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Abstract

The goal of this thesis is to provide an overview of the latest advances on reduced
order methods for parametric optimal control governed by partial differential
equations.

Historically, parametric optimal control problems are a powerful and elegant
mathematical framework to fill the gap between collected data and model equa-
tions to make numerical simulations more reliable and accurate for forecasting
purposes.

For this reason, parametric optimal control problems are widespread in many
research and industrial fields. However, their computational complexity lim-
its their actual applicability, most of all in a parametric nonlinear and time-
dependent framework. Moreover, in the forecasting setting, many simulations
are required to have a more comprehensive knowledge of very complex systems
and this should happen in a small amount of time.

In this context, reduced order methods might represent an asset to tackle this
issue. Thus, we employed space-time reduced techniques to deal with a wide
range of equations. We propose a space-time proper orthogonal decomposition
for nonlinear (and linear) time-dependent (and steady) problems and a space-
time Greedy with a new error estimation for parabolic governing equations.
First of all, we validate the proposed techniques through many examples, from
the more academic ones to a test case of interest in coastal management exploit-
ing the Shallow Waters Equations model.

Then, we will focus on the great potential of optimal control techniques in
several advanced applications. As a first example, we will show some determin-
istic and stochastic environmental applications, adapting the reduced model to
the latter case to reach even faster numerical simulations. Another application
concerns the role of optimal control in steering bifurcating phenomena arising
in nonlinear governing equations. Finally, we propose a neural network-based
paradigm to deal with the optimality system for parametric prediction.
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Introduction

In our daily life, we aim at describing processes to better understand the world
around us. A powerful mathematical tool to describe physical phenomena con-
sists of partial differential equations (PDEs). Whatever one is studying, it is
clear that the response to some stimuli changes depending on what the features
of the physical system are. Thus, the model can be more attested if it includes
parameters in the formulation. Parameters can describe the physical and/or
geometrical properties of the system. They reflect an input-output relation be-
tween what the focus is, i.e. the parameters, and what the event is, i.e. the
parametric solution.

For this reason, we will focus on parametrized partial differential equations
(PDE()s) as a valuable model to study several physical dynamics. Nonethe-
less, in such an analysis, a further modelling step can be taken to have a deeper
comprehension of the experienced circumstances. For example, It is the case
of forecasting modelling. Imagine that something dangerous or unpleasant is
expected or predicted, say a flood, a pollutant loss in a protected area, a catas-
trophic event due to anthropic or natural causes, an accident in a factory. How
can I act on the system to avoid an undesirable configuration? Can I change
my model to be safer?

These are the roots of what is known as the controllability theory. A controlled
PDE(p) is a parametric system on which some external variables called controls
may act changing the usual and expected behaviour of the solution [41]. The
goal of the controlled model is to steer its solution towards a preferable config-
uration.

However, is it always possible to reach an exact prescribed profile for a PDE(u)?
Mathematically, this question is not only fascinating, but of interest in many
applied fields. For the reader, we here report a list of contributions on this topic
for linear problems [41, 54, 92, 94, 97]. It is indisputable that the controllability
problem becomes more and more involved in the nonlinear setting. Indeed, the
growing physical complexity related to such models leads to an increased need
for control over the systems. The study of such a setting prospered in the eight-
ies in the fluid dynamics fields thanks to J. L. Lions. His contributions paved
the way to a broad literature production, see e.g. [7, 40, 93, 95, 96, 157].
However, it is natural to guess that not all the PDE(u)s are controllable: i.e. it
is not possible to guarantee the existence of external variables that result in the
eract configuration required. For example, is it possible to act on a pollutant
loss to totally stop its spread? It is clear that, maybe an external control capable
of such an action may not exists or, if any, it can be unfeasible or not physically
meaningful. Thus, the controllability has been extended to the optimal control
theory. In this setting, the goal is not to reach a configuration, but to be, some-
how, the most similar to that peculiar profile, satisfying the underlying PDE(pu).
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The parametric optimal control framework is an elegant and versatile mathe-
matical tool that has been employed in many applied fields in a data assimilation
fashion: i.e. it is interpreted as a way to change the model to reach, eventually,
the information given by collected data or some previous awareness of the system
behaviour (consider, for example, historical series or synthetic knowledge given
by other models). Parametric optimal control problems (OCP(u)s), are usually
quite complicated and, thus, in most cases, it is not possible to provide an ana-
lytical solution for them. For this reason, scientists and researchers usually rely
on approximated numerical simulations. Yet, even if OCP(u)s can be an asset
to supply reliable forecasting simulations, they are computationally demanding
and this limits their applicability. This issue is amplified when one is dealing
with nonlinear and time-dependent equations, for which the required computa-
tional resources drastically increase and a parametric study can be unbearable
to perform using standard discretization techniques. Because of this, we pro-
pose reduced order methods (ROMs) to obtain fast parametric simulations. In
a reduced setting, the solution is sought for a large number of parameters. Some
examples involve applications of interest in many fields such as parameter es-
timation, statistical analysis, real-time predictions and so on. The main idea
underlying the model order reduction is to build on a previous model discretiza-
tion, say the high fidelity model, to identify a suitable low dimensional and
problem-dependent space that represents how the parametric system changes
with respect to the parameters. Therefore, a reduced model is employed to
simulate a parametric instance in a small amount of time without paying in
accuracy with respect to the standard model. This goal is reached when the
model order reduction is performed through the offline-online paradigm: once
built the model in a (possibly costly) offline phase, each new parameter is eval-
uated and simulated in a fast way in an online phase, exploiting the previously
collected, manipulated and stored offline information. For an introduction to
the topic, the interested reader may refer to [10, 20, 64, 123, 125, 133, 134], for
example.

Focusing on the optimal control framework, ROMs have been successfully em-
ployed in many applied fields, from fluid dynamics [42, 43, 110, 122], to heamo-
dynamics [14, 90, 150, 168] and environmental sciences [33, 126, 127, 145, 147]
and more.

This thesis proposes numerical strategies for nonlinear and time-dependent
OCP(p)s that will be tested for several examples. In the reduced optimal con-
trol context, a wide production of literature concerns steady linear governing
equations, see e.g. the following far-from-exhaustive list [12, 13, 44, 51, 71, 79,
80, 86, 110, 111, 127]. Thus, a natural extension to time-dependent problems
followed. Indeed, building on the space-time formulation for non-parametric
settings, see e.g. [65, 143, 144, 167], in [16, 70, 146, 148, 150], for example,
they generalized the formulation and the standard algorithms to build reduced
spaces to time-dependent OCP(u)s, highly accelerating the solution process.
Few recent contributions can be found for nonlinear and time-dependent opti-
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mal control in a parametric framework, see e.g. [16, 118, 147, 150, 168].

The main motivations behind this work were to show a versatile reduced order
model to be adapted to several OCP(u)s, with a focus on interdisciplinary ap-
plications such as environmental ones. These are characterized by complicated
model predictions based on data collection or expected solution profiles. In this
context, OCP(u)s are used to make the model forecasting capabilities more and
more reliable. In Figure 1 a pipeline of optimal control process is presented. As
already specified, OCP(u)s, given a parametric instance, aim at reaching a con-
figuration, represented by the collected data in this case. Mathematically, the
data information is included in a functional to be minimized. The minimization
process is performed through external variables, the controls, that change the
classical model (the standard PDE(u)) to reach a more reliable solution to be
exploited with forecasting purposes. The main contributions we will discuss in
the thesis are about the reduced space-time formulation. The space-time ap-
proach is a very intuitive strategy already employed in several non-parametric
optimal control examples, see e.g. [65, 67, 66, 89]. This discretization approach
has been successfully exploited for parabolic PDE(u)s in [53, 156, 165, 166]. In
the thesis, we build on these papers to propose space-time reduced strategies to
be used for several applications based on OCP(u)s.

Nevertheless, in this framework, many questions arose, most of all for com-
plicated tasks. For example, what is the best configuration to work with time-
dependent problems? Is the problem well-posed? How can one make the reduced
strategy versatile enough to be easily used in several contexts? Can we certify
the error we are committing with respect to the standard discretization, at least
for the simplest cases?

External
Variables

(Controls)

Classical Goal to
assica Minimization Process Reach

Model
¥ (Data)

i Optimal (More }
| Reliable) }
! Solution |

Figure 1: Graphic representation of the optimal control pipeline.

The space-time formulation reveals itself as a natural choice from this point of
view. Indeed, besides its cons, one over all, the computational effort needed for
the simulations, it utterly has an important strong point: a space-time prob-
lem can be treated as a steady problem and all the techniques, theorems and
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well-known results deriving from literature for steady OCP(u)s can be slightly
modified to apply in the time-dependent context.

For sure, if we go beyond standard model order reduction, other interesting
questions can be addressed. What happens when the nonlinearity affects the
uniqueness of the solution? How can I change the reduced model when dealing
with stochastic controlled equations? Can artificial intelligence help in the pre-
diction of the optimal solution?

All these topics will be discussed in this contribution and we will show how
OCP(u)s can be useful even in more complicated applications. This work is
original and based on findings and results obtained and presented in published
papers, submitted preprints or ongoing projects carried out by myself jointly
with others. Now, a detailed outline of the thesis follows.

¢ Part I In this first part, we will deal with the theoretical formulation of
OCP(p)s. Then, we will discuss the numerical approximation of these
problems: i.e., the space-time high fidelity model is presented.

This part is divided into two Chapters. The proofs of Chapters 1 and 2
derive from an accepted work with G. Rozza and F. Ballarin [146] and
from a submitted work with the same co-authors [148]. However, the
presented formulation refers to several other contributions such as [16]
and a published work with Z. Zainib [150].

o Chapter 1. We here present the continuous formulation of OCP(u)s,
from steady linear problems to time-dependent and nonlinear ones.
For linear time-dependent problems, we propose the proofs of the
well-posedness of the systems. This Chapter represents the backbone
of all the numerical results we are going to show in the thesis.

o Chapter 2. In this Chapter we will discuss the high fidelity approxi-
mation, proposing the space-time discretization both for steady and
time-dependent problems. Also in this case, we will focus on the
well-posedness of this specific finite dimensional setting.

¢ Part I1. The second part of this contribution is dedicated to reduced strate-
gies for OCP(u)s. Besides the techniques and the algorithms we relied on,
we show some first numerical results to validate them. This part consists
of three Chapters.

We want to stress that Chapter 4 presents the numerical results of the
already cited works [16, 146], building on the submitted preprint [147].
Chapter 5 is based on the results obtained in [148].

o Chapter 3. In this Chapter we discuss the main ideas behind model
order reduction and the basic assumptions to deal with an efficient
and well-posed reduced system. The discussion applies both to steady
and to time-dependent problems, covering a broad class of equations.
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o Chapter 4. This Chapter is about space-time Proper Orthogonal
Decomposition. We point out the versatility and the effectiveness of
such an approach through some preliminary results for linear time-
dependent OCP(u)s. They will be the stepping stones for a more
complicated problem in environmental sciences: a nonlinear time-
dependent application for coastal safeguard management.

o Chapter 5. A further step in the model reduction for OCP(u)s is
here considered: the space-time Greedy. Unlike the data compression
algorithms (such as POD), in this Chapter, we propose an iterative
procedure to build the reduced spaces based on a posteriori error
estimator between the high fidelity approximation and the reduced
one. The error certification for linear problems is proved both for
time-dependent and for steady cases and the strategy is validated
through some numerical tests.

O Part III. The last part of the thesis is dedicated to the application of
OCP(u)s to several examples of interest, from environmental sciences to
heamodynamics. We will deal with stochastic equations and bifurcating
nonlinear systems. Furthermore, for the first time in the thesis, artificial-
intelligence-based approaches are studied and employed.

This part is divided into three Chapters. Chapter 6 is based on two works:
an accepted paper with R. Mosetti, collaborator affiliated to the National
Institute of Oceanography and Applied Geophysics (OGS) [145] and a
submitted preprint in collaboration with G. Carere and R. Stevenson, from
University of Amsterdam [33]. Chapter 7 entirely describes the submitted
preprint in collaboration with F. Pichi [118]. Finally, Chapter 8 describes
a part of an ongoing project carried out with N. Demo [46].

o Chapter 6. In this Chapter we will focus on the application of reduced
techniques to problems of actual interest in environmental sciences: a
pollutant release control in the Gulf of Trieste, Italy, and a forecasting
oceanographic model for the North Atlantic Ocean dynamic. The
models will be discussed both in their deterministic and stochastic
versions. In the latter case, we will describe and exploit tailored
reduction techniques for stochastic inputs and we will show some
heuristic conclusions on how much convenient is to use these specific
strategies with respect to standard model order reduction.

o Chapter 7. The topic of this Chapter concerns the role of optimal
control on bifurcating phenomena arising in nonlinear PDE(u)s. We
tested several control actions to understand how the features related
to the loss of uniqueness might change under the influence of external
variables.

o Chapter 8. The last Chapter is about the use of artificial intelligence
and machine learning to deal with OCP(u)s. Indeed, we propose



XVi Introduction

physics informed neural network strategies to supply fast parametric
predictions in an optimal control context. We here maintain the
fashion of offline-online decomposition for parametric systems, but
with a different flavour.

Finally, some conclusions and perspectives follow.

In this thesis we are not going to present the results obtained from a collabora-
tion with M. Girfoglio and T. liescu from Virginia Tech [149]: the preprint is
about model order reduction for convection dominated Navier-Stokes equations
and, since unrelated to the main topic of this thesis, it has been omitted from
this contribution.

We would like to remark that all the numerical results shown in this thesis have
been coded with multiphenics [1] and RBniCS libraries [2], developed at SISSA
mathLab. They are python-based libraries, built on FEniCS [98]. RBniCS is
conceived to simulate parametric systems in a model order reduction framework,
while multiphenics aims at easily defining multiphysics and coupled problems.
We acknowledge the developers, the contributors and the maintainers of all the
cited libraries.
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CHAPTER 1

An Introduction to Parametric Optimal
Control Problems

This Chapter deals with optimal control problems (OCP(u)s) governed by
parametrized partial differential equations (PDE(u)s). Our goal is to provide an
overview on their formulation, from nonlinear time-dependent systems to linear
steady ones. First of all, in Section 1.1, we present the Lagrangian formalism
[59, 67, 72] as a suitable approach to solve OCP(u)s making no distinction on
the governing equation. Then, we will analyse specific features related to the
linear governing equations and the well-posedness of such systems [111, 146] in
Section 1.2. Finally, we propose an alternative formulation for the OCP(u)s
following [148]: this will be the topic of Section 1.3.

1.1 Lagrangian approach for OCP(u)s

In the following Section, we provide the analytical formulation for nonlinear
time-dependent OCP(u)s at the continuous level. After stating the problem
setting, we will briefly describe the Lagrangian formalism [59, 67, 72] to tackle
the minimization of quadratic cost functionals constrained to nonlinear time-
dependent PDE(u)s. The proposed description focuses on Hilbert spaces, for
the sake of clarity. However, all the concepts still hold in the Banach spaces
framework.

1.1.1 Problem Formulation

Let us define as Q C R?, with d = 2,3 a spatial domain where a physical event
occurs in a time interval, say [0,T]. We suppose that the phenomenon we are
interested in is described by a nonlinear time-dependent PDE (). To represent
and study such an evolution, we rely on the function spaces

Yo = {y € L*(0,T;Y) such that y, € L?(0,T;Y*) with y(0) = 0} (1.1)

and
Q=L%*0,T;Y), (1.2)

for a Hilbert space Y. Let us assume to be provided by a nonlinear time-
dependent state equation G : Yy — Q* that reads

Glyim) = f. (1.3)
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Here, y :=y(pu) € Yo is the state variable, i.e. the physical quantity we are
focusing on, while f := f(u) € Q* is an external forcing term. The parameter
 is considered in the parameter space D C R?, of dimension D > 1. The value
of p may represent physical and/or geometrical features of the system solution.
With the notation L(-, -), we indicate the space of the continuous linear functions
between two function spaces. The state equation we consider is described by a
PDE(u) of the following form:

G(y; ) =yt + Ene(y; 1) + Ee(y; p), (1.4)

where Ey € L(Yy, Q%) and E,,; are the linear and the nonlinear contributions to
the system, respectively. The time evolution of the solution is represented by
the time derivative y;. Now, let us suppose that the state variable y must reach
a desired profile yq := ya(p) € Vobs 2 Vo, where Vops i= L?(0,T; Yops) with
Yobs O Y. The observation in taken along all the time interval in a physical
observation domain Qons C . To steer the state solution towards the desired
profile, we introduce a control variable u := u(p) € U, where U = L*(0,T;U)
with U another Hilbert space defined over the control domain €, C 2. When
0, = Q, we say that the OCP(u) is distributed. Namely, the variable u will act
on the system and will change the behaviour of the state to achieve the data
solution gy4. Theoretically, this action is represented by the controlled equation

E(y,u; i), where € : Yy x U — Q* reads:

E(y,usp) == Gy;pu) —C(u) — f=0. (1.5)

Here, C € L(U, Q") is the control operator that influences the system in order
to change its original state variable. The goal of an OCP(u) is reached though
the following constrained minimization problem: given a g € D find the pair
(y,u) € Vo x U which solves

min J , U subject to £ , U — 07 1.6
YEV0ad CV0,u€EUqa CU (y yd) J (y IJ') ( )

where J : Yy X U X Vobs — R is the following cost functional:

1 a
J(y,u;ya) = §Ily—yd||§;obd +§|IUHZ, (1.7)

with a € (0, 1] penalization parameter. The value of a changes the role of the
control variable: indeed, a larger value of « do not let the variable u to highly
affect the original system, while the contrary happens when « is small. The
minimization problem (1.6) has a solution when [67, Section 1.5.2]:

(i) Uaa C U is convex, bounded and closed;
(ii) YVoaqg C Yo is convex and closed;

(iii) for every pu € D, the controlled system &(y,u;pu) = 0 has a bounded
solution map v € U — y(u) € Wo;
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(iv) for a given p € D, the map (y,u, ) € Yo xU — E(y, u; ) € QF is weakly
continuous with respect to (w.r.t.) the first two arguments;

(v) for a given yq € Yobs, the objective functional J(y,u;yq) is weakly lower
semicontinous w.r.t. the first two arguments.

Here, we considered )y,q and U,q as feasible sets for the optimal solutions.
However, from now on, we will indicate them with ), and U, since these are
the spaces considered in the numerical tests of this contribution. The OCP(u)
can be solved through a Lagrangian argument. To this end, let us consider the
arbitrary adjoint variable z :== z(u) € Yr C Q, where

Yr = {z € L*(0,T;Y) s.t. z € L*(0,T;Y™*) such that z(T) = 0}. (1.8)

The employment of the adjoint variable will recast the problem (1.6) in an
unconstrained minimization framework. For the sake of notation, we define the
global variable X := X (p) = (y(p),u(p),z2(p)) € Xor:=Yo x U x Yr and
thus, we consider the Lagrangian functional £ : Xo 1 X Vobs — R

L(X5ya, ) = J(y,u;ya) + (2, E(y, us 1)) 0o, (1.9)

where (-, -)go+ is the duality pairing of the spaces Q and Q*. Furthermore we
assume that:

(vi) U is nonempty;

(vil) J : Yo XU X Vops — Rand € : Yy x U — Q* are continuously Fréchet
differentiable w.r.t. the first two arguments;

(viii) given pu € D, the controlled system &(y,u; ) = 0 has a unique solution
y=y(u) € Y for all u € U,

(ix) given p € D, D, E(y,u; ) € L(Vy, Q*) has a bounded inverse for all
uecl.

In assumption (ix), with D,, we indicate the Fréchet derivative w.r.t. the state
variable and we will exploit this notation for u and z as well, with D,, and D,,
respectively. For a given p € D, assumptions (vi) - (ix) assure the existence of
an adjoint variable z € Yr related to the solution pair (y,u) € Yo x U of (1.6),
which satisfies the following optimality system [67]:

Dy Z(X;ya, p)[w] =0 Ywe Q,
D,Z(X;ya,pm)[k] =0 Vk €U, (1.10)
D.Z(X;yq,m)[¢] =0 V(€ Q,
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which in strong form reads:

y + DyE(y,u; w)*(2) = ya,
au— C*(z) =0, (1.11)
E(y,uspu) = 0.

In the system, D,E(y, w; w)* € L£(Q, ;) represents the adjoint operator of the
Fréchet differencial of £ (y, u; ) w.r.t. the state variable and it has the following
form:

DyE(y,u; u)*(2) = —2¢ + DyEne(y; 1)z + Eo(y; p)* 2. (1.12)

We remark that the dual variable z is considered in Yr in order to guarantee a
proper definition of the backward time evolution of the form —z; in the expres-
sion of the operator D,&(y,u; u)*. For the sake of clarity, we underline that
we have chosen to work with the Hilbert space Y also for the adjoint variable,
rather then another Hilbert space, say Z. The reason of this choice is post-
poned in the thesis, see Section 1.2. In the same fashion, with C* € L(Yo,U™*)
we indicate the adjoint of the control operator. For the sake of notation, it can
be useful to recast the optimality system (1.10) in the following compact form:
given p € D, find X € Xy 1 such that

G(X;p) =7F, (1.13)
with
y+ DyE(y,u; p)*(2) Ya
G(X;p) = au — C*(z) and F:= [0
G(y, n) — C(u) f

A crucial step to solve problem (1.13) is to analyse it in variational form. To
this end, let us define the form G : X7 x Xiest — R and a function space
Xiest € Q@ x U x Q such as

G(X,Eip) = (G(X; 1), s v o VX € X1, VE € Xpewr. (1.14)

Thus, the optimality system (1.10) is equivalent to the variational formulation
of (1.11) and reads: for a given p € D, find the solution X € Xq 1 of

G(X,E, /,l;) = <JT", E>XO,T*7Xtest VE e Xtest~ (115)

For now, we will always restrict to the case of well-posedness of the governing
equation, i.e. we will assume its local invertibility, assured by hypotheses (viii)
and (ix), that will guarantee the existence and the uniqueness of the state y
for a given u. Moreover, we will work with the assumption of existence and
uniqueness of the global optimal solution X. In other words, we consider the
optimality system G to be injective and surjective for every p € D. While, this
is provable for linear equations, it might not be the case for nonlinear controlled
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equations. The analysis of this issue is postponed in Chapter 7, where we will
describe the loss of uniqueness of the solution related to bifurcation theory, as
presented in [118]. In the next Section, we will focus our attention on the specific
case of linear problems, both steady and time-dependent, underlining the saddle
point structure arising from the optimality system.

1.2 Saddle Point Structure for Linear Problems

This Section deals with linear governing equations and the saddle point structure
related to the optimization problem (1.6) under linear constraints. We will start
with the simplest case of steady equations (Section 1.2.1) and, then, we will
analyse the time-dependent case (Sections 1.2.2 and 1.2.3). For both the classes
of problems, we will state the well-posedness through the Brezzi Theorem [28], a
classical choice in this setting. The literature is quite complete w.r.t. the saddle
point framework arising from the Lagrangian formalism applied to steady linear
constraints: an overview on the topic can be found in [26, 67]. We will present
the main of these works and, moreover, we will, therefore, extend them to time-
dependent ones [146], building on the setting proposed in [65, 143, 144].

1.2.1 Linear Steady OCP(u)s

Let us consider steady linear quadratic problems. All the concepts defined in
Section 1.1 are still valid, however they have to be simplified in the following
way:

o the state variable is y € Y, the control variable u € U and the desired state
yYd € Yobs. Namely, since no time evolution is present, we focus only on
the space domain ). The definitions of control and observation domains
still hold. The forcing term f is now considered in Y*.

o The cost functional J : Y x U X Yyps — R has the following form
1 a
T ) = Ly vallf, + ol (1.16)

constrained to

E(y,u;p) := Ey(y; ) — C(u) — f =0, (1.17)

where £ : Y x U — Y™ is the steady linear controlled equation.

Here, we used the same notations of the general problem of Section 1.1.1, how-
ever, there is no risk of misinterpretation, since we are only simplifying the con-
text, retaining the general problem structure. Furthermore, also in this case,
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we omit the explicit pu-dependency of the involved quantities. The steady mini-
mization problem reads: given a parameter g € D, find the pair (y,u) € Y x U
which minimizes (1.16) and solves (1.17). Once again, we rely on the Lagrangian
formalism to build an optimality system based on the differentiation w.r.t. the
problem variables. The main goal of this Section is to highlight the saddle point
structure arising in this specific linear optimization setting. To this end, we
need to define the following quantities:

o the state bilinear form a :' Y xY — R, i.e. the weak form of the state
operator E(y; p);

o the control bilinear form c: U XY — R, i.e. the weak form of the control
operator C(u).

In this way, the weak formulation of the whole controlled state equation reads:

a(y,Gp) —c(u,Gp) —(f(n),() =0, V(€Y. (1.18)

We now recast the functional (1.16) as

1 o
J(y,usya) = §m(y—yd7y—yd;u) + gn(uyu;u)- (1.19)

where m : Y xY — Rand n: U x U — R are two bilinear forms describing the
L?—products over the observation and the control domains, respectively. The
parameter dependence might arise if a geometrical parametrization is present:
we postpone this topic in the next Section. From now on, in the linear cases, we
will limit our analysis to the case of the following assumptions being verified.

Assumptions 1 the bilinear forms c(-,-; ), a(-,5p), n(- @) and m(-, ;@)
verify the properties

(a) a(-,-; p) is continuous and coercive of constants c,(p) and v(p), respec-
tively;

(b) c(-,+; p) is continuous of constant c.(p);

(c) n(-, ;) is symmetric, continuous and coercive of constants c,(pu) and
Yn (1), respectively;

(d) m(-,-; p) is symmetric, continuous and positive definite.

We remark that hypotheses (a) and (b) ensure the existence of a unique y € Y,
solution to (1.18), for a given u € U and p € D. As did in Section 1.1.1, we
define the adjoint variable z € Y and the steady Lagrangian functional as

f(% ua Z’ IJ’) = J(y7 ’LL, yd) + <Z’ 5 (y’ U, I‘L)>YY* (120)
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The optimization problem relies on the solution of the optimality system given
by the differentiation of (1.20) w.r.t. the state, the control and the adjoint
variables, respectively, building a steady linear analogous of system (1.11), where
X = (y,u,2) eX:=Y xU xY and

Dy&(y, u; )" (2) = Ee(y; p)*z, (1.21)

due to the linearity of the governing equation.

We can now bring to the light the saddle point structure of the optimality
system. Indeed, we define the state-control variable x = (y,u) € X ==Y x U
and the bilinear forms A: X x X - Rand B: X x Y — R and the functional
HeY* as

Az, & p) = m(y,w; p) + an(u, ks p) V= (w, k) € X,
B(z,(; p) = aly, ¢ p) — c(u, () V¢ €Y, (1.22)
(H(p), &) = m(ya,w; p) VE = (w,k) € X.

From simple computations, exploiting the definitions (1.22), the optimality sys-
tem deriving from the differentiation of the Lagrangian Functional (1.20) can be
recast in mixed formulation as follows: given p € D, find the pair (z,2) € X xY
which verifies

{ Az, &) +B(E,zp) = (H(p), &) VEe X, (1.23)
B(z, ¢ p) = (F(p), C) Ve, ’

where F' € Y* encodes the forcing term and the boundary conditions of the
controlled state equation. The well-posedness of the system (1.23) relies on the
following Theorem.

Theorem 1 (Brezzi Theorem) The parametric problem (1.23) admits a unique
solution (x,z) € X XY if:

o A(-, ;) 1s continuous and weakly coercive on the set Xo which denotes
the kernel of B(-,-; u), i.e, for a positive constant B4(w), it holds

Az, & p)

inf sup  T————— > fBa(p) >0,
2€Xo\ {0} e xo\ {0} 1]l x [I€]|x

and

Az, & )

inf > 0.
£eXo\{0} zexo\ {0} 1zl x €l x

o B(-,-; p) is continuous and inf-sup stable of positive constant Bp(u), i.e.

) Bz, @)
inf sup ————— > > 0. 1.24
B0y o S0, Telxlielhy = P50 (1.24)
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The choice of z € Y and Assumptions 1 make Theorem 1 provable: see [111] and
the references therein. The goal of the next Section is to extend this structure to
linear time-dependent problems, proposing an analysis of their well-posedness.

Remark 1.2.1 (Steady Nonlinear OCP(u)s) We stress that, once defined
y,2 €Y, u €U, yg € Yops, one can deal with nonlinear steady problems and
solve the minimization of (1.16) constrained to

E(y,u; m) = Ene(y; ) + Eo(y; ) — C(u) — f =0, (1.25)

where £ 1Y x U — Y™ is the steady nonlinear controlled equation. To tackle
this problem, one may exploit the Lagrangian techniques building a steady ver-
sion of the optimality system (1.10), where the adjoint equation will present the
following term

Dy E(y,us u)*(2) = DyEne(y; )"z + Eg(y; ) 2, (1.26)

i.e. (1.12) without backward time evolution. For nonlinear problems there is
not a general theory which is able to recast them into saddle point problems: it
is strictly related to the state equation at hand, see for example [100, 168] for
the Navier-Stokes equations. However, at the algebraic level one can recover
this peculiar structure for nonlinear equations. In Section 2.2, we will show
nonlinear an example for governing equations which depend quadratically w.r.t.
the state y.

1.2.2 Parabolic Time-Dependent OCP (u)s

In this Section, parabolic time-dependent OCP()s are recast in a saddle point
framework. Building on standard approaches for stationary linear state equa-
tions [79, 110, 111, 135], we provide the well-posedness of the saddle point
structure in a space-time formulation. In this context, we consider the spatial
state space Y verifying Y — H < Y™ with H another Hilbert space. In the
following we assume that Y, H and U are contained in L?(Q2), a typical frame-
work for the parabolic OCP(u)s we are dealing with. In Section 1.1.1 we have
already defined the Hilbert spaces suited for the problem at hand. Now, we
endow )y and U with the following norms, respectively:

T T T
2
lyl2, = / lyll3 dt + / lyel2. dt and  flul? = / lul? dt.
0 0 0

The adjoint space YVr is characterized by the same norm of the state space.
Namely, we will use || - ||y, and || - ||y, interchangeably. Time-dependent
OCP(p)s read as follows: for a given p € D, find the pair (y,u) := (y(p), u(p)) €
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Yo X U which solves

1 T
min J((y,u)ip) =5 [ my—ya,y —ya; p) di
(y,u) €€V XU ((y,u); ) 2/0 Y=Y,y — ya: )

T
+ %/ n(u,u; p) dt, (1.27)
0

governed by

S()yr + Da(p)y = C(p)u+ f(p) in Qx(0,T),

y=yg(p) on I'p x (0,7),

oy (1.28)
e on 'y x (0,7),

y(0)=0 in Q.

Here,
o Dy(p) : Y — Y™ is a general differential state operator,
o S(p):Y* — Y™ is a function representing the time evolution,
o C(p): U — Y™ is an operator describing the control action,
o f(p) denotes external sources,

o I'p is the portion of the boundary 92 where Dirichlet boundary conditions
are applied, and g(u) represents Dirichlet data,

o I'yy is the portion of the boundary 92 where Neumann boundary condi-
tions are applied,

om(,5u) Y xY — R, related to the operator M(u) : ¥ — Y*, and
n(-,;p) : U x U — R, related to the operator N(u) : U — U*, are the
two bilinear forms defined in Section 1.2.1.

In this setting, p might also represent some geometrical features: we will assume
to have already traced back the problem to the reference domain that we will call
Q2 with abuse of notation, and that S(u), Do (), C(p), M(p), N(p), and f(p)
encode information about the pulled back operators, see e.g. [134]. Without
loss of generality, we assume C(u) and S(u) to be both the identity map, or
its trace back. Hence, S(p) and C(p) are self-adjoint and, when a geometrical
parameter is present, they have the following forms

Qs _ Qc _
S k(e and > b (v, (1.29)
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respectively, for Qs, Qc € N and ¢4 (p), ¢i(p) positive constants resulting from
the trace back of indicator functions Xai» Xai, which verify

Qs Qc
Uos=0 and [J0O& =2

This scenario complies with literature related to OCP(u)s and does not limit
the applicability of the model. The state equation at hand can be recast in weak
formulation as follows: given pu € D, find the pair (y,u) € Yo x U which verifies

T
AstMﬁ

T T
+/O a(y, G p) dt:/o c(u, G p) dt (1.30)

T
+/<ﬂM@wyﬁ weQ,
0
y(0)=0 in Q,

where a: Y XY — Rand ¢: U xY — R are the bilinear forms related to D, (u)
and C(u), respectively, already defined in Section 1.2.1. In the same Section,
we also defined F(u) € Y*, as a functional giving information about forcing
terms and spatial boundary conditions deriving from the weak state equation.
Moreover,

s(y, G ) = (S()Ye, Oyey - (1.31)

Now, the OCP(u) has the following form: given p € D, find the pair (y,u) €
Yo x U which satisfies

min  J((y,u); @) such that (1.28) holds. (1.32)
(y,u)GyQXU

Also this minimization problem can be solved through a Lagrangian approach,
defining an adjoint variable z := z(u) € Yr. We stress that the adjoint variable
has the same regularity in space w.r.t. the state variable. This assumption is
crucial to prove the well-posedness results presented in [146]. The obtained
optimality system is: for a given p € D, find (y,u, z) € Vo X U x Yr such that

M(p)yxao. — S()ze + Da(p) 'z = M(p)ya  in Q@ x (0,7),

aN(p)u — C(p)zxa, =0 in Q x (0,7),

S()y: + Da(p)y — C(p)u = f(p) in €% (0,T), (133)
y(0) = yo in Q,

2(T)=0 in Q,

boundary conditions on 002 x (0,T),
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here D, (p)* is the dual operator of D,(u), while xq... and xq, are the in-
dicator functions of the observation domain Qs and the control domain 2,
respectively. We now recover the saddle point structure already presented in
Section 1.2.1. First of all, as did in the steady case, we define the state-control
variable x = (y,u) € X := Yy x U and the bilinear forms A : X x X — R and
B: X x Yy — R and the functional H € Y* as:

T
Az, € 1) = / m(y,w; ) dt

T
+a/ n(u, k; @) dt Ve = (w,k) € X,
i

T
Bla.C ) = / S(y, ) dt + / o o) (1.34)
/% C(%C;H) dt VCE yOv
T
H(Ew) = [ (0w = [ o di Vi € Y.

After having applied a Lagrangian argument, the optimality system (1.10) with
the new definitions (1.34) can be written in the following form:

Az, & p) +B(7§7z;u) =H(E ) Ve,

(1.35)
BlaGim = [ (Fu.Qdt ¥CE N,
0
Namely, the typical saddle point structure of steady linear quadratic OCP(u)s
is preserved also in the linear time-dependent case. As in the steady case, we can
prove the well-posedness of the problem at hand thanks to the Brezzi theorem
27, 28:

Theorem 2 (Brezzi Theorem, time-dependent case) The parametric prob-
lem (1.35) admits a unique solution (x,z) € X X Yr if:

1. A(-, ;) is continuous and weakly coercive on the set Xy which denotes
the kernel of B(-,-; ), i.e. for a positive constant Ba(w), it holds

Az, &5 )

inf > Ba(p) >0 (1.36)
eeiio) S Telmliehe > PA¢
and
inf sup Al &p) > 0. (1.37)

2€X\{0} e xo\ {0} 7]l lw]| 2
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2. B(-,-; ) is continuous and inf-sup stable of positive constant Bp(p) , i.e.

. B(z, ¢ p)
inf sup ————— = Bg(w) > 0. 1.38
ceyr\{0} wex\(oy 1zl [IC]lyr (w) (:3%)

Furthermore, if one assumes the bilinear form A(-,-; i) to be symmetric, non-
negative, and coercive on Xy, then the minimization of the functional (1.27) con-
strained to equation (1.28) and the saddle point problem (1.35) are equivalent.
Our aim is to prove the Theorem 2 as did in [146]. Here, however, we propose
some modifications related to the setting of the geometrical parametrization.
To reach this goal, besides the Assumptions 1, we will exploit the following
relations:

(I) by definition, for every y € Y and u € U it holds:

1Yelly- < [yllyos [Ylly < lyllyes [Ylly < llzllx and flull < flzflx; (1.39)

(IT) for y solution of a parabolic PDE(u) with forcing term f and y(0) = ypo,
there exists k(p) > 0 such that:

1yllye < k) (1 Flle + lIolly)- (1.40)

We stress that )y and Yr share the same norm: thus the inequalities in (I)
also hold true for y € Y. Moreover, in order to guarantee the inf-sup stability
(1.38) we need the two following Lemmas.

Lemma 1.1 Let ¢ be a function in Yy (or in Yr ), then the following inequality

holds:
ey 1
<5, — 6

PRrROOF. To tackle the proof, we study to separate cases.
Case 1. Let us assume |||y < [|C]|y then [|C[[3, < 2|¢[[5- This leads to

IS5 o N6l 1
1<, = 23 ~ 2

Case 2. We now focus on ¢ € )y such that |||
results in the following relation:

1
5

y+ > [I¢|ly. This assumption

11
201115, 7 <3,

2[1ClI5 < lI<13, (1.41)
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and, by definition of ||(]|y,,
1 1

IC13, + 211Cell3- = B1IC- = — 52— 5 (1.42)
’ 1115, + 211Gl 3Cell5-
Then, we can prove that
IS5 _ 20l . 20i¢l3
2 = 2 = 2
I3, 20613 + 20615 5, CTB, + 2 1G5
2 2
~20Cl3 + IGel - = 11€elly-
= 2
I€113, + 2[1Celly-
. 2
min{L2}[¢I3, il
— max{L,2}[ICl5,  ¢I13, + 201613
2
S O (<1 N
~ 2 2 3 6
for (1.42) BlIGelly-
]

As previously specified, in order to prove the well-posedness of the problem at
hand, we still need the next Lemma.

Lemma 1.2 Given a function v € Yy, there exists y € Yy which verifies:

[ ocyas [Cagemas [ wcma veen 0

with §(0) = 0. Moreover, there exists a positive constants k(u) such that the
following inequality holds:

17lye < E(w)llv]ly- (1.44)

PRrROOF. For the existence of the solution 3 to the specific auxiliary problem
(1.43) we refer to the proof of property (A.3) of the Theorem 5.1 in [139], where
the existence of y € ) is guaranteed for a given v € Y D )y and for every
initial condition. Thus, for ¢t € (0,T), we consider the linear state operator
D,(p) 1Y — Y* defined by (Dyv, ()= . We call Cp, (p) := ||Dg|| = which is
finite due to the continuity of the operator. Furthermore, since y verifies (1.43),
from (1.40) we may assert

19llye < k() DavllL20,1:0) < k(1)Cp, ([0l 2(0,1: 1)



16 An Introduction to Parametric Optimal Control Problems

Since Y — H, it holds ||¢||z < C|¢|y, then, calling k() = k(u)Cp,C, we can
prove the statement.

Thanks to these two Lemmas, we are now able to prove the time-dependent
Brezzi theorem hypotheses in the following well-posedness theorem.

Theorem 3 The saddle point problem (1.35) satisfies the hypotheses of Theo-
rem 2 under the Assumptions 1, and, thus, it is well-posed.

PROOF. Let us consider the continuity of A(-, ; p).

|A(z, w, )| < cn(m)l[Yllyollzllye + ellullerlvlles
< max{en (p), af ||zl x[lwl|x-

Here, we exploited the continuity of

T T
[ omeamwar - [Cat an
0 0

which can be shown through simple computations, see e.g. [146] for details.
Furthermore, the hypothesis (¢) and (d) assure the symmetry, the positive def-
initeness of the form A(-,-, p). It remains the coercivity of A(-,-, ) over the
kernel of the controlled state equation. If x € X, then it holds
T
a

T Qs , T
/ Dl o it + | awcmar= [ st a
T
G ) dt
+/O a(y, ¢ p)

T
= /0 c(u, G p) dt,

and thus, without loss of generality, we can exploit (1.40) where the forcing term
in weak form is represented by

T
/0 c(u, G; p) dt,

obtaining [[ylly, < k(w)([ullu + llyolln) = k(p)llully since yo = y(0) = 0,
where, with the constant k(u), we are hiding the contribution of the geometrical
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parametrization. Then, it holds:

Q «
Az, s p) = m(y, y, p) + an(u,u, p) > = |ullf, + §IIUHZ

> ol + Sl = min { 2 Sl
BT R R T

For the sake of brevity, we do not report the computations needed to prove the
continuity of B(-, -; ) which relies on the continuity assumption for a(-,-; u) and
(-, ; u). However, the interested reader may refer once again to [146, Theorem
1]. Although, we report the proof of the fulfillment of the inf-sup condition for
the controlled state equation. First of all, let us consider ¢ € Yr and § € )y
the solution of the auxiliary problem (1.43) in Lemma 1.2 where v = ¢. Then,
for x # 0,

T T T
/O Sy, Cia) it + /0 a(y, ;1) dt — /0 (G ) dt

sup BEGH) oo
vex [zl xlCllyy  zex [E41PY[q15%
T @s T
|3 ekt (ac) e+ [ atwcim ai
S 205 0
~ 171136 lIS 1o
z=(y,0)
Qs T
max cs(p),1 / a(C,C;p) dt
{Z S } o Moen Ma (1) €13
- o5l = R,
Z M > O7
~~  6k(p)

Lemma 1.1

where M, (p) := max {Z?S cs(p), 1} ~o (). Since we have proved the inequal-
ity for all ¢ € Yr, it holds:
B(-%C;N) Ma(l"’)

inf  sup > —= = Ps(p) > 0.
0£ceVr ozzex [T x[ICllye — 6k(p) ")

This theorem guarantees the existence and uniqueness of the optimal solution
for time-dependent OCP(u)s, governed by parabolic state equations. The next
Section deals with OCP(u)s governed by time-dependent Stokes equations. Also
in this case, we will show how the saddle point structure is preserved and how
Brezzi Theorem assures the well-posedness of such a formulation.
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1.2.3 Time-Dependent Stokes OCP(u)s

This Section focuses on distributed OCP(u)s governed by time-dependent Stokes
equations and provides a proof of well-posedness in a saddle point framework,
as we did for the parabolic case in Section 1.2.2. We define V := [H}._(€2)]* and
P := L*(Q). Thus, we consider

Vo := {v € L*(0,T;V) such that v, € L*(0,T;V*) such that v(0) = 0}
and P = L?(0,T; P). The state variable is the pair y := (v,p) € Vo := VoxP. It
is influenced by the control variable u € U := L*(0,T;U), where U = [L?(Q)]?.
With analogous arguments w.r.t. Section 1.2.2; we define the velocity-pressure-
control variable z € X := )y x U, where z := (y,u). We endow the space X
with the following norm

0% = 10IIS + lIpll% + -

In this specific context, we want to minimize the cost functional

1 «
S0 = a0z + 5 Il (1.45)

under the following constraint

v —pAv+Vp=u in Q x (0,7),

div(v) =0 in Q x (0,7,

% =0 on 'y x (0,7), (1.46)
v=g onI'p x (0,7),

v(0) = v in Q x {0},

where vy € L? (0, T Vobs) is a desired velocity profile taken in the observation
domain Qups and Vops := L?(Q). As the reader may notice, in this setting, we
are assuming no geometrical parametrization, for the sake of clarity. However,
all the following arguments can be easily extended to the case of geometrical
parametrization, exploiting the same techniques of Section 1.2.2. Furthermore,
for the same reason, we are restricting ourselves to the case where only a pa-
rameter is present, a diffusivity coefficient p. In the numerical results of Section
4.2.2, we will treat a more complicated problem with geometrical parametriza-
tion, also. However, we decided that presenting this simpler setting is useful to
state in a clearer way the framework we are dealing with. In order to build the
optimality system, we exploit a Lagrangian argument after defining the adjoint
variable z := (zy,2p) € Yr, where Vr := Vp x P, with

Vr := {v € L*(0,T;V) such that v, € L*(0,T;V*) such that v(T) = 0} .
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For a given p € D, we want to find (z,2) € X x Y which solves:

Dy Z((v,0), 4, (20, 2p); ) [wo] =0 Y, € Wy,

DpL((v,p),u, (20, 2p); ) [wp] =0 Ve, € P,

D2 ((v,p),u, (20, 2p); )] =0 Ve €U, (1.47)
D.,Z((v,p),u, (20, 2p); 1) [C] =0 V¢, € V.
D.,Z((v,p),u, (zv, 2p); WG] = 0 V(, € P.

The aforementioned problem can be rewritten in strong form as follows:

v —pAv+Vp=u in Qx (0,7),
div(v) =0 in Qx (0,7),
v=g onI'p x (0,7),
@ =0 on 'y x (0,T)
on il
v(0) = vg in Q x {0},

U — 2yt — A2y + Vzp =g in Q x (0,7), (1.48)
div(z,) =0 in Q x (0,7),
z(t) =0 on 9Q x (0,T),
z(T) =0 in Q x {T},

QU = 2y in Q x (0,7),
boundary conditions on 092 x (0,7).

Now, we define the bilinear forms A: X x X - R and B: X x )y — R and the
functional H € Y* as already did in (1.34), where the state equation is defined
by

aly,z; u) = (Ut,sz—u/ Vu-Vz, dQ—/ pdiv(z,) dQ—/ div(v)z, dS2. (1.49)
Q Q )

Moreover, let us define the bilinear forms involved in the Stokes equations as:

a:VxV-oR, a(v, z; 1) = (v, 2p) +,u/ Vo - Vz, dQ, (1.50)
Q

b:V xP— R, b(zy,p) = — / pdiv(z,) dS. (1.51)
Q

Here, we are facing a nested saddle point. Indeed, not only the global optimality
system presents this peculiar structure, but also the state equation itself can be
written as:

T T
/ a<v7<v;u>dt+/ b(Gorp) dE =0 ¥C, € Vo,
0 (1.52)

0T
b(v,(p) dt =0 V¢, € P,
0
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but, due to the linearity of the state equations, also the optimality system can
recast written in a saddle point framework as:

T

Az, wip) + Blw, z; 1) = / (H(p),w) dt Ywe X,
0

Bz, () =0 V¢ € Vr.

We want to prove the well-posedness of the system (1.53). To do so, also in
this case, we rely on two Lemmas. The first one proves the well-posedness of
the mixed Stokes optimality system (1.53), that will be exploited to guarantee
the second hypothesis of the Brezzi Theorem for the controlled state equation

(1.53)

Lemma 1.3 Time-dependent Stokes equations in their saddle point structure
(1.52) verifies the Brezzi Theorem.

PROOF. First of all, it is a matter of simple computations to prove the continuity
of a(-,-; u) and of b(-,-). The inf-sup condition for the bilinear form b(-, -) follows
from [58, Theorem 4.7 and Proposition 2.2].

It still remains to prove that a(-, -; ) is weakly coercive over the kernel of b(-, -).
In our case, the bilinear form a(-, -; 1) is actually coercive over V) since

T T T
/ a(v,v; ) dt:/ (vg, v) dt+u/ / Vo - Vv dQdt
0 0 0o Jo

1
= §||U(T)H%2(Q) + ploll$

2 ||U||%/o > HH’UHZ .
Vol S 6
for Le

> pljvll

mma 1.1

We still need a Lemma to prove the coercivity of the bilinear form A(-,-). Also
in this case, we denote the kernel of B(-, -, u) with Xy. This Lemma proves a
norm equivalence which will be used in the proof of the well-posedness of the
whole optimality system (1.53).

Lemma 1.4 On the space X, the norm || - |3 is equivalent to || - |3, + 1 - 1
PROOF. Let us consider x = (y,u) in the kernel of B(-,-,u). By definition,

[-1% > II- 113, + I 7. This means that we only need to prove that there exists
a positive constant C,(p) such that

I+ 11% < Ce(w) (- IR, + 1 - 122)- (1.54)
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If x € Ap, it holds that

T T T T
/ b(w,p) dt = / c(u,w) dt—u/ / Vou-Vw det—/ (vg,w) dt Yw € V.
0 0 0o Ja 0

Then, we can derive the following inequalities for all w € Vy:

b(w, p) < [[ullullwllv + plvlvlwlly + vzl llwfly

< min{1, p}([[vllv, + lull) [wllvo-

V*

The above inequality does not depend on the choice of w and p. Thus, from
Lemma 1.3 we have the following relation

Bllpllpllwllv, < inf  sup  b(w,p) < min{1, u}(l|vllv, + [lull) [wllv,-
0#pEP 0£weVy

Now, thanks to Young’s inequality, we obtain
min{1, yi}? o minfl, p}?
32 E (

Ipl < ([vllve + llulle)® < o3, + lullz)-

_ in{1 2 _
Thus, calling Ce(u) = <2mln{ﬁ_2,u})’ the constant C,(p) = min{l,C.(p)}

verifies the inequality (1.54).

These two Lemmas will prove the following theorem concerning the existence
and uniqueness of the optimal solution for OCP(u)s governed by time-dependent
Stokes equations.

Theorem 1.5 The saddle point problem (1.53) admits a unique solution.

PROOF. Once again we rely on the Brezzi Theorem to prove the well-posedness
of the problem at hand. By definition, A(,-) is trivially symmetric and posi-
tive definite. Futhermore, the same arguments presented in Theorem 3 can be
applied in this specific case to show the continuity of the bilinear forms A(, -)
and B(-, ;). Now, we will focus on the coercivity of A(-,-) over the kernel of
the controlled state equation, i.e., there exists a positive constant C such that

A(z,2) 2 Cllz]|%,
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for all z € Xy. However, since we prove the equivalence between the norms ||-||%
and | - I3, + || - |7 in Lemma 1.4, we will use the following relation

A(z,2) > C(|lvli, + llulZ)-

Indeed, = € X} translates in a pair (v, p) that is solution to the Stokes equations
with the control as forcing term. This implies the following well known result:
the existence of a constant k(x) > 0 such that |[vly, < k(w)||ullu, see [128,
Chapter 13]. Thus, for z € X, it holds:

Al ) 2 Wolaorm + allull 2 5l + Sl 2 gess ol + 5l
. «
2 min { 5505 bl o+ ).

It remains to prove that

B(z, ;1)
inf sup ———=—"— > (B(u) > 0. 1.55
0£¢eyr oxeex |12 x1[Cllyr (k) (59

To this end, we consider the bilinear form A : Yy X Yr — R defined as

A((0,9), (Cor &) 1) = / a(v, Go) dt + / b(Gorp) df + / b(v, ) dt

We now follow [110, Appendix A.1]. Lemma 1.3 shows that the mixed operator
A(-,; p) is invertible and then the Babugka inf-sup constant S5 (1) is well defined
as

A((v, p), (Go, Gp)s 1)

inf
0200V 02, ey 100Dl (G Go) g

A((v, p), (Co, Gp)s 1)

inf sup
0£(e)eVr 0oy 100D 30l (Cor Gl

Be (1)

see the classical reference [11]. We are now able to prove the following inequal-
ities:

> sup

sup B(x,¢; 1) A((v,p), (Co, Cp)s 1)
ozzex |||l lIC]pr \_/0) 0£(w,peve 10D 1vo 1 (Cos Cp)llwy

A((v, p), (G, Cp)i 1)

inf su
0£(Corn) €0 0#£(v.p)evo (0P [36 1(Cos Cp)llwo

v) bl

>

> Be(p).
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The above inequality does not depend on the choice of ( € )y, then the inf-sup
condition (1.55) is verified and the problem is well-posed.

In the previous Sections, we highlighted the saddle point structure for several
linear state equations. We will now explore a new framework where the control
is hidden in the action of the adjoint variable: the no-control framework, which
will be the content of the following Section.

1.3 The No-Control Framework

This Section presents an equivalent formulation for the linear OCP(u)s we are
dealing with. In this framework, we exploited the relation between control and
adjoint variable to get rid of an equation. The usefulness of this peculiar for-
mulation will be clearer in Chapter 5. For now, we will discuss this formulation
at the continuous level for linear time-dependent and steady linear OCP(u)s, in
Section 1.3.1 and 1.3.2 proposing and alternative proof of their well-posedness,
as presented in [148].

1.3.1 Parabolic Time-Dependent OCP (u)s

We recall that in Section 1.2.2, after the differentiation of the Lagrangian func-
tional (1.9), we obtain a three equation system that, in strong form, reads as
(1.33). For the sake of clarity, we will call the first equation of system (1.33)
adjoint equation, the second one optimality equation and the last one as state
equation. It is natural to consider the relation given by the optimality equation

aN(p)u — C(p)zxa, =01in Q x (0,7). (1.56)

By definition, C'(u) and N(u) are both the L2-scalar product over the the
control domain (or its possible trace back). Thanks to this assumption the
three equation system (1.33) reads: given pu € D, find the pair (y, z) € Vo X Vr
such that the following system is verified

M(p)yxam, = S(1)ze + Da(p)"z = M(p)ya  in Q@ x (0,7),

S(uye + Dal)y — - Clw)axa, = f in 0 x (0,7),

y(0) = yo in €, (1.57)
2(T)=0 in €,

boundary conditions on 9Q x (0,T).
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We call the system (1.57) the no-control framework. From now on, in this
Section, we will focus on this formulation where the control variable is eliminated
from the system, following the structure presented in [89]. This choice is opposite
to classical optimality systems used, for example, in [79, 80, 110, 111, 127, 146].
However, we do not lose any information. Indeed, the control variable can be
recovered in post-processing using the optimality equation (1.56). The proposed
system (1.57) can be recast in a mixed variational formulation as: given p € D,
find the pair (y,z) € Yo x Yr such that

B((y,2), @, Q) ) = (F(), (@,0)) ¥(w,0) € Qx Q. (158)
with
ﬁwxm%mm:ASmQMﬁ+AamQMﬁ (1.59)
1 T T
—aécmamm+éanMMt
T T
—/0 s(z,w; ) dt+/0 a(w, z; p) dt.
and . .
(Fw.@.0) = [ miemat [ (Gu.ca (60
0 0

In order to prove the well-posedness of (1.58), we want to exploit the Necas-
Babuska theorem [108]. It is straightforward to prove the continuity of the
bilinear form (1.59) thanks to the Assumptions 1 and the definition (1.31).
Indeed there exists a positive constant c¢g(p) such that:

B((y,2), (w0 8) < en (i), + 1213, /1wl + 1% (1.61)

From now on, we will need the following relations, that are verified thanks to
the assumptions Y C Yo,s and Y C U (natural consequence of the definitions
of Section 1.2.2):

[9llvons < cobsllylly, Vy ey, (1.62)
lyllo < cullylly, Yy €Y. (1.63)

where cops and ¢, are positive constants. Moreover, we will use two Lemmas
to prove the injectivity and surjectivity of (1.59), to recover the hypotheses
of the Necas-Babuska theorem. The first one is about the surjectivity of the
adjoint form of (1.59). The proof combines strategies from [156, Proposition 2.2]
that were successfully exploited for the parabolic equations and the techniques
presented in [89] for distributed OCP(p)s.
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Lemma 1.6 (Surjectivity of B*) There exists B(p) > 0 such that
Bs(k) > B(p), where

Be(p) = inf sup B((y, 2), (w, O); 1) 164
g (1,2)EVo X V1) (1.0) (0% Q) \/IIyHQy0 + 1213, \/Ilwllé +<lI%

with both (y,z) # 0 and (w,{) # 0.

PROOF. Let us consider 0 # (y, 2) € Yo x Yr and let us define
Cy=(Da())'yr and w. = —D,(p) 2. (1.65)

Case 1. We focus first on the case €, = Qops.

In this case, c(-,-, ) = m(-,-; ), since both represent the L?-scalar product
over the same domain, due to the coincidence of the control and the observation
domains. Furthermore, it is clear that (ac.y + c¢,(y, c.2 +w.) € Q x Q, where
the positive constants c¢, and c, will be determined afterwards. Thus, for
(w, () # 0, we can state the following:

sup  B((y,2), (w,C); 1) > B((y, 2), (ac.y + c¢, Gy, 22 + w2); )
(w,0)e(@xQ)

T
> Leoes (W)l + acva(wlyls — e / (2,3 ) dt
0

o] Q

T c T
s Gim e [ awGim - [ e g di
0 0

T
CsS(H
deo [ mly s det SO + eI
T T
—|—/ m(y, w.; 1) dt—s(z,wz;u)—i—/ a(w,, z; u) dt.
0 0

Here, we used the coercivity of a(-,-; i) and the following relation

! 1 [T&E dlw(t)|,
/0 s(w,w; p) dt = 5/0 ;QG(N)XWST dt
o 1 , 1 )
> minfel(u)} ( 5w - 5 IO (1.66)
~—_———
cs(p)
1
> cs(m) = w(T)|% V€ Vb,
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1
which reads, analogously, —s(w,w;p) > CS(H)§HU/(0)|| for all w € Yp. Fur-

thermore, we observe that

a(y, Gy ) = <Da(u)y7 (Da(“)*)_lyt>y*y = <y,yt>Y*Y
_ Ldlly(0)l13
= iTH’ (1.67)
and
a(ws zip) = ~(Da(@)(Da(w)2002) = ~(202)
_Ldllz@))F
= _iTH’ (1.68)

which, if integrated in time, are non negative quantities due to the initial and
final time conditions for the state and the adjoint variable, respectively. Fur-
thermore, we recall that m(y, w; p) = c¢(w, y; i) since Q,, = Qops. Exploiting the
inequalities

y Cuvl'l’ ZCS’ XQl CyvCu,N) cs(p )’Ya(N)HCyH%’? (1'69)

and

5(z w2 ) ZcS Wxosa(wswsi ) > es(ma@llo 3, (1.70)

together with the Young’s inequality and the continuity assumption of the bi-
linear form m(-,; ), we can state that, for (w,() # 0,

sup  B((y,2), (w, Q); 1) = ac.va () |yllE + cc, s (1)7a ()16 15
("J:C)G(QXQ)

CC(/"’)CCy r
- T/o IzllliCylly dt + exva(p)l12]1S

T
i) / Iyl s v de + es()va ()l 1%

> OéCz"Ya(u’) ||yH2Q + (OéCz’Ya(N) o Cm( ))H ||Q

=2 2 215
+C<y65(/v20%(u) G + (s (I;)%(N) B (MQ) @%)HQHQ
2o (1) cva(p)  ce(m)eg, cu(p)
+ I el + (P - e el

. Mllwzllé N (cs(u);a(u) B cm(g)m)nwzné,
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for some positive 71 and 7z, and ¢, (@) is the constant of (1.63). Choosing

_acs(u)ra(p) o _ ees(p)ra(p)?e’

) T lm)eu()

_ Ya(p)es(m) cm (1)

M2 ,and ¢, = ———————
cm (1)

it holds, for (w, () # 0,

swp By 2), @, > —m B e
(w,0)e(QxQ) ~ 2es(1)va(p)

cm(p)*cs(p)va(p)
2cc(p)?eu(p)

Cm(“)z 1|2

* ZCs(u)%(u)aH I

cs(1)va (1)
2

1611

+ - [15-

‘We now use that

[Yelly- = [1Da(p)" Gyl 1Celly= = 1 = Da(pe)ewe||

1.71
< eI, Iy < cal)lw- v, (L.71)

thus, for (w,¢) # 0,

sup  B((y,2), (w,C); )
(w,$)E(Q%xQ)

in em(1)? em(p)?es(p)va(pm)a cs(p)ya(p) 2 L2
2 min { G S e ales o~ 2entp M1y + 215

Now, we will tackle the denominator of (1.64). Defining

. a(y, ¢; p)
()= inf LY, SR 1.72
Palw) = oy S Tolv Tolly (1.72)
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we have, being a < 1,

Vllacay + ¢, 6% + lleaz + w2 %

< \/2(04205Hy||29 +Z 16 l1E + 22l + lw=l13)

2

¢ T
Cy 2
2ol + 5 [ Il e
a

1 T
el g [l ) de
=iie Ba(m)* Jo v

<

2

< %max{cg, 5 5 B, + 1213,.).

The proposed estimates do not depend on the choice of (y, z) € Vo X Vr, then,
relation (1.64) holds with

2cs(U)va(p)? 2¢cc(p)?cu(p)ca(p)?? 2ca(p)?
2
o %y 1
\/2 max {Cw Ba(1)? Ba(p)? }

Case 2. We now take into account the case ,, # Qqps. This assumption means
that at least one of the two between the control and the observation domain is
not Q. Indeed, if both are €2, once again, we are considering Case 1. In this
proof we choose! Qo # Q. Also in this case, inequality (1.64) holds. Indeed,
let us define % := &(u) € Yy solution of the following auxiliary problem for a
given p € D, a positive constant ¢, and a given y € Q:

min{ cn()? em(w)’es(Wra(m)a csmm(m}

B(p) =

T
/ s(R,ryp) dt
0

T
+ [ atmrim di-
0

T . (T (1.73)
—/ m(y,r; p) dt+gy/ clryy;p) dt Vr e Q,
0 0
k(0) =0 in Q,
=0 in Qops.

The parabolic problem (1.73) is well-posed: indeed m(y,r; u) and ¢(r,y; ) are
continuous and the continuity and coercivity of a(-, -; i) are preserved in 2\ Qops.
We consider the element (cyy +c¢,Cys 2 T W, +r) € @x Q. Also in this case, we

IThe choice has been driven by the numerical experiments we will show in Section 5.2.2.
However, we will propose a generalization to €, # € in Remark 1.3.1.
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want to determine the value of the two constants ¢, and c¢,. Thus, it holds,

sup  B((y,2), (w,Q); ) > B((y, 2), (cyy + c¢,Cy, 2 + w2 +R); )
(w,0)E(Q%x Q)

T
C @
> csl) 21D + calluly — 2 [ et d
T e T
+0<y5(y,<y;u)+0cy/ a(y, Gy 1) dt*ﬁ/ (2, Gyi ) dt
0 0

T
cs(p)
[ ) e+ S 0) 1+ )l
T T
+/ m(y,w.; p) dt */ s(z,wz; p) dt
0 0
T T
—|—/ a(w,, z; @) dt —|—/ m(y, R p) dt
0 0

T T
—/ s(z,R; ) dt—|—/ a(R, z; p) dt

0 0

Now, exploiting the definition of & in (1.73) we obtain:

_/0 s(R,z; p) dt = /QE(O)Z(O) dQ — QE(T)Z(T) aQ —l—/o s(R,z; p) dt

and m(y,®; u) = 0, which combined with (1.66), (1.67), (1.68), (1.69), (1.70)
and the hypotheses (b), together with the definition of n(-,-; ) and m(-,-; u),
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we get the following relation for (w, () # 0,

sup  B((y,2), (w,0); 1) > cyya(m)lyllS + cc, cs(1)7a () 16y 1
(w,0)E(QXxQ)

ce(mee, [T
- B [ el by de+ o)1

T
—cm(u)/o [yl llwslly dt + es(p)va(p)lw:1E

> %(“)Hy”é + (CW‘;(”) - C”;T(:))MIIE
N w”@”é " (CCyCS(I;)Va(H) B CC(“Q)Onym)HCyHé
#2182 y (a) CC(“);E:’T“(“))IVIIQQ

SR sy (G - S

for some positive 77 and 7, resulting from the Young’s inequality. Thus, with

+

_oes(uam) | es(ua(u?e?

celp) T e(w)2eu(p)
_osmralw) o emw)?
= w0 M YT e

and exploiting (1.71), we obtain

sup  B((y,2), (w,); ) =
(w,$)ELXQ
Cm(p’)z CS'(H)’Ya(H)?)a CS(N)’V(J,(“’) /ya(p‘) }(”y”g/ + ”2”52 )

2
mm{zcsmm(u)’2cc<u>2cu<u>ca<u>2’ 2ca(p)? 2

It remains to estimate the denominator (1.64). Thus, we use r = K in (1.73)
and the relation (1.66), to prove the following inequality:

cyce(pr)cy

e Sl ()

Coy y— —
“IElelylle = IIFle <

_ & Cc(“)
Ya(w)|E[S < yT

This implies that

Vllacyy + ¢, Gl% + 12 +w. + 7

< \/2(63\\31”2@ + ¢ Iul1E + 11201G + llw:lIE + [1713)

2
«, 1 CyCe(pt)Cu

2
max < c2 2 z%,.).
’ {y’ﬁa(u>2’ﬁa<m2’< ) }(”y”%”' I5:)

IN
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Namely, the surjectivity condition (1.64) holds with

min { 5 em (p)* - cs (1) va ()°a” . CsQ(u)'ya(Qu)’ %éu)}
B(p) = cs ()7 (1) 7 2¢e(p)?cu(p)ca(p) ca(p) >0, (L75)

2 max < ¢2 cg'y 1 (Cycc(l-‘)cu ) 2
Yy’ ﬁa(l"‘)z ? Ba (l‘)2 ’ QYa (l‘)

Besides the surjectivity inequality (1.64) for OCP(u)s governed by linear time-
dependent parabolic equations, in order to guarantee the well-posedness of the
whole optimality system (1.58), we need to exploit another Lemma, that com-
bined to Lemma 1.6, will assure the existence and uniqueness of the optimal
solution to (1.58).

Lemma 1.7 (Injectivity of B*) The bilinear form (1.59) satisfies the follow-
ing inf-sup stability condition:
v e B(,2), (0,0 10)
@032 (e [y, + (213, /Il + 1K1

> 0. (1.76)

for (w,¢) # 0 and (y,z) # 0.

PROOF. First of all, we devide the proof in two cases, one dealing with €, =
Qobs and otherwise.

Case 1. Let us consider €, = Q.ps. In this specific case, for every r,w € Y, the
action of m(r,w; u) and c(w, r; p) coincide. It is clear that, for (y,z) # 0

sup B((y, 2), (w, Q)i ) = B((1/ )y, 2), (w, C); p),
(y,2)€(Vox V)

where y € )y and , z € Ypr have been properly chosen with these properties:
gt = C and Zt = —Ww. (177)

This implies

T

B((1/)7. 2w = - [ s@ G e+ [ Sati G ar
1 T

1 T
oz, G ) di + - /O m(g,wip) dt - (1.78)

J
T T
—/ s(z,w; p) dt+/ a(w, z; p) dt.
0 0



32 An Introduction to Parametric Optimal Control Problems

Thanks to (1.77), we notice that:

s(,¢m) > eIy and  — s(z,w; ) > cs(p)||w]|B. (1.79)

Furthermore, by the definition of ¢(-,-, ) and m(-,-, ) and from the time
boundary conditions for state and adjoint variables, we obtain the following
relation

T
7/ c(z,C / / ch XQ@ zZy, dQdt = (1.80)
0
' T
:/ AZCC(N)IXSZEQZt dQddt = —/ m(y,w; p) dt.
0 Z 0

The aforementioned properties implies

B((1/2)y, 2), (w,¢); ) > CSC(XH)

1 /T
M@+*/am%mwt
@ Jo

T
il = [ a5 .

Here, we are assuming that the time derivative commutes with the bilinear form
operators®. Thanks to this assumption, we finally prove the relation

cs(i) 2 1 / d a(y,y; )
— — L dt
W+ o [ L2

Festlily— 3 [ LG g
o)

B((1/a)y, 2), (w, (); )

Y

C()

\ \/

()3

2l + 155

2 ) >0

Since the aforementioned relation does not depend on the choice of w and (, we
have proved (1.76).

Case 2. We now consider Q, # Qqps®, assuming Qgps 7# . Thus, we consider
y as (1.77) and the indicator function xo\o by definition. Using the same
arguments exploited in Case 1:

+es(p )IIQHQ

obs?

ﬁ((gXQ\Qobsa O)) (W, C); IJ/) = 5(@)(9\90bS 5 C; IJ,)
T
+ / a(YX\ Qe » G5 1) (1.81)
0

B8y )3

2This is always the case for the Hilbert spaces considered for the numerical experiment
presented in Section 5.2.2.
3See Footnote 1.

> HCXQ\QO})S 2Q+
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where m(yxo\q,,.,w) = 0 for all w € Q. Since (1.81) does not depend on the
choice of the test functions, inequality (1.76) holds. -

Lemma 1.6 and Lemma 1.7 guarantees the hypotheses of Necas-Babuska theo-
rem and, thus, we can now state the following well-posedness result:

Theorem 1.8 For a given u € D, the problem (1.58) has a unique solution
pair (y,z) € Yo x Vr.

Remark 1.3.1 (2, # Q, time-dependent OCP (u)s) In all the proofs we
assumed Qyps # . However, Lemma 1.6 and Lemma 1.7 are still provable
assuming €, # Q. For the sake of completeness, we outline the ideas behind the
proofs that are very similar to the previous cases.

o Lemma 1.6. One can consider (c,y + c¢,Cy + R,z +w.) € Q x Q, where

K € Yr is the solution of the following backward parabolic problem: given
nweDand z € Q

T
—/ s(R,r; ) dt
0

T
+ [ atrmp) it =
0

T o [T (1.82)
7/ m(z,r; p) dt + —y/ c(ryz;pu) dt Vr e Q,
0 @ Jo
R(T)=0 in Q,
=0 in Q.

The inf-sup condition is still verified with the following p— dependent con-

stant:
min{2 CER()H)Q( 3 C(s(gg)’ya((;,t))so(zz . CSQ(H)(’Ya)(QH) va(u)}
cs(p)ys(m)? 2cc(p)?cu(p)ca(p)?? ca (1t ’
B = L : —
2 Ccy 1 CM(I‘)CObS
\/2“1&" {Cyvﬁam)z’mmz’( Yo (10) ) }
having applied
Ya(W)Elly < em(p)cos| 2]y - (1.84)

Here, we used (1.62) together with m(g, z; p) as right hand side of (1.74).

o Lemma 1.7. The inequality (1.76) is verified when the chosen representa-
tive is (O,EXQ\Q, ) with z as in (1.77).
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1.3.2 Steady OCP(u)s: Problem Formulation

In this Section, we provide a no-control framework analysis for steady problems
too. Namely, the variables are y,z € Y, and u € U, while yq € Yops and no time
integration is considered. The whole optimality problem reads: given p € D,
find the pair (y,u) € Y x Y such that

B,((y, 2), (w, O); ) = (Fs(m), (W, Q) V(w, () €Y xY. (1.85)

where the left hand side is given by B, : (Y xY) x (Y xY) — R with

1
és((ya Z)v (wv C)a /l‘) = a(ya C; H) - ac(za C; IL) + m(va; “) + a’(wv = ”’);
while the right hand side is

<]:s<l"’)7 (UJ,C)) = m(ydaw§ /J') + <G(IJ’)’ C> :

As already did in the time-dependent case, we would like to use the Necas-
Babuska theorem to assure the existence and uniqueness of the optimal solution.
Namely, we aim at proving a steady version of Lemma 1.6 and Lemma 1.7
exploiting arguments not so different from the ones used in the time-dependent
framework. For the sake of completeness and clarity, we will report them.

Lemma 1.9 (Surjectivity of B,*) For the bilinear form (1.85), the following
inf-sup stability condition holds: there exists Bs(n) > 0 such that Bp_(p) >
Bs(p) > 0 with

. Bs y %)y (W, ;
B (1) = inf sup = ((y ; ( C)Qli) —, (1.86)
WY xY) w,0evxv) VYl + 2[5 V1wl + <R

for (y,2) # 0 and (w,() # 0.

PRrROOF. Case 1. Let us suppose Q,, = Qobs, as in Lemma 1.6*. Choosing w = ay
and ¢ = z leads to

. B.((4.2), (.0 )
@, xYN{©0,0} VIYlE + 1213/ llwl? + [IC%

> ava(p), (1.87)

since, when Q, = Qops, the action of ¢(z,y; u) and m(y, z; u) coincide. The
inf-sup condition (1.86) holds: indeed, the inequality does not depend on the
choice of y and z.

40Once again, we postpone the analysis of case Q, # Q to Remark 1.3.2.
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Case 2. Now, let us take into account €2, # Qops, Where Qs # Q°. Here, we
chose w = y and ( = z + &, where K is the solution to the following equation

o . Lo 2
af,ri ) = —mly. v p) + ~c(ry;p) Vr € L(9), (1.88)

k=0 in Qops-

ce(p)cy

aYa(pt)
same arguments already presented in Lemma 1.6. Thus, (1.86) holds with

Thanks to these assumptions, we obtain |||y < llylly exploiting the

5u(h) = R
s (a25)7))

It only remains to prove the steady version of (1.76).

Lemma 1.10 (Injectivity of B.,*) The bilinear form (1.59) satisfies the fol-
lowing inf-sup stability condition:

: B,((y,2), (w, Q); 1)
inf sup > > > >
@OV XY) (y,2)e(vxv) VYT + 2[5V wlE + 1¢I5

for (w,¢) # 0 and (y,z) # 0.

0, (1.89)

PRrROOF. The proof, as usual, is divided in two cases.

Case 1. Let us assume €2, = Qps. The same arguments of Case 1 of Lemma 1.9
can be applied choosing y = aw and z = (, obtaining (1.87) also in the steady
case, where the supremum is considered in the space Y X Y, which already
proves (1.89).

Case 2. Now, we consider €, # Qqps and, once again, Qqps # €2, without loss of
generality®. To prove the inequality (1.89), we take z = 0 and y = WX\ Qops TO
obtain

2
Y

sup B, ((y,2), (w,0); ) > val(pe)[|wxo\oon.
(y,2)€(Y xY)\{(0,0)}

proving the estimate. -

Moreover, the continuity of B2P(-, -; pt) is directly inherited from the continuity
of the various bilinear forms of the equation. Now, exploiting the continuity of
BP(-, -, 1) and Fs(p) combined with Lemma 1.9 and Lemma 1.10, the Necas-
Babuska theory is verified and the following theorem holds.

5See Footnote 4.
6See Footnote 4.
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Theorem 1.11 For a given p € D, problem (1.85) has a unique solution
(y,2) €Y xY.

Remark 1.3.2 (Q, # Q, steady OCP(u)s) Also for the steady case, we con-
sidered Qops £ Q guided by the results in Section 5.2.2. We can prove Lemma
1.9 and Lemma 1.10 also assuming Q,, # § in a steady framework.

o Lemma 1.9. Let us consider w =y + & and ( = z, where K is the solution
of
1
a(r,®s p) = —m(r, z;p) + —cz,m; 1) Vr € L*(Q),
@
=0 m Qu,

for a given p € D and z € Y. Exploiting the continuity and the co-
ercivity properties of the considered bilinear form, we obtain ||R|y <

Wﬂyw, using the strategies of Lemma 1.9. Thus, the relation
(1.86) holds with
Bulh) = a(p) - 0.

(o1 (325)'})

o Lemma 1.10. To prove (1.89) we simply consider y =0 and z = CXﬁ\Q .

In this context, the analysis had the only purpose to prove the well-posedness of
the problems we will deal with along the Thesis, in order to apply a numerical
discretization to simulate the optimality system for a given parameter p €
D. The next Chapter describes the concept of high fidelity approximation of
OCP(p)s based on space-time formulations, see e.g. [53, 65, 67, 66, 156, 165, 166)
and its adaptation to the problems we introduced along this Chapter.




CHAPTER 2

Space—time Approximation for Parametric
Optimal Control Problems

In this Chapter, we will introduce space-time approximation for OCP(u)s. This
discretization technique have been successfully applied to parabolic PDEs(g) in
[53, 89, 156, 165, 166] and also to linear constrained optimization problems in a
non-parametric setting, see e.g. [65, 66, 143, 144]. We will focus on the versatility
of such an approach, that highlights the algebraic saddle point structure of
discretized OCP(u)s and easily adapts to several settings, as presented in [16,
146, 150]. Along the Chapter, we might refer to the space-time approximation as
the high fidelity approximation: the reason of this choice is postponed in Chapter
3. The structure is discussed for several governing equations. For all of them,
we exploited a optimize-then-discretize approach: namely, the discretization is
applied only once we have built the optimality system (1.10). The interested
reader may refer to [49, 59] for an overview on the topic and on the alternative
approaches. A brief outline of the Chapter follows. First of all, Section 2.1 will
describe Galerkin approach in a space-time fashion and its well-posedness. In
Section 2.2 we will focus on the algebraic structure of nonlinear time-dependent
OCP(u)s. The construction will be adapted to linear problems in Section 2.3.
For both these last two Sections, we will briefly describe the steady versions of
the algebraic systems at hand.

2.1 The High Fidelity Approximation

This Section focuses on the numerical approximation of OCP(u)s. First, we will
briefly introduce the Galerkin projection strategy and thus we will discuss the
well-posedness of the OCP(u)s presented in Chapter 1 but in a finite dimensional
setting. In the ROMs community, the high fidelity approximation represents a
first stage of discretization, characterized by high accuracy'. We will employ
Galerkin projection based on space-time techniques [53, 89, 156, 165, 166] to
discretize the problem at hand. The detailed description of such an approxi-
mation will be postponed in the next Section. For now, let us assume to have
built space-time function spaces YNv and UV«, finite dimensional subsets of

IThe high fidelity discretization might lead to unbearable simulations in terms of com-
putational time, most of all in an OCP(u)s setting, where many parameters evaluations are
needed for the system of three equation (1.10). However, this issue can be tackled following
the reduced techniques presented in Chapter 3.
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Y and U, respectively. Namely, we now want to solve the variational formula-
tion of (1.13) exploiting a Galerkin projection into the finite dimensional space
XN = YN x YN x YN, Thus, the high fidelity space-time problem reads: for
a given u € D, find the solution XN e XV such that

G(XN Eip) = (F,B)gnv-xv VEe XV, (2.1)

In this approximation context, we are assuming that the the test space and
the solution function space coincide, which is not a restrictive hypothesis for
the problems we will deal with, as we will see later on in this Chapter and in
the numerical results we are going to present in this Thesis. Let us recall that
Yo C Q. Thus, for general nonlinear problems, the existence is guaranteed by
the fulfillment of (i)-(ix), also at the discrete level.

Now, focusing on the linear cases, we will, once again, specify the space-time
saddle point structure. We first define the combined function space for state
and control as AN+ 1= YNu x YNv_ with N, = N, +N,. The finite dimensional
optimality system reads: for a given pu € D, find the pair (zNI,zN v) € AN= x
yNy such that:

A &) + BIE 2N ) = H(E) Ve € N,

3($N’,C;u) =/0 (F(w),¢) dt V¢ e YNy, (2.2)

where the involved bilinear forms have been already defined both for OCP(u)s
governed by parabolic and Stokes equations, in Sections 1.2.2 and 1.2.3, respec-
tively. The well-posedness is assured by Theorem 2 in both cases, assuming the
state space and the adjoint space coinciding, see e.g. [146]. The same argument
holds for steady problems. Indeed, let us assume to have build a discretization
(only in space) for Y and U. The resulting function spaces will be denoted
by YN re and UNFe. Furthermore, we define the state-control space XNFe as
Y Nes x UNFe. Thus, in the steady context, discrete OCP(p)s read: for a given
p € D, find the pair (zVFs, zNI%“E) € XNre x YNer such that:

{ A(@Nre & p) + B(E, 2Neeyp) = (H(p), &) V€€ XNre, (2.3)
B(aNie, ¢ p) = (F(p), Q) V¢ € YNrs. '

Also in this case, the Brezzi Theorem is verified using the same techniques of
the continuous problem, assuming both the state and the adjoint variables in
Y Nrs| see e.g. [110, 111].

The last case we want to address is the no-control framework. In this specific
setting, the proof of the well-posedness of such a problem is more involved
and we would like to report the main results proposed in [148] on this topic.
Nevertheless, the Theorems and the proofs we are going to present will be of
utmost importance for Chapter 5.
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2.1.1 Well-Posedness of the No-Control Problem

This Section deals with the well-posedness of the space-time discretize version
of the optimality system (1.58), i.e. the system describing OCP(u)s governed by
linear time-dependent equations in a no-control framework. Here, we want to
solve a discretized version of (1.58), thus, we have to define high fidelity space-
time function spaces. First of all, we take into consideration the FE function
space YNee =Y N K; where

Ky ={veC’Q) : v|g €P, YK €T},

with P! set of all the polynomials of degree at most equal to 1 and with K an
element of a triangulation T of the spatial domain Q. Thanks to this definition,
the semi-discrete function spaces

YNEs — {y e L2(0,T; Y N¥e) sit. y, € L2(0, T (YN%’E)*)},

and QVre = L2(O,T;YN1¥E) can be defined, with N¥; representing the FE
dimension for the state and the adjoint variables. After addressing the space
discretization, we can deal with time approximation in order to obtain the space-

time function spaces, say yﬁ’fE and Q%th where N; is the dimension of the
time discretization. For this specific problem formulation, we assume that the
same space-time discretization technique might be employed both for state and
adjoint, namely yﬁf*ﬂ = Q%?E [89, 148]. For the sake of notation, in the no-
control formulation, we will refer to this common space as QVv. The high fidelity
optimality system is: given pu € D, find the pair (yN7 CN) e oM x QVv such
that

B((y,2Y), (w, Qi) = (F(p), (w,0)) V(w,{) € QM x QMo (2.4)

We remark that the global dimension is N” = 2N, = 2N}, .- N;. In order to prove
the well-posedness of this space-time optimality system, we exploit the Necas-
Babuska theorem, as in the continuous case. Namely, we require the discrete
inf-sup stability conditions in the discretized space QVv to be verified together
with the continuity of (1.58). The latter property is directly inherited from the
continuous system. Thus, we only need to provide the following Lemma that
proves the inf-sup stability condition w.r.t. the discretized spaces.

Lemma 2.1 (Discrete Surjectivity of B*) There exists B () > 0 such that
B () = BN (w), where B (p) is
B((y, 2), (w,¢); i)

irj}/f y sup , (2.5)
9@ %) (re@xe ) s + 21y Il + 11

for (y,z) #0 and (w,¢) # 0.
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PrROOF. Case 1. Let Q, and Qs coincide. Now, choosing (w, () = (ay, 2),
applying c(z,y; u) = m(y, z; u) as we already did in the continuous case, (1.66)
and the coercivity of the state equation, we obtain, for (w, () # 0,

B((y,2), (w,(); u)
Sl./tfp N, 2 2 2 2
(w,)e(@My x QM) \/Ilyllg + IIZHQ\/IIMIIQ +1[<II
B((y, 2), (o, 2); )

>
VI + 112013 layl3 + I¢1%
_ acs@ly(M)I% + 0@yl + es () 120)% + (1) 1215
- Twll% + 11
min{aya (1), va (1) )% + 11211%)
- I3 + 121

> Oﬂa(li)~

Case 2. We now focus on the case Q, # Qops. Furthermore, without loss of
generality, we can consider at least one between the two sets different from the
whole spatial domain, say Qobs>. In this case we define x € ONv | solution of the
auxiliary problem (1.73) with ¢, = 1. Choosing (w, () = (y, z + £) and recalling
that, for each pair of elements in QVv, holds

/OT s(k,z;p) dt = /QH(O)Z(O) sy — /Q K(T)z(T) dQ + /OT s(k, 2 p) dt

T
s(k, z; p) dt,

Il
S—

2The arguments of Footnote 1 and Remark 1.3.1 hold also in this space-time setting.
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thus, for (w,() # 0:
. B((y. 2), (w,0); 1)
w.0e@rxe) [yl + 1205/ lll? + 1113
B((y.2), (y,2 + K); 1)
— lE + 2B/l + 20120 + l513)
_ es@ly() % + ()3 + es@l=(0) 13 + v (wll=I1%
V2l + 1215 /g% + 112113 + sl

T 1 T
/ m(y, z; p) dt — f/ c(z,y; p) dt
0 @ Jo
V2 Il + 12102 Il + 12113 + l1s]%
T T T
/ m(y, k; p) dt+/ s(k, 2; ) dt+/ a(k, z; p) dt
0 0 0

V2 Il + 112105l + 112113 + 113
y Ta(1) (Iyl13 + 1121%) |
V2 gl + 12113 Il + 12113 + sl

Furthermore, we are going to prove the existence of a constant ¢ > 0 such that:

I£lle < ellyllo-

This goal can be reached through relation (1.74), with ¢, = 1, which reads
ce(p)cy

. Thus, for (w,() # 0, this leads us to the following estimate:
aYa(p)

c =

B((y, 2), (w,); 1) Ya(1t)

sup > .

woe@vxe) \flylL + 1215/l + g3, V2(max{l,&})

The inequality (2.1.1) does not depend on the pair (y,z) € QVv x QNv, thus
the inf-sup condition (2.5) holds true both when Q, = Qs and otherwise.

We stress that in the finite dimensional case there is no need to prove a discrete
equivalent of (1.76), indeed, see e.g. [11, 163], since (1.76) coincides with:

inf sup B((y; ), (w, ¢); 1)
@O (. 0)e(@rx @) | [yl + 1215/ Illlf, + ICI1%
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for (w,¢) # 0 and (y, z) # 0. Thanks to the continuity of (2.4) and Lemma 2.1
we can state the well-posedness of the discretized problem (2.4) in a space-time
fashion since the Necas-Babuska theory applies, proving the following theorem:

Theorem 2.2 For a given pu € D, the problem (2.4) has a unique solution
(y,2) € QM x QM.

Remark 2.1.1 (Steady Case) We remark that the well-posedness of the no-
control framework in the steady setting can be proved adapting the strategies we
just presented for time-dependent equations. First of all, here we are dealing with
a pure FE space of dimension 2N}, ,. Steady OCP(p)s in no-control framework
reads: given p € D, find the pair (y,z) € YNee x YNre such that

Bo((4:2), (@,0)) = (Falm), (0, ))  ¥(w,¢) € YNee x yNee.  (2.6)
The following holds:

YN;E

Theorem 2.3 For a given u € D and for a given observation yq € Y, 77,

problem (2.6) has a unique solution (y,z) € YNre x YNre,

PROOF. Also in this case, the well-posedness is an application of the Necas-
Babuska theorem. First of all, the continuity directly derives from the continuous
forms. Furthermore, Lemma 1.9 can be easily adapted in this setting defining

NY
B (n) as

- B,((y;2), (w,Q); 1)

(y,z)e(YNg“E XYN;E) (w,C)E(YN}{“E XYN??E) \/”yHgf + ”’ZH%\/HWH% + ”C“%’

and, thus, proving that Bg;’f > 55‘% (n) >0 for (y,2z) # 0 and (w,() # 0.

Furthermore, we would like to point out that Remark 1.3.2 is still valid in
the space-time framework. The next Section focuses on the algebraic struc-
ture of the OCP(u)s that we have introduced along this contribution, moving
from time-dependent nonlinear governing equations to linear steady problems.

2.2 Space—time nonlinear OCP(u)s

We are now interested in the numerical simulation of nonlinear systems of the
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type of (1.13), to study several parametric features varying u € D in a space-
time fashion. Here, we follow the structure of [16, 66, 147]. First of all, we
will introduce a general algebraic framework that is suited to time-dependent
nonlinear problems with quadratic nonlinearity w.r.t. the state variable®. Then,
we will drop the time-dependency and we will simplify the setting to deal with
steady nonlinear OCP(u)s as already presented in Remark 1.2.1.

2.2.1 Nonlinear Time-Dependent OCP(u)s

Our goal is to find a numerical approximation for the optimal solution X of
(1.13). We briefly introduced the discretization technique in the previous Sec-
tion, however here we use a more general formulation. First, for the sake of
clarity, we will focus on the space discretization. Only subsequently we will
describe how we treated the time approximation. As already specified in the
no-control framework of Section 2.1.1, the applications presented in this con-
tribution are FE-based. Thus, a brief introduction of FE based on general
polynomial degree follows. Let YNre = Y N K, and UNee = U NK,, be the
FE function spaces. Here, we define

K,={veC’Q) : v|g €eP", VK €T},

where P is the space of all the polynomials of degree at most equal to r and K
is an element of a triangulation 7 of the spatial domain €2. Once employed this
first stage of discretization, we can define the semi-discrete function spaces

YV = {y € 120,13 M) sty € L2(0,T5 (v Vo)) |,

QNvs = L2(0,T; Y Nee) and UNie = L2(0, T; UN¥®s), where N represents the
FE dimension for the state and the adjoint variables, while N is the analogous
dimension of the control space. Once the space approximation is performed, we
can deal with time in order to achieve the final space-time function spaces, say

Y Y u
yjj\\,[fE, QJ]:]”FE and UJ]\\,CfE, where N, is the number of the considered timesteps
taken in the time interval [0, 7], i.e. the time dimension of the discrete space.
Also in this case, as already did in [89, 148], we use the same discrete strategy to

represent )y, Yy and Q, namely, at the discrete level y]]\\,ffE = Q]]:%g B, The space-
time function spaces will be indicated as YNy = OMv and L{Nu, for the state/the
adjoint and the control variables, respectively. Consequently, XV := QM x
UNw x QNv, where N = 2N, + N, is the global dimension of the space-time
optimal variable with N, = N - N; and NV,, = N¥g - N;. The discrete problem
in this framework translates as: given p € D, find xV .= XN(/,L) e XN such
that
G(xN;p)=F. (2.7)
3The quadratic nonlinearity assumption is guided by the numerical results we are going

to present in the following Chapters. However, the construction can be adapted to more
complicated nonlinear problems.
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In this contribution, the time discretizations we used are Euler-based. How-
ever, this approach is consistent with the space-time formulation presented in
many works in literature, see e.g. [156, 165, 166]: indeed, the backward Euler
scheme in time, for example, coincides with a piecewise constants Discontinuous
Galerkin discretization [48]. Although, for the sake of clarity, we will always talk
about Euler’s schemes. In this framework, we divide the time interval [0,77] in
N; equispaced subintervals of length At. The generic time instance is t;, = kAt
for k=0,...,N;. We can consider the variables y{c\/, u/,:[ and z{cv, i.e. the state,
the adjoint and the control variables evaluated at tj, respectively. They are

represented by the FE basis {qbi}i]i‘gf and {w’}ll\ff as follows

u y
NFE NFE

Npg
WS, =W amd A=Y Al (29)
1 1

1

Thanks to the expansions (2.8), we can consider the space-time state, control
and adjoint vectors given by

y=1|:1], u=|:], and z=
YN, up, ZN,
Here, yi, ur and zj are the column vectors consisting in the FE coefficients of the
variables at the time instance t; for £k = 1,..., N;. An analogous construction

can be performed for the state initial condition, the desired state and the forcing
term, defining

Yo Yd1 h

0 ?de f2
yo=1|.|, ya=| . |, and f=| |,

0 Yd N, I,

respectively. A separate discretization analysis of the three equations of the
optimality system (1.10) follows.

The State Equation. Let us focus on a single time instance t;. Employing
the FE method to the controlled state equation (1.5), one derives the following
matrix expression for the operators

Ene(p) + Ee(p) — C, (2.9)

where, for now, we are omitting the time action. Furthermore, for the sake of
notation, we are also omitting the y;—dependence of E,,(u). Calling with M,
and M,, the mass matrices for state (or adjoint) and control spaces, respectively,
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it is clear that, at each timestep, exploiting backward Euler in order to simulate
the evolution of the state equation, the following system has to be solved:

My i, + At (Ene(p) + Eo(p)) G — AtCiip = Myg—1 + At fy, (2.10)
—_—
E(p)

for k € {1,..., N;}. Thus, the whole space-time system reads

M, + AtE(p) it
-M, My + ALE(p) Yo

-M, M, + AtE(p) Y3

-My, M, + AtE(p)] [on,

K(w)
C i Mygo + Atfy
C s 0+ Atf
At C Uz | — 0+ Atfg

C aNt 0+ At]?Nt
The space-time state equation can be written in compact form as

K(p)y — AtCyu = My _ yo + Atf, (2.11)

where the subscript “st” indicates the all-at-once space-time matrices, namely
Cst is the block-diagonal matrix which entries are given by C of dimension
RNy x RV and My, is the block-diagonal matrix consisting of M, on the diag-
onal, of dimension RVv x RNv.

The Optimality Equation. Fixing a time instance ¢, the optimality equation
reads
aAtM, iy, — AtCTz, = 0 for k€ {1,...,N;}, (2.12)

or, equivalently, in compact form
aAtMyu — AtCLz =0, (2.13)

where My, is the block-diagonal matrix of dimension RV* x RN which presents
M, on the diagonal.

The Adjoint Equation. The algebraic structure of the adjoint equation is a
little bit more involved due to the presence of nonlinear terms still depending
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on the state y. First of all, we need an explicit matrix notation for D,&(y, u; ).
Under the assumption of the quadratic nonlinearity in the state variable, the
Fréchet derivative of the controlled state equation w.r.t. the state y can be writ-
ten as follows: E/,[y](pt) + E¢(pe). Here, the linear state structure is preserved,
while the nonlinear operator is linearized in E/ ,[y], which, however, still depends
on the state variable. We remark that the control operator is not involved in
the formulation since it does not depend on y. Thus, employing a forward Euler
method which is equivalent to an implicit scheme due the backward parabolic
nature of the adjoint equation, at each time instance the equation reads:

Myzk—l = Myzk + At(_Mobsgk—l _Elné[y]T(p’) - EeT(N) Pk—1 + MObS@dk—l)?

—ET (1)

for k€ {N;—1,N;—2,...,1}, where Mps is the state mass matrix restricted to
the observation domain. the global space-time adjoint system has the following
form:

My + AtEadjT(H) —M, Z1
. N Z
T :
M, + AtEd () My E
M, + AtE2A7 (p) | LAN
Kadi(p)T
Mobs ﬂ1 AtMobsgdl
Mobs 372 AtMobsgdz
+At . | = .
Mobs gNt AtMobsngt

Thus, in a compact notation, the adjoint equation reads:
K™ (1) "'z + AtMopssty = AtMopssiya, (2.14)

where Mopsee € RNv x RVv is the block-diagonal matrix which entries are given
by Mobs-

The Global System. If we collect all the aforementioned information, we can
define the following all-at-once system:

G(X;u) F
AtMgbsss 0 K ()™ [y AtMobsgtYd
0 alAtM,  —AtCh ul = 0 , (2.15)
K(w) —AtCyq 0 z My..yo + Atf
-~

X
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that in residual formulation reads
R(X;p) :=G(X; ) —F =0, (2.16)

where R(X; p) will be called the global residual of the optimality system. We
tackled the nonlinear system (2.15) with Netwon’s method: namely we itera-
tively solve

X = X7 + Jac(X7; p)"H(F — G(X?; ), JeN, (2.17)

stopping the iterations thanks to a residual based convergence criterion. We
point out that the matrix K*¥(u) still depends on the state vector y in the
term E/ ,[y]”. Then, performing a linearization of K*¥(u)[z] w.r.t. the variable
y leads to a new matrix in the formulation:

Dy (Bl ly'1")[2']. (2.18)

The new term (2.18) does not depend on the state variable anymore, however
still depends on the j-th evaluation of the adjoint variable. The final Jacobian
matrix has the following form:

‘ AtMopsse + Dy (B [y/]7) (2] 0 Kadi ()™
Jac(X7; p) = 0 alAtM,g,  —AtCL |, (2.19)
Kadj ([,L) —AtCSt 0

Thanks to this linearization process, we can bring to light the saddle point
structure arising from the constrained optimization in this dicretized setting, in
total analogy with Section 1.2.2. Indeed, the Jacobian (2.19) can be written as

4 A BT
Jac(X/; ) = {B 0 ] , (2.20)
where
_ [AtMasg + Dy (B, [y7]7)[27] 0 _ [Kadi _
A= ;i AAIM,., and B = [K*¥(p) —AtCy].

(2.21)
The discrete analogous of the Brezzi Theorem relies on the invertibility of A
over the kernel of B and on the discrete Brezzi inf-sup condition that reads:
z"'Bx AN (

BN () := inf sup

_EEX S BN () > 0, (2.22)
oz 02x X[l l1zlls

where x = [Z] . In the space-time context, the inequality (2.22) holds when the

function spaces for state and adjoint coincide [89, 110, 111, 146]: this assumption
is guaranteed at the discrete level too, since z lives in QVv.
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Remark 2.2.1 (Steady nonlinear OCP(u)s) We now want to adapt the afore-
mentioned structure to steady nonlinear problems. It is clear that, in this case,
the discretization is performed only in space, namely the considered discrete
variable is in XN := YNre x UNEe x YNre, of dimension N = 2NV + Nig.
The FE approzimation of parametric OCP(u)s governed by nonlinear equations
as defined in (1.25) reads: given p € D, find XV := XN () € XV such that

Go(XN;p) = Fu. (2.23)

With abuse of notation, we use here the same symbols used in Section 2.2.
Indeed, we believe that this choice is not misleading, rather it will highlight the
similarities with the space-time approach. Here 'y, u and z indicate the column
vectors which entries are given by the FE coefficients of the state, the control
and the adjoint variables in their approrimated spaces, respectively. The vectors
of the FE coefficients for the desired state and the forcing term are denoted with
ya and f, respectively. In the FE context, we are dealing with a state equation
of the form (2.9). Moreover, we call My, and M,, the mass matrices for the state
(and the adjoint) and th control, respectively. The global matrixz formulation of
the optimization system (2.7) is

G(X;p) F
——
M, 0 BT +E] [y Myya
0 aM, -CT ul =1 0 |. (2.24)
E..+E, —-C 0 z f
X<

Also in the steady case, the system (2.24) can be written in residual form as
in (2.16) and it can be solved with Netwon-based algorithm. As in the time-
dependent setting, the arguments for the algebraic structure of DyE(y, u; ) ap-
plies. Indeed, the Jacobian matriz presents the saddle point structure (2.20):
indeed, applying a proper definition to A and B, i.e.

_ [My + Dy (Ely’1D)] 0

A 0 aM,,

and B = [E),[y/]+E, —C], (2.25)

we recover (2.20).

In the next Section we will deal with linear time-dependent equations, mirroring
and adapting the aforementioned contents to that simpler setting.

2.3 Space—time linear OCP(u)s

In this Section, we show the algebraic formulation of the space-time discretiza-
tion related to linear OCP(u)s. The exploited structure is totally analogous
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to the one presented in Section 2.2.1, however, we have decided to highlight
the discretized structure we are dealing with also in this case, for the sake of
clarity. First of all, we will describe the parabolic case and then we will move
towards the Stokes problem, in Sections 2.3.1 and 2.3.2, respectively. Along
the Sections, we will adapt the time-dependent setting to the steady and the
no-control framework.

2.3.1 Parabolic Time-Dependent OCP (u)s

Let us focus on the discretization of the continuous parabolic problem described
in Section 1.2.2. For the sake of completeness, we report the algebraic struc-
ture in presence of geometrical parametrization. We remark that we use the
space-time strategy presented in Section 2.2.1. Namely, we consider the state
and the adjoint variable QVv and the control in UN*. We recall that the space-
time variables are y,u and z, while the desired state is yq, the initial condition
is yo and the forcing term is f. Here, we present the classical saddle point
framework already showed in several works, see e.g. [65, 143, 144, 146, 148],
adapted to the case of geometrical parametrization. In this setting, we intro-
duce two further matrices: S(p) and Do (p), defined as S(p);; = s(¢;, ¢s; ) and
Da(p)ij = a(¢j, ¢iz ), for i,5 = 1,..., N, respectively, where s(-,-; ) and
a(-,-; p) represent the time evolution and the state operators, respectively, as
already defined in Section 1.2.2. In the following, once again, we will separately
focus on the three equations of the optimality system (1.10), for the sake of
clarity.

The State Equation. Here, as already specified in the previous Sections, we
use a backward Euler approximation for the time evolution, i.e. for each time
instance we deal with the following equation:

S(1)ik + AtDo () — AtC(p)tiy = S()Jk—1 + frAt, (2.26)

for k € {1,...,N;}. We stress that, where the geometrical parametrization is
not present, as one can notice from equation (2.10), the matrix S(u) is replaced
by M,. The algebraic system related to the state equation is

S(u) + AtD(p) U
—S(p) S(p) + AtDo(p) 2

SS(u) S(u) + ADL(w)] g,

K(w)
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Cp) Uy S(K)yo + étﬁ
C(“) U2 0+ Atfs
—At ) = .
Cw)] Luw, 0+ Atfy,

In compact form, the state equation space-time system can be written as

K(p)y — AtC(p)seu = S(p)yo + Atf, (2.27)

where C(p)s is the block-diagonal matrix of entries C(p) which takes into ac-
count a possible trace back of the L?—product restricted to the control domain.

The Optimality Equation. This equation can be exactly defined as already
did in (2.12) for each time instance. Furthermore, it can be recast in compact
form as we did in (2.13).

The Adjoint Equation. We now focus on the discretization of the adjoint
equation for each instance ¢, through a forward Euler method:

S(p)ze—1 = S(1)Zk + At(—M(p)obsik—1 — Da (i) Zr—1 + M(1t)obs¥a, )

for k € {N; — 1, N; —2,...,1}. This equation in compact form reads:

S(p) + AtDa ()" —S(n) Z1
S(p) + AtD, ()" —S(p) ZN,—1
S(p) + AtDo(p)” ZN,
K(p)™
M(p’)obs ?71 AtM (ﬂ)obsgdl
M(£2)obs Y2 AtM(pt)obsYa,
+At ) . = .
M(H)obs gNt AtM (N)obsgdzvt

We recall that the matrices are, eventually, the trace back of the ones already
defined in Section 2.2.1: this is the reason why we decided to explicit the de-
pendence on the parameter p. The space-time adjoint equation reads as:

K1)z + AtM(p)os..y = AM(#)obs., Y, (2.28)

where M (pt)obs,, is the global observation mass matrix (the possible trace back)
define din Section 2.2.1.
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The Global System. Combining the aforementioned algebraic systems, we
obtain the following global optimality system:

G F
—_——
AtM()obs., 0 K(p)" y AtMops,,Yd
0 aAtM(p)u,, —AtC(p)L| |u| = 0 , (2.29)
K(w) —AtC(p)st 0 z S(m)yo + Atf
-~
X
where M(p),,, is the block diagonal matrix which entries are given by the pos-

sible trace back of the control mass matrix. In the following, we rewrite the
linear space-time system (2.29) as:

GX =F, (2.30)

where G can be interpret in a saddle point framework recasting it as

A BT
= {B 0 ] : (2.31)
defining
— AtM(“’)obsSt 0 _ B
A= 0 aAIM(p) } and B = [K(n) —AtC(p)st]. (2.32)

Namely, the saddle point structure directly arises from the optimization problem
at hand, as one might expect from the continuous version of the OCP(pu)s.

Remark 2.3.1 (Steady Linear OCP(u)s) As already presented in Remark
2.2.1, it is straightforward to adapt the aforementioned structure to the steady
case. Here, we focus on steady linear OCP(u)s, where, once again, XV =
YNee x UNee x YNre s the global space of dimension N = 2N¥y + Nip:
namely, the variables are purely FE functions. Following the notation we intro-
duced at the algebraic level for the system (2.29), the all-at-once steady problem
reads: given p € D, find the vector X := [y, u,z]T € RV such that

GyX = F,. (2.33)

Also in this case, we remark that using the same notation for the space-time
variables and the purely FE variables, is not misleading, rather shows how the
space-time structure is similar to standard steady one. The considered system
is defined as

M(H)obs 0 Da(H)T M(N)obs}’d
G, = 0 aM(p), —C(uw)T| and Fy:= 0 . (2.34)
Da(p)  —C(w) 0 f
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where yg and f are the vectors of the FE element coefficients for the desired state
and the forcing term. Once again, we can recast the problem in a saddle point
formulation, where

o [3 ¥, 29
with )
M (1) obs 0
A= ;5 b QM(H)U] and B = [D(p)a —C(p)]. (2.36)

Remark 2.3.2 (The No-Control Global System) When we are dealing with
the no-control framework, a few modifications must be performed to the optimal-
ity system (2.31). First of all, exploiting (1.56), we consider only the state and
the adjoint variables, namely y and z, respectively. While the discretization of
the adjoint equation is totally equivalent to (2.28), for the state equation we have

()i + AIDL (W)~ C(w)z = S + AL (2.37)

for ke {l,...,N;}. These equations, if combined together, result in:

Atl\:I(((l;))ostt _Ait( 5 ();)st:| m

| AtMopsstYa

_ [SYO ! M} . (2.38)

In this very specific case, the space-time optimal control is already a saddle point
system. It is clear that the no-control system (2.38) has 2N, as global dimension.

Remark 2.3.3 (The Steady No-Control System) The no-control framework
can be easily adapted to steady problems. We apply a few modifications to re-
mark 2.3.1. We define the global space as XN = YNre x YNre of dimension
N =2NY.. Thus, the FE system to be solved is: given p € D, find the vector
X :=[y,z]T € R*Nre such that

GTLCX — FTLC ,

where .
M(N)obs Da(l"/) |:M (N)obsYd:|
Gle .= d F™¢:= .
’ Da(w) —C(u)| " 7 f

2.3.2 Time-Dependent OCP(u)s governed by
Stokes Equations
This Section briefly describes how to deal with OCP(u)s governed by Stokes

equations in a spece-time setting. Namely, we show the finite dimensional ver-
sion of the optimization problem introduced in Section 1.2.3. Similarly to the
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previous cases, we define the space-time variables as

-~ = ~ . =P
U1 )21 Uy 221 21
v=1| 1 |p=|:ju=|:|2=| | and?=| ! |, (2.39)
~ = — Vv P
UN, PN, UnN, ZN, ZN,

to represent the state velocity, the state pressure, the control, the adjoint veloc-
ity and the adjoint pressure, respectively. Also in this case, the column vectors
Vi, Di» Wi, z) and z! for 1< i < N, consist of the coefficients of the FE discretiza-
tion for each time instance. Indeed, for the time t;, the space-time variables
can be expanded in the FE setting as

v
NFE

Nig
o A .
=D ueh Y =) P
1 1

u
NFE

Ngg Neg
up = g uipl, zN = E Zyp¢'  and zpﬁ: E 2p "
1 1 1

LNV " NP
In this specific setting, {gb’}fvjf are bases for VVre {W}f\ff are bases for PVre

and {wl}f\i“: for UNFe which represent, respectively, the FE spaces for V, P and
U, i.e. the function spaces for the velocity, the pressure and the control variables
as defined in Section 1.2.3. For the time discretization, the time interval [0, T is
divided in N; subintervals of length At. The forcing term, the desired velocity
and the initial condition space-time vectors are

Vo _ _

0 Vd1 91
Vo= | .|, Vd= , and g = ;

0 Vd N, 9N,

respectively. Here, in total analogy with the aforementioned variables, vy and
Vg and g and the column vectors of their FE coefficients, for £k = 1,..., N;.
We now have all the ingredients to discretize the optimality system related to
Stokes equations (1.48).

The State Equation. Let us start from the state equation that reads:

{ M, + pAtKoy, + ADT P, = AtMyiix + Mys_1 + Atge (2.40)

Dyr =0

for k € {1,2,..., N;}, where M,,, K and M,, are the velocity mass matrix, the
stiffness matrix and the control mass matrix related to the FE discretization,
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respectively. Furthermore, D is the differential operator derived from the in-
compressibility constraint. The system in compact form can be written as:

K [ﬂ — AtCyu = Myvqg + Atg,

where K is:
M, — uAtK 0 0 AtDT 0 0 ]
D 0
—M M, — pAtK 0 0 AtDT 0 0
0 D
0 0 —-M M,—pAtK 0 0 AtDT
i 0 0 D 0 0 |

and C,, € RNuNe 5 RNuNe ig the block-diagonal matrix which entries are given
by the mass matrix of the control space, while M, € RNv-Ne 5 RNv Nt g the
analogous block-diagonal matrix which entries are [M,,--- ,M,].

The Optimality Equation. We now discretize the optimality equation, which
has the following form:

aAtM,up — AtM, 2z, =0 for k € {1,2,...,N:}.

Thus, the global space-time optimality system is:
aAtM,u — Athz" =0,

where M,, = C,, and C, = CI for the Stokes case we are analysing.

The Adjoint Equation. The last step of the approximation takes into account
the adjoint equation discretized with a forward Euler method as we did for the
parabolic case in Section 2.3.1. The adjoint problem at each timestep reads:

{ M,z = MyZ} | + At(=M, Tk + pAtKz; — AtDTz) + Mg, ) (2.41)

Dz} = 0.

for k € {N; —1,N; — 2,...,1}. Exploiting very familiar arguments by now, we
can write the adjoint equation in compact form as

AtMv + K" tp} = AtM,vg.
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The Global System. The whole optimality system now reads as

{Atl\/lvvd}
AIM 0 K 1Ty 0
0 aAtM, —-ACT| |u| = 0 , (2.42)
K —AC 0 z |EVO+Atg]
0

where M € RWNvtNp) Ne s RNoFNp-Ne and ¢ € RINVe+Np)-Ne 5t RNv-Ne are the
following block diagonal matrices

Mq; 0 Cu
M:{O 0} and C:[O]’ (2.43)

while y = {;] and and z = [ip] . Also for the Stokes equations, it is possible to

highlight a saddle point structure arised from the optimization problem. Thus,
defining

AtM,v
_ [AtM 0 _ _ [ v d}
A—{ 0 ozAtMJ’ B[k —arc]. F=1l 0

and Gg = W\/O + Atg} , the optimality system (2.42) translates as:

o]l a0

once defined x = [Z] .
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This Chapter focused on the high fidelity space-time approximation for OCP(u)s
and on their saddle point algebraic structure. We have shown several governing
equations, guided by the numerical results we will show later on in the thesis.
We introduced:

o time-dependent nonlinear problems,
o steady nonlinear problems,

o parabolic problems (both in the standard and in the no-control frame-
work),

o steady linear problems,

o time-dependent Stokes equations.

The main reason why we highlighted the algebraic structure of OCP(u)s re-
lies in the issue of the computational costs needed for their simulations, most
of all in a time-dependent framework. Moreover, the required computational
resources grow in a parametric setting, where several instances of u € D are
studied and many simulations must be performed in a small amount of time.
Indeed, despite the versatility of the space-time structure, its dimensionality
drastically increases when mesh refinement both in space and time is employed.
The applications we are going to present, were solved through a direct solver, in
a one-shot fashion. This strategy can lead to unbearable simulations in the high
fidelity context. To tackle this problem, nevertheless, iterative algorithms based
on Krylov solvers and Schur preconditioning specifically built for saddle point
structures [21] can be exploited and they have been successfully exploited for
OCP(p)s in [138, 144], for example. However, the proposed iterative methods
might be not enough to deal with many-query or real-time applications. Thus,
other techniques must be used aiming at exploiting the parametric structure of
the system at hand solving it in a low dimensional framework: the ROMs, that
will be the main topic of the next Chapters.
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CHAPTER 3

Reduced Order Methods for Parametric
Optimal Control Problems

The aim of this Chapter is to introduce ROMs for OCP(u)s. The presented
strategies and concepts are suited to a broad class of governing equations, from
time-dependent nonlinear ones to steady linear problems. The ROMs are a
tool to exploit the parametric structure of the system at hand in order to solve
a complex parametric problem in a low dimensional framework, accelerating
the solution process. Indeed, many applications depend on parameters which
can represent several physical phenomena or geometrical structures and the
usefulness of PDE(u) is unquestioned in this context. However, their simulation
can be computationally unfeasible with standard discretization techniques. This
issue is amplified for OCP(u)where the high fidelity dimension grows due to the
optimality system nature. In this Chapter, we will present the ROMs in the
specific setting of OCP(u)s problems. In Section 3.1, we will bring to light
the main ideas and the motivation behind the employment of ROMs. Thus we
will move towards specific techniques to ensure the well-posedness of OCP(u)s
in a reduced saddle point setting, in Section 3.2. In this Chapter we will deal
with the three-equation setting, while the topic of the no-control framework is
postponed in Chapter 5.

3.1 Preliminaries

This Section focuses on the motivations and the assumptions underlying the
application of ROMs to OCP(u)s. First, we will discuss how ROMs can be
employed in order to reach faster simulations w.r.t. standard space-time or FE
approximations. This will be the topic of Section 3.1.1. Then, in Section 3.1.2,
we will show some crucial assumptions to deal with efficient well-posed reduced
simulations for several parametric instances.

3.1.1 Reduced Order Approximation

In this Section, we aim at providing basic knowledge about ROMs for OCP(u)s.
Along the Thesis, we tried to point out clear that OCP(u)s are very useful and
complete models. OCP(u)s have been employed as a data-assimilation tool in
several scientific fields. The importance of a parametric setting is undoubted
in many contexts: indeed, a parameter g € D C R? can describe physical or
geometrical configurations and the OCP(u)s are exploited to better study and
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deeply understand the considered physical phenomenon one is interested in. In
this specific context, the parametrization can be not only present in the physics
or the geometry of the optimality system, but it can also arise in the observation
and OCP(u)s might be employed to respond to the need of driving the model
solution towards a parametric instance, this for several values of u. However,
solving OCP(u)s with standard discretization techniques, i.e. in a high fidelity
fashion, is related to large computational costs. Indeed:

o the optimal solutions derive from the system (1.10) which consists of three
equations, i.e. the state equation, the adjoint equation and the optimality
equation. This is a complication w.r.t. standard solutions of PDE(u)s
which relies only on one forward problem:;

o OCP(u)s are usually related to time consuming activities such us inverse
problems, parameter estimation, statistical analysis... In other words,
they are usually combined to a large number of simulations for several
values of pu € D.

Nevertheless, those optimality solutions are usually required in a small amount
of time. Indeed, in many applications, an optimization process based on optimal
control strategies must be performed in a real-time context as well as in a many-
query one. Namely, many evaluations of the optimal solution X () are required,
and, furthermore, they are needed in a small amount of time. Among the
applications relying on such a paradigm we can mention forecasting modelling
and management plans modelling guided by data collection. This can be of
interest in many fields, from natural sciences to industrial applications. To
achieve the goal of dealing with OCP(u)s models under parametric actions, we
rely on ROMs. This discretization approach exploits the parametric structure
of the problem builds a low dimensional subspace of the finite dimensional high
fidelity space to represent the changing of the system w.r.t. g € D. Thus, a
Galerkin projection can be performed in this low dimensional framework, say
the reduced space, to solve several parametric instances in a faster way. This
procedure gives us the opportunity to obtain information on the system at hand
in a small amount of time with less computational efforts. The computational
time gained can be employed to better study and analyse the optimal solutions
w.r.t. several parameters. For an introduction to ROMs and the strategies
that can be exploited to build the reduced space, the interested reader may
refer to [64, 123, 125, 133, 134]. For the sake of clarity, we will always specify
the explicit p—dependency in the involved variables to stress the role of the
parametric setting. Let the value p vary in the parameter space D. Thus, we
can define the ensemble of the parametric solutions of the optimality system in
X as

M :={X(p) := (y(p), u(p), () | p € D}.
Here, no distinction is made for steady and time-dependent problems. In the
first case we define X =Y x U x Y, while we will consider X = Yy x U X Vr
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for time-dependent OCP(p)s. We assume that the set M, i.e. the continuous
solution manifold, to be smooth w.r.t. the parameter . Now, let us suppose
to have applied some kind of approximation of the continuous space X: namely
let XV € X be an high fidelity approximation of the continuous function space.
Here, we consider both steady and time-dependent problems. Indeed:

o for steady OCP(u)s, N will represent the global dimension of a FE space,

o for space-time OCP(u)s, the N will represent the global space-time di-
mension.

If we take into consideration this high fidelity approximation, we can define the
set of all the high fidelity solutions as:

MV = (X ()N = (y(w)", u(pw)", 2(w)") | p € D},

where hy, is N}, for the steady case and h, = N, for the time-dependent space-
time approximation. The same argument applies to the control variable that
is sought in a discrete function space of dimension h, = N} in the steady
framework, while h, = N, in the space-time setting. It is clear that if N is
large enough, MV is a good approximation of M. The goal of ROMs is to rep-
resent the structure of the high fidelity solution manifold MV with a reduced
space of low dimension built through the employment of a linear combination
of snapshots, i.e. high fidelity evaluations of the optimal solution X (u) com-
puted in properly chosen parameters values. The snapshots are collected and
manipulated through the employment of algorithms based on data exploring
techniques. In this contribution we will focus on Proper Orthogonal Decompo-
sition (POD) [15, 30, 35, 64] and Greedy algorithm [29, 64]. Their description
is postponed in Chapters 4 and 5, respectively. For now, let us assume to have
build a low dimensional framework Xy C XV able to capture the behaviour of
the global solution xV () w.r.t. some changes in the parameter p. Namely,
Xy = Y% x Uy x Y%, where Y and Y%, are the reduced space for the state
and the adjoint variables, respectively, and Uy is the reduced function space
for the control variable. Here, we are highlighting a very important concept:
even if the space-time of the FE approximation coincide for state and adjoint,
the reduced function spaces can be different since they are based on the lin-
ear combination of snapshots of different problem variables. Once provided of
these reduced function spaces, a standard Galerkin projection is performed in
the reduced space in order to find a low dimensional optimal solution in a small
amount of time not paying in accuracy w.r.t. the high fidelity optimal solution.
Indeed, the reduced problem reads: given p € D, find X y(p) € X such that

G(X N (1), B p) = (F, B)gnve v VE € Xy, (3.1)

Once again, we do not distinguish between steady or time-dependent problems.
Indeed, the techniques that we are going to present can adapt to both the
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formulations. In Chapter 2 we already pointed out that the strength of the
space-time formulation relies in its similarity with the steady framework. Thus,
the standard reduced techniques we are going to present apply to both the
typologies of OCP(u)s. The main idea behind the ROMs application is that
N is much lower than the high fidelity dimension N'. While the building phase
still depends on A, the projection phase can be performed rapidly for each new
parametric evaluation. In the next Section, we will describe the offline-online
paradigm, which assures an efficient and fast solution of the reduced system for
each new value of pu € D.

3.1.2 Offline-Online Decomposition

This Section focuses on some crucial assumptions one has to guarantee in order
to rely on an efficient application of the ROMs. Indeed, one of the main goals of
reduced approaches is to achieve a rapid solution of the problem at hand. This
aim can be reached assuming that the ROMs can be divided in two stages, an
offline phase and an online phase. The construction of the bases is the crucial
process of the offline phase together with the assembly and the storage of all
the p-independent quantities. After this procedure, given a parameter pu € D,
the reduced optimality system (3.1) can be written as follows:

Dy 2 (X n(1);ya, w)lw] =0 Vw € YL,
D, Z(Xn(p);ya, )] =0 Vk € Uy, (3.2)
D.Z(X n(pn)iya, p)[C] =0 V(e YR.

We recall that Y%, Uy and Y% are the reduced spaces obtained by the ma-
nipulation of the state, the control and the adjoint snapshots, respectively. As
already specified, the Galerkin projection (3.2) is preferable to be performed
in a small amount of time. Let us assume that the equations of (3.2) can be
written as:

DyZ (X N, ya, 1) Z@q )DL X N3 ya)[w],
DuZ (X N;ya, 1) Z@q )Du L (X N ya) k], (3.3)
D.Z(X n:ya, Z@q )D..2%(X n:ya)[C].

Here, the system can be seen as the product of p—dependent smooth functions
0% (u), 0% (1), 0%(n) and p—independent forms

Dy 2% X n,ya)[w], DuZLYNX n;ya) 6], and D, LY X n;ya)[C]-
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In this case, we say that the system respects the affine decomposition paradigm.
It is now clear that, when this happens, the ROMs approach can be divided
efficiently in:

o an offline stage, where the snapshots are manipulated and the basis func-
tions are built. Here, all the quantities that are p—independent are pre-
computed and stored. This stage, that still depends on the global dimen-
sion N, is performed only once.

o An online stage, where the p—dependent quantities are evaluated and
the optimality system (3.2) is assembled and solved. This stage does
not depend on the high fidelity dimension and assures the solution of
the system in a smaller amount of time w.r.t. standard FE or space-time
approaches.

Namely, the reduced projection might be preceded by a more expensive offline
stage, consisting in the bases construction and the assembly of the quantities
that do not depend on p. After this possibly costly phase which, however, is per-
formed only once, the fast projection-based online phase follows. In this stage,
the optimality system (3.2) is solved for several evaluations of the parameter p.

Remark 3.1.1 In the nonlinear case, even when the structure (3.3), i.e. the
affinity w.r.t. the parameter p, is verified, the nonlinear forms still depends on
XN(p,), Thus, both the offline and the online stages involve the assembly (and
projection) of the high fidelity solution. This issue can be tackled through the
employment of hyper-reduction techniques such as the Empirical Interpolation
Method (EIM). The interested reader may refer to [17] or to [64, Chapter 5].

We have underlined the usefulness of reduced approaches and how they can be
applied to accelerate simulations. We stressed that this is of utmost importance
most of all in a parametric optimal control context, where a system of three
equations must be solved for several parametric instances. The following Section
deals with the reduced structure of the problem at hand and the techniques that
are usually employed to guarantee the well-posedness of the reduced optimality
system (3.2).

3.2 Well-Posedness of Reduced Order OCP(u)s

This Section focuses on the structure of the reduced optimality system and on
the specific techniques that assure its well-posedness in most of the PDE(u)s
we have introduced in the previous Chapters. We start highlighting the reduced
saddle point structure in Section 3.2.1. Then we will introduce the aggregated
spaces strategy together with the supremizer stabilization for Stokes and Navier-
Stokes problems in Section 3.2.2.
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3.2.1 Reduced Order Saddle Point Structure

As already specified in Chapters 1 and 2, PDE(u)s constrained optimization
problems lead to an optimality system that can be recast in saddle point for-
mulation. Let us take into consideration the linear problems. At the continuous
level, this holds when the constraints are linear PDE(u)s, both in the steady
[21, 26, 67, 111, 110, 144] and in the time-dependent case [65, 66, 111, 110, 143,
144, 146, 150]. However, we have shown that this still holds true at the discrete
level [65, 66, 143, 144, 146, 150]. For the sake of clarity, we recall the high
fidelity structure of the linear problem at hand. In Chapter 2, we showed that
the discretized OCP(u)s can be written as follows, for a given pu € D:

GX =F, (3.4)
where G has the following saddle point structure
A BT
o[t %) 55

In order to lighten the notation, we are omitting the parameter dependence
from the matrices and from the vectors of the discrete system we are analysing.
The main features of the saddle point structure proposed in (3.5) is that its
well-posedness strictly relies on the the inf-sup condition of the state equation
represented by the matrix B, besides the invertibility of A. Namely, w.r.t. the
state equation, given a p € D, the following inequality must hold:

. zTBx
inf sup

072 04 [|X[|vxullzlv ") o

see [11, 27, 28] as references. In Chapter 2, at the discrete level, we showed that
the relation (3.6) is verified thanks to the assumption of the coinciding space for
the state and the adjoint variable, while A the invertibility simply derives from
its features. However, as already specified, in the ROMs setting, even if the high
fidelity space is the same for both the variables, the two reduced spaces Y%, and
Y% may not coincide. Indeed, the ROMs bases construction relies on snapshots
manipulation and the space spanned by the state variable can be different from
the one spanned by the adjoint one. Let us suppose to have applied a standard
reduction algorithm that led us to basis functions for the state, the control and
the adjoint variables respectively defined as:

Y% =span {x%, n=1,...,N},
Uy =span{x,, n=1,...,N},
Y =span {x7, n=1,...,N}

Here, for the sake of clarity, we are assuming that all the three reduced spaces
have all dimension N. Thus, we can build the basis matrices

— Z}’ o Zx
Z, = |:Zu:| , Z, and = [Zj ,
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where Z, = [x7] - |x%] € R"™>*¥ and an analogous definition can be given for
the matrices Z, € R"*N and Z, € R"*N_ When the spaces have been built,
the optimality system (3.4) is solved in a low dimensional framework through
a Galerkin projection into the reduced spaces. The reduced system, for each
parametric instance p, thus, reads:

GyXy = Fu, (3.7)
where
Gy :=Z7G, Xy = ZTX, and Fn:=Z"F.
Here,
_[Ax BY
ox = oY % (38)

with Ay = ZI'AZ, and By = ZI'BZ,. The just presented framework is typical of
linear OCP(u)s [110, 111, 145, 146]. However, the same saddle point structure
is present in the solution of nonlinear problems through Newton’s method, as
we have already seen at the high fidelity level in Section 2.2. Here, we report
the reduced version of nonlinear OCP(u)s. Once again, we are not making
difference between time-dependency or steadiness, since the algorithms we are
going to show in Chapters 4 and 5 are suited to both the problem formulations.
We recall that, in the nonlinear setting, we want to solve a problem like

G(X)X = F, (3.9)

where the right hand side still depends on the global high fidelity variable X.
Employing a Galerkin projection into the reduced spaces, as we did for the linear
case, we obtain the following reduced nonlinear optimality system:

GN(Xn)Xy = Fn, (3.10)

where Gy (Xy) := ZTG(ZXy) and Fy is defined in analogy with the linear case.
The system (3.10) inherits the nonlinearity from the high fidelity one. Also in
the reduced setting we can rely on Newton’s method and iteratively solve

XA = X3, + Jacy (X4) "HF N — GIX4)XA), jeN, (3.11)
where the Jacobian matrix is ohf the form
_ AN BTA} XN
JacN(XN)XN = l:BN 0 :| |:ZN s (3.12)

with Jacy (Xy) = Z7Jac(ZXn)Z, Ay = ZI'AZ, and By = ZI'BZ,.
These formulations imply that, also at the reduced level, we need to guarantee
the fulfillment of the reduced inf-sup condition of the form

T
ZNBNXN

inf sup > Bn(p) > 0. (3.13)

02y 04y XN [lyxullzn]ly
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It is clear that the inequality is provable when the reduced spaces for the state
and the adjoint variables coincide. However, we already pointed out that this
property does not directly derive from the coincidence of the spaces at the high
fidelity discrete level. To assure the well-posedness of the system, then, we need
to modify the bases functions. In the next Section, we will show the techniques
we exploit to reach this goal.

3.2.2 Aggregated Spaces and Supremizer Stabilization

In this Section, we will introduce two techniques which will guarantee the ful-
fillment of the inf-sup stability condition for reduced OCP(u)s: the aggregated
space strategy and the supremizer enrichment. The aggregated space technique
has been widely exploited in the steady setting [12, 13, 44, 51, 79, 80, 110, 111,
127]. However, it can be applied also to more general problems, such as time-
dependent and nonlinear ones [147, 146, 148]. As already specified in Section
3.1.2, we are assuming that standard reduced algorithms might lead to three
different spaces for the state, the control and the adjoint variables. Besides, we
already remarked that, if the state and the adjoint spaces coincide at the high
fidelity level, they might be different at the reduced one. The aggregated space
manipulates the basis functions in order to prove the inequality (3.13). The
aggregated space reaches this goal building a common space for both the state
and adjoint variables. Namely, the new spaces are given by

Yy =span {x¥,x;, n=1,...,N}, (3.14)
Uy =span{x,, n=1,...,N}. (3.15)

After this procedure, the basis matrices are:

_ Zx — Z‘/
= [ZJ and Z, = [ZJ ,

where Z, = Z, = [X{|---[x%[xi| - IXF] € RN and Z, = [x{]---[x}] €
RM*N This technique is actually increasing the dimension of the global sys-
tem since the global reduced dimension is 5N. Still, exploiting aggregated ROMs
for OCP(p)s will result in a computational advantage in terms of time needed
for parametric simulations.

Now, we are going to introduce the supremizer enrichment. We recall that the
OCP(u)s governed by Stokes equations can be recast in saddle point framework,
as we said in Section 2.3.2. The same also holds for the evaluation of the Jaco-
bian of the Navier-Stokes equations which can be recast in a saddle point due
to the linearization of the nonlinear framework proposed in Section 2.2. Dealing
with Stokes and Navier-Stokes equations leads to a nested saddle point struc-
ture. Indeed, not only the global inf-sup condition (3.13) has to be taken into
account, but also the inf-sup condition related to the controlled state equation.
Let us recall the main ingredients of a Stokes (or Navier-Stokes) problem. The
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variables involved are v € V, p € P and u € U: they represent the velocity state
variable, the pressure state variable and the control variable, respectively. As
we already specified, in this Chapter the notation V comprises both the steady
and the time-dependent case. The same applies to the other function spaces P
and U. Now, defining the continuity matrix as

Dij = b(¢', 1), (3.16)
v P
where {¢*}NFE and {y*},FF are the FE basis functions for the velocity and
pressure spaces V and P and b(-, -) represents the continuity constraint of Stokes
(and Navier-Stokes) equations. Thus, the following inf-sup stability condition
must be verified

D
5% () == inf sup il

POV 35 () > 0. (3.17)
o0 0 VTPl

The inf-sup stability condition (3.17) is essential in Stokes (and Navier-Stokes)
problem to guarantee the solvability of the system. Indeed, the saddle point
structure of the state equation is quite straightforward to visualize in the steady
case, see e.g. [128], but also in the time-dependent framework as one can notice
from the continuous formulation in equation (1.52) and in the discretized setting
of the form (2.40). At the reduced level, once performing a Galerkin projection,
we end up with Dy := ZpTDZV, where Z, and Z, are the basis function matrices
for velocity and pressure, respectively. Now we want to understand the velocity
space that will be able to guarantee the following reduced inf-sup condition:

T
) pyvDnvN 5
Br(p) == inf sup —N—" > BY (1) > 0. (3.18)
0#pn 0vy IV [[vl[Pw e
To build the reduced velocity space, we employed the supremizer stabilization,
see e.g. [136] This approach is based on a supremizer operator TH : Ph» — Vho
as follows:

(T“Sa ¢)V = b(¢a 53 p’)a ng) € th . (319)

Then, the reduced velocity space is enriched thanks to the the pressure suprem-
izers as follows:

T,
VN :Span{XZa XEP»XZ”» an7 n= ]-7"'7N}7

where XZP and X:z’” are the supremizers basis functions obtained through the
state and the adjoint pressure snapshots, respectively. Enlarging in this way
the reduced space for the velocity variable will guarantee the fulfillment of the
inf-sup condition (3.18). The stability of this strategy has been numerically
demonstrated in [15, 51, 110, 133, 135]. Here, for the sake of clarity, we report
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the final reduced spaces employed for all the considered variables:

Vi = span{x?, x1r, x, xzz”, n=1,...,N},
Py =span{x?, x>, n=1,...,N}
Uy =span{xy, n=1,...,N},

where Vy and Py have been exploited both for the state and the adjoint velocity
and pressure variables. This reduced technique, that relies on the supremizer
stabilization and the aggregated spaces, guarantees the inf-sup stability of a
whole optimlaity system based on Stokes or Navier-Stokes equations. Even
if the reduced dimension increases from 3N to 13N, the ROMs will be still
convenient if compared with the high fidelity approximation.

Remark 3.2.1 We stress that, while in the linear context the inveritibility A is
inherited from the continuous well-posedness of the problem!, at the nonlinear
level, the definition of A comprises some additional terms deriving from the
linearization of the adjoint equation w.r.t. the state variable and the (problem
dependent) proof might be not so straightforward.

In the next Chapter, we will show some first numerical results through the
employment of the POD, aiming at showing how ROMs for OCP(u)s can be
useful in many scientific contexts. Among them, we will focus on environmental
sciences, proposing some OCP(u)s based on real case scenario studies, from
pollutant release control to coastal management.

IThe assumption of the coercivity of the bilinear form A(-, -; u) over the kernel of B(-, -; u)
is still provable with Brezzi Theorem standard argument.



CHAPTER 4

Space-Time Proper Orthogonal
Decomposition for Parametric Optimal
Control Problems

This Chapter focuses on the POD Galerkin algorithm applied to time-dependent
OCP(p)s [16, 146, 147, 150] in a space-time fashion. The space-time POD is
a very versatile technique. Its strength relies in the capability to be adapted
to a broad class of governing equations. After a brief description of the algo-
rithm in Section 4.1, we will first present some preliminary results for linear
time-dependent equations in Section 4.2. Thus, in Section 4.3, we will move
towards a more complicated problem: a coastal management application gov-
erned by nonlinear viscous Shallow Waters Equations (SWEs). This model is
more difficult to analyse, however we will show the advantages deriving from
the space-time POD, even in this complex context.

We recall that the algorithm will be described making no distinction between
time-dependency and steadiness. Indeed, the technique easily adapts to steady
problems and the related numerical results are postponed in Chapters 6 and 7.

4.1 The Proper Orthogonal Decomposition

In this contribution, we will mainly rely on two different strategies to per-
form the building phase of the reduced framework for OCP(u)s: the POD
[15, 30, 35, 64] and the Greedy algorithm [51, 64, 110, 111, 136]. This Sec-
tion presents the first strategy, while we will address the latter in Chapter 5.
The main feature of the POD is that it can be applied to any governing state
equation: indeed, it does not require, as Greedy-based techniques, an error es-
timator. Such an estimator, for example, is still not available for nonlinear
time-dependent OCP(u)s, i.e. the type of problem we are going to treat in
Section 4.3. Let us start describing the algorithm and how it manipulates the
snapshots in order to build the basis functions for the state, the adjoint and the
control variables.

First of all, the POD-Galerkin algorithm collects Npax snapshots { X (g, )} mex
with p* € Dy,.. C D. The set Dy, .. will be called the training set. Besides
this exploratory phase, a compressing stage is performed, where N < Ny, .5 basis
functions are built through snapshots manipulation getting rid of the redundant
features of the system at hand, retaining the most important parametric infor-
mation, only. Namely, the POD wants to compress the data related to sampled
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manifold
M,

o = XN () | € Dy, } MY

It is clear that, when Ny .y is large enough, the sampled manifold Mf\vfmw is a
reliable representation of the high fidelity solution ensemble M#. The numerical
tests we are going to show in this thesis have been reduced through a partitioned
approach: i.e. the POD algorithm have been separately exploited for each in-
volved variable'. The partitioned procedure provides (at least) three different
N —dimensional reduced spaces which minimizes the following quantities:

1 .
\/N > min yMe(p) —wyl?,

wWN cyY
HEDNpax N

1
i N — 2
\/Nmax S min e () — mxl,

MEDNmax
S min [N () — Gl
Nmax HED Ny CNEYE, Y

For the sake of brevity, we will describe the data compression phase only for
the state variable y(p). However, the proposed techniques identically apply
to the control and the adjoint variables as well. Let us consider the set of
ordered parameters gty,..., ¢y € Dy, . This parametric set is related to
the ordered snapshots y™v (p,), . ..,y (ky,. ). Let CV € RNmaz*Nmas e the
correlation matrix of the snapshots of the state variable, i.e.:

1

C?:nl - T(yNy (y'm)’yNy (y’l))Ya 1< m;l < Niaa-

First of all, the following eigenvalue problem is solved:

CVz¥ = A\a¥, 1<n<N,
where [|z%|ly = 1. Let us sort the eigenvalues AY,...,X{, in decreasing order
and let us retain the first N ones, namely Y, ..., A% together with the related
eigenvectors z,...,2%. Here, (2%),, represents the m-th component of the
state eigenvector x¥ € R¥mez. Once the compression process is terminated,
the following relation between basis functions and eigenvalues-eigenvectors pairs

holds:
N’V?l axr

D @)™ (1), 1<n<N. (4.1)

m=1

Xn = L

1The main motivation for the use of three different PODs is given by the better perfor-
mances in the errors between reduced and high fidelity solutions. Indeed, employing a parti-
tioned approach combined with aggregated space technique is a common choice in many works
in literature. The benefits of this strategies have been experimentally shown, for example, in
[13, 80, 110, 110, 145, 168].
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Equation (4.1) is well-known in data-compression-based algorithms, see e.g. [64,
125].

Remark 4.1.1 As already specified in Chapter 3, in the presented context, no
distinction between time-dependent and steady problems is made. Indeed, when
dealing with time-dependent OCP(u)s, the time instances are not separated in
the POD procedure. Namely, the space-time problem is treated as a steady one
and each snapshot carries all the information about time evolution.

It still remains to give a criterion to decide the values of Ny, and N. The
choice can be made performing an eigenvalue analysis of the correlation matrix.
Indeed, the following relation holds [64, 125]:

N N
1 max max
N Dol () = TIn @ () = | D Ay (42)
max. =1 m=N+1

where Iy : Y — Yp projects functions in Y onto the state reduced space
Yxn. The right hand side of (4.2) gives information on how well the space is
approximated using N basis over the chosen training set. A tricky aspect to take
care of is the sampling strategy for the NV,,,, parameters employed in the POD.
The sampling can be guided by some previous knowledge about the system.
This topic will be treated in detail in Chapter 6.

As pointed out in Chapter 3, the same high fidelity representation for the state
and the adjoint variables does not guarantee the coincidence of the reduced state
space and the reduced adjoint space merely applying a standard POD approach.
Thus, we employed aggregated space technique as described in Section 3.2.2.
Namely, the final spaces are:

Yy =span {x¥,x, n=1,...,N}, (4.3)
while for the control variable we rely on the standard space construction, i.e.
Un =span{x,,, n=1,...,N}. (4.4)

As already pointed out in Remark 4.1.1, the proposed POD-Galerkin technique
is suited to both steady and time-dependent problems. However, in the following
Sections, we will focus on the time-dependent cases and we will show some first
numerical results to heuristically prove the advantages of exploiting POD for
time-dependent nonlinear OCP(u)s.

4.2 Some Preliminary Numerical Results

In this Section we propose some first results on space-time POD-Galerkin ap-
plied to linear time-dependent OCP(u)s. We will focus on two test cases
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o (Section 4.2.1) a boundary control for a Graetz flow;

o (Section 4.2.2) a distributed control for a Stokes cavity flow problem.

The two examples are the ones presented in [146]. They aim at paving the way
to the application of the POD-Galrkin approach to more complicated equations,
as we will see in Section 4.3.

4.2.1 The Graetz flow OCP(u)

Here, we present results concerning a time dependent OCP(u) governed by
a Graetz flow under physical and geometrical parametrization. Indeed, the
parameter is p = [u1, pio, u3] € D = [1/20,1/6] x [1/2,3] x [1, 3]. In this specific
context, us will represent the geometrical parameter, while u; and po denote,
respectively, the diffusivity coefficient of the system and the temperature profile
ya we want to reach in the observation domain Qg4(us) := [1,1+ pg] x [0,0.2] U
[1,1 4 pg] % [0.8,1]. The whole physical domain € is shown in Figure 4.1. The
control variable acts over the boundary I'c: = ([1, 14u3]x {0})U([1, 14+us3] x{1}).
The portion of the boundary I'p = ({0} x [0,1]) U ([0,1] x {0}) U ([0,1] x {1})
is where Dirichlet boundary conditions have been applied, while, in 'y (u3) =
{1+ ps} x [0,1] Neumann boundary conditions apply. Namely, the value of
13 stretches the length of the subdomains Q9(ug) := [1,1 4 us] x [0.2,0.8] and
Qq(p3). For this test case, we consider y € Yy with Y = H\(Q(us)) and u € U
where U = L?(T'¢(u3)). The PDE-constrained minimization problem reads:
given pu € D, find the state-control variable (y,u) € Yy x U such that:

min 7/ / (y — ya(p2))?dzdt + = / / u?dadt, (4.5)
Yoxu 2 Qs (p3) T'c(ps)

constrained to the equation

0 .
v+ Ay +ea(l—a2) 57 =0 in Q) x (0,7)
1
Yy :8 on I'p(us) x (0,7),
,ula—TyL =u on To(us) x (0,7), (4.6)
0

e =0 on T (ps) % (0,T),
Y =1 in Quz) x {0}

Here, x1 and x5 are the spatial coordinates, yg is the null function in  which
respects the boundary conditions, T' = 5 and yg(ue) = pe is the desired state
field. The first step of the solution of this OCP(u) relies in its trace back in the
reference domain that correspond to us = 1.
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(0,1) (1,1) Lo(ps)  (1+ps, 1)
Qs(us)
I'p O Q2(p3) L (ps)
Q4(M3)
(070) (170) (1—|—,LL3,0)

Figure 4.1: Graetz flow, boundary control. Domain Q. Observation domain: Qq(pz) =
Q3(p3) UQ4q(psg), Control domain: I'c(us) (red dashed line). Blue solid line: Dirich-
let boundary conditions. The reference domain 2 is given by pusz = 1.

_ _
— —
High Fidelity State Variable t=1s Reduced State Variable t=1s
1.0e+00 2 3.4e+00 1.0e+00 2 3.4e+00

— — — —

High Fidelity State Variable t=4s Reduced State Variable t=4s
1.0e+00 2 3.3e+00 1.0e+00 2 3.3e+00

— —

Figure 4.2: Graetz flow, boundary control. Left. FE state solutions for t=1s,4s for p =
(12.0,2.5,2.0). Right. Reduced state solutions for t=1s,4s for p = (12.0, 2.5, 2.0).

High Fidelity Adjoint Variable t=1s Reduced Adjoint Variable t=4s
0.0e+00 0.02 5.5e-02 0.0e+00 0.02 5.5e-02
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High Fidelity Adjoint Variable t=4s Reduced Adjoint Variable t=4s
0.0e+00 0.02 4.4e-02 0.0e+00 0.02 4.4e-02

— —

Figure 4.3: Graetz flow, boundary control. Left. FE adjoint solutions for t=1s,4s for pu =
(12.0,2.5,2.0). Right. Reduced adjoint solutions for t=1s,4s for p = (12.0, 2.5, 2.0).
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Figure 4.4: Graetz flow, boundary control. Comparison between high fidelity and reduced control
variables for p = (12.0,2.5,2.0). Left. Solutions for ¢ = 1s. Right. Solutions for
t = 4s. In both cases, the two approaches coincide.
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Figure 4.5: Graetz flow, boundary control. Averaged relative log-error for the variables.

The time step interval is given by At = 1/6 which divides [0,7] in Ny = 30
subintervals. While the time discretization has been performed by means of
Euler schemes, the FE spatial approximation involves P! elements for all the
variables. The global space-time dimension is N' = 313’830. The POD-Galerkin
algorithm has been applied to compress the information of N4, = 70 snap-
shots?. We consider N = 35 basis functions for each variable, separately. Thus,
after employing the space aggregation technique, the reduced system presents

2 The number of collected snapshots was highly affected by the complexity of the space-time
system, characterized by high computational costs.
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a global dimension of 5N = 175. The approach gives promising results, as can
be noticed in Figures 4.2, 4.3 and 4.4 where some representative space-time
solutions and ROM solutions are compared for different time instances and
p = (12.0,2.5,2.0), for the state, the adjoint and the control variables, respec-
tively. The space-time POD is able to recover the high fidelity fields, regardless
the time value t; taken into account. Furthermore, we studied the accuracy of
the reduced model studying the behaviour of the log-error plot in Figure 4.5.
The error has been averaged over a testing set of 50 uniformly distributed pa-
rameters. We notice that the POD-Galerkin approach is very effective for all
the involved quantities reaching values around 10~ for the state and the control
variables, and around 103 for the adjoint variable. Furthermore, we conclude
analysing the speedup index. With this terminology, we define the number of re-
duced systems that can be solved in the time of an high fidelity solution. In this
case, the speedup is remarkable, reaching values around the order of O(10°).
This is an experimental proof of the advantages given by the use of ROMs for
time-dependent OCP(u)s. The next Section focuses on a classical example in
fluid dynamics: an OCP(u) governed by Stokes equations. Also in this setting,
we will show how convenient using ROM might be in order to study several
parameterized configurations in a space-time fashion.

4.2.2 Cavity Viscous Flow OCP(u)

We now propose a time-dependent OCP(u) governed by Stokes equations in
a cavity flow setting. The test case has been analysed in [146] and it is an
extension of the numerical experiments presented in [65, 144] under physical
and geometrical parametrization. Since we are dealing with Stokes equations,
we exploited a standard FE P2 — P! pair to deal with the state and adjoint
variables, composed by the velocity field together with the pressure field.

(071) (171) (N271)
Lrn(p2)
Lp(p2)
(0,0) (1,0) (p12,0)

Figure 4.6: Stokes flow, distributed control. Domain Q. The reference domain is given by ps = 1.

At the high fidelity level, the control variable has been discretized with P? FE.
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Recalling Section 2.3.2, with Nj 5, N% and Njy, we indicate the FE function
space dimensions for the state velocity and pressure fields (and by construction
of the related adjoint variables) and for the control variable, respectively. For
this specific test case, we obtain Njgp = Npp = 4554 and N%., = 591. The
dimensions derive from a triangulation over the domain depicted in Figure 4.6.
The considered problem deals with the minimization of the functional (1.45)
with (1.46) as state equation: i.e. a velocity solution tracking problem governed
by Stokes equations. We now summarize all the information about the numerical
test. As already specified in Section 1.2.3, the value of p; changes the diffusivity
action of the system, while the parameter us affects the geometry of the spatial
domain, stretching it. First of all, as we did for the previous test case, the
domain is traced back into the two dimensional square  := (0,1) x (0,1) as
reference domain. The portion I'yy = (0,1) x {1} is the inlet boundary, while
I'p = 0OQ\I'; N is where homogeneous Dirichlet boundary conditions are applied.
Here, with the notation I'p and I'yny we refer to the traced back boundaries
I'p(p2) and T'yn(ps), respectively. Since Dirichlet boundary conditions apply
on the whole boundary 99, we assumed p € P = L?(0,T; L(Q(u2))), where
L3((u2)) is the space made by functions p € L?(2(u2)) which satisfy

/Qp dQ =0, (4.7)

in order to guarantee a unique solution for the pressure variable®. The parameter
space is D := [1073,107!] x [1, 2.5], while the velocity profile we want to reach is
the FE solution of the uncontrolled time-dependent Stokes equations endowed
with an inlet constant velocity of components (1,0) in I';x and homogeneous
Dirichlet boundary conditions in I'p, for g1 = 1 fixed. The simulation gives
the evolution of the target velocity in (0,T") = (0,1), which is the time interval
we are taking into consideration for this numerical test. We stress that for the
OCP(p) at hand we used a different time-dependent inlet boundary condition,
i.e. v = (14 0.5cos(4nt — ),0) over I'yy for ¢ € (0,7) = (0,1). The action of
the distributed control u reduces the impact of the periodic inlet over the sys-
tem. The time discretization is Euler-based with At = 0.05, i.e. N; = 20. Thus,
the global dimension of the optimality system is A/ = 296880. The dimen-
sionality of the system has been reduced exploiting a partitioned POD-Galerkin
approach over Npyax = 70 snapshots®. For each correlation matrix we built
N = 25 basis functions. The global reduced dimension is 13N = 325, taking
into account supremizer stabilization combined to aggregated space technique
applied to tackle the nested saddle point problem that arises in OCP(u)s gov-
erned by Stokes equations. A comparison between high fidelity and ROM state

3In the reduced model we employed aggregated space technique after a post-processing
of the adjoint pressure variables. They have been made with null mean, since the reduced
variable py still needs to verify the constraint (4.7). In this way, also the adjoint pressure
variable has a null mean, even if not required by the problem formulation.

4See footnote 2.
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velocity and state pressure profiles is depicted in Figures 4.7 and 4.8, respec-
tively: the simulations coincide for different time instances for the representative
parameter u = (1072, 1.5). For the sake of brevity, we did not show the control
and the adjoint variables, however, the accuracy of the model is visible in plots
in Figure 4.9, where the average relative log-error® w.r.t. N is presented over a
testing set of 35 uniformly distributed parameters. The relative error is about
1073 for all the involved variables. Also in this test case, the speedup reaches
very good values. For N = 25 the value is around 6-10* thus, the POD-Galerkin
approach could be very useful for this kind of system in a parametric setting.

High Fidelity State Velocity t=0.35s
0.0e+00 04 0.6 8.8e-01
-_—
D ———

Reduced State Velocity t=0.35s
0.0e+00 04 0.6 8.8e-01
| |

High Fidelity State Velocity 1=0.7s
0.0e+00 0.5
|

Reduced State Velocity t=0.7s
1 1.5e+00 0.0e+00 0.5 1 1.5e+00
| I |

Figure 4.7: Stokes flow, distributed control. Left. FE state velocity solutions for t=0.35s,0.7s
for p = (1072,1.5). Right. Reduced state velocity solutions for t=0.35s,0.7s for
p=(1072,1.5).

5To make the high fidelity and ROM adjoint pressures comparable for the error analysis
we define

zé\[y ::2;?\@— E;,\/ydx,

Q

_N,
where z;, ¥

constraint.

is the high fidelity adjoint pressure, which is not required to verify the null mean
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High Fidelity State Pressure t=0.35s Reduced State Pressure t=0.3s
-7.6e-01 0 7.8e-01 -7.6e-01 0 7.8e-01

— —

High Fidelity State Pressure t=0.7s Reduced State Pressure t=0.7s
-2.0e+00 0 1 2.1e+00 -2.0e+00 0 1 2.1e+00
|

Figure 4.8: Stokes flow, distributed control. Left. FE state pressure solutions for t=0.35s,0.7s
for p = (1072,1.5). Right. Reduced state pressure solutions for t=0.35s,0.7s for
p=(10"2,1.5).
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Figure 4.9: Stokes flow, distributed control. Averaged relative log-error for the variables.

The next Section concerns a nonlinear time-dependent problem and it will treat
a coastal marine environmental application. Namely, these first results were
meant to validate the space-time POD procedure in a simpler setting in order
to apply it to more complicated problems, such as the one that follows.
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4.3 The Nonlinear Viscous SWEs Model

We now want to apply the space-time POD-Galerkin methodology to a more
involved problem: an OCP(u) governed by viscous SWEs. The model is an
asset of growing impact in environmental sciences and, more specifically, in
coastal management. This kind of scientific field needs to be highly supported by
computational real-time simulations. The ultimate goal is to build an OCP(u) s
based on such a model, able to forecast and eventually tackle possible dangerous
phenomena. In this contribution, we will focus on the formulation of [147] and
the numerical results presented in [16]. First of all, we are going to describe
the model at hand in Section 4.3.1, remarking its usefulness in coastal sciences.
Section 4.3.2 will test the space-time POD-Galerkin approach for a viscous SWE
model that presents physical and geometrical parametrization.

4.3.1 Problem Formulation

The viscous SWEs are a very versatile model in the marine environmental
field. Indeed, they have a remarkable impact on coastal engineering due to
its capability to study not only the marine behaviour on shores and coasts,
but also a wide range of marine phenomena such tsunamis waves, global cur-
rents dynamic... [34, 160]. The state equations together with its controlled
version have been tackled analytically and numerically in many works, see e.g.
[3, 4, 5, 6, 50, 105, 104, 103, 131, 132, 153]. However, few contributions have
been appeared in a reduced setting. A reduction of the time evolution through
POD has been exploited in [141, 142] for the uncontrolled state equation, while
in [16, 147] a space-time POD-Galerkin approach is used to study several para-
metric instances in an optimal control framework, building on the standard two
dimensional viscous model presented in [3, 105]. We now present the features of
the parametric setting proposed by [16, 147]. Let pu = (1, pi2, p13, p14) € D C R*
be a parameter that changes the physical behaviour of the system together with
the geometry of the domain we are dealing with. Indeed, the physics will be
represented by p1, pe and ps, while the latter parameter will act on the space
domain. We will describe them more specifically later on in the Section. For this
specific test case, we define the following function spaces Y, = H%Dv (u4)(Q(”4>)’
Yy, = L*(Q(p4)) and the space U = L*(€(u4)). The notation I'p, (,,) repre-
sents where Dirichlet boundary conditions have been imposed over the boundary
OQ(pea). The variables of the state problem are:

o the vertically averaged velocity vector field v;

o the scalar surface elevation variable h.

The authors in [16, 147] restrict themselves to the setting of constant bottom
bathymetry z;. However, z; can represent more realistic bathymetry, such as
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slopes for examples, see e.g [50, 132, 131]. Figure 4.10 shows a schematic de-
scription of the quantities we have just introduced.

>

Azy

I

Figure 4.10: SWEs model. Notations: schematic representation.

The function spaces for the state velocity and the state height are, respectively:
Y, = {v € L2(0,T; [Y,]?) such that v, € L*(0, T; [Y;F)},

and

Y = {h € L2(0,T;Yy) such that hy, € LQ(O,T;Yh*)}.

In this setting, the global state function space will be denoted by Y := Y, X V.
Moreover, another function space is needed for the control variable: thus, let
U := L%*(0,T;[U]?) be the function space where the control variable will be
sought. We present a distributed OCP(u): in this setting, you are not actually
able to control the system since the forcing term represents natural quanti-
ties such as the bottom friction and the pressure on the surface of the fluid.
However, the OCP () can be interpret as an inverse problem able to forecast
the external physical conditions needed to reach a desired velocity-height ob-
servation (v4,hq) € Yops := Q, X Qp, where Q, := L2(0,T; [L*(2(u4))])?) and
Qp = L*(0,T; L*(2(u4))). The constrained minimization problem reads: given
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p € D find (v, h) € Y which minimizes J((v, h), u, (vq, ha)), where

J((’U,h), ’Ud,hd / / h hd [Lg)) dﬂ(u4)d (48)

Qp 4)

1 2

5 (v —va(us))“dQ(pq)dt
0 JQ(pa)
+ g/ w?d(py)dt,

2Jo Jau)
such that

—p1Av 4 pe(v-V)v+gVh—u =0 in Q(ug) x (0,7),

ht + div(hv) =0 in Q(pg) x (0,7,

v =g on Q(pg) x {0}, (4.9)
h = hg on Q(pg) x {0},

v=0 on 00(ug) x (0,7T).

Remark 4.3.1 Here, the velocity is such that v € L?(0,T;[Y,]?) and v, €
L2(0,T;[Y,*)?), while h € L*(0,T;Y3), hy € L*(0,T;Y3") and the control u €
L*(0,T; [U?), where Yy, = U = L*(Q(pa)) and Y, = Hi (Upa)). Thus, since
it holds

Y, 5 U<Y,,

the first equation makes sense as a sum of terms in L?(0,T;[Y,*]?). Instead,
the second equation can be interpret as a summation of terms in L?(0,T;Y, ).
Indeed, exploiting standard regularity results for Navier-Stokes equations [39], h
is actually in L?(0,T;Y,) and thanks to the three-dimensional Sobolev embedding
theorems, we have hv € L2(0,T;[Y,])?) and div(hv) € L?(0,T;Y,) to due the
inclusion Y, — Y, .

From now on, we will assume that the OCP(u) at hand is well-posed®, The
SWEs (4.9) represent the free surface of incompressible flows verifying hydro-
static pressure: this assumption holds when the water height h is much lower
than the wavelength. This is a classical framework for coastal marine simula-
tions.

For this specific test case, we have three physical parameters: p; and ps will
represent diffusive and convective actions of the fluid while pz will define the

6To the best of our knowledge the well-posedness of OCP(u)s governed by the two-
dimensional SWEs has not been treated in a Lagrangian context in a parametric setting.
We believe that the proof can be performed following the same techniques used in [67, Section
1.8.1] for Navier-Stokes equations.
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desired solution profile. The geometry changes through p4. The problem can
be solved exploiting the Lagrangian formulation described in 1.1.1. Here for the
sake of brevity, we will report only the final optimality system in strong form.
The reader interested in its variational formulation and in its detailed construc-
tion may refer to [147]. The problem reads: given u € D, find ((v, h),u, (2,q)) €
Y x U x Y such that

v—2z— 1Az — po(v-V)z
+ua(Vo)tz — hVq = va(ps) in Q(ug) x (0,7),
h—q—v-Vq— gdiv(z) = hq(us) in Q(uq) x (0,7),

z=0 on 00Q(pg) x (0,T)

z=0 on Q(ug) x {T},

q=0 on Q(ua) x {T}, (4.10)
au =z in Q(pa) x (0,7

vy — 1 Av + pe(v-V)o +gVh=u in Q(ug) x (0,7),

ht + div(hv) =0 in Q(pg) x (0,7),

v=0 on 0Q(pa) x (0,7),

v =1 on Q(ug) x {0},

h=hgo on Q(pq) x {0},

where the adjoint variable is represented by the pair (z, q).

The next Section will show the numerical results related to the optimality system
(4.10) together with a brief description of the high fidelity and reduced strategies
used for this specific test case.

4.3.2 Numerical Results

This Section presents the numerical results related to the application of a space-
time POD-gelerkin approach on the test case discussed in [147] where the au-
thors recast the experiments of [50] in the parametric setting addressed in Sec-
tion 4.3.1. The parameter is considered in D = (0.00001,1.) x (0.01,0.5) x
(0.1,1.) x (1.,1.5). Indeed, the spatial domain is given by Q(us) = [0, 10pu4] X
[0,10]. For the sake of brevity, we do not report a Figure of the domain consid-
ered, since it is totally analogous to Figure 4.6, where the traced back domain
is given for uy = 1. In this specific test case, we considered 2z, = 0 and the wave
time evolution is simulated in the time interval [0,7] with 7" = 0.8s. Further-
more, let us indicate with 1 and x5 the spatial coordinates of the domain. We
want to analyse an OCP(u) that aims at decreasing the effects of the impact
of a mass of water spreading in the domain with an initial Gaussian distributed
elevation under a null initial velocity: i.e.

vo=0, and ho=0.2(1+ sel "G5~ @251
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The optimality system at hand answers to this question: what are the forcing
terms (say wind, bottom friction...) that let us reach a desired state (ugva, psha)?
Here, the desired state (vq, hq) is the solution at time T of the uncontrolled state
equation (4.9), with

vqo = 0, and hao = 26(7(%75)27(“75)%1),
and null external forces, i.e. u = 0.

Focusing on the high fidelity approximation, we exploited linear polynomials
for all the involved variables as proposed in [137]. The time approximation is
Euler-based and we divided the time interval in N; = 8 time steps’, employing
a At = 0.1s. The final high fidelity dimension is A’ = 76352. Now, let us
focus on the reduced approximation. Also in this case, we used a partitioned
approach: five different POD data compression over a the correlation matrices of
dimensions Npy,x = 100 have been performed. We ended up with the following
reduced spaces:

N =span{x,, n=1,...,N},
Y% =span{x", n=1,...,N},
Uy =span{x;, n=1,...,N},
Y% =span{x’, n=1,...,N},
Y% =span{x?, n=1,...,N},

where we retained N = 30 basis functions for all the variables. Thus, after
the application of the space aggregation, we obtain a global reduced space di-
mension of 9N = 270. In this case, no supremizer stabilization is needed. The
SWEs in its uncontrolled version is an hyperbolic system and the exploited
space-time POD-Galerkin approach might give sub-optimal reduction results as
pointed out in several papers, see e.g. [57, 152]. However, this specific test case
seems not to present this case: first of all, it is a viscous SWEs model and,
moreover, the OCP(u) framework changes the system in order to simulate a
less convection-dominated phenomenon. The accuracy of the proposed space-
time POD-Galerkin approach is tested by the relative log-errors in Figure 4.11.
These errors are averaged over 20 uniformly distributed parameters: the use of
N = 30 basis functions for each problem variable leads to values around 103
(it is slightly below for the control, the state and the adjoint elevation). For the
sake of clarity, we show a comparison between some representative space-time
solutions and their reduced counterpart in Figures 4.13, 4.12 and 4.14 for the

7As already specified in Chapter 2, the time discretization can be refined considering iter-
ative techniques [65, 66, 143, 144], for example. Although, in this contribution, for the sake
of simplicity, we always exploited a direct solver for (4.10).
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state velocity, the state elevation and the control at t = 0.1s,0.4s,0.8s, respec-
tively. The last aspect to take care of is the computational time needed for a
reduced simulation.
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Figure 4.11: SWEs model. Averaged relative

log-error for the variables.
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Figure 4.12: SWEs model. Optimal high fidelity and reduced state elevation variable with o =

0.1 and p = (0.1,.01,.1,1.5).

Top. High fidelity solutions for ¢ = 0.1s,0.4s,0.8s.

Bottom. reduced solutions for ¢ = 0.1s,0.4s,0.8s.
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High Fidelity Velocity = 0.1s High Fidelity Velocity t = 0.ds High Fidelity Velocity t = 0.8s
00e+00 05  99e-01 00e+00 1  2.2e+00 0 2 2.86+00
— —_— — o

ROM Velocity t = 0.1s ROM Velocity t = 0.4s ROM Velocity t = 0.8s
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Figure 4.13: SWEs model. Optimal high fidelity and reduced state velocity variable with o =
0.1 and p = (0.1,.01,.1,1.5). Top. High fidelity solutions for ¢ = 0.1s,0.4s,0.8s.

Bottom. reduced solutions for ¢t = 0.1s,0.4s, 0.8s.
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Figure 4.14: SWEs model. Optimal high fidelity and reduced control variable with a = 0.1 and
p = (0.1,.01,.1,1.5). Top. High fidelity solutions for ¢ = 0.1s,0.4s,0.8s. Bottom.
reduced solutions for t = 0.1s,0.4s,0.8s.
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In this context, the speedup is slightly affected by the value of N and it is of
the order of O(20), regardless the dimension of the reduced space®.

The next Chapter will present the second typical strategy to build the reduced
spaces: the Greedy algorithm. In this contribution, it will be addressed in a
space-time fashion suited to parabolic state equations in the setting of OCP(u)s.
We will follow the work of [148], where the authors propose a new error certi-
fication for time-dependent linear OCP(u)s. Then, we will move towards some
numerical experiments to test the capability of the discussed strategy.

8The speedup had been influenced by the non-affine structure deriving from the nonlinearity
of the state equation at hand. However, we are confident that better results can be reached
exploiting the hyper-reduction techniques briefly introduced in Remark 3.1.1.



CHAPTER 5

A Certified Space-Time Reduced Basis
Method for Linear Parametric Parabolic
Optimal Control Problems

In this Chapter we discuss the use of a space-time Greedy approach for time-
dependent linear OCP(p)s. We present the results of [148], where a new error
estimator suited to both time-dependent and steady problems is provided for
the no-control setting. In Section 5.1, we will recall some basic knowledge about
ROMs, adapting them to the no-control framework. In the proposed setting,
we will refer to ROMs also with the terminology Reduced Basis (RB). Section
5.2 shows some numerical tests that will validate the error certification for time-
dependent and steady problems, in different parametric settings.

5.1 Error Certification for Space-Time Parabolic
OCP(u)s

This Section focuses on the description of a Greedy-based reduction strategy
and on the error certification needed in order to employ it in an efficient way.
First of all, in Section 5.1.1, we will recall the main ideas about ROMs. Indeed,
for the sake of clarity, we will adapt what was already introduced in Chapter 3 in
the no-control framework. As a matter of fact, for the Greedy-based reduction,
we will always work with this peculiar formulation, where the control variable
can be obtained from the adjoint variable in postprocessing. The no-control
setting will lead us to an explicit formulation of an error certification that does
not depend on the high fidelity dimension of the global system. Naturally, this
will lighten the building phase construction for space-time OCP(u)s.

5.1.1 Reduced Formulation for No-Control Problems
In Chapter 3 we highlighted these following main aspects of the ROMs:

o the need of representing the solution manifold M in a reliable way through
reduced algorithms;

o the need of representing the solution manifold M in an efficient way though
affine decomposition;
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o the need of making provable the Brezzi Theorem at the reduced level
thanks to space aggregation (and supremizer stabilization when dealing
with a nested saddle point problem).

It is clear that in the no-control framework the fundamentals of the ROMs
change due to the different formulation of the problem at hand. For the sake of
clarity we will briefly report the new reduced structure we will deal with.

First of all, the solution manifold is of the following form

M = {(y(n), 2(n)) | » € D}.

Indeed, the global solution is only given by the state and the adjoint variables
since the control variable can be recovered by the linear relation (1.56). Analo-
gously the discrete solution manifold is

MY = {(y" (n), 2 (n)) | p € D}

We now aim at approximating the behaviour of M# through a reduced space
built by means of a Greedy approach. Here, A is the global dimension of the high
fidelity solution, given by N := 2N,. To work with faster simulations, we are
looking for a surrogate low—dlmenaonal space QN X Qn C ONu x QNv YVoxVr.
We recall that Qv is defined in Section 2.1.1 and represents the space-time
approximation for both the state and the adjoint variables. Namely, in this
context, we will specifically refer to time-dependent problems and we will mirror
all the arguments for steady ones, explicitly.

The reduced optimality system we are going to solve reads: given pu € D, find
the optimal pair (yn (@), zn (1)) € Qn X Qn such that

B((yn (1), 2n (1), (w, O)s ) = (F(), (,€))  V(w,¢) € Qv x Qn. (5.1)

Once again, we underline that the convenience of the ROMs relies in an efficient
division between an offline and an online phase, that separates the basis con-
struction stage and the Galerkin projection for a new parametric instance. This
is guaranteed when the affine decomposition holds for system (5.1), i.e. when
the forms of the optimality system can be written as:

B((y, 2 ZGZ )B'((y, 2), (w,Q)),

(F(p Zel WFL (w, €)Y,

where @ and Q) are some integers, with @lB, and @l}- p—dependent smooth

functions and B' and F' are forms that do not depend on the parameter. We
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recall that this structure allows us to assemble and store all the p—independent
quantities and then to exploit them in the online phase, where, for a given
parameter, all the p-dependent features are evaluated and the system (5.1) is
assembled and solved.

5.1.2 Greedy Algorithm for OCP(u)s

This Section presents the space-time Greedy algorithm we used in order to build
the reduced framework for parabolic OCP(u)s in the no-control setting. For a
general introduction to this algorithm the reader may refer to [29, 64]. This Sec-
tion aims at extending it in a space-time fashion for parabolic OCP(u)s. Indeed,
time-dependent OCP(u)s have been tackled most of all with the POD-Greedy
algorithm [61, 64] in order to compress the data information given by the sev-
eral time instances. Although, another approach can be employed: namely, the
space-time setting already exploited for parabolic problems in [156, 165, 166]
can be adapted to time-dependent linear parabolic OCP(u)s (and we will spec-
ify it for steady ones).

The Greedy algorithm iteratively builds the basis functions of the reduced
framework: the main idea is to enrich the bases with new information given
by suitably chosen snapshots. At each step, a high fidelity solution of the time-
dependent (or steady) optimality system is computed: namely, to build a com-
plete N —dimensional reduced function space, N space-time (or steady) optimal
solution must be evaluated. In order to introduce the space-time Greedy algo-
rithm, we define the global error e between the space-time optimality solution
and the reduced one, i.e.

N,

yinVZN

e:=(y v —2ZN). (5.2)
The Greedy algorithm is based on an estimate of the norm of the global error
(5.2) which is independent from the high fidelity dimension of the system’: to
this end, we define a N'—independent quantity Ay (u) such that

lelloxe < An (). (5-3)

Let us assume to have been provided of a such an estimator?. The first step
of the space-time Greedy algorithm is to choose a finite set D;, C D consisting
in Npax parameters. A large cardinality of Dy allows a good representation
of the discrete solution manifold MY . As already said, the reduced space is
built through an iterative procedure. Thus, we consider a tolerance 7 and we
define the first-step aggregated reduced space for state and adjoint variables as
On = span{yNv (), 2Nv (o)} for an initial parametric value p,. The n—th

!Here, we are assuming that the space-time structure (or the pure FE discretization) is a
good approximation of the continuous optimal solution, in order to directly consider the error
(5.2) to represent the accuracy of the reduced model.

2The explicit expression of Ax () is postponed in the next Section.
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step of the algorithm chooses the parameter

- A 5.4
oy, = BT MAX ~N(w), (5.4)

and, then, the aggregated reduced space is enriched with the snapshots evaluated
in this chosen parameter p,,, i.e.

Ny(

Qv = span{y™ (o), .- 1™ (1), 2 () .., 2 ().

The iterative process stops when a selected parameter verifies Ax () < 7. We
assume that the last step is the N—th step. We remark that the aggregated
space technique guarantees the well-posedness of the optimality system. Indeed,
also in the no-control framework, the reduced inf-sup stability constant Sy (w)
is defined as:

B .
i sup B((yn, 2N ), (Wn, CN); 1) 7
(U 2N ENXQN (W () QX Qw \/”ZUNH?Q + ||ZN||2Q\/||WNHQQ +1nl%

for (yw, 2n) # 0 and (wy,(n) # 0. The problem is well-posed when there exists
a positive constant By (g) such that Sy () > By (). In this specific context,
the reduced framework has a global dimension of 4N since Qy has dimension
2N and it is considered for both the variables. Although, we will show that using
such a enriched space is still convenient in terms of the computational speedup.
In the next Section we propose an explicit formulation for the error estimator
An (), that can be used both for time dependent and steady OCP(u)s.

5.1.3 Rigorous a posteriori error estimate

The Greedy-based approaches rely on an a posteriori error estimate in order to
build a reliable reduced space. Indeed, the error estimation provides:

o a bound for the sampling strategy over the parametric space D in the
bases construction stage;

o for every p € D, a bound for the error between the high fidelity and the
reduced solution in the online stage.

We will define an a posteriori error estimate related to the classical Brezzi and
Necas-Babuska stability analysis [11, 27, 108], as presented in [148] where sem-
inal results in the context of steady OCP(u)s, see e.g. [110, 111], have been
generalized to parabolic OCP(u)s.

Namely, the goal is to explicit a formulation for an A —independent, and thus,
fast to compute, a posteriori error bound Ay () such that:

lelloxe = \/IlyNy —ynlg + M —2nl < An(n). (5.5)
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Considering the space-time high fidelity approximation, we have that the dis-
crete inf-sup condition related to the whole optimality system (2.5) is verified
and, as a consequence of the NeCas- Babuska theorem, we have the following
stability estimate for the global solution:

Vil

where ﬁgf (p) is the discrete inf-sup constant of the whole optimality system,

2+ 2V < M( o FWlexor, (5.6)

as defined in (2.5). In the expression of the error estimator, besides the inf-sup
constant, another crucial element is the dual norm of the optimality system
residual R € (QMv x QNv)”

R((w7 C)v /J‘) = 6((yNa CN)7 (W’ C)v /J‘) - <}—(/1')? (w7 C)>7 (57)

for all (w,() € OMv x QNv. By definition and by the stability estimate of the
Necas-Babuska theorem, it is a matter of simple computations to show that:

|WM%@*V

le[laxo < weD,
- )

Be, (w, ¢); ) = R((w, C); ). (5.8)

In order to reliably and efficiently apply such an estimation, a practical way to
compute the inf-sup constant ﬂgf (p) is needed. Indeed, let us assume to have

been provided by a lover bound ELB([L) > 0 such that ﬁg(u) > BB (u). Then,
we can estimate the error as: N

IRl (oxg)-
lellexe < 5537(2)) = An(p) Vu €D, VN =1,..., Nnax-
(5.9)

In [148] an explicit form for the lower bound is discussed. We report the main
results and the related proof. All the involved quantities have been defined in
Chapter 1, where the parabolic problem is considered at the continuous level.
However, for the sake of clarity, we will report them again:

o vo(p): the coercivity constant related to the state equation a(-,-; );
o c.(p): the continuity constant of the control bilinear form c(-, -; );
o ¢y (p): the continuity constant of the bilinear form m(-, -; p);

o ¢y and cyps: the embedding constants between Y and U and between Y
and Yops, respectively defined in (1.63) and (1.62);
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Theorem 5.1 Let us suppose that a space-time OCP () governed by a parabolic
equation is well-posed. Then, there exists a lower bound 3YB(u) for ﬁgf(u) of
the following form.: N

O"Ya(p‘) fOT’ Qu = Qobsv
Ya() Qu # Qops assuming Qops # €2,
2 1 (Cc(l")cu)Q
max 3 b ara(n) (5.10)
Ya(H) Qo # Qops assuming 2, # Q.
Cm (IL)CO s
\/2max {17 ( a%(”)b ) }

Proor. The statement is a consequence of Theorem 2.2 and the stability esti-
mate (5.6), applied to the problem (5.8), where the lower bounds are given in the
proofs of Lemma 2.1 and Remark 1.3.2. In this theorem, we are recovering all the
cases: indeed, at least, one between control and observation domain must be dif-
ferent from €2 to be Q,, # Qops-

Since the quantities involved in the lower bound AP (u) are all known and
N —independent, it results fast to be computed for a given parameter u € D.
Furthermore, the dual norm of the residual can be rapidly evaluated exploiting
the affine assumption by means of suitable Riesz representers [110, 111, 134].

Remark 5.1.1 (The steady case) The arguments concerning the lower bound
for the error estimation can be also specified to steady linear OCP(u)s. In the
steady setting, the reduced problem reads: given p € D, find the optimal pair
(yn (), zn () € Yy X Yy such that

Es((yN(l’l’)7 ZN(“’))) (wa Z)v N) = <]:5(N>7 (wv C)> ‘v’(w, C) € YN XYNv (5'11)

with Y C YNre. Also in this case, there exists a positive inf-sup steady stability
constant b’g (p) and exploiting the affine decomposition of the system (5.11), one
can efficiently apply the Greedy algorithm thanks to this relation [111]:

IR (v xvy-
lellyxy < BB ()

Yu € D.

As a special case, we derive a novel lower bound BB () for the steady framework
[148]: the bound avoids the successive constraint methods [69] to approzimate
the inf-sup stability constant related to the optimality system (5.11). Indeed, the
lower bound is easy to be computed and, applying Lemma 1.9 and Theorem 2.3,
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it has the following form:

o%a(p) Jor Q= Qons
Ya(pt) Qo # Qops assuming Qops 7 .
celwes )
2 max 1, (a’Ya(/J') ) (512)
Ya () Q. # Qops assuming §, # Q.
ce(H)Cobs
\/Qmax{l, < av‘:(u; ) }

In the next Section, the error estimators we have provided will be tested both for
steady and time-dependent OCP(u)s governed by Graetz flows in a distributed
and boundary control settings.

5.2 OCP(u)s governed by Graetz flow

This Section validates the error estimator bounds for parabolic and steady
OCP(p)s in two different parametric settings. The first one is characterized
by physical parameters only, while the second one presents both physical and
geometrical parametrization. Here, we report the numerical tests of [148], which
are inspired by [80, 111, 146]. Moreover, both the parametric frameworks are
presented in a time-dependent and steady version. We consider Y = H}(Qr,,),
i.e. as the space of H! functions over Q that vanish on I'p, the portion of the
boundary 0f) where Dirichlet boundary conditions apply. The observation space
is Yops = L2(Qops). Furthermore, 71 and x5 denote the spatial coordinates. In
both the considered setting we will compare the employment of the explicit
formulation of the error estimators (5.10) w.r.t. the employment of the exact
Babuska inf-sup condition (2.5). The goal is to show how convenient using such
a technique would be in order to deal with a very effective reduced setting built
through a lightened offline phase based on a Greedy procedure.

5.2.1 Physical Parametrization

Let us focus on OCP(u)s governed by a Graetz flow with physical parametriza-
tion only. The physical domain is Q, depicted in Figure (5.1), where the
observation domain is Qops = Q1 U Qo, with 3 = [0.2,0.8] x [0.3,0.7] and
Qo = [1.2,2.5] x [0.3,0.7]- In this specific case, Q, = , i.e. the control is
distributed all over the physical domain. The parameter g = (1, f2, i43) is con-
sidered in D = [3,20] x [0.5, 1.5] x [1.5,2.5]: the first parameter p; is the Péclet
number of the governing advection-diffusion state equation, while pus and ug are
constants representing the desired state yq we want to reach in the subdomains
Q7 and s, respectively. The problem formulation changes a heat source in or-
der to achieve a parametric desired configuration. The optimality system reads:
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94
(0,1) (1,1) I'p,
I'p, 0 Oy
(0,0) 1o

Figure 5.1: Error Certification for parabolic problems. Domain Q. Observation domain: Qops =
Q1 U Qg2, Control domain: Q. Blue solid line: first Dirichlet boundary conditions.

Red dashed line: second Dirichlet boundary conditions.

given p € D, find the optimal pair (y, z) € Vo x Yr such that

y(Xo, + Xa,) — 2t
1 0z .
—IAZ —x9(1 — xg)a—xl = poXxa, + tsxa, inQx(0,7),
9y
— —Ay— 25l — @)=L — =2 =0 in Q x (0,7

Yi " y — Ta( xz)axl o’ in 2 x (0,7),

y(0) = yo in €, (P)

2(T)=0 in Q,

1 0y

——=0 Tr 0,7

o on on I'y x (0,7),

y=1land z2=0 on I'p, x (0,7),

y=2and z=0 onTp, x (0,T),
where yo is a null function verifying the boundary conditions, I'p, = 902 N

{(x1,22) | 1 < 1} and Tp, = 90 N {(x1,22) | 1 < z7 < 2.5}. Calling
I'p :=Tp, UT'p,, then Ty = 90\ I'p will represent where Neumann boundary
conditions have been applied: here, n is the normal outer vector w.r.t. the por-
tion of the boundary I'y. We now propose problem (P) in its steady version:

given p € D, find the pair (y,z) € Y x Y such that

1 0z .
y(xo, +x0.) — #—Az = 22(l = @2) 5 = paXen +Hzke, L
1 1
1 0 1
——Ay—mg(l—zg)—y——z:o in €,
M1 oxy o
10
77y =0 on FN,
p1 On
y=1land =0 on I'p,,
y=2and z=0 onI'p,.
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From the formulations (P) and (FPy), it is straightforward to verify the affinity
assumption. As already specified, the problem is a distributed control problem,
i.e. Q, = Q and thus, following the bounds in (5.10), we must consider

BB () = BB () = el (5.13)
\/2max{1, (%) }

However, we still need to specify the constants involved in the bound, which are
problem dependent. First of all, for this specific state equation it holds:

Ya(p) : : (5.14)

Com(1+C3)
where Cgq is the Poincaré constant which verifies [|v||z2) < Callv|| g1 (q), for
all v € H'(Q2), see e.g. [128]. Furthermore, for the problem at hand, ¢, = Cq.
It remains to specify c.(u), that, actually, does not depend on p and, thus, we
can write ¢, := c.(u) = Cq, indeed:

sy )] = ] /Q 2y dﬂ\ < lellllzae < Calllolyly-  (5.15)

The value of Cg, is parameter independent and it has been pre-computed solving
the related eigenvalue problem. The computational costs of this procedure is
affordable since the constant can be evaluated only once in the offline phase.
For both the test cases, we choose Dy as a set of Ny = 225 parameters uni-
formly distributed in D and we considered 7 = 10™* as a tolerance for the
Greedy algorithm. The performances of the error certification has been shown
through an average error analysis and average effectivity analysis over 100 uni-
formly distributed parameters in D. Furthermore, at the spatial discrete level,
the pair (y, z) is represented by P! — P! FE pair, while the time discretization
is Euler-based and performed over the time interval [0, 5] with At = 1/6. This
results into NV; = 30 time steps, making the tests comparable with the results
of [146], presented in Section 4.2.1. We start by presenting the time-dependent
results.

The time-dependent case

We test the performances of the lower bound LB (u) to problem (P), with
fixed a = 0.01. The space-time Greedy algorithm reached the chosen tolerance
T after N = 13 steps and it results, applying aggregated spaces technique, into
a reduced space of dimension 4N = 52. The reduced dimension is much smaller
w.r.t. the high fidelity one, of dimension N' = 2N - N; = 272/160. This dif-
ference in the reduced and high fidelity dimensions gives impressive results if
we consider the speedup analysis. For this specific test case, averaging over 100
parameters, a number around 2 - 10* reduced simulation can be performed in
the time needed for an high fidelity one. In Figures 5.2 and 5.3, we show some
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representative solutions for ¢t = 1s,3s, with a = 0.01 and p = (12.0,1.0,2.5).
They all match: hence, the reduced model is capable to reproduce the high
fidelity solution for different time instances. We recall that the control can be
recovered through relation (1.56). The next comparison is based on the employ-
ment of the Babuska inf-sup constant. Table 5.1 presents the average absolute
and relative errors

llellabs := \/(HyNy — Nl + 1M = 2nll3) (5.16)

and

VlyNe —ynlls + 1122 — 2n5)
)
VUM + 12N )

respectively, together with the effectivity n := An(p)/|le||lox o and the value of
the error estimator® Ay ().

(5.17)

lle]lrel ==

High Fidelity State Variable (f = 1s) RB State Variable (t = 1s)
9.8e-01 1.5 2 25e+00 9.8e-01 1.5 2  25e+00

= ! | — = L —

High Fidelity State Variable (t = 3s) RB State Variable (t = 3s)
9.8e-01 15 2 25e+00 9.8e-01 15 2 25e+00

= o = L —

Figure 5.2: Error Certification for parabolic problems. Optimal high fidelity and reduced state
solutions with a = 0.01 and p = (12.0,1.0,2.5). Left. High fidelity state variable for

t = 1s,3s. Right. Reduced state variable for t = 1s, 3s.

By definition, the lower bound B%Z(u) cannot give better results w.r.t. the
employment of the exact value of Sz (). However, using the lower bound
lightens the computational costs of the offline phase. Indeed, given a parameter
1, the exact computation of the Babuska inf-sup constant takes, in average,
9.7s, while the computation of the lower bound is performed in 0.09s, only.

3With abuse of notation, A (u) will describe both the exact error estimator, given by
the use of the Babuska inf-sup constant Bgf (w), and the surrogate error estimator, derived by

employing the lower bound BLE ().
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High Fidelity Adjoint Variable (f = 1s)
-7.0e-03 0 0.01 2.3e-02

-

| —

RB Adjoint Variable (t = 1s)

-7.0e-03 0 0.01
|

-

2.3e-02

| —

High Fidelity Adjoint Variable (t = 3s)
-7.0e-03 0 0.01 2.3e-02
|

RB Adjoint Variable (t = 3s)

-7.0e-03 0 0.01

2.3e-02

Figure 5.3: Error Certification for parabolic problems. Optimal high fidelity and reduced adjoint
solutions with @ = 0.01 and p = (12.0,1.0,2.5). Left. High fidelity adjoint variable

for t = 1s,3s. Right. Reduced adjoint variable for ¢t = 1s, 3s.

Table 5.1: Error Certification for parabolic problems. Time-dependent case: performance anal-
Average error, estimators and effectivities
exploiting the lower bound ﬁLB(u) and the Babuska inf-sup constant Bg‘f(u), w.r.t.

ysis for the problem (P) for a = 0.01.

N.
N BEE (n) By (1)
lleflrel llellabs An(p) n llellrel llellabs An(p) n

1 5.6le-1 | 4.37e+0 | 1.29e+2 | 2.96e+1 | 5.25e-1 | 4.46e+1 | 1.30e+1 | 2.91e+0
3 1.81le-1 | 5.84e-1 | 3.42e+1 | 5.86e+1 | 1.16e-1 | 5.58e-1 | 3.16e+0 | 5.67e+0
5 | 3.13e-2 | 1.58e-1 | 7.25e+0 | 4.58e+1 | 3.84e-2 | 1.99e-1 9.03e-1 | 4.53e4-0
7 1.12e-3 | 4.98e-2 3.07e-1 | 6.17e+1 | 7.70e-3 | 3.76e—2 1.98e-1 | 5.26e+0
9 | 4.36e-2 | 1.33e-2 6.38¢-1 | 4.78e+1 | 3.42e-3 | 1.24e-2 5.41le-2 | 4.36e+0
11 | 1.46e—2 | 4.68e-3 2.23e-1 | 4.76e+1 | 1.19e-3 | 4.06e—-3 2.11e-2 | 5.21e+0
13 | 3.90e—4 | 1.35e-3 7.32e-2 | 5.38e+1 | 3.53e—4 | 1.26e-3 | 6.46e-3 | 5.10e+0

Nevertheless, exploiting the lower bound instead of the exact error estimator
poorly affects the accuracy of the greedy algorithm: their errors are compa-
rable. Another indicator of the effectivity of the proposed error bound is also
represented by Figure 5.4, where the value of the exact inf-sup stability constant
is compared with the lower bound w.r.t. the value of the parameter p;. The
latter is the only parameter affecting the left hand side of the system and, thus,
the constants we are dealing with. We point out how the value of the penal-
ization factor « slightly changes the tightness of the provided lower bound: for
lower values of «, we have, generally, a worse approximation of the Babuska
inf-sup constant. This phenomenon is not new in literature, see, for example
[80]. Thus, while we can observe a good representation of 3§ (1) through the
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bound in the left plot of Figure 5.4, we lose some precision for smaller values of
the penalization parameter as depicted in the right plot of Figure 5.4, most of
all for larger values of p.

Babuska inf-sup vs Lower Bound Babuska inf-sup vs Lower Bound
F BY () and a =1 E B (p) and o = 0.01
I ;’im(u) and a =1 5m(l‘) and a = 0.01
‘N & BY () and a = 0.1 02l & B (p) and o = 0.001
R S & B(p)and a =0.1| 1N - 3"%(p) and o = 0.001

4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20
H1 H1

Figure 5.4: Error Certification for parabolic problems. Comparison of the value of the lower
bound BLB(u) with respect to the exact Babuika inf-sup constant B‘g(u) for a =
1,0.1 (Left) and o = 0.01,0.001 (Right). The analysis has been performed varying
the value of p;.

The steady case

We now show the results for the steady problem (P;). The high fidelity di-
mension is 2N7., = 9072. The Greedy procedure has been performed with
the tolerance 7, reached after picking N = 11 snapshots. The aggregated re-
duced system is really convenient to be employed due to its low dimensionality
of 4N = 44. The number of basis functions is lower if compared to the time-
dependent one. This was quite expected since we are dealing with a simpler
setting. Also in this case, we fixed a = 0.01. In Figure 5.5, we show a repre-
sentative solution for state and adjoint variables, obtained exploiting the lower
bound BLB(u). Furthermore, an averaged performance analysis is reported in
Table 5.2, where an average absolute and relative error, given by

Y Y
lellabs := \/(IIyNFE —ynl§ + 128 — 2nf3), (5.18)

and

Ve —ynl3 + (12 — =n[3)
VN2 + 12V 3

are compared w.r.t. use of the lower bound and the exact Babuska inf-sup
constant. The performance is also presented in terms of comparison of the

”e”rel = s (519)
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effectivity value 7 := Anx(u)/|le||yxy and the error estimator itself*. Also in
this case, by definition, the lower bound cannot perform as well as the exact
Babuska inf-sup constant, which is still preferable in terms of estimator and
effectivity.

High Fidelity State Variable RB State Variable
5. 7e 01 1 1 5 2.0e+00 57e-01 1 1.5 2.0e+00
— ]

High Fidelity AdJomT Vorloble

-9.5e-03 1e-02 RB Adjoint Varialbe
\ -9.5e-03 0 1.1e-02
—

Figure 5.5: Error Certification for parabolic problems. Optimal high fidelity and reduced state
and adjoint solutions with a = 0.01 and pu = (15.0,0.6,1.8). Top Left. High fidelity
state variable. Top Right. Reduced state variable. Bottom Left. High fidelity adjoint
variable. Bottom Right. Reduced adjoint variable.

Babuska inf-sup vs Lower Bound Babuska inf-sup vs Lower Bound

o ﬂgz‘b‘(u) and a =1 102 o ﬂB”( ) and a = 0.01 |
- BTB( Jand a =1 [ .- BTB( ) and a = 0.01
= ﬁB”(p,) and o =0.1] ] = BBFE(/,L) and a = 0.001
*,3 B(p) and a = 0.1 +ﬂB([_L)de0(70001

1072

Figure 5.6: Error Certification for parabolic problems. Comparison of the value of the lower
bound BLP (u) with respect to the exact Babuska inf-sup constant Bg/ () for a =
1,0.1 (Left) and o = 0.01,0.001 (Right). The analysis has been perfoﬁmed varying
the value of .

4See footnote 3.
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Table 5.2: Error Certification for parabolic problems. Steady case: performance analysis for the
problem (P,) for a = 0.01. Average error, estimators and effectivities exploiting the

NY
lower bound BSLB and the Babuska inf-sup constant BBFE(;J,), w.r.t. N.

N7
N BEP (1) B " (1)
llellrel lleflabs Apn (1) n llellrel lleflabs An (1) n

1 7.76e-1 | 6.08e—1 | 7.35e+1 1.20e42 | 7.72e-1 | 5.57e-1 1.52e+1 | 2.73e+1
3 1.23e-1 | 4.85e-2 | 4.36e+1 1.75e+2 | 1.71le-1 | 5.56e—2 | 1.40e+0 | 2.52e+1
5 3.83e—2 | 1.77e-2 | 5.61le+0 | 1.86e+1 | 4.76e—2 | 1.84e-2 3.91e-1 2.11e+1
7 6.28¢-3 | 1.92e-3 9.66e—-1 2.11e+2 | 1.07e-2 | 3.52¢-3 1.05e-1 2.98e+1
9 1.59e-3 | 6.64e4 1.44e-1 1.56e+2 | 5.07e-3 | 1.36e-3 3.0le—2 2.21e+1
11 | 9.30e—4 | 2.18¢—4 7.27e-2 1.51e4+2 | 1.45e-3 | 2.19¢4 6.88e—3 3.14e+1

However, the lower bound is convenient to use also in the steady case, even
if it represents a simpler setting. Indeed, it gives comparable results in the
average error analysis and the computational time needed for an evaluation is
approximately of 0.09s, while the steady eigenvalue problem related to the exact
computation of Bg; E takes 0.38s to be solved. We recall that the evaluation
must be performeds for all the parameters in Dj. Furthermore, in the steady
case, the penalization parameter « slightly affects the effectivity of the estimator,
as plots in Figure 5.6 show. The bounds comparison is shown in terms of pq:
the observation parameters po and pg are not relevant for the computation of
the Babuska inf-sup since they affect the right hand side of the problem at
hand. We remark that the behaviour of the constants is comparable to the
time-dependent one. This is not surprising, since we treated the problem as a
space-time approximation itself that deals with time dependency as a steady
structure.

Last, in terms of speedup we reach quite important results also in this simpler
setting, with averaged values around 80 — 85, independently from the value of
N. In the next Section we will show how the proposed lower bound performs in
a more complex test case, where also geometrical parametrization is considered.

5.2.2 Physical and Geometrical Parametrization

This Section shows numerical results for the no-control version of the bound-
ary OCP(p) governed by a Graetz flow already presented in Section 4.2.1.
The parameter dependent domain is €(u3) represented in Figure 4.1. For the
sake of clarity, we recall the structure of the domain. The observation do-
main is Qobs(i3) = Q3(ps) U Qa(ps), where Q3(ps) = [1,1 + ps] x [0.8,1],
Qa(p3) = [1,1 4 p3] x [0.,0.2], while Qq(uz) = [1,1 + 3] x [0.2,0.8]. With Q,
we denote the unit square, while we will call the control domain as T'c(u3) =
[1,14 pus] x {0} U[1,1+ pug] x {1}. Also the parametric setting has already been
introduced in Section 4.2.1. Here, we recall it and, moreover, we will adapt the
classical optimality system to the no-control framework. The parameter we are
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considering is p := (p1, 2, 13) € D = [6.0,20.0] x [0.5, 3.0] x [1.0, 3.0], where p;
represents the Péclet number, ps is the desired constant value we want to reach
in the observation domain, and pus stretches the length of the domain. The
control acts on the boundary and, namely, the problem tries to change the Neu-
mann conditions in order to steer the solution towards the desired profile. The
no-control optimality system reads: given p € D, find the pair (y, z) € Yo X Vr
such that

yXQobs(lJ') - Zt a
2
——Az—2(1 —32)=— = in 0,7),
A7 o wz)azl H2XQuno(u) 10 Q(p3) X (0,T)
yt_aAy_xQ(l_xZ)aTi_asz“ =0 in Q(us) x (0,7),
y(0) = o in Q(ps), (P)
z2(T)=0 in Q(us3),
10
— =0 on I'y(u3) % (0,7),
i
E@iz =u on FC(NZB) X (O,T),
y=1land z=0 on I'p x (0,7),
where yo = 0 in Q(u3) and satisfies the boundary conditions which are of

Dirichlet type on I'p = 9Q(us3) N {(z1,22) | z1 < 1} and of Neumann type
on I'y(ps) = 0Qps) \I'p UTc(p). Analogously, the steady version of the
problem has the following form: given p € D, find the pair (y,z) € Y x Y such
that

1 0z .
y— Bz =22l = @) 5 = X a(ue) 0 Aus),
1M1 8yw1 1
——Ay—xzo(l —z9)=— ——2=0 in Q
" y — x( x2)8x1 o7 in Q(p),
10 Py
— %y on I'y(us), (FY)
iy
Y
= Zd r
11 on u on C(/Lg),
y=1land =0 on I'p.

The reference domain will be referred as ) and it is related to us = 1, the
interested reader can find the details in [109]. Due to the relation Qqps(i3) #
Q(ps), we exploit the lower bound (5.13) for @ = 0.07, both for the time-
dependent and the steady case, to be consistent with the test case of Section
5.2.1. We analyzed also other values of the penalization parameters and the last
bound of (5.10): we postpone the analysis in Remark 5.2.1. It is clear that, by
definition, the value of the reference geometrical parameter affects the constants
¢y and cops, however, for the sake of notation, we will omit this dependency. In
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this specific test case,

() . { I 1 ps 1} 1
Yo(pt) := min < —, y =1y ———,
¢ p1 g (1+C3)

where Cgq is the Poincaré constant related to 2. Furthermore, the explicit
definition of ¢, = Cr., is related to the trace constant that verifies ||z|r, <
Cre||2]l 7, (o), once again we refer to [128]. After tracing back the problem in
a reference domain, the computation of the Poincaré and the trace constants
can be performed only once, solving directly the related eigenvalue problem
in 2. Namely, the exact computation of these constants does not affect the
offline performance procedure. Furthermore, following the same strategy of
(5.15), we obtain that c.(u) = Cr,,. For the spatial discretization we exploited
P! — P! elements while N; = 30 considering the time interval [0,7] = [0.,5.],
i.e. At = 1./6.: namely, the results can be compared to Section 4.2.1. As
in the previous test case, the Greedy algorithm is performed on a uniformly
distributed parametric set D;, C D of cardinality Npyax = 225. The tolerance
has been set equal to 10~*. For both the steady and the time-dependent case,
the performance analysis has been carried out over 100 parameters uniformly
distributed in D.

The time-dependent case

Let us focus on equation (P?). We fix a = 0.07 and we apply the space-time
Greedy algorithm exploiting the lower bound (5.13). The tolerance 7 is reached
after picking N = 19 snapshots. The employment of the aggregated space
technique leads to a global dimension of 4N = 76. The problem at hand needs
a larger number of basis: this is due to its more complicated structure, based
on boundary control framework and on the geometrical parametrization. Still,
using the reduced model will be convenient compared to the high fidelity one,
of dimension N = 2N}, x N; = 310'980.

Table 5.3: Error Certification for parabolic problems. Time-dependent case: performance anal-

ysis for the problem (P?) for @ = 0.07. Average error, estimators and effectivities
exploiting the lower bound BLB(;J,) and the Babuska inf-sup constant ,Bg(p,), w.r.t.
N. -
N BEE (1) By (k)
llellrer llellabs An(p) n llellrer llellabs An(p) n

1 5.6le-1 | 7.16e+0 | 3.05e4+4 | 4.27e+3 | 6.62e-1 | 1.5le+1 | 7.68e+1 | 5.08e+1
3 2.10e-1 | 2.26e4+0 | 5.44e4+3 | 2.40e+3 | 2.75e-1 | 3.64e-1 1.96e+1 | 5.41e+1
5 8.66e—2 | 8.92e-1 1.99e+3 | 2.23e+3 | 8.0le-2 | 1.33e-1 | 3.89e+0 | 2.91e+1
7 3.88¢-2 | 4.1le-1 | 6.79e+2 | 1.65e+3 | 4.57e-2 | 7.03e-2 | 3.89e+0 | 2.76e+1
9 2.46e-2 | 2.68e-1 | 4.99e+2 | 1.91e+3 | 2.17e-2 | 3.7le-2 | 1.94e+0 | 2.84e+1
11 | 1.09e-2 | 1.1le-1 1.95e+2 | 1.76e43 | 9.06e-3 | 1.65e-2 | 1.05e40 | 2.76e+1
13 | 7.16e-3 | 7.83e-2 | 1.40e+2 | 1.79e+3 | 5.98e-3 | 9.39e-3 4.59e-1 | 2.82e+1
15 | 4.60e-3 | 4.93e-2 | 1.08e+2 | 2.20e+3 | 4.26e-3 | 6.61le-3 2.65e-1 | 3.34e+1
17 | 2.48e-3 | 2.46e—2 | 4.65e+1 | 1.88e+3 | 2.36e-3 | 4.0le-3 1.11le-1 | 2.76e+1
19 | 1.72e-3 1.16e-2 | 3.14e4+1 | 1.93e+3 | 1.73e-3 | 4.81e-3 6.97e-2 | 2.55e+1
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ﬂ

High Fidelity Adjoint Variable t=1s Reduced Adjoint Variable t=1s
00e+00 002  0.04 7.08-02 -83e-18 002 004 7.0e-02
|

I
i

High Fidelity Adjoint Variable =35 Reduced Adjoint Variable t=3s
3 004 57602 -83e-18 002 003 0.04 576-02
. L T —

Figure 5.8: Error Certification for parabolic problems. Optimal high fidelity and reduced adjoint
solutions with @ = 0.07 and p = (15.0,2.5,1.5). Left. High fidelity adjoint variable
for t = 1s,3s. Right. Reduced adjoint variable for ¢ = 1s, 3s.

High Fidelity State Variable t=1s Reduced State Variable t=1s
10640015 2 25 3 35e+00 10040015 2 25 3 350400
- B

.

High Fidelity State Variable =35 Reduced State Variable t=3s
10640015 2 25 3.4e+00 106400 15 2 25 34e+00
b | o— — | —

Figure 5.7: Error Certification for parabolic problems. Optimal high fidelity and reduced state
solutions with @ = 0.07 and p = (15.0,2.5,1.5). Left. High fidelity state variable for
t = 1s,3s. Right. Reduced state variable for ¢ = 1s, 3s.

For this reason, averaging over 100 parameters uniformly distributed in D, we
reach a quite important speedup: it is around 3 - 10* independently from N.
Figures 5.7 and 5.8 show some representative high fidelity and reduced state
and adjoint solutions for ¢t = 1s, 3s, respectively, fixing p = (15.0,2.5,1.5). The
reduced model solution coincide with the high fidelity one.
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Babuska inf-sup vs Lower Bound Babuska inf-sup vs Lower Bound
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Figure 5.9: Error Certification for parabolic problems.

and fixing puz = 2.
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Figure 5.10:

Babuska inf-sup vs Lower Bound

Comparison of the value of the lower
bound BB () w.r.t. the exact Babuska inf-sup constant ﬁg/(y,) for o = 1,0.1 (Left)
and a = 0.01,0.001 (Right). The analysis has been performed varying the value of p1

*
R e
ol T

% ;’yﬁv(“) and o = 0.01
o BLB(u) and o = 0.01
= B (p) and a = 0.001

o318 (u) and a = 0.001 |}

Error Certification for parabolic problems. Comparison of the value of the lower

bound BXE (1) w.r.t. the exact Babugka inf-sup constant Bg(p) for a = 1,0.1 (Left)
and a = 0.01,0.001 (Right). The analysis has been performed varying the value of
p1 and fixing ps = 1.

Table 5.3 shows the performances of the Greedy algorithm in terms of average
errors defined in (5.18) and (5.19) together with the effectivity and the error
estimator® w.r.t. the Babuska inf-sup constant Béf (p) and the lower bound.
In this case, the lower bound presents large effectivities, however, we recall
that computing a single Babuska inf-sup constant takes around 8.6s, while the

5See footnote 3
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evaluation of the value of 37 (u) only 0.09s. Nonetheless, the two approaches
are totally comparable in terms of the relatives error (see first and fifth columns
of Table 5.3). Figures 5.9 compares the two constants w.r.t. the parameter p;
for several values of the penalization parameter «, with u3 = 2 fixed. In this
specific case, the two bounds worsen not only for lower values of «, but also for
larger values of u3, as we can observe from Figure 5.10.

The steady case

We will briefly provide the results for the steady problem (P¢). In this case,
the high fidelity dimension is N' = 2N}, = 10366 and, after applying the
Greedy algorithm, a reduced space of dimension 4N = 40 is built. Figure 5.11
shows representative solutions for state and adjoint variables (top and bottom,
respectively).

High Fidelity State Variable RB State Variable
1.0e+00 1.5 2 2.5 3.0e+00 1.0e+00 1.5 2 2.5 3.0e+00
i — —

-

. A . . RB Adjoint Variable
High Fidelity Adjoint Variable 24617 0.04 7.96-02

00e+00 004  7.9e-02
— —

Figure 5.11: Error Certification for parabolic problems. Optimal high fidelity and reduced solu-
tions with a = 0.07 and p = (12.0,2.5,2.0). Top Left. High fidelity state variable.
Top Right. Reduced state variable. Bottom Left. High fidelity adjoint variable.
Bottom Right. Reduced adjoint variable.

Furthermore, averaged performance analysis is depicted in Table 5.5, where er-
rors (5.18) and (5.19) are shown, together with an effectivity and error estimator
behaviours®. Even if, in terms of effectivity, by definition, the Babugka inf-sup
constant performs better, it pays in the offline basis construction even in this
steady framework, since its exact computation, averagely, takes 0.8s. Also in
this simpler setting, the effectivity is related to the value of « as well as the
value of the geometrical parameter. For the sake of brevity, we do not show the
plots concerning this behaviour due to their similarity to Figure 5.9 and Figure
5.10. Moreover the speedup reaches values around 135, averagely, over a 100

6See footnote 3.
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uniformly distributed parameters.

Remark 5.2.1 (Other a, other 32B(u) ) In the geometrical parametritazion
context we made other tests. First of all, we tried several values of o and the
results reflects the plots of Figures 5.9 and 5.10. The effectivity increases when
a is smaller reaching values of 10° with ac = 0.01,0.008.

Furthermore, we employed the bound

BEE(n) = 825 (m) = Ya(p) _ 50
\/Qmax {1, (%) }

in order to compare it to the bound (5.13). Indeed, this test case allows the
use of (5.20), since the control is not distributed. In this setting we need to
explicit cm () and cops. It is a matter of simple computations to show that
em(p) = Cqus. Then, the other constants Cq and cops can be approximated
solving the related eigenvalue problem before the offline phase. Fizing a = 0.07,
the bound (5.20) gives better results w.r.t. (5.13), with lower effectivities both for
the steady and the time-dependent framework. The results have been summarized
in Table 5./. The values of BXP(w) must be compared to Table 5.3: an order
of magnitude for n is gained exploiting 5.20. The same happens for the steady
constant BLE (p): indeed, compared with Table 5.5, its effectivities are around
2-103. The behaviour of the errors remains comparable w.r.t. the previous test
cases. The better sharpness of (5.20) is represented in Figures 5.12, where the
new lower bound and the Babuska inf-sup constant are compared for o = 0.07
and pz = 1 (refer and compare to Figure 5.10). Due to its similarity with the
steady case, we report here only the time-dependent case, for the sake of brevity.

Table 5.4: Error Certification for parabolic problems. Time-Dependent case: performance anal-
ysis for the problem (P?) and (P?) for o = 0.07. Average error, estimators and
effectivities exploiting the lower bounds 85 () and BEB (u) given by (5.20). (B.T.)
Below tolerance 7.

N BT () BEP ()

”enrel ”6Habs AN(H) n ”e”rel ”e”abs AN(H) n
2 4.23e-1 | 4.33e+0 | 3.689¢+3 | 8.5le+2 | 2.99¢e-1 | 2.90e-1 | 6.53e+2 | 2.24e+3
4
6

1.45e-1 | 1.50e+0 1.01e+3 6.70e+2 | 6.36e-2 | 5.35e-2 | 1.12e+2 | 2.10e+3
5.24e-2 | 5.36e-1 2.67e+2 4.98¢+2 | 3.0le-2 | 2.04e-2 | 3.99e+1 | 1.95e+3
8 2.80e-2 | 2.94e-1 1.58e4-2 5.40e+2 | 7.60e-3 | 6.21e-3 | 2.56e+1 | 2.0le+43

10 | 1.38e-2 1.41e-1 6.83e+1 4.84e+2 B.T.
12 | 9.49e¢-3 | 9.21e-2 4.32e+1 4.69e+2 B.T.
14 | 5.12e-3 | 5.24e-2 3.0le+1 5.74e+2 B.T.
16 | 3.78e-3 | 3.85e-2 2.12e+1 5.52e+2 B.T.
18 | 2.57e-3 | 2.41e-2 1.52e+1 6.32e+2 B.T.
20 | 1.25e-3 1.21e-2 8.42e+0 6.93e+2 B.T.

22 | 9.07e4 | 8.64e-3 6.30e+0 7.28e+2 B.T.
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Table 5.5: Error Certification for parabolic problems. Steady case: performance analysis for the
problem (P?). Average error, estimators and effectivities exploiting the lower bound

NY
BEB (u) and the Babuska inf-sup constant By FE (), wrt. N.

N7
N () Bnre ()
llellrel llellabs An(p) n llellrel llellabs An(p) n

2 3.16e-1 | 3.16e-1 | 3.25e+3 | 1.0le4+4 | 5.82e-1 | 5.57e-1 | 1.0le+4 | 3.72e+1
4 5.69e-2 | 5.69e-2 | 4.53e4+2 | 7.95e+3 | 6.67e-2 | 4.93e-2 | 7.95e+3 | 2.39e+1
6 1.52e-2 | 1.52e-2 | 1.11le4+2 | 7.32e+3 | 2.72e-2 | 1.52e-2 | 7.32e+3 | 3.22e+1
8 5.23e-3 | 4.95e-3 | 3.40e+1 | 6.88¢+3 | 7.33e-3 | 4.54e-3 | 6.88¢e+3 | 3.13e+1
10 | 2.03e-3 | 1.89e-3 | 1.25e+4+1 | 6.78e+3 | 4.63e-3 | 2.65e-3 | 6.78e+3 | 3.78e+1

Babuska inf-sup vs Lower Bound Babuska inf-sup vs Lower Bound
o k T T T — ! ! IO,ZE T T ; — ! !
Bg (p) and a =1 2 B (1) and o = 0.01
;’fr’B(/.L) and a =1 dr‘B(/.L) and o = 0.01
® B (n) and = 0.1 | | oMo & B (p) and @ = 0.001 |
. --3'8(y) and a = 0.1 T g | BB(w) and o = 0.001
102 e D
LI | S

[ .

1076

Figure 5.12: Error Certification for parabolic problems. Comparison of the value of the lower
bound AYE (u) w.r.t. the exact Babuska inf-sup constant Bg\f(u) for « = 1,0.1 (Left)
and a = 0.01,0.001 (Right). The analysis has been perfor?ned varying the value of
p1 and fixing po = 1.

This Chapter together with Chapter 4, provides a tool to deal with reduced
OCP(u)s form many state equations, from steady problems to time-dependent
nonlinear ones. We aimed at giving the basic ideas of ROMs and at describing
the strategies that can be employed in a time-dependent framework. In the next
Chapters, we will show some advanced applications in OCP(u)s which combine
reduction to other mathematical fields, such as Uncertainty Quantification, bi-
furcation theory and automatic learning techniques.
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CHAPTER 6

Parametric Optimal Control for
Environmental Sciences: Deterministic
and Stochastic Reduction Approaches

This Chapter focuses on OCP(u)s for environmental marine applications ex-
ploiting POD-Galerkin technique both in deterministic and stochastic contexts.
The main motivations underlay in the growing demand of fast and reliable sim-
ulations in such a field. Indeed, on one side OCP(u)s can make the model more
accurate: the state equation is changed through control variables in order to
reach the desired profile representing a collected data, while, on the other side,
the ROMs can be a great tool to have at one’s disposal parametric simulation in
real-time to improve the capabilities of analysis of the environmental model at
hand. This will be the topic of Section 6.1, where the POD approach has been
applied to realistic test cases presented in [145]. In Section 6.2, the setting will
be generalized to the stochastic context proposing a specific algorithm to deal
with random inputs as parameters, the so called weighted ROMs (w-ROMs)
[37, 158]. Some numerical results will be also presented, following the scenarios
discussed in [33].

6.1 Deterministic OCP(u)s

This Section concerns the application of the POD reduction technique in ge-
ographically realistic experiments for marine sciences with environmental pur-
poses. Indeed, the marine behaviour is related to social and economic growth,
biodiversity preservation, monitoring plans for possibly dangerous phenomena
related to natural or anthropic factors. It is clear that, in this context, PDE(u)s
play a crucial role in representing different physical features and, thus, fast sim-
ulations are needed to analyse different configurations. However, PDE(u)s can
lead to results that do not represent the expected behaviour guessed from data.
Hence, OCP(p)s can be interpret in a variational data assimilation fashion,
being a support tool to improve the forecasting capabilities of the models to
predict future scenarios, see e.g. [52, 78, 155]. Yet, as presented in [16, 147]
and in Section 4.3, data assimilated problems are characterized by huge com-
putational complexity that still limits their applicability, most of all if the opti-
mization problem deals with very complicated parametric flow models. Reduced
OCP(pt)s have been successfully applied to several test cases of interest in this
research field, see e.g. [45, 126, 127, 145, 150, 147]). In this context, ROMs can




112 Deterministic and Stochastic reduced OCP(u)s

be exploited to efficiently study different marine behaviours related to a para-
metric change in the physics and in the geometry of the phenomenon. In this
Section, we present the results of [145] based on the application of POD-Galerkin
approach for

o (Section 6.1.1) a pollutant control in the Gulf of Trieste, Italy;

o (Section 6.1.2) a nonlinear Oceanographic solution tracking governed by
Quasi-Geostrophic equations.

Remark 6.1.1 For the sake of clarity, we will briefly discuss the formulation
we used for both the test cases. Indeed:

o the pollutant control test case is governed by a steady linear PDE(u),
thus the reader may refer to Section 1.2.1 and to Remark 2.5.1 for the
continuous and high fidelity frameworks, respectively.

o The nonlinear solution tracking will be governed by a steady monlinear
PDE(u): the formulation of this setting has been described in Remark
1.2.1 at the continuous level and in Remark 2.2.1 at the discrete one.

Concerning the reduced procedure, we employed a partitioned POD as described
in Section 4.1, together with the aggregated space technique to guarantee the
unique solution of the reduced optimality system, see Section 3.2.2.

6.1.1 Pollutant Control in the Gulf of Trieste

The test case we are going to present aims at validating the POD reduction
strategy of Section 4.1 in marine environment and ecosystem monitoring set-
ting. The numerical example deals with an advection-diffusion pollutant control
problem in the Gulf of Trieste, Italy. The Gulf is a physical basin which presents
a very peculiar windy behaviour. Besides, it is characterized by a rich naturalis-
tic biodiversity that is always kept in consideration in monitoring and preserving
plans. A parametric analysis of the system is necessary in this context. Indeed,
it is related to the marine safeguard of the Gulf and, consequently, to its impact
on the city life. Trieste overlooks the sea and its economical and social activities
are strictly dependent on its marine environment.

In the presented experiment, we pretended a pollutant loss in the city harbour.
In this dangerous setting, it was important to work with a realistic mesh de-
rived from satellite images of the geographic area at hand. Figure 6.1 shows
the satellite area of the Gulf of Trieste and a mesh overlapping for the Trieste
harbour, our zone of interest. Having this specific triangulation of the domain
allowed us to work in a more physical meaningful framework. This led to reli-
able results that could be potentially compared to in situ collected data. The
OCP(u) we considered aim at letting the pollutant concentration y be under
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a safeguard threshold, in other words, the desired concentration yq. The phe-
nomenon is studied in a parametric setting, representing various wind actions
on the surface of the geographic area of the Gulf. The problem reads: given
= (u1, p2, u3) € D = [0.5,1] x [0.,1.] x [0.,1.] and yq = 0.2 € L?(Qops) find
the optimal pair (y,u) € H} (Q) x R that solves:

1

in - — )2 3/ 240 1
gVnXHI}Q/QObS(y Ya)“d obs 5 Q“ucl ws (6.1)

under the following constraint:

ﬂlAy + [N?a:u:ﬂ ' Vy =Lu in Q?
% =0 on Iy, (6.2)

y=20 on I'p,

where the constant L = 10° makes the system non-dimensional. Figure 6.2
represents the domain ) and its sub-domains. In this case, in the open sea
I'v Neumann conditions are imposed, while homogeneous Dirichlet boundary
conditions apply along the coastline named I'p. The control variable w is the
maximum quantity of pollutant allowed to be released in €2, (green sub-domain
in Figure 6.2) to guarantee the safeguard threshold of yq = 0.2 in Qups (red
sub-domain in Figure 6.2), representing the naturalist area of Miramare, char-
acterized by a large biodiversity of flora end fauna species. The parameter
describes the diffusivity and the convection current behaviour deriving from the
wind blowing on the Gulf surface. In order to work in a reduced framework, we
applied a partitioned POD to the variables and we aggregated the spaces. The
reduced spaces have been built over N,,q, = 100 uniformly distributed snap-
shots for o = 107° fixed. The high fidelity dimension of the global FE space
has dimension N = 5'939. The FE approximation relies on P! polynomials for
all the variables. In the end, we tested the accuracy of the problem retaining
N = 20 bases for state and adjoint variables and a single basis for the control
variable, being U = R. This choice led to a global reduced space of dimension
4N + 1 = 81. The number of basis functions was able to recover the parametric
solution. Indeed, Figure 6.3 shows the reduced and the FE solution coinciding
for a representative parameter and, furthermore, the accuracy is confirmed by
the average relative log-error of the variables w.r.t. the value of N, depicted in
Figure 6.4. The error is averaged over 100 uniformly distributed parameters
and we reach good approximations even with a small values of N (we obtain
values between 1078 and 10~° with N = 20). Furthermore, the affine structure
of the problem leads to high speedup index, which is around 250 for a reduced
space of global dimension 81. Furthermore, we want to stress that the system
has actually changed to reach the desired configuration: the left plot of Fig-
ure 6.3 shows an uncontrolled scenario where the maximum pollutant quantity
is released. In order to verify the safeguard threshold yq4, the pollutant must
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have a smaller concentration. It is clear that the solution has been steered to a
safer scenario. Namely, the ROMs can be an ally in monitoring plan to prevent
dangerous consequences in the field of environmental research.

Figure 6.1: Pollutant Control. Left. Satellite images of the Gulf of Trieste. Center. Zoom of the
mesh overlapping satellite images (Trieste harbour). Right. The final mesh.

Figure 6.2: Pollutant Control. sub-domains and boundaries. Red: observation domain Qops.
Green: control domain €,,.

Uncontrolled State Variable High Fidelity State Variable Reduced State variable
-4.3e-09 0.4 1.0e+00 -4.3e-09 05 1.0e+00 -4.3e-09 05 1.0e+00
| | |

—

Figure 6.3: Pollutant Control. Left. Uncontrolled concentration solution. Center and Right.
Optimal FE and ROM state pollutant concentration for p = (1., —1.,1.), representing
the Bora wind action.
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Figure 6.4: Pollutant Control. Averaged relative log-error for the variables.

The next Section will focus on another application of OCP(p)s in environmental
sciences, where the control can be interpret as the natural features needed in
order to achieve a future expected scenario.

6.1.2 Nonlinear Oceanographic Solution Tracking

In this Section, we discuss the employment of reduced optimal control strategies
in order to predict several parametric instances in an Oceanographic environ-
mental setting. Specifically, we will deal with global marine circulation weather
forecasting. In this field:

o the large scale flow dynamics is represented by Quasi-Geostophic equations
that describe the Ocean and Atmosphere system [34, Chapter 3]. Even if
they represent a quite complex phenomenon and even if they carry out a
good degree of completeness, they are not enough to satisfactory forecast
the Ocean circulation behaviour. Indeed, they might lead to inaccurate
results not comparable with historical or in situ collected data.

o The Oceanography field is characterized by a huge lack of data. Indeed,
they can be complicated and expensive to collect. Thus, the small infor-
mation provided is usually difficult to interpret, scattered and noisy.

Hence, the model can be not reliable while the data might be physically mean-
ingless. In this context, we aim at adding data information thanks to the em-
ployment of an OCP () that reads: given g € D, ¥q € L*(Q), find the pair
(1,q) €Y = HE () x H}(Q) and v € U = L?(Q2) which solves

1 2 « 2
mln*/Q(Qﬁ—T/)d) dQ+§/u s, (6.3)

YXU2 O
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constrained to the Quasi-Geostrophic equations

q= Ay in Q,
oy A o QO
5y = U Mgt A= p3O(Y,q)  in G, (6.4)
P =0 on 052,
g=0 on 01,
where the nonlinear expression © : H}(Q) x H(2) — R is defined as:
_0v0q 0y 0q

In other words, we are dealing with the following fourth-order controlled equa-

tion: P

usO (v, Ap) + aiﬁ =u— AP + pa A%, (6.6)
The action of the parameter g describes the North Atlantic Ocean dynamics
completely, since it gives information about how the large scale Ocean circulation
is affected by different phenomena, such as location and intensity variations of
its gyres and its currents (typically described by u3). Let us recall that Ocean
dynamic is related to the wind stress and atmospheric behaviour. The wind
action is represented by the control variable, since it is considered as a forcing
term acting on the whole geographical region depicted in the top row plots of
Figure 6.5. Now, let us assume that an observation field 14 is provided. Using
an optimal control framework in this context will result in a pair (¢,u) € Y xU
such that:

o 1 is similar to the data;

o wu is the forcing term needed to achieve that result.

Portogallg.

Figure 6.5: Oceanographic Solution Tracking. (underlineTop row). Satellite images of Florida
Peninsula (left) and North Europe (Right). Bottom Left. Zoom of the mesh overlap-
ping satellite images (Florida Peninsula). Bottom Right. Triangulation of the spatial
domain €, representing the North Atlantic Ocean, from Florida Peninsula to North
Europe.
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Figure 6.6: Oceanographic Solution Tracking. Comparison between desired state (left), FE (cen-
ter) and ROM solutions (right) for p = (107%,0.073,0.0452), representing the Gulf

Stream.
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Figure 6.7: Oceanographic Solution Tracking. Averaged relative log-error for the variables.

Thus, on one side we are changing the system so that the data collection could
be avoided, gaining in terms of time and economical costs. Furthermore, we are
solving an identification problem: indeed, we are asking what kind of wind action
u has to blow on the Atlantic region in order to reach a desirable profile. In
a parametric setting, this translates in a deep analysis of seasonal phenomena
and the ROMs can be a valuable tool in order to run many simulations for
several parametric instances. In our test case, we would like to reproduce the
Gulf Stream, represented in the left plot of Figure 6.6. The region of interest
is the Florida Peninsula and the north Europe: the Gulf stream from Florida
moves towards North-East to warm the European coasts. In Figure 6.5, we
show the satellite image of the considered geographical area together with the
used mesh. In the following we report the results related to equation (6.4),
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a handier system! w.r.t. equation (6.6). As already introduced, p; and o
represent a diffusive action, while p3 affects the local nonlinear dynamics ©.
The Gulf stream, i.e. the desired configuration 4, is given by a FE simulation
obtained by the uncontrolled governing equation with a right hand side given
by —sin(my), with gy = 1074, po = 0.073 and pu3z = 0.07? fixed parameter.
Figure 6.6 shows how effective is the optimality system for this problem: the
desired solution profile, the high fidelity and the reduced solutions coincide.
Furthermore, the accuracy of the reduced system is visible in Figure 6.7. It
shows the average relative log-error between the FE and the reduced variables
over 100 log-uniformly distributed parametric evaluations. Namely, the reduced
space built with partitioned POD over N,,,, = 100 log-uniformly distributed
snapshots, retaining N = 20 basis functions for each variable is able to recover
all the considered fields. We recall that after the application of aggregated
spaces technique, the global dimension is 9N = 180 to be compared with the
FE dimension N = 6’490 obtained through the employment of P! elements
for all the variables. Despite the dimensional reduction, we reach a speedup
of 2. However, this is not surprising: indeed we are not exploiting any hyper-
reduction technique. As stressed in Remark 3.1.1, the issue can be overcome
through the Empirical Interpolation Method (EIM) [17]. Up to now, we relied
on deterministic models. However, environmental sciences indisputably undergo
some uncertainty, not only derived from the lack of knowledge from the data
collection, but also affecting the parameters of the model itself. In the next
Section, we are going to discuss a tailored reduction strategy to deal with this
kind of issue.

6.2 Stochastic OCP(u)s

In several scientific fields, stochastic models are used to guarantee more reli-
ability in the simulations w.r.t. the deterministic ones. In this more complex
framework, the parameters carry uncertainties and, thus, the solution can be
affected by this uncertainty as well. Furthermore, the classical statistical anal-
ysis is based on Monte Carlo methods, i.e. on many simulations and this might
lead to unbearable computational costs to deal with in the context of standard
discretization. The aim of this Section is to introduce weighted reduced order
methods (w-ROMs) to accelerate the statistical analysis process. Furthermore,
we will present some of the numerical results of Section 6.1 in a stochastic
fashion. After having introduced the main motivations and the needed math-
ematical tools in Section 6.2.1, we will introduce the weighted POD (w-POD)
algorithm for OCP(u)s in Section 6.2.2. Lastly, in Section 6.2.3 we will show
the numerical results presented in [33].

IThis version of the problem does not ensure the coercivity of the state equation, that is
proved in [84] for the state equation of the system (6.6).
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6.2.1 Motivations and Notations

Deterministic PDE(p)s are an effective tool to model natural phenomena. How-
ever, realistic problems, such as environmental ones, usually depend on param-
eters that can be affected by uncertainty deriving from inaccurate measurement
or scattered data information. To overcome this issue, stochastic PDE(u)s can
be employed. In the UQ context, the main goal is to run many simulations as
possible in order to compute statistics over quantities of interest. Thus, high
fidelity approximation can lead unbearable computational costs when dealing
with standard statistical analysis techniques based on Monte Carlo methods.
This issue amplifies in the OCP(u)s setting, made by a system of three equa-
tions. Also in this UQ framework, we would like to apply a reduced approach
in order to achieve the goal of many simulations in a rapid way, still being accu-
rate. Here, we introduce w-ROMs, where, the reduced order model construction
complies with some previous knowledge on the parameter distribution in order
to accelerate even more the reduced simulations, see e.g. [37, 158] and the
references therein. We now describe the mathematical formulation of the uncer-
tain problem at hand. Let us consider a complete probability space (&7, .7, P),
where <7 is the set of the possible outcomes, .# is a o—algebra of events and P
is a probability measure. We consider p := p(@), i.e. p: (&, F) — ([, #) with
I' C RP compact set, % is the Borel measure and u(@) = (u1 (@), . .., up(@)) is
a random vector. Its components are independent absolutely continuous random
variables and they will describe the physical features of the considered problem.
Furthermore, with p : RP? — R we denote the probability density function of
. We now have all the ingredients to define the stochastic OCP(u)s. Their
formulation is not different from the deterministic one besides the presence of a
random input pu(w) with @ € &

Remark 6.2.1 As already specified, we were building on the numerical results
of [145], where the two test cases analysed are the ones presented in Sections
6.1.1 and 6.1.2. We dealt with steady linear (see e.g. Section 1.2.1 and Remark
2.5.1) and with steady nonlinear problems (see e.g. Remarks 1.2.1 and 2.2.1).
Thus the generalization to random inputs is straightforward.

The next Section concerns the use of a tailored POD strategy that takes into
account the randomness of the system leading to even more convenient ROMs
approximations.

6.2.2 Weighted POD for OCP(u)s

As already specified, stochastic equations aim at computing statistical momenta
of an output of interest and they usually rely on averaging algorithms such as
Monte Carlo methods. In this context, many simulations for different parame-
ters p € I" are necessary to achieve reliable data analysis. Thus, the ROMs can
be effective in this field. Namely, the goal of this Section is to propose w-POD
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as introduced in [158]. For the sake of clarity, we briefly recall the POD ideas
for OCP(u)s. In the steady framework, given a value N, the POD algorithm as
described in Section 4.1 minimizes the mean square errors:

y
S Fe )~ e[ )~ ),

and [ Ve 0) = () 2y, i

w.r.t. all the possible reduced space Yy C YV Fe of dimension N, for state and
adjoint variables, and Uy C UNF= for the control variable. Let us focus on the
state variable. If we consider the discretized version of it, the POD minimizes
over the linear subspaces of Y Nre the following quantity:

N,
1 max v
N 2o 19772080 = v Wy,

As specified in Section 4.1, the reduced space Yy is defined by the N eigenvectors
related to the N largest eigenvalues of the correlation matrix CY where

(03 L

ml Nma:z:

(yNiiE (lu'm,)a yN;:iE (p’l)) NY 1 < m’l < Nmax'

Y FE

Few modifications apply in the stochastic setting, where the mean square errors
are modified into the expected value

Blly* () = () g, ) = [ 15700 = ()12 0y, 4P
= [ 105 )~y () vy, ()
r

It is clear that the numerical approximations of the aforementioned integrals
are performed in the following way:

N7na(E
> wiplp) Ily™Fe () = yw () I ny (6.7)
=1

Wi

exploiting a quadrature rule consisting of nodes {uz} "** and of the related
quadrature weights {w;}Y". This changed structure 1eads to a modified cor-
relation matrix CY, of the form

Czrjnl - Wm(yN%E (/J‘m)vyNiiE (“’l)) NY 1 < m7l < Nmaa;-

Y FE

Namely, the global weight W,, depends on two factors:
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o on the probability density function chosen for pu,

o on the quadrature rule used to chosen to approximate the expected value.

The choice of the distribution and the quadrature rule are problem dependent.
For an overview on the possible strategies to be used, we refer to [112, 37, 151,
162, 68, 158].

We stress that the previous arguments directly apply to both the control and
the adjoint variables. Thus, partitioned w-POD can be applied and aggregated
space technique can be employed also in the stochastic setting.

Remark 6.2.2 We stress that the choice of using POD was guided by the test
case proposed in the following Section as presented in [33]. However, we would
like to underline that a weighted version of the Greedy algorithm was originally
proposed in [37].

In the next Section we are going to present the numerical results of [33], built
on [145], mirroring what already done in Sections 6.1.1 and 6.1.2 for the deter-
ministic case.

6.2.3 Numerical Results in Environmental Sciences

‘We now propose the application of w-ROM in the pollutant control environmen-
tal test case proposed in Section 6.1.1. For the sake of brevity, we will discuss
only this example since the same conclusions can be derived from the stochastic
version of nonlinear solution tracking problems presented in Section 6.1.2. How-
ever, the interested reader may refer to [33] for a complete w-POD framework for
the nonlinear example. In the framework of the OCP(u) that minimizes (6.1)
constrained to (6.2), we took into consideration different quadrature rules and
distributions in order to understand the role of the weights in the reduction pro-
cess. In the following, we will test the performances three different quadrature
rules (see e.g. for more details [151]):

o a Monte Carlo sampler with all the quadrature weights equal to

max
and that samples from the given distribution p(u). In this context when

the distribution is uniform we are applying standard POD.

o The tensor product of three Gaussian quadrature rules.

o A Pseudo-Random sampler adapted to general distributions through the
method of inversion.

The physical framework we studied is identical to the one proposed in Section
6.1.1. However, the parameter is random g = (1, po, u3) € (0.5,1) x (=1,1) x
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(=1,1) in order to better model the considered sea dynamics. In all the test
cases, we chose the penalization parameter as o = 10~7. Namely, we will show
the performances of informed sampling w.r.t. standard reduction strategies. We
aim at empirically proving that exploiting data information can be a powerful
tool in real-time monitoring. In all the experiment the snapshots number will
be Nyae = 100. First of all, we tried several quadrature rules. The results for
all the involved variables are depicted in Figure 6.8, where the aforementioned
quadrature rules have been tested in terms of relative log-errors. Here, we con-
sidered p(p) as uniform. Namely, we tried to isolate the role of the quadrature
weights w;. As already observed in [158], the POD procedure is slightly affected
by the quadrature weights w;.
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Figure 6.8: Stochastic Pollutant Control. Averaged relative log-error for the variables for differ-

ent quadrature rules.
variable.

Top row. State and Control variables.

Bottom row. Adjoint
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form, Beta(75,75) and Beta(5,1) samplings. Bottom row. Adjoint variable for uniform,
Beta(75,75) and Beta(5,1) samplings.

For this reason, we choose to put them all equal to N focusing on the effects
of the sampling strategy. For example, we compared the action of standard
POD w.r.t. w-POD with the distribution p(u) from which the parameters are
picked to build the snapshots covariance matrix. Figure 6.9 shows the average
relative log-error for the state, the adjoint and the control variables: the sam-
pling strategy for the error analysis is the same used in the offline phase. This
choice leads to satisfactory performances for all the samplings. However, it is
clear that the distribution information is crucial: indeed, if we are provided by
a previous knowledge on the parametric distribution a lower number of basis
functions can be employed to reach more accurate results. It is the case of pu ~
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Beta(75,75). The Beta distribution is defined through the Beta function

1
B(a, 8) = / 271 — )P ldx
0
and the probability density function

o1 - x)ﬁfl
B(a, B)

The Beta(75,75) is very picked and informative distribution. Thus, weighting
the covariance matrix through this distribution will help a lot in the accuracy of
the reduced system. Indeed, the relative log-error is around 10~ exploiting only
N = 4 basis for each variable, i.e. exploiting a global reduced space of dimension
5N = 20. This allowed us to gain two orders of magnitude in accuracy w.r.t.
standard POD approaches. Furthermore, the advantages of using less bases
relies in a actual gain of computational time that can be exploited to evaluate
statistical quantities in UQ analysis. We remark that OCP(u)s are complicated
and time consuming problems and, thus, we propose a very convenient tool to
reduced the computational costs related to the optimality systems. As already

said, the same conclusions are valid even in the nonlinear case as presented in

fz) = (6.8)

This Chapter focused on how important is to employ all the information avail-
able in order to make the model more reliable and to better study the input-
output structure of OCP () for several parameters. The next Chapter is some-
how related to this need of better understanding the relation between the control
action and the optimal state. We will discuss such a bound in a very complex
framework: bifurcating nonlinear PDE(u)s.




CHAPTER 7

Parametric Optimal Control Problems to
Steer Bifurcations in Nonlinear Governing
Equations

This Chapter deals with OCP(u)s as a strategy to steer bifurcating solution
of nonlinear PDE(u)s towards a desired configuration, as presented in [118].
Indeed, in the nonlinear context, given a parameter p, many solutions may co-
exist. Thus, OCP(u)s can be interpret not only as a tool to change the solution,
but also its stability features. In Section 7.1 we provide a general introduction
to the problem, while in Section 7.2 we will specify the properties of bifurcat-
ing Navier-Stokes equations (NSE). This problem will then proposed in optimal
control framework in Section 7.3. Finally, some results on the application of
reduced order techniques in this specific setting will be presented in Section 7.4.

7.1 OCP(u)s for Bifurcating Systems

This Section aims at introducing the problem of multiple solutions for nonlinear

PDE(u)s. First of all, we will provide some motivations about the interest in
the analysis of such problems in Section 7.1.1. Then, in Section 7.1.2, we will be
more specific w.r.t. the problem we are dealing with, introducing the concept of
stability and the role of the eigenvalue analysis in the loss of uniqueness of the
solution.

7.1.1 Motivations

Nonlinear PDE(p)s are ubiquitous in many application fields, from continuum
mechanics to quantum mechanics, passing through fluid dynamics. Despite
their important role, given a parameter u, a nonlinear PDE () may have a not
unique solution. Namely, as opposed to linear cases, a nonlinear PDE(ut) might
loose the smooth parametric dependence and a slight change in the parameter
space can suddenly alter the behaviour of the solution. We will say that this
PDE(p) experiences bifurcations [9, 32, 140]. Bifurcations may arise in several
models, such as the Von Kédrmdan plate model for buckling [159, 18, 24, 117],
the Gross-Pitaevskii equation for Bose-Einstein condensates [102, 81, 36, 116]
and the NSE [124, 120, 119]. In this contribution, we will focus on the latter
application.

The parameter for which the system presents multiple solutions will be called
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bifurcation point and will be denoted by p*. To visualize the bifurcating phe-
nomena a plot of a scalar output of the solution w.r.t. the parameter can be
analysed. A classical example in NSE is the pitchfork bifurcation diagram [140],
where, from the critical point p*, three different solutions arise. In this case,
from the central branch, two symmetric branches coexist switching the stability
properties of the system at hand. Namely, they inherit the stability feature
from the central branch: an example of bifurcation diagram is postponed in
Figure 7.4. It is clear that in this context some bifurcating configurations might
be undesirable and inconvenient. Specifically, we will treat the problem of the
Coanda effect [154] in sudden-expansion channel flows. It is a phenomenon re-
lated to the tendency of a fluid jet to be attracted to a nearby surface. Namely,
a solution symmetric jet and an upper (or lower) wall-hugging non-symmetric
jet coexist. The latter can represent an issue under the medical viewpoint as we
will specify later in the Chapter. Thus, in this case, it would be of interest to
steer the system towards the branch of symmetric solutions. For this reason, we
are going to employ OCP(u)s to reach the convenient configuration of a straight
jet, interpreting it as an attractor towards a desired profile somehow related to
the most convenient branch configuration.

7.1.2 Problem Formulation

First of all, we remark that the continuous formulation we are dealing with is
the one briefly introduced in Remark 1.2.1. However, for the sake of clarity, we
will specify all the needed quantities and notations. First of all, let

G(y; ) = f, (7.1)

be a steady nonlinear PDE(p) we are provided with. Here, y :=y(u) € Y
and f € Y™, following the notation we have adopted for steady problems.
Namely, for p € D, the state equation has the following form G(y;u) =
Eo(y; ) + Eo(y; ), where Ey € L(Y,Y*) and E,y represent the linear and
nonlinear contributions to the system, respectively. We are already familiar
with the concept of OCP(p)s which are built to make y the most similar to a
solution profile yq := ya(p) € Yobs 2 Y. As usual, the controlled equation will
have the following form

E(y,u;p) == G(y;p) — Cu) — f = 0.

The reader may refer to Chapter 1 to a more extended description of the setting
we are working in. In this specific context of the bifurcating phenomena, we are
trying to exploit the action of C(u) to change the solution y. To this purpose,
we define the following OCP(u): given a pu € D, find the pair (y,u) € Y x U
which solves

inJ(y,u; bject to &(y, u; p) = 0, 7.2
i T (y, u; ya) subject to £(y, u; p) (72)
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where J :Y XU X Yy, — R is

1 a
Iy, wsya) = 5lly — yall¥,,. + §||UHQU’ (7.3)

with a € (0, 1] as a penalization parameter. We will later see how the penaliza-
tion parameter play a very important role in the control of bifurcations. Also in
this setting, the problem can be tackled through Lagrangian argument. Thus,
considering z € Y as adjoint variable and calling X := (y, u, z), the optimality
system reads as (1.10) in weak form or equivalently in strong form as (1.11).
As already did in Section 1.1, the problem can be written in compact form as:
given p € D, find X € X:=Y x U x Y such that

G(X;p) =F, (7.4)
with
y+ DyE(y, u; p)*(2) Ya
G(X;p) = au — C*(z) and F:= |0
Gy, ) — C(u) f

The nonlinear system, even considering the only contribution of the state equa-
tion, might lead to many configurations for a given parameter p. The loss of
uniqueness might transfer to the OCP (), since its local well-posedness strictly
relies on assumptions (viii) and (ix) of Section 1.1. Indeed, they fail when a
bifurcation occurs. In this setting, we can define the solution branches: i.e.
multiple parametric dynamics of problem (7.4) w.r.t. the value of the parameter
. We denote by k£ the number of branches, and by M, for i = 1,...,k, the set
of parametric solutions for each i-th branch. Thus, the solution manifold is of
the following form:

k
M := U{X(p,) eM; | u €Dl (7.5)

In order to numerically solve the problem (7.4), we use the FE formulation
introduced in Remark 2.2.1. We recall that the nonlinear problem can be treated
through the employment of a Newton’s method over the global residual of the
optimality system

R(X;p) == G(X;p) —F =0, (7.6)

solving 4 ) ) .
XITh =X+ Jac(X7; )~ (F = G(X7; ), jeNn, (7.7)

up to a convergence criterion. Here, the matrix G and the vector F represent
the left and the right hand sides of system (7.4) after a FE approximation. We
recall that, at each iteration of the Newton’s method the Jacobian matrix has
a saddle point structure

A BT] (7.8)

J. _
Jac(X all’) - |:B 0
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The reader interested in the detailed matrix formulation may refer, once again,
to Remark 2.2.1 and to Section 2.2. We still want to address that, in order to
guarantee the solvability of the system, the Brezzi inf-sup condition (2.22) must
be verified. We report it below, for the sake of clarity:

T
B (1) 1= inf sup — 20 o

- > w) >0, (7.9)
07z 0 X[y xvllzlly

where x = L}:] We recall that the well-posedness of the linearized system is

provable once assuming the coincidence between state and adjoint spaces. The
next Section specifies the features of a bifurcation problem, introducing the
spectral analysis needed to describe the procedure employed for the reconstruc-
tion of the bifurcation diagram related to the application we will present later
on in the Chapter.

7.1.3 Bifurcations and Stability Analysis

This Section provides tools to study the solution of general nonlinear PDE(u)s
also in a optimal control framework. We remark that the well-posedness of
OCP()s relies on the assumptions presented in Section 1.1.1. Most of all,
hypotheses (vii)-(ix) ensure the applicability of the Implicit Function Theorem
[9, 38] which guarantees the local invertibility of a nonlinear problem. Hence,
when they are verified, if the parameter p slightly changes, the solution remains
stable and unique. On the contrary, when it is not the case, the model bifurcates.
Let us give a proper definition for a bifurcation point p*. For the sake of clarity,
we will restrict ourselves to the case f = 0 (that is equivalent to the inclusion
of the forcing term in the left hand side of the expression) [9].

Definition 7.1 A parameter value p* € D is a bifurcation point for (7.1) from
the solution y* :=y(p*), if there exists a sequence (yn,u,) € Y x D, with
Yn 7 y*, such that

o G(yn;p,) =0
o (Yn, pn) = (¥, 7).
In other words, in nonlinear analysis, a bifurcation phenomena is a necessary

condition in the failure of the Implicit Function Theorem. Hence, the following
holds.

Proposition 7.2 A necessary condition for p* to be a bifurcation point for G
is that the partial derivative D,G(y*; u*) is not invertible.
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Now that we have clear in mind that multiple configurations may arise in the
nonlinear context, it still remains to handle the stability property. Indeed, as
briefly introduced in Section 7.1.1, the stability of the unique solution can be
inherited by other ones, totally changing the expected behaviour of the system.
To have information about this, a common choice is to perform a spectral analy-
sis of the problem. In analogy with the theory for ordinary differential equation
(ODEs) [88, 83, 140], the stability of a solution to (7.1) can be understood by
means of the sign of the eigenvalues of the linearization of (7.1) around the
solution we are interested in, say § = y(f1). Thus, for a fixed f1, one can solve
the following eigenvalue problem

DyG(g7 ﬂ)ye = PpYe, (710)

for the eigenvalue-eigenvector pair (pp, y.). We remark that the solution is stable
when a small perturbation in the parameter p leads to a dynamic that remains
in a neighborhood of the considered solution. In this case, y will be called a
stable solution. Now, in analogy with ODEs stability theory, when the real part
of pp, i.e. R(pp), is positive, we observe an exponentially divergent dynamical
behaviour, while #(p;) < 0 produces small perturbations of the solution. Thus,
in order to have a stable solution, all the eigenvalues must have negative real
parts. We now generalize this concepts to OCP(u)s where the analysis is more
complicated due to the presence of the adjoint equation. Indeed, the saddle
point optimization structure is high indefinite and a standard sign-analysis is
no longer possible, see e.g. [21, 22, 23]. Nonetheless, we defined an analogous
eigenvalue problem for the optimality system (7.4), to investigate its spectral
properties:

DxG(X; )X =0pX, (7.11)

where X = X(ju) is the solution of which we are investigating the stability
property and (o4, X) is the global eigenvalue-eigenvector pair. We will call
(7.10) the state eigenvalue problem and (7.11) the global eigenvalue problem.
We now want to characterized the local non-invertibility of nonlinear OCP(u)s
through the continuous Babuska inf-sup stability condition. Indeed, we say
that the nonlinear optimality system is well-posed when there exists an inf-sup
constant ﬁ Ba > 0 such that

(DxG[X])(X; 1), Y)xx > Bpalp)  YpeD, (7.12)

Bpa(p) = inf sup

XexYex 1 X M1 /Y]]
and .
DxGIX)(X; 1), Y)sx-
inf sup< xGIXNXs 1), Ve Y eD. (7.13)
Yex Xex 1 X N1 1Y [|x

When one of the two condition fails, a bifurcation occurs. At the discrete level,
since XV € X, we need to re-formulate the discrete Babuska inf-sup stability as
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follows: the problem is well-posed if there exists a constant 5’13/(1(#) > 0 such
that

YT Jac X A
BY (p) = inf sup Jac N

_ YueD. 7.14
S X [V = ) Va (7.14)

It is clear that the surjectivity condition (7.13) is no longer needed for the
discrete inf-sup stability (7.14). Indeed, relation (7.14) translates with the in-
vertibility of the Jacobian matrix. At the duscrete level, condition (7.13) would
require injectivity of JacT7 that is equivalent to (7.14) since it is a square matrix.
It is clear that for p* these conditions do not hold true. We now have all the
ingredients to introduce the procedure we developed to numerically detect mul-
tiple solution branches. In this contribution, we consider the first component p
of the parameter u € D C R” is the one producing a bifurcating feature in the
model. To visualize a single branch we fixed all the P —1 remaining parameters.
The building blocks, combined in the procedure represented in Algorithm 1, are

o a Newton’s method, as the nonlinear solver,
o a Galerkin FE method, as the discretization phase,

o a simple continuation method, as bifurcations path tracer,

o a generalized eigenvalue problem, as the stability detector.

Algorithm 1 A pseudo-code for the reconstruction of a branch

L: Xo = Xguess > Initial guess
2: for p; € Pi do > Continuation loop
3: X;O) =Xj_1 > Continuation guess
4: while HR(X;i); K;)|| > e do > Newton’s method
5: Jac(X{; pu;)0X = RX\; ;) > Galerkin FE method
6: X+ = x - gx

7: end while

8: Jacy (yji 14)Ye = pu,VyYe > State eigenproblem
9: Jac(Xj; pj)Xe = 0, VXe > Global eigenproblem
10: end for

First of all, we chose the branch to approximate and an initial guess which will
let the solver converge to the expected configuration behaviour. Thus, to re-
construct the chosen branch, we define a ordered finite subset of the parameter
space D = [y, ..., ] C D, where the ordered is induced by the first com-
ponent of the parameter. The bifurcation behaviour of the model is followed
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assigning the solution for a given parameter p;_; as the initial guess in the non-
linear solver for the next iteration in p;. Here, we employed the simpler variant
of a continuation method [8], with D fixed a priori. This method have been
successfully applied in pitchfork like bifurcation detection, see e.g. [117, 116].
To solve the nonlinear problem at each parametric instance, we employed the
Newton-Kantorovich method [38] combined with the Galerkin FE method re-
peatedly applied until a residual convergence criterion is satisfied with tolerance
e. We now clarify some notations in Algorithm 1: we denote with Jac,(y, ft) the
Jacobian of the controlled state equation (7.1) and with V and V, the scalar
product matrices of the global optimization variable and of the state variable,
respectively. Furthermore, we denote with 0X the difference between two so-
lutions derived from the Newton’s method. In the end, we study the stability
properties of the solution X; to (7.4) for the parameter p; by means of the
generalized eigenproblems for the controlled state equation and the optimality
system.

7.2 Bifurcating NSE: the Coanda Effect

We now take into consideration a bifurcating phenomenon deriving from NSE in

a sudden-expansion channel flow problem. Let us consider the physical domain
Q depicted in Figure 7.1. In this geometrical setting, when the fluid presents
high viscosity features, it has a symmetric structure w.r.t. the horizontal axis.
Moreover, a pair symmetric of vortexes, the Moffatt eddies [106], arise down-
stream of the expansion. Now imagine to deal with a parametric viscosity p.
Lowering the value of p, the inertial forces of the system prevail and the two
eddies break their symmetry due to a non-uniform decrease of the pressure field
along the vertical coordinate. Indeed, when the parametric critical value p*
is reached, one of the vortexes expands while the other shrinks leading to an
asymmetric jet. Namely, the system provides multiple solutions for the same
value of p < p*. In this context, we will deal with two different configurations:

o the symmetric solution, a physically unstable configuration with a sym-
metric jet flow;

o the asymmetric solution, a physically stable configuration with a wall-
hugging jet.

These solutions, depicted in Figure 7.2, coexist for u < p* and belong to differ-
ent branches intersecting p*: this gives rise to the pitchfork bifurcation structure
as represented in Figure 7.4 (we postpone the analysis of the plot in the next
Section). We now want to specify the problem properties in terms of mathe-
matical formulation and stability analysis: this will be of utmost importance to
formulate proper OCP(u)s to deal with bifurcations.
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7.2.1 The Uncontrolled NSE

Let us describe the uncontrolled system we will consider from now on. The
physical domain is €2, a two-dimensional planar straight channel with a narrow
inlet and a sudden expansion, represented in Figure 7.1. This domain can be
interpret as a simplification of the left atrium together with the mitral valve. The
inflow and outflow boundary conditions apply to I'y, = {0} x [2.5,5] and T,y =
{50} x [0,7.5], respectively. We denote with 'y.; = I'p U T the boundaries
representing the walls, where I'p = {{0} x [0, 2.5]}U{{0} %[5, 7.5]} and Ty = 9\
{Tin UTpUT oyt }. We now focus on the parametrized steady and incompressible
NSE for a viscous flow in €.

40

T

Iy

Figure 7.1: OCP(p)s for bifurcating phenomena. Domain Q for the uncontrolled system: straight
channel with a narrow inlet.

The problem reads:

—pAv+v-Vo+Vp=0 1in ),

div(v) =0 in Q,

V= Vip on Iy, (7.15)
v=20 on I'yan,

—pn + (uVu)n =0 on Loy,

where v = (vy,,v,,) and p are, respectively, the velocity of the fluid and the
pressure fields normalized over a constant density and p € [0.5,2.] is the kine-
matic viscosity. We applied Neumann boundary conditions on I'y,t with outer
normal n and no-slip (homogeneous) Dirichlet boundary condition on 'y, while
a non-homogeneous Dirichlet boundary condition vy, is provided at the inlet T'y,.
The inlet flow has the following form:

Vin(22) = 20(5 — 3722)(1‘2 —2.5) '

We already declared that the bifurcating phenomenon depends on how much
the flow behaves as viscous. As an index of this property, we introduce the
dimensionless Reynolds number, representing the ratio between inertial and
viscous forces. It is given by Re = Uh/u, where U and h are the characteristic
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velocity (i.e., the maximum inlet velocity, U = 31.25) and the characteristic
length of © (i.e., the length of the inlet section, h = 2.5), respectively. In the
considered parameter space, the Re varies in the interval [39.0, 156.0]. Indeed,
changing the value of y will affect the Re, thus, we will refer to both indistinctly
while commenting the numerical results. For this particular test case, a unique
solution exists up to p* = 0.96. As already specified, below that value, we
experience a pitchfork bifurcation. Let V = [Hl(Q)]2, Vn={veV]v=
Vi on T, v =0 on Dyan}, Vo = {v € V |v=0o0n Iy, Ulyan} and P = L2()
be the function spaces for velocity and pressure, respectively. Problem (7.15)
can be recast in weak formulation as: given p € D, find v € Vj, and p € P such
that

u/QV'U’Vi/}dQnL/Q(U~Vv)1/)dQ—/deiv(w)dQ:0 Vi €V,

/ wdiv(v) dQ =0 Ve P,
Q

(7.16)
or, equivalently, as: given u € D, find v € Vi, and p € P such that
a(v,P; ) + 5(v,v,9) +b(¢,p) =0 Vo €V, (717)
b(v,m) =0 Ve P, .
where
(v, i) =i [ Vo do Vo, eV,
Q
b(v,p) = —/ div(v) pd§2 YveV, VpeP, (7.18)
Q
s(v,f;,w):/(v-V@)wdQ Yo,v,9 € V.
Q

7.2.2 FE Numerical Approximation

For the NSE model, the FE strategy is totally analogous to the one adopted
for the Stokes problem in Section 4.2.2, the reader may refer to [128]. Namely,
after building a triangulation over Q of 2'785 cells, we employed a N4, =
Npp + NEp = 24’301 for the state variable y = (v,p). Figure 7.4 shows a
bifurcation diagram with all the solution branches of the system (7.17) w.r.t. the
value of p. The value of the depicted function is given by the vertical component
of the velocity v, in the point (z1,22) = (14,4). The point, for its position,
easily detects that the symmetry breaks around p* = 0.96, when a pitchfork
bifurcation occurs. Moreover, below that value p*, there is a change in the
stability properties of the model. Indeed, the unique symmetric solution remains
stable until x*, when it becomes unstable, while the stability is inherited by the
asymmetric solutions. Figure 7.2 shows some representative solutions for the
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lower (top plots) and middle branch (bottom plots): it is clear that, for the same
value 1 = 0.5, the solution behaviour is totally different for the two branches.
In the asymmetric case, the pressure decreases in the bottom-left corner of the
expansion, thus the velocity deflects in a wall-hugging profile. Finally, due to
the no-slip boundary conditions, the flux gets back end exits the channel in a
non-symmetric way. The stability analysis is performed employing Algorithm
1 only for the linearized uncontrolled state equation (7.1) around the solution
of interest. In particular, we studied how the first No;, = 100 eigenvalues of
(7.10) varying the viscosity p. The eigenvalues are shown in Figure 7.3 for the
stable lower branch (left plot) and unstable middle branch (right plot). The
zoom of the plots shows if R(p,) crosses the origin or not. Thus, from the
considerations of Section 7.1.3, the wall-hugging branch inherits the stability of
the solution since in the left plot of Figure 7.3 there is no crossing of negative-
real part eigenvalues. Finally, we remark that, even if the asymmetric branch
is the stable one, it is inconvenient in medical applications, since it represents
a regurgitation that can lead to some issues in measurements. This is the main
reason why we exploit OCP(u)s in this framework, which will be the topic of
the next Section.

Velocity field Pvessure ﬁe\d

0084005 1015 20 25 31ev0l 15e+02 866401
—-— | ol | —
Velocily field Pressure fleld
00e+005 10 15 20 25 3.le+0l 150402 0 0 680l
— | sl — | o

Figure 7.2: OCP(u)s for bifurcating phenomena. Representative solutions for the uncontrolled
NSE for g = 0.5, velocity and pressure fields. Top. lower branch. Bottom. Middle
branch.

Complex plane stable solution Complex plane unstable solution

-0.12 -0.10  -0.08  -0.06 —0.04  —0.02 0.00 -0.10 -0.08 —-0.06 —0.04 —-0.02 000 002 004
Rlou) Ripu)

Figure 7.3: OCP(u)s for bifurcating phenomena. Eigenvalues of the state eigenproblem in the
complex plane for the uncontrolled NSE. Left. Stable solution. Right. Unstable
solution.
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Bifurcation diagram

34 -B- Unstable middle branch
—#— Stable lower branch

—
Stable upper branch

v (14,4)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Figure 7.4: OCP(u)s for bifurcating phenomena. Bifurcation diagram for the uncontrolled NSE.

7.3 Steering bifurcations through OCP(u)s

We now deal with several OCP(u)s governed by NSE in the setting proposed
in Section 7.2.1. The goal is to understand the role of different controls on the
solution behaviour when a bifurcation phenomenon occurs and if OCP(u)s can
be considered as attractors towards some preferable solutions. Indeed, the loss
of uniqueness can represent an issue in several applications. In the context of
the mitral valve regurgitation, for instance, a wall-hugging solution might lead
to inaccurate experimental measurements by echocardiography.

We remark that, even if we focus on a very specific test case, the presented
procedure is general and can be employed in wide variety of other nonlinear
applications.

Let us consider the domain 2 shown in Figure 7.1. In this setting, we require
the velocity solution v € V to be the most similar to a desired profile vq €
Vobs := [L?(Tobs)]?. The observation domain Tops = {47} x [0,7.5] is a line near
the end of the channel. For the experiments, we employed two different velocity
profiles, which are showed in Figure 7.5: we call them the symmetric desired
profile (or target) for Figure 7.5a and the asymmetric desired profile (or target)
for Figure 7.5b. The first is the result of a Stokes system over €2 for 4 = 1 with
the same boundary conditions of the uncontrolled NSE presented in (7.15).
The latter is the physically stable uncontrolled NSE solution for p = 0.49.
Namely, the first profile aims at reaching a globally symmetric configuration
with a diffusive outgoing flux, while, the latter can be exploited to achieve the
opposite goal.
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——— T ———

Stokes - desired velocity Navier-Stokes - desired velocity
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(a) (b)

Figure 7.5: OCP(u)s for bifurcating phenomena. Desired velocity profiles: (a) symmetric profile
obtained as Stokes solution for p = 1; (b) asymmetric profile given by the physically
stable Navier-Stokes solution for pu = 0.49.

To steer the bifurcating behaviour towards a preferable solution, we rely on the
minimization of the functional

1 «
Ins (v, u50a) = Sllv — vall%,,, + §||u||2U7 (7.19)

where U := [L2(£2,)]2. The control domain €2, C Q can be a part of the domain
or of the boundary. In the experiments, we will analyze how the choice of €,
together with the penalization parameter a affects the solution behaviour of the
standard NSE. First of all, we will briefly introduce the problem formulation in
Section 7.3.1. Then, we will provide the analysis of several OCP(u)s, as follows.

Sec. 7.3.2. A weak control is built by changing the flow behaviour at the Neu-
mann boundary. The uncontrolled bifurcating solution is slightly
affected by the optimality system.

Sec. 7.3.3. A strong control is performed through a distributed forcing term.
The classical bifurcating behaviour solution is highly affected by the
control variable.

Sec. 7.3.4. We analyse the penalization parameter in a control framework acting
at the end of the inlet channel. Different values of o will change the
uncontrolled system resulting in several interesting configurations.

Sec. 7.3.5. Lastly, we will control different boundary flux conditions and this will
drastically change the known behaviour of the uncontrolled NSE.

Finally, some final remarks and comparisons concerning the spectral analysis of
all the presented test cases are discussed in Section 7.3.6.

7.3.1 OCP(u)s Governed by NSE

In this Section we are going to describe the structure of OCP(u)s constrained to
NSE. Indeed, we will specify the structure of Remark 2.2.1 for this specific state
equation. Here we report the continuous and the discrete problem formulation,
for the sake of clarity. The formulation is similar to the Stokes problem of
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Section 1.2.3, however, we here denote the variables in a differnt way, following

the notation of [118]. The controlled version of the NSE in Q reads as:
—.uAv +v-Vuo+Vp=_C(u) %n Q, (7.20)
div(v) =0 in Q,

together with some proper boundary conditions. As usual, C : U — V* is
the control operator and can represent either an external forcing term or a
boundary term. We recall that if C' acts on the whole domain the problem is
said distributed. However, in this context, when C' will only act in a subset
of the internal domain, we will talk about localized control. Furthermore, we
will refer to Neumann control and Dirichlet control, if Q, = I'oy and Q, =
I'p, respectively (as represented in Figure 7.1). The weak formulation of the
controlled state equation (7.20) is: given p € D, findv € V,p€ Pand u € U
such that

{ Z(v,w; 1) +s(v,v,9) +b(1,p) = c(u,¥) Vo € Vo, (7.21)

(v,m) =0 VreP,

where a(-,; ), b(-,-) and s(-,-,-) have been already defined in (7.18) while ¢ :
U x V — R is the bilinear form related to the control operator. As we specified
in Chapter 1.1.1, the problem can be tackled through a Lagrangian argument
and solved thanks to the following optimality system: given p € D, find X =
((v,p),u, (w,q)) € X such that

D, s (X504, w)[p] =0 VeV,

Dy ns(X;vq,m)[0] =0 VO € P,

Dy Zns(Xsvq,m)[7]) =0 V7el, (7.22)
Dy Zns(Xiva, p)[] =0 Vo € Vy,

quNS(X;vdal‘l’)[ } 0 Vﬂ-epa

where Zns(X;vg, ) is built as described in Section 1.1.1 and X := (Vj, x P) X
U x (Vin x P). The adjoint equation has the following form:

m(v, @) + a(w, ;) + s(p, v, w)
+5(v, 0, w) + b(w,q) = m(va, ) Ve eVy, (7.23)
b(w,0) =0 Vo e P,

and the optimality equation is
an(u, 1) =c(r,w) VTeU, (7.24)

where m : VXV — Rand n : U x U — R are defined as in Section 1.2.1:
they represent the L?-product in Iyps and €2, respectively. Furthermore, the
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summation s(p,v,w) + s(v, p,w) is the linearization around v of the trilinear
form s(v,v, ). Therefore, the strong formulation for (7.23) and (7.24) reads:

vlg,,. — pAw —v - Vw + (Vo)Tw + Vg = v4lq,,, in Q,
div(w) =0 in 0, (7.25)
oullg, = C*w in Q,

where I, and I, are the indicator functions of the control and observation
domains, respectively. In this context, similarly to the one proposed in the
Stokes framework in Section 1.2.3; considering y := (v,p) and z := (w,q), we
recover the algebraic formulation Remark 2.2.1 once applied the same Taylor-
Hood approximation P2-P! to the state y and the adjoint variable z. Moreover,
the space U is approximated by P? polynomials. Now, specifying the general
strategy presented in Remark 2.2.1, we define

o IR

with v, p,w,q the column vectors of FE coefficients for state and adjoint, ve-
locities and pressures, respectively, and M, and C, the mass velocity matrix
and the matrix representation of the bilinear form ¢(-,-). Nonetheless, we can
discretize the linearized state equation in the following way

S[v] 0] [K DT]:[msm DT],

Iy _
B R U R Swie (7.21)

where K is the stiffness matrix related to a(,-; ), D is the matrix deriving from
the continuity constraint b(-,-) and, finally, S[v/] is the algebraic formulation of
s(v,+, )+ s(-,v,-) wr.t. FE velocity basis functions. We recall that, in the opti-
mality system, the term Dy (E’,[y]”)[z/] defined in (2.19) arises. In this specific
context, we call s,q4(v,w, @) the adjoint operator of the linearized trilinear form
s(v,v,-) around the state velocity v. The related matrix formulation is S[v/]7.
When evaluating the Jacobian, the linearization of saq(w,v, ) is performed
both w.r.t. w and w.r.t. v. This process will lead to

Dy (Er,ly’'17)[2] = DV(S[VJ]()T)([Wj}) 8 : (7.28)

where D, (S[v/]T)([w’]) is given by the form s,q(w,-,-) applied to the velocity
basis functions. Finally, the whole linearized OCP(u) problem reads:

M, + Dy (S\]T)w/] 0 0 KT+SW]T DT

0 0 0 D 0

Jacns (XI5 p) = 0 0 aM, —CT 0
K + S[v/] DT —C, 0 0

D 0 0 0 0
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where X optimal solution coefficient vector. Now, calling

1T (Tw ;
My + Dy (S[W]H)(W/]) 0 0 K+SW] DT -C,
A= 0 0 0 and B= D 0 E
0 0 aM,
(7.29)

it is clear that the Jacobian matrix presents the saddle point structure of equa-
tion (2.20). We remark that we are dealing with a nested saddle point structure
as presented for the time-dependent Stokes case in Section 2.3.2. We recall that,
besides the babi ska inf-sup constant 7.14, for a given pu # p*, thanks to the
Taylor-Hood discretization, the following Brezzi inf-sup condition holds, i.e.

pTDv A

Bls(n) == inf sup > Bs(w) > 0. (7.30)

p£0 v£0 Iviiviplle

As already specified, in the next subsections we will show how different OCP()s
change the uncontrolled problem behaviour presented in Section 7.2. For the
sake of notation, from now on, we will use the terms symmetric/asymmetric
to denote both the desired velocity target or and a visual representation of the
obtained optimal solution. Furthermore, with natural optimal branch we refer to
the branch obtained by means of Algorithm 1 employing a trivial initial guess.
It can be either symmetric or asymmetric: it will be related to the test case.
Namely, from a numerical viewpoint, the natural optimal branch is the simplest
configuration to achieve by the optimality system with Algorithm 1 even after
a random perturbation of the trivial guess. We remark that further branches
might exist, however, they are difficult to detect in practice and they need
very tailored initial guesses. These kind of branches will be named non-natural
optimal branches'. We guess that the natural branches are a consequence of a
numerical stability property related to the optimality system itself. Indeed, by
definition, OCP(u)s are not physical, since they rely on an “artificial” adjoint
variables to change the system behaviour.

7.3.2 Neumann Control: weak steering

The first numerical experiment we deal with is a Neumann control over the
boundary I'oyt. Here, homogeneous Dirichlet conditions are applied to I'yan := ToU
I'p. In this specific context, the optimality system reads: given p € D find

IFor the sake of clarity, each branch is extended to p > p* with the unique solution.
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X € X such that

vlr,,. — pAw —v - Vw + (Vo)Tw + Vg = vqlr,,. in Q,

V-w=0 in Q,

w=20 on I'y, U Tyan,

—gn+ (uVw)n =0 on Loy,

oulp,,, =wlp,,, %n Q, (7.31)
—pAv+v-Vo+Vp=0 in Q,

V-v=0 in Q,

V= Uin on Iy,

v=20 on Fwau,

—pn + (uVo)n = u on oyt

The target velocity vq will always be considered as symmetric. Namely, we want
to find the best Neumann boundary condition framework to reach the profile
depicted in Figure 7.5a. We analysed several values of the penalization param-
eter, say a = 1,0.1,0.001,0.0001, where, we recall, the greater is the value of «
the lower is the strength of the control. Figure 7.6 shows some representative
solutions for v = 0.01 and p = 0.5, for state velocity and pressure variables. In
this case, the natural optimal branch features asymmetric solutions (Figure 7.6,
top). A further non-natural optimal branch made up by symmetric solutions
(Figure 7.6, bottom) has been observed. Some other qualitative results of nat-
ural optimal and non-natural optimal branches are depicted in Figures 7.7 and
7.8, respectively. From the results, we assert that the Neumann control weakly
affects the standard system behaviour: indeed, it does not steer the system to-
wards the desired symmetric profile once the bifurcation happened. Thus, the
configurations are very similar to the uncontrolled case (refer, for example, to
Figure 7.4).

Let us analyse the left plot of Figure 7.7: it depicts the velocity profile mag-
nitude over [',ps for the highest value of the Reynolds number when following
the natural optimal branch. The obtained velocity (marked by an orange line)
is indeed different from the desired profile (denoted by a blue line), especially
for what concerns peak values. However, we observe that the Neumann con-
trol straightens the flux near the end of the channel (compare the orange line
to the green line, which represents the uncontrolled asymmetric profile), even
when high Reynolds numbers are considered. The resulting profile is similar
to the uncontrolled symmetric velocity (red line). The right plot of Figure 7.7
represents the control variable for some values of u following the natural op-
timal branch. As expected, the control is stronger for u < p* (i.e., when the
wall-hugging phenomenon occurs and, thus, a straightening action is necessary),
while it remains low in magnitude for p > p*.

Similarly, the left plot of Figure 7.8 shows the velocity profile magnitude over
[ops for the highest value of the Reynolds number when considering the non-
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natural optimal branch (which is symmetric in this case). The controlled sym-
metric profile (orange line) coincides with the uncontrolled symmetric profile
(red line). Furthermore, from the right plot of Figure 7.8, we can observe
that the control variable around the critical p* (e.g., o = 1 and g = 0.95) is
asymmetric: this is due to the need of counteracting the physically stable un-
controlled wall-hugging behaviour. We further remark that, compared to the
natural optimal branch, the control variable of the non-natural optimal branch
has a lower magnitude. Table 7.1 shows the value of the cost functional (7.19)
for several values of p (rows) and « (columns), following either the natural op-
timal or non-natural optimal branches. In the first column, we also report the
value of the uncontrolled functional, i.e. (7.19) evaluated for the uncontrolled
velocity v. In all the cases, the non-natural branch presents lower values of the
functional compared to the natural branch since the first one is clearly closer to
the symmetric target (compare e.g. for p = 0.05 and o = 0.001 the left panels
of Figures 7.7 and 7.8). However, when dealing with the natural branch, the
optimal control procedure influences the most the cost functional values: for
instance, for p = 0.05 and o = 0.001, the cost functional is decreased by 6% on
the non-natural branch and by 55% on the natural one w.r.t. the corresponding
uncontrolled configuration. Again, this is not unexpected since from Figures 7.7
and 7.8 it is clear that in the natural configuration the control action prevails.
We remark that larger values of p present a negligible value of the cost func-
tional, since the target velocity almost coincides with the uncontrolled velocity.
From this preliminary analysis, we can deduce that the optimality performance
may vary between the different configurations, thus, it is of utmost importance
to deeply analyse all the branches to detect the solution that best recover the
desired velocity profile. To study the stability of the optimal solutions, we per-
formed the eigenvalues analysis described in Algorithm 1. We can derive several
information from the Figure 7.9: it represents the global eigenvalue problem for
the natural branch, against the parameter p such that R(o,) = [—0.01,0.01].
We plot the first Ne;q = 100 eigenvalues of the linearized system (7.11) around
the global optimal solution, using a Krylov-Schur algorithm. The plot shows
two eigenvalues (highlighted with blue markers) approaching R(c,,) = 0: in this
case, we will say that the shears phenomenon is occurring. Moreover, the lower
is «, the larger is the number of positive eigenvalues, while the negative eigen-
values are lowering except for the negative shear eigenvalue. Furthermore, it is
clear form plots 7.9c and 7.9d that positive real eigenvalues cluster in the value
of a. In addition, a single eigenvalue (denoted by red markers) approaching
zero is clearly visible. The conclusion we can draw from the global eigenvalue
analysis is that a much controlled system (i.e. smaller values of ) highly affects
the concentration of negative eigenvalues. Unfortunately, no information about
the physical stability can be derived by the performed global eigenvalue analy-
sis. Indeed, similar eigenvalues behaviour is observed for both the natural and
non-natural branches (only the former being shown here for the sake of brevity).
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Figure 7.6: OCP(u)s for bifurcating phenomena. (Neumann control). Optimal solutions with
a = 0.01 and g = 0.5, belonging to the natural optimal (panels (a) and (b) for state
velocity and pressure, respectively) and the non-natural optimal (panels (c) and (d))
branches.

Table 7.1: OCP(u)s for bifurcating phenomena. Comparison of the functional value for Neumann
control w.r.t. stable and unstable uncontrolled solutions. (Nat.) Natural optimal
branch. (n-Nat.) Non-natural optimal branch.

Stable [ Unstable Nat. [ n-Nat. Nat. [ n-Nat. Nat. [ n-Nat. Nat. [ n-Nat.
Uncontrolled a=1 a=0.1 a =0.01 a = 0.001

2 5.14e-9 | 5.14e-9 || 5.13e-9 | 5.13e-9 || 5.13e-9 | 5.13e-9 || 5.13e-9 | 5.13e-9 || 5.07e-9 | 5.07e-9
1.5 | 4.38¢—6 | 4.38¢—6 || 4.38¢—6 | 4.38¢—6 || 4.38e—6 | 4.38e—6 || 4.37e—6 | 4.37e—6 || 4.28e—6 | 4.28e—6
1 4.10e-3 | 4.10e-3 4.10e-3 | 4.10e-3 || 4.10e—3 | 4.10e—-3 || 4.08¢—3 | 4.10e-3 || 3.92e-3 | 3.92e-3
0.9 3.33e-2 | 1.63e-2 3.33e-2 | 1.63e-2 || 3.30e-2 | 1.63e-2 || 3.15e-2 | 1.63e-2 || 2.93e-2 | 1.55e-2
0.8 || 2.08e-1 | 6.52e—2 || 2.07e-1 | 6.52e-2 || 2.04e—-1 | 6.51e—2 || 1.88e-1 | 6.51e-2 || 1.70e—1 | 6.15e—2
0.7 || 1.0le4+0| 2.59e-1 || 1.0le+0 | 2.59¢e-1 || 9.80e—1 | 2.59¢e-1 || 8.63e—1 | 2.59¢e-1 || 7.67e-1 | 2.43e-1
0.6 || 4.48¢+0 | 1.70e+0 || 4.44e+0 | 1.02e+0 || 4.15e+0 | 1.02e+0 || 3.33e+0 | 1.02e+0 || 2.91e+0 | 9.57e—1
0.5 || 1.88e+1 | 3.92e+0 || 1.83e+1 | 3.92e+0 || 1.50e+1 | 3.92e+0 || 9.61e+0 | 3.92e40 || 8.54e+4-0 | 3.68e+0
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Figure 7.7: OCP(u)s for bifurcating phenomena.Left. (Neumann control). Comparison of veloc-
ity profiles in the controlled and uncontrolled cases for o = 0.01, . = 0.5 on I'opg w.r.t.
the desired profile when following the natural optimal branch. Right. representation
of control variable evolution for @ = 0.01, u = 2,1,0.95,0.5 over Iy, when following
the natural optimal branch.
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Figure 7.8: OCP(u)s for bifurcating phenomena. (Neumann control). Left. Comparison of veloc-
ity profiles in the controlled and uncontrolled cases for a = 0.01, p = 0.5 on I'ops W.r.t.
the desired profile when following the non-natural optimal branch. The lines marked
by “Controlled Symmetric Velocity” and “Uncontrolled Symmetric Velocity” overlap.
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Figure 7.9: OCP(u)s for bifurcating phenomena. (Neumann control). Spectral analysis of Neu-
mann control with « = 1,0.1,0.01,0.001.
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Therefore, even for the other experiments, we will discuss only the numerical
stability represented by natural optimal solution. Summing up, the Neumann
control does not fully steer the uncontrolled solutions towards the desired sym-
metric configuration. However, this will be the case of the following test case,

where a stronger control effect is analysed.

7.3.3 Distributed Control: strong steering

This Section deals with a distributed control in 2, = €). Also in this case, we
consider I'yay = g UT'p. Given p € D, the optimal solution X € X solves the

following system:

vlp,, — pAw —v - Vw + (Vo)Tw + Vg = vglp,,,  in Q,

div(w) =0 in Q,

w=20 on I'yy, U l'wan,

—gn+ (uVw)n =0 on Loy,

au = w ?n Q, (7.32)
—pAv+v-Vo+Vp=u in €,

div(v) =0 in Q,

vV = Vip on I'yan,

v=0 on I'g,

—pn+ (uVo)n =0 on I'oyt.

For this experiment we expect a stronger action of the control variable that has
the possibility to deeply affect the original system. To show this feature, we will
steer the system towards either symmetric or asymmetric desired profiles vq:

o Symmetric target. First of all, let us focus on Figures 7.10a and 7.10b

where two representative solutions of the control variable, defined on the
whole domain, are shown. The plots have been obtained for 4 = 2 and
= 0.5, when following the natural optimal branch, which is composed of
symmetric solutions. The strong action of the control lead to a more diffu-
sive velocity field w.r.t. the uncontrolled symmetric profile, as represented
in the left plot of Figure 7.13, corresponding to the velocity solution slice
on the observation domain for g = 0.5: in this case the controlled velocity
(orange line) and the symmetric target (blue line) almost overlap. The
right plot of Figure 7.13 shows that a slightly asymmetric control is only
required near the critical value p* (also compare with Figures 7.10a and
7.10b for the cases p = 2 and p = 0.5). Nonetheless, as expected, the
control action is higher when the Re value increases. Indeed, for y = 2 the
control exclusively acts in the proximity of I'gps with a maximum magni-
tude of 1.8-10%, while for & = 0.5 it reaches a value of 1.6 of magnitude
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and it is significant all over the domain.

A further non-natural optimal branch exists, and is made of asymmet-
ric solutions. However, it is hardly detectable by Algorithm 1 unless one
exploits very tailored guesses in a small neighborhood of p*.

o Asymmetric target. In contrast with all the previous test cases, here we
want to reach an asymmetric target for all 4 € D. Figures 7.10c and 7.10d
show two representative control solutions for ¢ = 2 and p = 0.5 when
following the natural optimal branch. In this case, it features asymmetric
solutions. The action of the control is also visible in the left plot of Figure
7.14, obtained for 4 = 2. The control, as expected, pushes the flux over
Tobs towards the domain wall (orange line), avoiding the symmetric profile
of the uncontrolled velocity (green line). Namely, also for this other test,
the distributed control drives the solution towards the desired velocity.
For this reason, the control magnitude is larger when p > p*, i.e. when
the uncontrolled configuration is symmetric. Indeed, in Figure 7.10c the
maximum magnitude for the control is 7 and it is reached for p = 2 in
the upper part of the domain. On the contrary, Figure 7.10d shows how
it lowers to 107! for u = 0.5: indeed, the stable velocity solution does
not need any control effect being already asymmetric. These deductions
comply with the right plot of Figure 7.14 w.r.t. several values of u.

Also in this case, a non-natural optimal branch (this time featuring symmetric
solutions) can be found with some numerical effort. Table 7.2 shows a compar-
ison of the values of the cost functional (7.19) for the reached natural branch
for both symmetric and asymmetric targets. Several values of u (rows) and «
(columns) have been taken into consideration and compered to the uncontrolled
case. Once again, the functional is lower for smaller a. In the symmetric tar-
get case, the distributed control steers the solution towards the desired profile
and this is visible for ¢ = 0.05 and « = 0.01, values for which the functional
is decreased by a 90% w.r.t. its uncontrolled counterpart. If we lower «, say
a = 0.001, the cost functional is almost decreased by 99%. An analogous argu-
ment holds for the asymmetric target: in that case, the maximum action of the
control variable is given for low Re. Indeed, for ; = 2. the functional decreases
of the 77.5% for a = 0.01. The percentage grows up to a 97% if we employ
a = 0.001. We here stress that no control action is needed for p = 0.5 ~ 0.49,
i.e. it is the parameter value for which the asymmetric vq was computed. This
translates in very low values of (7.19), even below the machine precision. The
spectral analysis of this optimality system is depicted in Figure 7.12: in partic-
ular, Figures 7.12a (o = 1) and 7.12b (a = 0.1) are related to the symmetric
target when following the corresponding natural optimal branch, while Figures
7.12¢ (. =1) and 7.12d (a = 0.1) consider the asymmetric target when follow-
ing its natural optimal branch. It is clear that the behaviour between the top
and bottom panels of Figure 7.12 is similar. Thus, we will only focus on the
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role of « in this context. We remark that, as in the previous experiment, no
stability information about the optimal solution is given by means of the global
eigenvalue problem. Indeed, the remaining (i.e., non-natural optimal) branches
present very similar patterns to the ones in Figure 7.12. Plotting the eigenvalues
for « = 1 in R(o,) = [-0.01,0.01] and for o = 0.1 in R(o,) = [—0.005,0.005],
we can observe a predominance of positive eigenvalues even for larger values
of the penalization parameter. Also in this case, if « is smaller, less negative
eigenvalues are visible.

Symmet conral-low Reynoids Symmefric control - high Reynolds
6 1

13223 5e5 00001 32620 04 06 08 1 12 14 176400
-_ ! T — | mt—
Asymmetic conicl-low Reynalds Asymmetric confrol - low Reynolds
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Figure 7.10: OCP(u)s for bifurcating phenomena. (Distributed control). Optimal control pro-
files for @« = 0.01. Left: g = 2 in (a) and (c); right: g = 0.5 in (b) and (d). Top.
symmetric target in (a) and (b); Bottom. asymmetric target in (c) and (d).
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Figure 7.11: OCP(u)s for bifurcating phenomena. (Distributed control). Bifurcation diagram
(upper branch only) for controlled state velocity obtained with a = 1,0.1,0.01,0.001
and asymmetric target, compared to the uncontrolled velocity.
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Figure 7.12: OCP(u)s for bifurcating phenomena. (Distributed control). Spectral analysis with
a = 1,0.1 (left to right) for the natural optimal branch with symmetric (top) and

asymmetric (bottom) targets.
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Figure 7.13: OCP(u)s for bifurcating phenomena. (Distributed control). Left. Comparison of
velocity profiles in the controlled and uncontrolled cases for o = 0.01, u = 0.5 on
I'ops w.r.t. the symmetric desired profile when following the natural optimal branch.
Right. Representation of control variable evolution for o = 0.01, p = 2,1,0.95,0.5
for 1 = 45 when following the natural optimal branch.
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Figure 7.14: OCP(u)s for bifurcating phenomena. (Distributed control). Left. Comparison of
velocity profiles in the controlled and uncontrolled cases for a = 0.01, u = 2. on I'gps

w.r.t. the asymmetric desired profile when following the natural optimal branch.
Right. Representation of control variable evolution for o = 0.01, p = 2,1,0.95,0.5
for 1 = 45 when following the natural optimal branch.

Table 7.2: OCP(pn)s for bifurcating phenomena. Comparison of the functional value for dis-
tributed control. (Sym.) Natural optimal branch for symmetric target. (Asym.) Nat-
ural optimal branch for asymmetric target. (Sym.-U.) Unstable uncontrolled solution

with symmetric target. (Asym.-S.) Stable uncontrolled solution with asymmetric tar-
get. (B.M.E.) Below machine epsilon.

Sym.-U. ‘ Asym.-S. Sym. ‘ Asym. Sym. ‘ Asym. Sym. ‘ Asym. Sym. ‘ Asym.
Uncontrolled a=1 a=0.1 a = 0.01 o = 0.001

2 || 5.14e-9 | 1.88e+1 || 5.06e-9 |1.81e+1 || 4.51e-9 | 1.36e+1 || 2.22e-9 | 4.23e4-0 || 4.04e-10 | 5.66e-1
1.5 || 4.38¢-6 | 1.88e+1 || 4.29¢—6 | 1.77e+1 || 3.61e—6 | 1.20e+1 || 1.46e—6 | 3.09e+0 || 2.28e-7 | 3.87e—1
1 || 4.10e-3 | 1.86e+1 || 3.95e-3 | 1.67e+1 || 2.99e-3 | 9.15e+0 || 9.14e—4 | 1.86e+0 || 1.23e—4 |2.17e-1
0.9 || 1.63e—2 | 1.84e+1 || 1.56e—2 |1.54e+1 || 1.14e-2 | 7.88e+-0 || 3.26e—3 | 1.50e+-0 || 4.26e—4 | 1.73e-1
0.8 || 6.52e—2 | 1.54e+1 || 6.21e-2 |1.31e+1 || 4.36e—2 | 6.06e+0 || 1.14e—2 | 1.08e+0 || 1.45e-3 | 1.22e—1
0.7 || 2.59e—1 | 1.15e+1 || 2.45e-1 |9.28e+0 || 1.63e-1 | 3.68e+0 || 3.93e—2 | 6.16e-1 || 4.81e-3 | 6.90e—2
0.6 || 1.70e40 | 5.34e+0 || 9.54e-1 | 3.76e+0 || 5.94e—1 | 1.24e+0 || 1.28e—1 | 2.00e—1 || 1.70e—2 |2.22e—2
0.5/ 3.92e+0 | B.M.E. |[3.59¢+0| B.M.E. || 2.04e+0 | BM.E. || 3.92e-1 | B.M.E. || 4.47¢-2 | B.M.E.

Moreover, we noticed that, no matter the used «, the shears phenomenon does
not happen. Even if a small trace of the shears structure is still present for a = 1
(highlighted in blue) in Figures 7.12a and 7.12¢, for o = 0.1 the structure com-
pletely breaks. Figure 7.12b and 7.12d only depict one eigenvalue (representing
the top of the shears, and marked in blue) approaching R(c,) = 0 without
crossing it. Let us denote with p** the point for which the upper shears curve
is the closest to the axis R(o,) = 0. It will give us further information on
the bifurcating phenomenon. Indeed, from Figure 7.12, p** ~ p* = 0.96 for
the symmetric target, regardless of «, while, employing asymmetric target, we
noticed that p** € [1.0,1.2] with a mild dependence on «. This feature is high-
lighted by Figure 7.11, representing the bifurcation diagram for the controlled
solution with asymmetric target. Namely, we can state that p** indicates where
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the bifurcation of the controlled system occurs. We conclude that this opti-
mality system steers the state solution towards a desired branch affecting the
location of the bifurcation point, eventually. The role of « in the optimization
process will be clarified in the next Section.

7.3.4 Channel Control: the a effect

This Section aims at describing how the value of « can affect the natural conver-
gence towards a symmetric target over I'yps. In this setting, the problem reads:
given p € D find the optimal solution X € X that verifies:

vlr,,. — pAw — v - Vw + (Vo)Tw + Vg = vqlp,,.  in Q,

div(w) =0 in Q,

w=20 on I'y, U lyan,

—gqn+ (uVw)n =0 on Loy,

oulp,, = wlr,, in Q, (7.33)
—pAv+v-Vo+ Vp =aulp,, in Q,

div(v) =0 in €,

UV = Uin on ['jy,,

v=0 on Iy,

—pn + (uVo)n =0 on Loy,

where the control variable is defined at the end of inlet channel, i.e. Q, = g,
as depicted in Figure 7.1, and T'yay is, once again, I'g U I'p. Namely, we are
interpreting the control as a forcing term influencing how the flow enters in
the expansion channel. Figure 7.15 shows the adjoint velocity and pressure
profiles obtained for p = 0.5 for « = 1 and a = 0.01. For the highest value of
the penalization parameter, following Algorithm 1, the natural optimal branch
features a wall-hugging behaviour, while for smaller values of a the control
variable drives the velocity towards a symmetric flux (see the left panels of
Figures 7.16 and 7.17).

Therefore, in this case, the natural optimal branch is highly influenced by the
penalization parameter. If we focus on the right plots of Figures 7.16 and 7.17,
we notice that the control is very sensitive around p*. This is confirmed by its
asymmetric configuration both for the wall-hugging solution and the straight
one. We remark that we were capable to detect two solutions using different
initial guesses in the continuation method for a = 1,0.1,0.01, showing sym-
metric and asymmetric features coexisting for values of u < p*. However, the
smaller was «, the bigger was the effort needed to numerically solve this non-
natural branch detection task. In the case of @ = 0.001 the control action was so
strong that we were not able to actually recover the whole optimal non-natural
branch.
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OCP(p)s for bifurcating phenomena. (Channel control). Two optimal solutions for

adjoint velocity and pressure for p = 0.5: @ = 1 in (a) and (b), and @ = 0.01 in (c)
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Figure 7.15:

Table 7.3: OCP(p)s for bifurcating phenomena. Comparison of the functional value for channel
control w.r.t. stable and unstable uncontrolled solutions. Headers: (Nat.) Natural
optimal branch. (n-Nat.) Non-natural optimal branch. Trailing cell characters: (s)
the solution has symmetric profile. (a) The solution has asymmetric profile. (nat-C.)

Converging to natural branch despite tailored guess. (non-C.) Non-converging Newton’s
solver for tailored guess.

Stable ‘Unstable Nat. ‘ n-Nat. Nat. ‘ n-Nat. Nat. ‘ n-Nat. Nat. ‘ n-Nat.
# Uncontrolled a=1 a=0.1 a=0.01 a = 0.001
2 || 5.14e-9 | 5.14e-9 || 5.14e-9s | 5.14e-9s || 5.14e-9s | 5.14e-9s || 5.14e-9s | 5.14e-9s || 5.07e-9s | 5.14e-9s
1.5 4.38¢6 | 4.38¢—6 || 4.38e—6s | 4.38e—6s

4.38e—6s | 4.38e—6s || 4.38e—6s | 4.38e—6s || 4.28e—6s
1 || 4.10e-3 | 4.10e-3 || 4.10e-3s | 4.10e-3s || 4.10e-3s

0.9]| 3.33¢-2 | 1.63e-2 || 3.33e—2a | 1.63e—2s || 1.63e—1s
0.8|| 2.08¢-1 | 6.52e-2 || 2.08e—1a | 6.52e—2s || 6.52e—2s | 2.07e—1a || 6.52e—2s | 2.04e-1a || 6.51e-2s | nat-C.
0.7][1.01e4+0| 2.59e—1 |[1.01e40a | 2.59e—1s || 2.59e—1s | 1.0le+0a || 2.59e—1s | 9.76e—1a || 2.24e—1s | nat-C.
0.6 || 4.48¢+0| 1.70e+0 || 4.48¢+0a | 1.02e+0s || 1.02e+0s | 4.43e+0a || 1.02e+0s | 4.03e+0a || 9.90e—1s | nat-C.
0.5[[1.88e+1| 3.92e+0 |[1.87e+1a|3.92e+0s || 3.92e+1s| non-C. || 3.87e+0s| non-C. [|3.50e+0s| nat-C.

4.38e—6s
4.10e-3s || 4.08e-3s | 4.10e-3s || 3.92e-3s |4.10e-3s
3.33e—2a || 1.63e—1s | nat-C. 2.93e—2s | non-C.
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Figure 7.16: OCP(u)s for bifurcating phenomena. (Channel control). Left. Comparison of
velocity profiles in the controlled and uncontrolled cases for a« = 1, © = 0.5 on

5 = .
I'obs w.r.t. the symmetric desired profile when following the natural optimal branch.
Right. Representation of control variable evolution for « = 1, p = 2,1,0.95,0.5 at
x1 = 10 when following the natural optimal branch.
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Figure 7.17: OCP(u)s for bifurcating phenomena. (Channel control). Left. Comparison of
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Tobs w.r.t. the symmetric desired profile when following the natural optimal branch.
Right. Representation of control variable evolution for « = 0.01, p = 2,1,0.95,0.5
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Figure 7.18: OCP(u)s for bifurcating phenomena. (Channel control). Spectral analysis with
a =1,0.1,0.01,0.001 when following the natural optimal branch.
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Indeed, either the Newton’s solver did not converge (this happens also for
a = 0.1,0.01 and p = 0.5, compare Table 7.3) or converged to the symmetric
natural branch. Let us comment on Table 7.3 and on the role of the penaliza-
tion parameter. As the other test cases of Sections 7.3.2 and 7.3.3, the straight
configuration gives better results in minimizing the functional w.r.t. the asym-
metric solution thanks to its similarity with the symmetric target we fixed. For
this test case, the decrease of the functional is not remarkable w.r.t. the un-
controlled system. Namely, even if the optimal solution might present straight
natural convergence to the symmetric vq, the parabolic profile on I'ypg is not
achieved (for example, the reader can compare the functional value for p = 0.5
and a = 0.001 w.r.t. the uncontrolled symmetric solution: it only decreases of
a 10%). Finally, we present the global eigenvalue analysis in Figure 7.18 in the
range R(o,) = [—0.01,0.01] when following the natural optimal branch. For
«a = 1, the shears phenomenon happens, while the structure is broken for other
values of the penalization parameter. As expected, lower values of a lead to
a positive-dominated eigenvalues ensemble. Moreover, a clustering around the
value of & can be observed in plots 7.18c and 7.18d. We remark that the same
properties are preserved in the non-natural branch analysis.

The next Section will deal, once again, with the role of the penalization param-
eter, presenting, however, very peculiar results.

7.3.5 Dirichlet Control: flux action

In this final example, we build a Dirichlet control over the boundary Q, = I'p.
Also for this test case, we consider the symmetric vq over the line I'g,s. Here,
we set I'ywann = I'g. The problem to be solved reads: given u € D find X € X
such that

vlp, . — pAw —v - Vw
+(Vv)Tw

—I—Vq = vdHFobs in Q,
div(w) =0 in Q,
w=0 on Iy UT'p U Twan,
—qn+ (uVw)n =0 on Loy,
aullp, = wlp, in Q, (7.34)
—pAv+v-Vo+Vp=0 in Q,
div(v) =0 in €,
V= Ui on Iy,
v=1u on I'p,
v=>0 on I'yai,
—pn + (uVu)n =0 on Toys.
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Namely, in this formulation, we are letting the flux to freely enter or exit from
the boundary I'p. This will highly affect the solution behaviour. First of all,
we stress that the control aims at straighten the solution, due to the choice of
vq. This feature is well represented by Figure 7.19a and the left plot of Fig-
ure 7.20. The symmetric profile is reached even for large values of o and, for
lower values of «, the optimal velocity on I'gps is parabolic. This property is
also highlighted from the functional values in Table 7.4, where, once again, we
compare the uncontrolled behaviour of the functional (7.19) w.r.t. several opti-
mal solutions changing u (rows) and « (columns). As expected, the functional
largely decreases for smaller values of the penalization parameter. For example,
for u = 0.5, the functional only lowers of 18% for o = 0.01, while we reach
an 82% of decrease percentage for @ = 0.001. Furthermore, for o = 0.001, the
system has an interesting and unexpected profile, shown in Figure 7.19b. The
flux presents a new bifurcating asymmetric configuration for a low value of pu.
This asymmetry is related to the high influence of the control that not only
allows the flow to exit from I'p (to avoid the asymmetric recirculation of the
wall-hugging solution), but it also adds flux near the channel, in order to achieve
the parabolic velocity profile over the observation domain, as it is represented
in the right plot of Figure 7.20.

Table 7.4: OCP(u)s for bifurcating phenomena. Comparison of the functional value for Dirichlet
control w.r.t. the stable and unstable uncontrolled solutions.

Stable [ Unstable Controlled Solution

® Uncontrolled a=1 a=0.1 a=0.01 a = 0.001
2 5.14e-9 5.14e-9 4.98e-9 4.83e-9 4.79e-9 4.79e¢-9
1.5 4.38¢—6 4.38¢—6 4.24e-6 4.10e-6 4.07e—6 4.06e—6
1 4.10e-3 4.10e-3 3.94e-3 3.78e-3 3.74e-3 3.72e-3
0.9 3.33e—2 1.63e-2 1.56e—2 1.49¢—2 1.47¢-2 1.45¢—2
0.8 2.08e—1 6.52e—2 6.20e—2 5.88e—2 5.78e—2 5.46e—2
0.7 1.01e+0 2.69e—1 2.44e—1 2.29e—1 2.21e-1 1.82e—-1
0.6 4.48e+-0 1.70e+0 9.49e-1 8.73e—1 8.09e—1 3.57e—1
0.5 1.88e+1 3.92e+0 3.58e+0 3.21e+0 2.41e4+0 4.73e-1

—— =

=1-Velocit a=0.01 - Velocity
oo 5 10 152 25 sl L 0005 10 15 20 25 31001
; i

(a) (b)

Figure 7.19: OCP(u)s for bifurcating phenomena. (Dirichlet control). Two optimal velocity
solutions for p = 0.5, with a = 1 and a = 0.001, left and right, respectively.
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Figure 7.22: OCP(u)s for bifurcating phenomena. (Dirichlet control). Eigenvalues of the state
eigenproblem in the complex plane for the Dirichlet optimal control: symmetric and
asymmetric solutions, left and right, respectively.

In Figure 7.21 the results on eigenvalues analysis are presented. We show close-
ups starting with R(o,) = [-0.001,0.001] for @ = 1 in the top-right image.
Then, the vertical interval is restricted following the order of the lower values
of « in the remaining panels. The arguments we discussed for the other test
cases apply also in this context. For example, a stronger control action leads
to larger number of positive eigenvalues. As we did in the distributed case of
Section 7.3.3, we define the value p** as the parameter for which the top curve
of the shears (marked in blue) approaches #(c,) = 0. As « becomes lower and
lower, the curve is moved away from R(c,) = 0. Thus, in strong controlled
problems, such a point p** might not exist. The previous experimental settings
have shown that the top shear structure approaching to %(c,,) = 0 are typically
related to a bifurcation phenomenon. Thus, we guess that the standard pitchfork
bifurcating configuration is not occurring here. Yet, other type of bifurcating
phenomena might be arose. Indeed, the system seems to be featuring a different
bifurcation, presented in Figure 7.19b. The plot shows an eigenvalue crossing
the line R(c,) = 0 for the global eigenproblem for o = 0.001. This led us
to analyse the the state eigenproblem of Algorithm 1 (Figure 7.22) around the
optimal solution. In this new controlled framework, the symmetric profile does
never cross the origin, while it happens when one is dealing with the asymmetric
solution for e = 0.001 represented in Figure 7.19b. Namely, properly modifying
the boundary conditions, the controlled straight profile can be interpret as a
physical stable solution. Lastly, we remark that in the right plot of Figure 7.22
a couple of complex and conjugate eigenvalue are crossing the imaginary axis, as
in the Hopf bifurcation scenario [124, 140]. We can thus affirm that the Dirichlet
control problem deeply changes the classical behaviour of the solution.

Remark 7.3.1 (Lagrange multipliers) Numerically, the optimality system
(7.34) has been solved through the employment of Lagrangian multipliers. Namely,
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the condition v = u on I'p has been weakly imposed in integral form

/ vAds = / urds VA eV. (7.35)
F]_) FD

This equation reflects in system (7.21), since the term

(V- -vn+pn)ds Vo eV, (7.36)
T'p

appears. This numerical choice leads to new terms in the adjoint equations.
Moreover, we weakly imposed the adjoint boundary condition w =0 on I'p with
another multiplier. The reason of this latter decision will be explained in Section

7.4.

7.3.6 Comparative Eigenvalue Analysis

This Section focuses on all the common observations and the results obtained
by means of the global eigenvalue analysis over the four presented OCP(u)s. A
list of the similarities among them follows:

o the eigenvalues cluster around the value of . This behaviour arises from
the optimality equation 7.24. This feature is well represented in Figures
7.9¢, 7.9d, 7.18¢ and 7.18d;

o the predominance of positive eigenvalues over the negative ones. In all
the test cases the control action tends to lower the negative eigenvalues.
The stronger it is, the more remarkable is this process, as represented in
Figures 7.12b and 7.21;

o the shears effect for low controlled systems that do not highly affect the
standard uncontrolled system solution. It is the case of Neumann control
in Figure 7.9a and of the channel control for & = 1 as shown in Figure
7.18a. For the other cases, this feature might be visible for higher values
of the penalization parameter. However, if the control is strong enough,
the structure is completely broken;

o the p** identification. We observed that the shears (or their top curve,
if broken) approach the real line in p**, i.e. where the bifurcating phe-
nomenon of the controlled system is happening. This argument often
holds regardless of a, see for example Figures 7.12b, 7.18b, 7.18c. The de-
tection of p** can be even feasible in strongly controlled system, such as
the Dirichlet optimal control, see Figure 7.21. In some cases, we observed
a shift of the pu** w.r.t. the uncontrolled critical point p*.
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R(oy)
R(oy)

Figure 7.23: OCP(u)s for bifurcating phenomena. Left. Asymmetric velocity with Neumann
control for « = 1. Right. Symmetric velocity with distributed control for a = 1.

To gain more information on the problem, we perform an eigenvalue analysis
dealing with only the state and the adjoint equations around the optimal so-
lutions. For all the test cases, shears occurs. However, we noticed that their
structure is symmetric when the solution shows the wall-hugging property, while
it is slightly asymmetric when the state flow is straight. We believe that this
behaviour derives from the different reaction of state and adjoint variables to
bifurcations. Indeed, when reaching the desired straight flux, the behaviour of
the state variable should be preserved for all . This happens thanks to the ad-
joint problem, related to the control variable: it re-balances the flux, resulting
in an asymmetric contribution reflected in the structure of the shears. Now that
we have deeply analysed the theme of bifurcations in nonlinear OCP(t)s, in the
next Section will present some numerical results dealing with the reduction of
this kind of problems.

7.4 ROMs for bifurcating OCP(u)s

In this Section we are going to present how ROMs strategies as presented in
Chapter 3 behaves w.r.t. the setting of nonlinear bifurcating OCP(u)s. We here
combined the reduction techniques for OCP(u)s discussed in Part II together
with reduction strategies for bifurcating system as presented in [62, 63, 116,
117, 119, 121]. We employed a branch-wise approach, i.e., for every bifurcating
solution branch M;, we build a different reduced model. This strategy is re-
markably effective to reach accurate ROM solutions. However, in [117, 116], for
example, a global reduction approach was pursued for other applications with
remarkable results. Before showing the numerical results we would like to list
the main features of the used approach:

o for each branch we performed a partitioned POD as described in Section
4.1;
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o the aggregated space techniques was applied in order to guarantee the
well-posedness of the linearized reduced system for p # p* as discussed in
Section 3.2.2;

o the supremizers are needed in order to deal with the nested saddle point
structure of the problem.

Namely, we are working with an enlarged reduced space: this is the key point in
order to have a numerically stable system at the reduced level when we are not
analysing the case of the critical parameter p*. As already specified in Remark
3.1.1, the nonlinear problem still depends on the high fidelity solution. In this
setting, no hyper-reduction technique is applied following [118].

7.4.1 Numerical Results

We now present the numerical results deriving from the reduction of the four
controlled test cases described in Section 7.3.1. For each numerical experiment,
we extract information from N,,., = 51 snapshots evaluated for equidistant
parameters in D = [0.5,2]. For all the test cases, we chose to retain N = 20
bases, except for the Dirichlet test case were 12 bases have been employed for
each variable. We remark that for this specific test case we need additional
basis functions for the two Lagrangian multiplier variables defined in Remark
7.3.1: the final reduced space is, thus, of dimension 15N and this justifies the
use of a slightly smaller reduced framework for the Dirichlet problem. Then,
we performed and error analysis over 151 equidistant values of u € D. The
reliability of the ROM approach has been evaluated through

o an average error over the parameter space w.r.t. an increasing value of
basis functions;

o a p-dependent error computed for the fixed value N = 12 for the Dirichlet
problem and N = 20 for all the other cases.

From the two error analyses we can deduce different features of the problem
at hand. Indeed, the average error tests how the reliability changes w.r.t. the
behaviour of the solution. The symmetric profile appears to always be the
best approximated. See for example the Neumann and the Channel control,
which average errors are depicted in the left plots of Figures 7.24 and 7.28,
respectively. Their asymmetric counterparts, i.e. the right panels of Figures
7.24 and 7.28, show how recovering the Stokes-like profile for u > u* and the
wall-hugging feature for the lower values of p is a more difficult task w.r.t. the
symmetric case. Nonetheless, the provided accuracy is satisfactory for practical
applications for both the cases. This holds true for all the involved variables,
however, the state ones are the best described by the reduced system. As we
already said, the control is very sensitive to the parameter and, thus, it is the
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most challenging to approximate. Indeed, the control variable features a sort
of on-off behaviour and this affects the quality of reduced representation. For
example, when dealing with Stokes target vq, the control is off for larger values
of u, but, when pu ~ p*, it starts to drastically grow in magnitude and it also
presents qualitatively differences w.r.t. the previous values of u. This property is
directly inherited by the adjoint variable, by definition. This is visible from the
right panels of Figures 7.25 and 7.31, where higher values of error correspond to
higher values of p. Due to the same reason, for Channel and Dirichlet test cases
with low Re, we chose to plot the absolute errors for the control variable since
its magnitude was essentially zero and in this way we prevented a meaningless
relative error. This issue does not occur in the Distributed control case, see
for example the right plot of Figure 7.26: a remarkable errors decay for all the
variables can be noticed.
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Figure 7.24: OCP(u)s for bifurcating phenomena (Neumann control). Average error over u with
N = 20 and o = 0.01. Left. Symmetric profile. Right. Symmetric profile.
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Figure 7.26: OCP(u)s for bifurcating phenomena. (Distributed control). Average error over p
with N = 20 and « = 0.01. Left. Symmetric profile. Right. Asymmetric profile.
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Figure 7.28: OCP(u)s for bifurcating phenomena (Channel control) Average error with N = 20
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The Dirichlet test case for @« = 0.001 is very challenging to represent: the
reduced model suffers the complex dynamic and the new bifurcation behaviour.
Indeed, while the other test cases had an average error are ranging between 10~°
and 1078, here we reach an error of almost 10~3 for the controlled state. Yet,
this accuracy is still acceptable for many practical applications. This feature is
highlighted also in the p-dependent errors depicted in Figure 7.31. In both the
pictures, we observe an increment of the error for high Re. This happens also for
the other test cases, see, for example, the right plot of Figure 7.27 and both the
plots of Figure 7.29. However, the Dirichlet case is the worst behaving under
this point of view. Nonetheless, the u-dependent error gives an a posteriori
information about the bifurcation point. Indeed, it is well-known that in order
to achieve a good ROM representation, regularity on the parametric dependence
is needed [64]. For this reason, we can notice an error peak around p*. It
happens, for example, for yu* ~ 0.96 for Neumann, Distributed and Channel
control. It is clear that this property can be very useful when no previous
knowledge about bifurcations of the system is provided. Thus, ROMs are not
only useful to faster solve a very complicated time consuming system, but also to
detect problematic parameters related to the bifurcating nature of the problem
at hand, since these will be the worst approximated. The same feature arises
in the Dirichlet control case at the left end of the parametric domain D: this is
due to the new configuration observed in Figure 7.19b for high Reynolds.

This Chapter aimed at showing how OCP(u)s can be useful to prevent some
configurations and dynamics in nonlinear analysis. We here conclude the ap-
plication of standard model order reduction techniques for OCP(u)s. Indeed, a
final Chapter concerning the use of non-intrusive techniques based on artificial
intelligence for OCP(u)s follows.




CHAPTER &

Physics Informed Neural Networks for
Optimal Control Problems

In this Chapter we extend the concept of physics informed supervised machine
learning strategies to OCP(u)s in real-time and many-query applications. In-
deed, following [46], we will provide a physics informed learning paradigm to
reach accurate optimal simulations in a small amount of time. In Section 8.1, we
will give some motivations about the employment of these approaches together
with the standard formulation of physics informed neural networks (PINNs).
While, in Section 8.2 we exploit the physical model to build tailored neural
networks (NNs) to accelerate the training phase of the process. Then, these
techniques will be combined and tested in an optimal control framework.

8.1 Main Ideas Behind PINNs

Machine Learning (ML) represents a research topic of growing impact. In the
latest years, it has been successfully exploited in several fields of applications, see
for example [47, 85, 91, 161]. This massive interest in ML is directly inherited
by the availability of a huge amount of data, nowadays.
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Figure 8.1: PINNs for OCP(u)s. Example of a feedforward NN, with a 5-neurons input layer,
three 10-neurons hidden layers, 2-neurons output layer.

The classical structure used in this context is the NN, i.e. a computational
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architecture able to learn a configuration from some observed data. A NN
consists of a set of neurons connected by a weighted synaptic structure. The
data information travels among this architecture and, after a training phase,
from an input, the NN provides an output. In this contribution we will only
consider feedforward NNs, where the neurons are aligned into one input layer,
some hidden layers and an output layer. Each layer is connected to the next layer
and the information travels to the output layer, as represented in the example
depicted in Figure 8.1. Namely, a training procedure over the weights of the
connections is performed through some rules and parameters (such as learning
rate and activation functions) which help in reaching a low prediction error
represented by the loss function. This only was a brief overview of NNs and their
structure: the interested reader can refer, e.g., to [25, 55] for more details. Even
if NNs are indisputably useful in many contexts, they may suffer of some lack of
accuracy w.r.t. some expected behaviour in fields where classical PDE(u)s-based
models have been applied. This issue can be tackled though physics informed
strategies. After introduced some motivations in Section 8.1.1, we will discuss
how to enforce physical features to the output of the NN in Section 8.1.2.

8.1.1 Motivations

Techniques based on ML are undeniably an asset to the improvement of numer-
ical simulations. However, their accuracy, most of all for complicated systems,
is strictly related to the amount of data to train at one’s disposal. This, may
represent an issue since data can be expensive to collect and they are usually
characterized by a scattered and incomplete nature. These features might lead
to non—physical and inconsistent results w.r.t. some previous knowledge related
to mathematical modelling. Lately, to solve this kind of problem, a new tech-
nique has been conceived: the Physics Informed Neural Networks (PINNs). The
idea of PINNSs is as simple as effective: if any, add some prior physical knowledge
to the Neural Network (NN) and this will eventually result in more accurate and
robust predictions. Historically, the mathematical model related to PINNs were
(non-parametric) PDEs. The reader may refer to the seminal paper [129] for
an overview on the topic of guessing a PDE solution thanks to this physics in-
formed structure. The promising results reached in this work led to a series of
interesting extensions and applications. Here, we propose an incomplete list of
PINN-based works [31, 76, 77, 82, 99, 101, 114, 130, 164], with many variations
and applications.

In this contribution, we want to extend the physics informed paradigm to
OCP(u)s, presenting the main results of [46], where they deal with parametric
setting both in the optimal control framework and in the forward one. The
authors, propose PINN-based strategies in order to reach more robustness for
NN predictions in many-query and real-time contexts. Strategies based on NNs
comply with the ROM strategy of offline-online decomposition. Indeed, after
a possibly long training phase of the net (offline phase), each new paramet-
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ric instance can be guessed by the NN in a very small amount of time (online
phase). However, it is natural that more complex problems, such as OCP(u)s,
are characterized by a more time consuming training phase. In the literature,
some techniques have been designed to accelerate this stage: adaptive activa-
tion functions [73, 74] and Prior Dictionary PINNs [115] are some examples. We
extend the concept of physics informed networks though two approaches:

o using augmented inputs called the extra features that will speed up the
convergence to a loss minimum;

o chancing the architecture of the NN itself, guided by the physical model
one is dealing with.

In the next Section, we generalized the standard PINN formulation to the para-
metric setting we have always used along this thesis.

8.1.2 PINNs Formulation

Here, we introduce a different notation for PDE(u)s w.r.t. the one used in the
other Chapters, due to the slightly different setting we are working in. Thus,
let G:Y — Q*

G(w(x, p)) = f(x, ), (8.1)

be a PDE(u) together with some boundary conditions. Here, w := w(x, u) € Y
is the physical variable we want to approximate through a NN. As usual, Y and
Q are two Hilbert spaces. Also in this Chapter, the domain is denoted by Q ¢ R?
and f(p) € Q* is an external forcing term. In this context, we are making no
distinction on the features of the problem: it can be steady, time-dependent,
linear, nonlinear. The parameter w, in this Chapter, will only represent physical
features. Furthermore, we will deal only with steady linear problems, however
in [46] the reader may find some time-dependent and nonlinear examples too.
Thus, x is a spatial input in R?. As already specified, the goal is to find a
surrogate of the solution to (8.1). Thus, taking inspiration from the classical
reference [129], we adapt the PINN concept to a parametric setting. First of all,
we define the parametric residual of (8.1) as:

r(w(x, p) = Gw(x, p)) = f(x, p)- (8.2)

Let us suppose to have at one’s disposal some values of the boundary conditions
at, say, NV, points {x? éV:bl and, moreover, a bunch of N, internal points {x? fvz’“l
and N, values of the parameter p € D, i.e. {/,Li}fi“l. We now build a NN that
exploits the residual information. This NN, called @, takes the domain point
x as input together with the parameter p and gives as an output a prediction
of the value of the solution w(x, p). Thus, the terminology physics informed is
appropriate since the value of the residual is used to achieve a predicted solution
which is physically consistent. Indeed, as already specified in Section 8.1, the
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NN aims at reducing the value of a loss function that, in this specific case, is
given by the following mean squared error:

N,
1 123
MSE"* := N, § (MSE}" + MSEY). (8.3)
=1

The loss presents two contributions:

o the boundary loss given by

Np
MSE;;% =N Z kap’z _w(“i)z|27 (8'4)
b1
based on the boundary values of the solution w(g;)? for i = k,..., N, at
the points {x2}n",;
o and the residual loss is:
N,
MSEM: := Z r(w(x, )2 (8.5)

Namely:
o the first contribution tries to learn the boundary conditions,

o while the residual loss enforces the physical model bahaviour to the pre-
diction.

In [46], the parameters are taken into consideration as a problem input to
employ the PINN in a context where many evaluations are needed to better
study the phenomenon one is analysing in a small amount of time. Indeed,
after an acceptable training phase time, we can exploit the PINN for a new
parameter p to reliably predict the parametric instance one is interested in.

8.2 Physics Informed OCP (u)s

This Section shows the performances of the physics informed paradigm in the

context of OCP(u)s. First of all, we extend the arguments of Section 8.1.2
to systems of multiple equations. However, in order to deal with this kind of
problems, we had to conceive some tailored techniques to reduce the computa-
tional time for the training phase and to increase the accuracy of the prediction.
Thus, in Section 8.2.2 we will describe extra features that are meant to lighten
the training phase, while Section 8.2.3 will focus on the physics informed archi-
tecture (PI-Arch) building process to reach a more accurate solution. Finally,
some numerical results are presented in Section 8.2.4.
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8.2.1 PINNSs for Multiple Equations Problems

In order to deal with OCP(u)s, we should understand how to use the PINN
structure in the case of systems of multiple equations. Namely, the problem
under investigation is of the following form:

G(w(x, p)) = F(x, ), (8.6)
where the n-dimensional solution is w(x, @) = (w1(x, @), ..., w,(x, @)), while
the system of equation is:

GI(UJ(X,/,L)) fl(xvl'l’)
Glw(x,p)) == and F(x,p) = C. (8.7)
Gn(w(x, p)) fn(x, 1)

In this context, in order to apply the classical PINN strategy to (8.6), we need
to define a new mean square error loss, that complies with the presented multi-
dimensional structure. Hence, we can refer to the j—th residual as:

ri(w(x, p)) = G;(w(x, p)) = f;((x, p)- (8.8)
Now, let us assume to have been provided of a set of indexes J = {1,...,m} re-
lated to the number of boundary conditions. Moreover, let us call I = {1,...,n}

the set of indices indicating the number of equations. Now, for a given param-

eter p € D and glven the boundary collocation points {xb ’51 and boundary

values {w(p )k}k:1 for I € J we consider:

o the new boundary loss as

MSE} := Z le Xy, 1) — w(p)7 )% (8.9)

leJ bk 1

o and the new residual loss as

MSE": ~—Z Zm w(xp, )% (8.10)

jeI Pk 1

Also in this case 1 is a NN built to approximate the global solution w minimizing
the global loss defined as did for (8.3). Thus, the most naive approach consists
in solving the problem by means of a standard PINN approach as presented
in Section 8.1.2, once adapted the loss. However, in the next Section, we will
discuss a strategy that gives better performances in terms of loss convergence.
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8.2.2 Extra Features

As already specified in Section 8.1, a NN is a structure where nonlinear infor-
mation travels through connections to predict an output. It is clear that, the
greater is the structure and, thus, the number of functions defined on it, the more
and more complex the output of the network model will be. It is well-known
[75, 77] that increasing the depth of the NN, i.e. the number of hidden layers,
allows the net to predict highly nonlinear behaviours. However, working with a
huge number of hidden layers can lead to an unbearable training phase. A way
out can be represented by the employment of an augmented input that allows to
contain the depth of the NN together with an acceptable training complexity.
In the numerical example we are going to present, the inputs are the spatial
coordinates and the parameter value u, i.e. x = [J:l R R 15 B ﬂD]'
Now, the model knowledge about the problem can be used to extend the input
information through the employment of one (or more) kernel function (func-
tions') as augmented first-layer input data. We will call these functions the
extra features from now on, and they will be denoted with {k;(x) éN:fl. Thus,
the final input will be of the following form:

Xextra = [X k1(X) p ... kn,(x)] (8.11)

of dimension d+ D+ N;. Exploiting a proper set of extra features might lead to
an easier and smaller NN to train, since they highlight the correlation between
the input and the expected output. Of course, this augmented strategy is highly
problem dependent and it has to be properly tuned. However, we propose few
tips to select the features:

o the analytical formulation of the term f(x, ) might represent a good asset
to the learning procedure since the output is usually strongly related to
the forcing term of the equation.

o Simple kernel functions that satisfy the boundary conditions might im-
prove the training procedure leading to a fast convergence of the NN to a
physically meaningful solution.

In this contribution we will only focus on fized extra features, however, in [46]
they explore also learnable adaptive functions that guarantee an improvement
both in terms of accuracy and computational time needed for the training phase.
In the next Section, we will explore the possibility to exploit model information
not only in the loss function definition, but also in the design phase of the NN,
building a physics informed architecture (PI-Arch) that is able to better tackle
PDE(u)s with more than one variable.

Lwhich should be differentiable.
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8.2.3 The PI-Arch strategy

The idea behind this Section is to extend the PINN paradigm in order to build
tailored NN architectures that can increase the accuracy of the prediction, build-
ing on the techniques for multifidelity approaches used in [19, 60, 107]. We
postpone the comments on the advantages of such a strategy in Section 8.2.4,
while, now, we are going to provide a general description of it. Let us suppose of
having been provided of a system of multiple equations as (8.6) with n equations
and m boundary conditions. Also in this case, the loss is (8.3), with the same
definition for MSE} and MSE}* as (8.10) and (8.9). We want to change the
architecture of @ exploiting the information of the system at hand to reach a
more reliable output prediction through a tailored (combination of) NN (NNs).
Let us consider H; C I. Here, a first NN takes the inputs and gives as output
only a part of the problem variables, say {wWp, (X, i) }n,er, - We call this set the
one-level output (1-out). Now, the 1-out (or a part of it) together with, even-
tually, the initial input (or a part of it) is interpreted as an input for a new NN
that predicts another set of variables, say {wn, (X, 1) }hoem,, where Hy C I'\ Hy.
This will be the two-level output (2-out). These predicted variables combined
with the l-out (or a part of it) and the initial input (or part of it) leads to
the three-level output (3-out) based on the indices Hy C I\ {H; U Hy}, and so
on. The process is repeated for k—times: the final output is {wn, (X, 1) }n, e,

(k-out), with
UHe=1.
k

Moreover, let us suppose that we are able to extrapolate a direct or indirect
relation between the variables from the equations, say T, between the outputs.
Say that we can connect 1-out to the 2-out through

T (1-out) ~ 2-out. (8.12)
Once provided of this information, thus we can

o replace the NN between 1-out and 2-out with Y (1-out), if we are confident
enough of the relation,

o or build a NN to approximate Y (1-out).

Figure 8.2 shows an example of such an architecture. This technique helps in
isolating between the various outputs of the NN model. Thus, we proposed to
exploit some prior knowledge, that, otherwise, must be learned by the system
though a longer training phase and with a larger number of hidden layers. In this
sense, this concept totally complies with the physics informed paradigm and this
is the reason why we will refer to this strategy as physics informed architecture
(PI-Arch). The next Section shows how the proposed physics-based technique
can be effective in the prediction of solution to OCP(u)s.
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15t NN 2nd NN

input #1 — input #4 — k
input #2 — — 1-out — Y(I-out) — — 2-out
input #3 — \ nput #5 — 7

Figure 8.2: PINNs and OCP(u)s. PI-Arch example.

8.2.4 Numerical Results

We tested the proposed methodology with a steady OCP(u) defined in the
physical domain 2 = [—1,1] x [-1, 1]. The problem reads: given p := (1, pi2) €
[0.5,3] x [0.01,1] find (y(x, ), u(x,p)) € HF(Q) x L?(Q) :=Y x U such that

verifies

. 1 2 H2 2
min —|ly(x, — + —||u(x, s
el ) = e + 5 ek 1) [y

constrained to (8.13)
—Ay(x,p) = u(x,p) in Q,
y(x,u) =0 on 0N).

Namely, the desired state is y4(x, ) = p1 on the whole physical domain. More-
over, it is the first time in this contribution, that we are dealing with a para-
metric penalization term, i.e. uo = . Namely, we want to change the system in
order to reach the value pp under a different action of the control variable given
by several instances of p. The Lagrangian technique described in Section 1.1.1
applied to problem 8.13 leads to the following optimality system

y(X,H) - AZ(X,[,L) = 1 in Qa

z(x,pn) =0 on 02,

pou(x, p) = z(x, 1) in Q, (8.14)
—Ay(x, p) = u(x, p) in 0,

y(x,u) =0 on 0N.

Here, we employed the PI-Arch technique to build @w. The NN will take (x, w)
as input and will give the three predicted variables (y(x, @), u(x, p), z(x, u)).
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In this setting, we first tried the standard PINN strategy proposed in Section
8.2.1. The NN consisted in 3 hidden layers. The first two layers presented
40 neurons, while the last one had only 20 neurons. We exploited an ADAM
optimizer with a Softplus activation function. The learning rate was fixed at
0.002. We used the following number of collocation points: IV, = 900, N, = 200
and N, = 50. Furthermore, in order to help the convergence towards the right
boundary conditions, we used

ky(xo, 1) i= (1 — 22)(1 — 2?). (8.15)

as extra feature. Figure 8.4 shows the prediction of the three variables after
10000 epochs training. The top row depicts the state, the control and the
adjoint variables for p = (3,1). While the results for this parameter were
quite promising, we noticed an issue for the evaluation of p = (3,0.01), as
one may notice from the bottom row of the plot. Namely, the standard PINN
approach did not recover the optimality equation relation psu(x, pu) = z(x, u),
and the behaviour of the adjoint variable z(x, p) and of the control variable is
completely different. Hence, we decided to directly use the optimality equation
in a PI-Arch structure. Figure 8.3 is a scheme of the NN structure we used
for this specific application. A first NN, from the input (x, p, k1 (20, 1)), gives
an approximation of the control variable and the state variable (the 1l-out).
Then, the control variable is an input to another NN that, together with the
value po, defines the adjoint variable as T(1-out) = pou(x, ). The advantages
related to this tailored structure are represented in Figure 8.5. Indeed, the use
of T(1-out) in & increases the accuracy of the prediction: on one side, we still
remained precise in the approximation of the case g = (3,1), and, on the other,
we well quite accurate also for smaller values of ps, i.e. for = (3,0.01). Now,
the adjoint and the control variables are completely consistent w.r.t. the model.
Furthermore, we tested the accuracy of the PI-Arch structure comparing the
prediction of @ in the domain point (xg,z1) = (0,0) to the FE solution in
w1 =1,2,3 and pus = 1,0.1,0.01.

15t NN

Figure 8.3: PINNs and OCP(u)s. PI-Arch used to solve problem (8.13).
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State Variable (PINN) Control Variable (PINN) Adjoint Variable (PINN)
2.3e-03 2.0e-01 -1.3e-01 9.0e-01 -1.3e-01 9.0e-01
- o - - -

State Variable (PINN) Control Variable (PINN) Adjoint Variable (PINN)
-3.1e-02 2.8e+00 1.4e+00 1.3e+01 -7.3e-02 2.7e-01
- - -

Figure 8.4: PINNs and OCP(u)s. Top row. PINN approximation for g = (3,1). Bottom row.

PINN approximation for g = (3,0.01). Left. State variable. Center. Control variable.
Right. Adjoint variable.

State Variable (PI-Arch) Control Variable (PI-Arch) Adjoint Variable (PI-Arch)
1.6e-03 2.0e-01 -1.3e-01 9.0e-01 -1.3e-01 9.0e-01
- - -

State Variable (PI-Arch) Control Variable (PI-Arch) Adjoint Variable (PI-Arch)
-3.1e-02 3.7e+00 -7.3e+00 1.4e+01 -7.3e-02 1.4e-01

— _— —

Figure 8.5: PINNs and OCP(u)s. Top row. PI-Arch approximation for g = (3,1). Bottom row.
PI-Arch approximation for p = (3,0.01). Left. State variable. Center. Control
variable. Right. Adjoint variable.
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Figure 8.6: PINNs and OCP(u)s. Prediction for uo = 1,0.1,0.01 with respect to p1 in (zo,z1) =
(0,0) compared to the FE approximation for pu1 = 1,2,3. Left. Control variable.
Right. State variable.

The results are depicted in Figure 8.6, where also a comparison w.r.t. the stan-
dard PINN model is shown. First of all, we remark that exploiting the PI-Arch
structure improves the prediction of the state variable for po = 0.01 reaching
values that are closer to the FE approximation. Moreover, the prediction of the
state variable is quite accurate for all the values of us (right plot). However,
the prediction is slightly worse when dealing with the control for ps = 0.01 (left
plot). Nonetheless, we believe that the results are promising. Indeed, this is a
first step towards the application of such strategies to more complex OCP(u)s.
Furthermore, we would like to highlight that a more tailored PI-Arch and few
modifications of the structure combined with a possibly longer training phase
might allows us to reach more accurate results. However, the tuning of the w
goes beyond the purposes of [46] where the authors aim at providing a NN-based
tool to use in a many-query and real-time context for many PDE(u)s.
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This Chapter concludes the set of advanced applications related to OCP(u)s.
Here, we exploited a totally different approach based on a ML framework. In the
following Chapter, the reader will find some comments and perspectives about
what we discussed in this contribution.




Conclusions and Perspectives

In this work, we have proposed ROMs as reliable and fast tools to deal with para-
metric nonlinear and time-dependent OCP(u)s. We have shown a space-time
approach that can be applied to several controlled PDE(u)s. Furthermore, we
adapted this general context also to steady problems, proposing several applica-
tions, moving from environmental sciences to artificial-intelligence-based para-
metric prediction. The optimal control formulation has been described both
at the continuous and at the discrete level. As already specified, we tackled
several kind of equations: time-dependent nonlinear problems, steady nonlin-
ear problems, parabolic problems (both in the standard and in the no-control
framework), steady linear problems.

Moved by the computational complexity of such systems, we employed model
order reduction to reduced the costs of the parametric analysis of the optimal
control framework. We proposed two algorithms, the space-time POD and the
space-time Greedy. Both the strategies have been validated through numerical
examples in the linear and nonlinear setting.

Nonetheless, we focused on different types of applications: optimal controls for
environmental sciences in a deterministic and stochastic fashion, a control over
the Coanda effect deriving from bifurcations arising in Navier-Stokes equations
and a neural network approach for parametric prediction. Let us summarize
some of the main features emerged in this work.

¢ In the space-time setting for the classical three-equation system, the sad-
dle point structure for linear quadratic OCP(u)s is maintained and, thus,
the well-posedness of the problem can be proved through standard argu-
ments based on Brezzi theorem. This resulted into a natural application
of a partitioned POD to the space-time variables, not separating the time
instances. This approach is versatile (we treat a time-dependent problem
as a steady one) and features large values of speedup.

¢ The aforementioned reduced space-time framework has been exploited in
more complex systems, like the nonlinear time-dependent viscous SWEs
with physical and geometrical parameters. Also in this case we showed
that model order reduction could be a suitable tool to rapidly simulate
marine dynamics.

¢ We proposed the no-control control framework as an alternative approach
to deal with parabolic problems. The well-posedness results paved the
way to the definition of a new error estimator that allowed us to employ a
space-time Greedy strategy. This algorithm, due to its iterative and adap-
tive nature, lightened the costs of the construction of the bases. One of the
main advantages of this error estimator relies on its explicit expression,
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made by known a priori quantities that are easy to compute. Further-
more, it is also valid for steady elliptic problems and this avoids the use
of expensive approximations algorithm as did, for example, in [111].

Besides these merits, the proposed space-time formulation might be not ap-
propriate in actual application due to the costs of the related offline phase.
Indeed, some improvements are needed in this direction: the direct solution of
the space-time optimality system might affect the accuracy of the high fidelity
solution and, consequently, of the reduced one. Moreover, a huge amount of
computational resources has been paid in the offline simulations and this is-
sue has been only partially solved through the employment of the space-time
Greedy approach. Nonetheless, we accomplished our goal of showing how ROMs
are an effective strategy to lower the computational time needed for space-time
parametric simulations and we think that this is a first step towards a deeper
analysis and further developments of such a research line interpreting it as a
stepping stone for more complicated applications.

The last part of thesis dealt with applications with different focuses and inter-
ests.

¢ The first field we wanted to analyse was marine and ecological sciences.
The two shown examples have been treated both in a deterministic and
in a stochastic way. The presented reduced approaches led to promising
results in terms of speedup and parametric analysis in a data assimilation
framework. Moreover, we proposed the weighted ROMs as an accelerating
factor, remarking the concept of introducing parameter information (such
as parameter distribution) into the reduced model to make the simulations
even faster.

¢ We discussed the role of OCP(u)s in bifurcating systems as a first step
towards a stability analysis of controlled nonlinear problems. Moved by
the will of changing the solution features to reach a preferable configura-
tion, we tried several numerical results. They covered a wide spectrum
of behaviours: a particular example is given by the Dirichlet case. The
test cases might offer many improvements and developments on the role
of OCP(p)s as attractors.

¢ Lastly, we interpret PINN as an extension of the offline-online paradigm
in an artificial-intelligence-based context. Indeed, the training phase can
replace the basis functions construction stage: after this possibly long
training, the model rapidly predicts several pu-dependent solutions. We
remark that we exploited several schemes to accelerate the training pro-
cess.

The presented results have room for improvement and many questions remain
open and of interest for future developments.
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We would like to tackle more efficiently the issue related to the offline costs of
the space-time formulation. As already specified in Chapter 2, it can be over-
come using more computational resources and through ad hoc preconditioning
and multigrid approaches [21, 138, 143, 144]. However, we remark that the pro-
posed iterative approaches might only moderately decrease the computational
effort needed for the space-time simulation. For this reason, the employment
of data-assisted techniques can be of assistance in this setting. In an ongoing
collaboration with E. Donadini and M. Tezzele, we are moving the first steps
to investigate how Dynamic Mode Decomposition [87] can help in predict time
dynamics in the optimal control framework.

Another interesting question may arise from the SWEs example. Indeed, even
if the proposed test case represents standard laboratory-reproducible scenar-
ios, it is rather academic. Yet, investigating a more complex example might
present challenging features due to the hyperbolic nature of the state equation,
for instance:

o instability. Some numerical oscillations might occur and they can transfer
(or not) to the optimal control framework.

o Difficult reduced reconstruction. This property is well known even for sim-
pler one-dimensional test cases. Indeed, the ROMs struggle in recovering
advection-dominated hyperbolic dynamics [56, 113].

These topics are part of an ongoing master project carried out with F. Zoccolan.
We aim at addressing the issue of convection dominated stochastic OCP(p)s and
we will try to understand whether the stabilizing schemes are needed for all the
equations of the optimality system. Furthermore, this line of research is strictly
related to environmental sciences, since, both the random inputs and the stabi-
lized model can be employed in more realistic applications.

Concerning marine ecosystem control, in collaboration with G. Karniadakis,
we would like to exploit OCP(u)s for the prediction and management of Mas-
sachusetts Bay water acidification. The project fits with the idea of OCP(u)s
as a tool of actual interest in many interdisciplinary fields.

Moreover, many questions also arose in the bifurcating OCP(u)s: it is clear that
control variables were changing the system at hand. This feature can be used in
several applications since nonlinear dynamics characterizes many research and
industrial fields. We presented results concerning the pitchfork bifurcation dia-
gram, however, in the Dirichlet case a new type of phenomenon was occurring
(possibly and Hopf bifurcation) and, thus, a deeper analysis is needed in that
setting.

Last, focusing on the presented physics informed strategy, we would like, first
of all, to tackle more complex problems in the OCP(u)s framework. Moreover,
all the discussed physics informed techniques are highly problem dependent. A
line of research to explore might concern a better choice for extra features and
PI-Arch structures.
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In all the proposed applications, we wanted to highlight how optimal control
is a tool suited in many scientific contexts to bridge the gap between data
and mathematical modelling. Additionally, model order reduction can help
in many scenarios. Thus, exploiting OCP(u)s is a natural choice to add data
information in the system without spoiling its physical meaning. We believe that
the proposed techniques enhanced with these improvements and developments
would make OCP(u)s even more widespread in several fields of science and
industry.
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