering
only formations of in-out isolated singlets

hent+smiµ =

Z
1

µ

d⇠f(⇠) + pet

Z
µ

0
d⇠f(⇠)hent+smiµ�⇠ + qes

Z
µ

0
d⇠f(⇠)hent+smiµ�⇠. (2.66)

Here, for notational convenience, we express the disorder average at RG time µ with h·iµ while n and m
are just shorthands for nA:B and nA1:A2 respectively. The constants p and q = 1 � p are, respectively, the
asymptotic probability of increasing n and m by one unit. In a general setting p and q can depend on the
RG time µ and can have activation times depending on the tripartition, here we are only interested in the
limit of large µ and hence neglect these corrections that can be important when comparing with numerics.
The fundamental assumption here is that p and q have a non-zero limit as µ ! 1. The renewal equation
Eq. (2.66) represents an educated conjecture generalizing the one for nA:B in Ref. [34] to two kinds of
singlets (nA:B and nA1:A2) with probability p and q. The correctness of all our (reasonable) assumptions
can be tested only a posteriori with numerical simulations. In fact, as for the analogous equation for the
entanglement spectrum in Ref. [34], the renewal equatio Eq. (2.66) does not take into account many
subleading processes. For example, processes like multiple decimations (which require higher order terms
in p and q), the RG dependence of the variables p and q, and memory effects beyond the first order are all
neglected in Eq. (2.66) and their inclusion in the renewal equation requires the addition of new convolution
terms. It is difficult to identify the most relevant corrections among all the possible ones; anyhow in most
cases they lead to equations which are hard, if not impossible, to solve.

The renewal equation Eq. (2.66) can be solved through Laplace transform. Indeed, after some simple
algebra we get

gµ(t, s) = log

"
L�1

 
1

x

1 � f̃(x)

1 � (pet + qes)f̃(x)

!
(µ)

#
. (2.67)

The inverse transform L�1 can be computed analytically and gives, at large µ

egµ(t,s) µ�1
'
 

1

2
+

3

2
p

5 + 4(pet + qes)

!
exp

 p
5 + 4(pet + qes) � 3

2
µ

!
. (2.68)

From the definition Eq. (2.63), we have

nA1:A2 = @sg(0, 0)
µ�1
=

q

9
(3µ � 1), (2.69)

nA:B = @tg(0, 0)
µ�1
=

p

9
(3µ � 1), (2.70)

and in particular
nA1:A2

nA:B
=

q

p
=

q

1 � q
. (2.71)

The last three equations must be used to extract p and q = 1 � p in a self-consistent way. Indeed, the average
number of singlets between complementary sets is univocally fixed by the set of equations Eq. (2.37). Thus,
for a chosen partitioning G0, one first solves Eq. (2.37), then uses the solutions to determine the probabilities
p and q via Eq. (2.71), and finally plug them in Eq. (2.67) determining the asymptotics of g(t, s) for large
µ. Notice that in Eqs. (2.69) and (2.70) we kept the O(1) term in µ to show that Eq. (2.71) is valid also at
the first subleading order.

At this point, Eq. (2.58) allows to write the desired averaged negativity moments as function of g(t, s)
as

E↵ = g(t↵, s↵), (2.72)
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with

t↵ ⌘ (1 � ↵) log 2, (2.73)

s↵ ⌘
(

(2 � ↵) log 2 ↵ even,

(1 � ↵) log 2 ↵ odd.
(2.74)

The leading term in µ (and hence in n or equivalently in `) comes from the exponential term in Eq. (2.68).
We have two different results for ↵ even and odd that we denote respectively as Ee

↵ and Eo
↵. By simple algebra

we obtain

Ee

↵ =

p
5 + (1 + q)23�↵ � 3

2
µ + . . . , (2.75)

and

Eo

↵ =

p
5 + 23�↵ � 3

2
µ + . . . , (2.76)

where the dots stands for subleading non-universal terms in µ. Notice that in Eqs. (2.75) and (2.76) all the
dependence on the partition is encoded in the constant q and in µ. However, since µ is proportional to the
logarithm of the length involved in the problem, the universal prefactor of this logarithm depends on the
partition only through q. Hence, the odd moments have the same scaling factor for any tripartition of the
chain with q 6= 0, 1.

Eqs. (2.75) and (2.76) are the main analytic results of this manuscript and we recall that they are valid
for any tripartition of the infinite chain as long as p, q 6= 0.

Importantly, they depend on the entire distribution of shared singlets and not only on their averaged val-
ues, showing indeed that the negativity moments provide more information than the logarithmic negativity
and the entanglement entropy.

A trivial consistency check is that Eo

1 = 0, as it should. An important consequence of Eq. (2.75) is that
the replica limit Ee

1 = lim↵!1 E2↵ does not converge to the logarithmic negativity Eq. (2.62) (which is the
limit of Ê2↵) for any q > 0. This means that the average negativity is not related trivially to the average
logarithmic negativity as instead happens for a clean system, i.e. E 6= log(2N � 1) as average over disorder.
Not only, we also have that Ee

1 > Êe

1 for all q > 0, as expected since the logarithm is a concave function. It
is also true that E↵ > Ê↵ for any ↵.

Since both E↵ and Ê↵ are proportional to µ, it is instructive also to write a relation between the two at
fixed ↵. Simply combining Eqs. (2.75) and (2.76) with (2.61), we obtain

E↵ = A↵Ê↵ + K(↵), (2.77)

were K(↵) are a non-universal constants and function A↵ takes two different values for even and odd ↵:

Ae

↵ = 3

p
5 + (1 + q)23�↵ � 3

2(1 � ↵+ q) log 2
, (2.78)

Ao

↵ = 3

p
5 + 23�↵ � 3

2(1 � ↵) log 2
. (2.79)

2.3.4 Application to adjacent intervals

In this subsection we specialize the results of the previous one to the case of adjacent intervals of length `1
and `2 as in Fig. 2.1 (Right). In this case the set of equations Eq. (2.37) admits the following solution at the
leading order in the lengths [35]

nA1:A2 =
1

6
log

✓
`A1`A2

`A1 + `A2

◆
, (2.80)

nA:B =
1

3
log (`A1 + `A2). (2.81)
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The ratio Eq.(2.71) seems a complicated function of `1 and `2. However, we are interested in the regime of
`1 / `2 � 1 when nA1:A2/nA:B = 1/2 + . . ., where the dots stand for subleading logarithmic corrections
to the scaling (which may be important in the analysis of the numerical data). Hence, in the regime `1,2 � 1,
from Eq. (2.71) we get

q =
1

3
, and p =

2

3
. (2.82)

Summarizing, plugging Eq. (2.82) in Eqs. (2.61), (2.75) and (2.76), the final results for Ê↵ and E↵ for
adjacent intervals are

Êe

↵ = (4 � 3↵)
log 2

6
log `+ . . . , (2.83)

Êo

↵ = (1 � ↵)
log 2

2
log `+ . . . , (2.84)

Ee

↵ = 3

p
5 + 25�↵/3 � 3

4
log `+ . . . , (2.85)

Eo

↵ = 3

p
5 + 23�↵ � 3

4
log `+ . . . , (2.86)

where we posed ` = `1 = x`2 (with x finite) and the dots stand (again) for non-universal additive constants
(with a partial and universal dependence on x).

The relation between Ê↵ and E↵ is always given by Eq. (2.77) with Ao
↵ given by Eq. (2.79) and Ae

↵ equal
to

Ae

↵ = 9

p
5 + 25�↵/3 � 3

2(4 � 3↵) log 2
. (2.87)

The above results straightforwardly generalize to more involved tripartitions and can be used to access
universal features of the negativity spectrum in the RSP. Let us recapitulate what one has to do in the most
general case: (i) choose the partition, (ii) compute the average in-out singlets number solving the set of
equations Eq. (2.37), (iii) find the values of p and q using Eq. (2.71), (iv) if p, q 6= 0, then the negativity
moments are just given by Eqs. (2.75) and (2.76). The results will be valid only in the scaling regime of all
length-scales of the same order and much larger than 1.

2.3.5 Numerical tests for adjacent intervals

In this section we numerically test the predictions reported above and in particular we compare our numerical
simulations with the analytic formulas (2.83-2.86) for the negativity moments of adjacent intervals. We
present two benchmarks of our results. First we focus on the XX chain for which we can exploit known free
fermion techniques to easily access the integer moments MT2

↵ with ab-initio simulations [103, 109, 182,
183]. This kind of computations does not rely on the random singlet phase structure and thus represents
a robust non-trivial check of our findings. Moreover we implement numerically the SDRG for the XXX
chain, providing another numerical benchmark which allows to explore much larger system sizes and easily
access also the two analytic continuations of the moments to non-integer values. All these simulations are
extremely important in view of the several (reasonable) assumptions we made in writing down the renewal
equation (2.66): only the very good agreement between the predictions from its solution and the numerics
represents a definitive confirmation for the correctness of these assumptions, at least for asymptotically large
RG time.

Free fermions and negativity spectrum

We review the mapping between the XX chain and free fermions on the line. Within the free fermions
formalism, we can express the reduced density matrix and its partial transpose in the spin variables as a sum
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of Gaussian operators with known Majorana correlation matrices. The negativity moments are computed
through a product rule for Gaussian matrices [182–184].

The Hamiltonian of the random XX chain is Eq. (2.17) at� = 0

H =
L�1X

i=1

Ji(S
x

i Sx

i+1 + Sy

i
Sy

i+1). (2.88)

Here we consider a chain of length L. The Jordan-Wigner transformation

ci =

 
i�1Y

m=1

Sz

m

!
Sx

i
� iSy

i

2
, (2.89)

maps the Hamiltonian (2.88) in the free-fermion one

H =
1

2

L�1X

i=1

Ji(c
†

i
ci+1 + c†

i+1ci) ⌘
L�1X

i,j=1

c†

i
hi,jcj . (2.90)

The ci are fermion annihilation operator, satisfying the canonical anti-commutation relations {cm, c†
n} = �mn.

At the free fermion point the many-body eigenfunctions of H can be expressed in terms of the single-particle
ones {�q(i)}; the same is true for the many-body spectrum. Indeed, the eigenstates of the Hamiltonian (2.90)
are obtained by applying an arbitrary number of single-particle creation operators

⌘†

q =
X

i

�q(i)c
†

i
, (2.91)

to the (fermonic) vacuum |0i. The ground state of (2.88) corresponds to half-filling in fermionic language,
that is the N = L/2 lowest energy levels are occupied

|GSi = ⌘†

qN
· · · ⌘†

q1
|0i. (2.92)

The correlation matrix takes the form

Cij ⌘ hc†

i
cji =

X

q

�⇤

q(i)�q(j), (2.93)

where the sum is over the occupied single-particle excitations in the ground state. The reduced correla-
tion matrix to a given subsystem A with ` sites, CA, is a `⇥ ` matrix whose elements are defined by the
restriction of Eq. (2.93) to i, j 2 A. For later convenience we also introduce the Majorana fermions

a2m�1 = c†

m + cm, a2m = i(c†

m � cm), (2.94)

and the corresponding 2`⇥ 2` Majorana correlation matrix �A with matrix elements

(�A)nm ⌘ hamani � �mn. (2.95)

It is clear that there is a direct relation between the entries of �A and those of CA.
Crucially, reduced density matrices associated with a single interval are Gaussian operators [185]

⇢A =
1

Z⌦
exp

 
1

4

X

n,m

an⌦nmam

!
, (2.96)



Chapter 2. Negativity Spectrum and Entanglement equipartition in Disordered Critical Spin Chains 53

(Z⌦ being a normalization) and the matrix ⌦ may be written in terms of �A as

�A ⌘ tanh

✓
⌦

2

◆
. (2.97)

However, when the subsystem A consists of more than one interval, the reduced density matrix is not
gaussian [186, 187], and so also its partial transpose [124, 183]. Still, in both cases, the corresponding
operator is the sum of gaussian terms. For instance, in the case of two disjoint intervals A = A1 [ A2, ⇢A is
the sum of two Gaussian operators ⇢�i associated by Eqs. (2.96) and (2.97) to distinct covariance matrices
�i.

With free fermion techniques is not straightforward to calculate the eigenvalues of the sum of Gaussian
operators (see anyhow Ref. [188] for a brute force approach). Instead, the traces of arbitrary integer powers
of sums of (even non-commuting) gaussian operators can be calculated with, by now, standard methods
[182, 184]. These methods heave been exploited already many times also for the calculation of negativity in
spin chains [105, 124, 131, 183]. Since the associated machinery is quite involved, here we just summarize
the results and refer to the literature for further details [124, 183]. Let us denote by ⇢� the gaussian operator
associated to the covariance matrix �. Given � and �0, we define the following product rule

⇢�⇢�0 = Tr [⇢�⇢�0 ] ⇢�⇥�0 , (2.98)

where [182]
�⇥ �0 ⌘ 1 � (1 � �0)

1

1 + ��0
(1 � �), (2.99)

relating the covariance matrices of two gaussian operators to the one associated to their product. The trace
on the right hand side of (2.98) is [182, 184]

{�,�0} ⌘ Tr (⇢�⇢�0) =
Y

µ2�(��0)/2

1 + µ

2
, (2.100)

with the product being over half of the spectrum �(��0), which is doubly-degenerate. Moreover, by asso-
ciativity, one can extend this relation to more than two gaussian operators

nY

i=1

⇢�↵i
= {�↵1 , · · · ,�↵n}⇢�1⇥···⇥�↵n

, (2.101)

where

{�↵1 ,�↵2 , · · · ,�↵n} ⌘ Tr
�
⇢�↵1

⇢�↵2
· · · ⇢�↵n

�
= {�↵1 ,�↵2}{�↵1 ⇥ �↵2 , · · · ,�↵n}. (2.102)

The above equation can be used iteratively to evaluate traces of arbitrary products of gaussian operators.
In our case we need to identify the gaussian operators whose sum gives the partially transposed density

matrix. Let us specialize to the system studied in Sec. 2.3.4 with two adjacent intervals A1 and A2, when
there are major simplifications compared to the case of disjoint intervals [124, 183].

Denoting with �AA the correlation matrix within A = A1 [ A2, we further define the four building
blocks

�1 = �AA, �2 = P�1P, (2.103)

�̃k = P̃�kP̃ , k = 1, 2, (2.104)

where

P =

✓
1` 0
0 �1`

◆
, and P̃ =

✓
1` 0
0 i1`

◆
. (2.105)

Here 1` is an identity matrix of dimension `⇥ `. The integer negativity moments may be written in terms
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of these building blocks [183]. For convenience, we report here the cases of ↵ = 2, 3, 4 which we use in the
following

MT2
2 ={�̃1, �̃2}, (2.106)

MT2
3 = � 1

2
{�̃1, �̃1, �̃1} +

3

2
{�̃1, �̃1, �̃2}, (2.107)

MT2
4 = � 1

2
{�̃1, �̃1, �̃1, �̃1}

+
1

2
{�̃1, �̃2, �̃1, �̃2} + {�̃1, �̃1, �̃2, �̃2}. (2.108)

The above equations are used to numerically compute the disorder average of the negativity moments. The
recipe is the following: (i) we choose a disorder realization of the free fermion single-particle Hamilto-
nian (2.90) with Ji ⇠ P (J), (ii) we derive the correlation matrix for Majorana fermions �AA, (iii) we
construct �i and �̃i from the latter, (iv) we compute the moments Eq. (2.106-2.108), and finally (v) iterating
the process for many disorder realizations, we calculate the average.

Numerical results for adjacent intervals

We are finally ready to test numerically the predictions reported in Sec. 2.3.4, as we do in the following.
Throughout this subsection we consider a uniform coupling distribution P (J) = 1 with J 2 [0, 1], although,
as stressed in Sec. 2.2, the results are distribution independent because of the universality of the RSP. In order
to perform the numerical calculations, we must consider a finite chain of length L and, for simplicity, we
choose to work with open boundary conditions. In order to reduce the finite size and boundary effects we
take the two adjacent intervals placed at the center of the chain. We also limit our attention to the case of
two intervals of equal length `, because all the universal factors may be extracted from this partition.

First we consider the ab-initio method for XX chain, reviewed in the previous subsection. We focus on
↵ = 2, 3, 4. We consider different system sizes L = 200, 400, 800 and we vary the intervals length ` between
` 2 {1, . . . , L/4}. We consider 105 disorder realizations and we compute the disorder averages (2.59)
and (2.60). The obtained numerical data are reported in Fig. 2.2. It is evident that all E↵ grow logarithmically
with ` as predicted. The logarithmic growth is compared with the analytic predictions in Eqs. (2.83-2.86).
The agreement between the numerical data and SDRG is perfect already for moderate values of `. In the
plots the non-universal additive constants (not specified in Eqs. (2.83-2.86)) have been fitted.

A byproduct of these ab-initio numerical simulations is an indirect test of the SDRG scaling for the
logarithmic negativity obtained in Ref. [35]. In fact, the latter is not efficiently accessed through free fermion
techniques, because, as already stressed many times, the partially transposed reduced density matrix is not
a non-gaussian operator. Therefore, via replica trick, the computation of Ê2↵ provides an indirect check for
the scaling of the logarithmic negativity as well. This complement the numerical results obtained by SDRG
and density matrix renormalization group in Ref. [35].

We now implement numerically the SDRG for finite spin chains, defined by the Ma-Dasgupta rule (2.24)
for the XXX chain, which works as follows: (i) pick up a random disorder realization with a list random
couplings Ji ⇠ P (J); (ii) iterate the Ma-Dasgupta rule (i.e. choose the strongest bond, build a singlet
between them, remove the two sites, renormalize the coupling according to (2.24)) until all spins are paired
up in singlets; at each step keep track of the location of the singlet and of the removed spins; (iii) count the
in-out singlets formed between the partitions of interest; (iv) evaluate the negativity moments for the single
realization using their form in terms of the number of singlets in Eq. (2.58); (v) perform the average over all
realizations. We vary the parameter ↵, total length L, and the subsystem size `. Here the disorder average is
taken over 106 realizations. Since we are using Eq. (2.58) as operative definition of the negativity moments
in the random singlet phase, we have direct access to the analytic continuations of all four families moments
Ee/o

↵ and Êe/o

↵ to even, odd and arbitrary non-integer values of ↵. From these numerical averages, we extract
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FIGURE 2.2: Negativity moments E↵ and Ê↵ for the random XX chain: results of the ab initio com-
putations for two adjacent intervals of equal length `. We report the absolute values, since for the
considered values of ↵, they are all negative quantities (i.e. the moments MT2

↵ are smaller than 1). The
symbols correspond to the numerical data while the continuous lines are the analytic SDRG predic-
tions Eqs. (2.83-2.86), with a best fit for the unknown non-universal additive constants. The agreement
between the simulation and SDRG predictions is excellent already for moderate values of `.

the prefactor of the logarithm for all the negativity moments for several values of ↵ fitting the averages with

Êe/o

↵ = "̂e/o

↵ log `+ k̂e/o

↵ , (2.109)
Ee/o

↵ = "e/o

↵ log `+ ke/o

↵ .

We restrict the fits to the windows of ` for which a logarithmic scaling is observed before finite size correc-
tions kick in. The results for these four universal prefactors as function of ↵ are reported in Fig. 2.3. The
agreement between the analytic predictions in Eqs. (2.83-2.86) and the simulations is extremely good for
the four moments and for all considered values of ↵ (although some small finite size corrections are evident
for the larger considered ↵). These SDRG results provide a test not only for the integer negativity moments,
but also for their analytical continuations (2.83-2.86). In
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FIGURE 2.3: SDRG simulations for the negativity moments. Here we plot, as function of ↵, the
prefactor of the logarithm "e/o

↵ (cf. (2.109)), as obtained by a fit of the numerical data. The symbols are
the corresponding numerical data while the continuous lines are the analytic predictions in Eqs. (2.83-
2.86). The plots show an extremely good agreement between numerical data and analytic predictions.

2.4 Symmetry resolved entanglement in the random singlet phase

In this Section we study the symmetry-resolved entanglement in the random singlet phase. Also in the
presence of disorder, the Heisenberg chain for arbitrary � is U(1) symmetric because of the conservation
of the total magnetization Sz

tot =
P

i
Sz

i
= Sz

A
⌦ 1B + 1A ⌦ Sz

B
. Indeed each hamiltonian term in (2.17)

commutes with Sz
tot, i.e.,

[Ji(S
x

i Sx

i+1 + Sy

i
Sy

i+1 +�Sz

i Sz

i+1), S
z

i + Sz

i+1] = 0. (2.110)

At the isotropic point, the symmetry is enlarged to SU(2), but here we focus on the more ubiquitous U(1)
symmetry.

In the following, we introduce the shorthand n ⌘ nA:B , with, as usual, nA:B the number of singlets
shared between A and B. In order to find the internal structure of ⇢A, the first trivial observation is that
the singlets within A do not contribute to the subsystem magnetization. Hence, the possible values of
such magnetization only depend on shared singlets. Each shared singlet can provide either +1/2 or �1/2
and consequently the (n + 1) possible values which we denote by s are s 2 {�n/2, �n/2 + 1, . . . , n/2}.
Consequently, throughout this Section, s stands for the possible eigenvalue of the conserved charge within
A, i.e., the quantity denoted by q in Sec. 2.1.3.

As it should be clear at this point, entanglement properties of the random singlet phase can be extracted
by only looking at the reduced density matrix ⇢in/out (cf. (2.32)). This is true in particular for the contribu-
tions from different symmetry sectors. Now, ⇢in/out is of size 2n ⇥ 2n and has a block structure, with (n + 1)
blocks with charge s 2 {�n/2, . . . , n/2}. The dimension of the block corresponding to s is

ds =

✓
n

n/2 + s

◆
. (2.111)

The sum rule
P

s
ds = 2n holds true from Newton binomial theorem.

The main ingredient to study the symmetry-resolved entanglement is the resolved partition function
Zm(s) defined as

Zm(s) ⌘ Tr (⇧s⇢
m

A ) = Tr (⇧s⇢
m

in/out) , (2.112)
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where ⇧s here denotes the projection in the sector with magnetization s. In the singlet basis, all the blocks
of ⇢in/out are diagonal with equal diagonal elements 2�n. Consequently, a simple computation gives the
symmetry-resolved moments (2.112) as

Zm(s) = ds2
�mn =

✓
n

n/2 + s

◆
2�mn. (2.113)

We recall that, in terms of Zm(s), the symmetry-resolved Rényi entropies are

Sm(s) =
1

1 � m
ln


Zm(s)

Zm

1 (s)

�
, (2.114)

which holds for a given disorder realization.
In principle, the distribution of Eq. (2.113) provide entirely the symmetry resolved quantum information

properties in the random singlet phase. However, accessing such distribution is extremely hard; for this
reason we consider different averages of the single disorder realization entanglement (2.114): this will
allow to get indirect information about the entire distribution function.

Specifically, in the following we introduce three different quantities. All these observables are accessible
to the cold-atom experiments like the one in Ref. [137]. In fact, in these experiments, one can access
the single-disorder realizations of the symmetry resolved entropy, and consequently, perform all possible
averages. We recall that, in the singlet language, the explicit meaning of the average is h•i =

P
1

n=0 P (n) • .
The first one is

Sm(s) =
1

1 � m

⌧
ln


Zm(s)

Zm

1 (s)

��
, (2.115)

which is a genuine average of the symmetry resolved entropies. It is analogous to Eq. (2.44) for each
symmetry sector. Although this is the most natural quantity, it is the less interesting one from a theoretical
perspective, i.e., from the point of view of the information that is encoded into it.

The second one is
eSm(s) =

1

1 � m
ln

⌧
Zm(s)

Zm

1 (s)

�
, (2.116)

which represents the logarithm of the average of the m-th moment. It is the symmetry resolved version of
Eq. (2.47) and it is the most suitable quantity to access the symmetry resolved entanglement spectrum.

Finally we also have
bSm(s) =

1

1 � m
ln


hZm(s)i
hZ1(s)im

�
, (2.117)

which is the ratio of the averages of the symmetry resolved partitions. bSm(s) has no equivalent in the
definitions of total entropies, but it is the quantity naturally related to the Fourier transforms of charged
entropies, as we shall also see in more details in the following. Hence it is the average that is closely related
to clean systems.

Our main result, which we are going to show soon, is that all the entropies defined in Eqs. (2.115),
(2.116) and (2.117) satisfy the same equipartition law for the leading and first subleading orders for large
subsystem size `. The violations of entanglement equipartition at higher-order are non-universal.

Before proceeding, some observations are in order to set up the calculations. First, plugging Eq. (2.113)
into Eq. (2.115), we obtain that Sm(s) reads as

Sm(s) =

⌧
ln

✓
n

n/2 + s

◆�
. (2.118)
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Note that similarly to Eq. (2.46), Sm(s) does not depend on m. For eSm(s), plugging Eq. (2.113) into
Eq. (2.116), one has the similar expression

eSm(s) =
1

1 � m
ln

*✓
n

n/2 + s

◆(1�m)
+

. (2.119)

Using Eq. (2.48), it is straightforward to see that Eq. (2.119) and (2.118) coincide in the limit m ! 1,
leading to

S(s) = eS(s) =

⌧
ln

✓
n

n/2 + s

◆�
. (2.120)

This result is also in full analogy with the total entropy where the two limits of Eq. (2.44) and (2.47) coincide
at m = 1.

Conversely, bSm(s) provides a different limit for m ! 1, Indeed, plugging Eq. (2.113) into Eq. (2.117)
we have

bSm(s) =
1

1 � m
ln

D
2�mn

�
n

n/2+s

�E

D
2�n

�
n

n/2+s

�Em , (2.121)

that in the limit m ! 1 becomes

bS(s) =

D
n 2�n

�
n

n/2+s

�E

D
2�n

�
n

n/2+s

�E ln 2 + ln

⌧
2�n

✓
n

n/2 + s

◆�
, (2.122)

where we used again the identity (2.48). Finally, it is important to notice that only the calculation of bSm(s)
involves explicitly hZm(s)i.

2.4.1 Preliminaries

Before embarking into the specific calculations of the various entropies, we discuss the asymptotic limit in
which we are interested and the simplifications taking place in such a limit. First of all, we observe that
the main ingredient for the computation of symmetry resolved entropies are the averaged integer (negative)
powers of the size ds of block at fixed symmetry resolution s. We introduce the quantity Im(s) as

Im(s) ⌘ hd1�m

s i =
1X

n=0

P (n)

✓
n

n/2 + s

◆(1�m)

, (2.123)

which is directly related to the entropy eSm(s) as

eSm(s) =
ln(Im(s))

1 � m
. (2.124)

The calculation of the average Im(s) at finite size is a hard task (likely impossible), since it requires a
precise knowledge of the probability distribution P (n). However, we are only interested in the scaling limit
with large `. In this case, the mean number of singlets hni is large (cf. Eq (2.38)). Thus, for the average
in Eq. (2.123), we can focus on the large n limit, using the Stirling approximation to expand the Newton
binomial in Eq. (2.123) to obtain:

✓
n

n/2 + s

◆1�m

= 2n(1�m)
⇣⇡n

2

⌘m�1
2

1X

k=0

Qk(n)
⇣ s

n

⌘2k

, (2.125)
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where Qk(n) are algebraic functions in n. For instance, one has:

Q0(n) = 1 + O

✓
1

n

◆
, (2.126)

Q1(n) = 2(m � 1)n + O (1) . (2.127)

We are interested in small values of s since they are those with a significant contribution to the total entropy
(the probability p(s) is expected to decay very quickly with s, as we self-consistently show). Then, in the
limit of n � s, the only relevant term is the one with k = 0 in Eq. (2.125), i.e.,

✓
n

n/2 + s

◆1�m

'
⇣⇡n

2

⌘m�1
2

2n(1�m). (2.128)

Recalling that g(�) ⌘ he�n�i (cf. Eq. (2.39)), the average over the disorder of Eq. (2.128) for m odd is
straightforwardly related to the derivative of g(�). Consequently we have

Im(s) ' h2n(1�m)(⇡n/2)
m�1

2 i =
⇣⇡

2

⌘m�1
2 @ag(�)

@(��)a

����
�=(m�1) ln 2,a=m�1

2

. (2.129)

One can easily perform explicitly the a-th derivative (at leading order), obtaining after simple algebra

Im(s) ' I(0)
m ⌘ 1

2
e�

1
2 (3�

p
5+23�m)µ

⇣
1 +

3p
5 + 23�m

⌘⇣ ⇡2�mµp
5 + 23�m

⌘m�1
2

, (2.130)

where µ = ln `+ . . . is the same as in Eq. (2.42). At this point, we have an analytic expression for odd m.
It is very reasonable to assume that the same expression indeed provides the correct result for even m. An
explicit calculation valid for arbitrary real m can be performed by exploiting the Laplace transform of Eq.
(2.123) for large n. The calculation is very cumbersome, although it employs only standard techniques of
complex integration. To maintain a clear exposition of our results, we report the details in Appendix 2.7 and
just state here that such a complex calculation reproduces Eq. (2.130) at the leading order (but suggests that
some deviations are present at subleading ones).

Let us quickly discuss what Eq. (2.125) suggests for the correction to the leading behavior in Eq.
(2.130). The first corrections comes from the term with k = 1 that for large n multiplies the leading factor
by a term / s2/n. This implies that such a correction term is proportional to h2n(1�m)n

m�1
2 �1i. Once

again, using the derivative trick in Eq. (2.129), we quickly obtain that this correction is / I0
m/µ. Recalling

that µ = ln `+ O(`0), we conclude that

Im(s) = I(0)
m

⇣
1 + (m � 1)2m

p
5 + 23�m

s2

ln `
+ . . .

⌘
, (2.131)

where we explicitly work out the constant multiplying s2/ ln `. This analysis suggests that the first term
that breaks equipartition in Im(s) is proportional to s2/ ln `. This is reminiscent of what observed for clean
systems in few different situations [156, 161]. However, we must stress that Eq. (2.131) should be taken
with a grain of salt. Indeed, it assumes the validity of the form (2.41) for g(�) also for the subleading
term. It is however known that subleading non-universal terms, not encoded in g(�), are present; they are
model-dependent and more difficult to calculate (see Ref. [34] for an in-depth discussion).

2.4.2 Entanglement equipartition for Sm

The first case we consider is the symmetry resolved entropy Sm(s) defined in Eq. (2.115) and given by the
mean value of ln ds, cf. Eq. (2.118). This logarithm is simply deduced by exploiting

⌧
ln

✓
n

n/2 + s

◆�
= � @

@m
Im(s)

����
m=1

, (2.132)
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and using the zeroth order approximation for Im(s) in Eq. (2.130). Keeping the subleading terms up to
O(`0), we obtain

Sm(s) =
ln 2

3
µ � 1

2
ln
⇣⇡

6
µ
⌘

� ln 2

9
+ O(µ�1)

= S � 1

2
ln
⇣⇡

6
µ
⌘

+ O(µ�1) = S � 1

2
ln ln `+ . . . . (2.133)

Equation (2.133) is the first main result of this Section: it shows the entanglement equipartition of the
random singlet phase for the entropy Sm(s). The leading contributions to these Rényi entropies are the
same for all the symmetry sectors. The first term is just the total entanglement. We will discuss the origin of
�1/2 ln ln ` at the end of the section, because the same term will appear in all other entropies we consider.
The O(1) term is not universal, but we reported it here for some comparisons we will do later on.

Let us briefly discuss the corrections to this leading behavior. Exploiting Eq. (2.131), i.e., considering
only those coming from Eq. (2.125), we simply have that the first term breaking equipartition should behave
as s2/ ln `. More quantitatively, from Eq. (2.131) we have

Sm(s) � Sm(0) = �6
s2

µ
. (2.134)

Accordingly, at least at this order and within these approximations, Sm(s) is a monotonous decreasing
function of |s|.

2.4.3 Entanglement equipartition of eSm

Here we show the entanglement equipartition for the Rényi entropies eSm for arbitrary m. The integral Im(s)
is directly related to eSm(s) as eSm(s) = (ln Im(s))/(1 � m). Hence, we have

eSm(s) =

p
23�m + 5 � 3

2(1 � m)
µ � 1

2
ln

2�m⇡µp
23�m + 5

+
1

1 � m
ln
⇣ 3

2
p

23�m + 5
+

1

2

⌘
+ O(µ�1)

= eSm � 1

2
ln

2�m⇡µp
23�m + 5

+ O(µ�1) = eSm � 1

2
ln ln `+ . . . . (2.135)

The leading logarithmic term is the same as in the total Rényi entropy eSm. Again, there is an additional
universal double-logarithmic term in ` which is not present in the total entropy. Both these terms are inde-
pendent of the symmetry sector s, i.e., the symmetry-resolved Rényi entropies eSm(s) exhibit equipartition.
In both Eqs. (2.135) and (2.133), we have been very careful to write the entire subleading term at order
O(`0). This has been done to show their relationship with the O(`0) terms in the total entropies from Ref.
[34]. We stress however that they have all been obtained with the assumptions used to derive g(�) in Ref.
[34].

Even for this entanglement measure, from Eq. (2.131), we expect subleading logarithmic corrections to
Eq. (2.135) to violate equipartition as s2/ ln `. Specifically, from Eq. (2.131) we have

eSm(s) � eSm(0) = �2m
p

23�m + 5
s2

µ
. (2.136)

Once again, at least at this order and within these approximations, eSm(s) is a monotonous decreasing
function of |s| for all values of m.

2.4.4 Entanglement equipartition for bSm

In this section we explicitly compute bSm(s) and show that entanglement equipartition holds also for it.
Moreover, we will show that also the double logarithnmic term is the same as for eSm(s) and Sm(s).
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The main ingredient to compute bSm(s) is the average hZm(s)i. Here the strategy is to first evaluate the
disorder average of the charged moments hZm(↵)i and then to perform a Fourier transform (cfr. Eq. (2.14)).
En passant this will give access to the probability p(s) characterizing each sector’s population.

In a given disorder realization with n shared singlets, the charged moment Zm(↵) reads

Zm(↵) =

n/2X

s=�n/2

2�mn

✓
n

n/2 + s

◆
ei↵(s�n)/2

h
2(1�m) cos

⇣↵
2

⌘i
n

, (2.137)

and consequently its disorder average is

hZm(↵)i = g
⇣
2(1�m) cos

⇣↵
2

⌘⌘
, (2.138)

where g(�) is the generating function in (2.39). Incidentally for m = 1, hZ1(↵)i is the full counting statistic
generating function of this disordered model.

Exploiting the explicit knowledge of g(�) in Eq. (2.41), the Fourier transform of Eq. (2.138) can be
computed by using the saddle point approximation in the scaling limit ` � 1 (equivalently µ � 1, cfr.
Eq. (2.42)), obtaining

hZm(s)i =

✓
1

2
+

3

2
p

5 + 23�m

◆
e�

3
2µ+

p
5+23�m

2 µ

s
2m

p
5 + 23�m

⇡µ
exp

"
�2m

p
5 + 23�m

µ
s2

#
.

(2.139)
Interestingly, in this approximation hZm(s)i has the very same structure of conformal result, cf. Eq. (2.15),
i.e., it is gaussian with variance / µ. From Eq. (2.139) we can directly read out the probability for the
subsystem magnetization to be equal to s as

p(s) = hZ1(s)i =

r
6

⇡µ
exp


�6s2

µ

�
. (2.140)

Finally, we plug the partition function (2.139) into the definition (2.117), to get the entropy bSm(s) as

bSm(s) = eSm(s) +
m

2(m � 1)
ln
⇣2m

6

p
23�m + 5

⌘
+ O(µ�1)

=

p
23�m + 5 � 3

2 � 2m
ln `� 1

2
ln ln `+ . . .

= eSm � 1

2
ln ln `+ . . . . (2.141)

We see that at leading universal orders bSm(s) = eSm(s) (and the same holds in the limit m ! 1), with a
non-universal O(`0) difference in the thermodynamic limit.

We close this subsection with the highlight of a peculiar phenomenon which characterizes the s-dependence
of the entropies bSm(s). From Eq. (2.139), the equipartition is again broken at order s2/µ. Anyhow, this
subleading term breaking equipartition has not a definite sign with m, as an important difference with all
considered cases, not only in this Section, but in the entire literature. This phenomenon can be easily seen
by analyzing the difference bSm(s) � bSm(0), i.e.,

bSm(s) � bSm(0) =
(6m � 2m

p
23�m + 5)

1 � m

s2

µ
, (2.142)

where to get the rhs we explicitly used Eq. (2.139). The coefficient of the term multiplying s2 is negative
for m < m⇤ = 2.695 . . . and positive for m > m⇤. This change of sign causes the Rényi entropy to be
a monotonous decreasing function of |s| for m < m⇤, as all the cases considered so far in the literature,
while it is a monotonous increasing function of |s| for m > m⇤. It is natural to wonder whether and how
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this intriguing phenomenon survives to the effect of the further subleading corrections that are not taken
into account by g(�) in Eq. (2.41). We will answer this question with the analysis of the numerical data in
Sec. 2.4.6.

2.4.5 The number entropy and the log-log term

In this subsection we heuristically discuss about the number entropy and its relation with the first subleading
term in the symmetry resolved entanglement. Eq. (2.9) guarantees that for each realization of the disorder
(let us say r) it holds

Sr = �
X

s

pr(s) ln pr(s) +
X

s

pr(s)Sr(s) . (2.143)

Taking the average over the disorder means to mediate only after the sum over s has been performed.
If we assume self-averaging, we can invert the two sums/averages, obtaining

S = �
X

s

p(s) log p(s) +
X

s

p(s)S(s), (2.144)

where p(s) is the average probability of configurations with subsystem magnetization s given in Eq. (2.140).
Within this assumption, the number entropy is

SQ = �
Z

dsp(s) ln p(s) =
1

2

⇣
1 + ln

⇡µ

6

⌘
, (2.145)

i.e., it diverges like ln µ for large µ, i.e., like ln ln `. This ln µ divergence is identical to the one that appears
in the symmetry resolved entropy S(s). Indeed, since at this order in µ the symmetry resolved entropy
S(s) does not show any s-dependence, we have

P
s
p(s)S(s) = S(s) and the term ln µ (absent in the total

entropy S) should be compensated by an identical term in S(s).
The above equivalence between number entropy and subleading term in the symmetry resolved one takes

place in a very similar form also for clean system described by a Luttinger liquid. There the subleading term
1
2 ln(K ln `) reflects that the charge fluctuations of the subsystem are proportional to [139, 189, 190] K ln `
(cfr. (2.15)). The prefactor is again 1/2 and also cancels in the total entropy when summing number and
symmetry resolved ones.

This is not the end of the story. For clean systems, also the O(1) term in the symmetry resolved entropies
is independent of s. Hence it is also equal to the one for the total entropy (modulo the shift in the number
entropy as in (2.145)). By comparing carefully Eqs. (2.133), (2.144), and (2.145) this does not seems to
be the case for random systems. Most likely this mismatch is due to the lack of self averaging for the
subleading term. Another possible explanation could be also the presence of s-dependent O(1) terms in
the symmetry resolved entropy which are not captured by g(�) in Eq. (2.41) (that, as we stressed, ignores
several subleading effects).

Finally, we have found the same term �1
2 ln µ to be present in all symmetry resolved entropies indepen-

dently also of the Rényi index. This fact can be understood reasoning similarly to what done above. First,
for m = 1 it is sufficient to assume self-averaging for the entropy of interest. Instead for m 6= 1, Eq. (2.9)
for the splitting in number and configurational entropy does not hold. It is also not possible to rewrite a
similar form using only the probability p(s). However, we can exploit the recent result [161] for a different
splitting involving the generalized probabilities pm ⌘ Zm(s)/Zm (Zm is the exponential of the total Rényi
entropies). The complete check is straightforward and not very illuminating, one just needs to assume self
averaging for all the quantities of interest. In conclusion, this argument explains why the term �1

2 ln µ is
present in all the quantities we considered with the same prefactor, in spite the coefficient of the leading
term (in µ = ln `+ . . . ) is not the same.
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2.4.6 Numerical SDRG results

In this section we present numerical simulations supporting our analytic results. We implement numerically
the SDRG method for a finite-size Heisenberg chain. Specifically, the method works according to the
following steps. We initialize a list of length L with the chain couplings Ji. We take the {Ji} to be
independent random variables with Ji 2 [0, 1] and extracted from the probability distribution

p(J) =
1

�
J�1+1/�. (2.146)

Here � > 0 is a parameter characterizing the strength of the randomness: � = 1 is the uniform distribution,
while � ! 1 correspond to strong disorder (i.e., to the RG fixed point). We implement the Ma-Dasgupta
decimation rule, Eq. (2.24), which is iterated on the list of couplings until all the spins are decimated. During
the iteration the algorithm keeps track of all the singlets that are formed. The method is repeated for many
random realizations of the couplings. From the spatial information about the singlets, it is straightforward
to calculate the von Neumann and Rényi entropies. Given a bipartition of the system as A [ B, these are
obtained by counting the number of shared singlets between the subsystems and by applying (2.31). The
symmetry-resolved entanglement entropies can be calculated in a similar way. In fact, in a given disorder
realization the SDRG method produces n shared singlets. This means that there are (n + 1) blocks. Each
block, labelled by the quantum number s, is diagonal, and has dimension ds (cf. (2.111)). Thus, from
the spatial configuration of singlets it is straightforward to calculate the symmetry-resolved entropies for
each disorder realization and their averages Sm(s), eSm(s), and bSm(s) according to the specific rules in
Eqs. (2.118), (2.119) (2.121), respectively.

FIGURE 2.4: Total Rényi entropies S̃m in the disordered Heisenberg chain, plotted against the sub-
system size `. Symbols represent numerical SDRG simulation with system size L = 16384, disorder
strength � = 5, and average over N ⇡ 106 disorder configurations. Different symbols and colors cor-
respond to different Rényi index m = 1, 2, 3. Dashed lines are the analytical predictions, Eq. (2.147).
In the inset we report �eSm in Eq. (2.148) clearly showing that the leading corrections are O(`0).

Preliminary benchmarks

Before presenting the numerical results for the symmetry-resolved entanglement, it is important to reanalyze
the behavior of the total, i.e., non symmetry-resolved, von Neumann and Rényi entropies. In fact, a striking
feature of the symmetry-resolved entropies is that they possess subleading double-logarithmic corrections
that are not present in the total ones. Thus it is worth reanalyzing the total entanglement to exclude log-log
terms also here and to emphasize the differences with the symmetry resolved ones.
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Our results for the von Neumann entropy and for the Rényi entropies eSm (m = 1, 2, 3) are shown in
Fig. 2.4. The symbols are numerical data for a chain with L = 16384 sites (finite size scaling is discussed
later) and for a disorder strength � = 5 (other values of � provide equivalent result, as discussed for the
symmetry resolved ones). The data are obtained by averaging over N ⇡ 106 disorder realizations. The
continuous lines are the theory predictions obtained as a fit of the form

eSm =

p
5 + 23�m � 3

2(1 � m)
ln `+ a, (2.147)

in which a is the only fitting parameter. The agreement between the SDRG results and (2.147) is good for
all the entropies. However, in order to have a better feeling of the subleading term, in the inset we plot the
subtracted entropy

�eSm ⌘ eSm �
p

5 + 23�m � 3

2(1 � m)
ln ` . (2.148)

This inset provides a strong evidence that the leading correction to the entropy is O(`0), ruling out the
presence of a log-log term.

We do not report the numerics for Sm because they coincide with eS = eS1 by definition (see the discus-
sion in Sec. 2.4.2).

FIGURE 2.5: Finite size behavior of the disorder averaged symmetry resolved entropies S(s). We
report the numerical data for L from 1024 to 16384. The four panels are for s = 0, 1/2, 1, 3/2. All
data correspond to disorder strength � = 1 (uniform distribution) and are averaged over 106 disorder
realizations. For the considered values of ` there are no visible finite size corrections.

Symmetry-resolved von Neumann entropy

We now discuss the symmetry-resolved von Neumann entropy in the random singlet phase. We will consider
both S(s) in Eq. (2.120) and bS(s) in Eq. (2.122). We recall that S(s) is the limit m ! 1 of both Sm(s) and
eSm(s).

We start with the analysis of the finite size behavior. In Fig. 2.5 we report the numerical data for S(s)
at fixed disorder � = 1 for L = 1024, 2048, 4096, 8192, 16384. The averages are over ⇡ 106 disorder
realizations. The subsystem magnetization s can assume both integer of semi-integer values, depending on
the parity of `. Hence, hereafter the data for s = 0, 1, 2 correspond to even `, while the data for s = 1/2, 3/2
are for odd ` (everywhere for each even ` considered, we also plot ` + 1). In Fig. 2.5, the data for all
reported values of ` are on top of each other and there is no visible finite size correction for any s. Then in
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the following, we will work mainly at L = 16384 and consider values of ` up to ⇠ 3000 for which there are
no appreciable corrections. We checked that this feature is universal, i.e., does not depend either on disorder
strength � or on the considered entropy. In all this Section, we only report positive values of s, but we tested
that for s ! �s we get exactly the same results.

FIGURE 2.6: Symmetry resolved entanglement entropy S(s) (top) and bS(s) (bottom) in the disordered
Heisenberg chain, against the subsystem size `. Symbols are numerical results using the SDRG method
with system size L = 16384 and average over N ⇡ 106 disorder realizations with disorder strength
� = 5. Different symbols and colors correspond to different symmetry sectors s = 0, 1/2, 1, 3/2, 2.
The dashed lines represent the theory prediction (2.149) in which a has been adjusted to fit the data.

We are now ready to start our analysis of the symmetry resolved entropies. In Fig. 2.6 we compare our
analytical formulas with numerical SDRG results. The data are for a chain with L = 16384 sites and are
obtained by averaging over N ⇡ 106 disorder realizations. Data are plotted as function of `. The different
symbols correspond to the different symmetry sectors s. We report the data for both S(s) (top panel)
and bS(s) (bottom panel). For large ` all curves become parallel, showing asymptotic equipartition, as we
theoretically derived in the previous section. The curves however are not superimposed, manifesting that
the subleading corrections do depend on s. Furthermore we find that the various curves are monotonously
decreasing function of |s|, as theoretically predicted in the previous section. In this respect, it is important
that non-universal terms not included in the approximations that led to Eqs. (2.134) and (2.142) do not spoil
such a result.

The dashed lines in figure 2.6 are fit to the form

ln(2)

3
ln `� 1

2
ln ln `+ a, (2.149)

with a single free parameter a. We use the same form for both S(s) and bS(s) since in SDRG they show
the same asymptotic scaling (cf. Eq. (2.141)) with a different O(`0) term, i.e., with a different a in the
above equation. The fit is performed only with the data for large `. The agreement is really good taking
into account that we only have one parameter in the fit. It is clear that the corrections to the scaling become
more important for larger values of |s|, as it was expected on the bases of the result of the previous section.
Needless to say that the presence of the term �1/2 ln ln ` in Eq. (2.149) is fundamental to have such
agreement.

However, proceeding in this way, we would have the additive constant a which does depend on s.
Conversely, the SDRG results in Eqs. (2.134) and (2.142) suggest that this is not the case. It is also true that
our SDRG treatment ignores some non-universal processes that do not alter the two leading terms, but at
least in principle can affect the constant. On the other hand, within SDRG we have also shown the presence
of s-dependent terms behaving like s2/ ln ` (indeed these log-corrections are typical features of symmetry
resolved entanglement entropies also in clean systems [156, 161]). Can these corrections be responsible for
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FIGURE 2.7: Subtracted symmetry resolved entanglement entropy �S(s) in Eq. (2.150) for s =
0, 1/2, 1 (from top to bottom) in the disordered Heisenberg chain, against the subsystem size `. Sym-
bols are numerical results using the SDRG method with system size L = 16384 and average over
N ⇡ 106 disorder realizations. Different symbols and colors correspond to different disorder strength
� = 1, 5, 8. The data are slowly approaching 0 according to the law (2.151). The fits are reported as
lines and perfectly match the data.

a seemingly s-dependent additive constant? To answer this question we study the difference

�S(s) ⌘ S(s) � S +
1

2
ln
⇣⇡

6
ln `
⌘

. (2.150)

This subtraction is motivated by the fact that the additive constant not only is s independent, but also equal
the one for the total entropy (modulo the additive factor within the number entropy). Hence, according to
our SDRG results,�S(s) should decay to zero for large ` as

�S(s) ' b

ln `+ c
, (2.151)

where b and c are free non-universal parameter that may (and actually do) depend on s. We analyze the
SDRG data for �S(s) in Fig. 2.7 where we consider three different disorder distributions with strength
� = 1, 5, 8 to rule out the possibility of some weak disorder effect. It is evident that � only mildly influences
the data and for � = 5 and � = 8 there are no differences at all. The three panels in the figure correspond to
s = 0, 1/2, 1. The numerical data are fit to the form (2.151). The agreement is truly impressive when one
thinks that we are fitting curves that asymptotically tend to zero, but we are working in a regime where they
are still far from it. Increasing the values of s, subleading terms, e.g. going like s2/(ln `)2 or s4/(ln `)↵,
becomes important and it is more difficult to fit the data with (2.151) at the available values of `. Finally
we mention that we repeated the same analysis also for the entropy bS(s) finding equivalent results for the
equipartition.

Concluding, Fig. 2.7 is a very strong and convincing evidence that the prediction from SDRG in Eq.
(2.134) survives the inclusion of non-universal effects and that there is equipartition of entanglement at the
order O(`0) also in the random singlet phase. The first term breaking equipartition s2/ ln ` is also correctly
captured by SDRG in Eq. (2.134).
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FIGURE 2.8: Symmetry-resolved Rényi entropies eSm(s) for m = 2 (top) and m = 3 (bottom).
The symbols are SDRG results for the Heisenberg chain with L = 16384 sites. The average is over
106 disorder realizations with strength � = 5. Different symbols and colors correspond to different
subsystem magnetization s = 0, 1/2, 1, 3/2, 1. The dashed lines are fits to the form (2.152).

Symmetry-resolved Rényi entropies

We now discuss the symmetry-resolved Rényi entropies. For many aspects the analysis is identical to the
one of the previous section for the von Neumann one and we will not repeat all details.

We first consider eSm(s) (since Sm(s) do not depend on m, there is no reason to discuss them). In
Fig. 2.8 we plot SDRG data for m = 2, 3. In the scaling limit all the Rényi entropies exhibit equipartition
and are described by

eSm(s) =

p
23�m + 5 � 3

2(1 � m)
ln `� 1

2
ln ln `+ a + . . . . (2.152)

Again, the first term in (2.152) is the result for the total Rényi entropies, eSm. Note that the subleading
term 1/2 ln ln ` is the same as for the von Neumann entropy. For large ` all curves at fixed m become
parallel, showing asymptotic equipartition. Anyhow, they are not on top of each other, manifesting that the
subleading corrections do depend on s.

The first check to test the asymptotic behavior is to perform a simple fit of the data to the form (2.152)
allowing a to depend on s. These fits are shown in Fig. 2.8 as continuous lines. The agreement is excellent
and, as expected, it slowly deteriorates increasing |s|. We have performed an analysis like the one in Fig.
2.7 for the von Neumann entropy to convince ourselves that the differences between the various curves at
fixed s are, as SDRG predicts in Eq. (2.136), only due to subleading term as s2/ ln `. The analysis shows
that this is likely, but the corrections are much larger than for m = 1 and so more difficult to treat. This is
not unexpected: Eq. (2.136) predicts that the coefficient of s2/ ln ` grows exponentially with m (being ⇠ 6
at m = 1, ⇠ 10.6 at m = 2, and ⇠ 20 at m = 3) and so the data soon become difficult to handle as m
increases.

Finally, we discuss the Rényi entropies bSm(s), focusing on m = 2, 3. Before discussing the scaling be-
havior of the entanglement entropies, it is useful to consider the partition functions hZm(s)i, being the main
ingredient to construct bSm(s) and being per se interesting (for m = 1, hZ1(s)i is the average probability
p(s) of having subsystem magnetisation s, cf. Eq. (2.140), while for other m are related to generalized
probability distributions [161]).

In Fig. 2.9, we present a quantitative comparison for hZm(↵)i and hZm(s)i between the numerics
and the analytic predictions, respectively in Eqs. (2.138) and (2.139). The additive constant in µ (cfr.
Eq. (2.42)) appearing in both formulas is preliminary fitted only once for all data. The numerical data are
obtained by averaging Eq. (2.137) for hZm(↵)i and Eq. (2.113) for hZm(s)i. For hZm(↵)i, we observe
a fair agreement between our data and the analytic expressions, although finite size corrections are present
as ↵ ! ±⇡ (the plot is in log scale). The discrepancies at the boundaries of the Brillouin zone are well
known for clean systems [156, 157, 168] and are physically due to the fact that such charged entropies must
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FIGURE 2.9: Charged (left) and symmetry-resolved (right) moments, hZm(↵)i and hZm(s)i. Sym-
bols represent numerical SDRG simulation with system and subsystem sizes L = 8192 and ` = 3722,
respectively. The average is over N ⇡ 106 disorder configurations and the strength of the disorder is
� = 1. Different symbols and colors correspond to different index m = 1, 2, 3. Dashed and full lines
are the analytic predictions, Eq. (2.138) and Eq. (2.139), respectively.

be periodic of period 2⇡. Then they should be present in lattice disorder systems as well. Also the data
for hZm(s)i are remarkably reproduced by SDRG predictions, with corrections to the scaling that become
larger as |s| increases, as it is the case for all the quantities considered so far. Incidentally, we did not
yet mention that, very generically, deviations at higher s are expected, because populating higher sectors
requires exponentially larger system sizes.

FIGURE 2.10: Symmetry-resolved Rényi entropies bSm(s) for m = 2, m = m⇤ = 2.69 . . . , and
m = 3 (from top to bottom). The symbols are SDRG results for the Heisenberg chain with L = 16384
sites and disorder strength � = 5. The average is over 106 disorder realizations. Different symbols
and colors correspond to different subsystem magnetization s = 0, 1/2, 1. The lines are fits to the
theoretical result (2.153). Notice that the entropies are ordered as monotonically decreasing function
of s for m = 2, are mixed up at m = m⇤, and start inverting their order for m = 3.

We are then ready to analyze the symmetry-resolved entropies bSm(s) which are plotted in Fig. 2.10.
Again, for asymptotic large ` the various curves for different s at fixed m become parallel, manifesting
equipartition. As done for all other entropies, we first check the correctness of the leading scaling term that
in SDRG is given by Eq. (2.141). In Fig. 2.10, the continuous lines are fit of the data with

bSm =

p
23�m + 5 � 3

2(1 � m)
ln `� 1

2
ln ln `+ a + . . . (2.153)
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where we allow a to depend on s. We observe a good asymptotic agreement in Fig. 2.10 confirming the
correctness of the leading term.

We now move to the corrections. In this case the analysis is very difficult because of the peculiar non-
monotonic features we highlighted at the end of Sec. 2.4.4 in Eq. (2.142). Indeed while they are always of
the form s2/ ln `, the prefactor is negative for m < m⇤ (as in all other cases observed so far here and in the
literature) and it is positive for m > m⇤. Close to m⇤, the subsubleading terms become important and larger
than the ones under scrutiny that instead vanish at m = m⇤. Exactly for this reason in the Fig. 2.10 we
report m = 2, m = m⇤, and m = 3. We observe that the entropies are ordered as monotonically decreasing
function of s for m = 2, they are mixed up at m = m⇤ (which is the point where the leading corrections
to the scaling vanish in SDRG) and they tend to reverse their order for m = 3, although they are not in
increasing order in s, likely because of subleading corrections (m⇤ is very close to 3). We found extremely
remarkable that this unusual effect predicted by SDRG is not spoiled by non-universal effects as well as by
other universal RG processes that have not been included in the derivation of g(�) in Eq. (2.41) presented
in Ref. [34].
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2.5 Conclusion

In this Chapter we have studied the negativity spectrum and the symmetry resolved entanglement entropy in
the random singlet phase.

For the negativity spectrum, our results are based on the Ma-Dasgupta decimation rule, which leads to
a renewal equation for the probability distribution of in-out singlets in a tripartition of an infinite disordered
spin chain in the random singlet phase. This procedure assumes that the most relevant renormalization
effect is a single decimation occurring at a specific bond. The distribution resulting from the solution of
the renewal equation provides analytic results for the negativity moments in the RSP and for their analytic
continuations. We focused on the case of adjacent intervals and the results have been numerically tested
by means of ab-initio simulations and numerical strong disorder renormalization group techniques, find-
ing perfect agreement. While the logarithmic negativity depends only on the average value of the singlets
forming in the system, we find that the negativity spectrum depends on their full probability distribution.
Therefore, an important consequence is that our analytic results can be used to reconstruct the full probabil-
ity distribution of the number of singles nA1:A2 between two generic subsystems. This generalizes the same
result for the distribution nA:B for complementary subsystems, which follows from the knowledge of the
entanglement spectrum. A second intriguing result of our analysis is that the negativity and logarithmic neg-
ativity are not trivially related after the average over the disorder: this can be understood as a consequence
of the well-known different scaling of average and typical (i.e. most probable) correlations in this class of
disordered models.

Our analysis naturally rises a few questions deserving further investigations. The first one is that the true
negativity spectrum (i.e. the full distribution of eigenvalues of ⇢T2

A
) has not yet been derived. Indeed, this

is still and open issue also for the entanglement spectrum [34] for which the calculation should be much
simpler. A second natural question is to wonder whether it is possible to calculate the negativity moments
for other infinite randomness fixed points that have been described in the literature.

Finally, the dynamical evolution of the entanglement in random spin systems has been also subject to
intensive investigation, especially in relation to many-body localized phases [16, 191–197]. A crucial aspect
so far, even from the experimental side [198, 199], has been to establish a quantitative understanding of
the growth of the entanglement entropy. It would be interesting to generalize some of these results to the
negativity and negativity spectrum.

For the symmetry resolved Rényi entropies, we then have considered different proxies that we give in
Eqs. (2.115), (2.116), and (2.117). Two of them ((2.115) and (2.116)) become equal in the von Neumann
limit. We compute the asymptotic behavior of these entropies in the large ` limit using well established
techniques within SDRG. Our main result is that the three definitions all provide entanglement entropies that
satisfy equipartition at the leading universal orders. We confirmed these results numerically and showed the
presence of subleading non-universal terms breaking equipartition. The order of such corrections, s2/ ln `, is
also correctly characterized by analytic SDRG techniques. We finally point out that the double logarithmic
term in the symmetry resolved entanglement is related to the number entropy, in full analogy with clean
systems [156]. There are also few quantitative remarkable SDRG predictions about the subleading terms
that are confirmed by numerics. The first is that the O(`0) term in the symmetry resolved entanglement, not
only is s-independent (a remarkable fact by itself), but it is also the same as in the total entropy (modulo
a contribution from the number entropy). Another one is that for almost all entropies the corrections are
monotonically decreasing function of |s|, but for the one defined in Eq. (2.117) there is a switch as the
Rényi index grows.

An important test of our results that is still to be performed consists in checking some of our predictions
in microscopic models with ab-initio methods. However, it is a numerically demanding problem to reach
the large system sizes required to minimize the effect of the subleading corrections, even for disordered
free-fermion models and exploiting well established techniques [26, 34].

A fundamental generalization for our work concerns symmetry resolved entanglement and equipartition
for disordered systems out of equilibrium. Indeed, there is already a large literature about the time evolution
of the total entanglement entropy [25, 137, 191–197, 199–201], that provided insights also about the cel-
ebrated many body localization. Only in recent experiments [137], the importance of symmetry resolution
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has been highlighted also to shed light on the slow growth of the total entanglement entropy. However, many
aspects of the problem still require to be studied deeply.
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FIGURE 2.11: (Left) Comparison between the SDRG simulations using the Ma-Dasgupta rule respec-
tively for the XX chain eq. (??) and the XXX chains eq. (??). Similarly to Fig. 2.3, we plot, as function
of ↵, the prefactor of the logarithm "e/o

↵ (cf. (2.109)), as obtained by a fit of the numerical data. The
continuous lines are the analytic predictions in Eqs. (2.83-2.86). The plots show an extremely good
agreement between numerical data and analytic predictions. (Right) Numerical comparison between
the SDRG simulation for the XXX model using the initial coupling distribution eq. (2.154) with � = 1
and � = 2. Similarly to Fig. 2.3 and Fig. 2.11, we plot, as function of ↵, the prefactor of the logarithm
"e/o

↵ (cf. (2.109)), as obtained by a fit of the numerical data. The continuous lines are the analytic
predictions in Eqs. (2.83-2.86). Analogous results holds for other values of �, and suggests the inde-
pendence of the SDRG procedure with respect to the initial distribution of the couplings.

2.6 Appendix: Additional detail and results for the negativity spectrum

2.6.1 Universality of the SDRG data

In this section we provide numerical evidence for the universality of the SDRG. In Fig. 2.11 (Left) we
present a comparison between the SDRG results of Sec. 2.3.5 for the XXX model and the same numerical
implementation for the XX chain. The small discrepancies are due to finite size effects.

Furthermore we check our data are independent of the initial distribution by considering various initial
coupling distributions of the form:

P�(J) =
J�1+1/�

�
, J 2 [0, 1]. (2.154)

� = 1 coincides with the flat distribution in Sec. 2.3.5, � ! 0 is the clean case, while � ! 1 is the infinite
randomness fixed-point. We considered different values of �. In particular, in Fig. 2.11 (Right) we compare
the results for � = 1 and � = 2 for the XXX model, leaving the other parameter identical to those discussed
in Sec. 2.3.5. From the figure we can appreciate the independence from the disorder distribution.

2.6.2 Fermionic negativity moments

The RSP describes also fermionic systems with random hoppings. However it has been shown was shown
that the entanglement in the fermion variables is better captured by a fermionic negativity, introduced in
Ref. [128] and related to a partial time reversal operation. The associated spectrum has been studied for
disorder-free fermions [136]. Therefore it is interesting to understand this spectrum in random systems and
particularly in the RSP. In this appendix, we recall the definition of the two possible density matrices for
fermionic negativity and determine them in the random singlet phase.

For interacting fermions, the hamiltonian is obtained from the XXZ hamiltonian Eq. (2.17), via a Jordan-
Wigner trasformation

H =
X

j

Jj

⇣
c†

j
cj+1 + c†

j+1cj ��nj +�njnj+1

⌘
, (2.155)
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where cj , c
†

j
are spinless fermionic operators and nj = c†

j
cj the occupation number of the j-th site of the

chain. The non-locality of such transformation points at a modification of the SDRG prescription to take
into account the fermionic nature of the particles. It was shown [202] that this can be implemented through
a simple modification of the RG prescription as

J̃ = �JLJR

⌦
. (2.156)

Eq. (2.156) implies that the hoppings can now be either positive or negative. When they are positive, a
singlet-type bond is established between two sites, of the form | �i / |01i � |10i, written in the occu-
pation number basis of the fermions. If the hopping is negative, the corresponding triplet-type anti-bond
is established | +i / |01i + |10i. A crucial point is that the two types of bonds share many proper-
ties, such as entanglement. In particular, the spectrum of the associated density matrices is the same,
�(⇢+) = �(⇢�), where ⇢± = | ±ih ±|. The same is true for the corresponding (standard) partial trans-
pose, �(⇢T2

+ ) = �(⇢T2
�

). Therefore, for our purpose, the ground state in the RSP can be written as

|GSi =
Y

i

| �ii. (2.157)

In the occupation number basis, the fermionic partial trasponse differs from the standard partial trans-
pose just by a phase ei⇡�, with

�({nj}, {n̄j}) =
⌧1(⌧1 + 1)

2
+
⌧̄1(⌧̄1 + 1)

2
+ ⌧2⌧̄2 + ⌧1⌧2 + ⌧̄1⌧̄2 + (⌧1 + ⌧2)(⌧̄1 + ⌧̄2). (2.158)

Here ⌧s =
P

i2As
ni, ⌧̄ =

P
i2As

n̄i and refer to the ket |{nj}i and bra h{n̄j}| state, respectively. See
Ref. [128] for details. In particular, applying the definition to our building block ⇢�, with the two subsystems
consisting of a single site each, leads to

⇢R2
�

=
1

2

0

BB@

0 0 0 �i
0 1 0 0
0 0 1 0
�i 0 0 0

1

CCA , (2.159)

whose spectrum is given by {i/2, �i/2, 1/2, 1/2}.
We can now apply Eq. (2.159) to the reduced density matrix of the RSP, after tracing B, i.e.,

⇢A =
nA:AO

m=1

⇢2s

nA:BO

n=1

⇢s,

where here ⇢2s = ⇢� and ⇢s = trs⇢� (with the trace being on one of the two sites). We obtain

⇢R2
A

=

8
<

:
Y

k=1,2

nAk:AkO

p=1

⇢2s

9
=

;

nA1:A2O

q=1

⇢R2
2s

8
<

:
Y

k=1,2

nAk:BO

r=1

⇢s

9
=

; . (2.160)

Here we have used the fact that ⇢R2
s = ⇢s for a single site, and that ⇢R2

2s = ⇢2s when both the ends of a bond
are in the same subsystem Ai (i = 1, 2).

There are 4 different non-zero eigenvalues

�k = 2�nA:B�nA1:A2eik⇡/2, k = 0, ±1, 2. (2.161)
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These come with degeneracies dk given by

d±1 = 2nA:B+nA1:A2�2 (2nA1:A2 ) ,

d0 = 2nA:B+nA1:A2�2 (2nA1:A2 + 2) , (2.162)

d2 = 2nA:B+nA1:A2�2 (2nA1:A2 � 2) .

From (2.161) and (2.162) we notice that the moments, MR2
↵ ⌘ tr

⇣
⇢R2

A

⌘
↵

have three different analytic con-
tinuations when restricting to ↵ integer

MR2
↵ = 2(nA:B+nA1:A2 )(1�↵)

8
><

>:

1 ↵ = 2p + 1,

2nA1:A2 ↵ = 4p,

0 ↵ = 4p + 2,

(2.163)

with p integer. This more complicated periodicity has already been observed in the translational invari-
ant setting [136]. As a check, from the odd sequence in (2.163) we recover the proper normalization
tr⇢R2

A
= lim↵!1 MR2

↵ = 1.
This was dubbed untwisted negativity spectrum in Ref. [136], with the important difference with respect

to the standard negativity spectrum of spin and bosonic models, of being complex. On the other hand,
also for fermions one can introduce a hermitian partial transpose, more suitable to define another fermionic
negativity due to its real spectrum. This is done by considering the composite operator ⇢⇥ ⌘ (⇢R2

A
)†⇢R2

A

and by noting that ⇢⇥ = (⇢R̃2
A

)2, where we introduced the twisted partial transpose ⇢R̃2
A

⌘ ⇢R2
A

(�1)F2 of
Ref. [136]. Here (�1)F2 is the fermion number parity in A2, since F2 =

P
j2A2

nj .
For the RSP, the twisted partial transposed reads

⇢R̃2
A

=

8
<

:
Y

k=1,2

nAk:AkO

p=1

⇢2s

9
=

;

nA1:A2O

q=1

⇢R̃2
2s

8
<

:
Y

k=1,2

nAk:BO

r=1

⇢s

9
=

; . (2.164)

It has two non-zero eigenvalues
�̃± = ±2�nA:B�nA1:A2 , (2.165)

with equal degeneracy
d̃± = 2nA:B+2nA1:A2�1. (2.166)

Therefore, the associated moments, M R̃2
↵ ⌘ tr

⇣
⇢R̃2

A

⌘
↵

, are given by

M R̃2
↵ =

(
0 ↵ odd
2(nA:B+nA1:A2 )(1�↵)2nA1:A2 ↵ even.

(2.167)

The negativity is obtained from Eq. (2.167) via replica limit as

E = lim
↵!1/2

log M R̃2
2↵

= nA1:A2 log 2. (2.168)

Actually, in this case, Eq. (2.163) also implies that

E = lim
↵!1/4

log MR2
4↵

= nA1:A2 log 2. (2.169)

Note that, as already shown numerically in Ref. [128], this means that in the case of fermions we recover
the result obtained for the equivalent spin system in Ref. [35].

From Eqs. (2.163) and (2.167), it is clear that the fermionic negativity spectrum is different from the
corresponding one in the spin variables. In fact, there are integer values of ↵ for which they are trivial,
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i.e. are exactly vanishing. Nevertheless, the non-trivial moments have the same functional forms of the
moments (2.58). As such, the same techniques employed in Section 2.3 may be used to obtain SDRG results
for the disordered-average moments associated to twisted and untwisted density matrices. For example,
within the same assumptions of Sec. 2.3, the non-trivial untwisted moments reads

log MR2
↵ =

8
><

>:

p
5 + 23�↵ � 3

2
µ + . . . ↵ = 2p + 1,

p
5 + (1 + q)23�↵ � 3

2
µ + . . . ↵ = 4p,

(2.170)

while the non-trivial twisted ones are

log M R̃2
↵ =

p
5 + (1 + q)23�↵ � 3

2
µ, ↵ even. (2.171)
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2.7 Appendix: Moments of the size of the symmetry block Im

In this appendix we show how to use the Laplace transform techniques to rigorously calculate the leading
behavior of Im(s). First of all we notice that for large n, the sum in Eq. (2.123) can be replaced by an
integral, and we can exploit the closed-form expression for the generating function g(�) of the moments of
n (cf. Eq. (2.39)), which is the Laplace transform of the probability distribution, i.e., g(�) = Ln[P (n)](�).

Thus, to evaluate Eq. (2.123), we first introduce the following Laplace transform

f(�; s) ⌘ Ln

"✓
n

n/2 + s

◆(1�m)
#

. (2.172)

Then, by using the rule for the Laplace transform of a product, Eq. (2.123) can be written, in the scaling
regime of large n, as

Im(s) = lim
T!1

1

2⇡i

Z
a+iT

a�iT

g(�)f(��; s)d�, (2.173)

where a is a real number that guarantees convergence of the integral and g(�) is the generating function of
the moments of the distribution of the number of shared singlets defined in Eq. (2.39).

The Laplace transform of (2.128) with respect to n can be calculated order by order by using that

L�(2n(1�m)n
m
2 n�2k�

1
2 n�) = �

⇣1 + m

2
� 2k + �

⌘
(� + (m � 1) ln 2)2k���

m+1
2 . (2.174)

We now observe that the generating function g(s) is analytic in the complex plane. On the other hand,
Eq. (2.174) shows that if m is even f(��; s) has an algebraic branch point at �⇤ = (m � 1) ln 2. Instead,
for m odd there is a pole at �⇤ when 2k � � � (m + 1)/2 < 0, which is the reason why it becomes just a
derivative, as in the main text.

The integral (2.173) can be performed by considering the contour integration along the path in Fig. 2.12
(we report m even, for m odd it is slightly simpler). The red dashed line is the branch cut starting at the
algebraic branch point singularity at �⇤ = (m � 1) ln 2. Since there are no singularities in the region
enclosed by the contour, the integral is zero, i.e.,

1

2⇡i

Z

C

g(�)f(��; s)d� = Im + I+ + I� + I+,T + I�,T + I✏ = 0. (2.175)

Here Im is the integral (2.173), where we set a = 0, I± are the integrals on the paths C±, C±,T are
contributions of the large semicircle, and I✏ is the contribution of C✏.

We are interested in the limit T ! 1 (T is the radius of the semicircle). It is straightforward to show
that in this limit the contribution of I+,T + I�,T vanishes. We should also observe that for odd m the two
terms I± cancel out because the singularity at �⇤ is a pole. Here, not to loose generality, we consider the
case of m even, while odd can be deduced as a special case.

From Eqs. (2.173) and (2.174), the integrals in (2.175) are of the form

IC0 =
1

2⇡i

Z

C0

g(u � �⇤)

(�u)!
du, (2.176)

where C0 denotes the different paths forming the contour in Fig. 2.12, and we defined

u ⌘ � � �⇤, (2.177)
! ⌘ (m + 1)/2 � 2k + �. (2.178)
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FIGURE 2.12: Contour C to evaluate the integral in Eq. (2.173). The integral on Cm is (2.173). For
even values of the Rényi index m there is a branch cut starting at �⇤ = (m � 1) ln(2). For odd m
the contributions of C± cancel out and one has a pole at �⇤. The contributions of the semicircle C±,T

vanishes.

Here we are interested in the limit ` ! 1, which implies µ ! 1 (cf. (2.42)). In this limit we can simplify
the expression for the generating function g(�) as

g(�) ' 1

2
e�

1
2 (3�

p
5+4e��)µ

h
1 +

3p
5 + 4e��

i
. (2.179)

The integral (2.176) is difficult to compute in general. However, in the limit µ ! 1 on can use the saddle
point method. Let us start discussing the contribution of the path C+:

IC+ = � 1

2⇡i

Z
T

0

✏

e�
1
2 (3�

p
5+23�me�u)µ

2(�u)!

h
1 +

3p
5 + 23�me�u

i
du, (2.180)

where T 0 = T � �⇤. A standard saddle point analysis of this integrals in the large µ limit gives the leading
contribution as

I(0)
C+ =

e�
1
2 (3��m)µ

4⇡i(�1)!

⇣
1 +

3

�m

⌘⇣21�mµ

�m

⌘
!�1

�
⇣
1 � !,

21�mu

�m

⌘����
µT

0

µ✏

, (2.181)

where � is the incomplete Gamma function and we introduced

�m =
p

5 + 23�m. (2.182)

Saddle point corrections to Eq. (2.181) are O(1/
p

µ). First, we should observe that the contribution at
T 0 ! 1 in Eq. (2.181) vanishes. However, the contribution of µ✏ diverges in the limit ✏ ! 0. We anticipate
that this divergence is regularised by the contribution of C✏ (see Fig. 2.12). Precisely, one has

�(!, x) ⇡ �(!) � x!

!
+

x!+1

1 + !
, for x ! 0. (2.183)
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Note that the number of singular terms depends on !. The first correction to the saddle point result can be
easily derived, yielding

I(1)
C+ =

e�
1
2 (3��m)µ2m

2⇡i(�1)!µ2

n 2m�13�m

(8 + 2m5)
�
⇣
2 � !,

21�mu

�m

⌘
+

(2m5 + 4) (3 2m�m + 2m5 + 8)

24(8 + 2m5)
�
⇣
3 � !,

21�mu

�m

⌘⌘ o���
µT

0

µ✏

⇥
✓

21�mµ

�m

◆!

+ O(µ!�3). (2.184)

We now observe that in both (2.181) and (2.184) in the limit T 0 ! 1, we have �(!, T 0) ! 0. For ✏ ! 0
similar divergences as for (2.181) arise, which are removed by the integral on C✏.

Before discussing the integral on C✏, we focus on IC� (see (2.176)). The calculation is similar, the only
difference is the phase factor due to the presence of the branch cut. Precisely, one has

IC� = �IC+e�2⇡!i. (2.185)

From that (2.177), for even m one obtains that IC+ = IC� (whereas for odd m the two integrals cancel out).
Finally, we briefly discuss the integral on the inner circle C✏ around the branch cut. One has u = ✏ei✓.

Therefore the integral to evaluate is

IC✏ =
✏1�!

4⇡(�1)!

Z 2⇡

0
d✓

e�
1
2 (3�

p
5+23�me�✏ei✓ )µ

ei(!�1)✓

h
1 +

3p
5 + 23�me�✏ei✓

i
. (2.186)

Since we are interested in the limit ✏ ! 0, we can expand the integrand. After performing the integral over
✓, we obtain that at the leading order in ✏ one has

IC✏ =
✏1�!e�2i⇡!

2⇡(! � 1)

⇣
1 +

3

�m

⌘
e�

1
2 (3��m)µ sin(⇡!). (2.187)

At the leading order the contribution of (2.187) cancels the most divergent term in I(0)
C+ + I(0)

C� (see (2.181)).
We checked that higher order terms cancel higher order divergences in (2.181) and (2.184).

It is now straightforward to derive the result for the integral Im in (2.173). We focus on the leading order
in µ. At the leading order ! = (m + 1)/2, from (2.181), (2.185), and the expression for Q0 (cf. (2.126))
one obtains that

Im =
1

2
e�

1
2 (3��m)µ

⇣
1 +

3

�m

⌘⇣ 2

⇡

⌘ 1�m
2
⇣21�mµ

�m

⌘m�1
2

. (2.188)

Here we also used that the factor �((m + 1)/2) in (2.174) cancels out with the �((1 � m)/2) obtained
from (2.181) in the limit ✏ ! 0 (see (4.19)) using Euler’s reflection formula

�(x)�(1 � x) =
⇡

sin(⇡x)
, x /2 Z. (2.189)

Finally, we stress that the result (2.188) coincides, at least to leading order, with the result in the main
text (2.130) obtained by taking the derivative of g(�) for odd m.
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Chapter 3

Data Structure of Many-Body Systems

This chapter is based on the following pubblications:

[1] Tiago Mendes-Santos⇤, Xhek Turkeshi⇤, Marcello Dalmonte, and Alex Rodriguez,
Unsupervised learning universal critical behavior via the intrinsic dimension,
Phys. Rev. X 11, 011040 (2021).

3.1 Introduction

The growing field of machine learning (ML) is rapidly expanding our capabilities of analyzing and de-
scribing high-dimensional data sets [2–5]. With the increasing understanding of these methods, the com-
munity is becoming convinced that their outstanding performance is mostly due to the fact that this high-
dimensionality is applicable only to the embedding space, while the data sets lay in a manifold that can be
twisted and topologically complex but whose intrinsic dimension, Id, is typically much smaller than the
large number of coordinates of the system [6, 7](see graphics in Fig. 3.1 (A)). The determination of this Id

is an active field of research [6, 8, 9] in unsupervised learning (UL), i.e., the branch of machine learning that
aims to uncover the internal structure of a data set without the need of any label.

Recently, ML ideas have encountered fruitful applications in the context of statistical physics [10–12].
Such applications have ranged from the determination of physical properties [13–21], to the formulation
of novel classes of variational ansätze [22–25]. These progress leveraged on analyzing and exploiting the
results of dimensional reduction, and using a variety of tools to analyze (or employ) the final representation
(or truncation) obtained in this way. In various contexts, results obtained via these methods have remarkably
shown to be already competitive with more traditional approaches [10].

Here, we pursue an alternative approach: our main purpose is to show that, from a ML perspective,
physically relevant and universal information can be gathered by analyzing the very same embedding pro-
cedure that carries out the dimensional reduction, rather than focusing on its final result. In particular, we
show how the intrinsic dimension correspondent to the partition function of statistical mechanics models
displays universal scaling behavior in the vicinity of phase transitions, and it behaves as an order parameter
for a corresponding structural transition in data space. Differently from previous works [13, 26–32], our
approach is thus focused on data mining the data set as a whole, and thus, does not leverage on any kind of
projection. At the technical level, this is achieved by employing a cutting-edge nearest-neighbor estimator
of the Id, which is suitably designed to deal with non-linear data sets, i.e. data sets lying on non-linear
manifolds [9].

In order to access the complex data structure at phase boundaries, we study numerically instances of first-
order, second-order (conformal), and Berezinskii-Kosterlitz-Thouless (BKT) transitions in two-dimensional
(2D) classical spin systems. In all cases, Id displays a universal scaling behavior correspondent with the
transition properties of the underlying lattice model. (i) For first-order transitions, Id peaks at the critical
point due to the coexistence of different orders, and the finite-size corrections of the transition temperature
are dictated by trivial scaling exponents. (ii) For both second-order and topological transitions, we observe
universal scaling collapse, with transition temperature and critical exponents determined to the percent level.
(iii) Most importantly, we provide compelling evidence that the Id is an ideal tool to underpin topological
transitions in an unsupervised fashion: as an example, we extract the critical temperature of the 2D XY
model with 1% confidence even at modest system sizes.
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FIGURE 3.1: Panel (A): Schematics of the intrinsic dimension, Id. The important content of a data set
typically lays in a manifold whose Id is much lower than the number of coordinates. In the example,
despite the synthetic data set (Klein’s bottle-shaped) is embedded in a three-dimensional space, it can
be effectively described by a twisted manifold whose Id = 2. The key ingredients to compute the Id

are the first- and the second-nearest neighbor distances, r1 and r2, of each point of the data set. The
computation of the Id is based on the fitting of the empirical cumulative distribution function (CDF)
of the ratio µ = r2/r1, P (µ) [see text and Eq. (3.2)]. Panels (B): Low- and high-temperature data
sets of a 3-site model in configuration space. The points represent the 3-site XY model configurations:
~✓ = (✓1, ✓2, ✓3). The high- and zero-temperature cases show simple data structures: for T = 100, Id is
equal to the number of spins, while for T = 0, Id = 1. Panel(C): Intrinsic dimension in the vicinity of
a phase transition. The Id in the intermediate temperature regime, representative of phase transitions
in larger systems, is considerably more complex. The temperature dependence of Id can be used to
signalize and characterize critical points. As an example, we show the universal data collapse of the Id

at the Berezinskii-Kosterlitz-Thouless described by the 2D XY model.

We then develop a theoretical framework in support of the fact that Id has characteristic features at
transition points, that are governed by scaling theory. First, we show how several instances of the data set,
in particular, the distribution of distances between sampled configurations, are already revealing striking
features about critical behavior for all classes of phase transitions. The basic idea there is that the data
space naturally clusters configurations characterized by similar physical properties (e.g., magnetization and
winding number). The fact that the intrinsic dimension has strong features at phase transition then follows
from its ’local’ nature (related to changes of scale in configuration space, in a sense that we specify below).
Then, we discuss how, for the type of data sets we are interested in, the intrinsic dimension can be connected
directly to a set of arbitrary-many-body correlation functions, that, following the finite-size scaling hypoth-
esis, justifies its scaling behavior in the vicinity of transition points. We then check a posteriori the validity
of some of the assumptions at the basis of this framework.

Before diving into the main part of this Chapter, we provide a simplified picture that qualitatively cap-
tures how the intrinsic dimension is connected to the physical information obtained by sampling a partition
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function via Monte Carlo methods. The basic intuition behind the Id of data sets generated in the low- and
high-temperature regimes of a simple 3-site XY model is drawn in Fig. 3.1 (B). At low temperature (left
graphics of Fig. 3.1 (B)), most of the spin configurations sampled during the Markov chain correspond to
fully ferromagnetic spin arrangements (see cartoon). In the limiting case T = 0, the ground states are given
by XY ferromagnetic configurations, i.e., ✓1 = ✓2 = ✓3, and the data set is described by a manifold that
lays in a line (Id = 1). Oppositely, in the high temperatures regime, the data set is described by a manifold
whose Id = 3: each new Monte Carlo configuration corresponds to an arbitrary arrangement of the three
spins, so that the structure of the data set is that of a homogeneously occupied three-dimensional space. This
simple example demonstrate how transitions in parameter space are accompanied by structural transitions
in data space. Due to its collective origin, the transition region requires the computation of Id in very high
dimensional data space: in Fig. 3.1 (C), we show a sample of our results, illustrating the scaling collapse of
the intrinsic dimension correspondent of the 2D XY model in the vicinity of its BKT transition point.
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3.2 Intrinsic Dimension

Before addressing the analysis of concrete statistical mechanics models, we present here a self-contained
discussion on the intrinsic dimension and its state-of-the-art estimators. This section is propaedeutic to the
critical identification of the best estimator to be used in our applications below.

The Id is a concept that arises from the observation that, in natural data sets, the correlations between
the input variables induce a structure, modifying the dimensionality of the manifold in which the data lie.
In order to visualize this, one can imagine a data set with the Cartesian coordinates of points extracted from
a circle. Although the input coordinates are two, they are strongly correlated and the manifold in which
the points lie has a Id = 1. Therefore, in simple cases like this, or the one shown in Fig. 3.1B, it roughly
corresponds with the minimum number of variables needed to describe a data set [8, 9].

Information about the Id is important to determine if dimensional reduction of high-dimensional data
sets incurs information loss or not. Moreover, it can be used as an UL approach to characterize a system. Just
to mention a few examples: in biological physics, the Id can be used to determine the number of independent
directions a protein can have during a sequence evolution [33], in image analysis, to distinguish between
different kind of image structures [34], in astrophysics, to estimate the amount of information available in
spectropolarimetric data [35], in theoretical machine learning, to understand the properties of deep neural
networks [36], and in ecology, to characterize the minimum number of independent axes of variation that
adequately describes the functional variation among plants [37].

Different approaches have been developed to estimate the Id, see Ref. [8] for review. For example, di-
mensional reduction techniques, such as principal component analysis (PCA) [38], Multidimensional Scal-
ing [39], Isomap [40], Locally Linear Embedding [41], Autoencoders [42], t-distributed stochastic neighbor
embedding (t-SNE) [43] or Uniform Manifold Approximation and Projection (UMAP) [44] to mention some
of them, search for a lower dimensional space to project the data set by minimizing a projection error. The
dimension of the identified subspace is viewed as an estimation of Id. However, identifying this dimension
is far from trivial. For instance, in the PCA case, one should take into consideration the spectrum of the
eigenvalues of the covariance matrix and look either for a gap or decide ad hoc a cut-off parameter. It is
worth saying that, for PCA, this strategy will not work if the manifold of lower dimensionality is curved.
Furthermore some of the above mentioned methods, like t-SNE, are focused on visualization and assume
that the dimension of the projection space is lower than the Id. Therefore, these projection algorithms aim
to alleviate the problems that this dimension mismatch cause in the visualization, not being well suited for
Id detection.

A closely related quantity is the fractal dimension [45], whose estimation relies on the scaling of the
number of neighbors with the distance from a given point. This approach is largely employed in the study
of percolation transitions [46], but it suffers from serious limitations when the density distribution of points
is not uniform.

These limitations lead to the development of nearest neighbors methods, in which it is assumed that
nearest-neighborhood points can be considered as uniformly drawn from small enough Id-dimensional hy-
perspheres (not all the data set) [6, 8]. Indeed, the avoidance of any projection step and the smoothing on the
condition of data uniformity (from the full data set to a small neighborhood around each point) are key fea-
tures for obtaining good results in highly non-uniform, non-linear data sets even at really high dimensions
(a regime at which all the purely geometrical methods present a bias due to the curse of dimensionality).

The TWO-NN method employed in this Chapter belongs to this type of methods, with the particularity
that by focusing only on the first two nearest neighbors (see Fig. 3.1 A), the size of the Id-dimensional
hyperspheres at which the density is assumed constant is reduced to its minimum expression. The method
is rooted in computing the distribution functions of neighborhood distances, which are function of Id. More
specifically, for each point ~x in the data set, we consider its first and second nearest-neighbors distances
r1(~x) and r2(~x), respectively. Under the condition that the data set is locally uniform in the range of second
nearest-neighbors, it has been shown in Ref. [9] that the the distribution function of µ = r2(~x)/r1(~x) is

f(µ) = Idµ
�Id�1. (3.1)
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Or, in terms of the cumulative distribution, P (µ),

Id = � ln [1 � P (µ)]

ln (µ)
, (3.2)

which can be used to obtain Id by fitting S = {(ln(µ), � ln [1 � P emp(µ)]} with a straight line passing
through the origin. The function P emp defines the empirical cumulate and is computed by sorting the values
of µ in a ascending order, see Appendix 3.7.1 for more details. In Fig. 3.1 A, the steps for computing the
Id in a highly non-linear manifold with complex topology (in this case, a Klein’s bottle-shaped data set) are
summarized: a) Compute the distance from the first and second neighbors b) Compute for each point µ and
its empirical cumulate and c) fit S to a straight line.

We stress that this method is not free of drawbacks. As mentioned above, being a purely geometrical
method, it is affected by the curse of dimensionality, since the number of points needed to have an accurate
measure of the Id grows exponentially with the Id. Moreover, Equation (3.2) was derived assuming a
continuous real support. Therefore, applying it to data sets with a different support implies some degree
of approximation that can fail in some limiting cases. For instance, this shall happen when two or more
configurations have the same coordinates. However, as we detail below, these drawbacks do not affect the
results obtained in this Chapter: in particular, these limitations do not kick in when investigating transitions,
even when configuration spaces are composed of discrete variables such as Ising spins. These limitations
only affect data sets corresponding to either very small system sizes, or phases at extremely low temperatures
where, during the MC sampling, configurations may be repeated as the accessible configuration space is very
limited.
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3.3 Models

Our approach focuses on the high-dimensional data sets associated with the equilibrium configuration states
of a partition function. Such states are sampled with Markov Chain Monte Carlo simulations from the
thermal weight ⇢(E) ⇠ e�E(~x)/T , where E(~x) is the energy of an independent configuration ~x and T is
the temperature. We employ Wolff’s cluster algorithm [47, 48], and for each data set, we consider Nr

configurations.
We consider partition-function data sets of several models in the vicinity of various types of phase

transitions [49, 50]. The first example is the well known Ising model in two-dimensions

E(~s) = �
X

hi,ji

sisj , (3.3)

where the spin degrees of freedom are si = ±1, and hi, ji are the nearest neighboring bonds of a square
lattice, with Ns = L ⇥ L spins and periodic boundary condition. The Ising configuration states are defined
as

~s = (s1, s2, ..., sNs). (3.4)

This model describes a second-order phase transition characterized by the breaking of a Z2 symmetry at
the critical temperature Tc = 2/ ln(1 +

p
2). In the vicinity of Tc, the spin correlation length diverge as

⇠ ⇠ (T � Tc)�⌫ , where the critical exponent is ⌫ = 1.
We also consider the first- and second-order phase transitions described by the q-states Potts model

(qPM)

E(~�) = �
X

hi,ji

��i,�j , (3.5)

where the spin �i = 0, 1, 2, ..., q � 1, and ��i,�j is the delta function. In particular, the q = 2 Potts model
can be mapped into the Ising model. The Potts configuration states are defined by

~� = (�1,�2, ...,�Ns). (3.6)

The qPM is characterized by a discrete Zq symmetry that is broken at the critical temperature Tc = 1/ ln(1+p
q). Importantly, this class of models displays a second-order phase transition for q  4, and a first-order

one for q > 4. We examine both these regime: the second-order transition described by the q = 3 PM
(with correlation length critical exponent ⌫ = 4/5), and the first-order transition described by the q = 8
PM [51, 52].

Finally, as a representative of the BKT universality class, we investigate the two-dimensional XY
model[53, 54]

E(~✓) = �
X

hi,ji

~Si · ~Sj , (3.7)

where ~Si = (cos(✓i), sin(✓i)), cos(✓i) and sin(✓i) being the projection of the spin at site i in the x and y
directions, respectively, and ✓i 2 [0, 2⇡[. The XY configurations are defined as

~✓ = [cos(✓1), sin(✓1), ..., cos(✓Ns), sin(✓Ns)]. (3.8)

This model is characterized by a continuous U(1) symmetry and describes a phase transition between a
high-temperature phase with exponentially decaying spin correlations, and a low-temperature quasi-ordered
phase characterized by power-law decaying correlations. The BKT critical temperature, TBKT , is not known
exactly; state-of-the-art estimations based on the analysis of the spin stiffness of lattices of order O(106)
spins give TBKT = 0.8935(1) [55].
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The detection of the BKT critical point is hindered by the fact that it cannot be characterized by conven-
tional local order parameters, as in the examples discussed previously, and due to the exponential growth of
the correlation length near TBKT . Hence, the BKT transition represents a key challenging test for any UL
method.

3.3.1 How to characterize partition functions as data sets

Before proceeding to the discussion of the results, we point out some important aspects of the Ising, Potts
and XY data sets (see Eqs. (3.4), (3.6) and (3.8), respectively.). First, a crucial step to obtain the Id (cfr.
Eq. (3.2)) is to consider a proper metric; the distance r(~xi, ~xj) between two configuration states ~xi and ~xj

must be non-negative, equal to zero only for identical configurations, symmetric, and satisfy the triangular
inequality.

For the XY data sets the distance is defined as the the Euclidean distance:

r(~✓i, ~✓j) =

vuut2
NsX

k=1

⇣
1 � ~Si

k
· ~Sj

k

⌘
. (3.9)

This distance properly takes into account the periodicity of the configuration states in the interval ✓i 2
[0, 2⇡[.

For both Ising and Potts configuration states, we consider the Hamming distance, i.e., r(~si, ~sj) (or
r(~�i, ~�j)) is given by the number of positions in the state vectors (~si and ~sj) for which the corresponding
coordinates are different. The choice of the Hamming distance is motivated by the fact that the energy
difference between two spins in the model of interest is given by a delta function.

As mentioned in the previous section, the two-NN method fails when two or more sampled configura-
tions of the data set have identical coordinates. This issue typically occurs in the discrete-variables Ising
and Potts data sets, when the total number of independent configuration states, Nc, is smaller or of the same
order of the number of configurations used in the data set, Nr. For instance, for both Ising and Potts data
sets, identical ferromagnetic configurations are sampled in most of the Monte Carlo steps when T ⌧ Tc.
However, in the regime that we focus here (i.e., T close to Tc and L > 10), as Nc � Nr, this issue is
irrelevant (we have explicitly checked this in our data sets).

Finally, we mention that data sets generated by the XY configuration states lie typically in nonlinear
manifolds, which can be noted by the fact that linear dimension reduction methods, such as PCA, fails to
describe XY data sets, see Ref. [30]. In fact, even for the simple data set shown in Fig.3.1 (B), linear
PCA fails in estimating the true Id of the system when the proper distance between the configurations are
taken into account, see the Appendix 3.7.1. This feature of the XY data sets reveals the necessity of using
state-of-the-art Id-estimators (such as the two-NN method considered here) that properly takes into account
nonlinearities.
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FIGURE 3.2: Second-order phase transition. Panels (a-c): Ising model. Panels (d-f): q = 3 Potts
model. Panels (a,d): Id as a function of T for the Ising model. Errorbars are standard deviation
associated to a distributions of n realizations of Id (we typically consider n � 5). Panel (b,e): data
collapse of Id based on the FSS discussed in main text. The best data collapse of the results give
Tc = 2.283(2), ⌫ = 1.02(2) and ⇣ = 0.410(5) for the case of the Ising model, and Tc = 0.996(2),
⌫ = 0.805(5), and ⇣ = 0.420(2) for the case of the Potts model. Panels (c,f): finite size (FSS)
scaling of the minimum temperature T ⇤ (see text); the horizontal line is the exact result for Tc. The
extrapolation returns Tc = 2.2784(2) and Tc = 0.9970(3) for the Ising and Potts cases, respectively.

3.4 Results

3.4.1 Second-order phase transitions

We start our discussion considering second-order phase transitions (2PTs) described by the Ising and the
3-states Potts (3PM) models, see Fig. 3.2. We consider data sets formed by Nr = 5 ⇥ 104 configuration
states. Overall, far from the transition, Id is an increasing function of T . For low-T , the computation of
Id is affected by the discreteness of the Potts (Ising) configurations; which reflects on the larger error bars.
However, this issue is mitigated close to the critical point, Tc. Remarkably, Id exhibits a non-monotonic
behavior in the vicinity of the critical point (see Figs. 3.2 (a1) and (b1)) which can be used to locate and
characterize the transition point itself.

As conventionally done in the analyses of physical observables, e.g., magnetic susceptibility and heat
capacity, we now consider a finite-size scaling (FSS) theory for Id. First, based on the FSS hypothesis
and postulating that Id behaves as an order parameter for the transition, one has Id = L⇣f(⇠/L), where
the correlation length diverges as ⇠ ⇠ (T � Tc)�⌫ , ⌫ is a critical exponent, and ⇣ is a scaling exponent
associated with the divergence of Id at Tc. Figs. 3.2 (a2) and (b2) show the universal data collapse for Ising
and 3PM, respectively. The values obtained for Tc and ⌫ have a discrepancy with exact results of less than
0.5% and 4%, respectively. For Ising we obtain: Tc = 2.283(2), ⌫ = 1.02(2), and ⇣ = 0.410(5) , while for
3PM: Tc = 0.996(2), ⌫ = 0.805(5), and ⇣ = 0.420(2). See the Appendix 3.7.3, for the discussion about
the details of the data-collapse procedure.

Further, we consider the size scaling of the shift of the local minimum of Id(T ) (i.e., the temperature
T ⇤(L)),

T ⇤(L) � Tc ⇠ 1

L1/⌫
. (3.10)
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FIGURE 3.3: Berezinskii-Kosterlitz-Thouless transition. Panel (a) shows the temperature dependence
of Id for different values of L. The dashed line indicates the value of the BKT critical temperature
obtained in Ref. [55] using conventional methods, TBKT = 0.8935(1). For each point, we harvested
approximated 10 instances of the data set and average the resulting estimates for the Id. The error bars
are the standard deviation of such set of results. The scaling collapse obtained with these data sets
is depicted in Fig. 3.1 (c). Panel (b) shows the finite-size scaling of T ⇤ based on Eq. (3.11). Fitting
the results for L = 80, 90, 100 and 110, we obtain TBKT = 0.909 ± 0.015. In the text, we discuss
how we obtain the local minimum of Id, T ⇤. We compute the Id of manifolds with Nr = 5 ⇥ 104

configurations.

We note that T ⇤(L) is reminiscent of the universal scaling behavior of singular features of physical observ-
ables close to Tc (e.g., the peak of the magnetic susceptibility) [56]. In order to compute Tc, we employ
the following procedure: (i) we obtain T ⇤(L) by fitting the results in an interval close to T ⇤(L) with a
cubic function; the fitting is performed with a jackknife procedure, which allows establishing an error bar
for T ⇤(L). We then (ii) consider the aforementioned FSS to compute Tc; the fitting is performed con-
sidering different sets of points. This method provides a coherent error propagation for Tc. We obtain,
Tc = 2.2784(2) for the Ising model and 0.9970(3) for the 3 state Potts model. Their discrepancies with the
exact values are respectively of order 0.4% and 0.2%.

The results of this analysis confirm the validity of our original assumption, that is, that the intrinsic
dimension is a valid order parameter describing the transition in data space as a structural transition. We
remark that this is validated at two steps - firstly, via the quality of the scaling collapse, and secondly, by the
scaling of the transition temperature obtained by analysis a single feature of the Id dependence with respect
to the temperature. Those represent two fundamental tests that any valid order parameter shall satisfy at
transition points.

3.4.2 Berezinskii-Kosterlitz-Thouless (BKT) phase transition

Unsupervised learning of phase transitions associated with the break of a symmetry, as discussed in the
previous section, can also be performed with other unsupervised methods, such as PCA [13, 28, 57] and
variational autoencoder (VAE) [26]. For example, the critical temperature of the Ising model can be obtained
with an accuracy similar to the ones obtained here. Furthermore, the latent parameters of the VAE can
be used to learn the local order parameter associated to both discrete and continuous symmetry-breaking
transitions [26]. Those methods are based on a dimension reduction, and thus, differ on a fundamental way
from our unsupervised approach, which is based solely on the analysis of the Id. As we discuss in this
section, our approach can be extended to transitions that are characterized by non-local order parameters,
such as the topological BKT phase transition, that are treated on the same footing of second order transitions.

The difficulties in learning the BKT transition from raw XY configurations occur in both supervised [58]
and unsupervised [28] ML approaches. Recent progress based on diffusion maps [30, 59] or topological data
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analysis[60] have been made to solve this problem, typically considering problem-specific insights (such as
the structure of topological excitations). These approaches have shown how considerable qualitative insight
can be gathered on the nature of the BKT transition. However, it is presently unclear if the raw data structure
corresponding to topological transitions can exhibit universal features, and if so, if unsupervised approaches
can be used to detect the critical temperature with an accuracy that is comparable with conventional methods
(that typically rely on the a priori knowledge of the order parameter).

In Fig. 3.3 (a), we show the temperature dependence of Id in the transition region. The intrinsic di-
mension clearly distinguishes the low-T regime, characterized by bound vortex-antivortex pairs, from the
unbinding high-T regime. In the vicinity of the BKT critical point, TBKT , the behavior of Id resembles the
one observed for the second-order phase transitions, i.e., Id exhibits a local minimum at T ⇤(L) (observed
for L > 30), which is a signature of the BKT transition. Note that the minimum is clearly visible already
for lattices of order L = 50; at these sizes, the spin stiffness is instead featuring a very smooth behavior, as
considerably larger systems are required to appreciate a qualitative jump in the latter.

We consider the conventional FSS for BKT transition, Id(T, L) = L⇣f(⇠(T )/L), where the singular
value of the correlation length diverge exponentially, i.e., ⇠ ⇠ exp

�
a/

p
T � Tc

�
. In Fig. (3.1) (C), we show

the universal data collapse for different values of L, where a, TBKT and ⇣ are treated as free-parameters in
the collapse procedure; see the Appendix 3.7.3. The value obtained, TBKT = 0.92(1), is in good agreement
with estimations of TBKT obtained on Ref. [56].

A more accurate estimation of TBKT is based on the finite-size scaling of T ⇤(L). This approach relies
on the computation of T ⇤(L), which is performed with the same procedure described in the previous section,
and the finite size scaling ansatz [56]:

T ⇤(L) � TBKT ⇠ 1

ln2 L
. (3.11)

As discussed before this procedure allows us to establish an error bar for the calculated TBKT . We obtain
TBKT = 0.909 ± 0.015, that is compatible within error bars with Ref. [55] where simulations with up
to O(106) spins were carried out. For comparison, the best alternative method [30] utilizing unsupervised
learning techniques reported relative errors of the order of 5%.

Conventionally, TBKT is obtained with the aid of the so-called Nelson-Kosterlitz universal jump of the
spin wave stiffness [61], which allows to determine the finite-site critical temperature, T ⇤

BKT
(L). The FSS

[Eq. (3.11)] is then used to determine BKT critical point at the thermodynamic limit. Remarkably, here we
observe that the intrinsic dimension of raw XY data sets exhibit a clear signature of the finite-site TBKT ,
even for moderate system sizes we have considered.
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FIGURE 3.4: First-order phase transition. Panel (a) shows Id as function of T for the 8-states Potts
model. Panel (b) shows the finite size (FSS) scaling of T ⇤, where d = 2 (see text).
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3.4.3 First-order phase transitions

Finally, we consider an example of first-order phase transition (1PT): the 8-state Potts model (8PM). As
is typical of 1PT the system exhibit a finite-size correlation length at Tc, ⇠8 = 23.9 [62]. For L > ⇠8,
the transition can be described by trivial and generic critical exponents, e.g., ⌫ = 1/d, d being the system
dimension [52, 63, 64]. Furthermore, the finite-size shift of the critical temperature, Tc(L), conventionally
detected, for example, by the maximum value of the magnetic susceptibility, scales as Tc(L) � Tc ⇠ 1/Ld.

Fig. 3.4 shows that Id also exhibit a clear signature of the 1PT, featured by a peak at Tc for L � ⇠8. For
L ⇡ ⇠8, the temperature dependence of Id resembles the one observed for 2PTs in Fig. 3.2; i.e., Id exhibit a
local minimum at a temperature T ⇤. Interesting, the FSS of T ⇤ is in agreement with first-order transitions,
see Fig. 3.4 (b) [63, 64]; the discrepancy of the calculated Tc = 0.7448(1) with the exact value is less the
0.05%
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3.5 Discussion

Our results so far support the fact that, in the vicinity of a phase transition, the intrinsic dimension displays
universal behavior at both first, second-order and BKT transition, and works as a order parameter signalling
a transition between different data structures in configuration space. Within this framework, the position of
the transition is always identified with the scaling of the minimum of the intrinsic dimension.

In continuous phase transitions, collective behavior is captured by only a handful of parameters. This
suggests that the amount of information required to describe the system is parametrically simpler at the
critical point when compared to its vicinity, as the latter region requires additional information on the op-
erators required to perturb away from criticality. This emergent simplicity may have several consequences
at the data structure level. The most direct consequence is that one expects a simplified data structure to be
described by a minimum of the intrinsic dimension at the transition point. This is exactly what we have ob-
served at both second-order and BKT transitions. We note that this expectation is not related to the number
of states sampled by the partition function (this number is, in our case, fixed by Nr are configurations are
never repeated). The discussion of how our results change with Nr is reported in Appendix 3.7.2.

For first-order transitions, the above reasoning is not applicable as it relies on universal behavior, and
thus the existence of a continuum limit. In these cases, one expects that the data space in the vicinity the
transition point shall feature two separate regions, each of them composed of states representing the two
phases meeting at Tc. Exactly at the transition point, one expects an abrupt change in the data structure:
indeed, the MC sampling will access a large number of configurations corresponding to both phases (in
analogy to metastability), and thus display a sharp increase (see Fig. 3.4 (a)). Approaching the transition
point from the disordered phase will feature instead of a minimum, that scales to the transition point.

The arguments above serve as a qualitative guideline behind the basic picture we put forward: the
simplified field theory description applicable at transition points reflects directly into the data structure of
the problem. We now provide a data-driven discussion in support of this picture, that specifically emphasize
the connection between the data set and correlations in the system via the (generic) definition of distance we
employ. For the sake of concreteness, we first elaborate on the presence of distinctive features in the vicinity
of Tc, and then connect to universal scaling.

3.5.1 Why the Id exhibits a singular behavior in the vicinity of Tc?

FIGURE 3.5: Scale dependence of ID. The data set shown presents an Id = 1 or Id = 2 depending on
the scale that is considered.

The Id is a scale dependent quantity [8]. This can be intuitively understood by looking at example
depicted in Fig. 3.5, where an approximately one dimensional object appears as two dimensional when
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looking at a different scale by zooming. The scale of the data set, as estimated with two-NN, is fixed by Nr

for a given T , since it fixes the actual meaning of first and second nearest neighbors [9]; here we always
consider Nr = 5 ⇥ 104. In the following, we will show how changes in the scale of the data (configuration)
space appear when there is a phase transition, leading to the emergence of features in the Id.
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FIGURE 3.6: Statistics of first nearest-neighbor distances, r1. In panels (a1) and (b1) we show the
Kernel density estimation of the probability density function of r1 for the Ising and XY data sets,
respectively. All the results have L = 80. Panels (b1) and (b2) show the temperature dependence of
the variance associated to the distribution functions show in (a) for different system sizes. Results for
the second nearest-neighbor distances, r2, are qualitatively the same.

A first test is to check that these changes in the scale effectively occur. To this end, we analyze the
statistics of r1 and r2. For example, the distribution function of the first-neighbor distances, f(r1), changes
for both Ising and BKT critical points, see Figs. 3.6 (a1) and (b1). The position of the peak of f(r1) sharply
decreases as one crosses the transition, and the variance associated to f(r1), �r1, has a peak close to the
transition, see Fig. 3.6 (a2) and (b2). Interestingly, our results indicate that the quantity �r1 also exhibit
universal scaling behavior at Ising and BKT critical points. Moreover, the results for both Ising and XY data
sets are qualitatively the same, highlighting that data-wise, symmetry-breaking and topological transitions
are treated on the same footing. However, it is important to stress that, contrary to what happens in the
case of Id, the peak in �r1 is not expected to present features when the data sets are not homogeneous
in density, since the relevant distances will be also affected due to these inhomogeneities (see ref. 9 for
a further discussion on why two-NN is only mildly affected by this problem). In this sense, the intrinsic
dimension, being solely sensitive to changes of scale and not local density features, provides a considerably
more reliable probe for phase transitions.

In order to understand the underlying cause to this change of scale, we first focus on discrete symmetry-
breaking transitions. In those cases, PCA provides an understanding of the data structure emerging at
critical points [13, 28]. For instance, the Ising data set features clusters characterized by configurations
with positive, +M , and negative, �M , total magnetization for T < Tc. In contrast, a single cluster is
formed for T > Tc, see Figs. 3.7 (a1) and (a2). This clustering structure allow us to understand the
connectivity between neighboring configurations in the Ising data set. For T > Tc, the magnetization of
neighbors is completely random. In contrast, configurations connect to first and second neighbors with the
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FIGURE 3.7: Id obtained with PCA. Panel (a1) and (a2) show the projection of the Ising data set in
the two leading principal components for T/Tc ⇡ 0.94 and T/Tc ⇡ 1.10, respectively. Configurations
with total magnetization M > 0 are represented by the blue points, while ones with M  0 by the
red points. Panel (b) shows the PCA estimation of the Id considering the full Ising data set (global Id)
and the data set generated by configurations with total magnetization M > 0 (“local” Id). For all the
results, L = 60.

same magnetization sign for T < Tc; see Fig. 3.8 (a). Equivalent reasoning based on PCA is applicable to
the Potts data sets.

To illustrate how the locality (and the the connectivity between neighboring configurations) affects the
behavior of the Id, we consider two estimates of the Id provided by PCA. In the first case, we employ all the
configurations of the Ising data set, Id,PCA (global) while, in the second, we consider just configurations
with M > 0, Id,PCA (local); see the Appendix 3.7.1 for more details. The latter quantity provides a local
estimate (within the range scale of a single cluster) for T < Tc, which is analogous to the local measure of
the Id provided by the TWO-NN method. As shown in Fig. 7 (b), the global Id,PCA sharply goes to 1 below
Tc, while the local Id,PCA exhibits the same non-monotonic behavior close to Tc observed in Fig. 3.2. This
result highlights that the locality of the Id is the crucial element to understand its non-monotonic behavior
close to Tc.

The connectivity between neighboring configurations is also related to the physical properties of the
BKT transition. In this case, the most suitable quantity to characterize configurations and the corresponding
clustering structure in phase space is the winding number, w (see Appendix 3.7.4), as excitations have
topological (global) nature [30]. Above the BKT transition, vortex-antivortex pairs are unbounded. Due
to this, MC simulation samples configurations with different w. By contrast, in the quasi-long-range-order
regime (T < TBKT ), most of the configurations have w = (0, 0). This feature of the BKT transition affects
the connectivity between neighboring configurations. In particular, the fraction of configurations whose first
two neighbors are connected to points with the same w, Fw, is negligible for T > TBKT , but it is equal to 1
in the topological phase. This is illustrated in Fig. 3.8 (b). Thus, for T < TBKT , the Id is a property of the
manifold exclusively formed by configurations connected to neighbors with the same winding number.

In a nutshell, the underlying cause for the sensitivity of the Id to phase transitions is that, both the
symmetry-breaking and topological transitions, affect the neighboring configurations’ connectivity. The
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FIGURE 3.8: Connectivity between neighboring points. Panel (a) shows the fraction of points in the
Ising data set whose first two nearest-neighbors have the same magnetization sign. Similarly, in panel
(b), we show the fraction of points in the XY data set whose first two nearest-neighbors have the same
winding number (see text).

key aspect is that nearest-neighbors configurations have identical physical properties (order parameter and
winding number) when the system is in the ordered phases (symmetry-broken or quasi-long-range-ordered).
By contrast, in the disordered phase, the first and second neighbors’ physical properties are entirely random.
At the data structure level, the phase transition represents a change of scale between those regimes.

3.5.2 Why Id exhibit universal scaling behavior?

Based on the fact that Id shows a characteristic minimum feature in the vicinity of phase transitions at
Tc(L), we now provide an argument in support of universal scaling of the latter temperature against system
size. The key aspect of our argument is that the distances r1 and r2 are related with many-body correlation
functions in the system, computed at equilibrium.

We analyze the curve ln(1 � Pi) versus ln µi close to the origin. From Eq. (3.2), the slope of this curve
is proportional to Id. The curve starts at the origin; we assume that its slope can be correctly determined by
sampling the first point of the curve several times (e.g., by sampling several independent Markov chains);
this seems very well satisfied based on our earlier numerical observations (fluctuations and deviations from
linear behavior typically appear only for very large values of µ). Within this assumption, one obtains the
following estimate for Id:

Id = � ln(1 � 1/Nr)

ln[r2(1)] � ln[r1(1)]
. (3.12)

We post-pone to the end of section an alternative justification for such a scaling behavior. From now on, we
specifically consider the Euclidian distance function [see, Eq.(3.9)]; using the hamming distance will not
affect the substance of our reasoning, but will change some of its details.

For the sake of simplicity, we can assume that the reference configuration i = 1 corresponds to the lowest
energy state. This second assumption relies on the fact that such state is the one that has a higher probability
of being sampled at any temperature, and, at least at sufficiently low temperatures, it is very likely to be the
state with the lowest value of µ, as low-lying excitations do typically differ from the lowest energy states by
a low amount of spin flips (representative of spin waves), when compared to the average distance between
states. Within this approximation, we can fix the coordinates of the reference configuration: sj = s 8j for
the Ising data set and ✓j = ✓ 8j for the XY data set.
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We can now proceed and analyze the denominator of Eq. (3.12). We define:

↵0f =
NsX

j=1

S0Sj,f , (3.13)

where S0 represent the coordinates of the reference configuration; see Fig. 3.9 (c). Thus, the distance
between two configurations reads:

rf (1) =
p

2Ns

r
1 �

↵0f

Ns

(3.14)

We then get:

ln[r2(1)] � ln[r1(1)] =
ln(1 � ↵01

Ns
) � ln(1 � ↵02

Ns
)

2
. (3.15)

For T � Tc, the coordinates of neighboring configurations are expected to be completely random compared
to S0. Thus, it is reasonable to expect that ↵0f ⌧ Ns (we will come back to this point below). Analyzing
the transition from the disordered phase, we can expand the logarithms up to second order in ↵0f/Ns and
get:

ln[r2(1)] � ln[r1(1)] = F2 + F4 + ... (3.16)

where the function Fp contains all p-spin correlation functions Sj1,fSj2,f ...Sjp,f taken over the single states
1 and 2. In principle, one shall also retain other orders: in fact, the difference of the two distances depends
parametrically on arbitrary body correlation functions.

Now, we make a third assumption, that is, that the correlations contained in Fp can be replaced by the
corresponding thermal averages. The rationale behind this is that, based on our first assumption above, we
are actually considering the states that have the highest weight in the partition function, so the ones that
contribute the most to the computation of the correlation function. Here, temperature plays a clear physical
role: higher temperature let us sample states that are (on average) at a larger distance from the lowest energy
state when compare to lower temperatures. One can reformulate the above as follows. For any given Markov
chain, we have a given F (k)

p , which depends on correlations on a single pair of configurations. Then, average
over the various Markov chains gives us an averaged value, that depends on the average of correlations over
the various configurations. This last formulation is closer to the numerical recipe that we utilize to estimate
Id, where, in fact, we obtain the latter from averaging the Id resulting from several distinct simulations.

Now, since we are dealing with thermal averages, we can recall the finite-size scaling hypothesis. This
hypothesis tells us that, if a quantity develops a singular behavior at the transition point (not necessarily a
divergence), the temperature corresponding to such a feature Tfeat shall be shifted according to finite-size
scaling (FSS) theory as (for second order phase transitions):

(Tfeat � T ) / 1

L⌫
(3.17)

We are thus in a position to make a statement: if any of the arbitrary body correlation functions contained in
the definition of our distance displays singular behavior at the transition point, those will dictate the scaling
of the position of the minimum of Id according to FSS, and reveal us the critical exponent ⌫ (or, in case
of BKT, they will be consistent with the logarithmic scaling expected there). The behavior of all other
correlations is not expected to affect this scaling behavior at all, as those are not displaying any non-singular
feature by definition.

We note that our reasoning and the validity of its assumptions can be a posteriori verified by noticing
that it implies that features in the distribution of the distances r1 will also be related to critical behavior. In
particular, we consider the pivotal assumption that the correlation contained in Eq. (3.14) can be replaced
by the corresponding thermal averages, and compare the predictions for rf (1) with our numerical results 1.
Fig. 3.9 shows this comparison for both the Ising and XY models. (i) In the disordered phases, ↵0,f ⌧ 1,
due to the exponential decay of the correlations, and thus rf ⇡

p
2Ns. (ii) On the other hand, in the

1We note that, by verifying this assumption, we indirectly check the ones taken before as well
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FIGURE 3.9: Correlation functions and distance between neighboring configurations. Temperature
dependence of the smallest r2 (this distance is representative of the lowest value of µ, see text) for
the (a) Ising and (b) XY models. The lines (full and dashed) represent the predictions for r2 based on
Eq. (3.14) and the corresponding expressions of the asymptotic formula for the correlation functions in
the high and low temperatures regimes (see text). The panel (c) illustrate the basic assumption behind
Eq. (3.14), i.e, correlation between configurations are equivalent to correlation functions(see text).

symmetry- broken phases, ↵0,f ⇡ O(Ns), given the long-range nature of the correlations; which implies
that rf ⌧ 1. (iii) Finally, in XY model’s critical phase, the temperature dependence of the correlations is
given by S0 · Sj,f ⇠ |j|�T/2⇡ (where |j| represents the spatial distance from a reference site). By computing
the corresponding ↵0,f , one can obtain the temperature dependence of rf . The numerical results display
very good agreement with our predictions; see Fig. 3.9 (a) and (b). It is worth noting that, while our
argument justified critical scaling for Tc(L) and does not justify the full collapse scaling observed for Id,
this is still directly informative about both critical temperature, and the critical exponent ⌫.

Before ending the section, we present a different approach to determining the dependence between Id

and the smallest value of µ as per Eq. (3.2). An alternative way to qualitatively estimate Id from a data
distributed according to Eq. (3.1) is to apply the maximum likelihood criterion. Utilizing the commonly
used log-likelihood function `k = log[f(µk)], one obtains that, for data sets where Id � 1, one has ID '
Nr/ ln(µ1). The scaling with Nr is different with respect to Eq. (3.12): this is not unexpected due to the fact
that (1) we are considering sampling of few configurations in the previous approximation, and (2) maximum
likelihood does not necessarily capture the correct scaling with the number of points in the set (as one may
expect many of those do not contribute to the determination of the minimum). Nevertheless, this difference
is irrelevant for the sake of our argument above, as we are not immediately interested in the Nr scaling.
What is important is that maximum likelihood returns exactly the same functional dependence on µ1, thus
providing a data driven justification of the first assumption presented above.



Chapter 3. Data Structure of Many-Body Systems 107

3.6 Conclusions

We have shown that phase transitions can be learned through a single property of raw data sets of configu-
rations - the intrinsic dimension - without any need to perform dimensional reduction. The key observation
made here is that, in analogy to physical observables, the intrinsic dimension exhibits universal scaling
behavior close to different classes of transitions: first-, second-order, and Berezinskii-Kosterlitz-Thouless
(BKT). This indicates how the intrinsic dimension, in the vicinity of critical points, behaves as an order
parameter in data space, showing how the latter undergoes a structural transition that parallels the phase
transition identified by conventional order parameters.

At the practical level, we have shown that the finite-size analysis of intrinsic dimension allows not
just to detect, but also to characterize critical points in an unsupervised manner. In particular, we have
shown that the intrinsic dimension allows one to estimate transition temperatures and (critical) exponents
of both first- and second-order transitions with accuracies ranging from 1% to 0.1% at very modest system
sizes. In addition, the method is equally applicable to topological transitions, where we have demonstrated
an accurate (with 1% of confidence) estimation of the BKT topological transition competitive with more
traditional methods at the same system sizes. This latter result suggests that the lack of any dimensional
reduction allows retaining topological information in the vicinity of the phase transition, which may instead
be lost otherwise [28, 30].

A fundamental aspect of our approach is that it is based on a Id-estimation method suitable to learn com-
plex manifolds, such as the twisted XY manifold emerging at the BKT critical point. The results demonstrate
the potential of state-of-the-art Id-estimators [9, 65] methods to tackle many-body problems, and motivates
an even stronger methodological connection between data mining techniques, and many-body physics. We
also note that, in comparison with previous applications in other fields [33, 36, 66], the values of the intrinsic
dimension reported here are considerably larger. For future applications, like combining our analysis with
clustering methods that do not rely on dimension reduction[67], it may be interesting to develop novel esti-
mators that focus on large values of Id, potentially trading absolute accuracy with numerical efficiency (in
the spirit of ref. 65). Another interesting question to address in the future is to assess the possibility of data
lying in submanifolds with different Id[68] and how it affects to our method. This is a plausible scenario in
cases with co-existence of phases.

Some of the methods presented here may be applied to quantum mechanical objects, such as quantum
partition functions, density matrices, and wave functions. It is an open challenge to determine whether
the data mining of quantum objects can provide an informative perspective on the latter, such as, e.g.,
accessing entanglement or other more challenging forms of quantum correlations. Finally, while we focused
on configuration generated by Monte Carlo sampling, our approach is equally applicable to experimentally
generated data; it may be interesting to apply it to settings where raw data configurations are available, such
as, e.g., quantum gas microscope experiments [19, 69, 70].
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3.7 Appendix

3.7.1 The TWO-NN method and comparison with principal component analysis (PCA)

In this section, we provide more details about the two-NN method.

(a1) (a2)

(a) TWO-NN

(b) PCA

(b1) (b2)

FIGURE 3.10: 3-site XY model. Panels (a) show results of the TWO-NN method: fitting of the data
points S for (a1) T = 0 and (a2) T = 100. The data set have Nr = 103 configurations. We obtain
(a1) Id = 1 and (a2) Id = 3. Panels (b) show results of the PCA method: normalized eigenvalues of
the covariance matrix, �̃n, obtained from the raw XY configurations. Here we use the same notation of
ref. [28] For n > IPCA

d , �̃n ! 0. PCA predicts (b1) IPCA
d = 2 and (b2) IPCA

d = 6, which is not in
agreement with the exact results (see text)

As described in Ref. [9], the intrinsic dimension, Id, can be obtained through the following steps:

1. For each point i of the data set (i = 1, 2, ..., Nr), compute its first- and second-nearest neighbor, r1(i),
r2(i), respectively.

2. For each point i, compute the ratio µi = r2(i)/r1(i).

3. The empirical cumulate is defined as P emp(µ) = i/Nr, while the values of µi are sorted in an ascend-
ing order through a permutation, i.e., (µ1, µ2, ...µNr ), where µi < µj , for i < j.

4. Finally, the resulting S = {(ln(µ), � ln [1 � P emp(µ)]} are fitted with a straight line passing through
the origin. The slope of this line is equal to Id (see Eq.(3.2)).

Fig. 3.10 shows the plot of S for the basic 3-site XY example presented in the Fig. 3.1 (B). It worth
mentioning that while we depict the configurations ~✓ = (✓1, ✓2, ✓3) for clarity of illustration in Fig. 3.1 (B),
in our calculations, ~✓ is defined as in Eq. (3.8). In this way, the distance between two configurations ~✓i and
~✓j : r(~✓i, ~✓j) = p

2
PNs

k=1(1�~S
i
k·~S

j
k)

, properly takes into account the periodicity of the variables ✓i

k
. Another

important technical aspect is that the fit of S is unstable for larger values of µ. As is considered in ref. [9],
we discard the 10% of points characterized by the highest values of µ. Based on this approach, we obtain
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(a) Ising (b) 2D XY 

FIGURE 3.11: Results of the TWO-NN method: fitting of the data points S for (a) Ising and (b) 2D
XY thermal data sets generated close to the critical point (in (a) T ⇡ 2.2, while in (b) T ⇡ 0.89); in
both cases we consider L = 40, and the data set have Nr = 104 configurations. We obtain Id ⇡ 47
and Id ⇡ 120, respectively.

Id ⇡ 1 and Id ⇡ 3, for the zero and high temperature regimes, respectively, which is consistent with the
value expected from physical reasonable assumptions (see Figs. 3.10 (a1) and (a2)).

We also show some examples of the plot of S for data sets generated in the vicinity of the critical points
of the Ising and 2D XY models, see Fig. 3.11 (a) and (b), respectively. In both cases, the points S are well
fitted by a straight line passing through the origin. We obtain similar results for the other system-sizes and
values of T considered in this Chapter.

In contrast, simple linear dimension reduction methods, such as Principal Component Analysis (PCA),
fails to describe the Id of the XY data sets. To illustrate this point, we employ linear PCA in the same
collection of configurations considered in the last paragraph. As can be seen from Figs. 3.10 (b1) and (b2),
even for this simple example, PCA fails to obtain the true Id; for T = 0, IPCA

d
= 2, while for T = 100,

IPCA

d
= 6. This failure is related to the fact that the XY manifolds are curved [30].

However, PCA can describe the main features of the Ising data set. Based on this, we consider the PCA
estimation of the Id in Fig. 3.7 of the main text. Here, we give more details about the computation of Id,PCA.
First, we consider the eigenvalues of the covariance matrix XTXwn = �nwn (we use the same notation of
ref. [28]). We then define the normalized eigenvalues, �̃n = �nPNr

i �i
. The Id is defined by choosing an ad

hoc cut-off parameter for the integrated spectrum of the covariance matrix, i.e.,

Id,PCAX

n=1

�̃n ⇡ f, (3.18)

where f represents a fraction of the eigenvalues of the covariance matrix. In Fig. 3.7 (c), we consider
f = 0.6. The value of Id,PCA depends on f . However, we observe that the qualitative behavior of the
function Id,PCA(T ) is not affected by the value of f (as long as f � 0.5). In particular, for all the values
of f that we considered (i.e., f = 0.5, 0.6, 0.7, 0.8 and 0.9), the global Id,PCA(T ) goes to 1 immediately
below Tc, and that the local Id,PCA(T ) exhibit a non-monotonic behavior.

3.7.2 Scaling of the Id with the number of configurations

In this section we discuss the scaling of the Id with the number of configurations, Nr, considered in the data
set; for all the results shown in the main text, Nr = 5 ⇥ 104. The first important aspect to consider is that
the TWO-NN is a scale-dependent method. In other words, the estimation of the Id is performed on a length
scale that is related to the first and second neighbor distances of each point. Thus, by varying Nr, one is
probing a different neighborhood size like, i.e., estimating Id in different scales [9].
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FIGURE 3.12: Scaling of the Id with the number of configurations in the data set. In panel (a) is show
the results for the 3-site XY model, while in panel (b) for the 2D XY model with L = 10.

To illustrate how this change in scale affects the Id of the thermal data sets considered here, we first
consider the 3-site XY model in Fig. 3.12 (a). For T = 1, the Id converges to 3 as expected for the high-
temperature regime of this model. In the low temperature regime T ⇡ 10�6, however, Id(Nr) exhibit a
plateau at Id = 1 for Nr 2 [100, 103[. As illustrate in Fig.3.1 (B) this simple data set is well described by
a one-dimensional manifold. This plateau in Id(Nr) is a signature of this soft direction [9]. Nevertheless,
by further increasing Nr, the Id increases (Id ! 3 in this case), as an effect of the decrease of the scale in
which Id is estimated. In this scale regime, the number of soft directions cannot be determined. We stress
that the computation of the Id of the high-dimensional data sets considered here is always performed in this
regime. In this case, the Id exhibit an exponential scaling with Nr, as exemplified in Fig. 3.12 (b).

We now discuss how the temperature dependence of Id is affected by the change in Nr. Fig. 3.13 (a1)
and (b1) shows Id(T ) for different values of Nr for the Potts and 2D XY data sets, respectively. Despite
the change of the absolute value of Id with Nr, the qualitative behavior of Id(T ) is not modified. Most
importantly, we observe that the position of the local minimum at T ⇤ does not shift with Nr for Nr > 104.
Furthermore, as expected, the scaling of Id with Nr is exponential, see Figs. 3.13 (a2) and (b2), at least
in the vicinity of the phase transition. Similar results are obtained for other system sizes and for the Ising
model. Summing up, our results indicate that, as long as Nr > 104, the universal scaling behavior exhibited
by the Id is not affected by the scale in which the Id is measured.

3.7.3 Data collapse

In this section we discuss the finite size analysis employed for the estimates of the critical temperature and
exponents presented in Sec. 3.4. Our procedure is a standard search of the minimal least-square difference
fit between our data and an appropriately chosen scaling function hypothesis. Let us first focus on the
second-order phase transitions, concerning the Ising and 3-state Potts models. The method is divided into
four steps.

1 First we choose a suitable mesh for the parameter ranges for Tc, ⌫ and ↵.

2 We compute from our data the scaling variables xdat(Tc, ⌫) = (T �Tc)L1/⌫ and ydat(↵) = Id(T )L�↵

for different R-range of system sizes {L1, L2, . . . , LR}.
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FIGURE 3.13: Panels (a): the temperature dependence of the Id for different values of Nr for the
(a1) 2D XY model and (b) 3-states Potts model, in both cases L = 60. For each point, we harvested
approximated 10 instances of the data set and average the resulting estimates for the Id. The error bars
are the standard deviation of such set of results. Panels (b): the scaling of Id with Nr for certain values
of T .

3 We choose a parametric functional hypothesis f(x; {a}).

4 For each (xdat(Tc, ⌫), ydat(↵)) we compute the best fit of the hypothesis function {a?} through the
Levenberg-Marquardt algorithm. We store the residuals as:

✏(Tc, ⌫,↵) =
||f(xdat(Tc, ⌫); {a?}) � ydat(↵)||

||ydat(↵)|| (3.19)

The optimal set of parameters for each set {L1, L2, . . . , LR} is located in the minimum ✏(Tc, ⌫,↵). In
order to keep a low-bias on the hypothesis function f(x, {a}), we choose various k-degree polynomial
Qk(x; a0, a1, . . . , ak). Thus, we obtain a set of optimal {T ?

c }, {⌫?}, {↵?} for each choice of degree k and
each set of system sizes {Lk}. Our estimates and errors for the critical temperature and critical exponents
are then estimated as the average and standard deviation of these sets, respectively.

The analysis for the BKT transition (XY model) is performed in a similar fashion. The only difference
is the choice of scaling variable, which for this case is:

xdat(Tc, a) = L exp


� ap

T � Tc

�
. (3.20)

For the Ising, 3-state Potts and XY models we select polynomials of degrees k 2 {5, 6, 7, 8} and differ-
ent sets of system sizes among the L � 70 ones. For the XY model, we perform the data collapse within the
range T = [0.91, 1.10] and use a bin of �T ⇡ 0.005. Our estimations for the XY model are Tc = 0.92(1),
a = 1.4(1) and ⇣ = 0.40(1).
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FIGURE 3.14: Contour plot of the average residuals projected on the direction of the optimal param-
eters for the Ising model. The white star points to the optimal parameters for our finite size analysis.
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FIGURE 3.15: Contour plot of the average residuals projected on the direction of the optimal param-
eters for the XY model. The white star points to the optimal parameters for our finite size analysis.
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We visualize the resulting residuals for both the ising and the XY models, see Fig. 3.14 and Fig. 3.15,
respectively. Since the parameter space is 3D, for convenience we plot the projected directions along with
the optimal critical parameters.

3.7.4 Definition of the winding number

We now discuss the definition of the winding number mentioned in Fig. 3.8 (b) of the main text. We consider
a closed path along the x and y directions of the square lattice and define

wx =
1

2⇡

LxX

i=1

�✓(i,y=1), (3.21)

and

wy =
1

2⇡

LyX

i=1

�✓(x=1,i), (3.22)

where the angle difference is �✓(x=1,i) = ✓(i+1,y=1) � ✓(i,y=1); �✓ is rescaled into the range (�⇡,⇡].
We compute the w = (wx, wy) for each configuration of the data set. We then define the total number of
configurations whose first two nearest neighbors have the same w, Nw. Figure 3.8 (b) shows the fraction of
those points Fw = Nw/Nr as function of T .
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Chapter 4

Measurement-Induced Criticality in Non-Unitary
Quantum Systems

This chapter is based on the following pubblications:

[1] Xhek Turkeshi, Rosario Fazio, and Marcello Dalmonte,
Measurement-induced criticality in (2+1)-d hybrid quantum circuits,
Phys. Rev. B 102, 014315 (2020)

[2] Xhek Turkeshi,
Measurement-induced criticality as a data-structure transition,
arXiv: 2101.06245.

[3] Xhek Turkeshi, Alberto Biella, Rosario Fazio, Marcello Dalmonte, and Marco Schiró,
Measurement-Induced Entanglement Transitions in the Quantum Ising Chain: From Infinite to Zero
Clicks,
Phys. Rev. B 103, 224210 (2021). (Editor’s Suggestion)

4.1 Introduction

Watched pot never boils.

Recent years have seen major progress in the understanding of many-body quantum dynamics. Two well
separated limits have been discussed extensively, the unitary dynamics of closed isolated systems [4, 5] and
the dissipative dynamics of open quantum systems coupled to an external environment [6]. In the former
case the system remains in a pure many-body state which, in the absence of ergodicity breaking [7, 8] and
for sufficiently large system sizes, acts as an efficient bath for any of its subsystems, leading to the thermal-
ization of local observables and a volume-law entanglement entropy. In the latter, the system is intrinsically
mixed and described by a master equation for the density matrix. In this setting, the competition between
unitary and dissipative couplings can lead to non-equilibrium phase transitions, but it is not expected to
change the entanglement and structural properties of the system.

An intermediate situation which has recently attracted major attention is the one in which the external
environment represents a measurement apparatus, which ceaselessly probes some local observable on the
system. Here the key physics is encoded in stochastic quantum many-body trajectories (conditional states),
which contain a much richer information on the system dynamics than the average state. Without loss of
generality, a quantum trajectory [6, 9] can be formally denoted as

| (⇠t; t)i = �(⇠t; t)| 0i, (4.1)

where t is the time, and the map � preserve the purity of the state and is fixed by the history of some
deterministic operator (e.g. an Hamiltonian), and a collection of stochastic processes ⇠t for each time step,
which can be discrete or continuous. Two simple examples include the unitary evolution solely generated
by an Hamiltonian, as well as measurement operations (projective or generalized). Specifically, given the
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Hamiltonian H , the former is captured by �(⇠t; t) = exp(�iHt). Instead, the measurement operations
depends on the results of one or multiple measurements drawn with the Born rule. To be concrete, we fix for
simplicity a single projective measurement PA over some hermitian operator A and consider discrete times;
then the formula for a single time step t ! t + 1 is

| (⇠t; t)i = �(⇠t; t)| (⇠t�1; t � 1)i =
PA

||PA| (⇠t�1; t � 1)i|| | (⇠t�1; t � 1)i. (4.2)

(The generalization to multiple measurement, generalized measurement, as well as continuous monitoring
follow a similar rationale). We note that the renormalization in Eq. (4.2) is crucial in the following discus-
sion, as it introduces non-linear effects in the evolution.

If the trajectories Eq. (4.1) are unaccessible, the relevant physics is uniquely encoded in the average state

⇢ave =

Z
Dµ[⇠t]| (⇠t; t)ih (⇠t; t)|. (4.3)

In Eq. (4.3), Dµ[⇠t] is a path integral measure over the possible trajectories (occasionally denoted histories).
Eq. (4.3) can be proven to follow a Kraus dynamical map evolution (see Ref. [6] for a general discussion).
We note that in the ubiquitous case of a Markovian environment, the specific form of this map can be
recasted in a Lindblad master equation.

However, when the trajectories are accessible, the conditional state itself | (⇠t; t)i is physically relevant.
Crucially, this difference is invisible to operators O which are linear in the density matrix

tr(⇢aveO) =

Z
Dµ[⇠t]tr(O| (⇠t; t)ih (⇠t; t)) =

Z
Dµ[⇠t]h (⇠t; t)|O| (⇠t; t)i. (4.4)

In Eq. (4.5) we have used the linearity of the path integral over the histories. However, when considering a
non-linear functional F(�) over density matrices �, the two averages differ

tr(F(⇢ave)) 6=
Z

Dµ[⇠t]tr (F(| (⇠t; t)ih (⇠t; t)|)) . (4.5)

A simple example is the purity of the state F(�) = �2. Since the average state is in general mixed
F(⇢ave) < 1, whereas the right-hand-side in Eq. (4.5) is identically 1, by definition of quantum trajec-
tory. A dramatic consequence is that quantum information tools such as the Rényi entanglement entropies,
quantify entanglement for the conditional state Eq. (4.1) but not for the average state Eq. (4.3). More in gen-
eral, the structural properties encoded at the level of the average density matrix exhibits different patterns
compared to the quantum trajectories. Hence, the conditional state can host a variety of quantum phases of
matter, exotic with respect to the ones present for isolated unitary evolution and for the dissipative average
state.

In this Chapter we present three facets of such non-equilibrium phases and phase transitions. For a
unitary dynamics generated by random gates, we present how the structure of the manifold encoding the
state changes (Sec. 4.3). Always for unitary random gates coupled to a measuring environment, we present
evidence that the phase transition differs from known classical equilibrium transitions, by studying the
2+1D Clifford random circuits (Sec.4.4). Lastly, in Sec. 4.5 we investigate the role of measurements for a
unitary dynamics fixed by the quantum Ising Hamiltonian, and show that the entanglement phase transition
is already captured by the limit of no-measurement, where the environment act as a back-reaction in the
system Hamiltonian.

The remaining of this Section gives an overview of the relevant literature, the setting of the problems
considered in this Chapter, and the summary of the results which we obtain.
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FIGURE 4.1: (Left) Cartoon of the hybrid quantum evolution. The brick-wall unitary is designed to let
the qubits propagate correlations, while the measurement gates are randomly peaked with probability
p. (Right) Pictorial representation of the phase transition: the explored Hilbert space H undergoes
structural changes, reflected in the symplectic encoding G.

4.1.1 Measurement-induced criticality in hybrid random circuits

Random unitary systems subject to repeated measurements of an environment are an ideal model to study
the interplay between unitary evolution and stochastic local measurements [10–57]. This non-unitary frame-
work is suitable for the description of noisy intermediate-scale quantum technologies (for a quantum sim-
ulation see Ref. [52]), and tackles fundamental questions of statistical physics, such as thermalization and
ergodicity.

More concretely, the dynamical phases are controlled by the balance between the random unitary dy-
namics, which tries to relax the system toward the fully mixed density matrix ⇢eq / 1 (1 is the identity
matrix acting on the Hilbert space), and local measurements, which in contrast tend to localize the state to
a restricted manifold fixed by the measurement outcomes. Rephrasing, the former spreads non-local corre-
lations and generate entanglement throughout the system, while the latter typically destroy coherence and
reduce the encoded quantum information, due to their local and collapsing nature.

At low measurement rate, the quantum information encoded in the state is robust against the environment
probes, which acts as local errors in the dynamics. Hence this setting is labeled error-correcting phase [58–
61], or volume-law phase, referring to the extensive system size scaling of the entanglement entropy in the
stationary regime. At a high measurement rate, the state is constantly collapsed and is unable to escape a
restricted manifold of the Hilbert space. This quantum Zeno phase [10] is characterized by local correlations
and is dubbed area-law phase for its subextensive entanglement entropy scaling, proportional to the area of
the subsystem boundary (with possible logarithmic corrections). Importantly, it has been shown that these
phases are separated by a second-order transition at a critical measurement rate, with emerging conformal
behavior for (1+1) dimensional circuits [10–12, 17, 18, 41].

Measurement-induced criticality as a data-structure transition

These results obtained through entanglement measures suggest a structural difference between the error-
correcting and Zeno phases.

In Sec. 4.3, we propose a data-structure viewpoint, by directly analyzing the configurations encoding
the state (datapoints), and show the measurement-induced criticality manifests as a geometric transition in
the data-space. To this end, we consider principal component analysis and intrinsic dimension estimation,
which, as unsupervised learning methods, provide an ideal framework to seek pattern in raw data. (See
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Ref. [62–79] for applications of similar methods in statistical physics, and Ref. [80–82] for a general review
of machine learning in physics.) As a proof of principle, we specialize in the study of (1+1) dimension
Clifford hybrid circuits with local polarization measurements (see Fig. 4.1).

We show that the first quantified principal component is a robust order parameter for the transition, while
the secondary quantified components present a change of pattern depending on the phase. The intrinsic
dimension (see also Ch. 3), which is a measure of the effective dimensionality of the data space, scale
differently with the system size at low and high measurement rate. It grows linearly in the error-correcting
phase and logarithmically in the Zeno phase, reflecting the dimensionality of the explored Hilbert space,
respectively exponential and polynomial in system size. We identify the transition as a local minimum of
the intrinsic dimension. In fact, at the critical point, by virtue of universality, the system is parametrically
simpler to describe compared to its vicinity.

Measurement-induced criticality in 2+1D hybrid random circuits

Despite the vast investigation in 1+1D, the nature of this transition is still subject to a debate. Motivated
by numerical observations and analytical treatments, this critical point has been suggested to lie in the
vicinity of a 2D classical percolation field theory [10–12]. Compared to the already rich (1+1)-d case,
relatively little is instead known about their higher dimensional counterparts, where, even at equilibrium,
entanglement properties are considerably different. For instance, the nature of a measurement-induced
transition in two spatial dimensions could shed light on the relationship between HRC and percolation
theories, and, potentially, give access to a new class of genuine out-of-equilibrium critical points.

In Sec. 4.4 we study the dynamics of (2+1)-d hybrid random circuit (HRC). We consider two measure-
ment protocols, with rank-1 and rank-2 local projective measurements. In both cases, we find a volume-law
phase at a slow rate of measurement, separated from an area-law phase at a high measurement rate via a
measurement-induced transition (MIC). We perform a finite-size scaling (FSS) analysis to obtain accurate
predictions of the correlation length critical exponent for the two cases. Our results suggest both critical
points belong to the same universality class, which is distinct from that of percolation, similarly to the
(1+1)-d case analyzed in Ref. [41]. This thesis is enriched by the presence of a violation of the area-law
term in the entanglement entropy, that resembles those observed in Fermi liquids and U(1) gauge fields
coupled to fermionic matter [83–90].

4.1.2 Measurement-induced criticality in the quantum Ising chain

When instead the unitary dynamics is generated by an Hamiltonian, the properties of the system depend
on the nature of the latter [26–30]. For instance, in the case of a free fermion Hamiltonian, the volume
law is unstable for any measurement rate to a subextensive entanglement content [31, 54]. However, it
has been shown that the average entanglement entropy can still show a transition between a logarithmic
and area law phase at a critical measurement strength or to display a purely logarithmic scaling, depending
on the stochastic protocol [32, 57]. A logarithmic growth of the entanglement entropy in an entire phase is
particularly intriguing, given that the average state is expected to be effectively thermal, and it is reminiscent
of a critical, conformally-invariant, phase whose origin has been so far elusive. Similar results have been
obtained for free-fermion random circuits with temporal randomness [48], a setting that has been recently
generalized to higher dimension [33], or for Majorana random circuits [91, 92].

A different take on measurement-induced transitions has instead focused on the limit of post-selection,
also called forced measurement phase transitions [14], where only atypical trajectories with a particular
outcome of measurement are retained. In this regime several works have discussed the relationship be-
tween measurement-induced transitions and the spectral properties of the associated non-Hermitian Hamil-
tonian [15, 34, 93]. More recently a non-Hermitian Hamiltonian has been also shown to emerge from the
replica field theory associated to monitored Luttinger Liquids, leading to a Kosterlitz-Thouless transition
between a gapless and a gapped phase [36].
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In light of these developments it is interesting to compare the entanglement properties of stochastic
quantum dynamics and non-Hermitian Hamiltonian, in a simple and paradigmatic setting. With such moti-
vation, in Sec. 4.5 we consider the one-dimensional Quantum Ising model coupled to an environment which
continuously measures its transverse magnetization. Specifically, we focus on two rather opposite limits of
the measurement problem: the quantum state diffusion protocol [94, 95], a very clear, experimentally real-
izable measurement protocol in quantum optical systems [9], equivalent to homodyne trajectories [96, 97]
and the quantum jump protocol in the so called no-click limit, corresponding to a purely deterministic non-
Hermitian evolution, which amounts to post-select only trajectories without jumps.

Remarkably, despite describing rather different limits, show a very similar phenomenology in their en-
tanglement properties. In particular, upon increasing the ratio � between measurement rate and Hamiltonian
coupling we find in both protocols a transition from a critical phase to an area law phase, the former charac-
terized by a logarithmic scaling of the entanglement with time and system size. Right at the transition point
�c, which we find numerically to coincide in the two protocols, the prefactor of the logarithmic entanglement
contribution, interpreted as an effective central charge, vanishes continuously.

We note that an extended phase with logarithmic (critical) scaling of the entanglement was found also
for other free-fermionic systems under monitoring, for example the XX chain of Ref. [32].

In this respect the no-click limit offers a natural explanation both for the critical entanglement scaling
and for its transition towards an area law: these can be naturally understood by looking at the spectral
properties of the non-Hermitian Quantum Ising chain which undergoes, right at �c, a subradiance transition
from an extended critical phase with gapless decay modes, to a gapped phase which is smoothly connected
to the dark state of the measurement operator.

In spite of the important similarities, the two protocols differ for the behavior of the effective central
charge as a function of the measurement rate. In particular we find this quantity to be larger in the no-
click limit, a signature of a noise-induced disentangling effect that appears clearly in the statistics of the
entanglement entropy, which shows emergent bimodality upon approaching the critical point. Our results
highlight the key role played by the non-Hermitian Hamiltonian for the qualitative understanding of entan-
glement transitions and suggest that different stochastic ensembles provide different universality classes of
a common critical phenomenon.

Structure of the Chapter

The remaining of this Chapter is structured as follows. In Sec. 4.2 we introduce the stabilizer formalism,
necessary for the investigation of measurement-induced transition in hybrid random circuits. In Sec. 4.3
we investigate measurement induced criticality on the perspective of data-space. In Sec. 4.4 we inves-
tigate the entanglement measurement-induced criticality for 2+1D hybrid circuits. In Sec. 4.5 we study
the measurement-induced phase transition for the quantum Ising model coupled to a monitoring environ-
ment, and relate the results to the non-Hermitian Hamiltonian describing the post-selected trajectories with
no-measurement events. For the latter Section, we detail derivations and numerical methods in the Ap-
pendix 4.6.
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4.2 Stabilizer states and Clifford unitary gates

In this Section we review the stabilizer formalism. Truly generic random evolution would involve gates
drawn with Haar measure from the full unitary group (Haar gates). However, the exponential scaling of the
Hilbert space hinders classical computations beyond a few decades of spins. Despite the remarkable results
in obtained (1+1)-d numerical investigations, Haar gates are inadequate to tackle thermodynamic limits, or
higher dimensional systems.

Thus, in order to simulate large systems and have a consistent scaling analysis, throughout this Chapter
we restrict our attention to the evolution of stabilizer states with unitary gates drawn from the Clifford group
and projective measurement on Pauli strings. The Clifford group is an approximation to the Haar gates,
which fully encode statistical properties up to the second moment (2-unitary design) [98]. The approxi-
mation is apparent in the investigation of complex operators, which involve a number of unitaries larger
than 2. Important examples are out-of-time correlation (OTOC) functions, as they are one of the hallmarks
of ergodicity in quantum systems. Simulations in (1+1)-d Haar circuits present evidence of exponential
growth in time of the OTOC (signal of chaotic behavior), while analogous computations for Clifford circuits
result in trivial time-scaling [99–101]. Nevertheless, the entanglement entropy exhibits qualitatively similar
behavior, as illustrated for instance in Ref. [10].

For self-consistency, we give a technical summary on the stabilizer formalism and on the Clifford gates
(we refer for a general review to Ref. [98, 102]). For readers already familiar with such formalism, the rest
of the Section is hopefully useful to clarify notations. After general considerations, we recall the Gottesman-
Knill theorem [98, 103] and the Hamma-Ionicioiu-Zanardi theorem [104, 105]. The former explains how
polynomial classical computation resources are needed to simulate the HRC of interest, while the latter
gives an efficient way to compute entanglement for stabilizer states.

Stabilizer states are vectors of the Hilbert space satisfying the condition:

Oi| i = +| i, (4.6)

for some set of operators Oi (for spin-1/2 systems, we anticipate here these are Pauli strings that will be
discussed below). This set, under matrix multiplication, forms a group G = {Oi}. In principle, the vectors
satisfying Eq. (4.6) form a vector space associated to the group G. However, if the number of generators
of the group is equal to the number of sites |G| = Ns, a unique state (up to normalization) is fixed by the
knowledge of G (see Ref. [102]). Stabilizer formalism has been largely discussed in the context of quantum
error correction (see Ref. [102] and reference therein), and have recently appeared [10–12, 17, 18, 39, 44,
58, 59, 106] in tailored non-unitary quantum dynamics as they can be efficiently simulated.

The key result behind the simulations of stabilizer states under the action of the Clifford group is the
Gottesman-Knill theorem, which explains: (i) how unitary evolution affects stabilizer states, (ii) how pro-
jective measurements change the state within the stabilizer formalism. Let us briefly sketch the ideas behind
this result. Under the unitary evolution, Eq. (4.6) holds for the evolved stabilizer:

Oi(t)| (t)i = +| (t)i, Oi(t) = U(t)OiU
†(t). (4.7)

In general, Oi(t) is a linear combinations over exponentially many Pauli strings. However a major sim-
plification occurs when the unitary U is drawn from the Clifford group. The latter is defined as the set of
unitary operations that map a Pauli string into a single Pauli string. Since the number of stabilizers does not
grow under Clifford gates, the knowledge of the system only requires keeping track of the evolution of Ns

stabilizers at each time step. However, a Pauli string is totally given by a binary vector of exponents and a
phase:

Oi = ei�(�x
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x
1 (�z

1)
v

z
1 (�x

2 )v
x
2 (�z

2)
v

z
2 . . . (�x

Ns
)v

x
Ns (�z

Ns
)v

z
Ns

⌘ (vx

1 , vz

1 , v
x

2 , vz

2 , . . . , v
x

Ns
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|�). (4.8)

As a consequence, the state evolution under Clifford circuits is encoded by a Ns ⇥ (2Ns + 1) matrix. The
phase will be convenient in Sec. 4.3, but it is negligible for studies on the entanglement (as in Sec. 4.4,
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where our configurations are encoded in a Ns ⇥ (2Ns) matrix with binary entries).
Throughout this Chapter we consider the Clifford group Cn acting on n = 2 or n = 4 sites. For an

efficient algorithm on how to implement uniform peaking over the Clifford group we refer to Ref. [107].
Projective measurement on Pauli string is less intuitive, but easy to implement. Let us consider a Pauli

string Op we want to projectively measure on | i a stabilizer state. Give its stabilizer group:

G = span(O1, O2, . . . , Ok, Ok+1, . . . , ONs), (4.9)

suppose that [Oj , Op] = 0 for j  k and {Oj , Op} = 0 for j > k (either one holds for Pauli strings). The
wave-function get mapped after measurement to:

| i± 7! 1 ± Op

2
| i. (4.10)

The Gottesman-Knill theorem states that the measured state expressed in term of the stabilizer group is given
by:

G± = span(O1, O2, . . . , Ok, Ok+1 · Ok+2, . . . ONs�2 · ONs�1, ONs�1 · ONs , ±Op). (4.11)

The phase can be determined O(N2
s ) using a symplectic doubling trick (see Ref. [103] for details), or

within O(N3
s ) using a Gauss-Jordan elimination. Throughout the Chapter, we specialize to Op = �z

i
, or

Op = �z

i
�z

j
with j neighbor of i.

Lastly, entanglement entropy can be extracted directly from the binary submatrix Ns ⇥ (2Ns) obtained
neglecting the phases. Given a bipartition A [ B of dimension respectively NA and NB , we extract the
Ns ⇥ (2NA) matrix GA corresponding to the sites belonging in A. The Hamma-Ionicioiu-Zanardi theorem
state the entanglement entropy for a stabilizer state is simply given by:

SA(⇢A) = rank(GA) � NA. (4.12)

We conclude this Section by noticing that algebraic sums modulo 2 between the stabilizers in the tableau
representation G do not change the entanglement. This gauge degree of freedom is irrelevant for our discus-
sion, but can be used to introduce a quasi-particle picture for the 1+1D hybrid Clifford circuits [11]
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4.3 Measurement-induced criticality as a data-structure transition

4.3.1 Hybrid non-unitary dynamics

We consider the quantum trajectories of a system under the combined action of a unitary protocol and
stochastically distributed local measurements. At every time step, each qubit is picked with probability p
and measured:

| ˜ (kt; t)it+1 =
Pi| (kt; t)it

||Pi| (kt; t)it||
, (4.13)

and afterward the system is unitary evolved | (kt; t)it+1 = U | ˜ (kt; t)it+1. Here, kt encodes the history
of the quantum trajectory, both for the type unitary gates applied, and for the stochastic measurements (see
Sec. 4.1). Mathematically, it can be represented by a tensor with O(L) entries. Occasionally we omit kt if
no confusion arises.

The rate of measurement p controls the dynamical phases of the system. When local measurements are
suppressed p ! 0, the dynamics is governed mostly by the unitary part. For generic initial conditions, the
system explores a large portion of the Hilbert space, and reaches extensive bipartite entanglement entropy,
hence the name of volume law phase. In the opposite regime p ! 1, the system is constantly projected.
Non-local correlations are suppressed, thus effectively localizing the state into a restricted manifold of the
Hilbert space, and the entanglement entropy is subextensive (area law phase).

For concreteness, we consider a stabilizer circuit where local measurements involve the local polariza-
tion Pi = (1 ± �z

i
)/2, while the unitary gates are randomly drawn from the Clifford group and structured in

a brick-wall fashion (Fig. 4.1):

| it+1 =

L/2Y

i=mod(t,2)

U2i�1,2i| ̃it+1. (4.14)

In the last equation, the nearest-neighboring gates alternate depending on the parity of t, that in this setup
has integer values.

Stabilizer states on L qubit are fully characterized by L independent Pauli strings (see Sec. 4.2). Con-
sequently, the stabilizer group is represented by a binary matrix G ⌘ [ni

j
]L⇥2L+1. This encoding fixes

uniquely the state 1

⇢ = | ih | =
1

2L

X

g2G

g. (4.15)

As discussed in Sec. 4.2, the Gottesmann-Knill theorem provides a set of rules for implementing Eq. (4.13)
and Eq. (4.14) directly on the matrix G. In this way, the dynamics | i 7! | it is converted into G 7! Gt.

Our implementation follows the lines of Ref. [103] and uses the package in Ref. [107] to simulate the
random Clifford gates. The system it is known to present a criticality at p = 0.16(1), with a correlation
length critical exponent around ⌫ = 1.30(5) [10, 11, 17, 18]. We use this model to benchmark our approach
described in the next sections.

4.3.2 Principal component analysis

We begin by considering principal component analysis (PCA) [62–64, 80, 108], which is a linear transforma-
tion of the data space basis. Given a dataset G, that is a matrix N ⇥d in which each row is a configuration of
the system (feature), PCA rotates it, such that the greatest variance of the dataset lies in the first component,
the second greatest variance in the second component, etc..

The method consists of three steps:

i Define the centered dataset X , whose elements are Xi,j = Gi,j � (1/N)
P

i
Gi,j . This procedure

guarantees that ⌃ = XT X/(N � 1) is the covariance matrix of the dataset.
1We shall interchangeably denote G the symplectic representation, i.e. the generators [ni

j ]L⇥2L+1, and the generated group
G = span{Oi} ' span[ni

j ]. Here ' is a group isomorphism.
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FIGURE 4.2: Principal components for a stabilizer group — (Left) Results for the principal compo-
nents w1 and w2 at L = 32. The data organize in separate regions for different measurement rates.
(Right) Explained variance ratios �n for the most relevant components. The relative relevance of the
directions does not change upon increasing the number of components NPCA = 2 ÷ 128.

ii Perform a singular value decomposition of the centered dataset X = V 0DV .

iii Apply the rotation V = [v1, . . . , vd] to the original dataset G (in matrix form W = GV ). The vectors
wj along the direction vj are termed principal component. (In practice, one fixes a restricted number
of components in the analysis, to gain computational efficiency.)

The PCA is particularly effective in cases where few principal components are most relevant. The
relevance is obtained from the singular values dn corresponding to the weight vectors vn, as they quantify
the variance of the dataset along the n-th direction. In fact, the covariance matrix ⌃ is diagonalized by the
weight vectors:

⌃vn = d2
nvn. (4.16)

Rescaling these quantities to �n = d2
n/(
P

n
d2

n), we obtain the so-called explained variance ratios [80], that
is, a measure of relative weights of the principal directions. Notice that by definition

P
n
�n = 1, hence �n

are percentage of encoded information along the n-th direction.
In our implementation (which is based on sklearn [109]), for each system size L, we construct the

dataset G, where each row contains the d = L(2L + 1) elements of the binary matrix Gt. We draw these
configuration within the stationary regime t � 8L, with �t = L/2 waiting time between snapshots. The
total number of configurations obtained is N = NpNs, and consists of Np number of values p 2 [0, 1]
considered, and Ns snapshots for each value of p 2.

As an illustrative example, we present the results of the PCA for L = 32 in Fig. 4.2. We can see
that the first component alone captures around 16% of the dataset, and within the first 4 components the
cumulative encoding reaches 20%. This fact is unaffected by varying the number of directions required by
the algorithm, as the explained variance ratios remain qualitatively unchanged. Conversely, �n distribute

2We fix Np = 43, with p 2 [0.0, 0.01, . . . , 0.29][ [0.35, 0.4, 0.45, . . . , 0.95], and vary Ns = 200, 400, 800, 1600. We present
data only for Ns = 400, as we find no qualitative behavior on the results. The system size considered for the PCA range between
L = 16 ÷ 320.
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into the same curve over the range of considered principal directions NPCA. We stress that the dataset
considered in each case is different, and the small fluctuations are related to the specific realizations.
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FIGURE 4.3: (Left) Quantified principal component w̄1 for different system sizes L, and (Right)
its data collapse. The results show the order parameter nature of w̄1. The estimated pc = 0.16(1),
⌫ = 1.4(1), and ⇣ = 0.51(3) are in agreement with the results in literature.

The principal components wj contain all the relevant information of the dataset: knowing the full dis-
tribution of wj as stochastic variable is equivalent in the reconstruction of the dataset. It is however suitable
to consider a single proxy which is able to capture relevant information on the system. Therefore, here we
specialize to the quantified principal components, defined as the conditional averages

w̄j =
1

Ns

X

i(p)

wj(i), (4.17)

where the mean is over Ns configurations sharing the same measurement rate p. This quantity is plotted in
Fig. 4.3 (left). Remarkably, under the finite-size scaling hypothesis:

w̄1 = L⇣/⌫f1((p � pc)L
1/⌫), (4.18)

we find a data collapse which correctly identify the transition [110]. Our estimate for the critical point and
exponents are: pc = 0.16(1), ⌫ = 1.4(1) and ⇣ = 0.51(3). In Fig. 4.3 (right) we can appreciate the quality
of the collapse in the whole range of considered measurement rates. Notice that w̄1 lacks a straightforward
physical interpretation, and is a non-local order parameter, as it corresponds to a rotation of arbitrary length
Pauli strings. (Differently, for instance, from the equilibrium 2D Ising model, where w̄1 is proportional to
the magnetization [64]).

Next, we consider the subsequent, less relevant, components. We discover that oscillations appear in
the error-correcting phase (p < pc), while they saturate toward a O(1) value in the Zeno phase (p > pc).
These fluctuations feature off the critical point feature non-universal information. Nonetheless, they encode
universal information close to criticality. For instance, we apply the finite-size scaling also to a restriction
of the dataset for the quantified principal component w̄2, cutting off values p < 0.11. Then, assuming
the same ansatz as in Eq. (4.18), we again identify the correct critical behavior within error bars (the data
collapse for the second component in the inset of Fig. 4.4). A similar analysis has not been applied to
further components, as a more refined resolution of measurement rates is required to correctly perform the
finite-size scaling. However, we expect similar results to hold.

4.3.3 Intrinsic dimension

The limitation of the principal component analysis is rooted in the linear nature of the transformation. Hence,
when the dataspace has a non-linear, complex geometry, PCA needs further analysis to give meaningful
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FIGURE 4.4: Secondary quantified principal component for different system sizes L. Oscillations
appear in the error-correcting phase. (Inset) Data collapse for w̄2 = L⇣/⌫f2((p � pc)L1/⌫), in a
restricted region close to criticality. The estimated pc = 0.16(1), ⌫ = 1.4(1), and ⇣ = 0.48(3) are
compatible with the analysis for w̄1 (see Fig. 4.3).

information. To overcome these limitations, we consider the intrinsic dimension [111–114]. The intrinsic
dimension Id is the effective dimension of a dataset. We discuss in depth the intrinsic dimension in Ch. 3 of
this thesis, but to preserve a self-consistency of the Chapter, we provide a brief summary in the following,
and specify our dataset. The Id can be estimated using different techniques [80], but here we specialize in the
two nearest-neighboring technique (TWO-NN), which has been recently applied to equilibrium statistical
physics [115]. The TWO-NN: (i) is independent of the density pattern of the whole dataset, (ii) applies also
to non-linear complex geometries.

The main assumption of the method is that the dataset is locally uniform. Here, locality is related to the
scale at which we look at the data: the larger the dataset, the more resolved is the distance between points.
(Empirically, a finer scale is inversely proportional to the dataset size N�1 in one-dimensional systems.) In
this approach, differently from the PCA, we restrict the dataset to a given system size L, and a given rate
measurement rate p: G = G(L, p). The goal is to find the dimension of the space explored, pictorially
represented in Fig. 4.1. The technique is described in Ch. 3, but to keep the Chapter selfconsistent, we
briefly summarize the key points here.

The method is based on computing the distribution functions of neighborhood distances. For each con-
figuration x = G(i; L, p), we compute the first and second nearest-neighboring distances r1(x) and r2(x),
respectively. Under the assumption of locality, we may represent the dataset as a uniform hypersphere; then
the distribution function of µ = r2/r1 is:

f(µ) = Idµ
�Id�1. (4.19)

We can derive a formula for the Id for the cumulative distribution P (µ) =
R

µ dµ0f(µ0):

Id = � ln(1 � P (µ))

ln µ
. (4.20)

We estimate the intrinsic dimension by Eq. (4.20), where the cumulative distribution is substituted with the
empirical distribution of the data.

It is important to stress that the local uniformity is but an approximation for discrete datasets. For this
reason, we collect Ndata = 30 datasets of N = 5000 for each value of L and p considered, compute the
intrinsic dimension over each dataset, and average the results to obtain the final estimate 3.

3We fix Ns = 5000, with p 2 [0.0, 0.01, . . . , 0.98, 0.99], and vary the system size in L = 16 ÷ 128. Furthermore, see
Ref. [115] for a discussion on complementary methods and limitations. The research of more refined algorithms to estimate the
intrinsic dimension in discrete systems is an active topic of research in the field.
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FIGURE 4.5: (Left) Intrinsic dimension for different system sizes L. Notice the non-monotonic behav-
ior, with a minimum close to criticality. (Inset) Scaling of the intrinsic dimension with the system size
for various values of the measurement rate. We distinguish a linear region for p < pc, and a logarithmic
one for p > pc. (Right) Data collapse after a finite-size scaling analysis. The estimated ⌫ = 1.3(1),
pc = 0.16(2), and ↵ = 0.3(1), are in agreement with the previous analysis (Fig. 4.3 and Fig. 4.4). (In-
set) Estimation of the critical point through the minimum of the ID. The points are obtained by fitting
a third-order polinomial and locating the minimum. The dashed line is the optimal linear fit in 1/L1/⌫ ,
where we excluded small system sizes. The intersection pc(L ! 1) = 1.6(2) is in agreement with
the data collapse.

The results are plotted in Fig. 4.5. We find a linear growth of the ID for p . 0.16, while a logarith-
mic one at p & 0.16. The physical interpretation of these results is based on the dimensionality of the
Hilbert space. Since the quantum state ⇢ is obtained by summing over all Pauli strings generated by G (cfr.
Eq. (4.15)), we have dimH ' 2Id . When Id scales linearly with system size, the Hilbert space explored
is exponentially large and the stationary state is a random stabilizer state. Conversely, deep in the Zeno
phase, the Hilbert space explored is polynomial in system size. In particular, in the thermodynamic limit,
the system is localized in a zero-measure manifold. As remarked before, these considerations are consistent
with the results obtained using the entanglement measures [10]. Let us stress an important difference: while
the entanglement entropy in the Zeno phase saturates, the intrinsic dimension scales logarithmically. This is
because the intrinsic dimension is not a measure of entanglement, and include also classical correlations in
the encoding dataset.

The intrinsic dimension develops a non-monotonic behavior close to criticality. We identify the transi-
tion as the local minimum of the intrinsic dimension (see Fig. 4.5 (right,inset)). Physically, the critical point
is parametrically simpler to describe compared to its vicinity. In fact, the collective behavior at criticality is
captured by few relevant effective fields, in the renormalization group sense. Instead, the off-critical region
requires additional information on the irrelevant operators, which increases the number of parameters close
to the transition. This picture is a fortiori confirmed in the present setup by the presence of a conformal
field theory [11, 41], but holds on general ground. Besides, the intrinsic dimension in the vicinity of the
transition manifests universal behavior. We use the finite-size scaling ansatz:

Id = L↵/⌫h((p � pc)L
1/⌫), (4.21)

adapting the analysis to values of p 2 [pest
c � �p, pest

c + �p] close to the empirically estimated critical point
pest

c = 0.17, �p = 0.15. We obtain pc = 0.16(2), ⌫ = 1.3(1) and ↵ = 0.3(1), compatibly with the literature
and the PCA analysis. This critical change of the intrinsic dimension is the hallmark of a geometric transition
in the data space. The dimensionality of Hilbert manifold describing the late time state | i undergoes an
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abrupt and critical change, intimately related to the change of scaling for the entanglement measures.

4.3.4 Conclusion

In this Section, we used principal component analysis and intrinsic dimension estimation to describe the
phases and locate the transition of hybrid random circuits directly in the data space. In particular, we have
shown that measurement-induced criticality reveals as a structural transition in the encoding data manifold.

Similarly to the case of equilibrium classical physics [62–64], the PCA captures the critical behavior
and the structural change of phase for the hybrid random circuits. In particular, the first quantified principal
component w̄1 gives an alternative order parameter for the transition. The data space transition is also man-
ifest in the change of intrinsic dimension, which develops a minimum at criticality. Here, the representative
space is parametrically simpler, signaling the presence of emerging collective behavior with fewer effective
degrees of freedom compared to the neighboring region. Overall our results show full compatibility with
the data present in the literature while giving a complementary viewpoint on the nature of the transition.

The unsupervised nature of the considered methods, which require no a priori knowledge of the phase
space, and the simplicity of their computation, make these attractive tools to investigate hybrid dynamical
systems. It would be interesting to apply and extend this toolbox to more complex setups, such as high di-
mensional hybrid circuits, or to tackle experimental data. As recently shown in Ref. [116] for the many-body
localization transition, it is possible to reconstruct a dynamical phase diagram directly from experimental
data and using machine learning tools: applying similar methods to the measurement-induced transition
may resolve the problem of entanglement measurements, which are notably hard.
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4.4 Measurement-induced criticality in 2+1D hybrid random circuits

4.4.1 Model and observables

System dynamics

We consider a two-dimensional square lattice model of spin-1/2 qubits. The system is initialized in a low-
entanglement state 4 and let evolve through a hybrid quantum circuit where unitary dynamics is alternated
to layers of randomly picked local projective measurements (see cartoon in Fig. 4.6).

xy

t = 1
t = 2
t = 3
t = 4

LL

FIGURE 4.6: Graphical scheme of the system dynamics with measurement protocol in Eq. (4.28).
Spins are arranged on a square lattice (x � y plane) of size L ⇥ L. The time evolution is a stroboscopic
sequence of random Clifford unitaries (colored rectangles) acting on plaquettes, and layers of random
local projections (diamond symbols) acting on single spins. Different colors identify different unitary
layers (see Eq. (4.22)).

The unitary operations are given by random gates acting on four neighboring sites and structured in a
brick-layer pattern. These gates have a periodic space-time pattern: depending on the value of the discrete
time t, the operations are padded in the x and y directions. Given the elementary gate:

U(x, y, t) ⌘ U(x,y),(x+1,y),(x,y+1),(x+1,y+1)(t), (4.22)

4The choice of low-entanglement state is unimportant for our purposes, as the stationary regime is independent of the initial
state.
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each unitary layer is given by:

U(t) =

Lx/2Y

x=1

Ly/2Y

y=1

U(2x � rx(t), 2y � ry(t), t) (4.23)

rx(t) =

(
1, if t mod 4 = 1, 2

0, otherwise,
(4.24)

ry(t) =

(
1, if t mod 4 = 0, 1

0, otherwise.
(4.25)

The different shifts guarantees that the dynamics correlates all spins. The above operators act linearly on
the state:

| (kt; t + 1)i = U(t)| (kt; t)i, (4.26)

and generate entanglement throughout the system.
Measurements are randomly picked with probability p throughout the circuit. Together with the random

unitary gates, they are responsible for the stochastic variable kt in Eq. (4.26), which fix the trajectory as it
labels both the type of unitary gates, and of space-time measurement events. (In practice, this can be though
as a tensor with O(L2) elements.)

Given an evolution up to time T , for a square lattice of side L, the average number of measurements in
the circuit is the fraction Nmeas = pL2T , where 0  p  1. These operations induce a non-linearity in the
dynamics, as the wave function is renormalized after each collapse:

| (kt; t)i 7! | (kt; t + 1)i =
P↵| (kt; t)i

||P↵| (kt; t)i||
. (4.27)

In the last equation, ↵ is a multi-index label of the measurement type and of the measurement position. In
this Section we consider the following rank-1 and rank-2 projective measurement (see Fig. 4.7):

P (1)
(x,y) =

1 ± �z

(x,y)

2
, (4.28)

P (2)
h(x1,y1),(x2,y2)i =

1 ± �z

(x1,y1)�
z

(x2,y2)

2
. (4.29)

Here the single site measurement Eq. (4.28) acts on site (x, y), while Eq. (4.29) acts on neighboring sites
(x1, y1), (x2, y2) and project the state onto a Bell pair. Furthermore, the dynamics can be tailored condi-
tionally on the measurement outcomes. In the present setting, we consider only unconditioned measurement
layers, as the dynamic of entanglement for stabilizer states, is unaffected by the measurement outcomes. To
obtain larger system sizes we restrict to stabilizer states, so that Gottesmann-Knill theorem and the Hamma-
Ionicioiu-Zanardi theorem can be used (see Sec. 4.2).

For each trajectory, we compute the entanglement entropy as a function of time. Given a bipartition of
the system A [ B, the entanglement entropy is defined as the Von Neumann entropy of the reduced density
matrix ⇢A(kt; t) = trB| (kt; t)ih (kt; t)|:

SA(kt) = �trA⇢A(kt; t) log ⇢A(kt; t). (4.30)

This quantity is an operational measure of entanglement, and in the present setting, serves as an order
parameter characterizing distinct dynamical phases. The latter are a consequence of the competing ten-
dencies of the unitary evolution and the local projective measurements, whose balance is controlled by the
rate p. A qualitative understanding of these dynamical phases is captured in the extreme limits [10–12].
When p ⇠ 0, the evolution is largely unitary and the system is driven toward generic ("infinite tempera-
ture") wave-functions. For any given basis, the number of components of the Hilbert space required to
sensibly capture this stationary regime scales exponentially with the subsystem volume, thus resulting in
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FIGURE 4.7: Local projection operator employed in the two dynamics.

an extensive entanglement entropy SA(kt) / vol(A). On the other hand, when measurements are frequent
p . 1, the projections impede information spreading beyond arbitrary distant regions of the system. In this
regime, spins are correlated on a length-scale proportional to the domain of the projective measurement. As
a consequence, the stationary wave-function is localized in a smaller subspace, resulting in an entanglement
entropy scaling with the area of the subsystem boundary SA(kt) / area(@A). Finally, entanglement entropy
is able to capture also a transition point between the aforementioned volume-law and area-law phases (see
Sec. 4.4.2).

We are interested in the average values of the late time t ! 1 over many realizations for the hybrid
circuits

SA(p, L) = lim
t!1

SA(kt) = lim
t!1

Z
Dµ[kt]SA(kt), (4.31)

where we denote as B the average of a given quantity B over the trajectories. In practice, we wait for
the stationary regime up to times t ⇠ O(L2), when the time evolution fluctuation of the entanglement
are contained. We conclude with two remarks: (i) the path integral in Eq. (4.31) is discrete and hence
convergent, and (ii) the average density matrix ⇢ave = ⇢A(kt) always presents a volume-law compatible
with that of thermal systems [10].

4.4.2 Entanglement dynamical phases and universal criticality

We simulate the model in Sec. 4.4.1 and compute the entanglement entropy averaged over N = 104 circuit
realizations for each system size and each measurement rate considered. We consider periodic boundary
conditions and consider a bipartition for strips between NA = L ⇥ LA and NB = L ⇥ (L � LA). The latter
choice allows us to isolate boundary contributions and neglect effects due to corners. We vary both L and
LA and store, after convergence is reached, the stationary value of the entanglement entropy S(p, LA).

We have checked, but not reported here, that in the stationary regime our results are independent of the
initial state chosen. Below we separately discuss the numerical results for rank-1 and rank-2 measurement
considered (see Sec. 4.4.1). We find that for both protocols, a volume-law phase is separated by an area-law
phase via a second-order phase transition (at a point pc which depends on the projector operator used). This
point exhibits a universal behavior, in the sense that the computed correlation length critical exponents are
compatible in the two cases within one error bar.

Rank-1 measurements

We consider the local projectors P (1)
i (cfr. (4.28)). We simulate for various p 2 [0, 1), expecting a volume-

law average entanglement entropy for p ' 0 and an area-law for p . 1. The case p = 1 is fine tuned, as
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FIGURE 4.8: Entanglement for various linear system sizes L and for various rates p, with LA = L/2.
We can see that the values p < 0.54 present a volume-law entanglement S(p, LA) / L2

A, while
for values p > 0.54 we have a quantum Zeno phase, with entanglement saturating to an area-law
S(p, LA) / L. The line pc = 0.54 characterize the critical point, which exhibits a scaling S(pc, LA) /
L log(LA). The slope for a volume-law phase is provided in blue to guide the eye; this is quantitatively
accurate for purely unitary dynamics. All error bars are smaller than the size of the symbols.

the local projections applied to each sites project the state after each time step in a product state, hence not
considered here.

In Fig. 4.8 (top panel) we show the average entanglement entropy at half-system S(p, LA = L/2)
for various values of system sizes L and different measurement rates p. Here, errorbars are present, but
are smaller than the size of the markers; hence they are undistinguishable by the markers. Since in two
spatial dimensions the area-law is proportional to the entanglement cut length LA, it is instructive to analyze
S(p, LA)/L, as this quantity saturates to a constant for an area-law phase and scale linearly with the system
size in the volume-law phase. In Fig. 4.8 (bottom panel) we plot S(p, LA)/L for LA = L/2. In the figure,
it is possible to identify two distinct scaling regimes: For p . 0.54, the entropy increases linearly with the
volume of the system. For p & 0.54, after an initial growth for small sizes, the entropy saturates to a size-
independent value. These results are expected from our previous discussion, except for the exact location of
the critical point, which is extracted from a careful finite-size scaling analysis (presented below).

Furthermore, in order to gain more information on the critical regime, we investigate the ratio S(p, LA)/L
for a fixed system size, and varying the subsystem dimension. Specifically, we consider a lattice with side
of length L = 64, and consider a subsystem of dimension NA = L⇥LA, with LA = 4, 8, . . . , L/2. Also in
this case, our simulations distinguish between the volume-law, area-law, and critical regimes, as presented
in the Main panel of Fig. 4.9. To clearly characterize the critical line and its scaling, in the inset of Fig. 4.9
we plot the results in a semi-logarithmic scale. Our data strongly support scaling at the transition of type
S(pc, LA) / L ln LA.

As remarked earlier, a correction of this kind has been, at present, observed only in Fermi liquids and
in U(1) gauge field coupled with matter. For Fermi liquids, the origin is hidden in the peculiar Fermi
surface of the models [84, 88, 89], and the entanglement scaling can be obtained analyzing the entanglement
Hamiltonian. Similarly, the scaling of entanglement of critical spin liquids (U(1) gauge fields coupled to
fermions), has been observed numerically in Ref. [87]. The authors suggest this may be related to the
fermionic matter of the theory, and their Fermi surface. In the present setting, the appearance of logarithmic
corrections / L ln LA is puzzling as: (i) the transition point is out-of-equilibrium, (ii) the system does not
transparently have a Fermi surface. We postpone a discussion on the emergence of this scaling at the end of
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FIGURE 4.9: (Main) Stationary entanglement entropy near the critical point as a function of LA. To
spot the correct scaling, we divide the entanglement entropy by the uncut system size S(p, LA)/L.
Clearly one can distinguish three regimes: one super-logarithmic (volume-law), one logarithmic (crit-
ical point), and one sub-logarithmic (area-law). (Inset) Scaling of entanglement entropy close to the
transition in logarithmic scale. To guide the eye, we plot the fitted log LA for the ratio of interest. All
error bars are smaller than the size of the symbols.
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FIGURE 4.10: Finite size analysis for the model of interest. The landscape of the residual is plotted
for a suitable range of ⌫ and pc considered in the FSS. The orange star locate the optimal parameters
⌫ = 0.67(1), pc = 0.54(1).

this section.
To access the correlation length critical exponent, we perform a finite-size scaling analysis (FSS) around

the critical point. To compare with the literature in (1+1)-d HRC and the critical exponents of percolation
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FIGURE 4.11: Data collapse for the hybrid circuit with rank-1 projective measurements. Here
pc = 0.54(1) and ⌫ = 0.67(1). In the inset, we present a closer look on the critical point.

theory, we use the scaling ansatz:

S(p, LA) � S(pc, LA) = F ((p � pc)L
1/⌫

A
). (4.32)

Specifically, given the scaling variables:

xdat(pc, ⌫) = (p � pc)L
1/⌫ , (4.33)

ydat(pc) = S(p, L) � S(pc, L), (4.34)

we implement polynomial fits for different degree polynomials and different subsets of system sizes. Given a
fixed polynomial Pm(x) of degree m and given a subset of lengths {L1, L2, . . . , Lk}, the best fit is obtained
minimizing the normalized least-square distance between the data and the polynomial computed on the
scaling variable xdat:

" =

sP
i
|y2

dat(i) � P 2
m(xdat(i))|P

i
y2

dat(i)
. (4.35)

Our final results are obtained averaging over different values of the degree m and different subsets of
system sizes; similarly, the error is the propagated error. In Fig. 4.10 we present the landscape of the residual
for the optimal fit varying ⌫ and pc. The estimated critical parameters ⌫ = 0.67(1) and pc = 0.54(1), give
us the data collapse in Fig. 4.11, presented in both linear and logarithmic scale.

Let us conclude this subsection by comparing our results with the critical exponents of percolation
theory. If a quantum-to-classical similarity has to hold in higher dimension (with respect to the results of
(1+1)-d HRC), we should test our findings against 3D percolation on a cubic lattice. Here the correlation
length critical exponent is ⌫3D

perc = 0.877(1), more than 30% different from our estimate. Consequently, this
quantum critical point is sensibly different from the percolation one for the same space-time dimension.

4.4.3 Rank-2 measurements

These circuits have local projectors P (2)
hi,ji (cfr. (4.29)). In this case, the measurement projects the neighboring

qubits into a Bell pair. We proceed in full analogy with Sec. 4.4.2. In Fig. 4.12 we show the bare data for
the circuit. We see that for p . 0.84 the system displays a volume law, whereas for p > 0.84 the system
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FIGURE 4.12: Entanglement for various linear system sizes L and for various rates p, with LA = L/2.
We can see that the values p < 0.84 present a volume-law entanglement S(p, LA) / L2

A, while
for values p > 0.84 we have a quantum Zeno phase, with entanglement saturating to an area-law
S(p, LA) / L. The line pc = 0.84 characterize the critical point, which exhibits a scaling S(pc, LA) /
L log(LA). The slope for a volume-law phase is provided in blue to guide the eye; this is quantitatively
accurate for purely unitary dynamics. All error bars are smaller than the size of the symbols.

shows an area law. In the vicinity of the critical point, we investigate up to L = 64 to benchmark and check
this analysis, as reported for SA/L in Fig. 4.13.

We perform a finite-size analysis analogous to the previous subsection. The landscape of the residual
Eq. varying the parameters pc and ⌫ is plotted in Fig. 4.14.

The critical point in this case is shifted to higher values (the estimated pc = 0.84(1)). This is not a sur-
prise, as the rank-2 projectors have less disentangling power than the correspondent rank-1 measurements,
and the critical point is affected by changes in the microscopic physics of the system. Nevertheless, the uni-
versal information contained in the critical exponent is preserved, as we estimate ⌫ = 0.68(1) (see Fig. 4.15
for the data collapse). This robust check confirms our previous analysis, in particular the distinction between
this critical point and the percolation theory one.

4.4.4 Discussion and open questions

The obtained numerical results leave us with open questions. To which, if any, universality class do the
measurement induced critical points belong? For D > 1 hybrid quantum circuits, is there a classical
effective model or any mean-field theory? Which is the origin of the area-law violation at the critical point?
We conclude this subsection addressing these issues with speculative arguments based on our numerical
observations.

Our estimate of the critical exponents (mutually compatible within %2 error in both the considered
models), suggest both critical points belong to the same universality class. However, we do not have enough
information to fully characterize the nature of such a universality class. A naive comparison with D = 3
classical percolation theory rule out a quantum-to-classical analogy between entanglement and percolation
in (2+1)-d circuits. In fact, our estimated critical exponent ⌫ ' 0.67 is incompatible from the ⌫perc ' 0.87
of percolation theory in 3D.

A key feature here is that the critical point exhibits an area-law violation. Such violation is common to
gapless fermionic systems, such as free theories and Fermi liquids. It is however very unusual for spin sys-
tems: in these cases, such violations to area-law contributions are typically associated with the emergence of
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FIGURE 4.14: Finite size analysis for the model of interest. The landscape of the residual is plotted
for a suitable range of ⌫ and pc considered in the FSS. The orange star locate the optimal parameters
⌫ = 0.68(1), pc = 0.84(1).

an underlying U(1) gauge theory descriptions, with emergent fermionic excitations responsible for the log-
arithmic corrections [? ]. We note that some classes of these gauge theories - directly connected to CP (N)
models - have been reported to have critical exponents compatible with the one observed here [85]. This
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FIGURE 4.15: Data collapse of hybrid circuits with rank-2 projective measurements. Here pc =
0.84(1) and ⌫ = 0.68(1). The inset shows a closer look to the critical point.

analogy in terms of entanglement scaling suggests that either the present critical regime has no-equilibrium
analog, or that emergent fractionalization of quantum numbers might be taking place. The formulation of a
rigorous statistical mechanics mapping as done in the (1+1)-d case, or the investigation of gauge-invariant
quantum circuits may resolve this issue.

From a complementary, microscopically oriented viewpoint, the logarithmic area-law violation we ob-
serve may be justified from the stabilizer size distribution. In one-dimensional systems, this quantity is
defined in terms of the length of stabilizers, i.e. the distance between the edge Pauli matrices of a Pauli
string. This has been related to entanglement entropy in Ref. [11, 13], where the authors deduce the follow-
ing scaling in one spatial dimension:

S1+1d

A
(p, L) =

8
><

>:

↵(p) log L + �(p)L p < pc,

↵(p) log L p = pc,

↵(p) log ⇠ p > pc.

(4.36)

Heuristically this argument extends to two spatial dimension, with the important caveat that here, for lattice
models, a clear definition of stabilizer area distribution is missing. (It is likely that corner effects may
roughen a proper scaling limit). Nonetheless, from our numerical data we conjecture this is the case, and
correspondingly the entanglement entropy behaves as:

S2+1d

A
(p, L) =

8
><

>:

↵̃(p)L log L + �̃(p)L2 p < pc,

↵̃(p)L log L p = pc,

↵̃(p)L log ⇠ p > pc,

(4.37)

with ↵̃ and �̃ system-size independent. We leave for future work elaborating a proper definition of the
stabilizer area and its implication on the hybrid quantum circuits dynamics.

4.4.5 Conclusion

We investigated the measurement-induced criticality in two-dimensional hybrid quantum circuits generated
by Clifford random unitary gates. Our findings reveal that the entanglement transition separating area and
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volume-law phases present universal features: those are signaled by the correlation length critical exponent
being insensitive to the choice of the measurement, and by the same functional form of the entanglement
entropy at criticality, showing logarithmic violations of the area-law. This universality class is distinct from
that of 3D percolation theory.

Concerning the nature of the critical point, at equilibrium, the entanglement scaling we report has been
previously observed only in systems with fermionic excitations, such as Fermi liquids and U(1) gauge
theories coupled to fermionic matter. Recently, monitored (2+1)D fermionic systems have been reported in
Ref. [33], where a stable L log L phase was found. It would be interesting to investigate monitored gauge-
invariant (2+1)D circuits, where an effective lattice gauge field theory may be present, and hence it may
exhibits a similar L log L phase.

For 1+1D Haar random circuits with local unitary gates, there exists a map to a classical statistical
mechanics model in a replica space. A key factor for this analytic analysis, is that the interactions in
this analog lattice are replica index invariant, and hence enable to a simple replica limit to recast physical
quantities (such as the entanglement entropy). We leave for future work to generalize these results in higher
dimension, and check if an emergent gauge symmetry acts on the replica space.

From the computational side, additional insights may be gathered via the computation of other observ-
ables, such as the scaling of corner contributions in the entanglement entropy, and equal-time correlation
functions. Regarding the latter, the challenge is to implement these quantities within the stabilizer formal-
ism, thus preserving the technical advantage over full (Haar) quantum dynamics. Moreover, it would be
interesting to seek the upper critical dimension of the system of interest, and in particular, if a "mean-field"
regime can be captured by a classical statistical mechanics model. In fact, our estimate of the critical ex-
ponent ⌫ ' 0.67 is close to the mean-field limit ⌫MFT = 1/2 of statistical field theory. It is possible that
already HRC in 3+1d saturate this limit, a fact that might be detectable already at modest system sizes due
to its mean-field origin.

We conclude this section by a comparison with the results in Ref. [40], where the authors study a
similar 2+1D quantum circuit, and report a different set of critical exponents (for instance the correlation
length critical exponent is ⌫ ' 0.8). We attribute the differences to the limited sizes considered in their
paper. In fact, in our analysis, the inclusion/exclusion of smaller system sizes in the finite size scaling gives
considerably different results. In particular, restricting the finite size analysis to the same sizes L  32 we
find a correlation length critical exponent compatible to the one they report.
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4.5 Measurement-induced entanglement transition in the monitored quan-
tum Ising chain

In this section we discuss the Ising chain coupled to a monitoring environment.

H
�ni�t

d�i�ni

�ni = ni � �ni�t

��n2
i /2

He�

(a)

(b)

�ni�t

dNini

FIGURE 4.16: Cartoon of the monitored Quantum Ising Chain. (a) Quantum state diffusion protocol:
on each lattice site a two-level system (Ising spin) interacts with its neighbors and is subject to a weak-
continuous measurement of the up-polarized state. (b) Quantum jump protocol: the spins in the chain
interact through a non-Hermitian Hamiltonian. Occasionally a quantum jump take place, projecting the
measured degree of freedom in the up-polarized state. The no-click limit corresponds to post-selecting
only trajectories without jumps. (See text for details).

4.5.1 Model and Measurement Protocols

We consider a one dimensional Quantum Ising chain with Hamiltonian

H = J
L�1X

i=1

�x

i �
x

i+1 (4.38)

with open boundary conditions, evolving under the competing effect of its own unitary dynamics and the
measurement of the up-polarized state ni ⌘ (�z

i
+ 1)/2 = |1ih1| (pictorially illustrated in Fig. 4.16). Here

�↵ are the Pauli matrices. We now introduce the two measurements protocols that will be considered in this
work, namely the quantum state diffusion and the quantum jumps with post-selection, corresponding to the
non-Hermitian Hamiltonian.

Stochastic Quantum Dynamics with Continuous Monitoring

Due to the monitoring, the evolution is captured by quantum trajectories | (~⇠t)i which follow the quantum
state diffusion (QSD) equation

d| (~⇠t)i = �iHdt| (~⇠t)i +
LX

i=1

(ni � hniit)d⇠
i

t| (~⇠t)i

� �

2

LX

i=1

(ni � hniit)
2dt| (~⇠t)i. (4.39)
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(See Appendix 4.6.1 for a brief derivation of the above stochastic Schrödinger equation). The first term in
Eq. (4.39) represents the unitary evolution, while the remaining encode the noise effects. The d⇠i

t are Îto
increments of a Wiener process ~⇠t = (⇠1t , ⇠2t , . . . , ⇠L

t ), responsible for the stochastic nature of the trajectories,
with zero mean d⇠i

t
= 0 and fulfilling the exact property d⇠i

td⇠
j

t
= �dt�ij . The last term in Eq. (4.39)

describes a deterministic back-action from the measuring environment.
We note the presence of a feedback mechanism in Eq. (4.39), as the noise contributions couple to the

fluctuations of the measured operator �ni = ni � hniit where h�it = h (~⇠t)| � | (~⇠t)it is the average over
the quantum state. The role of this feedback is to preserve the norm of the state (and any of its cumulant)
for any realization of the noise.

Recalling the general discussion on the difference between conditional and average states (see Sec. 4.1),
we comment on the average state following the Lindblad master equation and on the quantum trajectories
being unravelling of the latter. In the present setting, the conditional state is ⇢t(~⇠t) = | (~⇠t)ih (~⇠)t|, while
the mean state is

⇢t =

Z
D~⇠tP (~⇠t)| (~⇠t)ih (~⇠t)| (4.40)

with P (~⇠t) the probability distribution of the noise. Despite the conditional state is always pure, the mean
state is mixed. A simple Îto calculus computation shows that the average state follows the Lindblad master
equation

d

dt
⇢t = �i[H, ⇢t] � �

2

X

i

[ni, [ni, ⇢t]]. (4.41)

This difference is crucial, and highlights how the two states ⇢t and ⇢t(~⇠t) provide rather different information
on the statistical properties of the system.

After this digression, we introduce the main observable of interest: the (von Neumann) entanglement
entropy [117–120]. Given a partition A [ B, the (conditional) reduced density matrix ⇢A(~⇠t) = trB⇢(~⇠t)
encodes the bipartite entanglement. The entanglement entropy is defined as

S(~⇠t) = �trA

h
⇢A(~⇠t) ln ⇢A(~⇠t)

i
. (4.42)

We note that this is a well defined measure of entanglement provided that the overall state is pure, in which
case it yields the amount of Bell pairs that can be distilled from the quantum state. This is not the case for an
overall mixed state, such as the averaged state, where also classical correlation enters into this quantity [121].
For this reason, throughout this Section we only consider the conditional state and the conditional average
of the entanglement entropy. To simplify the notation, we furthermore omit the conditional specification.
After evolving the state under Eq. (4.39), we compute the entanglement entropy. Its average is given by

S =

Z
D~⇠tP (~⇠t)S(~⇠t), (4.43)

as well as its full probability distribution is

P (St) =

Z
D~⇠tP (~⇠t) �

⇣
S � S(~⇠t)

⌘
(4.44)

Throughout this Section we set J = 1 and study the problem by varying the strength of the measurement �
and for different system sizes L.
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Non-Hermitian Hamiltonian

When the measurements act occasionally but abruptly on the quantum state, the quantum trajectories are
described by the following stochastic Schrödinger equation

d| ( ~Nt)i = �iHdt| ( ~Nt)i � �

2
dt
X

i

(ni � hniit) | ( ~Nt)i

+
X

i

 
nip
hniit

� 1

!
�N i

t | ( ~Nt)i, (4.45)

where ~Nt is a Poisson process, with �N i
t = 0, 1, (�N i

t )
2 = �N i

t , and �N i
t

= �dthniit. (A derivation of
Eq. (4.45) is given in Appendix 4.6.1). The dynamics generated by Eq. (4.45) preserves the purity of the
state for each trajectory, and gives an alternative unravelling of the average dynamics in Eq. (4.41).

When �N i
t = 0 on every site, the evolution is driven by the non-Hermitian Hamiltonian

Heff = J
L�1X

i=1

�x

i �
x

i+1 � i
�

2

LX

i=1

ni, (4.46)

while when any �N i
t = 1, the last term in Eq. (4.45) dominates and projects the measured degree of freedom

onto the up-polarized state |1ii. The feedback constant / i�
P

i
hniit enters as a renormalization of the

wavefunction within the non-Hermitian evolution driven by Eq. (4.46). In the following we consider a post-
selection of the stochastic dynamics, which arises when, among the experimental runs, we select a portion of
trajectories where measurements do not take place (no-click limit). The evolution is therefore deterministic,
and driven by the non-Hermitian Hamiltonian in Eq. (4.46). In particular, the effect of the environment
enters the imaginary part of Eq. (4.46). Here we notice that this limit captures different aspects of the weak
measurement-induced dynamics compared to the quantum state diffusion. In the framework of quantum
jumps, the latter arise in the limit of infinite measurement events, and hence correspond to an infinite-click
dynamics [122].

The dynamics of this non-Hermitian Hamiltonian has been considered previously in Ref. [34], where
a subradiant transition has been observed in relationship to a quantum-Zeno effect. Here we study its
entanglement properties, namely we evolve the initial density matrix ⇢0 = |00 . . . 0ih00 . . . 0| according to

⇢(t) =
e�iH

†
e↵ t⇢0eiHe↵ t

Tr
⇣
⇢0eiHe↵ te�iH

†
e↵ t

⌘ , (4.47)

where the denominator take into account the term proportional to �dt
P

i
hniit in Eq. (4.45). Then, given

a partition A [ B, we construct the reduced density matrix ⇢A(t) = trB⇢(t) which encodes the bipartite
entanglement. As stressed before, the non-Hermitian Hamiltonian provide a deterministic protocol, hence
the entanglement entropy is deterministic

S(t) = �trA [⇢A(t) ln ⇢A(t)] . (4.48)

To explore the stationary regime, in order to avoid residual dynamical oscillations, we consider

S(1) ⌘ lim
t!1

1

t � tsat

Z
t

tsat

dsS(s). (4.49)

As for the monitoring case we make use of the Jordan-Wigner mapping to write down the non-Hermitian
Ising model in Eq. (4.46) in terms of a quadratic fermionic model (see Appendix 4.6.2).
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FIGURE 4.17: Dynamics of the entanglement entropy averaged over N = 2000 trajectories for differ-
ent values of the measurement strength �, different system sizes L and fixing LA = L/4. (a-c) We see
a logarithmic growth in time of the entanglement (note the log scale for the time axis) with a saturation
to a size-dependent plateau, for � < 4 and a much slower growth to a value independent from system
size, for � > 4.

4.5.2 Results

In this section we present the results of the numerical simulations for the quantum state diffusion and the
non-Hermitian Hamiltonian. After discussing the entanglement growth within both paradigms, we compare
the entanglement scaling in the stationary state. Finally, we investigate the entanglement statistics of the
quantum state diffusion protocol, and relate it to the non-Hermitian results.

Entanglement Growth

We start considering the initial state | 0i = |00 . . . 0i and evolve the system according to the QSD protocol
defined in Eq. (4.39). This setup is suitable to investigate the entanglement generation in the system, as
the initial state has zero entanglement being a product state. (We have checked that our results are robust
against a different choice of initial product state.) We make use of the Jordan-Wigner mapping to write the
monitored Ising model as a quadratic model of spinless fermions, which can be solved efficiently. (Details
on the free fermion techniques, and on the numerical implementation are given in Appendix 4.6.2). For the
computation of entanglement, we choose a subsystem A of LA contiguous sites. The average entanglement
evolution is shown in Fig. 4.17. For small to intermediate values of � (see panels a-c) we find a logarithmic
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FIGURE 4.18: Entanglement dynamics for the non-Hermitian Hamiltonian for different values of the
measurement rate � and different system sizes. For small � (panel a) we see a logarithmic growth in
time and a saturation to a plateau that depends on system sizes. For large � (panel b) the entanglement
rapidly saturates to a value that does not depend on size. Approaching the transition point we see strong
oscillations in the dynamics.

growth in time of the entanglement,

S(t) ⇠ ln t, (4.50)

which ultimately saturates at times tsat ⇠ L/�. It is worth emphasizing that already a small monitoring rate
� is enough to give rise to a non-trivial entanglement dynamics compared to the isolated system oscillation
(generated by H =

P
i
�x

i
�x

i+1). In other words the interplay between measurements and unitary evolution
can increase the entanglement production, at least in a certain region of the parameters, as also noted in
Ref. [34]. However, upon further increasing the measurement rate we see a substantial change of the entan-
glement growth which already for � = 4 shows a rapid saturation to a plateau that is almost independent
from the size, a trend that continues for larger values of �.

The results of the entanglement dynamics for the non-Hermitian Ising model (cfr. Eq. (4.48)) are given
in Fig. 4.18. For small values of � (panels a-c), we see that the entropy exhibits an overall logarithmic
growth, which resembles the result for the QSD protocol, but has the important difference of exhibiting
residual oscillations which dress both the growth and the saturation regimes. Upon further increasing the
measuring strength � the entanglement dynamics in the non-Hermitian case displays a sharp transition
towards a regime characterized by a fast approach to a stationary value, with no oscillations. Our numerics
locate the boundary between these dynamical regimes around � ⇠ 4, an estimate compatible with what
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FIGURE 4.19: Stationary-state entanglement entropy as a function of the length of the chain. (a)
Average entanglement entropy for the QSD protocol. (b) Long-time entanglement entropy for the non-
Hermitian dynamics. In both cases we see a transition from a logarithmic critical scaling, for small �
to an area law (constant) scaling at large �. Different curves in the two panels correspond to increasing
values of �, from � = 0.25 (top curve) to � = 6 (bottom curve) with a �� = 0.25.

found for the QSD protocol. As we will discuss in the next section we can understand the origin of this
sharp transition by looking at the spectral properties of the non-Hermitian Hamiltonian.

Entanglement Scaling and Effective Central Charge

As we have seen, at long enough times the entanglement reaches a stationary value in both protocols. We
first discuss the scaling of this stationary entanglement with system size. This usually provides key insights
on the properties of the system at long-times. To this extent we chose a subsystem of LA = L/4 contiguous
spins and plot in Fig. 4.19 the long-time entanglement as a function of L and different values of �.

For the quantum state diffusion protocol, we can clearly distinguish a regime of logarithmic entangle-
ment growth with system size for small �, which eventually evolves into a much weaker dependence, an
almost constant plateau for large measurement rates (see Fig. 4.19 (a)). As we are going to discuss further
below those two regimes are separated by a sharp entanglement transition.

We note that a logarithmic scaling of the average entanglement in an extended region of parameters is
a particularly intriguing result which was obtained before in free-fermion models with a continuous U(1)
symmetry [32] and more recently in connection with a BKT transition [36, 92]. Here we find this result for a
model which only features a discrete Z2 symmetry and whose ground-state would show logarithmic scaling
of the entanglement only at the critical point. This suggests that a different mechanism, not directly related
to the microscopic symmetries of the problem, could be behind the origin of this seemingly critical phase.

Interestingly, the finite-size scaling of the entanglement entropy for the non-Hermitian Hamiltonian
shows a behavior which is qualitatively similar to the QSD protocol, as we show in Fig. 4.19 (b), including a
logarithmic scaling for small � and an area-law (constant) scaling for large measurement rates, separated by
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a sharp transition. We also note that the two scaling regimes are connected by a finite-size crossover, absent
in the stochastic QSD protocol, whose characteristic scale we found to diverge at the transition (not shown).

For equilibrium quantum critical systems the prefactor of the logarithmic scaling of the entanglement
entropy is controlled by the central charge of the associated Conformal Field Theory(CFT) [117], a universal
quantity which roughly measures the number of degrees of freedom in the CFT. Following this analogy
Ref. [32] introduced an effective central-charge for an XX spin-chain under continuous monitoring, which
turned out to be a non-universal function of the measurement rate. Here we follow this route and define an
effective central charge for both the QSD protocol and the non-Hermitian Hamiltonian by fitting the data in
Fig. 4.19 according to the ansatz

QSD S =
1

3
cQSD(�) ln L + a ,

He↵ S =
1

3
cHe↵ (�) ln L + b .

(4.51)

Here a and b are two system-size independent quantities.
We plot the result in Fig. 4.20 and find that c(�) decreases with � and, quite remarkably, vanishes for

both protocols around the same value of measurement strength �c ' 4, that we therefore establish as critical
value for the entanglement transitions between logarithmic and area law regimes. Our results are consistent
with the unbiased fit on the region � > 4, which, for the investigated values, is compatible with zero
within errorbar. Despite this similarity we notice that the effective central charge shows a rather different
dependence from � in the QSD and in the non-Hermitian Hamiltonian protocols. In particular, a direct
comparison in Fig. 4.20 shows that the effective central charges coincide at small and large values of �,
while deviate in a region before the critical point. Here the non-Hermitian effective central charge turns out
to be larger than the one associated to the QSD protocol, a point on which we will come back in the next
section.

Before closing this section we note that many of the properties found for the entanglement dynamics
of the non-Hermitian Hamiltonian can be naturally understood in terms of the spectral properties of the
non-Hermitian Ising model in Eq. (4.46). In fact this can be easily diagonalized once written in fermionic
language [34, 123, 124], and takes the form

He↵ =
X

k>0

⇤k (⌘̄k⌘k + ⌘�k⌘̄�k) + E0, (4.52)

where ⌘̄k, ⌘k are fermionic operators obtained from a non-Hermitian Bogolyubov rotation, E0 is an additive
constant fixing the energy zero, and ⇤k are the quasiparticle energies. We note that these are in general
complex, as the model lacks any PT symmetry and read

⇤k = 2

r
1 � �2

16
+ i

�

2
cos k (4.53)

The non-Hermitian Ising model features a subradiance transition at a critical value of the measurement
rate, given exactly by �c = 4, at which the state with smallest imaginary part changes in a non-analytic
way [34]. For small � < �c the imaginary part of the spectrum in Eq. (4.53) is gapless and, consistently,
the correlation functions in this phase decay as a power-law [124], a result which is at odds with a model
possessing only a discrete symmetry.

From this point of view the logarithmic scaling of the entanglement entropy can be naturally understood,
since the entire phase � < �c has soft-modes with small quasi-degenerate lifetime, which are responsible for
the slow growth of the entanglement. On the other hand the real-part of the spectrum is gapped for � < �c,
leading to residual oscillations in the entanglement dynamics.

Above the subradiance transition for � > �c a gap opens up in the imaginary part of the spectrum ⇤k,
which is consistent with the fast entanglement dynamics found in this regime. The correlation functions in
this phase are expected to decay exponentially over a length diverging as � ! �+

c , a fact that can naturally
explain the emergence of a crossover in the finite-size entanglement scaling. We note that in the subradiant
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FIGURE 4.20: Effective central charge as a function of the measurement rate �, for the QSD protocol
and the non-Hermitian dynamics. In both cases we find that c(�) decreases monotonously and vanishes
around �c ' 4, which locates the entanglement transition between logarithmic scaling and area law.
Interestingly the two central charges coincide at small and large values of �, while approaching the
critical point we find the non-Hermitian one to be larger, possibly vanishing at �c in a non-analytic
way.

phase the long-time dynamics is controlled by a pair of states with the smallest non-zero imaginary part.
These in the strong measurement limit coincide with the dark states of the measurement operator, which are
factorized (uncorrelated) eigenstates of the transverse magnetization, therefore justifying the small, system-
size independent entanglement entropy.

We note that the non-Hermitian protocol can be also easily generalised to an Ising model evolving in
presence of a real transverse field h, in addition to the imaginary-one due to the measurement rate. In this
case we expect, from the analysis of the quasiparticle spectrum, that a spectral and entanglement transition
would occurr at a field-dependent rate �c(h). A complete analysis of the dynamics in this case is however
beyond the scope of this work and left for future works.

Finally, the insights on the non-Hermitian Hamiltonian could suggest that an effective field theory de-
scription could be possible for � < �c and that the effective central charge could be computed using field
theory replica techniques [125], which however we do not attempt here. We also note that, in this perspec-
tive, an effective central charge which depends from a parameter in a non-universal way seems very natural,
and in fact several non-unitary field theories have been shown to enjoy this property [48, 126, 127].

Entanglement Statistics

Additional insights are given by the statistical fluctuations of the entanglement in the quantum state diffusion
protocol, a feature that goes beyond the simple average so far discussed and that is encoded in the full prob-
ability distribution, P (St), defined in Eq. (4.44). Concretely, we investigate this distribution at stationarity
and evaluate P (S1) = limt!1 P (St).

As we see in Fig. 4.21, the statistics of entanglement shows a rather rich evolution with �. In particular
we see that in the logarithmic phase (� < �c), the statistics changes dramatically, much more than what one
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FIGURE 4.21: (a-f) Probability distribution of the entanglement entropy for different values of � and
different system sizes. The realization collected for these functions are N = 64000. We see that
upon increasing �, the statistic evolves from a simple Gaussian (panel a-b) to a skewed distribution
(panel c-e), with emergent bimodality. At large �, the distribution is peaked at S1 ' 0 (panel f). The
solid line show the average (blue line) over the trajectories for the quantum state diffusion, and the
stationary value of the non-Hermitian Hamiltonian (orange line). (g-h) Different statistical estimators
hhSii versus system size for different values of �. Note the logarithmic scaling in the L-axis.

could have guessed from the average value, whose dependence from � can be reabsorded in a renormal-
ization of the central charge. For small values of the measurement rate, � . 1 (panel a), the entanglement
distribution is a normal Gaussian which broadens asymmetrically for � ⇠ 2 (panel b) and develops an
emergent bimodality as the critical point �c is approached (panels c-e). Specifically we see that already for
� = 2.75 a secondary peak, for lower values of the entanglement, starts to emerge. Upon further increas-
ing � we see a transfer of weight between the high-entanglement and low-entanglement peaks, with the
latter ultimately becoming the dominant one as the system enters the area-law phase. Here, for � > �c the
entanglement distribution is strongly skewed and peaked around small values of the entropy.

It is interesting to discuss the size dependence of the histograms, which is rather different depending
on the value of �. In particular, as we show in Fig. 4.21 (g), where we plot the average, median and
typical entanglement for different L and �, we find that for � . 2.5 all indicators scale logarithmically
with L. Instead, Fig. 4.21 (h) shows that approaching the critical point (� = 3.75) and above it (� = 8)
the statistical estimators deviate from each others, a signature of the non-gaussianity of the entanglement
distribution. In the area-law phase for � > �c the scaling of all the statistical proxies considered becomes
independent on the system size.

The emergence of bimodality in the entanglement statistics is an interesting result, which suggests that
within the log-phase the entanglement is not a self-averaging quantity, and that limiting the discussion to
the average value could hide important features of the problem. A similar result was found in the monitored
XX model under QSD protocol [32] and, in Ref. [34] for the statistics of the return probability and the local
transverse magnetization under a quantum jump stochastic protocol. In this latter case it was shown that the
non-Hermitian Hamiltonian captured a secondary peak in the distribution of the relevant observables.

It is therefore interesting to compare the statistical properties of the entanglement in the QSD protocol
with the non-Hermitian Hamiltonian. This comparison is proposed in Fig. 4.21, where we indicate with a
dashed line the long-time entanglement in the non-Hermitian case and with a blue line the average entan-
glement of the QSD protocol. We see that indeed the non-Hermitian Hamiltonian provides a good proxy for
the average entanglement both for small �, when entanglement fluctuations are gaussian, as well as for large
� when the statistics is dominated by small values of the entanglement entropy. For intermediate values of
� instead, when the statistics becomes strongly bimodal and fluctuations due to the noise are more relevant,
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the entanglement content of the non-Hermitian Hamiltonian is systematically larger than the average, re-
flecting the atypical nature of the no-click process. This is not surprising in retrospect, as the QSD protocol
contains randomness which is expected to decrease the entanglement content of the system as opposed to the
translational-invariant non-Hermitian protocol. We note also that in addition to the leading scaling behavior
of the entanglement, captured by the effective central charge, there is also a non-universal correction to the
entanglement that depends in principle on � and could play a role in the precise comparison between the
two protocols.

4.5.3 Conclusion

In this Section we have discussed measurement-induced criticality in a Quantum Ising chain coupled to a
monitoring environment. We have focused on two different limits of the measurement problem, correspond-
ing respectively to the quantum state diffusion protocol and the no-click dynamics, the latter described by a
non-Hermitian Ising model.

In both cases we found a sharp phase transition in the entanglement properties of the system, as a func-
tion of the measurement rate �. The entanglement dynamics out of an initial product state evolves from
a slow logarithmic growth at small measurement rates to a fast approach to a stationary value at large �.
The stationary state entanglement shows a critical logarithmic scaling with respect to system size, with an
effective central charge which changes continuously with � and vanishes at a critical strength �c, indicat-
ing a transition towards an area-law scaling which we found numerically to coincide in the two protocols.
The existence of an extended critical phase with logarithmic scaling of the average entanglement is par-
ticularly surprising for our Ising model which, differently from others stochastic measurement problems
considered recently in the literature, lacks a continuous symmetry usually associated with gapless critical
behavior. The no-click limit and associated non-Hermitian evolution provides a natural mechanism for this
phenomenology, in terms of a spectral (subradiant) phase transition from a critical phase with gapless decay
modes at small measurements to a gapped area-law phase. We also find important differences between the
two protocols, in particular in the behavior of the effective central charge as a function of the measurement
strength which turns out to be larger in the non-Hermitian case. This effect, which seems to suggest differ-
ent universality classes depending on the specific measurement ensemble, can be understood in terms of a
disentangling effect of the noise.
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4.6 Appendix

4.6.1 Continuous measurements and stochastic Schrödinger equations

This section is an overview of stochastic quantum dynamics in the Hilbert space (see Ref. [95, 122, 128, 129]
for general review). We first introduce the positive-operator value measurements (POVM), which arise nat-
urally when system and environment interact for a finite time. In the limit of weak measurement, the system
evolve through a stochastic Schrödinger equation, the details of which depend on the environment specifics.
We consider two possible choices of system-environment setups which naturally translate, respectively, in
the quantum state diffusion Eq. (4.39) and in the quantum jump equation Eq. (4.45). From the latter, the
non-Hermitian quantum Hamiltonian Eq. (4.46) is obtained through post-selection. These equations corre-
spond to different unravelling of the same master equation, highlighting the independence of the mean state
Eq. (4.40) from the stochastic protocols.

Weak measurements and quantum trajectories

Measurement lies at the core of quantum mechanics. Given a state | i, and an observable O, the von Neu-
mann postulate states that, when a measurement takes place, the wavefunction collapses in the eigenvector
|ni of O corresponding to the measurement outcome on. This can be seen as the transformation

| i 7! | 0i =
Pn| i

||Pn| i|| . (4.54)

Here Pn = |nihn| is the projector to the eigenspace of on (the observable is resolved as O =
P

n
onPn),

and pn ⌘ h |Pn| i is the measurement probability.
These projective measurements are an idealization: they are implicitly instantaneous, and they collapse

a pure state into a pure state. In contrast, real world experiments are imperfect: they require a finite time
of interaction with the system, and in general the outcome state is mixed. Positive operator-value measure-
ments represent a generalization of projective measurements, which are suitable to treat situations where the
interaction time between system and ancilla is comparable to the energy-scale of the system.

Given a set of positive operators En which sum to the identity
P

n
En = 1, it is possible to define the

probabilities pn = tr(⇢En). Differently from the projective case, these operators are not orthogonal, hence
the knowledge of En does not fix the state after the measurement. It is necessary to know a set of operators
An,k such that En =

P
k
A†

nk
Ank (dubbed Kraus operators). Then, the state after the measurement outcome

corresponding to En is

⇢ 7! ⇢0 =

P
k
Ank⇢A

†

nk

tr(⇢En)
. (4.55)

It is clear that in general, given a pure density matrix ⇢, the outcome measurement in Eq. (4.55) is mixed.
The condition to preserve purity is that En = A†

nAn, i.e., there is only one Kraus operator per measurement.
In this case Eq. (4.55) can be recast in a wave-function perspective

| i 7! | 0i =
An| ip
h |En| i

. (4.56)

POVM can be implemented by allowing the system to interact with an ancilla for a finite time, and apply
afterward a projective measurement to the ancilla. The limit when this interaction is small is the weak
measurement, when typically the state of the system is mildly perturbed.

As an example, we consider the toy model of a two-level system | i =
P

n=0,1 cS
n |niS which interacts

with a two-level ancilla initialized in a state |ai =
P

k=0,1 cA

k
|kiA. If their interaction is infinitesimal, the
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unitary evolution of the combined system initialized in | i = | i ⌦ |ai is given by

U(✏) = exp

2

4�i✏
X

j

OS

j ⌦ OA

j

3

5 . (4.57)

After the unitary transformation, entanglement is generated, and the state up to first order in ✏ is given by

| 0i(✏) =
X

m,n

(cS

ncA

m � i✏cent
nm)|niS ⌦ |miA

cent
nm =

X

j

X

n0,m0=0,1

OS

j,n0,nOA

j,m0,mcS

n0cA

m0

Oµ

j,k,k0 ⌘ hk|Oµ|k0iµ, µ = S, A. (4.58)

Rearranging the above equation, the system is given by

| 0i(✏) = ↵(✏)|�0iS ⌦ |0iA + �(✏)|�1iS ⌦ |1iA, (4.59)

where the constants ↵,� and �k are read out matching Eq. (4.58) and Eq. (4.59). If a measurement is now
performed on the ancilla along the z-direction, one obtains

| i =

(
|�0i, with probability p0 = |↵(✏)|2,
|�1i, with probability p1 = |�(✏)|2.

(4.60)

Hence, POVM can be implemented by carefully designing the system-ancilla interaction, the ancilla initial
state, and the projective measurement on the ancilla. To conclude, let us notice that, in the case of two-level
ancilla, the Kraus operator are one for each measurement type. Hence, the measurements are generated by
Ek = A†

k
Ak k = 0, 1. This is a convenient, but not unique, setting to guarantee the purity-preservation

of the state. Furthermore, as stressed, the precise form of the operators Ak depends on the microphysics
of system and ancilla. As we shall see, to derive a stochastic Schrödinger equation it is usually necessary
to expand up to second order in the parameter ✏. (Nonetheless, the above argument is still valid. ) In the
following we shall assume that the Kraus operators (and hence the POVM) are given by the problem, thus
simplifying the discussion.

Quantum state diffusion

We consider the following Kraus operators

A0 =

r
1

2
|0ih0| +

r
1

2
� ✏|1ih1| (4.61)

A1 =

r
1

2
|0ih0| +

r
1

2
+ ✏|1ih1|. (4.62)
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Starting from the state | i = ↵|0i + �|1i, after the measurement the state is in one of the following two
states

|�0i =
A0| i
p

p0
= ↵

✓
|�|2✏+

3

2
|�|4✏2

◆
|0i

+ �

✓
✏(1 � |�|2) +

✏2

2
(�1 � 2|�|2 + 3|�|4)

◆
|1i (4.63)

|�1i =
A1| i
p

p1
= ↵

✓
�|�|2✏+

3

2
|�|4✏2

◆
|0i

+ �

✓
�✏(1 � |�|2) +

✏2

2
(�1 � 2|�|2 + 3|�|4)

◆
|1i, (4.64)

with probability respectively p0 = 1/2 � |�|2✏ and p1 = 1/2 + |�|2✏. The above post-measurement state
can be collected into a compact differential form, by introducing the random binomial variable dW = ⌥✏,
and the operator n = |1ih1|. We have

d| i = | 0i � | i = 2✏2(hni2 � 2hnin)| i

+ dW (n � hni)| i � ✏2

2
(n � hni)2| i, (4.65)

where h�i = h | � | i is the state average. The expression can be simplified by centering the random
variable dW 7! d⇠ = dW � dW , since the average dW = 2�2✏2 = 2hLi✏2 due to the O(✏) unbalance in
the outcome probability. The variance is preserved at leading order d⇠2 = ✏ = dW 2, and the equation reads

d| i = d⇠(n � hni)| i � ✏2

2
(n � hni)2| i. (4.66)

Eq. (4.66) gives one interaction with a single ancilla qubit. In order to derive a stochastic Schrödinger
equation we subsequently couple a series of identically prepared ancillas with the same paradigm. Hence,
Eq. (4.66) is iterated multiple time. Taking the scaling limit, with infinitesimal time step we have

d| (⇠t)i
dt

=
d⇠t
dt

(n � hnit)| (⇠t)i

� ✏2

2dt
(n � hnit)

2| (⇠t)i. (4.67)

Fixing the scaling ✏2 = �dt reduce this equation to

d| (⇠t)i = d⇠t(n � hnit)| (⇠t)i

� �

2
dt(n � hnit)

2| (⇠t)i. (4.68)

This is the quantum state diffusion equation for a two-level qubit.
Let us make some final comments. (i) The scaling ✏ =

p
�dt is typical when dealing with Kraus

operators (for instance, see Ref. [6, 95, 122] for an indepth discussion). This is due to a Markovian approx-
imation, which is assumed to hold for the systems of interest. (ii) The generalization to multiple qubits is
trivial. Recovering the noise terms in Eq. (4.39) require the introduction of L uncorrelated Îto terms d⇠i
with d⇠ = 0 and d⇠id⇠j = �dt�ij . (iii) For the time evolution in the limit dt ! 0, the binomial variable can
be approximated by a Gaussian increment, in the same spirit as obtaining a Wiener process from a random
walk.
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Quantum jumps and non-Hermitian Hamiltonian

We consider the following Kraus operators

A0 = |0ih0| + cos ✏|1ih1| (4.69)
A1 = sin ✏|1ih1|. (4.70)

In this situation, given the state | i = ↵|0i + �|1i, the measurements E0 and E1 are unbalanced, with
probability p0 = 1 � |�|2✏2 and p1 = |�|2✏2, respectively. As in the previous section, we introduce the
operator n = |1ih1|. The state after the measurement is in either of the following states

|�0i = | i +
1

2
↵hni✏2|0i +

1

2
�(hni � 1)✏2|1i

= | i � 1

2
(n � hni) ✏2| (4.71)

|�1i = |1i. (4.72)

In differential form, we have

d| i = �1

2
(n � hni) ✏2| i +

 
np
hni

� 1

!
�N | i. (4.73)

Here �N is a Poisson process: �N = 0(1) with probability p0(p1). Since �N = |�|2✏2, the state is unlikely
to experience a measurement and usually is affected only by the Kraus operator A0. However, when �N = 1,
the second term in Eq. (4.73) dominate the infinitesimal one, and project the state onto |1i. Notice that in
this case �N2 = �N .

Suppose that the system interacts with n ancilla qubits. As previously discussed, the stochastic Schrödinger
equation is given once the scaling ✏2 = �dt is set

d| (Nt)i = �1

2
(n � hnit) �dt| (Nt)i

+

 
np
hnit

� 1

!
�Nt| (Nt)i. (4.74)

This is the so-called quantum jump equation. The first term is a non-Hermitian Hamiltonian, while the
second term is the quantum jump. When the event happens, the state is projected to |1ih1|. It is interesting
to ask how much is the probability that the state does never jump? The probability of this no-click dynamics
for one-qubit is given by

Pno-click = ⇧1

n=0p0 ' |↵|2. (4.75)

Thus, the number of trajectories with no-jump effect is substantial.
We conclude with few remarks. (i) The generalization to many-body is trivial, once L uncorrelated

variables are included, and the Hamiltonian H of the system is added. The final equation for the quantum
jumps is Eq. (4.45). The non-Hermitian Hamiltonian in Eq. (4.46) is recasted when post-selecting the
trajectories without jumps. Notice that the contribution / �dt

P
i
hniit factorize as an overall rescaling

of the wavefunction, and cancels out in the average. (ii) In the situation of a spin-chain, the probability
of no-click dynamics (hence non-Hermitian generated dynamics) depends on the system size. In practice,
one chooses among all the trajectories the portion where no jump has occurred. This post-selection process
is key in investigating non-Hermitian physics in experimental setups. (ii) Both the quantum jump and
the quantum state diffusion equations induce the same Lindblad evolution Eq. (4.41) for the mean state.
This difference highlights how quantum trajectories contain substantial more information than the average
state. Importantly, the non-Hermitian Hamiltonian coincide with the non-coherent term of the Lindblad
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equation (4.41).

4.6.2 Free fermion techniques and numerical implementation

In this section we present a summary of the simulation techniques used in Sec. 4.5. (For a general reference
on the ideas used here, see Ref. [130]). These methods are based on the fermionic representation of the Ising
model, which can be applied also to Eq. (4.39) (Eq. (4.46)), as the noise (non-Hermitian) term preserve the
quadratic structure. We first review the Jordan-Wigner transformation, and explain how the time-evolution
reads in fermionic variables. Due to the Gaussian preservation of both quantum state diffusion and non-
Hermitian Hamiltonian, the state is fully characterized by its two point function. Afterwards, we show
how the entanglement entropy is derived from the correlation matrix. Finally, we give some detail of the
numerical implementation.

Jordan-Wigner mapping

The Jordan-Wigner transformation is defined by

�x

i = Ki(ci + c†

i
), Ki =

Y

j<i

(2ni � 1) (4.76)

ni = c†

i
ci. (4.77)

Here, the string operator Ki ensure the fermionic algebra. For the quantum state diffusion Eq. (4.39), the
dynamics maps to

d| (~⇠t)i = �i
L�1X

i=1

(c†

i
ci+1 + c†

i
c†

i+1 + h.c.)dt| (~⇠t)i

+
LX

i=1

(ni � hniit)d⇠
i

t| (~⇠t)i

� �

2
dt

LX

i=1

(ni � hniit)
2| (~⇠t)i. (4.78)

Instead for the non-Hermitian Hamiltonian Eq. (4.46), we have

d| i = �i
L�1X

i=1

(c†

i
ci+1 + c†

i
c†

i+1 + h.c.)dt| i

� �

2
dt

LX

i=1

ni| i. (4.79)

Within this formalism, if the initial state of the system is Gaussian, then the state is Gaussian at each time
step. In particular, all the observables are encoded in the correlation matrix

Gij =

 
hc†

i
cji hc†

i
c†

j
i

hcicji hcic
†

j
i.

!
(4.80)

In the next subsection, we show how the dynamics can be reduced to the time-evolution of a 2L⇥2L matrix.
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Dynamics in the fermionic formalism

The equation of motion for both the protocol can be written as d| (~⇠t)i = dZt| (~⇠t)i, where dZt is
quadratic in the creation/destruction fields. For the quantum state diffusion

dZt = dt

 
�iH � �

2

X

i

(ni � hniit)
2

!

+
X

i

d⇠i

t(ni � hniit), (4.81)

while for the non-Hermitian Hamiltonian we have

dZt = dt

 
�iH � �

2

X

i

ni

!
= �idtHe↵ . (4.82)

Both these instances can be treated on the same foot, once the operator dZt is specified. From the operator
dZt, it is possible to write down an equation of motion for the correlation matrix Eq. (4.80). (This is obtained
by taking the differential of Eq. (4.80), simplifying the fermionic algebra, and expanding up to order O(dt)).

However, in practical implementation, this method is not the most efficient. A better strategy, which we
follow here, is the route pioneered in Ref. [31]. Since the system is Gaussian, for any t, there exist a unitary
matrix

Ut =

 
Ut V †

t

Vt U †

t
,

!
(4.83)

such that

| it =
1p

| det Ut|
exp

0

@�1

2

X

i,j,k

(Ut)i,k(V
†

t
)k,jc

†

i
c†

j

1

A |0i. (4.84)

This condition is equivalent to finding a unitary transformation that maps the original fermionic fields (ci, c
†

j
)

to a new set (�i,�
†

j
) such that �i| it = 0 for all i. Explicitly, labelling a vector of fermionic field as

c = (c1, c2, . . . , cL),
✓
�
�†

◆
= Ut

✓
c
c†.

◆
(4.85)

From the definition of the correlation matrix and Eq. (4.84), and after few manipulation in fermionic algebra,
we have the relationship

G(t) = Ut

✓
1L⇥L 0L⇥L

0L⇥L 0L⇥L

◆
U†

t
. (4.86)

Hence, the full evolution is encoded in Ut. The equation of motion for this object are easily derived from
Eq. (4.85) and using the annihilation condition �i| it = 0. In practice it can be implemented into two steps.
(i) Integrate the Heisenberg equation of motion between t and t + dt (with initial condition Ut=0 = U0

given)

dUt = 2dZtUt. (4.87)

(ii) Apply a renormalization to guarantee that Ut+dt is unitary (for instance a QR decomposition). This
guarantees that | it+dt is in the form Eq. (4.84) with the operators given in Ut+dt. For concrete details on
the numerical implementation, see Sec. 4.6.2.
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Majorana fermions and entanglement entropy

For a Gaussian state, Wick’s theorem reduce the computation of entanglement from diagonalizing a 2L ⇥2L

matrix to a 2L ⇥ 2L linear problem. For this goals, it is convenient to introduce two species of Majorana
fermions

aj,1 = cj + c†

j
, aj,2 = i(c†

j
� cj). (4.88)

Then the matrix

V =

✓
1L⇥L 1L⇥L

�i1L⇥L i1L⇥L

◆
, (4.89)

transforms the correlation function from Dirac fermions to Majorana W = V GV †. Due to the Majorana
algebra {ai,p, aj,q} = �i,j�p,q, the Majorana correlation can be decomposed into W = 1 + iW̃ . The matrix
W̃ is real and anti-symmetric, and is the key actor in computing any observable. In particular, entanglement
entropy on a bipartition A [ B is obtained by diagonalizing W̃ |A(B), that is restricting the indices of the
Majorana fermions within either partition. If the eigenvalues of W̃ |A are �k, then the entanglement entropy
is given by

S = �
X

k

✓
1 + �k

2
ln

1 + �k

2
+

1 � �k

2
ln

1 � �k

2

◆
. (4.90)

Numerical implementation

The numerical implementation can be adapted to the protocol considered. For the quantum state diffusion,
it is practical to divide the unitary step from the noise term dZt = �iHdt + dT . The Hamiltonian H
can be stored and exponentiated only once, while the noise term dT is diagonal, with elements dTij =
�ij(d⇠i + �dt(2hnii � 1))/2 that needs to be computed repeatedly at each time step.

The resulting evolution then is

Ũt+dt = N e2dT e2iHdtUt, (4.91)

where we have neglected higher order terms O(d⇠dt) (Trotter approximation). The normalization N is
unimportant, as Eq. (4.91) is followed by a QR decomposition Ũt+dt = Qt+dtRt+dt, and by setting
Ut+dt = Qt+dt. As previously discussed, this condition guarantees the state is in the form Eq. (4.84)
and the correlation function is obtained through Eq. (4.86).

For the non-Hermitian quantum evolution, it is sufficient to exponentiate once the operator dZt =
�iHe↵dt and apply it subsequently to generate the evolution

Ũt+dt = N e2iHe↵dtUt. (4.92)

After each time step, the QR decomposition is implemented to normalize the state. In both situations, the
entanglement entropy is computed as described in Sec. 4.6.2.
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