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ADAPTIVE NON-HIERARCHICAL GALERKIN METHODS

FOR PARABOLIC PROBLEMS WITH APPLICATION TO

MOVING MESH AND VIRTUAL ELEMENT METHODS

ANDREA CANGIANI, EMMANUIL H. GEORGOULIS, AND OLIVER J. SUTTON

Abstract. We present a posteriori error estimates for inconsistent and non-hierarchical Galerkin

methods for linear parabolic problems, allowing them to be used in conjunction with very general
mesh modification for the first time. We treat schemes which are non-hierarchical in the sense
that the spatial Galerkin spaces between time-steps may be completely unrelated from one

another. The practical interest of this setting is demonstrated by applying our results to finite
element methods on moving meshes and using the estimators to drive an adaptive algorithm
based on a virtual element method on a mesh of arbitrary polygons. The a posteriori error
estimates, for the error measured in the L2(H1) and L∞(L2) norms, are derived using the

elliptic reconstruction technique in an abstract framework designed to precisely encapsulate
our notion of inconsistency and non-hierarchicality and requiring no particular compatibility
between the computational meshes used on consecutive time-steps, thereby significantly relaxing
this basic assumption underlying previous estimates.

1. Introduction

Computable error estimates are used within simulations of natural and physical phenomena to
ensure that accurate and reliable results are produced as efficiently as possible. For those governed
by systems of partial differential equations (PDEs), such a posteriori computable error estimates
are often employed to drive adaptive algorithms, in which key components of the numerical scheme
such as the computational mesh are automatically modified to focus computational effort in specific
regions where higher resolution is required. Although estimates such as these have been widely
studied, many open questions remain. In particular, although our understanding of error estimation
for elliptic problems is by now rather mature (see [3, 43, 16] for instance), the literature on error
estimation for parabolic or hyperbolic systems is substantially less complete.

Optimal order a posteriori error estimates for linear parabolic problems in the L2(H1) norm
may be proven using direct energy arguments [37, 24]. Although the same arguments provide
an estimate of the (higher order) error in the L∞(L2) norm, the resulting estimators are in fact
typically of suboptimal order. The first a posteriori error estimates in the L∞(L2) norm which were
numerically demonstrated to be of optimal order were derived using duality techniques by Eriksson
and Johnson [28, 29]. The alternative elliptic reconstruction technique, introduced by Makridakis
and Nochetto [35], allows a posteriori error estimates to be derived for the L∞(L2) norm via energy
arguments by introducing elliptic reconstructions of the discrete solution. The reconstruction splits
the error into an elliptic component, which is estimated using existing a posteriori error estimates
derived for an associated elliptic problem, and a parabolic component which satisfies a differential
equation with data which may be numerically verified to be controlable at optimal order; see [34]
for an overview.

However, existing error estimates for parabolic problems in the L∞(L2) norm, and seemingly all
such estimates of the error measured in norms weaker than the L2(H1) energy norm, crucially rely,
to the best of our knowledge, on the assumption that the discrete function spaces are hierarchical.
By this, we refer to the case when the intersection of the finite element spaces used on consecutive
time steps is itself a finite element space offering similar approximation properties. Here we fill this
gap by deriving error estimates for a model parabolic reaction-diffusion problem, in the L2(H1)
norm and the L∞(L2) norm, which do not place this requirement on the spaces. We note that
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2 A. CANGIANI, E. H. GEORGOULIS, AND O. J. SUTTON

unsuitable non-hierarchical mesh modification can lead to divergent numerical methods in the
context of evolution PDEs [27], and the effects of non-hierarchicality in subsequent spatial finite
element spaces for an evolution PDE can therefore introduce new challenges and behaviours. The
a posteriori error bounds presented in this work could eventually be used in understanding such
phenomena further and possibly aid the user in avoiding such scenarios in practical simulations.

The apparently innocuous assumption of hierarchicality is particularly restrictive in practice
and unrepresentative of the general case, as exemplified by the following five scenarios in which
non-hierarchicality naturally appears:

(1) Non-hierarchical refinement or coarsening. A bilinear polynomial space on a rectangular
element has the basis {1, x, y, xy}, yet if this element is refined into two triangular elements
then the discrete space on each may be spanned only by the basis {1, x, y}. The function xy
cannot then be represented on the refined element and the spaces are therefore not hierarchical.
Refining a mesh of squares into a mesh of triangles in the presence of homogeneous Dirichlet
boundary conditions can mean the intersection of the two global finite element spaces is just
the zero function.

(2) Moving meshes. If a mesh node is moved, then piecewise polynomial functions with respect
to the original mesh cannot in general be represented on the modified mesh. Such a situation
arises, for instance, in classical moving mesh and r-adaptive methods [18], and in fluid-structure
interaction problems.

(3) Non-polynomial discrete function spaces. Common non-polynomial discrete function
spaces are naturally non-hierarchical under refinement. For instance, on meshes with polygonal
elements, function spaces are typically directly tailored to the physical geometry of the elements,
often in the form of rational functions or solutions to local boundary value problems and are
therefore not hierarchical.

(4) Boundary conditions. If a non-polynomial essential boundary condition is incorporated into
the space, hierarchicality is lost because the boundary traces of the discrete functions change
when an element adjacent to the boundary is refined.

(5) Domain approximation. Hierarchicality is automatically lost if the mesh only approximates
the problem domain or interior interfaces, so that the boundaries of the mesh change with
refinement [26, 4, 21, 22].

The results we present here tackle challenges (1), (2) and (3) above, with a particular focus on
treating schemes incorporating very general forms of mesh modification. We demonstrate this with
two examples: a conforming finite element method built on a moving mesh (Section 4), and a virtual
element method (Section 5). In the latter example, we also demonstrate the effectivity of the error
estimators to drive a mesh adaptive algorithm exploiting meshes consisting of arbitrary polygonal
elements. Despite the fundamental appeal of using polygonal meshes in adaptive algorithms for
time dependent problems, due to their natural ability to handle coarsening operations by simply
merging arbitrary patches of elements, there does not appear to be any existing literature in this
area, aside from the doctoral thesis of [39].

We remove the assumption of hierarchical spaces in two stages, producing two distinct estimates
for the error component measuring the modification of the discrete spaces between time-steps, given
in Lemmas 3.18 and 3.21 respectively. Firstly, we suppose that the meshes are still hierarchical,
in the sense that one is constructed from the other by coarsening or refining a small number of
elements, even though the function spaces themselves are not. This setting is particularly applicable
to scenarios (1), (3), and (4) above. The form of this estimate mimics that of previous analogous
estimates in the hierarchical setting [32], but with two extra terms which achieve a degree of
‘smallness’ from the fact that they are only active on those few elements which are modified.

Secondly, we consider the case when the meshes may be completely different between time-steps,
thereby incorporating moving mesh schemes (as in scenario 2) or the complete re-meshing of the
domain. The result hinges on the introduction of an elliptic transfer operator (Definition 3.19)
which provides a natural representation on one mesh of a discrete function defined on another,
with respect to the PDE being studied. The key role played by the elliptic transfer operator in the
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analysis is to enable a ‘discrete integration by parts’ to be performed, ultimately replacing a term
in the estimate which otherwise scales sub-optimally with an optimal term.

Although we study this operator in the context of backward Euler time-stepping, its properties
mean that it may be expected to be of more general interest. For example, it has previously been
shown by Bänsch et al. [7, 8] that Crank-Nicolson time-stepping schemes can become unstable
under mesh refinement when the previous solution is projected onto the new mesh. Instead, in [7, 8]
they produce a stable scheme by also transferring the discrete Laplacian of the solution to the new
mesh. This is unnecessary for the elliptic transfer operator, at the expense of solving an additional
elliptic problem for the transferred solution, since the discrete Laplacian of the transferred function
is simply the L2(Ω)-orthogonal projection onto the new mesh of the discrete Laplacian of the
original function.

We first present the estimates in Section 3, in the abstract framework of a general inconsistent
non-hierarchical Galerkin method satisfying certain approximation properties. We then show, in
Section 4, how this translates into the simpler context of a conforming finite element scheme
constructed on a moving (time dependent) mesh, with numerical examples demonstrating the
behaviour of the error estimate.

As a second example, in Section 5 we take a detailed look at how our results apply to a virtual
element discretisation, incorporating adaptive meshes composed of general polygonal elements. The
virtual element method (VEM), introduced in [10], is a generalisation of the finite element method
to meshes containing general polygonal or polyhedral elements. The application of virtual element
methods to time-dependent problems is still in its infancy, with only schemes and convergence
results presented for a model heat equation [42] and a Cahn-Hilliard problem [5]. Instead, virtual
element methods for elliptic problems are already well developed; in particular, there is a growing
literature on a posteriori error estimates and adaptivity [13, 20, 15, 36, 44, 6, 14], which may
be utilised through the elliptic reconstruction framework as described above. Similarly, adaptive
algorithms incorporating agglomeration techniques have been applied by the discontinuous Galerkin
community [9, 25] to efficiently discretise stationary problems on complicated domains from an
initial fine mesh.

Here, for the first time, we exploit polygonal meshes for the adaptive solution of time-dependent
problems by applying our abstract results to an adaptive virtual element method incorporating
general mesh coarsening and refinement. The L∞(L2) and L2(H1) error estimates we present
both appear to be novel. We examine their practical behaviour through a series of fixed mesh
convergence benchmarks and adaptive tests, confirming that they are effective even in challenging
adaptive situations. Moreover, developing the mesh adaptive scheme itself requires the introduction
of various new auxiliary components which may also be of independent interest in other contexts,
such as operators to transfer discrete solutions between meshes which remain computable and
accurate, even when the discrete basis functions themselves are assumed to be unknown.

We conclude with a brief discussion of our results in Section 6.

2. Model problem and notation

For ω ⊂ Rm, with m ∈ N, and functions v, w ∈ L2(ω), we denote the L2(ω) inner product by
(v, w)ω =

∫
ω
vw dx. We further use ‖·‖Wk,p(ω) and |·|Wk,p(ω) to denote the standard norm and

seminorm on the Sobolev space W k,p(ω) for k ≥ 0 and p ∈ [1,∞] (for further details see [1], for
example). In the case of p = 2, we shall denote the L2(ω) norm by ‖·‖ω and the Hk(ω) norm and
seminorm by ‖·‖ω,k and |·|ω,k, respectively. If ω = Ω, the physical domain, then we shall omit the
subscripts ω above.

Let T > 0 and let Ω ⊂ Rd, with d = 2, 3, be a convex polytope. We focus on the model parabolic
problem: find u : Ω× [0, T ]→ R satisfying

ut(x, t)−Au(x, t) = f (x, t) for (x, t) ∈ Ω× (0, T ],

u(x, 0) = u0(x) for x ∈ Ω,

u(x, t) = 0 for (x, t) ∈ ∂Ω× (0, T ],

(2.1)
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with A denoting the second order linear elliptic reaction-diffusion operator

Av = ∇ · (κ∇v)− µv,

where µ ∈ L2(Ω) is such that there exists a constant µ∗ ∈ R with µ(x) ≥ µ∗ ≥ 0 for almost every
x ∈ Ω. We suppose that κ : Ω→ Rd×d is symmetric and positive definite, i.e. there exist constants
κ∗, κ

∗ > 0 such that κ∗|v|2 ≤ v>κ(x)v ≤ κ∗|v|2 for all v ∈ Rd and almost every x ∈ Ω, where |·|
denotes the Euclidean norm on Rd.

Remark 2.1. The results we present can be extended to non-convex domains via the careful ap-
plication of weighted estimates; see, for example, [33, 45]. Furthermore, the non-hierarchicality
introduced by removing the assumption on Ω being a polytope would naturally fit within our frame-
work. Finally, more general boundary conditions can also be treated. We do not pursue these here
to avoid introducing additional (addressable) technicalities.

Let a : H1
0 (Ω)×H1

0 (Ω)→ R denote the bilinear form

a(v, w) = (κ∇v,∇w) + (µv,w),

and let |||v|||2 = a(v, v) denote the norm induced on H1
0 (Ω). We shall also use the notation aω to

represent the bilinear form a with its component integrals taken over the set ω. We observe that
a is continuous in |||·|||, and this norm is equivalent to the H1(Ω) seminorm, i.e. there exists a
constant Cequiv > 0 such that

C−1
equiv|v|1 ≤ |||v||| ≤ Cequiv|v|1, (2.2)

for all v ∈ H1
0 (Ω). Consequently, the Poincaré-Friedrichs-type inequality

‖v‖ ≤ CPF|||v|||, (2.3)

holds for any v ∈ H1
0 (Ω), with constant CPF > 0 depending on Cequiv and Ω.

The problem (2.1) can be posed in the weak form: find u ∈ L2(0, T ;H1
0 (Ω)) with ut ∈

L2(0, T ;H−1(Ω)) such that

(ut(t), v) + a(u(t), v) = (f (t), v) for all v ∈ H1
0 (Ω) and a.e. t ∈ [0, T ]. (2.4)

Standard arguments ensure that this problem possesses a unique solution [30].

3. Abstract error estimates

We develop a posteriori error estimates in the abstract framework of an inconsistent Galerkin
method built around discrete function spaces which may not be hierarchical, with no compatibility
required between the spaces used on different time-steps. In particular, given a partition {tn}Nn=0

of the time domain [0, T ], with τn = tn − tn−1 > 0 for n ∈ {1, . . . , N}, we suppose that the scheme
is formed of the following components.

Assumption 3.1 (Components of the discrete framework). For each n ∈ {0, . . . , N} we assume
that there exists

A1 A mesh Mn, dividing Ω into a finite number of non-overlapping polytopic elements E , such
that the cardinality of the set SE , denoting the set of sides of E (co-dimension one planar
facets; edges when d = 2, faces when d = 3), is uniformly bounded. Further, there exists
a constant ρ > 0 which is uniformly bounded with respect to mesh modification, satisfying
hs ≥ ρhE for each side s ∈ SE , where hω denotes the diameter of the set ω ⊂ Rd.

A2 A finite-dimensional discrete function space VE for each E ∈Mn, which may be combined to
build the conforming global discrete function space

Vn := {w ∈ H1
0 (Ω) : w|E ∈ VE for each E ∈Mn}. (3.1)



ADAPTIVE NON-HIERARCHICAL GALERKIN METHODS FOR PARABOLIC PROBLEMS 5

A3 A pair of local discrete bilinear forms mn
E : VE × VE → R and anE : VE × VE → R for each

E ∈Mn, approximating the L2(E) inner product (·, ·)E and the bilinear form aE , respectively.
These are summed to form the global discrete bilinear forms mn, an : Vn × Vn → R, namely,

mn(·, ·) :=
∑
E∈Mn

mn
E (·, ·) and an(·, ·) :=

∑
E∈Mn

anE (·, ·). (3.2)

which are assumed to be inner products on Vn.
A4 An elementwise projection operator Pn : L2(Ω)→ L2(Ω) providing an approximation of the

forcing data fnP = Pnfn, where fn ≡ f (tn), for which there exists a constant Cf > 0 such
that for any v ∈ H1(Ω)

(fn − fnP , v) ≤ Cf ‖hn(fn − fnP )‖|||v|||. (3.3)

We further introduce fnL = LnfnP ∈ Vn, where the projection operator Ln : L2(Ω) → Vn
satisfies

mn(LnfnP , vn) = (fnP , v
n) for all vn ∈ Vn. (3.4)

A5 A transfer operator Tn : Vn−1 → Vn which may be practically computed.

The mesh skeleton, formed as the set of all element sides in the mesh Mn, will be denoted by
Sn =

⋃
E∈Mn SE , and we introduce the mesh-size function hn : Ω → R associated with Mn such

that hn(x) = hE for x ∈ E ∈ Mn and hn(x) = hs for x ∈ s ∈ Sn. We further introduce the

skeleton norm ‖·‖2Sn =
∑
s∈Sn ‖·‖

2
s. For brevity, we describe the inconsistency of the bilinear forms

as follows.

Definition 3.2 (Representation of inconsistency). For wn, vn ∈ Vn, let

InL2(wn, vn) = (wn, vn)−mn(wn, vn) and Ina (wn, vn) = a(wn, vn)− an(wn, vn).

Then, we say that a scheme is inconsistent if there exists an n ∈ N such that InL2(wn, vn) 6= 0 or
Ina (wn, vn) 6= 0.

Remark 3.3 (Approximations of the forcing data). We introduce fnP and fnL separately above in
order to separate the discretisation of the forcing data from the projection of it into the discrete
space which naturally arises in the analysis. For a finite element scheme, Pn could be taken as the
identity operator, a Lagrangian interpolation operator, or a local projection into a finite element
space, for example. Similarly, if the bilinear forms are consistent, Ln is simply the L2(Ω)-orthogonal
projector onto Vn. Beyond the potential for fnP to be discontinuous, the crucial difference between
the two is that fnL is required to be zero on ∂Ω since Vn ⊂ H1

0 (Ω). Defining these separately ensures
that the data is approximated at optimal order in the final estimate.

3.1. Numerical scheme. The discrete scheme we pose for approximating solutions to the prob-
lem (2.1) is: given U0 ∈ V0 approximating u0, for each n = 1, . . . , N find Un ∈ Vn satisfying

mn

(
Un − TnUn−1

τn
, vn
)

+ an(Un, vn) = mn(fnL , v
n) for all vn ∈ Vn. (3.5)

The fact that mn is an inner product on Vn implies the following equivalent pointwise form of the
numerical scheme: given U0, find Un ∈ Vn satisfying

∂nUn −AnnUn = fnP for each n ∈ {1, . . . , N}. (3.6)

Here, we have used the following discrete differential operators, noting that An is the analogue of
the discrete Laplacian operator (cf. [41]) in the current setting.

Definition 3.4 (Discrete differential operators). Let ∂n : Vn → Vn denote the discrete time
derivative operator, defined by

∂nUn :=
Un − TnUn−1

τn
∈ Vn.

We also define the discrete spatial operator An : Vn → Vn such that, for wn ∈ Vn

−mn(Anwn, vn) = an(wn, vn) ∀vn ∈ Vn, (3.7)
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and the data-dependent discrete spatial operator Anm : Vn → L2(Ω) given by

−Anmwn = −Anwn − (Ln − I)Pnfm,

where I denotes the identity operator. We emphasise that the superscript indicates the discrete
space used in the construction, while the subscript represents the time step at which the data fm is
evaluated.

The definition of Ln ensures that the discrete spatial operators are related by

(Anmwn, vn) = (Anwn, vn) + InL2(LnPnfm, vn). (3.8)

3.2. Solution reconstructions. The forthcoming analysis revolves around the concept of an
elliptic reconstruction operator, introduced by Makridakis and Nochetto [35], which we define here
as follows.

Definition 3.5 (Elliptic reconstruction operator). For each n,m ∈ {0, . . . , N}, we define the
elliptic reconstruction operator Rnm : Vn → H1

0 (Ω), satisfying

a(Rnmwn, v) = −(Anmwn, v) = −(Anwn + (Ln − I)Pnfm, v) for all v ∈ H1
0 (Ω), (3.9)

with the same super/subscript convention as in Definition 3.4.

The inconsistency of the elliptic reconstrucion in this framework is recorded in the following
lemma. When the discrete bilinear forms are consistent, this reduces to the conventional Galerkin
orthogonality relationship a(Rnnwn − wn, vn) = 0.

Lemma 3.6 (Elliptic reconstruction inconsistency). For wn ∈ Vn, the elliptic reconstruction
satisfies

a(wn −Rnmwn, vn) = Ina (wn, vn) + InL2(Anwn + LnPnfm, vn) for all vn ∈ Vn.

Proof. The result follows by substituting (3.8) into the definition (3.9), alongside the expansion
(Anwn, vn) = −a(wn, vn) + Ina (wn, vn) + InL2(Anwn, vn). �

The time and space-time reconstructions of the discrete solutions are defined as

U(t) =

N∑
n=0

`n(t)Un and UR(t) =

N∑
n=0

`n(t)RnnUn, (3.10)

respectively where, for each n ∈ {0, . . . , N}, the continuous piecewise linear function `n : [0, T ]→
[0, 1], designed to satisfy `i(tj) = δij where δij is Kronecker’s delta, is given by

`n(t) =


t−tn−1
τn for t ∈ [tn−1, tn],

tn+1−t
τn for t ∈ [tn, tn+1],

0 otherwise.

(3.11)

These reconstructions split the error e(t) = u(t) − U(t) into a parabolic component ρ(t) =
u(t)−UR(t) and an elliptic component ε(t) = UR(t)−U(t). The power of the elliptic reconstruction
approach is that the elliptic component of the error may be estimated using the standard techniques
for elliptic problems. This is because a discrete function wn ∈ Vn may be viewed as the discrete
approximate solution (in the framework of Assumption 3.1) to the elliptic problem satisfied by
Rnnwn. Consequently, terms of the form ‖Rnnwn − wn‖ are simply the error of an elliptic problem.
This is particularly attractive in the present context of ‘exotic’ spatial discretisations, and so for
now we encapsulate this in the following assumption. Concrete examples of such estimates are
derived in Lemma 3.16.

Assumption 3.7 (Elliptic reconstruction error estimate). We assume that

A6 There exist elliptic reconstruction estimators E n
L2 ,E n

H1 : Vn × L2(Ω)→ R providing, for any
wn ∈ Vn, the estimates

‖wn −Rnnwn‖ ≤ E n
L2(wn, fn) and |||wn −Rnnwn||| ≤ E n

H1(wn, fn).
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3.3. Error equation. The parabolic component ρ(t) of the error is estimated via an error equation.
Testing the pointwise form (3.6) of the scheme with an arbitrary v ∈ H1

0 (Ω), using the definitions
of the reconstructions and recalling the variational problem (2.4) gives

(et, v) + a(ρ, v) = (f (t)− fnP , v) + a(RnnUn − UR(t), v) + (∂nUn − Ut(t), v), (3.12)

for t ∈ (tn−1, tn], which may be further expressed as

(ρt, v) + a(ρ, v) = (f (t)− fnP , v) + a(RnnUn − UR(t), v) + (∂nUn − URt (t), v). (3.13)

Following [31], we note that the former form of the error equation is more convenient for deriving
L2(0, t;H1(Ω)) norm estimates, while the latter can be used for estimates in the L∞(0, t;L2(Ω))
norm. The difference between their right-hand sides is in the final term: for (3.12) this is

(∂nUn − Ut(t), v) =
1

τn
(Un−1 − TnUn−1, v), (3.14)

which naturally estimates the error from transferring solutions between meshes, while (3.13) con-
tains

(∂nUn − URt (t), v) =
1

τn
((Un −RnnUn)− (TnUn−1 −Rn−1

n−1U
n−1), v),

the nature of which is slightly more subtle, and the estimation of which presents the key difficulty of
the L∞(0, t;L2(Ω)) norm estimate in the non-hierarchical setting. The derivation of such estimates
is the focus of Section 3.5, but for now we just assume the existence of the following estimator.

Assumption 3.8 (Elliptic reconstruction time derivative estimator). Let wn ∈ Vn for n ∈
{0, . . . , N}, and let wR(t) =

∑N
n=0 `

n(t)Rnnwn. We assume that

A7 A time derivative estimator E ∂t
L2 : Vn × Vn−1 × L2(Ω)× L2(Ω)→ R exists with

‖∂nwn − wRt (t)‖ ≤ E ∂t
L2(wn, wn−1, fn, fn−1) for t ∈ (tn−1, tn].

We now focus on estimating the terms of the error equations above, which will utilise the
following individual error estimators as shown in Lemma 3.10.

Definition 3.9 (Estimator terms). For n ∈ {1, . . . , N} and t ∈ [tn−1, tn] define:

• the elliptic reconstruction error estimators

EL2(t) =

N∑
n=0

`n(t)E n
L2(Un, fn), and EH1(t) =

N∑
n=0

`n(t)E n
H1(Un, fn),

• the space error estimator, where E ∂t
L2 satisfies Assumption A7,

S(t) = E ∂t
L2(Un, Un−1, fn, fn−1),

• the time error estimator

T (t) = ‖AnnUn −An−1
n−1U

n−1‖,
• the data approximation error estimators for time and space

DT (t) = ‖f (t)− fn‖, and DS(t) = Cf ‖hn(fn − fnP )‖, respectively,

• the mesh transfer error estimator

M(t) =
1

τn
‖Un−1 − TnUn−1‖.

Lemma 3.10 (Bounds for individual terms). Suppose that Assumptions A1–A7 are satisfied.
Then, for each n = 1, . . . , N and t ∈ (tn−1, tn], the terms of the error equations may be estimated
by separate contributions from the spatial error and temporal error

(∂nUn − URt (t), v) ≤ S(t)‖v‖ and a(RnnUn − UR(t), v) ≤ T (t)‖v‖,
respectively, and the data approximation error and mesh transfer error

(f (t)− fnP , v) ≤ DT (t)‖v‖+DS(t)|||v||| and (∂nUn − Ut(t), v) ≤M(t)‖v‖.
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Proof. The spatial error estimate follows from Assumption A7. The temporal error estimate is
derived by using the property that `n−1(t) ≤ 1 and the expansion

a(RnnUn − UR(t), v) = `n−1a(RnnUn −Rn−1
n−1U

n−1, v) = `n−1(An−1
n−1U

n−1 −AnnUn, v).

The data approximation estimate is shown by adding and subtracting (fn, v) and applying (3.3).
The bound for the mesh transfer error follows from (3.14). �

3.4. Parabolic a posteriori error estimates. We recall some results from [40] on exponentially
weighted time accumulations in Lemma 3.11. The key appeal of these is to enable L∞(L2) error
estimates in which the estimator terms accumulate through time in the minimal Lp([0, t]) norm for
any p ∈ [1,∞]. The effectivities of such estimators can therefore become constant with t (since the
error and estimator may both accumulate in the L∞([0, t]) norm), rather than growing like t or t1/2

as they would if only L1 or L2 accumulations were used respectively (see [40] for details). In the
statement of the lemma, the term F represents an estimator term accumulating with simulation
time, and ξ represents the error to be estimated. The terms estimated in each case are typical
terms encountered in the L∞(0, t;L2(Ω)) error analysis in Theorem 3.12.

Lemma 3.11 (Exponentially weighted time accumulations [40, Lemma 4.9]). Let p ∈ [1,∞],
λ ∈ [0, 1], and r ∈ (0, T ]. We introduce the accumulation weighting coefficients

cp,r := ‖βr‖Lq(0,r) =


(1− e−qαλr

qαλ

)1/q

for p ∈ (1,∞],

1 for p = 1,

where q satisfies 1
p + 1

q = 1, βr(s) = eαλ(s−r), and αλ = 2(1−λ)
(CequivCPF)2 .

Let t > 0 and suppose that F ∈ Lp?(0, t) for some p? ∈ [1,∞], with F (s) ≥ 0 for a.e. s ∈ [0, t].
Then, for ξ ∈ L∞(0, t;L2(Ω)), the estimate∫ t

0

eαλ(s−t)F (s)‖ξ(s)‖ds ≤
(

min
p∈[1,∞]

cp,tF
)(

max
s∈[0,t]

‖ξ(s)‖
)
, (3.15)

holds, and ξ ∈ L2(0, t;H1(Ω)) satisfies∫ t

0

eαλ(s−t)F (s)|||ξ(s)||| ds ≤
(

min
p∈[2,∞]

c
1/2
p,t F

)(∫ t

0

eαλ(s−t)|||ξ(s)|||2 ds
)1/2

. (3.16)

We are now fully equipped to estimate the error in the L2(0, t;H1(Ω)) and L∞(0, t;L2(Ω))
norms committed by the abstract non-hierarchical and inconsistent scheme (3.5).

Theorem 3.12 (Abstract a posteriori error estimates). Let u ∈ L∞(0, t;L2(Ω))∩L2(0, t;H1(Ω)) be
the solution to (2.4) and let U be the linear time reconstruction of the solution to the scheme (3.5)
defined in (3.10). Then, under the assumptions of Lemma 3.10, for a.e. t ∈ (0, T ] the error
e(t) = u(t)− U(t) satisfies the L2(0, t;H1(Ω)) estimate(∫ t

0

|||e(s)|||2 ds
)1/2

≤ C
(
‖e(0)‖+ ‖EH1‖L2(0,t) + ‖DS‖L2(0,t) + min

p∈{1,2}
‖T ‖Lp(0,t)

+ min
p∈{1,2}

‖M‖Lp(0,t) + min
p∈{1,2}

‖DT ‖Lp(0,t)

)
,

where the constant C > 0 depends only on CPF, and the L∞(0, t;L2(Ω)) estimate

max
s∈[0,t]

‖e(s)‖ ≤ C
(
‖e(0)‖+ ‖EL2‖L∞(0,t) + min

p∈[1,∞]
cp,tS

+ min
p∈[1,∞]

cp,tT + min
p∈[1,∞]

cp,tDT + min
p∈[2,∞]

c
1/2
p,t DS

)
,

where the constant C > 0 depends only on λ from Lemma 3.11.
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Proof. We begin with the L2(0, t;H1(Ω)) error estimate. Selecting v = e in (3.12) and applying
the bounds of Lemma 3.10 to the terms on the right-hand side provides

1

2

d

dt
‖e(t)‖2 + |||ρ(t)|||2 ≤ |||ε(t)||||||ρ(t)|||+DS(t)|||e(t)|||+ T (t)‖e(t)‖,

where T = T +DT +M. Applying the triangle inequality and Young’s inequality ab ≤ 1
2δa

2 + δ
2b

2,
valid for any a, b ≥ 0, δ > 0, we deduce that

|||ε(t)||||||ρ(t)|||+DS(t)|||e(t)||| ≤ 1 + 2δ2

2δ
|||ε(t)|||2 +

3δ

2
|||ρ(t)|||2 +

1

2δ
DS(t)2.

Therefore, integrating over s ∈ [0, t] for some t ∈ [0, T ], we find that

‖e(t)‖2 + γ

∫ t

0

|||ρ(s)|||2 ds ≤ ‖e(0)‖2 +

∫ t

0

(ξ|||ε(s)|||2 +
1

δ
DS(s) + 2T (s)‖e(s)‖) ds, (3.17)

where γ = 2− 3δ and ξ = 1+2δ2

δ . Hölder’s inequality and (2.3) give∫ t

0

T (s)‖e(s)‖ds ≤ min
{

max
s∈[0,t]

‖e(s)‖
∫ t

0

T (s) ds,

CPF

(∫ t

0

|||e(s)|||2 ds

∫ t

0

T 2(s) ds
)1/2}

,

to which we further apply Young’s inequality and the triangle inequality to find that

2

∫ t

0

T (s)‖e(s)‖ ds ≤ min
{
δ max
s∈[0,t]

‖e(s)‖2 +
1

δ

(∫ t

0

T (s) ds
)2

,∫ t

0

(
CPF

δ
T 2(s) + δ|||e(s)|||2) ds

}
.

Substituting this into (3.17) produces an estimate with a right-hand side which is a non-decreasing
function of t, and consequently we deduce the bound

max
s∈[0,t]

‖e(s)‖2 + γ

∫ t

0

|||ρ(s)|||2 ds ≤ ‖e(0)‖2 +

∫ t

0

(ξ|||ε(s)|||2 +
1

δ
DS(s)) ds

+ min
{
δ max
s∈[0,t]

‖e(s)‖2 +
1

δ

(∫ t

0

T (s) ds
)2

,

∫ t

0

(δ|||e(s)|||2 +
CPF

δ
T 2(s)) ds

}
.

Upon simplification, this implies that there exists a constant C > 0 such that

C‖ρ‖L2(H1) ≤ ‖e(0)‖+
(∫ t

0

(|||ε(s)|||2 +DS(s)) ds
)1/2

+ min
p∈{1,2}

‖T ‖Lp(0,t),

and the L2(0, t;H1(Ω)) estimate follows by recalling the elliptic reconstruction error estimates for
ε and noting that we could have treated the terms of T separately (we combined them here for
brevity).

We now turn to the L∞(0, t;L2(Ω)) estimate. For this, we argue as in [40, Lemma 4.10], although
we recall the main points of the argument here for clarity. Selecting v = ρ in the error equation (3.13),
applying the individual bounds of Lemma 3.10, and introducing Q = S + T +M +DT produces
the estimate

1

2

d

dt
‖ρ(t)‖2 + |||ρ(t)|||2 ≤ Q(t)‖ρ(t)‖+DS(t)|||ρ(t)|||.

The Poincaré-Friedrichs inequality (2.3) implies that, for any λ ∈ [0, 1],

1

2

d

dt
‖ρ(t)‖2 + α‖ρ(t)‖2 + λ|||ρ(t)|||2 ≤ 1

2

d

dt
‖ρ(t)‖2 + |||ρ(t)|||2,

with α ≡ αλ = 2(1−λ)
C2

PF
(from Lemma 3.11; we omit the subscript for brevity), and hence

1

2

d

dt

(
eαt‖ρ(t)‖2

)
+ λeαt|||ρ(t)|||2 ≤ eαtQ(t)‖ρ(t)‖+ eαtDS(t)|||ρ(t)|||.
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Integrating over s ∈ [0, t], multiplying both sides by e−αt, and invoking Lemma 3.11 with ξ = ρ
we thus obtain

1

2
‖ρ(t)‖2 + λ

∫ t

0

eα(s−t)|||ρ(s)|||2 ds ≤ 1

2
e−αt‖ρ(0)‖2 + max

s∈[0,t]
‖ρ(s)‖ min

p∈[1,∞]
cp,tQ

+
(∫ t

0

eα(s−t)|||ρ(s)|||2 ds
)1/2

min
p∈[2,∞]

c
1/2
p,t DS .

We next apply Young’s inequality with δ = 2λ to the final two factors, obtaining

‖ρ(t)‖2 ≤ ‖ρ(0)‖2 + 2 max
s∈[0,t]

‖ρ(s)‖ min
p∈[1,∞]

cp,tQ +
2

λ

(
min

p∈[2,∞]
c
1/2
p,t DS

)2

,

since e−αt ≤ 1. The right-hand side of this bound is a non-decreasing function of t, and thus,
as before, we deduce that it provides a bound on maxs∈[0,t] ‖ρ(s)‖2. Applying Young’s inequality
again, we find that

max
s∈[0,t]

‖ρ(s)‖ ≤ max
{

1,

√
2

λ

}(
‖ρ(0)‖+ min

p∈[1,∞]
cp,tQ + min

p∈[2,∞]
c
1/2
p,t DS

)
.

The L∞(0, t;L2(Ω)) error estimate follows from the elliptic reconstruction estimates and noting,
as before, that we could have considered the terms of Q separately. We note that the dependence
of the weightings cp,t on λ means that the optimal value of λ is not clear, and depends on the time
t. �

3.5. Residual-type elliptic error estimates. We now derive residual-type elliptic estimators
satsifying Assumptions A6 (in Lemma 3.16) and A7 (in Lemmas 3.18 and 3.21). The key develop-
ments here are the estimates satisfying Assumption A7. In particular, Lemmas 3.18 and 3.21 are
best suited to the case of local or global mesh modification, respectively, although neither result
requires any particular compatibility between the spaces.

For vector-valued quantities which may be discontinuous across the mesh skeleton, we define
the jump operator J·K across a mesh interface s ∈ Sn as

JvK|s =

{
v+ · n+

s + v− · n−s if s ∩ ∂Ω = ∅,
0 otherwise,

(3.18)

with the following notation: if s∩∂Ω = ∅, then there exist E+, E− ∈Mn such that s ⊂ ∂E+∩∂E−;
the trace of the function v on s from within E± is therefore denoted by v±, and n±s denotes the unit
outward normal on s with respect to E±. We may now introduce the following residual operators
which form the basis of the error estimates in this section.

Definition 3.13 (Residuals). Let m,n ∈ {0, . . . , N}. For wn ∈ Vn, let J n : Vn → L2(Sn) denote
the jump residual operator

(J nwn)|s = Jκ∇wnKs,

the definition of which is extended by zero to the whole of Ω. Further, let Rn
m : Vn → L2(Ω) denote

the element residual operator, defined as

(Rn
mw

n)|E = A(wn|E )− (Anmwn)|E = A(wn|E )− (Anwn + (Ln − I)Pnfm)|E
for each E ∈Mn, where Anm is from Definition 3.5. We emphasise that the superscript denotes the
discrete space the operator acts on while the subscript indicates the time-step at which the PDE
data is evaluated.

The following approximation properties are required for the estimates.

Assumption 3.14 (Approximation properties of the discrete framework). We suppose that the
components of the discrete framework specified in Assumption 3.1 satisfy:

A8 There exists Cint > 0, depending only on the regularity of the mesh, such that:
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• For any w ∈ H1(Ω), there exists a function wnc ∈ Vn satisfying

‖w − wnc ‖0,E + hE |w − wnc |1,E ≤ CinthE |w|1,Ẽ for all E ∈Mn, (3.19)

where Ẽ denotes the usual finite element patch relative to E consisting of elements sharing
a vertex with E .
• For any w ∈ H2(Ω), there exists a function wnI ∈ Vn satisfying

‖w − wnI ‖0,E + hE |w − wnI |1,E ≤ Cinth
2
E |w|2,E for all E ∈Mn, (3.20)

constructed locally such that if Mm 3 E ∈Mn then wnI |E = wmI |E .
A9 There exist inconsistency estimators I E

L2 ,I E
a : VE → R such that

IEL2(wn, vn) ≤ (I E
L2wn)(I E

L2vn) and IEa (wn, vn) ≤ (I E
a w

n)(I E
a v

n),

for wn, vn ∈ Vn. Moreover, if w ∈ H2(Ω) and wc, wI ∈ Vn satisfy (3.19) and (3.20) respec-
tively, then

I E
L2wc + hEI E

a wc ≤ CinchE |w|1,Ẽ and I E
L2wI + hEI E

a wI ≤ Cinch
2
E |w|2,E ,

where Cinc > 0 only depends on Cint, the problem data, and the regularity of Mn.

These inconsistency estimators provide the following estimates for the inconsistency of the global
discrete bilinear forms, which we record here.

Lemma 3.15 (Global inconsistency estimate). Let wn ∈ Vn and let X denote either L2 or a. For
r ∈ R, we denote weighted global inconsistency estimates by

I n
X(hrn, w

n) =
( ∑
E∈Mn

(hrEI E
X w

n)2
)1/2

,

abbreviated to I n
X(wn) when r = 0. If v ∈ H2(Ω) and vc, vI ∈ Vn satisfy (3.19) and (3.20)

respectively, then there exists a constant Cglob = αCinc, where α only depends on the regularity of
Mn, such that

Ina (wn, vc) ≤ CglobI n
a (wn)|v|1 and Ina (wn, vI) ≤ CglobI n

a (hn, w
n)|v|2,

InL2(wn, vc) ≤ CglobI n
L2(hn, w

n)|v|1 and InL2(wn, vI) ≤ CglobI n
L2(h2

n, w
n)|v|2.

Equipped with these basic components, the following single mesh elliptic estimators may be
derived using standard techniques developed for finite element methods (accounting for this incon-
sistent setting through Lemmas 3.6 and 3.15).

Lemma 3.16 (Single mesh residual-type error estimators). There exists a positive constant Cellip

depending only on the regularity of the domain and the mesh geometry so that Assumption A6 is
satisfied with

E n
L2(wn, fn) = Cellip

(
‖h2

nR
n
nw

n‖2 + ‖h3/2
n J nwn‖

2

Sn +Xn(wn, fn)2
)1/2

,

E n
H1(wn, fn) = Cellip

(
‖hnRn

nw
n‖2 + ‖h1/2

n J nwn‖
2

Sn + Y n(wn, fn)2
)1/2

.

where Xn and Y n respectively represent the inconsistency terms

Xn(wn, fn) =
(
I n
L2(h2

n,Anwn + fnL)2 + I n
a (hn, w

n)2
)1/2

,

Y n(wn, fn) =
(
I n
L2(hn,Anwn + fnL)2 + I n

a (wn)2
)1/2

.

3.5.1. Time derivative estimator for local mesh modification. For the time derivative estimator, we
first present a result which is best suited for the case when each mesh in the sequence is constructed
from its predecessor by modifying (e.g. coarsening or refining) a relatively small number of elements.
In this situation, it is meaningful to exploit the equivalence of the interpolant satisfying (3.20) in
regions where there is no mesh change.
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Lemma 3.17 (Interpolation estimate for locally modified meshes). Let n,m ∈ {0, . . . , N} and
F ∈ L2(Ω). For v ∈ H2(Ω), let vn ∈ Vn and vm ∈ Vm be the interpolants of v satisfying (3.20).
Then,

(F, vn − vm) ≤ 2Cint‖ĥ2
n,mF‖Mn\Mm |v|2, where ‖F‖2Mn\Mm =

∑
En∈Mn\Mm

‖F‖2En ,

and ĥn,m(x) := max{hn(x), hm(x)}. Here, Mn \Mm = {E ∈Mn : E 6∈Mm}.

Proof. By Assumption A8, vn− vm = 0 by construction on elements E 6∈Mn \Mm, and therefore

(F, vn − vm) =
∑

En∈Mn\Mm
(F, vn − vm)En

=
∑

En∈Mn\Mm
(F, vn − v)En +

∑
Em∈Mm\Mn

(F, v − vm)Em .

The result now follows from (3.20) and the fact that
⋃
E∈Mn\Mm E =

⋃
E∈Mm\Mn E , i.e. both sets

of elements form partitions of the same parts of the domain Ω. �

Lemma 3.18 (Local mesh modification time derivative estimator). Assumption A7 is satisfied
by the local mesh modification time derivative estimator

E ∂t
L2(wn, wn−1, fn, fn−1) =

1

τn

(
‖Tnwn−1 − wn−1‖2 (3.21)

+ Cellip

(
‖h2

n(Rn
nw

n −Rn−1
n−1w

n−1)‖2

+ ‖h3/2
n (J nwn −J n−1wn−1)‖

2

Sn∪Sn−1

+ ‖ĥ2
n−1,nR

n−1
n−1w

n−1‖
2

Mn−1\Mn

+ ‖ĥ3/2
n−1,nJ

n−1wn−1‖
2

Sn−1\Sn

+Xn(wn, fn)2 +Xn−1(wn−1, fn−1)2
))1/2

,

where the constant Cellip > 0 only depends on the regularity of the domain and mesh, ĥn−1,n is
defined in Lemma 3.17, and Xn is defined in Lemma 3.16.

Proof. Let t ∈ (tn−1, tn]. Adopting the notation of Assumption A7, we split

τn‖∂nwn − wRt (t)‖ ≤ ‖(Rnnwn − wn)− (Rn−1
n−1w

n−1 − wn−1)‖+ ‖Tnwn−1 − wn−1‖,

and the estimate is obtained by further estimating the first term. To this end, let ϕ ∈ H2(Ω)∩H1
0 (Ω)

be the unique solution to the dual elliptic problem

a(v, ϕ) = ((Rnnwn − wn)− (Rn−1
n−1w

n−1 − wn−1), v) for all v ∈ H1
0 (Ω), (3.22)

which satisfies |ϕ|2 ≤ Creg‖(Rnnwn − wn)− (Rn−1
n−1w

n−1 − wn−1)‖. Introducing ϕn ∈ Vn and ϕn−1 ∈
Vn−1 as the interpolants of ϕ satisfying (3.20), we split

‖(Rnnwn − wn)− (Rn−1
n−1w

n−1 − wn−1)‖2

= a(Rnnwn − wn, ϕn) + a(wn−1 −Rn−1
n−1w

n−1, ϕn−1)

+ a((Rnnwn − wn)− (Rn−1
n−1w

n−1 − wn−1), ϕ− ϕn)

+ a(wn−1 −Rn−1
n−1w

n−1, ϕn − ϕn−1) = T1 + T2 + T3 + T4 .

The terms T1 and T2 express the inconsistency ofRnn andRn−1
n−1 and are estimated byXn(wn, fn)|ϕ|2

and Xn−1(wn−1, fn−1)|ϕ|2 respectively using Lemmas 3.6 and 3.15. Applying the definition of the
elliptic reconstruction and residuals, and integrating by parts, T3 becomes

T3 = (Rn
nw

n −Rn−1
n−1w

n−1, ϕ− ϕn) +
∑

s∈Sn∪Sn−1
(J nwn −J n−1wn−1, ϕ− ϕn)s,
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and Assumption A8 and the scaled trace inequality produce

T3 ≤ Cint|ϕ|2
(
‖h2

n(Rn
nw

n −Rn−1
n−1w

n−1)‖2 + β‖h3/2
n (J nwn −J n−1wn−1)‖

2

Sn

)1/2

,

where β > 0 depends on the regularity of the mesh.
The term T4 represents the non-hierarchicality of the discrete spaces. Integrating by parts and

recalling the definition of the elliptic reconstruction it becomes

T4 = (Rn−1
n−1w

n−1, ϕn − ϕn−1) +
∑
s∈Sn−1

(J n−1, ϕn − ϕn−1)s.

The local nature of the interpolant implies that (ϕn − ϕn−1)|E = 0 for E ∈ Mn ∩Mn−1, and the
term may be estimated using Lemma 3.17 to find

T4 ≤ C|ϕ|2
(
‖ĥ2

n−1,nR
n−1
n−1w

n−1‖
2

Mn−1\Mn + ‖ĥ3/2
n−1,nJ

n−1wn−1‖
2

Sn−1\Sn

)1/2

.

The result then follows by invoking the regularity estimate for ϕ. �

Although the proof above makes no assumptions on the relationship between Mn and Mn−1, the
estimate itself is clearly best suited to the case when Mn is built by modifying (e.g. coarsening or
refining) a small subset of elements from mesh Mn−1. This is exploited by the estimate through
the cancellation of the interpolants into the two discrete spaces in areas of the mesh which are not
modified, providing some ‘smallness’ to the estimator terms.

3.5.2. Time derivative estimator for global mesh modification. In the case of global mesh modifica-
tion (e.g. through a complete remeshing procedure or a moving mesh method), however, the mesh
elements and edges cannot be expected to coincide. Thus, even if the mesh is only modified slightly,
the estimator above will not benefit from local cancellation and may provide a rather pessimistic
estimate of the error.

Instead, we handle this case with a separate estimate, presented in Lemma 3.21, which is
slightly more cumbersome but directly relies on similarities between the discrete spaces rather
than geometrical similarities between the meshes. It is based on the following elliptic transfer
operator, which enables a ‘discrete integration by parts’ to be performed in the analysis to replace
a suboptimal term by an optimal one; see Remark 3.20.

Definition 3.19 (Elliptic transfer operator). The elliptic transfer operator En : Vn−1 → Vn
satisfies

a(Rnn−1E
nwn−1, vn) = a(Rn−1

n−1w
n−1, vn) for all wn−1 ∈ Vn−1 and vn ∈ Vn.

This essentially transfers the solution from one mesh to another by projecting its elliptic recon-
struction onto the new mesh. Indeed, it satisfies the crucial properties

Πn
aRnn−1E

nwn−1 = Πn
aRn−1

n−1w
n−1 and Πn

L2Ann−1E
nwn−1 = Πn

L2An−1
n−1w

n−1,

where Πn
a : H1

0 (Ω) → Vn and Πn
L2 : L2(Ω) → Vn denote the a-orthogonal elliptic projector

and L2(Ω)-orthogonal projector onto Vn respectively. This transfer operator may be practically
computed by inverting a stiffness matrix since it satisfies

AnEnwn−1 = Πn
L2

(
An−1wn−1 + (Ln−1 − I)Pn−1fn−1 − (Ln − I)Pnfn−1

)
,

and this further confirms its existence and that Enwn−1 = wn−1 when Vn = Vn−1.

Remark 3.20 (The role of the elliptic transfer operator). Roughly speaking, the key role played by
the elliptic transfer operator is to enable a ‘discrete integration by parts’ by converting a discrete
spatial operator on one mesh to a discrete spatial operator on a different mesh which can then
be moved onto the test function in an optimal manner. In a simplified setting, we perform the
following:

(An−1wn−1 −AnTnwn−1, φn) = (An(En − Tn)wn−1, φn) = ((En − Tn)wn−1,Anφn),

and apply a stability estimate of the form ‖Anφn‖ ≤ C|φ|2. The elliptic transfer operator is thus
responsible for ensuring that the final estimate is of optimal order, because the H2(Ω)-like term
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‖An−1wn−1 −AnTnwn−1‖ which would otherwise be present (and of suboptimal order) is replaced
by the (optimal order) L2(Ω) term ‖Enwn−1 − Tnwn−1‖.

Lemma 3.21 (Time derivative estimator for global mesh modification). There exist positive
constants C1, C2 depending only on the domain and mesh regularity, such that

‖(Rnn − I)wn − (Rnn−1 − I)Tnwn−1‖ ≤ E1 and ‖Rnn−1T
nwn−1 −Rn−1

n−1w
n−1‖ ≤ E2,

where

E1 = C1

(
‖h2

n(Rn
nw

n −Rn
n−1T

nwn−1)‖2 + ‖h3/2
n J n(wn − Tnwn−1)‖

2

Sn

+Xn(wn − Tnwn−1, fn − fn−1)2
)1/2

,

measures error due to time-stepping and spatial discretisation, and

E2 = C2

(
‖h2

n

(
Ann−1T

nwn−1 −An−1
n−1w

n−1
)
‖2

+ ‖Tnwn−1 − Enwn−1‖2 +
∑
E∈Mn

h2
E |||Tnwn−1 − Enwn−1|||2E

+ I n
L2(h2

n,An(Tnwn−1 − Enwn−1))2 + I n
a (hn,T

nwn−1 − Enwn−1)2
)1/2

,

measures error produced by modifying the discrete space. Consequently, Assumption A7 is satisfied
by the time derivative estimator for global mesh modification

E ∂t
L2(wn, wn−1, fn, fn−1) =

1

τn
(E1 + E2). (3.23)

Proof. Adopting the notation of Assumption A7, we split the target term as

τn‖∂nwn − wRt (t)‖ ≤‖(Rnn − I)wn − (Rnn−1 − I)Tnwn−1‖
+ ‖Rnn−1T

nwn −Rn−1
n−1w

n−1‖ = T1 + T2 ,

and show that E1 estimates T1 (involving only quantities on one mesh at both the time-steps)
and E2 estimates T2 (containing terms at time tn−1 on both meshes).

To estimate T1 , let ϕ ∈ H2(Ω) ∩H1
0 (Ω) satisfy the dual elliptic problem

a(v, ϕ) = ((Rnn − I)wn − (Rnn−1 − I)Tnwn−1, v) for all v ∈ H1
0 (Ω), (3.24)

which provides the regularity estimate |ϕ|2 ≤ CregT1 and let ϕn ∈ Vn denote the interpolant of ϕ
satisfying (3.20). Then, we have

T1
2 =a((Rnn − I)wn − (Rnn−1 − I)Tnwn−1, ϕn)

+ a((Rnn − I)wn − (Rnn−1 − I)Tnwn−1, ϕ− ϕn) = T3 + T4 .

The term T3 expresses the reconstruction inconsistency, so Lemmas 3.6 and 3.15 give

T3 ≤ C|ϕ|2X
n(wn − Tnwn−1, fn − fn−1).

For T4 , the definition of the elliptic reconstruction and integration by parts provide

T4 = (Rn
nw

n −Rn
n−1T

nwn, ϕ− ϕn) +
∑
s∈Sn

(J n(wn − Tnwn−1), ϕ− ϕn)s,

and the Cauchy-Schwarz inequality, Assumption A8 and the trace inequality produce

T4 ≤ Cint|ϕ|2
(
‖h2

n(Rn
nw

n −Rn
n−1T

nwn−1)‖2 + β‖h3/2
n J n(wn − Tnwn−1)‖

2

Sn

)1/2

,

where β depends on the regularity of the mesh. The estimate E1 then follows by invoking the
regularity estimate for ϕ.

Next, we show how T2 may be estimated by E2. For this, we use the auxiliary dual problem:
find φ ∈ H2(Ω) ∩H1

0 (Ω) such that

a(v, φ) = (Rnn−1T
nwn−1 −Rn−1

n−1w
n−1, v) for all v ∈ H1

0 (Ω),
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which satisfies the regularity estimate |φ|2 ≤ CregT2 . We therefore obtain

T2
2 = a(Rnn−1T

nwn−1 −Rn−1
n−1w

n−1, φ),

and the definition of the elliptic transfer operator and elliptic reconstruction imply

T2
2 =

(
An−1
n−1w

n−1 −Ann−1T
nwn−1, φ− φn

)
+
(
An(Enwn−1 − Tnwn−1), φn

)
.

The Cauchy-Schwarz inequality and Assumption A8 provide(
Ann−1T

nwn−1 −An−1
n−1w

n−1, φ− φn
)
≤ C|φ|2‖h

2
n

(
Ann−1T

nwn−1 −An−1
n−1w

n−1
)
‖,

while the definition of An gives

(An(Tn − En)wn−1, φn) = a((Tn − En)wn−1, φ) + a((Tn − En)wn−1, φn − φ)

+ InL2((Tn − En)wn−1, φn) + Ina ((Tn − En)wn−1, φn).

Assumptions A8 and A9 and an L2—H2 splitting of a then provide the estimate

(An(Tn − En)wn−1, φn) ≤ C|φ|2
(
‖(Tn − En)wn−1‖2 +

∑
E∈Mn

h2
E |||(Tn − En)wn−1|||2E

+ I n
L2(h2

n,An(Tn − En)wn−1)2 + I n
a (hn, (T

n − En)wn−1)2
)1/2

,

and the result follows by using the regularity estimate for φ. �

We observe that the first four terms of the estimator E1 mimic those of the previous esti-
mate (3.21). The fifth term of (3.21) is instead replaced by the mesh modification estimator E2

which satisfies the desirable property of being zero when Vn = Vn−1 if Tn becomes the identity
operator. The estimator E2 can therefore be seen as being composed of two groups of terms: the
first term measures the impact that transferring the solution to the new space has on the modified
discrete spatial operator (and is just an L2(Ω) projection error when Tn = En), while the other
terms compare the extent to which Tn is different from En (and are zero when Tn = En). The
estimator E2 could be simplified further under the additional assumption of a local H1 to L2

inverse estimate to remove the third term.

4. Application to finite element discretisations

A conventional conforming finite element method may be seen to fit the abstract framework of
Section 3. To satisfy Assumption A1, we suppose that the computational mesh Mn is formed of
elements which are the image of a reference simplex or hypercube under a non-degenerate affine
mapping. For simplicity, we suppose that all elements in the mesh are images of the same reference
element. The local discrete function space VE required by Assumption A2 may then be constructed
on each element E ∈Mn as

VE :=

{
PEk if E is the image of a simplex,

QEk if E is the image of a hypercube,
(4.1)

where PEk denotes the space of polynomials of total degree k on E , and QEk denotes the space of
tensor-product polynomials of maximum degree k on E .

The discrete bilinear forms of Assumption A3 are constructed consistently, with

mn(wn, vn) = (wn, vn) and an(wn, vn) = a(wn, vn),

meaning that

InL2(wn, vn) = 0 = Ina (wn, vn),

thus satisfying condition A9 with I E
L2 = I E

a = 0. To satisfy Assumption A4 we take Pn to be
the identity operator (implying that fnP = fn and so DS(t) = 0), and fnL ∈ Vn is therefore defined
(by (3.4)) to be the L2(Ω)-orthogonal projection of fn into Vn. Alternatively, to assess the impact
of numerical integration, fnP could be fixed as the polynomial interpolating fn at the nodes of an
appropriate quadrature scheme.
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We consider the heat equation

ut − α∆u = f (x, y, t), (4.2)

where α = 0.01, and f and the boundary conditions are constructed to give the exact solution

u(r, t) = g(t)s(−m(t)(r2 − r2
0)), (4.3)

where r2 = x2 + y2 and

s(ξ) = 1 + tanh(ξ), m(t) =
100

3t+ 2
, g(t) =

10

t2 + 20
, r0 = 0.15,

for (x, y) ∈ Ω = [0, 1]2 and t ∈ [0, 5]. This solution mimics the behaviour of an initially localised
concentration of solute (shown in Fig. 1) dissolving into a medium, featuring initially steep gradients
which diffuse away over time. We discretise this problem using an ad-hoc moving mesh method, in
which the topology of the mesh remains fixed throughout the simulation (i.e. there is no refinement
or coarsening), although the vertices of the elements are mapped so that the areas of refinement are
concentrated around the layers of the solution by a time-dependent mapping function determined a
priori. Sample meshes are shown in Fig. 1. Comparable numerical results for an analogous estimator
using a fixed computational mesh are given in [40, Section 7].

In this setting, it is appropriate to select Lemma 3.21 to provide the time derivative estimator,
and by performing mesh transfer using the elliptic transfer operator from Definition 3.19, the
spatial error estimator takes the simpler form

S(t) =
C

τn

(
‖h2

n(Rn
nw

n −Rn
n−1E

nwn−1)‖2 + ‖h3/2
n J n(wn − Enwn−1)‖

2

Sn

+ ‖h2
n

(
Πn
L2 − I

)
An−1
n−1w

n−1‖2
)1/2

.

Since the chief novelty here is the L∞(0, t;L2(Ω)) estimate, for brevity we do not present the results
for the L2(0, t;H1(Ω)) estimate.

The results are computed as a sequence of simulations, using linear finite element spaces over
progressively finer meshes. The computational mesh for each simulation is constructed by warping
a fixed primitive mesh formed of uniform square elements, using the same (time-dependent) mesh
warping function for each simulation. The mesh used on simulation i, with i ≥ 1, consists of 22(i+2)

elements, and the diameter of the elements on the primitive mesh may therefore be computed in
each case as hi = 21/2−2(i+1). By linking the size of the time-step τi to the size of hi, we may
therefore define a meaningful notion of convergence rate with respect to i as a function of time,
computed for a quantity F i(t) as

ratei(t) =
log(F i(t))− log(F i−1(t))

log(hi)− log(hi−1)
. (4.4)

In Figures 2 and 3 we plot the results obtained with τi = h2
i and τi = hi respectively. Each

line on the plots represents a single simulation in the sequence, and the solid line represents the
results obtained on the finest mesh. Subfigure (A) in each case shows the behaviour of the error
and estimator alongside the effectivity of the estimator, calculated as the ratio of estimated to true
error, i.e.

effectivityi(t) =
estimatori(t)

‖u− Ui‖L∞(0,t;L2(Ω))

, (4.5)

where, estimatori(t) and Ui(t) denote the estimator and discrete solution calculated on mesh i.
A priori error estimates for finite element discretisations of parabolic problems with backward

Euler time-stepping (albeit on fixed computational meshes) lead us to expect the simulation error
to be of the order O(h2 + τ), translating to an expected convergence rate with respect to i of 2
and 1 for the results in Figures 2 and 3, respectively. This is indeed what we observe numerically,
for both the error and estimator. Moreover, the effectivity values of approximately 16 and 2 in the
two cases respectively indicate a good level of agreement between the true and estimated error. For
the simulations with τi = hi (Figure 3), it appears that the effectivity initially grows as i increases
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Figure 1. Initial condition and initial and final meshes, selected a priori to fit
the layers of the solution (4.3).

Item Conditions Construction
Mesh Required by A1 Section 5.1

Discrete space Required by A2, satisfying A8 Section 5.3
Bilinear forms Required by A3, satisfying A9 Section 5.4
Forcing data Required by A4, satisfying (3.3) Section 5.4

Mesh transfer operator Required by A5 Section 5.5
Elliptic estimates Satisfying A6 and A7 Section 5.6

Table 1. The sections in which the components of a virtual element method
satisfying the conditions of the abstract discrete scheme are constructed.

(and thus the spatial and temporal discretisations become finer), before levelling off on the final
simulations. This may be attributed to the fact that the true error converges faster than expected
between the first simulations, a pre-asymptotic effect which is reflected to a lesser extent by the
estimator. Once the asymptotic regime is reached, however, both the error and estimator converge
at the same rate and the effectivities stabilise. In the case of τi = h2

i , we observe that the error and
estimator both express approximately the expected convergence rate for all i, and the effectivity
is therefore predictably smaller and more stable.

A further key observation we draw from these results is that the behaviour of the components of
the estimator (plotted in subfigure (B) of each figure) appears to vindicate our choice of names for
them. In particular, when τi = hi, the time estimator and data approximation estimator converge
at order one, whereas when τi = h2

i , they both converge at order two. This matches the behaviour
we would expect from a priori estimates, given the scaling of the time-step, and we note that it
is these components which are of order one and therefore responsible for restricting the estimate
to the correct convergence rate when τi = hi. The component of the estimator designated as
measuring the spatial error may be seen to converge at rate two in both cases, alongside the elliptic
component of the estimator.

5. Application to virtual element discretisations

We now show how a virtual element method fits into the abstract framework above, and derive
computable error estimates which are valid for general adaptive polygonal meshes. In particular,
the construction of the discrete function spaces used in the virtual element method means that
even hierarchical refinement of the mesh does not lead to hierarchical sequences of spaces. Table 1
provides an outline of the construction of the method’s components.

5.1. Mesh. The virtual element method may be applied in the context of very general polygonal
or polyhedral meshes satisfying the following conditions.

Assumption 5.1 (Polytopic mesh). We suppose that the mesh Mn satisfies Assumption A1
alongside
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(a) Error and estimator

(b) Components of the estimator

Figure 2. Behaviour of the error and estimator for the moving mesh example (4.3)
with τ ≈ h2. Solid lines indicate results on the finest mesh.

A10 Every element E of Mn is star-shaped with respect to a ball of radius ρhE ;
A11 For d = 3, every side s ∈ Sn viewed as a 2-dimensional element satisfies conditions A1

and A10.

For simplicity, these assumptions will be used in the subsequent analysis although they are more
restrictive than is required in practice [17, 12].

5.2. Local projection operators. The construction of the method hinges around the construc-
tion of elementwise H1- and L2-orthogonal projection operators onto piecewise polynomials, defined
as follows. For an element E ∈ Mn and polynomial degree ` ∈ N, let ΠE

∇,` : H1(E) → PEk de-

note the H1(E)-orthogonal projector onto polynomials of degree ` (when ` = k, we will use the
abbreviation ΠE

∇ = ΠE
∇,k), defined such that, for any w ∈ H1(E),

(∇w −∇ΠE
∇,`w,∇p)E = 0, for all p ∈ PEk ,

and
∫
∂E

(w −ΠE
∇,`w) dS = 0 for ` = 1, or

∫
E

(w −ΠE
∇,`w) dx = 0 otherwise.

The L2(E)-orthogonal projector ΠE
` : L2(E)→ PE` of w ∈ L2(E) satisfies

(w −ΠE
` w, p)E = 0, for all p ∈ PE` ,
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(a) Error and estimator

(b) Components of the estimator

Figure 3. Behaviour of the error and estimator for the moving mesh example (4.3)
with τ ≈ h. Solid lines indicate results on the finest mesh.

and we define Πn
` : L2(Ω) → Pn` as (Πn

`w)|E = ΠE
` (w|E ) for each E ∈ Mn. The following

approximation properties for ΠE
` on star-shaped domains E are provided by [16].

Theorem 5.2 (Projection error estimate). Let ` ≥ 0 be an integer and 1 ≤ γ ≤ `+ 1. Then, there
exists a positive constant Cproj depending only on ` and the mesh regularity such that, for any
E ∈Mn and w ∈ Hγ(E), we have

‖w −ΠE
` w‖0,E + hE |w −ΠE

` w|1,E ≤ Cprojh
γ
E |w|γ,E .

5.3. Virtual element space. We now recall the construction of the local virtual element space
of order k ∈ N; see [2, 23] for further details. On each element E ∈Mn, the local virtual element
space VE consists of a subspace PEk of polynomials complemented by a subspace of non-polynomial
functions which are implicitly defined as solutions to local boundary value problems. The key to
the virtual element methodology is that these extra non-polynomial virtual functions never need to
be known explicitly, ensuring that the local boundary value problems are never solved in practice.
Instead, the virtual element functions are only accessed through a set of degrees of freedom of the
following types.

Definition 5.3 (Degrees of freedom). Let ω ⊂ Rd, 1 ≤ d ≤ 3, be a d-dimensional polytope (i.e. a
line segment, polygon, or polyhedron, respectively). For any sufficiently regular function v on ω, we
define the following types of degrees of freedom:
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• N ω are the nodal values. For a vertex z of ω, N ω
z (v) := v(z) and N ω := {N ω

z :
z is a vertex};

• M ω
l are the polynomial moments up to order ` ≥ 0:

M ω
α (v) =

1

|ω|
(v,mα)ω with mα :=

(
x− xω
hω

)α

and |α| ≤ `,

where α is a multi-index with |α| := α1 + · · · + αd and xα := xα1
1 . . . xαdd in a local

coordinate system, and xω denotes the barycentre of ω. Further, M ω
` = {M ω

α : |α| ≤ `}
and M ω

−1 := ∅.

The construction of the space is recursive in the spatial dimension. We start with a line segment
e and define Ve = Pek, which is described by the degrees of freedom

DoF(Ve) := {N e, M e
k−2}.

Then, for a polytope E ⊂ Rd with d = 2, 3, the space VE is defined (recursively) as

VE :=
{
v ∈ H1(E) : ∆v ∈ PEk , v|s ∈ Vs for all s ∈ SE , v|∂E ∈ C0(∂E),

and ME
α (v −ΠE

∇v) = 0 for all |α| = k, k − 1
}
,

and the set of degrees of freedom describing this space is also defined recursively as

DoF(VE ) :=
⋃
s∈SE

DoF(Vs) ∪ME
k−2,

with the convention that degrees of freedom associated with vertices and edges are only counted
once, even when they are shared by several edges or faces. The global space on the mesh Mn is
constructed from these local spaces as in (3.1), and the global degrees of freedom are obtained by
collecting the local ones, with the same convention for shared vertices, edges and faces as above. The
fact that these degrees of freedom are unisolvent for the space is proved by [2, 23, 39], for example.
The approximation properties required by Assumption A8 are guaranteed by [23, Theorem 4.8],
[20, Theorem 11], and [39, Chapter 3].

To make it explicit that the local boundary value problem defining this space never needs to be
solved, the method is constructed with the following notion of computability, which is satisfied [23]
by the projectors ΠE

∇v, ΠE
k v, and ΠE

k−1∇v (defined componentwise) for v ∈ VE . We refer to [38, 11],
for instance, for details on how such a scheme may be implemented in practice.

Definition 5.4 (Computability). A term is computable if it may be evaluated using only the
problem data, the degrees of freedom, and operations on polynomials.

5.4. Discrete bilinear forms. To discretise the forcing data we take Pn = Πn
k , so that fnP =

Πn
kf

n. Assumption A4 is therefore satisfied because Theorem 5.2 ensures that

(fn − fnP , v) = (fn − fnP , v −Πn
kv) ≤ CprojCequiv‖hn(fn − fnP )‖|||v|||.

The local virtual element discrete bilinear forms on E ∈Mn are defined as

anE (w, v) = (κΠE
k−1∇w,ΠE

k−1∇v)E + (µΠE
k w,Π

E
k v)E + SaE (w −ΠE

k w, v −ΠE
k v),

mn
E (w, v) = (ΠE

k w,Π
E
k v)E + SmE (w −ΠE

k w, v −ΠE
k v),

for w, v ∈ VE , where the stabilising terms SaE , S
m
E : VE × VE → R are given by

SaE (w, v) = σDE (w, v) and SmE (w, v) = hdEDE (w, v),

with σ = (κE∗ κ
∗
E )1/2hd−2

E + (µE∗ ‖µ‖∞,E )1/2hdE where µE∗ , κ
E
∗ and κ∗E denote the local counterparts

of µ∗, κ∗ and κ∗ on E , and DE is the Euclidean product between vectors of degrees of freedom.
The bilinear forms mn and an are then given by (3.2).

The bilinear forms are coercive and continuous in the local discrete (semi-)norms

|||w|||2h,E = anE (w,w) and ‖w‖2h,E = mn
E (w,w),
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and are stable since there exists a constant Cstab > 0 such that, for any E ∈Mn,

C−1
stab|||w|||

2
E ≤ |||w|||

2
h,E ≤ Cstab|||w|||2E and C−1

stab‖w‖
2
E ≤ ‖w‖

2
h,E ≤ Cstab‖w‖2E ,

for all w ∈ VE . The bilinear forms also offer polynomial consistency such that

anE (q, p) = aE (q, p) and mn
E (wE , p) = (w, p)E ,

for all q, p ∈ PEk . The polynomial consistency property holds by construction, while the stability
property may be proven as in [23, 39]. Together, these properties imply the following computable
estimate for the inconsistency, which may be proven by arguing as in [20].

Lemma 5.5 (Inconsistency estimate). Let γ ∈ {0, 1}, wn ∈ Vn and E ∈ Mn. Suppose that κ ∈
(W γ+1,∞(E))d×d and µ ∈W γ+1,∞(E). Then, the local virtual element bilinear forms satisfy A9
with

(I E
L2wn)2 = (1 + Cstab)‖wn −ΠE

k w
n‖2h,E ,

and

(I E
a w

n)2 = Ca

(
‖
(

I−ΠE
k−1

)
κΠE

k−1∇wn‖
2

E
+ ‖
(

I−ΠE
k

)
µΠE

k w
n‖2
E

+ |||
(

I−ΠE
k−1

)
wn|||2

h,E

)
,

for each E ∈Mn, where Ca = 1 + Cstab

((
1
2 + 1

2

(
κ∗E
κE∗

)2

+
(

1
κE∗

)2

+ C2
PF

))1/2

.

5.5. Computable transfer operators. Popular techniques for transferring functions between
conventional finite element spaces, such as Lagrangian interpolation or L2 projection, are not
appropriate for virtual element functions which cannot be evaluated within elements. Instead,
we introduce computable transfer operators (in the sense of Definition 5.4) under the following
assumption on the mesh modification.

Assumption 5.6 (Coarsening and refinement). Mesh modification is performed via a finite number
of coarsening or refinement operations, i.e. such that contiguous patches P ⊂Mn−1 of elements are
agglomerated into a single element E ∈ Mn, and individual elements E ∈ Mn−1 are refined into
patches P ⊂Mn of sub-elements such that every side on the boundary of P may be expressed as a
subset of a single side of E .

In this setting, there are three particularly natural methods of transferring solutions between
meshes, detailed below. Other techniques for mesh transfer are discussed in [39, Chapter 8].

5.5.1. Local transfer operator. We introduce local transfer operators which may be applied to either
coarsened patches or refined elements, denoted C and R respectively. A computable and inherently
local transfer operator Tn : Vn−1 → Vn may then be constructed by applying either C or R on
each element as required.

Definition 5.7 (Local transfer operators). Let P be a patch of elements and let E =
⋃
K∈P K ⊂ Rd,

d = 2, 3. Define

VP =
{
vh ∈ H1(E) : vh|K ∈ VK for each K ∈ P

}
.

The coarsening operator C : VP → VE is defined to be the Lagrange interpolant.
The refinement operator R : VE → VP is defined for d = 2 to satisfy

anP (RwE , vP ) = anE (wE ,CvP ) for all vP ∈ VP ∩H1
0 (P ), (5.1)

(RwE )|∂P = wE |∂P , (5.2)

for any wE ∈ VE , where anP : VP × VP → R is the elliptic virtual element bilinear form on P
given by anP (·, ·) :=

∑
K∈P a

n
K(·, ·). For d = 3 the refinement operator is recursively defined as the

d = 2 construction on each face and to satisfy (5.1) in E .
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Both operators C and R are computable in the sense of Definition 5.4. For d = 2, the coarsening
operator C is computable because E = ∪K∈PK and the boundaries of E and P coincide; the
extension to d = 3 is analogous. The computability of the refinement operator R then follows
from that of anP and C. These local transfer operators also preserve polynomials in the sense that
p = Rp = Cp for p ∈ PEk , a property which is important to retain the approximation power of the
solution under refinement. Moreover, when d = 2, R does not change the edge values of virtual
element functions by construction, although this is not true when d = 3 due to the virtual nature
of the face spaces. The patch on which R modifies function values when d = 3 therefore includes
the face neighbours of the modified element. For either d = 2 or 3, C modifies virtual element
functions on the neighbours of the coarsened patch unless the sides of E coincide with those of P .

5.5.2. Polynomial projection. Let Mn,n−1 denote the finest common coarsening of Mn and Mn−1,
such that every element of either mesh is a subset of an element of Mn,n−1, and let Pn,n−1

k denote the
space of polynomials with respect to this mesh. Then, for any vh ∈ Vn or Vn−1, the L2-orthogonal
projector Πn,n−1

k : L2(Ω)→ Pn,n−1
k defined by

(Πn,n−1
k vh − vh, p) = 0 for all p ∈ Pn,n−1

k , (5.3)

is computable directly from the degrees of freedom of vh. One may therefore adopt the numerical
scheme: given U0 ∈ V0 approximating u0, for each n = 1, . . . , N find Un ∈ Vn satisfying

1

τn

(
mn(Un, vn)− (Πn,n−1

k Un−1, vn)
)

+ an(Un, vn) = mn(fnL , v
n) for all vn ∈ Vn,

which may be expressed in the form of (3.5) by taking Tn = LnΠn,n−1
k , and our analysis therefore

also applies to this scheme. We note, however, that this operator does not reduce to the identity
operator when Vn = Vn−1, meaning that the components of the estimators measuring mesh transfer
error will be non-zero even when the mesh is not modified.

5.5.3. Elliptic transfer operator. A counterpart of the elliptic transfer operator En of Definition 3.19
can be constructed which is computable in the virtual element context. This is defined as the

operator Ê
n

: Vn−1 → Vn satisfying

an(Ê
n
wn−1, vn) = −

(
Πn,n−1
k (An−1wn−1 + (Ln−1 − I)Pn−1fn−1 − (Ln − I)Pnfn−1

)
, vn
)

for all vn ∈ Vn, with Πn,n−1
k defined as in (5.3). This operator is computable because the right-

hand side is just a product of (computable) polynomial projections. We note, however, that this
operator no longer reduces to the identity operator when Vn = Vn−1 and the fundamental relation
of Definition 3.19 is also no longer exactly satisfied. Instead, we have

a(Rnn−1Ê
n
wn−1, vn) = a(Rn−1

n−1w
n−1, vn) + InL2(AnÊ

n
wn−1 + LnPnfn−1, wn) (5.4)

+ ((I−Π̂
n

k )
(
An−1wn−1 + (Ln−1 − I)Pn−1fn−1 − (Ln − I)Pnfn−1

)
, vn),

which may be interpreted as providing the same property up to higher order terms.

5.6. Computable error estimates. Due to the abstract discrete setting in which they are
developed, the error estimates of Section 3 remain valid in the virtual element context. They cannot
all be applied directly, however, because they are not computable in the sense of Definition 5.4. To
estimate the terms in Definition 3.9 computably, we bound T (t) by

T (t) ≤ ‖(Πn
k∂

nUn − fnP )− (Πn−1
k ∂n−1Un−1 − fn−1

P )‖

+ Cstab

(
‖(I−Πn

k )∂nUn‖h + ‖(I−Πn−1
k )∂n−1Un−1‖

h

)
,

and M(t) by

M(t) ≤ 1

τn
‖Πn−1

k Un−1 −Πn
kT

nUn−1‖

+
Cstab

τn

(
‖(I−Πn

k )TnUn−1‖h + ‖(I−Πn−1
k )Un−1‖

h

)
.
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By construction, the data estimators

DT (t) = ‖f (t)− fn‖ and DS(t) = Cf ‖hn(fn − fnP )‖,

remain computable. The remaining non-computable terms are the elliptic estimators of Section 3.5,
for which we prove slightly modified versions in Lemma 5.8, to produce variants of Lemmas 3.16
and 3.18 involving computable projected forms of the residual operators. The single mesh elliptic
error estimates we obtain are similar to those of [20].

Lemma 5.8 (Elliptic error estimates for the virtual element method). For m,n ∈ {0, . . . , N} and

wn ∈ Vn, let Ĵ
n

: Vn → L2(Sn) denote the projected jump residual operator

(Ĵ
n
wn)|s = Jκ∇Πn

kw
nKs,

for each s ∈ Sn, which is extended by zero to the whole of Ω, and let R̂n
m : Vn → R denote the

projected element residual operator, given for each E ∈Mn by

(R̂n
mw

n)|E = AΠE
k (wn|E )−ΠE

k (Anmwn)|E
= AΠE

k (wn|E )−ΠE
k (Anwn − (Ln − I)Πn

kf
m)|E .

Then, the estimates of Lemmas 3.16 and 3.18 hold with R̂n
n and Ĵ

n
replacing Rn

n and J n

respectively, i.e.

E n
L2(wn, fn) = Cellip

(
‖h2

nR̂
n
nw

n‖
2

+ ‖h3/2
n Ĵ

n
wn‖

2

Sn +Xn(wn, fn)2
)1/2

,

E n
H1(wn, fn) = Cellip

(
‖hnR̂n

nw
n‖

2
+ ‖h1/2

n Ĵ
n
wn‖

2

Sn + Y n(wn, fn)2
)1/2

,

and

E ∂t
L2(wn, wn−1, fn, fn−1) =

1

τn

(
‖Tnwn−1 − wn−1‖2

+ Cellip

(
‖h2

n(R̂n
nw

n − R̂n−1
n−1w

n−1)‖
2

+ ‖h3/2
n (Ĵ

n
wn − Ĵ

n−1
wn−1)‖

2

Sn∪Sn−1

+ ‖ĥ2
n−1,nR̂

n−1
n−1w

n−1‖
2

Mn−1\Mn

+ ‖ĥ3/2
n−1,nĴ

n−1
wn−1‖

2

Sn−1\Sn

+Xn(wn, fn)2 +Xn−1(wn−1, fn−1)2
))1/2

.

Proof. The definition of the elliptic reconstruction and Lemma 3.6 give

a(wn −Rnnwn, v) = (Anwn − fnL + fnP , v − vn) + a(wn, v − vn)

+ Ina (wn, vn) + InL2(Anwn + fnL , v
n),

where vn ∈ Vn denotes the quasi-interpolant of v satisfying (3.19). Introducing projectors and
using the fact that fnP = Πn

kf
n, this becomes

a(wn −Rnnwn, v) = (Πn
k (Anwn + fnL − fn), v − vn) + a(Πn

kw
n, v − vn)

+ ((I−Πn
k )(Anwn + fnL), v − vn) + a(wn −Πn

kw
n, v − vn)

+ Ina (wn, vn) + InL2(Anwn + fnL , v
n).

Using Lemma 5.5 and the space approximation bounds (3.19), the final four terms of this may be
bounded by

ĈXn(wn, fn)|v|1,
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where Xn is given in Lemma 3.16 and Ĉ = max
{
αCintCstab

1+Cstab
+ Cglob, α

CstabCequivCint

Ca
+ Cglob

}
with

Ca from Lemma 5.5 and α depending only on the mesh regularity. Integration by parts therefore
gives

a(Rnnwn − wn, v) ≤
∑
E∈Mn

(R̂n
nw

n, v − vn)E +
∑
s∈Sn

(Ĵ
n
, v − vn)s + ĈXn(wn, fn)|v|1,

and the energy estimate follows by applying the Cauchy-Schwarz inequality and the scaled trace
inequality, using (3.19), and selecting v = Rnnwn − wn.

The L2 norm estimate follows via a duality argument using similar arguments.
A computable estimate for the elliptic reconstruction time derivative error may be proven by

combining the arguments proving Lemma 3.18 with those above. �

Although we do not pursue it here, the global mesh modification estimate of Lemma 3.21 can

also be translated into this context using the above counterpart Ê
n

of the elliptic transfer operator
En. The resulting estimate is analogous to Lemma 3.21 but with projected residuals and the extra
inconsistency terms appearing in (5.4).

5.7. Numerical experiments. We now demonstrate the practical performance of the virtual
element error estimates presented in the previous sections on a challenging set of numerical exper-
iments.

5.7.1. Convergence tests. We begin by exploring the convergence properties of the estimates above
when applied to the virtual element discretisation of the model parabolic problem (4.2) with
Ω = [0, 1]2, α = 1, and data fixed in accordance with the exact solution

u(x, y, t) = sin(5πt) sin(πx) sin(πy), (5.5)

which we refer to as the oscillating solution. The simulations, indexed by i ∈ Z, use a fixed spatial
mesh of 22i square elements with diameter hi = 21/2−2i linked to the time-step size τi. We plot
the L2(0, t;H1(Ω)) and L∞(0, t;L2(Ω)) errors and estimators alongside the separate estimator
components; see Section 4 for a full description of the plotted quantities. The results for τi = hi
with i ∈ {2, 3, 4, 5, 6, 7, 8} and τi = h2

i with i ∈ {2, 3, 4, 5, 6} are plotted in Figures 4 and 5
respectively.

The optimal order of convergence of both errors and estimators is observed in all cases, save
for the slightly pre-asymptotic behaviour of the L2(H1) estimator when τ = h2 (Figure 5), which
appears to be converging slightly faster than expected on the coarser meshes but approaches the
optimal rate of 1 on the finer meshes. This appears to be due to a slight imbalance between the
(second order) time estimator, which initially dominates the estimate, and the (first order) H1(Ω)
elliptic estimator. A result of this is that the effectivity index in this case decreases as the mesh
gets finer, although it may be expected to stabilise once the time estimator has decayed sufficiently
and the expected asymptotic first order convergence rate, dictated by the elliptic estimator, is
attained. No similar pre-asymptotic behaviour is observed in the case of τ = h (Figure 4), where
the effectivity quickly stabilises at approximately 25, a typical value comparable with other similar
estimates.

The L∞(L2) error and estimator both exhibit stellar performance, converging at the theoretically
optimal first order when τ = h and second order when τ = h2, with effectivities of approximately
100 in the former case and 200 in the latter case. Such effectivity values are typical of comparable
L∞(L2) estimates, and we observe that sharp changes in their time derivatives are visible where
different accumulation norms become optimal and they begin to approach a limiting value towards
the end of the time interval (due to the use of L∞ time accumulations).

Finally, we observe that the behaviour of the components of both estimators apparently justifies
their names: the space and time estimators converge at the expected rate for the spatial and
temporal discretisations, respectively.
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(a) Computed and estimated errors

(b) Components of the L2(0, t;H1(Ω)) estimator

(c) Components of the L∞(0, t;L2(Ω)) estimator

Figure 4. Behaviour of the error and estimator for the oscillating solution (5.5)
with τ ≈ h. Solid lines indicate results on the finest mesh.
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(a) Computed and estimated errors

(b) Components of the L2(0, t;H1(Ω)) estimator

(c) Components of the L∞(0, t;L2(Ω)) estimator

Figure 5. Behaviour of the error and estimator for the oscillating solution (5.5)
with τ ≈ h2. Solid lines indicate results on the finest mesh.
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Figure 6. Examples of meshes adaptively generated to fit the layer solution (5.6)
at various time moments. The path of the layer (oriented parallel to y = −x,
travelling parallel to y = x) is clearly marked by the regions of refinement.

5.7.2. Adaptive experiments. We now present adaptive experiments with two different benchmark
solutions. The first we refer to as the layer solution, defined as

u(x, y, t) =
(
1 + exp(10(x+ y − t))

)−1
, (5.6)

which presents the challenge of an internal layer parallel to the line y = −x which moves across
the domain along y = x. The second is the circulating solution, with

u(x, y, t) = (10− t)(x2 − x)(y2 − y)
(

1− 1

1 + eα(x,y,t)

)
, (5.7)

where

α(x, y, t) = 25(10− t)
((

2x− 1

2
sin
(π

2
t
)
− 1
)2

+
(

2y − 1

2
cos
(π

2
t
)
− 1
)2

− 3

200

)
,

and features a lump of mass circulating the domain whilst slowly diffusing away.
Both simulations begin with an initial mesh of 400 square elements and incorporate a simple

spatial adaptive algorithm with a fixed time-step. The elemental components of the L2(Ω) elliptic
estimator of Lemma 5.8 are used as as an error indicator: elements on which this quantity is above
a certain threshold on every 5th time-step are marked for refinement, while those below a lower
threshold on every 10th time-step are marked for coarsening. Coarsening is achieved by simply
merging patches of neighbouring marked elements, a process which naturally produces polygonal
elements. Such elements may then be refined at a later stage by splitting them back into the
elements from which they were formed. The numerical solution is then transferred onto this new
mesh using the local transfer operator from Definition 5.7.

A key advantage of using these polygonal meshes is evident in that they enable aggressive
coarsening to be performed. Samples of the meshes produced at various time-steps when solving
the layer and circulating examples are shown in Figures 6 and 7, respectively. The adapted meshes
are highly suited to both solutions, with resolution focussed around the layers and sparsely deployed
elsewhere.

We also plot the behaviour of the errors and the estimators for the layer and circulating examples,
in Figures 8 and 9, respectively. It is worth noting that, even in this challenging adaptive situation,
the L2(0, t;H1(Ω)) estimator behaves extremely well, achieving effectivity values of approximately
10. As in the previous numerical experiments, the effectivities of the L∞(0, t;L2(Ω)) estimator
are somewhat larger and, although the cause of this is not clear, we note that they appears to
reach a limiting value towards the end of the simulation. The spike in effectivity which appears at
around t = 5 for the circulating solution seems to be a result of the adaptive algorithm making
a poor decision when coarsening elements, causing information to be lost. Interestingly, there is
no effect on the L2(0, t;H1(Ω)) error or estimate, and the impact appears to be picked up by the
L∞(0, t;L2(Ω)) estimator before the true error, resulting in an effectivity spike. A more complex
adaptive algorithm could be able to correct such a mistake, for example by rewinding a few time
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Figure 7. Examples of meshes adaptively generated to fit the circulating solu-
tion (5.7) at various time moments. The concentration of mass is clearly marked
by the refined regions as it moves around the domain and diffuses away.

steps after the sudden increase in the estimator; we do not explore this here but refer to [19] for
such an algorithm.

6. Conclusions

The new computable a posteriori error estimates we have presented open up the possibility of
using such estimates with very general forms of mesh modification. This is achieved by removing
the assumption of hierarchicality placed on the discrete spaces required by previous comparable
estimates, an assumption which, as discussed in Section 1, entailed significant restrictions in practice.
Removing this assumption enabled us to introduce virtual element schemes using general adaptive
polygonal meshes. The new error estimates and adaptive algorithms we have presented in this
setting appear to be the first incorporating such a general approach to coarsening in the context of
time-dependent problems. The comprehensive set of numerical experiments we have presented for
the virtual element method and for a moving mesh method demonstrate the practical performance
of the estimators in several challenging scenarios.

This work is a step towards the development of non-standard adaptive algorithms, able to
harness adaptive polygonal meshes in a more nuanced way, to generate meshes tailored to the
behaviours and anisotropies of the problem at hand.
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