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ABSTRACT
We present results from a suite of binary merging cluster simulations. The hydrodynamical cluster simulations are performed
employing a smoothed particle hydrodynamics formulation in which gradient errors are strongly reduced by means of an integral
approach. We consider adiabatic as well as radiative simulations, in which we include gas cooling, star formation, and energy
feedback from supernovae. We explore the effects of merging on the thermodynamic structure of the intracluster gas of the final
merger remnant. In particular, we study how core entropy is generated during the merging and the stability properties of the
initial cool-core profile against disruption. To this end, we consider a range of initial mass ratio and impact parameters. Final
entropy profiles of our adiabatic merging simulations are in good accord with previous findings, with cool-cores being disrupted
for all of the initial merging setups. For equal-mass off-axis mergers, we find that a significant contribution to the final primary
core entropy is due to hydrodynamic instabilities generated by rotational motions, which are induced by tidal torques during the
first pericentre passage. In radiative simulations, cool-cores are more resilient against heating processes; none the less, they are
able to maintain their integrity only in the case of off-axis mergers with very unequal masses. We suggest that these results are
robust against changes in the gas physical modelling, in particular to the inclusion of AGN thermal feedback.

Our findings support the view that the observed core cluster morphology emerges naturally in a merging cluster context, and
conclude that the merging angular momentum is a key parameter in shaping the thermodynamical properties of the final merger
remnant.
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1 INTRODUCTION

According to the hierarchical scenario, the formation of structure in
the Universe proceeds under the action of gravity through merging
and accretion of smaller structures. In this framework, clusters of
galaxies are the latest and most massive objects to be formed, with
virial masses in the range M ~ 10'* — 10" M, (Voit 2005).

During their formation process, the gas is heated by adiabatic
compression and shock-heating to higher temperatures. At virial
equilibrium, about ~90 per cent of the baryons in a cluster will reside
in the form of an hot, X-ray emitting intracluster medium (ICM) at
temperatures T~ 107 — 103 K.

Therefore, X-ray observations of the ICM provide X-ray maps
with which to probe the spatial distribution of the cluster gas density,
temperature, and metallicities. Assuming hydrostatic equilibrium
and spherical symmetry, these data can then be used to deduce the
underlying dark matter (DM) distribution and to determine cluster
virial masses.

An accurate determination of cluster masses is necessary in order
to exploit the usefulness of clusters as cosmological probes, since
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at any given epoch their number density is a sensitive function of
the background cosmological model. This requires the clusters to be
dynamically relaxed, since otherwise cluster mass estimates will be
prone to uncertainties.

However, there is a large variety of observations indicating that
galaxy clusters can be broadly classified into two categories: relaxed
and unrelaxed (see Buote 2002, for a review). The fraction of
clusters exhibiting a disturbed morphology grows with redshift
and at the present epoch can be even greater than ~50 per cent,
depending on the adopted criterion used to measure the amount
of substructure present in the cluster (Buote 2002). It is then
fundamental to study the physics of cluster merging, not only in order
to assess the status of the cluster dynamical equilibrium, but because
merging between substructures (or clusters themself) gives raise to
a number of interesting physical processes (Sarazin 2002; Molnar
2016).

During the merging process, collisions between substructures
drive shocks into the ICM, heating the gas and injecting turbulent
motions. These X-ray shocks will boost X-ray luminosities, and leave
a number of observational signatures in the ICM, such as contact
discontinuities (or cold fronts) in the gas temperature, radio relics,
relativistic electrons, and other features (Markevitch & Vikhlinin
2007, Feretti et al. 2012).
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Following the gas compression, mergers between clusters are also
expected to drive star formation (Roettiger, Burns & Loken 1996;
Fujita et al. 1999; Roediger et al. 2014), but with observations
producing conflicting results. Some authors claim an increase in
the star formation activity during mergers (Bekki, Owers & Couch
2010; Stroe et al. 2017), while it is absent in other merging systems
(Mansheim et al. 2017).

Moreover, major cluster mergers are the most energetic events
since the Big-Bang, with energies >10% ergs. This renders these
objects unique laboratories with which to study dark matter models.
Because of the collision-less nature of dark matter (DM), the position
of gas and DM centres will be offset during a merging process. By
contrasting X-ray and weak lensing data, it is possible to derive upper
limits on the cross-section of self-interacting DM (Molnar 2016,
and references cited therein). From the Bullet cluster, Markevitch
et al. (2004) were the first to put an upper limit of the order of
opm/mpy < 1cm? g1 on the DM cross-section per unit mass.

Given the variety of physical phenomena and their non-linearity,
N-body/hydrodynamical simulations are an indispensable tool with
which to study merging of galaxy clusters. Numerical simulations
aimed at studying cluster mergers have been performed either in
a cosmological framework (Burns et al. 2008; Planelles & Quilis
2009; Rasia et al. 2015; Hahn et al. 2017; Barnes et al. 2018),
or by studying the collision between two clusters in isolation. The
binary merger simulations are implemented by first constructing two
isolated gas+DM haloes at equilibrium, and then the initial orbital
trajectory is given by assigning initial positions and velocities to the
two haloes.

This method has the advantage that it allows the detailed study
of a single merging event. It also simplifies the interpretation
of the simulation results because the initial conditions are kept
under control and the simulation can be contrasted with a specific
observation. This approach has been followed by many authors
(Roettiger et al. 1996; Ricker & Sarazin 2001; Ritchie & Thomas
2002; Poole et al. 2006; McCarthy et al. 2007; Poole et al. 2008;
Mitchell et al. 2009; Donnert et al. 2017).

Specifically, idealized binary cluster mergers have been used to
study the merging configuration of the ‘Bullett cluster’ (Springel &
Farrar 2007; Mastropietro & Burkert 2008), as well as that of ‘El
Gordo’ cluster (Zhang, Yu & Lu 2015, 2018) and of other merging
clusters (Machado & Lima Neto 2013; Molnar & Broadhurst 2018;
Halbesma et al. 2019).

Simulated X-ray maps can be constructed to study cluster merging,
for instance by assessing the degree of relaxation of a specific system
(ZuHone et al. 2009). Moreover, the measured offset between X-ray
and Sunyaev—Zel’dovich (SZ) maps allows the relative velocity of
the two merging clusters to be determined (Molnar, Hearn & Stadel
2012; Zhang, Yu & Lu 2014). These limits in turn can be used to
derive constraints on the assumed cosmological model.

Another important topic in which mergers of galaxy clusters play
an important role is in the study of DM properties. As previously
outlined, major mergers are very energetic events in which a self-
interacting DM (SIDM) is expected to exhibit significant signatures.
For this reason, merging simulations with an SIDM have been carried
out by many authors (Kim, Peter & Wittman 2017; Robertson,
Massey & Eke 2017; ZuHone, Zavala & Vogelsberger 2019), the
simulations being aimed at investigating the impact of an SIDM on
gas and DM properties of the merged clusters.

Finally, numerical simulations of merging clusters have been
widely used to study the origin of the observed central properties of
the cluster gas. X-ray cluster surveys show that clusters can be divided
into two categories according to ICM central properties (Cavagnolo
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et al. 2009; Johnson, Ponman & Finoguenov 2009; Pratt et al. 2010;
McDonald et al. 2013): cool-core (CC) and non-cool core (NCC)
clusters. CC clusters are characterized by a peaked X-ray emission,
very short cooling times (~10 per cent of the Hubble time), central
temperatures about ~1/3 of the virial ones, and radial entropy profiles
steeper in the core than those of NCCs (Cavagnolo et al. 2009).

These short cooling times should induce a run-away cooling
process that is not observed; to balance radiative losses, some heating
sources must be operating in the cluster cores. This is the so-
called ‘cooling flow’ problem and various heating models have been
proposed in the literature to offset cooling and regulate the cooling
flow (see Soker 2016, and references cited therein).

To observationally define a CC cluster, there are various criteria
(Barnes et al. 2018), which depend on the available data. However,
there is some consensus that CC clusters are correlated with a regular
X-ray morphology (Chon, Bohringer & Smith 2012), while this is
not true for NCC clusters. The latter are often associated with a
disturbed morphology (Pratt et al. 2010) and exhibit a much flatter
radial entropy profile than CC clusters.

These findings strongly suggest that the CC/NCC dichotomy can
be naturally interpreted in terms of the cluster merging histories.
In this framework, the population of NCC clusters originates as a
consequence of major mergers that disrupt CC clusters. Conversely,
the original core morphology is preserved for relaxed clusters that
have not experienced a major merger recently.

This scenario is an important issue for a better understanding of
cluster formation and evolution, and N-body/hydro simulations of
merging clusters have been widely employed (Gémez et al. 2002;
Ritchie & Thomas 2002; McCarthy et al. 2007; Burns et al. 2008;
Poole et al. 2008; Planelles & Quilis 2009; ZuHone 2011; Rasia et al.
2015; Hahn et al. 2017; Barnes et al. 2018) to address the survival of
CCs during cluster mergers.

Goémez et al. (2002) used 2D idealized radiative merging simula-
tions to conclude that CCs do not survive major head-on mergers.
Similar conclusions were reached for equal-mass mergers by Ritchie
& Thomas (2002) and Poole et al. (2008), but from their simulations
the authors argue that CCs are resilient to unequal-mass mergers if
they are off-centre.

These findings are in contrast with those of ZuHone (2011). From
a suite of idealized merging simulations, performed over a range of
different mass ratios and impact parameters, the author finds that
there is a significant degree of gas mixing taking place during the
mergings. This in turn leads to higher levels of final entropy in the
merger remnants and to CC disruption. Similar results were also
obtained by Mitchell et al. (2009).

This discrepancy with previous simulations (Ritchie & Thomas
2002; Poole et al. 2008) could be due to a number of causes, both
physical and numerical. For instance, both of the earlier authors
performed their merging simulations using standard smoothed parti-
cle hydrodynamics (SPH), while Mitchell et al. (2009) and ZuHone
(2011) employed the adaptive Eulerian mesh code FLASH. In terms
of code capability to model fluid instabilities and gas mixing this
could be a critical issue (see Section 2.3). Moreover, the simulations
of Ritchie & Thomas (2002) and Poole et al. (2008) incorporated
radiative cooling, while the mesh runs were adiabatic.

Early cosmological simulations (Burns et al. 2008; Planelles &
Quilis 2009) have shown that there is a significant connection
between the presence of CCs and the cluster merging history. In
particular, Burns et al. (2008) using cosmological simulations that
included cooling as well as star formation and supernovae feedback,
found that CCs are resilient to late-time mergers. More recently,
Rasiaetal. (2015) argued that CCs can be destroyed during late-time

1 Z0Z aunp €0 Uo Jasn lezueAy IpniS Ip ajouadng sjeuoizeulsiu] BlondS - YSSIS Ad €1¥9129/601S/v/70S/2191e/seluw/woo dno olwapeoae//:sdiy Woll papeojumo(]



mergers, with active galactic nucleus (AGN) feedback playing a key
role in reducing overcooling and allowing CCs to be disrupted. This
is in contrast with the findings of Hahn et al. (2017), for whom the
low entropy levels exhibited by simulated CCs cannot be alleviated
by AGN feedback. According to Hahn et al. (2017), CC disruption
depends critically on the angular momentum of the merger.

Motivated by these considerations, we present in this paper a
suite of hydrodynamical simulations of merger clusters, aimed at
investigating the resiliency of CCs to cluster mergers. We perform
a set of N-body/hydrodynamical binary cluster merger simulations,
with initial conditions spanning a wide range of mass ratio and impact
parameters.

We use an SPH code (see Price 2012, for a review), based on a im-
proved numerical scheme (see below). In a battery of hydrodynamical
tests (Valdarnini 2016, hereafter V16), it has been demonstrated that
this code can be profitably used in many astrophysical problems,
without the shortcomings present in standard SPH. We perform
both adiabatic and radiative merger simulations, with the latters
incorporating radiative cooling as well as star formation and energy
feedback from supernovae.

The initial conditions of our idealized merger simulations are
set up as follows. For an isolated spherical halo composed of gas
and DM initially in equilibrium, we specify the radial DM density
and gas entropy profiles. To define halo parameters, we use a
ACDM cosmology, with 2,, = 0.3, Hy = 70kms~' Mpc™', and a
baryon fraction of f;, = 2,/€2,, = 0.162. For each of the gas and DM
components, a particle realization of positions and velocities is then
constructed, according to profiles computed under the assumption of
hydrostatic equilibrium.

This procedure is used to construct both a primary and a secondary
cluster, the virial mass of the two being related by the merging mass
ratio. To initialize the merger simulation, the particle positions and
velocities of the two haloes are then shifted according to the initial
orbital trajectory.

Our initial condition set up is analogous to that implemented
by ZuHone (2011) in his adiabatic merger simulation study. In
particular, we adopt the same range of collision parameters. In this
study, we have purposely chosen to adopt similar initial settings. This
is in order to compare with previous results on the effects of mergers
on final CC properties, specifically when cooling is included in the
simulations.

Moreover, the merger simulations of ZuHone (2011) were per-
formed using an adaptive mesh-based Eulerian code. For adiabatic
simulations, it is then interesting to compare the entropy profiles of
the final merger remnants against the corresponding ones presented
in ZuHone (2011). This is because the two sets of simulations have
been constructed by adopting very similar initial conditions, but the
codes used to perform the simulations are based on two completely
different numerical hydrodynamical schemes.

Our paper is organized as follows. In Section 2, we describe
our hydrodynamical scheme, together with the method we use to
initialize haloes in equilibrium and the orbital properties. Section 3 is
dedicated to the presentation of the results, in which we describe our
findings from adiabatic and radiative simulations; a specific section
being dedicated to investigate the generation of entropy through
mixing and shock-heating processes during the various merging
phases. Finally, our main conclusions are summarized in Section 4.

2 SIMULATIONS

The simulations are performed by employing an entropy conserving
SPH formulation (Price 2012). To estimate first-order SPH deriva-
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tives, the numerical scheme is improved by using an Integral Ap-
proximation (IA) accompanied by a matrix inversion, thus strongly
reducing gradient errors in the momentum equation.

The IA scheme was originally proposed by Garcia-Senz, Cabezén
& Escartin (2012), and further tested in a variety of hydrodynamical
tests (Garcia-Senz et al. 2012; Rosswog 2015; V16). The results
of the tests demonstrate that the new SPH formulation outper-
forms standard SPH and, in terms of accuracy, can be considered
competitive with other numerical hydrodynamic schemes (V16). In
particular, with respect to standard SPH, it is found that the IA scheme
greatly improves the numerical modelling of subsonic turbulence
(V16; Valdarnini 2019). This aspect is particularly important for
the simulations presented here, in which a significant amount of
turbulence is expected to be injected into the ICM during cluster
collisions (Schmidt et al. 2017).

We now outline the basic features of the hydrodynamical method
— we refer the reader to Garcia-Senz et al. (2012) and V16 for a
comprehensive description of the IA method applied to SPH. In
what follows, we will refer to the SPH scheme described here as
integral SPH (ISPH).

2.1 Numerical method

In SPH, the fluid is described by a set of N particles with mass
m;, velocity v;, density p; , and specific entropy parameter A;.! The
latter is related to the particle pressure by P; = A; p,-’/ = (y — Dpiu;,
where y = 5/3 and u; is the thermal energy per unit mass u;.

At the particle position r;, the SPH gas density p; is given by the
summation

pi = mW(lryl, hy), e
J

where the sum is over neighbouring particles j, and W(|r;;|, h;) is a
kernel with compact support. We define W;;(h;) = W(|r;;|, h;). For
the simulations presented here, we use the My kernel (Price 2012),
which is zero for |r; —r;| > 2h;.

In equation (1), the sum is over a finite number of particles N,
and the smoothing length 4; is implicitly defined by the equation

47 (2h)’ pi
3

which is solved iteratively for each particle by setting N,,, = 33.
The SPH momentum equation in the IA framework reads

= Npp;, (2)

dV,"(X P,' Pj ~
“a = - ZJ: m; WAa,i_/(hi) + WAa.ij(hj):| ; 3)
where €2; is defined as
oh; OWir(hi)
Q=|1-— —, 4
[ apizkjmk o, ] @)

and the two terms A, ;;(h;) and .ZW- ;j(hj) are the IA generalization
to the SPH derivatives V;W;;(h;) and V;W;;(h)), respectively.
These IA terms are given by

Awij(hi) =Y Cop(DAY Wriy, hi),
B

Awij(h)) = Cap(DAG W(riy ). )
B

'We use the convention of using Latin indices to denote particles and Greek
indices to denote the three spatial dimensions.
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Here AJ' = (r/ —r'), and Cus(i) are the elements of the matrix
C = T ! associated with the particle i. The inverse of this matrix is
a3 x 3 symmetric tensor 7, which for particle i takes the form
. m; .o
Tap@) = —AL NG Wy ho). 6)
j J

To properly handle shocks, the SPH momentum equation (3) must

be generalized to include an artificial viscosity (AV) term:

dV,‘_a

Frl _ijnij-'irx,ijv @)
J

where ITj; is the AV tensor and

1
Awij = E[Aa.ij(hi) + Agij(hpl. (8)

We adopt here the Riemann-based formulation proposed by
Monaghan (1997) to write the AV tensor as

AV
aij Vij Hij
My =20ty ©)

where w;; = v;j - 1;;/|rij| if vi; -1;; <0 but zero otherwise, v;; =
V; —V;, pj is the arithmetic mean of the two densities and «a;; =
(a; + «;)/2 is the symmetrized AV parameter. The signal velocity
v/} is estimated as

U;jv =Ci+6‘j—3/J,,'j, (10)
with ¢; being the sound velocity. The symmetrized AV limiter f; =
(fi + /2, where

[V - vl;

= NS

1D
is introduced (Balsara 1995) to suppress AV when in presence of
strong shear flows. The individual particle viscosity parameters o;(f)
are allowed to evolve in time according the Cullen & Dehnen (2010)
scheme, which is found to significantly reduce AV away from shocks
[Cullen & Dehnen 2010; V16: see equation (9) and following text].
The «;’s can vary from a minimum value «,;, = 0.01 when shocks
are absent, up to a maximum value oy, = 1.5.

2.1.1 Dissipative terms

In SPH, the particle entropy A; is generated at a rate

a4, _r-1 + 12
el P (Qav + Qac — Or), (12)

where the Q4y term refers to numerical viscosity effects (V16). Qac
is an artificial conduction (AC) term and Qg describes the effects
of radiative cooling. The latter is defined as Qr = A(p;, T}, Z))/ pi,
with A(p;, T;, Z;) being the cooling function, 7; and Z; the particle
temperature and metallicity, respectively. Thus, Qg is the cooling rate
per unit mass.

The presence of the AC term is necessary in SPH simulations (Price
2008) for treating contact discontinuities, such as when studying the
growth of Kelvin—Helmbholtz instabilities. This term can be written
as

du, mivi© i i
(5) = S 0 et~ 8l 19
e Y

AC

where v/} is the AC signal velocity, & is an AC parameter of the
order of unity and o = (af + «€)/2 its symmetrized value.
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The form of the AC signal velocity depends on the problem
under consideration (Price et al. 2018). An appropriate choice in
the presence of self-gravity is found to be (Wadsley, Veeravalli &
Couchman 2008; Valdarnini 2012)

U;}C = [(vi — Vj) - 15| /Ty, (14)
which has been checked in several test cases (Valdarnini 2012) and
is zero for a self-gravitating system at equilibrium.

The time evolution of the AC parameter & is regulated by a source
term which is proportional to the Laplacian of the particle thermal
energy, and by a decaying term which quickly damps o away from
discontinuities. A description of the AC numerical settings is given
in Valdarnini (2012).

Finally it is worth noting that incorporating an AC term into the
SPH thermal equation significantly improves a major shortcoming of
classic SPH. It is well-known (Mitchell et al. 2009) that the level of
core entropies, found in non-radiative standard SPH simulations of
galaxy clusters, are well below those produced in similar simulations
using mesh-based codes. This difficulty is due to the Lagrangian
nature of SPH, in which subgrid diffusion processes are missed. It is
shown that introducing an AC term (Wadsley et al. 2008; Valdarnini
2012), the levels of entropies found in galaxy cluster cores are in
much better agreement with those produced using mesh codes.

The Qg term is present in those runs for which radiative cooling
is also included. For these simulations, the gas physical modelling
incorporates star formation and energy feedback from supernovae as
well. For the numerical aspects of the cooling implementation, we
refer to Valdarnini (2006).

2.2 Initial condition setup

For a variety of initial conditions, we perform N-
body/hydrodynamical ISPH simulations to study the collisions
between galaxy clusters. Each cluster consists of an isolated
spherical halo initially in equilibrium, composed of dark matter
and gas particles. The initial conditions of our idealized binary
cluster mergers are very similar, but not identical, to those of
ZuHone (2011, hereafter Z11). We study collisions between a
primary and a secondary cluster, with the primary mass always set
to Magy = 6 x 10'* Mg = M. Here My is the cluster mass within
the radius r9. We define r, as the radius at which the cluster mean
density is A times the cosmological critical density p.(z):

4 3

Mp = TAM(Z)Q- (15)
In the following, we assume z = 0 as the redshift at which ry
is calculated. For the secondary, with cluster mass My = M, we
consider three different mass ratios R = M»,/M; = 1:1, 1:3, and 1:10.

For each collision with mass ratio R, we consider three different
impact parameters b: a head-on cluster collision with b = 0, and
two off-axis mergers with b/ryo9 = 0.3 and 0.6. Here b is the impact
parameter of the collision when the distance d;, between the centre
of mass of the two clusters is diy = 74y, + 73,; see fig. 1 of Z11 for
a geometric description of the collision set up. The procedure we use
to assign initial separations and relative velocities between the two
clusters is described in Section 2.2.3.

2.2.1 Dark matter haloes

We assume spherical symmetry for the initial dark matter (DM) and
gas mass distribution. For the DM density, we adopt an NFW profile
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(Navarro, Frenk & White 1997)

$’ 0<
r/rs(L+r/r)? T

where cy00 = ro/rs is the concentration parameter. To avoid a
divergent total mass, outside r,oy the DM density profile is suppressed
exponentially (Kazantzidis, Magorrian & Moore 2004) up to a final
radius rmax = &Erago:

pom(r) = r <7100, (16)

r — 100
pom(r) = pom(ra00)(r /r200)” exp — (7) ,
I'decay

200 <7 < Fmax, (17)

where ryecay = 17200 is the truncation radius, and the parameter § is
set by requiring the first derivative of the DM density profile to be
continuous at r = rg

s+ 3
8:_”, + 37200 n 200 (18)

rs + 00 Fdecay

For the runs presented here, we set the truncation parameters to the
values (&, n) = (2, 0.2); this choice will be motivated in Section 2.3.
For a cluster of given mass, the density profile is then specified by
the parameter cyg. For our two test clusters with My > 10'* Mg,
we set the value of ¢, using the CLASH ¢ — M relation of Groener,
Goldberg & Sereno (2016)

€200 2 3.66/(Mooo/ M,)" 2, (19)

where M, =8 x 1014M@h’1. For the cluster C3 with My <
10" Mg, we set cygp = 7.03. This value is obtained by using the
following cso9 — M5 relation for galaxy groups (Gastaldello et al.
2007; Sun et al. 2009)

cs00 = 3.96/(Msgo/10™ M), (20)

and solving numerically the halo profile to obtain c;go. Table 1 lists
several initial parameters of the three idealized clusters we use to
construct our simulation suite.

A numerical realization of the DM density profile is then con-
structed by first evaluating the enclosed DM mass Mpy (< r) within
the radius r, which is normalized so that it is equal to (1 — f;,)Ma00
at ry00. We subsequently invert g(r) = Mpm(< r)/Mpm(< Fimax) = Vs
where y is a uniform random number in the interval [0,1], to obtain
the radial particle coordinate r. Finally, Cartesian coordinates are
assigned to the particle by randomly orienting the particle position
vector r.

Kazantzidis et al. (2004) showed that, for exponentially truncated
NFW haloes, particle velocities are accurately determined if their
energies are drawn from the system distribution function f(&). For
spherical symmetric systems

W(r)

FEWV20¥(r) - E]dE, Q1)

where W (r) = —®(r) = — (D), + P,) is the relative gravitational po-
tential and €& = W — v?/2 is the relative energy. Here the subscripts
h and g denote the DM and gas components, respectively.

Equation (21) can be inverted (Binney & Tremaine 1987) to give

1 € dp, dw 1 dp,,) }
) = -~ _— 4+ — | — . 22
TO= M dwﬁ(e—WWJE(dw o)

The boundary term on the rhs of the equation is zero for any sensible
choice of W(r) and p(r) (Kazantzidis et al. 2004). The second-order
derivative d?p;/dW? can be expressed as

@ 2N\ [ dp (2 Ampr?
ar _ (T @n + @ (= _ e , (23)
dw? GM dr? dr \ r M

pu(r) = 4
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which has the advantage of avoiding numerical differentiation in the
integral (22), since p is known analytically.

The function f(€) is then evaluated numerically and its values
tabulated over a grid of energies. For a given energy £ the value
of fis obtained by interpolation. For a particle at position r with
energy &€ € [0, W(r)], we randomly draw pairs (f, E) and use an
acceptance—rejection method (Kuijken & Dubinski 1994; Zemp et al.
2008; Drakos, Taylor & Benson 2017) to obtain the particle speed
v = /2[W(r) — £]. As for the particle position, the direction of the
velocity vector is randomly oriented.

These prescriptions for generating DM particle distributions at
equilibrium are widely used by many authors in numerical simu-
lations of merging cluster galaxies, for which initially DM haloes
are described by an exponentially truncated NFW profile. However,
a major drawback of the method introduced by Kazantzidis et al.
(2004) is that the second derivative d” p,/dW? is discontinuous at r =
r200- This implies that the behaviour of the function f(£) can become
inconsistent for certain values of rgecay (Zemp et al. 2008; Drakos
et al. 2017), thus compromising halo stability over cosmological
time-scales. Zemp et al. (2008) recommend the choice 1 = rgecay/1200
= 0.3; here we show in Section 2.3 that by setting n = 0.2 one can
obtain sufficiently stable haloes.

2.2.2 Baryonic haloes

We assume hydrostatic equilibrium to construct the cluster gas
initial conditions. Following Z11, we initialize gas density and
temperature profiles by specifying analytically the initial cluster
entropy profile. Physically, this would be best-represented by giving
the specific physical entropy per particle in the gas, s(r). However,
both observations of the gas in clusters and previous simulations
have instead utilized a related entropy parameter [written as S(r) or
K(r)]. To be consistent and allow easier comparison to observations
and previous simulations, we will adopt this convention.

Thus, in the following we refer to the ‘gas entropy’ as this
entropy parameter S = kT /n?/3, where kpT is the gas temperature
in keV and n, the electron number density. From the Sackur—Tetrode
equation (Landau & Lifshitz 1980), it is easily shown that s =
(3/2)kgIn (S) + const., where the constant is not important here.
Thus, it is straightforward to convert between s and S. However, one
should be aware that differences in the entropy are exaggerated by S,
since it is only its logarithm that enters into the physical entropy.

CC clusters are observationally characterized (Cavagnolo et al.
2009; Pratt et al. 2010; McDonald et al. 2013; Ghirardini et al. 2019)
by dense, compact cores with cooling times shorter than HO_I. A key
feature of CC clusters is that of having a level of central entropy
below a threshold value ~60 keV cm?.

We then adopt for the gas entropy profile an observationally
motivated (Cavagnolo et al. 2009; Pratt et al. 2010; Ghirardini et al.
2019) functional form which consists of a power-law behaviour and
an entropy floor value:

S(r)/Sso0 = So + i (i> , (24)

500
where (Ghirardini et al. 2019)

Sso0 = 1963 [Ms00/(10°h~" M) keV em?. (25)

For a given set of parameters (So, S;, ), the entropy profile is then
completely specified and we numerically integrate the equations of
hydrostatic equilibrium and mass continuity:
dp GMu(<r)
=y, 26a

dr r2 Ps (262)
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Table 1. Initial parameters of the three test clusters used in the merging simulations.“.

Cluster ~ Maoo(Mg) Mpy(Mo) €200 rsoo Mpe)  Ssop(keVem?) So Si Seas
Cl 6x 10" 6.6 x 10 45 1.15 931 53 %1073 1.75 0.1
C2 2x 10" 22x 10" 6.4 0.81 466 53 %1073 1.84 0.086
C3 6x 103 6.6 x 10" 7.0 0.54 211 6.4 x 1073 2.1 0.074

Note. “Columns from left to right: Name of the cluster model, halo mass Mg at the radius rpo0, total DM halo mass
MSM within r = 200, concentration parameter cagp, cluster radius r5pp at which A = 500, gas entropy Ssoo at rsoo, gas
entropy profile parameters So and S (see the text), and gas mass fraction fy,s at rsoo.

dM,(< 1)
dr
The numerical integration of these equations is found more manage-
able if one integrates the temperature instead of pressure. The latter

can be expressed as

= 4nr2pg. (26b)

_ PeksT

wm,,

P Kp)", 27

i
where K(r) = S(r)(1/pe)*?/(1um,)>* and for the mean molecular
weights we assume u = 0.59 , i, = 1.14. Equations (26a) and (26b)
now read

dT _ _Z/me GM (< 1) n gleog K ’ (28a)
dlogr Skp r 5 dlogr
dlogM, 4nrip,

dlogr — My(<r) (28b)
To integrate these equations, it is necessary to specify two
boundary conditions. Our first condition is that r(M, = 0) = 0,
whilst the second requires that the halo gas mass at » = rsy yields
a gas mass fraction f: = M, /M, given by the measured relation
(Sun et al. 2009)

gas = 0.035]’1_3/2(M500h/7 x 1012 M@)O.BS. (29)

To construct our gas density and temperature profiles we proceed
as follows. For a given set of entropy parameters (Sp, S;, o), we
initially choose an arbitrary value of P(r = 0) = P, which is used to
compute po and 7. Equations (28a) and (28b) are then numerically
integrated up to r = rsq , after which the value of f; is contrasted
with that of fg,,. We iterate the whole procedure in order to bracket
the value of Py until the quantity | f;’ — feas|/ feas 1s below a certain
threshold value (<1 per cent). When this condition is satisfied and
Py is a root value, we propagate the solution outwards to 7y, =
2r500. This normalization procedure implies a gas mass fraction at
r = 1y that may differ from the cosmic value f},, and therefore that
may not be entirely consistent with the normalization adopted in
Section 2.2.1 for the DM component, the latter making use of the
cosmic gas fraction f;, to set the halo DM mass to (1 — f;,)Mgo at
r00. However, we have verified that for all the considered haloes the
difference between the two gas fractions at r = ry( is very small (say
<1 per cent).

The radius up to which the gas density profiles is continued beyond
200 coincides here with the DM truncation radius. The choice of the
gas truncation radius requires some care. Setting this radius to
would imply that gas particles at the halo edge will begin to flow
outwards, owing to the absence of an external pressure. This effect
implies a steepening of the gas density profile and a mass leak,
which can have a significant impact on the initial mass profile when
the collision time-scale is large.

To avoid this mass-leaking issue, an approach commonly em-
ployed (Turner et al. 1995; Ricker & Sarazin 2001; Poole et al. 2006;
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McCarthy et al. 2007; Donnert 2014) consists of surrounding the
gaseous halo with a low-density, dynamically negligible, confining
medium. However, this procedure comes at the cost of adding a
large number of SPH particles to the simulations. We choose here a
different approach by extending the gaseous halo beyond 9 and up
to a maximum radius . = 2 F200-

The shell between rygg and . = 2 290 then acts as a buffer zone
that is able to keep the gas particles within r,o confined. Clearly the
edge particles at r 2~ 2 rpp will begin to flow outwards, leading to a
steepening of the density profile. This steepening can be considered
unimportant as long as collisions between clusters occur on time-
scales much shorter than that necessary to modify the initial gas
density profile at radii r < rag. It will be seen in Section 2.3 that
these conditions are always verified for the cluster collisions we
consider.

We assume o = 0.93 in equation (24) and we report in Table
1 the coefficients Sy and S, together with Sso, for each of the
three test clusters. These coefficients are the best-fitting values of
the entropy profile given by Ghirardini et al. (2019) for their CC
subsample of X-COP clusters (their table 3, CC entry), but increased
by about a factor of >~ 30 per cent. It has been found necessary
to introduce this offset in the coefficients to obtain a physical
meaningful solution to equations (28a) and (28b) up to rpy,. This is
because, using the original coefficients, it is not possible to propagate
the numerical solution beyond ry, the radial profile of P(r) being
characterized by a very steep decline with radius. As a result, at radii
slightly beyond 7,09, the pressure becomes numerically consistent
with zero.

By setting r ~ 1072 r5y, we obtain entropy core values for our
test clusters of S/Ssp0 =~ 3 x 1072 from Table 1. For cluster C1,
this gives S(r = 1072 rs90) = 28 keV cm?, still below the threshold
value for CC clusters (Cavagnolo et al. 2009). These core values
at r ~ 1072 rsg are in the lower portion of the observed range of
entropies for CC clusters; see fig. 6 of Ghirardini et al. (2019).

Note that for cluster C3, the coefficient S1 has been further in-
creased by 2~ 70 per cent, with respect to the best-fitting value of 1.35
given by Ghirardini et al. (2019). This is because all of the CC clusters
of the X-COP sample used by the authors have My > 6 x 10'* Mg,
whereas here cluster C3 has My = 6 x 10'3 My From fig. 10 of
Sun et al. (2009), it can be seen that a core entropy of S/Ssp9 =~
3 x 1072 at r >~ 10~ 2r5g is well below the observed range of entropy
values reported by Sun et al. (2009) for their group sample. Finally,
for cluster C1 (C3) we have at r = 10 kpc and the entropy core value
of ~ 25keVem? (~ 12keVem?), which is about 20 per cent higher
than the entropy value found at the same radius for the corresponding
test cluster of Z11.

Once the initial gas density and temperature profiles are computed
for the range 0 < r < rpyax, We use them to construct the initial particle
configuration. To this end, we store the profiles on a very fine grid.
This is in order to obtain p(r) and 7(r) at a generic radius r using
grid values.
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In SPH, a non-trivial issue is the realization of the gas particle
distribution which must reproduce the required density profile p(r).
From equation (1), one can see that in SPH the density at a given
particle position depends on the masses and relative positions of
nearby particles. This in turn implies that any specific realization of
particle positions which satisfies the prescribed profile p(r), must be
found by solving simultaneously for all the particle positions. This
is a difficult task and several methods have been devised to solve the
problem.

A relatively simple approach, which starts from a uniform distri-
bution and solves equation (1) by varying particle masses, cannot
be applied in SPH. This is because numerical instabilities are found
to arise (Monaghan & Price 2006) when large mass contrasts are
present between particles. Similarly, a random realization of particle
positions generated from the specified p(r), as we did in Section 2.2.1
to construct the DM particle positions, cannot be used here. The noise
induced by Poisson sampling implies the development of large fluc-
tuations which in turn quickly perturb the initial equilibrium profile.

These difficulties have lead many authors to develop alternative
methods to solve the problem of properly generating initial conditions
in SPH. These methods can be summarized as follows: lattice stretch-
ing (Herant 1994; Rosswog & Price 2007), viscous damping (Price
& Monaghan 2007; Wang & White 2007; Pakmor et al. 2012; Price
etal. 2018), relaxation (Zurek & Benz 1986; Nagasawa, Nakamura &
Miyama 1988), space partition based either on tessellation (Pakmor
et al. 2012; Raskin & Owen 2016; Reinhardt & Stadel 2017), or
weighted Voronoi tessellations (Diehl et al. 2015; Vela, Sanchez &
Geiger 2018; Arth et al. 2019).

Initially, we implemented the method of Diehl et al. (2015) to
setup our SPH initial conditions. The algorithm is based on a Voronoi
tessellation in which particles are moved iteratively towards a relaxed
configuration. However, during the merging simulations the halo
profiles constructed according to this procedure were found to deviate
from the initial equilibrium solution. In several cases, this happened
on a time-scale shorter than that occurring between the start of the
simulation and the cluster collision.

We interpret this behaviour as a direct consequence of the entropy
profile we use to construct our initial conditions. For CC clusters,
the average entropy profile implies an equilibrium solution with a
very steep density profile towards the cluster centre. As a result, it is
intrinsically difficult to keep SPH gradient errors under control. We
have indirectly verified that is the case by running a halo in isolation
for several gigayears; the physical parameters of the halo were those
of cluster C1. The DM and gas particle realization were constructed
following the procedure just described, but the parameters of the en-
tropy profile were the best-fitting values extracted from a subsample
of simulated NCC clusters (Valdarnini 2019). In such a case, the halo
gas density profile was found quite stable over the whole simulation
period.

To solve this issue, we then adopt the following procedure.
Initially, gas particle positions are obtained by a radial transformation
applied to the coordinates of a uniform glass distribution of points.
This is a minimal noise configuration, and it is generated by applying
to an initial Poisson distribution of points a reversed gravitational
acceleration together with a damping force (Wang & White 2007).
Particle positions are advanced until a low energy state is reached.

The radial transformation is such that the new gas positions are
consistent with the desired initial gas mass profile. This profile is
now much more stable than that obtained from a random realization
(Section 2.3), but its stability properties are not yet sufficient to
consistently satisfy the initial condition set up required by the
merging runs studied here.
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To further improve the stability properties of the gaseous halo, we
add to the momentum equation a time-dependent friction term (Price
& Monaghan 2007; Pakmor et al. 2012)

dV,‘ _ Vi — ch + dV,‘ (30)
dt g dt ) oy’

where the second term on the RHS is given by equation (3), Vy
is the halo centre of mass velocity, and Tgamp is a time-dependent
damping time scale. This is written as

Tdyn

€2y

Tdamp Cgamp )
where T4y, = 1//4Gpy is the local dynamical time-scale, p(x;)
is the particle DM density, and ¢/gamp is a friction parameter which
controls the strength of the friction. The DM density p,; must be
calculated at run time according to an SPH prescription, but one can
introduce a DM to gas density ratio: Bayn = p4/p,. The halo stability
can then be exploited to avoid the calculation of the DM density by
using Baynp, in place of p, in equation (31). As it will be seen from
the plots of Section 2.3, a conservative value for B4y, is obtained
by setting Bayn > 50. It has been found that this choice also has an
impact on the value of &gamp. In principle, T gump should be a small
fraction of 7 4y, but with the adopted value of By, very stable haloes
are already obtained when o gamp > 3.

Our merging simulations are then performed by using the general-
ized momentum equation (30) as the simulations start, and switching
off (agamp = 0) the friction parameter at a simulation time which
depends on the initial merging kinematics (Section 2.2.3). Initially,
we set gas particle velocities to zero and temperatures are assigned
by interpolating grid values. These are calculated from the numerical
solution and the interpolation is done according to the radial particle
coordinates.

Finally, we set the mass of DM and gas particles according to the
scaling my ~ 8 x 108 Mg (Mpg9/2 x 10'* M) and mg = fymgl(1 —
f»)) =~ 0.16my, respectively. These mass assignments are consistent
with previous findings (Valdarnini 2019), in which ICM profiles
extracted from a set of hydrodynamical cluster simulations were
found numerically converged when similar settings were adopted for
the particle masses. However, as outlined before, in SPH numerical
instabilities can arise in the presence of very different gas particle
masses. This implies that the simulation numerical resolution is
enforced by the smallest mass of the binary system. We thus write

my ~ 8 x 108 Mo (M, /2 x 10" My). (32)

For cluster C1, the total number of gas particles ranges then from
N{" =2 x 10° when the collision mass ratiois R = 1:1, up to N{V ~
2 x 10° when R = 1:10. For cluster C3 one has N;z) ~1.27 x 10°.
The gravitational softening parameters of the particles are set
according to the scaling &; = 15.8 - (m; /6.2 x 10% My)'/3 kpc. Ad-
ditionally, in some test cases we run high-resolution (HR) simulations
in which the particle masses are scaled down by a factor 4, with
respect to the reference value given by equation (32).

2.2.3 Initial merger kinematics

To construct the orbits of our merging simulations, we choose a
Cartesian system of coordinates {x, y, z}, with the centre of mass
of the two clusters being at the origin. The orbits are initialized in
the {x, y} plane at z = 0, with {d™, V*} being the initial separation
and relative velocity vectors, respectively. Thus, the initial {x, y}
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coordinates of the two cluster centre of mass read —(dj;”, d;,") /(1 4+
R) and (d{", d}")R/(1 + R). Similarly, the velocity components are
given by —(V;", Vi")/(1 + R) and (V;", VI")R/(1 + R).

As already outlined, our collision parameter space is the same
as in Z11. However, there is here a significant difference in the
initial condition setup of the haloes. For the reasons discussed in
Sections 2.2.1 and 2.2.2, the initial DM and gas mass profiles are
continued beyond r, and extended up to 2ryg. This implies that,
unlike in Z11, the relative initial separation cannot be set here to the
sum of the two virial radii, but to twice its value: diy = 2(r1g, + 7300)-
As discussed in Section 2.3, this is to avoid a significant overlap at the
start of the simulation between the mass profiles of the two haloes,
which in turn would soon put the profiles out of equilibrium.

Our initial condition vectors {d"*, Vi*} at t = 0 must then be
chosen such that, at some later simulation time ¢, the orbit of the
binary cluster system produces the initial conditions of Z11. These
consists of a separation d;,/2 between the two cluster centres of
mass, with a collision impact parameter b and relative infall velocity
V >~ 1.1/G M0 /r200- The latter value is justified by cosmological
simulations (Vitvitska et al. 2002).

In order to realize these settings, we adopt a procedure similar to
that described in Poole et al. (2006). For a specified set of initial
conditions taken from Z11, we first approximate the two clusters
as point-like and accordingly assign positions and velocities to the
two points. We tag this orbital status as occurring at the time 7, i.e.
the start of the Z11 simulations. We now numerically solve Kepler’s
problem by seeking the time #; < f such that the separation between
the two points is dj,. The orbital positions and velocities at #; then
complete the solution vectors {d™", V/"}.

To account for tidal distortions, we first run a DM only merg-
ing simulation, using as initial conditions the solution vectors
{d™*, Vi"}(t = 0) previously determined. During the simulations we
denote as {X.;, V.}(#) the centre of mass position and velocities of
the two haloes. These vectors are contrasted with the Z11 initial
conditions {X%, VZ}(¢X), which the binary system must reproduce
at the simulation time t, = t; — t; = X, To quantify the deviations
between the specified set of initial conditions and the numerical
solution we define the following norms

{Ewm X0~ X5/ [R5

cl ZrK ZrK (33)
o) = [|Va() = VA / VA"

)

with ¢/ = 1, 2 being the halo index.

We define as position error ¢,(#) the maximum of the two error
norms: &,(t) = MAX(eD(t), @ (1)), the velocity error &,() being
similarly defined. These errors are computed and saved at run times
tn = T 4+ mAt, centred around 5. We set the grid spacing to
At = 1/16 Gyr and m is an integer ranging between —20 and 20.
Finally, the simulation time at which our constructed set of error
values has a minimum, is identified as the simulation time # = 0 in
the corresponding merging run of Z11. We label as t™™ this solution
time obtained numerically. Table 2 lists the values of T™™ and 7%
for each of our merging runs, together with the notation we use to
label the different simulations. Note that the difference T™™ — £ ig
smallest for head-on collisions, while it is largest (>20.3 Gyr) for the
R = 1:1 off-axis merger with b = 0.6. The simulation time 7, here is
then related to that of Z11 by the relation:

17 =1, — ™M, (34)

Our merging simulations are performed up to a simulation time
ty = ™™ + t4,, Where t5, = 10 Gyr. We analyse simulation results
when # > 0, at epochs spaced by 1Gyr. To ease comparisons
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Table 2. The simulation ID is defined according to the mass ratio R and
the impact parameter b of the collision, second column the corresponding
ID of the Z11 runs. The simulations start at 7y, = 0, the time t™™ is the
simulation time at which the centre of mass position and velocities of the
two haloes are closest to the corresponding Z11 initial conditions. &, and &,
are the corresponding relative errors, ¥ is the analytic solution given by the
Kepler’s problem.

D IDZI1 ™™ (Gyr) X (Gyn) &x &y

RO1500 s1 3.81 3.73 1.06 x 1072 0.115
RO1b03 52 3.94 417 23x 1072 0.09
RO1506 53 4.81 5.10 41x1072 013
R03b00 54 2.81 2.73 14x1072  0.09
R03b03 85 2.87 2.99 12x1072  0.08
R03b06 56 331 341 28x 1072 011
R10b00 57 232 2.32 37x 1072 0.06
R10603 S8 244 2.53 1.03x 1072 0.08
R10b06 59 2.75 2.87 24x 1072 0.09

between our results and those of Z11, hereafter we will always use
the simulation time #, which we abbreviate as t.

The damping factor ot gamp in equation (30) is set to zero when ¢ >
0, but with some exceptions (see later). This guarantees that at t =
0 our halo entropy profiles possess the correct radial behaviour. Our
merging simulation suite is constructed by performing both adiabatic
and radiative simulations. For adiabatic runs, we consider all of
the collision parameter space, consisting of nine different merging
simulations. For radiative simulations, we run only a limited number
of mergers because of the high computational cost of the simulations.

2.3 Stability tests

As already discussed in Section 2.2.1, the stability of spherically
symmetric DM haloes with an exponentially truncated NFW profile
depends critically on how initial particle velocities are assigned.
According to Kazantzidis et al. (2004), the long-term halo evolution
is significantly affected if the particle velocities are initialized using
the local Maxwellian approximation. By contrast, much more stable
haloes are obtained when the initial particle energies are consistently
extracted from the equilibrium distribution function f(€). However,
the choice of the halo truncation parameters & = rpyax/r200 and n =
T'decay/T200 18 not entirely arbitrary. In particular, an overly sharp
truncation (n < 0.1) can lead to instabilities in the halo evolution
(Zemp et al. 2008; Drakos et al. 2017). The solution is to increase
the truncation radius (n =~ 0.3), truncating the atmosphere more
smoothly, as already done in some merging runs (Zhang et al. 2014).

To validate our choice of the truncation parameters (£, 1) we
studied the evolution over cosmological time-scales of three isolated
DM haloes. All of the haloes have My = 6 x 10'* M, but their
initial density profiles have different truncation parameters (&, 1).
The three pairs of values we consider are (£, n) = (3, 0.3), (1.4,
0.1), and (2, 0.2). We refer to the corresponding halo realizations
as DMa, DMb, and DMc, respectively. Initial particle position and
velocities are initialized according to the procedures described in
Section 2.2.1, and we use equation (32) to set the DM particle mass
to mg =~ 2.4 x 10° Mg. The number of DM particles N, then ranges
from N, >~ 3 x 10° for the DMb halo, up to N, =~ 3.8 x 10° in the
case of the DMa halo.

Fig. 1 shows the time evolution of the density and velocity
dispersion profiles for the three haloes at four different time slices:
t=0, 1,5, and 10 Gyr. For the range of initial conditions, we consider
the time span #;; occurring between the start of the simulation and the
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Figure 1. Evolution of the density (top panels) and velocity dispersion (bottom panels) profiles for three different isolated DM haloes (left to right). The
haloes are initially in equilibrium, with the particle distributions realized according to the procedures described in Section 2.2.1. All of the haloes have
Moo = 6 x 10'* Mg, but their initial conditions differ in the choice of the truncation parameters (&, n) (see the text). Density is in units of the cosmological
critical density and velocity dispersion in units of 0200 = /G Ma00/r200 = 0. Different line styles refer to different epochs, as indicated in the bottom left-hand
panel, where the time is in Gyr. (Note that the times decrease from top to bottom in the legend in this and subsequent figures.).

direct hit between the primary and secondary cluster cores (see later)
ranges from ~Gyr, in the case of head-on collisions, up to 8 Gyr
for the R10b06 initial merging configuration. The different epochs
displayed in Fig. 1 have been chosen with the criterion of covering
the whole range of time spans fy;.

As it can be seen, the best stability properties are exhibited by the
DMa halo. For this halo, both density and velocity dispersion profiles
are quite stable up to ~10 Gyr. This is in accordance with previous
findings (Zemp et al. 2008; Drakos et al. 2017), and confirms that
setting 7 = 0.3 is the safest choice when stability is anissue. However,
this choice of rgecay requires the continuation of the DM halo beyond
7200 and up to ry,x = 31200, if one wants to avoid an abrupt truncation
in the density profile. This choice of the truncation parameters (£, 1)
in turn implies that the simulations will begin with a significant over-
lap between the two DM haloes, if the initial separation between the
two clusters is chosen to be diy = 13, + 73, as in Z11. These initial
settings then put the initial mass profiles of the two haloes out of equi-
librium, and it is not clear what the impact of these initial conditions
is on ICM properties during cluster mergers (McCarthy et al. 2007).

We choose here to put the initial separation between the two cluster
centre of mass to the value di, = &(ry,, + 73), this choice of the
initial setup being clearly advantageous because the merging runs
are then performed with haloes initially at equilibrium. To avoid
very large values (210 Gyr) of the simulation time t™™, when
the two clusters orbital parameters best approximate the Z11 initial
conditions, we decided here to use a value of & smaller than that of
the DMa halo (¢ = 3).

Fig. 1 shows that the stability properties of the DMc halo, having
(&, n) = (2, 0.2), are much better than those of the DMb halo with
(&, n) = (1.4, 0.1). There is some evolution in the density profile

beyond g0, but the velocity dispersion profile is much more stable
than those of the DMb halo. To set up initial conditions for our DM
haloes, we thus adopt as truncation parameters the pair of values
&, m=(2,02).

This choice is motivated by the criterion of having the DM haloes
as stable as possible, but without extending them very far beyond
200- 1t must be stressed that this choice does not necessarily imply
that final gas profiles are significantly affected by using the pair
(&, n) = (1.4, 0.1). For instance, fig. 2 of Z11 shows little evolution
in the gas profiles of an isolated halo, although the DM component
is initialized by setting n = 0.1.

We now investigate the stability properties of haloes which contain
both DM and gas. As for the DM-only tests, we always set the
halo mass at ragp to Magy = 6 x 10'* M. We setup the gas density
and temperature profiles according to the procedure described in
Section 2.2.2, the entropy profile parameters being those of cluster
C1. All of the haloes have then the same physical parameters and
analytical profiles. The total DM and gas halo masses at ry,x =
2ry00 are then M\, ~ 6.6 x 10" Mg and M}, ~9.2x 10" M,
respectively. Accordingly, from equation (32) the number of DM
(gas) particles is N, ~ 2.7 x 10° (2 x 10°).

We initially consider two different particle realizations of the initial
gas density profile. The first halo (RN) has gas particle positions
drawn from a uniform random distribution. This is the simplest
approach to realize the desired density profile, but for the reasons
discussed in Section 2.2.2, the stability of its gas profiles can be
considered very poor. Thus, we use the profile evolution of this
halo realization as a benchmark, against which to assess the stability
properties of other procedures. For the second halo (GL) gas positions
are obtained by transforming the radial coordinates of a glass-like
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configuration of points. The transformation is consistently done by
numerically solving for the radial coordinate of each particle that
satisfies the requested mass profile.

For the two-halo realizations, Fig. 2 shows the time evolution of the
gas density, temperature, and entropy profiles. The temperature is in
units of 75, the mass-weighted temperature within r,y, and entropy
in units of Ssp0. Additionally, we also show the radial profiles of the
dynamical time in gas and the cooling time (defined in equation 35
below).

As expected, the plots clearly show the very poor stability proper-
ties of the RN halo. On the other hand, there is some improvement
when using glass-like initial conditions. The entropy profile Sgy(r)
exhibits a better stability, with deviations from the initial reference
profile systematically smaller than in the RN case. At 7 = 1 Gyr there
are small deviations in the very inner region (r < 0.02r5¢0), and at
t = 10 Gyr the profile Sgp(7) is similar to that of Sgn(7) at r = 5 Gyr.

These results demonstrate that in order to improve the profile
stability of our SPH particle realization, one must resort to more
sophisticated methods. As outlined in Section 2.2.2, the use of a
relaxation method (Diehl et al. 2015) was found to improve the
profile stability, but not in a very significant way with respect to the
GL run. Motivated by previous findings (Price & Monaghan 2007;
Pakmor et al. 2012), in order to keep the initial configuration in
equilibrium we then add a time-dependent damping force to the SPH
momentum equation. The procedure and the parameter settings are
described in the previous section.

For this test case, which we label as FD, Fig. 3 shows the time
evolution of the different gas profiles. The meaning of the different
panels and lines being the same of Fig. 2. The profile evolution clearly
indicates that the damping method is very good in maintaining the
stability of the initial SPH particle realization, and in turn the gas
profiles. We have verified that this behaviour holds for clusters C2
and C3 as well.

Accordingly, we implement this setup procedure to construct
stable gas profiles. The initial particle positions are extracted from a
uniform glass-like distribution, as for the GL halo. The hydrodynamic
SPH force equation is then generalized in equation (30) to incorporate
a friction term. The latter is present from the start of the simulation
(t; = 0) up to the time when the binary system has reached the optimal
configuration aimed at reproducing the Z11 initial conditions (#;, =
™M), After this epoch (f = t, — ™™ > 0), the friction term is
switched off (ctgamp = 0) in the momentum equation. With these
settings, we can consistently compare our simulation results with
those of Z11, having realized the same cluster orbital and gas profile
initial conditions

However, it must be stressed that in some mergers the clusters
will come in contact having higher core entropies than those initially
specified. We define the time span f,;; as that occurring between
the start of the simulation and when the two clusters cores collide
or interact strongly. For our head-on mergers (b = 0), we find that
this is well approximated by the epoch when the distance between
the two cluster centres of mass is smaller than rj,,. However, for
our offset mergers with b = 0.3 or 0.6, we find that the secondary
core passes by the primary core without being significantly affected
during the first pericentric passage. After the secondary reaches the
apocentre, it falls more directly into the primary core. Thus, this
second encounter is nearly head-on, and we therefore apply the same
definition as for b = 0 to this second encounter. Empirically, we find
that this time-scale does approximate the time when the secondary
core is significantly affected. For example, for the R10b06 merging
run one has t,; =~ 8 Gyr.
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In general, we find that there is some small evolution in the inner
(r < 0.1rs09) level of initial (r = 0) entropy of the primary cluster
when #;; 2 4 Gyr. This shows that long-term stability in the initial
profiles is not always achieved, even after the application of a friction
term to the motion of the SPH particles. To assess the impact of this
behaviour on the final (r = 10 Gyr) entropy profile of the merged
clusters, we performed some of our merging simulations with the
friction term still active up to # = t;. These runs will be discussed in
detail later; unless otherwise stated in the following, we will discuss
merging simulations in which the friction term @ gamp is set to zero
when t > 0.

Finally, we also show in Fig. 3 the time evolution of the different
gaseous halo profiles when the SPH entropy equation (12) incorpo-
rates radiative cooling. Following Z11, we adapt the bremsstrahlung
cooling time approximation:

287G S P o 35
.~ 28.7 —_ <7e> .
K yr(lOOkchm2> 103 cm—3 (35)

The test runs with radiative cooling are indicated as CR in the panels.
As for the FD runs, the initial conditions are the same as for the
GL halo, but here the damping term is absent in the momentum
equation (30). These settings allow us to assess the impact of radiative
cooling on the thermal evolution of an isolated halo initially in
equilibrium. The cooling time profiles in Figs 2 and 3 show that the
condition 7. >> Ty, is always satisfied at all radii, thus suggesting
that radiative processes are not very important dynamically (e.g.
motions induced by cooling will be very subsonic).

The results indicate that in the halo inner regions (r < 0.1 rs),
radiative losses become significant on time-scales #'; > 5 Gyr, in
accordance with the range of cooling times t.(r) displayed by the
CR halo in the bottom left-hand panel. From Table 2 one can see that
the condition #; > T™™ is not always satisfied, this in turn implies
that for some merging runs with cooling the entropy profile at 7, =
™™ (r = 0) will not satisfy the prescribed initial conditions.

To construct the initial setup for the merging simulations with
cooling, we then proceed as follows. The simulations are performed
up to £, = ™™ as in the adiabatic case, with the friction term present
and, in particular, the cooling term Qp in equation (12) switched off.
This guarantees that both adiabatic and radiative simulations will start
at r = 0 with the same profiles. After this epoch, the radiative merging
runs are performed with the Qg term now present in equation (12)
and the damping term switched off.

Note that the previous discussion about the appropriate level of
core entropy when #y; is large (say 25 Gyr), is not relevant here. This
is because the time evolution of the CR halo profiles demonstrate that
core heating due to numerical effects is subdominant with respect to
radiative losses.

3 RESULTS

In this section, we present our main results from the simulations we
performed. We first discuss results from adiabatic simulations and
subsequently those obtained from the cooling runs. Our findings are
qualitatively discussed in light of the impact on the final entropy
profiles of the different merging processes we consider.

3.1 Adiabatic runs

For the nine merging simulations we show in Fig. 4 the final
gas density and temperature profiles of the resulting merging
clusters. The plots are depicted at + = 10Gyr, an elapsed time
since the start of the collision which should be sufficiently large
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Figure 2. Time evolution of several gas profiles for two isolated gas+DM haloes. Both haloes have the same physical parameters and Magy = 6 x 10'* M.
The initial gas density and temperature profiles are derived from the entropy profile as given by equation (24), and the parameters Sy and S are those of cluster
C1 (see Table 1). From the top left going clockwise: the gas density, temperature, entropy, and cooling time 7. (equation 35). As in Fig. 1, different line styles
refer to different epochs. The two haloes differ in the realization of the gas particle distribution used to model the initial gas density profile ,o&(,m) (r). We consider
an initial setup in which gas particle positions are randomly drawn (RN) to obtain pg") (r), whilst in the other setup the gas positions are obtained by radially
stretching a uniform glass point distribution (GL). In each panel, red (black) lines are for the RN (GL) run. In the left-hand panels, the blue lines refer to the
halo DM density profile (top) and to the local dynamical time 7 4y, (r) (bottom). For the sake of clarity, these profiles are shown only for the RN run. Similarly,
the gas profiles of the GL halo at # = 0 are not depicted. Entropy is normalized to S50, as given by equation (25), and T»g is the mass-weighted temperature

within rp00. In the bottom right-hand panel the solid black line indicates the analytical entropy profile (24).

to guarantee a relaxed state for all of the considered merging
configurations.

The radial profiles are calculated for each radial bin by spher-
ical averaging the extensible physical quantities. These are total
electron number for the average electron density, total thermal
energy divided by 3/2 of the total particle number for the gas
temperature, and total physical entropy (adding up the specific
physical entropy per particle s for all the particles, dividing by the
total number of particles, and converting to the average entropy
parameter S as discussed at the start of Section 2.2.2) for the entropy
parameter.

Asin Z11, for each physical quantity we have subdivided the plots
by showing in each panel of Fig. 4 profiles extracted from merging
runs with the same mass ratio but different impact parameters. This
layout is common also to the other figures, and allows a better
comparison with previous findings.

The radial behaviour of the final density profiles depicted in
Fig. 4 exhibit the common feature of a flattened density (n,
2 x 1073 em™3) at cluster radii » < 300kpc. This flattening is in
sharp contrast with the initial density profiles, which are constructed
so as to reproduce that of cooling flow clusters. The initial profiles
steadily increase towards the cluster centres and have much higher
central densities (n, >~ 2 x 1072 cm™).

Similarly, the final temperature profiles no longer show the initial
inversion and steadily increase towards the cluster centres. There
is a wide range of central temperature values, from >~ 5keV up to
=~ 15keV, depending on the mass ratio R and impact parameter b of
the merging simulation.

These findings strongly suggest that the initial cool-core cluster
configurations do not survive the impact on the gas of the processes
that occur during the collisions. This issue is central to the paper and
will be addressed later, when discussing the final entropy profiles.
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Figure 3. Asin Fig. 2, time evolution for two isolated gas+DM haloes. The FD profiles refer to an halo initialized as the GL halo of Fig. 2, but with a friction
term (30) added to the SPH momentum equation. The CR halo has the same initial conditions of the RD halo, but its gas evolution is followed by including
radiative cooling in the SPH equations and without the presence of the damping term (30). For the sake of clarity, in the top left-hand panel the gas density

profile of the CR halo is shown only for t = 10 Gyr.

It is instructive to compare the profiles of Fig. 4 with the
corresponding ones shown by Z11 (figs 15 and 16 of his paper).
There are strong similarities, but also interesting differences. In
general, both density and temperature profiles have the same radial
behaviour as the corresponding profile of Z11. In particular, for a
specific mass ratio R, the hierarchy of the profiles at any given radius
r is always reproduced. This is reassuring because it validates our
setup procedure and the code we are using.

None the less, when contrasted against Z11 values, the central
temperatures are found smaller by a factor lying in the range
=~ 20 — 30 per cent. Differences in the final profiles of thermody-
namic quantities between our simulations and those of Z11 can
be attributed to a number of reasons. To be specific, the largest
impact will be caused by differences in the setup of the initial cluster
kinematic and physical parameters, and by the different numerical
hydrodynamical schemes used to perform the simulations. The latter
can be significant, and in order to pin down its impact it is necessary to
reduce as much as possible the effects of differing initial conditions.

To this end, we use as reference the merger with R = 1:1 and b = 0.
This merging configuration has the advantage of having a very short
collision time (fp; >~ 2 Gyr), so that differences between our initial
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orbital settings and those of Z11 are minimized. In what follows, we
will refer to this simulation in brief as R150.

For a better comparison of our merging simulations with those of
Z11, we perform a head-on merging simulation with mass ratio R =
1:1 and initial conditions constructed as follows: The DM halo of
each of the two clusters has a mass of My = 6 x 10'* Mg, equal to
that of cluster C1 in Table 1, but we set the cluster radius to rypy >~
1.55 Mpc. This value is that reported in table 1 of Z11 for his cluster
C1, and its a bit smaller (=~ 10 per cent) than our corresponding
value (ry0 =~ 1.76 Mpc).? Note that the concentration parameter is
the same for the two clusters (¢ = 4.5). It must be stressed that this
small difference in the cluster radii has a significant impact when
comparing final results, such as entropy profiles. This is because
small differences in the reference radius rsp or ryg (equation 24 or
equation 1 of Z11) induce differences in the initial gas entropy at the
same physical radius, which in turn imply much larger differences in
the final entropy profiles.

2This difference is due to an error in the reported value of ry09 (ZuHone,
private communication).
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Figure 4. Final gas density (top panels) and mass-weighted temperature (bottom panels) profiles at # = 10 Gyr. From left to right, the mass ratios are R = 1:1,
1:3, and 1:10. Each bottom panel refers to the same cluster mass ratio R as the corresponding top panel. In each panel, the different line styles refer to merging
runs with different impact parameters, while the solid black line shows the initial profile at = 0 Gyr for the more massive subcluster. The origin is centred at the
location of the gas density peak of the final merged system. The solid blue lines in the left-hand panels are the profiles extracted at = 10 Gyr from a merging

run with R = 1:1 and b = 0, but with the initial entropy profile being given as in Z11.

To construct our DM density profile, we truncate the cluster at
a final radius rp. = Eryg0 = 1.4r00, and adopt a decaying radius
Tdecay = 0.17200 (as in Z11). These radii are smaller than those adopted
in our initial conditions: (¢, n) = (2, 0.2), but for this merging
configuration the collision time is very short and the considerations
of Section 2.2.1 about DM stability can be considered secondary.
Moreover, as in Z11 we initialize our cluster centre of mass positions
with a relative initial separation of diy = (399 + 7'30)-

Finally, our initial gas profiles are constructed according to the
procedures described in Section 2.2.2, but truncating the profiles at
r = 1y and using equation (1) of Z11 with the same parameters Sy
and S, to specify the initial entropy profile S(r). In the following, we
refer to this simulation as ZuH and we will use it as our reference run
against which to contrast our simulation results with those of Z11.
The initial physical settings and kinematics of the ZuH simulation are
now identical to those of simulation S1 in Z11, so that differences
between the final thermodynamic profiles of the two runs can be
entirely attributed to the different numerical schemes used to perform
the simulations.

In the left-hand panels of Fig. 4, the solid blue lines indicate the
density and temperature profiles of this simulation extracted at t =
10 Gyr. The difference between these profiles and the corresponding
ones of the R1H0 run (solid red lines) can then be interpreted
as originating from the different settings in the initial conditions
between the two simulations.

A visual inspection shows that the difference in the ZuH density
profile and its Z11 counterpart S1 is minimal. Both of the profiles
have the same central density (7, ~ 10~2cm™ at » = 10kpc) and
a knee at the same radius r ~ 300kpc. Similarly, the temperature
profiles are also in accord. The left-hand bottom panel of Fig. 4

shows a central temperature of ~13keV for the ZuH run, whereas
in Z11 the central temperature of the S1 run is 7 2~ 14 keV. These
agreements strongly suggest the validity of the hydrodynamic code
used here to carry out the simulations. We postpone further discussion
of this topic to later when we address the radial behaviour of the final
entropy profiles.

The final profiles of the R150 run can also be contrasted with the
corresponding ZuH profiles in order to assess the impact of different
initial conditions and collision parameters on the final merged cluster.
In particular, Fig. 4 shows that the ZuH temperature profile is in good
accord with the profile of its parent simulation, whilst it can be seen
that in the inner cluster region (r < 300 kpc) the density profile n.(r)
is higher than that of R150 by about a factor ~ 2 and has a steeper
decline with radius at r 2 500 kpc.

This difference in the final density radial behaviour is a conse-
quence of two distinct effects. In the ZuH simulation, the initial
entropy profile is the same as that of Z11, and from fig. 15 (left-
hand panel) of Z11 it is easily seen that this leads to a much
steeper initial density profile than that of the R150 run. This initial
difference is not destroyed during the merging phases and still
has an impact on the density profiles at + = 10 Gyr. On the other
hand, at large radii the initial ZuH density profile is truncated at
Fmax = T200, half the value of the R1b0 simulation. As already
discussed in Section 2.2.2, this implies a significant leakage of gas
particles in the cluster outer regions during the merger. Thus, the
final gas density at large cluster radii will be smaller than in the
R1b0 run.

These findings demonstrate that final differences between the gas
cluster profiles of our simulations and those of Z11 can be entirely
interpreted in terms of the adopted initial entropy profile. This will
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Figure 5. Final profiles of the DM-to-gas temperature ratio 7pm/7gas. The meaning of the symbols is the same as in Fig. 4; the solid black lines show the initial
profiles at t = 0 Gyr. In the left-hand panel, the solid magenta line refers to a merging run with R = 1:1 and b = 0, but having the DM haloes initially truncated
at rmax = 1.4 rp00 instead of rmax = 2 r200. The blue line shows the final profile of the ZuH run (see the text).
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Figure 6. Final profiles at = 10 Gyr of the DM temperature kg Tpm = pum O'SM /3. The panel presentation, colour coding, and line styles are the same as in
Fig. 5. The solid magenta line in the left-hand panel is the initial DM temperature profile of the merging simulation with the smaller truncation radius.

be confirmed later when studying the radial behaviour of the entropy
profile.

However, the approach used here to initialize cluster dark matter
particle orbits differs in several ways from that of Z11. As can be
seen in Figs 5 and 6, this has an impact on the final DM velocity
dispersion o py in several runs. For ease of comparison with the gas
temperature Ty, and previous findings (Z11), we introduce the DM
temperature Tpyp:

kpTom = wm ,opy/3. (36)

Final profiles of the DM-to-gas temperature ratio « () = Tpm/Tgas
are shownat# =10 Gyrin Fig. 5 for the different merging simulations.
In accord with Z11 (fig. 19), the ratio «(7) is of the order of unity
(~0.9) at all cluster scales. The only exception is in the innermost
cluster regions (<300kpe) where the «(r)’s tend to zero. This is
expected, since baryons in the core will raise their entropy through
mixing processes with post-shocked high-entropy material.

However, Fig. 5 shows that there is a significant difference between
the initial ratio « (r) of the head-on merger with R = 1:1 and the others.
In fact, for the R150 merger run the initial « is systematically higher
by ~20 per cent compared to the other simulations. This is in sharp
contrast with the corresponding profile in fig. 19 of Z11, which does
not exhibit such a feature and whose behaviour is in line with the
others simulations.

We argue that this difference can be interpreted as originating from
the adopted initial conditions. At variance with Z11, we initially
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set the centre of mass of our clusters separated by a distance
diy = 2(rdy + 73y) = d™. The merging simulation time t = 0 is
then defined when di, = d"/2. This procedure then implies that at
t = 0, the two clusters have already had time to interact. For the
gas component, the impact on the initial profiles of this interaction
is negligible (Fig. 4), but for the DM haloes one expects some
amount of heating and an increase in the DM velocity dispersion.
The strength of this effect will be weaker as the mass ratio R gets
higher.

Fig. 6 shows the radial profiles Ty (r), corresponding to the ratios
depicted in Fig. 5. The left-hand panel (R = 1:1) shows that the initial
profile Tpym(r) (solid black line) is a bit higher (=~ 20 per cent) than
the initial profiles displayed in the other two panels (R =1:3 and R =
1:10), thus confirming the previous reasoning. In fact, this effect is
significant only when R = 1:1.

To demonstrate the correctness of this interpretation, we ran an
additional merger simulations. As with the R01500 run, we study a
head-on merger with both cluster masses being Moy = 6 x 10" M.
At variance with the initial condition setup described in Section 2.2.1,
here we truncate the DM haloes at a cut-off radius ry.x = 1.4 rgp.
We then perform the simulation and study the final «(r) and Tpm(7)
profiles. If this heating effect depends on the cut-off radius rp,y,
then at any given radius the final profiles of this simulation should
approach the profiles of simulations with lower mass ratios. The
profiles are shown (solid magenta lines) in Figs 5 and 6, and confirm
these expectations.
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Figure 7. Mean gas radial (V,, top panels) and circular (V,, bottom panels) cluster velocities profiles at 7 = 10 Gyr for mergers without gas cooling. The meaning
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Figure 8. Final entropy profiles for the nine non-radiative merging runs at = 10 Gyr (red lines). The panel presentation and line styles are identical to Fig. 4,

solid black lines represent the initial entropy profile of the primary.

Finally, acomparison with fig. 18 of Z11 shows that the final profile
Tpm(r) of the ZuH run (solid blue line, Fig. 6) is in accord with the
corresponding profile of simulation S1. Moreover, at » >~ 200 kpc the
ZuH profile has a peak value (~7.2keV) that is about 15 per cent
higher than the peak of the RO1500 run at the same location. This
offset between the two runs in the peak of the final DM velocity
dispersion is interpreted as originating from the differences in the
adopted initial conditions. In particular, for simulation RO1500 the
two clusters have initial radii of ry =~ 1.76 Mpc, whilst initially
200 = 1.55 Mpc for the ZuH simulation.

We show in Fig. 7 the mean radial (V,) and circular (V,) gas
velocities profiles at # = 10 Gyr. The latter is defined at the cluster

radius r as V.(r) = ,/17¢(r) + ﬁg(r), where ¥y and ¥y are the mean

azimuthal and polar velocities, respectively. The profiles of Fig. 7
can be contrasted with the corresponding profiles in figs 21 and 22 of

Z11. All of them exhibit a radial behaviour which is in accord with
their Z11 counterparts, with the only exception being the head-on R =
1:3 merger (simulation S4 of Z11). The final velocity profiles of this
merged cluster are significantly different from those of simulation
S4; in particular, the mean radial velocity is not close to zero. Values
of V. ~ 50kms~! persist up to r ~ 800kpc. Similarly, the circular
velocity V. is as high as V, >~ 400 kms~! within r < 50 kpc.

These values suggest that for this merger a fully relaxed status has
not yet been achieved at + = 10 Gyr. To verify this possibility, we
have continued the simulation until # = 11 Gyr. The velocity profiles
corresponding to this epoch are shown in the middle panels of Fig. 7
as solid black lines, and they clearly show lower velocities.

Fig. 8 shows the final entropy profiles of the merged clusters.
Note that the astrophysical entropy parameter S = kT /n>/* is not
the physical entropy and is not an extensive, additive quantity. Thus,
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in averaging S over spherical shells, § was converted into the physical
entropy (which is proportional to In S), and this was averaged over
the spherical shell. Then, the average physical entropy was converted
back to the entropy parameter S.

The presence of an entropy core is common to all of the profiles,
with its level and extent depending on the mass ratio and impact
parameter of the simulation. A comparison with the corresponding
fig. 24 of Z11 shows a substantial agreement in the radial behaviour
of the profiles, with differences in the central levels of core entropy
which can be reconciled in light of the previous discussions.

In particular, at any specified radius and for a given mass ratio,
the hierarchy of the entropy profiles as a function of the impact
parameters is strictly reproduced. Following Z11, differences in the
various levels of entropy profiles can be interpreted in terms of the
different amounts of entropy mixing taking place during the mergers.

The core entropy of the primary increases during the merger owing
to the mixing of low- with high-entropy gas. This high-entropy gas
is made available by the secondary as it falls through the ICM of the
primary and is ram pressure stripped. The gas of the secondary is then
efficiently mixed with that of the primary through the development
of Kelvin—-Helmholtz instabilities. This scenario has been confirmed
by various authors in several merging simulations (Takizawa 2005;
Mitchell et al. 2009; ZuHone 2011).

Following this line of argument, the level of core heating of the
primary should depend on the impact parameter b of the simulation.
The higher the impact parameter, the lower is the amount of
mixing. This follows because in off-centre collisions, the amount
of gas stripped from the secondary depends on the ram pressure
it encounters, and in turn on the initial mass ratio and angular
momentum of the merger. For a given mass ratio the quantity of
stripped material, which is available in the inner regions of the
primary to raise core entropy through mixing, is then expected to
depend sensitively on the orbit traced by the secondary.

In accord with this scenario, the third panel of Fig. 8 shows an
increase in the central level of final entropy as the impact parameter
decreases. However, this behaviour is clearly seen for the mergers
with mass ratio 1:10 (third panel) but is progressively less pronounced
as the mass ratio R becomes higher. In fact, for the 1:1 mass ratio case
the dependence of the final core entropy level on the impact parameter
bisreversed, i.e. the first panel of Fig. 8 shows that simulation RO1506
has an higher level of central entropy than RO1500.

The likely origin for this difference with the results from the R =
1:10 merger is that in the equal-mass mergers, a significant amount
of core heating is provided dynamically by the secondary during
the final merging with the primary. This effect is almost completely
absent in the R = 1:10 cases, in which the mass of the secondary is
small with respect that of the primary, and for off-axis mergers the
secondary is totally stripped by instabilities before coalescing with
the primary.

For a better understanding of this scenario, in Section 3.3 we
present a thorough discussion of how entropy is generated during the
merging process. For several merging runs, we investigate in detail
the time evolution of entropy and other related quantities, in order
to demonstrate how the final entropy profile of the merged clusters
depends critically on the mass ratio and angular momentum of the
collision.

3.2 Stability issues

As a convergence test, we compared the final entropy profiles
for several merger runs with simulations in which we varied the
numerical resolution and/or the adopted initial conditions.
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For two equal-mass mergers (b = 0 and b = 0.6), in Fig. 9 (left-
hand panel) we show the final entropy profiles together with those
extracted from the corresponding higher resolution runs (HR, black
lines). These simulations were performed by adopting the same initial
conditions as the baseline runs, but with the particle masses reduced
by a factor ~4. The plots show a radial behaviour of HR profiles
which is in excellent agreement with the corresponding standard
resolution profiles, a result which leads us to conclude that the
simulations presented here are numerically converged.

Similarly, the entropy profile (blue line) of the ZuH run is
contrasted with its parent simulation S1 (open circles, the points are
taken from fig. 24 of Z11). There is a significant agreement between
the two profiles, the only exception being the outermost point (r =~
1800 kpc) for which the entropy of the ZuH simulation is higher than
that of S1. This result is interpreted in light of the steepening of the
ZuH density profile at large radii (Fig. 4). As already outlined, this
outer behaviour follows from the adopted initial conditions and the
lack of an external buffer surrounding the SPH particles.

This strict agreement between the entropy profiles of two in-
dependent simulations is very significant and it has a number of
implications. First, for a given merging configuration, it definitively
shows that the only parameter which determines the thermodynamic
structure of the final merged cluster is the initial entropy profile.
The other direct consequence is that the numerical scheme used
here produces, for the same initial conditions, a final entropy profile
which is identical to that obtained by Z11 using the adaptative mesh
refinement (AMR) code FLASH. This is a non-trivial issue, and
consistency between hydrodynamical test cases performed using
Lagrangian SPH schemes and mesh-based codes has been the subject
of many investigations.

Specifically, Agertz et al. (2007) found that the standard formu-
lation of SPH (SSPH; Price 2012) fails to reproduce the results
of several hydrodynamic test cases, when contrasted against those
obtained from Eulerian mesh based codes. In particular, non-radiative
SSPH simulation of galaxy clusters exhibit entropy profiles with a
power-law behaviour. This is in sharp contrast with the constant
entropy cores produced in Eulerian mesh simulations (Mitchell
et al. 2009). These discrepancies are due, in part, to the intrinsic
difficulty SSPH has in modelling density gradients around contact
discontinuities, which in turn implies that there is a surface tension
effect that inhibits the growth of fluid instabilities (Agertz et al.
2007).

To address these problems, several solutions have been proposed
(Hopkins 2015, and references cited therein). In particular a possible
solution is to add a dissipative term to the SPH thermal equation,
with the purpose of smoothing the thermal energy at fluid interfaces
(Price 2008; Wadsley et al. 2008). The presence of this AC term has
the effect of smoothing entropy transitions at contact discontinuities,
thus enforcing pressure continuity and in turn removing the artificial
surface tension effect that suppresses the growth of the instabilities
at fluid interfaces.

The SPH scheme employed here is based on this AC formulation,
but the adopted signal velocity (equation 14) is different from that
originally proposed by Price (2008) and it is better suited when
gravity is present (Wadsley et al. 2008; Valdarnini 2012). Other
formulations of SPH aimed at solving these issues are the SPH
scheme proposed by Read & Hayfield (2012; SPHS), which is
based on the use of a high-order dissipation switch, and the density-
independent scheme of Saitoh & Makino (2016; DISPH). To validate
these numerical schemes, it is important to assess the degree of
consistency between the level and radial extent of the core entropies
produced by these codes in cluster simulations. To this end, radial
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Figure 9. For several merging runs, final entropy profiles from Fig. 8 (red lines) are contrasted against the corresponding profiles extracted from merging
simulations with different numerical parameters. Left-hand panel: black lines labelled HR show the entropy profiles of high-resolution simulations, performed
by using a number of particles about four times higher than in the baseline runs. The solid blue line is the entropy profile extracted from a merging run with R =
1:1 and b = 0, but with its initial entropy profile identical to that in Z11. The open circles are taken from the entropy profile of the corresponding simulation S1,
as given in fig. 24 of Z11. Right-hand panel: blue lines (¢gamp) refer to merging runs in which the friction term is switched off at a simulation time ¢ > 0 which
depends on the impact parameter b. For the merging simulation R = 1:10 and b = 0.6, the black dots (o4 + HR) are from a high-resolution run that also had the

damping term switched off.

entropy profiles extracted from galaxy cluster simulations can be
contrasted with the corresponding ones obtained from their AMR
counterparts.

On this issue, the results reported in the literature show the absence
of a general agreement between the various final entropy profiles.
From DISPH simulations of galaxy clusters, Saitoh & Makino (2016)
obtain final levels of core entropies which are intermediate between
results from SSPH and those from AMR codes. Their entropy levels
are also in accord with those obtained using the moving mesh scheme
AREPO (Springel 2010), or the meshless code GIZMO (Hopkins
2015). These schemes are both based on Riemann solvers.

Sembolini et al. (2016) carried out a systematic comparison be-
tween the final entropy profiles extracted from a suite of simulations
of an individual cluster. Their simulation set is constructed by using
different codes. Their results showed that a flat inner entropy profile,
such as that obtained using the AMR code RAMSES (Teyssier
2002), is similarly formed in cluster simulations produced using
SPH variants which are based on some form of artificial dissipation.
In particular, both the improved SPH code of Beck et al. (2016)
and the SPHS scheme (Read & Hayfield 2012) give entropy profiles
in accord with mesh-based results. The AC implementation of the
former SPH scheme is very similar to the one employed here, thus
reinforcing the consistency between our ZuH entropy profile and that
of the corresponding S1 run of Z11.

It must be stressed that the core entropy level and size of the core
are mainly regulated by the maximum value o, of the AC particle
parameter «C. For the simulations presented, here we set o,y =
1.5, this upper limit being derived from the consistency of self-gravity
tests with mesh results (Valdarnini 2012). This limiting value is also
in accord with the DISPH runs of Saitoh & Makino (2016), who
concluded that a core entropy is established when iy 2 1.

Power, Read & Hobbs (2014) criticized the AC formulation of
SPH; based on the results from Wadsley et al. (2008), they suggest
that the AC scheme may not always achieve numerical convergence.
However, the HR profiles of Fig. 9 are fully converged and do not
support this view. We argue that it is the adopted method to estimate
gradients using a matrix inversion that is more relevant in this context.
As demonstrated in V16, our scheme is seen to exhibit excellent
convergence properties.

Finally, it must be emphasized that the strict agreement between
the final entropy profile of our ZuH test run with the corresponding
S1 profile of Z11 does not imply that the produced core entropy
levels are correct. It just demonstrates that the two codes consistently
obtain the same results, when adopting the same initial conditions.
It remains unclear which is the correct core entropy level in these
sort of simulations, with SSPH lacking of any mixing process and
Eulerian codes having the tendency to overestimate mixing effects
because of numerical diffusion (Springel 2010).

In the right-hand panel of Fig. 9, we analyse the consistency of
our setup procedure for several merger configurations. Specifically,
the friction parameter o gamp introduced in Section 2.2.2 is switched
off when the two cluster orbits have reached the initial conditions
of Z11 (t+ = 0). This friction term is introduced to maintain a
stable realization of the CC entropy profile before the occurrence
of the cluster collision. However, in merging simulations with large
angular momentum, the time interval between ¢ = 0 and the direct
collision can be large (2 5 Gyr). For these mergers, a certain amount
of numerical heating can modify the core of the original entropy
profile before the collision (see Fig. 2), thereby increasing the final
level of core entropy.

In order to assess the impact of this effect on the final entropy
profiles, we ran three additional merger simulations. Among the
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simulation suite, we have chosen three merging configurations with
the criterion of having the highest angular momentum. These are
the two merging simulations with mass ratio R = 1:10 and impact
parameters b = 0.6 and b = 0.3, and the simulation with R =
1:3 and b = 0.6. For these simulations, the damping parameter
Ogdamp 1s switched off at a simulation time fy;; > 0 and not at
t = 0. This procedure guarantees that the initial entropy profile
of the primary cluster maintains its form for a certain period of
time after + = 0. Henceforth, we will generically refer to these
simulations as «,.

The choice of the time #,; is a compromise between the need to
avoid the possible numerical heating of the primary cluster core,
and at the same time, to not damp significantly the primary core’s
heating due to entropy mixing driven by dynamical interactions
with the secondary. As outlined in Section 2.3, we define fy;
approximately as the epoch when, after the first pericentre passage,
the distance between the two clusters centre of mass becomes smaller
than 2 ry,.

Our estimates give fn;; ~ 9 Gyr for the merging simulation R10506,
and tyi > 5 Gyr in the case of the R10b03 and R03b06 merging runs.
Clearly, a higher value of #,;; leads to a longer time required for the
damping term to keep the entropy profile stable.

The first value of #;; corresponds to the maximum required period
of damping, whereas in the case of off-axis mergers fy; >~ 5 Gyr
constitutes an approximate lower limit to ;. This choice of different
off-axis merger cases allows us to assess the impact of numerical
heating on the entropy profile of the final merger remnant.

By comparing the final entropy profiles of these simulations (¢4,
blue lines) in the right-hand panel of Fig. 9 with the corresponding
ones in Fig. 8, we see that a certain amount of numerical heating
is always present. All of the o, profiles have core entropy levels
systematically smaller than their standard counterpart. For instance,
in the case of R03b06 the final central entropy of the «, ran is smaller
by about ~~ 30 per cent. For the other two merging simulations the
difference is even higher, being almost a factor of two in the case of
R10b03. Note that the core entropy levels of the o, runs are now in
better agreement with the corresponding ones displayed in fig. 24 of
Z11.

Moreover, to demonstrate that the final profiles are numerically
converged, for the simulation R10606, we also run a high resolution
simulation (az+HR, black dots). In Fig. 9, it can be seen that
the entropy profiles of the two simulations are almost coincident,
thus confirming that our simulations are not affected by insufficient
resolution.

These results demonstrate that our setup procedures as described
in Section 2.2 are not entirely free of relaxation effects, with some
amount of numerical heating being present in the final entropy
profiles of the merged clusters. The result of the o, run with R =
1:3 and b = 0.6 suggests that this effect leads to an overestimate
of the final core entropy level by =~ 30 per cent. For the merging
run R10606 the increase is similar (>~ 50 per cent), whereas for the
merging simulation R10503 the difference in the central entropy
values is larger, ~100 keV cm?.

Thus, we conclude that with the setup procedure adopted here,
in merger simulations with high angular momentum and a 1:10
mass ratio there is the tendency to overestimate final entropy in
cluster cores by about =~ 30 per cent. This relaxation effect can
be compensated for by switching off the damping term at a later
time t,, > 0; however, the correct implementation of this correction
requires a careful choice of ¢,, to avoid overcorrection leading to
artificially lower entropy levels.
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3.3 How is central entropy generated during mergers?

In this section, we examine the time evolution of entropy and other
related quantities for several merger simulations. The analysis is
aimed at investigating the origin and amount of final central entropy
as a function of the initial merging parameters.

To this end, we construct radial profiles of gas density and entropy
at given times. The radial profile of a given quantity is calculated
for each radial bin by averaging grid values computed on spherical
shells, defined by a set of (0, ¢) = 40 x 40 grid points uniformly
spaced in cos® and ¢. Unlike in Section 3.1, the origin of the
shells is centred at the gas density peak of the primary, tracked
at run time. For equal-mass mergers we adopt the convention of
defining as primary the cluster on the left in the {x, y} plane of the
collision.

We first discuss the head-on, 1:1 mass ratio case. This is the
most energetic event and its dynamics are relatively simple. In the
left-hand panel of Fig. 10, we show the time evolution of the gas
density radial profile of the primary at different epochs. Similarly,
the evolution of the entropy radial profile is shown in the right-
hand panel. Additionally, we also show in the left-hand panel the
density profile of the secondary; this quantity has been evaluated in
the frame of the primary. The gas profiles of each cluster member
are constructed separately by culling from the set of SPH particles
the corresponding gas particles. These are tagged at the start of the
simulation according to their membership.

We have chosen to evaluate the profiles at five different times:
t=1.25,1.50, 1.54, 1.70, and 2 Gyr. These are centred around 7, ~
1.6 Gyr, the epoch at which the distance between the centres-of-mass
of the two colliding cores attains its first minimum. In other mergers
with non-zero impact parameters, this epoch is identified as the first
pericentre passage and we denote it as #,,.

From the time evolution of the profiles of Fig. 10, we conclude
that most of the final core entropy is generated at the time #, of the
first core collision. From the right-hand panel, it can be seen that the
level of central entropy is already at S(0) ~ 300 keV cm? at  ~ 2 Gyr.
This entropy level is about ~70 per cent of its final value, as can be
inferred from the right-hand panel of Fig. 8.

This scenario is also confirmed by the radial behaviour of the
temperature profiles displayed in Fig. 11. The two panels show the
temperature profiles of both primary and secondary at different times.
As in Fig. 10, the secondary profiles are evaluated in the primary
frame. To avoid overcrowding, we have divided the profiles in two
categories: before (left-hand panels) and after (right-hand panels) the
epoch 7, = 1.6 Gyr.

The left-hand panel of Fig. 11 shows how the temperature profile
of the primary increases progressively, as the secondary approaches
the primary and the gas is shock heated. This increase is first
characterized by a peak in the primary outskirts, which moves
inwards and gets wider at late times (t — 1,,). The temperature of the
secondary increases too, in fact at r = 1.54 Gyr both the two core
temperatures approach the same level. These findings consistently
support the view that for head-on mergers most of the final core
entropy is generated during the first core collision, with the remainder
of the high-entropy gas being accreted later during the final phases
of the merging.

A different scenario of entropy generation emerges when analysing
mergers with an initial angular momentum (AM). We have chosen to
discuss first the case of the off-axis merger with 1:1 mass ratio and
b = 0.6. Among the equal mass mergers this has the highest AM, so
its study is particularly interesting in order to analyse how entropy is
generated during these collisions.
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Figure 10. For the head-on 1:1 mass ratio case, we show radial profiles of gas density (entropy) in the left-hand (right-hand) panels. Different line styles refer
to different epochs, and the time is in Gyr. In the left-hand panel, red lines indicate the gas density profiles of the primary (I), whilst blue and green lines those
of the secondary (II). At each epoch the profiles of both clusters are evaluated in a frame centred on the peak of the gas density of the primary. For the secondary
blue (green) lines are used to indicate profiles extracted at times before (after) >~ 1.6 Gyr, an epoch which is approximately identified as that when the distance
between the two cluster centres-of-mass reaches its first minimum. Right-hand panels show the entropy profiles of the primary at different epochs. The solid

black line refers to the initial profile.
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Figure 11. For the same merger as in Fig. 10, we show here the evolution of the gas temperature profiles, red lines are for the primary and green lines refer to
the secondary. For the sake of clarity, in the left-hand panels we show profiles evaluated at # < 1.6 Gyr , when the two clusters are approaching each other, and
in the right-hand panels, the profiles are evaluated at 7 > 1.6 Gyr, after the first pericentre passage. As in Fig. 10, at each epoch radial profiles are evaluated in
the primary frame, with its origin being defined as the gas density peak of the primary tracked at run time.

The two panels of Fig. 12 depict density and entropy profiles as
done in Fig. 10, but for the RO1506 merging run. In particular, the
first pericentre passage occurs at #, ~ 2 Gyr, and we show profiles
extracted at five different times centred around this epoch.

From the entropy profiles displayed in the right-hand panel of
Fig. 12 one can recognize that, unlike the head-on case, most of the
core entropy of the primary is generated well after the pericentre
passage, between ¢ ~ 3 and t ~ 5 Gyr. This last epoch corresponds to
when the secondary has passed the apocentre and is falling back on
to the primary. Note that in the left-hand panel of Fig. 12, the density

profile of the secondary at r = 5 Gyr extends closer to the core of the
primary than at t = 3 Gyr.

At t 2 3 Gyr, core heating of the primary proceeds as previously
discussed for the head-on merger, with the secondary coalescing
with the primary and the low-entropy gas in the core being mixed
with the high-entropy gas generated during the core collision. This
suggests that we can decompose the generation of entropy in the
central regions of the primary into two distinct phases: a first one
when the primary has a grazing encounter with the secondary, and a
second phase when the secondary finally collapses on to the primary.

MNRAS 504, 5409-5436 (2021)

1 Z0Z aunp €0 Uo Jasn lezueAy IpniS Ip ajouadng sjeuoizeulsiu] BlondS - YSSIS Ad €1¥9129/601S/v/70S/2191e/seluw/woo dno olwapeoae//:sdiy Woll papeojumo(]



5428  R. Valdarnini and C. L. Sarazin

106 ;\ I\III‘ T T \\I\I\l T T \\I\Hl ;
105 :? Rzll]_ b:OG I Cl E:

c [T clt <2.0 ]
10* ITeclt >2.0
1000 £ 4
\SE E - 7
o 100 3 I » E
F ) | ,

10 ? / / E

= / ]
1 Co ]

F | | ,
01 £ J I 3
001 7J L1111 | | \"JIJIJ” I I\ L1 i
10 100 1000
r [kpc]

104 E_\I\III T T TTTTT T T TTTTT _E
1000 = — E
NE B ]
5 i ]
5100 = -
=5 c — - t= 500 7
= R t= 3.00
10 E ——-t= 200 o

r —— t= 1.75 A
- — t= 150

1 JI\III‘ 1 I lJIIIJl I Il lJIJHl
10 . [kpc]mo 1000

Figure 12. Identical to Fig. 10, but for the R = 1:1 off-centre merger with b = 0.6. The first pericentre passage occurs approximately at 7, >~ 2 Gyr.

‘We now investigate how entropy generation proceeds during the first
phase, when the secondary first approaches the primary.

To this end, we first show in the two panels of Fig. 13 the time
evolution of the primary and secondary temperature profiles. Their
time variations exhibit a behaviour in line with that seen with the
corresponding profiles of Fig. 10, with a significant increase in the
gas temperature of the primary at late epochs.

However, the right-hand panel of Fig. 12 shows a jump in the
entropy of the primary between ¢ = 2 and t = 3 Gyr. We argue that
this entropy increase is a consequence of a transfer of AM between
the secondary and the primary as the secondary is getting closer.
This in turn is due to tidal torques that become significant as the two
clusters reach their closest approach along their orbits.

This transfer of AM leads to an increase of the gas circular velocity
of the primary and, subsequently, to the development of instabilities
and entropy mixing. To better quantify this point, we show in Fig. 14
the radial profiles of the mean circular velocity V.(r) (left-hand
panel) and artificial viscosity parameter «(r) (right-hand panel) for
the primary cluster. The latter is constructed by radial averaging the
AV parameters o; in a manner similar to that adopted to calculate
the other radial profiles. The mean velocity V.(r) is evaluated by
subtracting the centre-of-mass velocity of the primary from the gas
velocities. The profiles have been extracted at the following epochs:
t=2,t=25,t=275,t=3,and t = 5Gyr.

The time evolution of the mean circular velocity profiles reveals
several important features. In particular, there is a progressive
increase in the amplitude of the profiles as r — 3 Gyr. All of the
profiles at different epochs have the tendency to reach their peak
values around ~100-200 kpc, these are of the order of ~600km s~!
atr 2 3Gyr.

This behaviour is shared by the corresponding artificial viscosity
profiles «(r), which at epochs ¢t 2 3 Gyr exhibit peak values of
~(0.12-0.15 in the same radial range. This clearly shows evidence of
significant gradients in the flow velocity at ~100-300 kpc, induced
by the strong increase in the gas rotational motions.

These motions will generate local instabilities in the medium
which in turn will lead to the development of turbulence, thus driving
the diffusion of entropy. This is indirectly confirmed by the radial
behaviour of the AC profiles «“(r), which are constructed from the
AC parameters «f in the same way as we did for the AV profiles
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a(r). The qualitative behaviour of the profiles o“(r) mirrors very
closely that of the corresponding «(r), thus showing the presence
of diffusive processes associated with the appearance of rotational
motions.

We argue that the increase in core entropy seen between t =
2 and t+ = 3Gyr is then a consequence of the rotational gas
motions, induced by the passage of the secondary at the pericentre.
However, to validate this picture, the local diffusion time-scale
must be of the same order or lower than the estimated time-span
(~1Gyr) over which entropy undergoes its changes. To further
elucidate this issue, we now try to assess the diffusion time-scale
associated with the development of Kelvin—Helmholtz instabilities
(KHI).

The generation of KHI leads to the development of turbulent
motions and to the formation of eddies at different spatial scales.
The size of these eddies is expected to be significant, with scales
of L ~ 100-300kpc (Takizawa 2005; Subramanian, Shukurov &
Haugen 2006). These estimates are also in accord with length scales
found in simulations aimed at studying turbulent properties of the
ICM (Vazza, Roediger & Briiggen 2012; Valdarnini 2019, see in
particular fig. 9 of the first authors).

From equation (8) of Vazza et al. (2012), we estimate the
coefficient for turbulent diffusion as given by

A
Dy >~ 0.100 >~ 3 x 10%° ( o ) em?s!
100 kpc 1000 km s~!
37

and the corresponding diffusion time-scale by

2
7p =~ R?/Dy ~ 3 _R_\ L Gyr
D — turb 100 kpC D30 )

where o is the gas velocity dispersion, D3y = D/(10** cm?s), and R
is the considered scale.

Between t = 2 Gyr and ¢t = 3 Gyr the gas velocity dispersion of
the primary is found to change drastically from ~800km s~ down
to ~200kms~! within radii » < 100kpc. By assuming an upper
limit of A ~ 300kpc for KHI eddies, in the given time interval we
then obtain values of Ds lying in the range 7 < D3y < 1.8. This
correspondingly gives 0.4 < 1p/(R/100kpc)> Gyr < 1 between

(3%)
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Figure 13. As in Fig. 11, for the merging case of Fig. 12 (R = 1:1, b = 0.6), we show here the time evolution of the gas temperature profiles for both the

primary and secondary cluster.
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Figure 14. Average radial profiles of the mean circular velocity V.(r) (left-hand panel) and artificial viscosity parameter «(r) (right-hand panel) are shown
at different epochs for the primary cluster of the merging run of Fig. 12. The centre-of-mass velocity of the primary has been subtracted from the mean gas
velocities before evaluating the velocity profiles. The «(r) profiles have been extracted from the AV parameters «; of the gas particles of the primary cluster, in
the same way in which the radial profiles of other gas properties (e.g. temperature) have been derived. Time is in Gyr.

t = 2Gyr and t = 3 Gyr, showing the consistency of the diffusion
time-scale with the increase in central entropy seen between ¢t = 2
and t = 3 Gyr at » < 100 kpc.

To further elucidate this critical point, we show in Fig. 15 the
entropy profiles of the primary at different epochs. Unlike in the
right-hand panel of Fig. 12, we show the radial entropy profiles
extracted from a wider range of time frames; moreover, for each
radial bin we also evaluate the entropy dispersion o g(r). As noted
in the text discussing Fig. 8 above, the average S over a spherical
shell is determined by converting the entropy parameter S into
a physical entropy, averaging this, and then converting the mean
physical entropy back to S(r). Similarly, the dispersion of the physical
entropy is added and subtracted from the mean physical entropy, and

these two values are converted back to S to give the upper and lower
limits of the error bars in Fig. 15.

Within each panel of Fig. 15, we show the entropy profiles at
two distinct epochs; for the sake of better understanding the profile
referring to the latest epoch is shifted upwards by one order of
magnitude. The time evolution of these entropy profiles clearly
illustrates a progressive increase in entropy at outer radii, with a
subsequent propagation towards the inner regions. If we now adopt
the reasonable assumption that the entropy dispersion o s(r) can be
taken as a metric for assessing the amount of mixing present at that
radius, o 5(r) (and presumably mixing) are initially very small at radii
r < 500kpe. The entropy dispersion becomes progressively wider
in the outer regions of the primary as the secondary approaches

MNRAS 504, 5409-5436 (2021)
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Figure 15. For the equal-mass merger with b = 0.6 of Fig. 12, we show here the entropy profiles of the primary at different epochs. At a given time, we compute
the entropy dispersion (the error bars) by averaging over angular grid values of the shell for each radial bin (see the text). As in Fig. 12 the solid black lines refer
to the initial profile. For the sake of clarity, in each panel the entropy profile referring to the later epoch has been shifted upwards by a factor 10.

(t — t, = 2Gyr), but with an amplitude which is still negligible
within r < 100kpc at t = 2 Gyr. At t = 3 Gyr, there is a widening
of o(r), which is significant at radii » 2 100 kpc. However, it is
only when ¢ 2 5Gyr that the entropy dispersion is approximately
constant across all the cluster and the gas has now a higher degree
of mixing. To summarize, we conclude that for the considered
merging configuration, part of the final core entropy owes its origin
to rotational motions induced by tidal torques occurring during the
collision.

We now discuss the two off-axis mergers for the 1:10 mass ratio
case. Fig. 16 is the analogue of Fig. 10 but for the R = 1:10 and
b = 0.3 (t, ~ 1.6Gyr) merging, and Fig. 17 for b = 0.6 (¢, ~
2 Gyr). In both cases the level of central entropy at late times is
around ~100keV cm?, while in the left-hand panel of the figures the
time evolution of the secondary density profiles shows a negligible
interaction with the primary’s core. In fact, for the b = 0.6 merging
the impact of the secondary on the density profile of the primary at
t = 4 Gyr can be considered completely absent.

As already discussed in Section 3.2, in merging simulations with
1:10 mass ratio and AM, numerical heating effects can modify the
level of core entropy before the two clusters merge together. For

MNRAS 504, 5409-5436 (2021)

instance, one can assume that for the » = 0.6 run, all of the core
entropy increase at t = 4 Gyr is due to this effect. This level can be
contrasted with that expected in an isolated halo when the damping
term is absent. From the GL run in the right-hand panel of Fig. 2, we
obtain an entropy value of S/Ssgpp >~ 0.15 at r/rsoo = 0.1 at t = 5 Gyr.
This translates into S ~ 130 at ~115 kpc, where we have taken Sso
and rsgp from Table 1. This implies that at the same epoch, for the
b = 0.3 merging, at most ~30 per cent of the entropy core level is
due to merging effects.

To illustrate the impact of this effect, in Fig. 18 we depict density
and entropy profiles for the R = 1:10 and b = 0.3 merger at various
epochs, but extracted from the corresponding o, simulation presented
in Section 3.2. For this simulation, the damping parameter & gamp Was
switched off at a simulation time f,; = 5 Gyr in order to stably
maintain the initial entropy profile until 7 = #,;,. The density profiles
are time-centred around r = 7 Gyr, an epoch at which the secondary
begins to coalesce with the primary.

The final entropy profiles depicted in the right-hand panel of
Fig. 18 show a core entropy level of ~100keV cm? at = 10 Gyr.
This level is in accord with previous findings and demonstrates
that in mergers with low mass ratios and AM, the bulk of core
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Figure 16. The same as Fig. 10, but for the R = 1:10 off-centre merger with b = 0.3. The first pericentre passage is estimated to occur at #, >~ 1.6 Gyr.
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Figure 17. The same as in Fig. 16, but for the off-centre case with b = 0.6. Here the first pericentre passage is around ¢, >~ 2 Gyr.

heating occurs at late stages. A similar level of core entropy at
t = 10Gyr is obtained from the «, simulation with b = 0.6
(Fig. 9).

To summarize, our findings indicate that heating of the core in
off-axis mergers depends critically on the initial merging mass ratio
as well as on the AM of the system. For equal-mass mergers and
high AM, a significant contribution to the central entropy level is
sourced by instabilities generated by tidal torques, as the secondary
firstreaches its pericentre. On the contrary, for unequal-mass mergers
with 1:10 mass ratio, the secondary is progressively disrupted along
its orbit by ram pressure and the development of hydrodynamical
instabilities, and core heating becomes significant only during the
late merging phases.

3.4 Radiative runs

We now investigate the heating of gas cores and the survival of CCs
in a more realistic set of merging simulations. In this section, we

present results extracted from simulations where the physics of the
gas includes cooling, star formation, and energy feedback following
supernova explosions.

The computational cost of these simulations is much higher
than that of their adiabatic counterparts. Because of cooling, the
development of short cooling times and large central densities during
the simulations requires very small time-steps. For this reason,
we refrain from resimulating all of the merging cases previously
discussed and perform radiative simulations only for several of them.
Additionally, we also present results from a merging run with a new
initial condition set-up (see later).

As described in Section 3.2, merging simulations with cooling
are initialized as in the adiabatic case. The cooling term Qg in
equation (12) is switched on at times ¢ > 0, so that both adiabatic
and radiative simulations start at # = 0 with the same profiles. For
the chosen cases we show in Fig. 19 the final entropy profiles of the
radiative merging simulations. These are contrasted with the profiles
of the corresponding adiabatic runs.

MNRAS 504, 5409-5436 (2021)
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Figure 18. The same as for the merging case shown in Fig. 16, but for the a4 simulation of Section 3.2 (see the text), in which the parameter ot gamp is switched
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Figure 19. Final entropy profiles extracted from adiabatic (AD: blue lines) and cooling simulations (CR: red lines). The left-hand panel shows some runs with
the mass ratio R = 1:1 and the right-hand panels refers to merging simulations with mass ratio R = 1:10. In the left-hand panel, thick lines indicate an head-on

merging with cluster masses M = M = 6 x 1013 Mg,

In these simulations, the final level of core entropy, and as a
consequence the CC ability to maintain its integrity, will depend
on the various processes which have contributed to the core heating
during the merging. We thus expect shock heating and entropy mixing
to be counteracted in part by radiative cooling in shaping the central
entropy profile of the merged remnant.

A discriminant criterion to assess whether or not the CC is
destroyed during the merger is the level to which the central entropy
is raised during the collision because of the heating processes. If this
amount of entropy is high enough to raise the central cooling time,

MNRAS 504, 5409-5436 (2021)

let’s say above several Gyrs, then the CC cannot be re-established in
a Hubble time. This implies the survival of CCs to be strictly related
to the energetics of the collisions, i.e. to the mass ratio and initial
orbit of the merger.

While the inclusion of gas cooling in the simulations will lead
to the development of large gas core densities, the growth of KHI
and the degree of gas mixing are not expected to be modified in a
significant way when compared to the adiabatic runs. Damping of
KHI in the presence of cooling will occur whenever 7. < t, (Vietri,
Ferrara & Miniati 1997), where t; is the sound crossing time of the
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perturbation. We estimate 7 as A/c:
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=0 100 kpe +/kT /keV "

From the previous discussion in Section 3.3, we adopt a lower
limit of A 2 100 kpc for the eddy size. The lower value of 7. is about
~1 Gyr in the core (Fig. 3), and it reaches ~10 Gyr at r ~ 100 kpc.
From the profiles of Figs 11 and 13, we estimate gas temperatures
in the range of few keV in the cluster central regions. Therefore,
we conclude that the impact of cooling on the growth of KHI can
be considered negligible, in line with previous findings (ZuHone,
Markevitch & Johnson 2010).

The final entropy profiles (red lines) of several equal-mass radia-
tive merger simulations are displayed in the left-hand panel of Fig. 19.
We first consider the two merging cases with impact parameter b =
0 and b = 0.6, previously investigated in Section 3.3. For the sake of
comparison their adiabatic counterparts are also shown (blue lines).

In the head-on case we expect the core entropy to undergo a very
steep increase because of the strong shock following the collision of
the cores, with a subsequent decrease due to radiative cooling. The
difference at = 10 Gyr between the core entropy of the adiabatic
simulation and the radiative one (solid lines, left-hand panel of
Fig. 19) is AS(0) ~ 200keV cm?.

The off-axis merger (dot lines) exhibits a similar difference in final
core entropies. In Fig. 20 we show the time evolution of density and
entropy profiles for this run, as we did in Fig. 12 for the adiabatic
case. A comparison between the two sets of entropy profiles shows
a much more modest increase in entropy for the cooling run.

In fact, at = 5 Gyr the level of core entropy is about S,,(0) =~
100keV cm?, while in the adiabatic run it is about S,q(0) ~
800 keV cm?’. The difference is subsequently reduced soon after
t = 5 Gyr, as the secondary finally merges with the primary and the
process raises the central entropy up to Se;(0) ~ 500 keV cm? at ¢ =
10 Gyr.

This is in accord with Poole et al. (2008). From their merging
simulations the authors argue that to re-establish a CC it is necessary
for the remnant to be relaxed for a significant fraction of the cooling
time 7 ... For the considered merger, we estimate 7,(0) ~ 1072 cm ™ at
t = 5Gyr and 7,(0) ~ 6 (5(0)/100keV cm?)"/* Gyr ~ 6 Gyr, from
equation (35). This time-scale is larger than that set by the final
collision of the secondary, which raises again the central entropy and
in turn 7. to above ~10 Gyr.

Finally, note that in the left-hand panel of Fig. 20 the density profile
of the secondary is significantly reduced in the cluster inner regions,
when contrasted with the adiabatic case at = 5 Gyr. Similarly, in the
same regions the core gas density of the primary is higher by a factor
~5. These differences follow because of radiative cooling, with the
primary developing a steeper profile than the secondary.

In the right-hand panel of Fig. 19, we show the entropy profiles
of two unequal mass mergers with the mass ratio R = 1:10. The
dynamics of the head-on case mirrors that of the R = 1:1 merging,
but to a lesser extent because of the reduced mass of the secondary.
There is a smaller increase in entropy as the two core collide, with
radiative losses subsequently reducing entropy down to S..(0) =~
100keV cm? at t = 10 Gyr. In contrast to the adiabatic case, this
level of core entropy is a factor ~ 2 smaller.

In the most off-centre (b = 0.6) merger, the impact of the
secondary on the core is negligible. As in the adiabatic case, low-mass
subclumps with large AM are progressively disrupted by instabilities
before being able to significantly shock-heat the primary’s core.
However, in the adiabatic run there is a certain amount (AS(0) ~
100keV cm?) of core heating taking place during the late phases

(39)
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(t ~ 9-10 Gyr) of the merger. This small entropy jump is now absent
because of radiative losses, thus allowing the CC to survive.

Additionally, we ran another head-on radiative merging simulation
with the mass ratio 1:1. In contrast to the merging case previously
discussed, for the two clusters we now adopt a halo mass of Mjy =
6 x 10'3 Mg, The initial condition set-up being the same as described
in Section 2.2.

For this simulation, we show in the right-hand panel of Fig. 19
the final entropy profile of the merger remnant (solid thick line),
together with the profile of its adiabatic counterpart. The entropy
profile of the radiative run exhibits a near power-law behaviour and,
unlike the head-on R = 1:10 merging case, the CC has been rapidly
re-established. This happens because now the mass of the primary is
an order of magnitude smaller, thus the collision with the secondary
(at t ~ 2 Gyr) is able to raise the central entropy only up to S(0) =~
80keV cm?. This is a factor ~ 2 smaller than in the the head-on R =
1:10 merger, so that the cooling time is ~5 Gyr and the CC is soon
restored.

These findings demonstrate that radiative cooling dominates the
final ICM core properties, with physical processes governed by time-
scales much shorter than those set by diffusion (Biffi & Valdarnini
2015).

To summarize, the results of this section demonstrate that the final
level of core entropy, and thus the resiliency of CCs to disruption,
depends critically on the merging mass ratio and initial orbit. Specif-
ically, CCs are destroyed in head-on high-mass mergers, but can
survive low-mass mergers or off-axis low mass ratio mergers. This
suggests that the merging AM is a key parameter which determines
the final remnant core entropy. In merging systems with high AM,
a CC is re-established after the final collision as long as the cooling
time is shorter than the core free-fall time. This condition depends
on the merging mass ratio as well.

Our results are, partially, in agreement with Hahn et al. (2017).
The authors argue that AM is a fundamental quantity to determine
whether a CC can survive a cluster merger or not. They found CC
disruption to occur in major mergers with low AM, but it is absent if
the AM is high. This is in contrast with our findings, for which the
disruption of CC in major mergers (mass ratio higher than 1:5) of
massive clusters (i.e. with a primary mass M; 2> 6 x 10'* M) occurs
regardless of whether the merging is head-on or off-axis. Note also
that the CC is not disrupted, and the AM becomes unimportant, when
the primary mass is small (M; < 10" My,).

Finally, our findings are in contrast with those of Z11. For the
same set of merging initial conditions, that paper finds final levels of
core entropy high enough to erase CCs, regardless of the considered
merging case. This is at variance with the results of this section, in
which the merging simulations now include gas cooling. This shows
that a realistic physical modelling of the simulations is crucial to
address the issue of CC survival in merging clusters.

4 CONCLUSIONS

In this paper, we have presented results extracted from a suite
of idealized binary cluster merger simulations, realized using an
N-body/hydro code which employs an improved SPH scheme.
Each merging cluster simulation was performed by constructing
two isolated gas+DM haloes in equilibrium; initial positions and
velocities of the haloes are then assigned according to the specific
orbital trajectory. We purposely adopted the same range of initial
mass ratios and impact parameters as in a previous paper (Z11), so
as to consistently compare our results with previous findings.

MNRAS 504, 5409-5436 (2021)
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Figure 20. As in Fig. 12, we show here the gas density and entropy radial profiles for the R = 1:1 off-centre merger with b = 0.6. At variance with the run of

Fig. 12, the simulation here incorporates radiative cooling.

Our simulations are aimed at investigating how the heating of the
gas core leads to an increase of its entropy and to the disruption of
the original CC profile during cluster mergers. In order to assess the
impact of different physical processes on the survival of CC systems,
we consider adiabatic as well as radiative merging simulations. The
latter incorporate cooling, star formation, and supernovae feedback.
Our main conclusions can be summarized as follows.

(i) For adiabatic simulations and head-on mergers, the dominant
source of entropy is the shocking of the gas at the epoch of the first
collision, with core heating being later driven by mixing processes.

(ii) In the case of off-axis mergers, core heating depends critically
on the initial merging mass ratio, as well as on the angular momentum
(AM) of the system. For equal-mass mergers part of the final core
entropy owes its origin to the transfer of AM, induced by tidal torques
occurring during the first encounter of the two clusters along their
orbit. The corresponding increase in the primary circular velocity at
this epoch (see Section 3.3) generates instabilities in the cluster inner
regions, and in turn an increase in its core entropy.

(iii) For mergings with low mass ratios, the previous effect is
negligible or absent and the bulk of core heating occurs at late stages,
when the secondary accretes on to the primary. The final increase in
core entropy can be modest because, before the final merging with
the primary, most of the secondary mass has been stripped along its
orbit by instabilities and ram pressure.

(iv) In general, our results from adiabatic simulations are in accord
with previous findings (Z11). The initial CC profiles do not survive
the various merger cases we considered, and because of the different
physical processes occurring during cluster merging, high-entropy
gas is always present in the cluster core after the merger.

(v) From a numerical point of view, it worth noting that the good
hydrodynamical behaviour of the ISPH code presented here. For
a specific run (see Fig. 9), we find the final entropy profile in good
accord with the corresponding one shown in Z11. This is a non-trivial
result since it demonstrates how the ISPH scheme, based on a La-
grangian formulation, can be considered competitive with Eulerian-
based AMR codes in terms of hydrodynamical performance.

MNRAS 504, 5409-5436 (2021)

The scenario outlined above changes in several respects when
cooling is incorporated in the simulations. The most important
differences are:

(1) The increase in core entropy during cluster merging is now
counteracted in part by radiative cooling, thus leading to lower levels
of final entropy in the cluster inner regions than in the corresponding
adiabatic case. CCs are found to survive if the merger is only able to
raise the central entropy to S(0) < 80keV cm?. This implies that the
cooling time is shorter than the Hubble time and the CC is restored.

(i1) For high mass mergers, CCs are destroyed in major merger, but
are resilient to off-axis mergers with low mass ratios. This suggests
that the survival of CCs depends both on the initial mass ratio and
AM, and is thus characterized by a two-parameter dependence. This
can be considered as the most important result of this paper.

(iii) Finally, this dependence on AM tends to disappear as one
considers low-mass cluster mergers. We ran a head-on merger with a
primary mass an order of magnitude smaller (M,y = 6 x 103 M)
than in the baseline simulations, and the final core entropy is found
to be low and cooling dominated.

Overall, these findings support the observational evidence (Pratt
et al. 2010; Chon et al. 2012) of a correlation between the CC/NCC
core morphology and cluster mergers (but see Barnes et al. 2018, for
a different viewpoint). The results presented here are also in broad
agreement with previous works (Ritchie & Thomas 2002; Burns et al.
2008; Poole et al. 2008; Hahn et al. 2017), aimed at investigating the
impact of merging clusters on core properties.

In particular Hahn et al. (2017) argued that CCs can survive major
mergers with large AM. While our merging simulations also clearly
indicate a significant role of AM in determining the status of the final
core remnant, for the considered merging case we find that CCs are
destroyed in high mass major mergers even in the case of large AM.
We suggest that this discrepancy is not significant and is of statistical
origin. Our results are obtained from binary cluster mergers realized
in isolation with specific initial conditions, whereas the Hahn et al.
(2017) sample is comprised of only ten clusters extracted from a
previous cosmological simulation.
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A possibility which has been left open by our study of merging
clusters occurs when the merger is between an NCC and a CC cluster.
In such a case, if the CC of the secondary is able to survive the
merger process, it might settle in the centre of the primary, leading
to a transition of the primary from an NCC to a CC state. However,
we argue that this scenario is unlikely to occur.

This is justified by the chosen initial condition set up of our
merger simulations, in which both the primary and the secondary
are initialized as CC clusters. Our previous findings indicate that the
CC of the secondary does not survive ram pressure and shock heating
as it enters the atmosphere of the primary, regardless of the initial
mass ratio and AM of the binary system. This result is valid for a
primary CC cluster, but we expect it to be little affected by the level
of core entropy of the primary.

The validity of our simulation results depends both on the numer-
ical resolution of our simulations as well as on the adopted physical
modelling of the gas. For several merging runs, in Section 3.2
we contrasted the final entropy profiles against parent merging
simulations performed using a higher resolution. The stability of
the corresponding profiles is shown in Fig. 9, indicating that our
simulations can be considered free of resolution effects and are
numerically converged.

In our simulations, the physical modelling of the ICM is based on a
number of simplifying assumptions. In particular, the most relevant is
the absence of a subgrid model for the energy injection from AGNSs,
which can offset radiative cooling in cluster cores. For the purpose
of the present investigation, it is then important to assess the impact
of AGN feedback on the results presented in Section 3.4.

Rasia et al. (2015) argued that CC thermal properties are affected
by AGN feedback, and that its absence renders CCs more resilient
against late-time mergers. This is in contrast with the findings of Hahn
et al. (2017), for whom CC stability is not affected by incorporating
AGN feedback, regardless of the adopted feedback parameters.

Hahn et al. (2017) suggest that this discrepancy is directly
connected to the hydrodynamic codes used in the two sets of simu-
lations. The authors performed their simulations using an Eulerian
AMR code, while Rasia et al. (2015) employed an improved SPH
scheme (see Sembolini et al. 2016). Hahn et al. (2017) argued that
the treatment of thermal diffusion in the two codes is critical in
determining thermal properties of the simulated CCs.

This topic has been discussed at length in Section 3.2 and, as
mentioned in point (v) above, there is a full consistency between
the final entropy profile of our R = 1:1 b = 0 merging simulation
with the parent one of Z11. This strongly suggests that the artificial
diffusion parameters of our hydrodynamical scheme are correctly
calibrated. We thus assume that the inclusion of AGN feedback in
radiative merging simulations will mirror the thermal behaviour of
ICM seen by Hahn et al. (2017), and in turn should be of limited
impact on the findings of Section 3.4.

However, the entropy profile of the head-on low-mass radiative
merger depicted in the left-hand panel of Fig. 19 clearly exhibits
an overcooling behaviour in its inner regions. Incorporating thermal
AGN feedback in this simulation will avoid runaway cooling and
will bring the final level of core entropy to higher values. Without a
dedicated simulation including AGN feedback, it is difficult to assess
the fate of the CC at the end of this merger.

From the parameters of cluster C3 (M = 6 x 10'3 M) given
in Table 1 and the entropy profile (24), we estimate an initial entropy
value of ~ 12keVem? at r = 10kpc. Assuming that AGN feedback
during the collision will maintain the core entropy of the primary at
approximately this level, we require that the gain in core entropy be
limited to <50 — 60 keV cm? during the collision to keep the integrity
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of the CC. In this case, we expect the final central entropy level of
the merger remnant to be below the CC threshold (~80keV cm?)
previously given.

An upper limit to the level of core entropy achieved by the primary
during the collision can be inferred by looking at the adiabiatic
merging simulation. From Fig. 19, we obtain a final core entropy
~100keV cm?, but in the radiative simulations cooling effects will
reduce this level to lower values. We thus conclude that for this
specific merging case, the inclusion of thermal AGN feedback will
change the ICM thermal state of the core. The final level of core
entropy is likely to be close to the threshold above which the CC will
be destroyed.

To summarize, our findings support the scenario in which the
observed CC/NCC dichotomy is driven by cluster mergers. The
difference in the disruption histories of the CCs, between adiabatic
and radiative merging simulations, demonstrates that a realistic
modelling of ICM physics is crucial in order to properly investigate
the behaviour of core morphology during the merging phase. We
argue that the inclusion in our simulations of AGN thermal feedback
is unlikely to impact most of our findings, at least in merging
simulations in which the final cluster remnant has a virial mass
M200 Z 6 x 1014 M@.

However, it must be stressed that in our high mass merging
simulations, CCs survive only in mergers with low mass ratios and
high AM. This leaves open the problem if such a result is consistent
with the observed fraction of CC/NCC clusters at the present epoch
(Barnes et al. 2018).

This issue can only be addressed in a cosmological framework,
in which the evolution of simulated clusters can be followed self-
consistently in a cosmological volume. Our idealized merging
simulations are performed in isolation, so that environment effects are
absent. In a cosmological simulation, these effects are automatically
taken into account, and one expects merging environments to be
affected.

On the other hand, our results indicate that the majority of core
heating occurs when the secondary enters the innermost regions of
the primary cluster. We thus suggest that environmental effects will
be of limited impact on our findings.
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