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Abstract

Abstract

This thesis provides a dissertation about efficient and reliable methods developed to deal
with fluid flows problems, discretized by the use of finite volume approaches. In general
increasing complexity dynamics are taken into consideration and suited strategies are uti-
lized to overcome arising hurdles. The basic idea behind this work is the construction of
reduced order models capable of providing fully consistent solutions with respect to the
high fidelity flow fields. Full order solutions are often obtained through the use of segre-
gated solvers, employing slightly modified conservation laws so that they can be decoupled
and then solved one at a time. Classical reduction architecture, on the contrary, rely on
the Galerkin projection of a complete Navier-Stokes system to be projected all at once,
causing a mild discrepancy with the high order solutions. In this thesis three different
segregated reduced order algorithms are presented for the resolution of laminar, turbulent
and compressible flows respectively.

Turbulent flows are frequently approached by the employment of Reynolds averaged Navier-
Stokes equations. Since this set of equations is not self closed, an additional modeling is
required for some terms related with turbulence. In particular in this thesis we will rely
on eddy viscosity models. Since there are a variety of different turbulence models for the
approximation of this supplementary viscosity, one of the aims of this work is to provide
reduced order models which are independent on this selection. This goal is reached by the
application of hybrid methods where Navier-Stokes equations are projected in a standard
way while the viscosity field gets approximated by the use of data-driven interpolation
methods or by the evaluation of a properly trained neural network. By exploiting the
aforementioned expedients it is possible to resolve fluid flow problems characterized by
high Reynolds numbers and elevated Mach numbers in a less costly and more general
way,.
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1 Introduction

1 Introduction

In the last decades fluid flows simulations have progressively enlarged their ap-
plicability and their influence in many different research fields. Nowadays Com-
putational Fluid Dynamics (CFD) applications have reached widely spread am-
bits as, for example, shape optimization for naval/automotive/aerospace engi-
neering, cardiovascular in real time diagnosis, chemistry industrial processes or
weather forecasts ([6, 139, 20]).

Various choices are possible for a discrete approximation of the solution. Among
them we can cite the Finite Element Method (FEM) [150], the Finite Difference
Method (FDM) [97], the Spectral Element Method (SEM) [102] or the Finite Vol-
ume Method (FVM) [48]. In this work we opted for the last one.

While increasing the demand on reliability and usability of CFD, the computa-
tional capability of the employed hardware architectures is no more sufficient to
cover the simulation demand in due time. Even though computational facilities
are rapidly increasing their resources and power, the resolution cost for a Direct
Numerical Simulation (DNS) is in many cases unaffordable due to the huge di-
mension of the discretized problem (see [92, 93, 47]). A possible choice to over-
come this issue is an adaptive refinement of the mesh capable of providing a more
accurate resolution of the fields for those areas into the domain where fully re-
solved dynamics are needed as for example in [67].

For this reason the search for new efficient methods, proficient in reducing com-
putational time, keeps on cover a relevant amount of CFD research efforts. A
popular research field, related to the aforementioned applications, is the analysis
of the dynamics related to Parametrized Partial Differential Equations (PPDEs).
In this case a possible infinite number of solutions is admissible for every slightly
different value of the parameter. Some specific ambits require many realizations
to be evaluated in order to find out the best performing one, in terms of prefixed
requirements fulfillment. The cost of such a procedure would increase by order of
magnitude with respect to the cost of a single solution, leading to the impossibility
of relying on standard numerical discretization techniques.

Many different techniques have been taken into consideration to overtake this
problem. Galerkin projection reduction method has widely been employed to de-
velop new reduction strategies capable of exploiting the information of a certain
number of full order solutions for different parameter values in order to perform
efficient, accurate and computationally cheaper solutions for a different configu-
ration of the problem. The main idea behind these approaches is the possibility

1



1 Introduction

to disclose solution manifolds describable by a much smaller number of degrees
of freedom with respect to the dimension of a high fidelity resolution. Those de-
grees of freedom represent the possible linear combinations of a certain amount
of modal basis functions, composing the desired solution. The cited basis func-
tions can be obtained in a variety of ways. The most employed one is probably
the Proper Orthogonal Decomposition (POD) method, in which case we will refer
to the projection technique as a POD-Galerkin strategy. Many interesting publica-
tions rely on it. We can cite [2, 9, 17, 28, 74, 121]. Other possible choices are the
Proper Generalized Decomposition (PGD) [46, 34] or the Dynamic Mode Decom-
position (DMD) [122, 75]. Another possible approach is the use of a Greedy algo-
rithm for a hierarchical selection of needed basis, one at a time, selecting the most
relevant solutions in the discretized parameter set [59, 135, 104]. Good overviews
are reported in [112, 59, 15, 14, 16]. Some specific application of reduced order
methods in a FV framework can be found in [54, 56, 57, 55, 81, 29].

These strategies usually have to face stability issues when applied to fluid flows
problems. The fulfillment of the InfSup condition can be ensured by the enrich-
ment of the velocity space with supremizer solutions as introduced in [118] and
explained in [10], where this technique was firstly developed for FEM environ-
ments. The same approach has been extended to FV architecture in [129]. In [8]
the authors propose a stabilization technique consisting on both an offline part
and an online one to cure proper orthogonal decomposition reduced problems
instabilities caused by advection dominated flows.

Classical Galerkin-projection ROMs only succeed on providing a good reliabil-
ity for those problems characterized by solution manifolds expressible as a lin-
ear combination of modal basis functions. To overtake this problem in the last
years also non-linear approaches have been analyzed, extending the applicability
of ROMs to new problems [71, 151, 96, 69].

The aforementioned approaches can all be classified as intrusive methods. Also
non-intrusive strategies have been developed for the same purpose [145, 147, 33].
A possible example is the use of Radial Basis Functions (RBF) interpolation [144]
or some other types of interpolation procedures for the evaluation of POD expan-
sion coefficients [95].

Lately a new research branch has risen in this sector, belonging to this category:
machine learning. By the use of Neural Networks (NN), the resolution of para-
metric PDEs has surely become more accessible [60, 138, 91, 88].

Both the projection methods and machine learning techniques have some valu-
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able aspects together with critical points to be analyzed. Projection techniques are
strongly connected with the physical laws of the problem since they use modal
basis functions obtained by real solutions to extract the main dynamics and they
employ those modes to project and reconstruct conservation equations solution
manifolds. Unfortunately non-linearity together with non-affinity of the paramet-
ric formulation can be difficult issues to be carefully treated by the use of specific
approaches as, e.g., the Discrete Empirical Interpolation Method (DEIM) [31, 105,
44].

Moreover sometimes it may happen that the equations are not directly available
and in that case projection methods are not employable. Again, in the literature
one may find many examples of very slow decay of the eigenvalues for specific
problems that leads to the requirement of many modal basis functions to reach
a decent approximation for the solutions, wasting, de facto, the whole possible
gain coming from such an architecture. On the contrary artificial intelligence tech-
niques are very versatile. They just need a set of solutions to be trained and, no
matter the complexity of the mathematical formulation of the starting problem,
they can be modeled to provide good approximations in a short time. The dark
side of these approaches is the fact that they have no direct connection with the
real physics of what they are approximating and the actual meaning of their ar-
chitecture is arguably comprehensible. For this reason they may give inaccurate
results thanks to impossibility in having a deeper control on networks responses.

A typical example for slow decreasing eigenvalues is the one related to turbulence
in fluid dynamics applications. Turbulence is mainly treated by the application of
Large Eddy Simulation (LES) [53, 23, 106, 18] or Reynolds Average Navier-Stokes
equations (RANS) [3, 32]. The scope of these techniques is to avoid the resolu-
tion of DNS turbulent problems that would require a too expensive computation
for the discretized formulation. A solution for turbulent ROMs can be found in
Variational Multi-Scale (VMS) with VMS-ROMs examples in [65, 127, 38]. Spe-
cific implementations for reduced order LES and RANS can be found in [134, 114]
and [81, 123, 62] respectively. One of the main disadvantages of this projection
techniques developed for turbulent flows is that they are usually set up to deal
with one single turbulence closure model which causes a large limitation on the
applicability (see e.g. [115]).

A furthermore step towards complexity in the fluid dynamics ROMs field is given
by compressibility. The addition of compressibility leads to the necessity of equip-
ping the Navier-Stokes system with new equations capable of supplying thermo-
dynamics evolution to the problem. Many different architecture have been devel-
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oped to deal with both subsonic and supersonic flows by counting on intrusive
and non-intrusive methods. See for example [11, 152, 73],[146, 148] and [4, 142].

Also neural networks found wide usage for the resolution of compressible fluid
flows [84, 83, 152].

For what concerns real applications and industrial interests, reduced order mod-
els can be a very useful tool in many different fields. In particular geometry para-
metric problems play a very important role for example in shape optimization
procedures or for fluid-structure interaction studies or, again, for "in real time"
estimations (see for example [5, 50, 120] and [66, 19]).

Taking all the aforementioned examinations under consideration, a good choice
for a resolution strategy would be a mixed technique where good properties of
both projection methods and data-driven or non-intrusive methods are retained.
Some mixed approaches have already been employed. In [62] and [52], the au-
thors use a Galerkin-projection technique for what concerns the Navier-Stokes
equations while eddy viscosity related terms are reconstructed through an inter-
polation strategy based on Radial Basis Functions (RBF). [26] provides, on the con-
trary, an example of mixture between projection based methods for the reduction
of the Navier-Stokes system and machine learning strategies for the propagation
of time dependent coefficients. The authors in [113] propose a method for the res-
olution of incompressible Navier-Stokes equations where only the pressure equa-
tion gets projected by the usage of proper orthogonal decomposition basis while
momentum equation is retained in its full order form: a neural network provide
the information exchange between high fidelity and reduced order worlds.

Thesis contribution

This thesis focuses on efficient methods for the resolution of parametric fluid flows
problems. In particular the goal is the development of accurate and reliable meth-
ods for fluid dynamics PPDEs in a reduced order model framework. The gen-
eral idea is to propose an architecture proficient in dealing with different types of
parametrizations in different flow regimes.

Chapter 2 introduces the meaning of parametric partial differential equations and
reduced order models. More in details section 2.1 provides an introduction on
high fidelity discretization methods for PPDEs while section 2.2 shows the ap-
proach we utilize for the finite volume resolution of the problems. Section 2.3

4
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points out the reconstruction of the reduced solution manifold by the use of proper
orthogonal decomposition techniques which is summarized into algorithm 1. Para-
graph 2.4 closes the chapter by summing up the aforementioned contents.

In chapter 3 we give an overview on conservation laws describing laminar incom-
pressible flows related dynamics or rather fluid flows where the ratio between the
particles velocity and the speed of sound, i.e. the Mach number, is below 0.3 and
the ratio between inertia forces against viscous forces, i.e. the Reynolds number,
is below 10*. Section 3.1 contains a detailed description of the needed equations
together with all the required assumptions and provides the finite volume dis-
cretization to be used for the applications. The paragraph 3.2 is composed by
an explanation about the real core of the chapter that is the reduced Semi-Implicit
Method for Pressure Linked Equations (SIMPLE) algorithm we use to obtain ROM
evaluations. The main features of this strategy are enclosed into algorithm 2. Sec-
tion 3.3 gives an introduction on physical parametric problems together with a
tirst test case where a back step problem with a variable viscosity is resolved. On
the contrary in section 3.4 geometric parametrization is handled with a discussion
on mesh motion and a description of the adopted proper orthogonal decomposi-
tion procedure, supported by two test cases related to the flow around aerofoils
where the angle of attack and the surface of the body can be varied. Finally, sec-
tion 3.5 draws conclusions on what has been treated in the chapter.

Since in general laminar problems are a very restricted set, chapter 4 deals with
turbulent flows and turbulence closure models. More in details, section 4.1 sup-
plies a description of turbulent phenomena showing how to treat turbulent flows
by the usage of Reynolds averaged Navier-Stokes equations. Given that this set
of equations require a closure model for turbulence, few different choices are pre-
sented. Section 4.2 explains the method we developed for the resolution of re-
duced order turbulent flows, the most relevant steps being collected into algo-
rithm 3. Two different variants are possible for the reduced treatment of turbu-
lence. The first one is based on radial basis functions interpolation and is shown
in section 4.3 where a test case focused on a back step with a parametrized vis-
cosity is used to prove its performances. The second choice is the employment
of a neural network for the reconstruction of the reduced eddy viscosity and it is
presented in section 4.4. This solution gets selected for more complex test cases:
in this section it is cast, together with a different selection for the snapshots, for a
geometrically parametrized back step problem where the slope of the step can be
varied. Section 4.5 tries to analyze the goals of the chapter.

For flow problems characterized by a Mach number higher than 0.3, chapter 5
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has been devoted to compressible Navier-Stokes equations. In a deeper analysis,
section 5.1 deals with the needed conservation laws and their finite volume dis-
cretization. A step by step averaging procedure is reported taking advantage of
both Reynolds and Favre strategies. Section 5.2 reports the approach utilized in
this work for the resolution of reduced compressible turbulent flow problems, ex-
ploiting the points listed in algorithm 5. The last part of the chapter is dedicated
to the exposure of two different test cases, both related with the flow around a
NACAO0012 aerofoil, where in section 5.3 a viscosity parametrization is consid-
ered while in section 5.4 a shape deformation problem is investigated. Section 5.5
is then employed to briefly summarize the arguments analyzed in this chapter.

The last chapter of this thesis, the number 6, presents a general overview on the
global contribution of this work and provides some possible future improvements
and extensions for the developed methods.



2 Reduced Order Models

2 Reduced Order Models

2.1 Parametrized Partial Differential Equations and high fidelity
solutions

Let us suppose to deal with a generic abstract problem expressed into its strong
form as follows:

a(t,v(p);p) = f(p), 1)

where v € V is a generic variable belonging to the space V that does not require
to be specified at this point, 1 € P is a generic parameter belonging to a regular
enough parameter domain P, ¢ indicates the time dependency, @ : V x P — R? is
the form representing the problem under investigation while f : P — R? stands
for the forcing right hand side term, being d the physical dimension of the prob-
lem.

The dependency of the problem on the parameter can be here both explicit in
the formulation or implicit. For example the problem can be dependent on p be-
cause of a change on physical parameters describing the behaviour of the solution
(see subsection 3.3, subsection 4.3, subsection 5.3) or the solution can be implic-
itly depend on the parameter because of a change of the domain of interest (see
subsection 3.4,subsection 4.4 and subsection 5.4).

Clearly Equation 1 is here indicating the continuum formulation of the problem
but this is not what we are interested on. The resolution of Equation 1 is not possi-
ble in a closed form in most of the cases. For this reason, a discrete approximation
of the solution is required.

To this scope we introduce here the tessellation 7 = {Q;}1" covering the whole
domain of definition of the problem, namely (2, by a certain number N, of non-
convex polyhedral cells ©; so that |, ; = Q while Q; N Q,; = & for every i # .
The discrete solution v;, evaluated on 7 can then be defined.

v), can be obtained in many different ways. The most common and widespread
techniques are the Finite Differences method (see [79]), probably the first strategy
developed for Partial Differential Equations but still used and studied, and the
Finite Element method (see [37]) that is for sure the most common and employed
discretized resolution technique for many different ambits.

For what concerns this work, the discretization procedure we will employ is the

7



2 Reduced Order Models

Finite Volume (FV) method. This technique has firstly been introduced in [89, 86]
and is nowadays very used especially for fluid dynamics problems. Few distinc-
tive features are to be underlined:

¢ volume integrals over each cell containing divergence terms are reshaped
into surface integrals exploiting the divergence theorem;

* quantities of interest are considered to be constant over each cell, at least for
classical applications (high order Finite Volume schemes are also applicable,
see e.g. [36, 42]), assuming their evaluation at the cell-center. This means
that the degrees of freedom of the discrete problem are strictly equal to the
number of cells N}, of the tessellation T;

* by considering surface integrals, fluxes play a relevant role: they are evalu-
ated in such a way that the method is conservative by construction;

e all the previous considerations allow the usage of unstructured polyhedral
meshes (see Figure 2) which becomes particularly efficient for difficult ge-
ometries.

For all these reasons FV methods increased their usage a lot in the last decades
especially in all the fields where a strong conservation property is required, e.g.
fluid dynamics simulations. The Finite Volume solutions are obtained, in this
work, by the use of the open access FV library OpenFOAM ([99]). We will assume
the v), solutions to be high fidelity solutions in the sense that they are able to
provide an approximation of v such that

v —wplly < 7, (2)

for every possible 7 provided that a sufficiently refined mesh 7 is given.

What is then required by the high fidelity problem is to find a solution v}, so that
a(t>”h(ﬂ);ﬂ) = fh(:u’) ) 3)

where v, € V), C 'V, f, is the discrete counterpart of f, namely its evaluation for
every cell-center, and Equation 2 is satisfied. We have:

vy € RNth fh € RNh.
We will assume the truth solution problem to be well posed and the high fidelity
method to be reliable enough to be able to satisfy Equation 3: the scope of this

work is not focused on high fidelity discretization techniques. For this reason we
will give for granted the high accuracy of v, with respect to the real solution v.

8



2 Reduced Order Models

2.2 Semi-Implicit Method for Pressure Linked Equations

This work is devoted to the resolution of different fluid dynamics problems re-
lated to different thermodynamics conditions. The equations describing the phys-
ical behaviour of the systems we are interested on are the well known Navier-
Stokes equations ([131, 35]). These conservation laws are here employed in differ-
ent formulations because of the difference in the characteristics of the flows (see
subsection 3.1, subsection 4.1 and subsection 5.1). For all these different appli-
cations, a similar strategy has been employed for what concerns the offline high
fidelity algorithms: the FV methods employed here are different approaches for
the same basic Semi-Implicit Method for Pressure Linked Equations (SIMPLE) al-
gorithm ([101]).

Some aspects related to these methods are here underlined to justify such a choice:

¢ the NS equations are manipulated so that it is possible to segregate them.
In this way they are no more coupled between each others and they are no
more to be solved as a block system; they can be easily solved one by one in
an iterative way until convergence is reached. This may become useful for
big meshes because a storage of huge matrices can be in this way avoided
by only collecting some much smaller ones;

* by the usage of segregated approaches, the saddle-point formulation is some-
how circumvented in the sense that the Ladyzhenskaya-Babuska—Brezzi con-
dition [21, 43] is not strictly required anymore since no coupled problems are
here to be solved. This aspect is strongly relevant especially for the reduced
order part since no stabilization is needed (for a deeper understanding com-
pare [130] and [10]);

* by the use of a basic under-relaxation these methods show good stability
and reliability properties.

Two main classes of SIMPLE algorithms are used in the literature:

* pressure based algorithms, mostly used for incompressible and low com-
pressibility flows;
* density based algorithms, mostly used for high compressibility flows.

The pressure based algorithms rely on the resolution of a suited pressure equa-
tion, obtained from a combination between the continuity equation together with
the momentum equation, while density is explicitly calculated through the state
equation. For what concerns the density based algorithms they are constructed
exactly the other way around and they rely on a suited equation for density while

9



2 Reduced Order Models

pressure is derived from the state equation.

In this thesis only pressure based algorithms are taken into consideration since we
will not be dealing with highly compressible flows: no discontinuities will be here
analyzed and no shock waves will be studied in the following paragraphs.

2.3 Proper Orthogonal Decomposition

The background idea leading to reduction techniques is the possibility of using a
certain amount of high fidelity solutions to get as much information as possible, so
that a decrease in computational cost will take place for some eventual solutions
coming next: a compression strategy is needed, able to retain only the essential
basic dynamics from the whole content provided by the high fidelity solutions.
A remark on this last sentence has to be pointed out here: such a procedure is
not always applicable. These techniques, for some reasons that will result more
comprehensible at the end of this paragraph, fail when the solutions manifold can
not be approximated as a linear combination of some basis. We will suppose these
technique to be effective for the problem we are interested on.

We can define here P, C P as a finite dimensional parameter set of dimension
N,. It can be extracted from P in many different distributions. The easiest one
is a random picking from the original continuum set but shrewder strategy are
possible, depending on the problem of interest. Equation 3 can then be solved for
every p € IP,. We have:

s;=wvp(p;) fori=1,...,N,,

S92, SNM1
o - . . . . d NpxN,
S—{Sl,.‘.,SNM}— : : : : € R*h ol

aNh SN“th

where s; stands for the i-th snapshot or rather the solution of Equation 3 for p;
while S, namely the snapshots matrix, is the matrix collecting all those solutions
together.

The goal for a reduction method is the possibility to obtain a solution v, in such a
way that the distance between it and its high fidelity counterpart is minimized in
a predefined norm, where v, € V, C V};, being V, the reduced space. Nowadays
a plenty of different methods are available for the construction of V,, e.g. the
greedy algorithm ([109, 137, 103]), the Proper Generalized Decomposition ([34,
98]), the Proper Orthogonal Decomposition ([85, 125, 51]) or the Dynamic Mode

10



2 Reduced Order Models

Decomposition ([108, 76, 122]). Some comparisons can be found in [14] and in
[59].

The whole thing, for all the aformentioned methods, reduces to the search for
the reduced space V, as one of the possible subspaces of span{s;|u; € P} (see
Figure 1), capable of minimizing the quantity

1
FZH‘% — v ()| [5- (4)
Hoi=1

By following what is prescribed for an SVD procedure we have:
M:S =UA W,

in which

o M € RINwxdNi jg the diagonal mass matrix (repeated for vector valued vari-
ables) containing, for FV methods, the volumes of every cell in 7

Mii = VOI(’E) )

A € RV»*Nu g the diagonal matrix containing the eigenvalues \;:

Asvdii - >\7, ;

U € R4NnxdNn jg an orthogonal matrix of left singular vectors;
* Agq € RIV*Nu s a diagonal matrix containing the singular values of S;
W € RM*Nu jg an orthogonal matrix of right singular vectors.

Columns of U can be used as basis functions for a linear construction of the space
V.. What is not desirable in this procedure is the use of snapshots matrices char-
acterized by a number of rows much higher than the number of columns since
the decomposition would become too expensive. Usually this is the case since the
number of offline solutions is much lower than the number of degrees of freedom
of the high fidelity problem.

For this reason in this work we will focus on Proper Orthogonal Decomposition
(POD) in its snapshots method only, since it is the one that best fits our application
purposes (see [125]). In particular we will report in the following the procedure
employed for steady state problems since the applications exposed in the next
paragraph will be devoted to the resolution of steady state problems. The strong
assumption we are taking here is v = v(x; ).

11
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H3 A
S2

SN,

Y

2
S1

S3
1

Figure 1: Disclosure of the hidden dynamics by the use of a Proper Orthogonal
Decomposition where the green line represents the hidden space obtained as the
span{s(u;)|p; € P} for dim(p) = 3.
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2 Reduced Order Models

A correlation matrix C € RN« can be constructed to tackle the correspon-
dences between the snapshots into S:

— T )
Cij = S; MS] .

The main information content can be extracted from C by the use of an eigenprob-
lem construction:
CV =VA,

where V' € RVw*Nu jg the matrix containing the eigenvectors while A € RYwxx is
the diagonal matrix containing the eigenvalues \; so that A;; = A;. The correlation
matrix could also be constructed the other way around as C;; = siMs;.F, what
would have resulted in a much bigger eigenvalue problem. The choice is due to
the necessity of compressing the information as much as possible, following what
the snapshots method prescribes.

A set of basis functions for the reconstruction of the reduced space V, can be ob-
tained as a combinations of the snapshots in the following way:

N
1 123

&i(x) g Visj(x) fori=1,...,N,.
7=1

TN S

The basis functions &; € R?* obtained in this way are ordered by following an
"energy content" principle: the first eigenvectors are related to the biggest eigen-
values and they are, thus, the ones containing the highest information content,
according to the chosen norm, L? in our case, as well as the most relevant dynam-
ics of the system. For this reason the use of all the modes is not mandatory: a
subset can be selected to recover the reduced space V,. This strategy clearly is ne-
glecting part of the compressed information obtained from the snapshots S but,
on the other hand, it is focusing all the reduced solutions on the most relevant dy-
namics. The number N, of selected modes has to be properly chosen and it will be
based on the required accuracy, the eigenvalues decay and many more different
aspects depending on the application case.

The final reduced space can then be expressed as:
V, =span{§;li=1,...,N,}.

It can be proven that the quantity (4) reaches its minimum when v, € V, is con-
sidered, being V, constructed as exposed in this paragraph ([25, 124]).

13



2 Reduced Order Models

The basis functions § = &;(x) are only dependent on the position x: they are
calculated once and for all.

The variable v, € V, can then be expressed as a linear combination of those basis
functions. We have:

v, = Zai(u)éi(a@) = E(z)a(p) , )

where a € R is the vector containing the coefficients for the linear combination,
depending on the parameter p only, while E € R¢V*Nr jg the matrix containing
the selected basis functions, depending on the position « only. Once the POD
procedure has been performed, the reduced problem reduces to finding the coef-
ficients a so that the quantity ||v, (@) — v, (p)||v is minimum.

In this work for the evaluation of the reduced solutions, i.e. the coefficients of the
linear expansion, is performed by the use of Galerkin projection techniques (see
subsection 3.2, subsection 4.2, subsection 5.2). In particular, reduced problems are
treated by the use of the open access library ITHACA-FV ([126]).

14



2 Reduced Order Models

Algorithm 1 The Proper Orthogonal Decomposition algorithm

Input: snapshots matrix S € R NnxNu
Output: basis functions matrix Z(x) containing the modal basis &(x)

1: construct the correlation matrix for the snapshots:
Cij = SZTMSj ,
or equivalently
C=S"MS,

where s stands for a single snapshot, i.e. a column of S, and M is the diagonal
mass matrix containing the volumes of all the cells belonging to T;
2: solve the eigenvalue problem

CV =VA

where V is the matrix containing the eigenvectors while A is the diagonal
matrix containing the eigenvalues \;;

3: construct the modal basis functions as a combinations of the snapshots con-
tained in S:

N,
1 5 .
gl(w):m;‘@sj(w) fori=1,...,N,;

4: collect the first N, basis functions as columns of the basis functions matrix =.
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2 Reduced Order Models

2.4 Context and overview

In this section we tried to give a general introduction to Model Order Reduction.
The subsection 2.1 gives a brief description of what we refer to, when talking
about parame-

trized Partial Differential Equations. The continuum formulation has been ex-
posed and the discretization technique employed in this thesis has been defined,
trying to give a justification for choosing a Finite Volume approach. A more
specific survey on what a FV method consists of, is presented in subsection 3.1,
subsection 4.1 and subsection 5.1 for laminar, turbulent and compressible Navier
Stokes equations respectively.

In subsection 2.2 the choice of the general class of algorithms identified for the
high fidelity solutions in this thesis is discussed, while subsection 3.2, subsec-
tion 4.2 and subsection 5.2 will contain more detailed statements on the specific
algorithms employed for different physical problems.

Since we rely on a "solve-then-compress" strategy for the construction of the re-
duced order model, subsection 2.3 presents possible paths for the same scope and
explains in details the steps for the implementation of a Proper Orthogonal De-
composition algorithm, resumed in Algorithm 1. A slightly different perspective
will be given for POD procedure, employed for moving domains test cases, in
subsubsection 3.4.2.

The reader interested on a deeper knowledge of possible choices for ROMs can
have a look at [49, 58, 59, 14] for what concerns intrusive methods while an
overview for non-intrusive approaches can be found in [145, 60, 33]. A very deep
and widely complete description of the Finite Volume approach for high fidelity
solutions of the Navier Stokes equations is contained in [94].
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3 Incompressible laminar Navier-Stokes equations

3 Incompressible laminar Navier-Stokes equations

In this section we will discuss fluid flow problems characterized by a low velocity
and a motion where viscous forces overwhelm inertia forces. We will suppose to
have:

M <03, Re < 10*,

where M = 22 stands for the Mach number [87], i.e. the ratio between the magni-
tude of the free stream velocity of the fluid u., and the velocity of sound C while

oL
Re:u

14
forces, given by the product between the magnitude of the free stream velocity
and a characteristic length of the problem L, and viscous forces represented by
the kinematic viscosity v.

stands for the Reynolds number [116], i.e. the ratio between inertia

This kind of physical phenomena arise in many different fields, especially when
dealing with strongly viscous media, for example when working with melted
glass or molten metals.

Under the aforementioned conditions, some simplifications can be taken over the
description of the fluid dynamics. The thermodynamics related to the problem
under interest can be completely neglected since the interactions between the fluid
particles as well as the energy dissipation are negligible.

A complete description of fluid motions can be found in [7, 100]. A fascinating
historical fluid flows representation in pictures is contained in [136].

3.1 Equations and Finite Volume discretization

The incompressible laminar Navier-Stokes equations can be easily derived from
the complete continuum conservation laws, written for both mass and momen-
tum, in their differential forms. We will draw them in this paragraph while their
Finite Volume discretization will be reported in the following.

CONTINUITY EQUATION:

dp B
E—FV'[/)U]—O.

In case of incompressible flows and homogeneous density field, all the derivatives
related to density vanish and the continuity constraint reduces to:

V-u=0.

17



3 Incompressible laminar Navier-Stokes equations

MOMENTUM EQUATION:

0

LEH V- (pueu) = V-S(u) - Vp.
where V - S(u) represents here the viscous force. If we introduce the strain rate
tensor D(u), it can be defined as:

_ Vu+Vu'

Dlu) =~

It is then possible to write the viscous stress tensor as S(u) = S(D(u), u). In this
work we will consider just newtonian fluids that means we are only considering
fluids characterized by a linear constitutive law, i.e. we have a linear relation
between the viscous stress tensor and the strain rate tensor. In particular we have:

S(u) = 2uD(u) + A(V - u)l

where 41 is the shear viscosity while A is the first Lame constant (for a clear and
very complete treatment of this argument see [111]).

In the Stokes hypothesis (see [27]), a linear constant relation is present for what
concerns the linking between shear and bulk viscosity, leading to:

1

)\—2,u20:>8(u) =24 | D(u) 3(V-u)]1

3

We can substitute this last expression for the viscous stress tensor into the mo-
mentum equation. We obtain:

ag;:—i—v-(pu@)u)zv- (1 (Vu+ Vau')] —%V(uV«u)—Vp.

For incompressible flows the incompressibility constraint simplifies the bulk con-
tribution to the viscosity leading to the following final expression for the momen-
tum equation:

—+V-(u®u)=V-[v(Vu)| - Vp,

where p = 72 for sake of simplicity, indicating by p the constant and homogeneous

density.
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3 Incompressible laminar Navier-Stokes equations

Figure 2: Scheme of the relation between two neighbor cells of the tessellation 7
for a certain variable v.

The Navier-Stokes system for incompressible laminar flows in the newtonian fluid
hypothesis and Stokes relation then reads:

%—?Jrv-(u@u)—v-[V(VU)HVT?:O

V-u=0

(6)

In this chapter only steady-state fluid flows will be taken into consideration: Equa-
tion 6 can be rewritten considering w(t, z; ) = u(x; p), p(t, x; p) = p(x; p) and
they will be referred to as just u and p for sake of simplicity.

To approximate the problem by the use of the Finite Volume technique, the do-
main Q) has to be divided into a tessellation 7 () = {Q;(p)} " so that every
cell 2, is a non-convex polyhedron and UZN:’“1 Q;(p) = Q(p). For sake of brevity,
from now on, we will refer to Q;(u) as ;.

Momentum equation can be rewritten into its integral form over each cell of the
tessellation:

/QiV-(u®u)dV+/ﬂindV—/in. {(,Hryt) (VUJF(Vu)T)} dV =0

Every term of the previous expression will now be analyzed one by one to obtain
the Finite-Volume formulation. The convective term can be treated by the use of
the Gauss’ theorem:

/V-(u@u)dV:/u®u~dS:ZSf-uf®uf:ZFfuf,
o Si 7 7
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3 Incompressible laminar Navier-Stokes equations

where S, is the total surface related to the cell ¢, S is the oriented surface dividing
the two neighbor cells i and f, u; is the velocity evaluated at the center of the face
Syand Fy = Sy - uy is the flux of the velocity through the face Sy (see Figure 2).
Two considerations have to be underlined for this procedure. The first one is
that u; is not straight available in the sense that all the variables of the problem
are evaluated at the center of the cells while here an evaluation for the velocity
is required at the center of the face. Many different techniques are available to
obtain it but the basic idea behind them all is that the face value is obtained by
interpolating the values at the center of the cells. The second clarification is about
fluxes: during an iterative process for the resolution of the equations, they are
calculated by the use of the velocity obtained at previous step so that the non-
linearity is easily resolved.

Two main choices are possible for what concerns the treatment of the pressure
gradient term:

* by the use of a least square approach:

1. pressure can be evaluated at a cell center 7 while it can be extrapolated
to neighbouring cell centers j employing the gradient at i;

2. values in j obtained by extrapolation can be compared with real values
in j, since in the cell centers pressure value are always available, to
construct an error estimation;

3. by minimizing the sum of the square of weighted errors for all the cells
surrounding the i-th cell while changing the gradient a good approxi-
mation for Vp can be obtained.

The first step is the evaluation of the tensor

G = Zw]%dfdf s
f

being w; = ﬁ We finally get:

(Vp); = D wiG™" - dys(p; — pi)
f
* by the use of the Gauss gradient theorem:

/VpdV:/pdSZZSfpf;
o s;

K f
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3 Incompressible laminar Navier-Stokes equations

where p; refers to pressure evaluated at the center of the face Sy. Once again
these terms are obtained through an interpolation starting from pressure
evaluation at the center of the cells. This second approach is the one that
has been employed for this work.

The last term to deal with is the diffusive one:

/ v Vu+(Vu) )} dV:yi/Q v. (Vu+(Vu)T> v

/V (V) dV = /Vu dS ~ Z[ufvu}sf,

where v; stands for the kinematic viscosity in the i-th cell, v; indicates the effective
viscosity at the center of the face Sy and (Vu), corresponds to the gradient of the
velocity located at the center of the face Sy. In case of orthogonal meshes, we can
easily "transport” the needed gradient of the velocity from the cells centers to the
faces centers. This is what is required:

f

Sy (Vu) =[Sy~
f ! ‘ d |

where d; is the vector connecting the centers of cells i and j and 'u,f is the velocity

evaluated at the center of the cell j divided from the cell ¢ by the face f. When the

mesh is not orthogonal (see Figure 2), the last expression has to be corrected:

!

u;, —u

where S has been decomposed into a parallel and an orthogonal component with
respect to dy, namely 7 and w; respectively. The term (Vu) ; can be then approx-

imated by the use of an interpolation between (Vu), and (Vu) at the centers of
the surrounding cells.

The complete momentum equation then reads:

N ot

u; u:.
Z ZFfo+ZSfpf_Z V+Vt)f |70 | |df|ﬂ+wf.(Vu)f =0, (7)
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where Ny is the number of faces related to the cell .. By exploiting the interpolation
to faces centers it is possible to write down the whole equations into their matrix
form:

Au Bp up|

[V(-) 0 ] [ph] -0 ®)
indicating by A, the matrix containing the terms related to velocity for the dis-
cretized momentum equation, by B, the matrix containing the terms related to
pressure for the same equation and by V(.) the matrix representing the incom-
pressibility constraint operator, being w,, the vector where all the u; variables are
collected and pj, the vector where all the p; are stored, having u;, € U, C R? M and
prn € Q, C RV with d spacial dimension of the problem. Some deeper explana-

tions on Finite Volume discretizations for incompressible Navier-Stokes equations
can be found in [72, 22, 94].

3.1.1 Incompressible pressure equation

In this work, for what concerns the offline phase, a segregated pressure-based
approach has been selected. All the formulations will then rely on this formula-
tions for what concerns the high fidellity solutions. In particular, the Semi-Implicit
Method for Pressure-Linked Equations (SIMPLE) algorithm is here employed in its
laminar form.

To better understand the procedure, let us report here the crucial points about
this algorithm, they will be very useful later during the description of the ROM
technique in this thesis.

First of all we can divide the operator related to velocity into a diagonal and an
extra-diagonal parts so that

Au'u,h = A’U,h — H(uh) .

After that, recalling Equation 8, we can reshape the momentum equation as fol-
lows:

Auh = H(uh) — Bpph = Up = 14_1 [H(Uh) — Bpph] .

In an iterative algorithm, we can express both velocity and pressure as their value
at previous iteration plus a correction term:

22



3 Incompressible laminar Navier-Stokes equations

u, =u" +u pn=p" +p,

where [J* terms are the old ones while [0’ are the correction terms. With some
approximations for the mixed terms, the following relation holds:

u, = A [H(u")+ H(u') — B,p* — B,p/] .

Into the SIMPLE algorithm a big assumption is taken since the extra-diagonal term
H (v') is discarded and put to zero. Of course this makes the whole procedure no
more consistent but on the counterpart it makes the resolution of the so-called
pressure correction step much easier. We then get:

u, = A" [H(u*) — B,ps] . )

If we now apply the divergence operator to both sides of Equation 9, we end
up with a Poisson equation for pressure by exploiting the incompressibility con-
straint:

VOlun = VO {A Hw) - Bpi] } = [V A Bypy = [V()] A~ H(w).
(10)

3.2 Reduced order algorithm for incompressible laminar flows

As explained in subsection 2.2 and pointed out again in the previous paragraph,
all the high fidelity solutions are obtained by the employment of a segregated
algorithm iterating Equation 7 and Equation 10 until convergence is reached. In
subsection 2.3 we anticipated the purpose to rely on Galerkin projection for the
construction of the reduced order method we are looking for.

The first idea one may have for such a scope is to construct the complete coupled
discretized Navier-Stokes system (8) as the discrete steady state counterpart of
Equation 6. Once the system is assembled it can be projected. For such a scope
let us introduce here the reduced expansions of the velocity and pressure fields
respectively:

Ny Np

u, =Y ai(p)i(x) = ¥a pr =Y bi(p)pi(x) = ®b,

i=1 i=1
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Y

[1]
~
N
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[1]

Figure 3: Projection of the generic full order space V;, over the reduced one V,
spanned by the generic basis functions = where A;, and A, are the full order
matrix and its reduced order counterpart related to the considered problem

respectively.

where N, and N, are the numbers of basis functions selected for the reconstruction
of velocity and pressure solutions respectively, a € R"" is the vector containing
the coefficients for the velocity expansion while the same reads for pressure with
respect to b € R™ being 1; and ¢; the corresponding vector and scalar basis
functions collected into the matrices ¥ € R*»*Nu and ® € RN r respectively.

This procedure would lead to a new matrix A, € RWutNo)x(Nuto) gbtained by
projecting the momentum equation over the subspace created by spanning the
basis functions 1; and the continuity constrain over the subspace created by span-
ning the basis functions ¢; so that the reduced problem we would obtain is:

a
A, {b} =F, (11)

where F stands for a possible appearing forcing term.

It is clear that the resulting system can be solved by the use of, e.g., a Newton
method or any other kind of non-linear iterative solver. It has been done in many
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different works, see for example [128, 61]. The perspective in this work is slightly
different: we would like to rely on a method capable of being as coherent as possi-
ble with respect to the high fidelity algorithm. Since the decoupling of the system
to reshape Equation 6 into Equation 7 and Equation 10 is not fully consistent, the
solution coming from the SIMPLE algorithm may not fit in the best way the dy-
namics of the reduced system (11).

For this reason some efforts have been spent to develop an algorithm that emu-
lates the steps of the full order scheme. The main steps for the reduced method
related to incompressible laminar flows are reported in Algorithm 2.

To reach the stability of the method it is necessary to under relax the variables, as
pointed out in Algorithm 2, so that they are not fully updated at each step. For
what concerns pressure we have:

P =0+ =)
where q,, is the pressure under relaxation factor, p* stands for the pressure at the
previous iteration while p** corresponds to the last evaluated one.Velocity is not
under relaxed in the same way: for what concerns velocity, the momentum equa-
tion gets modified in full before fluxes evaluation.The under relaxed momentum
equation reads:

1—(,1{u 1_0%

——— Au"" 4+ Au"" = H(u*) — Vp* +

Oy Oy

Au”

where o, stands for the velocity under relaxation factor, u"" stands for the under-
relaxed velocity while u* is the velocity evaluated at the previous step. Notice
that, at convergence, u"" = u* and the two terms that have been added to under-
relax the momentum equation cancel each others. We can reshape the last expres-
sion so that the new terms are collected into the matrices A and H:

Auruur — HUT’(U*) _ Vp* , (12)
being A" and H"" the under relaxed matrices. The conservative fluxes into Al-
gorithm 2 are then calculated extracting the face velocity u; from cell center ve-
locities u*" = (A" [H" (u*) — Vp*].

Under relaxation factors have to be carefully selected because of their crucial role.
Guide lines to do that are:
0<a, <1,
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Algorithm 2 The Reduced Order SIMPLE algorithm

Input: first attempt reduced pressure and velocity coefficients b* and a*;

modal basis functions matrices for pressure and velocity ® and ¥

Output: reduced pressure and velocity fields p, and w,

10:
11:
12:

o ® N

: From b* and a*, reconstruct reduced fields p* and w*:
p* = db*, u* =Va*;

Momentum predictor step : assemble the momentum equation, project and
solve it to obtain a new reduced velocity coefficients a**:

(i, A[Wa™] — H(u") + VD) 2(q) = 0;

Reconstruct the new reduced velocity u** and calculate the off-diagonal com-
ponent H (u**);

: Pressure correction step: project pressure equation to get new reduced pres-
sure coefficients b**:

(01, V- [ATIV(20™)] = V - [AT H (w™)]) r2() = 0;

Then correct the velocity explicitly after having reconstructed the new pres-
sure p**;
Relax the pressure field and the velocity equation with the prescribed under-
relaxation factors «, and «,,, respectively. The under-relaxed fields are called
pur and uur/.
if convergence then

u, = u'" and p* — pur7
else

Assemble the conservative face fluxes Fj:

Ff = Uy Sf;
set u* = u"" and p* = p"";

iterate from step 1.
end if
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oy +ap = 1.

In broad terms the last rules are the ones usually prescribed in the literature but
they have to be trimmed every time in a case-specific way.
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3.3 Incompressible laminar Navier-Stokes problems:
physical parametrization

Many problems are subjected to different behaviours when changing some phys-
ical aspects characterizing the problem. For fluid dynamics applications, very
classical examples are:

e variations on the Reynolds number;

e variations on the boundary conditions;
* variations on the forcing term;

* a combination of the previous ones.

These changes may induce very different dynamics to rise or to get extinguished.
The wider is the range where the parameters describing the problem can be se-
lected, the higher is the number of offline solutions required to get enough in-
formation, the larger is the amount of modal basis functions needed to obtain a
satisfactory enough coverage of the solution manifold. Moreover, as explained in
subsection 2.3, reduction techniques can be employed only for problems charac-
terized by a solution manifold describable as a linear combination of some modal
basis functions. When the range of solutions is too wide this is not the case and a
single set of basis functions would not be able to describe all the involved dynam-
ics.

It is clear that the changes introduced into the system must be not large enough to
cause a mutation on the regime we are working at. In particular a steep increase of
the Reynolds number would require the introduction of turbulence treatments, as
explained in section 4. On the contrary, a significant increase in, e.g., inlet velocity
may lead to the necessity for a deeper thermodynamics treatment, as explained in
section 5.

In this section we will present a test case where the reduction techniques explained
in section 2 are employed. In particular the resolution of a very classical back step
test case will be shown, where the viscosity of the problem is parametrized.

3.3.1 Back step problem with a variable viscosity

This paragraph is devoted to the presentation of the results obtained for a reduced
back step problem characterized by a variable viscosity. In particular we want to
study an inner flow constituted by a fluid moving into a channel where a back
step is present, giving rise to a recirculation zone.

With reference to Figure 4 we have total length of the duct L = 7, total height
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H = 1.7, step height h = 0.7 and pipe length after the step I = 5. Fluid is flowing
from left to right so that I';, is the inlet boundary while I',,; stands for the outlet
boundary.

The problem we want to solve is described by the following equations:

V-(u@u)—V-[v(Vu)]+Vp=0 in Q
V-u=0 in 2
u=[1,0]" on I’
Va—u—pn:O on L'y

on

The kinematic viscosity v is here parametrized so that v € [0.01,1] = P. This
means that the Reynolds number is varying by two orders of magnitude:

Re:u

e [7,700] .

v

It is sufficiently low to guarantee the absence of significant turbulent phenomena
but still high enough to require the use of Navier-Stokes equations since the Stokes
regime is not applicable for such a case.

Since for incompressible flows pressure does only have a meaning when taking
into account its variations, in the solutions of such a problem it is only defined up
to constants. For this reason pressure is set to zero in the top right corner of the
domain so that pressure fields can be evaluated uniquely.

For the offline phase we selected 50 random viscosity values so that dim(P;,) =
N,, = 50. These solutions are then used for the POD procedure. The online phase
is then performed for 50 new randomly selected parameter values.

In Figure 5 we reported the trends for the eigenvalues both in their cumulated
and single forms. As one may notice the decay reported on the right is pretty fast.
This means that a few modes are sufficient in order to obtain a good reconstruction
of the solution. In particular, since the cumulate of the eigenvalues is somehow
representing the retained amount of information, by analysing the plot on the
left it is clear that the use of 10 modal basis functions is more than enough for
both velocity and pressure. For this reason, the solutions we are reporting in this
section have been obtained by the employment of 10 basis functions for both the
variables.

Figure 6, Figure 7 and Figure 8 refers to the solution obtained for v = 0.0196 which
means that the system is described by Re ~ 357.
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Fin Fout

Figure 4: Representation of the geometrical configuration for the domain of

interest.
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Figure 5: Eigenvalues trends for both pressure and velocity: cumulated
eigenvalues are reported on the left, eigenvalues decays on the right.
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Figure 6: Comparison between pressure solutions: high fidelity on the left,
reduced order on the right.
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Full Velocity Reduced Velocity
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Figure 7: Comparison between velocity solutions: high fidelity on the left,
reduced order on the right.
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Figure 8: Pointwise error fields comparing full order and reduced order solutions
for pressure on the left and velocity on the right.

Algorithm 2 shows to be reliable and efficient as it can be noticed comparing the
online and the offline solutions. Figure 8 shows that for every point into the do-
main € the difference between the two solutions is very low while solutions pro-
vided in Figure 6 and Figure 7 shows good stability properties for both velocity
and pressure.

Figure 9 provides here a comparison between two different resolutions strategies
for the velocity field: what is here indicated by "coupled solution" refers to the
resolution by the use of a block reduced order problem while "ROM SIMPLE"
refers to the results obtained by the use of Algorithm 2.

The reduced block system strategy consists on assembling the whole coupled Fi-
nite Volume system which has to be projected over both velocity and pressure
modal basis functions and solved through a Newton method. This is a very com-
mon choice for these problems as explained in subsection 3.2. Some examples can
be found in [61, 128, 52].

The first aspect to be noticed is that the solutions obtained with the block system
approach are always less accurate with respect to the solutions obtained through
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Figure 9: L? relative velocity error for all the parametric online solutions
obtained by the use of a block approach compared with the segregated one we
propose in this work.

Algorithm 2 and this can be addressed to the fact that the solutions obtained by

utilizing a segregated approach are more compliant with the full order fields ob-
tained by a SIMPLE algorithm.

A second aspect which may result of high relevance is the behaviour shown by
the solutions obtained with a coupled approach: the error norm seems to increase
when the Reynolds number gets increased. On the contrary, the reduced order
segregated approach does not show any degradation from an accuracy point of
view.
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3.4 Incompressible laminar Navier-Stokes problems:
geometrical parametrization

Geometrical parametrization test cases are nowadays playing an important role in
the Model Order Reduction field. In fact the possibility to modify the geometry of
the domain for a problem at a low cost is attractive for many different applications.
In particular Reduced Order Models techniques can result very efficient for shape
optimization processes as well as patient specific studies in both circulatory and
respiratory systems or fluid structure interaction cases. A brief overview for this
kind of problems may be found in [119].

Different techniques have been developed for the resolution of these applications
both in a Finite Element environment (see [50, 117]) and in a Finite Volume frame-
work (see [130, 70]).

In this section we will present the method we developed for the resolution of geo-
metrical parametrization test cases when the fluid flow may be considered steady
state, laminar and incompressible. Clearly this is quite an inceptive application
but more difficult and intriguing studies will be presented in subsection 4.4 and
subsection 5.4.

3.4.1 Mesh motion

When dealing with geometrical parametrization problems, the first aspect one has
to take into consideration is the motion of the mesh. This is of course a necessity,
no matter what the discretization technique is. In any case, when considering
a Finite Volume scheme, some peculiar points have to be underlined to better
performing in the motion of the grid:

* in a Finite Volume perspective, the possibility to use grid elements charac-
terized by a random shape and a variable number of edged is a powerful
tool. The drawback related to this choice is that it becomes very difficult to
map the elements of the grid to a reference mesh;

* the mapping back to reference elements procedure would require the con-
struction of a very complex non-linear map but the real issue entailed by
this technique is that it would also lead to a change in the behaviour of the
dynamical system (see [45]);

* Finite Volume algorithms do not rely on reference elements for the evalua-
tion of the integrals. Thus the implementation of such a technique would
require a computational cost that could be easily avoided in case it was pos-
sible to take into consideration the problem directly into its physical domain.
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The previous arguments may suggest that a remeshing of the entire domain could
be the right choice for our purpose. Of course this is not the case for three main
reasons:

e the grid construction is a very costly procedure. Moreover a well designed
mesh is not easy to be put together; many different requirements have to be
tulfilled at the same time to obtain satisfactory results;

¢ the comparison between different solutions needed for a Proper Orthogo-
nal Decomposition (see subsection 2.3 and subsubsection 3.4.2) can be per-
formed only for meshes with a common topology so that the different solu-
tions have all the same dimensions and, in addition, points characterized by
the same indexes refer to the same cells;

* for what we have previously said, a mapping of the real domain to a refer-
ence one does not fit our requirements. For this reason we need to evaluate
all the functionals in the real physical domain at both the offline and the
online phase. This is a crucial point since a very efficient mesh motion strat-
egy is required to obtain some kind of gain during the online phase. A bad
choice for the reshaping of the grid would lead to highly increased reduced
order computational time.

To fulfil these requirements two different strategies have been tested:

1. resolution of a Laplace problem on displacements with variable diffusivity;
2. application of a Radial Basis Functions (RBF) interpolation.

Laplace problem for displacements
In this case the mesh is moved thanks to the resolution of a Laplace problem over
the whole grid by using the displacements ¢ of the points of the tessellation as the

variable of the problem and the known fixed displacements §" of the boundaries
as boundary conditions:

div(yVdo) =0 inQ
0= Sb onTp
where I'p refers to the moving boundaries while v is the variable diffusivity. Its

value can be selected in many different ways, for example as a constant field over
the whole domain 2. For our scope we decided to fix
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being r the distance from the moving boundary, so that the points into the grid
positioned far away from the moving boundaries are not affected that much from
the changing in the shape of the domain.

This approach is valuable in the sense that it provides a continuous smooth so-
lution able to preserve the original properties of the tessellation. Moreover, grids
modified in this way have all the same topology so that the meshing process has
only to be performed once.

Clearly the Laplace problem has to be discretized and the resolution of its discrete
counterpart has to be performed. After the discretization we end up with

A55=0 in Q
5=3 onlp

where A; represents the matrix obtained by discretizing the Laplace operator

while § and &' are the discrete counterparts of § and 5 respectively. Matrix
A € RINexdNk regults to be sparse; many different efficient algorithms are present
in the literature for these class of matrices.

Radial Basis Functions interpolation of the displacements

The second approach rely on the idea of extracting the displacements for the inter-
nal points of the grid as the evaluation of an interpolant of the moving boundaries
displacements based on Radial Basis Functions (see [41]). The general formula for
the evaluation of the displacements of the grid reads:

o(x) = Zwicb(llw—w?ll) +q(z), (13)

where §(x) is the displacement of the grid node positioned in x, NV, is the number
of selected control points on the moving boundary, w; are some calculated weights,
¢ is a fixed function whose support is a round area of predetermined radius r, =

(2
are the coordinates of the control points and ¢(x) is a polynomial.

Equation 13 is scalar valued and provides only distances, no matter what the di-
rection is. For this reason this scheme has to be applied d times for every point,
considering the £ components one by one.
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Figure 10: Scheme of the RBF mesh motion procedure: original mesh on the left,
deformed boundary on the right where red dots are representing the control
points while blue circles show the support of the function ¢.

Under certain assumptions (see [13]), ¢(x) can be chosen to be linear so that rigid
translations are preserved. Thus we have:

q(x) = ap + a1 + asxs + agrs

sl
where oy, a1, a9, g are scalar coefficients while x = |z
xs3

The procedure can be summarized in the following steps:

1. select the control points into the boundaries to be moved and shift their po-
sition obeying the fixed motion rule selected for the geometry modification,
accordingly with the parameter dependent displace law: they can be either
all the points into the boundary or just a fraction of their total amount if the
dimension of the mesh is big enough (see Figure 10), since the higher is the
number of control points, the bigger (and then expensive) is the resulting
RBF linear problem to be solved;

2. calculate all the parameters for the RBF to ensure the interpolation capability
of the scheme:

—<b ~=b
16(2)]| = [18;]] = 6; ,

ZwiQ(w?) =0,

1=0
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Figure 11: Control points distribution over an airfoil surface: not all the points of
the surface are selected as control points and thus rigidly moved.

resulting on the solution of the following linear problem:

—=b
g %13

where ® zpp € R contains the evaluations ¢ (||a! — xb]|), P € RM*(@+),
with spacial dimension d, is filled as [1 ch] for each row, o contains the co-

efficients for the polynomial ¢(x) and §" are the displacements for the control
points, known a priori (see [24]);
3. evaluate all the remaining points of the grid by applying Equation 13.

Few aspects have to be underlined about the procedure above:

¢ Equation 13 is used not just to move the internal points of the grid but also
the points located on the moving boundaries that are not selected as control
points: even if their displacement could be calculated exactly, changing their
position by rigid translation while all the points of the internal mesh are
shifted by the use of the RBF may lead to a corrupted grid (see Figure 11);

¢ Equation 14 requires the resolution of a dense linear problem whose dimen-
sion is equal to NV, + d + 1. Thus, the number of control points have to be
carefully selected. Fortunately the resolution of Equation 14 has to be carried
out just once, storing all the necessary parameters to be used in the following
mesh motions;

e also in this case one ends up with meshes having all the same topology
which is, as previously highlighted, an essential feature when different ge-
ometries have to be compared.

To summarize the different aspects related to the two mesh motion strategies pro-
posed in this section we can say:

* the resolution of a Laplace problem over the whole domain leads to the res-
olution of a very big system represented by a sparse matrix. This can be
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Figure 12: Mesh covering for an Ahmed body test case (see [1, 90]): reference
undeformed configuration on the left, RBF interpolation modified grid on the
right.

exploited by selecting an efficient algorithm devoted to the specific resolu-
tion of sparse matrices. Moreover this problem can be itself reduced by a
POD approach so that no full dimension resolutions are required;

* the application of a Radial Basis Functions interpolation method gives birth
to a much smaller matrix but it is dense. For this reason a less efficient tech-
nique has to be employed, as for example an LU decomposition in order to
solve it properly.

It is then difficult to certainly select the best method for our applications basing
the selection on the previous points. In our work we decided to rely on the RBF
strategy due to the fact that the modified meshes show a lower non-orthogonality
factor with respect to the ones obtained by the Laplace method. Since the good
properties of the mesh are very relevant, especially for a Finite Volume scheme,
the non-orthogonality factor played a primary role on the choice.

3.4.2 Proper Orthogonal Decomposition for moving domains

In subsection 2.3 we introduced a strategy to obtain modal basis functions by the
use of a Proper Orthogonal Decomposition. Equation 4 is well defined whenever
the norm ||e||y is well defined. When dealing with geometrical parametrization
problems this is clearly not the case: while changing the domain of the problem
consequently to a change in the parameter value since 2 = () in this case, the
definition of the norm varies itself so that the comparison of solutions defined over
different geometries is not possible. In addition the resolution of the problem over
different domains would lead to a difficulty on the definition of the correlation
matrix C: since the snapshots s; and s; have been calculated for two different
parameter values and, thus, for different domains, the choice to be taken for the
mass matrix M is not straightforward.

38



3 Incompressible laminar Navier-Stokes equations

In this work we try to overtake this problem by exploiting the fact that all the
meshes were forced to have the same topology and connectivity. It is then possible
to define a mid-configuration by the exploitation of the mesh motion obtained
through a specific parameter p,,;; resulting from:

N
1 122
.umz'd:N_”Z.uifor“iEPh~

i=1

In our case we use equispaced offline parameters to compose P}, leading to just
M1+ BN,
—

The correlation matrix can then be easily assembled for this configuration as:

Hmid =

ral T
Cij =S; Mmidsj R

being M, ;4 € RIVvXdNu the mass matrix defined for Q(p,,q) where s € R
and d equal to the spacial dimension for vector valued quantities and equal to one
for scalar valued variables. A caveat has to be here pointed out: by the use of
this strategy the provided modal basis functions are not orthogonal in the current
configuration, this only works for p = p,,,,4. In any case, as we will see, this will
not be an issue and accuracy will not be affected.

Finally the POD basis functions are obtained as a linear combination of the train-
ing solutions as follows:

being V the matrix containing the eigenvectors related to C.

3.4.3 Geometrically parametrized problems

In this section we will present two different test cases, both related to geomet-
rical parametrization. In particular we will focus on external flows for aerofoils
where in the first problem the angle of attack is parametrized while the second
one tackles a shape deformation study.
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Variable angle of attack for a NACA4412 aerofoil

This paragraph will be devoted to the presentation of a geometrical parametriza-
tion test case. More in details we will report here the results related to the flow
around an aerofoil where the angle of attack can be varied by rotating the aerofoil
itself into the mesh. A classical choice for these problems is to change the direction
of the incoming flow instead of modifying the geometry of the problem. Of course
this would be much easier since no mesh motion strategies would be required.
Anyway at the FOM level, the handling of the boundary conditions, especially
on the upper and lower boundaries would become more challenging. The inflow
velocity is in fact no more parallel with respect to the sides boundaries and the
enforcement of symmetry or slip boundary conditions becomes more complex.
Moreover, as it can be noticed analysing Figure 13, for this problem we decided
to use a C-type domain instead of a classical rectangular mesh so that at the same
time it was possible to get an inflow boundary capable of better following the
leading edge of the aerofoil and to avoid critical points at the connection between
inlet boundary and top-bottom ones. In fact, when dealing with straight inflow
boundaries where a constant velocity is imposed, this may cause some issues at
the connection with the consecutive boundaries where different conditions are se-
lected. In case the angle of attack was varied by rotating the inflow velocity, the
advantages given by such a choice for the domain would have been partially lost.

The domain is composed by a quadrilateral whose size is equal to 16.5 along the
x direction, 16 along the y direction, and by a semicircle attached to the inlet side
of the quadrilateral. The wing chord is equal to 1 and the foil is positioned on the
center of the semicircle. The mesh counts 58000 hexahedral cells.

The motion of the mesh is carried out through the RBF strategy explained in sub-
subsection 3.4.1. The control points for the interpolation have been placed both
on the moving boundaries and on the static patches of the domain 2. The kernel
of the RBF interpolation is given by Gaussian functions with a radius r = 0.1.

The problem we want to solve is the following one:

(V- (u®@u)—V-[v(Vu)+Vp=0 in Qu)
V-u=0 in Q(w)
u=[1,0" on I'y, (15)
u=20 on I'p
ou
v——pn =10 on 'y
\ On
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where I' ) stands for the surface of the aerofoil. It is here to be pointed out that
the equations are independent from the parameters since the kinematic viscosity
is fixed for this problem and equal to 3 x 10_3%2. The only way the problem is
related to the parameter p is through the geometry since no physical parameters
are taken into consideration. This aspect makes the relation parameter-solutions
strongly non-linear. The Reynolds number for this test case can be evaluated as
Re = %= = 3 x 10° being u., the magnitude of the inlet velocity. We can safely
consider this test case as an incompressible laminar one so no turbulence closure
models are required.

The offline phase is performed by solving the high fidelity problem for 100 ran-
domly selected different angles of attack « so that a € [-10°,10°] = P. The online
parameter range has been slightly restricted to avoid very rare a values where the
solution manifold spanned by the modal basis functions could have not enough
information. For the online phase we solved the reduced problem for 50 different
parameter values where a € [—9.5°,9.5°].

The full order SIMPLE algorithm runs with under relaxation for both velocity
and pressure using the relaxation factors o, = 0.7 and o, = 0.3. As mentioned in
subsection 3.2 the reduced order model has been constructed to be fully consistent
with the SIMPLE procedure employed at the full order level. Therefore the same
under-relaxation factors are used also at the reduced order level.

In Figure 14 we reported the decay of the eigenvalues for both velocity and pres-
sure on the left while the table on the right shows the trend of the cumulated
eigenvalues. We can notice that the decay is much slower if compared to the one
reported in Figure 5. This id due to the fact that a geometrical parametrization
problem is much more difficult if compared with the physical one reported in the
previous section. For this reason many more modes are needed to obtain a reliable
solution.

Online solutions are calculated as a linear combination of 40 modal basis func-
tions for both pressure and velocity. In Figure 16 and Figure 17 are depicted full
order and reduced order solutions for two different angles of attack, selected as
the most extreme ones in the online parameter set since usually they are the worst
reconstructed ones. It can be noticed by looking at the pointwise errors that also
in this case the method is working pretty fine and the reduced approximations are
very close to the high fidelity solutions.

Figure 15 shows the trends of the averaged L? norm errors in comparison with
the projection ones for different amounts of modal basis functions used for both
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Figure 13: Comparison between the employed domain, left picture, and a
classical rectangular mesh, right picture, employed for the resolution of the flow
around a NACA4412 aerofoil.

velocity and pressure. The average is calculated over all the 50 online solutions.
Two main aspects are here to be underlined:

* projection errors and reduced errors show at large the same behaviour;
¢ reduced errors are pretty stable and present a quite good monotonicity.

Shape deformation for a NACA4412 aerofoil by the use of bump functions

This last incompressible laminar test case will treat the resolution of shape de-
formed aerofoil NACA4412 by the superposition of bump functions for both the
top and the bottom surface (see [78, 30]). In particular we selected 5 bump func-
tions as shown in Figure 18. These functions are defined over the chord of the
aerofoil and they are designed so that they give a surface displacement on the
whole surface along the aerofoil. They are added to the top surface and sub-
tracted to the bottom one so that the possibility to have intersecting boundaries is
avoided. We have:

5 5
fer=duf =) uifi
=1 i=1

where pp = [uf, ..., ub, 1b, ..., pt] and ;) are some amplitude factors for the bump
functions. f*? is then added to the upper surface while f* is subtracted to the
lower one.
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Figure 14: Plot reporting the eigenvalue decay relative to the POD procedure
used to compute the modes for both pressure and velocity on the left, while on
the right the cumulates of the eigenvalues are reported.
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Figure 15: L? norm error and projection error trends for both velocity and
pressure for different numbers of modal basis functions.
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Figure 16: Comparison between high fidelity and reduced order velocity
solutions for two different angles of attack v = 9.15° and a = —9.43°. From left to
right we can see the full order solution, the reduced order approximation and the

pointwise error between them.
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Figure 17: Comparison between high fidelity and reduced order pressure
solutions for two different angles of attack v = 9.15° and a = —9.43°. From left to
right we can see the full order solution, the reduced order approximation and the

pointwise error between them.
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The problem we want to solve is the one reported in Equation 15 so, once again,
we have Re = 3 x 10%. For the resolution of the full order problem the same mesh
used in the previous test case has been employed and the same strategy for the
mesh motion is implemented.

The multidimensional space where we are selecting the parameters is clearly much
wider with respect to the one-dimensional set we were using in the previous
case. For this reason 1000 offline parameter vectors have been selected where
ps € [0,0.02]. It does not make any sense to select higher amplitudes for the
bump functions since they would produce shapes without any kind of aerody-
namic meaning. Even though we increased by one order of magnitude the num-
ber of offline solutions, they are in any case much less dense if compared to the
previous test case since we are now selecting parameters into a ten-dimensional
parameter space. This is the main reason for the much slower decay of the eigen-
values in Figure 19 with respect to the ones in Figure 14: since we are dealing with
10 parameters at a time, the information coverage given by the same amount of
modal basis functions is much lower.

Online parameters have been selected in a slightly smaller range ([0, 0.018]) for
what has already been explicated in the previous paragraph. 20 different on-
line parameter vectors have been selected to test the resolution properties of the
method. Online solutions are provided by the employment of 40 modal basis
functions for both velocity and pressure fields. This choice has been dictated by
the analysis of the eigenvalues decay shown in Figure 19 while trying to keep a
low dimension of the problem as a goal for the resolution machinery.

Figure 20 shows the trends of both L? norm reduced and projection errors while
changing the number of modal basis functions used for velocity and pressure
tields at the same time. Even though the number of offline solutions is quite small
if compared to the dimension of the parameter space, as explained above, the
method shows good reliability properties together with an appreciable stable be-
haviour. The error given by the reduced resolution of the problem appears to be
just one order of magnitude worse then the best possible one provided by the pro-
jection of the corresponding high fidelity solutions over the modal basis functions.

In Figure 21 are depicted offline and online solutions for the velocity field together
with the pointwise error between the two for a random online selection of the
parameters, while Figure 22 is dedicated to the pressure solutions for the same
geometrical configuration. It can be noticed that the pointwise errors are pretty
low even if the eigenvalues truncation shows a noticeable discard of information.
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Figure 18: L? norm error and projection error trends for both velocity and
pressure for different numbers of modal basis functions.
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Figure 19: L? norm error and projection error trends for both velocity and
pressure for different numbers of modal basis functions.
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Figure 20: L? norm error and projection error trends for both velocity and
pressure for different numbers of modal basis functions.
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Figure 21: Comparison between high fidelity and reduced order velocity
solutions for a random value of p in the online set. From left to right we can see
the full order solution, the reduced order approximation and the pointwise error

between them.
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Figure 22: Comparison between high fidelity and reduced order velocity
solutions for a random value of p in the online set. From left to right we can see
the full order solution, the reduced order approximation and the pointwise error

between them.
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3.5 Context and overview

In this chapter we presented a strategy for the resolution of laminar incompress-
ible flow problem:s.

We firstly focused on the equations concerning the problem and their FV dis-
cretization in subsection 3.1. We devoted subsection 3.2 to the presentation of
a segregated reduced order approach for the resolution of parametrized incom-
pressible laminar flows in an efficient way:.

In the last part of the chapter we focused on the resolution of physical and ge-
ometrical parametrization. A back step problem with a parametrized kinematic
viscosity has been proposed in subsection 3.3 while subsection 3.4 completed the
methods overview for what concerns laminar flows by showing possible different
strategies for the mesh motion in geometrical parametrization applications and by
presenting a more general architecture for the use of the POD even for different
snapshots domains.

The techniques presented so far show a good reliability. They will be expanded
and enriched in the following chapters.
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4 Incompressible turbulent Navier-Stokes equations

In most fluid dynamics cases, a laminar treatment of the problem is not possi-
ble. This is due to the fact that, when the ratio of inertial forces to viscous forces
is sufficiently high, the damping provided by the viscosity present in the flow is
not able to take under control the whole amount of kinetic energy scattered in
the surroundings. This is typically estimated by the evaluation of the Reynolds
number Re = =L where u, is a reference velocity, L a reference length while
v is the kinematic viscosity. When the Reynolds number is high enough, let us
say Re ~ 4 x 103, the flow moves from a state where streamlines are distributed
in a parallel way to a state where chaotic motion of the fluid particles is present.
For this reason the Kolmogorov energy cascade takes place: large eddies caused
by the free kinetic energy are not stable and decay into smaller and smaller vor-
texes till Kolmogorov scale dimensions are reached. At that point the vortexes are
small, weak and isotropically distributed enough to be dissipated by the viscosity
effects. To simulate this behaviour a micro-scale mesh would be required: when
employing a coarse mesh, sub-grid scales are not resolved and kinetic energy is
no more correctly dissipated. This aspect leads to an energy surplus in the system
causing a complete misleading of physical dynamics. On the contrary it is not
possible to create a grid refined enough: it would lead to a huge system, long too
big to be solvable (see the estimate on the number of cells in the grid dependent
on the Reynolds number reported in subsection 4.1).

In the early 40s Andrey Kolmogorov started developing possible techniques to
overcome this issue. From that moment, many different strategies have been pro-
posed ([3, 77]) trying to model the dissipation: additional dissipating terms are
added to better decrease the amount of kinetic energy accumulating into the sys-
tem.

4.1 Equations, Finite Volume discretization and turbulence clo-
sure models

Since the dynamics of the fluid at the Kolmogorov scales are not relevant for what
concern the macro phenomena, the most common strategy to attack the problem
is an average on time of the equations so that it is possible to get rid of all the
fluctuating parts. For incompressible fluids the Reynolds averaging is usually
employed and the process is reported here in the following passages.

51



4 Incompressible turbulent Navier-Stokes equations

Averaging rules

Given two generic flow variables ® and ¥, the Reynolds averaging rule
reads:

| _
@:—/¢@m, T+
T Jr
From the above rule it follows:
_ — = od 9P ob 0P
¢’ = OP’ = dU’ = —_— = — = .
0 ’ 0 ’ 0 ’ 5t 8t ’ 8l’1 8301

We can now use a Reynolds decomposition to separate the mean flow component
[J from the fluctuating ones [’ for both pressure and velocity:

p=p+p,
u=u-+u.

Since we are considering parameters dependent problems, we have:

=Dtz p), p=rtezmn,
=u(t,z,p), u =u(t,z, @)

Reynolds decomposition and averaging can now be applied to the Navier Stokes
system to obtain the Reynolds Averaged Navier Stokes (RANS) equations.

CONTINUITY EQUATION:

dp
a‘f‘v-[pu]—o

In case of incompressible flows the continuity constraint reduces to:
V-u=0.

Reynolds decomposition:
V-(m+ud)=0.

Reynolds averaging;:

Vi(a+u)=V-u)+V-(uw)=V-u+V- v =0.
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Final equation:

V-u=0
MOMENTUM EQUATION:
0 2
aLZL—i—V‘(pu@u) =V [p(Vu+ Vu')] —§V(uv‘u)—Vp
In case of incompressible flows the momentum equation reduces to:
Ou +V-(u®u)=pvViu— Vp :
ot —_—— e p
X ® ©  ~~
@ @
Reynolds decomposition:
0 (u+u)
@ ° at Y
®:V-[u+u)o @+,
©: vV (u+u),
Vo+y
0. YD)

From now on in this chapter we will assume p = P for sake of simplicity since the
p

density is constant:
@:V({@+p) .
Reynolds averaging:
du+u) Ju N 8_U
ot o ot )’
Ry

@ :

O®:V - [(+v)@m@+u)|=V: [v@ut+uu+uv u+u Qu' | =
- v

=V - [uut+uveu|,
©:vV2(u+u) =vVi(u+u)=vViu+ VvV,
0
@:Vp+p)=Vp+ Vp .
0
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Resulting equation:
— +V - [u@u+uv@u] —vVu+Vp=0.

Let us define 7y = w’ ® w/. This term is not known and has to be modeled in terms
of main flow variables. In the Boussinesq hypothesis it is approximated as:

2
Tr=u QU = —yVu+ gkI.

1—
where £ is the turbulent kinetic energy, defined as k = §u’2, and v, is an additional
viscosity due to turbulence, referred to as eddy viscosity.

Final equation:

— o 90— o, 2
—+V-(u®u)—(v+un)V u+Vp+§Vk:O.
The RANS system in the Boussinesq hypothesis then reads:

u 2
a—u+V~(ﬂ®ﬂ)—(u+ut)V2ﬂ+Vﬁ+ §Vk:0

V-u=0

(16)

The RANS system is clearly not closed since now both v, and k have somehow to
be evaluated. In the literature there are nowadays many possible strategy to ob-
tain an efficient approximation for those terms. All these methods can be classified
into three main groups:

* zero equations model;
* one equation models;
* two equations models.

In the zero equations models, the isotropic part in the Boussinesq hypothesis, i.e.

§k:I , is incorporated into the main pressure term so that there is no need to eval-

uate the turbulent kinetic energy explicitly. Then the eddy viscosity is approxi-
mated once and for all using reference values. This approach is really simple but
it clearly results inaccurate since it is not able to distinguish between different
turbulence cases.
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For the one equation models, typically an equation for the turbulent kinetic energy
is used. The eddy viscosity is then evaluated as a function of & so that a closed set
of equations is obtained.

What distinguishes two-equations models from the previous is the fact that two
different transport equations are employed to estimate two independent turbulent
quantities related to turbulence length on one side and to time scales on another.
This is long the most used group and includes the famous & — € and k — w models,
where ¢ is the rate of turbulent dissipation while w stands for the turbulent time

scale <w = %)

For the k — e model we have:

(%—i-_-%—— aﬁ,»_ n 0 ﬁ@k . 0%k
(‘% i 0@ - 8xj ¢ 8@ O 8LUZ 8.1’18232
86 Oe € Ou; 0 (v Oe € 0%
——(C ,— ! - — , 17
at l@xi Ca k:Tf Oz, + ox; (O‘e 8@») Carr + V@x 10T 17)
k’2
= C,—

where C¢, Ce, C,, 0, and o, are constant parameters. These last constants have to
be tuned to fit experimental data so that the model is consistent with real test
cases. Components expressions and Einstein summation have been here em-
ployed. The expression for v, has been firstly proposed by Launder and Spalding
[77].

Since k is here representing the turbulent kinetic energy, it is clear that for physical

boundaries we have to impose £ = 0 near the wall. We also have to impose
8k

= 0 to avoid any kind of discontinuity at the boundary. This is not trivial at all

for the turbulent dissipation. In fact no boundary condition is present for ¢ near
the walls. This causes in most cases very bad results close to the surfaces with
diffusion terms in the equation for e possibly approaching infinity values. Thus
k — e model is commonly avoided when the region close to the physical boundary
is of interest and is, at the contrary, mostly used for free shear flows.

For this reason the & — w turbulence model has been introduced [141, 140]. This
model is much more accurate near the walls even if it becomes less efficient far
from the boundaries. The turbulence model to be employed has to be then care-
tully selected depending on the test case it has to be applied to.
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For the £k — w model we have:

O L0k om0 (wok | #
at Z(?xi f@xj lo (’hz Ot 8351 8ZL'18ZBZ
a_w+ﬁ,a_w—_ gT aﬂi_{_ 9 ﬁaw _ 24y 0w (18)
ot " o, kY ox; 0w \o,on ) ox:dz;
k
vy =" —
\ w

where C*, o, 0, 71, 72 and v* are constant values to be properly tuned to fit
experimental data.

If we now take into consideration Equation 16 together with Equation 17 or Equa-
tion 18 and complete this set with boundary and initial conditions for w we obtain
a closed problem that can be solved to obtain averaged solutions for both velocity
and pressure.

2
The term §V/<; into Equation 16 can be neglected because of the fact that the vari-

ation of the turbulent kinetic energy, is in any case, very small since turbulence is,
in practice, isotropic into the domain. For this reason this term can be dropped
out without any further consideration (see [64]).

The Kolmogorov dissipation scales, denoted by 7, can be estimated as n = (”;) L

We also can approximate the turbulent dissipation rate as € ~ % being L a ref-
erence length of the problem, e.g. the total length of the domain. By combining

1
the two of them we get = (%) ', The resolution of the Kolmogorov scales

would then require a size of every grid cell smaller or equal then n. Thus the
number of segments to be employed to divide every side of the domain would

ud L3 )4
3

result N = % = — Rei. If we suppose to be dealing with a cubic domain
divided into hexahedral cells, we can estimate the number of required grid units
as Ny = N3 = Re'. This means that the dimension of the problem for the resolu-
tion of a Direct Numerical Simulation (DNS) would dramatically increase for an

increasing Reynolds number.

From now on we will consider just steady state problems. For this reason the
time derivative into the momentum equation will be neglected. Moreover we get
u(t,z,p) =ul(x,p), p(t,x, u) = d(x, u) and we will refer to them as just w and p
for sake of simplicity.
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The steady-state momentum equation written in its integral form for every cell of
the tessellation 7T, reads as follows:

/fliV-(ﬁ®ﬁ)dV+/QiVﬁdV—/QiV. [(,,+,,t) (VEHVE)TH V-0

Let us analyze this last equation, term by term. The convective term can be treated
by the use of the Gauss’ theorem:

/V-(ﬁ@ﬁ)dvz/ﬁ@ﬁ-dS:ZSf-ﬁf@aﬂf:ZFfﬁf,
i Si f f

where S; is the total surface related to the cell ¢, S; is the oriented surface divid-
ing the two neighbor cells i and f, w; is the velocity evaluated at the center of
the face Sy and F} is the flux of the velocity through the face Sy (see Figure 2).
Similarly to what has been explained in subsection 3.1, w; is not straight available
since all the variables of the problem are evaluated at the center of the cells while
a face-centered evaluations is required. Face values are obtained through an in-
terpolation of the values at the center of the cells. Again fluxes are calculated by
the use of the velocity obtained at previous iteration during the resolution of the
problem so that the non-linearity is easily resolved.

To deal with the pressure term we exploit the gradient theorem:

/ VﬁdV:/ﬁdS:ZSfﬁf,

where py is the pressure evaluated at the center of the face S.

The last term to be considered is the diffusive one:

/Qi V. [(V + 1) (Vﬁ+ (Vﬂ)T>] AV ~ (v + Vt)i/

v (Vﬁ + (va)T) dv =

=+ I/t)l-/ V .-VudV = (l/—l-l/t)i/ Vu-dS ~ Z [(1/—1— Vi) g (Vﬁ)f} -8,
where (v + 1), is the viscosity in the i-th cell, (v + 1), stands for the viscosity

evaluated at the center of the face Sy and (Vu) ; refers to the gradient of the veloc-
ity evaluated at the center of the face S;. Notice that the gradient of the velocity is
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not known at the face of the cell. If the mesh is orthogonal, the approximation of
its flux is straightforward:

Sy (Va), = 8,1~
\ \

where Df terms stand for evaluations of a certain quantity at the center of the
cell j being f the face dividing the two cells. If the mesh is not orthogonal (see
Figure 2), as for the laminar case, a correction has to be added:

_ ﬂf

‘FUJf (Vﬁ)f ,

where Sy has been decomposed into a component parallel to dy, namely 7, and
another one orthogonal to dy, namely w;. The term (VH) is finally evaluated

by interpolation starting from the values (Vu), and (Vu) at the centers of the
neighbor cells.

Now the complete discrete momentum equation can be written:

n [ Nn Ny, _ —f
u;, —u; -
Z[ZFfuf—l—ZSfpf Z V—l—l/t)f]ﬂ'f\W%—wf-(Vu)f =0,

After having applied the necessary interpolation for face centers quantities evalu-
ation, the whole system can be rewritten into its matrix form as follow:

A, B,| |u,

vo ol o )
where A, is the matrix containing all the terms related to velocity into the dis-
cretized momentum equation, B, is the matrix containing the terms related to
pressure into the same equation, V(-) is the matrix representing the incompress-
ibility constraint, @, is the vector where all the w; variables are collected and the
same applies for p, with respect to p, having uw;, € U, C R and p,, € Q;, C R™
with d spacial dimension of the problem. The interested reader can find deeper
explanations on the Finite Volume discretization technique in [68, 63, 94].

58



4 Incompressible turbulent Navier-Stokes equations

In this section the offline phase is performed by the use of a segregated pressure-
based approach, the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE)
algorithm in its turbulent form, ensuing what has been pointed out in subsec-
tion 3.1. The pressure equation is obtained in the same way (see subsubsec-
tion 3.1.1) just considering u;,, u*, @, p,, p* and § instead of w;, u*, u/, py, p*
and p'.

We only report here the final pressure equation for incompressible turbulent SIM-
PLE algorithm for sake of completeness:

V) = VO {A" H@) - Bp) | = [V()] A B,p, = V()] A" H@").

4.2 Reduced order algorithm for incompressible turbulent flows

As introduced in subsection 3.2, we would like to rely on a method capable of
being as coherent as possible with respect to the high fidelity algorithm. This
idea will be applied in this work for all the different fluid conditions under ex-
amination: the same approach used in subsection 3.2 will also be employed in
subsection 5.2.

Also in this case an algorithm that emulates the steps of the full order scheme has
been developed. The main steps for the reduced methods related to incompress-
ible laminar flows are reported in Algorithm 3.

For this scope we introduce here the reduced expansions for both velocity and
pressure fields respectively:

Ny Np

u, =) a(p(x)=%a, b =) bnpx)=2b,

i=1 i=1
where N, and N, are the numbers of basis functions selected for the reconstruc-
tion of time averaged velocity and pressure solutions respectively, @ € RV is the
vector containing the coefficients for the velocity expansion while the same reads
for pressure with respect to b € R being 1, and @, the corresponding vector and
scalar basis functions collected into the matrices ¥ € R¢Vo*Nu and @ € RNw»* Mo
respectively.

For turbulent flows clearly a way has to be found also for the reconstruction of the
eddy viscosity field 1, as shown in subsection 4.1. Since it has to be evaluated also
during the online phase, a suited strategy has to be applied to optimize the perfor-
mances of the reduced solver. Also for what regards the reduced eddy viscosity
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V4, then, we introduce a proper expansion:

N,

Vi = Zm(u)@(w) = Zm, (20)

indicating by V,, the number of modal basis functions selected for the reconstruc-
tion of the eddy viscosity field, by m € R the vector containing the coefficients
of the linear combination and by (; the basis functions collected into the matrix
Z € RNwNve where vy, € span{(li=1,--- ,N,}.

Basis functions (; are obtained, as usual, by the application of a Proper Orthogonal
Decomposition to a set of solutions for the eddy viscosity calculated during the
offline phase (see subsection 2.3):

NpxN,
Syt:[th,...,VtNu]eR h ol

It can be easily shown, as it can be seen in subsection 4.1, that the eddy viscosity
tield is only dependent on the velocity field since it is related to the dissipation of
the kinetic energy. For this reason we may assume the coefficients related to the
additional dissipation term to be a function of the velocity. We have:

m=m(p,u).

Since in our context we are not aware of the dynamics of the fluctuations and we
are not even interested on them, we can just rely on the Reynolds averaged velocity

u:
m=c(p,u) .

During the online stage, velocity is just expressed as @, = 3", @ ()%, (x). Thus,
since the modal basis functions are fixed, the only varying part for the averaged
velocity is the one related to the expansion coefficients. This aspect leads to an
evaluation of the reduced coefficients of Equation 20 only depending on the pa-
rameters and on the reduced coefficients for velocity:

m=m(p,a(p)) .

The easiest approximation we may think about is to just rely on the parameters of
the problem as a dependency for the eddy viscosity:

a = alp)

m = m (. a(u)) = m=m((u) . (21)
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This choice is obviously a strong assumption and simplification but it works accu-
rately for cases very sensitive to the parametrization and when velocity dynamics
do not exhibit a too wide variability.

To reach the stability, the same principles employed and explained in subsec-
tion 3.2 are used for both velocity and pressure so that pressure gets under re-
laxed directly while velocity gets treated by the under relaxation of the momen-
tum equation. The results included in this chapter refers to the studies in [149].
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Algorithm 3 The Reduced Order turbulent SIMPLE algorithm

Input: first attempt reduced pressure and velocity coefficients b and @*;

modal basis functions matrices for pressure and velocity © and ¥

Output: reduced pressure and velocity fields p, and w,

1:

10:

11:
12:
13:

From b" and @*, reconstruct reduced fields p* and w*:
7 =0, u = vlar;

Evaluate the eddy viscosity field v;,;

Momentum predictor step : assemble the momentum equation, project and

solve it to obtain a new reduced velocity coefficients a**:
('lpi, Aﬂ* — H(E*) -+ VZ_)*>L2(Q) = O,

Reconstruct the new reduced velocity w** and calculate the off-diagonal com-
ponent H (u**);

Pressure correction step: project pressure equation to get new reduced pres-
sure coefficients b**:

(p;, V- [A7T'VD] = V- [AT H (@")]) 12(q) = 0;

Then correct the velocity explicitly after having reconstructed the new pres-
sure p*;
Relax the pressure field and the velocity equation with the prescribed under-
relaxation factors o, and «,,, respectively. The under-relaxed fields are called
pur and uur,.
if convergence then

u, = " and ]—)* — ]—)ur;
else

Assemble the conservative face fluxes F:

Ff = ﬂf : Sf;
setuw* =u"" and p* = p"";
iterate from step 1.
end if
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4.3 Incompressible turbulent Navier-Stokes problems:
physical parametrization
4.3.1 Radial Basis Function interpolation for the eddy viscosity

In subsection 4.2 and in particular into Algorithm 3, the necessity for a reconstruc-
tion strategy related to the eddy viscosity has been exposed. In this paragraph we
will show how it is possible to exploit a Radial Basis Function interpolation also
for what concerns the v, expansion coefficients.

This approach will be here employed only for simple physical parametrization
problems so that we can assume Equation 21 to be a reasonable assumption. What
we are trying to approximate is then the map capable of linking parameter values
to eddy viscosity coefficients values. It reads:

F o REmW)  RNw

In other words we want to approximate the coefficients for the modal expansion
of v, so that the field can be reconstructed as:

At this point it has to be recalled that RBF interpolations are only able to provide
scalar valued approximations. For this reason what can actually be done is to
approximate the mapping for the coefficients one at a time:

Fi=R&¥m®W 4R fori=1,...,N,,.
The first step is to project all the offline solutions for the eddy viscosity over the
modal basis functions obtained trough a POD:
Syt:[sl,...,sN”] — Myt:[ml,...,mN#].

All the couples (fr;, m;;) fori =1,...,N,and j = 1,..., N,, can then be used as
interpolation points to set the RBF.

The complete procedure is exposed in Algorithm 4.

What is good in this procedure is the fact that it is not bounded in any way by the
choice of the turbulence model. This is a great advantage since the whole reduced
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Algorithm 4 The Radial Basis Function interpolation for v,

Input: eddy viscosity snapshots matrix S,,, eddy viscosity modal basis
functions Z, set of training parameters P, new parameter to be evaluated p
Output: reduced eddy viscosity field Ve ()

1: Project all the snapshots over the modal basis functions:

S, =[s1,....,sn,] — M, =[my,...,cn,];
2: Construct the connectivity matrix " € R"*"» as & = ||@; — f1,|| where
By € P A
3: Construct the parameter matrix P* € RY»*(1+dim(w) where each row is filled
as [1 pl;
4: Assemble the RBF matrix as:
(bl/t Pl/t

5: Solve the RBF system for every single coefficient in the v, expansion:
o P [w m!
J — J
e =[] )

where ¢; stands for the j-th row of the matrix C,, ;
6: Approximate every single eddy viscosity coefficient as:

Nu
m;(p) =Y (W), ¢l — mll) + q;(m) . (24)
=0
forj=1,...,N,, being ¢;(p) a linear polynomial that can be expressed as

q;(pn) = (o), + S s (a}"), (1); where (o), stands for the i-th component
of a vectorial quantity;
7: Reconstruct the approximated eddy viscosity field by its modal expansion:

Ny,

vir (1) = Zmz’(ﬂ)@(w) ~
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procedure is not depending on the turbulence equations. For this reason it is not
necessary to modify the online phase in any way whenever the offline strategy
for the evaluation of the eddy viscosity varies. For example the employment of a
k — w model instead of a £ — € one does not affect the online scheme. In principle
even mixed solutions may be used for the construction of the snapshots matrix S,,
since we are only interested in adding some dissipation by the introduction of the
eddy viscosity term without paying any attention to the method used to obtain it.

What, on the contrary, may result inefficient in Algorithm 4 is the necessity, in
practice, to apply the RBF procedure NV,, times, one for every expansion coeffi-
cient. In any case the bad impact of such an approach in the whole scheme is
mitigated by the fact that the matrix into Equation 22 has to be assembled just
once while Equation 23 has to be solved just N,, times. These evaluations are
performed during the offline phase while the online stage just requires V,, evalu-
ations of Equation 24. For this reason the whole machinery retains good efficiency
properties even for cases requiring a not negligible number of modal basis for the
reconstruction of the eddy viscosity field.

4.3.2 Turbulent back step problem with a variable viscosity

In this paragraph we aim at presenting a first turbulent incompressible test case.
For this scope we decided to use the same geometry used in Figure 4. The domain
is also discretized by the use of the same mesh. The problem to be solved is the
following one:

V-(@eu)-V-[(v+un)(Vu)+Vp=0 in Q
V-u=0 in

u=[1,0]" on I';,

V@_u —pn =20 on ',
on

The offline eddy viscosity solution is obtained through a k& — € turbulence model
since we are dealing with an inner flow problem where we are not interested on
stresses near the wall.

The kinematic viscosity v can vary in the manyfold P = [10~%,10~°]. This means
that the Reynolds number for this test case can be expressed as

Uoo L

Re = € [7x 10%,7 x 10°] .

v
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Clearly, even though the test case looks pretty similar to the one reported in the
previous chapter, the physical context is completely different. In fact we are deal-
ing here with a turbulent problem where the techniques reported in Algorithm 2
would not succeed in providing reliable solutions. Since the Reynolds number is
abundantly higher with respect to any possible value giving rise to a laminar flow,
turbulence is here playing an important role.

The offline phase has been carried out for 50 equispaced v values in P.

Looking at Figure 23, we can see that the decay of the eigenvalues is performing
well in the sense that, by the use of just 15 modal basis functions, it is possible
to retain almost the whole information content described by the snapshots. The
same counts for the eddy viscosity reconstruction with respect to Figure 24. The
reconstruction of the eddy viscosity for this problem is performed by following
what has been exposed in subsubsection 4.3.1. It is important to underline here
that the turbulence model employed for the offline high fidelity snapshots collec-
tion is not relevant in any way for what concerns the online approximation for the
v, tield. Once again 15 modal basis functions have been selected to span the eddy
viscosity solutions manifold.

20 kinematic viscosity values have been used for the online phase. They have been
selected randomly in the same range used for the offline stage P.

In Figure 25, Figure 26 and Figure 27 are reported pressure, velocity and eddy
viscosity solutions respectively obtained through the use of Algorithm 3 for v =
5.12 x 107% which means Re = 1.37 x 10°.

Figure 28 provides a detailed image on the accuracy of the method: pointwise
error fields are reported for both pressure, on the left, and velocity, on the right,
in the top row while the errors between offline and online solutions for the eddy
viscosity is reported in the bottom part of the figure.

Figure 29, on the contrary, shows the L? norm errors for pressure, velocity and
eddy viscosity for every different v in the online parameter set. The established
method shows a good accuracy and reliability for all the different fields providing
very good results also for what concerns interpolated eddy viscosity solutions.
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Figure 23: Eigenvalues trends for both pressure and velocity: cumulated
eigenvalues are reported on the left, eigenvalues decays on the right.

10° 2
<
g 107t :
80
=
He 10700 1
—12 p ,
10 | | |
0 20 40
N,

Figure 24: Eigenvalues trend for the eddy viscosity.
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Full Pressure Reduced Pressure
-1.9e-01 -0.1 1.0e-03 -1.9e-01 -0.1 1.0e-03

Figure 25: Comparison between pressure solutions: high fidelity on the left,
reduced order on the right.
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Figure 26: Comparison between velocity solutions: high fidelity on the left,
reduced order on the right.

Full Eddy viscosity Reduced Eddy viscosity
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Figure 27: Comparison between eddy viscosity solutions: high fidelity on the
left, reduced order on the right.
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Figure 28: Pointwise error fields comparing full order and reduced order
solutions for pressure on the left, velocity on the right and eddy viscosity on

bottom.
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Figure 29: L? norm error for every different parameter value.
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Figure 30: Scheme of the snapshots selection for A = 2: black dots are discarded
intermediate solutions, blue dots are saved intermediate solutions while the red
dot represents the final solution.

4.4 Incompressible turbulent Navier-Stokes problems:
geometrical parametrization

4.4.1 Snapshots selection for the Proper Orthogonal Decomposition

As we have introduced in subsection 3.2, subsection 4.2 and as we will see in sub-
section 5.2, in this work we deal with a segregated approach for both the online
and the offline phase. This means that the set of equations, also at the reduced
level, are iterated until convergence is reached. Since the solution fields during
these iterations may vary a lot, from the first attempt for the variables to last res-
olution, the information contained into the converged snapshots is not sufficient
to ensure the correct reduced reconstruction of the path to the global minimum of
the system,i.e. the correct solution.

To improve convergence performances, then, we decided to enrich the set of snap-
shots by saving a certain amount of intermediate solutions s? obtained during the
offline iterations. The distance between exported intermediate solutions is set to
A (see Figure 30). By adding some non-physical solutions to the snapshots matrix,
which is what is happening by inserting non-converged fields, we are somehow
polluting the physical content but the convergence propertied of the algorithm
are improved a lot. To reach a balance between convergence and reliability, A
can be varied and the total amount V,,; of selected intermediate solutions can be
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Figure 31: Scheme of the snapshots selection for every parameter p;: all red and
black dots are collected together to compose the train set. Here si"" is the first
attempt solution, s/ is the j-th iteration solution while s; is the final converged

snapshot.

modified. The new snapshots matrix then reads:

int

N, Nint 1 2
2m782>"'78NTr73NM7'“ 7SN” » SNy,

— 1 .2 int 1 .2
S=|s,87,...,8,"™,81,85,85,...,8

where s/ is the solution obtained at the (j - A)-th iteration for the i-th offline pa-
rameter (see Figure 31).

4.4.2 Neural Networks for the eddy viscosity

As introduced in subsection 4.2, turbulence effects are always depending on the
velocity and in particular on its fluctuations. The method exposed in subsubsec-
tion 4.3.1 is simple to be constructed but presents some leaks for what concerns
the physical correlation between turbulent viscosity and velocity. In fact these two
quantities are just related between each others through the parameter:

m(p) <= a(p) .

For more complex test cases, where the eddy viscosity is not just playing a role as
an additional dissipation term, useful to keep the amount of kinetic energy into
the system under control, but is actually modifying velocity behaviours and thus
velocity solutions shapes, this very mild connection between the two is no more
sufficient. Moreover we would like to find out a strategy capable of approximat-
ing the reduced eddy viscosity coefficients by the use of a single evaluation so
that it is possible to rely on a more efficient technique with respect to the RBF one,
requiring IV,, evaluations for every new provided p.

To achieve all the aforementioned requirements for the online phase to evaluate
the v, field, we decided to rely on a data driven scheme.

Let us recall the modal expansion used for the turbulent viscosity:
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Input Hidden Hidden Output
layer layer fi layer fn layer fou:

Figure 32: Schematic perspective of a fully connected neural network composed
by an input layer, an undefined number N of hidden layers and an output layer,
linking parameters y; and reduced velocity coefficients a; to reduced eddy
viscosity coefficients ¢;, being dim(p) the number of parameters possibly existing
in the problem.
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Ny,

Vip = Zmz(iv)@(ﬂ) )

where N,, stands for the number of basis functions selected to reconstruct the
eddy viscosity field, m; are the coefficients depending only on the position x while
G; are the 1, basis functions depending only on the parameter. Also in this case the
tirst step consists on calculating and storing a certain number N, of v; solutions at
the offline stage. These snapshots are then again collected into the S,, matrix and
used, as explained in subsection 2.3, to obtain the requested basis functions ¢; ().

What differs from the previous approach is the approximation of the spacial coef-
ficients: they are evaluated through a Neural Network (NN) scheme, linking the
parameters of the problem p, and the reduced velocity coefficients a; to the eddy
viscosity ones c;.

The scope of the Neural Network is the approximation of the map:
F - Rdim(u)—l—Nu N ]RNW ’

so that F(p,ap) =m .

A reduced problem based on such a construction is thus completely independent
on the choice of the turbulence model and point 2 into Algorithm 3 can be per-
formed in an efficient way. Let us recall here that this would not have been the
case if turbulence equations were projected: in case there was the necessity of
changing the adopted turbulence model, all the architecture had to be modified.

In this work we decided to only select fully connected Neural Networks com-
posed by an input layer, a variable number of hidden layers and an output layer.
The input vector z and output vector m are defined as mentioned before:

H1
m
di .
z = |Hdimw) , m =
3]
mNVt
L an, |

Neural Networks have always to be firstly trained and then evaluated. The train-
ing phase starts by the projection of the snapshots contained into S,,, over their
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own basis functions ;, to obtain the set of real coefficients {m; iv:,,l. They can be

compared with the NN estimated coefficients {mz}fﬁ’l into a loss function to tar-
get the training procedure. We adopted one of the most commonly used quadratic
loss function ¢:

g: Hm—ﬁlHL2 .

The quantity £ to be minimized during the training of the network is the sum of
the loss function evaluated for all the different snapshots:

Np
L= [lm;— | .
i=1

The coefficients estimated by the network can be written as:

m :fout (Wouth ( o <W2f1 (le + bl) + b2) e ) + bout) ) (25)

wheref,, f, and f, , are the activation functions used into the neurons, W;, W3 and
Wout are the corresponding weights while b,, b, and b,,; are the biases, related to
the first and the second hidden layer and to the output layer respectively. For
the hidden layers the best performing activation function is hard to be guessed.
Different applications may require different activation functions to the point that a
bad selection on the activation function may cause the whole scheme not working.
For this reason the employed activation functions will be declared later on for
every specific application.

The training procedure is resumed into Figure 33.

For what concerns the training procedure, two different parameters sets have to
be provided:

® Py qin: the set of parameters used for the backward feeding training loop of
the network;

¢ P, aset of independent parameters that follows the same probability dis-
tribution as the training dataset, used to provide information on the gener-
alizing capability of the network.

Both of them are necessary. The first one is the one providing the real information
on how to approximate the desired data. Since there is not a fixed rule on how
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Figure 33: Schematic diagram for the training of the neural network.

many training epochs are required for a good approximation, an over estimation
on this quantity would lead to a network which can perform in a very accurate
way when dealing with parameters included into the training dataset but it would
perform really badly when trying to approximate the solution for a parameter

M é Ptrain .

This issue can be overtaken by comparing the loss functions evaluated for training
and testing sets. While both of them are decreasing, this means that the general-
ization capability of the network is still increasing while the training procedure
has to be stopped in case the training loss function is still decreasing while the test
one changes trend.

The training phase for a Neural Network can be computationally very expensive,
depending on how large and how deep the architecture we have put in place is.
In any case this is not affecting the scope of this work since it is performed during
the offline phase. Moreover it has to be underlined that the training procedure has
just to be executed once: from that point on, the network has just to be evaluated
by the use of Equation 25.
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Figure 34: Representation of the geometrical configuration for the domain of
interest.

4.4.3 Turbulent back step problem with a variable slope angle

This section will be concerning a turbulent geometrical parametrization test case.
More in detail we focused on a back step problem where the slope of the step
can be varied. We also added a convergent section at the outflow of the domain
to improve convergence properties: this solution gives rise to an out pointing
negative pressure gradient so that we get rid of possible reverse flows at the outlet
due to an increasing pressure capable of hampering the out flowing in some cases.

The domain for this test case is presented in Figure 34 where we have h = 1m,
L = 7Tm, H = 1.7m, Il = 2m and the length of the convergent outflow section
equal to 2m. The slope angle for what regards the step can be varied in the range
P = [0°,75°]. This means that the geometry is varying a lot together with the
behaviour of the fluid: when the angle is close to zero a big recirculation bubble
is supposed to be there while this phenomenon is no more taking place when the
domain becomes smoother. This test case is also a good way to prove the efficiency
of the mesh motion strategy we are using, as explained in subsubsection 3.4.1,
since we are dealing with big deformations of the bottom part of the channel.

The problem is described by the following equations:

V-(weuw)—V-[(v+ur)(Va)+Vp=0 in Qu)

V.-u=0 in Q(p)

w=[1,0" on [,
ouw

ya—n —pn = on I',

where v = 0.001.

As it has been pointed out in subsubsection 3.4.2, all the norms needed for the
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application of the architecture provided in this chapter are based on a reference
grid characterized by
Homin + Hmazx

=37.5°.
2

Hmid =
The Reynolds number characterizing the dynamics of the problem can be evalu-
ated taking into account both the fluid properties together with geometrical as-
pects as:

L
Re = 2=t _ 95103,
1%

where L, stands for the total length of the channel.

Since the range for the Reynolds number we are working at is on the border line be-
tween laminar and turbulent flows, we are forced to consider a turbulence closure
model.

For the offline phase we selected 50 equispaced values of the parameter p € P.
Those values of the angle of the step are used to solve 50 different full order prob-
lems in order to construct the snapshots matrix. Both converged and intermediate
snapshots are collected together with A = 50, so that one intermediate step gets
stored every 50 iterations.

By applying a POD procedure, we can obtain the modal basis functions we need
to project the equations.

By analyzing Figure 35 we can notice that at least 25 modes have to be selected
for v, in order to catch the main part of the information contained into the of-
fline snapshots. For what regards pressure and velocity manifolds, they are here
projected and then reconstructed using 35 basis functions.

Thus, a neural network has been constructed for the eddy viscosity approximation
at every reduced SIMPLE algorithm step as explained in subsubsection 4.4.2.

The neural network employed here is composed by:

¢ an input layer, whose dimension is equal to the dimension of the reduced
velocity, i.e. 35, plus one for the parameter;

* two hidden layers of dimension 256 and 64 respectively;

* an output layer of dimension 25 for the reduced eddy viscosity coefficients.

The net is a fully connected one. Moreover the neurons of the hidden layers are
characterized by the employment of ReLU activation functions. For the training
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Figure 35: Eigenvalues trends for pressure, velocity and eddy viscosity:
cumulated eigenvalues are reported on the left, eigenvalues decays on the right.

procedure, the Adam optimizer has been selected and 10* epochs have been fixed.

The training set is composed by both the intermediate and final solutions obtained
during the offline phase, randomly selected. To control the training procedure, a
test set has been selected too: 10 totally random new parameter values have been
chosen and their related full solutions have been calculated, saving both final and
intermediate steps, coherently with the offline snapshots used for training. Loss
functions for both training and testing sets are reported in Figure 36.

Looking at Figure 36, it can be noticed that there is a nice agreement between train
and test loss functions. This is a good indicator for the extrapolation capability of
the net since the loss function evaluated for test set solutions is not far away from
the one obtained for training solutions.

For the online phase 10 different angles have been randomly selected in the range
[5°, 65°].

Figures 37, 38, 39, 40, 41 and 42 show a comparison between high fidelity versus
reduced order solutions for velocity, pressure and eddy viscosity. The results are
reported for two different parameter values: a very small one, where the defor-
mation of the mesh is almost negligible, and a high one characterized by a strong
mesh deformation. In both cases the pointwise errors show a high reliability of
the method even though higher discrepancies can be noticed in the zones of the
grid affected by a high non-orthogonality of the cells.
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Figure 36: Loss function decay for both train and test sets.

Figure 43 present the behaviour of the L? norm relative error average, over all
the 10 online solutions, for both velocity and pressure, for different numbers of
modal basis functions used to approximate them, while keeping NN,, = 25. This
plot clearly shows that an amount of modes lower than 25 provides results that are
not accurate enough. On the contrary, even the usage of more than 40 modal basis
functions is not advisable since the numerical error is capable of overwhelming
the additional information provided by the last added modes.
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Figure 37: Comparison between full order and reduced order velocity solutions
on top and pointwise error between them on bottom for § = 10.7°.
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Figure 38: Comparison between full order and reduced order pressure solutions
on top and pointwise error between them on bottom for § = 10.7°.
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Figure 39: Comparison between full order and reduced order eddy viscosity
solutions on top and pointwise error between them on bottom for 6 = 10.7°.
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Figure 40: Comparison between full order and reduced order velocity solutions
on top and pointwise error between them on bottom for § = 63.2°.
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Figure 41: Comparison between full order and reduced order pressure solutions
on top and pointwise error between them on bottom for 6 = 63.2°.
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Figure 42: Comparison between full order and reduced order eddy viscosity
solutions on top and pointwise error between them on bottom for § = 63.2°.
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Figure 43: L? norm relative error for both velocity and pressure for N,, = 25.
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4.5 Context and overview

This chapter has been devoted to incompressible turbulent flows and possible
efficient methods for both physical and geometrical parametrization problems.

In particular the aim of this work was to find reliable methods capable of provid-
ing good reduced order approximations independent from the turbulence model
employed during the offline phase. This is a goal dictated by the fact that there
are many different approaches for turbulence resolution based on eddy viscos-
ity models. This variety may lead to the necessity of changing the reduced order
model whenever the turbulence model was changed, in case turbulence equations
were used also at the reduced level to close the set of equations describing the phe-
nomena. A first approach for such a purpose has been introduced in subsubsec-
tion 4.3.1 and tested in subsection 4.3 showing a good reliability. This approach,
based on an RBF interpolation, is a good compromise between low computational
cost and high accuracy. It provides accurate results for physical parametrization
problems where the usage of converged solutions for the eddy viscosity, also for
the first iterations of the algorithm, do not cause instabilities in the method.

This is not the case for geometrical parameter applications where the relation be-
tween the parameter and the solutions is much more complex. In these cases
a step by step evaluation of the eddy viscosity field is needed to avoid a possi-
ble blow-up of the reduced SIMPLE algorithm introduced in subsection 4.2. For
this reason an artificial intelligence approach has been proposed in subsubsec-
tion 4.4.2, where the eddy viscosity field gets reconstructed starting from velocity
reduced coefficients together with the parameter by the use of a neural network.
Moreover a different way to collect the snapshots to be used for the POD has been
pointed out in subsubsection 4.4.1 so that the behaviour of the full order SIM-
PLE algorithm could have been emulated in a more accurate way by providing,
to the reduced algorithm, also some information about intermediate steps to be
taken to reach the right solution. This last architecture for the resolution of geom-
etry parametrization test cases has been proved to be accurate and stable even for
large grid deformation, as shown in subsection 4.4.
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5 Compressible Navier-Stokes equations

The compressible Navier-Stokes equations are the most complete and widely ap-
plicable set of equations representing the conservation laws for a fluid in motion.
The interested reader may refer to [133, 132, 110, 107, 40] for a complete descrip-
tion of the physical aspects related to compressibility. The equations presented in
section 4 and even more the ones used in section 3 can be employed for the study
of some specific fluid flows. In particular, incompressible Navier-Stokes equations
can be employed only to describe fluid flows characterized by a ratio between the
velocity of the flow and the speed of sound, namely the Mach number, in every
point of the domain lower than 0.3. If this is the case, the interactions between
the fluid particles can be almost neglected and all the thermodynamic effects are
ignored. If this is not the case, an equation for the energy conservation has to
be added to the momentum and continuity ones, together with a state equation
needed to close the system.

Compressible laminar problems can exist for some specific conditions but in this
chapter we will only focus on turbulent compressible problems since we will over-
take the limits imposed for the use of incompressible Navier-Stokes equations
because of a velocity increase. Usually higher velocities also imply a higher "dis-
order" into the domain of interest and, thus, the arise of turbulent phenomena.

The following sections are referred to smooth fluid flows where no discontinuities
in the solutions are present. For this reason we will suppose the flow at every
point of the domain not to exceed Mach = 1. The techniques we will present cannot
be used, then, for supersonic flows; only subsonic or low transonic problems are
suitable for the following approaches.

All the considerations reported in subsection 5.1 are general and can be used for
every different kind of fluid. Anyway in this work, for sake of simplicity, we will
consider only perfect gasses. This choice will not compromise the contents of this
chapter since the state equation, as explicated in Algorithm 5, is used explicitly.

Many different approaches are possible for compressible parametrized fluid flows.
Some are reported in [82, 12, 5].

The interested reader may, instead, find some reduced order model examples for
supersonic flows in [39, 143, 80].
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5.1 Equations and Finite Volume discretization

As it has been pointed out in subsection 4.1, we are not interested in fluid fluc-
tuations, due to the presence of a chaotic motion, since they are not playing an
important role from a macroscopic point of view. For this reason some averaging
techniques have to be applied in order to retain only the most relevant part for all
the involved variables.

More in details, for compressible flows it is not possible to take into consideration
only the Reynolds averaging as we did in the previous chapter because it would
lead to very unhandy terms containing mixed products between density fluctua-
tions and other variables fluctuations.

To solve this issue, in this work, we will combine Favre averaging, for what con-
cerns temperature, velocity and energy, together with Reynolds averaging, for
what concerns pressure and density. The main averaging rules for both of afor-
mentioned strategies are reported in the following box.

Given a generic flow variable ® and and the density variable p we can define
both the Favre and the Reynolds averaging procedures.
Favre averaging rules:

P = @ : d=0+P".
D

Reynolds averaging rules:

| _

<I>:—/<I>(t)dt, =P+ P .

T Jr
From the above rules it follows:
=0, & £0, 207 =0, o =5 .

We can now decompose all the variables into an averaged part and a fluctuating
one, recalling all the different averaging techniques selected for all the different
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variables:

u=u+u , e=eé+e ,
co=¢c+ey, T=T+T",

where e stands for the internal energy, ¢, represents the total energy while 7" indi-
cates the temperature.

For all the equations we will substitute the Favre decomposition in place of every
Favre-decomposed variable. After that we will apply the Reynolds average to the
whole equation.

CONTINUITY EQUATION:
dp
E +V. [pu] =0.
Favre decomposition:
9p ] —
a9 +V-pa+u")]=0
Reynolds averaging;:
dp dp dp
DAV patu) =LAV (pa)+ V- (pu") =L+ V. (Fa)+ V- (pu) =0.
ot ot ot ~——
0
Final equation:
op o
-§+ij)_0
MOMENTUM EQUATION:
0 2
aL;u—FV-(pu@u) = V- [ (Vu+ Vu')] = 2V (uV - u) — T .
-y ® © — s ©
@
Favre decomposition:
Op(u+u")
@: ——5—;

®: V- [pla+u")o(@+u") ;
©:V- [/L(V('&—l—u”))+M(V(ﬁ+uu)T)] ;
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2 ~ 2
@: VIV - (@+u)
©:Vp;
Reynolds averaging:

Op(u+u’) dpu  Opu’
ot Ot ot
——

0

®:V-pla+u)@(m+u"))=V- pﬁ@11+pﬁ@u”+pu”®a+pu”®u”] ;
—_——— —

0 0

©: V- (Y (@+uw) +p (Vi@+u))| =V [ (Va+ V' + VaT + Vu'T) -

~- V. [u (Va + Val) + p(Vu’ + vu”T)} :

2 2 _
@:§V[MV'(’&+UH)]:—V 1V a4 pV-u]

3
©®:Vp=Vp.
We can define: .
T(u) =2pu [M - %V : uI} .

It follows: -
©Q+@=V-(r+7"),
where 7 = 7(u) and 7" = T(u”).

Resulting equation:

a’.;’u'_kv.

o +Vp=0.

¥ ~ " N &
pu @ U+ pu’ @ u T T

*

Terms denoted by * can be neglected under reasonable assumptions:

P
GL:JFV- [pa®@a+pu” @u" — 7| +Vp=0.

Moreover the term pu” ® u” is not known and has to be modeled:

PU” ®u’ = _%turb .
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Final equation:

Jp
aLt"’Jrv 58 ® @ — Frpy — 7 +5I] = 0.
TOTAL ENERGY EQUATION:
9,
AL v (pueg) ==V -q—V-(pu)+V-(1-u) .
ot —_—— ~— —— ————
® ® © @ ®

Favre decomposition:
@.apeo _ Opéy  Opey
ot ot ot "’
©®:V-[pla+u")(é+ey)] =V -[puéy+ puey + pu”éy + pu'ep] ;
©:V-q;
@:V-(pu) =V (pu) + V- (pu’) ;
©:V-(t-uw)=V-[(7+7") (a+u")] =
=V -(7-a)+V-(7-u")+ V- (7" a)+ V- (" u") .

Reynolds averaging;:

dpey | Opey  Opeg dpey '
ot o ot ot
0

@ :

© : V- [pucy + puie + puéy + pu'ef] =V - [plicy + plieg + pw'éo + pu'eq| =

=V - |puéy + apel + éopu’ +pu'el
—~— =
0 0
©:V.-qg=V-7q;
@:V-(pu)+ V- (pu")=V-(pa)+ V- (pu") =V - (pa) + V- (pu”) ;

@V( r&)+ ( u”)—i—V-(‘r”-’&)—i—V-(‘r”-’u,”):
=V (T u)+V (7-@)+ V- (77 a) + V- (77 )
By putting all together:

dpé —
gOJrV [puéy+ pu'e] +q+pa+pu’ —7-u—7-w' -7 -a—71"- U] =0.
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We can here exploit the state equation together with some expressions for what

concerns the internal energy and specific heat capacities to reshape the expres-
sions above:

p = pRT e=C,T C,—C,=R
e u'p=CuupT — CyupT ;
. u-u_ﬁ-ﬂ+a u,,_ﬁ_u”-’u/"
P PETIIC N L S L v AL
o 2 ) 2 2 2
uU-u ~ m’ u-u u’-u’
:~ _— 17 - " :~
R N 2 T3 2
u//
P_ —0
p —_ —
. - Jruu . u-u u"-u
eg=€ —€=€e+—— —¢€— — =
o 2 2
,&I Yy ~ " " u// ~ ,&I a u// u// B " " u//
=e+—F—+u-u + A =et+u-u + 5
6_
2 Y
" u/l u// ul/
Y u//€/’ — ulle u// 1’1 . u// u// ulle u// —
pop+p()+p(2>pp 2)
u.

_ "o ~ m/
— U,O’U/”T + pu” (u . u//) + p'u/’ —¢ pu” _ p'u/’ :
2 \0,./ 2 ~—

4= —kVT =7=—-C,5-V (T+17) = ~C, 5T = G, 5T

We can then substitute those terms into the energy equation:

a5,
at

u” - u
2

+V-

puéy + Copu”T + pu” (4 - u") + pu” (

) - C,,%VTJr

~Cyt-VT7 4+ P+ CuupT = Cl'pT - — 7@ =77 a— 77| =0.
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By simplifying we obtain:

- 1"l R
+ V- |paé + pu’ (@ - u”) + pu” (u 2“ ) —CpPﬁVTJr
T

- >
'
*

a5
ot

=0.

~\~
*

— G VT 4Pt + C'pT — 7 — 70 =7 a— 7"
7/. NS v
—_———

*

Terms denoted by * can be neglected under reasonable assumptions resulting in
the equation:

95é0
ot

+V. ﬁﬂég—i—pu”(ﬁ-u”)—CpPﬁTVT—I—ﬁﬁ—i—Cpu”pT_i-.ﬁ] =0.

Two terms into previous equation are not known and have to be modeled:

P Mt ~
Cu"pl =—-C,— VT

pu p pP?”t )
pu” (@ -u") = —u - T

where Pr, is a constant value (~ 0.9) representing the turbulent Prandtl number.
The final equation we get reads:
Jpéy
ot

V- [Py — Cp VT = Gl VT 4P~ 7 — @ Fiups = 0,

or

Jdpéy . u-u u-u Cy, 1
V. |p - Fr Ve
o ‘T 2 C.pr T
* o
C -
—Ep%tv~+ﬁu—u"r—u~nwb =0
v

91



5 Compressible Navier-Stokes equations

The term denoted here by x represents the turbulent kinetic energy and can be
neglected. Moreover for steady-state cases we end up with a pure internal energy
equation:

(. u-u C . C o -~
v pu<e+T>_Ez%V —é%tVeiju—u T—U- Ty | =0

The FANS steady-state equations can then be collected into a single system. They
reads:

V-(pa)=0
V-[pu®a— T — 7+l =0

—~ [ ~ u-u Opu ~ Cp,UJt ~ — ~ ~ o~ ~ o~ o
\Y {pu <e—|— 5 > CvPrve OUPTtVe—l—pu U-T— U Typ| =0

Most of the time, for sake of simplicity, into the solvers the viscous components
for the energy equations are not implemented, ending up with the final system:

5.1.1 Compressible pressure equation

Let us take into consideration the compressible momentum equation:

V- [pu®u— 7w — 7] =—-Vp.

This equation can be rewritten by substituting the forms related to velocity into
their Finite Volume matrix counterpart as follows:

A, (u)=-Vp= Au=H(u)— Vp,
where A, (u) is the Finite Volume discretized form of V-[pu ® @ — Ty, — 7], At is
the diagonal part of A,(u) while —H (w) is its extra diagonal part so that A,(u) =
Ad — H(q).
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If we localize that equation at a generic point P, we get:

~ _H(ﬁ)_vﬁp.

Up =

ap ap

Let us rename u = u* and p = p* both velocity and density we have at this point,
after having solved the momentum equation, for a reason that will be clarified in
a moment.

The mass flux, at the generic point P, can be obtained as:

H(w) _ Vpp'
—Pp— -

ap ap

—% ~k

pPpUp = Pp

Since the pressure gradient has to be calculated explicitly, we indicate it as Vp"~*
meaning that the pressure field has to be previously calculated.

It is easy to realize that the set p*, &*,p" ! will not satisfy the mass conservation
constrain since velocity field has been evaluated by the use of the pressure gradi-
ent at time step n — 1. We can then imagine to introduce some corrections to all
thetermssothatp=p* +p,a=a" + o' . p=p""' +7.

It is now possible to rewrite the mass flux as:

H(w) H®@)] .. _ py VD
@) 2 )]—(pfrﬂ’p)[ £+ L.
ap ap ap ap

(Pp +Pp) (@p + @p) = (Pp + Pp)

By the definition of compressibility ¥, we can write p = Upand then p = p* + 7' =
Upr T+ U = = Up - Up T = Up .
We can then interpolate that expression to obtain the variables evaluations at the

faces and finally sum over all the faces surrounding the point P to get the mass
conservation equation in its pressure correction shape:

. L [H@u) H@ . vt VP,
> (pp+‘11p’p)[ ) 2 )] > | 7p+ 7 { Py —F1| =0.
7 ap ap f 7 \*,./ ap ap f

The  term can be neglected obtaining the correction equation for pressure. The
only term that has to be modeled in some way is H (@'). In the SIMPLE algorithm
the correction extra diagonal velocity term is neglected leading to the following
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final pressure correction equation:

=0. (26)

> (Pp + Upp) [HCEZ)]

f

-3 @) {Vﬁﬁl N Vﬁ’p]

f 7 ap ap

f

The Finite Volume variables can be here introduced: p;,, € Q;, u;, € Q, and ¢;, € E,.
They are not continuous and they are constant in the interior part of each cell
assuming everywhere the value at the center of the cell. For sake of simplicity in
this section we will keep on referring to this variables without the [J;, subscript to
not make the formulas too heavy.

In this chapter we aim at employing a segregated approach based on a compress-
ible formulation of the SIMPLE algorithm. This aspect has to be kept in mind for
the Finite Volume discretization strategy.

We can then take into consideration the equations one by one, starting from the
continuity constrain. The equation can be written into its integral form over each
cell as follows:

/ V-(pu)dV =0.
Q;
By exploiting the divergence theorem, the equation above leads to:

/ pi-dS ~> (pu)l;-Sp=>Y Fy,
oty f=1 f=1

where the subscript 0|y indicates that those variables are evaluated at the cen-
ter of the face f and Sy is the oriented surface of the same face while N f; is the
total number of faces surrounding the i-th cell while F; stands for the mass flux
crossing the face f (see Figure 2).

The discretized version of the continuity equation then reads:

Fr=0. (27)
f=1

Let us now take into consideration the momentum equation. It has to be inte-
grated over the volume of every cell and it can then be analyzed term by term,
starting from the convective one:
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/V-(ﬁﬂ@ﬁ)cﬂ/:/ pa@u-dS~Y S (pua) =Y Friy.
Q; 5 = =

The first part of the diffusion term is discretized as follows:

Nfi
[Vl n)Va v = [ () Val-dS = 3 (G ) V]S
Q; 082, f=1

For orthogonal meshes we can approximate this term as:

Nfi

> M+ ) Vallp- Sy~ (n+ )y 1Sy ]
f=1

@ —

being d the oriented vector bridging the cell centers of two neighbor cells. When
this is not the case, a non-orthogonal correction is added:

N f; Nf; - -

- U; —Uj; -
S (it ) Vs Sy~ St sl {\WW Lo, vl .
f=1 f=1

where we have Py || df, Oy Lld; and P; + Oy = S; while Va|; is evaluated
starting from its value at the cell centers Vu,; and Vu,; by interpolation.

The second part of the diffusion term is treated following the previous steps:

Nf;
/ V- [(p+ ) Va'] av = /5 (1 + ) Va'] -dS ~ Z [(p+pe) VaT]|;- Sy
Q; Q; f=1

In this case, the face center evaluation is treated explicitly so that this term is
considered to be a forcing term:
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[0, O, O0u,]" i auys 0t
or 0Oy 0z
T ou, Ou, O0uy, Sa é{)ux guy (Quz
or Oy 0z g y 8
ou, Ou, Ou, z OUy Oty o 8uy Qyg auz 9u; ¢
Ldz Oy 0z 1y 0z 0z 0z~
The same applies for the last part of the diffusive term:
2 2
/V (u+pm)sV-a dV:/ (p+mw)sV-u|ldS ~
Q; 3 5 3

N i

=)

{/ﬁtut) -V u]’Sf
f=1

where once again the divergence of the velocity is interpolated to the surface and
treated explicitly leading to an additional forcing term.

The last term to be considered is the pressure gradient:

Nfi

Vg‘ad\/:/ pdS~S 7,8, .
/Qi 0Q; Z 27

f=1

In the momentum equation, pressure is interpolated to the faces and then treated
explicitly as a source term. The final momentum equation reads:

N f; -
[Ffﬁf — (A )| s (\Pfl | f‘ L+ 0O Vu\fﬂ
f=1
N ) (28)
= {(M + ) s <Vﬂ? Sp—35V- ﬁfsf) _ﬁfsf} :

f=1

where all the terms composing the right-hand side of the equation are treated
explicitly as source terms.
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Equation 28 can be rewritten into its Finite Volume matrix form as follows:

A,(@) = —Vp= A= H(a) — Vp, (29)

where A,(u) is the Finite Volume discretized form containing all the terms re-
lated to velocity of both left-hand and right-hand sides of Equation 28, Aw is the
diagonal part of A,(u) while —H (w) is its extra diagonal part so that A,(u) =
Ad — H(a).

The last equation to be analysed regards the energy conservation:

Nf; Nfi

/ V - [pué] dV:/ pue - dS ~ Zefprf Sf—Z@fFf
Q Ble¥ P
The kinetic part of the total energy is treated explicitly and leads to:
i@ i adl a @y K@
_ - _ !
/le [,ou—} dV—/mipuT ds ~ Z pfuf Sf—fz; 5 Fy

The diffusive term reads:

/in {%(—juﬁt)vg} dv =

N fi

- o e ) veas =2 (5 )| ver sy

Once again the energy gradient is not available at the center of the faces but it can
be approximated:

D R e I [T == e e
le(]v Pr Pri I f_lecv Pr Pro g |7 |dy| / e

Finally also the pressure term is discretized and treated explicitly:

N fi Nfi —

/v [pa) dV = /pu dS ~> ity - Sf_Zpr
f

f=1 =1
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The resulting equation reads:

Nfi

. Cp (B I € — € .
F,— P (4 ‘ J . =
fz_:l [ef ra, (Pr * Pm) f (|Pf| |dy| +O; velf)}
B (30)
TR T
- (M
=1 Pr
Also Equation 30 can be written into its matrix form as follow:
E@®) = F(p.a). (31)

5.2 Reduced order algorithm for compressible flows

In this paragraph we will introduce the reduced order algorithm developed for the
resolution of compressible flows where no discontinuities are present. This means
it is only suited for subsonic cases where the Mach number is lower then 1 in all
the points of the domain. The resolution of supersonic flows require a specific
treatment of the discontinuities that can not be circumvented (see e.g. [143]).

As it has been done in subsection 3.2 and subsection 4.2, also for compressible
flows we would like to develop a segregated algorithm based on a SIMPLE ap-
proach.

When dealing with compressibility, the thermodynamics of the problem can no
longer be neglected and energy evolution becomes of primary importance for the
behaviour of the system. For this reason, four different modal expansions have to
be taken into consideration for compressible cases:

i = Y ali(e) = Wa, B =Y biluaie) = 8b, &= alwi@) = O

where N,, N, and N, are the numbers of basis functions selected for velocity, pres-
sure and energy solutions respectively, a € R is the vector containing the coeffi-
cients for the velocity expansion while the same reads for pressure with respect to

98



5 Compressible Navier-Stokes equations
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Figure 44: Schematic diagram for the compressible reduced SIMPLE algorithm.

b € R™ and for energy with respect to é € R, being 15;, %; and the correspond-
ing vector and scalar basis functions collected into the matrices ¥ € R*Vw<Ne,
® € RVn*N> and © € RV Ne respectively.

Asintroduced in subsection 5.1, an additional state equation is required to obtain a
closed set of equations. Also at the reduced level we use the perfect gasses relation
without any need to discretize it since it is used for reconstructed solution fields.

The procedure employed in this chapter for the resolution of the reduced problem
is explicated in Algorithm 5 and resumed in Figure 44.
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Algorithm 5 The Reduced Order compressible SIMPLE algorithm

Input: first attempt reduced velocity, pressure and energy coefficients a*, b*

and ¢*; modal basis functions matrices for pressure, velocity and energy @, ¥ and

©
Output: reduced pressure, velocity and energy fields p,, @, and ¢,
1: From a*, b* and ¢*, reconstruct reduced fields P, u* and é*:
P = da*, " = Ub*, ¢* = O¢*;

2: Evaluate the eddy viscosity field ;

3: Momentum predictor step : assemble Equation 29, relax it employing pre-
scribed under-relaxation factor «,, project it over the velocity basis functions
1; and solve it to obtain new reduced velocity coefficients vector b**;

4: Reconstruct the new reduced velocity @** and calculate the off-diagonal com-
ponent H (u**);

5: Energy equation step : assemble Equation 31, relax it employing prescribed
under-relaxation factor a., project it over the energy basis functions 6; and
solve it to obtain new reduced energy coefficients vector ¢**;

6: Reconstruct the new reduced energy é**;

7: Calculate both density 7** and temperature 7** fields starting from 7*, @** and
e** by the use of the state equation;

8: Pressure correction step: assemble Equation 26, project it over the pressure
basis functions ¢; to get new reduced pressure coefficients a**; then correct
the velocity explicitly after having reconstructed the new pressure p**;

9: Relax the pressure field with the prescribed under-relaxation factor «,. The
under-relaxed field is called p*";

10: if convergence then

11: P, =p",u, =0 and €, = **

12: else

13: Assemble the conservative face fluxes F}:
Fy=wu;-Sp;

14: set p* =p*, u* = w** and €* = *%;

15: iterate from step 1.

16: end if
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5.3 Compressible Navier-Stokes problems: physical
parametrization

5.3.1 Compressible aerofoil problem with a variable viscosity

The first compressible flows test case we present in this work is a physically
parametrized external flow: a NACAO0012 aerofoil is immersed into a fluid with
variable dynamic viscosity ;.. The problem can be formulated as:

(V- (pi) =0 in Q
2
V- lpa®a— (pu+ ) (Vﬂ+VﬁT—§V-ﬁI) +ﬁI}:O in Q)
_ (. u-u Cp (1 Mt) O .
: — | A= 5 +5 = Q
\Y pu(e—i— 2) CU<P7’+PTt Ve +pu 0 in
u = [250,0,0]" in [y,
ou  _ _0 0T
kl/%—pn— m 1L oyt

The chord of the aerofoil is equal to one. As already said, the viscosity can vary
so that ;1 € [107°,107%]. The domain is characterized by the same shape showed
in Figure 13, left, where the radius of the inlet boundary is equal to 2m while the
length of the rectangular rear part is equal to 4m so that the total length is equal
to 6m. The tessellation is composed by 16000 hexahedral cells.

The speed of sound at the inlet can easily be evaluated by taking into consid-
eration the thermophysical properties of the gas we are working with. We con-
sider perfect gasses. Thus the specific heat transfer at constant pressure is suf-

ficient to evaluate v = g—i = Cff = where C, = 1005FJK while R = 8, 314m0‘l’ =
is the constant for perfect gasses. We suppose our aerofoil to move into air so
that M = 28,9-% where M stands for the molar weight. Temperature is fixed at

T = 298K. Collecting all these data together, we end up with

[YRT m
C=1\—=2341.17—.
M S

This means that at the inlet the Mach number can be calculated as
U
Mach = —== ~ (.73.
ac C

For this test case, consequently, a compressible treatment for the flow is needed
since we are approaching the transonic regime and compressible effects are of sig-
nificant relevance. At the inlet, pressure is fixed to 10° Pa. Then also the Reynolds

101



5 Compressible Navier-Stokes equations

number can be evaluated as

_ pLﬂ'inlet _ pLﬁ'inletM

R
‘ Iz pRT

The resulting Reynolds number is then Re € 2.92 x [10*,107], which clearly requires
a treatment for turbulence since the system is operating in fully turbulent regime.

For the offline phase, 50 random values have been selected: pu € [107°,107%] = P.
Full order eddy viscosity is calculated by the resolution of a £ — w turbulence
model. This last choice is justified by the fact that the physical dynamics we ex-
pect to observe in such a test case are different from the oneS exhibited in both
subsection 4.4 and subsection 4.3: as pointed out in section 4, we are here dealing
with a body surrounded by the fluid which is a classical test case where k — w
models outperform k — e models.

T T

¢ il 7 ] |
107 - a

% —— Velocity
S 0.99999 | | veodt o
c elocity eigenvalues i 4l —=— Pressure | |
e —— Pressure eigenvalues § 10 —— Energy
‘g 0.99998 —— Energy eigenvalues 5O
5 £ 07 |
% 0.99997 | 1 A=
g 10710 h
= 0. B |
S 0.99996 1

\ \ \ \ \ \ 10713 | \ \ \ \ \ L]

0 10 20 30 40 50 0 10 20 30 40 50

N, =N, = N, N, =N, =N,

Figure 45: Eigenvalues trends for pressure, velocity and energy: cumulated
eigenvalues are reported on the left, eigenvalues decays on the right.

Figure 45 shows the trends of the eigenvalues for velocity, pressure and energy.
The same is reporteD in Figure 46 for the eddy viscosity. As we may notice, by just
considering a few modes for every variable, the amount of discarded information
is almost negligible. For this reason, just the first 20 modal basis functions have
been selected for velocity, pressure and energy while 30 modal basis functions are
used to reconstruct the eddy viscosity field. This is due to the fact that, analyzing
Figure 46, left, it is clear that a higher number of basis functions are needed in
order to approach the unity for what concerns the eddy viscosity behaviour.
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Figure 46: Eigenvalues trends for the eddy viscosity: cumulated eigenvalues are
reported on the left, eigenvalues decays on the right.

Once again we construct a neural network for the v, coefficients estimation, as
explained in subsubsection 4.4.2: two hidden layer are present, the first one com-
posed by 256 neurons and the second one composed by 64 neurons, resulting in
a fully connected network where only Tanh activation functions are used. Offline
solutions, including the intermediate steps, are retained to train the network.

The training procedure is carried out in 2 x 10® epochs. 20 new random offline
solutions have been performed to obtain a testing set which was not correlated to
the solutions used for the training stage. The Adam optimizer has been selected
for this procedure. A mean squared error loss function is used to evaluate the
reconstruction capability of the network for both training and testing sets. The
decay behaviour of both losses are depicted in Figure 47. The training stage has
been stopped after 2 x 10* epochs since test loss was no more decreasing and the
discrepancy between test and train losses was starting to increase significantly.

Figure 48, left, shows the L? norm relative errors for all the different parameters in
the online set concerning velocity, pressure and internal energy. Figure 48, right,
shows the L? norm relative error for the eddy viscosity, between full order and
reduced order fields, for the whole online parameter set. As we may notice, even
if the order of magnitude of the v; error is equal to 1072, it is sufficient to ensure a
lower error for the quantities of interest, i.e. velocity, pressure and energy. By this
observation we are allowed to employ such a small neural network which is not
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Figure 47: Loss function decay for both train and test sets.
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Figure 48: L? norm relative errors.
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Full Velocity Reduced Velocity
2.7e+00 100 150 200 250 3.4e+02 2.7e+00 100 150 200 250 3.4e+02

[ e J [ e J

Velocity Error
0.0e+00 2 4 6 8 1l.le+01

[ e —— \

Figure 49: Comparison between full order (left) and reduced order (right)
solutions for the velocity field. These fields refer to the resolution of the problem
for ;1 = 1.2 x 1073 which has been selected as a random value in the online
parameter set. On bottom the pointwise error between full order and reduced
order solutions is reported.

compromising the computational cost, still ensuring good performances.

In Figure 49, Figure 50, Figure 51 and Figure 52 a comparison between full order
and reduced order solutions is depicted, for a random value of the parameter, in-
cluded in the online set. By analysing the reported fields, full order and reduced
order solutions appear to be very similar and most important areas into the do-
main, i.e. the zones surrounding the aerofoil together with the wake created by
the body, are well reconstructed.
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Figure 50: Comparison between full order (left) and reduced order (right)
solutions for the pressure field. These fields refer to the resolution of the problem
for ;1 = 1.2 x 1073 which has been selected as a random value in the online
parameter set. On bottom the pointwise error between full order and reduced
order solutions is reported.
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Energy Error
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Figure 51: Comparison between full order (left) and reduced order (right)
solutions for the energy field. These fields refer to the resolution of the problem
for = 1.2 x 1073 which has been selected as a random value in the online
parameter set. On bottom the pointwise error between full order and reduced
order solutions is reported.
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Figure 52: Comparison between full order (left) and reduced order (right)
solutions for the eddy viscosity field. These fields refer to the resolution of the
problem for u = 1.2 x 10~* which has been selected as a random value in the
online parameter set. On bottom the pointwise error between full order and
reduced order solutions is reported.
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5.4 Compressible Navier-Stokes problems: geometrical
parametrization

5.4.1 Shape deformation for a NACA0012 aerofoil by the use of bump func-
tions in a compressible flow

In this section we present a second test case, focused on a geometry paramet-
ric problem: the shape of the aerofoil used for the previous test case is modified
by the use of a bump function. In particular the foil is divided into a top and
a bottom part by the chord. The bump function depicted in Figure 53 is added
to the top and subtracted to the bottom surface, premultiplied by two different
amplitude scalar factors: every solution is parametrized uniquely by two differ-
ent scalar values. We use the same thermophysical properties used for physical
parametrization case previously described, but the dynamic viscosity is fixed and
equal to 1.74 x 107°Pa s. The equations to be solved for this test case are the fol-

lowing:
(V- (pu) =0 in Q(p)
2
V-lpu@u— (u+ ) (Vﬁ#—VﬂT—gV-ﬁI)—i—ﬁI} =0 inQ(p)
AN S Y S .

V-|pu|é+ 5 ) C, (Pr+Pm)ve+pu}_O inQ(p) -
u = [170,0,0]7 inT;,
V@—u—ﬁn:() infout

\ On

The inlet velocity has been slightly decreased since the random modification of
the geometry may lead to high curvature areas where the flow could eventually
become supersonic. This means that the Mach number at the inlet is now around
0.5.

For the offline phase, 50 random values have been selected:/i;op,, fbottom; € [0,0.1]
Ntopl ) Hbottom
for i = 1,...,50 where : : = P,,. Full order eddy viscosity is

Htopsos  Mbottomso
calculated by the resolution of a k — w turbulence model.

As pointed out in subsubsection 3.4.2, a general POD approach is not directly ap-
plicable to a geometrical parametrization problem since the L*? norm used for the
inner products is not well defined in case of multiple different domains. The mesh
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in our case is once again moved thanks to an RBF algorithm by exploiting the dis-
placements of the control points located over the surface of the aerofoil. In this
case the reference configuration used for the norms evaluation is the unperturbed
one.

0.15
< 0.1} :
B
& )
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<
O L | | | |
0 0.5 1
Chord

Figure 53: Shape of the employed bump function.

To test the online performances, 20 new scalar amplitude couples have been ran-
domly selected. N, = N, = N, = 30 has been fixed for the reconstruction of
velocity, pressure and internal energy fields while 15 modal basis functions have
been employed for v;. This choice is supported by what is shown in Figure 55:
the increasing trend of the cumulated eigenvalues is appreciably fast and this fact
allows the discarding of the higher modes. For every new parameter couple the
mesh motion has to be performed but the procedure is very efficient since the
coefficients for the RBF have to be evaluated and stored just once.

The same neural network architecture used for the previous application is em-
ployed here for what concerns the eddy viscosity. Again, looking at Figure 56, it
can be noticed that the learning of the net seems to stabilize after 2 x 10* epochs
which is the threshold we fixed for the training procedure.

The resulting L? norm errors for all the parameter couples in the online set are
shown in Figure 57. Once again a discrepancy of about one order of magnitude
can be noticed between the relative errors for the quantities of interest and the one
calculated for the eddy viscosity. This is due to the fact that we are using a very
simple and small network but it reveals to be reliable enough to make the online
algorithm work in an accurate way.
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Figure 54: Eigenvalues trends for pressure, velocity and energy: cumulated
eigenvalues are reported on the left, eigenvalues decays on the right.
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Figure 55: Eigenvalues trends for the eddy viscosity: cumulated eigenvalues are
reported on the left, eigenvalues decays on the right.
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Figure 56: Loss function decay for both train and test sets.
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Figure 57: L? norm relative errors.
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Figure 58: Comparison between full order (left) and reduced order (right)
solutions for the velocity field. These fields refer to the resolution of the problem
for piep >~ 0.004 and fipottom = 0.086 both selected as random values in the online

parameter set. On bottom the pointwise error between full order and reduced
order solutions is reported.
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Figure 59: Comparison between full order (left) and reduced order (right)
solutions for the pressure field. These fields refer to the resolution of the problem
for piep > 0.004 and fipottom = 0.086 both selected as random values in the online
parameter set. On bottom the pointwise error between full order and reduced
order solutions is reported.
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Figure 60: Comparison between full order (left) and reduced order (right)
solutions for the energy field. These fields refer to the resolution of the problem
for piep >~ 0.004 and fipottom = 0.086 both selected as random values in the online

parameter set. On bottom the pointwise error between full order and reduced
order solutions is reported.
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Figure 61: Comparison between full order (left) and reduced order (right)
solutions for the eddy viscosity field. These fields refer to the resolution of the
problem for iy, ~ 0.004 and pportom == 0.086 both selected as random values in

the online parameter set. On bottom the pointwise error between full order and
reduced order solutions is reported.
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Figure 62: Comparison between full order (left) and reduced order (right)
solutions for the velocity field. These fields refer to the resolution of the problem
for piep > 0.095 and fipottom = 0.003 both selected as random values in the online

parameter set. On bottom the pointwise error between full order and reduced
order solutions is reported.
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Figure 63: Comparison between full order (left) and reduced order (right)
solutions for the pressure field. These fields refer to the resolution of the problem
for piep > 0.095 and fipottom = 0.003 both selected as random values in the online
parameter set. On bottom the pointwise error between full order and reduced
order solutions is reported.
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Figure 64: Comparison between full order (left) and reduced order (right)
solutions for the energy field. These fields refer to the resolution of the problem
for piep > 0.095 and fipottom = 0.003 both selected as random values in the online

parameter set. On bottom the pointwise error between full order and reduced
order solutions is reported.
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Figure 65: Comparison between full order (left) and reduced order (right)
solutions for the eddy viscosity field. These fields refer to the resolution of the
problem for iy, ~ 0.095 and pportom == 0.003 both selected as random values in

the online parameter set. On bottom the pointwise error between full order and
reduced order solutions is reported.
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In figures 58-65 a comparison between offline and online solutions is depicted for
two different parameter couples selected from the online set. Even if the two solu-
tions are obtained for airfoil geometries that are perturbed in opposite directions,
in both cases the method exhibits good reliability properties.
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5.5 Context and overview

In this chapter we focused our attention on compressible flows devoting our ef-
forts to the development of efficient and reliable methods for the resolution of
different problems dependent on a parametrization. In particular we tried to
combine all the different methodologies exposed in section 3 and section 4 and
cast them to obtain a reliable architecture for compressible turbulent parametrized
problems for both physical dependencies as well as geometrical ones.

The subsection 5.1 provides a wide description of the involved conservation equa-
tions together with possible simplifications, justified by physical considerations,
and necessary restrictions, e.g. on Mach number application ranges.

By following what has been described in subsection 3.2 and subsection 4.2, sub-
section 5.2 introduces a segregated reduced order method for the resolution of the
aforementioned parametrized test cases.

The efficiency of the method is supported by the presentation of two different test
cases: a physical parametrization for the resolution of the flow dynamics around
a NACAO0012 aerofoil with a variable viscosity is shown in subsection 5.3 while
a geometrical parametrization regarding the behaviour of an aerofoil with a vari-
able shape is applied to the test case introduced in subsection 5.4.
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6 Conclusions and future perspectives

This manuscript has been devoted to the presentation of some developed tech-
niques for the resolution of fluid dynamics problems. In particular the novelties
introduced by this thesis are:

* a fully consistent algorithm with respect to the full order scheme for the res-
olution of incompressible laminar flows. It has been introduced in section
3.2 and performances have been tested in sections 3.3 and 3.4. It shows good
convergence properties without any necessity of additional stabilization for
what concerns pressure solutions. This is due to the fact that we are utiliz-
ing a segregated scheme which tries to circumvent the saddle-point stability
issue. In figure 9 we demonstrated that consistency between full order and
reduced order solutions is actually paying off in terms of errors;

* a definition for the proper orthogonal decomposition in moving domains.
Since norms are well posed only when the domain of definition is provided
and fixed, it is in general not possible to compare solutions calculated over
different geometries. To overcome this hurdle, a simple architecture based
on mid configurations is proposed in 3.4.2;

* a hybrid approach for the resolution of incompressible turbulent flows. In
section 4.2 we introduced an approach based on Galerkin projection for what
concerns conservation laws while the eddy viscosity is reconstructed by a
data-driven procedure. In particular in section 4.3 an RBF interpolation is
utilized to reconstruct the contribution due to turbulence in the viscosity
tield for physical parametrization problems. On the contrary section 4.4 is
focused on the resolution of geometrically parametrized problems by ex-
ploiting machine learning methods. In both cases good performances are
ensured by the architectures;

* a new strategy for the selection of snapshots. The paragraph 4.4.1 includes
the explanation on how to select the needed snapshots for the POD proce-
dure so that enough information about the path followed by the full order al-
gorithm is captured. This ploy improves a lot the performances of the ROM
SIMPLE algorithm at the point that, for complex geometrically parametrized
problems, a global minimum is not reached in case it is not used;

* a hybrid algorithm for treating compressible subsonic flows. Section 5.2 has
been dedicated to the presentation of a reduced segregated algorithm for
the resolution of fluid dynamics problems characterized by a medium-high
Mach number. Once again neural networks are employed for the approxi-
mation of the eddy viscosity while state equation is used explicitly. Even for
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very small and simple networks, leading to rough reconstructions of the vis-
cous term, the method shows high robustness and reliability. Good perfor-
mances are confirmed by physical parametric problems, as shown in section
5.3, as well as by geometrically parametrized test cases, as demonstrated in
section 5.4.

The introduced methodologies are very promising since they cover a wide set of
possible problems and provide accurate results while reducing, at the same time,
the computational cost for their resolution.

Some proposals can be pointed out as future developments and enhancements of
this work:

one of the main weaknesses for the reduced algorithms we proposed is the
necessity to reconstruct all the variables back in the full order solution man-
ifold at each iteration so that these fields can be used to assemble the other
equations involved in the iterative procedure. This setup obviously penal-
ize the performances of the complete scheme. The best solution would be to
use appropriate strategies as, e.g., a discrete empirical interpolation method,
to obtain a fully reduced problem. In that case all the equations would be
assembled by the only usage of the POD expansion coefficients;

a possible alternative choice for the complete reduction of the SIMPLE al-
gorithm would be the application of a dedicated neural network for the ap-
proximation of the reduced functionals, once the POD coefficients are pro-
vided. This would be a very cheap evaluation procedure and possibly an ac-
curate architecture, avoiding a continuous throwback to the full order space;
a better construction of the neural network affording the reconstruction of
the eddy viscosity, for both the incompressible and the compressible models,
may eventually lead to even lower errors with respect to the high fidelity
solutions for what concerns the viscosity field. A deeper tuned network
could improve the accuracy while preserving computations performances;
all the proposed techniques have been developed to deal with steady state
fluid flows. A big step forward for what concerns these methods would be
their extension to unsteady problems. Since steady state cases just occupy a
tiny fraction of possible applications, the implementation of a suited process
for the resolution of time dependent Navier-Stokes equations would sensi-
bly increase the applicability;

for what regards the construction of the basis functions for the solution man-
ifold covering, a good improvement could eventually lie in the application
of a greedy algorithm, in place of the POD we selected for this work, exploit-
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ing the evaluation of a suited error estimator. This choice would possibly
decrease the computational cost related to the offline stage in such a way
that the online accuracy is not affected by the variation;

* in this thesis Reynolds averaged Navier-Stokes equations have been entrusted
with the treatment of turbulence. This aspect could be improved by relying
on large eddy simulations instead of using averaging techniques so that a
more accurate and detailed solution could be reached.
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"But if you are stuck in Svalbard and want to make the sunset last a little longer, you can
always try spinning counterclockwise.
It’s true that it will add only an immeasurably small fraction of a nanosecond
to the Earth’s clock. But depending on who you're with...
it might be worth it.”
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