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A B S T R A C T

Higher cognitive capacities, such as navigating complex environments
or learning new languages, rely on the possibility to memorize, in
the brain, continuous noisy variables. Memories are generally under-
stood to be realized, e.g. in the cortex and in the hippocampus, as
configurations of activity towards which specific populations of neu-
rons are “attracted”, i.e towards which they dynamically converge, if
properly cued. Distinct memories are thus considered as separate at-
tractors of the dynamics, embedded within the same neuronal connec-
tivity structure. But what if the underlying variables are continuous,
such as a position in space or the resonant frequency of a phoneme?
If such variables are continuous and the experience to be retained
in memory has even a minimal temporal duration, highly correlated,
yet imprecisely determined values of those variables will occur at suc-
cessive time instants. And if memories are idealized as point-like in
time, still distinct memories will be highly correlated. How does the
brain self-organize to deal with noisy correlated memories? In this
thesis, we try to approach the question along three interconnected
itineraries.

In Part ii we first ask the opposite: we derive how many uncor-
related memories a network of neurons would be able to precisely
store, as discrete attractors, if the neurons were optimally connected.
Then, we compare the results with those obtained when memories
are allowed to be retrieved imprecisely and connections are based
on self-organization. We find that a simple strategy is available in
the brain to facilitate the storage of memories: it amounts to making
them more sparse, i.e. to silencing those neurons which are not very
active in the configuration of activity to be memorized. We observe
that the more the distribution of activity in the memory is complex,
the more this strategy leads to store a higher number of memories,
as compared with the maximal load in networks endowed with the
theoretically optimal connection weights.

In part iii we ask, starting from experimental observations of spa-
tially selective cells in quasi-realistic environments, how can the brain
store, as a continuous attractor, complex and irregular spatial infor-
mation. We find indications that while continuous attractors, per se,
are too brittle to deal with irregularities, there seem to be other mathe-
matical objects, which we refer to as quasi-attractive continuous man-
ifolds, which may have this function. Such objects, which emerge
as soon as a tiny amount of quenched irregularity is introduced in

xi



would-be continuous attractors, seem to persist over a wide range of
noise levels and then break up, in a phase transition, when the vari-
ability reaches a critical threshold, lying just above that seen in the
experimental measurements. Moreover, we find that the operational
range is squeezed from behind, as it were, by a third phase, in which
the spatially selective units cannot dynamically converge towards a
localized state.

Part iv, which is more exploratory, is motivated by the frequency
characteristics of vowels. We hypothesize that also phonemes of dif-
ferent languages could be stored as separate fixed points in the brain
through a sort of two-dimensional cognitive map. In our preliminary
results, we show that a continuous quasi-attractor model, trained
with noisy recorded vowels, can effectively learn them through a self-
organized procedure and retrieve them separately, as fixed points on
a quasi-attractive manifold.

Overall, this thesis attempts to contribute to the search for general
principles underlying memory, intended as an emergent collective
property of networks in the brain, based on self-organization, imper-
fections and irregularities.
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Part I

G E N E R A L I N T R O D U C T I O N





1
" PA RT I C U L A R T R E A S U R E S O F T H E PA S T "

To be rooted is perhaps the most important and least recognized need of
the human soul. [..] A human being has roots by virtue of his real, active

and natural participation in the life of a community which preserves in
living shape certain particular treasures of the past and certain particular

expectations for the future.
— Simone Weil, L’Enracinement (1949)

Before they seize power and establish a world according to their doctrines,
totalitarian movements conjure up a lying world of consistency which is

more adequate to the needs of the human mind than reality itself in which,
through sheer imagination, uprooted masses can feel at home.

— Hannah Arendt, The Origins of Totalitarianism (1951)

1.1 memory and mary calkins

"What one of the numberless images which
might [..] follow upon the present percept or image will actually be associated
with it?" So Mary Whiton Calkins1 was introducing her Phd Disserta-
tion on Memory in 1895 [1].

1 (Hartford 1863, Newton 1930)

3



4 "particular treasures of the past"

She was a pioneer in the study of memory in those days of excitement
in the newborn psychology community. In her Thesis, resulting from
the experimental studies she carried out from 1892 to 1894, she de-
voted an initial special emphasis to the differentiation between objects
of consciousness and contents of consciousness. As reported in Ref.
[2], these terms closely correspond to what is cue and to-be-remembered
item in current memory research terminology. She designed experi-
ments aimed at providing a deeper understanding of "the nature of as-
sociations" in our brain, testing what we would call today short term
memory. In these, among other results, she discovered the method
of paired associates: she saw that remembering a number which is
presented always with a color is easier than remembering numbers
presented each time with different colors, however extravagant they
would be. She did not use the term paired associates in the original
work [2] (she will do it later, in her autobiography) and the method
was named in 1908 by Edward Thorndike, who did not cite her.

Despite the note sent in 1894 to the President of Harvard College
by the professor with whom she was working informally, asking to
enroll her in the PhD as she was without "any doubt [..] superior also to
all candidates of the philosophical Ph.D. during the [previous] years" Mary
Whiton Calkins was not accepted because she was a woman. Nor she
was granted a PhD in 1895, when an unauthorized committee of Har-
vard professors, after evaluating her Thesis sent the positive response
to the President and Fellows of Harvard College, nor in 1927, when
13 other professors, including Thorndike, sent a petition to Harvard
to give her the title, nor nowadays as a post-mortem award [1].

She would eventually publish her thesis in Psychological Review
[3, 4] and after not being awarded a PhD her last paper on memory
would be in 1898 [2], shifting then her focus to the psychology of
introspection and to the concept of self, among other interests, pur-
sued with her own research group. Still today, despite the recogni-
tion which her ideas and results are gradually receiving, the study
of memory is predominantly traced back solely to her contemporary
Hermann Ebbinghaus. She died of cancer, leaving to her posterity an
autobiography, and to Eleanor Gamble, one of the few other women
present in science at that time, the direction of her Laboratory [4]. She
is known as the first female president of the American Psychological
Association.2

Mary W. Calckins was also an active and outspoken femminist,
pacifist and socialist, supporting cases such as that of the italian anar-
chists Sacco and Vanzetti [6].

2 Changing president every year since 1892 APA has had in 128 president elections a
total of 19 women presidents of whom 8 in the past 11 years [5].



1.1 memory and mary calkins 5

1.1.1 Memory in this Thesis

About 20 years after Mary Calkins’ disser-
tation, the neuroanatomist Ramon y Cajal
sketched in Madrid his illuminating drawing3

of the hippocampus [7]. 33 years after that,
Dr. Scoville, a neurosurgeon in the hospital
of Hartford, the city where Mary Calkins was
born, removed the hippocampus from his pa-
tient Henry Molaison in a tragic attempt to
treat his epilepsy. Henry Molaison4, as a conse-
quence, completely lost his capability to form
new episodic memories [8], as understood by
the studies of Brenda Milner, who followed
him afterwards. From then onward it became
clear that somewhere in the hippocampus is
embedded our capability to form short term

memories. Four years before that surgery, in 1949, Edward Tolman,5

born in the same city where Mary Calkins died, formulated the
psychological hypothesis that animals are able to create “cognitive
maps” [10]. The connection between cognitive maps, hippocampus
and memory will be clarified in the following decades, fostered by
the discovery of spatially selective cells.
In Chapter 2 I will briefly introduce part of these studies, which form
the general phenomenological context of Part iii of the present thesis.

3 reproduced here on the left
4 known as the “H.M. patient”
5 Edward Tolman (1886− 1959) was a prominent learning theorist in the 30s and an

active opponent of the loyalty oaths, imposed in Berkeley in 1949 as an attempt to
take out communists and other disloyal people from academia [9].



6 "particular treasures of the past"

1.2 daniel amit and the non-neutrality of science

Daniel J. Amit, born in Poland in 1938, was
an eminent physicist and one of the pioneers in the field of neural net-
works and computational neuroscience [11, 12]. In the 80 ′, attracted
to neuroscience as some other physicists at that time, he realized that
the tools of statistical mechanics could be applied to the study of
memory. This led to his famous calculation published with Gutfre-
und and Sompolinsky in 1985 [13] and to the ones of Elizabeth Gard-
ner a few years later [14]. From there on, attractor neural networks
and, later, continuous attractor neural networks, became fundamen-
tal mathematical objects to understand memory, objects which will
be introduced in Sect. 3 and Sect. 10.

The rest of this chapter, instead, will not be directly related to the
present thesis and is devoted, for the delight of keeping memory alive,
to introduce his scientific political involvement .

Daniel J. Amit considered that "one of the main intellectual duties of
a scientist is to apply the rigorous standard of his profession also to his own
(research) activity intended as social activity"6. In 2003, as a consequence
of the US invasion of Iraq he refused to collaborate with the Ameri-
can Physical Society7, which he motivated to ArabNews saying:

"There can be absolutely no doubt that science has been directly linked
to weapons of mass destruction for at least two centuries. [..] Today this
problem is particularly grave because every aspect of existence has become a
weapon, not only physics."8

6 Excerpts translated from the essay Daniel Amit published in the magazine Prometeo
in 2005 [15] and preliminary presented in a conference in 2003

7 The letter exchange made public by Daniel Amit between him and the American
Physical Society can be read here [16]

8 From an interview by ArabNews to Daniel Amit on 15.03.2003. The interview has
been reproduced with permission on the webpage of Luis A. Florit at IMPA (Instituto
de Matemática Pura e Aplicada) Rio de Janeiro and is available here [17]



1.2 daniel amit and the non-neutrality of science 7

Daniel Amit was actively involved in those debates on the non-
neutrality of science developed since the mid twentieth century [18]
within and outside academia. His concerns were not only focused on
the relation between scientific discoveries and war, but also, more in
general, on the enslavement of research to power and technology and
on the dangers underlying the idealization of science. In an oral con-
tribution to a conference, in 2003, he was arguing:

"It would be enough to look at what kind of projects are promoted by
national and international agencies, to realize that most of the funding is
assigned to projects that benefit a wrong or questionable idea of economic
development, which promotes the virtual, the superfluous, the military, at
the expense of the social and the ecological conservation. [..] The world of re-
search collaborates, roughly, in all this, driven by the ease of obtaining fund-
ing, and by the media exposure coupled with today’s production-marketing
process. Overproduction in fields such as communication, information tech-
nology, [..], is identified with science itself, and as such, it is defended in
its most prestigious journals. [..] Also contributes to this a perverse rela-
tionship with the media, which is selling science as a cover element of the
prevailing socio-economic project, offering scientists the temptation of pub-
lic exposure.[..] The confusion [..] between technology and science, and the
authoritarian defense of an ideal concept of science (still a ’miracle’) ad ex-
clusion of other ways of knowing, serves as a perfect cover for a system
increasingly in crisis, more and more violent."6

From then on, a large amount of studies in the field of neural net-
works started to be focused on machine learning and artificial intel-
ligence. If part of the scientific community finds it extremely excit-
ing, voices from other fields are warning over the social impacts of
applying artificial intelligence to people’s data9, while several other
applications can be found in weapon technologies [20].

One could wonder what would Daniel Amit think about the cur-
rent development of the field, and what would be if those debates
were again to take place within the scientific community.

Daniel Amit, who was also an active pacifist opposed to the occu-
pation of Palestine [21, 22], took his own life in Jerusalem in 2007.

9 See for example the meticulous researches of the Harvard professor Shoshana Zuboff
summarized in her book "The Age of Surveillance Capitalism: The Fight for a Human
Future at the New Frontier of Power" [19]





2
P H E N O M E N O L O G I C A L C O N T E X T

By 1971, at the time the first place cell was discovered in the rat hip-
pocampus [23] it was already known that the hippocampal forma-
tion was crucial for episodic memory (see Sect. 1.1.1). It had also
already been hypothesized that animals may create “cognitive maps”
[10] to comprehensively represent an environment, and the discovery
of spatially selective cells provided a putative neurophysiological ex-
pression of both, memory and spatial cognitive maps. In this chapter
I will generally introduce spatially selective cells, their features and
some of the challenges they pose. In Chapter 9 I will specifically in-
troduce recent experimental results regarding the irregularity of place
cells and in Appendix A I give a short anatomical overview over the
organization of the hippocampal system.

2.1 spatially selective cells

When considering spatial cognition, cells in the hippocampal divi-
sion have been first characterized by looking at the firing rate map of
each cell. In such a map, the spike events are plotted in a drawing
representing the environment in which the animal is moving, at the
position of the head of the animal when each spike occurred. Spikes
clustered in a specific region form a field. The number of spikes occur-
ring in each spatial bin is typically divided by the time spent in that
bin, and the map is then regularized to look smoother. A common
trait to the various types of spatially selective cells is that the local-
ization of their fields appears unrelated to the position of each cell in
the tissue, and neighboring cells do not necessarily show overlapping
firing fields in the environment. Here I will provide a short recap of
the main spatially selective cell types as they are usually categorized:

• Place cells: Originally discovered half a century ago [23], their
activity is peaked at one or a few positions in space in the typ-
ical environments in which rodents are made to run in the lab-
oratory, as in Fig. 1a. In one-dimensional environments, such
as circular paths, n-arm mazes or linear tracks, place fields are
typically directional, i.e. they occur only when the animal is
running in one direction, whereas in two-dimensional environ-
ments they tend to be, or to become, non-directional. Place cells
have been most extensively described in CA3 and in CA1 (see
Appendix A), where it is estimated that between a quarter and a
half of all pyramidal cells show at least one place field in a typi-

9



10 phenomenological context

Figure 1: Firing behavior of spatially selective cells. a) Firing rate map of a
place cell; b) Firing rate map (left) and head direction map (right)
of an head direction cell; c) Firing rate map of a border cell; d)
Firing rate map of a grid cell; e) Schematic of characteristic tuning
curves of five speed cells. Plot a) adapted from [24], b)c)d) from
[25], e) from [26].

cal 1 m2 box. Place activity, like other types of selective spiking,
is typically modulated by the speed of the animal.

• Head Direction cells: First reported in 1984 [27], HD cell activ-
ity depends on the direction of the head of the animal, which
on average tends to coincide with, but is quite distinct from, its
direction of motion, as in Fig. 1b. They are found in a variety
of areas, especially in the parasubiculum and in the EC (see
Appendix A).

• Grid cells: A startling discovery [28], their activity is peaked,
ideally, at the vertices of a hexagonal lattice, spacing from a
few tens of centimiters upwards, giving rise, in a typical two-
dimensional box, to several grid fields per cell, see Fig. 1d. The
spacing and orientation of the lattice appear to be shared by
neighboring cells, but not the position of their fields. Whereas
in EC layer II grid activity is characterized as a-directional (but
see [29]), in deeper layers of EC the activity of most grid cells
is modulated by head direction, and they are called conjunctive
(grid) cells [30]. The spacing of the grid lattice increases towards
the ventral portion of mEC [31] in what appear to be discrete
steps, or modules. Grid cells are predominantly found in mEC
but are also present in the pre/para-subiculum.

• Border cells: Described by [25], the activity of border cells is
intense at one or several borders of the environment the ani-
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mal is exploring, as in Fig. 1c. They are found in the EC and
pre/para-subiculum.

• Speed cells: Originally found in [26], their firing rates linearly
depend on the velocity at which the animal is navigating, as
in Fig. 1d. They have been found in the EC, but variants sensi-
tive to angular velocity have been recently reported also in the
pre/para-subiculum.

• Object, object-trace, object-vector, social cells: A still burgeon-
ing variety of selectivity types is observed when objects (or
other animals[32]) are introduced in the same environment, start-
ing with those observed by [33], which fire selectively at posi-
tions related to an object and which were found in the lateral
enthorinal cortex.

2.1.1 Stability

One should note that the selectivity of cells in the hippocampal re-
gion tends to be stable: when an animal is exposed a second time to a
familiar environment, the activity of each neuron reproduces on aver-
age the same map as the previous time, as if the environment is some-
how memorized in that maps. The behavior of spatially selective cells
across different environments instead generally differs depending on
the type of response. Grid cells align: when moving a rodent across
environments, grid cells within the same module appear to change
grid orientation, but coherently, while field size, spacing and rela-
tive distance between fields are maintained constant [34]. Place cells,
instead, remap: they change their firing patterns, in a manner that ap-
pears totally unpredictable from knowledge of its place field(s) in the
original environment, or from the changes expressed by nearby cells
[35, 36]. The same cell may show two place fields in one box, none
in another, and be selective for an odor in an olfactory discrimination
task [37].

2.1.2 Irregularities

The difference between grid-alignment and place-remapping leads to a
rather general hypothesis regarding the putative hippocampus-mEC
memory-for-navigation system: grid cells would provide a detailed
metric, a universal chart, while place cells would represent the land-
marks and additional information to give a more complete notion of
a territory.

This hypothesis, however, started to be challenged with those re-
sults highlighting place and grid inhomogenities. Several experimen-
tal studies, have shown for example that grid regularity can be dis-
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torted as soon as the environment becomes more complex, as in the
hairpin maze [38], in the presence of goals [39] or with non-standard
shapes of the walls [40]. On the other hand, the variability in the peak
rates of the grid fields of the same cell, not just in their position, has
been shown to be reliable, hence possibly carrying some information
[41, 42]. Also place fields recorded in large environments turned to
be usually multiple and highly irregular (see Chapter 9). All such ef-
fects, which are expected to be huge in the natural environments in
which the grid and place cell system has presumably evolved, chal-
lenge the possibility of reducing spatially selective cells to idealized
models. Part iii of this thesis originates from this debate.
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T H E O R E T I C A L F R A M E W O R K

How can the hippocampal network store and retrieve memories?

3.1 from david marr to attractor neural networks

The initial attempts to approach a quantitative answer to this ques-
tion probably date back to 1971, when the student David Marr pub-
lished his theory of archicortex (i.e., of the hippocampus) [43]. Marr’s
vision was of a simple memory system where representations are ab-
stract entities and he developed a detailed neural network theory
for this function. In his model the hippocampus gets inputs, direct
or indirect, from all the sensory areas, and “binds” them in a way
that later, when cued with partial information, it can retrieve them.
Marr’s theory was an attempt to structure such narrative into a well-
defined mathematical model, aiming to understand the anatomical
structure of the hippocampus based on the memory impairment de-
scribed in patients with hippocampal damage. This general logic is
clear, and it has been profoundly inspirational for later work by many
researchers. The implementation, however, was rather complicated,
additionally hampered by the lack of adequate mathematics – it will
be contributed by physicists over 10 years later – and of adequate nu-
merics.

Marr’s work did not consider place cells, that were being discov-
ered at the same time by O’Keefe and Dostrovsky in rodents [23].
The discovery would stimulate a computational hypothesis in a dif-
ferent direction: that the location of the animal in space is computed
within the hippocampus, and therefore its internal circuitry has to be
understood as functional to self-localization, and hence in general to
navigation, rather than to memory [44].

16 years later McNaughton and Morris recombined the two hip-
pocampal narratives – the memory function and the spatial function–
in a review [45]: they suggested that the hippocampal circuitry stores
spatial representations within its synapses. The emphasis of the re-
view was on the mechanics of learning, in particular, McNaughton
and Morris suggested a set of simple network models, all based on
the Hebb [46] idea that “neurons that fire together, wire together". At
the core of each network there was a matrix of associatively modifi-

13
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able weights, which was taken to capture the occurrence of conjunc-
tive activity between input patterns on two streams.

3.2 attractor neural networks

The recurrent connectivity of the auto-associative model, one of those
proposed in [45] and resembling the connectivity structure of the hip-
pocampal region CA3 (see Appendix A), implies that the neurons,
serving as inputs and output to the same synaptic matrix, will tend
to reach a stable configuration, or pattern, if they can find one in which
the activation of each neuron is consistent with that of the neurons
that feed its inputs. This consistency is of the same nature as that de-
scribing the relaxation dynamics of dissipative physical systems of in-
teracting variables to a steady state, as envisaged by John Hopfield in
his seminal paper on content addressable memories [47]. Amit, Gut-
freund and Sompolinsky showed how the attractors of such dynam-
ics can be studied with a beautiful nontrivial mathematical formalism
derived from the statistical physics of disordered systems [13].

In particular, Amit, Gutfreund and Sompolinsky developed a mean
field theory for a fully connected network composed of binary units
storing uncorrelated patterns and “diagnosed” the retrieval of a mem-
ory state as the dynamical persistence of a pattern evoked by external
inputs [13]. In this, they derived an overlap parameter between the
stored and retrieved memories and saw that above a certain number
Pc of patterns to be memorized this overlap abruptly decreases to
zero, see Fig. 2a. As a consequence they could define the critical stor-
age capacity for a network of N units as αc = Pc

N ' 0.138 at which
patterns are retrieved. Beyond this memory load no retrieval is possi-
ble, and the thermodynamic average of the overlap parameter drops
abruptly from m = 0.967 to zero, in the formal analysis of the model.
At m=0.967, effectively only 1.5% of the units are in a state different
from the one they are expected to take in the memory.

Their sophisticated calculations were later named as “the first tri-
umph of statistical physics” applied to neural networks [11] or a first
tour de force [48], the second one being the calculations developed
three years later by Elizabeth Gardner [14].

Gardner, in particular, formalized for the same binary fully con-
nected network considered by Amit et al. the fractional volume of
the interaction space and moved with respect to [13], to consider as
dynamical variables the connections instead of the activities of each
unit. Through a replica approach she could show that increasing the
load (i.e. the number of patterns to be memorized) such interaction
volume progressively shrinks. As a consequence she could estimate
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Figure 2: a) Transition of the % of error in the retrieved patterns for a
fully connected binary associative network endowed with Hebbian
learning [13] as a function of the storage load α. b) Storage ca-
pacity for an optimally connected binary associative network as a
function of a stability parameter κ for different values of the mag-
netization m, the result reported in the text is for κ = 0 and m = 0.
Figure a) is adapted from [13] figure b) from [14].

the critical storage capacity αc = Pc
C = 2 as the maximal number of

patterns Pc which can be perfectly retrieved (i.e. with an overlap=1)
in a network having C connections per unit, see Fig. 2b. This value
was considered as the upper bound a neural network can reach if the
connections are perfectly tuned, as it will be later put into practice
with back-propagation algorithms.

As will be introduced in Sect. 4.1, the 14 fold increase in the storage
capacity between Amit’s et al. [13] and Gardner’s [14] results, together
with the success of back-propagation algorithms and their consequent
powerful applications in artificial intelligence, consolidated the belief
that self-organized Hebbian learning is inefficient in storing mem-
ories as compared to long training procedures. The belief was not
redeemed with the following analytical studies which, even if still
focusing on binary responses, considered more biologically realistic
features as high dilution in the connections and sparse coding in the
patterns [49–52].

3.2.1 Comparing the results

In order to compare the results obtained in those studies it is rele-
vant to note that the 1.5% error bound only applies to the fully con-
nected Hopfield model studied by Amit, Gutfreund and Sompolinsky
[13], in which the retrieval/no-retrieval transition when the capacity
is reached is a first-order transition. For the highly diluted connectiv-
ity Hopfield model studied by Derrida, Garnder and Zippelius [49],
however, this transition becomes smooth, and the overlap approaches
zero as m~

√
α−αc. The error rate at capacity, which in this case is at

αc = P
C = 2

π becomes 50%. Still, the Gardner optimal capacity calcu-
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lation yields the same optimal capacity of 2 for diluted connectivity,
as the approach is equivalent for fully connected or highly diluted
systems. In other words, for diluted networks endowed with binary
units, which can be argued to be more biologically realistic than the
fully connected ones, there is still a large gap between the optimal
and the Hebbian capacity, even though the Hebbian error at capacity
is 50% and the overlap is zero.
In addition to its dependence on the level of connectivity, this “er-
ror”, as estimated in Amit et al. [13], is only really meaningful when
the stored patterns are binary and one can count how many neurons
should have been active in the retrieved pattern but are not, and vice
versa: this is directly reflected in the so-called overlap. In Part ii of
the thesis we derive the Gardner storage capacity for realistic units
responses. In this case, with non-binary patterns, defining error in
such a way is not feasible, as being active or inactive is not the only
information in the pattern. Therefore, as in previous works on asso-
ciative networks of graded response units [53–55] one can only look
at whether the overlap vanishes in the thermodynamics limit, or re-
mains non-zero. In Sect. 6.2 we explicitly evaluate this transition for
graded responses and Hebbian learning.

3.2.2 The shift to Threshold linear unit responses

Figure 3: Examples of a) Binary/Heaviside b) Sigmoidal c) Threshold-linear
unit responses. Figure adapted from [56]

As introduced by Treves in the early 90 ′s [56, 57] assuming binary
units, though useful for analytical calculations, may hamper a com-
prehensive understanding of the actual phenomena occurring in the
brain. Some of the most general features neuronal responses exhibit,
indeed, can be summarized as i) inactivity below a certain voltage
ii) strong dependence on the input level above the threshold iii) sat-
uration above a certain value of the input, due to each neuron’s re-
fractory period. When the binary assumption (Fig. 3a) is adopted
one considers that neurons spend most of their time either silent ot
at the saturation level, squeezing the intermediate values to a single
point. One could thus adopt a sigmoidal transfer function (Fig. 3b),
which, from a mathematical point of view would however reduce, in
certain limits such as high gain, to the Heaviside step function [56].
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The alternative proposed by Treves in 1990 was the Threshold-linear
(TL) transfer function, already adopted at least from the 50 ′s in other
fields of neuroscience, such as the studies on the retina [58, 59]. The
TL input-current-to-output-frequency function was shown to be sim-
ple enough to be mathematically treatable in statistical mechanics ap-
proaches, but complex enough to grasp the intermediate dependence
on the input and the resting state below the threshold. Neglecting the
description of the saturation, however, one should consider long-time
collective effects preventing neurons to reach it [56].
With those unit responses a mean field theory was developed and
the storage capacity was estimated for the fully connected [57], the
highly diluted [53], the directed [54] networks and then generalised
to arbitrary dilution in [60].
In Sect. 6.1 a recap of the calculations for the highly diluted limit is
reported. In Sect. 5 the Gardner storage capacity for a network en-
dowed with Threshold Linear units is explicitly derived.

3.3 continuous attractor neural networks

Applying the formalism, however, and even simply conceptualizing
attractor dynamics, is less straightforward when dealing with the rep-
resentation of spatial, continuous variables instead of simple uncorre-
lated patterns.

Let us take therefore first look at attractor dynamics in Head di-
rection (HD) cells to understand basic aspects of continuous attractor
dynamics in the representation of space. With Head direction cells,
introduced in Chapter 2, the striking finding is that the direction that
most activates a cell remains the same in every environment, familiar
or new. In fact, this is striking because often the information on the
basis of which the animal can calculate its head direction is partially
misleading, e.g., when an object has been moved. Further, when most
of it is not coming through the senses, for example because lights are
turned off, and olfactory cues have been washed, HD can be recon-
structed from memory, if a system exists that keeps it in memory.

This system can be an attractor network, and in fact such an obser-
vation has motivated the development of a simplified version of the
theory of continuous attractor neural networks. In 1995, Skaggs et al.
[61] proposed that a ring attractor could interpret sensory cues and
keep HD in active (short-term) memory. To understand it intuitively,
imagine: one places head direction cells on a ring, each at the angle
it is most responsive to (see Fig. 4), and the connections between the
neurons are taken to have been strengthened by Hebbian plasticity,
resulting in neurons close to each other on the imaginary ring excit-
ing each other. What we can observe then, is a bump of activity or an
“activity clump”, which would correspond to the animal’s head di-
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rection, wherever it is pointing, among the 2π directions on the ring.
The interactions among the units – producing attractor dynamics –
compactify, stabilize and can keep in short-term memory a position
on the ring.

Figure 4: Head direction cell ring. Each plot represents either the connec-
tion strength Jij of unit j (pointed with the arrow) towards all
other units; or one among the continuous manifold of fixed point
configurations of activity towards which the network can evolve
due to the underlying connectivity structure. Adapted from [62].

Could this system also include the selection of one among a num-
ber of rings? The question becomes very concrete, and easy to visu-
alize, if applied to place cells. In this case each place cell is placed
at the position of its field center on a two dimensional abstract-sheet
resembling the real environment. The same idea of connecting nearby
cells applies then also to two dimension. The continuous manifold, in
this case, corresponds to configurations representing the activity of
all neurons in a specific position of the environment. The idea, then,
is that the movement of the animal translates, through some path-
integration mechanism, into a drift of the configuration of activities
along the manifold towards the closest fixed configuration. It was de-
termined that such continuous attractors can store multiple distinct
charts or maps within the same connectivity matrix [55, 63], as attrac-
tor neural networks can store independent patterns. Each map, in this
case, is a continuous manifold of solutions, each representing the en-
semble of the population activities at each position of one putative
environment. Additional details can be found in Sect. 10.

Let us now take a step back and specify a few aspects which will
turn useful in Part iii of this thesis.

3.3.1 Learning with a Kernel or through the Hebbian rule

If one considers an open ring attractor, i.e. a line attractor with peri-
odic boundary conditions, one can imagine each unit to be placed at a
position on this line. If one thinks about place cells in one dimension,
then the position of each neuron would be the center of its field. The
idea introduced above is that units which are closed on the line have
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strong connections, those which are far, instead, have weak or none.
This can be obtained in two ways:

1. Defining mathematically an interaction Kernel K as a function
of the distance between the position of each cells x, and thus
writing the connectivity matrix as

Jij = K(|xi − xj|) (1)

2. First creating the activity profiles {~η} to be memorized, where
~η(s) is the activity of all units in a position s and ~ηi is the firing
rate map of unit i in the environment at each position s. Then,
defining the connections through the Hebbian rule

Jij =

∫
ds
(ηi(s)
〈η〉

− 1
)(ηj(s)
〈η〉

− 1
)

(2)

where 〈η〉 is the mean activity. Both approaches lead to “clumped”,
i.e., localized, activity states for the examples described in this section.
However, if one wants to explore the behaviour of irregular systems,
in which the activity profiles of different units cannot be simply de-
scribed in relation to a single place field center, then mainly the sec-
ond approach is the one to follow.

3.3.2 The activity-space and the overlap-space

When one refers to “clumped” activity states, “bumps” or “activity
pockets” can be imagined in two ways, corresponding to the spaces
in which the bump is visualized

1. In the way we have described it so far the bump is visualized in
the activity space: placing each unit at the position of its field
center (or its head direction selectivity) one can see that the
fixed point configurations are clustered around a certain unit.

2. An alternative visualization, which turns out to be particularly
useful when studying irregular systems, is in the overlap space
related to point 2. in Sect. 3.3.1. For each dynamical variable ~V

describing the configuration of activity at a certain time, or a
fixed point configuration, one can define an overlap parameter

O
(
~V ,~η(s)

)
=

∑N
i Vi · ηi(s)√∑N

i (Vi)
2 ·
∑N
i (ηi(s))

2

(3)

giving the cosine similarity between the current activity config-
uration and the vector ~η(s) representing a candidate fixed point
on the manifold stored with Eq. (2) . Evaluating this overlap be-
tween a given a vector ~V and all discretized ~η(s) (one per each
discretized position s) and plotting this value at the s position
corresponding to ~η(s) one will obtain, for a continuous attractor,
a clump centered at a goven s, with maximal value 1.
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The second approach enables to visualize and analyse bumps when
these are not as evident in the activity space. Imagine a perfectly reg-
ular continuous attractor where all patterns to be memorized ~η(s) are
translationally invariant. If one evaluates Jij with (2) and runs dynam-
ics starting from a certain ~η(s) one will get to a stable configuration
still centered at s. This can be seen in the activity space, Fig.5a and in
the overlap space Fig.5b. Both are bumps. While in the activity space,
due to the tuning of the parameters, one can see that the range of
activity values varies from the initial configuration ~η(s = 500) (red)
to the fixed one (black), in the overlap space this difference is hardly
visible. If however one tries to store irregular maps, where each unit
has more than one field and/or these are irregular in shape, as in Fig.
5 c and d, then the bump is clearly analyzable only in the overlap
space.

Figure 5: Examples of the visualization of the bump in activity space (a,c)
or in the overlap space (b,d) for a regular continuous attractor (a,b)
and an irregular one (c,d). Red corresponds to the initial condition
~η(s), black to the fixed points of the dynamics.



Part II

L E A R N I N G E F F I C A C Y W I T H
T H R E S H O L D - L I N E A R U N I T S

Since the 80s, there has been a general consensus that
biologically plausible self-organized learning rules, such
as the Hebbian learning rule, are very inefficient as com-
pared to iterative algorithms. An important contributing
factor to the formation of this consensus comes from the
theoretical analyses performed by Elizabeth Gardner of
the best possible learning outcome in binary networks.
Here we derive the Gardner storage capacity for associa-
tive networks of threshold linear units and show that when
attention is shifted towards biologically plausible graded
response units the emerging scenario varies drastically:
Hebbian learning turns out to be highly efficient to store
memories through a sparsification of the retrieved pat-
terns.





4
I N T R O D U C T I O N :
E L I Z A B E T H G A R D N E R ’ S A P P R O A C H

Elizabeth Gardner (Cheshire 1957, Ed-
inburgh 1988) was a scientist who, at age of 30, was regarded among
the most profound thinkers in the emerging field of neuronal net-
works. She died a few months before turning 31, nine months after
starting her five-year Advanced Fellowship [64].

She was one of the few women in an academic environment mostly
comprised of men. In the memorials written by her closest colleagues,
she is remembered for the brilliant creativity, the outstanding intellec-
tual standards [65] and the reserved manners [64].

This part of the thesis is based on the mathematical intuitions and
formalism developed by Elizabeth Gardner in the two years before
her death [14]. In particular it extends the treatment of the interac-
tion space of neuronal networks, which she originally defined for
binary units, to neuronal plausible unit responses (i.e. threshold lin-
ear or ReLu), introduced in the 90’ [56] in the analysis of associative
networks.

The work presented in this part of the thesis has been done under
the co-supervision of Yasser Roudi and is published in [66], except
for Sect. 6.2 which will be published in [67].

The coming chapters are organized as follows: Chapter 5 contains
the core analytical work, whose main findings and ideas are summa-
rized in Sect. 5.2.1. Chapter 6 is devoted to a comparison between the
results obtained with Hebbian learning and those derived in chap-
ter 5. In particular, after summarizing, in Sect. 6.1, the main results
derived with Hebbian learning [53, 54, 57], a comparison between the-
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oretical distributions is performed. Chapter 7 extends the comparison
to sample experimental data obtained in the 90 ′s and chapter 8 dis-
cusses the main results of the whole Part and relates them with other
works. First, the next section is dedicated to a concise introduction
and overview.

4.1 learning and unit responses

Learning in neuronal networks is believed to happen largely through
changes in the weights of the synaptic connections between neurons.
Local learning rules, those that self-organize through weight changes
depending solely on the activity of pre- and post-synaptic neurons,
are generally considered to be more biologically plausible than non-
local ones [46, 68, 69]. But how effective are local learning rules? Quite
ineffective, has been the received wisdom since the 80’s, when non-
local iterative algorithms came to the fore. However, this wisdom,
when it comes to memory storage and retrieval, is largely based on
analysing networks of binary neurons [14, 47, 49, 70], while neurons
in the brain are not binary.

A better, but still mathematically simple description of neuronal
input-output transformation is through threshold-linear (TL) activa-
tion function [56, 71], also predominantly adopted in recent deep
learning applications (called ReLu in that context) [72–75]. Therefore,
one may ask if the results from the 80’s highlighting the contrast
between the effective, iterative procedures used in machine learning
and the self-organized, one-shot, perhaps computationally ineffective
local learning rules are valid beyond binary units [76].

The Hopfield model, a most studied model of memory, is a fully
connected network of N binary units endowed with a local, Hebbian
learning rule [47, 70]: the weight between two units increases if they
have the same activity in a memory pattern; otherwise it decreases.
The network can retrieve only up to pmax ' 0.14N patterns, while,
in comparison, Elisabeth Gardner showed [14] that with C connec-
tions per unit, the optimal capacity that such a network can attain
is pmax = 2C, about 14 times higher; the bound can be approached
through iterative procedures like back-propagation that progressively
reduce the difference between current and desired output. This con-
solidated the impression that unsupervised, Hebbian plasticity may
well be of biological interest, but is rather inefficient for memory
storage. In the fully connected Hopfield model, the transition to no-
retrieval is discontinuous: right below the storage capacity, ∼ 1.5% of
units in a retrieved pattern are misaligned with the stored pattern,
but 50%, i.e., chance level, just above the capacity [70]. This rather
low error certainly contributes to the low capacity. However, the neg-
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ative characterization of Hebbian learning in binary networks per-
sisted even when more errors occur: in the more biologically relevant
highly diluted networks the error smoothly goes to 50% [50], but the
capacity is still a factor of 3 away [49], approaching the bound only
when the fraction of active unit in each pattern is f� 1 [51].

What about TL units? Are they more efficient in the unsupervised
learning of memory patterns? Here we study the optimal pattern
capacity à la Gardner in networks of TL units. Past work discussed
above [51] had suggested that the distribution of activity (along with
the connectivity) may play a role in how efficient Hebbian learning
is, but, back then, this only meant changing f. Besides being a bet-
ter model of neuronal input-output transformation, by allowing non-
binary patterns, TL units permit a better understanding of the inter-
play between the retrieval properties of recurrent networks and the
distribution of the activity stored in the network. In fact, we show
that while for binary patterns the Gardner bound is larger than the
Hebbian capacity no matter how sparse the code, this does not, in
general, hold for non-binary stored patterns: the Hebbian capacity
can even surpass the bound. This perhaps surprising violation of the
bound is because the Gardner calculation imposes an infinite output
precision [77], while Hebbian learning exploits its loose precision to
sparsify the retrieved pattern. In other words, with TL units, Hebbian
capacity can get much closer to the optimal capacity or even surpass
it, by retrieving a sparser version of the stored pattern. We find that
experimentally observed distributions from the Inferior-Temporal (IT)
visual cortex [78], which can be taken as patterns to be stored, would
be sparsified about 50% by Hebbian learning, and would reach about
50% − 80% of the Gardner bound.
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G A R D N E R S T O R A G E C A PA C I T Y F O R T H R E S H O L D
L I N E A R U N I T S

5.1 model description

We consider a network ofN units and p patterns of activity, {ηµi }
µ=1,..,p
i=1,..,N

each representing one memory stored in the connection weights via
some procedure. Each ηµi is drawn independently for each unit i and
each memory µ from a common distribution Pr(η). The activity of
unit i is denoted by vi and is determined by the activity of the C
units feeding to it as

vi = g[hi − ϑ]
+ (4a)

hi{vi} =
1√
C

∑
j

Jijvj, (4b)

where [x]+ = x for x > 0 and = 0 otherwise; and both the gain g and
threshold ϑ are fixed parameters. The storage capacity, or capacity for
short, is defined as αc ≡ pmax/C, with pmax the maximal number of
memories that can be stored and individually retrieved. The synaptic
weights Jij are taken to satisfy the spherical normalization condition
for all i∑

j6=i
J2ij = C. (5)

We are interested in finding the set of Jij that satisfy Eq. (5), such that
patterns {η

µ
i }
µ=1,..,p
i=1,..,N are self-consistent solutions of Eqs. (4), namely

that for all i and µ we have, hµi = ϑ+ ηµi /g if ηµi > 0 and hµi 6 ϑ if
η
µ
i = 0.

27
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5.2 replica analysis to derive the storage capacity

In this section, we give a detailed mathematical derivation of the
Gardner bound, reported instead schematically in the next section.

We start by considering a single threshold-linear unit whose activ-
ity is denoted by u. The unit receives C inputs vj, for j = 1 · · ·C,
through synaptic weights Jj. The activity of the unit is determined
through the threshold-linear activation function as

u = g[hi − ϑ]
+

h{v} =
1√
C

∑
j

Jjvj,
(6)

We assume that we have p patterns of activity over the inputs, that
we denote by ξµj , with µ = 1 · · ·p. For each input pattern µ we also
consider a desired output activity for each unit that we denote ηµ.
We are interested in finding how many patterns can be stored in the
synaptic weights, such that the input activity elicits the desired out-
put activity, assuming that the synaptic weights satisfy the spherical
constraint∑

j6=i
J2j = C. (7)

Following [14], the fractional volume in the space of interactions J
that satisfy Eq. (7) and the correct output ηµ given the inputs ξµj can
be written as

V =

∫∏
j,j6=i dJjδ

(∑
j J
2
j −C

)∏
µ

[(
1− δηµ,0

)
δ

(
hµ − ϑ− ηµ

g

)
∫∏

j,j6=i dJjδ

(∑
j J
2
j −C

) +

+

δηµ,0Θ

(
ϑ− hµi

)]
∫∏

j,j6=i dJjδ

(∑
j J
2
j −C

) ,

(8)

Calculating the optimal capacity essentially boils down to calculating,
in the thermodynamic limit C→∞, the expectation of the logarithm
of this fractional volume V over the distribution of η and ξ and find-
ing for what value of p it shrinks to zero. For calculating 〈lnV〉η,ξ, we
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use the replica trick 〈lnV〉 = limn→0
〈Vn〉−1
n , which turns the prob-

lem to that of computing the replica average 〈Vn〉ξ,η, namely

〈Vn〉ξ,η =

〈 ∏
a=1,..,n

∏
µ

∫∏
j,j6=i dJ

a
j δ

(∑
j(J
a
j )
2 −C

)
∫∏

j,j6=i dJ
a
j δ

(∑
j(J
a
j )
2 −C

) ·

·
[(
1− δηµ,0

)
δ

(
ha,µ − ϑ−

ηµ

g

)
+ δηµ,0Θ(ϑ− h

a,µ)
]〉
ξ,η

.

(9)

We first compute the numerator. To compute the averages over ξ and
η in the numerator, we note that the delta function can be written as

δ(ha,µ − ϑ−
ηµ

g
) =

∫
dxaµ

2π
exp

{
ixaµ

( 1√
C

∑
j

Jaj ξ
µ − ϑ−

ηµ

g

)}

=

∫
dxaµ

2π
exp

[
−
ixaµ

g

(
ηµ + gϑ

)]
exp

[ ixaµ∑j Jaj ξµ√
C

]
.

(10)

For the average of the Heaviside function, we write

Θ(ϑ− ha,µ) =

∫∞
0

dλaµδ[λ
a
µ − (ϑ− ha,µ)]

=

∫∞
0

dλaµ

2π

∫∞
−∞ dyaµ exp[iyaµ(λ

a
µ − (ϑ− ha,µ))]

=

∫∞
0

dλaµ

2π

∫∞
−∞ dyaµ exp

[
iyaµ(λ

a
µ − ϑ)

]
exp

[ iyaµ∑j Jaj ξµ√
C

]
.

(11)

We now use the above identities in Eqs. (10) and (11) to compute the
following quantity that appears in the numerator of Eq. (9), assuming
independently drawn ξ and η as

eCM ≡

〈∏
µ,a

(1− δηµ,0)δ(h
a,µ − ϑ−

ηµ

g
) + δηµ,0Θ(ϑ− h

a,µ)

〉
ξ,η

=
∏
µ

〈
(1− δηµ,0)

〈∏
a

δ(ha,µ − ϑ−
ηµ

g
)
〉
ξµ

+

+ δηµ,0

〈∏
a

Θ(ϑ− ha,µ)
〉
ξµ

〉
ηµ

.

(12)
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In order to compute the average of the delta functions in Eq.(12), we
use the approximation〈

exp(x)

〉
= 〈1+ x+ x

2

2
+O(x3)〉 = 1+ 〈x〉+ 〈x

2〉
2

+ 〈O(x3)〉

≈ exp

{
〈x〉+ 〈x

2〉
2

−
〈x〉2

2

}

to calculate the following average〈
exp

{
i
∑
a,j x

a
µJ
a
j ξ
µ
j√

C

}〉
ξµ

=

= exp

{
i√
C

∑
a,j

xaµJ
a
j 〈ξ

µ
j 〉−

1

2C

∑
a,b,j,k

xaµx
b
µJ
a
j J
b
k〈ξ

µ
j ξ
µ
k〉+

−
1

2

(
i√
C

∑
a,j

xaµJ
a
j 〈ξ

µ
j 〉

)(
i√
C

∑
b,k

xbµJ
b
j 〈ξ

µ
k〉

)}

= exp

{
i√
C

∑
a,j

xaµJ
a
j 〈ξ

µ
j 〉−

1

2C

[∑
a,b,j

xaµx
b
µJ
a
j J
b
j 〈(ξ

µ
j )
2〉+

+
∑

a,b,j,k!=j

xaµx
b
µJ
a
j J
b
k〈ξ

µ
j 〉〈ξ

µ
k〉
]
+
1

2C

[
(
∑
a,b,j

xaµx
b
µJ
a
j J
b
j 〈ξ

µ
j 〉
2)+

+
∑

a,b,j,k!=j

xaµx
b
µJ
a
j J
b
k〈ξ

µ
j 〉〈ξ

µ
k〉
]}

= exp

{
i√
C

∑
a,j

xaµJ
a
j 〈ξ

µ
j 〉−

1

2C

∑
a,b,j

xaµx
b
µJ
a
j J
b
j 〈(ξ

µ
j )
2〉+

+
1

2C

∑
a,b,j

xaµx
b
µJ
a
j J
b
j 〈ξ

µ
j 〉
2

}

(13)

where in going from the second to the third line in Eq. (13), we have
used the fact that 〈ξµj ξ

µ
k〉 = 〈ξ

µ
j 〉〈ξ

µ
k〉. Expanding the second exponen-

tial in the second line of Eq. (10), we can write, in the large C limit

〈∏
a

δ(ha,µ − ϑ−
ηµ

g
)
〉
ξµ

=

=

∫∞
−∞
[∏
a

dxaµ

2π

]
exp

[
−
i

g
(ηµ + gϑ)

∑
a

xaµ + idinp1

∑
a

xaµm
a+

−
d
inp
3

2

(∑
a

(xaµ)
2 + 2

∑
a<b

xaµx
b
µq
ab
)]

≡ I1(qab,ma,ηµ)

(14)
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in which we have assumed symmetric replicas and defined dinp1 ≡
〈ξµj 〉, d

inp
2 ≡ 〈(ξµj )

2〉, dinp3 ≡ dinp2 − (dinp1 )2 and

qab = 1
C

∑
j J
a
j J
b
j (15a)

ma = 1√
C

∑
j J
a
j (15b)

Similarly, using the identity in Eq. (11) we have〈∏
a

Θ(ϑ− ha,µ)
〉
ξµ

=

=

∫∞
0

[∏
a

dλaµ

2π

] ∫∞
−∞
[∏
a

dyaµ

]
exp

[
i
∑
a

(λaµ − ϑ)yaµ+

+ idinp1

∑
a

yaµm
a −

d
inp
3

2

(∑
a

(yaµ)
2 + 2

∑
a<b

yaµy
b
µq
ab
)]

≡ I2(qab,ma).

(16)

Using Eq. (14) and (16), the quantity M(qab,ma) defined through Eq.
(12) can be written as

M(qab,ma) =

p

C
ln

[
〈(1− δηµ,0)I1(q

ab,ma,ηµ) + δηµ,0I2(q
ab,ma)〉ηµ

]
.

(17)

We now insert Eq. (17) back to Eq. (9) and enforce the definitions of
m and q in Eq. (15) using the identities

1 = C

∫
dqabdq̂ab

2iπ
exp

(
−Cq̂abqab + q̂ab

∑
j

Jaj J
b
j

)

1 =
√
C

∫
dmadm̂a

2iπ
exp

(
−
√
Cm̂ama + m̂a

∑
j

Jaj

) (18)

and the normalization of Eq. (9) using

δ

(∑
j

Ja
2

j −C

)
=

∫
dEa

4iπ
exp

(
−
Ea

2

∑
j6=i

Ja
2

j +
CEa

2

)
(19)

such that the numerator in Eq. (9) can be written as

A =

∫ [∏
a

dEa

4iπ

][∏
a

√
C
dmadm̂a

2iπ

][∏
a<b

C
dqabdq̂ab

2iπ

]
·

· eC[M(q,m)− 1√
C

∑
a m̂

ama−
∑
a<b q̂

abqab+
∑
a
Ea

2 ]

·
∫ [∏

j,a

dJaij

]
e−
∑
a,j

Ea

2 (Jaj )
2+
∑
a,j m̂

aJaj +
∑
a<b q̂

abJaijJ
b
ij .

(20)
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Defining the function

W(q̂ab, m̂a,Ea) = ln
∫ [∏

a

dJa
]

exp
(
−
1

2

∑
a

Ea(Ja)2+

+
∑
a

m̂aJa +
∑
a<b

q̂abJaJb
) (21)

we can write

A =

∫ {[∏
a

dEa

4iπ

][∏
a

√
C
dmadm̂a

2iπ

][∏
a<b

C
dqabdq̂ab

2iπ

]
·

· eC[M(qab,ma)+W(q̂ab,m̂a,Ea)− 1√
C

∑
a m̂

ama−
∑
a<b q̂

abqab+
∑
a
Ea

2 ]

} (22)

We can then compute A in Eq. (22) using the saddle point approxi-
mation, by maximizing the argument of the exponential, that is max-
imising

G(qab, q̂ab,ma, m̂a,Ea) ≡M(qab,ma) +W(q̂ab, m̂a,Ea)+

−
1√
C

∑
a

m̂ama −
∑
a<b

q̂abqab +
∑
a

Ea

2
. (23)

In order to proceed to make this extremisation we assume a replica
symmetric ansatz:

qab = q

q̂ab = q̂

ma = m

m̂a = m̂

Ea = E

(24)

with these assumptions

G(q, q̂,m, m̂,E) =M(q,m)+W(q̂, m̂,E)+
n

2
(−
2m̂m√
C

+ q̂q+E). (25)

In the above Eq. (25),W andM are calculated using the limits for n→
0 of the expressions in Eq. (17) and (21), as follows. For W, we use
the Gaussian trick (i.e. the one dimensional Hubbard-Stratonovich
transformation)∫∞

−∞ dt exp(−at2 ± bt) = exp
[b2
4a

]√π
a

→ e−x
2/2 =

∫∞
−∞

dt√
2π
e−t

2/2±tx
(26)
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combined with the replica symmetric expression for W to get

W(m̂, q̂,E) = ln
∫ [∏

a

dJa
]

exp
(
−
E

2

∑
a

(Ja)2 + m̂
∑
a

Ja+

+
q̂

2

(∑
a

Ja
)2

−
q̂

2

∑
a

(Ja)2
)

= ln
∫
dt√
2π
e−t

2/2

[ ∫
dJ exp

(
−
E+ q̂

2
J2 + (m̂+

√
q̂t)J

)]n
.

(27)

where we have applied the transformation to the third exponent in
the first line. Using an ≈ 1+n loga and log(1+ a) ≈ a, we have

W(m̂, q̂,E) = n
∫
dt√
2π
e−t

2/2 ln

[ ∫
dJ exp

(
−
E+ q̂

2
J2+(m̂+

√
q̂t)J

)]
(28)

In order to perform the Gaussian integrals one can show that for
general a, b parameters:∫

dxeax
2±bx =

√
π

a
e
b2

4a∫
dx√
2π
e−x

2/2(a+ bx)2 = a2 + b2

Therefore, integrating over J in Eq. (28), leads to:

W(m̂, q̂,E) = n
( ∫ dt√

2π
e−t

2/2 ln

√
2π

E+ q̂
+

∫
dt√
2π
e−t

2/2 (m̂+
√
q̂t)2

2(E+ q̂)

)
(29)

and integrating over t, finally leads to:

W(m̂, q̂,E) =
n

2

[
ln(2π) − ln(E+ q̂) +

q̂+ m̂2

E+ q̂

]
(30)

Computing M is a bit more tricky.

M(q,m) =
p

C
ln

[
〈(1− δηµ,0)I1(q,m,ηµ) + δηµ,0I2(q,m)〉ηµ

]
. (31)
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as one has to compute I1(q,m,ηµ) and I2(q,m). Using the Gaussian
trick in Eq. (26) and assuming replica symmetry we rewrite Eq. (14)
as

I1(q,m, ξ) =
∫∞
−∞
[∏
a

dxaµ

2π

]
exp
{[

−
i

g
(ηµ + gϑ) + idinp1 m

]∑
a

xaµ+

−
d
inp
3

2

∑
a

(xaµ)
2 +−dinp3 q

∑
a<b

xaµx
b
µ

}
=

∫∞
−∞
[∏
a

dxaµ

2π

]
exp
{[

−
i

g
(ηµ + gϑ) + idinp1 m

]∑
a

xaµ+

−
d
inp
3

2

∑
a

(xaµ)
2 +

d
inp
3 q

2

∑
a

(xaµ)
2 −

qd
inp
3

2

(∑
a

xaµ

)2}
=

∫
Dt
{ ∫ dxµ

2π
exp

[
− i
(
g−1ηµ + ϑ− dinp1 m+

− t

√
qd
inp
3

)
xµ −

d
inp
3

2
(1− q)x2µ

]}n
(32)

with Dt = dt√
2π
e−t

2/2. In a very similar way we can write Eq. (16) as

I2(q,m) =

∫
Dt

{∫∞
0

dλµ

2π

∫∞
−∞ dyµ exp

[
i

(
λaµ − ϑ+ dinp1 m+

+ t

√
qd
inp
3

)
yµ −

d
inp
3

2
(1− q)(yµ)

2
]}n

.

(33)

We define P(ηµ > 0) = f and rewrite Eq. (17) as

M(q,m) =
p

C
ln{〈(1− δηµ,0)〉ηµ〈I1(q,m,ηµ)〉ηµ + 〈δηµ,0〉ηµI2(q,m)}

=
p

C
ln
[
f〈I1(q,m,ηµ)〉ηµ + (1− f)I2(q,m)

]
.

(34)

Simplifying for the sake of visualization Eq. (32) and (33) as

I1(q,m,ηµ) =
∫
DtYn

I2(q,m) =

∫
DtKn

(35)
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where

Y ≡
∫
dxµ

2π
exp

[
− i

(
g−1ηµ + ϑ− dinp1 m− t

√
qd
inp
3

)
xµ+

−
d
inp
3

2
(1− q)x2µ

]
K ≡

∫∞
0

dλµ

2π

∫∞
−∞ dyµ exp

[
i

(
λaµ − ϑ+ dinp1 m+ t

√
qd
inp
3

)
yµ+

−
d
inp
3

2
(1− q)(yµ)

2
]

(36)

one can use again an ≈ 1+ n lna and ln(1+ a) ≈ a, which is valid
for n→ 0, to write M(q,m) as

M(q,m) =
p

C
ln
[
f

〈 ∫
DtYn

〉
ηµ

+ (1− f)

∫
DtKn

]
=
p

C
ln
[ ∫
Dt[f

〈
1+n ln Y

〉
ηµ

+ (1− f)(1+n lnK)
]

=
p

C
ln
[
1+n

(
f

∫
Dt

〈
ln Y

〉
ηµ

+ (1− f)

∫
Dt lnK

)]
=
p

C
n
(
f

∫
Dt

〈
ln Y

〉
ηµ

+ (1− f)

∫
Dt lnK

)
(37)

Turning back to the original notation we can further develop the
terms composing the above approximation. The first one yields:

∫
Dt

〈
ln Y

〉
ηµ

=

∫
Dt

∫ 〈
dxµ

2π
·

· exp
[
− i

(
g−1ηµ + ϑ− dinp1 m− t

√
qd
inp
3

)
xµ −

d
inp
3

2
(1− q)x2µ

]〉
ηµ

=

∫
Dt

〈
ln
[

exp
{
−

(
d
inp
1 m− g−1ηµ − ϑ+ t

√
qd
inp
3

)2
2d
inp
3 (1− q)

}
·

·
√

2π

d
inp
3 (1− q)

1

2π

]〉
ηµ

=
1

2

[
− ln 2π− lndinp3 (1− q)+

−

〈(
d
inp
1 m− g−1ηµ − ϑ

)2〉
ηµ

+ qdinp3

d
inp
3 (1− q)

]
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(38)

and the second one yields:∫
Dt lnK =

∫
Dt ln

∫∞
0

dλµ

2π

∫∞
−∞ dyµ exp

[
i

(
λaµ − ϑ+ dinp1 m+

+ t

√
qd
inp
3

)
yµ −

d
inp
3

2
(1− q)(yµ)

2
]

=

∫
Dt ln

∫∞
0

dλµ

2π
exp

[
−

(
d
inp
1 m+ λ

µ−ϑ+t
√
qd

inp
3

)2
1d
inp
3 (1− q)

]
·

·
√

2π

d
inp
3 (1− q)

=

∫
Dt ln

∫∞
d
inp
1

m−ϑ+t

√
qd
inp
3√

d
inp
3

(1−q)

dz√
2π
e

−z2

2

(39)

where in the last passage we made a simple change of variables.
Therefore we can rewrite Eq. (34) as:

M(q,m) =
p

C
n

{
f

2

[
− ln[2πdinp3 (1− q)]+

−

[〈(
d
inp
1 m− g−1ηµ − ϑ

)2〉
ηµ

+ qdinp3

]
d
inp
3 (1− q)

]
+ (1− f)

∫
Dt lnH(u)

}
where

u ≡
d
inp
1 m− ϑ+ t

√
qd
inp
3√

d
inp
3 (1− q)

H(u) ≡
∫∞
u

dz√
2π
e−z

2/2.

(40)

Now we can evaluate the derivatives

dG

dm̂
=
dG

dq̂
=
dG

dE
=
dG

dm
=
dG

dq
= 0 (41)

where G = G(q, q̂,m, m̂,E) given by Eq. (25), and set them to zero to
find the maximum of Eq. (25), with W(m̂, q̂,E) given by Eq. (30) and
M(q,m) given by Eq. (40).
With the first three derivatives equalized to zero, which are applied
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only to the second and third term of Eq. (25), and assuming Cq� m2

and |C(1− 2q)|� m2 as C→∞, we obtain the relations

m̂ = −
m√

C(q− 1)

q̂ =
q

(1− q)2

E =
1− 2q

(q− 1)2
.

(42)

Substituting them into Eq. (25) we have to perform the last two deriva-
tives. dGdm can be simply evaluated, applying the Leibniz integral rule
d
dx [
∫b(x)
a(x) f(x, t)dt] = f(x,b(x)) ddxb(x)− f(x,a(x)) ddxa(x)+ +

∫b(x)
a(x)

d
dxf(x, t)dt

based on which d
dtH(u(m)) = d

dm

∫∞
u(m)

dz√
2π
e

−z2

2 =− 1√
2π
e−

u(m)2

2
d
dmu(m)

yielding:

dG

dm
= 0 = −fdinp1 (dinp1 m− g−1〈ηµ〉− ϑ)+

−

√
d
inp
3 (1− q)(1− f)dinp1√

2π

∫
DtH(u)−1e−u

2/2

(43)

The derivative in q is a bit more tricky:

dG

dq
= 0 =

dM

dq
+

nq

2(1− q)2
−

nq

2(1− q)2
=

p

C
n

{
−
f

2

[
〈(dinp1 m− g−1ηµ − ϑ)2〉+ qdinp3

d
inp
3 (1− q)2

]
+

−
(1− f)√
2π

∫
Dte−u

2/2

[
t

√
d
inp
3 + (dinp1 m− ϑ)

√
q

2

√
d
inp
3 (1− q)

√
q(1− q)

]
H(u)−1

} (44)

where we have used as before d
dqH(u(q)) = d

dq

∫∞
u(t)

dz√
2π
e

−z2

2 =

− 1√
2π
e−

u(q)2

2
d
dqu(q) but as a function of q. Now the term multiplied

by (1− f) should be integrated by parts, i.e
∫b
a u(x)v

′(x) = u(b)v(b)−

u(a)v(a) −
∫b
a u
′(x)v(x)dx. Remembering that Dt ≡ dt√

2π
e−t

2/2 one
indeed can see that

d

dt

[
e−

t2

2 e−
u2

2

]
= −

(
t+ u

√
q

1− q

)(
e−

t2

2 e−
u2

2

)
=

−

(
t

√
d
inp
3 + (dinp1 m− ϑ)

√
q√

d
inp
3 (1− q)

)(
e−

t2

2 e−
u2

2

) (45)
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so one can re-write the term multiplied by (1− f) in (44) as

(1− f)√
2π

∫
Dte−u

2/2

[
t

√
d
inp
3 + (dinp1 m− ϑ)

√
q

2

√
d
inp
3 (1− q)

√
q(1− q)

]
H(u)−1 =

= −
(1− f)

2
√
2π
√
q(1− q)

∫
dt√
2π

d

dt

[
e−

t2

2 e−
u2

2

]
H(u)−1 =

= −
(1− f)

2
√
2π
√
q(1− q)

{
1√
2π
e−

t2

2 e−
u2

2 H(u)−1
∣∣∣t=+∞
t=−∞+

−

∫
Dte−

u2

2
d

dt
H(u)−1

}
=

=
(1− f)

2
√
2π
√
q(1− q)

{
−

∫
Dte−

u2

2 (−)H(u)−2(−)·

· 1√
2π
e−

u2

2

√
qd
inp
3√

d
inp
3 (1− q)

}

(46)

where in the last passage we used again the Leibniz integral rule with
the derivative in t. Substituting back Eq. (46) in the second term of
Eq. (44) and canceling out the repeated terms enables to reach right
away the simplified solution:

dG

dq
= 0 =

α

q

{
f
[〈(dinp1 m− g−1ηµ − ϑ)2〉+ qdinp3

d
inp
3

]
+

+
(1− f)(1− q)

2π

∫
DtH(u)−2e−u

2

} (47)

where α ≡ p/C is the storage load.
As in Gardner [14] we take the limit q→ 1, where the volume shrinks
to a single point and it exist a unique configuration of weights satisfy-
ing the equations. In this limit, the storage load α becomes the critical
capacity αc. Note that in this limit:

lim
q→1

u =


∞ if t > ϑ−dinp1 m√

d
inp
3

−∞ if t < ϑ−dinp1 m√
d
inp
3

.
(48)

and

lim
u→−∞H(u) ≈ 1
lim
u→∞H(u) ≈ 1√

2πu
e−u

2/2(1−
1

u2
) =

1√
2πu

e−u
2/2

where in the second approximation we have Taylor expanded H(u)
around u = 0.
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This enables to further simplify the above equations, as one can define
the variable

x =
ϑ− dinp1 m√

d
inp
3

(49)

which can be used to divide the integral into two components, i.e.

∫
DtH(u)−κe−κ

u2

2 =
���

���
���

��:0∫x
−∞DtH(u)−κe−κ

u2

2 +

∫∞
x

DtH(u)−κe−κ
u2

2

(50)

where κ = 1 in Eq. (43) and κ = 2 in (47).

The simple application of the limit q → 1 with the above approxi-
mations, substituting back u as in Eq. (40) and the new variable x as
in Eq. (49) leads to the final set of equations for the storage capacity

f(x+
dout1

g

√
d
inp
3

) = (1− f)
∫∞
x Dt(t− x)

1
αc

= f
[
x2 +

dout2

g2d
inp
3

+
2xdout1

g

√
d
inp
3

+ 1
]
+ (1− f)

∫∞
x Dt(t− x)

2.
(51)

where dout1,2,3 are defined in the same way as dinp1,2,3 except that the
averages are now over the output distribution η.

Going from the calculation reported above for the threshold-linear
perceptron it is straightforward to calculate the optimal capacity of a
network of threshold linear units. Considering the network defined
as in Eq. (4), the corresponding volume we need to calculate can be
written as

VT =

∫ {∏
i,j,j6=i dJijδ

(∑
j,j6=i J

2
ij −C

)∏
i,µ

∫∏
i,j,j6=i dJij

∏
i δ

(∑
j,j6=i J

2
ij −C

) ·

·
[(
1− δηµ,0

)
δ

(
h
µ
i − ϑ−

ηµ

g

)
+ δηµ,0Θ

(
ϑ− hµi

)]}
(52)

Since VT can be written as the product of the individual volumes of
the connection weights towards each unit, as VT =

∏N
i Vi and thus

〈lnVT 〉η = N〈lnVi〉η, we will essentially be dealing with individual
perceptrons like the one we have just studied. Putting dinp1 = dout1 =

d1 and d
inp
2 = dout2 = d2 and thus dinp3 = dout3 = d3 for ∀i, we

arrive to Eq. (54).
We evaluate the maximal storage capacity in the limit g→∞, which
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Figure 6: Dependence of the Gardner capacity αc on different parameters: in
(a) as a function of g and f (d1 = 1.1,d2 = 2), in (b) as a function
of a = d21/d2 for different values of f (g = 10, d1 = 1.1), in (c) and
(d) as a function of d1 and d3 for g = 0.2 and g = 10, respectively
(f = 0.5). Note that fixing f restricts the available range of a, as a
cannot be larger than f; the inaccessible ranges are shadowed in
(b-d).

is approached already for moderate values of g. Eq. (54) in the g→∞
limit reduces to:0 = fx− (1− f)

∫∞
x Dt(t− x)

1
αc

= f(x2 + 1) + (1− f)
∫∞
x Dt(t− x)

2,
(53)

which provides the universal αGc bound for errorless retrieval, depen-
dent only through f on the distribution of the patterns.

5.2.1 Summary of the derivation

Adapting the procedure introduced in [14] for binary units to our
network, we evaluate the fractional volume of the space of the in-
teractions Jij which satisfy Eqs. (4)-(5), using the replica trick and
the replica symmetry ansatz, we obtain the standard order parame-
ters m = 1√

C

∑
j Jij and q = 1

C

∑
j J
a
ijJ
b
ij corresponding, respectively,

to the average of the weights within each replica and to their over-
lap between two replicas a and b. Increasing p, for C → ∞, shrinks
the volume of the compatible weights, eventually to a single point,
i.e., when there is only a unique solution and the storage capacity is
reached. This corresponds to the case where all the replicated weights
are equal q → 1, implying that only one configuration satisfying all
the equations exists. Adding a further memory pattern would make
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it impossible, in general, to satisfy them all. At the end, we obtain the
following equations for αc

0 = −f(x+
d1

g
√
d3

) + (1− f)

∫∞
x

Dt(t− x)

1

αc
= f
[
x2 +

d2
g2d3

+
2xd1

g
√
d3

+ 1
]
+ (1− f)

∫∞
x

Dt(t− x)2,
(54)

where we have introduced the averages over Pr(η): d1 ≡ 〈ηµi 〉, d2 ≡
〈(ηµi )

2〉 and d3 ≡ d2 − d21; x = (ϑ− d1m)/
√
d3 is the normalized dif-

ference between the threshold and the mean input, while f = Pr(η >
0) is the fraction of active units and Dt ≡ dt exp(−t2/2)/

√
2π. The

Figure 7: Hebbian vs Gardner capacity. (a) αHc vs. f for different sample dis-
tribution of stored patterns compared to the analytically calculated
universal αGc ; the red diamonds and green crosses are reached us-
ing perceptron training for binary and ternary patterns, respec-
tively. (b) the sparsification of the stored patterns at retrieval, for
Hebbian networks at their capacity.

two equations yield x and αc. Both equations can be understood as
averages over units, respectively of the actual input and of the square
input, which determine the amount of quenched noise and hence the
storage capacity. The capacity, αc, then depends on the proportion
f of active units, but also on the gain g, and on the cumulants d1
and d3. Fig. 6a shows that at fixed g, αc increases as more and more
units remain below threshold, ceasing to contribute to the quenched
noise. In fact, αc diverges as [2f ln(1/

√
2πf)]−1, for f → 0; see Ap-

pendix B. At fixed f, there is an initially fast increase with g followed
by a plateau dependence for larger values of g. One can show that
αc → g2

g2+1
as f → 1, i.e., when all the units in the memory patterns

are above threshold, it is always αc < 1 for any finite g. At first sight
this may seem absurd: a linear system of N2 independent equations
and N2 variables always has an inverse solution, which would lead
to αc being (at least) one. Similar to what was already noted in [77],
however, the inverse solution does not generally satisfy the spherical
constraint in Eq. (5); but it does, in our case, in the limit g → ∞ and
this can also be understood as the reason why αc is highest when g
is very large. In practice, Fig. 6 indicates that over a broad range of
f values, αc approaches its g→∞ limit already for moderate values
of g; while the dependence on d1 and d3 is only noticeable for small
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g, as can be seen by comparing Fig. 6c and d. For g → ∞, one sees
that Eqs. (6) depend on Pr(η) only through f. Eqs. (54), at g → ∞,
have been verified by explicitly training a threshold linear perceptron
with binary patterns, evaluating αc numerically as the maximal load
which can be retrieved with no errors; See Appendix C for details.
Estimated values of αc are depicted by red diamonds in Fig. 14, and
they follow the profile of the solid line describing the g→∞ limit of
Eq. (54).
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C O M PA R I S O N W I T H A H E B B I A N R U L E :
T H E O R E T I C A L A N A LY S I S

6.1 recap of the derivation of the hebbian capacity in

threshold-linear networks

In this initial section we provide a brief recap of the main ideas, ana-
lytical tools and results reported in [53, 54, 57] about the storage ca-
pacity of networks endowed with threshold-linear units. In the most
general case, one considers that the threshold-linear unit i receives an
input

hi =
∑
j

JcijVj + b

∑
j

Vj/N

+
∑
µ

sµ
η
µ
i

〈η〉η
(55)

where the first term is the standard term coming from the activity of
the other units through the synaptic weights Jc. The second term is
supposed to provide a general feedback, perhaps through inhibitory
neurons that are not explicitly modelled, and it only depends on the
mean network activity via a function b. The last term is the strength
of the input aligned with one or more stored patterns. To study self-
sustained attractors, we set sµ to zero (which implies also δ = 0 in
the notation of [53]). The unit activities Vi are subject to the threshold-
linear activation function, and the weight matrix is structured in one-
shot by Hebbian learning. In a general case, the Hebbian learning rule
can be defined in terms of the firing rates η of the units as

Jij = cij
1

C

p∑
µ=1

F(ηµi )G(η
µ
j ) (56)

where Jij is the synaptic efficacy/connection strengths of the inputs
coming from neuron j to neuron i; F(ηµi ) and G(ηµj ) are generic func-
tions describing how the learning rule depends on the activity of the
postsynaptic neuron i and the presynaptic neuron j respectively, in
pattern µ; cij, instead, defines whether a synapse is present or not.
The presynaptic component can be defined in order to have mean
〈G(η)〉η = 0 (necessary to allow to store a number of patterns which
increases with the connectivity C). One can further assume that the
postsynaptic component is the same as the presynaptic one [54], as:

G(η) = F(η) =
η− 〈η〉
〈η〉

(57)

such that, if cij = cij the system can be described in terms of an
energy function. Assuming Eq. (57) the mean aF and the variance cF

43
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of the postynaptic factors coincide with the ones of the presynaptic
component, being aF = 0 and the variance

T0 ≡ cF ≡ 〈G(η)2〉η − 〈G(η)〉2η =
〈η2〉− 〈η〉2

〈η〉2
=
1− a

a
(58)

where a is the sparseness of the code defined in Eq. (75).
The postsynaptic function F(η) can also have different forms; in [54],
for example, the case of NMDA-resembling postynaptic activity is
addressed. Here we will report the analytical results derived in [53,
54, 57] for F(η) as defined in (57), which leads to a covariance rule for
expressing Hebbian learning, leading from Eq. (56) to:

JCij = cij
1

C〈η〉2η

p∑
µ=1

(ηµi − 〈η〉η)(ηµj − 〈η〉η). (59)

were C is the number of connections per unit and cij = 1 if there is a
connections from unit j to unit i, cij = 0 otherwise.

Calculations for the storage capacity were performed for different
types of network: the fully connected [57], the highly diluted [53], the
directed [54] ones, and then generalised to arbitrary dilution in [60].
Here we focus on networks with extremely diluted connectivity [53],
namely when C

N → 0 and C,N→∞ such that the synapses Jij and Jji
can be considered independent, and also on fully connected networks,
useful to grasp a deeper understanding of the error at retrieval and
the nature of Hebbian learning.

The calculation of the storage capacity involves the definition of the
overlap order parameters

x̂µ =
1

N

N∑
i=1

( ηµi
〈η〉η

− 1
)
〈Vi〉 (60)

measuring the overlap between the stored patterns η and the activity
of units Vi, where 〈· · · 〉 (without subscripts) denotes thermal aver-
age. One assume without loss of generality that one of the patterns,
let us say the first pattern, is to be retrieved, and one then assumes
the existence of stable states of the system for which x̂1 is non-zero
while x̂µs ,µ 6= 1 are zero in the thermodynamic limit. In particular,
comparing the overlap with the average retrieved activity

x(t) =
1

N

N∑
i=1

〈Vi(t)〉 (61)

once the dynamics reaches a fixed point, one would have x1 � x.
One should note that the specific quantity which emerges from the
calculations is the subtracted overlap x̂1 = x1 − x i.e.

x̂1 =
1

N

N∑
i=1

( η1i
〈η〉η

− 1
)
〈Vi〉 (62)



6.1 recap derivation hebbian capacity tl networks 45

This is done in mean-field theory, developed either by means of the
replica trick or signal-to-noise analyses, which yield self-consistent
equations for the overlaps and other order parameters that appear.
The mean field theory is based on four main assumptions:

1. the thermodynamic limit C→∞, with C
N → 0;

2. the storage capacity is an extensive quantity where p→∞ and
α ≡ p−1

C is finite;

3. only one single pattern has non-zero correlation;

4. the evolution of the overlap x̂µ(t), of the mean activity x(t) and
of the mean square activity

y(t) =
1

N

N∑
i=1

〈Vi(t)2〉 (63)

reach the fixed points x̂µ, x and y.

An important order parameter that appears in the mean-field theory
of attractor neural networks is the variance of the quenched noise [69]:
it comes from the contribution to the field acting on each unit from
the correlation of the activity of the network and that of non-retrieved
patterns, i.e. those different from the first pattern. This correlation al-
beit small for each individual non-retrieved pattern gives a significant
contribution when p is comparable to C and is what makes retrieval
impossible for large p. It thus needs to be included for calculating the
storage capacity. Following [53, 57], we denote this parameter as ρ.
In the case of threshold-linear units two other order parameters are
important that measure the relative magnitude of the signal (the part
of the input to units that makes the units have the correct activity for
retrieval) to the quenched noise ρ. The first one

w =
−x̂1 − ϑ

T0ρ
(64)

is the signal of the background versus the noise due to memory load-
ing; ϑ is the threshold (Eq. (4)), b(x) is a general function, depending
on the average activity and which would contribute as well to (4) and
where ρ is the noise due to memory loading, deriving from all other
patterns than the retrieved one. The second signal to noise

v =
x̂1 + s1

T0ρ
(65)

is specific to the units that have to be active. Here we consider for
simplicity the pattern specific external stimulus s1 = 0.
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The self-consistent mean-field equations that emerge from the calcu-
lations can be written in terms of the following quantities

A1(w, v) =
1

vT0

〈( η
〈η〉

− 1
) ∫+

Dz
[
w+ v(1+ F(η)) − z

]〉
η

A2(w, v) =
1

vT0

〈( η
〈η〉

− 1
) ∫+

Dz
[
w+ v(1+ F(η)) − z

]〉
η

A3(w, v) =
〈 ∫+

Dz
[
w+ v(1+ F(η)) − z

]2〉
η

A4(w, v) =
1

v

〈 ∫+
Dz
[
w+ v(1+ F(η)) − z

]〉
η

(66)

where the average is over the distribution Pη and over a Gaussian
variable z up to a threshold, such that:∫+

Dz() =

∫w+v(1+F(η))

−∞
dz√
2π
e−

z2

2 () (67)

and that, by simple substitution of T0 can be rewritten as

A1(w, v) = a
v(1−a)

〈(
η
〈η〉 − 1

)
(xφ(x) + σ(x))

〉
η
− 〈φ(x)〉η (68)

A2(w, v) = a
v(1−a)

〈(
η
〈η〉 − 1

)
(xφ(x) + σ(x))

〉
η

(69)

A3(w, v) =
〈
(x2 + 1)φ(x) + xσ(x)

〉
η

(70)

A4(w, v) = 1
v

〈
(xφ(x) + σ(x))

〉
η

(71)

where

x ≡ w+ v η〈η〉 (72)

φ(x) ≡
[1+erf( x√

2
)]

2 =
erfc(−x√

2
)

2 (73)

σ(x) ≡ e−x
2/2

√
2π

(74)

and where the sparsity parameter, a, defined as

a ≡ 〈η
2〉
〈η〉2η

, (75)

shows up as a crucial quantity.
As far as the calculation of capacity is concerned, for the fully con-

nected network, these equations must satisfy the conditions

Efc1 (w, v) = 0 = A1(w, v)2 −αA3(w, v) (76)

Efc2 (w, v) = 0 = A1(w, v)
(
1
gT0

−A2(w, v)
)
−αA2(w, v) (77)

and for the highly diluted network

Ehd1 (w, v) = 0 = A2(w, v)2 − λαA3(w, v) (78)

Ehd2 (w, v) = 0 = A2(w, v) − 1
gT0

. (79)
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where λ =
cF+a

2
F

T0
= 1 given Eq. (57). In other words, the storage

capacity αc can be computed by finding the largest value of α for
which equation E1 can be satisfied, while equation E2 can be used to
extract the optimal value of g.

The value of other order parameters, e.g. ρ, or x̂1 for each value of
α and any given choice of the distributions of η can also be calculated.
In order to extract the overlap one can find ρ (from Eq.s (28) of [57]
in a fully connected net and Eq.s (13) of [53] in an highly diluted one)
as

ρ = xA2/vA4 (80)

and

x̂1 = T0ρv (81)

inverting Eq. (65).

6.2 retrieval to no-retrieval transition in threshold-
linear hopfield networks

For the purpose of comparing, in the threshold-linear domain, the
error-less storage capacity (evaluated in Sect. 5.2) with the error-full
Hebbian capacity (summarized in Sect. 6.1), and to properly relate
this comparison with respective one in the binary domain, one needs
to know how the overlap approaches zero in threshold-linear net-
works endowed with Hebbian learning. For this purpose, in this chap-
ter, we initially take as an example the binary distribution, defined as

p(η) = (1− a)δ(η) + aδ(1− η) (82)

in order to show how the indirect measure of the overlap v varies at
the storage capacity with the sparsity and the type of network, then
we provide an analytical derivation of the general constraint required
to have first or second order phase transition in v at the storage ca-
pacity. Finally we take again the binary distribution at two sparsity
values and show how the proper overlap x̂1 approaches its value
when having a first or a second order phase transition.

In Fig. 8 one can appreciate how the values of (αc, vc,wc) vary as a
function of a for the highly diluted and the fully connected networks
for a binary distribution of patterns. One can notice that if for the
feedback networks the indirect measure of the overlap at the storage
capacity vc never goes to zero, there is instead a sparsity value for
which this occurs in the highly diluted limit, after which the antipat-
tern (v < 0) is retrieved .
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Figure 8: Parameters at the storage capacity satisfying Eq. (76)(77) (fully con-
nected) and (78)(79) (highly diluted) for a binary distribution. First
row: Highly diluted networks, second row: fully connected net-
work. First column: red= wc, black= vc.

Order of the phase transition for v→ 0:

In the extremely diluted limit one can then calculate what are the
conditions on the distribution in order to have a second order phase
transition in the overlap, i.e. the limit v→ 0 of A2(w, v) and A3(w, v)
.
To do so we expand around x0 = w, given that, as defined in Sect.
6.1, x = w+ v η〈η〉 and here v → 0. In this expansion, three equations
should hold, namely:

E1(v,w,α) = A2(w, v)2 −αA3(w, v) = 0
d
dwE1(v,w,α) = 2A2(w, v) ddwA2(w, v) + d

dwA3(w, v) = 0
d
dvE1(v,w,α) = 2A2(w, v) ddvA2(w, v) + d

dvA3(w, v) = 0

(83)

The first one, as presented in Sect. 6.1, corresponds to the equation of
the storage capacity, the second and third ones, instead, are related
to the geometry of the solution. In the (w, v) plane, indeed, one finds
that the solutions lie on an island which progressively shrinks while
increasing the storage load. At the storage capacity the solution is an
individual maximum in the (w, v) plane, thus both derivatives needs
to be zero.
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We now perform the expansions and derivatives, where we use the
following identities which one can show:

d

dx
σ(x) = −xσ(x) (84)

d

dx
φ(x) = σ(x) (85)∫
dηP(η)

( η
〈η〉

− 1
)
= 0 (86)∫

dηP(η)
η

〈η〉

( η
〈η〉

− 1
)
= T0 (87)

d

dx
(xφ(x) + σ(x)) = φ(x) (88)

d

dx
[(x2 + 1)φ(x) + xσ(x)] = 2(xφ(x) + σ(x)) (89)

The Taylor expansion of A2 is

A2(w, v) ≈

���
���

���
���

���
���

��:0

1

vT0
(wφ(w) + σ(w))

∫
dηP(η)

( η
〈η〉

− 1
)

+

+
1

�vT0
�vφ(w)

���
���

���
���:

T0∫
dηP(η)

( η
〈η〉

− 1
) η
〈η〉

So:

A2(w, v) = φ(w) +O(v2) (90)

Its derivatives are

d

dw
A2(w, v) =

1

vT0

∫
dηP(η)

( η
〈η〉

− 1
)
φ(x) (91)

d

dv
A2(w, v) =

1

vT0

∫
dηP(η)

( η
〈η〉

− 1
)
φ(x)

η

〈η〉
−
1

v
A2 (92)

which, if expanded around x0 = w give:

d

dw
A2(w, v) ≈

��
���

���
���

���
�:0

1

vT0
φ(w)

∫
dηP(η)

( η
〈η〉

− 1
)

+

+
1

�vT0
�vσ(w)

��
���

���
���

�:T0∫
dηP(η)

( η
〈η〉

− 1
) η
〈η〉

so:

d

dw
A2(w, v) = σ(w) +O(v2) (93)
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and

d

dv
A2(w, v) ≈

((((
((((

(((
((((

(
1

vT0
φ(w)

∫
dηP(η)

( η
〈η〉

− 1
) η
〈η〉

+

+
1

�vT0
�vσ(w)

∫
dηP(η)

( η
〈η〉

− 1
) η
〈η〉

η

〈η〉
+

−

��
���

���
���

���
���

���
�:0

1

v2T0
(wφ(w) + σ(w))

∫
dηP(η)

( η
〈η〉

− 1
)

+

−
((((

((((
(((

((((
((

1

v�2T0
�vφ(w)

∫
dηP(η)

( η
〈η〉

− 1
) η
〈η〉

+

−
1

2��v
2T0
��v
2σ(w)

∫
dηP(η)

( η
〈η〉

− 1
) η
〈η〉

η

〈η〉

so:

d

dv
A2(w, v) = σ(w)T1 +O(v3)

T1 =
1

2

〈η3〉− 〈η〉〈η2〉
〈η〉(〈η2〉− 〈η〉2)

(94)

The Taylor expansion of A3 is

A3(w, v) ≈ [(w2 + 1)φ(w) +wσ(w)]
��

�
��*

1∫
dηP(η) +

2(wφ(w) + σ(w))v
��

�
��

��*
1∫

dηP(η)
η

〈η〉
so

A3(w, v) = (w2 + 1)φ(w) +wσ(w) +O(v) (95)

Its derivatives are

d

dw
A3(w, v) = 2

∫
dηP(η)(xφ(x) + σ(x)) (96)

d

dv
A3(w, v) = 2

∫
dηP(η)(xφ(x) + σ(x))

η

〈η〉
(97)

which, if expanded around x0 = w, both result in:

d

dw
A3(w, v) = 2[wφ(w) + σ(w)] +O(v) (98)

d

dV
A3(w, v) = 2[wφ(w) + σ(w)] +O(v) (99)

Therefore, the three equations which should be satisfied are:
φ(w)2 −α[(w2 + 1)φ(w) +wσ(w)] = 0

φ(w)σ(w) −α[wφ(w) + σ(w)] = 0

φ(w)σ(w)T1 −α[wφ(w) + σ(w)] = 0

(100)
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from the last two equations we get

T1 = 1 (101)

and, from the first two

φ(w)2

[(w2 + 1)φ(w) +wσ(w)]
=

φ(w)σ(w)

[wφ(w) + σ(w)]
(102)

Left and right hand side of Eq. (102) are plotted in Fig. 9. One can see

Figure 9: Plot of left and right hand side of Eq. (102)

that there is a unique w value which satisfy the above equations by
developing Eq. (102) to

w[φ(w)2 − σ(w)2 −wσ(w)φ(w)] = 0 (103)

where the term within the brackets never goes to zero, as shown in
Fig. 10

In conclusion for v → 0, the phase transition is second order only
for those distributions which enable T1 ≡ 1, and, when this is true,
then w∗ = 0 and αc = 1

2 .

One can plot what is the required relation between the cumulants
of a distribution in order to have a second order phase transition by
rewriting T1 = 1 as

1

2

〈η3〉− 〈η〉〈η2〉
〈η〉(〈η2〉− 〈η〉2)

= 1

〈η3〉− 3〈η〉〈η2〉+ 2〈η〉3 = 0
〈η3〉
〈η〉3

− 3
〈η2〉
〈η〉2

+ 2 = 0

(104)
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Figure 10: Plot of the term within the brackets of Eq. (103)

where in the second and third passages the condition of existence is
〈η2〉 6= 〈η〉2 and 〈η〉 6= 0, yielding to the requirement that:

〈η〉3

〈η3〉
=

a

3− 2a
(105)

Here one can see that for the binary distribution, having 〈η〉
3

〈η3〉 = a
2 the

intersection occurs at a = 1
2 . In Fig. 11 one can see such intersection

in the 〈η〉
3

〈η3〉 − a plane.

Figure 11: In black we plot the condition, defined as in E. (105) in order to
have a second order phase transition. In red we plot the relation

between 〈η〉
3

〈η3〉 and a for a generic binary distribution, identifying
the intersection point with a gray vertical line.
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x̂1 as a function of α:

Back to the binary example we can thus show numerically how v and
x̂1 = T0ρv, vary while the system approaches the storage capacity. In
the binary distribution T1 = 1

2a so, in order to fulfill the requirement
T1 = 1 the sparsity has to be a = 1

2 , as mentioned in the previous
section. Indeed, as already shown in Fig. 8, at a = 0.5 vc goes to zero.
In Fig. 12 we show how v and w, both for the stable and unstable in-
tersection points, vary while approaching αc for a = 0.5 and a = 0.2
for the highly diluted and the fully connected networks. To do so, we
need to fix g at the storage capacity. We found, by numerically solv-
ing the equations, that for the fully connected network the required
triads (a,αc,gc) are (0.2, 0.105, 0.032) and (0.5, 0.0049, 1.253); instead
for the highly diluted they are (0.2, 0.667, 0.525) and (0.5, 0.5, 2). The
behavior of v,w,α is plotted in Fig. 12 while the one of x̂1 in Fig.
13. One has to notice that if x̂1 is the subtracted overlap defined as

x̂1 = 1
N

∑N
i=1

(
η1i
〈η〉η − 1

)
〈Vi〉, then (x̂1)MAX = 1− a as visible also

in the plots. In Fig. 13 one can appreciate that the full-connectivity
not only decreases the storage capacity but it makes asymmetric the
behavior of the stable vs unstable x̂, the latter one approaching 0 for
α→ 0.

Figure 12: Values of v (black) and w (red) satisfying a)b) Eq. (78)(79) (highly
diluted -H.D.-) and c)d) (76)(77) (fully connected -F.C.-) while ap-
proaching the storage capacity αc for sparsity a)c) a = 0.5 and
b)d) a = 0.2. The stable solutions are depicted with a solid line,
the unstable ones with a dashed line.
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Figure 13: Decay of the overlap with the stored memory, as evaluated in
Eq. (81), in a fully connected (red) and highly diluted (black) net-
works, for two sparsity parameters (a)a=0.5, b)a=0.2)). The inset
in a) correspond to a restricted area of the plot. The solid line
correspond to the stable solutions for (w, v), the dashed lines for
the unstable ones.

6.3 self-organized hebbian learning is more efficient

than optimal procedures

With highly diluted connectivity and non-sparse patterns a binary
network can get to 1/π of the bound, even if with vanishing over-
laps, much closer than in the fully connected case. This is intuitively
because the quenched noise is diminished as Jij and Jji become effec-
tively independent. Besides its biological relevance, with TL units, the
fair comparison to the capacity à la Gardner is thus that of a Hebbian
network with highly diluted connectivity. In what follows, we indicate
the Gardner capacity as calculated in the previous section and the
Hebbian capacity, by αGc and αH, respectively, and use similar super-
script notations for other quantities.

The capacity of the TL network with diluted connectivity was eval-
uated analytically in [53, 54]; see Sect. 6.1 for a recap. Whereas for
g→∞ the Gardner capacity depends on Pr(η) only via f, for Hebbian
networks it does depend on the distribution, and most importantly
on a, the sparsity

a = 〈ηµi 〉
2/〈(ηµi )

2〉 (106)

whose relation to f depends on the distribution [53, 54].
Fig. 14 shows the results for 3 examples of binary, ternary and

quaternary distributions for which f and a are related through f = a,
9a/5 and 9a/4, respectively, see Appendix D.1; the Hebbian and the
Gardner capacities diverge in the sparse coding limit.

When attention is restricted to binary patterns in Fig. 14a, the Gard-
ner capacity, αGc , seems to provide an upper bound to the capacity
reached with Hebbian learning; more structured distributions of ac-
tivity, however, dispel such a false impression: the quaternary exam-
ple already shows higher capacity for sufficiently sparse patterns.
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Figure 14: Hebbian vs Gardner capacity. (a) αHc vs. f for different sample
distribution of stored patterns compared to the analytically cal-
culated universal αGc ; the red diamonds and green crosses are
reached using perceptron training for binary and ternary pat-
terns, respectively. (b) the sparsification of the stored patterns at
retrieval, for Hebbian networks at their capacity.

The bound, in fact, would only apply to perfect errorless retrieval,
whereas Hebbian learning creates attractors which are, up to the Heb-
bian capacity limit, correlated but not identical to the stored patterns;
in particular, we notice that when considering TL units and Hebbian
learning, in order to reach close to the capacity limit, the threshold
has to be such as to produce sparser patterns at retrieval, in which
only the units with the strongest inputs get activated. Fig. 14b shows
the ratio of the sparsity of the retrieved pattern produced by Hebbian
learning, aHr = 〈vµi 〉

2/〈(vµi )
2〉 (estimated as described in Appendix

D.4) to that of the stored pattern a, vs. f: except for the binary pat-
terns at low f, the retrieved patterns, at the storage capacity, are al-
ways sparser than the stored ones. The largest sparsification happens
for quaternary patterns, for which the Hebbian capacity overtakes the
Gardner bound, at low f. Sparser patterns emerge as, to reach close to
αHc , ϑ has to be such as to inactivate most of the units with intermedi-
ate activity levels in the stored pattern. Of course, the perspective is
different if αHc is considered as a function of ar instead of a, in which
case the Gardner capacity remains unchanged, as it implies retrieval
with ar = a, and is above αHc for each of the 3 sample distributions;
see Fig. 31 of Appendix D.1.





7
C O M PA R I S O N W I T H A H E B B I A N R U L E :
E X P E R I M E N TA L D ATA

Having established that the Hebbian capacity of TL networks can sur-
pass the Gardner bound for some distributions, we ask what would
happen with distributions of firing rates naturally occurring in the
brain. We considered published distributions of single neurons in IT
cortex in response to short naturalistic movies [78]. Such distributions
can be taken as examples of patterns elicited by visual stimuli, to be
stored with Hebbian learning, given appropriate conditions, and later
retrieved using attractor dynamics, triggered by a partial cue [79–84].
How many such patterns can be stored, and with what accompany-
ing sparsification?

7.1 estimation of the binned retrieved distributions

We considered sample distributions from [78], where each neuron
emits, in time bins of fixed duration (100msec), 0, . . . ,n, . . . ,nmax
spikes, with relative frequency cn, such that

∑nmax
n=0 cn = 1. We take

these values from Fig. 2 of [78] and they correspond to the blue his-
tograms in Fig. 15 below (and in Fig. 33 in Appendix E). We assume
they are the distributions of the patterns to be stored. If the weights
are those described by the Gardner calculation, these patterns can be
retrieved as they are, and their distribution remains the same. If they
are stored with Hebbian weights close to the maximal Hebbian capac-
ity, however, the retrieved distributions look different. In this section
we derive the retrieved distribution given a stored one.

The firing rate V of a neuron in retrieving a stored pattern η is
assumed proportional to w+ vη/〈η〉+ z [54], where the parameters
w and v are appropriately rescaled signal-to-noise ratios (general and
pattern-specific), such that the normally distributed random variable
z, of zero mean and unitary variance, is taken to describe all other
non constant (noise) terms, besides η itself. Averaging over z one can
write, as in Eq. (167a), that at the maximal capacity

〈V〉 (η) = g
∫∞
−x(η)

Dz [x(η) + z] = g [xcφ(xc) + σ(xc)] , (107)

where x(η) ≡ w+ vη/〈η〉 and at the saddle-point the parameters w
and v take the values wc and vc that maximize capacity, as explained
in [54]. This implies setting an optimal value for the threshold ϑ,
which in the analysis is absorbed into the parameter w, and which

57
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determines the sparsity of the retrieved distribution. The gain g re-
mains, however, a free parameter, that affects neither sparsity nor ca-
pacity. It is a rescaled version of the original gain g in the hypothetical
TL transfer function. In other words, the maximal Hebbian capacity
determines the shape of the retrieval activity distribution, but not its
scale (e.g., in spikes per sec).

To produce a histogram, that details the frequency with which
the neuron would produce n spikes at retrieval, e.g. again in bins
of 100msec, one has to set this undetermined scale. We set it arbi-
trarily, with the rough requirement that the frequency of producing
nmax spikes at retrieval be below what it is in the observed distri-
bution, taken to describe storage, and negligible for nmax + 1 spikes.
Having set the scale g, the frequency with which the neuron emits
n spikes at retrieval, with 0 < n < nmax is the probability that
n− 1/2 < V < n+ 1/2, that is, it is a sum over contributions from
each η, such that

n−
1

2
< g(wc + vc

η

〈η〉
+ z) < n+

1

2

n

g
−
1

2g
− xc < z <

n

g
+
1

2g
− xc

(108)

i.e.,

Pr(n) =

ηmax∑
η=0

cη

[
φ
(n
g
+
1

2g
− xc

)
−φ

(n
g
−
1

2g
− xc

)]
, (109)

with appropriate expressions for the two extreme bins. These are the
distributions shown in Fig. 15 in chapter 7, and in Fig.2 below. We
took g = 1

2 , as this value satisfies the a priori requirements and al-
lows to keep the same number of bins in the retrieved memory as in
the stored one (and the coefficients sum up to one, to a very good
approximation).

7.2 the most active units remain active

Fig. 15a-b show the analysis of two sample distributions from [78].
The observed distributions, in blue, labeled “Gardner”, are those we
assume could be stored and retrieved, exactly as they were, with a
suitable training procedure bound by the Gardner capacity. In orange,
we plot the distribution that would be retrieved following Hebbian
learning operating at its capacity, see Sect. 7.1 for the estimation of
the retrieved distribution. Note that the absolute scale of the retrieved
firing rate is arbitrary, what is fixed is only the shape of the distribu-
tion, which is sparser (as clear already from the higher bar at zero).
The pattern in Fig. 15a, which has a < 0.5, could also be fitted with
an exponential distribution having f = 2a (see Appendix D.2). In that
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panel we also show the values of αHexpc and aHexpr , calculated assum-
ing the exponential fit, along with values from the observed discrete
distribution (αHnaivec and aHnaiver ). Fig. 15c shows both αGc and αHexpc

versus f; we have indicated by diamonds the Hebbian capacities for
the 9 empirical distributions in [78] and by circles the fitted values
for those which could be fitted to an exponential. In Appendix D.3
we also discuss the fit to a log-normal, which is better at reproducing
experimental distributions with a mode above zero [85], as in Fig. 15b.
There are three conclusions that we can draw from these data. First,

Figure 15: Hebbian vs. Gardner capacity for experimental data. (a,b) his-
tograms of two experimentally recorded spike counts (blue) and
the retrieved distributions, if the patterns were stored using Heb-
bian learning (orange). Note that the retrieved distributions à la
Gardner would be the same as the stored patterns. (c) Analyti-
cally calculated Gardner capacity αGc (blue), compared to αHexpc

for the Hebbian learning of an exponential distribution (orange,
circles). αHnaivec is shown by diamonds. The asterisks mark the
two cells whose distribution is plotted in (a-b). (d) Sparsification
of the retrieved patterns, for Hebbian learning. In Appendix E
the same analysis in a)b) is performed on all other recorded cells.

the Hebbian capacity from the empirical distributions is about 80% of
that of the exponential fit, when available. Second, in general for dis-
tributions like those of these neurons, the capacity achieved by Heb-
bian learning is about 50%− 80% of the Gardner capacity, depending
on the neuron and whether we take its discrete distribution “as is”,
or fit it to an exponential (or, e.g., to a log-normal) shape. Third, with
Hebbian learning retrieved patterns tend to be 2 − 3 times sparser
than the stored ones, again depending on the particular distribution,
empirical or exponential fit (as for non-sparse distributions, which
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could be better fit by a log-normal, see Appendix D.3). As illustrated
in Fig. 15d, the empirical distributions achieve a lower capacity than
that of their exponential fit, as the latter leads to further sparsification
at retrieval.
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D I S C U S S I O N

While instrumental in conceptualizing memory storage [55, 82, 86],
Hebbian learning has been widely considered a poor man’s option,
relative to more powerful machine learning algorithms that could
reach the Gardner bound for binary units and patterns. No binary
or quasi-binary pattern of activity has ever been observed in the cere-
bral cortex, however. A few studies have considered TL units, show-
ing them to be less susceptible to memory mix-up effects [87, 88] or
perturbations in the weights and inputs values [89] but, in the frame-
work of à la Gardner calculations, they have focused on issues other
than associative networks storing sparse representations. For instance,
a replica analysis was carried out in [77] with a generic gain function,
but then discussed only in a quasi-binary regime. Others considered
monotonically increasing activation functions under the constraint of
non-negative weights [90]. Here, we report the analytical derivation
of the Gardner capacity for TL networks, validate it via perceptron
training, and compare it with Hebbian learning. We find that the
bound can be reached or even surpassed, and that retrieval leads
to sparsification. For sample experimental distributions, we find that
one-shot Hebbian learning can utilize 50− 80% of the available “er-
rorless” capacity if retrieving sparser activity, compatible with recent
observations [84].

In deriving the Gardner bound, we assumed errorless retrieval and
it remains to be seen how much allowing errors increases this bound
for TL units and neurally plausible distributions. For the binary case
of [50], as already mentioned, this errorless bound is still above the
Hebbian capacity of the highly diluted regime, with its continuous
(second order) transition, i.e., with vanishing overlap at storage ca-
pacity [50]. How does the overlap behave in the TL case? For highly
diluted TL networks with Hebbian learning, in fact, except for special
cases, the transition at capacity is discontinuous: the overlap drops to
zero from a non-zero value that depends on the distribution of stored
neural activity but can be small [67]. It is worth noting, though, that
while in the binary case the natural measure of error is simply the
fraction of units misaligned at retrieval, in the TL case error can be
quantified in other ways. In the extreme in which only the most ac-
tive cells remain active at retrieval, those retrieved memories cannot
be regarded as the full pattern, with its entire information content,
but more as a pointer, effective perhaps as a mechanism only to dis-
tinguish between different possible patterns or to address the full
memory elsewhere, as posited in index theories of 2-stage memory

61
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retrieval [91]. Further understanding would also derive from compar-
ing the maximal information content per synapse for TL units, with
Hebbian or iterative learning, as previously studied for binary net-
works [92]. Using non-binary patterns might also afford a solution
to the low storage capacity observed in balanced memory networks
storing binary patterns [93].

Our focus here has been on memory storage in associative neural
networks, with the overarching conclusion that the relative efficiency
of Hebbian learning is much higher when units have a similar trans-
fer function to real cortical neurons. The efficiency of local learning
rules had also been challenged by their comparatively weaker perfor-
mance in other (machine learning) settings [94], while results to the
contrary are also reported [95, 96]. It may therefore be argued that
the efficiency of local learning in these settings might also be fun-
damentally dependent on both the types of units used and the data,
observations consistent with the findings in [96] and [94], respectively.
In evaluating a learning rule, it may therefore be crucial to consider
whether it is suited to the transfer function and data representation it
operates on.



Part III

C O N T I N U O U S Q U A S I - AT T R A C T O R S F O R
I R R E G U L A R M E M O R I E S

Animals, like humans, navigate in complex territories. It
is believed that mammals, at least, create cognitive maps
of the environments they explore. The neurophysiological
discovery of spatially selective cells in the hippocamal for-
mation provided neuronal candidates involved in this ca-
pability. As a consequence, it has been hypothesized that
the dynamics underlying the retrieval of environmental
cognitive maps could be driven by continuous attractors, brit-
tle mathematical objects which break with irregularities.
However, the wilder the environment the more spatially
selective cells seem to be activated unevenly. Can a contin-
uous attractor theory contemplate also complex nonuni-
form activity? In this chapter we argue that it can, relaxing
the requirement of a continuous manifold of fixed points
to a quasi-attractive continuous manifold, intended as a direc-
tion of flow. We find that quasi-attractive manifolds persist
under noise up to a critical value at which they abruptly
break up. We show that some remarkably variable experi-
mental recordings lie just at the edge of this transition.
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P H E N O M E N O L O G I C A L I N T R O D U C T I O N :
C O M P L E X M A P S F O R I R R E G U L A R
E N V I R O N M E N T S

Each night, fruit bats can fly up to tens
of kilometers to forage and then, usually, they return back to to their
home colonies. When fruit bat pups become independent fliers, their
initial flights are close to home and nights after nights the area ex-
plored gets larger. Already from the first night alone, though, fruit
bats are able to perform shortcuts. It seems that vision is the sole sen-
sory modality involved in this capability. In particular, it seems that
a few landmarks are enough for bats to get the proper direction to
home, as if they are triangulating them on a map [97].

Norway rats dig their nests under the
soil, forming convoluted structures made by interconnected burrows
and halls. Outside their nests, on the surface, Norway rats trace in-
terconnected walking routes in the vegetation forming geometrically
closed shapes. Each time they walk outside the nest, they tend to fol-
low such traced routes. When snow comes and all olfactory, visual
and tactile references of the surface paths are lost, one can see the
rats still following the same routes, as if they have a map-like repre-
sentation based on trees or other persistent vertical objects [98].

65
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How are these complex maps encoded in the brain? How are they
stored and retrieved?

The psychological hypothesis that animals are able to create “cogni-
tive maps” dates back to Tolman’s research in the 40s [10], and found,
in the spatial domain, its first neurophysiological major support in
O’Keef’s discovery of place cells [23] and its second one in the discov-
ery of grid cells [28].

When both these neurophysiological discoveries were published, a
widely shared interpretation was that place cells set up the map, grid
cells, instead, represent the detailed metric on the map. Grid fields,
indeed, were observed not to change when the animal is exposed to
a new environment -the map is one-, place field’s, instead, do: they
“remap” from one environment to the other [fyh+07]. Under this as-
sumption place cells carry the contextual information, the “you are
in this territory”, whereas grid cells are more precise in telling “here
you are” on the map.

Indeed, the simplicity of the original recordings, performed in small
scale, regular and non–complex environments, transferred into the
hypothesis that such peculiar, fascinating behavior could be the gen-
eral norm, even in large, complex, wild environments.

As introduced in the first chapter, however, grid and place cells are
embedded in a large variety of other spatially selective cells and the
more one studies the behavior of all these cells in irregular environ-
ments, the more their sharp categorizations totter.

In this section I will briefly review some specific literature focusing
on place cell irregularities, obtained monitoring fruit bats and rats in
environments tending to be like those in the wild. These results are
the point of departure of our theoretical work, presented in the next
chapters.

For general considerations over spatially selective cells, their ununi-
formities and some open questions, refer to the global introduction
in chapter 2.

9.1 multiple and irregular place fields

Place cell irregularities, noted since the original experiments in simple
small cages, roughly quantified already in 1993 in the dentate gyrus
[99], started being appreciated as a fundamental feature only through
these studies contemplating larger recording environments. Indeed,
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the first strong evidence of the irregular nature of place cells appeared
as side effects of experiments devoted to different questions. It was
only after a few of such unexpected results that place cells complexity
came into the stage as a possible window into the nature of neurons:
they are irreducible to simplified categorizations and thus one needs
to reformulate the paradigms to conceptualize spatially selective cells
in the hippocampus. Here I will review a few fundamental steps in
this direction.

9.1.1 Rats walking in large environments

In 2008, through an experimental effort [100] aimed at clarifying whether
also ventral CA3 cells respond preferentially within specific place
fields, the authors recorded neurons in three main CA3 dorso-ventral
areas of rats running on an 18 meter long track. Under these con-
ditions they showed that i) all areas (dorsal - intermediate -ventral)
have place cells ii) the field size scales up dorso-ventrally iii) run-
ning was associated with theta rhythmicity and phase precession at
all dorsoventral recording levels. The data reported in this paper, es-
pecially those in the supplemental material, show that each place cell
can have multiple fields. If indeed one looks at individual cell firing
profiles, in 1d, multiple distinct and well recognizable fields are visi-
ble, furthermore they have different radii and maximal peak heights
(Fig. 16a). Interestingly, when the same 1d long setup was used to
record rats grid cells [104], the resulting profiles of activity from ven-
tral mEC could look similar to those recorded in ventral CA3 [100]
for a naive eye (Fig. 17).
The same year but a different group, through an experimental effort
aimed at providing evidences in support of the so–called “ensemble
hypothesis” and against the “dedicated-coding” one [102], i.e. the hy-
pothesis that place cell’s coding is distributed through the activity
of the whole ensemble of neurons, the authors performed record-
ings in a chamber six times larger (1, 5× 1, 4 meters) and enriched
(with stairs) as compared with the standard empty cylinder (68-cm-
diameter). Under these conditions the authors showed that rats CA1

neurons, recorded in a free foraging tasks, are more likely to be
place cells than in small environments and show multiple, irregularly
arranged fields (Fig. 16c). When comparing cylinder with chamber
recordings, data showed that cells which where active in both envi-
ronments increased the number of fields on average 2.5 times and the
fields size, on average, 1.8 times (Fig. 16d); the authors also reported
that, on average, both in the “small” cylinder and in the “big” cham-
ber, larger fields had greater peak firing rates.
Some years later, following the train of thoughts started in [102], the
authors provided quantitative evidences that in 2d large, this time
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Figure 16: Place fields recorded in large environments are multiple and ir-
regularly distributed in position, firing rates and radius sizes. a)
Two examples of dorsal CA3 place cells firing response recorded
on an 18 meter long track. b) Four examples of dorsal CA1 place
cells firing response recorded on a 45 meter long track. c) Exam-
ple of CA1 place cell response recorded in an enriched chamber
with stairs (white profiles) of large sizes. d) Four examples of
dorsal CA1 place cells recorded in a small cylinder and in a large
chamber where more than one field becomes visible. Panel a) is
adapted from [100] Fig. S5, panel b) is adapted from [101] Fig.2,
panel c) is adapted from [102] Fig. 6, panel d) is adapted from
[103] fig.3.
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Figure 17: Comparison between recordings on the same 18mt long track of
a) one example place cell in ventral CA3 b) one example grid cell
in ventral mEC. Blue and pink refer to recordings in forward and
backward direction. Panel a) is adapted from [100] fig. S5, panel
b) is adapted from [104] Fig. 3G.

non–enriched, enclosures, place fields in rats CA1, CA3 and DG are
multiple and irregularly spaced [103] (Fig. 16d). In the same paper,
they argued that some geometrical aspects could be the reason why
CA3 cells recorded in 1d in [100] where mostly showing one field in-
stead in 2d they would show multiple ones. In particular they argued
that directionally tuned cells, such as head direction ones, could be
fundamental in modulating the discharge patterns of CA3 place cells.
The evidence of fields multiplicity shown in [103] were in agreement
with studies published before, such as [105], focusing on other as-
pects but acknowledging the presence of multiple fields in rat DG
recordings or [106], characterizing the firing behavior of rat CA1 cells
along the whole proximodistal axis using 2m diametr cylinders, and
noticing field multiplicity in distal CA1 cells.
A few years later, in [101] the authors studied an extended linear track
of 45 meters in order to test whether a limit exists in the number of
place cells which can be recruited for coding a single environment.
The authors showed that in novel environments without goals, the
number of fields per cell follow a gamma-Poisson distribution [107],
i.e each cell’s field number is hypothesized to be taken from a Poisson
process whose rate is defined by a gamma distribution. The record-
ings reported in the paper show that fields have irregular sizes and
different maximal peak heights (Fig. 16b). A recent follow-up of this
study [108], enforced the gamma-Poisson hypothesis as the distribu-
tion governing the number of place fields, focusing on mice instead
of rats.

9.1.2 Bats flying over long distances

Bats navigate in the environment through different sensory modali-
ties and they are the sole mammal which is able to fly. Since 2007, a
vast amount of experimental work has been dedicated to study the
neural basis of their putative cognitive maps. It was seen that bats
walking in cages (hence on a 2-dimensional pavement) have cells in
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their hippocampus and mEC exhibiting spatial selectivity like those
recorded in rats [109–111]. Also in three dimensions fruit bats were
shown to have spherical place cells [112] with equal resolutions in all
directions around a center, head direction cells in a toroid reference
frame [113] and (somewhat irregular) grid cells [114].
The information coming from bats has been crucial to form intuitions
over some theoretical debates: on one side, theoretically, the discovery
of place and grid cells in bats, which do not display consistent theta
ritmicity [109, 115], discarded the hypothesized oscillatory origin of
place and grid coding. On another side, grid fields in bats were char-
acterized as those maintaining a constant distance among each other,
leading to the hypothesis that hexagonal lattice symmetry may only
appear in 2d.

A recently published work [116] shows that place cells recorded in
bats flying in a 200mt long track have multiple irregular fields (Fig.
18). In particular, recorded cells showed up to 20 fields along the track,
with sizes spanning from a few meters up to 30m and with peak rates
ranging from a few frequencies up to 45 Hertz.

These experimental results, especially those, on bats, have been the
origin of our theoretical study aimed at understanding how irregular-
ity may affect continuous attractor dynamics.

Figure 18: Place fields recorded in a 200mt long track, from the bat hip-
pocampus. Sample firing rate map of two cells. Figure adapted
from [116]
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T H E O R E T I C A L I N T R O D U C T I O N :
C O N T I N U O U S AT T R A C T O R S A R E B R I T T L E

Continuous attractor neural networks,
introduced in chapter [-], were brought to neuroscience in 1977 [117]
and as models to describe neuronal selectivity to sensory inputs in
1995 [118]. Their opening to the field of memory occurred instead be-
tween 1995− 1998. After the application of continuous attractors to
head direction cells [61] and to place fields in 1995 [119], the funda-
mental concept of map / chart was introduced in 1997 [63]: the evi-
dence that multiple representations co-exist in the hippocampus [36]
transferred into the hypothesis that each map is a continuous attractor
representing the coordinates of a putative environment. The recurrent
collaterals present in CA3 where hypothesized to be the substrate to
store such multi-map continuous attractor. Each map would be, in this
context, the imaginary arrangement of a population of place cells on
an abstract plane where each cell is placed at the position of its field
center in the environment related to that map. The navigation in each
environment would be based on path integration exploiting the conti-
nuity of the attractor [63]. The storage capacity of such a multi-map
continuous attractor, i.e the maximal number of environments which
can be stored per connection, was finally evaluated in 1998 [55].
Since then, continuous attractor neural networks (cANN) are regarded
as cardinal mathematical objects to gain intuition over the mecha-
nisms underlying memory storage and retrieval of continuous vari-
ables, and as fundamental concepts in models of place and grid cell
networks.

The biological plausibility of continuous attractors, however, keeps
being challenged by their brittleness to fast and quenched noise.
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Fast noise is that which refers to the
dynamics: if any perturbation outside the manifold is easily corrected
back, as if the manifold represents a river at the bottom of a valley,
the same does not hold for any perturbation along the manifold, i.e.
in the direction of the river. Any tiny push in that direction (red on
the schematic) is enough to bring the system to another configuration,
i.e. to a nearby position. Noise is ubiquitous in the brain, making this
issue a fundamental challenge which focused the attention of a vast
number of studies. In Sect. 10.1 I will shortly touch on some of the
main results obtained.

Quenched noise, instead, is that which
refers to the network structure and thus to the shape of the attractor.
Since the initial works in the 90 ′s it was noted that inhomogenities
in the coupling parameters lead to the collapse of the continuous at-
tractor into sets of discrete fixed points [119, 120]. The nature of such
inhomogenities plays a fundamental role in the effects on the contin-
uous attractor and the putative emergent scenarios are not yet fully
explored. In Sect. 10.2 I will briefly review the results which, so far,
contributed to unravel the interplay between quenched noise and con-
tinuous attractors models of neuronal responses and memory.
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As introduced in chapter 9, irregularities are an inherent feature
of place fields. In attractor neural networks based on Hebbian learn-
ing, thus, irregular fields act indirectly as quenched noise deforming the
shape of the continuous attractor.

In our work,
we study the effect of a systematic increase in fields variability act-
ing as quenched noise in an attractor neural network. We notice that
for sufficiently low variability the discrete fixed points still lie on the
continuous manifold, which remains stable, though deformed, in the
remaining directions: the bumps of activity monotonically slide on the
manifold to reach the fixed points. So it does driven by fast noise in
intact continuous attractors [117, 118, 121–129], or under quenched
disorder induced by multiple-maps storage [130–134], by quenched
random noise [122, 135–140] or by specific asymmetries in the cou-
plings [60, 93, 141–143]. Crucially, however, we see that above a crit-
ical level of irregularities, the quasi-attractive manifold abruptly dis-
appears with a transition and fixed points are reached through a tra-
jectory in the phase plane outside of the manifold. We hypothesize
that place fields storage and retrieval, even in the situation in which
there is only an individual environment, could thus be driven by a
quasi-attractive continuous manifold contemplating different resolutions
of place fields, which would turn into a continuous attractor solely in
the case of uniform individual fields.

10.1 brittleness to fast noise

Continuous attractor neural networks (cANN), introduced as mathe-
matical objects able to track time-varying stimuli in real time, can, as
a side effect, be pushed from one state to another by a little amount
of noise in the direction of the manifold. This was noted already by
the group of Amari, which firstly proposed the application of cANN
to Neuroscience [117] and which, around 30 years later, proposed one
of the first attempts to systematically study the phenomena [126]. In
particular, the authors simplified the dynamics on the tangent of the
attractor as an Ornstein-–Uhlenbeck process and saw that for such
simplified model, the average error, i.e. the probability that the bump
position on the manifold would not ecode the correct position in real
space, increases in the dynamical evolution up to a constant value
given by a signal to noise ratio. Meanwhile, the same phenomenon
had been acknowledged by several studies applying cANN to ori-
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entation selective cells in visual cortex and head direction cells [118,
121–125, 131] but was not addressed specifically.

In a follow-up study a few years later, Si Wu and colleagues stud-
ied analytically a simplified cANN where each stationary state was as-
sumed to have a gaussian shape. The authors described the dynamics
through functions of quantum harmonic oscillators, which enabled
to decompose it into different modes (modification of the Gaussian
bump in i)peak height ii)position iii)width and iv)skewness) [127].
Considering as the predominant mode the position, i.e the movement
of the Gaussian bump along the manifold, the authors developed a
time dependent perturbative approach able to track the network dy-
namics of such simplified model.

In 2012, Burak and Fiete approached the same problem and stud-
ied the effects of neuronal noise given by the irregular statistic of
the spikes. In particular the authors explored how Poisson spiking
neurons influence a random drift along the manifold of the instanta-
neous attractor state, defined as the state where the network would go
without noise. In this way, they analytically derived an information-
diffusion inequality setting a lower bound on the diffusion of such
state [128].

Between 2013 and 2015 three consequent studies by Monasson and
Rosay focused specifically on a multi-map continuous attractor model
for binary place cells and evaluated analytically its detailed dynami-
cal properties. After estimating the phase diagram [129], the authors
analyzed the diffusion of the bump, there called “clump”, within one
map [134] and the transition towards a different map [144]. The au-
thors showed that the brittleness to fast noise, i.e. the diffusion of the
bump due to neural noise, is in competition with the quenched disor-
der, i.e. the tendency to transit towards another map. In the single-
environment case, i.e. in the absence of quenched disorder, the authors
derived a description of the dynamical evolution obtaining an ana-
lytical expression of the diffusion coefficients, in excellent agreement
with numerical simulations.

Since then, other studies have been exploring analytical details of
the clump diffusion along the manifold in multi-charts models of
place cells, thus considering the underlying quenched disorder, as
Zhong et al, who evaluated the update speed given by external stimuli
[140].
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10.2 brittleness to quenched noise

How the susceptibility of continuous attractors to fragmentation may
deal with the storage of continuous variables represents an intriguing
riddle lasting since 1995, when this phenomena was firstly pointed
out for a place cell cANN storing an individual environment [119].
In particular, in that study Tsodyks and Sejnowski showed that if the
stored fields distribution in simulations shifts from being uniform
and regular to uniform but random, then the fixed points collapse
from being a semi-continuous set to a very low number. The authors
emphasized that such positions correspond to those on the manifold
characterized by strongest interactions.

The following studies on the issue, between 1996− 2003, mainly fo-
cused on head direction models and on potential mechanisms able to
maintain, despite disorder in the connections, the spatial working mem-
ory function, i.e. the possibility to retrieve a semi-continuous attractor.
Zhang in 1996 studied the phenomena by adding Gaussian noise in
the connections and approximated the speed of the clustering drift to-
wards a limited number of fixed points [122]. He argued that selective
Hebbian learning, activated when active movements are occurring,
could be a possible mechanism used by the brain to smooth over ir-
regularities. In two consequent studies in 2002, instead, Stringer et
al studied the effect of noise in the connections derived from a self-
organized learning procedure in 1d [135] and 2d [136]. The authors
proposed two biologically inspired mechanisms to stabilize the ten-
dency to drift, either enhancing those cells already firing, as biologi-
cally motivated by short term enhancement, or taking advantage of
the nonlinear activation of neurons with NMDA receptors, enhanc-
ing the activity of those already sufficiently active. Finally, in 2003,
Renart et al. devoted an entire study to the phenomenon and to a
possible mechanism to overcome the drift. In particular the authors
incorporated in the disordered cANN an activity dependent scaling
of the synaptic weights and showed that this would lead to similar
long term average firing rates per each neuron, homogenizing the net-
work and thus recovering a robust working memory, i.e. the ability to
durably retrieve the activity bumps [137].

The same year Treves proposed a cANN where quenched disor-
der took the form of discrete Hopfield patterns, generating a model
for the simultaneous retrieval of discrete and continuous information
in cortical patches [141]. The model was then analysed in analyti-
cal [60, 142] and numerical [93] detail in three consequent papers by
Roudi and Treves. The authors, in this context, where not focused on
the drift but rather on mechanisms used by the brain to differentiate
where and what information. The where information would be associ-
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ated with the continuity of the attractor, i.e. with a number of fixed
points on the 2d manifold, and a gain modulation was proposed as a
possible mechanism able to increment the tendency of a bump to stay
still.

The following year, in 2004 Treves proposed a self-organized cANN
[130] model for multiple charts of place fields in CA3, generated fol-
lowing a Hebbian learning process. The model was further analysed
by Pepp and Treves in 2007 who emphasized how the continuous
attractor wrinkles due to the quenched disorder introduced by the
storage of multiple charts. The authors showed that on the wrinkled
surface the majority of fixed points on the manifold is unstable [131]
and thus firstly hypothesized that efficient coding of position could
be possible only on timescales between the attraction to the surface
and before the bump drifts. In 2013 Cerasti and Treves, in an analo-
gous model, showed that increasing the system size would decrease
the fragmentation of the attractor but the tendency to drift would per-
sists [133].

In 2006 Hamaguchi et al. proposed a detailed analytical study of
a ring cANN endowed with binary units and symmetric quenched
disorder taken from a Gaussian distribution. In particular the authors
derived the phase and bifurcations diagrams of the model and related
fast and quenched disorder, showing that the latter could be beneficial
in reducing the intrinsic drift tendency due to fast noise [138].

In 2010, focusing again on a multi-chart cANN model for place
cells, Hopfield hypothesized that the bump shift due to the storage
of other charts could be a mechanism underlying mental exploration
[132]. In 2011, instead, Itskov et al. studied a ring architecture, highly
perturbed by quenched random noise, modelling a generic paramet-
ric working memory. The authors showed analytically that through
synaptic facilitation the drift of the bumps, induced by the distortion
of the attractor, could be slowed down, enabling the retrieval of each
memory in biologically plausible timescales [139].

Between 2013− 2015, as introduced above, three papers by Rosay
and Monasson explored the analytical details of the interplay be-
tween fast and quenched disorder in a binary multi-chart model for
place cell storage [129, 134, 144]. In particular the authors showed
that the tendency to cross-talk between maps is in competition with
the tendency to drift within one map.

Finally, a more recent result published by Spalla et al [143], studies
the effect of an asymmetric component in the connections, a sort of
ordered quenched disorder, in a multi-chart cANN model of thresh-
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old linear place cells. In particular the authors show that asymmet-
ric connections lead to a bump of activity constantly drifting on the
manifold and evaluated the storage capacity, which turns out to be
enhanced with respect to the symmetric case [55].
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M O D E L D E F I N I T I O N

Large scale variations within the firing maps of place cells have been
widely reported (see Sect. 9), a body of observations which challenges
previously established theoretical models (see Sect. 10).

An alternative theoretical scenario has been proposed recently in
[116], where the authors consider multiple classical continuous at-
tractors, of various scales, interacting with each others, thus enabling
fields to span the scale of each attractor.

In this study, instead, we explore the effect of irregularities on the
formation of a simple continuous attractor in an associative memory
neural network and ask what could one consider as retrieval, given
that the manifold of fixed points is extremely brittle to any source of
noise.

We find that i) while fixed points become few and discrete, yet they
lie on the continuous manifold which persists, i.e. it remains attractive
with respect to the other N-1 dimensions in phase space and that ii)
this holds true up to a critical level of noise, after which, the quasi-
attractive continuous manifold seems to abruptly break up through a
phase transition.

Applying our analysis to the experimental distributions obtained
in [116], we observe that the recordings, notable for their irregularity,
lie just at the edge of the transition.

This lead us to hypothesize that memory storage and retrieval of
place cells firing patterns can be understood as the establishment of
a persistent continuous quasi-attractive manifold, intended as a robust
direction of flow, which converges to the standard concept of contin-
uous attractor neural network if the quenched patterns are precisely
regular.

11.1 model description

Assume that we have a network of N threshold linear (TL) units, with
full recurrent connectivity, which attempts to store in memory the
neural representation, in terms of place fields, of a continuous variety
parametrized by ~s, which we take to have dimensionality d. For sim-
plicity we start with d = 1 and drop the vector symbol, although the
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analysis should be easy to generalize. Later we will consider also the
generalization to sparse connectivity, analysing in particular the case
of a so-called highly diluted network. The continuous representation
(taken to be imposed by external inputs to the network, e.g., coming
mainly from the Dentate Gyrus if the network is the CA3 one) is ex-
pressed by (non-negative) firing rate variables {ηi(s)}, where each unit
i is taken to have produced, at the memory encoding stage, a num-
ber of place fields of variable peak rate and width. Such variability
we assume to be effectively summarized by two (quenched) disorder
parameters σdimension (σd) and σpeak (σp). This has led to a matrix
of recurrent weights given by

Jij =
1

N

∫
S

ds

S

[ηi(s)
〈η〉

− 1
][ηj(s)
〈η〉

− 1
]

(110)

with η̄i ≡
∫
S
ds
S ηi(s).

11.2 energy

At retrieval, we assume the network, once it has been released from
external inputs, to evolve driven solely by the recurrent interactions,
changing continuously the output of its units according to

dVi(t)

dt
= −Vi(t) + g[hi(t)]

+ (111)

where [·]+ sets negative values to zero, g is a fixed gain parameter,
and

hi(t) =
∑
j6=i

JijVj(t) − T
(∑

j Vj(t)

N

)
(112)

is the input current to each unit, relative to a common threshold
value T that is written to incorporate feedback inhibition. We con-
sider T(v) = 4k(v− v0)

3 where we use the shorthand v =
∑
i Vi/N,

and v0 is a desired mean value (see Appendix F.6 for its implementa-
tion). Define a quantity

E({Vi}) = −
1

2

N∑
i

N∑
j6=i

Ji,jViVj +NB
(∑

i Vi
N

)
+
1

2g

∑
i

(Vi)
2 (113)

with dB(v)/dv ≡ T(v), i.e B(v) = k(v − v0)
4. For any unit i above

threshold, Vi(t) > 0, we have

dE(t)

dt
=
∑
i

δE({Vi})

δVi

dVi(t)

dt
= −

1

g

∑
i

[dVi(t)
dt

]2
< 0 (114)

showing that E behaves as an energy function in the hyperquadrant
Vi(t) > 0. Then the Hessian is

δ2E({Vi})

δViδVj
= −(1− δij)J

R
ij +

12

N
k(v− v0)

2 + δij/g. (115)
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In Eq. (115) JRij is the weight matrix Jij restricted to the units above
threshold: columns and rows of those below threshold are removed.

11.3 manifold

When each unit i has a single field in the quenched pattern η(s) and
the fields of the entire population are identical and regularly placed
in N discrete equispaced positions in S, then in the N → ∞ limit Eq.
(110) leads to a continuous attractor. When the regularity of the fields
in {ηi(s)} (or the regularity in the network connectivity, which we
do not treat yet) is perturbed, the continuous attractor “breaks”: only
some of the fixed points in the continuous attractor remain; they turn,
then, into discrete ones. Such a system can be well described through
the energy function (113). One can further define a cosine overlap
parameter (a different measure from the overlap x(s, t) which it is
convenient to use in the later replica analysis)

O(η(s),V(t)) =
∑N
i ηi(s) · Vi(t)√∑N

i (ηi(s))
2 ·
∑N
i (Vi(t))

2

(116)

as the cosine similarity between each configuration on the manifold
{~η(s)} and the state ~V(t) in the time-evolution of the dynamics, as in-
troduced in Sect. 3.3.2 (we refer to this, as the overlap space). If this
quantity is evaluated over all ~η(s) and it has a bump-like profile in
s with high overlap at the center we consider the state to be localized
on the manifold1. We take the s value at which the maximum occurs
as the position on the manifold where the activity is localized. If, in-
stead, the overlap evaluated over all η(s) is spread out, we consider
the state to be non-localized.

During a dynamical evolution towards a fixed point, if the localized
state monotonically slides on the manifold, we consider the manifold
as quasi-attractive or locally stable. If, instead, the localized state de-
forms, spreads out, and perhaps reforms at a different position of the
manifold leading to a fixed point, we consider the dynamics to have
jumped outside the manifold and the part of the manifold where it
should have slid, to have disappeared. In Fig. 38, presented in the
following chapter we illustrate, with an example, these concepts.

Remarkably, it should be noted that {~η(s)} is not the manifold per-se,
instead, we would like to define a manifold of configurations {~ξ(s)}

where for each s and unit ~ξ(s) ≈ ~η(s), as the {~η(s)} merely represents
the quenched patterns which were used to create the {~ξ(s)} through

1 When the irregularity is low, this can be visualized also as a bump in the activity
space (see Sect. 3.3.2 or the supplementary Fig. 37 and Fig.37.) plotting the activity
of each cell Vi at the position s on the manifold where ηi(s) is maximal.
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Hebbian learning, and do not necessarily coincide with them. In fact,
the configurations {~η(s)} will not in general be stable. Further, only
some of the locations s will be represented by reasonably close {~ξ(s)}.
We would like, however, to refer to a manifold for any location s, not
only for those represented by stable configurations (see also Sect. 12

for further details).

It turns out that most parts of the manifold {~ξ(s)} break up almost
synchronously at a certain noise level.

Before providing the quantitative measurements and the character-
ization of the phase space, let us take a step back to introduce how
we define the patterns {~η(s)} to reproduce real data.

11.4 algorithm for data generation

We take as paradigmatic experimental results those recently pub-
lished in Ref. [116], introduced in Sect. 9.1.2, and focus on three main
sources of variability: the number of fields, the field size and the field
peak rate. Remarkably, our results, presented in the following chapter,
do not depend on the details of the distributions and are general also
in simpler systems, without the constraints described in the following
subsections. The latter, which specify the system we consider in finer
detail, are solely required to reproduce satisfactorily the observations
in [116].

11.4.1 Number of fields

In the experimental results published in [116], the authors show that
place cells recorded in large environments can have up to 20 fields
(Fig. 19B) spanning from small to large ones (Fig. 19A) with an aver-
age of 4.9 fields per cell in each flying direction.

In order to simulate the distribution shown in Fig. 19B, we con-
sider that the number of fields nF per each unit is randomly drawn
from an exponential distribution with probability function f(nF, 1ζ) =
1
ζ exp(−nFζ ) under the constraint that zero values, or values above
nF = 21, are not accepted. This constraints leads to a distribution of
higher average than ζ, and we find (see figure in Appendix F.1) that
setting ζ = 4.7 results in 〈nF〉 ≈ 4.9.

11.4.2 Fields shape and size

We consider each field κ to be characterized by: i) the position sκ of
its center, ii) its linear dimension, or effective diameter, dκ and ii) its



11.4 algorithm for data generation 83

Figure 19: Comparison between experimental results (first row) and the dis-
tributions resulting from the algorithm we use (second row). Sub-
plots A)B)C)D) are borrowed from the original article [116] for
the sake of comparison. Subplot E) was obtained from the exper-
imental data plotted in D) kindly given us by the authors. A)F)
Distribution of smallest and largest field sizes per neuron (A) or
per model unit (F) (those shown have at least 2 fields). B)G) Dis-
tribution of number of place fields per neuron (B) or per model
unit (G) in one direction. In B) the bar at 20 includes all numbers
above 20. The average number of fields in B) is 4.9 and coincides
to the one obtained with this random realization of our proce-
dure. C) Distribution of fields sizes as obtained in experiments,
the log-normal parameters of the fit (µ = 1.57m, σ = 0.575m) co-
incides with the fit of the analogous distribution resulting from
our procedure (H). D)I) Scatter plot of the field size versus the
peak firing rate of each field as obtained in experiments (D) or
from our algorithm (I). ρ is the Spearmann correlation coefficient
between the two measures in the plot. H) Distribution of the ex-
perimental peak firing rates, fitted with a log-normal distribution
with parameters (µ = 1.549Hz, σ = 0.884Hz) L) Distribution of
peak firing rates as obtained with the algorithm. The sample dis-
tribution in F)G)H)I)L) was obtained with N=331 units.
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peak firing rate pκ.

Please note that we assume periodic boundary conditions, such
that fields are effectively lying on a ring of dimension L = 200m,
which we depict, throughout the Thesis, as open rather than closed,
for ease of visualization. Further, we assume that each field can be
modeled as a Gaussian bump, centered at sκ, with dimension dκ = 2σ

and maximal height pκ (Fig. 20).

The activity of a unit i at a certain position s is thus given by:

ηi(s) =

niF∑
κ

pκ

[
exp

(
−

(s−sκ)
0.5d2κ

)
− exp(−12))

1− exp(−12)

]+
(117)

where niF is the number of fields assigned to unit i and [ ]+ sets all
negative values to zero.

Figure 20: Example of a
field κ (black
line).

For the sake of reproducing the statistics
measured in experiments we do not al-
low fields to overlap, and we constrain
the sum of the dimensions of all fields
belonging to a unit to be less than (L −

3nF) meter, where L = 200m is the
size of the environment and the last
subtraction facilitates finding appropriate
random positions for the fields on the
ring.

We randomly draw the size dκ of
each field from a log-normal distribution

L(µd,σd) with µd = 1.57m and σd = 0.575m, as resulting from the
fit to the experimental data, reported in [116] (Fig. 19E,F).

11.4.3 Peak rates

The peak firing rate distribution, in the experimental recordings, can
be roughly fit with log-normal distribution L(µp,σp) with parame-
ters µp = 1.549Hz and σp = 0.884Hz, which we estimated from the
data presented in ref. [116] (reproduced in Fig. 19D) kindly given us
by the authors.

In order to introduce the correlation seen in the experimental record-
ings (Fig. 19D), given a field with a certain dimension dκ we define
the specific mean

µpκ = µp + 0.5 log

[
dκ

exp
(
µd +

σ2d
2

)] (118)
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and draw the first guess p̃κ of the peak firing rate corresponding to
that field from a log-normal distribution L(µpκ ,σp). Then, we prevent
having fields with peak firing rate much higher than 40Hz by using
instead of p̃κ directly, its non-linear transform pκ, inspired by those
used in phonology to transform Hz into Bark. In particular we obtain
the slightly modified peak firing rate of a field κ as:

pκ = 30arctan
( p̃κ
30

)
+ 6arctan

(( p̃κ
120

)2)
(119)

These functions, overall, lead to distributions satisfactorily agreeing
with the recordings, as shown in Fig. 19 D-I and E-L.
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Any tiny source of irregularity in {~η(s)} becomes, through Hebbian
learning, quenched noise in the connectivity matrix. This breaks the
asymptotic continuity of the fixed points on the continuous attractor
manifold (see Ch. 10).

We show that what remains of this manifold is a robust direction of
flow of the dynamics, which persists to be attractive in the remaining
N− 1 directions, even when irregularities are far more than tiny. We
refer to this mathematical object a quasi-attractive or persistent contin-
uous manifold {~ξ(s)}.

Let us characterize it with an example. In Fig. 38A - B we report the
energy landscape of two quenched patterns {~η(s)}, which we use to
create the connectivity matrices underlying the dynamical evolution
reported, with few representative steps, in Fig. 38C - D respectively
–refer to supplementary Figs. 37 and 38 for the plots in the activity
space.

One can evaluate whether a dynamical evolution is localized on
a manifold by looking at the overlap space (introduced in Sect. 11.3
and Sect. 3.3.2), i.e. at the overlaps of the time dependent variable
~V(t) with all ~η(s). If the activity is localized on {~η(s)}, this can be
intended as an indication of the existence of that portion of the quasi-
attractive manifold {~ξ(s)}.

In Fig. 38C the localized bump in the overlap space monotonically
slides on the quasi-attractive manifold towards one of its minima. As
a proof of concept of the non-exact identity but high similarity be-
tween the quasi-attractive manifold {~ξ(s)} and the patterns {~η(s)}, in-
troduced in Sect 11.3, one can see that the dynamical evolution in Fig.
38C reaches, roughly, a position lying between the second and third
minima of the energy of {~η(s)}. This is because in {~ξ(s)} the first four
minima of {~η(s)} become a unique global minimum (see Supplemen-
tary Figure 40).

When the noise exceeds a certain threshold, instead, the scenario
changes. We observe that during the dynamical evolution the local-
ized bumps deform, spreads out and, under certain conditions, re-
form on the manifold in a different position ( Fig. 38 B-D ).
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Figure 21: Dynamical evolution which slides or jumps. A)B) Energy land-
scape in s of two realizations of quenched patterns ~η(s) for differ-
ent noise levels. C)D) Overlap of a few V(t) configurations while
the dynamics reach the fixed points, starting from ~η(s = 4)(C)
and ~η(s = 85)(D). Colors indicate the timestep scaled from
light gray (initial condition) to black (fixed point). The dynam-
ics presented in C) slides on the manifold (the inset represents
a zoom-in) while the one presented in D) jumps outside and re-
enters. E)F) Estimation of the standard deviation around the cen-
ter of mass of the overlap profiles, removed of all ripples below
O(η,V) = 0.1 (see Ch. 13 and supplementary Fig. 39). A)C)E) re-
fer to {~η(s)} characterized by σd = 0.4, σp = 0.4, ζ = 1. A)C)D)
refer to {~η(s)} characterized by σd = 0.9, σp = 0.9, ζ = 1. The
networks are composed of N = 8000 units, s is discretized into
1000 equally spaced positions every 0.2m and the dynamics is
considered to converge when

∑
i(V

t
i − V

t−1
i )2 < 10−5.
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We characterize this behaviour as a jump outside the quasi-attractive
manifold, and interpret it as its loss of attractivity in the remaining
N− 1 directions, i.e. as its local disappearance. In the supplementary
Fig. 36 we report a few more examples of dynamics which we regard
as jumping outside the former quasi-attractive manifold.

12.1 measure

One can think of different approaches to quantify the loss of attrac-
tion, in the remaining N− 1 directions, of the quasi-attractive contin-
uous manifold. Here, we use three measurements, and refer to Sect.
F.3 for the specific details.

1. Proportion of dynamics which jump: Given a large number of
dynamics starting at different ~η(s), with s spanning the whole
lengths, we take the proportion of dynamics which exit the man-
ifold, i.e. those in which the localized bump does not slide con-
tinuously, as a measurement of the percentage of the manifold
which has vanished.

2. 〈Otang〉: Given the complete set of residual fixed points on the
manifold we evaluate, for each, the eigenvector corresponding
to the smallest eigenvalue of the Hessian matrix (Eq. (115)) and
estimate its cosine similarity with the direction of the manifold.
This quantity, which we name Otang, equals 1 only if the eigen-
vector closest to instability is exactly aligned with the manifold.

3. Bump width: Given a configuration of activity, whether this a
dynamical one or a fixed point, we can estimate its localization
on the manifold as the standard deviation of the center of mass
of its overlap profile with {η(s)}. The closer this value, once nor-
malized, is to 1 the more the configuration of activity is spread
on the manifold and the less it is localized. To make this quan-
tity informative we remove all sources of noise in the overlap
profile by thresholding it to an arbitrarily set value of 0.1. Fig.
21E-F shows the estimated bump width during the dynamical
evolution reported in 21B-C.
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P H A S E T R A N S I T I O N S A N D M A N I F O L D
P E R S I S T E N C E

We study identical realizations of the quenched place field centres of
the patterns {~ηi}, setting the irregularity of the peak firing rates and
field numbers at the experimental level, and vary progressively the
parameter σd (which regulates the fluctuations in the field size).

Figure 22: A) Phase transition in quasi-attractive manifold persistence - av-
erage proportion of jumps in the dynamics. We consider the
proportion of dynamics which jump outside the quasi-attractive
manifold as an estimation of its deterioration (see Sect.12.1); the
transition gets steeper with the size of the system. B) Average
number of fixed points versus σd. The number of fixed points
do not depend on the size of the system. The vertical line at
σd = 0.575 corresponds to random realizations of the distribu-
tion modeling experiments (see Fig. 19). Parameters: Data are
produced following the algorithm described in Sect. 11.4 and
all parameters except σd are set to model experimental results
(ζ = 4.7 to guarantee 〈nF〉 ≈ 4.9, µd = 1.57m, µp = 1.549Hz,
σp = 0.884Hz). Each point on each curve is obtained averaging
over 25-90 quenched realizations of the network (fewer when the
system size is larger), simulating 50 dynamics each initialized
with a different ~η(s), with s spanning homogeneously the whole
length (one every 4m). s is discretized into 1000 equally spaced
positions every 0.2m and dynamics are considered to have con-
verged when

∑
i |(V

t
i −V

t−1
i )| < 10−10. The step size varies from

γ = 0.08 to γ = 0.04, g = 17, k = 300.

We find that the quasi-attractive manifold, as we have character-
ized it in the previous chapter, breaks up with a phase transition at a
critical σd, which roughly coincides with that fitted from experimen-
tal data (σd = 0.575).
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92 phase transitions and manifold persistence

While the number of fixed points decreases with σd (Fig. 22B), and
not, interestingly, with the size of the system, the quasi-attractive
manifold persists intact up to the critical σd at which it undergoes
a transition with a steepness that does depend on the size of the sys-
tem (Fig. 22A and Fig. 23), as typical in phase transitions.

Figure 23: Phase transition in quasi-attractive manifold persistence - direc-
tion of the eigenvectors. 〈Otang〉 quantifies in the range 0− 1 the
alignment of the most unstable eigenvectors with the direction
of the manifold (see Sect.12.1); the transition from alignment to
non-alignment gets steeper with the system size. The solid line
represents the 0.25 quantile (75% of the overall data lie above the
line), horizontal lines correspond to the average, violin plots in-
dicate the complete distributions. Refer to the parameters of Fig.
22.

The average direction of the most unstable eigenvectors, correspond-
ing to any fixed point (either those which disappear or further stabi-
lize when increasing σd), transition similarly, as shown in Fig. 23. If
the unstable eigenvectors remain aligned to the manifold up to the
critical σd, they do not seem to show any preferred direction after
the transition.

13.1 a phase diagram with 3 distinct regions

We explored numerically the surrounding phase space by systemati-
cally varying the other sources of irregularity in the fields. As a short
recap of Sect. 11.4, the overall irregularity of the experimental place
cell maps, in a neural network model as the one there introduced, can
be fully described by three variables:

1. ζ: the rate of the exponential distribution used to draw the num-
ber of fields (Sect. 11.4.1)

2. σd: the standard deviation of the log-normal distribution used
to draw the field dimensions (Sect. 11.4.2)

3. σp: the standard deviation of the log-normal distribution used
to draw the peak firing rates (Sect. 11.4.3)
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Figure 24: Phase diagrams depicting, in the σp-σd plane, for increasing av-
erage number of fields ζ, the average percentage of the quasi-
attractive manifold which breaks up and the average bump width
(from 0 to 1) of the fixed points (see Sect.12.1 for details over the
measurements). Refer to supplementary figure 41 for the phase
diagram reporting the average number of fixed points and their
average sparsity. White crosses indicate the position correspond-
ing to the distribution of the experimental results. Parameters:
Data are produced following the algorithm described in Sect.
11.4 (µd = 1.57m and µp = 1.549Hz are set to model exper-
imental results). Each plot is comprised of 26x26 data points
interpolated. Each data point is averaged over 2 − 3 different
quenched realizations of the network. Each realization is stud-
ied simulating 50 runs of the dynamics, initialized with a differ-
ent ~η(s), s spanning homogeneously the whole length (one ev-
ery 4m). s is discretized into 1000 equally spaced positions every
0.2m and the dynamics are considered to have converged when∑
i |(V

t
i − V

t−1
i )| < 10−10. The size of the system is N = 16000.

The step size varies from γ = 0.08 to γ = 0.04, g = 17, k = 300.
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The value σd of the transition marking the break-up of the quasi-
attractive manifold seems to be independent of the other sources of
variability (in the number and peak rates of the fields; and also in the
connectivity if sparse). In contrast, for low σd and σp the network
seems to be in a third phase, where the dynamics evolve to a non-
localized configuration, lying outside the manifold (Fig. 24).

Figure 25: Rough sketch of a phase diagram, schematizing the results we
obtain from the simulations illustrated in Fig. 24 for quenched
random patterns modelling experimental distributions (refer to
Sect. 11.4) which correspond to the green point. The red curves
are intended to sketch the energy of the quasi-attractive contin-
uous manifold {~ξ(s)}. Gray - black bumps indicate the overlap
profile which one can calculate with the ~η(s) at each step of the
dynamics. The orange dashed manifold, instead, represent a pu-
tative manifold {~ξ(s)} which may exist but is not reached by the
dynamics.

This can be interpreted as a somewhat counterintuitive effect of
limiting the irregularity in both distributions, of field sizes and peak
rates: when both are relatively regular, and each unit has several place
fields, no place field prevails over the others, and the network is torn,
as it were, among the different places where its active units have place
fields, and fails to localize its activity. Above a region which appears
to be a quarter of a circle in a σd−σp plot, with radius growing with
ζ, the network does localize its activity, except that if it finds itself
to the right of the critical σd value mentioned above, it jumps to its
attractor state. The delocalized phase indeed disappears when each
unit has only one field on average.
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The particular semi-circular geometry of this region is outlined also
by the sparsity of the fixed points (see Fig. 41 in Appendix F.5) which
abruptly increases within the circular region. This seems to occur,
though, also for ζ = 1, where states are still localized, even if abruptly
more active. The boundaries of the different phases, which we ob-
serve in simulations, should be confirmed by an analytical derivation,
which is still in progress and which would possibly indicate the role
of the sparsity in the transitions (see Appendix H for a preliminary
attempt).

The transition towards a non localized state might be due to reach-
ing a sort of storage capacity, or more likely to a specific instabil-
ity that spreads activity out from the position on the manifold indi-
cated by the external inputs. Note, though, that the question remains,
whether numerically we have explored all the appropriate configu-
rations of parameters enabling the network to evolve towards a lo-
calized state (see Appendix F.7 for further details about parameter
selection).

The overall phase diagram, for ζ set at the experimental level, is
sketched in the rough schematic in Fig. 25, which we hope to derive
soon analytically.

The main transition, from the presence to the absence of the per-
sistent continuous quasi-attractive manifold seems to be general. Be-
yond being closely related to the characteristics of the distributions
observed in one experiment [116], indeed, it holds also under more
general constraints in the quenched patterns, i.e., when units are as-
signed individual fields of variable size (see Appendix G.1), or with
diluted connectivity (see Appendix G.2).
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While the storage of multiple regular place maps –as distinct con-
tinuous attractor manifolds in the same connectivity matrix– induces
quenched disorder, fragmenting the attractor and competing with fast
noise [55, 93, 129, 131, 133, 134, 144]; the storage of a unique irregular
map is already enough to break the continuity of the fixed points. We
see that the remaining stable states still lie on the manifold and that
this turns into an effective direction of flow in the dynamical evolu-
tion. We call this mathematical object a continuous quasi-attractor. We
find that there is a critical level of noise at which the quasi-attractive
manifold seems to abruptly break up, through a phase transition. Ap-
plying our analysis to experimental data [116] we observe that the
recordings lie at the edges of the transition.

We also find another phase, in which the network does not evolve
dynamically towards a localized state, but rather activity spreads out
so that it cannot be associated with a location on the manifold. This
third phase appears to be present only when each unit has multiple
fields, on average, and to be delimited by a circular boundary in the
σd,σp plane.

This result lead us to hypothesize that place cell maps, like those
observed in these bat recordings, may be effectively memorized in a
quasi-attractive continuous manifold. If the maps are precisely regu-
lar than the quasi-attractive manifold becomes a standard continuous
attractor. If, instead, they are irregular, the memory function is still
preserved and persists up to a critical level of noise σd.

In this hypothesis individual memories would be unstable bumps
and efficient coding of position could be possible either on a timescale
between the attraction and the drift, as previously hypothesized [131],
or if some biologically plausible mechanisms, such as those already
explored [60, 131, 135–137, 139], could increase the tendency of the
bump to stay still.

The three phases of the diagram which we find through numeri-
cal simulations, should be derivable through analytical calculations.
Our preliminary work in progress in this direction can be found in
Appendix H.
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Part IV

D O W E “ R E M A P ” B E T W E E N L A N G U A G E S ?

Vowels can be approximately described by the first two
formants of their sound spectrum. May the brain learn
vowels through a two-dimensional cognitive map, much
as an animal acquires a cognitive map of an environment,
expressed by place cells? If so, are the standard vowels of
different languages stored in different vowel maps and are
multilingual people remapping when changing language?
In this ongoing work, we model the perception of vowels
as the convergence towards fixed points on a two dimen-
sional manifold.
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I N T R O D U C T I O N

Understanding a different language, means, at first, differentiating its
speech sounds or phones. While this can be difficult even among native
speakers used to different dialects, it becomes hard when one has
never heard the other language before. In this case, it seems as if the
mental representation people have of their own languages hampers
the detection of a new sound by driving it towards an already known
phoneme. How does this translate neurally? Do we create phone cog-
nitive maps, as those rodents, for example, are thought to create for
physical space? Do we create cognitive maps for any relevant quan-
tity that can be described as varying in a continuous two-dimensional
space?

Vowels offer the perfect temptation to approach such questions the-
oretically.

15.1 vowels in two dimensions

Figure 26: International phonetics alphabet vowel charts. F1 and F2 can be
measured in Barks, which are non-linearly related with Hertz
through a formula which can be found in Ref. [145, 146]. Barks
values are merely indicative, however; each person’s vowels can
be thought of as shifting and slightly deforming the trapezoid in
one way or another, see for example Fig. 27.

Phonemes are the “smallest identifiable units found in a stream of speech
that can be transcribed” [147] and are usually subdivided into vow-
els and consonants. One could argue that phonemes, therefore, cor-
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102 introduction

respond to the smallest identifiable units which we are able to con-
sciously categorize. How does our brain perceive phones and, conse-
quently, categorize them into phonemes?

A few studies indicate that vowels and consonants are indepen-
dently coded in the brain [148, 149]. The impairment of one system
does not seem to determine an impairment in the other. One can thus
focus either on vowels either on consonants in order to gain some
specific hints over the mental representation of phonemes.

Here, we will focus on vowels, as they can be differentiated with
notable simplicity through two physical, continuous, quantities.

If one records vowels, decomposes their sound spectrum into fre-
quencies, takes the first two resonant components above the funda-
mental frequency (F1, F2), generally called formants, and uses them
as coordinates to represent the vowels in a 2-dimensional plane, one
sees that each standard vowel occupies, as a small cloud, a specific
position on such (F1, F2) Euclidean space [150]. This is known as a
vowel chart, and, remarkably, the two dimensions are simply related
to two physical quantities [151, 152]. In particular, F1 roughly mea-
sures “how open is” and F2 “where is the main occlusion of” the
vocal tract while pronouncing the vowel. This is not true for conso-
nants, whose categorization seems to be more complex [146, 153, 154].
Fig. 26 shows the international phonetics alphabet vowel chart while
Fig. 27 shows three vowel charts we estimated from recordings.

15.1.1 Vowels as place fields?

Given the intriguing possibility of categorizing vowels in two dimen-
sions through an acoustically well defined procedure, it is straight-
forward to wonder whether our brain uses a similar code. The ex-
perimental results in the domain of spatial cognition (Sect. 2), espe-
cially those on place cells and their remapping, indicate a possible
exploratory direction. Indeed, beyond the two dimensional space an-
other indication of potential correspondence seems to exist between
place fields and vowels: auditory place coding through tonotopy [155].
The perception of a sound initially occurs through specific hairs cells
in the inner ear which move in response to specific frequencies. In
particular, the whole cochlea can be described as comprising a one-
dimensional frequency map, with a gradual progression of hair cells
sensitive to increasing frequencies [156, 157]. Hair cells do not fire
action potentials on their own, they generate a receptor potential
through a cascade of events which induces a spike in the connected
neuron [158]. The signal then navigates from one synapse to the other
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Figure 27: Italian vowel charts of three different young women (color coded)
based on the formants extracted from a number of repetitions of
each vowel. One can appreciate that each chart is different. Differ-
ences can perhaps be understood as related to the bilingualism of
two subjects, as will be mentioned later. F1 and F2 are measured
in Barks.

eventually reaching the cortex, where the situation is less easy to de-
scribe. However, at least at the first stages of the auditory pathway,
there is good evidence that specific neurons encode specific frequen-
cies.

One could thus imagine an abstract two dimensional (F1, F2) Eu-
clidean sheet, where each neuron has a field at one (x,y) position.
What if each familiar vowel can be thought of as a fixed point on
such a plane learned through a Hebbian rule, and then reached via
recurrent dynamics? In the following chapter we carry out some pre-
liminary studies on this hypothesis.

In this part of the thesis the main results were obtained with Emilia
Cortesi, a Master student I co-supervised from May to December
2020.
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A C O N T I N U O U S Q U A S I - AT T R A C T O R S T O R I N G
V O W E L S

16.1 model description

We consider a fully connected network of N = 2500 threshold lin-
ear units, each selective to one or more fields in a putative (F1, F2)
square chart of 11x11 Barks2. We discretize this Euclidean (F1, F2)
space into S = 2500 equidistant positions lying at the vertices of a
two-dimensional grid with coordinates ~s = (F1, F2). We consider each
unit to be selective to one or more specific locations on the plane ac-
cording to a Poisson distribution with average value λ = 4, arbitrarily
selected as a hypothesis of realistic variability. The selectivity is taken
to realize a place-like code, thus, the firing map of each unit has a
number of Gaussian bumps (of standard deviation σ ≈ 0.25 Barks)
centered at random positions. Based on the field selectivity we create
a template matrix {~η}~s, where ~η~s is the population activity of all units
at position ~s, while ηi(~s) is the firing rate map of unit i sampled at
all discretized positions ~s.
We then construct the connectivity matrix through Hebbian learning
as

Jij =
1

S

∑
~s

(ηi(~s) − 〈η〉)(ηj(~s− 〈η〉) (120)

and obtain a semi-continuous attractor.
Remarkably, the attractor is semi-continuous, not only because the
plane is discretized but also because units have multiple selectivity.
As shown for the 1d case in Part iii, indeed, when patterns are irreg-
ular, be it in the activity profile of different units or in the density of
fields at each position, the irregularities act as quenched noise in the
connectivity matrix. The retrieved bumps slide on the manifold –here
2-dimensional– which persists, in the sense of remaining attractive as
a manifold, up to a certain noise toleration, after which it disappears.
While we did not carry out a systematic study in two-dimensions
for the exploratory model we just described, we evaluated the resid-
ual number of fixed point configurations of activity. We consider the
system to realize a semi-continuous attractor, if its activity evolves
towards one of several bump profiles, in terms of overlaps with the
templates ηi(~s’s, which satisfactorily tile the (F1,F2) plane.

We consider this initial connectivity matrix as what one individual
would have before learning any language.
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16.1.1 Training procedure

We mimic phoneme learning as follows:

• we record a vowel pronounced by a native speaker (refer to
Appendix I.1 for details over the method), extract the formants
(F1, F2), estimate what would be the template in that exact posi-
tion ~η(f1,f2), given the field selectivity of the neurons, and set it
as the initial condition of a dynamical evolution;

• we evolve the dynamics synchronously as

~Vt+1 = g
[
J~Vt − Th

]+
(121)

where Θ(·) is the Heaviside step function. The average activity
is kept fixed through the gain g, and the sparsity through the
threshold Th, equal for all units.

• when the dynamics reaches a fixed point we use the final con-
figuration ~Vfp to update the connectivity matrix as

Jnewij = Joldij + γ(Vfpi − 〈Vfp〉)(Vfpj − 〈Vfp〉) (122)

with γ being the learning rate, set at 10−4.

• we do the same for all other standard vowels and repeat the
procedure about 700 times, repeatedly using all (roughly 25)
realizations of each vowel provided by the same subject.

16.1.2 Probing learning

We do not define a priori where the learned vowel should lie in the
(F1, F2) plane. We probe learning through the following procedure,
illustrated for a paradigmatic example, shown in Fig. 28:

• As introduced in Sect. 16.1.1, after creating the basic-connectivity
matrix, we provide vowels from a native speaker to the learning
algorithm (Fig. 28a).

• We run S simulations of the dynamics, with S the number of
discretized coordinates ~s, each having as initial condition one
specific ~η~s. We count the number of different fixed points to-
wards which the dynamics evolve and for each we estimate the
overlap with all the ~η~ss as defined in Eq. (3) to check it satisfac-
torily tile the (F1,F2) plane. The positions with maximal overlap
for each fixed point vector is plotted as a black stars in Fig. 28b.

• We run a number of simulations having as initial stimulus (i.e.
as initial condition) one recorded vowel from the same native
speaker used for the training and evaluate the fixed configura-
tion towards which the dynamics converge. This is represented
in Fig. 28b as the arrows starting from the color coded vowels.



16.2 the vowel charts of bilinguals can be stored within one map 107

Figure 28: Example of a network learning Italian vowels. a) Formants of
vowels recorded from a native speaker. b) fixed points plotted
as stars over the positions corresponding to the templates with
which the overlap is maximal. Arrows indicate the fixed config-
urations towards which the dynamics evolve if initialized from
recorded vowels. c) Maximal percentage of a specific category
of vowels falling into each attractor. F1 and F2 are measured in
Barks.

• We evaluate the percentage of vowels which fall into one or
another attractive configuration of activity (Fig. 28c).

16.2 the vowel charts of bilinguals can be stored within

one map

Having established that a semi-continuous attractor neural network
can learn vowels, from a theoretical point of view, storing them as
separate fixed points, one can wonder

• whether something similar is occurring in the brain

• if so, whether we remap from one space to another when switch-
ing languages.

As a first theoretical exploration, we have considered three case stud-
ies involving bilingual young women of similar ages: a Hungarian
native speaker who has proficiently learnt Japanese and two bilin-
guals from birth, a native Italian and Swedish speaker (It-Sv) and a
native Italian and Chinese speaker (It-Zh); from here onward they
will be called simply Judit, Isabella and Giulia, respectively.
Fig.29 shows the conjunctive vowel chart of the subjects. Two prelim-

inary observations can be tentatively made:

1. The vowel charts of one language may be influenced by the
other one. The Italian vowel chart in b) (Isabella) is wider than
the one in c) (Giulia), as if the Chinese vowels, mostly lying at
low F2, drive the fixed points towards the right.

2. Some vowels, whether pronounced within one or the other lan-
guage are indistinguishable, as for “a” or “o” in c).
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Figure 29: Conjunctive vowel charts of three bilingual subjects. a) Judit:
Hungarian-Japanese (Hu-Ja) b) Isabella: Italian-Swedish (It-Sv) c)
Giulia: Italian-Chinese (It-Zh). The vowel corresponding to each
cloud of points is written nearby. For an better visual distinction
between the different realizations of the same vowel, we refer to
the separate color-coded plots in the Appendix I.2. F1 and F2 are
measured in Barks.

If cognitive vowel charts provide a useful model, these observations
could lead to hypothesize that the chart is unique for the two lan-
guages of these bilingual subjects, in agreement with previous lin-
guistic results on English-Italian bilinguals [159]. Independent charts,
indeed, would not be expected to induce movement in the position of
the vowels of either language, as unit selectivity would be effectively
orthogonal from one language to the other.

From a computational point of view, instead, we have tentatively
confirmed that, in principle, with a network model as the one intro-
duced in the previous section, all vowels presented in each subplot
of Fig. 29 can be learned as separate fixed points within one map
through Hebbian learning, and retrieved with a proper stimulus.

16.3 experimental paradigm and conclusion

The preliminary explorations mentioned in this part of the thesis in-
dicate that what remains of a continuous attractor neural network
when asymmetries are introduced can model vowel learning, memo-
rization and retrieval within a putative individual cognitive map. Ex-
perimental evidence indicating whether any analogous phenomenon
is occurring in the real brain is, however, generally lacking. An experi-
mental paradigm defined by Kaya et al [160] indicates a possible test-
ing procedure. In the study, the authors consider bilingual subjects
and employ a vowel-confusion paradigm [161]: subjects are induced
to place themselves in a mental language environment, as it were,
by listening to a story narrated in one of the two languages. Then,
together with some binary (yes/no) questions about the story, sub-
jects are asked to answer if pairs of artificial sounds –corresponding
to specific (F1, F2) positions– are different. How well, in terms of cor-
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rect responses, the subjects perform in differentiating two phones, is
then translated through an algorithm in how perceptually distant the
phones are in the subject putative (F1, F2) cognitive map. Whether
such perceptual map differs when subjects are induced to be placed in
the other language environment will give crucial information regard-
ing the hypothesis that people “remap” when switching languages.
The experimental study is currently being carried out and its forth-
coming results, combined with the computational approach here il-
lustrated, will possibly lead to some preliminary conclusions about
the mechanisms underlying phoneme cognition.

Beyond vowels, these results could also contribute to understand-
ing whether quasi-attractive manifolds, i.e. what remains of contin-
uous attractor neural networks when irregularity is introduced (see
Part iii), could be collective neural behaviours generally emerging in
the brain to encode (or place-code) continuous irregular variables.





G E N E R A L D I S C U S S I O N

The studies presented in this thesis wish to contribute, through two
interconnected itineraries and one exploratory application, to the search
of a theoretical understanding embracing irregularity and dishomogen-
ities in memory storage.

Memories are generally conceptualized as attractors of the neural
dynamics. In particular, two broad classes of attractors, i.e. discrete
and continuous ones, are particularly adopted as useful notions in
Neuroscience. The first ones are intended to represent uncorrelated
and separate memories. The second ones, instead, are useful to de-
scribe spatial memory, in particular spatially selective cells.

In our first study, described in Part ii, we consider discrete attrac-
tors, and show, through analytical calculations, that the difference be-
tween the maximal number of patterns which can be stored in an opti-
mally connected network, in contrast to one connected through a bio-
logically plausible learning strategy, decreases (or even changes sign)
when one considers biologically plausible units as compared to bi-
nary ones. Optimal connections can be approached through modern
machine learning strategies, which iteratively optimize the weights
through computationally intense back-propagation algorithms. Bio-
logically plausible connections, instead, are those emerging in an ac-
tive network following the simple Hebbian learning rule.

Specifically, we see that the storage capacity evaluated à la Gardner
(i.e of a perceptron) is reached and even surpassed by that obtained
with Hebbian learning [57] in networks aiming at resembling brain
responses, i.e. when the transfer function is Threshold linear (or ReLu)
instead of step-like. We see that this increase seems to be made pos-
sible by an intrinsic feature of non-binarity: a code instantiated by
threshold linear units ηi can vary its sparsity a =

〈η〉2
〈η2〉 . When one im-

poses optimality in the connections one usually analytically consid-
ers perfectly retrieved memories, while when one considers Hebbian
learning, patterns can be retrieved with errors (the quenched vari-
ables are indeed the patterns). The non-optimal but biologically plau-
sible Hebbian learning strategy leads to an emergent re-organization
of the activity code which retrieves sparser patterns, composed by
those units which were more active in the memory. We find that such
trend, which can not occur in the binary reduction as all units are
equally active, is the fundamental source of the apparent violation
of the storage capacity. We also explore the nature of the retrieval to
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non-retrieval transition in Hebbian learning and see that the transi-
tion shifts from first to second order depending on the detailed dis-
tributions expressed by the threshold linear units.

Threshold linear units are essential also in our second study. Neu-
rophysiological recordings of spatially selective cells in rodents and
other species, in the past decades and especially in the past few years,
particularly when carried out in quasi-ecological settings, have high-
lighted an intrinsic irregular and chaotic nature of such neuronal re-
sponses, irreducible to simple geometrical principles. These irregu-
larities take the form of fields spanning different sizes and numbers
but also different peak firing rates. In Part iii of the thesis we study
how irregular and complex spatial memory may be accounted for in a
continuous attractor theory. We show that while continuous attractors
break when considering irregularities, i.e. the number of fixed points
on the manifold decreases from an infinite set to a very small num-
ber, the few remaining fixed points still lie on the manifold, which
becomes a direction of flow, persisting up to a transition. In the stan-
dard continuous attractor neural network perspective the number of
fixed points on the manifold somehow relates to and quantifies the
memory function quality: each fixed point is considered as the memory
of a specific spatial location and the fewer the fixed points the less
an environment is considered to be memorized. While small noise
causes limited "wrinkles" in the continuous attractors and the result-
ing mathematical objects were previously studied as a good approxi-
mation of a well behaving continuous attractor, irregularities such as
those observed in recent experiments (see Sect. 9) are way to large to
fit this characterization.

We show, however, that one may consider as memory, instead of the
fixed points, the manifold itself, even if comprised mostly of asymp-
totically non-fixed points, and one can consider retrieval as occurring
at a specific time scale, or the bump to be kept on the manifold by
some external input. We call this object a continuous quasi-attractive
manifold and show that it persists as stable even when considering
large scale dishomogenities, thus retrieving irregular place maps up
to a critical level of noise, at which it breaks up. We obtain numer-
ically a phase diagram, considering the variation of the continuous
quasi-attractor while making the distributions of field size and peak
rate increasingly variable. We see that real irregular recordings [116]
lie just before the described transition. Further we see that another
phase appears, where the activity is not localized. We are currently
studying how to derive the boundaries analytically.

While in Part ii of this thesis we show, considering discrete attrac-
tors, that Hebbian learning can surpass the Gardner bound at the
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cost of sparsifying the retrieved patterns, in Part iii we see numer-
ically that the more irregular are the maps to be memorized, in a
continuous quasi-attractor, the more only a few units remain active,
in the discrete fixed points. One can infer from this comparison that
the more maps are irregular, the more the storage of each position
in space resembles one of the discrete attractors, thus enhancing the
storage capacity of the network.

In the last part of the thesis, presented in Part iv, we explore the
neural bases of phonology and hypothesize that vowel charts may be
stored, in the brain, through continuous quasi-attractors. We define
the problem, run some preliminary simulations and experiments a
testing procedure.

The calculation of the Gardner bound for Threshold linear units
and the analysis of continuous quasi-attractive manifolds highlight
the role of sparsity in regulating memory storage in the brain, in
different systems, possibly including phonology.





Part V

A P P E N D I X





A
M A I N A N AT O M I C A L T R A I T S O F T H E
H I P P O C A M PA L S Y S T E M

The hippocampal system, a brain region situated in the medial tem-
poral lobe, can be subdivided in several areas, and first in two main
regions, the hippocampal formation and the parahippocampal region
[162], which can be differentiated by their gross cytoarchitectonic or-
ganization. The hippocampal system is highly similar in different
mammalian species and here we give a short overview focusing on
rodents.

a.1 the hippocampal formation – with place cells

The hippocampus proper, or cornu ammonis (CA) has pyramidal
principal cells in one layer – a cortical structure called allocortex – and
is further subdivided in a sequence of three areas, CA1, CA2 and CA3,
with remarkably distinct connectivity between them. It is flanked on
the input end by the dentate gyrus, or DG, which evolves out of the
same type of cortex but with small granule cells instead of pyramidal
cells, and on the output end by the subicular complex, which, in as
many as 5 internal subdivisions [163], links the hippocampus to the
adjacent multi–layer cortex. Place fields have been found throughout
the hippocampal formation and have been studied especially in CA1

and CA3. For a long time, in fact, it was puzzling how place cells in
the two subfields looked so similar, apart from minor statistical differ-
ences, when, instead the circuitry is so different: CA3 is dominated by
recurrent connections, unlike CA1, and the main afferent connections
to CA3 are from the DG granule cells and from Entorhinal Cortex
layer II, unlike those to CA1 which are from EC layer III and from
CA3 itself (see Fig. 30).

Figure 30: Schematic representation of the connectivity between three main
regions of the hippocampus: DG, CA3 and CA1.
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a.2 the parahippocampal region – with also grid cells

The parahippocampal region is characterized in part as periallocor-
tex, to emphasize its transitional nature to fully neocortical structure
with multiple layers of principal cells. It is formed by the entorhinal,
perirhinal, postrhinal cortices and by the components of the subic-
ular complex, that some prefer to view separately from the subicu-
lum proper. The medial subdivision of the entorhinal cortex (mEC)
has risen to particular prominence after the discovery of grid cells,
somewhat obscuring the fact that most of its principal cells do not
conform to the grid cell stereotype even in standard laboratory set-
tings, nor do those of the other parahippocampal areas. At the sys-
tem level, perirhinal cortex makes afferent connections to lateral EC
that do not appear to convey fine spatial information, unlike the con-
nections from postrhinal cortex to mEC. Grid cells emerge, in this
perspective, as one form of refinement of spatial information before
it is merged with nonspatial information in the hippocampus, where
both lEC and mEC project, and largely transformed into a place cell
code, at least in rodents.

a.3 the entorhino-hippocampal circuitry

Principal cells from EC layer II reach DG and CA3, while principal
cells from EC layer III reach CA1. Internally in the hippocampus, ac-
tivation propagates in a sort of one-directional loop, with recurrence
(in CA3) and shortcuts. DG granule cells project their so-called mossy
fibers to CA3, where they make sparse but powerful synapses on the
apical dendrites close to the cell body of CA3 pyramidal cells. Since
the same CA3 cells receive many more (but weaker) synapses on their
distal apical dendrites from the same fibers originating in EC layer II
that, en passant, connect to the granule cells, a major riddle has been
to understand this apparent duplication of the information arriving
to CA3, directly and, as it were, translated by the DG. A more recent
question involves CA2, which had long been regarded merely as a
small transition region between CA3 and CA1; recent evidence on a
potentially important role in social cognition [164] has been accompa-
nied by the observation of CA3-like anatomical features in CA2, such
as prominent recurrent collaterals [165] and the formation, perhaps in
pathological conditions, of mossy synapses [166]. Feedforward con-
nections from CA3 to CA1 (the Schaffer collaterals) and from CA1 to
subiculum are also intriguingly combined, in what may be called a
heteroassociative architecture, with EC layer III inputs to these two re-
gions. Fibers then project back from CA1 and subiculum to EC layers
V and VI.



B
D E R I VAT I O N O F T H E L I M I T S O F T H E G A R D N E R
C A PA C I T Y

From Eq. 54 of the main text it is possible to evaluate the two limits
of very sparse and non-sparse coding. First, a simple substitution at
f = 1 leads to

x = −
d1

g
√
d3

(123)

α−1
c = 1+

1

g2
. (124)

The limit f→ 0 is a bit trickier. We first rearrange the first equation
in Eq. (3) as

f

1− f
=

1

(x+ d1
g
√
d3

)

∫∞
x

Dt(t− x) =
1

(x+ d1
g
√
d3

)

(e− x2

2

√
2π

− x

∫∞
x

Dt
)

(125)

As f goes to zero, for the left hand side to be equal to the right
hand side, we should have x→∞. We therefore use the expansion

∫∞
x

Dt =
e−

x2

2

√
2π

[1
x
−
1

x3
+O

( 1
x5

)]
to write the right hand side of Eq. (125) as

f

1− f
≈ e−

x2

2

√
2πx3

. (126)

We find a solution to Eq. (126) through the following iterative pro-
cedure. We first solve the leading term for f→ 0 in x→∞ namely

f ≈ e
− x2

2

√
2π

.

yielding

x ≈

√
2 ln

( 1√
2πf

)
(127)
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We then insert x from Eq. (127) into exp(−x2/2) =
√
2πfx3 to obtain

the logarithmic correction

e−
x2

2 ≈
√
2πfx3

x ≈

√
2 ln

( 1√
2πfx3

)
x ≈

√√√√2 ln
( 1√

2πf

)(
1−

ln x3

ln 1√
2πf

)

≈

√
2 ln

( 1√
2πf

)(
1−

3

4

ln
(
2 ln( 1√

2πf
)
)

ln 1√
2πf

)
. (128)

where in the last passage we have used the Taylor expansion of the
square

√
1− y = 1− y

2 +O(y2) around y = 0 as for f→ 0, lnx3

ln 1√
2πf

→ 0.

We have tested numerically that the above expression Eq. (128) for
x is indeed a solution to Eq. (125) for f→ 0.

We now proceed to evaluate αc and we apply the same Taylor ex-
pansion as before

αc =
{
f[〈(x+ ξi

g
√
d3

)〉2 + 1] + (1− f)

∫∞
x

Dt(t− x)2
}−1
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xe−
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2
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To summarize, in the limit f→ 0 we obtain
x ≈

√
2 ln

(
1√
2πf

)(
1− 3

4

ln
(
2 ln( 1√

2πf
)

)
ln 1√

2πf

)
αc ≈

{
fx2 +

√
2
π
e−

x2

2

x3

}−1
.

(129)

Substituting x in αc to the leading order leads to the limit reported
in the main text at page 41.



C
D E TA I L S O F T H E T L P E R C E P T R O N T R A I N I N G
A L G O R I T H M

For the purpose of assessing whether the Gardner capacity for error-
less retrieval can be reached with explicit training, we can decompose
a network of, say, N+ 1 = 10001 units into N+ 1 independent thresh-
old linear perceptrons. A threshold linear perceptron is just a 1-layer
feedforward neural network with N inputs and one output, the activ-
ity of which is given by a threshold-linear activation function.

[h]+ = max(0,h) (130)

The network is trained with p patterns. One can then think of the
input as a matrix ξ̄ of dimension [N×p] and of the output as a vector
~η of dimension [1× p].

The aim of the algorithm is to tune the weights such that all p
patterns can be memorized. In order to tune the weights we start from
an initial connectivity vector~J0 of dimension [1×N] and estimate the
output ~̂η as:

~h = ~Jξ̄

~̂η = g[~h]+
(131)

where g is the gain parameter. We then compare the output ~̂η with
the desired output ~η through the loss function

L(~̂η) =
p∑
µ=1

1

2
(η̂µ − ηµ)2. (132)

The TL perceptron algorithm can be seen as simply a stripped down
version of back-propagation, for a 1-layer network: the weights ~J are
modified by gradient descent to minimize the loss during the steps
k = 1..kMAX where kMAX is the number of steps needed for the gradi-

ent descent in order to reach the minima dL(~Jk)
d~Jk

= 0. If at the minima

L(~JkMAX) = 0 at least a set of weights exists for errorless retrieval at
that p value. The storage capacity αc = pmax

N is evaluated by estimat-
ing pmax as the highest p value enabling to reach L(~JkMAX) = 0.
Initializing the weights around zero facilitates reaching the minima.
The chain derivative that in general implements gradient descent in
back-propagation, in this case reduces to

~Jk+1 = ~Jk + γ
g

p
(~η− ~̂η)Θ(~̂η)ξ̄ T (133)
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122 details of the tl perceptron training algorithm

where Θ(~̂η) is the Heaviside step function applied to all N elements
of ~̂η and where γ is a learning rate. Note that the gain g, appearing as
a multiplicative factor both in Eq. (133) and Eq. (131) is performing a
similar role as the learning rate, with which it can be tuned.

In the simulations presented in Fig. 14 of the main text, in order
to obtain the results shown by red diamonds we have used N = 100

units, g = 1 and binary patterns. For each value f, we increase p and
check whether when the connectivity matrix stops changing, we have
L(~̂η) = 0. We take pmax as the largest value of p for which this is
possible for at least a set of random initial weights. As for the learn-
ing rate, we use a decreasing scheduling, initially set to γ = 0.2. As
the minimization progresses, some weights stop changing while the
others keep changing and therefore when there are only a maximum
of 5 weights changing, we decrease the learning rate to γ = 0.02, and
finally in later iterations when the number of still varying weights
reduces to 2 we use γ = 0.002. The initial condition of the weights
are drawn from a Gaussian distribution of mean µ = 0 and σ = 10−2

and each (f,p) combination is tested at least from 20 random initial
weights, each for a random data sample. In Fig. 14 of the main text
we restrict our analysis to N = 100 and f > 0.05 for numerical lim-
itations. Decreasing f implies on one side increasing the number of
patterns, thus making the process slower; on the other side it reduces
the possibility of finding non-zero values for finite N. Increasing N in
order to find non-zero values requires increasing p accordingly, mak-
ing the process even slower.
According to the analytical calculations, the same f dependence of
the capacity found for binary patterns should also hold for other dis-
tributions. In Fig. 14 we therefore also show the numerical experi-
ments for input patterns taken at random from the ternary distribu-
tion P(η) = (1− f)δ(η) + f

2δ(1− η) +
f
2δ(2− η) (green crosses in Fig.

1); the same distribution is also used for the outputs. The numerical
results are consistent with the analytical results.



D
F U RT H E R E X P L I C I T D E R I VAT I O N S W I T H H E B B I A N
L E A R N I N G

d.1 the mathematical forms of the binary, ternary, qua-
ternary and exponential distributions used in the

main text

In chapter 6, we have compared capacity values using a binary, ternary,
quaternary and an exponential distribution:

p(η) = (1− a)δ(η) + aδ(1− η) (134)

p(η) =
(
1−

9a

5

)
δ(η) +

3a

2
δ
(
η−

1

3

)
+
3a

10
δ
(
η−

5

3

)
(135)

p(η) =
(
1−

9a

4

)
δ(η) +

3a

2
δ
(
η−

2

9

)
+
3a

5
δ
(
η−

5

9

)
+ (136)

+
3a

20

(
η−

20

9

)
(137)

P(η) = (1− 2a)δ(η) + 4a exp(−2η) (138)

One can see that all distributions are such that 〈η〉 =
∫∞
0 dηP(η)η = a

and 〈η2〉 =
∫∞
0 dηP(η)η

2 = a, so that a coincides with the sparsity
〈η〉2/〈η2〉 of the network. The fraction of active units is thus related
to a as f = a, 9a/5, 9a/4, 2a respectively.
One can also easily see that

A
binary
2 (w, v) =

a

v

[
−wφ(w) − σ(w) +

(
w+

v

a

)
φ
(
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v
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)]
A

binary
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+ a
{[(
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)2
+ 1
]
φ
(
w+

v
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)
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(
w+

v

a

)
σ
(
w+

v

a

)}
(139)

and the same can be explicitly defined also for the ternary and qua-
ternary distributions. For the exponential one, instead, we derive it
analytically in the following section.

As a supplement to Fig. 14 in Chapter 6, reproduced here in the 3

separate panels in the upper row in Fig. 31, we show a comparison
between the Hebbian capacity and the Gardner one when plotted as
a function of the output sparsity (in the bottom row of Fig. 31). The
Gardner storage capacity is now in each of these 3 cases above the
Hebbian capacity, taken as a function of the output sparsity instead
of the input one.
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124 further explicit derivations with hebbian learning

Figure 31: Supplementary to Fig. 14 in Chapter 6. Comparison between the
Hebbian and Gardner storage capacity for 3 discrete distributions.
The upper row considers as sparsity parameter the one of the
input pattern, the lower row the one of the retrieved pattern. The
Garner capacity is that given by Eq. (53) in Sect. 5.2

d.2 analytical derivation of the exact hebbian storage

limit for the exponential distribution

Here we derive the explicit form of the expression for A2 and A3 in
Eqs. (69) and (70), introduced of Sect. 6.1 for an exponential distribu-
tion of the patterns. In general, for A2 we write

A2 =
a

v(1− a)

∫∞
0

dηP(η)(
η

〈η〉
− 1)

∫x(η)
−∞ Dz(x(η) − z)

=
a
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{ ∫∞
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Dz
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v
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− 1)(x(η) − z)+

+

∫w
−∞Dz
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0

dηP(η)(
η
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− 1)(x(η) − z)

} (140)

with x(η) ≡ w+ vη/〈η〉. Substituting Eq. (138) we obtain

A
exp
2 =

a

v(1− a)
(A2.1 +A2.2 +A2.3)
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∫w
−∞Dz
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a
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a
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(141)
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Solving the equations leads to

A2.1 = (1− 2a)σ(w) +
[ v
a
+w− v− 2wa

]
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Thus
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2 = φ(w) + exp

(2aw
v

+
2a2

v2

){
φ
(
−w−

2a

v

)
+

a

v(1− a)

[
σ
(
w+

2a

v

)
−
(
w+

2a

v

)
φ
(
−w−

2a

v

)]} (143)

For A3 we have

A
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Substituting Eq. (138) we obtain

A3.1 = (1− 2a)σ(w) +
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and solving the equations leads to

A3.1 = 2a
[
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Thus

A
exp
3 = 2v(σ(w) +φ(w)) +wσ(w) + (1+w2)φ(w) +
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d.3 hebbian capacity of tl networks storing log-normal

distributed patterns

In chapter 6, we studied the storage capacity of TL networks when
the neural activity of the stored patterns are drawn from a number of
distributions: binary, ternary, quaternary and exponential. In particu-
lar, we analysed the experimental data in relation to the exponential
distribution. Several authors, e.g. Buzsáki and Mizuseki, in [85], have
observed that often neural activity distribution resemble a log-normal
distribution of suitable mean and variance. While not claiming to per-
form a comprehensive model selection, their study makes the impor-
tant point that neural activity in many instances has a heavier tail
than Gaussian, and is better modelled by a log-normal distribution.
In this section, we therefore analyze the storage capacity of TL net-
works with Hebbian learning also for patterns whose activity follows
a log-normal distribution. To be concrete, we assume that the patterns
η are drawn from the following distribution

P(η)dη =
1

η

e
−

(ln(η)−µ)2

2κ2

κ
√
2π

dη (148)

for which we have

〈η〉η = eµ+
κ2

2 (149a)

〈η2〉η = e2κ
2+2µ, (149b)

where here and in what follows 〈· · · 〉η represents averaging with re-
spect to the log-normal distribution in Eq. 148. The sparsity, as de-
fined in Eq. 4 of the main text, then reads

a =
〈η〉2µ
〈η2〉µ

= e−κ
2

(150)

and it only depends on κ and not on µ.
If we substitute z = ln(η)−µ

k , such that η = ezk+µ we obtain

P(eκz+µ)dz =
e−

z2

2

√
2π
dz. (151)

Using this, and the fact that

η

〈η〉
= eκz+µ−µ−

κ2

2 = eκz−
κ2

2 , (152)

we can evaluate the quantities A2 and A3 defined in Eqs. (69) and
(70) of Sect. 6.1 as

Aln−n
2 (w, v) =

a

v(1− a)

∫∞
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2 − 1
)
·

·
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2 ) + σ(w+ veκz−
κ2

2 )
] (153)
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Aln−n
3 (w, v) =

∫∞
−∞Dz[(w+ veκz−

κ2

2 )2 + 1]φ(w+ veκz−
κ2

2 )+

+ (w+ veκz−
κ2

2 )σ(w+ veκz−
κ2

2 )

(154)

which can then be used to find the storage capacity, αc, as the value
of α above which Eq. (78) in Sect. D cannot be satisfied.

Fig. 32a shows αc for the log-normal distribution as a function
of the sparsity a. For comparison, we have also included the results
for the exponential distribution. One can see that, when plotted as a
function of the sparsity of the stored patterns, the capacity of the log-
normal distributed patterns is higher than the exponential one. But
this high capacity is obtained because of the much sparser retrieved
pattern compared to the stored one, as in Fig. 32c. When plotted ver-
sus the sparsity of the retrieved pattern, as can be seen Fig. 32b, the
capacity of the log-normal distribution is always lower than the one
of the exponential distribution. It is also possible to analytically find

Figure 32: a) αc vs a, the black line corresponds to Eq. (162) estimating the
limit; b) αc vs ar; c) a vs ar. d) Examples of log-normal and
Exponential distributions, with parameters (see the legend) such
that < eta >= 0.5 in all 3 cases. Note while the log-normal distri-
butions have modes above zero, they have thinner tails than the
exponential (but thicker than an ordinary normal). The vertical
lines correspond to the maximum evaluated as in Eq. (166)

the limit of a→ 1 of the capacity of the log-normal distribution. In or-
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der to evaluate αc =
A22
A3

as a→ 1 we estimate A2 and A3, by writing
b ≡ 1− a, so that b→ 0. In this way:
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√
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so we have

f(k) = f(k = 0) + k
f(k)

dk
|k=0 +O(k3)

df(k)
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= v expkz−
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2 (z− k)φ(w+ v expkz−
k2

2 )

f(k) ≈ (w+ v)φ(w+ v) + σ(w+ v) + kvzφ(w+ v)

(156)

For A2(w, v) we have:

lim
b→0

A2 =
1− b

vb

∫∞
−∞Dz

(
κz−

κ2

2

)[
f(k = 0) + kvzφ(w+ v)

]
=
1− b

vb

{
k2vφ(w+ v)

∫∞
−∞ z2Dz−

k2

2
f(k = 0)

∫∞
−∞Dz

}
=
1− b

vb
k2
(
vφ(w+ v) −

f(k = 0)

2

) (157)

given that

k2 = − ln(1− b) ≈ b+O(b2) (158)

then

lim
b→0

A2(w, v) = lim
a→1

A2(w, v) = φ(w, v)−
(w+ v)φ(w+ v) + σ(w+ v)

2v
(159)

For A3(w, v) instead we simply have

lim
a→1

A3(w, v) = [(w+ v)2 + 1]φ(w+ v) + (w+ v)σ(w) (160)

Then

lim
a→1

αc =

(
φ(w, v) − (w+v)φ(w+v)+σ(w+v)

2v

)2
[(w+ v)2 + 1]φ(w+ v) + (w+ v)σ(w)

(161)

Plotting wc+ vc as a function of a one can see that lima→1wc+ vc ≈
0. If we substitute that we get

lim
a→1

αc ≈
1

2

(
1−

1

vc
√
2π

)2
. (162)
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This equation was solved numerically up to the value of a = 0.99,
obtaining the black line in Fig. 32.

In order to estimate the exact value at a → 1 we can also require
that the two derivatives vanish, i.e. 2A2A2w−αA3,w = 0 e 2A2A2v−
αA3,v = 0. To do so we define x = w+ v for simplicity of visualization
and write

(
φ(x) −

xφ(x)+σ(x)
2v

)2
−α[x2 + 1]φ(x) + (x)σ(x)

2
(
φ(x) −

xφ(x)+σ(x)
2v

)(
σ(x) +

φ(x)
2v

)
− 2α[x(φ(x) + σ(x)] = 0

2
(
φ(x) −

xφ(x)+σ(x)
2v

)(
σ(x) +

φ(x)
2v −

xφ(x)+σ(x)
2v2

)
− 2α[x(φ(x) + σ(x)] = 0

(163)

By subtracting the last two equations we obtain

2

(
φ(x) −

xφ(x) + σ(x)

2v

)
xφ(x) + σ(x)

2v2
= 0 (164)

which can be satisfied only if v→∞. One can then show that the rest
of the equations hold for x = 0, thus αlognc (a = 1) = 0.5.
The maximum of the log-normal distribution defined in Eq. (148) is
given by:

dP(η)

dη
=
P(η)

η

(
− 1−

ln(η) − µ
k2

)
= 0 (165)

where we get the condition k2− ln(η)+µ = 0which is satisfied when:

ηmax = aeµ (166)

In conclusion, activity distributions which are well fit by a log-
normal result in associative networks that can operate in two some-
what distinct, but continuous regimes: if the distribution is tightly
clustered around its mean, i.e. not sparse, 0.5 < a < 1, the retrieved
distribution is not sparse either, and the Hebbian capacity is between
' 1 and 0.5, comparable but lower than the Gardner capacity. Note
that for such values of a no alternative exponential distribution is
available, as it would imply f = 2a > 1, and indeed for the log-
normal f ≡ 1 always (implying that a comparison with the Gardner
bound would only be limited to its value for f = 1, i.e. αG(1) ≡ 1).
If instead the distribution is sparse, i.e. k is larger such that a < 0.5,
the Hebbian capacity is above unity (but below that of the exponen-
tial fit, which has a fatter tail), but the retrieved distribution rapidly
becomes so much sparser as to make retrieval unfeasible for any rea-
sonably sized network.
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d.4 calculating the sparsity of the retrieved patterns

Following [54], the average of the activity and the average of the
square activity in the patterns retrieved with Hebbian weights are
calculated considering that the field, i.e. the input received by a cell
with activity η in the memory, is normally distributed around a mean
field proportional to x. If we call z a random variable normally dis-
tributed with mean zero and variance one, x is already the mean field
properly normalized. With the threshold-linear transfer function, the
output will be g(x+ z) for x+ z > 0 and 0 with probability φ(−x).
Therefore the average activity 〈V〉 (denoted as x in [53, 54, 57]) and
the average square activity 〈V2〉 (denoted as y0 in [53, 54, 57]) are,

〈V〉 = g
〈∫∞

−x(η)
Dz [x(η) + z]

〉
η

= g 〈[xcφ(xc) + σ(xc)]〉η

(167a)〈
V2
〉
= g2

〈∫∞
−x(η)

Dz [x(η) + z]2
〉
η

= (167b)

g2
〈[
(1+ x2c)φ(xc) + xcσ(xc)

]〉
η

,

where

xc ≡ wc + vc
η

〈η〉
. (168)

The sparsity of the retrieved memory is thus aHr = 〈V〉2/〈V2〉.
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C O M PA R I S O N H E B B I A N - O P T I M A L L E A R N I N G :
A D D I T I O N A L R E C O R D E D C E L L S

Supplementary to Fig. 15 in chapter 7, we report in Fig. 33 the same
analysis for all 9 single cells reported (using 100ms bins) in [78]. In

Figure 33: Suplementary to Fig. 15 in the main text.

Figure 34: Comparison between the values of the storage capacity à la Gard-
ner and Hebbian, for the 9 empirical distributions extracted from
[78].

each panel we write the capacity à la Gardner and the Hebbian one
(calculated without fitting an exponential) for the 9 empirical distri-
butions, as well as the sparsity of the original distribution and the
sparsity of the one that would be retrieved with Hebbian weights.
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For simplicity of visualization we also show the storage capacity val-
ues against each other, calculated à la Gardner and à la Hebb (again,
without fitting an exponential), as a single scatterplot for the 9 distri-
butions, in Fig. 34.
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F U RT H E R D E TA I L S O F T H E C O N T I N U O U S
Q U A S I - AT T R A C T O R M O D E L

f.1 effective mean of the modified exponential distri-
bution

In Fig. 35 we report the numerical relation between the mean ζ of the
probability density function f(nF, 1ζ) =

1
ζ exp(−nFζ ) and the effective

average number of fields 〈nF〉 given that values of 0 or > 21 are not
accepted.

Figure 35: Numerical estimation of 〈nF〉 drawing 15000 random numbers
from the exponential distribution with p.d.f. f(nF, 1ζ ) (see text)
under the described constraints. The horizontal red line sets the
experimental average value while the vertical red line sets our
arbitrary choice of ζ to obtain, generally, the desired average.

f.2 supplementary figures – continuous quasi-attractive

manifolds

f.2.1 Further examples of dynamics which exit the manifold

Here we report, as a supplement to Fig.21 and Sect. 12, two addi-
tional examples of dynamics which we regard as jumping and, thus,
as indicative of the quasi-attractive manifold break-up.
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Figure 36: Dynamics which jump. Supplementary to Fig.21 we report the
plot, in the overlap space, of a few distinctive configurations
occurring in two dynamical evolutions (gray to black) which
we regard as exiting the manifold, due to their loss of localiza-
tion. Left) refers to {~η(s)} characterized by σd = 0.9, σp = 0.9,
,ζ = 1,N = 8000. Dynamical step size γ = 0.1, g = 1, kB = 300.
The plotted dynamics is initialized from ~η(s = 90) and reaches
the fixed point in 94 steps, gradually gray to black lines corre-
spond to the configurations at t = 0, 24, 40 (Vt=40 is visually iden-
tical to Vt=94). Right) refers to {~η(s)} characterized by σd = 0.7,
σp = 0.7, N = 4000. Dynamical step size γ = 0.1, g = 5, kB = 500.
The dynamics is initialized from ~η(s = 120) and reaches the fixed
points in 108 steps, gradually gray to black lines correspond to the
configurations at t = 0, 4, 108 (all steps > 20 were here set black).
In both {~η(s)} s is discretized into 1000 equally spaced positions
every 0.2m and the dynamics is considered to have converged
when

∑
i(V

t
i − V

t−1
i )2 < 10−5.

f.2.2 Additional comparison between activity and overlap spaces

In Fig. 37 and 38 we report the plots of the activity space for the
sampled configurations in the two dynamical evolutions used as an
example in Fig.21 C and D, respectively. As introduced in the main
text, the activity space, commonly used to visualize continuous attrac-
tors by placing the activity of each unit at the position of its center,
in our case of irregular patterns is obtained by plotting the activity
of each unit i at the position in s where ηi(s) is maximal, i.e. select-
ing the field center of the field with highest peak rate. If, when the
irregularity in {~η(s)} is sufficiently low, a noisy bump is visible (Fig.
37) throughout the dynamics, this is not true when the irregularity in
{~η(s)} is above a certain threshold (Fig. 38).

f.3 supplementary measure details

As a supplement to Sect.12.1 here we provide with greater details the
procedure we implement to quantify loss of attraction by the mani-
fold .
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Figure 37: Supplement to Fig. 21C, which is reproduced on the left. The
three panels on the right represent the localized configurations
in the activity space corresponding to those plotted on the left in
the overlap space, analogously color coded. Refer to the caption
of Fig. 21C for the parameters.

Figure 38: Supplement to Fig. 21D., which is reproduced on the left. The
four panels on the right represent the configurations in the activ-
ity space corresponding to those plotted on the left in the overlap
space, analogously color coded. Refer to the caption of Fig. 21D
for the parameters.

f.3.1 Proportion of dynamics which jump

Given a system we run a number > 50 of dynamics each starting
from a certain configuration ~η(s), such that the overall length of the
manifold is uniformly sampled. 50 dynamics are enough, for the vari-
able systems we are studying, to reach each fixed point configuration,
typically several times.

At each dynamical step, we estimate the position of the center of
the bump. If at step t+ 1 the center moved farther than a certain, ar-
bitrarily set, distance (20cm) from the center estimated at step t, we
check that the overlap values progressively decrease from the posi-
tion of the new center to the position of the old one. If this does not
occur for more than 5 discrete positions (corresponding to 1m in the
model) we regard this dynamics to have jumped outside the mani-
fold. If instead it occurs for less than 1m we consider this effect as a
“physiological” ripple of the bump.

f.3.2 〈Otang〉

In order to calculate the cosine similarity between the eigenvector
closest to instability and the direction of the manifold, one needs to
estimate the direction of the manifold around each fixed point. We
do this providing as external stimulus (i.e initializing a dynamics)



136 further details of the continuous quasi-attractor model

with a template ~η(s) corresponding to the activity at a position 1.4mt
(7 discrete positions in s) away from the fixed point position s∗ (by
position we mean, as elsewhere, the center of its bump in the over-
lap space). This distance, generally, is short enough that the bump
slides towards the fixed configuration (even when the manifold has
disappeared elsewhere) and long enough to have reached {~ξ} at s∗− 1.
We estimate ~ξ(s∗ − 1) as the average of the configurations of activity
which are centered at ~η(s∗ − 1) in the dynamical evolution. We then
estimate the direction of the manifold as ~ξ(s∗ − 1) −~ξ(s∗).

f.3.3 Bump width

As introduced in the main text, one can estimate the standard de-
viation of the center of mass of a configuration of activity in the
overlap space. Given a vector ~O, where each entry is the overlap
Os = O(η(s),V) (Eq. (116)) with the respective quenched pattern, the
center of mass is given by

c.m. =
L

2π
arctan2

(
−

∑
sOscos

(
2π
L s
)

∑
sOs

,−

∑
sOssin

(
2π
L s
)

∑
sOs

)
(169)

where smax = L is the total length and the trigonometry is used
to implement periodic boundary conditions. The standard deviation
around the center of mass, instead, can be calculated by first estimat-
ing the vector ~d of the minimal distances between each s and the
center of mass (keeping in mind periodic conditions) and then as

st.d. =

√∑
sOsd

2
s

L2

12

∑
sOs

(170)

As the irregularities outside the manifold substantially increase the
standard deviation, thus reducing the information regarding how lo-
calized is the bump, we remove all irregularities below 0.1 (we sim-
ply subtract 0.1 by all overlap values and send to zero those which
become negative). The difference in the standard deviation of the sub-
tracted vs the non-subtracted overlap can be seen in Fig. 39 and is
reflected in the two dynamical evolutions reported in this appendix
in Figs. 37 and 38.

f.4 energy estimation of { ~ξ(s)}

In Fig. 40 we report, in red, the energy (Eq. (113)) of the same { ~η(s)}

as in Fig. 21A, whereas in black we report the energy of the rough
estimation of { ~ξ(s)}. Estimating exactly { ~ξ(s)} is not trivial. Here we
do it, for each s, by averaging over all the dynamical variables which
had maximal overlap with a certain ~η(s) from the third dynamical
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Figure 39: Left column: Supplement to Fig. 21E; Right column: Supplement
to Fig. 21F. In this plot we show the difference in measuring
the standard deviation of the intact overlap profile versus the
reduced one. While the general trend is maintained the differen-
tiation between localized vs non-localized states is more evident
when the profile is subtracted.

step in 50 runs, each starting from a different ~η(s) (such that the
whole length is spanned). What should be principally appreciated is
the localization of the minima, not the great disparity in the absolute
values. The latter depends, also, on i) how one fixes the average and
ii) how far { ~η(s)} is from regular patterns: the farther it is the more
the disparity, and in the configuration { ~ξ(s)} only some units tend to
be more active whereas the majority tend to be shut down.

f.5 phase diagram - number of fixed points

Here we report as a supplement to Fig. 24 the phase diagrams show-
ing the variation in the number of fixed points and in their sparsity
with σd, σp and ζ. High variability in the peak rate seems to act posi-
tively on the continuity of fixed points. This can be possibly intended
as high σp enabling few outsized peaks, which may promote indi-
vidual fields as the only relevant ones for most units, thus fostering
order. One should consider that for ζ = 2.85 and ζ = 4.7 the lower left
semi-circular region (outlined as in Fig. 24 second line) corresponds
to few non-localized fixed points, whereas in the rest of the phase
space fixed points are localized.
Whereas for ζ = 2.85 and ζ = 4.7 the non-localized region could
be intended as related to the abrupt increase in sparsity of the fixed
points (Fig. 41 second line) this does not seem to be true for ζ = 1.0
where, while the sparsity abruptly increases, fixed points persist lo-
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Figure 40: Supplementary to Fig. 21A we report the energy of { ~η(s)} in red
(as in Fig. 21A) while in black we report the energy of the esti-
mated { ~ξ(s)}. Each ~ξ(s) is obtained averaging all configurations
V(t) having a bump in the overlap space centered at s, for 50
dynamics initialized at discrete ~η(s) spanning the entire length.
Parameters are the same as in Fig. 21A-C-E

calized (relate to Fig. 24). Further intuitions over the role of sparsity
in the transition may come from an analytical derivation, currently in
progress.

Figure 41: Phase diagram of the number of fixed points and their sparsity as
a supplement to Fig. 24. For the second row the dark red includes
all values > 0.007 and dark blue all those < 0.001. Refer to Fig.24

for the parameters.
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f.6 simulation details

Let us give a few details concerning the implementations. The dynam-
ics introduced in Eq. 111, in the simulations, updated synchronously
with a step size γ as:

~Vt+1 = (1− γ)~Vt + γg
[
J~Vt − 4k(

∑N
i V

t
i

N
− v0)

3
]+

(171)

We normally set the desired average v0 as the one of the specific real-
ization of the quenched patterns 〈{~η(s)}〉, though setting other values
did not seem to have any major effect. A small step size is required
to prevent the dynamics from entering in bi-stable states. Depending
on the parameter, on the specific realization of the quenched patterns
〈{~η(s)}〉 and the initial conditions, the dynamics may require higher
or lower γ, which on average was set around γ = 0.04. The dynam-
ical evolution generally requires a balance between sufficiently high
k (to fix, roughly, the mean) and sufficiently high N (especially when
the irregularity is high) which often implies, however, a decrease in
γ, increasing the computational cost.

While fixing the mean does not seem to play a crucial role in the
overall dynamics, and fixed points reached with any value simply
scale up or down by a certain factor and are characterize by almost
equal smallest eigenvalues, the same is not true for the gain, which is
the most fundamental parameter.

f.7 selection of the appropriate gain

As foreseen from the initial calculations of the storage capacity in as-
sociative networks endowed with threshold linear units [54, 56, 57],
recapitulated in Sect. 6.1, the gain is a crucial parameter for this type
of transfer functions. Indeed, in the analytical solutions for the stor-
age capacity, the gain roughly defines the slope of a line, which has
to intersect a closed curve in a two dimensional plane in order to ob-
tain a solution. There is, therefore, a unique set of gain values which
enables the retrieval of a memorized pattern. This range gets tighter
and tighter the closer the load of memories is to the storage capacity,
and, at the storage limit, when this closed curve shrinks to a point,
the gain has a critical value.

There is not, however, an automated procedure (other than the
analytical solution for uncorrelated patterns) which identifies the re-
quired g range, assuming that the behaviour somehow remains anal-
ogous also when patterns are highly irregular and correlated, such as
those in the model we study.
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Generally, in simulations well below the storage capacity the selec-
tion of the gain do not cause any inconvenience, as any g value in a
broad range works fine.

When simulating dynamics where the connectivity matrix results
through Hebbian learning of highly irregular quenched patterns, in-
stead, we noticed that the gain needs to be sufficiently high to enable
the retrieval of a localized attractor state, else the dynamics tend to
reach a unique non-localized fixed point. Generally we see the follow-
ing:

1. The more the quenched patterns (such as those described in
the third part of the thesis) are irregular, the more insufficiently
high gain values lead the dynamics towards a unique non-localized
state.

2. When this gain value increases and passes a threshold (for the
simulations we run this threshold can be roughly between 0.5−
5), which is more or less the same for all realizations of the
same quenched disorder, the dynamics retrieve a semi-localized
state. This, however, may not be so stable, and the dynamics
may jump. The range of g values at which this occurs appears
to be normally very small.

3. Increasing the gain slightly more leads, generally, to stable lo-
calized states, each with high overlap with one of the memories
(i.e one of the patterns on the manifold {~η(s)}.

4. Increasing the gain more and more after this level does not
seem to have any specific effect other than progressively de-
creasing the value of the maximal overlap at the center of mass
in the overlap space, still maintaining the state localized, and
progressively increasing the activity level of the most active
units, which become fewer and fewer. At the “optimal” gain
value, the maximal overlap of the localized states in the overlap
space may range from around 1 when the connectivity is based
on regular quenched patterns to about ≈ 0.5 when the patterns
{~η(s)} are highly irregular.

In the simulations we set manually the gain to be high enough.

One may argue that the whole arguments and numerical evidences
presented in the third part of this thesis are a mere effect of the gain,
given that for a unique realization of quenched random variables one
can drive the same system in either of the three phases by simply
tuning g. In reality, this seems to be true only in the well behaving
region corresponding to the quasi-attractive continuous manifold: for
the regions of the phase space corresponding to the jumps outside
the manifold and to the non-localized fixed states, which given the
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above characterization would require higher g, we could not find any
arbitrarily high gain value enabling a different behaviour.

The precision of the transition value in phase spaces even when
the quenched patterns have lower irregularity in the number of fields
(smaller ζ), as well as the smooth decrease in the number of fixed
points, not transitioning at the critical noise value (see Fig.22) lead
us to be confident that the transition is not a mere effect of the gain
but a robust complex emergent phenomenon possibly related to the
storage capacity.

However, until we will be able to derive an analytical solution there
is no exact argument which we can provide else than the ones pro-
vided in the above description.





G
Q U A S I - AT T R A C T O R P H A S E D I A G R A M I N M O R E
G E N E R A L S Y S T E M S

The transition between the existence of the continuous quasi-attractor
manifold and its disappearance, which we have characterized in fully
connected networks for distributions resembling the experimental
ones (Ch. 13), does not seem to require, to occur, all the details used
in the model as specified above.

g.1 regular fields

We also studied a network where each unit in the quenched ran-
dom patterns is characterized by a unique field regularly placed such
that the whole 1d length is equidistantly covered by non overlapping
fields centers. Further, we did not impose any correlation between
field sizes and peak firing rates and we accepted any outcome of
the lognormal distributions (without limiting to values below a cer-
tain threshold). For zero variability in field sizes and peak rates (i.e
σd = σp = 0) this quenched variables lead to a standard continuous
attractor neural network (or semi-continuous in finite-size numeri-
cal simulations): any pattern {η(s)} corresponds to a fixed point on
the continuous “non-quasi” attractor manifold {ξ(s)}. As soon as any
tiny source of irregularity is introduced (i.e. if, for examlple σd or σp
= 0.05 (m)/(Hz)) then the number of fixed points drastically drops:
only some pattern {η(s)} correspond to a fixed point on the continu-
ous quasi attractor manifold {ξ(s)}. This is a known phenomenon and
it has been already discussed in this thesis.

What we want to emphasize here is that increasing systematically
the irregularity in the peak firing rate and field sizes, following log-
normal distributions with average values set as those observed in
one experiment [116], one reaches a phase transition between the ex-
istence and the disappearance of the quasi-attractive manifold, which,
for low σp, seems to occur at a critical σd which coincides with that
observed in experiments (Fig. 42 a).

The number of fixed points, which decreases from an infinite num-
ber a few tens (e.g., in a specific instance, 28), smoothly varies as well
(Fig. 42c). The fixed points in all regions of the phase diagram are
localized on the manifold (Fig. 42b) and their sparsity smoothly de-
creases for increasing variability in both directions (Fig. 42d).
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Figure 42: Phase diagram showing 4 indicative measures for a network stor-
ing regular quenched random patterns (refer to Sect. 12.1 for de-
tails over the measurements). The position at (0, 0) corresponds
to a standard continuous attractor. All fixed points are localized
on the manifold (b) and they decrease in number already for ex-
tremely small σd and σp (c). A transition occurs to the disappear-
ance of the quasi-attractive continuous manifold (a). Note that
for low variability, the sparsity of the localized states is higher
(d). Parameters: {~η(s)} is produced discretizing the whole length
L = 200m into N = s = 1000 discrete positions each correspond-
ing to the field center of a unit i (one every 20cm). The field size
and field peak rate of each unit is drawn from two independent
lognormal distributions with respective mean µd = 1.57m and
µp = 1.549Hz and standard deviation σd and σp. Each plot in-
cludes 26x26 data points corresponding to a unique realization
of quenched random patterns. Each data point was produced by
50 simulations each initialized with a different ~η(s), s spanning
homogeneously the whole length (one every 4m). A simulation
is considered to have converged when

∑
i |(V

t
i − V

t−1
i )| < 10−10.

The step size varies from γ = 0.5 to γ = 0.01, g = 4, k = 300.
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These preliminary observations, performed on a system size 16
times smaller than those presented in Fig. 24, indicate that i) the hor-
izontal transition does not require long range interactions between
multiple fields and occurs also when there are only single fields for
each unit. ii) That this transition is not occurring at the same critical
σd value for different levels of irregularities in the peak firing rate.
In simulations based on quenched patterns characterized by multiple
fields, instead, it seems to occur at the same critical value (Fig. 24).
The latter comparison, may lead to two different conjectures: either
when quenched patterns are highly irregular in peak firing rates, the
presence of more fields somehow benefits, instead of limiting, order;
or the correlations between field sizes and field peak rates observed
in experiments (and reproduced in the quenched patterns leading to
Fig. 24) but erased from the model presented in this section, counter-
balance this intrinsic tendency of a regular network to undergo the
transition inducing a precise alignment of the critical dimension at its
maximal value.
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g.2 diluted connectivity

Connections in the brain are sparse. While we studied systematically
a fully connected network, representing the case in which noise re-
verberation in loops is maximal, we observe that the same transition
occurs when networks are sparse, as closer to reality. The proportion
of jumps, which we regard as a measurment of the integrity of the
quasi-attractive continuous manifold, abruptly increases at a critical
value of noise, similar to that seen in fully connected networks (see
Fig. 43).

Figure 43: Phase diagram showing the proportion of simulations which
jump for diluted networks: 80% of the connections are randomly
and symmetrically set at zero. The transition seems to again occur
at a value close to that seen in fully connected networks (compare
with Fig. 24). Parameters: all parameters, except the dilution, are
those of Fig. 24. Interpolated data points, here, are not averaged
over three realizations of quenched random patterns but corre-
spond to a single one, hence the more irregular appearance of
these plots.
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We study a network whose matrix of recurrent weights is given by :

Jij =
1

N

∫
S

ds

S

(ηi(s)
〈η〉

− 1
)(ηj(s)
〈η〉

− 1
)

(172)

There are N units, the activity ηi(s) is defined at each position s on
a ring S of length L defined in terms of “quenched” place fields, in-
dexed by m, where

P(mi) ≈ e−
mi
〈m〉 (173)

The diameters and peaks of each place field are log-normal distribu-
tions. The field received by each unit is

hi =
∑
i,i 6=j

JijVj + b
(∑N

i Vj

N

)
(174)

and the overall Hamiltonian

H = −
1

2

∑
i

∑
j6=i

JijViVj −NB
(∑

j Vj

N

)
(175)

with

B(x) =

∫x
b(y)dy (176)

We define the order parameters

x(s) =
1

N

N∑
i

(ηi(s)
〈η〉

− 1
)
〈Vi〉 (177)

x =
1

N

∑
i

〈Vi〉 (178)

y0 =
1

N

∑
i

〈V2i 〉 (179)

y1 =
1

N

N∑
i

〈Vi〉2 (180)
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The calculation of the free energy proceeds by moving the overlaps
x(s) to an orthonormal basis of wavelets on the circle XkR, where k is
the level or scale. and R is the shift (or phase on the circle).
Writing the partition function as in [57] (refer to the formula for (A3)
with s=0) one has

Zn =
(Nβ
2π

)pn ∫
dtklγdxklγ

{
Tr{Vi} exp

[
β
∑
k,l,γ,i

(
− itklγ

( ηkli
〈ηi〉

− 1
)
V
γ
i

)]
+

+βN
∑
γ

[
i
∑
k,l

tklγxklγ +
1

2

∑
kl

(xkl)2 +B(
1

N

∑
i

V
γ
i )

]}
(181)

Now we assume that only overlaps with shift l = 0 (relative to the
fixed point) condense and average over all the others. Keeping only
the Gaussian terms:〈

exp

[
− iβ

∑
γ

tklγV
γ
i

(
ηkli
〈ηi〉

− 1

)]〉

≈

〈
1− iβ

∑
γ

tklγV
γ
i

(
ηkli
〈ηi〉

− 1

)
−
β2

2

(∑
γ

tklγV
γ
i

)2( ηkli
〈ηi〉

− 1

)2〉

≈ e
− 1
2β

2

(∑
γ t
klγV

γ
i

)2
Tkl0

(182)

with

Tkl0 ≡

〈(
ηkli
〈ηi〉

− 1

)2〉

T0 ≡
∫
ds

S

〈(
ηi(s)

〈ηi〉
− 1

)2〉 (183)
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and, doing the Gaussian in terms over tklγ, one gets to the equation
of (A5):〈
Zn
〉
=
(Nβ
2π

)p0n+ (p−p0)
2 n+

(n+3)
2 n
∫
dxkγdtkγdxγdtγdyγδdrγδ

{

expβN

[∑
γ

[1
2

∑
kl

(xklγ)2 +B(xγ) + i
∑
k

tkγxkγ + itγxγ
]
+

+ i
∑
rγ

rγδyγδ −
Nα

2
2Trγ log(Tkl0 βŷ+

1

2

∑
k,γ,δ,l 6=0

xklγ(Tkl0 βy)
−1
γδx

klδ

]
·

· Tr{Vγi }

〈
exp

[
− iβ

∑
k,γ,i

tkγ

(
ηki
〈ηi〉

− 1

)
V
γ
i

]〉
·

· exp
[
− iβ

(∑
γ,i

tγVri +
∑

(γ,δ),i

VγδV
γ
i V

γ
j

)]}
(184)

Proceeding through Eq. (A6) one gets to the equivalent of (19) and
(20):

f =− T

〈 ∫
Dz log[Tr(h1,h2)]

〉
−
1

2

∑
k

(xk)2 −B(k) −
∑
k

tkxk − tx+

− r0y0 + r1y1 +
α

2β

{
log
[
1− Tkl0 β(y0 − y1)

]
−

Tkl0 βy1

1− Tkl0 β(y0 − y1)

}
(185)

with

α =
1

NT0
2

∑
k,l 6=0

(Tk,l
0 )2 (186)

We continue by “undoing”, for clarity, the mean field approach, and
writing

f = −T

〈
1

N

∑
i

∫
Dz log TrVi(hi,h2)

〉
−
1

2

∑
k

(xk,0)2 −B(x)+

−
∑
k

tk,0xk,0 − tx− r0y0 + r1y1+

+
1

2βN

∑
k,l 6=0

{
log[1− Tkl0 β(y0 − y1)] −

Tkl0 βy

1− Tkl0 β(y0 − y1)

} (187)

where

h1 = −t−
∑
k

tk,0

(
ηk,0
i

〈ηi〉
− 1

)
− z(−2Tri)

1
2

h2 = −r0 + r1

1

g ′
=
1

g
− 2h2

(188)
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with saddle point equations on conjugate parameters:

t = −b(x)

tk,0 = −xk,0

r0 =
1

2N

∑
k,l 6=0

Tkl0
1− Tkl0 [ψ−βy1]

(Tkl0 ψ)
2

r1 = −
1

2N

∑
k,l6=0

(Tkl0 )2βy1

(1− Tk,l
0 ψ)2

(189)

with

ψ = β(y0 − y1) (190)

different from [57].

−2Tr1 →
1

N

∑
k,l6=0

(Tk,l
0 )2y0

(1− Tkl0 ψ)
2

(191)

ψ→ T

〈
1

N

∑
i

∫
Dz

d2

dh2
log Tr{Vi}(hi,h2)

〉
(192)

with the other saddle point equations:

x = T

〈
1

N

∑
i

∫
Dz

d

dh
log Tr{Vi}(hi,h2)

〉
(193)

y0 = T

〈
1

N

∑
i

∫
Dz

d

dh2
log Tr{Vi}(hi,h2)

〉
(194)

xk,0 = T

〈
1

N

∑
i

(
ηk,0
i

〈η0〉
− 1

) ∫
Dz

d

dh
log Tr{Vi}(hi,h2)

〉
(195)

and, in the T → 0 limit:

ψ = g ′

〈
1

N

∑
i

∫
hi>ϑ

Dz

〉
(196)

y0 = (g ′)2

〈
1

N

∑
i

∫
hi>ϑ

(hi − ϑ)
2

〉
(197)

(−2Tr1) = (gT0)
2 =

1

2N

∑
k,l 6=0

(Tkl0 )2

(1− Tkl0 ψ)
2
y0 (198)
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x = g ′

〈
1

N

∑
i

∫
hi>ϑ

Dz(hi − ϑ)

〉
(199)

xk,0 = g ′

〈
1

N

∑
i

(
ηk,0
i

〈ηi〉
− 1

) ∫
hi>ϑ

Dz(hi − ϑ)

〉
(200)

h2 =
1

2N

∑
k,l 6=0

Tkl0
1− Tkl0 ψ

(201)

with

hi = b(x) +
∑
k

(
ηk,0
i

〈ηi〉
− 1

)
xk,0 − z(ρT0) (202)

f =−
g ′

2

〈∑
i

N

∫
hi>ϑ

Dz(hi − ϑ)
2

〉
+
1

2

∑
k

(xk,0)2+

+ xb(x) −B(x) +
(gT0)

2

2
ψ

(203)

If

vk,0 =
xk,0

T0ρ
(204)

w =
(b(x) − ϑ)

T0ρ
(205)

then

hi − ϑ = (ρT0)

[
w+
∑
k

(
ηk,0
i

〈ηi〉
− 1

)
vk,0 − z

]
(206)

vk,0 = g ′

〈
1

N

∑
i

(
ηk,0
i

〈ηi〉
− 1

) ∫+
Dz

[
w+
∑
k

(
ηk,0
i

〈ηi〉
− 1

)
vk,0− z

]〉
(207)

x

ρT0
= g ′

〈
1

N

∑
i

∫+
Dz

[
w+
∑
k

(
ηk,0
i

〈ηi〉
− 1

)
vk,0 − z

]〉
(208)

(ρ0T0)
2 =

1

2N

∑
k,l 6=0

(Tkl0 )2

(1− Tkl0 ψ)
2

(209)
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y0 =(g ′)2

〈
1

N

∑
i

∫+
Dz

[
w+
∑
k

(
ηk,0
i

〈ηi〉
− 1

)
vk,0+

− z

]2〉
(ρ0T0)

2

N

∑
k,l 6=0

(Tkl0 )2

(1− Tkl0 ψ)
2

(210)

Finally, since

1

g ′
=
1

g
− 2h2 =

1

g
−
1

N

∑
k,l 6=0

Tkl0
(1− Tkl0 ψ)

(211)

vk,0

g ′
=
1

N

∑
i

(
ηk,0
i

〈ηi〉
− 1

)
N( hi) (212)

( 1
g ′

)2
=
1

N

∑
i

M( hi)

∑
k,l6=0
N

(Tkl0 )2

(1− Tkl0 ψ)
2

(213)

ψ

g ′
=
1

N

∑
i

Φ( hi) (214)

N(x) = xφ(x) + σ(x) (215)

M(x) = (1+ x2)φ(x) + xσ(x) (216)

 hi = w+
∑
k

(
ηk,0
i

〈ηi〉
− 1

)
vk,0 (217)

h.1 stability of the saddle points with sparse connec-
tivity

Written as “equations of motion” and defining

α =
1

NT0
2

∑
k,l 6=0

(Tk,l
0 )2 (218)

for the “uncondensed patterns”. We have

x(t+ 1) = g ′T0ρ(t)
1

N

∑
i

N( hi(t)) (219)
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x(s, t+ 1) = g ′T0ρ(t)
1

N

∑
i

(
ηi(s)

〈η〉
− 1

)
N( hi(t)). (220)

For the fully connected model:

T0
2
g2(t+1) = (g ′T0)

2g2(t)

∑
k,l 6=0
N

(Tkl0 )2

(1− Tkl0 ψ)
2

1

N

∑
i

M( hi(t)) (221)

with

ψ(t+ 1) = g ′
1

N

∑
i

φ( hi) (222)

1

g ′
=
1

g
−
1

N

∑
k,l 6=0

(Tkl0 )

(1− Tkl0 ψ)
(223)

 hi(t) =
b(x) − ϑ

T0ρ(t)
+

∫
ds

(
ηi(s)

〈η〉
− 1

)
x(s, t)
T0ρ(t)

(224)

while, for the highly diluted model

g ′ = g

ρ2(t+ 1) = g2ρ2(t)α
T0
2

N

∑
i

M( hi(t))
(225)

To find the stability of a fixed point, we focus on the highly diluted
case and linearize the previous equations with x(t) =constant.

x(s, t+ 1) = x0(s) + λδx(s) ≈ gT0ρ0
1

N

∑
i

(
ηi(s)

〈η〉
− 1

)
N( hi(t))+

+ gT0
1

N

∑
i

(
ηi(s)

〈η〉
− 1

){
φ( hi0)

∫
ds ′

S

(
ηi(s

′)

〈η〉
− 1

)
δx(s ′)

T0
+

δρN( h0) − δρφ( hi0) hi0

}
(226)

ρ20 + λ2ρ0δρ ≈ g2αρ20
(T0)

2

N

∑
i

M( hi0) +αg
2ρ0

(T0)
2

N

∑
i

{

2δρM( hi0) − 2N( hi0) hi0δρ+ 2N(hi0)

∫
ds ′

S

(
ηi(s)

〈η〉
− 1

)
δx(s ′)

T0

}
(227)
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with the condition

0 = δx =
1

N

∑
i

{
φ( hi0)

∫
ds ′

S

(
ηi(s

′)

〈η〉
−1

)
δx(s ′)

T0
+δρσ( hi0)

}
. (228)

δρ = −

∑
iφ( hi0)

∫
ds ′

S

(
ηi(s

′)
〈η〉 − 1

)
δx(s ′)

T0∑
i σ( hi0)

(229)

λδx(s) =gT0
1

N

∑
i

(
ηi(s)

〈η〉
− 1

){
φ( hi0)

∫
ds ′

S

(
ηi(s

′)

〈η〉
− 1

)
δx(s ′)

T0
+

+ δρσ( hi0)

}
(230)

λδρ = αg2
(T0)

2

N

∑{
φ( hi0)δρ+N( hi0)

∫
ds ′

S

(
ηi(s)

〈η〉
− 1

)
δx(s ′)

T0

}
(231)

and the fixed point conditions

1 = αg2
T0
2

N

∑
i

M( hi0) (232)

x(s) = gT0ρ
1

N

∑
i

(
ηi(s)

〈η〉
− 1

)
N( hi) (233)

and

δx(s) = 0 =
1

N

∑
i

{
φ( hi0)

∫
ds ′

S

(
ηi(s

′)

〈η〉
− 1

)
δx(s ′)

T0
+ δρσ( hi0)

}
(234)

Let us make the following ansatz
δx(s) = ε

{
− x(s) + γ 1N

∑
j

(
ηj(s)
〈η〉 − 1

)
φ( hj0) + ζ

}
δρ = ε∆

(235)
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Note that∫
ds ′

S

(
ηj(s)

〈η〉
− 1

)
δx(s ′)

T0
= −ε

∫
ds ′

S

(
ηj(s)

〈η〉
− 1

)
x(s)

T0
+

+ ε
γ

N

∑
j

∫
ds ′

S

(
ηi(s)

〈η〉
− 1

)(
ηj(s)

〈η〉
− 1

)
φ( hj0)+

+ ε
ζ

T0��
���

���
��:0 or maybe not?∫

ds ′

S

(
ηi(s)

〈η〉
− 1

)
=

− ε
[
 hi0ρ0 −

b(x) − ϑ

T0

]
+
εγ

N
(Tiiφ( hi0) +

∑
i 6=j

Tijφ( hj0))

(236)

where

Tii =

∫
ds ′

S

(
ηi(s)

〈η〉
− 1

)2

Tij =

∫
ds ′

S

(
ηi(s)

〈η〉
− 1

)(
ηj(s)

〈η〉
− 1

) (237)

So we can re-write Eq. (230) as

− ελx(s) + ελ
γ

N

∑
i

(
ηi(s)

〈η〉
− 1

)
φ( hi0) + ελζ =

gT0
1

N

∑
i

(
ηi(s)

〈η〉
− 1

){
ε∆σ( hi0) +

εγ

N

[
φ( hi0)

2Tii +
∑
i 6=j

Tijφ( hj0)φ( hi0)

]
+

− εφ( hi0)
[
 hi0ρ0 −

b(x) − ϑ

T0

]
(238)

Dividing by ε and replacing φ( hi0) with N( hi0) − σ( hi0)

− λx(s) + λ
γ

N

∑
i

(
ηi(s)

〈η〉
− 1

)
φ( hi0) + λζ =

− x(s) + gT0
1

N

∑
i

(
ηi(s)

〈η〉
− 1

){
(∆+ ρ0)σ( hi0) +φ( hi0)

{
b(x) − ϑ

T0
+

+
γ

N

[
φ( hi0)Tii +

∑
i 6=j

Tijφ( hj0)

]}
(239)

And we can rewrite Eq. (231) as:

λ∆ = αg2
T20
N

∑
i

N( hi0)

{
γ

N
〈φ( hi0)Tii +

∑
i 6=j

Tijφ( hi0)( hi0)〉+
b(x) − ϑ

T0

}
+

+αg2T20 (∆+ ρ0) − ρ0

(240)





I
V O W E L C H A RT S : M E T H O D S A N D A D D I T I O N A L
F I G U R E S

i.1 recording method and software

Vowels were recorded from participants using RecordPad, through
ordinary headphones microphones and each vowel was recorded in a
separate file. In our pilot studies, presented in this thesis, the length
of each file was not standardized and depended on the time needed
by the subject to stop the recording of each vowel.
Sounds were analyzed using Praat software [167]. In particular, for-
mants were extracted in Python through Parselmouth [168], an open-
source library easing the use of Praat in a general python script.

In Fig. 44 (second line) we show the first four formants time traces,
as found by praat, highlighted in red and superimposed to the rela-
tive spectograms, for seven italian vowels pronounced by a subject. In
order to define the first two formants of each vowel as an individual
value, each specific time trace was averaged in time. Formants were
then converted from Hertz to Barks using a standard formula which
can be found in Ref. [145, 146].

Figure 44: Sample plot obtained with the use of Parselmouth library (Praat):
first row) oscillograms of seven sample italian vowels. Second
row) Relative spectograms, red traces indicate formants.
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158 vowel charts : methods and additional figures

i.2 separated bilingual vowel charts

Here I report separately the conjunctive vowels charts shown in Fig.
29.

Figure 45: Supplement to Fig. 29, separate vowel charts for the three subjects
described in the mai text.
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