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ADAPTIVE NON-HIERARCHICAL GALERKIN METHODS
FOR PARABOLIC PROBLEMS WITH APPLICATION TO
MOVING MESH AND VIRTUAL ELEMENT METHODS

ANDREA CANGIANI, EMMANUIL H. GEORGOULIS, AND OLIVER J. SUTTON

ABSTRACT. We present a posteriori error estimates for inconsistent and non-hierarchical Galerkin
methods for linear parabolic problems, allowing them to be used in conjunction with very general
mesh modification for the first time. We treat schemes which are non-hierarchical in the sense
that the spatial Galerkin spaces between time-steps may be completely unrelated from one
another. The practical interest of this setting is demonstrated by applying our results to finite
element methods on moving meshes and using the estimators to drive an adaptive algorithm
based on a virtual element method on a mesh of arbitrary polygons. The a posteriori error
estimates, for the error measured in the L?(H') and L°°(L?) norms, are derived using the
elliptic reconstruction technique in an abstract framework designed to precisely encapsulate
our notion of inconsistency and non-hierarchicality and requiring no particular compatibility
between the computational meshes used on consecutive time-steps, thereby significantly relaxing
this basic assumption underlying previous estimates.

1. INTRODUCTION

Computable error estimates are used within simulations of natural and physical phenomena to
ensure that accurate and reliable results are produced as efficiently as possible. For those governed
by systems of partial differential equations (PDEs), such a posteriori computable error estimates
are often employed to drive adaptive algorithms, in which key components of the numerical scheme
such as the computational mesh are automatically modified to focus computational effort in specific
regions where higher resolution is required. Although estimates such as these have been widely
studied, many open questions remain. In particular, although our understanding of error estimation
for elliptic problems is by now rather mature (see [3, 43, 16] for instance), the literature on error
estimation for parabolic or hyperbolic systems is substantially less complete.

Optimal order a posteriori error estimates for linear parabolic problems in the L?(H') norm
may be proven using direct energy arguments [37, 24]. Although the same arguments provide
an estimate of the (higher order) error in the L°°(L?) norm, the resulting estimators are in fact
typically of suboptimal order. The first a posteriori error estimates in the L°°(L?) norm which were
numerically demonstrated to be of optimal order were derived using duality techniques by Eriksson
and Johnson [28, 29]. The alternative elliptic reconstruction technique, introduced by Makridakis
and Nochetto [35], allows a posteriori error estimates to be derived for the L>°(L?) norm via energy
arguments by introducing elliptic reconstructions of the discrete solution. The reconstruction splits
the error into an elliptic component, which is estimated using existing a posteriori error estimates
derived for an associated elliptic problem, and a parabolic component which satisfies a differential
equation with data which may be numerically verified to be controlable at optimal order; see [34]
for an overview.

However, existing error estimates for parabolic problems in the L>°(L?) norm, and seemingly all
such estimates of the error measured in norms weaker than the L?(H*') energy norm, crucially rely,
to the best of our knowledge, on the assumption that the discrete function spaces are hierarchical.
By this, we refer to the case when the intersection of the finite element spaces used on consecutive
time steps is itself a finite element space offering similar approximation properties. Here we fill this
gap by deriving error estimates for a model parabolic reaction-diffusion problem, in the L?(H?!)
norm and the L°°(L?) norm, which do not place this requirement on the spaces. We note that
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unsuitable non-hierarchical mesh modification can lead to divergent numerical methods in the
context of evolution PDEs [27], and the effects of non-hierarchicality in subsequent spatial finite
element spaces for an evolution PDE can therefore introduce new challenges and behaviours. The
a posteriori error bounds presented in this work could eventually be used in understanding such
phenomena further and possibly aid the user in avoiding such scenarios in practical simulations.

The apparently innocuous assumption of hierarchicality is particularly restrictive in practice
and unrepresentative of the general case, as exemplified by the following five scenarios in which
non-hierarchicality naturally appears:

(1) Non-hierarchical refinement or coarsening. A bilinear polynomial space on a rectangular
element has the basis {1, z,y, zy}, yet if this element is refined into two triangular elements
then the discrete space on each may be spanned only by the basis {1, z,y}. The function zy
cannot then be represented on the refined element and the spaces are therefore not hierarchical.
Refining a mesh of squares into a mesh of triangles in the presence of homogeneous Dirichlet
boundary conditions can mean the intersection of the two global finite element spaces is just
the zero function.

(2) Moving meshes. If a mesh node is moved, then piecewise polynomial functions with respect
to the original mesh cannot in general be represented on the modified mesh. Such a situation
arises, for instance, in classical moving mesh and r-adaptive methods [18], and in fluid-structure
interaction problems.

(3) Non-polynomial discrete function spaces. Common non-polynomial discrete function
spaces are naturally non-hierarchical under refinement. For instance, on meshes with polygonal
elements, function spaces are typically directly tailored to the physical geometry of the elements,
often in the form of rational functions or solutions to local boundary value problems and are
therefore not hierarchical.

(4) Boundary conditions. If a non-polynomial essential boundary condition is incorporated into
the space, hierarchicality is lost because the boundary traces of the discrete functions change
when an element adjacent to the boundary is refined.

(5) Domain approximation. Hierarchicality is automatically lost if the mesh only approximates
the problem domain or interior interfaces, so that the boundaries of the mesh change with
refinement [26, 4, 21, 22].

The results we present here tackle challenges (1), (2) and (3) above, with a particular focus on
treating schemes incorporating very general forms of mesh modification. We demonstrate this with
two examples: a conforming finite element method built on a moving mesh (Section 4), and a virtual
element method (Section 5). In the latter example, we also demonstrate the effectivity of the error
estimators to drive a mesh adaptive algorithm exploiting meshes consisting of arbitrary polygonal
elements. Despite the fundamental appeal of using polygonal meshes in adaptive algorithms for
time dependent problems, due to their natural ability to handle coarsening operations by simply
merging arbitrary patches of elements, there does not appear to be any existing literature in this
area, aside from the doctoral thesis of [39)].

We remove the assumption of hierarchical spaces in two stages, producing two distinct estimates
for the error component measuring the modification of the discrete spaces between time-steps, given
in Lemmas 3.18 and 3.21 respectively. Firstly, we suppose that the meshes are still hierarchical,
in the sense that one is constructed from the other by coarsening or refining a small number of
elements, even though the function spaces themselves are not. This setting is particularly applicable
to scenarios (1), (3), and (4) above. The form of this estimate mimics that of previous analogous
estimates in the hierarchical setting [32], but with two extra terms which achieve a degree of
‘smallness’ from the fact that they are only active on those few elements which are modified.

Secondly, we consider the case when the meshes may be completely different between time-steps,
thereby incorporating moving mesh schemes (as in scenario 2) or the complete re-meshing of the
domain. The result hinges on the introduction of an elliptic transfer operator (Definition 3.19)
which provides a natural representation on one mesh of a discrete function defined on another,
with respect to the PDE being studied. The key role played by the elliptic transfer operator in the
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analysis is to enable a ‘discrete integration by parts’ to be performed, ultimately replacing a term
in the estimate which otherwise scales sub-optimally with an optimal term.

Although we study this operator in the context of backward Euler time-stepping, its properties
mean that it may be expected to be of more general interest. For example, it has previously been
shown by Bénsch et al. [7, 8] that Crank-Nicolson time-stepping schemes can become unstable
under mesh refinement when the previous solution is projected onto the new mesh. Instead, in [7, 8|
they produce a stable scheme by also transferring the discrete Laplacian of the solution to the new
mesh. This is unnecessary for the elliptic transfer operator, at the expense of solving an additional
elliptic problem for the transferred solution, since the discrete Laplacian of the transferred function
is simply the L?(Q)-orthogonal projection onto the new mesh of the discrete Laplacian of the
original function.

We first present the estimates in Section 3, in the abstract framework of a general inconsistent
non-hierarchical Galerkin method satisfying certain approximation properties. We then show, in
Section 4, how this translates into the simpler context of a conforming finite element scheme
constructed on a moving (time dependent) mesh, with numerical examples demonstrating the
behaviour of the error estimate.

As a second example, in Section 5 we take a detailed look at how our results apply to a virtual
element discretisation, incorporating adaptive meshes composed of general polygonal elements. The
virtual element method (VEM), introduced in [10], is a generalisation of the finite element method
to meshes containing general polygonal or polyhedral elements. The application of virtual element
methods to time-dependent problems is still in its infancy, with only schemes and convergence
results presented for a model heat equation [42] and a Cahn-Hilliard problem [5]. Instead, virtual
element methods for elliptic problems are already well developed; in particular, there is a growing
literature on a posteriori error estimates and adaptivity [13, 20, 15, 36, 44, 6, 14], which may
be utilised through the elliptic reconstruction framework as described above. Similarly, adaptive
algorithms incorporating agglomeration techniques have been applied by the discontinuous Galerkin
community [9, 25] to efficiently discretise stationary problems on complicated domains from an
initial fine mesh.

Here, for the first time, we exploit polygonal meshes for the adaptive solution of time-dependent
problems by applying our abstract results to an adaptive virtual element method incorporating
general mesh coarsening and refinement. The L°(L?) and L?(H!) error estimates we present
both appear to be novel. We examine their practical behaviour through a series of fixed mesh
convergence benchmarks and adaptive tests, confirming that they are effective even in challenging
adaptive situations. Moreover, developing the mesh adaptive scheme itself requires the introduction
of various new auxiliary components which may also be of independent interest in other contexts,
such as operators to transfer discrete solutions between meshes which remain computable and
accurate, even when the discrete basis functions themselves are assumed to be unknown.

We conclude with a brief discussion of our results in Section 6.

2. MODEL PROBLEM AND NOTATION

For w C R™, with m € N, and functions v,w € L?(w), we denote the L?(w) inner product by
(v,w)y = [, vwdz. We further use [llye.0 () @0d [|yyrn(,) to denote the standard norm and
seminorm on the Sobolev space WP (w) for k > 0 and p € [1, 0] (for further details see [1], for
example). In the case of p = 2, we shall denote the L?(w) norm by ||-||, and the H*(w) norm and
seminorm by ||-[|,, , and || respectively. If w = ), the physical domain, then we shall omit the
subscripts w above.

Let T > 0 and let Q C R, with d = 2, 3, be a convex polytope. We focus on the model parabolic
problem: find u : Q x [0,T] — R satisfying

u(z, t) — Au(z,t) = f(x,t) for (z,t) € Q x (0,7,
u(z,0) = up(x) for z € Q, (2.1)
u(z,t) =0 for (z,t) € 0Q x (0,77,

w,k’
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with A denoting the second order linear elliptic reaction-diffusion operator
Av =V - (kVv) — uv,

where p € L2(2) is such that there exists a constant p. € R with p(x) > p. > 0 for almost every
x € Q. We suppose that & : Q — R?*? is symmetric and positive definite, i.e. there exist constants
Ko, % > 0 such that r, |v]> < vTk(z)v < £*|v|* for all v € RY and almost every = € Q, where ||
denotes the Euclidean norm on R,

Remark 2.1. The results we present can be extended to non-conver domains via the careful ap-
plication of weighted estimates; see, for example, [33, 45]. Furthermore, the non-hierarchicality
introduced by removing the assumption on § being a polytope would naturally fit within our frame-
work. Finally, more general boundary conditions can also be treated. We do not pursue these here
to avoid introducing additional (addressable) technicalities.

Let a : H}(Q) x H(2) — R denote the bilinear form
a(v,w) = (kVv,Vw) + (v, w),

and let [|v]|* = a(v,v) denote the norm induced on H} (). We shall also use the notation a,, to
represent the bilinear form a with its component integrals taken over the set w. We observe that
a is continuous in |||, and this norm is equivalent to the H'({)) seminorm, i.e. there exists a
constant Cequiv > 0 such that
~1
C [y < Il < Cequivlvly, (2.2)

equiv
for all v € H}(Q2). Consequently, the Poincaré-Friedrichs-type inequality
[vll < Crr|llv]ll; (2.3)

holds for any v € H{(£2), with constant Cpr > 0 depending on Cequiv and €2.
The problem (2.1) can be posed in the weak form: find u € L2(0,7T;Hg(Q)) with u, €
L?(0,T; H=1(Q)) such that

(us(t),v) +a(u(t),v) = (f(t),v) for all v € Hy(R2) and a.e. t € [0,T]. (2.4)

Standard arguments ensure that this problem possesses a unique solution [30].

3. ABSTRACT ERROR ESTIMATES

We develop a posteriori error estimates in the abstract framework of an inconsistent Galerkin
method built around discrete function spaces which may not be hierarchical, with no compatibility
required between the spaces used on different time-steps. In particular, given a partition {t"}_,
of the time domain [0, 7], with 7" =" —¢"1 > 0 for n € {1,..., N}, we suppose that the scheme
is formed of the following components.

Assumption 3.1 (Components of the discrete framework). For each n € {0,..., N} we assume
that there exists

A1 A mesh M", dividing Q into a finite number of non-overlapping polytopic elements E, such
that the cardinality of the set S¥, denoting the set of sides of E (co-dimension one planar
facets; edges when d = 2, faces when d = 3), is uniformly bounded. Further, there exists
a constant p > 0 which is uniformly bounded with respect to mesh modification, satisfying
hs > phg for each side s € ST, where h,, denotes the diameter of the set w C R?.

A2 A finite-dimensional discrete function space V¥ for each E € M™, which may be combined to
build the conforming global discrete function space

V"= {w e H}(Q) : w|g € VE for each E € M"}. (3.1)
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A8 A pair of local discrete bilinear forms m% : VE x VE — R and a% : VF x VE = R for each
E € M", approzimating the L*(E) inner product (-,-)g and the bilinear form ay, respectively.
These are summed to form the global discrete bilinear forms m™,a™ : V* x V" — R, namely,

m() = > omp(h)  and  a"() = Y ah(-). (3.2)
EeMn™ EcMn
which are assumed to be inner products on V™.

A4 An elementwise projection operator P™ : L?(Q) — L?(Q) providing an approximation of the
forcing data f3 = P"f", where f* = f(t"), for which there exists a constant Cy > 0 such
that for any v € H*(Q)

(f" = 13y v) < Cyllhn (f" = fB)III]I]- (3.3)

We further introduce fp = L"f5 € V", where the projection operator L™ : L*(2) — V"
satisfies

m (LB, 0") = (fp,v")  for allv™ € V™. (3.4)

A5 A transfer operator " : V™1 — V™ which may be practically computed.

The mesh skeleton, formed as the set of all element sides in the mesh M, will be denoted by
S™ = Ugemn S¥, and we introduce the mesh-size function h, : @ — R associated with M" such
that hy(z) = hg for x € E € M" and hy(z) = hs for x € s € S*. We further introduce the
skeleton norm ||H§n = sesn ||Hf For brevity, we describe the inconsistency of the bilinear forms
as follows.

Definition 3.2 (Representation of inconsistency). For w™,v™ € V", let
T (w,v") = (w",v") = m™(w",v") and I} (w",0") =a(w",v") —a™(w",v").

Then, we say that a scheme is inconsistent if there exists an n € N such that I}, (w™,v™) # 0 or
o (wr, o) £ 0,

Remark 3.3 (Approximations of the forcing data). We introduce f7t and f} separately above in
order to separate the discretisation of the forcing data from the projection of it into the discrete
space which naturally arises in the analysis. For a finite element scheme, P™ could be taken as the
identity operator, a Lagrangian interpolation operator, or a local projection into a finite element
space, for example. Similarly, if the bilinear forms are consistent, L™ is simply the L?(Q)-orthogonal
projector onto V™. Beyond the potential for f3 to be discontinuous, the crucial difference between
the two is that f} is required to be zero on O since V' C H}(Y). Defining these separately ensures

that the data is approxzimated at optimal order in the final estimate.
3.1. Numerical scheme. The discrete scheme we pose for approximating solutions to the prob-
lem (2.1) is: given U° € VO approximating ug, for each n = 1,..., N find U™ € V" satisfying
- (Un —gn Unfl
n

,v") +a" (U™, 0") =m™(ff,v") forall v € V™. (3.5)

The fact that m™ is an inner product on V" implies the following equivalent pointwise form of the
numerical scheme: given U, find U™ € V" satisfying

onU" - AU = fp foreachne {1,...,N}. (3.6)
Here, we have used the following discrete differential operators, noting that A™ is the analogue of
the discrete Laplacian operator (cf. [41]) in the current setting.
Definition 3.4 (Discrete differential operators). Let 0™ : V* — V" denote the discrete time
derivative operator, defined by

Umr —gn Unfl

U = evn,

We also define the discrete spatial operator A™ : V* — V" such that, for w™ € V™
—m" (A", v") = a" (w", V") Yot € VT, (3.7
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and the data-dependent discrete spatial operator A7, : V™ — L2(Q) given by
At w" = -A"w" — (L -T)P" ™,

where 1 denotes the identity operator. We emphasise that the superscript indicates the discrete
space used in the construction, while the subscript represents the time step at which the data f™ is
evaluated.

The definition of L™ ensures that the discrete spatial operators are related by
(Apw™ v™) = (A"w™, v™) + ZF (LPP™ f™,0"). (3.8)

3.2. Solution reconstructions. The forthcoming analysis revolves around the concept of an
elliptic reconstruction operator, introduced by Makridakis and Nochetto [35], which we define here
as follows.

Definition 3.5 (Elliptic reconstruction operator). For each n,m € {0,..., N}, we define the
elliptic reconstruction operator R?, : V" — HZ (), satisfying

a(Rw™ v) = —(A"w",v) = —(A"w™ + (L™ —=D)P" ™ v) for all v € H}(Q), (3.9)
with the same super/subscript convention as in Definition 3.4.

The inconsistency of the elliptic reconstrucion in this framework is recorded in the following
lemma. When the discrete bilinear forms are consistent, this reduces to the conventional Galerkin
orthogonality relationship a(RPw™ — w™,v™) = 0.

Lemma 3.6 (Elliptic reconstruction inconsistency). For w™ € V", the elliptic reconstruction
satisfies

a(w™ —Ryw™, v") =T (w",v") + I (A"w™ + LP" M 0")  for all v™ € V™.

Proof. The result follows by substituting (3.8) into the definition (3.9), alongside the expansion

(AMw™, v") = —a(w™, V") + I (W™, v") + L} (A™w™, v"). O
The time and space-time reconstructions of the discrete solutions are defined as
N N
Ut)y=> U™ and UR(t)=> "R, (3.10)
n=0 n=0
respectively where, for each n € {0,..., N}, the continuous piecewise linear function ¢™ : [0,7] —

[0, 1], designed to satisfy £*(t7) = §;; where &;; is Kronecker’s delta, is given by

= fort e [t ],

() =Pt for t e [t Y, (3.11)
0 otherwise.

These reconstructions split the error e(t) = u(t) — U(t) into a parabolic component p(t) =
u(t)—U™R(t) and an elliptic component €(t) = U™ (t)—U(t). The power of the elliptic reconstruction
approach is that the elliptic component of the error may be estimated using the standard techniques
for elliptic problems. This is because a discrete function w™ € V* may be viewed as the discrete
approximate solution (in the framework of Assumption 3.1) to the elliptic problem satisfied by
RIw™. Consequently, terms of the form |[|R"w™ — w™|| are simply the error of an elliptic problem.
This is particularly attractive in the present context of ‘exotic’ spatial discretisations, and so for
now we encapsulate this in the following assumption. Concrete examples of such estimates are
derived in Lemma 3.16.

Assumption 3.7 (Elliptic reconstruction error estimate). We assume that

A6 There exist elliptic reconstruction estimators &7%, &7 @ V" x L?(Q) — R providing, for any
w” € V™ the estimates

lw™ = Rpw™|| < 672 (w", f*)  and " = Ryw"|| < & (w", 7).
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3.3. Error equation. The parabolic component p(t) of the error is estimated via an error equation.
Testing the pointwise form (3.6) of the scheme with an arbitrary v € H{(£2), using the definitions
of the reconstructions and recalling the variational problem (2.4) gives

(er,v) +alp,v) = (f(t) — fr,v) + a(REU™ — UR(t),v) + (0"U"™ — Us(t),v), (3.12)
for t € (t"1,¢"], which may be further expressed as
(Pt v) +a(p,v) = (f(t) = f,v) + a(RRU™ = UR(t),0) + (9"U" = UF (), v). (3.13)

Following [31], we note that the former form of the error equation is more convenient for deriving
L?(0,t; HY(©2)) norm estimates, while the latter can be used for estimates in the L>(0,¢; L(Q))
norm. The difference between their right-hand sides is in the final term: for (3.12) this is
1
(0"U" = Uy(t),v) = — (U =F"U" ", 0), (3.14)

-
which naturally estimates the error from transferring solutions between meshes, while (3.13) con-
tains

(00"~ UF(1),0) = — (U™ = RGU™) ~ (S0~ RIFU™),0),

the nature of which is slightly more subtle, and the estimation of which presents the key difficulty of
the L>°(0,t; L?(2)) norm estimate in the non-hierarchical setting. The derivation of such estimates
is the focus of Section 3.5, but for now we just assume the existence of the following estimator.

Assumption 3.8 (Elliptic reconstruction time derivative estimator). Let w™ € V" for n €
{0,..., N}, and let wR(t) = Zivzo () RIw™. We assume that
A7 A time derivative estimator co@Laé (VP x VL x L2(Q) x L2(Q) — R exists with

0" w™ — wiX(t)|| < éaLa; (w™, w7 fort € (7Nt

We now focus on estimating the terms of the error equations above, which will utilise the
following individual error estimators as shown in Lemma 3.10.

Definition 3.9 (Estimator terms). Forn € {1,...,N} and t € [t"},t"] define:

e the elliptic reconstruction error estimators
N N
Era(t) = Y "OELWUT M), and  Ema(t) = Y O OER T, ),
n=0 n=0
the space error estimator, where é‘fﬁ satisfies Assumption A7,
S(t) = & (U™ U T,

the time error estimator

T() = AU — AU,

n—1

the data approximation error estimators for time and space
Dr(t) = |f(t)— f*ll, and Dg(t)=Cr|hn(f" — fp)ll, respectively,

the mesh transfer error estimator

M(t) = U =50

Lemma 3.10 (Bounds for individual terms). Suppose that Assumptions A1-A7 are satisfied.
Then, for eachn =1,...,N and t € (t"71,t"], the terms of the error equations may be estimated
by separate contributions from the spatial error and temporal error

(@"U" = UR(t),v) <S@lvl|  and  a(RRU™ = UR(t),v) < T(t)|v],
respectively, and the data approximation error and mesh transfer error

(f (@) = f5,v) < Dr@)llvll + Ds@)llvlll  and  (9"U™ = U(t),v) < M(#)][v]].
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Proof. The spatial error estimate follows from Assumption A7. The temporal error estimate is
derived by using the property that ¢"!(¢) < 1 and the expansion

a(RRU™ = UR(t),0) = " a(RAU™ = RpJU™0) = 007 (A U™ — ARU™, 0).

The data approximation estimate is shown by adding and subtracting (f™,v) and applying (3.3).
The bound for the mesh transfer error follows from (3.14). O

3.4. Parabolic a posteriori error estimates. We recall some results from [40] on ezponentially
weighted time accumulations in Lemma 3.11. The key appeal of these is to enable L>°(L?) error
estimates in which the estimator terms accumulate through time in the minimal L?([0, ¢]) norm for
any p € [1,00]. The effectivities of such estimators can therefore become constant with ¢ (since the
error and estimator may both accumulate in the L>([0,¢]) norm), rather than growing like ¢ or ¢!/2
as they would if only L' or L? accumulations were used respectively (see [40] for details). In the
statement of the lemma, the term F' represents an estimator term accumulating with simulation
time, and £ represents the error to be estimated. The terms estimated in each case are typical
terms encountered in the L>(0,¢; L2(£2)) error analysis in Theorem 3.12.

Lemma 3.11 (Exponentially weighted time accumulations [40, Lemma 4.9]). Let p € [1,00],
A €10,1], and r € (0,T]. We introduce the accumulation weighting coefficients

1 — e—aarr\ 1/q
(7) forpe (1,00],
qay

1 forp=1,

Cpyr += ||BrHLq(0,,«) =

Let t > 0 and suppose that F € LP"(0,t) for some p* € [1,00], with F(s) > 0 for a.e. s € [0,1].
Then, for € € L>=(0,t; L2(2)), the estimate

a0 -
Jem e relas < (| min ) ( ma €) (3.15)

holds, and & € L?(0,t; H*(2)) satisfies

t t 1/2
e (s—1) 1/2 ax(s—t) 2
[eenrelemiias < ((min qZF)( [ ente@itas) . (30

We are now fully equipped to estimate the error in the L2?(0,¢; H(Q)) and L°°(0,t; L*(£2))
norms committed by the abstract non-hierarchical and inconsistent scheme (3.5).

Theorem 3.12 (Abstract a posteriori error estimates). Letu € L°(0,t; L?(Q))NL2(0,t; H*(£2)) be
the solution to (2.4) and let U be the linear time reconstruction of the solution to the scheme (3.5)
defined in (3.10). Then, under the assumptions of Lemma 3.10, for a.e. t € (0,T] the error
e(t) = u(t) — U(t) satisfies the L*(0,t; HY(Q)) estimate

t 1/2
2 .
( / lle(s)II* ds) ™ < O (el + € Nzagoay + IPs a0+ min 1Tz

i Ml 2, 1P lis)

where the constant C > 0 depends only on Cpr, and the L°°(0,t; L*(Q)) estimate

mac [le(s)]| < C(Ie(O)] + €22l oy + min €0

+ min ¢,;7 + min ¢,+Dr + min c/DS)
p€[1,00] p€[1,00] PE[2,00]

where the constant C' > 0 depends only on A from Lemma 3.11.
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Proof. We begin with the L?(0,¢; H'(Q2)) error estimate. Selecting v = e in (3.12) and applying
the bounds of Lemma 3.10 to the terms on the right-hand side provides

2dtH eO1” + @I < lle@)llo®Il + Ps @) lle®ll + Z(@)lle®)],

where = T + D + M. Applying the triangle inequality and Young’s inequality ab < 2i5a2 + gbz,
valid for any a,b > 0,0 > 0, we deduce that
1 —|— 252 5 36 1

lle@®Illla@l + Ps@llle@)]] < @I + = lllo(t M + 5= 55 D).
Therefore, integrating over s € [0, t] for some ¢ € [0, T}, we find that

le()]” +v/0 llo(s)I* ds < lle(0)]? +/0 (Ellle(s)II* + %DS(S) +27(s)lle(s))ds,  (3.17)

where y =2 — 3§ and £ = H% . Holder’s inequality and (2.3) give
¢
/ T (s)]le(s)]|ds < min{ max He(s)H/ T (s)ds
0 s€[0,4] 0
t t 1/2
Cov( [ et as | 72(s)as) ),
0 0

to which we further apply Young’s inequality and the triangle inequality to find that

/9 Jile( ||ds<m1n{6m%)§]|| I+ 2 /9‘ ds ,
C
/0 (725 )+5Hle(s)|||2>ds}~

Substituting this into (3.17) produces an estimate with a right-hand side which is a non-decreasing
function of ¢, and consequently we deduce the bound

s )"+ [ o) s < @) + [ (€l + 5Ds()ds

s€(0,1]

+ i {5 mas [le(s)]” + 5 /9‘ )ds ,/Otwm() + S 72(5)) s}

s€[0,t]

Upon simplification, this implies that there exists a constant C' > 0 such that

t 1/2
Cllpll qaany < ()] + ( / (le(s)[I* + Ds(s)) ds) + min 1|7z,
and the L?(0,t; H'(2)) estimate follows by recalling the elliptic reconstruction error estimates for
e and noting that we could have treated the terms of 7 separately (we combined them here for
brevity).

We now turn to the L>(0,¢; L?(2)) estimate. For this, we argue as in [40, Lemma 4.10], although
we recall the main points of the argument here for clarity. Selecting v = p in the error equation (3.13),
applying the individual bounds of Lemma 3.10, and introducing 2 = S + T + M + Dr produces
the estimate

S SIo®IP + oI < 2o+ D (@)ool

The Poincaré-Friedrichs inequality (2.3) implies that, for any A € [0, 1],

1d 2 2 2 2
t A t < —— t
3 g 1PN+ allp@)I” + Alllo( I < thllp( M+ lle@I,
with a = a) = % (from Lemma 3.11; we omit the subscript for brevity), and hence

1d

5 5 (< pWI) + Ao < e 2@l )] + e Ds (@)oo



10 A. CANGIANI, E. H. GEORGOULIS, AND O. J. SUTTON

—at

Integrating over s € [0, t], multiplying both sides by e
we thus obtain

, and invoking Lemma 3.11 with £ = p

1 2 "o 2 I . 2 .
§||P(t)|| +/\/ el p(s)|I° ds < 3¢ “lp(0)]I” + max [lp(s)| min ¢,,2
0 p€E(l,00

s€[0,¢] ]
¢ 1/2
+( / ()P ds) " min cfiDs.
0 pE(2,00]
We next apply Young’s inequality with 6 = 2\ to the final two factors, obtaining
2 2 . 2 12 )2
DI < 1p(0)]1 +2 2 f( D ) ,
oI < [pO)] +2 max llp()] min_ e, 2+ ( min /D

since e~ < 1. The right-hand side of this bound is a non-decreasing function of ¢, and thus,
as before, we deduce that it provides a bound on max,¢jo ||p(s)||2 Applying Young’s inequality
again, we find that

2 . . 1/2
a < ma {1, \f }( 0 2 D )
ma ()] < max {1,/ }(1pO)+ min 12+ min /’Ds
The L°°(0,t; L?(2)) error estimate follows from the elliptic reconstruction estimates and noting,
as before, that we could have considered the terms of 2 separately. We note that the dependence
of the weightings ¢, ; on A means that the optimal value of A is not clear, and depends on the time
t. O

3.5. Residual-type elliptic error estimates. We now derive residual-type elliptic estimators
satsifying Assumptions A6 (in Lemma 3.16) and A7 (in Lemmas 3.18 and 3.21). The key develop-
ments here are the estimates satisfying Assumption A7. In particular, Lemmas 3.18 and 3.21 are
best suited to the case of local or global mesh modification, respectively, although neither result
requires any particular compatibility between the spaces.

For vector-valued quantities which may be discontinuous