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Preface

In the last decade the non-equilibrium dynamics of isolated quantum sys-
tems has raised a huge interest for both its conceptual and practical im-
plications. Simulation of quantum dynamics represents by now a very ac-
tive research effort, with highly controllable quantum devices composed of
hundreds of qubits already being realized in numerous setups. These offer
the unprecedented possibility to access real-time quantum dynamics and
strongly correlated quantum many-body states, opening numerous avenues
not only for future quantum technologies, but also for long-standing theo-
retical problems.

One of the most sought-after applications is the computation of real-time
evolution in theories of fundamental interactions. Since Wilson’s proposal
in 1974, the equilibrium phase diagrams of lattice gauge theories have been
successfully investigated with Monte Carlo simulations in a wide range of pa-
rameters. Nonequilibrium properties, on the other hand, cannot be accessed
with conventional techniques. Thanks to the recent advances in numerics
(e.g. tensor networks) and experiments (quantum simulation), new promis-
ing tools are now available for tackling these questions. Remarkable works
have already demonstrated that applying these techniques to simple theo-
ries, such as one-dimensional quantum electrodynamics, can help to detect
the signatures of confinement and pair creation. Despite these impressive
achievements, investigating the non-equilibrium dynamics of gauge theories
with quantum simulators turned out to be extremely challenging. This is
mostly due to the complex constrained dynamics of these theories, which
make their simulation with realistic atomic platforms particularly difficult.

At the same time, the dynamical constraints can play a key role in de-
termining novel interesting phenomena and peculiar non-equilibrium prop-
erties. These phenomena – which include, for example, quantum scars,
fractons, Hilbert space fragmentation – can lead to anomalous dynamics,
eventually evading the paradigm of thermalization, which predicts the re-
laxation of physical observable to their thermodynamic values.

The aim of this thesis is twofold: first, we want to address through a
combination of numerical and analytical tools some of the open questions
regarding the non-equilibrium dynamics of quantum many-body systems
with constrained Hilbert spaces, including lattice gauge theories. In ad-
dition, the work reported here is part of a large effort of the community
towards the quantum simulation of complex phenomena of condensed mat-
ter and high-energy physics.

The thesis is structured as follows. Part I focuses on the emergence
of non-thermal states (quantum scars) in the non-equilibrium dynamics of
constrained quantum many-body systems. In Chapter 1 we introduce the
general phenomenology of quantum thermalization and some exceptions
to it (many-body localization and quantum many-body scars). Quantum
many-body scars and their stability are studied more in detail in the rest of
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Part I: in Chapter 2 we investigate if quantum scars are stable with respect
to perturbations in the Hamiltonian and if they persist when the dynamical
constraints are enlarged; a different perspective on the stability of quantum
scars is presented in Chapter 3, where we focus on the network structure of
constrained models; finally, in Chapter 4 we study the emergence of scars
in supersymmetric lattice models. In Part II the quantum simulation of
lattice gauge theories is discussed: after introducing the main challenges of
the field in Chapter 5, we show that a U(1) lattice gauge theory can be
simulated with Rydberg atoms arrays and we characterize the dynamics of
the model (Chapter 6); finally, in Chapter 7 we propose a protocol for the
scalable quantum simulation of SU(N)×U(1) lattice gauge theories with
alkaline-earth like atoms in optical lattices. In Part III we give a unifying
perspective on the previous Parts: we focus on the non-equilibrium dynam-
ics of lattice gauge theories (a topic partially addressed in Chapter 6) and,
more specifically, on the dynamics induced by the confinement of excita-
tions. In Chapter 8 we explain what confinement is and why it affects the
real-time evolution; in Chapter 9 we analyse more in detail the mechanisms
that lead to quasilocalized dynamics in models with confinement and the
associated time scales; in Chapter 10 we use the tools developed in the pre-
vious Chapter to study the interaction between the excitations of a confined
model and to characterize their scattering properties; a related question is
addressed in Chapter 11, where we focus on the decay of a metastable (false
vacuum) state; in Chapter 12 we show how the previous results about the
confined nature of excitations in an Ising spin chain generalize to a more
complicated model, namely a Heisenberg-Ising spin ladder; finally, in Chap-
ter 13 we discuss how another mechanism can induce localization in lattice
gauge theories, even in a deconfined regime. Part IV contains additional
information about the results presented in the previous Parts.
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Part I

Non-equilibrium dynamics in
constrained quantum systems

1





Chapter 1

Non-equilibrium dynamics of
quantum many-body systems

Statistical mechanics is based on the concept of thermal equilibrium. In
virtue of this fundamental assumption, we can use few relevant quantities
to describe our system of interest and discard the majority of the infor-
mation about the enormous number of degrees of freedom that it contains.
Understanding the origin of this assumption from microscopic dynamics is
in general very difficult. In classical mechanics, the problem has long been
studied and some rigorous foundations have been established based on the
concept of ergodicity. In quantum physics, on the other hand, the field is
relatively young and the major breakthroughs have been achieved only in
the last 30 years. The problem of quantum thermalization has become of
prominent interest thanks to recent experimental progress: it is now pos-
sible to control quantum systems that are – to very good approximation –
isolated from any environment. It is then natural to ask whether, in the
absence of a thermal bath, a quantum system can act as its own reservoir.

In these experiments, the simplest and most popular protocol for study-
ing non-equilibrium properties is the quantum quench: a parameter of the
Hamiltonian is changed abruptly at a time t0 and the time evolution of the
system after this sudden change is monitored. In a typical case, expectation
values of observables after a quench tend to relax to stationary values. For
a thermalizing system, these values coincide with the ones prescribed by
equilibrium statistical mechanics, and only depend on the energy density
(and on the other conserved quantities, if present) of the initial state. How-
ever, this is not the only possibility: in many-body localized systems, the
stationary values are non-thermal, meaning that they depend non-trivially
on the initial state; in systems with quantum scars, for some initial states
one can find that observables do not reach a stationary value, but they have
persistent oscillations in time.

In this chapter we discuss all these scenarios1: in Section 1.1 we introduce

1Another scenario is represented by integrable systems, whose equilibrium properties

3
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the concept of thermalization for closed quantum many-body systems and
we show how it emerges from the eigenstate thermalization hypothesis; in
Section 1.2 we examine the non-equilibrium phases of matter that can exist
in virtue of many-body localization; in Section 1.3 we consider the case of
quantum many-body scars, discussing both the experimental findings and
the constrained lattice model that can explain their phenomenology.

For a comprehensive discussion of quantum thermalization we refer the
reader to [14], for many-body localization to [15–17] for quantum scars
to [18].

1.1 Thermalization in quantum systems
A closed quantum system undergoes a unitary evolution, that is apparently
at odds with the concept of thermal equilibrium. To solve this paradox
and understand how the information about the initial state |ψin〉 can be
lost in the time evolution, we should focus on a finite region A of our
system. We are interested in the expectation value of a generic operator
OA with support on A in the thermodynamic limit (i.e., when the number
N of degrees of freedom of the full system goes to infinity). We say that
the system thermalizes if the long time limit of observables is given by the
statistical ensemble average

lim
t→∞

lim
N→∞

〈OA〉 (t) = Tr[OAρ
eq
A ], (1.1)

where ρeqA = TrĀ[Z−1e−βH ] is the density matrix of the region A in the
canonical ensemble at a temperature T = β−1 (H is the Hamiltonian of the
full system, Z = Tr[e−βH ] is the partition function, and Ā is the complement
of A). The inverse temperature β is such that the equilibrium energy density
Eeq/N = Tr[Z−1e−βHH/N ] is equal to the energy density of the initial state.
If Eq. (1.1) holds for any observable on the region A, we have that the state
ρA(t) = TrĀ[eiHt |ψin〉 〈ψin| e−iHt] converges in the long-time limit to

lim
t→∞

lim
N→∞

ρA(t) = ρeqA . (1.2)

Crucially, the equilibrium state ρeqA depends on the initial state |ψin〉 only
through the energy density: all the other information is effectively lost, as
it is encoded in highly non-local degrees of freedom and cannot be accessed
with local measurements on a finite portion of the system.

We also note that one of the consequences of Eq. (1.2) is that the (bi-
partite) von Neumann entanglement entropy, defined as SA = −TrρA ln ρA,
corresponds – at long times – to the thermodynamic entropy of the sub-
system A and is hence proportional to its volume NA (up to subleading
corrections).

are described by the generalized Gibbs ensemble. These systems, which represent an
extremely vast subject on their own, will not be discussed in this thesis.
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1.1.1 The eigenstate thermalization hypothesis

In the previous section, we have defined thermalization in a quantum system
as the condition in Eq. (1.1). However, to this end it is not clear under which
assumptions this property will hold. To answer this question, Deutsch and
Srednicki proposed a conjecture that goes under the name of eigenstate
thermalization hypothesis (ETH) [19, 20] and represents one of the pillars
of the theory of quantum thermalization. The fundamental assumption
behind ETH is that the matrix elements of observables in the basis of energy
eigenstates {|En〉} in each symmetry sector of the Hamiltonian H have the
form

Omn ≡ 〈Em|O|En〉 = O(Ē)δmn + e−S(Ē)/2fO(Ē, ω)Rmn (1.3)

where Ē ≡ (Em + En)/2, ω ≡ En − Em, and S(E) is the thermodynamic
entropy at energy E. Both O(Ē) and fO(Ē, ω) are smooth functions of
their arguments, while Rmn is a random variable with zero mean and unit
variance. The value O(Ē) represents the expectation value of the micro-
canonical ensemble at energy Ē.

We now analyze what are the consequences of ETH on the properties of
a quantum system. We consider the time evolution of a quantum system
from an initial state |ψin〉 and we are interested in the long-time average of
an observable O. Under the assumption that there are no degeneracies in
the spectrum, the long-time average of this quantity is given by the diagonal
ensemble

〈O〉 = lim
T→∞

1

T

∫ T

0

〈O(t)〉 (1.4)

= lim
T→∞

1

T

∫ T

0

∑
n,m

Onme
−i(Em−En)T 〈ψin|En〉 〈Em|ψin〉 (1.5)

=
∑
n

| 〈En|ψin〉 |2Onn. (1.6)

If the energy fluctuations of |ψin〉 are small in the thermodynamic limit
(which is the case, for example, in a quantum quench), the assumption in
Eq. (1.3) implies that 〈O〉 coincides with the microcanonical expectation
value O(E) with E = 〈ψin|H|ψin〉. Moreover, ETH implies that the time
fluctuations of 〈O〉 are exponentially small in the system size (for a proof
see for instance Ref. [14]). The convergence of the expectation values to
the ones prescribed by equilibrium statistical mechanics is the very essence
of quantum thermalization, and, as we showed, is a direct consequence of
ETH.

The ETH has been tested numerically in a number of lattice models,
both for diagonal and off-diagonal matrix elements [21–26]. As an example,
in Fig. 1.1 we report the data for a lattice model of hard-core bosons. For
J ′ = V ′ = 0 the model is integrable and expectation values are non-thermal;
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Figure 1.1: Eigenstate expectation values of the occupation of the zero
momentum mode [(a)–(c)] and the kinetic energy per site [(d)–(f)] of hard-
core bosons as a function of the energy per site. Figures taken from Ref. [14].

when the integrability breaking term is turned on, they show a trend towards
the thermal expectation value for increasing system size.

1.2 Many body localization

Transport is a fundamental ingredient in the process of thermalization: ex-
citations need to move across the system in order to allow for exchanges
of energy between different regions. In the presence of quenched disorder,
however, there might exist some excitations that are localized in space and
do not decay. This phenomenom was first studied by Anderson in [27] for
non-interacting fermions and goes under the name of Anderson localiza-
tion. For a model of fermions hopping on a lattice with random on-site
potential in one or two dimensions, the energy eigenstates are exponentially
localized in space: a particle occupying one such state is a local excitation
that does not relax. It was later found [28–31] that a similar mechanism –
dubbed many-body localization (MBL) – occurs for interacting systems: in
the presence of sufficiently strong disorder, local integrals of motion called
l-bits emerge [16]; these l-bits locally retain the information about the ini-
tial state, hindering thermalization. As a consequence of the emergence of
l-bits, many of the properties of thermalizing systems are not satisfied. For
example, the bipartite entanglement entropy of energy eigenstates is propor-
tional to the area of the cut, because only the l-bits that are located close to
the cut (within a distance of the order of the localization length) contribute
to the entanglement. This area law scaling of entanglement is satisfied also
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by high-energy eigenstates, and is in sharp contrast with the volume law
generically expected in virtue of equilibrium statistical mechanics. Many-
body localized systems do not thermalize and the ETH is violated in the
full spectrum: matrix elements of local observables in the energy eigenbasis
are not smooth functions of the energy (the local spectrum is discrete). All
these properties have been extensively studied with numerical methods in
quantum spin chains [29,31–34]. As an example, we report here some of the
results obtained for the XXZ chain in random longitudinal field

HXXZ =
∑
i

[J(Sxi S
x
i+1 + Syi S

y
i+1) + JzS

z
i S

z
i+1 + hiS

z
i ], (1.7)

where Sαi are spin 1/2 operators and the static-random fields hi are inde-
pendent random variables at each site i, each with a probability distribution
uniform in [−h, h].
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Figure 1.2: Logarithm of the averaged difference between the local magne-
tizations in adjacent eigenstates, with J = Jz = 1, and h as indicated in the
legend. The average is over disorder realizations, states and sites. Figure
taken from Ref. [31].

Fig. 1.2 shows that for weak disorder strength (small h) the difference of
the expectation values of local magnetization between adjacent eigenstates
decays exponentially in L, as predicted by the ETH. On the other hand,
for large disorder strength the difference is non-vanishing for large system
sizes, suggesting that ETH is violated.

In Fig. 1.3 the scaling with system size L of the bipartite entanglement
entropy SE of the eigenstates is reported. As the disorder strength h is
increased there is a transition from a volume law (SE/L goes to a constant)
to an area law (SE/L decays to 0).
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middle of the spectrum (left) and in the upper part (right). Figure taken
from Ref. [34].

Because it evades thermalization, MBL cannot be framed under the con-
cepts of conventional equilibrium statistical mechanics. In particular, it has
been shown that MBL can protect phases of matter that are not possible at
equilibrium [15]. For example, high-energy eigenstates of one-dimensional
MBL systems can spontaneously break discrete symmetries. This is not
possible, instead, for thermalizing systems, whose high-energy eigenstates
have the same properties of equilibrium states at finite temperature: spon-
taneous symmetry breaking in those eigenstates would imply a violation of
Mermin-Wagner theorem [35], which prohibits symmetry-breaking at finite
temperature for short-range interacting systems in one dimension. Other
remarkable examples of MBL-protected quantum order were found for sym-
metry protected topological phases [15,32,36,37] and for periodically-driven
systems [38–42]. In the latter case, in particular, it has been shown that
MBL allows for the existence of the so-called "Floquet time crystals" [43,44].
A time crystal is a system with spontaneous breaking of time-translation
symmetry, a feature that is not possible at equilibrium [45].

1.3 Weak ergodicity breaking: quantummany-
body scars

Many-body localized and integrable systems are the most studied excep-
tions to the ETH. However, the emergence of local integrals of motion is
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not the only mechanism that allows to avoid thermalization. A new phe-
nomenon – quantum many-body scars – has recently been observed in a
Rydberg atom experiment and has later been numerically identified in nu-
merous spin chains. We now illustrate the concept of quantum many-body
scars starting from the experimental observation and then introducing the
theoretical results and the main open questions on the topic.

1.3.1 Rydberg atom experiment

The setting of the experiment performed by Bernien et al. [46] consists of a
one-dimensional array of Rydberg atoms trapped in optical tweezers. Each
atom of the chain is modelled by a spin 1/2: the state |0〉 corresponds to the
ground state and the state |1〉 is an excited Rydberg state with high principal
quantum number. A laser can couple the two states, inducing single-atom
Rabi oscillations (in some experimental scenarios, such transition is actually
driven by a pair of laser fields, via an intermediate, low-lying excited state).
The Hamiltonian of the system is

HRydberg =
Ω

2

∑
i

σxi −∆
∑
i

ni +
∑
i<j

Vijninj, (1.8)

where Ω is the Rabi frequency inducing the transition (σxi = |1〉i 〈0|i + h.c.)
between the ground state and the Rydberg state, ∆ is the detuning of
the lasers from the Rydberg state, ni = |1〉i 〈1|i is the occupation of the
Rydberg state on site i, and Vij is the interaction energy between Rydberg
excitations.

The system is prepared in a charge density wave (CDW) state, with
a Rydberg excitation at every odd trap, and the detuning ∆ is quenched
from a large value to ∆ = 0 (Fig. 1.4). The subsequent dynamics is rather
unexpected: measurements of the Rydberg occupation ni show that the
many-body state oscillates between the initial state and the inverted state
with a Rydberg excitation at every even trap. The oscillations persist on
the full time range accessible in the experiment, longer then the timescales
Ω−1 and V −1

i,i+1.
The persistent oscillations observed in this experiment represent a co-

nundrum in the context of non-equilibrium dynamics. Although the energy
density of the CDW state corresponds to the one of an infinite temperature
state with respect to the quenched Hamiltonian, it seems that this state
does not relax to thermal equilibrium, or it does well beyond observable
timescales. However, for different initial states (e.g., for an initial state
with no Rydberg excitations) the decay to thermal expectation values is
rather fast, and no anomalous oscillations are observed. This phenomenon
has been attributed to the so-called "quantum many-body scars" [47,48], in
analogy with a similar phenomenon in single-particle quantum chaos [49].
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Figure 1.4: (a) The parameter ∆ is controlled in time in such a way to
adiabatically prepare the CDW state, then quenched to ∆ = 0. The spa-
tially resolved Rydberg probability is shown for an array of 9 atoms. (b)
Domain-wall density after the quench. (c) Illustration of a toy model for
the oscillations. (d) Numerical simulation of domain-wall density and en-
tanglement entropy after the quench. Figure taken from Ref. [46].

1.3.2 PXP model

To understand the oscillations described above, it is convenient to consider
the so-called PXP model. This model was first introduced in the context of
constrained quantum models that can be directly related, in some parameter
regimes, to exactly soluble classical statistical mechanics systems [50]. In
Ref. [51], it was shown how the same type of dynamics describes Rydberg
excitations in an atomic chain in the regime of nearest-neighbour blockade.
In this regime, the interaction between Rydberg states on neighbouring
sites is so large that the dynamics is effectively constrained to the subspace
generated by the states with no consecutive "1"s.

Defining Xi, Yi, Zi as the Pauli matrices at site i and Pi = (1 − Zi)/2,
ni = (1 + Zi)/2, the dynamics in the constrained space is described by

HPXP =
∑
j

Pj−1XjPj+1. (1.9)

Because of Rydberg blockade, the Hamiltonian acts on the space constrained
by the conditions nini+1 = 0 for every i.

The spectrum of the model was studied by Turner et al. [48] using exact
diagonalization and shift-invert algorithm. As shown in the top panel of
Fig. 1.5, for the majority of the eigenstates the expectation value of local
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Figure 1.5: Expectation value of the local observable Z1 (top), bipartite
entanglement entropy (bottom left) and logarithm of the overlap with the
CDW state (bottom right) of the eigenstates as a function of their energy.
Figures taken from Ref. [48].

observables lies close to the prediction of the canonical ensemble. However,
there are some states (the "scars", indicated by a red cross) with highly non-
thermal expectation values, and other states that look like towers departing
from them, with weakly non-thermal values. The first states are almost
equally spaced in energy, their number grows linearly with system size, and
they form a band which extends across the whole spectrum, from the ground
state to the highest energy state. Also the entanglement entropy S of these
eigenstates shows non-thermal scaling (Fig. 1.5, lower left panel): compared
to the cloud of thermal states with volume law entanglement entropy, the
scarred eigenstates have anomalously small values, that scale with logL.
All these observations suggest that this model "weakly" breaks ergodicity,
in the sense that few states [O(L) out of O(ecL) eigenstates] do not satisfy
the ETH. One may expect that such a small number of states does not
alter significantly the non-equilibrium dynamics after a quantum quench.
While this is true for the majority of states that can be prepared in an
experiment, the CDW state is a remarkable exception. The reason for this
is illustrated in the lower right panel of Fig. 1.5: the CDW state (|Z〉2) has
substantially larger overlap with the band of scarred states than with the
other eigenstates; therefore its dynamics is predominantly affected by them
and exhibits persistent oscillations at a frequency given by the energy gap
between the scars.
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1.3.3 Open questions

Quantum scars are the origin of the anomalous dynamics observed in the
Rydberg atom array, but this explanation is far from being conclusive, be-
cause the existence of scars poses a number of questions for future research.
First of all, whether these states continue to exist in the thermodynamic
limit still stands as an open problem: numerical studies reveal that for
L ≥ 34 some signals of a possible hybridization between scars and thermal
states start to appear. In this context, understanding the stability of scars
under perturbations and the mechanism underlying their hybridization is
an important direction, that we investigate in Chapter 2.

Together with the fate of scars in the thermodynamic limit, another
– perhaps even more fundamental – question is what their origin is, and
in what kind of systems we can expect to find them. Different general
mechanisms have been studied and a number of models with various types
of quantum scars have already been identified. Lin and Motrunich [52]
found that the PXP model supports other scars, that do not belong to
the band previously studied: these new scars can be written as exact MPS
states with finite bond dimension, they have area law entanglement, non-
thermal expectation values of local observables, and they survive in the
thermodynamic limit. More on these states and their stability is discussed
in Chapter 2, where we also introduce novel MPS states for generalized PXP
models.

Some of the known mechanisms for quantum scars rely on the presence
of a spectrum-generating algebra: in these models a tower of scarred eigen-
states is obtained by repeated application of an operator, which can be
interpreted as a creation operator of a quasi-particle. Examples of these
kinds of scars include η-pairing states of the Hubbard model, the scars of
the AKLT model and of spin-1 XY magnets [53–63]. Some examples of scars
that do not fall in this category are illustrated in Chapter 3, where we show
that scars emerge "statistically" in a class of quantum random networks,
and in Chapter 4, where we show that quantum scars can appear in models
with lattice supersymmetry.

Another mechanism for embedding ETH-violating eigenstates in a ther-
mal spectrum was already known before the scars of the PXP model were
discovered. This construction, proposed by Shiraishi and Mori [64], is based
on local projectors Pj and a subspace T of the Hilbert space for which
PjT = 0. Given a Hamiltonian H ′ that satisfies [H ′, Pj] = 0, the (generi-
cally non-integrable) Hamiltonian

H =
∑
j

PjhjPj +H ′ (1.10)

has dim T candidate scarred eigenstates (the eigenstates of H restricted to
T ).
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Despite various mechanisms and many examples that have been discov-
ered, the origin of quantum scars still requires vast investigation. In partic-
ular, the possible connections of quantum scars with lattice gauge theories,
with confinement and with kinetic constraints – which have been partially
explored in the works reported in this thesis – are intriguing directions for
future research.





Chapter 2

Exact many-body scars and their
stability in constrained quantum
chains

Quantum scars in the PXP model were originally used to explain the slow
dynamics observed by evolving a charge-density wave (CDW) initial state in
the above-mentioned experiment with Rydberg atoms: for a chain of length
L, there are L + 1 scar eigenstates, with a large overlap with the CDW,
spread throughout the spectrum and (approximately) equally spaced in en-
ergy. Crucially, numerical results reveal hybridization of these scars with
thermal eigenstates, implying that they are not stable in the thermody-
namic limit [48]. Therefore the resulting dynamics from this initial state
is expected to eventually thermalize. However, two exact uniform matrix
product eigenstates have been found for all (even) system sizes [52]. This
fact demonstrated the existence of ETH violating eigenstates that survive
in the infinite size limit, and motivated the study of their stability against
perturbation. In Ref. [65] the authors address this problem by using per-
turbation theory: from the scaling of the averaged matrix elements, they
find no qualitative difference between the scars and thermal eigenstates, and
thus deduce that the scars are not stable against perturbations. Nonethe-
less, they claim that thermalization is slow, because of parametrically small
matrix elements and prove the rigorous lower bound for the thermaliza-
tion time t∗ ∼ O(λ−1/(1+d)), where d is the spatial dimension and λ is the
perturbation strength.

Here, we analyse a different quantity (the fidelity susceptibility), which
is a renowned probe of quantum chaos [66–68], and is not subject to the
arbitrariness of the averaging procedure. Part of our results contrast with
Ref. [65], showing that the scars with zero energy have a completely differ-
ent behavior from thermal eigenstates and are anomalously stable to first
order in perturbation theory. These findings suggest that thermalization
of quantum scars is even slower than previously expected, being originated
from effects beyond the first perturbative order.

15
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We remark that this anomalous stability is observed only for scars with
zero energy, so we cannot conjecture a similar mechanism for explaining
the persistence of non-exact scars at finite energy in the PXP model. In
fact, although a construction based on a "single mode approximation" sug-
gests a possible connection between the band of L+ 1 quantum scars at all
energies to the MPS quantum scars at zero energy [52], these two sets of
low-entropy eigenstates appear to have different origin. For example, while
the former are stabilized by a specific fine-tuned perturbation [69] and have
logarithmic scaling of entanglement entropy with system size, the latter are
destroyed by the same perturbation and have finite entanglement entropy
in the thermodynamic limit.

In order to frame our finding about scar stability in the broader picture of
ETH violations in constrained quantum systems, we prove that a novel set of
exact eigenstates arising at zero energy (and at non-zero energy, when open
boundary conditions are imposed) exist in generalized PXP models with
radius of contraint α > 1. We do not find a band of eigenstates equally
spaced in energy like the one observed in the PXP model. These results
suggest that exact scars are a generic property of one-dimensional models
constrained by Rydberg blockade. We then extend our stability analysis to
this second set of scars, and show how, in analogy with the α = 1 case, they
display anomalous stability.

The chapter is structured as follows. In Sec. 2.1, we introduce the PXP
model and the scar eigenstates, and we set the notation for the follow-
ing sections. In Sec. 2.2 we introduce the fidelity susceptibility and the
eigenstate thermalization hypothesis, and put forward a link between such
observable and a recently proposed spectral version of the adiabatic gauge
potential [68, 70]. In Sec. 2.3 we focus on the models with radius of con-
straints α > 1: we discuss their properties in light of the ETH, we show
that they obey Wigner-Dyson spectral statistics (Sec. 2.3.1); we describe
the exact scars with E = 0 as product states of "dimers" (Sec. 2.3.2), and
the exact scars with E 6= 0 as matrix product states (Sec. 2.3.3); finally,
we show that the exact scars with E = 0 are anomalously stable against
perturbations (Sec. 2.3.5).

2.1 PXP model
The model we consider is the PXP model, introduced in Section 1.3. We
report here, for convenience, the Hamiltonian in terms of the Pauli matrices
Xi, Yi, Zi at site i and the operators Pi = (1 − Zi)/2, ni = (1 + Zi)/2. In
the constrained space we define

H0 = X1P2 +
L−1∑
j=2

Pj−1XjPj+1 + PL−1XL (2.1)

for open boundary conditions and
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H0 =
L∑
j=1

Pj−1XjPj+1 (2.2)

with the identification of the sites j ≡ j+L for periodic boundary conditions.
We are interested in the effects induced by a perturbation V that has the
same symmetries of H0. More concretely, the Hamiltonian is H = H0 +λV ,
where

V = X1P2Z3 +
L−2∑
j=2

Pj−1XjPj+1Zj+2

+
L−1∑
j=3

Zj−2Pj−1XjPj+1 + ZL−2PL−1XL (2.3)

for the case of open boundary conditions and

V =
L∑
j=1

(Pj−1XjPj+1Zj+2 + Zj−2Pj−1XjPj+1) (2.4)

for periodic boundary conditions.
Both H0 and V commute with the space reflection symmetry I and anti-

commute with the particle-hole symmetry Cph =
∏

i σ
z
i . As a consequence,

the spectrum is symmetric with respect to the eigenvalue E = 0 and the
energy zero eigenspace has a dimension growing exponentially with system
size [71]. For more details about the peculiar properties of the spectrum we
refer to Appendix A.1.

Many-body scars

As stated above, many-body scars are states that do not satisfy ETH. It
was shown in Ref. [47] that the spectrum of the PXP model exhibits a band
of equally-spaced many-body scars. These scars were responsible for the
observation of long-lived oscillation in the Rydberg atom experiment [46].
Their exact form is not known analytically, and their persistence in the
thermodynamic limit is still an open question. However, as was shown in
Ref. [52], H0 has also some exact scars in the form of MPS eigenstates at
finite energy density. For open boundary conditions they are defined as

|Γi,j〉 =
1√
Ni,j

∑
{σ}

vTi Aσ1σ2 . . . AσL−1σLvj |σ1σ2 . . . σL−1σL〉 (2.5)

with
A00 =

(
0 −1
1 0

)
, A01 =

(√
2 0

0 0

)
, A10 =

(
0 0

0 −
√

2

)
, (2.6)
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i, j = 1, 2, Ni,j = 2[3L/2 + (−1)L/2+i+j] and v1 = (1, 1)T , v2 = (1,−1)T .
Γ12 has energy

√
2, Γ21 has energy −

√
2, whereas Γ11 and Γ22 have energy

0. In the next sections, we will focus on scars with well-defined inversion
quantum number, so we define |ΓI〉 = (|Γ11〉 − |Γ22〉)/

√
2− 2 〈Γ11|Γ22〉.

For periodic boundary conditions, the two scarred eigenstates |Φ1〉 and
|Φ2〉 are defined as

|Φ1〉 =
1√NΦ

∑
{σ}

Tr[Aσ1σ2 . . . AσL−1σL ] |σ1σ2 . . . σL−1σL〉 (2.7)

and |Φ2〉 = Tx |Φ1〉, where Tx is the translation operator and NΦ = 3L/2 +
2 + (−1)L/2. Both have energy 0. Their properties under the symmetries
are the following: I |Φi〉 = (−1)L/2 |Φi〉 and Cph |Φi〉 = (−1)L/2 |Φi〉 for
i = 1, 2. We will work with the linear combinations |ΦK=0,π〉 = (|Φ1〉 ±
|Φ2〉)/

√
2± 2 〈Φ1|Φ2〉. Even though these are not responsible for the per-

sistent oscillations observed in experiments, their putative stability in the
thermodynamic limit outlines their importance.

2.2 Perturbation theory and Eigenstate Ther-
malization Hypothesis

It is crucial to understand how to define stability for these kind of eigen-
states. In general, we will say that an eigenstate of H0 is stable if it can be
deformed to an eigenstate of H0 + λV with a local unitary transformation
in the thermodynamic limit. Usually this criterion is satisfied by ground
states in gapped systems. Here we are interested in the scars |Γαβ〉 and
|Φi〉 which are in the middle of a dense spectrum, in the absence of a gap
to protect them. The local character of the transformation, if it exists,
should guarantee that a stable scar retains its character (no ETH and area
law entanglement) in the thermodynamic limit. For generic eigenstates, no
stability is expected. This can be understood as a consequence of the Eigen-
state Thermalization Hypothesis (ETH): to first order in the perturbation
strength λ, the perturbed eigenstate can be written as

|n0〉+ λ |n1〉 = |n0〉+ λ
∑
m 6=n

〈m0|V |n0〉
E0
n − E0

m

|m0〉 . (2.8)

According to ETH, the off-diagonal matrix element 〈m0|V |n0〉 scales as
exp(−S/2), where S is the extensive thermodynamic entropy of the system.
The energy denominator, on the other hand, scales as exp(−S) for nearby
eigenstates. This simple argument implies that the first order correction
diverges exponentially in the system size L.

Hence, a natural question to answer is whether the first order correction
to the scars behaves according to the scaling predicted by ETH or not. In
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Figure 2.1: Absolute value of the ratio between the matrix element and the
energy difference between a target state and a state of the spectrum. The
same data are represented in a larger (first row) and in a smaller (second
row) range of energy difference. The target states are the scars eigenstates
|Γ21〉 (a,d), |ΓI〉 (b,e) defined in Sec. 2.1 and a thermal eigenstate |Γth〉 (c,f)
taken as the third eigenstate after |Γ21〉 in order of increasing energy. The
clear peak observed when a thermal eigenstate |Γth〉 is considered is not
present for the scars eigenstates, pointing at a suppression of the matrix
elements of the perturbation for the latter states.

Ref. [65], it was found that the matrix elements 〈m0|V |Γ〉 averaged over
a certain set of eigenstates {|m0〉} close in energy to |Γ〉 do indeed scale
as exp(−S/2), where |Γ〉 is one of the scars for the case of open boundary
conditions. This is however not sufficient to claim instability: the matrix
elements which are responsible for the divergence are the ones involving
states that are very close in energy. As can be seen in Fig. 2.1, the matrix
elements weighted with the inverse energy gaps behave very differently for
the scars and for generic thermal states: the vanishing denominator pro-
duces a peak in the case of a thermal state; the scars, despite the vanishing
energy gaps, do not exhibit this peak, signalling a suppression of matrix
elements for small gaps. Moreover, the averaging procedure of matrix ele-
ments introduces some arbitrariness in this respect: the result depends on
the choice of the set of eigenstates that are included in the average.

In this work, we propose to diagnose the stability of scar eigenstates by
studying the fidelity susceptibility, defined as [72]

χF
[
|n0〉

]
= lim

λ→0

−2 ln | 〈n0|nλ〉 |
λ2

(2.9)

where |n0〉 is an eigenstate of H0 and |nλ〉 is the eigenstate of H0 + λV
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obtained from |n0〉 with a perturbative construction in λ. From the explicit
construction of the state, one finds1

χF
[
|n0〉

]
=
∑
m 6=n

∣∣∣∣〈m0|V |n0〉
E0
n − E0

m

∣∣∣∣2 . (2.10)

The fidelity susceptibility is a measure of the response of an eigenstate to
perturbations: when averaged over different eigenstates, for example, it has
been very recently used as a measure of quantum chaos [68,70]. For gapped
ground states of local Hamiltonians, it is expected to scale as χF ∼ L with
the system size L. On the other hand, as argued above, ETH implies a
scaling χF ∼ exp(L) for eigenstates at finite energy density.

Note that, due to the special properties of this perturbation, all the
matrix elements of V between zero energy states vanish (see Appendix A.1):
as a consequence, the fidelity susceptibility is well-defined even for states
in the exponentially degenerate zero-energy manifold and can be computed
for all the scarred eigenstates.

We obtain that only a subset of the exact scars appear to be stable.
Indeed the scaling of the fidelity susceptibility for the scars |ΦK=0〉 (for
the case of periodic boundary conditions) and |ΓI〉 (for the case of open
boundary conditions) shown in Fig. 2.2 suggests a linear dependence2 χF ∼
L, as evidenced by the solid lines. On the contrary, the scaling for |Γ21〉
and for the generic thermal eigenstates |Γth〉 and |Φth〉3 are compatible with
an exponential growth (dashed lines), as predicted by ETH. These results
show that |ΦK=0〉 and |ΓI〉 are perturbatively stable to an infinitesimal
perturbation. We note that these differences are not only qualitatively
manifest (power versus exponential scaling), but also quantitatively striking,
so that the different scaling regimes can be diagnosed despite the fact that
our analysis is limited to modest system sizes up to L = 32 spins.

We now want to understand if they are also stable to a finite strength
λ of the perturbation. If these states were akin to gapped ground states,
we would have expected stability to hold in the thermodynamic limit for a
finite λ as long as it is much smaller than the gap. The absence of a gap
makes the quest for an energy scale associated with scars much less obvious.

To address this problem, we compute the states |Φλ
K=0〉 and |Γλi 〉 ob-

tained by perturbing the scars |ΦK=0〉 and |ΓI〉 in the following way

|Φλ
K=0〉 =

1

N λ
Φ

1

1 + λQH−1
0 QV

|ΦK=0〉 (2.11)

1We use that |nλ〉 = (|n0〉+|n⊥〉)/‖|n0〉+|n⊥〉‖, with 〈n⊥|n0〉 = 0 to obtain 〈n0|nλ〉 =
‖|n0〉+ |n⊥〉‖−1 = (1 + 〈n⊥|n⊥〉)−1/2 = 1− 1

2λ
2 〈n1|n1〉+O(λ3).

2On top of the linear growth, the scaling for the scar |ΦK=0〉 is subject to an even-odd
effect related to the different parity under inversion symmetry of the state (I = (−1)L/2).

3The state |Γth〉 is chosen as the third eigenstate after |Γ21〉 in increasing order of
energy. The state |Φth〉 is the state with energy closest to −0.3.



2.2. PERTURBATION THEORY AND ETH 21

10 15 20
L

102

104

106(a)
th

21
I

10 15 20
L

5

10

15

20

25(b)
I

20 25 30
L

102

104

106
(c)

th

K = 0

20 25 30
L

5

6

7

8

9(d)
K = 0

Figure 2.2: Scaling of the fidelity susceptibility with system size. The re-
sults shown refer to the states (a) |Γth〉, |Γ21〉 and |ΓI〉 with open boundary
conditions and to the states (c) |Φth〉 and |ΦK=0〉 with periodic boundary
conditions. As can be seen in the panels with linear y-scale (b), (d), the
scaling of the fidelity susceptibility of a zero energy scar eigenstate is poly-
nomial with the system size, in sharp contrast to what happens for thermal
eigenstates or scars at non-zero energy (a),(c). Solid lines are fits for the
linear scalings (the two different lines for ΦK=0 capture the even-odd effect),
dashed lines are fits for exponential scalings.
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|ΓλI 〉 =
1

N λ
Γ

1

1 + λQH−1
0 QV

|ΓI〉 (2.12)

where Q projects on the subspace with E0 6= 0, and N λ
Φ , N λ

Γ are normal-
izing factors. The states |Φλ

K=0〉 and |ΓλI 〉 are the perturbed eigenstates to
infinite order in perturbation theory4. We numerically compute the von
Neumann bipartite entanglement entropy S(λ) of these states for different
system sizes (Fig. 2.3). This quantity exhibits peaks that get closer to
λ = 0 as L increases, indicating a stronger and stronger hybridization with
other eigenstates in the spectrum. This fact strongly suggests that, despite
the stability observed to first order in perturbation theory, the scars are
ultimately not stable for finite λ 6= 0 5.
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Figure 2.3: Bipartite entanglement entropy of the states (a) |Φλ
K=0〉 and (b)

|ΓλI 〉 as a function of λ. Peaks in this quantity signal hybridization of the
perturbed state with thermal eigenstates. By increasing the system size, we
find peaks closer and closer to λ = 0, suggesting that the scar eigenstates
are not stable in the thermodynamic limit.

2.3 Models with radius of constraint α > 1

Since the first studies on the PXP model, several other instances of quantum
many-body scars have been put forward [3, 4, 55, 56, 58–62, 73–80]. While
it is tempting to extend some of the findings above to a general setting,
we refrain from this for the very simple reason that PXP models have a

4The expressions are obtained using the fact that the perturbative corrections to the
energy of the scars |ΓI〉 and |ΦK=0〉 are zero for all orders in perturbation theory. For
a state with this property one has that H0 |nj+1〉 = V |nj〉, where ∑∞j=0 λ

j |nj〉 is the
formal expression of the perturbative series of the eigenstate. A resummation of the
geometric series yields the expressions in Eqs. (2.11) and (2.12).

5We note that performing a rigorous finite-size scaling analysis for the position of the
first peak versus system size is tricky for two reasons: (i) we can only consider a coarse
grained set of values of λ, so that we can only put an upper bound on the position of
the peak, and (ii) the peaks may be due in principle to different level crossing, making
a finite-size extrapolation not fully reliable. Our conclusion is based on the fact that
we systematically observe the peak moving towards vanishing perturbations, with no
exception, very rapidly with system size.
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characteristic feature - a constrainted Hilbert space that cannot be reduced
in tensor product form - that is not present in other instances of quantum
scars. We pursue instead an alternative route, based on investigating the
stability of quantum scars in an enlarged class of constrained models.

Specifically, we consider a generalization of the PXP model, where we
extend the constraint to the sites within an integer radius α, i.e. ninj = 0

whenever |i− j| ≤ α, with nj =
Zj+1

2
. The Hamiltonian has the form:

Hα
0 =

∑
i

Pi−α . . . Pi−1XiPi+1 . . . Pi+α, (2.13)

where Pj is the projector on the state |0〉. The Hamiltonian (2.13) coincides
with the PXP model for α = 1 and arises as an effective approximation of
the long-range Hamiltonian describing Rydberg atom arrays when the (con-
tinuous) blockade radius is increased (by, e.g., tuning the distance between
the atoms). Similarly to the PXP model, this Hamiltonian commutes with
the reflection symmetry I and anticommutes with the particle-hole symme-
try Cph, and the spectrum has the same properties (see Appendix A.1).

2.3.1 Spectral statistics

In this section we analyze the spectral statistics of the Hamiltonian in
Eq. (2.13) for different values of α. We use as a measure the ratio between
nearby gaps:

r =
〈Min{∆En,∆En+1}

Max{∆En,∆En+1}
〉
, (2.14)

where the average is taken over the full spectrum. For an ergodic system,
this quantity is expected to flow to the value rWD ' 0.53 associated with
a Wigner-Dyson statistics. While for α = 1 ergodicity has been already
verified in various works [48, 81], we check this assumption when α > 1 in
Figs. 2.4, where we show the values of r for different α and system sizes.
In all the cases considered (reflection sector I = +1 with open boundary
condition, reflection sectors I = +1 and I = −1 with momentum K = 0
and periodic boundary conditions) we find a clear flow to rWD for increasing
system sizes. We can therefore argue that the system has a spectral statistics
that is compatible with ergodicity.

2.3.2 Exact scars with E = 0

We now show that, although the models considered here satisfy the Wigner-
Dyson spectral statistics, some states in the spectrum have finite entangle-
ment entropy in the thermodynamic limit and hence violate the eigenstate
thermalization hypothesis.

For a system with L = (α+ 2)n (with n integer), consider the following
state
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Figure 2.4: Ratio r defined in Eq. (2.14) averaged over the full spectrum.
The colors label different values of α. The dashed horizontal line is the value
rWD associated with Wigner-Dyson statistics, that appears to be satisfied
for all the values of α considered.

|φα〉 =
n−1⊗
i=0

[
(|01〉 − |10〉) |0 . . . 0︸ ︷︷ ︸

α

〉
]
bi

(2.15)

where the index bi labels blocks of α + 2 sites. The state of the first two
sites of a block is an antisymmetric superposition (that we call a dimer)
and hence is annihilated by the summed spin flip. All the other sites of
a block cannot be flipped: they are "frozen" by the previous or the next
dimer. Therefore, the state |φα〉 (and all the states obtained from it by
translations) is a scar with energy E = 0 for generic α > 1.

We can construct many exact scars with E = 0 by placing dimers (de-
picted in red in Fig. 2.5) on the chain. Two dimers must be separated by a
number ` of zeros in the range α ≤ ` ≤ 2α − 2. We can also have longer-
range dimers involving sites that are not nearest neighbours. In this case,
the number ` of zeros between two dimers of range r1 and r2 must be in the
interval α ≤ ` ≤ 2α − r1 − r2. This last condition implies that the ranges
of two consecutive dimers are bounded by r1 + r2 ≤ α.

This construction works also in the case of open boundary conditions,
with the following rules for the boundaries: if the first (last) dimer of the
chain has range r, then the number of zeros preceding (following) it must
be ` ≤ α− r.

We note that the structure of these states, that we write as product
states of dimers, is reminiscent of the construction of scar eigenstates found
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Figure 2.5: Some eigenstates with E = 0. (a) The state |φα〉 is made of
dimers (in red) separated by sequences of 0s of length α. (b) Dimers can
have range r > 1. (c) Dimers can be separated by any distance `, such that
α ≤ ` ≤ 2α− r1 − r2.

in other constrained models [3, 82].

2.3.3 Exact scars with E 6= 0

In the following, we will show that the models of Eq. (2.13) have scars also
at E 6= 0 when open boundary conditions are imposed. While, as we have
shown in Sec. 2.3.2, it is possible to write many exact E = 0 eigenstates
as product states of dimers, for these scars we need to resort to a more
involved construction: we write them as matrix product states with finite
bond dimension, independent of the system size.

Exact scars with E = ±
√

3

For system sizes L = (α+ 2)n+ 3, with n integer, we are able to write two
exact scars with energy E = ±

√
3 as matrix product states. To define these

states, we divide the chain in blocks labelled from 1 to 2n + 1: the blocks
labelled by odd numbers contain 3 sites, while the blocks labelled by even
numbers contain α − 1 sites. As we prove in Appendix A.4, the following
state is an exact eigenstate with energy E =

√
3:

|ψ(3)
α 〉 =

∑
~s

[
(1, 0)T ·N s1M s2 . . .M s2nN s2n+1 · (0, 1)

]
|~s〉 (2.16)

where s1, s2, . . . , s2n+1 label the states of the blocks and

M s =

{
1 if s = 00 . . . 00

0 otherwise,
(2.17)
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N000 =

(
0
√

3
0 0

)
, N100 =

(
0 1
0 1

)
, (2.18)

N010 =

(
1 1
0 −1

)
, N001 =

(
−1 1
0 0

)
. (2.19)

From the relation CphHα
0 = −Hα

0 Cph we immediately find that the state
|ψ(−3)
α 〉 = Cph |ψ(3)

α 〉 is another eigenstate of Hα
0 with eigenvalue E = −

√
3.

We also note that the state obtained by taking the trace in Eq. (2.16) is a
zero energy eigenstate for L = (α+ 2)n+ 3 when open boundary conditions
are imposed. Moreover, removing the matrixN at one of the two boundaries
we can construct an MPS that is invariant under translations of α+ 2 sites

|ϕα〉 =
∑
~s

Tr(Bs1Bs2 . . . Bsn) |~s〉 , (2.20)

where B = MN and si runs through the 3 allowed states of the i-th block,
made of α + 2 sites. This state is a zero energy eigenstate for periodic
boundary conditions and system sizes L = (α+2)n, and it has non-vanishing
overlap with the dimer eigenstates of Sec. 2.3.2; however, for generic α
it has a component that is independent of those states. The matrix B
yields a non-injective MPS, whose parent Hamiltonian has a degenerate
groundspace [83]. In fact, the state in Eq. (2.20) can be written as a cat
state

|ϕα〉 =

[(
|L〉+

1

2
|R〉 − 3

2
|C〉
)
|0 . . . 0︸ ︷︷ ︸
α−1

〉
]⊗n

+

[(
1

2
|L〉+ |R〉 − 3

2
|C〉
)
|0 . . . 0︸ ︷︷ ︸
α−1

〉
]⊗n

= |ϕ1
α〉+ |ϕ2

α〉 , (2.21)

where |L〉 = |100〉, |C〉 = |010〉 and |R〉 = |001〉. The parent Hamiltonian
of this state has |ϕ1

α〉 ± |ϕ2
α〉 as the two degenerate ground states. This

is in contrast with the eigenstates of Ref. [52] (|Φ1〉 and |Φ2〉 in Sec. 2.1)
which are injective MPSs, and thus unique ground states of their parent
Hamiltonian.

Exact scars with E = ±√q
We find that other (possibly degenerate) MPS scars appear at energies
E = ±√q with q integer. This property is a consequence of the structure
of these matrix product states. Similarly to the case of periodic boundary
conditions, the action of the Hamiltonian on these states is such that the
complicated interaction is decoupled into smaller non-interacting blocks.
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Their energies are therefore determined by the energy of a single block:
in the cases we consider, the energy of a block can be 0 or ±√q where
q ≤ α+1 is the size of the block. In Appendix A.5 we write down explicitly
some exact eigenstates of Hα

0 with energy E = ±
√

2 for α = 3.

2.3.4 Relation with exact scars for α = 1

The exact scars described here are reminiscent of the ones found in Ref. [52]:
there, it was shown that the PXP model (α = 1) has exact MPS scars at
E = 0 for periodic boundary conditions, and both at E = 0 and E = ±

√
2

when open boundary conditions are imposed. The states we study for α ≥ 2,
however, show a qualitative difference with respect to them: in the case of
open boundary conditions, the energy density profile does not have peaks at
the edges, but has a pattern that is uniformly repeated in the full system.
As we will explain in this Section, this difference can be understood from
the MPS structure of these states.

The scars in Eq. (2.5) have the form of AKLT states in which two-site
blocks play the role of S = 1 spin variables. As we show in Appendix A.3,
the energy density of the PXP model corresponds to the local magnetization
of the AKLT state in the z direction. The boundary properties of the scars
can be interpreted using the "dilute antiferromagnet" representation of the
AKLT state: in the Sz basis, the state is a superposition of configurations
with alternating + and −, and with an arbitrary number of 0 placed in
between. The different boundary vectors α, β of |Γαβ〉 fix the sign of the
first and last non-zero spins of the configurations. Therefore, the local
magnetization is non-zero close to the boundaries but goes to 0 far from
them.

The state in Eq. (2.16), on the other hand, has a very different structure:
if we use, once again, a basis in which the local energy corresponds to a local
magnetization, we can write |ψ(3)

α 〉 as a superposition of configurations with
a single + (on one of the 3-site blocks), and 0 magnetization everywhere else.
Therefore, in contrast with the dilute antiferromagnet of the scars |Γαβ〉,
this state is reminiscent of a spin wave, with a single magnetic excitation
uniformly spread over the chain.

2.3.5 Stability

We now analyse the response of the exact scars described above to a per-
turbation. The perturbation we apply is

V α =
∑
i

Zi−α−1Pi−α . . . Pi−1XiPi+1 . . . Pi+α+

Pi−α . . . Pi−1XiPi+1 . . . Pi+αZi+α+1. (2.22)

This term has the same symmetries of Hα
0 , namely it commutes with I

and anticommutes with Cph. Similarly to the PXP case, we use the fi-
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delity susceptibility to check whether these states are stable to first order
in perturbation theory.
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Figure 2.6: Scaling of the fidelity susceptibility with system size. The re-
sults shown refer to the generic states φth (upper left panel) and the scarred
eigenstates φα (upper right panel and lower panels). Dashed lines are ob-
tained from fits with an exponential scaling, solid lines with linear scaling.
The result points at the same behavior occuring in the PXP model.

In Fig. 2.6, we present the results of the stability analysis. In the upper
left panel, we plot the fidelity susceptibility of a generic (thermal) eigen-
state of the spectrum |φth〉 (chosen as the eigenstate with energy closest to
1.9, 1.7, 1.35 for α = 2, 3, 4 respectively): for every α, the scaling with sys-
tem size is exponential, as expected from ETH (dashed lines). In the other
panels, we plot instead the fidelity susceptibility of the scars |φα〉 defined in
Eq. (2.15): the scaling here is linear6 (solid lines) for every α, signalling a
clear violation of ETH. These results suggest that the anomalous stability
of the scars with E = 0 is a generic feature of this class of one-dimensional
models constrained by Rydberg blockade.

2.4 Conclusions

In this work, we investigated the stability against perturbations of exact
quantum scars arising in spin chains constrained by Rydberg blockade. We
first analysed the PXP model and found that some of the MPS scars found
in Ref. [52] exhibit a power law scaling of the fidelity susceptibility with

6Similarly to the state |ΦK=0〉 in Fig.2.2-(d), the scaling for |φα〉 is subject to an even-
odd effect related to the different parity under inversion symmetry (I = (−1)L/(α+2)).
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system size. This result is a signature of their stability, a remarkable fea-
ture for eigenstates in the middle of a dense many-body spectrum. This
fact is however limited to first order in perturbation theory, as a numerical
analysis of the higher-order perturbative corrections reveals hybridization
of exact scars eigenstates with thermal eigenstates. This behavior is remi-
niscent of the many-body "dark states" observed in Refs. [84, 85]. We find
the anomalous scaling of the fidelity susceptibility only for scars with zero
energy, suggesting that the properties of the E = 0 subspace, such as the
exponential degeneracy enforced by the invariance of this subspace under
particle-hole and inversion symmetries, may be a key factor in stabilizing
these states. Although not shown here, if we perturb with a term that
breaks these properties, we find no signatures of stability for any of these
low-entropy eigenstates.

To validate these conclusions, we extended our discussion to models with
larger blockade radius α. First, we constructed novel classes of states that
are exact scars eigenstates for any α and have energy eigenvalues E = 0
and E = ±√q (with q integer). The construction is based on an effective
decoupling of the sites of the chain into "non-interacting blocks", and allows
us to write these states into simple matrix product form. We then studied
their fidelity susceptibility under perturbations that do not spoil the expo-
nential degeneracy of the zero-energy eigenspace, a common property of the
family of constrained models we analysed. Also in this case, we found these
eigenstates to be stable at first perturbative order when they belong to the
E = 0 subspace.

Our results suggest that an increasing number of exact MPS scars ap-
pear in the spectrum for larger values of α, and their complete classification
is beyond the scope of this work. It is also worth noticing that, contrarily
to the α = 1 case (PXP model), no "approximate scars" eigenstates – akin
to the ones found in Ref. [47] – appear for α > 1, as can be seen from
an inspection of the bipartite entanglement entropy of each eigenstate as a
function of the energy. This fact provides strong indications that there is, in
general, no relationship between the appearance of eigenstates with low en-
tanglement entropy, equally spread uniformly in the energy spectrum, and
the existence of exact MPS eigenstates in spin models constrained by Ryd-
berg blockade. It stands as an open question whether these new exact MPS
states can lead to clear experimental signatures, since, having no recurrent
spectral structure, they are not expected to play any role in anomalous os-
cillations observed in experiments (that, indeed, were not reported for larger
constraint radii).

From a methodological standpoint, our results suggest that generaliza-
tions of the fidelity susceptibility to spectral properties can provide useful
quantitative insights on the stability of ETH, in agreement with recent ap-
plications to quantum chaos diagnostics proposed in Ref. [68, 70].





Chapter 3

Quantum local random networks
and the statistical robustness of
quantum scars

As discussed in Section 1.3, the field of quantum scars has by now rapidly
grown, both theoretically and experimentally. However, a crucial question
has remained largely unanswered: are those states genuine many-body ef-
fects, that persist in the thermodynamic limit, or are they ultimately going
to disappear due to the inevitable mixing to ’thermal’ states? As speculated
in [65], the bands of (approximate) scars of the PXP model may arise from
the similarity with another model possessing exact scars. To understand if
the approximate scars survive in the thermodynamic limit, it would then
be crucial to understand whether exact scars are robust to perturbation or
they disappear due to the hybridization with thermal states.

In Chapter 2, we investigated the stability of exact scars, showing that
these states are sensitive to arbitrarily small perturbations (though ex-
tremely weakly), which cause them to ultimately disappear in the thermo-
dynamic limit. We now want to investigate a different type of "stability":
while the approach to quantum scarring typically pivots around the analysis
of spectral properties of "deterministic" models, here, we pursue a different
approach, and analyze the stability of scar manifolds statistically. It was
already noticed that the network representation of the Hamiltonian is par-
ticularly convenient to understand many properties of constrained models
displaying scars [51] (or even shattering of the Hilbert space [86,87]): these
models are geometrically equivalent to unweighted simple1 networks, with
a number of nodes exponentially large in system size N , but an average
degree per node only linear in N as a result of the locality of the Hamil-
tonian [47]. We build upon this analogy to define a general ensemble of
Hamiltonians, called quantum local random network models, which includes

1A simple graph is a graph that does not have more than one edge between any two
vertices and no edge starts and ends at the same vertex.

31
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the PXP model as a particular realization. Hamiltonians belonging to this
ensemble are the adjacency matrices of networks whose nodes are indexed
by a string of quantum numbers (e.g., {01001 . . . }) while edges are drawn
randomly with probability p only among vertices differing by local moves
(spin flips): in this way, the constraints are statistically encoded in the
dynamics.

We study in detail the spectra and the corresponding eigenfunctions and
prove that generic Hamiltonians in this class can display two types of scars,
stochastic and statistical which are both localized on the network. Their
difference is reminiscent of the difference between size dependent [47] and
exact scars [52] in the PXP model: stochastic scars occur at parameter-
dependent energies which, for our models below, fluctuate wildly among
different realizations, while statistical scars occur always at specific energies
ε = 0,±1,±

√
2,±
√

3,±(
√

5±1)/2, . . . , whose values are governed by spec-
tral graph theory [88,89]. A study of the scaling of the average degeneracy
of statistical scars as a function of system size suggests the possible occur-
rence of (a series of) an eigenstate phase transition around pc ' 0.2 between
a phase in which scars proliferate and one in which their number decreases.

3.1 Quantum local random networks

The first model in which quantum scars were discovered is the PXPmodel [51]
which, on a chain of N sites with open boundary conditions, is defined by

HPXP =
N−2∑
i=1

PiXi+1Pi+2 +X1P2 + PN−1XN , (3.1)

where Pi = (1−Zi)/2 and Xi, Zi are local Pauli matrices. The dynamics of
the PXP model is highly constrained (reflecting the microscopic mechanism
of Rydberg blockade [46, 90]): it is impossible to flip a spin from down
to up, if one of its nearest neighbours is up. Interestingly, the model in
the subspace containing the spin-down state | ◦ ◦ ◦ . . . 〉 can be represented
as a tight-binding Hamiltonian on a specific network (Fibonacci or Lucas
cube) [47].

While the majority of scars, identified through their overlap with the
Z2 state | ◦ • ◦ • . . . 〉 and their low entanglement entropy, feature size-
dependent effects, it was recently shown [52] that this model possesses also
a few exact scar states (of the form of exact matrix product states) in the
thermodynamic limit at the special energies ε = 0,±

√
2. Individual scars

are unstable with respect to perturbations: perturbations respecting the
symmetries of the PXP model make them evaporate in the continuum of
ergodic states. The instability of individual scars does not imply however
that deformations of the PXP model cannot possess a scar manifold, i.e., a
set of non-ergodic, low-entangled states immersed in the ergodic continuum,
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Figure 3.1: (a) Illustrative example of a QLRN: states differing by a single
spin flip have probability p of being connected by an edge. (b) Graphical rep-
resentation of an eigenstate with ε = 0 localized in the periphery of the net-
work for N = 13, p = 0.15. The color indicates the weight of the eigenstate
on each node. The weight is concentrated on few nodes that are loosely con-
nected with the rest of the network. (c) Bipartite entanglement entropy and
(d) betweenness centrality of the eigenstates vs their energy for p = 0.15,
N = 14. The different colors refer to different realizations. Dashed grey
lines indicate the special energies (ε∗ = ±1,±

√
2,±(

√
5± 1)/2,±

√
3) asso-

ciated with stochastic scars. At these energies, degenerate eigenstates are
found, whose entanglement entropy and betweenness centrality are anoma-
lously small with respect to the other eigenstates belonging to the thermal
cloud.

which are not continuous deformations of PXP scars. In this case, the
existence of a scar manifold as a whole could be described as statistically
stable.

In order to address such statistical stability we notice that a common
tract of constrained models is their representability as hopping Hamiltonians
on networks whose nodes are indexed in the computational basis (| {σ}〉
with σ = ◦, • for the PXP model). It is therefore appealing to embed the
PXP in a much broader ensemble of Hamiltonians, which we call Quantum
Local Random Networks (QLRN) sharing the common ingredients of locality
(in a way we specify below) and constrained dynamics.

Let us illustrate the construction of a QLRN in the simplest case (see
Fig. 3.1-(a)): consider the network whose vertices are the sequences of N
elements {σi}, where σi = 0, 1 and i = 1, . . . , N , representing the compu-
tational basis of the Hilbert space of a spin system. Each pair of vertices
is connected by an edge with probability 0 ≤ p ≤ 1 provided they differ by
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a single flip of a boolean variable. The adjacency matrix of the resulting
network is then the Hamiltonian whose spectrum and eigenfunctions will
be the subject of our study. We note that, in this context, locality is in-
tended in the sense that states connected by the Hamiltonian only differ
by the properties of a single site. Evidently, while the PXP model is just a
particular realization of a QLRN, we expect the latter to be mimicking the
physics of the PXP model for p = 0.25 since in this model only one in four
configurations of the nearest neighbours of a spin allows it to be flipped.

Note that, similarly to the PXP model, each Hamiltonian of the QLRN
ensemble has matrix elements only between states with opposite Z parity (is
a bipartite graph), and hence anticommutes with the operator C =

∏
i Zi.

As a consequence, the spectrum is symmetric around ε = 0 and has a degen-
eracy in ε = 0 that scales exponentially with N [71]. Another consequence
is that, from the point of view of network theory, in a QLRN the clustering
coefficient of each node (which is proportional to the number of triangles
through that node [91]) is always zero, because the nearest neighbours of a
vertex have the same parity, so they cannot be joined by an edge.

3.2 Localized eigenstates

The use of the language of network theory in condensed matter physics
has a long history, starting from studies of Anderson-type localization in
generic networks [92], disorder-free localization on random trees [88] or as a
function of clustering coefficient [93, 94]. The possibility to generate local-
ized states without disorder by taking advantage of geometrical constraints
suggests that models of this type could be of interest for numerous prob-
lems, as was recently recognized in the context of the physics of many-body
localization [95] and thermalization [96,97].

For QLRN, the physics of localization emerges immediately when one
considers the density of states vs. ε for fixed system size N at different p (see
Section A.6 in the Appendix): while for p = 1 the spectrum is obviously
the sequence of peaks associated to a spin of size N in unit magnetic field,
as p diminishes the peaks first broaden, merging in a bell shaped DOS with
a clear delta-function peak at ε = 0. This peak, also observed in the DOS
of tight-binding models defined on random Erdös-Rényi networks [93], is
typically associated with localized states.

In our case, the peak is a consequence of the properties of the Hamilto-
nian under parity symmetry, as commented above. In the case of QLRN one
has to pay attention to a trivial type of localization associated to discon-
nected vertices which get isolated as p diminishes (a phenomenon similar to
the fragmentation of Hilbert spaces observed in Ref. [86, 98]). Since in this
work we will be interested in non-trivial localized states on QLRN and their
connection to the physics of scars, in the following we will always identify
the giant connected component of a QLRN and study localized states in this
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subspace. As expected a peak at ε = 0 in its spectrum is present also under
this restriction. We find that within this degenerate subspace it is possible
to find non-trivial eigenstates localized on the periphery of the network as
depicted in Fig. 3.1-(b).

Figure 3.2: Participation ratio Pn of the eigenstates for different values of
p for system size N = 14. The colors indicate different realizations of the
network. Statistical scars have large value of Pn: they are localized in the
computational basis. For large p their number goes to zero.

The localized states at ε = 0 are just the simplest of a class of nontrivial
localized states on the QLRN emerging at sufficiently small p. In order
to characterize the localization properties of these and other eigenstates
one may write them in the computational basis |Ψn〉 =

∑
i cn({σ})|{σ}〉

and study the participation ratio Pn =
∑
{σ} |cn({σ})|4. In addition, the

structure of wave functions on the QLRN can be studied using standard
measures of the character of nodes: i) the degree k({σ}); ii) the centrality
C({σ}) = 1/

∑
σ′ 6=σ lσ′σ, where lσ′σ is the distance between two sites on the

lattice; and iii) the betweenness centrality B({σ}) defined as the number
of shortest paths among different vertices passing through {σ}. One can
easily use these quantities to study eigenstates by defining their averages
over a generic eigenstate |Ψn〉, e.g., for the betweenness

〈B〉n =
∑
{σ}

| cn({σ}) |2 B({σ}). (3.2)

Finally, since these eigenstates can be interpreted as many-body states of a
spin chain of size N one may compute the half-chain entanglement entropy
Sn to connect localization on QLRN to the physics of scars.

As seen in Fig. 3.1-(c) by plotting the half-chain entanglement entropy
Sn for a QLRN at p = 0.15 as a function of eigenstate energy ε one can eas-
ily identify a number of eigenstates whose Sn is significantly lower than the
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Figure 3.3: Graphical representation of examples of localized eigenstates
with energy (a) ε∗ = 1 and (b) ε∗ =

√
2. The color of each node indicates

the parity of the corresponding state in the computational basis. Edges
connect states with opposite parity. The number written on each node is the
coefficient cn({σ}) of the eigenstate |Ψn〉 in the computational basis. Each
state is localized in the grey rectangles: all other nodes have cn({σ}) = 0.
In both examples, the eigenstate of the full graph is constructed using as
building block an eigenstate of a small motif (of two sites in (a) and three
sites in (b)): the graph contains two copies of the motif; the coefficient of
the motif eigenstate are assigned with opposite signs on the two copies. The
construction can be generalized to all the energies ε∗ that are eigenvalues of
small motifs.

typical value at that energy, therefore behaving as quantum scars. Most
of these eigenstates share the feature of having significant (and untypi-
cal) participation ratio (see Fig. 3.2), and are therefore localized on the
network. However, the way they are localized is not always the same, as
shown by plotting the eigenstate average betweenness 〈B〉n vs. ε (Fig. 3.1-
(c), lower panel): localized scars at specific energies (vertical lines at ε? =
0,±1,±

√
2,±(

√
5± 1)/2,±

√
3, . . . ) tend to have a lower betweenness than

the rest, indicating that they are not just localized, but localized on the
periphery of the network. Those are the key featurs that define statisti-
cal scars: oppositely, stochastic scars occur at system size and realization
dependent energies, and are not necessarily localized at the edges of the
network or have low betweenness. As shown in Fig. 3.2, both types of scars
proliferate as p is lowered below a certain threshold p ' 0.2.

3.3 Statistical scars
We now further investigate the presence of statistical scars at specific en-
ergies. The special energies ε? are well known to be the eigenvalues of the
adjacency matrices of small trees [88, 89]. The fact that various figures of
merit, including the centrality and degree (see Section A.9 in the Appendix),
suggest that statistical scars are localized on the periphery of the network,
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indicates that small elementary subgraphs (motifs) might be the basic el-
ements associated to statistical scars. This is indeed the case as shown in
Fig. 3.3: the eigenfunction of subgraphs of two vertices (eigenvalues ±1) or
three vertices (eigenvalues ±

√
2, 0) can be easily incorporated into eigen-

functions of the whole QLRN whenever geometrical structures of the type
of Fig. 3.3-a or Fig. 3.3-b occur on its periphery.

The occurrence of network motifs associated to statistical scars depends
both on the overall system size N and, most crucially, on p. In order to
investigate how many scars are to be expected as a function of system size,
we studied how the degeneracy of statistical scars with a given value of
ε?, averaged over realizations of the QLRN, scales with N for a fixed p.
This is shown in Fig. 3.4 for ε? = 1: while for p = 0.25 the degeneracy
of these scars does not increase with N , a completely different behavior,
characterized by a continuous growth, is seen for smaller p. This fact seems
to suggest the presence of an eigenstate transition as a function of p, with
a critical pc(ε = 1) ' 0.2. A similar behaviour is observed for other values
of ε? (see Section A.10 in the Appendix). We note that, differently from
eigenstate phase transitions in the context of many-body localization, in the
present case, the transition occurs at exactly known values of the energy
only, and not in a continuous part of the spectrum. This may facilitate
future studies, targeting, e.g., exact energy manifolds.

As a last comment, we note that some of the characteristic energies of
statistical scars correspond to the energies of the exact scars found in the
PXP [52] and in the generalized PXP models in Section 2.3. This is not a
coincidence: those scars, of the form of matrix product states (MPS), realize
an effective “decoupling" of the system in small blocks; the eigenenergies
are then originated from the diagonalization of the small blocks, akin to the
motifs of statistical scars. Despite this similarity, we do not find a direct
connection between the two types of scars. In contrast with statistical
scars, the number of MPS scars does not grow with the size of the system;
moreover, the structure of MPS scars is specific of the low dimensionality of
the model. We leave the question of a deeper connection between the two
types of scars to future works.

3.4 Conclusions and outlook

We studied the statistical stability of a scar manifold by introducing a
class of Hamiltonians, Quantum Local Random Networks, that combine
locality and constrained dynamics, and that include PXP as a particu-
lar instance. Focusing on the giant connected component of a QLRN
we have shown that it is expected to display two types of scars for suffi-
ciently small p: stochastic scars, which occur at realization and system size
dependent energies, and statistical scars which occur at special energies,
ε? = 0,±1,±

√
2,±(

√
5 ± 1)/2,±

√
3, . . . . The latter are solely dictated by
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Figure 3.4: Average degeneracy of the eigenspace with ε∗ = 1 as a function
of system size N . For p < pc (pc ' 0.2) the degeneracy increases with N ,
while it decays for p > pc.

random graph theory, and are associated to localized states on certain geo-
metrical motifs on the periphery of the QLRN. A study of the degeneracy of
statistical scars for various p as a function of systems size indicates the pos-
sibility of a quantum phase transition occurring at a critical value pc ' 0.2
between a phase in which scars proliferate and one in which their number
saturates for increasing N . These states appear in a variety of specific real-
izations, from (generalized) PXP [1, 52] to Hubbard models [99]. Studying
in detail this phenomenon, together with potential generalizations to other
QLRN, is an intriguing perspective, that we leave to future investigations.



Chapter 4

Weak-ergodicity-breaking via
lattice supersymmetry

In many-body theories, generic phenomena are often associated to and char-
acterized by the presence of symmetries [100]. Examples include quantum
critical points and topological insulators [101], whose universal properties
are dictated by the presence of microscopic global symmetries, and the con-
fining properties of gauge theories, which are often related to the structure
of local conservation laws [102]. While these examples concern the equi-
librium properties of matter, the role of symmetries has also been widely
investigated in systems out-of-equilibrium, for instance, in connection to
universal behavior [103,104].

A paradigmatic phenomenon that lies ’in-between’ equilibrium and out-
of-equilibrium is represented by quantum many-body scars. While a number
of models supporting scars have recently been found [55, 56, 58–62, 73–80],
the general conditions (if any) for stabilizing ETH-violating states are still
unknown, and the role of symmetries in this context stands as an open
question. Some of the recent works in this direction link the presence of
quantum scars to signatures of integrability [81], to semiclassical trajecto-
ries [105, 106], to quasiparticle excitations [52, 57] and to the emergence of
an algebraic structure [69]. Another candidate mechanism was put forward
in Ref. [4], in which scarred bands of Rydberg atom chains are interpreted
as special eigenstates that survive the lattice regularization of an integrable
field theory. While integrability does not have an immediate counterpart in
more than one dimension, the Coleman-Mandula theorem shows how super-
symmetry provides a feasible way of extending the set of conservation laws
without resulting in a trivial (in the sense of S-matrix being the identity)
theory [107].

Here, we show how supersymmetry (SUSY) provides a route to for-
mulate lattice models with ’scarred’ states in the middle of the spectrum,
whose stability is guaranteed as long as supersymmetry itself is not vio-
lated. Specifically, we consider D-dimensional lattice models of constrained
spin-less fermions, that realize an exact N = 2 supersymmetry at the lattice

39



40 CHAPTER 4. SCARS IN SUSY LATTICE MODELS

level [108–116], and show how these models support scarred eigenstates (as
SUSY doublets) in any D. After the general proof, we discuss in detail the
ladder case, and address the resilience of scarred eigenstates in the presence
of supersymmetry-breaking terms.

4.1 Supersymmetric lattice models
The model we study was introduced in Ref. [108]. The degrees of freedom
are spinless fermions cr, with r being a site on a generic lattice, and the
operators satisfy the canonical anticommutation relations {c†r, cs} = δr,s.
The Hamiltonian can be written in terms of the supercharge operators Q
and Q† defined as

Q† =
∑
r

αrPrc
†
r, Q =

∑
r

α∗rPrcr, (4.1)

where αr is a complex coefficient, and Pr is a projector which constrains all
the neighbours of site i to be unoccupied. The Hamiltonian has the form

H = {Q†, Q}. (4.2)

The supercharge operators satisfy

Q2 = (Q†)2 = 0, [H,Q] = [H,Q†] = 0. (4.3)

In addition to these, the model has a symmetry associated to the fermion
number F =

∑
r Prc

†
rcr, with [F,Q†] = Q†, [F,Q] = −Q. The Hamiltonian

can be explicitly rewritten as H = H0 + V with

H0 =
∑
〈r,s〉

(
αrα

∗
sPrc

†
rcsPs + H.c.

)
, (4.4)

V =
∑
r

|αr|2Pr (4.5)

where 〈r, s〉 indicates pairs of neighbouring sites. Below, we will focus on
D-dimensional hypercubic lattices of linear dimension L: some of the results
are extendable to other bipartite lattices. The supersymmetric algebra im-
poses a specific structure of the spectrum. Eigenstates can be classified in
singlets and doublets: all the singlets satisfy Q |ψ〉 = Q† |ψ〉 = H |ψ〉 = 0;
doublets are pairs of states of the form |ψ〉, Q† |ψ〉 (with the condition
Q |ψ〉 = 0) and have strictly positive energy. As discussed in detail in
Ref. [108], this set of constraints realizes a N = 2 SUSY which is exact at
the lattice level.

Before moving to the core of our work, we note that, in 2D and 3D,
the models presented above draw strong similarities to the dynamics of
fermionic isotopes confined in optical lattices, and laser-dressed with Ry-
dberg s- or p-states [117–122]. In particular, the tunneling dynamics sub-
jected to the constrains discussed above has been pointed out in Ref. [123,
124], and experimentally demonstrated in Ref. [125].
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Figure 4.1: (a) Exact eigenstate |ψA,e〉 in two-leg ladders. Sites belonging
to sublattices A and B are colored in blue and orange respectively. Grey
rectangles indicate the plaquettes, and for each plaquette there is a fermion
in a superposition of the sites on the diagonal as in Eq. 4.6. The square
(b) and cubic (c) lattices are split into plaquettes. On each plaquette we
put a fermion in a superposition between the A sites, in such a way that
hopping terms annihilate the state. States with larger fermionic numbers
can be constructed by placing two fermions, one on each A site.

4.2 Exact eigenstates at finite energy density:
two-leg ladders

We now construct exact eigenstates in the middle of the spectrum. These
states can be written as product states of square plaquettes, and can be
found for any filling F ≥ L/2, as we will detail in the following subsections.
For the sake of readability, we first discuss the conceptually simpler 2-leg
ladder case, and then move forward to the generic bipartite lattice in D
spatial dimensions.

To set the notation, we define the two sublattices A and B as in Fig. 4.1-
a, such that each A site has only neighbours of type B and vice versa. We
split the ladder in plaquettes (the grey squares in Fig. 4.1-a): we can choose
to put the plaquettes either between neighbouring even/odd or odd/even
rungs. From now on, we choose to place them between even and odd rungs
as in Fig. 4.1-a. From the set of states that we will construct following this
choice, we can then obtain a new set of states by applying a translation of
one site along the ladder (the new states will be product states of odd/even
plaquettes).

Half-filling. Since the total number of fermions F is conserved, we
can construct eigenstates with a fixed filling. We first consider the sector
F = L/2. We define the states |ψA,e〉 as follows:
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|ψA,e〉 =

L/2−1∏
i=0

1

Ni,A

(
d†2i,1 − d†2i+1,2

)
|0〉 , (4.6)

where d†i,j = α−1
i,j Pi,jc

†
i,j and Ni,A is a normalization constant. We choose

the convention that the product is ordered from left to right. The state
is constructed as a product state of plaquettes, with a fermion in each
plaquette: each fermion sits in a superposition between the two sites of a
diagonal (of type A).

In order to prove that |ψA,e〉 is an eigenstate, it is convenient to treat
separately the hopping terms within a plaquette and those between differ-
ent plaquettes. Within the plaquette, the fermions can hop from sites of
the sublattice A to the sublattice B: however, the coefficients in the su-
perposition are such that the two contributions from the A sites cancel due
to destructive interference for each of the B sites. On the other hand, the
terms between different plaquettes would bring a fermion in a site B which
cannot be occupied due to the hard-core constraint, and hence annihilate
the state. These two arguments prove that H0 |ψA,e〉 = 0. The interaction
term can also be easily computed by noting that Pi,j = 0 for sites of lattice
B and Pi,j = 1 for those of lattice A. Therefore we have

H |ψA,e〉 = V |ψA,e〉 =
∑

(i,j)∈A

|αi,j|2 |ψA,e〉 . (4.7)

We can similarly construct the state |ψB,e〉, having fermions on sublattice
B,

|ψB,e〉 =

L/2−1∏
i=0

1

Ni,B

(
d†2i,2 − d†2i+1,1

)
|0〉 . (4.8)

As anticipated, other two states can be obtained by applying the translation
operator, namely |ψA/B,o〉 = T |ψB/A,e〉. We note that, while eigenstates that
occupy different sublattices are orthogonal (〈ψA, ·|ψB, ·〉 = 0), the eigenstates
defined on the same sublattice have the same energy and are not orthogonal
(〈ψA,e|ψA,o〉 6= 0 and 〈ψB,e|ψB,o〉 6= 0), but they are linearly independent.
These states have energy EA/B =

∑
(i,j)∈A/B |αi,j|2: being eigenstates at a

finite energy density above the zero-energy ground state, their entanglement
entropy is expected to be proportional to the volume L. This is not the case:
when the ladder is cut in two, the entanglement entropy is either 0 (if the
cut is between two plaquettes) or a finite quantity (if the cut is within a
plaquette). These eigenstates satisfy an area law entanglement at a finite
energy density and hence they qualify as many-body quantum scars.

Above half-filling. For number of fermions F > L/2, a number of exact
eigenstates can be similarly constructed as a product state of plaquettes.
We start from one of the four states |ψA/B,e/o〉, and we choose F − L/2
plaquettes where to increase the fermion occupancy from 1 to 2 fermions:
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on the selected plaquettes we place fermions on both sites of the diagonal.
For example, we can add a fermion to the j-th plaquette on top of the state
|ψA,e〉 by substituting (d†2j,1−d†2j+1,2)/Nj,A with P2j,1c

†
2j,1P2j+1,2c

†
2j+1,2 in the

product in Eq. 4.6. In this way, we obtain
(
F−L/2
L/2

)
states, one for each choice

of the positions of the doubly occupied plaquettes.
With the same argument used for the states at filling F = L/2, it is

possible to prove that these states are annihilated by H0 and are eigenstates
of V with eigenvalue

∑
(i,j)∈A/B |αi,j|2.

4.3 Exact scars in d-dimensional hypercubic
lattices

We now generalize the construction of exact eigenstates for the square ladder
presented above to hypercubic lattices in dimension D. To do so, we group
all the sites of the lattice into square plaquettes, and we construct the
eigenstates as product states of plaquettes. We define the two sublattices
A and B, such that neighbouring sites belong to different sublattices. We
find two classes of eigenstates: in A-states (B-states) fermions occupy the
sites on sublattice A (B) only. To construct the states, on each plaquette
we create either one or two fermions on the (A/B) diagonal, with the same
operators as in the ladder. A pictorial representation of one of these states
is shown in Fig. 4.1 for d = 2 and d = 3.

The number of exact eigenstates depends on the number of ways in which
the lattice sites can be grouped in square plaquettes and it grows with the
system size. For example, in the specific case d = 2 and F = LxLy/4 (where
Lx and Ly are even and are the number of sites in the x and y directions),
we can construct 2Lx/2 + 2Ly/2 − 2 different states for each sublattice (A or
B).

4.4 Spectral statistics in two-leg ladders
In the previous section we found an extensive number of states with finite
energy density and an entanglement entropy which does not depend on L.
We now show that the rest of the spectrum for a two-leg ladder with periodic
boundary conditions is compatible with ETH.

We study the model in Eq. 4.4 using exact diagonalization. Since the
construction above works for arbitrary, site-dependent coefficients αi,j, we
choose random real coefficients αi,j from a uniform distribution in the in-
terval [1, 2), and average over a certain number of disorder realizations.
We compute the spectrum in the sector with fermionic number F = L/2.
Thanks to the supersymmetric algebra, the Hilbert space can be split in
three sector: (i) HQ† = {|ψ〉 : Q |ψ〉 = 0, Q† |ψ〉 6= 0}, (ii) HQ = {|ψ〉 :
Q |ψ〉 6= 0, Q† |ψ〉 = 0}, (iii) H0 = {|ψ〉 : Q |ψ〉 = 0, Q† |ψ〉 = 0}. The
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Figure 4.2: Average level spacing ratio as a function of the number of rungs
L in the two sectors of non-zero energy states. The grey line indicates the
value predicted for Wigner-Dyson spectral statistics. For increasing L, in
both sectors r flows towards rWD, signalling compatibily with the ETH.

Hamiltonian is block-diagonal in these sectors: the states of the last sectors
are singlets with energy E = 0; we focus on the other two sectors, where
the structure of the spectrum is non-trivial. We remark that each state of
these sector belongs to a SUSY doublet and hence has a SUSY partner with
the same energy, but different fermionic number (F = L/2 + 1 for the first
sector and F = L/2− 1 for the second sector). Therefore, no degeneracies
and no other conservation laws are expected in the spectrum we analyze.
To test the validity of the ETH for the majority of the eigenstates, we study
the ratio between nearby gaps

rn =
Min{∆En,∆En+1}
Max{∆En,∆En+1}

. (4.9)

Here ∆En = En−En−1, with n labelling the eigenvalues En of H in increas-
ing order, for a given disorder realization. We then average rn over n and
over 100 disorder realizations; we consider the full energy spectrum. The re-
sults, plotted in Fig. 4.2 clearly show that in both sectors r converges to the
value expected for a Wigner-Dyson distribution rWD = 0.536 for increasing
L, and thus validate the assumption that the majority of the eigenstates
satisfy the ETH.

We then check that the eigenstates we found are the only anomalous
states in the spectrum. We choose coefficients αi,j = 1 for all sites. In
Fig. 4.3-a, we show the half-chain entanglement entropy for ladders of
L = 12, 14 rungs with L/2 fermions in the translation- and reflection-
invariant sector. In both sectors HQ† and HQ, the majority of the eigen-
states approximate a smooth profile with large entanglement in the middle
of the spectrum, as expected in an ergodic system. A single outlier (circled
in red) with anomalously small entanglement entropy is present in a region
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Figure 4.3: (a) Bipartite entanglement entropy as a function of the energy
of the eigenstates in the translation- and reflection-invariant sector. (b)
Expectation value of the local observable nj,1nj+1,2 a function of the energy
of the eigenstates in the translation- and reflection-invariant sector. Blue
(orange) dots correspond to states in the sector HQ† (HQ).

of high energy density and corresponds to the translation- and reflection-
invariant superposition of the eigenstates defined above. Similar conclu-
sions are corroborated by the analysis of diagonal correlations, depicted in
Fig. 4.3-b.

4.5 Robustness to perturbations

We now discuss the stability of SUSY scarred eigenstates with respect to
external perturbations. As discussed above, the states are stable under
arbitrary supersymmetric perturbations. In particular, the construction
above does not rely on any specific structure of the coefficients αi. In this
section, we will investigate the robustness of these scarred eigenstates to
other perturbations, which break the supersymmetry of the model.

As a first case, we consider the Hamiltonian Hη = H0 + ηV in any D.
If we move away from the supersymmetric point η = 1, the Hamiltonian
does not commute with the supercharges and the spectrum cannot be split
in sectors. However, since the scars we construct (both for half and higher
filling) are simultaneous eigenstates of H0 and V , they are exact eigenstates
of Hη for arbitrary η.

Next, we consider the ladder case, and a perturbation of the type Hλ =
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Figure 4.4: Bipartite entanglement entropy as a function of the energy of
the eigenstates for different values of λ (L = 14). The eigenstates are in the
translation- and reflection-invariant sector.

λ
∑L−1

i=0 (ni,1ni+1,2 +ni,2ni+1,1), with ni,j = c†i,jci,j. The scars we construct for
λ = 0 are not exact eigenstates for λ 6= 0. We perform a numerical analysis
following a previous study of perturbations in constrained spin chains [65].

In Fig. 4.4 we plot the bipartite entanglement entropy as a function of
the energy for different values of λ. For λ = 0 there is a single scar in
the half-filling case in the translation- and reflection-invariant sector. For
some values of λ, this scar hybridizes strongly with the continuum of states
belonging to the thermal cloud, but small values of the entropy persist in
a large region of λ (large with respect to average gap at this energy den-
sity), excluding the aforementioned points. As is clear from Fig. 4.4, the
scarred state undergoes a large number of level crossing as λ is varied but
its entanglement entropy remains anomalously small. The phenomenol-
ogy is extremely similar to the case of constrained spin-models, and, while
system sizes here are insufficient to draw conclusions that hold in the ther-
modynamic limit, we can still observe the same type of resilience of scarred
features at finite size.

In terms of physical implementations, the models we discussed have been
partly addressed in works related to fermionic Rydberg-dressed atoms (at
least, for the case of ladders). We note, however, that in terms of experi-
mental signatures the connection to experiments requires some extra care
with respect to other spin models. In order to have long-time coherent
oscillations, like the ones observed in [46], a set of equally-spaced energy
eigenstates is needed. In our case, this could be achieved by adding a chem-
ical potential, which shifts the scars according to the number of particles.
However, to detect the oscillations, one should be able to prepare an ini-
tial state in a superposition with different numbers of particles. While this
might be possible for spin systems (a similar mechanism is used, for exam-
ple, in [56]), it is not feasible for number-conserving fermionic particles. A
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more direct experimental proof of the existence of scars would be obtained
using the scar itself as initial state of the dynamics: every observable should
remain approximately constant in time.

4.6 Connection to the Shiraishi-Mori construc-
tion

We now comment on the connection of the eigenstates discussed above with
the Shiraishi-Mori construction for embedding ETH-violating states in an
otherwise ergodic spectrum [64]. The construction consists of local projec-
tors Pj and a subspace T of the Hilbert space satisfying PjT = 0. Then
the Hamiltonian

H =
∑
j

PjhjPj +H ′ [H ′, Pj] = 0 (4.10)

has candidate scarred eigenstates in the subspace T . It can be shown that
the Hamiltonian (4.4) can be recast in the form of Eq. (4.10) with T being
the subspace with a single scar state. We examine, for instance, the scar
|ψA,e〉 in Eq. (4.6). To prove the construction, we define Pj as a local
projector acting on the j-th plaquette and on its neighbours,

Pj = 1− |jA,e〉 〈jA,e| , (4.11)

|jA,e〉 =

j+1∏
i=j−1

1

Ni,A

(
d†2i,1 − d†2i+1,2

)
|0〉i . (4.12)

This projector annihilates the state that has a single fermion in a superpo-
sition on the A diagonal in each of the plaquettes considered (as in the state
|ψA,e〉) and acts trivially on the other states. We find that the term V com-
mutes with the projectors Pj and corresponds to H ′ in the Shiraishi-Mori
construction. The hopping terms, on the other hand, need some further ma-
nipulation. We define hj as made of two parts: (i) the sum of the hopping
terms in the j-th plaquette, (ii) the sum of the hopping terms between the
j-th plaquette and its neighbors (with a factor 1/2). With this definition,
we see that hj = PjhjPj and H0 =

∑
j hj, resulting in the desired form of

Eq. (4.10). This construction can be applied to the other scars, and to the
case of higher dimensionality. Each scar represents an isolated embedded
subspace, and hence its entanglement entropy does not scale with L.

4.7 Conclusions and outlook
We have shown that N = 2 supersymmetric lattice models display weak-
ergodicity breaking in the form of scarred eigenstates in any D-dimensional
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hypercubic lattice. SUSY is not a sufficient ingredient for quantum scars
in D > 1: for instance, even within the model we consider, the spectrum
at low-filling does not feature ergodicity breaking. Instead, we find im-
portant to emphasize that the results reported here underline that insights
from quantum field theory - in our case, provided by the Coleman-Mandula
theorem - can provide a very simple tool to easily diagnose conditions
that favor quantum scarring, that is complementary to other approaches
based on exact lattice solutions, that are typically applicable to single mod-
els [52, 55, 62, 73]. It is important to stress that it would not be sufficient
for a lattice model to recover SUSY as a low-energy symmetry, since the
phenomena we are concerned with require finite-energy-density above the
ground state. Due to the fact that formulating explicit supersymmetric
theories on the lattice is challenging, it stands as an open quest to deter-
mine if there exist additional features that, in combination with SUSY, can
guarantee the appearance of quantum scars in given lattice models. To re-
solve such questions, it would thus be important to formulate lattice models
with richer supersymmetric structures, and investigate their SUSY-specific
dynamical effects [126].



Part II

Quantum simulation of lattice
gauge theories
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Chapter 5

Quantum simulation of
high-energy physics

The Standard Model describes all known elementary particles and the fun-
damental forces (with the exception of gravity) in our universe. Thanks to
a collective effort of many research groups around the world, it is now possi-
ble to test its predictions against experiments with unprecedented precision.
One of the outstanding challenges that the community has to face is the
difficulty of deriving information of physical phenomena from the Standard
Model: in particular, solving the fundamental equations of the quantum
chromodynamics (QCD) theory of quarks and gluons is a complicated prob-
lem that requires non-perturbative approaches based on computationally-
expensive Monte Carlo simulations. These methods allow for very precise
calculations of the masses of hadrons and of many other quantities. There
are, however, some properties that are intrinsically prohibitive for this type
of classical computation. Calculations at finite baryon density, for example,
which are relevant for studying the early universe and neutron stars, are
affected by the sign problem, meaning that numerical evaluations of the
integrals become unfeasible because of the near-cancellation of terms with
opposite signs. The sign problem also arises in calculations of real-time
evolution and was proven to be NP hard [127]. This limits our predictive
power on many important non-equilibrium phenomena: for example, the
products of the high-energy collisions of hadrons cannot be computed from
first principle. This knowledge would be very useful in the research for
physics beyond the Standard Model.

The need for alternative solutions that do not rely on Monte Carlo meth-
ods has recently motivated an increasing interest in the possible applications
of quantum simulation and computation [128–130]. The idea of using quan-
tum systems to simulate the (quantum-mechanical) laws of nature traces
back to the early 1980s, with the foreseeing work of Richard Feynman [131].
However, it has only been in the last two decades that quantum simulation
has become a realistic goal. At present, quantum systems of up to hun-
dreds of qubits can already be controlled with a good degree of flexibility,
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and both the achievable coherence time and size of the systems are rapidly
increasing [132–138]. In these experiments, highly entangled states of mat-
ter can be realized: these states are very difficult to deal with in classical
simulation, but are efficiently encoded in quantum systems. Moreover, the
real-time dynamics that is out of reach of Monte Carlo simulations is instead
the most natural application of quantum simulators.

While technical advances are improving the capabilities of quantum sim-
ulators, a complementary effort is required on the theoretical side: the en-
coding of the theory of interest into the physical degrees of freedom needs
to be tailored to the quantum hardware at disposal. This represents an
outstanding challenge, because the dynamics of a gauge theory does not
have any direct counterpart in quantum simulators: so far, there exists no
physical systems that is easy to manipulate in experiments and possesses
an intrinsic gauge symmetry. Therefore, it is necessary to explore the pos-
sible formulations of lattice gauge theories and conceive the most suitable
strategies for implementing them with available quantum simulators. In
the following, we will introduce some of the basic ideas in this direction: in
Section 5.1 we define the fundamental ingredients of a lattice gauge theory
in the Hamiltonian formulation; in Section 5.2 we introduce the quantum
link formulation of lattice gauge theories; in Section 5.3 we review some of
the main strategies that have been proposed for simulating lattice gauge
theories; in Section 5.4 we describe some of the most important experimen-
tal platforms; finally, in Section 5.5 we comment on the current status of
the field and on the future opportunities.

5.1 Hamiltonian formulation of lattice gauge
theories

Classical lattice simulations for quantum field theory are typically performed
in Euclidean space, by exploiting a Wick rotation of the Lagrangian from
real to imaginary time [139]. A quantum simulation, instead, naturally
reproduces a real time evolution: therefore, it is best to use a Hamiltonian
formulation [140].

We consider a lattice in d spatial dimensions: the discretized matter
field ψr is defined on the sites of the lattice (see Fig. 5.1). Gauge fields
are instead defined on the links of the lattice. On each link r, r′, we define
the parallel transporter Ur,r′ . The gauge symmetry is, by definition, the
invariance of the model under a certain group of local transformations: on
each site a generic gauge transformation Ωr acts as

ψr → Ωrψr, Ur,r′ → ΩrUr,r′Ω
†
r′ . (5.1)

It is useful to define the infinitesimal generators Ga
r of the local transfor-

mations. The requirement of gauge invariance corresponds to property that
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Figure 5.1: Matter resides on the sites of the lattice (in blue), gauge fields
are on the link (in orange). The dashed rectangle indicates a plaquette
term.

[H,Ga
r] = 0 ∀r, where H is the Hamiltonian of the system1. Moreover,

every physical state |Ψ〉 also needs to be gauge-invariant, meaning that
Ωr |Ψ〉 = |Ψ〉 for any local transformation Ωr: therefore, we define the phys-
ical states as those that satisfy Ga

r |Ψ〉 = 0 ∀r (Gauss’ law).
We note that the requirement of a local symmetry puts many constraints

on the possible terms in the Hamiltonian: for example, hopping terms of
the type ψ†rψr′ between two neighbouring sites r, r′ are not gauge-invariant;
from Eq. (5.1) we see that, to make them gauge-invariant, we need to include
the parallel transporter, obtaining ψ†rUr,r′ψr′ . With the same reasoning, one
can see that the simplest gauge-invariant terms made only of Ur,r′ consist
of plaquette terms of the type U� = Uw,xUx,yU

†
z,yU

†
w,z (see Fig. 5.1).

The challenges for quantum simulating a gauge symmetry consist in i)
implementing a model which possesses the local symmetry of interest, ii)
restricting the dynamics to gauge-invariant states only, iii) realizing the
multi-body terms (e.g., plaquette terms) that drive the dynamics of gauge
theories. As we will see in the following, meeting all these conditions requires
specific strategies, that have to be designed depending on the gauge theory
of interest and of the available experimental platform.

5.1.1 Example: the lattice Schwinger model

To make the discussion above more concrete, we will consider the example
of the lattice Schwinger model [141, 142], consisting of fermions coupled to
a U(1) gauge field in one spatial dimension. The Hamiltonian of the model
is

1In this Chapter we are considering only the case of continuous groups (e.g., U(1)
or SU(N)), for which infinitesimal generators can be defined. For the case of discrete
groups, the requirement is that [H,Ωr] = 0 for every local transformation in the group.
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H = −w
L−1∑
j=1

(ψ†jUj,j+1ψj+1 + h.c.) +m
L∑
j=1

(−1)jψ†jψj + J
L−1∑
j=1

E
2
j,j+1, (5.2)

where ψj, ψ
†
j are annihilation/creation operators of spinless fermions2 of

mass m, Uj,j+1 is the parallel transporter and Ej,j+1 is the electric field,
which satisfies the commutation relation [Ej,j+1, Uk,k+1] = δj,kUj,j+1. Note
that in one spatial dimension the pure gauge term, of amplitude J , con-
tains the energy of the electric field, but no magnetic term is present. The
matter-field coupling, of strength w, is of the form introduced above. The
Hamiltonian has a U(1) gauge symmetry, whose generators have the form

Gj = Ej,j+1 − Ej−1,j −Qj, (5.3)

where Qj = ψ†jψj + [1− (−1)j]/2 is the charge on site j3. Thus, the gauge-
invariant subspace Hgauge-inv = {|Ψ〉 : Gj |Ψ〉 = 0∀j} corresponds to the
subspace of states that satisfy Gauss’ law, i.e., the states for which at every
site the charge is equal to the net electric flux.

The θ-angle

Because of the commutation relation [Ej,j+1, Uj,j+1] = Uj,j+1, the electric
field will have the form Ej,j+1 = Lj,j+1 − θ/(2π), where Lj,j+1 has integer
spectrum. The fractional part 0 ≤ θ/(2π) < 1 represents a uniform classical
background field. But why is this background electric field represented by an
angle? The meaning of the θ-angle in the Schwinger model was explained by
Coleman [144]: because of Gauss law, the creation of a pair can change the
value of electric field between the particles by ±1, so particles can screen the
integer part of the background field (see Fig. 5.2-a). The angle θ ∈ [0, 2π)
accounts for the remaining non-integer part, which cannot be screened.

For θ 6= π the particles are known to be confined: a particle and an
antiparticle placed at distance ` on top of the bare vacuum are separated by
a string of electric flux which has an energy V (`) ∝ ` (see Chapter 8). The
case θ = π is special: in this case it is possible to create a pair of a particle
and an antiparticle with distance ` without changing the electrostatic energy
of the system (see Fig. 5.2-b).

2In the continuum, the fermions of the Schwinger model form a spin doublet. On the
lattice, instead, the fermions are spinless because the doublet is split between even and
odd sites (staggered fermions). Because of this choice, the Hamiltonian is only invariant
under translations of even sites; translations of odd sites, instead, corresponds to the
chiral symmetry that is explicitly broken by the mass. Staggered fermions are one of
the possible formulation of lattice fermions that allows to retrieve the correct continuum
limit, avoiding the problem of fermion doubling [143].

3The choice of the constant in Qj is such that the non-interacting vacuum belongs to
the gauge-invariant subspace.
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Figure 5.2: a) Pairs of particles (electron and positron) can change only
the integer part of the electric field. b) for θ = π the electric field has
half-integer spectrum. In the case depicted here, the change in electrostatic
energy (proportional to E2) induced by the creation of a pair is zero: the
particles are deconfined.

5.2 Quantum Link Models
Implementing the Hilbert space of dynamical gauge fields in a quantum
computer or a quantum simulator is, in principle, a complicated task. For
example, in Wilson’s formulation the local Hilbert space on each link can
be seen as the one of a quantum "particle" moving on the group manifold
(a circle in the U(1) case, with the identification Ur,r′ = eiϕr,r′ and the angle
ϕr,r′ is the position on the circle). This means that the local dimension
is infinite. In most cases, however, the degrees of freedom at disposal are
represented by qubits (or qudits) and have finite-dimensional Hilbert space.

To solve this problem, it is useful to consider an alternative formulation,
known as quantum link formulation [145–148], where the gauge fields are
represented by spin-like variables or fermions4. For example, for the case of
a U(1) gauge symmetry, the parallel transporter and the electric field on a
link r, r′ are represented by the spin-S operators Sαr,r′ :

Ur,r′ = Sxr,r′ + iSyr,r′ , U †r,r′ = Sxr,r′ − iSyr,r′ , Er,r′ = Szr,r′ . (5.4)

This choice satisfies the commutation relation [Er,r′ , Us,s′ ] = δr,sδr′,s′Ur,r′ .
For the case of a SU(N) non-Abelian gauge symmetry, in the quantum link
formulation the gauge fields are represented by bilinear fermionic operators
(Schwinger representation). In both cases, the local Hilbert space dimension
is finite, allowing for simpler implementations in quantum simulators.

5.3 Strategies for quantum simulation of lat-
tice gauge theories

The typical experimental platforms used for quantum simulation do not
naturally possess any local symmetry. Therefore, quantum-simulating a
lattice gauge theory requires some ad hoc strategies to mimick the desired
gauge symmetry. Here we summarize some of the most used ones.

4Note that many different models, including quantum dimer and quantum loop mod-
els, can be constructed as specific instances of quantum links.
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"Brute force" Hamiltonian engineering — The most immediate
approach is to engineer all the Hamiltonian terms of the model of inter-
est, which are gauge-invariant by construction. This method is often used
in digital proposals: the Hamiltonian evolution is trotterized and the single
terms are implemented as single gates of a quantum circuit. Some proposals
of this type are in Refs. [149–152]. This approach, however, is not always
possible due to the presence of spurious terms that spoil the gauge symme-
try. Moreover, it typically requires more resources than the ones actually
needed, because the full Hilbert space of the theory is encoded, and not
only the gauge-invariant subspace.

Intrinsic symmetry — A slightly more robust method relies on the
presence of intrinsic (global) symmetries in the system. The global sym-
metry does not protect from local violations of Gauss’ law, so an accu-
rate engineering of the Hamiltonian terms is still required. This approach
has been used, for example, in Refs. [153–157]: these works show that the
SU(N) symmetry associated with the hyperfine structure of alkaline-earth-
like atoms can be exploited to simulate various gauge symmetries (including
cQED, Zn, SU(N), U(N)). In Chapter 7 we will discuss an implementation
of a U(N) gauge symmetry based on a combination of intrinsic symmetry
and energy penalty.

Energy penalty — This method allows to simulate a gauge theory by
implementing Gauss’ law as a local constraint at low energies, in analogy
with the emergence of gauge symmetry in frustrated quantum magnets, and
is often used in condensed matter to engineer quantum dimer models. The
basic idea is the following: the Hamiltonian of the system will contain both
the desired gauge-invariant terms (H0) and gauge-breaking terms (H1); to
suppress the effect of the gauge-breaking part, an additional Hamiltonian
term is engineered:

HEP = H0 +H1 + Λ
∑
r,a

(Ga
r)

2, (5.5)

where Λ is much larger than the energy scales in H1. This large term ef-
fectively constrains the dynamics to the gauge-invariant subspace defined
by Ga

r |Ψ〉 = 0 ∀r (if the energy is not too large). The effective Hamilto-
nian in this subspace is then obtained using perturbation theory. For some
examples of applications of this approach see Refs. [158–163].

Zeno dynamics — Another method, similar to energy penalty, exploits
the dissipative dynamics induced by the so-called quantum Zeno effect [164].
The Hamiltonian of the system contains a classical noise term linear in the
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local generators Ga
r:

HZD(t) = H0 +H1 +
√

2κ
∑
r,a

ξar (t)Ga
r (5.6)

where ξar (t) are white-noise processes with ξar (t)ξbr′(t
′) = δr,r′δa,bδ(t−t′). The

density matrix ρ = |ψ(t)〉 〈ψ(t)| of the state averaged over noise fluctuations
evolves according to the following master equation

ρ̇ = −iHeffρ+ iρH†eff + 2κ
∑
r,a

Ga
rρG

a
r, Heff = H0 +H1 − iκ

∑
r,a

(Ga
r)

2.

(5.7)
The HamiltonianHeff contains a damping term that suppresses any violation
of Gauss’ law. Similarly to the case of energy penalty, the effective Hamil-
tonian in the gauge-invariant subspace can be computed using perturbation
theory.

Gauge integration — This approach consists of explicitly solving the
local constraint of Gauss’ law to eliminate the gauge field and thus remove
redundancy in the physical Hilbert space. This allows, on the one hand,
to have a quantum simulator that, by construction, fully preserves gauge-
invariance. On the other hand, the number of qubits needed is significantly
reduced, so larger system sizes can be reached with the same amount of
resources.

To explain how this method works, we consider the case of the lattice
Schwinger model in Eq. (5.2). We are now going to show how this model,
restricted to the gauge-invariant subspace spanned by wavefunctions |Ψ〉
which satisfy the Gauss laws Gj |Ψ〉 = 0, can be conveniently simulated by
exactly mapping it to an unconstrained chain of spin-1/2 degrees of freedom
in the case of open boundary conditions [165].

The spins σαj are obtained from the fermionic operators via a combi-
nation of a Jordan-Wigner transformation and a gauge transformation, ex-
pressed as

ψj =

j−1∏
l=1

(
σzl U

†
l,l+1

)
σ−j . (5.8)

This transformation decouples spins and gauge degrees of freedom, and thus
the Hamiltonian in Eq. (5.2) takes the form

H = −w
L−1∑
j=1

(σ+
j σ
−
j+1 + h.c.) +

m

2

L∑
j=1

(−1)jσzj + J
L−1∑
j=1

E
2
j,j+1. (5.9)

The electric field can be rewritten in terms of the spin operators by means
of the Gauss law,

Ej,j+1 =
1

2

j∑
l=1

[
σzl + (−1)l

]
− α, (5.10)
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where α is the electric field at the boundary5. Inserting Eq. (5.10) into
Eq. (5.9) we obtain three additional terms: a long-range spin-spin inter-
action corresponding to a Coulomb interaction, a local energy offset that
modifies the effective mass of the fermions and a linear potential given by
the constant background field. The electric field part of the Hamiltonian
can be cast in the form:

HE
lat =

J

2

L−2∑
n=1

L−1∑
l=n+1

(L− l)σznσzl −
J

4

L−1∑
n=1

[1− (−1)n]
n∑
l=1

σzl − Jα
L−1∑
j=1

(L− j)σzj .

(5.11)
In this form, the non-equilibrium dynamics of the lattice Schwinger model
can be efficiently simulated. This method was employed in the experiment
with trapped ions reported in Ref. [166]: thanks to the possibility of im-
plementing long-range interactions, trapped ions are particularly suited for
this type of Hamiltonians.

The origin of long-range spin-spin interactions as a consequence of the
linear confining Coulomb potential in one spatial dimension is made more
evident when Eq. (5.11) is formulated in terms of the chargesQj =

[
σzj + (−1)j

]
/2

[167]. In the neutral charge sector where
∑L

j=1Qj = 0 we have

HE
lat = −J

L−1∑
j=1

L∑
k=j+1

(k−j)QjQk−J
L∑
j=1

(L+1−j)αQj+J
L∑
j=1

j αQj. (5.12)

The first term describes the Coulomb interaction between charges, while
the remaining two terms can be interpreted as interactions with two static
charges −α and α, placed at the boundaries of the chain (sites 0 and L+ 1
respectively) and effectively producing the constant background field.

A similar method can be used to eliminate the gauge field in the case of a
non-Abelian lattice gauge theory in one spatial dimension [167], obtaining
an effective linear interaction between SU(N) charges. This method was
exploited to simulate a SU(2) LGT on an IBM superconducting platform
[168].

Despite the success of this method on the first (small) quantum simula-
tors for LGTs, this approach is difficult to scale to larger system sizes. One
of the problems is that linearly raising potentials are not natural in typical
experimental platforms, and lead to energy scales of the order of the system
size. Since the overall timescale of most experiments is limited by noise,
having couplings with relative ratios of order L is a severe limitation for
analogue experiments, and partially affects also digital efforts.

Even more dramatically, the elimination of gauge fields is not possible
for spatial dimension d > 1. To understand why, consider Gauss’ law in

5To make connection with the θ angle introduced above, we can write α = k+(θ/2π),
with k ∈ Z.
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classical electrodynamics: ∇ · E(r) = ρ(r). In d > 1, solving this equation
for the electric field is generally complicated. The case d = 1 is special,
because the equation ∂xE = ρ(x) can be solved in general with a simple
integration

E(x) = E(x0) +

∫ x

x0

dx′ρ(x′). (5.13)

This argument shows why this method can be easily applied in d = 1, while
generalizing this approach to higher dimensions is intrinsically difficult.

Matter integration — A method that has the same advantage of the
gauge integration (i.e., built-in gauge invariance and efficient usage of re-
sources) but does not suffer from the same limitations is the elimination of
matter degrees of freedom by explicitly solving Gauss’ law. This method
can be applied to any spatial dimension d: compared to the integration
of gauge fields in the classical argument above, the integration of matter
fields does not require the solution of a differential equation, because the
charge is already explicitly expressed as a function of the gauge fields. To
illustrate how this method work, we refer to Chapter 6, where matter in-
tegration is used to map a U(1) QLM to a model of Rydberg atoms in
optical traps. We note that, in general, this method may lead to systems
with local constraints [169]. These constraints are generally much simpler
to implement than the original ones: Rydberg atoms, in particular, natu-
rally exhibit emergent constraints (the so-called Rydberg blockade) so they
are best-suited for this type of quantum simulation.

One of the theoretical limitations of this approach is that it only works
for a single matter field: in case of multi-flavour matter fields the charge
obtained from Gauss’ law does not unambiguously determine the matter
content of the theory, so additional degrees of freedom have to be included.

On a more practical level, one of the main challenges of this approach is
that the implementation of the local constraint has to be designed case by
case, depending on the LGT and on the experimental platform. Complex
LGTs often imply complicated local constraints and complicated Hamilto-
nian terms in the effective model after the matter integration.

Another approach for SU(N) gauge symmetry (similar in spirit to gauge
and matter integration) is the so-called loop-string-hadron formulation [170],
in which the redundancy in the gauge-invariant subspace is partially re-
moved and the non-Abelian constraints are transformed into Abelian ones.
The disadvantage is that the number of Hamiltonian terms is very large,
making this formulation impractical for present quantum simulators.

5.4 Quantum simulation platforms
After illustrating some of the general strategies, we now review some of the
most common experimental platforms for the quantum simulation of LGTs
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(see Fig. 5.3).

Figure 5.3: Examples of physical systems that could implement analog
quantum simulators: atoms in optical lattices (A) or in 1D (B) or 2D (C)
arrays of cavities; ions in linear ion chains (D), 2D arrays of planar traps
(E), or 2D Coulomb crystals (F); electrons in quantum dot arrays created
by a 2D mesh (G), or arrays of superconducting circuits (H), or trapped on
the surface of liquid helium (I). Figure from [171].

Ultracold atoms in optical lattices — In the presence of counter-
propagating laser beams, ultra-cold neutral atoms experience a potential
that is periodic in space (an optical lattice): in a tight-binding approxima-
tion, the system can be described with a lattice Hamiltonian containing
chemical potentials, hopping terms and interactions. By tuning the inten-
sity, the angle, and the frequency of the lasers, it is possible to change the
lattice geometry and the parameters of the effective lattice Hamiltonian.

One of the main advantages of this platform in the quantum simulation
of LGTs is that it encompasses the manipulation of both fermions and
bosons, allowing for a direct identification with the fermionic and bosonic
degrees of freedom of the desired theory. For examples of proposals based on
ultra-cold atoms see Refs. [150, 153–155, 158, 160, 172, 173] and the reviews
[174, 175]. A protocol for simulating a non-Abelian gauge theory using
alkaline-earth-like atoms is discussed in detail in Chapter 7.

Rydberg atoms — A specific type of cold-atom-based quantum sim-
ulators is represented by Rydberg-atom platforms. In these experiments,
internal states of the atoms with large principal quantum number (Rydberg
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states) are employed. Due to the large polarizability, two atoms in Ryd-
berg states interact strongly via interactions of van der Waals type. These
interactions can be used for different purposes: for example, they can be
employed to engineer two-body gates in digital implementations. Another
very convenient application is the realization of local Abelian constraints
(that emerge, for example, from matter integration): the strong interaction
of nearby atoms induces an effective constraint at low energies, known as
Rydberg blockade; if two atoms are separated by a distance smaller than
a certain blockade radius they cannot be simultaneously excited to a Ryd-
berg state. In Chapter 6 we will employ Rydberg blockade to simulate a
U(1) lattice gauge theory; other proposals based on Rydberg atoms are in
Refs. [121,149–151].

Trapped ions — Trapped ions represent another very flexible platform
for quantum simulation [134]. For each ion, some chosen internal energy lev-
els can be used to represent an effective spin. The interactions between the
ions are modulated by applying optical fields, leading to tunable long-range
spin-spin interactions. The ions are then measured using state-dependent
fluorescence techniques.

The long-range nature of the interactions makes this platform partic-
ularly suitable for simulating the effective Coulomb interactions between
the charges in one-dimensional lattice gauge theories. This property has
been exploited to simulate the real-time dynamics of the lattice Schwinger
model [166]. Upon integration of the gauge field, the lattice Schwinger
model is reformulated as a spin model with long-range interactions (see
Section 5.3), that was simulated using a digital quantum simulation scheme.

Figure 5.4: a) The non-equilibrium dynamic simulated in the experiment.
The instability of the vacuum due to quantum fluctuations leads to particle
anti-particle creation (Schwinger mechanism). b) Experimental setup. A
string of four ions is confined in a linear Pauli trap and manipulated using
laser beams. Figure from [166].
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Superconducting qubits — Superconducting circuits can be used to
engineer "artificial atoms" that are controlled via currents, voltages and
microwave photons. The qubits are represented by two energy levels of
a certain building block of the system: for example they can correspond
to two different values of the charge in a superconducting island (charge
qubits), to two eigenstates of magnetic flux (flux qubits), or two states with
different phase of a Josephson junction (phase qubits). Differently from neu-
tral atoms and ions, superconducting qubits are not intrinsically identical
objects, but they are microfabricated solid state devices. This implies, on
the one hand, that their characteristic properties can be tailored depending
on the desired application, and, on the other hand, that a certain amount
of inhomogeneity is unavoidable in any sample of qubits. Some proposals
for quantum simulation of lattice gauge theories using this platform are
reported in Refs. [152,176,177].

5.5 Conclusions

It is expected that quantum computers will one day be capable of efficiently
performing some tasks that are difficult or even impossible for classical com-
puters. Quantum error correction is crucial for achieving practical advan-
tages over classical algorithms, but requires large-scale devices with huge
controllability and long coherence time and is currently a far-fetched goal. A
more realistic goal is to use the already available Noisy Intermediate-Scale
Quantum (NISQ) technology [178] to have some novel insights on some
specific problems, in areas that include, for example, quantum chemistry,
condensed matter physics, high-energy and nuclear physics. At this stage,
analog quantum simulation probably represents the most powerful tool, as
it allows to manipulate larger number of qubits. Digital (universal) quan-
tum computation based on quantum gates, on the other hand, has clear
advantages in terms of flexibility, but is currently limited in the number of
qubits that can be controlled with good fidelity.

To date, some important steps in the quantum simulation of lattice
gauge theories have already been achieved. The first experiment, performed
with an array of trapped ions, reported the digital simulation of the real-
time dynamics of the Schwinger mechanism [166]; some years later, it was
shown that a Rydberg atom experiment realized the quantum simulation of
a similar U(1) lattice gauge theory (see Chapter 6) on much large system
sizes (up to 51 qubits); another simulation of the same model was realized
with ultracold bosons in an optical lattice with 71 sites [179]; recently,
the first proof-of-principle digital simulations of non-Abelian lattice gauge
theories were performed on an IBM quantum computer [168,180].

The next steps will require significant improvements both on the theo-
retical side and on the technical one. Firstly, a large scale simulation of a
non-Abelian lattice gauge theory has not yet been demonstrated: to simu-
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late non-Abelian theories a larger number of resources are needed to encode
all the degrees of freedom of the theory (that include, for example, the color
indices); moreover, the complicated non-commuting constraints can be im-
plemented only with more ingenious schemes. An example of how this could
be achieved with alkaline-earth-like atoms in optical lattices is discussed in
detail in Chapter 7, where we perform an ab-initio calculation to specify in
a quantitative way the energy scales involved in the quantum simulation.

Another fundamental advancement is related with the dimensionality of
the simulated theory. So far, only one-dimensional gauge theories have been
experimentally realized. The recent progress in the quantum simulation of
two-dimensional systems [135,181–183] bodes well for future realizations of
simple (2 + 1)-d lattice gauge theories. These theories also have a funda-
mental importance in the context of quantum spin liquids and topology.

Finally, for translating the results of a lattice quantum simulation to a
quantum field theory, it is necessary to achieve a regime close to the contin-
uum limit, where the resource requirements are typically very demanding.
Better lattice regularization techniques, specifically designed for the pur-
pose, may help to reduce the number of qubits needed and to predict with
higher precision the properties of the continuum theory.

These are all necessary steps in the route towards a full-fledged quantum
simulation of quantum chromodynamics. This goal will remain a formidable
challenge for the years to come, but the progress in this direction is rapidly
advancing. At this moment, it is important to identify simpler theories and
interesting physical phenomena that can be studied with quantum simula-
tors on shorter terms: some of them are for example discussed in Part III
of this thesis, where we focus on the non-equilibrium dynamics of lattice
gauge theories.





Chapter 6

Lattice gauge theories and string
dynamics in Rydberg atom
quantum simulators

Here, we show that (1+1)-dimensional LGTs akin to quantum electrody-
namics are naturally realized in state-of-the-art experiments with Rydberg
atom arrays [46,184]. In particular, we show how the dynamics of Rydberg
excitations in these chains is exactly mapped onto a spin-1/2 quantum link
model (QLM), a U(1) LGT where the gauge fields span a finite-dimensional
Hilbert space, equivalent to a lattice Schwinger model in the presence of a
topological term [144]. The key element of our mapping, which is schemat-
ically illustrated in Fig. 6.2, is that gauge invariance has a natural coun-
terpart in the Rydberg blockade mechanism, which constrains the Hilbert
space in the same way as Gauss law does in gauge theories. This provides an
immediate interpretation of the recent experiment with Rydberg-blockaded
atom arrays in Ref. [46] as the first large-scale quantum simulation of a
LGT at the edge of classical computational methods [174].

From a theoretical viewpoint, the mapping offers a hitherto unexplored
perspective on the anomalously slow relaxation recently observed in ex-
periments: the long-lived oscillations in the population of excited Rydberg
atoms correspond to a string inversion, a phenomenon which is directly
tied to string breaking [185–187] prototypical of gauge theories including
dynamical matter. The mapping indicates that this phenomenon has a nat-
ural interpretation in the LGT framework, and suggests the occurence of
slow dynamics in other U(1) gauge theories, such as higher-spin QLMs [147],
Higgs theories [163, 188], and the Schwinger model [141, 189]. These theo-
ries have been widely discussed in the context of Schwinger pair production
(taking place, for example, at high-intensity laser facilities), thus providing
a highly unexpected, direct link between apparently unrelated experimental
platforms [187,190–193].

We discuss the generality of this type of quantum evolution by extending
our analysis to other relevant instances of "slow dynamics", characterized by

65
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the absence of relaxation on all time scales corresponding to any microscopic
coupling present in the system. As initial states, we focus on those consisting
of particle-antiparticle pairs, corresponding to regular configurations of the
Rydberg-atom arrays with localized defects, which are accessible within
the setup of Ref. [46]. We show that these defects propagate ballistically
with long-lived coherent interference patterns. This behavior is found to
be governed by special bands of highly excited eigenstates characterized by
a regularity in the energy-momentum dispersion relation. These findings
open up a novel perspective which complements and extends towards gauge
theories recent approaches to slow relaxation in Rydberg-blockaded atomic
chains [47,48,52,69,81,105].

6.1 Rydberg atom arrays

We are interested here in the dynamics of a one-dimensional array of L
optical traps, each of them hosting a single atom, as schematically illustrated
in Fig. 6.1a. The atoms are trapped in their electronic ground state (black
circle), denoted by |↓〉j, where j numbers the trap. These ground states
are quasi-resonantly coupled to a single Rydberg state, i.e., a highly excited
electronic level, denoted by |↑〉j. The dynamics of this chain of qubits
{|↑, ↓〉j}j=1,...,L is governed by the following Ising-type Hamiltonian [51,194]:

ĤRyd =
L∑
j=1

(Ω σ̂xj + δ σ̂zj ) +
L∑

j<`=1

Vj,`n̂jn̂`, (6.1)

where σ̂αj are Pauli matrices at site j, the operator n̂j = (σ̂zj + 1)/2 signals
the presence of a Rydberg excitation at site j, 2Ω and 2δ are the Rabi fre-
quency and the detuning of the laser excitation scheme, respectively, and
Vj,` describes the interactions between atoms in their Rydberg states at sites
(j, `). For the cases of interest here, this interaction is strong at short dis-
tances and decays as 1/|j − `|6 at large distances. The dynamics described
by ĤRyd has already been realized in several experiments utilizing either
optical lattices or optical tweezers [46, 184, 195]. In particular, Ref. [46] in-
vestigated the case in which Vj,j+1 is much larger than all other energy scales
of the system, resulting in the so-called Rydberg blockade effect: atoms on
neighboring sites cannot be simultaneously excited to the Rydberg state,
hence the constraint n̂jn̂j+1 = 0.

In this regime, the resulting Hamiltonian — introduced by Fendley, Sen-
gupta and Sachdev (FSS) in Ref. [50] — is

ĤFSS =
L∑
j=1

(
Ω σ̂xj + 2δ n̂j

)
, (6.2)
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a b

Figure 6.1: a: Schematics of a Rydberg atom chain. Each potential well of
the optical lattice hosts a single atom, which can be either in the ground
(black) or excited Rydberg (yellow) state. The two levels are coupled by
a coherent laser field. The Rydberg blockade prevents the simultaneous
excitations of neighboring atoms. b: Degrees of freedom of a U(1) LGT
in the spin-1/2 quantum link model (QLM) formulation. Gauge fields are
represented by spin variables residing on links. Matter fields are represented
by Kogut-Susskind fermions: an occupied site corresponds to the vacuum
on odd sites, and to a positron e+ on even sites. An empty site, instead, to
the vacuum on even sites and to an electron e− on odd sites.

where we neglect longer-range terms which do not affect qualitatively the
dynamics. ĤFSS acts on the constrained Hilbert space without double oc-
cupancies on nearest-neighbor sites, as illustrated in Fig. 6.1a. As we show
below, the direct connection between Rydberg atomic systems and gauge
theories is indeed provided by this constraint at the level of the Hilbert
space.

6.2 Rydberg blockade as a gauge symmetry
constraint

We establish here the exact mapping between the FSS Hamiltonian in
Eq. (6.2) governing the dynamics of the Rydberg atom quantum simula-
tor in Ref. [46] and a U(1) LGT. The latter describes the interaction be-
tween fermionic particles, denoted by ψ̂j and residing on the lattice site
j, mediated by a U(1) gauge field, i.e., the electric field Êj,j+1, defined on
lattice bonds, as depicted in Fig. 6.1b. We use here Kogut-Susskind (stag-
gered) fermions [141], with the conventions that holes on odd sites represent
electrons e−, while particles on even sites represent positrons e+. Their dy-
namics is described by:

Ĥ = −w
L−1∑
j=1

(ψ̂†j Ûj,j+1ψ̂j+1 + h.c.) +m

L∑
j=1

(−1)jψ̂†j ψ̂j + J

L−1∑
j=1

Ê
2
j,j+1, (6.3)
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where the first term provides the minimal coupling between gauge and
matter fields through the parallel transporter Ûj,j+1 with [Êj,j+1, Ûj,j+1] =

Ûj,j+1, the second term is the fermion mass, and the last one is the electric
field energy. The generators of the U(1) gauge symmetry are defined as

Ĝj = Êj,j+1 − Êj−1,j − ψ̂†j ψ̂j +
1− (−1)j

2
, (6.4)

and satisfy [Ĥ, Ĝj] = 0, so that gauge invariant states |Ψ〉 satisfy Gauss law
Ĝj |Ψ〉 = 0 for all values of j. Restricting the dynamics to their subspace is
by far the most challenging task for quantum simulators.

Different formulations of U(1) LGTs are obtained for different represen-
tations of gauge degrees of freedom Êj,j+1. While in the standard Wilso-
nian formulation — i.e., the lattice Schwinger model — they span infinite-
dimensional Hilbert spaces, here we first focus on the U(1) QLM formula-
tion [145, 147], where they are represented by spin variables, i.e., Êj,j+1 =

Ŝzj,j+1 and Ûj,j+1 = Ŝ+
j,j+1, so that [Ŝzj,j+1, Ŝ

+
j,j+1] = Ŝ+

j,j+1. As noted in
Ref. [160], this formulation is particularly suited for quantum simulation
purposes.

In the following, we consider the QLM with spin S = 1/2, in which all
the possible configurations of the electric field have the same electrostatic
energy, rendering the value of J inconsequential; in Section 6.3.2 we show
that this model is equivalent to the lattice Schwinger model in the presence
of a θ-angle with θ = π 1. The Hilbert space structure following Gauss law
is particularly simple in this case [160]: as depicted in Fig. 6.2, for each
block along the chain consisting of two electric fields neighbouring a matter
field at site j, there are only three possible states, depending on the parity
of j. In fact, in a general (1+1)-dimensional U(1) LGT, the configuration of
the electric field along the chain determines the configuration of the charges
via the Gauss law. Accordingly, Ĥ in Eq. (6.3) can be recast into a form in
which the matter fields ψ̂j are integrated out.

We now provide a transformation which maps exactly the latter form
into the FSS Hamiltonian (6.2). The correspondence between the two
Hilbert spaces is realized by identifying, alternately on odd and even lat-
tice sites, the computational basis configurations of the atomic qubits al-
lowed by the Rydberg blockade with the classical configurations of the
electric field allowed by the Gauss law (see Fig. 6.2). In terms of the
two Hamiltonians (6.2) and (6.3), this unitary transformation consists in
identifying the operators σ̂zj ↔ (−1)j2Ŝzj−1,j, σ̂xj ↔ (ψ̂†j−1Ŝ

+
j−1,jψ̂j + h.c.),

σ̂yj ↔ −i(−1)j(ψ̂†j−1Ŝ
+
j−1,jψ̂j − h.c.) and the parameters Ω = −w, δ = −m.

This mapping can be applied both for open and periodic boundary con-
ditions and it overcomes the most challenging task in quantum simulat-

1The similarity between the phenomenology of the two models was pointed out in
Ref. [160]. Here, we are instead interested in establishing an exact relation.
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Figure 6.2: Mapping between Rydberg-blockaded states and configurations
of the electric field constrained by the Gauss law in the QLM. Due to the
staggered electric charge, the allowed configurations of the electric field de-
pend on the link, as illustrated. The two so-called charge-density wave con-
figurations “CDW1” and “CDW2” of the Rydberg-atom arrays are mapped
onto the “string” and “anti-string” states, respectively, characterized by uni-
form rightward or leftward electric fluxes. The empty configuration with all
Rydberg atoms in their ground state is mapped to a state filled by adjacent
particle-antiparticle pairs.
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ing gauge theories, by restricting the dynamics directly within the gauge-
invariant Hilbert space.

Compared to the opposite strategy of integrating out the gauge fields,
our procedure based on integrating out matter degrees of freedom has major
experimental implications. With the first approach one would obtain lin-
early raising potentials which do not appear easily in the synthetic quantum
systems, and lead to very large energy scales (of the order of the system
size, see Section 5.3).

With our mapping, the only states that would violate Gauss law are
nearest-neighbor occupied sites which are strongly suppressed by the Ryd-
berg blockade. Additional terms in the Hamiltonian, such as next-nearest
neighbour interactions of Rydberg excitations, are mapped to gauge invari-
ant terms (e.g., next-nearest neighbour interactions between electric fields).
From a theoretical viewpoint, the line of thought of our scheme is similar
to the one used in hybrid Monte Carlo schemes, where one first integrates
out the matter fields, and then deals with a purely bosonic action.

Beyond providing a direct link between Gauss law and the Rydberg
blockade mechanism, the most important feature of the mapping is that,
differently from other remarkable relations between ĤFSS and lattice models
with gauge symmetries [196,197], it provides an immediate connections be-
tween Rydberg experiments and particle physics phenomena, as we describe
below.

6.3 Real-time dynamics of lattice gauge theo-
ries in Rydberg atom experiments

6.3.1 Gauge-theory interpretation of slow dynamics

The exact description of Rydberg-blockaded chains in terms of a U(1) LGT
allows us to shed a new light on the slow dynamics reported in Ref. [46],
by interpreting them in terms of well-studied phenomena in high-energy
physics, related to the plasma oscillations of the electric field and to the
production of particle-antiparticle pairs after a quench.

In the experiment, the system was initialized in a charge density wave
state (CDW1 in Fig. 6.2), and subsequently, the Hamiltonian was quenched,
inducing slowly-decaying oscillations between CDW1 and CDW2. As shown
in Fig. 6.2, CDW1 and CDW2 are mapped onto the two states of the
S = 1/2-QLM with uniform electric field Ŝzj,j+1 = ±1/2. The experimental
results in Ref. [46] may thus be interpreted as the evolution starting from one
of the two degenerate bare particle vacua |0±〉 (i.e, the vacua in the absence
of quantum fluctuations, w = 0) of the gauge theory. In Fig. 6.3a and in the
first column of Fig. 6.4, we illustrate these dynamics as it would be observed
in the excitation density 〈nj〉 along the Rydberg-atom quantum simulators
("Rydberg") and compare it with that of the electric field 〈Ej,j+1〉 within
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a b

Figure 6.3: a: Time evolution of the Rydberg array governed by the effective
Hamiltonian HFSS in Eq. (6.2), starting from the CDW1 state. The plot
shows the space and time resolved population 〈nj〉 of the excited Rydberg
atoms. b: Evolution of the expectation value of the electric field operator
Êj,j+1 in the QLM. These dynamics map exactly onto the ones shown in
panel a via the mapping illustrated in Fig. 6.2. The thin lines highlight the
oscillation between CDW1, CDW2 (left, bottom of Fig. 6.2) or string and
anti-string (right) states. In these simulations, L = 24 and δ = m = 0.

its gauge-theory description ("Quantum link model") in Fig. 6.3b and in
the second column of Fig. 6.4, respectively, utilizing exact diagonalization2.

The qualitative features of this evolution are strongly affected by quan-
tum fluctuations, whose impact is quantified by the ratio between the cou-
pling constant w and the particle massm. For small values ofm/w (first two
lines in Fig. 6.4), production of particle-antiparticle pairs occurs at a finite
rate. These particles get accelerated by the electric field and progressively
screen it, until coherent pair annihilation takes place and eventually brings
the system to a state with opposite electric flux. This process, referred to
as string inversion, occurs several times in a coherent fashion; similarly to
what is observed in string breaking scenarios (e.g., in other LGTs [192,198]),
this causes a dramatic slowdown of thermalization and of quantum informa-
tion propagation. As a further evidence, we compute both the total electric
flux and the vacuum persistence amplitude (or Loschmidt echo), defined
as G+(t) = | 〈0+|e−iĤt|0+〉 |2, whose large value ' 1 was already noted in
Ref. [199]. The anomalous long-lived oscillations of these quantities ex-
perimentally detected with Rydberg atom arrays in Ref. [46] show a clear
analogy with several previous numerical studies of the real-time dynamics
of higher-spin QLMs [192] as well as of the Schwinger model [190,191,200]
and Higgs theories [188]. In addition, as noted in Ref. [160], the dynamics
discussed here describes the coherent oscillations of the parity-symmetric
order parameter (in our case, 〈Êj,j+1〉) as a function of time, reminiscent

2Exact diagonalization is performed on the gauge invariant subspace: for large L, its
dimension grows as φL, where φ is the golden ratio, thus allowing for large system sizes.
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Figure 6.4: Slow dynamics in Rydberg atoms, U(1) quantum link model
(QLM), and the lattice Schwinger model. Coherent quantum evolution of
(first column) the local Rydberg excitation density profile nj(t) = 〈n̂j(t)〉
in the FSS model [see Eq. (6.2)], of the local electric field profile (second
column) Ej,j+1(t) = 〈Ŝzj,j+1(t)〉 in the QLM, and (third column) 〈L̂j,j+1(t)−
θ/(2π)〉 (see further below in the main text) in the lattice Schwinger model
[see Eq. (6.3)] with J/w = 1.5 and θ = π. Data in the first and second
columns are connected by a unitary transformation, while a remarkable
similarity is manifest between the second and third column despite the larger
Hilbert space of the gauge degrees of freedom in the Schwinger model.

of the decay of a chiral condensate in QCD [193]. We thus provide here a
bridge among all these observations.

However, if fermionic particles are sufficiently heavy, with m/w exceed-
ing a critical threshold, pair production is a virtual process and string inver-
sion cannot be triggered, as shown in the third and fourth line of Fig. 6.4.
We find that this behavior is related to the quantum phase transition occur-
ring in the FSS model at δc = −0.655|Ω| [50]. This transition corresponds
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Figure 6.5: Characterization of slow dynamics in the FSS model. a: Hilbert
space characterization of the persistent string inversions (m = 0, L = 28):
alternating strong revivals of the overlapsG±(t) = | 〈0±|e−iĤt|0+〉 |2 with the
two bare vacuum states |0±〉, corresponding to the two charge-density wave
configurations of Rydberg-atom arrays. Both the total density ρ = 〈ρ̂j〉 of
particle-antiparticle pairs, with ρ̂j = (−1)jψ̂†j ψ̂j+[1−(−1)j]/2 and the half-
chain entanglement entropy (see the Appendix B.1) have regularly-spaced
maxima between the peaks. b: Persistent oscillations of electric field for
two values of the mass and of the system size.

to the spontaneous breaking of the chiral symmetry in the LGT (6.4) at
mc = 0.655|w| [201]. The four rows in Fig. 6.4 show the temporal evolution
of the same initial uniform flux configuration (CDW or “string” in Fig. 6.2)
upon increasing values of the mass m/w = 0, 0.25, 0.655, 1.5 correspond-
ing to the dynamics (a, b) at m < mc, (c) at the quantum critical point
m = mc, and (d) at m > mc.

Figure 6.5 further illustrates the appearance of string inversions for
m < mc and the corresponding slow dynamics. Panel a shows the long-
lived revivals of the many-body wavefunction in terms of the evolution of
the probability G±(t) of finding the system at time t in the initial bare
vacuum state |0+〉 or in the opposite one |0−〉, corresponding to G+ or G−,
respectively, as well as in terms of the time-dependent density ρ of particle-
antiparticle pairs. The entanglement entropy of half system also displays
an oscillatory behavior (see Appendix B.1). Panel b shows the scaling of
the collective oscillations of the electric field with respect to the system size
L, as well as their persistence with a small but non-vanishing fermion mass
m < mc.

6.3.2 Slow dynamics in the Schwinger model

The above phenomenology is not restricted to QLMs, but is expected to be
a generic feature of LGTs including dynamical matter. We show this in the
context of a Wilsonian LGT, i.e., the lattice version of the Schwinger model
in Eq. (6.3). As discussed below, the model dynamics is, at the lattice level,
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remarkably different from the PXP model (no constraints when written in
spin language, different Hilbert space scaling, different interactions, etc.).
The key aspect is, instead, the common field-theoretical framework.

In this case, Ûj,j+1 = eiϑ̂j,j+1 are U(1) parallel transporters with vector
potential ϑ̂j,j+1, the corresponding electric field operator is Êj,j+1 = L̂j,j+1−
θ/(2π), where L̂j,j+1 have integer spectrum and θ/(2π) represents a uniform
classical background field parameterized by the θ-angle. Canonical commu-
tation relations for the gauge degrees of freedom read [ϑ̂j,j+1, L̂p,p+1] = iδjp.
In our numerical simulations, we utilize the spin formulation of the model
obtained upon integration of the gauge fields under open boundary condi-
tions (see Section 5.3 and Refs. [202,203]).

We consider the case of a θ-angle with θ = π, such that the electric field
Êj,j+1 has half-integer spectrum. Then, in the limit J/w → ∞ the term
JÊ2

j,j+1 in the Hamiltonian suppresses all the values of the electric field that
are different from ±1/2. This implies that the electric field can be repre-
sented by a spin-1/2 Ŝz operator and that the lattice Schwinger model is
equivalent to the spin-1/2 QLM discussed above. We find evidence that the
corresponding behaviour persists qualitatively down to J ' w, when the
electrostatic energy competes with the matter-field interaction, as shown in
the third column of Fig. 6.4. Despite the strong quantum fluctuations al-
lowed in principle by the exploration of a locally infinite-dimensional Hilbert
space, a qualitative similarity with the case of the locally finite-dimensional
Hilbert space of the QLM is manifest in the second column of Fig. 6.4, re-
lated to the observed dynamics in Ref. [46]. At a more quantitative level, we
see that the periods of the oscillations in the lattice Schwinger model and in
the QLM (for the same couplings) are in good agreement. The oscillations
persist also down to J � w (see Fig. 6.6), a regime in which the period
becomes larger when decreasing J .

We remark that the lattice Schwinger model with unbounded levels of
the gauge fields is substantially different from the QLM: not only the Hilbert
space is much larger, but also the effective spin-1/2 model describing it (see
Section 5.3) features long-range Coulomb interactions. Therefore, the gen-
erality of the occurrence of oscillations which do not decay on time scales
immediately related to the microscopic couplings points to a rather robust
underlying mechanism. In fact, we suggest here that this behavior may
arise from a universal field-theoretical description of the nonequilibrium
dynamics of states possessing a well-defined continuum limit. Concerning
the U(1) LGTs discussed in this work, the reference continuum field-theory
description is provided by the Schwinger model, representing quantum elec-
trodynamics in one spatial dimension [202]. In the massless limit m = 0,
this model can be exactly mapped by bosonization to a free scalar bosonic
field theory [185]. For a non-zero mass, the model is described in terms of
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the canonically conjugate fields Π̂ and φ̂ by the Hamiltonian

ĤB =

∫
dx

[
1

2
Π̂2 +

1

2
(∂xφ̂)2 +

1

2

e2

π
φ̂2−cmω0 cos(2

√
πφ̂− θ)

]
. (6.5)

Within this bosonized description, the field φ̂(x, t) represents the electric
field, and for m = 0 all its Fourier modes φ̃(k) are decoupled. In this
case, the single uniform mode with k = 0, oscillates with a frequency ω0 =
e/
√
π, where e is the charge of the fermion. For an initial state with a

uniform string of non-vanishing electric field 〈φ̂(x, t = 0)〉 = const 6= 0, the
uniform mode with k = 0 is excited, and hence the electric field will show
uniform periodic string inversions around zero, with frequency ω0. A non-
vanishing value of m leads to the additional anharmonic term in Eq. (6.5).
The resulting total potential shows a transition from a shape with a single
minimum for m < mc to two symmetric minima for m > mc, analogous to
the spontaneous breaking of chiral symmetry on the lattice (see Appendix
B.3 for details). This weak local non-linearity introduced by a small m
couples the various Fourier modes and hence induces a weak integrability
breaking. In this case, the uniform string inversions of the electric field
evolving from a false vacuum configuration with 〈φ̃(k = 0)〉 6= 0 are expected
to be superseded by slow thermalization processes at long times (see, e.g.,
Ref. [204]). In the context of cold gases, a reminiscent slow relaxation has
been observed in interfering bosonic Luttinger liquids, whose Hamiltonian
dynamics has some similarities to the one discussed here [205].

We suggest that a remnant of this slow dynamics induced by the un-
derlying integrable field theory may persist in lattice versions of this gauge
theory for some initial states. At a quantitative level, we test our predic-
tion on the lattice Schwinger model with θ = π, whose continuum limit
is obtained by scaling the parameters with the lattice spacing a in such
a way that J = e2a/2, w = 1/(2a), and a → 0 [165]. According to the
field theory (Eq. 6.5), in this limit the period of the oscillations scales as
T ∝ 1/

√
Jw: as shown in Fig. 6.6, this scaling is indeed satisfied, within a

good approximation, in the region J � w.

6.3.3 Propagation of particle-antiparticle pairs

States of the QLM corresponding to particle-antiparticle pairs in the bare
vacuum can be constructed in Rydberg-atom quantum simulators by prepar-
ing two or more defects in a charge-density wave configuration, each corre-
sponding to pairs of adjacent non-excited Rydberg atoms.

As an illustration, we discuss how the time-evolution of one or two
particle-antiparticle pairs for m < mc features the emergence of slow dy-
namics. In Fig. 6.7, we show the time evolution of both the particle density
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Figure 6.6: Oscillation of the electric field in the Schwinger model with
θ = π. a: Time evolution of the average electric field. The initial state is
the bare vacuum with Ej,j+1 = 1/2 and the chain has periodic boundary
conditions. The solid and dashed lines correspond to L = 14 and L = 12
respectively. Exact simulations are performed via truncation of the local
Hilbert space to dimension 16, i.e. |Ej,j+1| < 15/2, and the constrained
Hamiltonian for the electric field is obtained by exactly eliminating matter
degrees of freedom. b: Period of the oscillations as a function of J and
w. The dots are the values of the half-period obtained for L = 14. The
solid line is the function b log(J/w) + c, where b = −0.526 and c = 4.2 are
obtained through a fit in the region J/w < 0.1.

in the QLM and the corresponding density of excitations in the Rydberg
chain, fixing for simplicity m = 0. The pairs in the initial state break
and ballistic spreading of electron and positron takes place. The string in-
version dynamics induced by this propagation shows coherent interference
patterns with long-lived oscillations. Due to retardation effects induced by
the constrained dynamics, these oscillations are shifted by half a period with
respect to the vacuum oscillation.

These unusual dynamics turn out to be robust under experimentally
realistic conditions: In Fig. 6.8 we consider the evolution of a particle-
antiparticle pair, the simulated dynamics of which is not constrained to
the subspace satisfying n̂jn̂j+1 = 0 and includes the effect of the long-
range Rydberg interactions between atoms. The evolution is performed via
Krylov subspace techniques in the unconstrained Hilbert space with the
Hamiltonian in Eq. (6.1), with δ = 0 and Vj,k = V1|j − k|−6. The value of
V1/Ω = 25.6 is the same as considered in Ref. [46]. The dynamics displayed
Fig. 6.8 is similar to the constrained one in Fig. 6.7b,c at short times, after
which the effects of having realistic interactions gradually kick in.
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Figure 6.7: Slow dynamics of particle-antiparticle pairs. a: Cartoon states
representing the propagation of particle-antiparticle pairs e+-e−. The no-
tation is the same as in Fig. 6.2, while the yellow stripes denote regions
of space with largest particle density and therefore 〈Êj,j+1〉 ' 0. b: Evo-
lution of the particle density in the QLM starting from a bare vacuum or
"string" state, see Fig. 6.2, with initial particle-antiparticle pairs. c: Same
as in panel b, but in the Rydberg excitation density representation. Left
column: the oscillations observed in the light-cone shaped region originat-
ing from the particles is expected to be out of phase with respect to those
of the bare vacuum. Right column: In the presence of two e+-e− pairs,
an additional change of periodicity is expected in correspondence of elastic
scattering. In these simulations, m = δ = 0.

6.3.4 Spectral properties and bands of non-thermal states

We characterize the anomalous ballistic spreading of particle-antiparticle
pairs discussed in the previous Section in terms of the emergence of corre-
sponding anomalous spectral properties of the FSS model. These proper-
ties generalize those recently observed [47] in some families of special energy
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Figure 6.8: Propagation of a particle-antiparticle pair e+-e− with realistic
Rydberg interactions. Left panel: density of Rydberg excitations. Right
panel: density of particles/antiparticles (ρ in the QLM language). Results
are obtained for a chain of L = 23 sites governed by the realistic Hamiltonian
(6.1) with Vij = V1r

−6
ij and no constraints in the Hilbert space. Parameters:

δ = 0, V1/Ω = 25.6. We checked explicitly that the violation of Rydberg
blockade is always small, 〈njnj+1〉 < 10−2.

eigenstates referred to as “many-body quantum scars”. The latter are consti-
tuted by towers of regularly-spaced states in the many-body spectrum with
alternating pseudo-momentum k = 0 and k = π, characterized by non-
thermal expectation values of local observables as well as by anomalously
large overlaps with the charge-density wave initial states. The long-lived co-
herent oscillating behavior has been attributed in Ref. [47] to the existence
of these “scarred” eigenstates.

Fig. 6.9a shows that the modulus of the overlap between the energy
eigenstate |ψ〉 with energy E and the above described inhomogeneous states
|φe+e−〉 with momentum k clearly identifies a number of special bands of
highly-excited energy eigenstates characterized each by an emerging func-
tional relationship E(k). As shown in Fig. 6.9d some of the states in these
bands strongly deviate from the thermal value 〈nj〉th ' 0.276. This fact
has already been observed in the previously studied quantum-scarred eigen-
states, which coincide with the extremal points of these bands at momenta
k = 0 and k = π. A closer inspection of these energy-momentum relations,
presented in Fig. 6.9b, shows that they are close to cosine-shaped bands,
suggesting the emergence of single-particle excitations in the middle of the
many-body energy spectrum.

We further characterize this spectral structure by constructing a quasi-
particle variational ansatz |χk〉 on top of the exact matrix-product-state
zero-energy eigenstate of the Hamiltonian (6.2) with δ = 0, recently put
forward in Ref. [52] (see Appendix B.2). As shown in Fig. 6.9c, the op-
timal quasi-particle ansatz has the largest overlap with the states on the
energy-momentum bands of special eigenstates closest to zero energy, thus
reinforcing the above emergent quasi-particle picture.
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Figure 6.9: Emergent quasi-particle description of highly-excited states. a:
Largest overlaps of the initial state |φe+e−〉 with a localized defect in a
charge-density wave configuration of the Rydberg-atom chain with the en-
ergy eigenstates |ψ〉 of the FSS Hamiltonian (δ = 0, L = 20) in Eq. (6.2),
as a function of their corresponding momentum and energy. Within the
gauge-theory description, the initial state corresponds to having a localized
particle-antiparticle pair e+-e−. b: The eigenstates with the largest over-
laps display a regular functional dependence of energy on momentum that
is remarkably close to a simple cosine band. c: The largest overlaps of
the optimal matrix-product state quasi-particle ansatz |χk〉 built on an ex-
act eigenstate with zero energy (see the main text) accurately reproduce the
corresponding emergent quasi-particle band of panel a. d: Anomalous (non-
thermal) expectation values of a local observable in energy eigenstates. The
red boxes highlight the correspondence between the most relevant eigen-
states building up |φe+e−〉 (panel a) and the most non-thermal eigenstates
(panel d). The emergent spectral structure illustrated in this picture un-
derlies the clean ballistic spreading of particle-antiparticle pairs displayed
in Fig. 6.7.
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6.3.5 Tuning the topological θ-angle in Rydberg exper-
iments

So far, our discussion has focused exclusively on the relation between Ryd-
berg experiments and the Schwinger model with topological angle θ = π. A
natural question to ask is whether, within the present setting, it is possible
to realize genuinely confining theories, i.e., generic values of the topological
angle θ 6= π.

This is possible within the strong coupling limit upon introducing a lin-
ear term in the electric field. With reference to the lattice Schwinger model
introduced in Sec. 6.3.2 and notations therein, we see that the two lowest de-
generate energy states of the local electric field for θ = π (i.e. Lj,j+1 = 0,+1)
are split when θ deviates from π, with an energy gap ∆ = J |θ/π − 1|. In
order to keep the structure of the Hilbert space compatible with the FSS
model, one requires this ∆ to be much smaller than the gaps with the other
states, which are of the order of J . This implies that, within the QLM for-
mulation, we can only access very small deviations from θ = π: this is not
a limiting factor, and we will show how this simple setting already allows
to witness the effects of confinement in the dynamics. The confining na-
ture of the potential can be intuitively understood as follows: starting form
the bare vacuum (the “string” state in Fig. 6.2), creating and separating a
particle-antiparticle pair at a distance ` entails the creation, between the
two, of a string of length ` with opposite electric field. The corresponding
energy cost is proportional to `∆, signalling the confining nature of the po-
tential. Accordingly, the lattice Schwinger model with strong J � Ω,m,∆
and with a topological angle θ = π(1±∆/J) is efficiently approximated by
the QLM with an additional term linear in the electric field and proportional
to ∆.

In turn, within the exact mapping outlined in Sec. 6.2 and illustrated in
Fig. 6.2, this θ−angle term corresponds to an additional staggered field in
the FSS model, leading to the Hamiltonian:

ĤRyd =
L∑
j=1

(Ω σ̂xj + δ σ̂zj ) +
L∑
j=1

(−1)j
∆

2
σzj . (6.6)

The new term can be experimentally realized, e.g., by utilizing a position
dependent AC Stark shift or, alternatively, a space-dependent detuning on
the transition between ground and Rydberg states (it was realized, for ex-
ample, in a recent work reported in Ref. [206]).

In Fig. 6.10, we show the effect of the θ−angle on the evolution of the
total electric field in the QLM starting from a uniform string state. Also
in this case, the dynamics observed can be understood using the bosonized
field theory in Eq. (6.5). As explained in Sec. 6.3.2, the integrability break-
ing term which appears for m > 0 has the effect of damping the oscillations.
Moreover, from the same equation we can predict that the impact of a vari-
ation of the θ-term on the dynamics is enhanced when we increase the mass,
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as data clearly show. This enhancement of the θ-dependence becomes more
evident when we cross the transition point: while in the symmetric phase
with m < mc, the explicit symmetry breaking caused by the electric field
energy imbalance leads to damping of the string inversions, in the broken-
symmetry (chiral) phase with m > mc the effect of confinement is dramatic,
causing the persistence of the initial electric string, with small long-lived os-
cillations. Focusing on the latter phase, in Fig. 6.11 we show the dynamical
evolution of a finite electric string generated by a particle-antiparticle pair
(left panels), at the deconfined point θ = π (top) and in the confined phase
with θ 6= π (bottom). The right panels show the same evolution as it would
appear in terms of measurements of Rydberg atom excitations. While for
∆ = 0 nothing prevents the initially localized bare particles to propagate
along the chain (top panels), the presence of a linear confining potential
proportional to ∆ between them stabilizes the electric string, leading to ef-
fective Bloch oscillations of the edges and to a surprisingly long lifetime [207]
(bottom panels). This effect signals that confinement can dramatically af-
fect the non-equilibrium dynamics, potentially slowing it down as observed
in both gauge theories [208] and statistical mechanics models [207,209,210].
In this regime, the model shows the same qualitative signatures of confine-
ment as the quantum Ising chain in transverse and longitudinal field, such
as the long-lived coherent oscillations and the suppression of the light-cone
spreading [209].
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Figure 6.10: Effect of the θ−angle on the dynamics of the electric field from
uniform string states of the QLM. Data are shown for a chain of L = 28
sites, for increasing values of the particle mass m/w and of the parameter
∆, quantifying the deviation of the θ−angle from π (see the main text).
Dynamics for ∆ = 0 correspond to the second column of Fig. 6.4.
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Figure 6.11: θ−angle and string-breaking dynamics. Evolution of a bare
particle-antiparticle pair state is displayed in terms of space- and time-
dependent electric field in the QLM (left panels) and of the density of excited
atoms in the Rydberg array (right panels), withm = −δ = 1.5Ω and L = 28.
Simulations in the top row have ∆ = 0, corresponding to the deconfined
field theory with θ = π. Effects of confinement emerge in the second row,
where a non-vanishing ∆ = 0.3Ω stabilizes the electric string.

6.4 Conclusions
We proved that the large-scale quantum simulation of lattice gauge theo-
ries has already been achieved in state-of-the-art experiments with Rydberg
atoms, as it can be realized by establishing a mapping between a U(1) gauge
theory and Rydberg atom arrays. At the theoretical level, we showed that
this novel interpretation provides additional insights into the exotic dynam-
ics observed in experiments, linking it to archetypal phenomena in particle
physics. Our field-theoretic description immediately implies the generality
and applicability to a wide variety of model Hamiltonians within experi-
mental reach, and among them we extensively discuss the example of the
lattice Schwinger model in the Wilson formulation. We expect that future
studies can further deepen the connection between the statistical mechan-
ics description of such behaviour and its gauge-theoretic interpretation, for
instance, elucidating the effects of non-thermal states [47, 48, 52, 105] and
emergent integrability [69,81], and the role of confinement in slowing down
the dynamics [207–211]. At the experimental level, our findings immediately
motivate further experiments along this direction, that can probe different
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aspects of gauge theories, such as the decay of unstable particle-antiparticle
states after a quench, and might be combined with other quantum infor-
mation protocols [212]. We show how by tuning the θ-angle – a possibility
that is already available with current technologies – the different dynamical
regimes expected from the field theory can be accessed. A particularly inter-
esting perspective in this direction is the possibility of dynamically probing
confinement via quantum quenches starting from a string embedded in the
(bare) vacuum, a prototypical gedanken experiment in particle physics [190].

The quantum-simulation strategy we propose is based on the elimina-
tion of the matter degrees of freedom by exploiting Gauss law: This method
does not rely on the specific formulation of the model and is in principle
applicable to other lattice gauge theories (for a recent work along these lines
see for example Ref. [213]). An intriguing future extension is represented
by theories with non-Abelian gauge symmetries, an example of which can
be found in Ref. [169], where links with finite-dimensional Hilbert spaces
are utilized. The integration of matter degrees of freedom is equally well
suited for higher dimensions, and Rydberg atoms are a promising platform
for pursuing this direction [121,214]. After the present analysis, the exper-
iments performed in Ref. [46] represent a step-stone toward the ambitious
realization of non-Abelian gauge theories in three spatial dimension, which
remains an outstanding quest [129,174].





Chapter 7

Non-Abelian lattice gauge
theories with alkaline-earth-like
atoms

Starting from early theoretical proposals [150, 153–155, 158, 158–160, 160–
164,172,173] and from the pioneering trapped ion experiments of Ref. [166],
the quantum simulation of Abelian lattice gauge theories (LGTs) has al-
ready been shown to scale beyond simple building blocks to regimes where
classical simulations are challenging, if not prohibitive (see e.g Chapter 6).
Instead, no scalable non-abelian LGTs quantum simulators exist to date1.
The main roadblock for quantum simulating non-Abelian models stems from
the fundamentally more complex nature of non-Abelian Gauss law in terms
of quantum engineering: in particular, it is extremely challenging to con-
strain the dynamics of a quantum simulator in such a way that only gauge
invariant states are populated. Presently, there exist only a few proposals
that have addressed this [151–153,155,164,215,216], focusing on conceptual
aspects of such challenge.

Here, we pursue a different approach. Building on impressive experi-
mental developments over the last five years in harnessing quantum gases
of alkaline-earth-like atoms, we present a proposal for the quantum simula-
tion of SU(N)×U(1) that combines a new conceptual framework to engineer
gauge invariant dynamics, with an ab initio description of the physical setup.
This combined approach has two key advantages: firstly, it allows us to im-
mediately identify potential challenges in terms of microscopic constraints
related to the quantum hardware (e.g., inability to realize the desired back-
ground potentials, etc.), that are known to be particularly relevant in the
context of quantum engineering of LGTs; and secondly, it enables us to
make precise predictions in terms of energy scale of the quantum simulator,
and to properly frame the theoretical issues of imperfections in realizing

1Digital schemes have instead been already demonstrated in small scale experiments
in Ref. [168,180]

85
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Figure 7.1: (a) Schematic of the 1D SU(N)×U(1) LGT with both mat-
ter (ψ) and gauge fields (La, Ra). E is the U(1) electric field on a link.
(b) Schematic of corresponding QLM with one gauge boson per link. Its
descriptive Hamiltonian is Eq. (7.2). (c) Corresponding setup of the 1D
quantum simulator using cold 173Yb in an optical lattice. g atoms (blue)
directly simulate matter and anti-matter fermions on sites x, while e atoms
(orange) simulate the state of the gauge fields on the links: the rishons.
Purple-shaded wells are never populated by the gauge-preserving dynam-
ics. The key process in the QLM is the gauge-assisted hopping illustrated
on the right of both (b) and (c). Before and after the hopping, each pair of
particle on each block is a spin singlet (gray ellipses).

gauge invariant dynamics.
The setup we propose is depicted in Fig. 7.1. We propose to use cold

173Yb in their stable 1S0 ≡ g and metastable 3P0 ≡ e states, with hyperfine
spin sublevels satisfying a SU(6) symmetry [217, 218]. We select N ≤ 6
of these six hyperfine states when initializing the system2. Only these N
spin states are involved in the dynamics due to the global SU(6) symmetry
leading to an effective SU(N) symmetry. The atoms are placed in an optical
bipartite lattice (we call the two sublattices even and odd) and confined.
Minima of the g atoms correspond to matter sites of the effective gauge
theory. Each pair of nearest-neighbour g sites is separated by a double
well for the e atoms (cf Fig. 7.1), which encode the gauge variable on the
corresponding link. We define a block as the ensemble of one g site and its
closest e sites (i.e., the closest side of a double well on each adjacent link).
A staggered potential is superimposed: this potential introduces an energy

2This can be achieved, e.g., via optical pumping techniques, that have already been
experimentally demonstrated at LENS and in Kyoto.
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shift 2δg (2δe) between the g (e) sites of even and odd blocks.
The strategy to build the simulator consists in making all gauge-invariant

particle configurations in each block resonant with each others. The selected
resonant configurations verify the number of atoms per block Gx = N 3 (the
U(1) local charge) and total spin per block Ga

x = 0 (the SU(N) local charge),
with

Ga
x = ψi†x λ

a
ijψ

j
x +

∑
k̂

ci†
x,k̂
λaijc

j

x,k̂
(7.1a)

Gx = ψi†x ψ
i
x +

∑
k̂

ci†
x,k̂
ci
x,k̂
. (7.1b)

The matrices λaij, a = 1, . . . , N , are the Pauli matrices for N = 2 or their
generalization for SU(N) such that Trλaλb = 2δab. We used ψi†x (resp.
ψix) as the creation (resp. annihilation) operator of a g particle of SU(N)
spin i = 1, ..., N in the g well at the center of block x. ci†

x,k̂
is the creation

operator of an e particle on the e well of block x closest to block x + k̂ (cf
Fig. 7.1). k̂ are the vectors transforming x to one of its nearest neighbors.
In 1D, Lax,x+1 = ci†x,+1λ

a
ijc

j
x,+1 and Ra

x,x+1 = ci†x+1,−1λ
a
ijc

j
x+1,−1. All states

satisfying Gx = N , and Ga
x = 0 for all a (called Gauss’ laws) make the gauge

invariant subspace. The parameters are tuned such that all non-gauge-
invariant configurations are off-resonant: in this way, resonant interactions
between blocks are gauge-invariant by construction.

The effective Hamiltonian of the system in the resonant subspace corre-
sponds to the SU(N)×U(1) QLMHamiltonian for massive staggered fermions
(see [174] for a review)

HQLM = m
∑
x

sxψ
i†
x ψ

i
x +

w

2

∑
x,k̂

ψi†x ψ
i
xψ

j†
x+k̂

ψj
x+k̂

− τ

2

∑
x,k̂

(
ψi†
x+k̂

U ij

x+k̂,x
ψjx + H.c.

)
+
∑
x

ux
2
ψi†x ψ

i
x(ψ

j†
x ψ

j
x − 1)

(7.2)

with sx = +1 (−1) for even (odd) sites, and summation over repeated
indices. The matter/anti-matter particles have mass m; they interact with
on-site interaction amplitude ux and a nearest-neighbor interaction w. The
gauge assisted-hopping, of amplitude τ , is mediated by the SU(N) parallel
transporter U ij

x+k̂,x
= ci

x,k̂
c†j
x+k̂,−k̂, according to the rishon formulation of

QLM [174]: in this formulation, the gauge field is represented by fermionic
particles (rishons) that sit on the left and right ends of the links. We work
in the representation with N ≡ ci†

x,k̂
ci
x,k̂

+ c†i
x+k̂,−k̂c

i
x+k̂,−k̂ = 1 rishon per link:

the corresponding experimental setup has exactly one e particle per double
well, avoiding 2-body e− e losses.

3The definition of Gx differ from the usual definition in the literature (such as
Refs. [174]) by an unimportant locally conserved integer constant.
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7.1 Ab initio derivation of the lattice model

We now elaborate on the derivation of Eq. (7.2) when starting from the
lattice discretization of the atomic Hamiltonian. The continuous optical
lattice Hamiltonian for alkaline-earth atoms is the standard [217]

H =
∑
αi

∫
d3rΨ†αi (r)

(
− ~2

2M
∇2 + Vαi (r)

)
Ψαi (r)

+ ~ω0

∫
d3r (ρe (r)− ρg (r))

+
g+
eg + g−eg

2

∫
d3rρe (r) ρg (r)

+
∑
α,i<j

gαα

∫
d3rραi (r) ραj (r)

+
g+
eg − g−eg

2

∑
ij

∫
d3rΨ†gi (r) Ψ†ej (r) Ψgj (r) Ψei (r) ,

(7.3)

with Ψ†αi the field creation operator at r in the state α = g, e with SU(N)
spin i and ρα (r) =

∑
i ρα,i (r) =

∑
i Ψ
†
αiΨαi. M is the mass of 173Yb, Vαi

is the lattice potential, ~ω0 is the transition frequency between g and e,
gαα = 4π~2aαα/M , g±eg = 4π~2a±eg/M and aαα, a±eg are the 2-body contact
interaction scattering lengths.

The lattice version of the Hamiltonian is derived by decomposing Ψαi

into series of maximally localized Wannier functions [219, 220] from the
populated s bands of the lattices only, separated by the gap ∆g and ∆e

from the unpopulated bands (see Appendix B.4 for details). The lattice
formulation of Eq. (7.3) involving only block x is

h0
x = µgxnx +

U gg
x

2
nx(nx − 1)

+
∑
k̂

[
µexnx,k̂ +

U eg+
x + U eg−

x

2
nxnx,k̂

+
U eg+
x − U eg−

x

2
ψi†x c

j†
x,k̂
ψjxc

i
x,k̂

]
+
∑
k̂1 6=k̂2

te
x,k̂1k̂2

(ci†
x,k̂1

ci
x,k̂2

+ H.c.) + . . . ,

(7.4)

with nx = ψi†x ψ
i
x and nx,k̂ = ci†

x,k̂
ci
x,k̂

. We consider that the e double wells
are separated by a large barrier, such that all hoppings te and the omitted
density-assisted hoppings that change the number N of rishons per link are
suppressed.
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7.2 Resonance conditions
We say that a process is resonant when it connects degenerate eigenstates
of H0 =

∑
x h

0
x. To induce the desired gauge-invariant dynamics, we re-

quire the gauge-assisted hopping to be resonant between compatible4 gauge-
invariant states. For example for N = 2, the spectrum of h0

x in Table 7.1
and resonance of the gauge-assisted hopping impose

Egg
x + EgeS

x+1 = EgeS
x + Egg

x+1, (7.5a)

EeeS
x + Egg

x+1 = EgeS
x + EgeS

x+1, (7.5b)

EgeS
x + EgeS

x+1 = Egg
x + EeeS

x+1, (7.5c)

EgeS
x + EeeS

x+1 = EeeS
x + EgeS

x+1, (7.5d)

with the notations of Table 7.1. For example, the hopping in Fig. 7.1 is
resonant if Eq. (7.5d) is verified. Taking µαx = µα + sxδα, α = g, e, and
U ge+
x = U ge+ + sxε, the conditions Eqs. 7.5 impose (i) δg + ε = δe and (ii)

U gg
x = 2U eg+

x
5. Small deviations from these resonance conditions contribute

as gauge-invariant terms in Eq. (7.2). The mass is m = δg − δe + ε and the
amplitude of the on-site density interaction is ux = U gg

x − 2U ge+
x . Extra

correction to m and ux and w in Eq. (7.2) are obtained from the interaction
between neighbouring blocks projected onto the gauge-invariant subspace,
as reported in Appendix B.5. As shown in the same Section, the reasoning
generalizes for all N .

7.3 Off-resonance conditions
Conversely, all terms which would break gauge invariance are made off-
resonant. Eigenspaces with Gx 6= N are off-resonant for large µg and
µe. Simple hoppings of g or e particles between neighbouring blocks are
suppressed by the staggering δg,e in the chemical potentials. The gauge-
breaking g − e magnetic multiplet state (triplet for N = 2) with energy
EgeM
x is off-resonant when U eg−

x 6= U eg+
x . When g-wells can be empty of

particles, like in 1D for N = 2, the gauge-breaking e − e multiplet states
have the same energy EeeM

x as the e− e gauge-invariant singlet state (EeeS
x )

such that the two belong to the same resonant subspace. However, the hy-
bridization between the two types of states is suppressed as no on-block or
nearest-block interactions resonantly connect the two ensembles. For N > 2
in 1D or N > 3 in 2D hexagonal lattice, the available multiplet states al-
ways contain at least one g particle, such that they are driven off-resonance
by U eg−

x .
4“Compatible” means that the configurations considered must all satisfy Gauss’ laws

simultaneously. This includes having exactly one e particle on each link at all times.
5Note that a global offset in the chemical potentials for g atoms or e atoms is unim-

portant as the total number of g and e atoms is conserved.
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Antisymmetric nuclear spin singlet (S)

Electronic state (sym.) Energy

|g, g〉 Egg
x = 2µgx + U gg

x

1√
2

(
|g, ek̂〉+ |ek̂, g〉

)
EgeS
x = µgx + µex + U eg+

x

1√
2

(
|ek̂1, ek̂2〉+ |ek̂2, ek̂1〉

)
EeeS
x = 2µex

Symmetric nuclear spin multiplet (M)

Electronic state (antisym.) Energy

1√
2

(
|g, ek̂〉 − |ek̂, g〉

)
EegM
x = µgx + µex + U eg−

x

1√
2

(
|ek̂1, ek̂2〉 − |ek̂2, ek̂1〉

)
EeeM
x = 2µex

Table 7.1: The two particles eigenstates and eigenenergies of a single block
x for N = 2. “ek̂” designate a state with one e particle from block x on
the link between x and x+ k̂ = x± 1. Only the singlet states satisfy gauge
invariance (Ga

x = 0 for all a).

7.4 1D lattice setup and parameters
The 1D optical lattice potential displayed in Fig. 7.1(c) can be realized
by interfering laser beams at three different wavelengths λ0, λ1 and λS,
creating sinusoidal potentials along the x-direction with amplitude V 0

α , V 1
α ,

and V S
α , and periodicity a0, a0/2, and 2a0, respectively. In addition, a

tight transverse confinement can be obtained by creating an optical lattice
with spacing d and potential strengths V ⊥α along the transverse y and z
directions. These lattices add together to give the optical potential Vα in
Eq. (7.3):

Vα(r) = V 0
α sin2

(
πx

a0

+
π

2

)
+ V 1

α sin2

(
2πx

a0

+
π

2

)
+ V S

α sin2

(
πx

2a0

)
+ V ⊥α

[
sin2

(πy
d

)
+ sin2

(πz
d

)]
.

(7.6)

The resonance conditions are imposed by acting on the amplitude of
the lattice potentials: the condition (i) is most sensitive to the superlattice
potential V S

α , the condition (ii) is mainly tuned by adjusting the confin-
ing potential V ⊥α that modifies the widths `g/e of the Wannier functions
in the y and z directions (the interactions are enhanced by increasing the
confinement)6. The realistic values of the experimental parameters cho-
sen for N = 2 in 173Yb, and the corresponding computed amplitudes are

6In a realistic setting, the three resonance conditions [the condition (i), and the con-
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summarized in Tab. 7.2. Considering a0 ' 0.44µm, a possible set of laser
wavelengths is λ0 ' 0.44µm, λ1 ' 0.64µm and λS ' 0.69µm.

M 172.93 u

ggg 7.748 Hzµm3

g+
eg 72.97 Hzµm3

g−eg 8.536 Hzµm3

m 2.8 · 10−5

τ −0.00311

u < 10−6

w 1.497 · 10−4

a0 ∼ 0.44

V 0
g −6.99

V 1
g −20.02

V S
g −4.42

V 0
e 178.16

V 1
e 125.15

V S
e −7.45

`g
0.0578
0.0565

`e
0.0235
0.0455

∆g 3.6962

∆e 31.3337

δg −2.0720

δe −2.0990

te
−3.0 · 10−5

−2.5 · 10−5

U eg+ 1.2321

U eg− 0.1441

U gg 2.4186
2.3307

Table 7.2: Upper left: parameters of the 173Yb in Eq. (7.3) [218, 221, 222].
Lower left: ab initio parameters of Eq. (7.2) for the 1D setup, with N = 2.
Center: parameters of the optical lattices. Right: corresponding values of
the lattice Hamiltonian Eq. (7.4). Energies are in kHz and lengths are in
µm. A cell has two values when the corresponding quantity is different for
odd and even sites within significant digits.

The time scale of the dynamic of the effective QLM Hamiltonian is
|τ |−1 ∼ 300 ms and is within the resolution of the experiment. The gauge-
breaking term te is two orders of magnitude smaller than the leading ampli-
tudes. Changing slightly the amplitude of the potentials in the experiment
allows exploration of the phase diagram around the competing regime of m,
τ , w, and ux.

7.5 Generalization to N > 2 and 2D lattice
setup

The strategy generalizes to larger N and higher dimensions. In Appendix
B.6, we report the data for the U(3) QLM in one spatial dimension. In
this case, three body losses of g atoms are present but the rates are much

dition (ii) for both x even and odd] are all affected by the potentials, and tuning V Sα
and V ⊥α independently is not sufficient to meet them. However, the conditions can still
be satisfied by tuning the laser amplitudes, simply because the number of conditions is
smaller than the number of free parameters.
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smaller than the characteristic frequencies of the relevant dynamic (the loss
rate is of the order of 5 · 10−5 kHz).

Figure 7.2: Optical lattice for the two-dimensional QLM: the g potential (a)
has minima in the vertices of the lattice, the e potential (b) has two minima
on each link. (c) The brickwall lattice is realized with the same potential of
the square lattice (g sites (blue) correspond to matter, the e sites (orange)
to rishons): the double wells represented as gray boxes are initialized with
no e atoms, such that no gauge variable is present on the corresponding
link. The superlattice shifts even and odd blocks (in green/purple). (d)
The brickwall lattice is equivalent to the honeycomb lattice.

In Fig. 7.2(a,b) we show the profile of an optical lattice that can be
used to simulate a QLM in a two-dimensional square lattice. An extra
superlattice potential ensures the staggering. The amplitudes are tuned
such that the resonance conditions (i) and (ii) are satisfied. In addition
to the terms of Eq. (7.2), the effective Hamiltonian will contain plaquette
terms generated in second order perturbation theory: second order terms
can be comparable in amplitude to the leading first order terms for both
one-dimensional and two-dimensional systems.

The same optical lattice can be used to realize a brickwall lattice (equiv-
alent to a honeycomb lattice) QLM: it is sufficient to initialize the system
in a state with “empty" links as in Fig. 7.2(c). The brickwall lattice has
a non-trivial matter-gauge dynamics with N = 2, unlike the square lattice
that does not host g atoms for Gx = 2 and N = 1.

7.6 Preparation of the initial state

In order to experimentally prepare initial states within the gauge invariant
subspace one can exploit the spectroscopic resolution of the clock transi-
tion to resolve two-particle states with different electronic wavefunctions.
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In particular, N = 2 gauge-invariant (spin singlet) states can be created
starting from a band insulator of g-state atoms in the lattice potential with
periodicity a0, and transferring each on-site |g, g〉 (singlet) state into one of
the states given in the top part of Table 7.1. This can be achieved by only
employing global clock laser pulses after turning on the short lattice with
a0/2 period.

7.7 Discussion and conclusion
In this work, we proposed an ab initio scalable experimental setup of an
SU(N)×U(1) lattice gauge theory quantum simulator in 1D and 2D. The
experiment uses ultra-cold alkaline-earth-like fermionic atoms in an optical
superlattice. The system is restricted to evolve within the resonant gauge-
invariant subspace set by the initial state, while gauge-breaking states are
off-resonant.

We perform an ab initio calculation that allows to estimate the en-
ergy scales involved in an experimental implementation. The time scales
that characterize the effective gauge invariant dynamics can be as short as
|τ |−1 ∼ 300 ms, and are reachable by realistic experiments.

The main advantage of this setup is the immediate scalability: the sys-
tem size is set by the size of the optical lattice, and can already reach
hundreds of sites in available experiments. Therefore, this setup would al-
low for the first large-scale quantum simulation of a non-Abelian lattice
gauge theory.

Another significant advantage is the possibility of realizing two-dimensional
lattice gauge theories, whose quantum simulation has so far proven to be
prohibitively challenging In particular, our setup uses fermionic atoms to
represent fermionic matter, allowing for a simpler implementation (that does
not require Jordan-Wigner strings) in models with more than one dimen-
sion. This could pave the way to the study of novel phases of matter and
quantum spin liquids.
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Non-equilibrium dynamics of
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Chapter 8

Confinement: physical
mechanism and consequences on
non-equilibrium

Confinement of elementary particles is renowned as a fundamental mech-
anism for our understanding of fundamental interactions of nature. The
prototypical example of this phenomenon is quark confinement in quantum
chromodynamics [139] which is a ruling principle of strong interactions:
quarks cannot be isolated at low-energy and they are only found in com-
posite particles called hadrons such as baryons and mesons. Indeed, the
mass of ordinary matter is in an overwhelming majority in the binding en-
ergy of protons and neutrons rather than in the masses of truly elementary
particles such as quarks and electrons.

Confinement of excitations is a relevant phenomenon also in condensed
matter physics, as theoretically proposed in the late seventies [223, 224]
and directly verified in the last decade in a number of experiments with
inelastic neutron scattering or other spectroscopic probes [225–231]. To
date, confinement has been found and studied in great details in many
one-dimensional and quasi-one-dimensional magnetic insulators, with Ising-
like [223,224,232–234] or Heisenberg-like [235–241] interactions. In all these
cases, the spin-1/2 excitations (kinks or spinons) not only form bound
states with integer spin, as a consequence of an (even weak) attractive
interaction, but they cannot be observed as free particles at low energy,
exactly like quarks in high energy physics. Following the pioneering work
by McCoy and Wu [223], confinement has been studied with various an-
alytical and numerical methods in the ground state of these many-body
systems as well as in thermal equilibrium [167, 208, 233, 242–254]. In very
recent times, it has been proposed that many quantitative aspects of con-
finement (such as the masses of the bound states) can be accessed very
effectively following the non-equilibrium real time dynamics [209], a pro-
tocol which is routinely exploited in ultracold atoms and trapped ions ex-
periments. This observation started an intensive theoretical activity on the
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subject [6,198,207,210,255–261] that lead to direct experimental implemen-
tation of a quantum simulator with trapped ions [262], as well as several
new theoretical and experimental ideas to understand lattice gauge theories
in real time [4, 166,187,192,263,264].

This chapter is structrured as follows: in Section 8.1 we introduce the
concept of confinement and we illustrate the general physical mechanism
(for a thorough discussion of the topic see, e.g., [265]); in Section 8.2 we
discuss the specific case of one-dimensional (and quasi-one-dimensional) fer-
romagnets and antiferromagnets; in Section 8.3 we demonstrate the effect
of confinement on the non-equilibrium dynamics of quantum many-body
systems; finally in Section 8.4 we discuss possible future research directions.

8.1 What is confinement?
The idea of confinement was first introduced in the context of quantum
chromodynamics (QCD) as the phenomenon that traps quarks into com-
posite particles (called mesons and baryons): as a consequence, free quarks
cannot be observed in nature. Quarks are held together by gluons (i.e., the
quanta of the non-Abelian gauge field of QCD), which induce an effective in-
teraction between them. At short distances, this interaction between quarks
resembles the well-known Coulomb forces of quantum electrodynamics, with
a potential V (r) ∼ 1/r. At large distances, instead, the interaction between
quarks is qualitatively different from Coulomb-like forces. The interaction
potential has the form

V (r) = σr, (8.1)

where the constant σ is called string tension, to recall the presence of a
string of gluon field lines that stick the quarks together. While the strength
of Coulomb-like interactions decreases with distance, the linear potential in
Eq. (8.1) grows indefinitely. To understand the difference between the two
cases, it is useful to consider the quantum-mechanical problem of two parti-
cles interacting with a potential V (r), and solve the Schroedinger equation
for the relative distance r (see Fig. 8.1) for the Coulomb-like and the linear
potential1.

In both cases, the lowest levels are bound states, and the corresponding
wavefunctions decay exponentially with r. However, in the first case, if
we give the system sufficient energy, such that it exceeds the threshold
E = 0, it is excited to a delocalized state: for example, an hydrogen atom
can be ionized, and the opposite charges (the electron and the proton) can
be separated by an arbitrary distance. Electrons and protons are found in

1Note that this argument is not only valid for the case of one spatial dimension, but
it also works in three dimensions: in the latter case, the effective potential contains an
additional term L2/2µr2, where L is angular momentum and µ is the reduced mass; this
term does not affect the properties of the potential at large r, so the conclusions are still
valid.
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Figure 8.1: Left: Coulomb-like potential. At low energies, two particles
form a bound state; at high energies, they are free. Right: linear potential.
The two particles are always confined in bound states.

neutral atoms but they also exist as free particles. In the second case, we can
never separate the two charged particles, irrespective of how much energy
we inject in the system. All the eigenstates are neutral bound states and
the spectrum is discrete. As we will see in the following, these bound states
of the simple two-body problem correspond to excitations in a many-body
system, called mesons. In contrast with the two-body case, in a many-
body system the spectrum is discrete only up to the energy threshold of
two-meson states. Nevertheless, all these states are neutral: the property
that no charged particles can be isolated remains valid in the many-body
context, and is the hallmark of confinement.

8.1.1 Confinement and gauge flux lines

We have so far explained why a linear effective potential between charges
leads to confinement, i.e., to the fact that no isolated charged particles can
exist. We now want to show how a confining (or non-confining) potential
can emerge in a quantum field theory or in a many-body system: To do so,
we need to use the language of gauge theories.

Gauge fields are the mediators of interaction between charges: this
means that the effective potential that we studied in the previous para-
graph can be equivalently seen as the energy of the gauge field. A simple
example of this idea is well-known in classical electrodynamics, where the
energy of a charge distribution can be equally expressed solely as the energy
U ∝

∫
drE2(r) of the electric field. With this equivalence, we can then un-

derstand the presence of a confining linear potential as the emergence of an
electric flux tube (or string) between two charged particles: imagine that,
for some reason, the electric field assumes a finite value in a cylinder that
extends between the two charges, and that both this value and the radius of
the cylinder do not depend on the distance r between the charges. Then, the
resulting electrostatic energy is proportional to the volume of the cylinder
and grows linearly in r, leading to confinement (see Fig. 8.2).
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Figure 8.2: Left: in electromagnetism, the field generated by two charges
spreads everywhere in space. Right: for a quark-antiquark pair, the field
is concentrated around the line that connects the two (flux tube). Picture
from [266].

How the flux tubes emerge in QCD or in a many-body system is typically
a very complicated problem, that requires computationally-expensive Monte
Carlo simulations on lattice models. An illustration of flux tubes emerging
in simulations of this type is shown in Fig. 8.3.

Figure 8.3: Left: simulation of the separation of a meson. As the quark and
the antiquark are separated, a flux tube extends between them. Right: a
simulation of the separation of a baryon. Credits: Derek Leinweber, Centre
for the Subatomic Structure of Matter (CSSM) and Department of Physics,
University of Adelaide, 5005 Australia.

8.1.2 String breaking

We have so far shown that, because of the emergence of flux tubes, in a
confined theory the interaction energy between two charges grows indefi-
nitely with their distance. However, this picture is not completely correct.
Imagine having two static charges that are kept at a distance r and letting
your system reach equilibrium in this configuration. When the distance r
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Figure 8.4: Left: String breaking by quark-antiquark pair production.
Right: effective potential between two quarks.

is large enough, it may be energetically more convenient to create two new
particles that "break" the flux tube and screen the interaction potential.
This phenomenon, known as string breaking takes place when the energy σr
associated with the flux tube exceeds the energy E = 2m needed to create
two particles (of mass m) out of the vacuum. Therefore, the effective two-
body potential V (r) that grows linearly for intermediate r, saturates for
large r to a value V ∼ 2m. The qualitative dependence of the interaction
potential between two quarks at distance r is shown in Fig. 8.4

8.2 Confinement in one-dimensional ferromag-
nets and antiferromagnets

In condensed matter physics, many examples of confinement have recently
been investigated. The equivalent of quarks can be represented by various
types of charged excitations (where "charged" means that they transform
non-trivially under a certain symmetry). For example, confined states of
spinons have been studied in one-dimensional (or quasi-one-dimensional)
ferromagnets or antiferromagnets [223, 228, 232, 234, 234, 238, 239, 242, 243,
249, 251, 252, 263, 267–271]; they have been detected in neutron scattering
experiments on CaCu2O3 and on CoNb2O6 [226,228]. Confinement of kinks
has also been observed in long-range interacting spin chains, simulated with
trapped ions [262].

To illustrate how confinement emerges in quantum spin chains, we con-
sider the quantum Ising chain in transverse and longitudinal field, which
represents the simplest example. The concepts that we are going to explain
here can be easily generalized to other one-dimensional ferromagnets and
anti-ferromagnets subject to an external magnetic field.
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8.2.1 The quantum Ising chain in transverse and lon-
gitudinal field

We consider a chain of L spin-1/2 variables, described by the following
Hamiltonian

H = −J
L−1∑
j=1

σzjσ
z
j+1 − h

L∑
j=1

σzj − g
L∑
j=1

σxj . (8.2)

The operators σαj are Pauli matrices at site j and the coupling J > 0 is
ferromagnetic.

Let us first focus on the case h = 0. In this case, the model has a Z2

symmetry associated with the global spin flip transformation X =
∏L

j=1 σ
x
j .

At temperature T = 0, the symmetry is spontaneously broken for |g| < J :
the system is a ferromagnet with local magnetization 〈σzj 〉 = ±M , with
M = [1 − (g/J)2]1/8. The excitations on top of the ferromagnetic ground
state can be computed by mapping the Hamiltonian to a model of free
fermions. The excitations correspond to kinks, which interpolate between
domains of opposite magnetization. The kinks can propagate freely in the
system, so they are "deconfined".

For h 6= 0, the longitudinal field introduces an effective interaction be-
tween the kinks. In analogy with flux tubes of quantum chromodynamics,
the domains that are anti-aligned with the longitudinal field acquire an en-
ergy proportional to their lengths, inducing a linear interaction between
the kinks at their edges. As proven by McCoy and Wu in a seminal pa-
per in 1978 [223], the model is confined. Kinks cannot propagate freely
and are bound into mesons. While kinks are topological excitations with a
non-zero Z2 charge, mesons are neutral: they represent the new elementary
excitations of the model.

8.2.2 The quantum Ising chain as a lattice gauge the-
ory

As anticipated in Section 8.1.1, gauge theories are a useful framework for
studying confinement. To illustrate this with a concrete example, we now
show that the Ising chain introduced in Eq. 8.2 can be mapped exactly to a
Z2 lattice gauge theory [6, 272, 273]. This mapping allows to make explicit
the identification of kinks with particles and of spins with gauge fields that
mediate the interactions between them. To this end, fictitious fermionic
matter degrees of freedom are introduced on the sites of the dual chain (i.e.,
on the bonds of the original chain [140, 274]): they represent Z2-charged
particles. We therefore define the fermionic creation operators c†j, and the
following Hamiltonian [6, 275]

HZ2 = m
∑
j

c†jcj +
τ

2

∑
j

σzj+1/2 +w
∑
j

(
c†j− cj

)
σxj+1/2

(
cj+1 + c†j+1

)
, (8.3)
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where m is the fermion mass, τ is the string tension of the gauge field,
and w is the interaction strength of fermions, mediated by gauge fields
(the corresponding terms describe hopping and pair creation/annihilation
of fermions). This Hamiltonian has a local Z2 symmetry generated by the
operators

Gj = σzj−1/2σ
z
j+1/2(1− 2nj), [HZ2 , Gj] = 0. (8.4)

The Gauss law Gj ≡ 1 is the local constraint that restricts the Hilbert
space to the "neutral" or "gauge invariant" sector: the allowed configura-
tions are those in which fermions sit on all the bonds where a kink is present
in the gauge field configuration.

All matrix elements of the Hamiltonian (8.3) between two classical con-
figurations coincide with the corresponding matrix elements of the quantum
Ising chain [Eq. (8.2)] in the σz-basis, upon identifying m = 2J , τ = −2h,
w = −g, and up to an overall energy shift (see Appendix C.1.1 for details).
Within this LGT picture, the longitudinal field h in the quantum Ising
chain plays the role of the electrostatic string tension τ , leading to particle
confinement.

8.3 Non-equilibrium dynamics
While in the previous sections we introduced confinement as a static prop-
erty, related to the effective interaction between charges and to the nature
of the excitations of a system, we here want to show how it manifests itself
in the real-time dynamics after a quantum quench (Fig. 8.5).

Following Ref. [209], we will focus on the Ising chain introduced in Sec-
tion 8.2.1. The system is prepared in the ground state of the Hamiltonian
Eq. (8.2); at t = 0 the parameters h and g are suddenly changed and the
time evolution is monitored from that moment. We first consider the case
h = 0 and |g| < J . The quench in g corresponds to the creation of pairs
of kinks with opposite momenta. The kinks are generated at the same
position, and then propagate freely in opposite directions. This fact can
be observed in the time evolution of the two point connected correlators
〈σz1σz1+m〉c (Fig. 8.6, top left panel): the spreading of the correlators in
time follows a light-cone shape, indicating that kinks propagate freely, with
velocities determined by their dispersion relation.

In the presence of a small longitudinal field h 6= 0, the light cone is
seen only at very short times: then, the kinks are deviated by their linear
interaction and the two point correlators seem to extend only up to a finite
distance2. This effect signals the confinement of the pairs of kinks into
mesons: the residual oscillations in time of the correlators can be interpreted

2A residual light cone is seen when zooming to smaller values of the correlators. This
light cone is caused by pairs of mesons that propagate with opposite momenta. For small
quenches, however, this effect is very weak. Note that, since |g| < J , correlations extend
up to a distance that is smaller than the typical length for string breaking.
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Figure 8.5: Illustration of the real-time dynamic following a quantum
quench: a pair of domain walls created in the quench bounce back and
forth because of confining interactions. Figure from [209].

as oscillations of the relative distance r between the kinks composing the
mesons (Bloch oscillations). The suppression of the spreading of correlators
signals that the eventual relaxation to thermal equilibrium would require
extremely long time. This fact is also observed in the time evolution of the
bipartite entanglement entropy [209]: the growth is linear for h = 0, while
for h 6= 0 it is significantly reduced and seems to saturate, with residual
fluctuations due to the aforementioned Bloch oscillations.

8.4 Outlook
The non-equilibrium dynamics of systems with confinement is a topic that
has recently witnessed growing interest from different communities and of-
fers numerous prospects for future investigations.

On one side, many questions about the role of confinement in thermal-
ization are still open. In Chapter 9 we estimate two lower bounds for the
time scales involved in the dynamics. Does confinement inhibit the pro-
cess which leads to thermal equilibrium, or do confined systems ultimately
thermalize, but only after these very long times? One of the scenarios that
has been proposed is that confinement in the quantum Ising model leads
to nonthermal eigenstates, in both continuum and lattice theories, in one
and two dimensions [210,255]. The authors of these works claim that single
meson states persist above the two-meson threshold, that they do not hy-
bridize with the continuous spectrum and are analogous to quantum scars.
The possibility of having scars induced by confinement is a fascinating one;
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Figure 8.6: Connected correlators 〈σz1σz1+m〉c after a quench from g =
h = 0 to the ferromagnetic phase with g = 0.25 and with varying
h = 0, 0.025, 0.05, 0.1, 0.2, 0.4 (hx corresponds to h in our notation). When
h is increased, the light cone disappears and the spreading of correlations
is suppressed. Figure from [209].

further studies on different confined models could help shed some light on
this question.

On another side, an increasing effort is being put into studying confine-
ment with quantum simulators. Since quantum simulators are particularly
advantageous for studying real-time evolution, the dynamical properties of
confinement make it an ideal physical phenomenon to investigate with these
tools. Various experimental platforms can naturally support confined dy-
namics and can thus be used for quantum-simulation purposes. Trapped
ions, for example, are one of the most suitable: there, confinement is in-
trinsically generated by long-range interactions, even in the absence of a
longitudinal field [256,262]. Another convenient platform is represented by
Rydberg atoms, as demonstrated in Section 6.3.5.

Quantum simulators may be used to study the properties of mesons and
baryons. For example, the masses of mesons can be measured with good
accuracy from the power spectrum of one-point functions, with the so-called
"quench spectroscopy" [209]. Moreover, the collisions of these composite
objects are particularly interesting since they can lead to the generation of
new particles via inelastic processes [7, 276, 277]. In Chapter 10 we show
how scattering amplitudes can be computed in the quantum Ising chain
and how they can be measured in general with a quantum simulator. Other
non-equilibrium phenomena amenable to quantum simulation are related
to the string-breaking effect introduced in Section 8.1.2 and include, for
example, the decay of a metastable "false vacuum" state (see Chapter 11),
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a phenomenon of primary interest in physical cosmology.
Notably, confinement is not the only physical phenomenon that leads to

anomalous dynamics in lattice gauge theories: as discussed in Chapter 13,
another mechanism, associated with the presence of static charges in the
system, has been shown to induce MBL-like dynamics [10, 11,208].

Finally, an important perspective for future research is represented by
confinement and non-equilibrium dynamics in higher-dimensional systems.
As shown in Chapter 12, quasi-one-dimensional systems already support a
richer variety of confined excitations. For truly two-dimensional and three-
dimensional systems, however, very little is known so far: on one side, exten-
sive numerical simulations become prohibitive in more than one dimension;
on the other side, the emergence of confinement in two or three dimensions
is much less intuitive than in one dimension, and theoretical advances are
significantly more difficult. In this context, quantum simulators could play
a key role in helping us understand the emergence of confinement in higher
dimensions and the real-time dynamics associated with it.



Chapter 9

Quasilocalized dynamics from
confinement of quantum
excitations

Several recent numerical studies of one-dimensional lattice gauge theories
and quantum spin chains have found that confinement may give rise to
anomalous real-time dynamics [4, 167, 187, 188, 190, 192, 193, 198, 207, 209,
211,213,254,256,264,278–281] and spectral properties [210,255,261] at finite
energy density above the ground state, in contrast with the generically ex-
pected thermalization [14,19–21,282–285]. The signatures of these phenom-
ena include extraordinary long-lived coherent oscillations of local observ-
ables [190,193,209,256,278–280,286], suppression of the light-cone spreading
of quantum correlations [209,256] and of the entanglement growth [192,209,
256], and persistent inhomogeneities [4,167,188,190,192,207,211,213,281].
While these observations suggest that confinement is related to a suppres-
sion of thermalization, the nature of this connection has not yet been clar-
ified.

In this work we investigate the relationship between the aforementioned
dynamical effects of confinement and prototypical aspects of the localization
of interacting particles [27–30,287–303]. We demonstrate that confinement
causes quasilocalized dynamics of states with dilute excitations. In fact, the
route towards thermalization involves the decay of these states into entropi-
cally favored many-particle states: the energy stored in confining strings has
to be converted into mass via the creation of new pairs of excitations from
the vacuum. We show that these processes can become dramatically slow,
in close analogy with the Schwinger effect, and with the suppressed decay
of false vacua in quantum electrodynamics [304]. In this regime, fast spatial
propagation of excitations is prevented by their Stark localization [305] in
the mutual confining potentials. Remarkably, these two phenomenona sta-
bilize nonthermal behavior and low entanglement for extremely long times
in a thermodynamically relevant portion of the many-body Hilbert space.
This fact is illustrated in Fig. 9.1 for the case of the quantum Ising chain in
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Figure 9.1: Effects of confinement: nonequilibrium evolution of the mag-
netization profile [panels (a) and (b)] and of entanglement (c) in a quantum
Ising chain. L = 100 spins are initialized in a random product state with
a density p = 0.1 of longitudinal domain-walls. The quantum evolution
is simulated via the time-evolving block-decimation algorithm on matrix-
product states with maximum bond dimension D=300 [306]. The dynamics
are generated by H in Eq. (9.1) with J = 5g, and (a) h = 0, (b) h = 0.75g.
Panel (c): dynamics of the von Neumann entanglement entropy Sj(t) for
different position j of the bipartition cut, averaged over 500 initial states.
Sj(t) grows linearly in the deconfined limit (a), ξloc =∞ and logarithmically
in the presence of confinement (b), ξloc = 4/3, as also emphasized by the
inset. These qualitative features are unaltered upon varying the localization
length ξloc while keeping p . 1/(2ξloc) and J � |g|, |h|.
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transverse and longitudinal field, introduced in Section 8.2.1, whose Hamil-
tonian we report here for convenience:

H = −J
L−1∑
j=1

σzjσ
z
j+1 − h

L∑
j=1

σzj − g
L∑
j=1

σxj , (9.1)

In the absence of confinement (h = 0, Fig. 9.1 (a)), domain walls freely
propagate, smoothening out all spatial inhomogeneities; in the presence
of a confining potential (h 6= 0, Fig. 9.1 (b)), bound states of closeby
domain walls diffuse (upper half of the plot), while isolated domain walls are
Stark-localized by linear confining potentials, and perform coherent Bloch
oscillations of spatial amplitude ξloc = g/h (lower half of the plot). In the
following, we aim at characterizing this behaviour in a quantitative way and
connecting it with the dynamics of the von Neumann entanglement entropy
(Fig. 9.1 (c,d)).

9.1 Exponential suppression of string breaking
To illustrate the dynamics associated with string breaking in the quantum
Ising chain, it is useful to exploit the exact mapping to a Z2 lattice gauge
theory explained in Section 8.2.2 (see Fig. 9.2). We report here the Hamil-
tonian:

HZ2 = m
∑
j

c†jcj +
τ

2

∑
j

σzj+1/2 +w
∑
j

(
c†j− cj

)
σxj+1/2

(
cj+1 + c†j+1

)
, (9.2)

where m = 2J is the fermion mass, τ = −2h is the string tension of the
gauge field, and w = −g is the interaction strength of fermions, mediated by
gauge fields. Because of Gauss’ law (Gx = σzj−1/2σ

z
j+1/2(1− 2nj) = 1), when

two particles in the vacuum are adiabatically separated at a distance d, a
gauge-field string has to extend between them. The energy E(d) ∼ τd asso-
ciated with the string grows proportionally to d and eventually overcomes
the threshold Emin ∼ 2m for the creation of a new pair.

We argue that the dynamical breaking of strings after a quench of the
interactions takes anomalously long times for large values of the mass. The
mechanism for this suppression may be essentially understood as a tunneling
process across a high energy barrier. In fact, the decay process which con-
verts the large amount of potential energy stored in long gauge-field strings
into the energy of additional particle-antiparticle pairs is energetically al-
lowed and entropically favorable, because a string state is very atypical
compared to many-particle states with the same total energy. Accordingly,
thermalization requires string breaking. However, due to the energy conser-
vation, the created particle and antiparticle of a pair must be separated at
such a distance d that the energy τd they subtract from the broken string
portion equals their mass, i.e., τd ∼ 2m. If the string tension τ is small
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lattice gauge theoryZ2

“Schwinger effect”
energy

2m∼
2m/τ∼

“Bloch oscillations”

time

Quantum Ising chain

Figure 9.2: Mapping between a quantum spin chain and a LGT:
Cartoon of the mapping of the quantum Ising chain in Eq. (9.1) onto the
1 + 1-dimensional Z2 lattice gauge theory in Eq. (9.2) (top), and of the
two key mechanisms which render the resulting dynamics slow: suppression
of false vacuum decay for weak coupling ("Schwinger effect", bottom left),
and Stark-localization of particles in a linear potential ("Bloch oscillations",
bottom right).

compared to the particle mass m, local pair creation is not possible, vir-
tual particles have to tunnel across a distance d ∼ 2m/τ � 1 in order for
the string to decay — see the bottom left panel of Fig. 9.2 for an illus-
tration (here the lattice spacing is the unit length). This occurs through
increasingly high-order processes in the interactions, and hence the decay is
extremely slow.

9.1.1 Perturbative construction

The above qualitative picture is made quantitative by constructing the ef-
fective Hamiltonian in perturbation theory in 1/m. We formally split the
Hamiltonian into the mass term (which corresponds to H0 = −J∑j σ

z
jσ

z
j+1

for the quantum Ising chain), possessing highly-degenerate blocks, and the
rest V , which involves gauge field and interactions. H0 defines sectors of the
Hilbert space labelled by the number of particles and well-separated in en-
ergy. V may contain block-diagonal matrix elements H1, describing particle
energy and motion, and block-off-diagonal ones R1 = V −H1, corresponding
to particle pair creation or annihilation. The latter processes are eliminated
through a unitary transformation eS1 . For the quantum Ising chain, the
resulting effective Hamiltonian is

H
(1)
eff = −J

∑
j

σzjσ
z
j+1 − h

∑
j

σzj − g
∑
j

(P ↑j−1σ
x
j P
↓
j+1 + P ↓j−1σ

x
j P
↑
j+1), (9.3)
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where P ↑j (P ↓j ) projects onto the "up" ("down") state of the j-th spin along
z.

This standard procedure [307–309] (often termed Schrieffer-Wolff trans-
formation) can be carried out to any arbitrary order n in perturbation
theory: One introduces higher-order terms S2, S3, . . . in the generator of
the unitary transformation eS≤n , with S≤n = −S†≤n = S1 + S2 + · · ·+ Sn.
These terms are determined order by order in such a way that the trans-
formed Hamiltonian commutes with H0 up to the n + 1-th power of the
perturbation strength, i.e.,

H ′ = eS≤nHe−S≤n = H
(n)
eff + V>n, H

(n)
eff ≡ H0 +H1 + · · ·+Hn, (9.4)

with [Hj, H0] = 0 (see Appendix C.2 for details). The effective Hamilto-
nian H(n)

eff preserves the block-diagonal structure of H0 and accounts for all
transitions within each sector of H0 occurring through up to n intermedi-
ate transitions involving states in different blocks (virtual particle pairs).
The perturbative series generated by this transformation are generally di-
vergent at finite energy density, pointing to an asymptotic hybridization
of the various blocks and hence thermalization. However, by adapting the
rigorous theory in Ref. [310], one finds that by truncating the series at an
“optimal order” n∗ that scales linearly with the particle mass m, the rest
V>n∗ can be made exponentially small in m. Consequently, the effect of the
latter can be neglected for exponentially long times. Denoting H(n∗)

eff ≡ Heff

and S≤n∗ ≡ S, the nonequilibrium evolution of the system is accurately
described by

|Ψ(t)〉 ' e−S e−itHeff eS |Ψ(t = 0)〉 . (9.5)

9.1.2 Time scale

Within this transformed picture, the number of particles is exactly con-
served by Heff, and hence it is approximately conserved by H in the original
picture at least for exponentially long times. This implies that the bulk of a
long gauge string is stable against pair creation, since the "string-breaking"
(or "vacuum-decay") time scale is exponentially long in m. In Appendix
C we provide the details of the construction of Heff in general and for the
specific case of the quantum Ising chain. For that model, for J � |g|, |h|
the estimates adapted from Refs. [310–313] lead to the quasiconservation of
the spatial density of domain-walls at times t� Tsb, where

Tsb ≥ |g|−1 exp
(
const× J/

√
h2 + g2

)
, (9.6)

and the constant is independent of the parameters (see Appendix C.2).
This bulk stability persists in the continuum limit [232], and, within the

mapping to a LGT, it is reminiscent of the Schwinger effect in quantum
electrodynamics [304], in that the decay rate Γ(E) per unit volume of a
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false vacuum in the presence of a background electric field E into particle
pairs, is exponentially small in the ratio between the electron mass m and
the electrostatic energy |eE|×1/m contained within a Compton length, i.e.,
Γ(E) ∝ (eE)2 exp

(
− πm2

|eE|

)
, where e is the electron charge and ~ = c = 1

[304,314].

9.2 Prethermalization and Stark localization

The nonequilibrium dynamics starting from a generic initial state may be
expected to undergo prethermalization to the Gibbs ensemble e−βHeff/Z de-
fined by the effective (nonintegrable) Hamiltonian Heff discussed above, at
the inverse temperature β uniquely determined by the energy density of the
initial state [205,310]. Contrarily to this expectation, we demonstrate that
the combination of confinement and lattice effects leads to a dramatic slow-
down of prethermalization in a thermodynamically significant portion of the
many-body Hilbert space. This phenomenon is due to the Stark localization
of particles [305] in their mutual linear confining potential, which suppresses
spatial propagation and energy transport for arbitrary interaction strength
g.

We consider below many-particles states, with a diluteness parameter
p, i.e., with an average separation of 1/p lattice sites between consecutive
particles. To disentangle the effect of having a finite particle mass — lead-
ing to exponentially slow pair creation — from the intrinsic slow dynamics
of Heff, we analyze the nonequilibrium dynamics generated by the latter
truncated at the lowest order. The effective picture consists of a system of
hopping hardcore particles in a constant electric field, subject to interac-
tions. Higher-order terms in Heff do not alter the physics qualitatively, as
they just renormalize the hopping amplitudes with small longer-range terms
(see Appendix C.2).

9.2.1 Two-body effective model and delocalization time

In the extremely dilute limit p � 1 the system consists of isolated parti-
cles moving in a linear potential, a so-called Wannier-Stark ladder. This
problem can be solved exactly [315]: eigenstates are product states of lo-
calized orbitals with equispaced energy levels En ∝ n. For the Z2 LGT
in Eq. (9.2), En = τn and the localized wavefunction centered around the
site n has the form Jn−j(2w/τ), where Jν is the Bessel function of order
ν. The tails of this localized orbitals decay faster than exponentially for
|n− j| � g/h = 2w/τ ≡ ξloc. If the distance between consecutive particles
is much larger than ξloc, transport and thermalization are suppressed, and
particles perform coherent (Bloch) oscillations around their initial position,
with spatial amplitude ξloc and temporal period π/h [207].
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Delocalization gradually occurs as ` = 1/p is made comparable with
twice the localization length 2ξloc. To understand this phenomenon and the
associated time scales, we consider an isolated string with a particle at site
j1 and another particle at site j2 > j1.

The effective Hamiltonian in the two-particle sector reads

H2-body =
∑
j1<j2

τ(j2 − j1) |j1, j2〉 〈j1, j2|

+ w
(
|j1 + 1, j2〉 〈j1, j2|+ |j1, j2 + 1〉 〈j1, j2|+ H.c.

)
.

This Hamiltonian is the lowest-order effective model in the limit of infinite
particle mass m1.

The meson wavefunctions and dispersion relations can be solved ex-
plicitly [6, 316] by switching to the center-of-mass and relative variables,
s = j1 + j2, r = j2 − j1 > 0. Substituting the ansatz

|ψk〉 =
∑
j1<j2

ψk(j1 + j2, j2 − j1) |j1, j2〉 ψk(s, r) = eiksφk(r) (9.7)

into the Schroedinger equation, we get a Wannier-Stark equation for the
reduced wavefunction φk(r),

w̃k
[
φk(r + 1) + φk(r − 1)

]
+ τr φk(r) = E φk(r) (9.8)

with an effective hopping w̃k = 2w cos k and, crucially, the boundary con-
dition φk(0) ≡ 0 due to Pauli exclusion. This equation is equivalent to the
recursion relation of the Bessel functions:

φk(r) = Jr−E/τ (2w̃k/τ). (9.9)

The boundary condition J−E/τ (2w̃k/τ) = 0 yields the quantization rule

E = E`(k) = τ ν`(2w̃k/τ) ≡ −τ × {`-th zero of x 7→ Jx(2w̃k/τ)} (9.10)

for ` = 1, 2, . . . . Therefore, the solution consists of a discrete sequence of
two-particle bound states ("mesons") labelled by ` = 1, 2, . . . with disper-
sion relations E`(k). The meson wavefunctions are thus

ψ`,k(s, r) = eiksJr−ν`(2w̃k/τ). (9.11)
1A large but finite fermion mass m only produces a perturbative dressing of the vac-

uum and of mesons, which can be explicitly computed order by order via the Schrieffer-
Wolff transformation in Section 9.1.1 and in Appendix C.2 (for instance, the first cor-
rection involves next-nearest-neighbor fermion hopping with amplitude w2/2m). Using
this approach, the large-m analysis of meson dynamics can be systematically modified
to achieve the desired accuracy for large but finite m. Thus, for simplicity, here we will
focus on the limit of large fermion mass; for more details on finite-m effects, see also C.6.



114 CHAPTER 9. QUASILOCALIZATION FROM CONFINEMENT

The wavefunctions with `� 2ξloc are localized far away from the bound-
ary r = 0: they are hardly affected by it, and hence their energy E` = τ` is
independent of k. This implies that spatially extended bound states have
asymptotically flat bands: the two particles perform uncorrelated Bloch os-
cillations at the edges of the string connecting them, while the quantum
diffusion of their center of mass is suppressed. On the contrary, for bound
states with an extension comparable to that of the Bloch oscillations, the
presence of the boundary bends the dispersion relation E`(k). The correc-
tion δE`(k) in the dilute regime ` & 2ξloc is found to be approximately (see
Appendix C.3)

δE`(k) ' −2|w| cos kJ` (2ξloc cos k) J`−1 (2ξloc cos k) . (9.12)

From the spreading velocities vmax
` = Maxk|∂kE`(k)| of bound states of quan-

tum number `, we can then estimate the delocalization time scale Tdloc(`, ξloc).
For large ` & ξ2

loc, one has

Tdloc(`, ξloc) ∼ |w|−1 (`!)2`−3/2 ξ−2`+1
loc . (9.13)

As a result of the rapid increasing of Tdloc with `, pairs of distant parti-
cles take an extremely long time to delocalize. The typical delocalization
time scale is thus state-dependent via the diluteness parameter p (unlike
the string-breaking time scale Tsb in Eq. (9.6)). We stress that the above
equations are nonperturbative in 2w/τ = g/h = ξloc and hence valid for
arbitrarily large values of this ratio.

9.3 Slow entanglement growth
The scenario outlined above sheds light on the effects of confinement on the
nonequilibrium evolution of entanglement. While the entanglement entropy
S(t) is expected to increase linearly in time in generic quantum many-body
systems which dynamically relax to equilibrium [317–323], the quasilocaliza-
tion discussed above is expected to cause a severe suppression of the growth
of S(t) despite the finite energy density, in analogy with disordered and
glassy quantum systems [30, 208, 287, 288, 290, 295, 298–300, 324, 325]. This
expectation is confirmed by numerical simulations using the time-evolving-
block-decimation (TEBD) algorithm on matrix-product states [306], with
maximum bond dimension D = 300. In particular, we initialize a quantum
Ising chain of L = 100 spins in nonentangled product states with a spatial
density p of domain-walls: in Fig. 9.1 these states are drawn from a ther-
mal ensemble ρ0 = e−µH0/Z of the "unperturbed" classical Ising chain with
p = [1 − tanh(µJ)]/2. (Similar dilute states with tuneable p can be ex-
perimentally realized via the quantum Kibble-Zurek mechanism [103,326]).
The numerical results reported in Fig. 9.1 are compatible with a logarith-
mic growth of the bipartite entanglement entropy Sj(t) superimposed to
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Figure 9.3: Signatures of slow dynamics: growth of the von Neumann
entanglement entropy S(t) in the nonequilibrium dynamics of the quantum
Ising chain in Eq. (8.2), numerically simulated via the TEBD algorithm,
starting from a state with equally spaced domain-walls at a distance `;
the cartoon above the plots indicates the position of the bipartition cuts
along the chain. Left: S(t) exhibits pronounced coherent oscillations with
frequency 2h superimposed to a slow growth (the straight line is a guide
for the eye). Right: The growth of S(t) slows down upon increasing the
diluteness. Dotted lines represent the growth of S(t) in the evolution of
a single isolated string formed by the two domain-walls adjacent to the
cut. The latter can be obtained analytically (see Appendix C.3), is upper-
bounded by log ` + const, and reaches its maximum around the time Tdloc,
cf. Eq. (9.13). Parameters: ξloc = 2, L = 120.

coherent oscillations of period π/h, ascribed to Bloch oscillations. In Fig.
9.3, instead, regularly arranged initial states are considered with equispaced
domain-walls at a distance ` = 1/p and L = 120. The fast convergence of
S(t) to that generated by the effective Hamiltonian Heff upon increasing
J (Fig. 9.3, left panel) leads us to rule out the hypothesis that the slow
vacuum decay is responsible for the entanglement growth. Furthermore,
the bottom right panel of Fig. 9.3 shows that the initial growth of S(t) is
captured by the delocalization of individual strings described in Eq. (9.13)
above; however, at longer times, many-particle effects lead to a slow un-
bounded growth.

9.4 Outlook

In the framework of localization phenomena in disorder-free quantum sys-
tems [292–303, 327, 328], this work establishes the role of confinement as
a robust mechanism capable of dramatically slowing down the approach
to equilibrium [4, 198, 207–209, 256, 264, 281, 325, 329]. It is interesting to
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highlight the connection with the recently proposed "Stark many-body lo-
calization" [87, 98, 302, 303], in that the effective dynamics of the systems
considered in the present work may be viewed as that of interacting parti-
cles in a constant field. Our preliminary numerical results suggest that rare
high-density regions embedded in dilute systems do not thermalize the rest
of the system within the relevant time scales in this work; however, a com-
plete analysis of this problem and of the various stages of the dynamics [257]
calls for further investigations which we leave to future studies.

Our discussion applies to generic one-dimensional lattice models with
confined excitations, including Abelian and non-Abelian LGTs [139, 192,
330]. The extension of our work to confining theories in higher dimensions
stands as a challenging direction for future work, inasmuch as their real-time
dynamics has hardly been explored in the framework of nonequilibrium sta-
tistical mechanics.



Chapter 10

Scattering of mesons

A challenging problem in high-energy physics is simulating collisions of
complex composite particles. In quantum chromodynamics (QCD), a first-
principle estimation of the distribution of particles produced by hadron
scattering would facilitate the search for new physics beyond the Standard
Model; moreover, heavy-ion collisions provide fundamental information on
the deconfinement transition and on the early Universe evolution [331].
Although simulating higher-dimensional non-Abelian gauge theories rep-
resents a long-term goal, it is of great interest to understand whether quan-
tum simulators are already capable of studying the scattering of composite
particles in a strong-coupling regime, at least in simplified settings. Lower-
dimensional gauge theories [189, 332] exhibit a tractable version of particle
confinement leading to an analog of quark-antiquark bound states (mesons).
Real-time dynamics of variants of these models witnessed recent develop-
ments in both classical [192,333] and quantum [4,166,179,262] simulations,
opening the door to investigations of the simplest instances of collisions be-
tween complex structured objects arising from confinement.

In this Chapter, we demonstrate that present-day quantum simulators
allow to investigate selected meson collisions in 1 + 1-dimensional Abelian
lattice gauge theories (LGTs), as sketched in Fig. 10.1, mimicking scattering
experiments with particle accelerators. Quantum simulators offer unprece-
dented access to full real-time resolution of a complex collision event and
to the quantum correlations thereby generated. Here, we particularly focus
on the production of new mesonic species, i.e., inelastic events redistribut-
ing internal and kinetic energies of mesons emerging from the collision.
We propose protocols to experimentally observe this with current facili-
ties, and provide a benchmark theoretical study of scattering amplitudes.
While we consider a controlled regime where exact numerical simulations
can be pushed and compared with analytical results, quantum simulators
may explore conditions inaccessible to traditional methods, including the
continuum limit of quantum field theories.

The Chapter is organized as follows. In Sec. 10.1, we introduce the
Z2-LGT analyzed throughout, and discuss particle confinement and the re-
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Figure 10.1: Sketch of a scattering event: The collision of two incoming
mesons with internal quantum numbers `1, `2 generates a superposition of
several possible outcomes, labelled by the quantum numbers of outgoing
mesons.

sulting mesonic spectra and wavefunctions in the regime of large particle
mass. In Sec. 10.2, we present a theoretical study of meson-meson scatter-
ing amplitudes, based on an exact solution of the Schrödinger equation. We
discuss elastic and inelastic processes, and benchmark the results against
numerical simulations. Finally, in Sec. 10.3, we propose concrete protocols
to prepare, simulate and observe meson scattering with present-day quan-
tum simulators (e.g., Rydberg-atom arrays). Appendix C contains various
additional details on the discussion and computations in this Chapter: in
Section C.4 we consider the effective model in the 4-particle sectors and
we describe a method to construct the solutions of the scattering problem
in the limit of large fermion mass; in Section C.5 we derive the analytic
expression of the meson current, we discuss its physical meaning and we
prove the associated continuity equation; in Section C.6 we summarize and
discuss the effects of having a finite fermion mass.

10.1 Confinement and mesons
In this work we will be concerned with (1 + 1)-dimensional models with
confinement of the type discussed in Section 8.2. For the sake of definiteness,
we will focus on the Z2-LGT in Eq. (8.3). For convenience, we report here
the Hamiltonian and we summarize the main properties of the model:

H = m
∑
j

c†jcj +
τ

2

∑
j

σzj+1/2 +w
∑
j

(
c†j − cj

)
σxj+1/2

(
cj+1 + c†j+1

)
. (10.1)

In this equation, c†j and cj denote creation and annihilation operators of
spinless fermions of mass m > 0 on the sites j ∈ Z of a one-dimensional
lattice, and σx,y,zb denote spin-1/2 operators (Pauli matrices) acting on the
bonds b ∈ Z + 1/2 of the lattice, representing a gauge field with string
tension τ . Interactions, with coupling strength w, are such that all the
local operators Gj = σzj−1/2 σ

z
j+1/2(1−2c†jcj) are conserved, i.e., [Gj, H] = 0.
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These operators satisfy G2
j ≡ 1 and thus generate local Z2 symmetries.

Here we focus on the neutral gauge sector, i.e., the subspace characterized
by Gj|ψ〉 = |ψ〉 for all j.

The LGT in Eq. (10.1) exhibits particle confinement form > 2|w|, τ 6= 0.
By gauge invariance, a string of excited gauge field extends between two
charges created out of the vacuum, inducing a confining potential V (r) ∝ r
that grows unbounded at large distances r. Thus, the excitations form a
discrete tower of neutral1 bound states (termed mesons, in analogy with
QCD), labelled by their internal quantum number ` = 1, 2, . . . and their
center-of-mass momentum k.

As shown in Section 9.2.1, in the large-m limit, mesonic spectra E`(k) and
wavefunctions ψ`,k(j1, j2) can be determined exactly by solving the reduced
two-body problem, governed by the projection of H in Eq. (10.1) onto the
two-fermion sector spanned by states {|j1 < j2〉} (labelled by the positions
of the two fermions along the chain). For definiteness, we assume τ > 0 from
now on. The exact solution [6, 316] yields the quantized mesonic spectra

E`(k) = τ ν`(2w̃k/τ) (10.2)

with ` = 1, 2, . . . , w̃k = 2w cos k, k ∈ [−π/2, π/2), and ν`(x) is the `-th (real)
zero of the map a 7→ Ja(x), where Ja(x) is the Bessel function2. The asso-
ciated mesonic wavefunctions read

ψ`,k(s, r) = eiksJr−ν`(2w̃k/τ)(2w̃k/τ). (10.3)

As an example, Fig. 10.3-(a) reports a plot of the lowest mesonic spectra
` = 1, 2, 3 for w/τ = 0.6.

10.2 Scattering amplitudes
We first provide a theoretical analysis of meson-meson scattering. We
present an exact solution of the problem in the regime of large fermion
mass m. The predictions of elastic and inelastic cross section peaks, to-
gether with our numerical simulations, provide a non-trivial benchmark for
quantum simulations. While our solution is valid for arbitrary coupling
strength w/τ and arbitrary incoming states, quantum simulations turn out
to be easiest for w/τ ≈ 1 and low mesonic quantum numbers, as discussed
below.

Armed with the mesonic spectra E`(k), we consider the scattering of two
incoming mesons with quantum numbers `1,2, approaching each other with

1Note that the Z2-charge is defined modulo 2, i.e., particle and antiparticle are the
same object, so a two-fermion bound state is neutral.

2The momenta k and k+π generate the same solution up to a phase: Since Jα(−z) =
eiπαJα(z), when k 7→ k + π the wavefunction Ψ gets multiplied by (−)seiπ(r−νn) =
e−iπνn(−)2j2 = e−iπνn , i.e., a global phase.
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definite momenta k1,2. The open elastic and inelastic scattering channels
can be found by a kinematic analysis, which consists in determining the set
of the outgoing quantum numbers {(`′1, k′1), (`′2, k

′
2)} compatible with the

incoming ones by conservation of total energy and momentum:{
E ≡ E`1(k1) + E`2(k2) = E`′1(k′1) + E`′2(k′2) ,

K ≡ k1 + k2 = k′1 + k′2 mod π.
(10.4)

For all choices of incoming states, there always exist two elastic solutions,
called transmitted and reflected , having (`′1, `

′
2) = (`2, `1) and (`1, `2) re-

spectively. The existence of inelastic channels, instead, is not guaranteed
for generic incoming states3.

The conservation of the number of fermions allows to derive a continuity
equation, which defines an associated mesonic current, as derived in C.5.
The conservation of the total current across the collision yields a constraint
on the scattering amplitudes of open channels. The fraction associated with
each outgoing asymptotic solution has the physical meaning of a total cross
section, as it can be identified with the probability P`′1,`′2 of detecting that
particular scattering outcome in the asymptotic future [334].

Determining the scattering amplitudes and cross sections requires solv-
ing the four-fermion Schrödinger equation. We thus consider the effective
Hamiltonian H4−body for the four-body problem, i.e., Eq. (10.1) projected
to the four-fermion subspace spanned by the states {|j1 < j2 < j3 < j4〉}.
This consists of the hopping terms of amplitude w for the four particles,
and the two diagonal confining pairwise potentials τ(j2− j1) and τ(j4− j3).
We formulate the ansatz ψ`1,q(s1, r1)ψ`2,K−q(s2, r2), where r1,2, s1,2 are the
relative distance and the center-of-mass position for the two mesons, the
single-meson wavefunctions ψ are defined as in Eq. (10.3), but, crucially,
the momentum q ∈ C is allowed to span the complex plane. The ansatz
above represents an admissible asymptotic solution, provided q ∈ C satisfies
the complex energy condition

ν`1(2w̃q/τ) + ν`2(2w̃K−q/τ) = E/τ , (10.5)

where the total energy E and momentumK are determined by the incoming
state {(`1, k1 = qin), (`2, k2 = K − qin)}, with qin ∈ R, and ν`(w) is here a
complex zero of the analytic function z 7→ Jz(w), labelled by ` ∈ N. We
index by α ∈ N all the triplets (`α1 , `

α
2 , qα) which satisfy Eq. 10.5. For a given

incoming state, the exact solution Ψ of the scattering problem is expressed
by a linear superposition including the incoming state and all compatible

3For intermediate ratios τ/w (a condition that best suits experiments, see below),
it can be seen that inelastic channels are favoured when at least one incoming meson
is “heavy”, i.e., `2 > 1. The reason is that, for sufficiently small w/τ , the sum of the
quantum numbers `1 + `2 is conserved in the scattering. This is a consequence of the
conservation of the total energy and of the fact that E(`, k) ' τ` in this limit. The
example in Fig. 10.3 comprises an inelastic channel (`1, `2) = (1, 3)→ (`′1, `

′
2) = (2, 2).
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outgoing (i.e., with outgoing currents) and evanescent (i.e., with Im(q) < 0)
asymptotic solutions:

Ψ(s1, r1, s2, r2) = ψ`1,k1(s1, r1)ψ`2,k2(s2, r2)

+
∑
α

Aα ψ`α1 ,qα(s1, r1)ψ`α2 ,K−qα(s2, r2). (10.6)

The wavefunction Ψ solves the Schrödinger equation in the full region
j3 − j2 = (s2 − s1 − r1 − r2)/2 > 04. Due to Pauli exclusion at j2 = j3,
the equation forces the boundary condition Ψ|s2−s1−r1−r2=0 ≡ 0, which de-
termines the coefficients Aα, including the scattering amplitudes of open
channels. In fact, this condition gives rise to an infinite set of inhomoge-
neous linear equations on varying r1,2 = 1, 2, . . . for the infinitely many
unknowns A1, A2, . . . The very nature of confinement, though, provides a
natural truncation for this hierarchy: For qα ∈ R, the meson wavefunctions
are bound states, and thus fall off rapidly for large distances; for complex
solutions qα /∈ R, the normalizability condition Im(q) < 0 guarantees ex-
ponential decay. Thus, asymptotic solutions with high mesonic quantum
numbers `′ � `1,2 have tiny amplitudes, and their contribution is effectively
redundant. For more details, see C.4.

In Fig. 10.2 we plot the cross sections P`′1,`′2 computed as described above,
as a function of the incoming momenta k1, k2, for the scattering (1, 3) →
(`′1, `

′
2) when w/τ = 0.6.

The scattering amplitudes can be readily connected with the products
of real-time wavepacket collisions. We verify this by numerically computing
instances of the exact time evolution within the four-body subspace. We
consider the example in Fig. 10.1: In a system with L = 36 fermionic sites,
we prepare two Gaussian wavepackets

Ψ(s1, s2, r1, r2; t = 0) = e−[(s1−s01)2+(s2−s02)2]/8σ2

ψ`1,k01(s1, r1)ψ`2,k02(s2, r2)
(10.7)

of the meson wavefunctions in Eq. (10.3) with `1 = 1, `2 = 3, centered
around momenta k0

1 = 1.3, k0
2 = −0.4 and positions s0

1 = 24, s0
2 = 48, with

envelopes of width σ = 3
√

2 lattice sites. Time evolution from this initial
state is generated by the four-body Hamiltonian H4-body with τ = 1, w =
0.6. The final state at time tf = 50 is examined, when the wavepackets have
collided and the products of the collision have not yet reached the boundary
of the system. The energy and momentum of the incoming and outgoing
states are represented in Fig. 10.3-(a). In Fig. 10.3-(b) and (c) we plot the
joint probability distribution of the momenta k1, k2 at times t = 0 and
t = tf , respectively, obtained via the Fourier transform of Ψ(s1, s2, r1, r2; t)
with respect to the center-of-mass positions s1,2. While the initial state
shows a single density peak at (k0

1, k
0
2), the final state gives three different

4The additional conditions j2 − j1 = r1 > 0, j4 − j3 = r2 > 0 are automatically
satisfied by the ansatz.
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Figure 10.2: Probabilities of the various scattering channels (1, 3)→ (`′1, `
′
2)

as a function of the incoming momenta, for w/τ = 0.6. The blue lines
delimit the regions where the inelastic channels (2, 2), (1, 2), (2, 1) are open.
The probabilities of the channels plotted in the five panels sum up to one
with good precision [small deviations from this value are shown in Fig. C.5-
(b)].
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Figure 10.3: Mesonic wavepackets collision. (a) Spectra E`(k) of the lightest
mesons for the Z2-LGT in Eq. (10.1) with τ = 1, w = 0.6 and m� τ . The
crosses indicate the momenta and energies of the two mesons in the incoming
(red) and outgoing (purple, blue, green) states. (b-e) Probability density of
the meson momenta p(k1, k2) (b,c) and of the relative momentum p(k1−k2)
(d,e) at time t = 0 (b,d) and t = tf = 50 (c,e). The dashed contours in
panel (c) mark the regions p > 0.25.

density peaks, all lying on the line k1 + k2 = k0
1 + k0

2 mod π, demonstrating
the conservation of total momentum. The three peaks correspond to the
channels predicted from the kinematic analysis [the crosses in Fig. 10.3-(a)]:
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one for the trasmitted solution (`′1, `
′
2) = (3, 1) (with k1 = −0.4, k2 = 1.3),

one for the reflected solution (1, 3) (k1 ' −1.0, k2 ' −1.2), and one for the
inelastic solution (2, 2) (k1 ' −1.5, k2 ' −0.7). The peaks can be better re-
solved by plotting the distribution of the relative momentum k1−k2, as done
in Fig. 10.3-(e). The relative weights enclosed within the dashed contours
in Fig. 10.3-(c), P num

13 ' 0.49, P num
22 ' 0.1, P num

31 ' 0.41, are compatible
with the predicted cross sections P13 ' 0.47, P22 ' 0.12, P31 ' 0.41 5.

10.3 Quantum simulation
The analysis above outlines a tractable regime where non-trivial meson scat-
tering phenomena can be accessed and understood. We now discuss how to
observe them — and possibly extend their scope — with a quantum sim-
ulator, which minimally requires: i) designing the desired Hamiltonian dy-
namics; ii) preparing the incoming state; iii) detecting the outgoing states.

Crucially, problem i) does not involve any experimental fine-tuning: the
basic phenomena only rely on confinement, and are thus robust to any
weak perturbation to the model. As a concrete example, we will focus on
simulating the Hamiltonian in Eq. (10.1) by exploiting the equivalence with
the quantum Ising chain in a tilted magnetic field (see Section 8.2.2):

HqIc =
∑
j

−m
2
σzj−1/2σ

z
j+1/2 +

τ

2
σzj+1/2 + w σxj+1/2. (10.8)

The mapping above is extremely advantageous for quantum simulations
because it implements gauge invariance exactly, similarly to what done in
Refs. [4,166] for the Schwinger model. The dynamics governed by Eq. (10.8)
can be experimentally realized both with optical lattices [335,336] and Ry-
dberg atoms trapped in optical tweezers [46,337].

The preparation of the initial state ii) is subtle, as sharp meson wavepack-
ets involve considerable entanglement between atoms, which is precluded to
single-site optical manipulations. We present here an approach exploiting
spatially inhomogeneous fields in Eq. (10.8) to filter meson wavepackets with
sharply-defined momenta, at the price of moderately longer chains and a
limited amount of post-selection. The numerical simulation in Fig. 10.4-(a)
illustrates the core idea: when w/τ . 1, a spatially localized spin flip in
the left region mostly excites the lowest (and fastest) meson ` = 1 at all
momenta; hence, a sharp spatial variation in the fields τ(j), w(j) (inset) de-
termines a corresponding change in the shape of mesonic bands [from that
in panel (b) to that in (c)]; energy conservation (horizontal dashed lines)

5A smaller peak can be observed far from the momentum-conserving line k1 + k2 =
k01 + k02, and corresponds to the reflection of the second meson on the boundary after
scattering in the (3, 1) channel. The missing probability fraction outside the dashed
contours in Fig. 10.3-(c) is due to such effects as well as to the arbitrary cutoff used to
define the contours, and amounts to ≈ 20% here.
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Figure 10.4: Manipulation of mesonic wavepackets by inhomogeneous
fields. (a) Time evolution of the meson current density J(s, t) originat-
ing from a single spin flip (see the main text) at s/2 = (j1 + j2)/2 = 10.5, in
the inhomogeneous field profiles shown in the inset, interpolating between
τL = 0.54, wL = 0.25 (left) and τR = 1.2, wR = 0.8 (right). The slopes of
the dashed and dashed-dotted lines correspond to the maximal velocity of
the ` = 1 meson in the left and right regions, respectively. (b-c) Mesonic
spectra in the left (b) and right (c) regions. The horizontal dashed lines
indicate the range of allowed energies; the vertical lines define the range of
momenta k∗ ± δk allowed in the right region. (d) Momentum distribution
of the transmitted meson wavepacket.

selects a narrow momentum window k∗±δk (vertical dashed lines) for which
rightward propagation is allowed. Panel (d) shows that at time t = 50 the
fraction of mesonic wavepacket filtered in the right region is ≈ 20% (the rest
is reflected at the interface), and its momentum distribution has support
within the selected window. An analogous preparation can be made on the
opposite side of the chain for the desired incoming mesonic wavepacket from
the right. Similarly, inhomogeneous fields can be used to accelerate mesons.

Finally, detecting the scattering products iii) is conceptually simple, as
the mesons involved in the various possible outcomes of a collision have dif-
ferent velocities [cf. Fig. 10.1], so they can be resolved as spatially separate
wavepackets. For implementations based on Eq. (10.8), the particle density
c†jcj in Eq. (10.1) maps to the domain-wall density (1 − σzj−1/2σ

z
j+1/2)/2:

Thus, it is sufficient to measure the magnetization profile 〈σzj+1/2(tf )〉 in
the final state [46,335–337] to reconstruct the momenta of the mesons from
their positions, the quantum numbers from their extension, and the cross
sections from their probabilities. We note that the required time and length
scales estimated from the above discussion (50÷ 100 lattice sites and units
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of time) are within reach of present-day experiments: Ref. [46], for exam-
ple, demonstrated state preparation and single-qubit readout in a chain of
51 87Rb atoms governed by Ising-type dynamics close to Eq. (10.8), with
excellent coherence control over several tens of time units (2π/w).

10.4 Outlook
The analysis of the meson scattering problem and the proposed strategies
for quantum simulations presented here can be straightforwardly applied
to any one-dimensional model exhibiting confinement, including Abelian
and non-Abelian lattice gauge theories (e.g., quantum link models [4,147]).
They can also be extended to long-range interacting models, for which con-
finement effects [256, 281] have been recently experimentally investigated
with trapped ions [262]. The novel theoretical approach and exact solution
to the meson scattering problem presented here will provide the basic build-
ing block for understanding the non-equilibrium evolution in quantum spin
chains with confinement of excitations [209, 256], particularly the recently
reported lack of thermalization [6, 198,207,210,254,279–281].

Compared to real-world scattering experiments, quantum simulations
naturally give access to full real-time resolution of the dynamics of a complex
collision event, and to the pattern of quantum correlations and entanglement
at the level of partons [338, 339], for which simplified lower-dimensional
models such as the one discussed here could already provide deep insights.
In future work, we plan to investigate this, as well as to optimize schemes
for cold-atom platforms. Intriguingly, quantum simulators could allow to
explore regimes beyond our theoretical analysis such as the continuum limit
of quantum field theories [234,271,340–342]. This would represent a first
step towards the ultimate goal of simulating realistic scattering problems in
QCD such as heavy-ion collisions [193].





Chapter 11

False vacuum decay in quantum
spin chains

The possibility that our universe, as it cooled down, may have settled into
a metastable state (false vacuum) that may eventually decay was proposed
by Coleman in 1977 and has been since then one of the most popularized
ideas of physical cosmology [343–346]. The decay would happen through
bubble nucleation, i.e., the formation of bubbles of true vacuum that rapidly
expand: the probability for this process to occur is extremely small, and
studying this phenomenon is notoriously challenging due to its intrinsic
non-perturbative character.

As discussed in Chapter 5, the possibility of using tools from quan-
tum technologies for studying problems of strongly coupled quantum field
theories has recently attracted a lot of interest [128–130, 174]. On the one
hand, tensor-network approaches are promising candidates for studying non-
equilibrium properties that cannot be accessed with traditional Monte Carlo
simulations. These approaches have been successfully applied to 1 + 1 and
2 + 1 dimensional lattice gauge theories [201, 203, 333, 347–351] but they
suffer from limitations with dimensionality. Therefore, there has been an
increasing interest in the toolbox of quantum simulators [4, 152, 153, 159,
166, 168, 216]. The hope is that controllable quantum systems in table-top
experiments will help us understand difficult problems in quantum field
theory, including, for example, the decay of the false vacuum [352–356].
In this context, one-dimensional quantum spin models represent the ideal
framework for benchmarking quantum simulators: they can host parti-
cle confinement [223, 224], a property that can be observed in the non-
equilibrium dynamics after a quantum quench [209, 256, 262]; it has also
been suggested that their real-time evolution can reveal interesting phe-
nomena including collisions of particles (see Chapter 10) and bubble nucle-
ation [7, 276,277,342,357,358].

Here, we propose to study the decay of the false vacuum in quantum spin
models using simulations of real-time dynamics after a quantum quench.

127
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Figure 11.1: Illustration of bubble formation (false vacuum is in blue, true
vacuum in red). The process that leads to the resonant bubble goes through
O(˜̀) off-resonant states: a small bubble is (virtually) created and expanded
until it reaches the resonant size ˜̀. As a consequence, the matrix element
that drives the false vacuum decay is exponentially small in ˜̀∝ h−1.

11.1 False vacuum decay
To illustrate the phenomenon of false vacuum decay we consider the pro-
totypical model for confinement introduced in Section 8.2.1, the quantum
Ising chain in transverse and longitudinal field. We report here the Hamil-
tonian, where we fix J = 1:

H(g, h) = −
∑
i

(
σzi σ

z
i+1 + gσxi + hσzi

)
. (11.1)

Here σαi are Pauli operators, and the amplitudes g and h are the transverse
and longitudinal field, respectively.

We remind the reader that for h = 0 the model has a Z2 symmetry that is
spontaneously broken for |g| < 1 (ferromagnetic phase). In this phase there
are two ground states characterized by opposite magnetizations 〈σzi 〉 = ±M ,
with M = (1 − g2)1/8 [359]. The model is diagonalized with a mapping to
free fermions: the corresponding excitations in the ferromagnetic phase are
kinks that interpolate between domains with opposite magnetization [360].
The kinks can propagate freely and have dispersion relation

ω(θ) = 2
(
1− 2g cos θ + g2

)1/2
. (11.2)

For a longitudinal field h 6= 0, the Z2 symmetry is explicitly broken
and the degeneracy between the two ground states is split by an extensive
quantity ∼ 2hMN , where N is the number of sites in the chain: the state
with magnetization aligned with the external field (the true vacuum) is the
ground state of the model, while the one with opposite magnetization (the
false vacuum) is a metastable state. As explained in Section 8.2.1, the nature
of the excitations is also drastically modified: the longitudinal field induces
a linear potential between the kinks, confining them into mesons [223].
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The false vacuum is at high energy, so it can resonantly decay into the
continuum of multi-meson states. While this decay is a very complicated
process, the basic mechanism can be understood as the formation of bubbles
of true vacuum in the system. Creating a bubble of size ` requires the energy
given by the masses of the two kinks lowered by 2hM`. When this energy
becomes zero, the bubble is resonantly excited. This bubble can then further
decay through other resonant processes. However, for h sufficiently small,
the phenomenon of bubble formation is very slow. This slowness can be
understood by the following simple heuristic argument. A resonant bubble
of size ˜̀ results from the frequent creation of a small bubble (of size of
order 1) that then should expand until it reaches the resonant size ˜̀� 1
(see Fig. 11.1). This expansion is a high-order process in the perturbation
theory in h and, as a consequence, the matrix element for exciting the
resonant bubble is exponentially small in ˜̀∝ h−1.

The decay of the metastable false vacuum in the Ising chain has been
studied in Ref. [232], where the following expression of the decay rate per
site was obtained 1:

γ =
π

9
hM exp

(
− q
h

)
(11.3)

with q = |f(−i ln g)|/M and f(θ) = 2
∫ θ

0
ω(α) dα. Note that q and M

only depend on g. This rate γ can be interpreted as the number of res-
onant bubbles that are created per unit time divided by the number of
sites. In agreement with the argument explained above, the decay is non-
perturbative in the longitudinal field, with an exponential dependence on
h−1.

We note that an analogous mechanism drives the phenomenon known as
string breaking. String breaking is typically understood as the saturation of
the effective interaction between two static charges (or kinks, in this case)
at large distance, due to the screening effects of other charges: in other
words, the string that extends between the two static charges is broken
by the creation of dynamical charges. In the model we are studying, the
string corresponds to a false vacuum domain and the string breaking effect
corresponds to the formation of a bubble in the domain. The dynamics of
string breaking has been studied in this model, in other spin chains, and
lattice gauge theories [3, 6, 160, 167, 187, 188, 192, 198, 200, 211, 213, 257, 264,
278,330,361], and similar expressions for the decay rate were found.

11.2 Quench protocol and methods
The goal of this Chapter is to show that a window of Hamiltonian parame-
ters of the Ising spin chain (g, h) exists such that the false vacuum decay can
be observed through numerical simulations of the non-equilibrium dynamics

1In Ref. [232], the rate γ contains an oscillatory term g̃(h): we work here in the
approximation g̃(h) ' 1, which is justified for h sufficiently far from 1.
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after a quantum quench. The quench protocol is the following: i) we pre-
pare the system in the ferromagnetic state with all the spins in the σzi = 1
direction; ii) we evolve the system in imaginary time with the Hamiltonian
H(g,−h) using infinite volume time evolving block decimation (iTEBD)
until we achieve a good convergence to the ground state; iii) we quench
−h → h and evolve in real time. Using this protocol, we are able to pre-
pare the false vacuum of H(g, h) and study its evolution in real time using
iTEBD. The state preparation ii) is obtained using a Trotter step δt = 10−3,
and the imaginary time evolution stops when the relative change of the en-
ergy density is smaller than 10−16. The real time evolution after the quench
iii) is performed with a Trotter step δt = 10−2. The bond dimension χ is set
to 512. We checked the stability of the numerical simulations with respect
to changes in χ and δt.

We stress that in our quench protocol the false vacuum decay drives the
system toward a thermal state, that has a finite energy density with respect
to the true vacuum. Only in the limit h → 0 this state tends to the true
vacuum.

11.3 Time scales

Before embarking on the analysis of the numerical data, we should have
a clear picture of all the time scales entering in the quench dynamics of
our model. Starting from the false vacuum, the first process happening
is the creation of off-resonant bubbles. During this (relatively) short-time
transient, say up to time τr, the system remains effectively frozen in the false
vacuum until the resonant bubbles start being produced. However, here we
are not interested in this transient but only in the growth of the resonant
bubbles, because this is the process that leads to the false vacuum decay
described by the rate (11.3). For the accurate measurement of this rate, we
need a clear separation of this time scale from the successive ones. Indeed,
at very late time, when most of the false vacuum decayed, since the system
is at finite energy density, it starts thermalizing through the propagating
states that originate from the decay of the resonant bubbles: the late time
dynamics is governed by the thermal state corresponding to the energy of
the pre-quench state (only for very small h this is close to zero temperature,
i.e. the true vacuum). We denote with τD the time scale for the onset of
thermalization; unfortunately, we do not know how to estimate τD, but its
determination lies beyond the scope of this work.

We emphasize that Eq. (11.3) is expected to work well under the as-
sumption of a clean separation of time scales, i.e. τr � γ−1 � τD. For
the Hamiltonian (11.1), such separation of time scales is guaranteed in the
regime h� 1 and g not too close to 1. The requirement h� 1 is obvious,
since as h grows all the above time scales τr, γ−1, τD become of order one
and there cannot be any separation. Moreover, if g gets too close to 1, the
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masses of the kinks become very small and the assumption that the false
vacuum preferably decays into one-domain states (resonant bubbles) is no
longer justified.

In conclusion, the false vacuum decay is expected to be described by Eq.
(11.3) in the limit of small h and g not too close to 1. However, as the fields
are reduced, the time scale γ−1 soon becomes extremely large (which is the
reason why false vacuum decay is generically an elusive phenomenon, see
also [362]). Thus the main difficulty of the numerical analysis is to find a
window of the Hamiltonian parameters such that there is an optimal balance
between a reasonable separation of times scales (to have a time range in
which Eq. (11.3) describes something) and its numerical accessibility. We
found that such balance is obtained for rather small h (of the order of 10−2),
but with g relatively large g ∼ [0.7, 0.9]: a smaller g makes the decay time
(γ−1) too long and a larger h destroys completely the time-scale separation.

11.4 Results
To estimate the decay rate, we analyze the following two observables

F (t) =
〈σzi (t)〉+ 〈σzi (0)〉

2〈σzi (0)〉 , (11.4)

G(t) = 1− ||ρ(t)− ρ(0)||1, (11.5)

where ρ(t) is the two-site density matrix at time t and ||ρ(t) − ρ(0)||1 is
the trace distance between the two density matrices. Both quantities can
be easily computed in iTEBD, and satisfy F (0) = G(0) = 1, while they
vanish in the true vacuum. The time evolution of F (t) is fully encoded in
the magnetization and, consequently, is expected to decay with a rate

γF ' γ ˜̀=
f(π)

18
exp

(
− q
h

)
, (11.6)

where the size of the resonant bubble is ˜̀ = f(π)
2hMπ

(see Ref. [232]). Note
that for small h, this rate is much larger than γ, so the time scale needed
to observe the decay in our simulation is significantly reduced.

As an illustrative example for the determination of the decay rates of F
and G, in Fig. 11.2 we report their evolution at fixed g = 0.8 and different
values of h on a semi-log scale. It is evident that after a short transient,
all the data show a distinct exponential decay (linear behavior on semi-log
scale).

For all the considered values of g and h, we performed an exponential fit
O(t) = AOe

−γOt, with O = F,G. The fit is done in a time range t0 < t < t1
and then we check the stability of the fit for small variations of t0, t1.

The resulting decay rates γF,G are plotted in Fig. 11.3-a,b,c as func-
tions of h−1 again on semi-log scale. The exponential dependence on 1/h,
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Figure 11.2: False vacuum decay in the quantum Ising chain. The time
evolution of F (t) and G(t), in Eqs. (11.4) and (11.5), is shown for g = 0.8
and different values of h after the quench −h → h. The dot-dashed lines
are the exponential fits in the decay region performed to extract the decay
rates γF and γG.

expected from Eq. (11.6), is very clear in the data. We fitted these rates
with

γO = kOe
−qO/h, O = F,G. (11.7)

In Fig. 11.3-d we report the obtained coefficients qF , qG: they are com-
patible with each other and they both agree very well with the theoretical
prediction q = |f(−i ln g)|/M in the full range of g considered. The prefac-
tors kF and kG in Eq. (11.7) turn out to be different from what is predicted
by Eq. (11.6) (the data in Fig. 11.3-a,b,c are shifted compared to the dashed
line). However, this shift is not surprising at all because we know that (i)
the prefactor depends on the specific observable (e.g., compare Eqs. (11.3)
and (11.6)), (ii) we expect it to be more affected by the approximations
done in the derivation of Eq. (11.6).

11.5 XXZ ladder
To show the general validity of our analysis, we consider a second model
presenting confinement of elementary excitations with Hamiltonian [9]

H(∆||,∆⊥) =
1

2

L∑
j=1

∑
α=1,2

[
σxj,ασ

x
j+1,α + σyj,ασ

y
j+1,α + ∆||σ

z
j,ασ

z
j+1,α

]
+∆⊥

L∑
j=1

σzj,2σ
z
j,1

(11.8)

i.e., two XXZ spin-1/2 chains coupled along the longitudinal direction through
an anisotropic Ising-like interaction (this model is studied in detail in Chap-
ter 12). Compared to the Ising spin chain (11.1), the model possesses two
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Figure 11.3: Decay rates in the quantum Ising chain. In panels (a),(b),(c)
we show the decay rates γF , γG, obtained from the fits of F (t), G(t) as
in Fig. 11.2. The continuous lines are the fits of the exponential depen-
dence of the rates in 1/h. The dashed line represents the theoretical predic-
tion (11.6). From the fits the coefficients qF and qG are extrapolated and
showed against the theoretical value qth = |f(−i ln g)|/M (dashed line) in
panel (d).

interesting features. The first is that in the absence of the confining inter-
action (h and ∆⊥), the Ising spin chain becomes a free model, while the
decoupled XXZ chains constitute an interacting (integrable) spin model.
The second one is that confinement is induced by the internal interaction
between the chains, a built-in mechanism, instead of an external field. We
work in the gapped anti-ferromagnetic phase, i.e., ∆|| ∈ (1,+∞) where the
model for ∆⊥ = 0 has four degenerate antiferromagnetic ground states.
The confining potential explicitly breaks the original Z2 × Z2 symmetry to
a single Z2 [9]: the four degenerate ground states at ∆⊥ = 0 are split in
two doublets separated by an energy of the order ∆⊥L. The two lowest
states (the true vacua) are now the stable ground states, while the other
two (the false vacua) are metastable states at high energy and can decay in
the continuum of the many-body spectrum.

In analogy with the Ising model, we prepare the false vacuum as the
ground state at −∆⊥ and then we quench −∆⊥ → ∆⊥. For several values
of the interactions ∆⊥ and ∆||, we extract the decay rates γF,G for F (t), G(t)
(here F in Eq. (11.4) is built with the staggered magnetization and G in Eq.
(11.5) with the reduced density matrix of two adjacent rungs). In Fig. 11.4,
a) and b), we show the time evolution of G after the quench for two values
of ∆||. Even though we do not have analytic predictions for this ladder,
we expect that the underlying mechanism of the false vacuum decay is the
same so we can fit the decay rate with Eq. (11.7) with the replacement
h→ ∆⊥. The test of this scaling for γG is presented in Fig. 11.4 c) and d),
showing a perfect agreement. The quality of the fit for γF is very similar,
although in Fig. 11.4 we only report the final values for γF and not the data
for F (t).
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Figure 11.4: False vacuum decay for the XXZ ladder. Panels (a)
and (b): Time evolution of G in Eq. (11.5) after a quench ∆⊥ →
−∆⊥ with ∆|| = 4 (a) and ∆|| = 3 (b) with different values
of ∆⊥. In (a) ∆⊥ = 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55 while ∆⊥ =
0.12, 0.14, 0.16, 0.18, 020, 0.22, 0.24 in (b). The arrows indicate the grow-
ing direction of ∆⊥. Panels (c) and (d): decay rates extracted from the fits
in (a) and (b), respectively, on semi-logarithmic scale. The continuous lines
are fits of the decay rates performed according to Eq. (11.7)

11.6 Conclusions and outlook

In this Chapter we provided robust numerical evidence that for two one-
dimensional spin models featuring confinement of elementary excitations it
is possible to identify a range of physical parameters such that the rate of
false vacuum decay is accessible in measurable time scales. The quench
protocol that we described here is amenable to quantum simulation, for
example with trapped ions or Rydberg atoms (both can simulate a system
with confinement). For the false vacuum preparation, the imaginary time
evolution used in the numerics can be replaced by an adiabatic preparation.

We conclude by briefly discussing how the the trapped-ion quench ex-
periment of Ref. [262] (for the observation of domain wall confinement in
real time) can be adjusted to measure the false vacuum decay. In this ex-
periment, the ion dynamics is well captured by a long-range quantum Ising
model in which the Z2 symmetry is spontaneously (and not explicitly) bro-
ken. Hence, there are two degenerate real vacua and no false one. In order
to get a phenomenology similar to our setup it is sufficient to slightly tilt
the effective magnetic field (that in Ref. [262] is in the z direction) via a
Rabi rotation, see the review [134]. This tilting provides a small component
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of the magnetic field along the x axis that breaks the degeneracy of the two
vacua with a real and a false one. Then the preparation of the system in the
false vacuum and the following quench are done with the very same tech-
niques exploited already in Ref. [262]. Finally one- and two-point functions
of the spin can be measured, as already done in Ref. [262], giving access to
F (t) and G(t) in Eqs. (11.4) and (11.5).





Chapter 12

Confinement in the spectrum of a
Heisenberg-Ising spin ladder

In this work, we study and characterize accurately the spectrum of another
model displaying confinement of elementary excitations. This system con-
sists of two XXZ spin-1/2 chains coupled in an anisotropic manner, along
the longitudinal (easy axis) direction via an Ising-like coupling. One of
the motivations to study the effects of confinement in antiferromagnetic
ladders lies in the fact that, in contrast to spin chains where confinement
is triggered by a symmetry-breaking field or long-range interactions, in a
ladder geometry the confining potential naturally emerges as the effect of
the (even small) local interaction between the chains, as can be easily seen
in a mean field treatment [233, 363–365]. Consequently, the external field
is not required because the staggered magnetization of one chain provides
an effective staggered field for the other. There are various possible lad-
ders featuring confinement (e.g., those composed of Ising-like chains), but
many of these require an external magnetic field which imposes difficul-
ties in prospective cold atomic realizations (see however [335]). Here we
focus instead on coupled Heisenberg-type spin chains in which no exter-
nal field, either longitudinal or transverse, makes an appearance, making
them suitable for cold atom experiments. For example, the two chains can
be mapped by a Jordan–Wigner transformation to spinless fermions cou-
pled by a density-density interaction. This model can be easily realized by
freezing the spin degrees of freedom in real fermion gases, e.g., utilizing the
techniques of Ref. [366] for Ytterbium atoms. Alternatively, one can use
the true spin degrees of freedom and freeze the charge degree of freedom in
spin-1/2 fermionic condensates.

137
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Explicitly the Hamiltonian is given by

H(∆||,∆⊥) =
J

2

L∑
j=1

[
σxj,1σ

x
j+1,1 + σyj,1σ

y
j+1,1 + ∆||(σ

z
j,1σ

z
j+1,1 + 1)

]
+
J

2

L∑
j=1

[
σxj,2σ

x
j+1,2 + σyj,2σ

y
j+1,2 + ∆||(σ

z
j,2σ

z
j+1,2 + 1)

]
+J∆⊥

L∑
j=1

σzj,2σ
z
j,1 .

(12.1)

Here σαj,k denotes the Pauli spin operators at the jth site of chain k ∈ {1, 2}
and we impose periodic boundary conditions, σαL+1,k = σα1,k. The parameter
J sets the energy scale, throughout the paper we set it to J = 1. We focus
on the regime ∆|| ∈ (1,+∞) for the anisotropy parameter of the chains
which corresponds to their gapped antiferromagnetic phases. The last term
couples the two spin chains with an Ising-like interchain interaction. With-
out losing generality, we set ∆⊥ > 0, i.e., an antiferromagnetic coupling of
the chains. The sign of ∆⊥ can be reversed with a spin flip applied to one
of the two chains, without altering the spectrum.

The model is highly symmetric. The z component of the total magne-
tization on each chain, Mk =

∑
j σ

z
j,k, is conserved, corresponding to two

U(1) symmetries. For ∆⊥ = 0 there is a Z2×Z2 symmetry associated with
the spin flip σy/zj,k → −σ

y/z
j,k of each chain. The coupling ∆⊥ 6= 0 explicitly

breaks this symmetry: the residual one is the global spin flip of both chains
(a single Z2). Moreover, there is an additional symmetry related to the
swapping of the chains σαj,1 ↔ σαj,2. Finally, due to translational invariance,
the energy levels are organized as eigenstates of the total momentum P .

A recent work [251] studied the properties of bound states on an XXZ
chain in the anti-ferromagnetic region with the confining potential provided
by an external staggered field. This model can be interpreted as arising from
a mean field treatment of the XXZ ladder in (12.1), with the staggered field
encoding the mean field effect of one chain on the other [233,363–365].

There is however a fundamental difference between confinement in lad-
ders and chains with an external field. Indeed, since for the ladders one
symmetry is spontaneously broken, there are (at least) two true ground
states (vacua) and the neutral mesons with respect to the confined charge
can interpolate between the same vacuum or between different ones. This
feature leads to the existence of two types of neutral bound states which we
dub intrachain (‘Type 1’) and interchain (‘Type 2’) mesons interpolating,
respectively, between the same or different vacua.

Although such the mean-field treatment in [251] is rather accurate to
capture an entire family of bound states, it completely misses another one.
We go beyond this approximation, and study the full system in the strong
anisotropy regime. As generally anticipated above, the main new theoretical
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Figure 12.1: Spectrum of the Heisenberg-Ising ladder Hamiltonian (12.2)
for ∆|| = 10 and ∆⊥ = 0.1 (red circles) compared with the XXZ-chain in
a staggered field (blue symbols), see Eq. (12.3). Both spectra are in the
sector of zero magnetization. Top: Entire spectrum of both Hamiltonians
for L = 10. For large enough ∆||, the spectrum is organized in bands
with fixed number of particles (kinks). The ladder has many more states
than the corresponding chain. Bottom: Zooms of the two-particle and four-
particle sectors close to energy E ∼ 2 and E ∼ 4 respectively. For the
two-particle sector and even L, the spectra of the two models are in one-
to-one correspondence (modulo a four-fold degeneracy which is resolved at
higher order in ε). This is no longer the case for the four-particle sector
(and for odd L in the two-particle sector).

insight is that beyond the already known (intrachain) mesons that also
appear in the mean field approach, we identify another class of bound states
that we dub interchain mesons.

The chapter is structured in the following way. In Section 12.1 we de-
scribe the elementary excitations (intrachain and interchain mesons) and
study their spectrum in the strong anisotropy regime. In Section 12.2 we
use a semiclassical approach to find a more accurate estimate of the spec-
trum in the regime of moderate anisotropy. In Section 12.3 we introduce
an approximation to capture the spectrum of two-meson states. In Section
12.4 we discuss the nature of the first excited states and find a transition as
a function of the anisotropy parameters. In Section 12.5 we draw our con-
clusions. In the Appendix C.7 we report some details about semiclassical
quantization.
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12.1 Elementary excitations in the strong
anisotropy regime

The goal of this chapter is to provide an accurate description of the spectrum
of the Heisenberg-Ising ladder in the regime with confining quasiparticles.

To set the problem, we report the entire spectrum of the Hamiltonian
in the sector of zero magnetization for L = 10, calculated numerically by
means of exact diagonalization. We consider ∆|| = 10 and ∆⊥ = 0.1. The
spectrum is organized in bands of fixed even number of particles around the
energies equal to this number (in units of ∆||). In the figure, together with
the spectrum of the ladder, we report the numerically calculated spectrum
of the XXZ spin-chain in a staggered field which is a mean field description
of the ladder. As can be seen clearly, the ladder has many more states
than the corresponding chain, which is obvious as the Hilbert space of the
ladder is exponentially larger than that of the chain. In the bottom panels,
we report zooms of the two-particle and four-particle sectors. Inside each
band, there is a fine structure given by states with precise quantum numbers.
Here, we are after an accurate characterization of this fine structure and
of the effects of confinement. A first observation that will have a very
simple explanation later is that the two-particle spectrum of the ladder is
in one-to-one correspondence with that of the chain. This is true modulo
a four-fold degeneracy that is a consequence of the discrete symmetries of
the Hamiltonian (12.2) (spin flip and chain swap) and is lifted in higher
perturbative order in ε = 1/∆||. We then notice that the correspondence
between the chain and the ladder is not valid for the four-particle sector,
where there are many more states that we will describe in the following.
We stress that the correspondence between the two-particle sectors in the
ladder and in the chain does not hold for odd L.

In order to understand the structure of the elementary excitations, it is
instructive to focus first on the parameter regime ∆|| � 1. In this Ising
limit it is useful to rescale the Hamiltonian (12.1) by ∆|| [251], i.e.

HI(ε,∆⊥) =
∑
α=1,2

L∑
j=1

[
ε(σ+

j,ασ
−
j+1,α + σ−j,ασ

+
j+1,α) +

1

2
(σzj,ασ

z
j+1,α + 1)

]

+ ε∆⊥

L∑
j=1

σzj,2σ
z
j,1 ,

(12.2)

where ε = 1/∆||. We study this Hamiltonian perturbatively in ε.
When ε = 0, the two chains are decoupled and the hopping terms are

absent. The Hamiltonian has four degenerate ground states given by the
four possible combinations of the Néel |Ψ1〉 = | ↑↓↑↓ . . . 〉 and anti-Néel
|Ψ2〉 = | ↓↑↓↑ . . . 〉 states of the two chains (here |↑〉 is chosen with quanti-
zation axis in the z direction, i.e., σzj |↑〉 = |↑〉). In the units of Eq. (12.2)
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all these ground states have exactly zero energy for ε = 0. The fundamental
excitations of each chain are kinks |Kαβ(j)〉 interpolating between the two
vacua |Ψα〉 and |Ψβ〉 (α, β ∈ {1, 2}, α 6= β) at the bond between sites j
and j + 1 (cf. Fig. 12.2). Note that the spin s and the parity of the site
ρ = jmod 2 on the chain α ∈ {1, 2} are related by s = (−1)α(1/2− ρ). For
0 < ε � 1 and ∆⊥ = 0, the exactly known ground states of the chains are
still almost Néel and anti-Néel states, but their degeneracy is lifted for fi-
nite L yielding exponentially small (in L) splittings. Similarly, the hopping
term hybridizes the kink states and lifts their extensive degeneracy. When
∆⊥ > 0, two of the four 0-kink states in which the spins are anti-aligned
along the rungs, gain extensive (∝ −∆⊥L) negative energy while the other
two gain extensive positive energy (∝ ∆⊥L). In the thermodynamic limit,
the latter two become false vacua and together with all the formerly low
lying excitations above them are pushed to finite energy density. On the lad-
der a single kink in one of the two chains toggles between a true and a false
vacuum (illustrated in grey and red, respectively, in Fig. 12.2). This implies
that the nature of the low-lying excitations change qualitatively when the
coupling between the chains is turned on. The low energy sector only bears
states with an even number of kinks since there must be a true vacuum both
on the left and on the right of these states. Consequently, states made with
two kinks become the elementary excitations in the spectrum. The energy
acquired by the false vacuum between the two kinks induces an effective lin-
ear potential between them: the two kinks are confined in excitations that
we call mesons, following a standard terminology in the literature. Because
of the presence of two true vacua, we can distinguish between two classes
of mesons. ’Type 1’ mesons are interpolating between the same vacuum
while ’Type 2’ mesons are interpolating between two different vacua (see
Fig. 12.2 to grasp the idea with a graphical representation).

We now illustrate more clearly the difference between these two mesons
in terms of the symmetries of the model. For ∆⊥ = 0 the model has a
Z2 × Z2 symmetry associated with the total spin flip along each chain. A
kink on a given chain has a non-zero Z2 charge for the spin-flip symmetry
on that chain. When ∆⊥ is turned on, the symmetry is explicitly broken
and only one Z2 symmetry is left (i.e., the global spin-flip of both chains).
A charge Q can be assigned to the explicitly broken symmetry: this charge
corresponds to the parity of the total number of kinks. As a consequence
of confinement, the low-energy spectrum can harbour only neutral objects,
while charged objects are pushed up in the spectrum. Both ‘Type 1’ and
‘Type 2’ mesons are neutral with respect to this symmetry, i.e. they have
Q = 0. The remaining Z2 symmetry is spontaneously broken in the ground
state. Another charge q may be assigned to this different symmetry: ‘Type
1’ mesons correspond to Q = 0 and q = 0 while ‘Type 2’ to Q = 0 and q = 1.
Very importantly, since this second symmetry is not explicitly broken, low-
energy states do not need to be neutral with respect to q. On the contrary, it
is possible to have charged excitations (‘Type 2’ mesons) which are the sort
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of composite kinks for the spontaneously broken global spin-flip symmetry.
While at first, this phenomenon can sound rather peculiar, it is actually very
similar to what happens for strong interactions: the mesons are neutral
particles for the color charge but they are not for the electrical charge,
related to another symmetry of nature.

In finite volume L, because of periodic boundary conditions, chains with
an odd number of sites can host an odd number of kinks while chains with
an even number of sites can host an even number of kinks. Namely, for L
odd there are only q = 1 states while for L even only q = 0 states (the op-
posite holds for anti-periodic boundary conditions). Consequently, as long
as ∆⊥ � ∆||, the lowest energy states are ‘Type 1’ mesons if L is even and
‘Type 2’ mesons if L is odd. In the following, we give a quantitative account
of their dispersion relation both for an infinite system and for a ladder of
finite size. The approach we exploit here is rather standard: we project
the many-body Hilbert space onto the 2-kink sector yielding an effective
two-body Hamiltonian which can be treated with elementary quantum me-
chanics techniques. As discussed above, the degeneracy of the ground and
excited states gets lifted at the first order in ε, thus the dispersion relation of
the low-energy meson excitations, which correspond to the low lying many-
body levels, can be well described by a first order perturbative analysis in
ε restricted to the two-kink sector.

12.1.1 ‘Type 1’ intrachain mesons

‘Type 1’ or intrachain mesons are formed by kinks on the same chain, as
shown in Fig. 12.2. In the regime ∆⊥ � ∆|| = ε−1, the interchain interac-
tion can be studied in a mean field fashion [233, 363–365], by focusing on
one of the chains and treating the spontaneous staggered magnetization σ̄
of the other chain as an effective external field:

ĤS(ε, h) =
L∑
j=1

[
ε
(
σ+
j σ
−
j+1 + σ−j σ

+
j+1

)
+

1

2
(σzjσ

z
j+1 + 1)

]
+ εh

L∑
j=1

(−1)jσzj .

(12.3)
where h = σ̄∆⊥. Here we assume that the other chain is in the approximate
anti-Néel state; the Néel case follows by the global spin flip symmetry. In
the limit ∆|| � 1, the staggered magnetization is σ̄ ≈ 1. The excitations of
the infinite antiferromagnetic chain (i.e., Hamiltonian (12.3) with L→∞)
and their confinement have been studied using various approximations in
Ref. [251]. Here we extend the analysis of this work to finite chains.

We introduce the projector P̂2 onto the 2-kink subspace spanned by the
basis |Kαβ(j1)Kβα(j2)〉. The action of the projected Hamiltonian Ĥ2 =
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Figure 12.2: Schematic picture of the possible mesons in the ladder. In
(a) and (b) we have ‘Type 1’ intrachain mesons built from two kinks on the
same chain. Instead, in (c) and (d) we have ‘Type 2’ interchain mesons built
from two kinks on the different chains. ‘Type 1’ mesons interpolate between
the same kind of vacua, while ‘Type 2’ mesons interpolate between vacua
of different kind. The coupling ∆⊥ induces a linear potential between the
kinks, because the energy cost scales with the distance of the kinks equal
to the number of spins that have frustrated interchain links (shown in red).
This distance is even for kinks of opposite spins (a,c) and odd for kinks of
the same spin (b,d).

P̂2ĤSP̂2 on 2-kink states is easily worked out as

Ĥ2(ε,∆⊥)|Kαβ(j1)Kβα(j2)〉 =

[2 + (−1)αεh(L− 2j)] |Kαβ(j1)Kβα(j2)〉
+ε
{

[|Kαβ(j1 − 2)Kβα(j2)〉+ |Kαβ(j1)Kβα(j2 + 2)〉] (1− δj,L−1)(1− δj,L−2)

+ [|Kαβ(j1)Kβα(j2 − 2)〉+ |Kαβ(j1 + 2)Kβα(j2)〉] (1− δj,1)(1− δj,2)
}
,

(12.4)

where 1 ≤ j = j2 − j1 ≤ L − 1. The first line gives the effective potential,
while the second and third lines describe the hopping of the kinks by two
sites. The Kronecker-delta factors encode the hard-core nature of the kinks.

Exploiting translational invariance by 2 sites, we are looking for the
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energy eigenfunctions in the sector of total spin s in the form

|Ψn(s = ±1)〉 =

L− 1+s
2∑

j1= 3−s
2

′
L−1∑
r=1

′
ψ(s)
n (r|P )eiP (j1+r/2)|K12(j1)K21(j1 + r)〉 ,

(12.5a)

|Ψ(o)
n (s = 0)〉 =

L−1∑
j1=1

′
L−2∑
r=2

′
ψ(o)
n (r|P )eiP (j1+r/2)|K12(j1)K21(j1 + r)〉 ,

(12.5b)

|Ψ(e)
n (s = 0)〉 =

L∑
j1=2

′
L−2∑
r=2

′
ψ(e)
n (r|P )eiP (j1+r/2)|K12(j1)K21(j1 + r)〉 , (12.5c)

where the primed sums run over odd or even integers, and the momentum of
the center of mass P is quantized as P = k 2π/L, k = −

⌊
L
4

⌋
, . . . ,

⌊
L
4

⌋
. The

limited range of the momentum reflects the doubling of the unit cell due to
the staggered background field. The “o/e” superscripts refer to the odd and
even sites on which the kinks are located. The parity of the distance r is
fixed by the spin of the kinks: r = 2, 4, . . . L − 2 if the total spin is 0 and
r = 1, 3, . . . L− 1 if the total spin is ±1 (see Fig. 12.2).

Using these expressions, the eigenvalue problem of Ĥ2 leads to the dis-
crete Sturm–Liouville equation

(2 + 2ε∆⊥ r)ψ
(a)
n (r) + 2ε cos(P )

[
ψ(a)
n (r+ 2) +ψ(a)

n (r− 2)
]

= E(a)
n (P )ψ(a)

n (r),
(12.6)

for all relative wave functions ψ(a)
n (r|P ), a ∈ {+1,−1, o, e}. Here En are the

excitation energies with respect to the ground state energy EGS = −ε∆⊥L.
The boundary conditions are ψ(±1)

n (−1) = ψ
(±1)
n (L+ 1) = 0 and ψ(o/e)

n (0) =

ψ
(o/e)
n (L) = 0. The solutions can be written down exploiting the recurrence

relation satisfied by the Bessel functions of the first Jν+1(z) + Jν−1(z) =
2ν/z Jν(z) and similarly for and the second kind Yν(z), obtaining

ψ(a)
n (r|P ) = N (a)

n

[
J
ν
(a)
n (P )−r/2(∆−1

⊥ cosP ) + A(a)
n Y

ν
(a)
n (P )−r/2(∆−1

⊥ cosP )
]
,

(12.7)
where N (a)

n (P ) is the normalization and ν(a)
n (P ) and A(a)

n (P ) are determined
by the boundary conditions. These solutions are labeled by the integer n
and their energy eigenvalues are

E(a)
n (P ) = 2 + 4ε∆⊥ ν

(a)
n (P ) . (12.8)

We plot the energy levels En(P ) obtained by solving Eq. (12.6) (or equiv-
alently Eq. (12.8)) for L = 10 in the case of total spin s = 0 in Fig. 12.3.
These analytic predictions are compared to the exact diagonalization results
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Figure 12.3: Low-lying part of the spectrum in the spin s = 0 sector of
the ladder in Eq. (12.2) (red circles) and of the staggered XXZ chain in
Eq. (12.3) (blue dots) for L = 10, ∆|| = 100, and ∆⊥ = 0.1, 0.5, 1, 5. The
numerical data have been obtained by exact diagonalization. The dispersion
relations of the mesons in the 2-kink approximation (12.8) are shown in
continuous lines, obtained by solving Eq. (12.6) numerically. The internal
quantum number n of each curve is in the legend on top of the plot. In the
strong anisotropy regime, and for even L, the ladder is equivalent to the
staggered XXZ chain in the two-kink sector.

both for the ladder Hamiltonian (12.2) and for the staggered chain Hamilto-
nian (12.3) for ∆|| = 100 and different values of the interchain coupling ∆⊥.
For these couplings, the low energy part of the ladder spectrum matches
perfectly the spectrum of the staggered XXZ chain. Moreover, both spectra
are well captured by the 2-kink approximation.

In Fig. 12.4 we explore the robustness of this effective description as we
move away from the strong anisotropic region by reporting a comparison
with the numerical results from exact diagonalization for a ladder of length
L = 10 with ∆|| = 5. Even though the quantitative agreement is worse for
∆|| = 5 than for ∆|| = 100, the effective two-kink Hamiltonian still repre-
sents a good qualitative description of the low energy states as long as the
energy bands of different kink numbers are well separated. Indeed, the main
qualitative effect is that as ∆⊥ increases (at fixed ∆||), some high energy
states, which are not captured by the mean-field staggered XXZ chain, come
down to low energy and mix up (and at some point hybridize) with the part
of the spectrum we are able to describe. At a more quantitative level, even
for the smallest values of ∆⊥ we observe deviations that anyhow were ex-
pected. Indeed, as ∆|| is decreased, the fundamental excitations interpolate
between vacua that cannot be approximated by a Néel or an anti-Néel state.
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Figure 12.4: Low-lying part of the spectrum in the spin s = 0 sector
of the ladder in Eq. (12.2) (red circles) and of the staggered XXZ chain in
Eq. (12.3) (blue dots) obtained by exact diagonalization for L = 10, ∆|| = 5,
and ∆⊥ = 0.1, 0.5, 1, 5. The dispersion relations of the mesons in the 2-kink
approximation are shown in continuous lines, obtained by solving Eq. (12.6)
numerically. The internal quantum number n is in the legend on top of the
plot.

Moreover, the nontrivial scattering properties of those excitations will start
to play a role. Both effects will be investigated in the next section.

12.1.2 ‘Type 2’ interchain mesons

We now turn to the meson excitations that are formed by two kinks located
on different chains (see Fig. 12.2). On a ladder with periodic boundary
condition, these states can only exist for L odd, and they have no equivalent
in a staggered XXZ chain.

We can follow steps very similar to those for intrachain mesons in the
previous subsection. We first project onto states having one kink on each
leg of the ladder. The main difference is that in this case there is no hard-
core constraint for the kinks as they can cross by passing above/below each
other and hence their wave function is

|Ψn(s)〉 =
L∑

j1=1

L−1∑
r=0

φn(r|P, s)eiP (j1+r/2)|K(j1)〉1|K(j1 + r)〉2 , (12.9)

where the subscripts 1, 2 label the legs of the ladder. The spins of the
kinks should add up to s. The center of mass momentum P is quantized as
P = k 2π/L, k = −

⌊
L
2

⌋
, . . . ,

⌊
L
2

⌋
.
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Figure 12.5: Low-lying part of the spectrum in the spin sector s = 0 of
the ladder (12.2) (red circles) for L = 9, ∆|| = 100, and ∆⊥ = 0.1, 0.5, 1, 5.
The dispersion relations of the mesons in the 2-kink approximation (12.13)
are shown in continuous lines, obtained by solving Eq. (12.10) numerically.
The internal quantum number n is in the legend on top of the plot. Notice
many qualitatively different features compared to the ladder of even length
in Fig. 12.3.

The equation for the relative wave function in all spin sectors turns out
to be

(2 + 2ε∆⊥`s(r))φn(r) + 2ε cos(P ) [φn(r + 2) + φn(r − 2)] = En(P )φn(r),
(12.10)

with r = 0, 1, . . . L−1. The function `s(r) is the length of the string between
the kinks and is defined as

`s=0(r) =

{
r if r even
L− r if r odd,

`s=±1(r) =

{
r if r odd
L− r if r even.

(12.11)
Note that swapping the chains corresponds to r ↔ L−r which also changes
the parity of r, thus the definitions (12.11) are consistent with this symme-
try. The boundary conditions are φn(−2) = φn(L− 2), φn(2) = φn(L+ 2),
and φn(−1) = φn(L− 1), φn(1) = φn(L+ 1). The solutions are given by

φ(±)
n (r|P, s) = (±)rN (±)

n (P, s)
[
J
ν
(±)
n (P,s)−`(r)/2(∆−1

⊥ cosP )+

+ A(±)
n (P, s)Y

ν
(±)
n (P,s)−`(r)/2(∆−1

⊥ cosP )
]
, (12.12)

where N (±)
n (P, s) is the normalization, ν(±)

n (P, s) and A(±)
n (P, s) are fixed by

the boundary conditions which now relate the wave function at odd and even
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Figure 12.6: Low-lying part of the spectrum in the spin sector s = 0 of
the ladder (12.2) (red circles) for L = 9, ∆|| = 5, and ∆⊥ = 0.1, 0.5, 1, 5.
The dispersion relations of the mesons in the 2-kink approximation (12.13)
are shown as continuous lines, obtained by solving Eq. (12.10) numerically.
The internal quantum number n is in the legend on top of the plot. The
insets show the accuracy of our approximation in resolving the spectrum on
a more refined scale.

sites. Notice that the four boundary conditions give only two independent
equations. φ(+)

n (r) are symmetric, while φ(−)
n (r) are anti-symmetric under

the exchange r ↔ L− r. The energies are given by

E(±)
n (P, s) = 2 + 4ε∆⊥ ν

(±)
n (P, s) . (12.13)

In Fig. 12.5 we compare the levels obtained from Eq. (12.13) with the
results of exact diagonalization of the ladder Hamiltonian for L = 9 in
the spin sector s = 0 for ∆|| = 100 and different values of the interchain
coupling ∆⊥. Similarly to the intrachain mesons, the spectrum is very well
captured by the effective 2-kink description. The figure also demonstrates
the richer structure of the ‘Type 2’ interchain mesons as they have about
twice as many internal excitations as the ‘Type 1’ intrachain mesons have.

In Fig. 12.6 the same comparison is shown for ∆|| = 5 and various values
of ∆⊥. Analogously to the case of ‘Type 1’ mesons, the overall structure of
the spectrum is captured by the 2-kink approximation in the regions where
the bands are well separated. The deviations of exact numerical results from
the 2-kink approximation are more pronounced than for ∆|| = 100, because
the dressing of the fundamental excitations becomes relevant for small ∆||.

We conclude this section by mentioning that bound states between two
coupled 1+1 dimensional models have been observed also in conformal field
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theories [367], but in a very different context that does not lead to confine-
ment.

12.2 A semiclassical approach for finite ∆||

When approaching smaller values of the anisotropy parameter ∆|| at ∆⊥ =
0, the ground state of the model and its fundamental excitations experience
significant changes. The doubly degenerate ground states of both chains
still have anti-ferromagnetic order but with a smaller average staggered
magnetization. The latter is exactly known from the Bethe ansatz solution
of the XXZ spin chain and it is given by

σ̄ =
∞∏
n=1

(
1− e−2nγ

1 + e−2nγ

)2

, ∆|| = cosh(γ) . (12.14)

As ∆|| decreases, the ground states with the above staggered magnetization
are no longer well approximated by a Néel or an anti-Néel state. The elemen-
tary excitations are still topological quasi-particles that interpolate between
the two vacua, but now they interact in a nontrivial way. In this section we
describe how these properties affect the ‘Type 1’ intrachain mesons.

The most pragmatic way to treat the presence of a non-vanishing ∆⊥
would be a perturbative expansion in small ∆⊥ around the exact eigen-
states at ∆⊥ = 0. The latter approach is rather technical and involves
a Bethe–Salpeter equation with a perturbative form factor expansion. Al-
though less rigorous, here we follow another, more heuristic approach whose
main advantage is having a straightforward physical interpretation. Follow-
ing Ref. [246], the idea is to look for semi-classical bound states of the
Hamiltonian

H(x1, x2, ϑ1, ϑ2) = ω(ϑ1) + ω(ϑ2) + f(|x2 − x1|) , (12.15)

where
f = 2ε∆⊥σ̄

2, (12.16)

is the “string tension” taking into account the average magnetization of
both chains, and we introduced the continuum coordinates x1, x2 ∈ R and
their canonical conjugate momenta ϑ1, ϑ2. The function ω(ϑ) is the lattice
dispersion relation of the kink quasi-particle obtained by a Bethe Ansatz
approach [368]

ω(ϑ) =
2εK(k)

π
sinh γ

√
1− k2 cos2 ϑ , (12.17)

where K(k) is the complete elliptic integral whose modulus k is related to
the anisotropy through the relation K(

√
1− k2)/K(k) = γ/π. The Hamil-

tonian (12.15) describes the classical motion of two particles experiencing a
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Figure 12.7: Classical trajectories in phase space (x, θ) for the Bohr–
Sommerfeld quantization. The grey lines are the various trajectories at
fixed energy. In infinite volume, the trajectories are always like the red one
depicted in (a). In finite volume L we have a hard cutoff that deforms some
trajectories as reported in (b).

long range interaction with kinetic energy given by the exact kinetic energy
of a kink of the XXZ chain. After a canonical transformation to center of
mass and relative coordinates,

X =
x1 + x2

2
, x = x2 − x1 , (12.18)

Θ = ϑ1 + ϑ2 , ϑ =
ϑ2 − ϑ1

2
, (12.19)

the Hamiltonian reads

H(X,Θ;x, ϑ) = ε(ϑ|Θ) + f |x|, (12.20)

with ε(ϑ|Θ) = ω(Θ/2 − ϑ) + ω(Θ/2 + ϑ). In these new variables, the
equations of motion are

Ẋ =
∂ε

∂Θ
, Θ̇ = 0 , (12.21)

ẋ =
∂ε

∂ϑ
, ϑ̇ = −f sgn(x) . (12.22)

The total momentum Θ is an integral of motion as well as the energy

E = ε(ϑ|Θ) + f |x| . (12.23)

The bound state energies can be obtained via the Bohr–Sommerfeld
quantization condition which reads as∮

ϑdx = 2π(n+ δ) , n = 0, 1, 2, . . . , (12.24)
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where the integral is taken over the closed path in the (ϑ, x) classical phase
space, and δ is a phase shift discussed below. In principle, the energies
obtained from this equation become more and more accurate with increasing
n. For simplicity, we restrict the analysis to the case when ε(ϑ|Θ) has a
single minimum at ϑ = 0 which holds for Θ < Θc = arccos

(
1−
√

1−k2
1+
√

1−k2

)
[251].

The path is an arc in the x > 0 half plane (see Fig. 12.7-a) parameterized
using Eqs. (12.23) and (12.22) starting from x(0) = 0+, ϑ(0) = ϑa :

x(t) =
E − ε(ϑ(t)|Θ)

f
, (12.25)

ϑ(t) = ϑa − ft , (12.26)

where ϑa satisfies E = ε(ϑa|Θ). The turning point is at

xmax =
E − ε(0|Θ)

f
, (12.27)

and is reached at time tmax = ϑa/f. After another tmax time elapses, the
two kinks scatter at x(2tmax) = 0 which abruptly flips the sign of ϑ, so the
phase space path is closed by a straight segment at x = 0 connecting −ϑa
with ϑa. These phase space paths are reported in Fig. 12.7-a. The left hand
side of Eq. (12.24) reads∮

ϑ dx = −
∫ ϑa

−ϑa
dϑϑ

dx(ϑ)

dϑ
= − 1

f

∫ ϑa

−ϑa
dϑϑẋ(ϑ)

=
1

f

∫ ϑa

−ϑa
dϑϑ

∂ε(ϑ|Θ)

∂ϑ
=

1

f

(
2Eϑa −

∫ ϑa

−ϑa
dϑ ε(ϑ|Θ)

)
,

(12.28)

where Eq. (12.22) was used to trade the time derivative for a derivative with
respect to −ϑ.

The phase shift δ receives two kinds of contributions. First, at the
regular turning point there is a π/2 phase shift (δ = 1/4). Second, at x = 0
we have to take into account the scattering phase shift of the particles. In
the Ising regime ∆|| � 1, the kinks behave as free hard core particles, so
their scattering phase shift is simply π. This is equivalent to enforcing that
the relative wave function vanish at the origin, and leads to δ = 1/2, the
same as for a particle suffering a hard reflection. Away from the Ising limit
the kinks have a nontrivial, momentum-dependent scattering phase shift
φη(p1, p2) that can be obtained via Bethe ansatz (see Appendix C.7 for its
detailed expression). The index η accounts for the spins of the kinks and
will be dropped from now on to simplify the notation. This phase needs to
be added to the left hand side of Eq. (12.24), which leads to

2E(ϑa)−
∫ ϑa

−ϑa
dq ε(ϑ|Θ) = 2πf

(
n+

3

4

)
+ f φ

(
Θ

2
− ϑa,

Θ

2
+ ϑa

)
.

(12.29)
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Figure 12.8: Comparison of various approximations for the intrachain meson
energies at ∆|| = 5 in the sectors with spin s = 0 (right) and s = 1 (left),
both with total momentum P = 0. The exact diagonalization results are
shown in red empty circles. The full symbols correspond to the 2-kink
approximation of Sec. 12.1.1 (“Bessel"), the infinite volume semiclassical
(“BS") and the finite volume semiclassical (“BSL") results according to the
color code shown in the legend.

The procedure has to be modified in finite volume, when the maximum
separation xmax can become larger than the system size L. There are two
possible cases depending on the value of xmax. If xmax < L, then the energy
levels are given by the solutions of Eq. (12.29), while for xmax > L the
system does not reach the turning point but experiences another scattering
at x = L. The integration paths in phase-space are shown for the two cases
in Fig. 12.7-b.

Let us denote by ϑL the momentum right before the reflection at x = L.
Then the momentum ϑ jumps from ϑL to −ϑL so the arc in the phase
space is chopped to have a flat part at x = L. As a consequence, the new
quantization equation reads

2fϑLL+ 2E(ϑa − ϑL)− 2

∫ ϑa

ϑL

dq ε(q|Θ)

= 2πf (n+ 1) + f φ

(
Θ

2
− ϑa,

Θ

2
+ ϑa

)
+ f φ

(
Θ

2
− ϑL,

Θ

2
+ ϑL

)
,

(12.30)

together with the conditions ε(ϑa|Θ) = E and ε(ϑL|Θ) = E − fL.
We compare the predictions for the intrachain meson energies with spin

s = 0 at P = Θ = 0 (meson mass gaps) of the 2-kink effective equation
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(a) (b)

Figure 12.9: Schematic pictures of 4-kink states for a ladder of even length:
(a) a 4-kink state composed of two intrachain mesons and (b) a 4-kink state
composed of two interchain mesons.

(12.6) and those of the semiclassical quantization (12.29), (12.30) with ex-
act diagonalization data of the ladder at ∆|| = 5 in Fig. 12.8. The plot
clearly shows that while the 2-kink approximation with hard-core kinks
breaks down, the (finite volume) semiclassical approximation yields an ex-
cellent agreement with the exact diagonalization results. Thanks to the
spin-dependent phase shift, this approximation also predicts the energy
splitting for the case s = 0, which partially lifts the degeneracy of the
spectrum (from four-fold to two-fold) in the thermodynamic limit and can-
not be captured with the first approach. Remarkably, even though the
semiclassical method is supposed to work well for high energy bound states
with large quantum numbers, it gives accurate results even for the lowest
lying mesons.

12.3 Composite excitations

We recall that in the regime ∆|| � 1 and ∆|| & ∆⊥, the energy spectrum of
the Hamiltonian (12.1) is organized in bands of states with a given number
of kinks, as shown in Fig. 12.1. In the previous two sections, we developed
an effective systematic description for the low lying 2-kink states. Here,
we introduce a more heuristic treatment to grasp the nature of some of the
higher excited states. We focus on the case of even L and zero magnetization
in both chains, i.e., M1 = M2 = 0.

The first class of states lying above the 2-kink ones are obviously the
four-kink states. For even L, the latter can either be a combination of two
intrachain (Fig. 12.9-a) or of two interchain mesons (Fig. 12.9-b). Notice
that for odd L we instead have only combinations of one intrachain and one
interchain meson, a situation that we do not describe here. In the zeroth
order approximation in which we neglect the interaction between mesons,
the energy levels of the four-kink states is just the sum of the dispersion
relations obtained in the preceding sections for the single mesons, i.e.,

E(n1, n2, p, P ) =
1

2

[
En1

(
P

2
+ p

)
+ En2

(
P

2
− p
)

+ {n1 ↔ n2}
]
,

(12.31)
where n1 and n2 collectively label the internal states of the mesons, p =
(p1−p2)/2 is the relative momentum and P = p1+p2 is the total momentum
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Figure 12.10: Spectrum of the ladder (red circles) and the staggered XXZ
chain (blue dots) for energies in the interval E ∈ [4, 5] where four-kink states
lie for large ∆||. We report data for the zero magnetization sector in both
chains M1 = M2 = 0. We work at ∆⊥ = 5, ∆|| = 100, and L = 10. The
blue, red, and green rectangles are the regions that are magnified in Fig.
12.11.

of the mesons. The labels n1,2 are assigned from the less energetic to the
most energetic internal states at P = 0. Since we are treating the two
mesons as non-interacting particles, we have some strong constraints on
the allowed values of the relative momentum p. First, the finite-volume
quantization of p is affected by the reduced effective volume where the kinks
can move freely due to the constraint that they cannot overlap. Accordingly,
the relative momentum is quantized as p = mπ/Leff with m integer. The
effective available volume is Leff = L − 2 for two interchain mesons (two
kinks on each chain) and Leff = L − 4 for two intrachain mesons (the four
kinks are all on the same chain). Moreover, since they cannot overlap, the
states with p = 0 are forbidden. These two reasonable assumptions will be
justified also a posteriori by the correct description of the relevant part of
the energy spectrum.

The approximation of non-interacting mesons works for large enough ∆⊥
and in the limit ∆|| � 1. Indeed, when ∆⊥ becomes too small, the internal
oscillations of each meson become so wide that the 4-kink states cannot be
interpreted as a composition of separate mesons. Furthermore, this approx-
imation is not expected to be effective for large n1,2 because higher meson
states have a more extended wave function (as it can be immediately de-
duced by looking at the spreading of the Bessel functions with respect to
their index).

We compare the spectra of the ladder and of the staggered XXZ chain
in Figs. 12.10 and 12.11. In the former figure we report all states in the
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Figure 12.11: Zooms of the marked areas in Fig. 12.10. The differ-
ent symbols are the numerical data. The frame colors (red, green, and
blue) correspond to the colors of the rectangles in Fig. 12.10. The green
area is a further zoom of the red one. The continuous lines correspond to
the noninteracting two-meson approximation (12.31) for interchain ‘Type 2’
(a,b,c,d,e) and intrachain ‘Type1’ (f) mesons. Each panel shows these ap-
proximate energy levels for fixed values of the spins and internal labels of the
mesons corresponding to the quantum numbers reported above each panel.
The different lines correspond to different values of the relative momentum
p reported in the legend on top of the plot. Leff = L− 2 or Leff = L− 4 for
interchain and intrachain mesons, respectively.

energy interval [4, 5] and identify some smaller windows (indicated by large
rectangles) that are analyzed in detail in the latter figure. The first simple
fact evident in both figures is that there are many more 4-kink states in
the ladder than in the chain, reflecting the presence of interchain mesons
which do not exist on the chain. Hence, for the 4-kink states, the mean-field
treatment does not predict much.

We present a more quantitative analysis in Fig. 12.11. Here we zoom
in the regions within the colored rectangles in Fig. 12.10. The spec-
trum in these windows is compared with the energy levels computed with
Eq. (12.31). Notice that the red rectangle appears three times and the green
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one twice, where the green area is a further zoom of the red one. We make
this choice because we plot the dispersion relation with different quantum
numbers that cannot be put on the same graph in a clear manner. On top
of each panel we report the quantum numbers corresponding to the spin
and the internal energy levels of the mesons that are displayed in the plot.

Despite the roughness of the approximation, it is remarkable that Eq. (12.31)
captures some features of the spectrum. For example, the four dispersions
plotted in the frames (b) and (c) very neatly describe families of states that
are well separated from each other. Also in panel (f), the intrachain states
(that exist also for the staggered chain but with different momentum quan-
tization, as it is clear from the fact that they alternate) are well captured
by our approximation. Instead, resolving the states within the green frames
in Figs. 12.11 is beyond the purpose of our approximation. It is a dense
region where the separation of the states is comparable to higher perturba-
tive orders in ε that are neglected in our description. On the other hand,
all the states that are sufficiently isolated in the spectrum (on an energy
scale of order ε), are well captured by this approximation. We remark that
while, in virtue of confinement, the single-meson bands described in Sec.
12.1 remain discrete and well separated in energy when L goes to infinity,
the two-meson bands become denser and fall in the continuum part of the
spectrum.

12.4 A transition for the first excited states

We have already shown in Sec. 12.1 that, in the limit of large ∆|| and
moderate ∆⊥, the low-lying excitations of a ladder with even L in the
sector of zero magnetization are well captured by an effective model of
a spin chain in staggered field; the lowest excitations are intrachain (‘Type
1’) mesons, confined bound states of kinks. Decreasing the value of ∆||,
we observe that the nature of the first excited states changes qualitatively.
This can be understood from a simple classical argument. The lowest lying
intrachain meson (Fig. 12.12-a) has energy Eintra ' 2 + 4∆⊥/∆||, while
the least energetic interchain meson (Fig. 12.12-b) has Einter ' 2. Despite
being less energetic, we cannot find this interchain excitation in the low-
energy spectrum in the zero-magnetization sector, because, as discussed in
Sec. 12.1.2, a single meson of this type carries magnetizations s1,2 = ±1/2
on the two chains and it is only compatible with odd L. However, when
∆|| is sufficiently small, the energy of the first intrachain meson becomes
so large that it is comparable with the energy 2Einter ' 4 of a two-meson
state of ‘Type 2’ (Fig. 12.12-c). This happens when 2Einter = Eintra, i.e. for
∆|| ∼ 2∆⊥.

We illustrate this transition in Fig. 12.13 for ∆|| = 100 and ∆|| = 5 by
showing all the numerically calculated zero-momentum eigenstates in the
relevant energy range as functions of ∆⊥, for ∆⊥ around ∆||/2. The blue
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Figure 12.12: Schematic pictures of the lowest-lying (a) intrachain and (b)
interchain mesons. For ∆⊥ . 2∆|| the intrachain meson (a) represents the
first excited state. In the regime ∆⊥ & 2∆|| the low-energy sector is made
of states with pairs of interchain mesons (c).

dots represent the ‘Type 1’ intrachain single meson states of the staggered
XXZ chain. As expected, when ∆⊥ ≈ ∆||/2, the two kinds of states become
nearly degenerate. At this point, the single meson and the 2-meson states
hybridize. As the interchain two-meson states are invariant under the chain
swap transformation, they only hybridize with intrachain meson states that
are also invariant under chain swapping.

The observed phenomenon is not a quantum phase transition as it does
not concern the ground state but the excited states. As a matter of fact,
similar “transitions” take place already for smaller ∆⊥ at higher energy lev-
els involving states with more kinks and mesons. Nonetheless, the change
in the nature of the low-energy sector has important physical consequences.
It can be observed, for example, in the non-equilibrium dynamics after a
quantum quench, where the spreading of correlations is determined by the
quasiparticle excitations. While in the absence of confinement excitations
can propagate freely, in the presence of an attractive potential quasiparti-
cles get confined into mesons and hence the spreading of entanglement and
correlations is suppressed. This is what we expect when ∆|| & 2∆⊥. Con-
versely, for ∆|| . 2∆⊥, the low-energy sector is a continuum of two-meson
states: while kinks are still confined in mesons, the spreading of correlation
is not suppressed because the pairs of mesons are free to move with oppo-
site momenta. Therefore, in a quench a dramatic difference between the
two regimes is likely to emerge.

12.5 Conclusions

In this manuscript we systematically characterized the spectrum of the
Heisenberg-Ising ladder with Hamiltonian (12.1) in the region of param-
eters presenting confinement, i.e. in the ordered antiferromagnetic phase of
the two chains for ∆|| > 1. Our main result is that we find two kinds of
quasiparticle excitations, which we dub intrachain and interchain mesons,
that correspond to bound states of kinks within the same chain or between
different ones, respectively. Very importantly, intrachain mesons can be
also obtained by means of a mean field treatment mapping the Hamilto-
nian to a staggered chain. Interchain mesons are genuine features of the
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Figure 12.13: Spectrum on the ladder (red circles) and on the staggered
chain (blue dots) around the level crossing near ∆|| ≈ 2∆⊥. The violet solid
line shows the numerical prediction for the first level of intrachain mesons
computed using Eq. (12.6). The other lines are extracted from Eq. (12.31)
for two interchain mesons with s1 = s2 = 0 and n1 = n2 = 0 like in
Fig. 12.11-e. The corresponding quantum numbers are shown in the legend.

ladder and they were not known by other means. They are expected to
be a common characteristic of ladders with Ising-like rung interactions that
lead to confinement. In fact, their existence is a consequence of the spon-
taneous breaking of one symmetry. Hence, there are two equivalent true
vacua and neutral mesons can interpolate between the same or different
ones. One-particle intrachain (interchain) mesons are present only when
the total ladder has even (odd) length. Conversely, two-particle states of
interchain mesons are present also for even L.

We quantitatively characterize the meson states. First, in the limit of
large ∆|| we find the one-particle meson dispersion by projecting on the two-
kink subspace. We release the condition of very large anisotropy exploiting
semiclassical quantization. We also describe the four-kink (two mesons)
states in the dilute approximation, i.e., treating the two mesons as non-
interacting particles. Finally, we point out an interesting transition for the
first excited state in even length ladders. At fixed ∆||, the first excited state
is a one-particle intrachain meson state for small ∆⊥, but as the latter is
increased it crosses over to a two interchain meson state.

We finally discuss some lines of future research. A first question con-
cerns the physics of more than two coupled chains (e.g., three for a start).
Are there new kinds of bound states that can emerge from the enlarged
local Hilbert space? It would be interesting to investigate also the case of
anisotropic Heisenberg-like (XXZ) interchain coupling which is more rele-
vant to experiments on spin-chain compounds. Another interesting question
concerns the influence of these bound states on the non-equilibrium quench
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dynamics, a subject that, as mentioned in the introduction, is nowadays
under intense scrutiny. We plan to address this interesting topic in a future
work.





Chapter 13

Breakdown of ergodicity in
disordered U(1) lattice gauge
theories

Ergodicity is one of the pillars of statistical mechanics. In the quantum
regime, the ergodic hypothesis and the corresponding eigenstate thermal-
ization hypothesis (ETH) [19,20] provide a sensible justification for the use
of microcanonical and canonical ensembles in lieu of their Hamiltonian dy-
namics to compute long term averages of observables (see Section 1.1). An
established mechanism to circumvent thermalization is provided by Ander-
son localization [27]. The latter describes how non-interacting systems can
feature a dynamical phase in which diffusion (and hence transport) and er-
godicity are suppressed without any need to fine-tune the Hamiltonian to an
integrable one. Remarkably, this mechanism has been shown to survive the
introduction of interactions at the perturbative level [28,369], a phenomenon
dubbed many-body localization (MBL) [16,17,370,371]. However, owing to
the fundamentally more complex nature of many-body theories, establish-
ing the breakdown of ergodicity and characterizing the ergodic/non-ergodic
transition in generic, interacting microscopic models has proven challenging.
At the practical level, this is due to the fact that quantum chaos (which
underlies ETH) is ultimately linked to the full spectral content of a the-
ory [372], where the applicability of analytical techniques is less established
compared to low-energy studies [28,369,373–380].

An archetypal example in this field has been the one-dimensional (1D)
Heisenberg model with random fields [31], where, in the absence of SU(2)
symmetry [381–384], first signatures of the breakdown of ergodicity were
established at finite volume. Despite a follow-up impressive numerical ef-
fort [34, 385–389], the precise location of the localization transition in this
and similar microscopic models is still actively debated. A systematic drift
of the would-be critical disorder strength was noticed already as early as
in Ref. [31]. The finite-size scaling theory close to the phase transition is
also still far from being satisfactory, with the numerically extracted critical
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Figure 13.1: (a) Schematics of U(1) lattice gauge theories. The U(1) gauge
field lives on links between the sites of the chain. Dynamical matter (dark
green) is a fermionic variable living on the sites, while static charges (light
green) are random integers which take values 0,±1. (b) Average level spac-
ing ratio (see Eq. (13.5)) as a function of the gauge coupling J for different
N (see text). The shaded region represents the estimated ergodic phase.

exponents [34,387,390] at odds with strong disorder renormalization group
predictions [391,392], and not compatible with the Harris criterion [393,394].
A recent analysis based on a different finite-size scaling ansatz was proposed
where the transition point drifts linearly with system sizes [395], which how-
ever seems to apply, at small sizes, also to models where localization is
demonstrated on solid grounds [396, 397]. On top of this, a recent analy-
sis discussed how large a system size one should analyze to go beyond the
transient behavior in numerical or experimental studies [398]. The chal-
lenge is thus to identify generic mechanisms where, oppositely to the case
of spin chains, interactions and disorder can cooperate (rather than com-
pete) in establishing ergodicity breaking, potentially leading to completely
novel scenarios in terms of finite-size scaling relavant to exact simulations
and experiments [399,400].

In this work, we show how lattice gauge theories (LGTs) provide a frame-
work within which the transition between ergodic and non-ergodic behav-
ior can be studied using conventional, well controlled numerical methods.
The key element of this observation is the cooperative effect of disorder
and Coulomb law, which leads to a localization phenomenon that - as we
show below - is parametrically different from that observed in other models.
Specifically, we illustrate this mechanism in the context of the 1D lattice
Schwinger model - quantum electrodynamics in 1D, illustrated schemati-
cally in Fig. 13.1(a). A sample of our results is depicted in Fig. 13.1(b),
which shows the average level spacing ratio, as a function of the gauge
coupling. The results display a sharp departure from Wigner-Dyson expec-
tations, and, crucially, the transition point from the corresponding plateau
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is unaffected by finite-volume effects. This behavior reflects into a modified
functional form of the spectral form factor, which is not compatible with
ergodicity.

Before entering into the details of our treatment, we find useful to illus-
trate a qualitative reasoning why 1D gauge theories may be an ideal candi-
date to display a smoother behavior in terms of finite volume effects, and
a clearer breakdown of ergodicity. In the typical Basko-Aleiner-Altshuler
(BAA) scenario [28], interactions open up channels for delocalization by al-
lowing a series of local rearrangements to create a resonance between two
quantum states. This leads to a competition between disorder and interac-
tions. In the presence of one-dimensional Coulomb law, interactions cannot
be introduced perturbatively and therefore a BAA-like analysis does not
work. This is because a local rearrangement of the degrees of freedom
(spins or particle occupation numbers) leads to a large (even extensive)
change in energy, therefore suppressing the amplitude of having a resonant
process. This behavior is unrelated to the case of non-confining long range
interactions (e.g., which decay like 1/rα, α > 0, see Ref. [401–403]), and is
reflected in finite-volume properties observed in previous numerical stud-
ies [208, 404, 405], that focused on quench dynamics and local observables.
More quantitatively, the relative strength of the interaction term w.r.t. the
hopping term scales as L−α, hence for α > 0 the effect of disorder in the
charge distribution would not be enhanced but suppressed.

13.1 Model Hamiltonian

We focus here on the 1D version of quantum electrodynamics, namely the
Schwinger model [189] in its Kogut-Susskind lattice regularized version [141]
introduced in Section 5.1.1. The two components of a Dirac spinor (electron
and positron) sit on even and odd sites. The corresponding Hamiltonian on
an open chain of N sites reads:

H =− iw
N−1∑
n=1

(
ψ†ne

iϕn,n+1ψn+1 − h.c.
)

+ J

N∑
n=0

(Ln,n+1 − θ/2π)2 +m

N∑
n=1

(−1)nψ†nψn (13.1)

Matter and gauge degrees of freedom are, respectively, N spinless fermions
ψn living on the sites and N + 1 unbounded bosons Ln,n+1 living the on the
links. L and ϕ stand for electric field and vector potential, and they are
conjugate variables: [L, ϕ] = −i; θ is a the lattice version of a topological
angle, that we used below to tune between confined (θ 6= π) and deconfined
(θ = π) regimes [144]. Physical states |Ψ〉 in the Hilbert space satisfy Gauss
law: (Ln+1,n − Ln,n−1 − ψ†nψn + 1

2
[1 − (−1)n]) |Ψ〉 = qn |Ψ〉. The {qn} are
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numbers representing the static charge distribution. We set m = 0 and
w = 1 in what follows (the mass term is not essential for the phenomenon
we describe).

Disorder-free many-body localization dynamics in this system has been
reported in Ref. [208]. There, the idea was to use superselection sectors in a
clean system as an effective source of correlated disorder. Other signatures
of MBL in the presence of disordered on-site potentials were reported in
Ref. [405]. Here, instead, we study the system properties to the presence
of random, static background charges, that we randomly choose in the set
qj = {0,±1} with equal probability.

The Hamiltonian Eq. (13.1) can be mapped into a spin-1/2 chain with
standard techniques (see Section 5.3). We define σα as the standard Pauli
matrices. The resulting Hamiltonian reads:

H0 = HHop + JHInt + JHDis (13.2)

where HHop is just the hopping term HHop = −∑N−1
n=1

(
σ+
n σ
−
n+1 +h.c.

)
, while

the second and third terms read

HInt =
1

2

N−2∑
n=1

N−1∑
`=n+1

(
N − `

)
σznσ

z
` , (13.3)

HDis =
1

2

N−1∑
n=1

(
n∑
`=1

σz`

)[
2

n∑
j=1

qj +
(−1)n − 1

2
− θ

π

]
(13.4)

and describe the Coulomb interaction between dynamical charges (both
terms), and the interaction between dynamical and static ones (the last
term). Note that the parameter J measures at the same time disorder and
interaction strength. The intimate relation between these two quantities is
a natural consequence of the existence of Coulomb law: in any local theory
in 1D, local background charges will inevitably generate a sink (or source)
of the electric field, and thus their effect on the system is tied to the gauge
coupling.

Below, we consider only static charge distributions such that
∑

n qn = 0
and qn = 0,±1. We set the left boundary electric field L0,1 = 0 and restrict
to charge neutrality,

∑
n ψ
†
nψn = 0. In order to avoid spurious effects close

to J = 0 due to the system becoming non-interacting, we add a next-
to-nearest-neighbor interaction of the form Hε = ε

∑N−2
n=1 σ

z
nσ

z
n+2 and set

ε = 0.5.

13.2 Spectral diagnostics: average level spac-
ing ratio

To capture the breakdown of ergodicity, we focus on spectral properties. We
study the Hamiltonian in Eq. (13.2) by full diagonalization in the Hilbert
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Figure 13.2: Spectral density (a) and entropy per site (b) of the Hamiltonian
Eq. (13.1) for different N and J = 1 as a function of the rescaled energy
ε = (E − Emin)/(Emax − Emin). The blue dashed lines cut the spectrum
keeping only the eigenvalues E s.t. s(E)/smax > A. We employed A = 0.5
for the computation of the level statistics r (red) and A = 0.9 for the
computation of the spectral form factor (blue).

space sector with zero total spin along z. In the gauge theory picture, this
means zero dynamical total charge. We define the ratio between nearby
gaps as

rα =
Min{∆Eα,∆Eα+1}
Max{∆Eα,∆Eα+1}

(13.5)

here α labels the eigenvalues of H for a given disorder realization. We
average r over a spectral window centered on the most-likely eigenvalue, and
over 1000 and 100 disorder realizations for N < 18 and N = 18 respectively.

As illustrated in Fig. 13.2 (a), the Coulomb interaction makes the eigen-
value distribution ρ strongly asymmetric, due to the super-linear scaling of
the largest eigenvalues in the spectrum. We thus cut the tails of the spectral
density ρ by monitoring the thermodynamic entropy per site: s = log ρ/L.
To compute the level statistics r we keep only the eigenvalues E for which
s(E)/smax > 0.9 (blue dashed line in Fig. 13.2 (b)). This is illustrated in
Fig. 13.3(a), where the energy resolved r-value is plotted as a function of
gauge coupling and energy density1. Considering the full spectrum does not
lead to quantitative changes in the transition region.

The resulting scaling of r versus J is plotted in Fig. 13.1. The results
illustrate how compatibility with a Wigner-Dyson distribution of the energy
levels breaks down at around J ' 0.5; contrary to the Heisenberg model
case (where the critical disorder strength increases by 50% when comparing

1Similar behavior occurs in the Bose-Hubbard model [406]
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(a) (b)

Figure 13.3: Energy-resolved r as a function of the rescaled energy ε, and
gauge coupling J in the lattice gauge theory (a) and disorder strength W
in the Heisenberg model (b). The green dashed line indicates the position
of the maximum of the spectral density.

N = 12 and N = 18), there is no appreciable finite-volume drift. We
note that this behavior is fully compatible with the energy-resolved pattern
of r plotted in Fig. 13.3(a): indeed, only states very close to the ground
state are not localized, and as such, the global value of r is dominated
by the vast majority of states that is localized (note that the vertical axis
in Fig. 13.3(a) is limited to ε ∈ [0.05, 0.55] for the sake of clarity). The
ergodic region (shaded) is followed by a regime where 〈r〉 takes intermediate
values: while it is not possible to reliably distinguish between emergent
integrability (denoted by Poisson statistics) and an intermediate value of
r, there is a clear finite-size trend toward the former for J > 1. Within
statistical errors, we do not observe a clear crossing: longer chains routinely
have smaller r values with respect to shorter chains. Finally, let us note
that our diagnostics may actually underestimate the extent of the non-
ergodic regime, as there exist random-matrix models [407] where ergodicity
is broken even in regimes where r is compatible with GOE.

13.3 Spectral diagnostics: form factor

As a further evidence of breakdown of ergodicity, we analyze spectral cor-
relations which go beyond nearby eigenvalues via the spectral form factor
(SFF), defined as

K(τ) =
1

Z

∣∣∣∣∣∑
α

g(Ẽα)ei2πτẼα

∣∣∣∣∣
2

(13.6)
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Figure 13.4: Comparison between the SFF of the Hamiltonian Eq. (13.2)
(a,c) and of the Heisenberg model with on-site disorder (b,d). In the deep
ergodic region (a,b) the SFF approaches the GOE prediction at times which
decrease exponentially with the size of the system. For J = 3/4 in the LGT
(c) the bulk of the spectrum is non-ergodic and the SFF deviates from the
GOE prediction at intermediate times. For W = 3 in the Heisenberg chain
(d) the level statistics is still flowing to WD, however the small effective
localization length prevents accessing ergodic properties of thermodynamic
limit.

where Ẽα are the unfolded eigenvalues. In order to smooth the effects due to

boundaries of the spectrum, we apply a gaussian filter g(x) = e
− (x−µ)2

2(ησ)2 , with
µ and σ the average and variance of the disorder realization of the unfolded
spectrum. η quantifies the strength of the filter, and we take η = 0.3 in
what follows. Z =

∑
α |g(Ẽα)|2 is a normalization s.t. K(τ) ' 1 for large

τ . Before applying the filter, we cut the edges of the spectrum according to
s(E)/smax > 0.5, which means we take a fraction of eigenvalues larger than
0.9. Upon unfolding, the Heisenberg time tH, corresponding to the timescale
beyond which the discrete nature of the spectrum manifest itself and thus
non-universal features kick in, is set to unity. The SFF in Eq. (13.6) is
computed for each disorder realization for τ ∈ [0, 1] and an average over
disorder is performed for each value of τ .

The analysis of K(τ) allows to probe if the system is ergodic [395, 396,
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408]. This can be done by comparing the averaged SFF with the SFF
expected from an ensemble of orthogonal random matrices with gaussian
entries (GOE), KGOE = 2τ − τ log(1 + 2τ). We call tGOE the time at
which the averaged SFF approaches the GOE prediction. If the system is
ergodic [396], this corresponds to the Thouless time, and one has tGOE/tH →
0 in the thermodynamic limit (specifically, the Thouless time shall increase
algebraically with N).

In Fig. 13.4(a,b), we plot the spectral form factor in the Schwinger model
and Heisenberg model in their ergodic regions: in both cases, the Thouless
time is clearly decreasing with system size, further confirming the ergodic
nature of the phase. The results in Fig. 13.4(c) correspond to a regime of
gauge couplings whose r value departs from GOE: such departure is indeed
confirmed by the fact that the tGOE/tH is not decreasing with system size,
and oppositely, the SFF seems to collapse on a finite linear region, which
implies ln tGOE ∼ N ; this timescale directly indicates that the system is not
ergodic, and it is suggestive of an emergent localization even at this value
of the coupling. We note that, in this parameter regime, we do not observe
saturation of the Thouless time, which is instead evident in spin models (see
Fig. 13.4(d) and Ref. [395]).

Finally, we comment on the consequences of our numerical observations
on transport properties. In the region J < 0.5, our numerical data are
consistent with a power-law scaling. Transport properties in this regime
are thus expected to be qualitatively similar to the case of the Heisenberg
model in random fields. Oppositely, for larger values of the disorder, the
fact that the ratio tGOE/tH is size independent suggests that the suppression
of transport is related to a size-independent scale, a very different scenario
compared to what is observed in Heisenberg models, characterized instead
by anomalous transport properties [409–412]: while it is not possible to
immediately connect this mechanism to confinement, we naturally expect
this emergent scale to be connected with the string tension, as the latter is
size-independent and is the only parameter needed to characterize Coulomb
interactions at large scales.

13.4 Origin of ergodicity breaking

We conjecture that the origin of ergodicity breaking in lattice gauge theo-
ries stems from the fact that Coulomb law - which is acting at all energy
scales - further constrains the system dynamics, and thus acts as an am-
plifier of any background disorder. In fact, for increasing system sizes, a
larger fraction of the states of the spectrum will feature regions with a large
accumulation of charge: as a consequence, the electrostatic energy (which
is locally unbounded) becomes dominant and the effect of Coulomb inter-
actions is enhanced. The presence of an unbounded energy density, which
contrasts with the usual behaviour of spin models, does not affect low-energy
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(a) (b)

Figure 13.5: Average level spacing ratio for the constrained spin model
HQLM , corresponding to the Schwinger model with truncated gauge fields.
The finite-size scaling of 〈r〉 exhibits the same phenomenology as in the
Heisenberg chain: 〈r〉 vs W (a) shows a crossing point drifting on the right
for increasing N , 〈r〉 vsW/N (b) gives a good data collapse forW/N < 0.1.

states, but has important consequences on the rest of the spectrum: for in-
stance, it systematically reduces the number of available resonances when
size is increased. In order to substantiate this statement, we studied (1)
the Schwinger model in its deconfined regime, θ = π, and (2) a quantum
link version of the model with truncated gauge fields, where Coulomb law
is washed out by the truncation. We do not observe any difference in our
data between confining and deconfining regimes in the Schwinger model.
We note that the fact that (de)confinement is not crucial here is not unex-
pected, as the latter is a phenomenon that only dictates the dynamics in
the vicinity of the vacuum state. See Appendix C.8 for an analysis of the
effect of the topological angle in the Schwinger model.

In Fig. 13.5(a-b), we instead show r versus the disorder strength W
in a quantum link model in the presence of a background disorder [160].
The model considered is a constrained spin model of the form HQLM =∑

i(Wini−σxi ), nini+1 = nini+2 = 0, where n = (1−σz)/2 (i.e. it is a PXP
model with nearest and next-nearest neighbour blockade). By applying the
mapping of Chapter 6, the system dynamics can be mapped into a quan-
tum link model with strong nearest-neighbor interactions. We attempted a
collapse scaling following [34], and assuming finite transition point Wc and
correlation length critical exponent ν. The best fitting Wc and ν seem to
increase linearly with size. The scaling of r follows rather closely the func-
tional form proposed in Ref. [395]. These two observations indicate that,
even in this model, the available system sizes are not sufficient to determine
whether ergodicity is broken in the thermodynamic limit [398]. Overall, the
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findings on these two models support our conjecture above.

13.5 Conclusions and outlook
We have provided numerical evidence for the breakdown of ergodicity in
disorderd U(1) lattice gauge theories. Our results do not immediately in-
dicate if localization kicks in right after such a breakdown, or if an in-
termediate non-ergodic, delocalized regime occurs. Further studies based
on localization-specific diagnostics and transport properties may elucidate
this aspect. The dynamical consequences of our results are immediately
testable on quantum simulation platforms, where many-body dynamics of
U(1) lattice gauge theories has been recently realized [4,46,166], and might
be extended to Yang-Mills theories.
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Appendix A

Non-equilibrium dynamics in
constrained quantum systems

Here we provide additional information on the results presented in Chapters
2 and 3.

A.1 Properties of the PXP and the other con-
strained models

In this section, we summarize the properties of the spectrum of the PXP
(α = 1) and the other constrained model with α > 1 of their pertubations.
For any α ≥ 1, the Hamiltonian Hα

0 and the perturbation V α commute
with the space reflection symmetry I and anticommute with the particle-
hole symmetry Cph =

∏
i σ

z
i . This fact has some important consequences,

that hold for any Hamiltonian with these symmetries:

• all the eigenstates with E 6= 0 are found in pairs of opposite energies
(doublets), related by particle-hole symmetry (Cph |E〉 = |−E〉);

• states with E = 0 can be classified as eigenstates of Cph (singlets);

• the subspace of zero-energy eigenstates is exponentially large in L;

• the singlets have same eigenvalue with respect to Cph and I: this
means that the zero-energy space is the direct sum of two subspaces
with Cph = I = ±1;

• if |ψ〉 and |φ〉 are two singlet eigenstates of H0, then 〈φ|V |ψ〉 = 0.
This holds even if 〈φ|ψ〉 6= 0 (or even if |ψ〉 = |φ〉).

A.1.1 Scars

Here we report the properties of the scars under the action of I and Cph.
For the PXP model (α = 1), they satisfy:

173
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I |Γ12〉 = (−1)L/2−1 |Γ12〉 (A.1)

I |Γ11〉 = (−1)L/2 |Γ11〉 (A.2)

Cph |Γ11〉 = (−1)L/2 |Γ11〉 (A.3)

I |Γ21〉 = (−1)L/2−1 |Γ21〉 (A.4)

I |Γ22〉 = (−1)L/2 |Γ22〉 (A.5)

Cph |Γ22〉 = (−1)L/2 |Γ22〉 . (A.6)

The scars defined in Section 2.3.3 for α > 1 and L = (α+ 2)n+ 3 satisfy

I |ψ(±3)
α 〉 = (−1)n |ψ(±3)

α 〉 (A.7)

Cph |ψ(±3)
α 〉 = |ψ(∓3)

α 〉 . (A.8)

A.2 Stability to other perturbations

We report here the data of the fidelity susceptibility of the scars and of a
generic thermal eigenstate in the PXP model for a different perturbation
V ′, defined as

V ′ =
L−3∑
i=2

Pi−2 σ
+
i−1σ

−
i σ

+
i+1Pi+2 + H.c. (A.9)

The perturbation is again chosen in such a way to have the same properties
under symmetry transformations as the PXP Hamiltonian H0, i.e. IV ′I =
V , CphV ′Cph = −V ′. The results in Fig. A.1 show the same behaviour that
we observed for the perturbation V in Chapter 3: the fidelity susceptibility
grows exponentially with system size for the states |Γth〉, |Γ21〉 and linearly
for the state |Γth〉.

A.3 Exact scars in the PXP model – proper-
ties of the edges

In this section we recall some properties of the scars of Eq. (2.5) and (2.7),
and we comment on the profile of the energy density. As was noticed in
Ref. [52], the PXP Hamiltonian can be written as a sum of two parts: a
part which contains two-body interactions between blocks, and one with
single-block terms only. The two-body terms annihilate the scars (we refer
to the appendix of Ref. [52] for the proof), while the remaining terms are

H ′ =
∑
b

[|10〉 〈00|+ |01〉 〈00|+ h.c.]b. (A.10)
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Figure A.1: Scaling of the fidelity susceptibility with system size, for the
perturbation V ′. The results shown refer to the states (a) |Γth〉, |Γ21〉 and
(b) |ΓI〉 with open boundary conditions. Dashed lines are obtained from
fits with an exponential scaling, solid lines with linear scaling. Similarly to
the results for the perturbation V shown in Fig. 2.2, also in this case the
scaling is exponential for the states |Γth〉, |Γ21〉 (in agreement with ETH)
and is linear for the state |ΓI〉.

A more convenient expression is obtained by defining the states

|±〉 =
1

2
(|01〉+ |10〉+

√
2 |00〉), (A.11)

|0〉 =
1√
2

(|10〉 − |01〉). (A.12)

The Hamiltonian H ′ has the form

H ′ =
√

2
∑
b

(|+〉 〈+| − |−〉 〈−|). (A.13)

This expression is useful to interpret the profile of the energy density of
the scars. After this change of basis and a gauge transformation with the

unitary matrix V = 1√
2

(
1 1
1 −1

)
, the new matrices have the form

A+ = V
1

2
(A01 + A10 +

√
2A00)V −1 =

(
0
√

2
0 0

)
, (A.14)

A− = V
1

2
(A01 + A10 −

√
2A00)V −1 =

(
0 0√
2 0

)
, (A.15)

A0 = V
1√
2

(A10 − A01)V −1 =

(
1 0
0 1

)
, (A.16)

and the new boundary vectors are

v′1 = V v1 =

(
1
0

)
, (A.17)
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v′2 = V v2 =

(
0
1

)
. (A.18)

Now each block can be interpreted as a spin-1 variable with states +,0,−
indicating the Sz component, and the Hamiltonian H ′ corresponds to the
magnetization in the z direction. The form of the matrices A+, A−, A0, al-
lows to easily see which are the non-zero components in the local Sz basis:
they are the ones with the structure of a "dilute antiferromagnet", i.e. with
alternating + and − and an arbitrary number of 0s in between. This struc-
ture is a renowned feature of the AKLT state, whose relation with the MPS
scars has been already pointed out in Ref. [52]. In open boundary condi-
tions, the boundary vectors fix the sign of the first non-zero spin: on the
left v′1 (v′2) constrains it to be in a + (−) state and viceversa for the vector
on the right. Therefore, the components of the state Γ12 have a number of
+s that exceeds the number of −s by one, so its energy is E =

√
2 (and

viceversa for Γ21, with E = −
√

2). The states Γ11 and Γ22, on the other
hand, have the same number of −s and +s, so they have energy E = 0.
The energy density profiles reported in Ref. [52] can be understood as well
from this construction: they correspond to the magnetization profile of the
dilute antiferromagnet. In the bulk, the local magnetization averages to 0,
while on the boundary it is affected by the choice of the boundary vector.

A.4 Exact scars with E =
√

3 – Proof
In this section we prove that the following state is an exact scar with energy
E =

√
3

|ψ(3)
α 〉 =

∑
~s

[
(1, 0)T ·N s1M s2 . . .M s2nN s2n+1 · (0, 1)

]
|~s〉 (A.19)

where s1, s2, . . . s2n+1 label the states of the blocks and

M s =

{
1 if s = 00 . . . 00

0 otherwise,
(A.20)

N0 =

(
0
√

3
0 0

)
, NL =

(
0 1
0 1

)
, (A.21)

NC =

(
1 1
0 −1

)
, NR =

(
−1 1
0 0

)
. (A.22)

The indices 0, L, C,R are the state of three-site block, with the following
notation: |0〉 = |000〉, |L〉 = |100〉, |C〉 = |010〉, |R〉 = |001〉.

The matrices in Eqs. A.21 and A.22 satisfy

NRNL = 0, (N0 +NL)(NR +N0) = 0. (A.23)
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The first equation implies that the state satisfies the blockade constraint.
We can split the Hamiltonian in two parts: H = HM +HN where HM (HN)
flips only sites in the M (N) blocks.

We first prove thatHM |ψ(3)
α 〉 = 0. Consider a single term Pi−α . . . Pi−1XiPi+1 . . . Pi+α

where i belongs to a block of type M : if i is not the first or last site of the
block, it can only be flipped if both neighbouring N blocks are in the state
0. However, this never happens because N0M sN0 = 0. If i is the first site
of the blocks, these two conditions must hold for it to be flippable: (i) the
previous block must be in state 0; (ii) the following block must be either
in state 0 or R. But N0M sN0 = N0M sNR = 0, so this Hamiltonian term
annihilates the state. Similarly, using N0M sN0 = NLM sN0 = 0, we find
that the last site of the block cannot be flipped. This means that the sites
in the M blocks are all "frozen" in the 0 state and concludes the proof that
HM |ψ(3)

α 〉 = 0.
We now consider HN :

HN |ψ(3)
α 〉 =

∑
b

[(
|0〉 〈R|

)
b

(
1− |L〉 〈L|

)
b+1

+
(
1− |R〉 〈R|

)
b−1

)
(
|0〉 〈L|

)
b

+
(
|0〉 〈R|

)
b

+ h.c.
]
|ψ(3)
α 〉 (A.24)

where b = 1, . . . n + 1 labels the blocks of type N . From the relations
NRNL = N0NL + NRN0 = 0, we find that all the terms involving more
than one block cancel and we are left with

HN |ψ(3)
α 〉 = H ′ |ψ(3)

α 〉 . (A.25)

H ′ =
∑
b

[
|0〉
(
〈R|+ 〈C|+ 〈L|

)
+ h.c.

]
b
. (A.26)

Now, to prove that H ′ |ψ(3)
α 〉 =

√
3 |ψ(3)

α 〉, it is useful to change basis and
define:

|±〉 =
|L〉+ |C〉+ |R〉 ±

√
3 |0〉√

6
, (A.27)

|l〉 =
|C〉 − |L〉√

2
, |r〉 =

|C〉 − |R〉√
2

. (A.28)

In this new basis the matrices have the form

N+ =

(
0
√

6
0 0

)
, N− = 0, (A.29)

N l =

(
1/
√

2 0

0 −
√

2

)
, N r =

(√
2 0

0 −1/
√

2

)
. (A.30)

and the Hamiltonian H ′

H ′ =
∑
b

[√
3 |+〉 〈+| −

√
3 |−〉 〈−|

]
b

(A.31)
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H ′ is diagonal in the new basis {|+〉 , |−〉 , |l〉 , |r〉}. It is now sufficient to
prove that all the non zero-components of |ψ〉 in the new basis have a one
and only one block in |+〉 and all the others are in |l〉 or |r〉. This can be
understood from the fact that (i) N+Nα1 . . . NαpN+ = 0 (for any string
in between) and that (ii) any string of matrices without N+ is diagonal,
so it annihilates when contracted with the boundary vectors (1, 0)T , (0, 1).
The energy density profile of this state is then easy to understand in these
basis: all the three-site blocks have the same energy density, because the
’+’ can be located anywhere in the chain, while the other sites have energy
density 0. This contrasts with the MPS scars found in Ref. [52]: while
there the energy density is localized on the edges because of the structure
of dilute antiferromagnet, here the construction resembles a spin wave with
a delocalized excitation.

A.5 Exact scars with E =
√

2, α = 3

We now consider the case α = 3 and construct exact eigenstates with
E = ±

√
2 as matrix product states with finite bond dimensions. They

are constructed by assembling position dependent matrices in a periodic
pattern, illustrated in Fig. A.2.

A AB BC C AC C

Figure A.2: Structure of an MPS for L = 24. The blocks are made of
two sites. Empty dots are sites in the state 0. The structure of the state
for generic system sizes is based on the periodic repetition of the pattern
0BC0CA0 (highlighted in the picture).

The matrices A,B,C are defined on two-site blocks and have bond di-
mension 2. The dots represent empty sites. The pattern (0BC0CA0) that
is repeated periodically consists of 11 sites. The first and last two sites of
the open chain have to be in a block of type A or B. Therefore we have 4
possible states, labelled by the first and last block:

• |φ(2)
AB〉, for L = 6 + 11n;

• |φ(2)
BA〉, for L = 9 + 11n;

• |φ(2)
AA〉 and |φ

(2)
BB〉, for L = 13 + 11n.

The matrices for the eigenvalue E =
√

2 are defined as

A00 =

(
0 1/

√
2

0 1

)
, A10 =

(
1/
√

2 1/2
0 0

)
, (A.32)
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A01 =

(
−1/
√

2 1/2
0 0

)
(A.33)

B00 =

(
1 1/

√
2

0 0

)
, B10 =

(
0 1/2

0 1/
√

2

)
, (A.34)

B01 =

(
0 1/2

0 −1/
√

2

)
(A.35)

C00 =

(
0 0
1 0

)
, C10 =

(
0 1/

√
2

0 0

)
, (A.36)

C01 =

(
0 −1/

√
2

0 0

)
(A.37)

The boundary vectors are obtained by contracting the extremal matrices
with (1, 0)T on the left and (0, 1) on the right. The states |φ(−2)

rs 〉 = Cph |φ(2)
rs 〉

(r, s = A,B) are other exact scars with energy E = −
√

2.
These scars satisfy the following properties:

I |φ(±2)
AB 〉 = − |φ(±2)

AB 〉 (A.38)

I |φ(±2)
BA 〉 = − |φ(±2)

BA 〉 (A.39)

I |φ(±2)
AA 〉 = |φ(±2)

BB 〉 (A.40)

I |φ(±2)
BB 〉 = |φ(±2)

AA 〉 . (A.41)

A.5.1 Proof

We first prove that the state above satisfies the constraints. The conditions
are: BrCs = CrAs = 0 for r = 01, 10 and s = 01, 10, C01C01 = C01C10 =
C10C10 = 0, and A01B10 = 0. It is straightforward to check that all of them
are satisfied by the matrices A,B and C.

We now define the local Hamiltonian term hi = Pi−3Pi−2Pi−1XiPi+1Pi+2Pi+3

and prove that hi |ψα=3〉 = 0 when i is one of the sites between two C
blocks. To prove this, we note that C00C00 = 0, which immediately implies
Pi−2Pi−1Pi+1Pi+2 |ψα=3〉 = 0. Similarly, we can prove that hi |ψα=3〉 = 0
when i is one of the sites between an A and a B block by noting that
A00B00 = 0 so the projectors in hi annihilate the state |ψα=3〉.

The next step is proving hi |ψα=3〉 = 0 for i belonging to the C blocks.
To set the notation, we label the two-site blocks (of types A, B, C) in the
chains with indices b = 0, 1, 2, . . . , Nb from left to right. We define ΓA as
the set of integers b such that the b-th block is of type A, and similarly for
ΓB and ΓC . We also define the operator P s

b which projects the block b in
the state |s〉.
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With this notation, we obtain the following equation∑
b∈ΓC

∑
i∈b

hi =
∑

b,b+1∈ΓC

P 00
b−1 |00〉b (〈10|+ 〈01|)bP 00

b+1

+ P 00
b |00〉b+1 (〈10|+ 〈01|)b+1P

00
b+2

+ P 00
b−1(|10〉+ |01〉)b 〈00|b P 00

b+1

+ P 00
b (|10〉+ |01〉)b+1 〈00|b+1 P

00
b+2. (A.42)

The sum in the right hand side runs over the indices such that both b and
b+ 1 are blocks of type C. The first two terms of the sum annihilate |ψα=3〉
because C01 + C10 = 0, the last two terms because C00C00 = 0.

From the observations we made so far, we have now obtained that

H |ψα=3〉 =
∑

b∈ΓA∪ΓB

∑
i∈b

hi |ψα=3〉 . (A.43)

We can rewrite the action of these terms as∑
b∈ΓA∪ΓB

∑
i∈b

hi |ψα=3〉 = (Hnon−int −Hint) |ψα=3〉 . (A.44)

The Hamiltonian Hnon−int contains the terms

Hnon−int =
∑
b∈ΓA

P 00
b−1[|00〉 (〈10|+ 〈01|) + h.c.]b

+
∑
b∈ΓB

[|00〉 (〈10|+ 〈01|) + h.c.]bP
00
b+1, (A.45)

where, for the sake of brevity, in our notation for the boundary terms we
choose to define P 00

−1 ≡ 1, P 00
Nb+1 ≡ 1. The Hamiltonian Hint reads

Hint =
∑
b∈ΓA

b+1∈ΓB

P 00
b−1[|00〉 〈01|+ h.c.]bP

10
b+1

+ P 01
b [|00〉 〈10|+ h.c.]b+1P

00
b+2. (A.46)

By noting that A01B10 = 0 and C00(A00B10 +A01B00)C00 = 0, we find that
Hint |ψα=3〉 = 0.

To conclude our proof, we now have to demonstrate thatHnon−int |ψα=3〉 =√
2 |ψα=3〉. We define the states

|e〉 =
|10〉+ |01〉√

2
|o〉 =

|10〉 − |01〉√
2

, (A.47)

|±〉 =
|00〉 ± |e〉√

2
, |0〉 = |00〉 . (A.48)
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We now perform the following changes of basis: on the A and B blocks,
we use the (non-orthogonal) states |+〉 , |o〉 , |0〉, such that the new matrices
of the MPS have the form

Ã+ =

(
0 1
0 0

)
, Ão =

(
1 0
0 0

)
, (A.49)

Ã0 =

(
0 0
0 1

)
(A.50)

B̃+ =

(
0 1
0 0

)
, B̃o =

(
0 0
0 1

)
, (A.51)

B̃0 =

(
1 0
0 0

)
, (A.52)

while on the C blocks we use |0〉, |e〉 and |o〉, with the matrices

C̃0 =

(
0 0
1 0

)
, C̃e = 0, C̃o =

(
0 1
0 0

)
. (A.53)

We now merge the pairs of consecutive C blocks. The only non-zero
matrices for the superblock are

G̃0,o =

(
0 0
0 1

)
, G̃o,0 =

(
1 0
0 0

)
. (A.54)

The components of |ψα=3〉 now have the form

|ψα=3〉 =
∑

~s=(s0,...,sNb )

c~s |s0〉 ⊗ |s1〉 · · · ⊗ |sNb〉 (A.55)

where the sum runs over the three new states of the basis for each component
sb and

c~s =
(
1 0

) (
. . . B̃sb−1G̃sb,sb+1Ãsb+2B̃sb+3 . . .

)(0
1

)
. (A.56)

From the simple structure of the matrices, it is now easy to see that
the only cases that give c~s 6= 0 are the ones where the product of matrices
in parentheses is a sequence of Ão, B̃0, G̃o,0, followed by a single matrix
Ã+ or B̃+ and then by a sequence of Ã0, B̃o, G̃0,o. Consider now a state
~s that satisfies this condition and let b∗ be the index that corresponds to
the Ã+ or B̃+ matrix. All the terms in Hnon−int annihilate |~s〉, except for
the one with b = b∗: to prove this, it is sufficient to note that, for b ∈ ΓA
if (i) b < b∗ then sb−1 = o and hence P 0

b−1 |sb−1〉 = 0, while if (ii) b > b∗

then sb = o and [|00〉 (〈10| + 〈01|) + h.c.]b |sb〉 = 0; similarly, if (i) b < b∗

then sb = o and [|00〉 (〈10| + 〈01|) + h.c.]b |sb〉 = 0, while if (ii) b > b∗

then sb+1 = o and P 0
b+1 |sb+1〉 = 0. The term of Hnon−int with b = b∗, on the
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other hand gives a non-zero term: if b∗ ∈ ΓA, then sb∗−1 = 0 and sb∗ = +, so
P 0
b∗−1[|00〉 (〈10|+ 〈01|) + h.c.]b |~s〉 =

√
2 |~s〉, while if b∗ ∈ ΓB, then sb∗+1 = 0

and sb∗ = +, so [|00〉 (〈10| + 〈01|) + h.c.]bP
0
b∗+1 |~s〉 =

√
2 |~s〉. Therefore, we

conclude that for each ~s such that c~s 6= 0 Hnon−int |~s〉 =
√

2 |~s〉, and using
Eq. (A.55), we have Hnon−int |ψα=3〉 =

√
2ψα=3.

A.6 Spectra of QLRN

Figure A.3: Histograms of the density of states ν vs. energy ε of the eigen-
states for a QLRN with N = 12 and p = 1 (panel a), p = 0.75 (panel b),
and p = 0.15 (panel c).

Let us consider the spectra of QLRN as a function of p as shown in
Fig. (A.3) for N = 12. When p = 1 all states that can be connected by
a single spin flip are connected and the Hamiltonian is H =

∑
i σ

x
i : the

resulting spectrum is therefore trivial, highly degenerate with eigenvalues
εi = N − 2i, with i = 0, . . . , N , and degeneracy Di =

(
N
i

)
(see Fig. (A.3-

a)). Introducing a slight stochasticity in the selection of edges splits the
degeneracies leading to a characteristic spectrum similar to that shown in
Fig. (A.3-b) for p = 0.75. A further reduction of p leads to a fragmentation
of the Hilbert space: in the network representation one observes a giant
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Figure A.4: (a) Histogram representation of the spectrum of the giant con-
nected component for a QLRN with N = 12 and p = 0.25. The peak at
ε = 0 is still visible and is associated to wavefunctions mainly localized on
the periphery of the network as shown in panel (b).

connected component and a few disconnected nodes associated to a peak at
ε = 0 as well as, for sufficiently small p (Fig. (A.3-c) for p = 0.15), pairs of
nodes connected by an edge (peaks at ±1 in Fig. (A.3-c) in the histogram
of the eigenvalues )

Localization is expected to occur when p is sufficiently small. Of course
there is a trivial localization related to wave functions completely localized in
small disconnected components which will contribute to the peaks at ε = 0
and ε = ±1 in Fig. (A.3-c). A much more interesting type of localization is
however happening in the giant connected component of the network that
contains most of the nodes: as shown in Fig. (A.4) the peak at ε = 0 persists
also in this case. A visualization of the weights of the corresponding wave
functions in the network, shows that these localized states are associated
to wave functions with large amplitudes on nodes at the boundaries of the
network. Qualitatively similar results are obtained for different N .

A.7 Generalized QLRN

The notion of QLRN can be generalized to encompass situations in which
either the elementary degrees of freedom are not spin 1/2 or the number
of spins flipped locally is larger than one, as in Ref. [86, 98], maintaining
locality and constrained dynamics.

For concreteness, let us consider the set of sequences {σi}, where i =
1, . . . , N and σi = {0, . . . , q}, (q is a positive integer). Two nodes {σi}
and {σ′i} are connected with probability 0 ≤ p ≤ 1 if: i) - the string
{σi − σ′i} has nonzero entries only locally, i.e. in a compact interval of
finite size L0 ≤ N and ii) - the distance

∑
i |σi − σ′i| ≤ S0. The random
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local Hamiltonian associated to this network is then its adjacency matrix
and the resulting ensemble of Hamiltonians will be denoted as Hp(L0, S0).
Note that if S0 ≥ 2 in general the Hamiltonian does not anticommute with
the total parity. It is evident that if q = 1, L0 = 1 and S0 = 1 we have
the special case discussed in Chapter 3 and that the PXP Hamiltonian is
just one of the realizations in Hp(1, 1). Networks with larger local Hilbert
space q, S0 > 1 and more complex spin flips L0 > 1 are naturally related
for example to spin-1 models [86] or fermionic models [98], whose analysis
is left for future work.

A.8 Participation ratio and system size

Figure A.5: Participation ratio Pn of the eigenstates for p = 0.2 and different
system sizes N .

In Fig. (A.5) we plot the participation ratio of the eigenstates for dif-
ferent values of the system size N . We note that, as N is increased, the
majority of the eigenstates get closer to a smooth dependence of P on the
energy ε (the thermal cloud). Statistical scars, instead, remain well isolated,
with strongly non-thermal values.

A.9 Centrality and degree of statistical scars

The characterization of the localization of stochastic and statistical scars
done in Chapter 3 with the participation ratio Pn and the betweeness Bn
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can be done using other figures of merit such as the degree and the centrality
of the eigenstates, defined as

〈k〉n =
∑
i

| cn({σ}) |2 k({σ}), (A.57)

〈C〉n =
∑
i

| cn({σ}) |2 C({σ}). (A.58)

As shown in Fig. (A.6), statistical scars are characterized by anomalously
small values of both quantities.

Figure A.6: Degree 〈k〉n and centrality 〈C〉n of the eigenstates as a function
of their energy εn. Different colors refer to different realizations of the
network. Statistical scars are chacterized by small values of both 〈k〉n and
〈C〉n.

A.10 Eigenstate phase transition at different
ε∗

In Chapter 3, we discussed for the presence of an eigenstate phase transition
based on the degeneracy of statistical scars at ε? = 1. It is possible to extend
this picture to all network-predicted values of quantized energies.

In Fig. A.7, we show the degeneracy scaling versus system size for four
additional values of ε?. For p < 0.2, we consistently observe that degeneracy
is increasing with system size (due to the absence of a decade of sizes, we
refrain from commenting on the precise scaling function). For p = 0.2, we
observe few degeneracies, and the data seem consistent with a decreasing



186 APPENDIX A. NON-EQUILIBRIUM DYNAMICS

Figure A.7: Degeneracy of statistical scars vs. system size N for different p.
Statistical scars show qualitatively, though less clearly, the same behaviour
as those with ε? = 1: up to p ' 0.2 their number appears to grow with
system size while for larger p one observes saturation.

degeneracy for all ε?. For p = 0.25, we observe a similar behavior, modulo
the fact that for several data sets, we do not observe any degeneracy at all.

The overall picture seems to suggest that an eigenstate transition occurs
for all values of ε?, and that the transition point, for all cases, is located
between 0.15 < p < 0.2. Larger system sizes and more comprehensive
numerics will be needed to determine whether all transitions happen at the
same critical value of p, or if they are energy-dependent.



Appendix B

Quantum simulation of lattice
gauge theories

In this Appendix, we provide additional information on the results of Chap-
ters 6 and 7.

B.1 Entanglement evolution in the FSS model

We consider the FSS model defined in Eq. (6.2) and we investigate the
time evolution of the bipartite entanglement entropy S(t) of the chain. We
consider as initial state the CDW, which is equivalent to considering the
QLM evolving from one of the two uniform string configurations, see Fig.
6.2. In order to determine S, we compute the time-dependent reduced
density matrix ρ̂R(t) of a subsystem consisting of L/2 consecutive sites of the
chain, by tracing out the degrees of freedom of the remaining complementary
L/2 sites. In these terms, the von Neumann entanglement entropy is defined
by S(t) = −Tr[ρ̂R(t) ln ρ̂R(t)].

Figures B.1a and B.1b show the evolution of S for various values of the
mass m and of the chain length L, respectively. Information spreading is
directly tied to particle production: it is fast at the critical point m = mc

(green curve in Fig. B.1a, with mc/w = 0.655, see Section 6.3) or above
it m > mc (red curve), where particles are not confined. For m < mc

(yellow and blue curves), instead, it slows down considerably, as was already
observed in the spin-1 QLM [192]. For m/ω = 0 the change in the original
slope of the curve which occurs around tω ' 12 is due to a finite-volume
effect, as demonstrated in Fig. B.1b, where such a change progressively
disappears upon increasing L. In all cases, the fast oscillations correspond
to different stages of pair production.

187
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Figure B.1: Growth of entanglement entropy in the FSS model. a: Growth
of the half-chain entanglement entropy for different values of the particle
mass m. Initial state is CDW/string, and L = 28. b: Growth of entangle-
ment entropy for different sizes L. Initial state is CDW/string, and m = 0.

B.2 Spectral properties of the FSS model

Robustness of the spectral structure — As shown in Section 6.3.4, the FSS
model for m = 0 features the emergence of regular structures in the mid-
dle of the spectrum in terms of energy-momentum bands. We here show
that these structures are generically present for sufficiently small values of
|m/w|. Figure B.2 shows the energy-momentum relation of the eigenstates
which have largest overlaps with the inhomogeneous state |φe+e−〉 defined in
Section 6.3.4. For m/w = 0.1 and m/w = −0.2, similar dispersion relations
to the case m/w = 0 are observed, the main difference being an overall
energy shift.
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Figure B.2: Robustness of the spectral structure. Energy-momentum rela-
tion of eigenstates around E = 0 for L = 20. For each eigenstate |ψ〉, the
colour indicates the value of log10 (| 〈ψ|φe+e−〉 |) (eigenstates with smallest
overlaps are not plotted). The dispersion observed for m/w = 0 (panel a)
is shifted but persists when we introduce a non zero mass (panels b and c).
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Quasi-particle ansatz for emergent excitations — In order to obtain
physical intuition on the emergence of regular energy-momentum bands in
highly-excited states which govern the non-equilibrium evolution of local-
ized defects, we propose the following wavefunction

|χk〉 =
L∑
j=1

e−ikjÔj−1,j,j+1 |Φk=0〉 , (B.1)

where |Φk=0〉 is the exact eigenstate found in Ref. [52] with momentum
k = 0 and energy 0, and Ôj−1,j,j+1 is a three-site operator depending on a
number of variational parameters. Due to the constraints, the space where
this operator acts is reduced from dimension 23 to 5. The inversion symme-
try with respect to site j reduces the number or free variational parameters
in Ôj−1,j,j+1 to 11. We choose a basis of operators {M̂α

j−1,j,j+1}11
α=1 for pa-

rameterizing Ôj−1,j,j+1 and define

|φαk 〉 =
L∑
j=1

e−ikjM̂α
j−1,j,j+1 |Φk=0〉 . (B.2)

For each k, we minimize the energy variance in the space spanned by
the states |φαk 〉. To this aim, we compute the three matrices Nk

αβ = 〈φαk |φβk〉,
P k
αβ = 〈φαk |Ĥ|φβk〉, Qk

αβ = 〈φαk |Ĥ2|φβk〉. In order to prevent numerical issues
in the minimization, we diagonalize the matrix of the norms Nk and we
compute the (rectangular) matrix Uk whose columns are the eigenvectors of
Nk having non-zero eigenvalues. We then find the vector ck = (c1

k, . . . , c
m
k )

that minimizes

σ2
Ĥ

=
c†kU

k†QkUkck

c†kU
k†NkUkck

−
(
c†kU

k†P kUkck

c†kU
k†NkUkck

)2

. (B.3)

Note that by introducing the matrix Uk we restrict the minimization to
states with non-zero norms, thus further reducing the number of variational
parameters to m(k) ≤ 11. The optimal wavefunction is then obtained as

|χk〉 =
11∑
α=1

m∑
β=1

Uk
αβc

β
k |φβk〉 . (B.4)

B.3 Continuum limit of the massive Schwinger
model

The massive Schwinger model briefly introduced in Section 6.3.2 describes
the quantum electrodynamics of fermions of mass m and charge e in 1 + 1
dimensions. Its Lagrangian density is

L = −1

4
FµνF

µν + ψ̄(i6 ∂ − e6A−m)ψ (B.5)
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where Fµν = ∂µAν − ∂µAν . The indices µ, ν = 0, 1 indicate respectively the
time and space directions, and the slash notation indicates contraction with
the Dirac matrices γµ. This model can be formulated in terms of a bosonic
field φ [202]. We briefly recall here the main points of the derivation of the
bosonic Hamiltonian obtained in Ref. [144].

In the Coulomb gauge (A1 = 0), the Euler-Lagrange equation for A0

yields
∂2

1A0 = −ej0 (B.6)

where j0 = ψ†ψ is the charge density. Integrating Eq. (B.6), we obtain the
continuum version of Eq. (5.10),

F01 = −∂1A0 = e∂−1
1 j0 + F (B.7)

where F is a number, representing a classical background field. The Hamil-
tonian density obtained from the Lagrangian (B.5) has the form

H = ψ̄(iγ1∂1 +m)ψ +
1

2
F01

2. (B.8)

The interacting Hamiltonian for the fermions can be formulated using
Eq. (B.7) to integrate out the gauge fields. Integrating by parts in the zero
charge sector, i.e.,

∫
dx j0(x) = 0, we obtain

H =

∫
dx ψ̄(iγ1∂1 +m)ψ

− e2

4

∫
dx dy j0(x)j0(y)|x− y| − eF

∫
dx xj0(x). (B.9)

Similarly to the lattice version of this model [cf. Eqs. (5.9) and (5.12)],
the resulting Hamiltonian contains the energy of massive free fermions, the
Coulomb interaction between charges (which increases linearly in one spatial
dimension) and the interactions between the charges and the background
field.

The method of bosonization can be applied, by noting that in 1 + 1
dimensions the conserved vector field jµ = ψ̄γµψ can be written as the curl
of a scalar field φ

jµ = π−1/2εµν∂
νφ. (B.10)

By substituting in Eq. (B.7) we get

F01 = eπ−1/2φ+ F, (B.11)

and, from the results obtained for a free massive Dirac field [413], we know

ψ̄(iγ1∂1 +m)ψ → Nm

[
1

2
Π2 +

1

2
(∂1φ)2 − cm2 cos(2π1/2φ)

]
. (B.12)
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where c = eγ/(2π), γ ' 0.577 is the Euler constant and Nm indicates normal
ordering with respect to the mass m. Inserting Eqs. (B.11) and (B.12) in
Eq. (B.8), the Hamiltonian density reads

H = Nm

[
1

2
Π2 +

1

2
(∂1φ)2 − cm2 cos(2π1/2φ) +

e2

2π

(
φ+

π1/2F

e

)2
]
.

(B.13)
By shifting the field φ → φ − π1/2F/e and defining a new normal ordering
with respect to the mass µ = π−1/2e, we finally obtain

H = Nµ

[
1

2
Π2 +

1

2
(∂1φ)2 − cmµ cos(2π1/2φ− θ) +

µ2

2
φ2

]
(B.14)

where θ = 2πF/e. The latter form connects with the discussion in Section
6.3.2.

B.4 Non-Abelian lattice gauge theories with
alkaline-earth-like atoms: derivation of the
lattice Hamiltonian

In this Section we remind the key steps and approximations to obtain the
discrete lattice Hamiltonian from Eq. 7.3. The main step is the decomposi-
tion of the field operators in the standard Wannier function basis [220,414].
The centers of the Wannier functions of g states constitute the bipartite
lattice of interest.

We take

Ψgi(r) =
∑
x even

wAg (r−Rx)ψ
i
x +

∑
x odd

wBg (r−Rx)ψ
i
x, (B.15)

where ψix are the annihilation operator of the g atom on site x of spin i
introduced at Eq. 7.1. The A/B labels indicate the functions with centers
on the even/odd sublattice. Similarly, for the e lattice we take

Ψei(r) =
∑

x even,k̂

wA
e,k̂

(
r−Rx,k̂

)
ci
x,k̂

+
∑

x odd,k̂

wB
e,k̂

(
r−Rx,k̂

)
ci
x,k̂
. (B.16)

We now discuss how the expression of Wannier functions are obtained,
and then provide the expression of the various amplitudes in Eqs. 7.4 using
these Wannier functions.

B.4.1 Localized Wannier functions

The Wannier functions are obtained as linear combinations of the Bloch
functions which diagonalize the non-interacting part of the Hamiltonian in
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Eq. (7.3). To obtain the Bloch functions, we consider the following single
particle Hamiltonian for the two species α = g, e (we dropped the term
proportional to ~ω0, because it contributes as an overall constant)

Hα
non-int = − ~2

2M
∇2 + Vαi (r) . (B.17)

The dependence of the potential in the (selected) hyperfine level i of the
atoms is negligible, so Vα(r) ≡ Vαi(r) and the eigenfunctions do not depend
on i. The potential Vα(r) is of the form

Vα(r) =

{
V
||
α (x) + V ⊥α (y, z) for 1D lattices,
V
||
α (x, y) + V ⊥α (z) for 2D lattices.

(B.18)

For this type of potentials, the Wannier functions factorize as a func-
tion of transverse variables (orthogonal to the line/plane) and a function
of longitudinal variables (along the line/plane). As the trapping potential
V ⊥α is deep, it is well approximated by an harmonic oscillator such that the
transversal dependence of the Wannier function is a gaussian. In 1D we find

wα(r) = (π`αy`αz)
−1/2 exp

(
− y2

2`2
αy

− z2

2`2
αz

)
ϕα(x) (B.19)

where α is a multi-index that labels both the sublattice A,B and the site g,

e, k̂. The widths of the gaussians are obtained as1 `2
y/z α = ~d/

√
2π2V

y/z
α M

and ϕα(x) is a function of the longitudinal continuous variable x. And
similarly, in 2D

wα(r) = (
√
π`α)−1/2 exp

(
− z2

2`2
α

)
ϕα(x, y). (B.20)

To obtain the functions ϕα we use the procedure discussed in Ref. [415]. In
1D, we compute the Bloch functions for both the g and the e potential, and
we find the Wannier functions as the eigenfunctions of the projection of the
position operator on a single band (if well isolated from the others) or a set
of bands.

The lowest bands in the spectrum of the g and e lattice for the values in
Tab. 7.2 of the main text are represented Fig. B.3. For g, the gaps δg and
∆g are much larger than the bandwidths of the two lowest band. Therefore
we can compute the Wannier functions for the two lowest s bands (the only
two susceptible to be populated), without hybridization. From each band
we obtain the Wannier function of one of the sublattices.

1In our numerical estimate in 1D we assume that `y/z α depends on the sublattice
A/B. While this is not possible for a separable potential, as the one described here, we
expect this to be possible in the true experimental setup, where the beams are positioned
at an angle with respect to the x direction. To simplify our numerical estimate, we use
the approximation of factorized Wannier functions and we assume then that `y/z α can
be tuned independently for the A and B sublattices.
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Figure B.3: Lowest bands of the (a) g and (b) e lattice. In (a), the first and
the second bands are both well isolated from the rest. The gap between the
two lowest bands is ∼ 2|δg|, the gap between the second and the third is
what we define as ∆g. In (b) the first four bands form two doublets: they
correspond to the pairs of sites e± on sublattice A and e± on sublattice
B. The separation between the pairs is ∼ 2|δe|, and we define ∆e as the
gap between the fourth and the fifth band. (c,d) Each pair of bands has
separation ∼ 2|te|.

On the other hand, for the e state the two lowest bands and the third
and fourth bands are very close in energy (the splitting is ∼ 2|te|), so the
hybridized Wannier functions are obtained by constructing the position op-
erator on each pair. From each pair we obtain the Wannier functions of the
sites e+ and e− on each sublattice.
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Figure B.4: Top: Lattice potential for the g and e lattice. The values of the
amplitudes are the ones in Tab. 7.2. Bottom: Wannier functions of A and
B blocks.

The Wannier functions obtained for the lattice amplitudes of Tab. 7.2
are plotted in Fig. B.4.

We remark that other choices of Wannier functions are possible: for
example, one can hybridize the two lowest bands for the g states, and the



194 APPENDIX B. QUANTUM SIMULATION OF LGTS

four lowest bands for the e states, thus obtaining the maximally localized
ones. Both choices give a complete basis for the two/four lowest bands
of the g/e, so the spectral properties of the lattice model are completely
equivalent. However, we consider the other choice described above, because
in that basis the hopping between sites in an even block and an odd block are
0 by construction. This choice is typically disadvantageous because it results
in larger interaction terms between different sites: in our case, instead, this
effect is beneficial because it enhances both the interaction terms needed
to impose gauge invariance (namely U ge±) and the gauge-assisted hopping.
Therefore, we find that this choice of basis is the most useful to encode the
matter and gauge variables.

B.4.2 Amplitude formulae

Once the Wannier functions are obtained, the expressions of all amplitudes
in the single block Hamiltonian h0

x Eqs 7.4 follows. We report here the
equations. The amplitudes and the Wannier functions depend on the parity
of the block, so all the following equations are intended for one of the two
sublattices, A (even) or B (odd): we drop the sublattice index to simplify
the notation.

µe =

∫
dx we+(x)

(
− ~2

2M

d2

dx2
+ Ve (x)

)
we+(x) (B.21)

=

∫
dx we−(x)

(
− ~2

2M

d2

dx2
+ Ve (x)

)
we−(x), (B.22)

µg =

∫
dx wg(x)

(
− ~2

2M

d2

dx2
+ Vg (x)

)
wg(x), (B.23)

te =

∫
dx we+(x)

(
− ~2

2M

d2

dx2
+ Ve (x)

)
we−(x), (B.24)

U gg =
ggg

2π`2
g

∫
dx [wg(x)]4 , (B.25)

U eg± =
g±eg

π(`2
g + `2

e)

∫
dx [wg(x)]2 [we+(x)]2 . (B.26)

B.5 Resonance condition and derivation of QLM
Hamiltonian

In this Section, we derive the Quantum Link Model Hamiltonian from the
lattice Hamiltonian of Section B.4. We first define and prove the conditions
which make the gauge-invariant subspace resonant. Then we show how these
conditions bring (almost all) gauge-variant states off-resonant. Lastly, we
derive the QLM Hamiltonian by projecting the lattice Hamiltonian on the
resonant subspace.
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B.5.1 Resonance condition

We now demonstrate the resonance conditions for all N and all dimensions.
We want to prove that all states with Gx = N , Ga

x = 0 are degenerate
eigenstates of H0 =

∑
x h

0
x, provided that these two conditions hold: (i)

δg + (N − 1) ε = δe and (ii) U gg
x = 2U eg+

x .
For Gx = N , the single block Hamiltonian h0

x reads

h0
x = µgxnx+µ

e
x(N−nx)+

U gg
x

2
nx(nx−1)+U ge+

x nx(N−nx)−
U eg+
x − U eg−

x

4
SaxG

a
x.

(B.27)
When (i) and (ii) are satisfied, we get

h0
x = µexN +

(
µg − µe + U ge+N

)
nx −

U eg+
x − U eg−

x

4
SaxG

a
x, (B.28)

with Sax = ψi†x λijψ
j
x. For gauge-invariant states, Ga

x = 0, so the Hamiltonian
H0 restricted to the gauge invariant space reads:

H0 =
∑
x

µexN +
(
µg − µe + U ge+N

)∑
x

nx. (B.29)

Since the total number of g particles
∑

x nx is conserved, we find that the
Hamiltonian H0 projected on the gauge-invariant space is proportional to
the identity.

B.5.2 Off-resonance condition

We now discuss what are the mechanisms which forbid the occupation of
gauge variant states in the dynamics. The first requirement is that the
number of rishons per link N = 1 is conserved. This is simply enforced by
the huge barrier between different double wells. The next requirement is
the Abelian constraint Gx = N , which imposes that the number of atoms
per blocks is conserved. This is achieved by introducing the shifts δg and δe
between blocks of different parity. The shifts make the hoppings between
neighbouring blocks off-resonant, but they do not prevent longer-range hop-
pings between blocks of the same parity. We assume (and check, for our
choice of realistic experimental parameters) that longer-range hoppings are
small and can be safely neglected. When this is satisfied, the number of
particles per block is conserved. The last condition to enforce is the non-
Abelian constraint. As can be evinced from Eq. (B.28), the off-resonance
condition U eg+

x 6= U eg−
x is enough to bring all states with Gx = N , N = 1,

but Ga
x 6= 0 off resonance as long as

∑
a(S

a
x)2 6= 0, i.e. as long as nx 6= 0.

The energy cost for these states depends on the antisymmetric representa-
tion Rg of the nx g atoms, the representation Re of the N − nx e atoms,
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and the representation Rge of all the N atoms on each site. Indeed,

SaxG
a
x =

1

2

(Sax)2 +

Sax +
∑
k̂

Ia
x,k̂

2

−

∑
k̂

Ia
x,k̂

2 , (B.30)

=
1

2
(C2(Rg) + C2(Rge)− C2(Re)) , (B.31)

with Ia
x,k̂

= ci†
x,k̂
λijc

j

x,k̂
and C2(R) the quadratic Casimir of the representa-

tion R. When all atoms are in a singlet state (gauge-invariant), Re is the
conjuguate of Rg, such that C2(Rg) = C2(Re) and C2(Rge) = 0: the states
are always resonant.

States with no g atoms, such as the e− e triplets for N = 2 in 1D, have
C2(Rg) = 0 and Rge = Re: they are also always resonant. However, because
of the global SU(N) symmetry, for these states to be occupied the non-
Abelian Gauss’ law has to be simultaneously violated on at least two blocks:
in one dimension this clearly cannot be achieved on two neighbouring blocks
(because two subsequent e− e triplets do not satisfy the constraint N = 1),
so the terms which violate Gauss’ law will involve blocks with distance 2 or
larger. These longer range terms are generally negligible.

When N ≥ 3 in 1D, SaxGa
x ≥ C2(Rge)/2 for any possible set of rep-

resentation, which is strictly positive when the state is not a singlet: the
states are always off-resonant. For higher dimensions, all set of compatible
representation must be considered: a gauge breaking state is resonant if it
cancels Eq. B.31.

B.5.3 Projected Hamiltonian in 1D

We now consider only resonant terms obtained from the interaction be-
tween neighbouring blocks: in other words we project all the terms on the
eigenspace of H0 to which the initial state belongs (i.e. the gauge invariant
sector with one rishon per link). We call P the projector on this space. We
immediately exclude all the terms that have clearly no component on the
gauge-invariant space and we are left with the following

H ′ = H0 + P
∑
x

h1
x,x+1P (B.32)
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Ph1
x,x+1P =

[
g+
eg − g−eg

2
− 1

N

g+
eg + g−eg

2

]
J
(
ψi†x+1c

j†
x,+ψ

j
xc
i
x+1,− + H.c.

)
+ gggK

(
1− 1

N

)
nxnx+1

+

[
g+
eg + g−eg

2
− 1

N

g+
eg − g−eg

2

]
(Ixnx+1,−nx + Ix+1nx,+nx+1)

+

[
g+
eg + g−eg

2
− 1

N

g+
eg − g−eg

2

]
(Lxnx+1,+nx + Lx+1nx,−nx+1)

(B.33)

where

J =
2

π`gA`gB`eA`eB
(
`−2
gA + `−2

gB + `−2
eA + `−2

eB

)∫
ds wAg (s)wAe+(s)wBe−(s− a0)wBg (s− a0) (B.34)

K =
1

π(`2
g,A + `2

g,B)

∫
ds
[
wAg (s)

]2 [
wBg (s− a0)

]2 (B.35)

Ix =


1

π(`2
g,A + `2

e,B)

∫
ds
[
wAg (s)

]2 [
wBe−(s− a0)

]2 if x is even

1

π(`2
g,B + `2

e,A)

∫
ds
[
wBg (s)

]2 [
wAe−(s− a0)

]2 if x is odd

(B.36)

Lx =


1

π(`2
g,A + `2

e,B)

∫
ds
[
wAg (s)

]2 [
wBe+(s− a0)

]2 if x is even

1

π(`2
g,B + `2

e,A)

∫
ds
[
wBg (s)

]2 [
wAe+(s− a0)

]2 if x is odd

(B.37)
We obtain

H ′ = H0 − τ
∑
x

(
ψi†x+1c

i
x+1,−c

j†
x,+ψ

j
x + H.c.

)
+ w̃

∑
x

nxnx+1

+
∑
x

ũx
2
nx (nx+1,− + nx−1,+) +

∑
x

ṽx
2
nx (nx+1,+ + nx−1,−) , (B.38)

where τ , w, ux and vx are defined as

τ =

[
g+
eg − g−eg

2
− 1

N

g+
eg + g−eg

2

]
J, w̃ = gggK

(
1− 1

N

)
, (B.39)
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ũx = 2

[
g+
eg + g−eg

2
− 1

N

g+
eg − g−eg

2

]
Ix, ṽx = 2

[
g+
eg + g−eg

2
− 1

N

g+
eg − g−eg

2

]
Lx.

(B.40)

B.5.4 Correction to the resonance condition

The projected Hamiltonian in Eq. (B.38) has the disadvantage that the
amplitude τ is typically much smaller than ũx, because the centers of the
Wannier functions that are involved in its integral are more distant. This
large difference in energy scale makes the model trivial and “freezes" the
dynamics. To avoid this, we will now show how the large interaction terms
that compete with the gauge-assisted hopping can be included in the Hamil-
tonian H0, and how this modifies the resonance condition.

We can use the fact that we have one rishon per link and N atoms per
block to rewrite

nx(nx+1,− + nx−1,+) = nx(2− nx,+ − nx,−) = nx(2 + nx −N), (B.41)

nx(nx+1,+ + nx−1,−) = nx(N − nx+1,− − nx+1 +N − nx−1,+ − nx−1)

= 2Nnx − nx(nx+1 + nx−1)− nx(nx+1,− + nx−1,+).

(B.42)

The last two terms in Eq. (B.38) become∑
x

[
ũx
2
nx (nx+1,− + nx−1,+) +

ṽx
2
nx (nx+1,+ + nx−1,−)

]
=
∑
x

[
− ṽx + ṽx+1

2
nxnx+1 +

ũx − ṽx
2

nx(nx − 1)

+

(
Nṽx +

ũx − ṽx
2

(3−N)

)
nx

]
≡
∑
x

(
− ṽx + ṽx+1

2
nxnx+1

)
+ H̃0.

(B.43)

In this new form, these terms give an additional contribution to the
interaction w̃ between neighbouring matter sites, to the on-site interaction
U gg
x and to the chemical potential µgx. The terms in H̃0 can then be included

in H0, resulting in the following resonance conditions

δg +Nχ+
η − χ

2
(3−N) + (N − 1)ε ' δe (B.44)

U gg
x + ũx − ṽx ' 2U eg+

x (B.45)

where ũx = ũ + sxη, ṽx = ṽ + sxχ. We then define w = w̃ − (ṽx + ṽx+1)/2,
whilem and ux are defined as small deviations from the resonance conditions

m = δg +Nχ+
η − χ

2
(3−N) + (N − 1)ε− δe, (B.46)
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ux = U gg
x + ũx − ṽx − 2U eg+

x . (B.47)

We finally obtain the new projected Hamiltonian

H ′ = H0 + H̃0 + w
∑
x

ψi†x ψ
i
xψ

j†
x+1ψ

j
x+1 − τ

∑
x

(
ψi†x+1c

i
x+1,−c

j
x,+ψ

j
x + H.c.

)
= Hres +m

∑
x

sxψ
i†
x ψ

i
x + w

∑
x

ψi†x ψ
i
xψ

j†
x+1ψ

j
x+1

− τ
∑
x

(
ψi†x+1c

i
x+1,−c

j
x,+ψ

j
x + H.c.

)
+
∑
x

ux
2
ψi†x ψ

i
x(ψ

j†
x ψ

j
x − 1)

(B.48)

with Hres constant on the gauge invariant subspace.

B.6 Ab initio values: additional data
In Tab. B.1 we report realistic values for an experimental implementation
of a one-dimensional SU(3)×U(1) QLM using 173Yb.

a0 ∼ 0.44

V 0
g 7

V 1
g −20.02

V S
g 4.40

V 0
e −178.16

V 1
e 125.15

V S
e 7.36

`g
0.0578
0.0565

`e
0.0235
0.0455

∆g 3.6962

∆e 31.3583

δg −2.0720

δe −2.0731

te
−3.0 · 10−5

−2.5 · 10−5

U eg+ 1.2321

U eg− 0.1441

U gg 2.4075
2.3013

ũ
0.05666
0.16388

ṽ
3 · 10−6

0.001019

βg 5 · 10−5

m −4.43 · 10−4

τ −0.00494

u < 10−6

w 2.45 · 10−4

Table B.1: First column: parameters of the 173Yb in Eq. (7.3) [218, 222].
Second column: ab initio parameters of Eq. 7.2 for the 1D setup withN = 3.
Third and fourth columns: parameters of the optical lattices. Fifth to
seventh columns: corresponding values of the lattice Hamiltonian Eq. 7.4.
Energies are in kHz and lengths are in µm. A box has two values when the
corresponding quantity is different for odd and even sites within significant
digits.





Appendix C

Non-equilibrium dynamics of
lattice gauge theories

Here we derive in detail the results presented in Part III of the main text.
The chapter is organized as follows: in Section C.1 we show how to map
the quantum Ising chain onto a U(1) or a Z2 lattice gauge theory (LGT); in
Section C.2 we discuss the general construction of the effective Hamiltonian
and we report its analytic determination at the lowest order in perturbation
theory in the quantum Ising chain; in Section C.3 we study the effective
model in the two-particle sector in order to estimate the delocalization time
of an isolated string and rationalize the observed entanglement growth; in
Section C.4 we consider the effective model in the 4-particle sectors and we
describe a method to construct the solutions of the scattering problem in the
limit of large fermion mass; in Section C.5 we derive the analytic expression
of the meson current, we discuss its physical meaning and we prove the
associated continuity equation; in Section C.6 we summarize and discuss the
effects of having a finite fermion mass; in Section C.7 we collect the exact
expressions for the scattering phases which are used in the semiclassical
quantization equations in Sec. 12.2; in Section C.8 we report the results
on the spectral statistics of the Schwinger model in the case of a non-zero
topological angle.

C.1 Exact mapping between quantum spin chains
and lattice gauge theories in one spatial
dimension

In this Section, we provide the details of the mappings between quantum
spin chains and one-dimensional LGTs. The correspondence is based on
the elimination of matter degrees of freedom. A related construction was
proposed in Chapter 6, which allows one to interpret strongly interacting
Rydberg atom arrays as the realization of a spin-1/2 U(1) LGT with stag-

201



202 APPENDIX C. CONFINEMENT AND NON-EQUILIBRIUM

gered fermionic matter. For the sake of illustration, we focus here on the
quantum Ising chain given in Eq. (10.8), but analogous mappings may be
constructed for similar one-dimensional quantum lattice models by (i) in-
troducing additional “matter" degrees of freedom on the bonds, and (ii)
defining gauge-invariant interactions in such a way that the Gauss law ren-
ders these newly introduced degrees of freedom actually redundant.

C.1.1 The quantum Ising chain as a Z2 LGT

Here we illustrate the details of the mapping between the Z2-LGT in Eq. (8.3)
and the quantum Ising chain in a tilted magnetic field, Eq. (8.2). This map-
ping was proposed in Ref. [6], and is connected with the one discussed in
Ref. [275].

Quantum Ising chain

 lattice gauge theoryℤ2

a)

b)

Figure C.1: (a) The two rows represent two gauge-neutral classical con-
figurations of the matter and gauge fields in Eq. (8.3), i.e., simultaneous
eigenstates of the operators nj = c†jcj and σzj+1/2 for all j. Red spots de-
note the presence of a fermionic charge; horizontal green arrows denote the
polarization of the gauge field: light, rightward for σzj+1/2 = +1 and dark,
leftward for σzj+1/2 = −1. By the Gauss law in Eq. (8.4), the gauge field
varies only across sites that contain a charge. The grey-shaded rectangles
highlight the possible local transitions, from the top to the bottom con-
figuration, described by the interaction term in Eq. (8.3): from left to
right, we have rightward fermion hop, pair annihilation, pair creation, left-
ward fermion hop. (b) Cartoon illustration of the exact mapping between
the Z2-LGT in Eq. (8.3) in the neutral gauge sector defined by Eq. (8.4),
and the quantum Ising chain in Eq. (8.2). The mapping hinges upon the
elimination of the fermionic degrees of freedom, which are in one-to-one
correspondence with gauge-field domain-walls by means of the Gauss law.

We consider the neutral sector, defined by the Gauss law, i.e., Gj =

σzj−1/2 σ
z
j+1/2(1 − 2nj) ≡ 1, with nj = c†jcj representing the number of

fermions at site j. The essence of the mapping is the exact elimination
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of the fermion degrees of freedom [169], as highlighted in Fig. C.1-(b). The
latter are redundant due to the local constraints in Eq. (8.4): a classical con-
figuration of the gauge field uniquely fixes the configuration of the fermionic
matter via the Gauss law.

We present a formal proof of the equivalence. As a first step, we ap-
ply the Jordan-Wigner transformation to turn the fermions into hard-core
bosons. To this aim, we introduce the spin-1/2 operators ταj , for α = +,−, z,
defined as

τ−j =
∏
k<j

(1− 2nk)cj , τ+
j = (τ−j )†, τ zj = 2nj − 1 . (C.1)

As can be easily checked, the operators τ zj , τxj = τ+
j + τ−j and τ yj = −i(τ+

j −
τ−j ) satisfy the usual commutation relations of spin operators. By applying
this transformation, we get the Hamiltonian

H = m
∑
j

1 + τ zj
2

+
τ

2

∑
j

σzj+1/2 + w
∑
j

τxj σ
x
j+1/2 τ

x
j+1 , (C.2)

with the constraint
Gj = −σzj−1/2 σ

z
j+1/2τ

z
j = 1. (C.3)

We now define a unitary transformation U that eliminates the matter
degrees of freedom. In other words, we seek for a (gauge-variant) unitary
U such that the transformed Gauss law G′j = UGjU

† ≡ 1 from Eq. (C.3)
only depends on the matter degrees of freedom, whereas the transformed
Hamiltonian H ′ = UHU † only involves the gauge degrees of freedom. This
can be accomplished with

U =
∏
j

exp

[
iπ

2
(τxj − 1)

1− σzj−1/2σ
z
j+1/2

2

]
=
∏
j

[
1 + σzj−1/2σ

z
j+1/2

2
+ τxj

1− σzj−1/2σ
z
j+1/2

2

]
. (C.4)

This transformation flips the spin τ zj where the neighbouring gauge fields
are anti-aligned and does nothing where they are aligned. We get Uτ zj U † =
τ zj σ

z
j+1/2σ

z
j+1/2 and Uτxj σxj+1/2τ

x
j+1U

† = σxj+1/2. The transformed constraint

G′j = UGjU
† = −τ zj ≡ 1 (C.5)

forces the ταj spins to be polarized in the −ẑ directions. They enter the
transformed Hamiltonian only via G′j:

H ′ = m
∑
j

1−G′jσzj−1/2σ
z
j+1/2

2
+
τ

2

∑
j

σzj+1/2 + w
∑
j

σxj+1/2 . (C.6)
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Thus, in the neutral gauge sector, by Eq. (C.5) the spins ταj are eliminated.
Equation (C.6), which governs the dynamics within this sector, coincides
with the quantum Ising chain in a tilted magnetic field reported in Eq. (8.2)
(up to an irrelevant additive constant) upon identifying m = 2J , τ = −2h,
w = −g.

We note that, while in this derivation we used a non-local transformation
to convert the fermions into hard-core boson, it is nevertheless possible
to formulate a completely local mapping between the two Hamiltonians:
in the neutral gauge sector, the Jordan-Wigner string can be completely
reabsorbed using Gauss’ law. To show that the mapping is local, it is
sufficient to define the transformed spin operators

σ̃xj+1/2 = (c†j − cj)σxj+1/2(c†j+1 + cj+1), (C.7)

σ̃yj+1/2 = (c†j − cj)σyj+1/2(c†j+1 + cj+1), (C.8)
σ̃zj+1/2 = σxj+1/2. (C.9)

These operators satisfy the usual commutation relations of Pauli matrices
and are related to the original spins by a local transformation. It is then
immediate to write Eq. (8.3) in terms of the new spin operators, obtaining
the quantum Ising chain in the neutral gauge sector:

H ′ = m
∑
j

1− σ̃zj−1/2σ̃
z
j+1/2Gj

2
+
τ

2

∑
j

σ̃zj+1/2 + w
∑
j

σ̃xj+1/2 . (C.10)

C.1.2 The quantum Ising chain as a U(1) LGT

The quantum Ising chain can equivalently be mapped to a U(1) lattice
gauge theory. The correspondence is again based on the interpretation of
the spin polarization operator szj ≡ σzj /2 as a local "electric flux", and on the
introduction of fictitious fermionic matter degrees of freedom on the sites
of the dual chain. In this case, they represent "positrons" and "electrons".
Crucially, one enforces local dynamical constraints that associate a kink
(antikink) in the spin configuration with the presence of a positron (electron)
on the corresponding bond, as described in Fig. C.2. These constraints are
interpreted as implementing a discrete Gauss law and result from the U(1)
gauge-invariance of matter-field interactions.

To make this construction explicit, we define two species of fermions,
positively (p) and negatively (e) charged respectively, residing on the chain
bonds (denoted as half-integer sites), with corresponding creation operators
(cp,ej )† and occupation numbers np,ej = (cp,ej )†cp,ej . We introduce a spin-1/2
U(1)-quantum link model [145,147],

HU(1) = Hm +Hg +Hint , (C.11)
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Figure C.2: Mapping between a quantum spin chain and a LGT:
Cartoon of the mapping of the quantum Ising chain in Eq. (8.2) onto the
1 + 1-dimensional U(1) lattice gauge theory in Eq. (C.11).

with

Hm = m
∑
j

(npj + nej) + U
∑
j

npjn
e
j ,

Hg =
τ

2

∑
j

σzj+1/2 ,

Hint = w
∑
j

{[
(cpj)

† + cej
]
σ+
j+1/2

[
cpj+1 + (cej+1)†

]
+ h.c.

}
,

where σ±j+1/2 = (σxj+1/2 ± iσyj+1/2)/2 act as U(1) parallel transporters [140].
Hm encodes the fermion mass and onsite Hubbard-like interaction, and Hg

can be interpreted as the energy shift caused by a background field (or
topological θ-angle [4, 144]). In Hint, the various terms describe hopping
and pair creation/annihilation of fermions. The U(1) gauge invariance of
these interactions is expressed by the local symmetries [H,Gj] = 0 with
Gj = σzj+1/2/2 − σzj−1/2/2 − (npj − nej). Accordingly, the complete Hilbert
space decomposes into dynamically disconnected subspaces, labelled by the
set of eigenvalues {qj = 0,±1,±2} of {Gj}, interpreted as static background
charges. Here we focus on the neutral gauge sector, i.e., on the space of the
states |ψ〉 for which the Gauss law Gj |ψ〉 ≡ 0 is satisfied at all sites j, i.e.,
qj ≡ 0 [140]. This law asserts that the variation of the gauge field strength
σz/2 upon crossing a bond j equals the dynamical charge Qj = npj − nej
located on it.

In the presence of a strong Hubbard repulsion U → ∞, each "classical
configuration" of the gauge field (eigenstate of all σzj operators) fully de-
termines a unique configuration of the matter particles via the Gauss law.
This allows one to eliminate the redundant matter degrees of freedom [4,169]
and write the model in terms of a locally self-interacting gauge field [144].1
In this case, all matrix elements of the Hamiltonian (C.11) between two
classical gauge-field configurations coincide with the corresponding matrix

1We observe that the converse elimination of the gauge field is also possible in one
dimension, but the resulting model of interacting matter particles involves long-range
Coulomb forces.
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elements of the quantum Ising chain [Eq. (8.2)] in the σz-basis, upon iden-
tifying m = 2J , τ = −2h, w = −g, and up to an overall energy shift.

It is interesting to finally comment on the gauge-integrated version of the
above lattice gauge theory, where the gauge field is eliminated by solving the
Gauss law [165,167]. In one spatial dimension, the result of this procedure
is a model of charges interacting via long-range Coulomb potentials. In the
specific case of the U(1) LGT discussed above, the gauge-integrated model is
equivalent to a model of charges subject to a constant electric field and to the
constraint of sign alternation along the chain. The latter makes the particles
interacting, as made explicit by the strong on-site Hubbard repulsion. The
slow dynamics discussed in the Chapter 9 can thus be connected with the
recently proposed "Stark many-body localization" of interacting charged
particles in a strong field [302,303].

C.2 Construction of the effective Hamiltonian

We outline here the general procedure for the construction of the effective
Schrieffer-Wolff Hamiltonian, following closely Refs. [309, 310, 312] to arbi-
trary order in perturbation theory. With the notation introduced in the Sec-
tion 9.1.1, H0 denotes the “unperturbed" block-diagonal Hamiltonian given
by the mass term, and the remaining terms are collected in V = H − H0.
As in Section 9.1.1, we introduce the generators S1, . . . , Sn of the transfor-
mation which brings H to the desired block-diagonal form up to the various
orders in perturbation theory.

Explicitly, the terms of the effective Hamiltonian and the generator of
the unitary transformation are defined order by order in perturbation theory
via the following recursive algorithm. We define V1 ≡ V and for n ≥ 2,

Vn =
∑

(k1,...,kp)∈[n]′

1

p!
[Sk1 , [Sk2 , . . . , [Skp , H0]...]]

+
∑

(k1,...,kp)∈[n−1]

1

p!
[Sk1 , [Sk2 , . . . , [Skp , V ]...]], (C.12)

where the summations run over the set [m] of the ordered partitions
(k1, . . . , kp) of an integer m, i.e., ki ≥ 1 and

∑p
i=1 ki = m, and the prime

[m]′ excludes the trivial partition (k1 = m) with p = 1. The operator Vn
represents the effective perturbation at the n-th order, i.e., the term of order
n in the transformed Hamiltonian after eliminating all block-off-diagonal
transitions up to the n− 1-th order, i.e., H ′ = H0 + · · ·+Hn−1 + Vn + V>n.
Just like in the first order, we split the perturbation into a block-diagonal
and a block-off-diagonal term, Vn ≡ Hn+Rn. The former constitutes the n-
th order correction to the effective Schrieffer-Wolff Hamiltonian Heff, while
the latter is eliminated by choosing Sn in such a way that [Sn, H0]+Rn = 0.
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This construction is algorithmic and may be carried out directly in the
thermodynamic limit, as it involves only the commutation of local operators.
However, manual derivations are limited to the first few orders because the
combinatorial complexity of the calculation increases rapidly with the per-
turbative order n. The convergence properties of this kind of construction
have been discussed in Ref. [310] in full generality, and later in Ref. [312] in
a specific case. We observe that, differently from these works, the local den-
sity of the unperturbed Hamiltonian H0 need not be a single-site operator
for our purposes (for example, in the quantum Ising chain, σzjσzj+1 is not);
however, the formal construction in the mentioned works may be adapted
to the present case. It is rigorously shown therein that the relative magni-
tude of the “rest" V>n compared to H0 has an upper bound proportional to
n! times the perturbation strength to the power n. The perturbative series
(presumably) diverges, pointing to an asymptotic mixing of the eigenstates
among sectors and thermalization. However, truncation of the series to or-
der n leads to a bound for the size of the effective perturbation at the n-th
step. The optimal order n∗ (the one which gives the tightest bound) scales
as the inverse perturbation strength, which leads to an exponential bound.
In the Section 9.1.2, we use this fact to prove that the effective Hamiltonian
represents a good approximation for studying the dynamics up to times
which become exponentially long upon increasing the inverse perturbation
strength.

C.2.1 Effective Hamiltonian of the quantum Ising chain

Quantum Ising chain

+ -+-
U(1) lattice gauge theory

H(1)
eff H(2)

eff

Figure C.3: Cartoon of the perturbative transitions described by the effec-
tive Hamiltonian H(2)

eff of the quantum Ising chain up to the second order in
1/J . At the first order, hopping of a kink/antikink by one lattice site is the
only allowed transition. At the second order, one can either have hopping
by one lattice site of a string/antistring of length one (top row) or hopping
of two lattice sites of a kink/antikink (bottom row). Solid arrows show
the block-diagonal transitions described by the effective Hamiltonian. The
intermediate states mediating the processes, indicated by dashed arrows,
involve “virtual" states belonging to a different block. The amplitudes of
the second-order processes are proportional to g2/J , see Eq. (C.15).

In order to show the structure of the effective Hamiltonian, we report
its expression up to the third order for the quantum Ising chain in Eq. (8.2)
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(using the notation introduced in Section 9.1.1):

H0 = −J
∑
j

σzjσ
z
j+1, (C.13)

H1 = −h
∑
j

σzj − g
∑
j

(
P ↑j−1σ

x
j P
↓
j+1 + P ↓j−1σ

x
j P
↑
j+1

)
, (C.14)

H2 = +
g2

4J

∑
j

[
+ P ↑j−1(σ−j σ

+
j+1 + σ+

j σ
−
j+1)P ↑j+2 + P ↓j−1(σ−j σ

+
j+1 + σ+

j σ
−
j+1)P ↓j+2

(C.15)

− P ↑j−1(σ+
j σ

+
j+1 + σ−j σ

−
j+1)P ↓j+2 − P ↓j−1(σ+

j σ
+
j+1 + σ−j σ

−
j+1)P ↑j+2

− σzjσzj+1

]
,

H3 = +
hg2

8J2

∑
j

[
− σzj − σzj−1σ

z
jσ

z
j+1 (C.16)

+ P ↑j−1(σ+
j σ
−
j+1 + σ−j σ

+
j+1)P ↑j+2 − P ↓j−1(σ+

j σ
−
j+1 + σ−j σ

+
j+1)P ↓j+2

]
+
g3

8J2

∑
j

[
+ P ↓j−2(σ+

j−1σ
+
j σ

+
j+1 + σ−j−1σ

−
j σ
−
j+1 + σ+

j−1σ
−
j σ

+
j+1 + σ−j−1σ

+
j σ
−
j+1+)P ↑j+2

+ P ↑j−2(σ+
j−1σ

+
j σ

+
j+1 + σ−j−1σ

−
j σ
−
j+1 + σ+

j−1σ
−
j σ

+
j+1 + σ−j−1σ

+
j σ
−
j+1+)P ↓j+2

− P ↑j−2(σ+
j−1σ

+
j σ
−
j+1 + σ−j−1σ

+
j σ

+
j+1 + σ−j−1σ

−
j σ

+
j+1 + σ+

j−1σ
−
j σ
−
j+1+)P ↑j+2

− P ↓j−2(σ+
j−1σ

+
j σ
−
j+1 + σ−j−1σ

+
j σ

+
j+1 + σ−j−1σ

−
j σ

+
j+1 + σ+

j−1σ
−
j σ
−
j+1+)P ↓j+2

− P ↑j−1σ
x
j P
↓
j+1 − P ↓j−1σ

x
j P
↑
j+1

]
,

while the generators S1 and S2 of the unitary transformation up to the
second order in 1/J are

S1 =
ig

4J

∑
j

(
P ↑j−1σ

y
jP
↑
j+1 − P ↓j−1σ

y
jP
↓
j+1

)
, (C.17)

S2 =
igh

8J2

∑
j

(
− P ↓j−1σ

y
jP
↓
j+1 − P ↑j−1σ

y
jP
↑
j+1

)
(C.18)

+
g2

8J2

∑
j

[
+ P ↓j−1(σ−j σ

−
j+1 − σ+

j σ
+
j+1)P ↓j+2

+ P ↓j−1(σ+
j σ
−
j+1 − σ−j σ+

j+1)P ↑j+2

+ P ↑j−1(σ+
j σ

+
j+1 − σ−j σ−j+1)P ↑j+2

+ P ↑j−1(σ−j σ
+
j+1 − σ+

j σ
−
j+1)P ↓j+2

]
.

One realizes that higher-order terms have a twofold effect: they renormalize
lower-order terms and introduce longer-range processes compatible with the
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conservation of H0. Note that the maximal range of these processes at order
n is bounded by n+ 2, as can be proven by induction. Transitions allowed
up to the second order are sketched in Fig. C.3.

For the quantum Ising chain, the estimates of Refs. [310,312] yield

||V≥n||
||H0||

≤
(
const × n

√
g2 + h2

J

)n
, (C.19)

where ||·|| indicates the operator norm of the local density of the argument.
Truncation of the series at the optimal order n∗ ∝ J/

√
g2 + h2 leads to an

exponential bound for the thermalization time, see Eq. (9.6).
The construction presented here is similar to that of Ref. [280] for the

quantum Ising chain. However, while that study is concerned with the
homogeneous dynamics of elementary quasiparticle excitations above the
ground state, we are here interested in the effective dynamics of dilute
domain-walls, corresponding to high-energy states of the model.

C.3 Solution of the two-body problem
The two-body Hamiltonian for m→∞ is obtained by projecting Eq. (8.3)
onto the two-fermion subspace. It can be written in the basis of the fermion
positions as

H2-body =
∑
j1<j2

τ(j2 − j1) |j1, j2〉 〈j1, j2|

+w
(
|j1 + 1, j2〉 〈j1, j2|+ |j1, j2 + 1〉 〈j1, j2|+ H.c.

)
, (C.20)

where j1 < j2 label the positions of the two fermions along the chain.
For τ = 0 the eigenstates are (antisymmetric combinations of) plane

waves
Ψk1,k2 = eik1j1+ik2j2 − eik2j1+ik1j2 (C.21)

with energy Efree(k1) + Efree(k2), where Efree(k) = 2w cos k, k ∈ [−π, π) is
the free-fermion dispersion relation. For τ 6= 0, however, a linear confining
potential emerges between the two fermions, and the spectrum is nonper-
turbatively modified into a discrete tower of bound states (mesons) labelled
by a quantum number ` = 1, 2, . . . . Each meson has a different dispersion
relation E`(k), where k is the center-of-mass momentum of the bound state.

As shown in Section 9.2.1 the meson wavefunctions and dispersion rela-
tions can be solved explicitly [6,316] by switching to the center-of-mass and
relative variables, yielding

ψ`,k(s, r) = eiksJr−ν`(2w̃k/τ), (C.22)

ν`(2w̃k/τ) ≡ −τ × {`-th zero of x 7→ Jx(2w̃k/τ)} , (C.23)
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with w̃k = 2w cos k. Note that k ∈ [−π/2, π/2), because k and k+π generate
the same solution up to a phase: Since Jα(−z) = eiπαJα(z), when k 7→ k+π
the wavefunction ψ gets multiplied by (−)seiπ(r−ν`) = e−iπν`(−)2j2 = e−iπν` ,
i.e., a global phase.

The most important qualitative aspects of this exact solution are the
following. For w → 0, one finds energies E`(k) = τ`, corresponding to a
pair of fermions separated by a string of excited gauge fields of length `.
In this limit, bound states are dispersionless (flat bands). As w increases,
the lightest mesons progressively acquire mobility (band curvature). In
particular, one can see that an effective hopping of the `-th meson appears
at the 2`-th order in perturbation theory in w/τ , which gives rise to a band
curvature (and hence a maximal velocity) of this order of magnitude. This
can be confirmed by the exact solution above, as [416]

ν`(x) ∼
x→0

`

(
1− x2`

(`!)2

)
. (C.24)

Interestingly, the flat-band property of heavy mesons is a nonperturbative
feature that persists to arbitrarily large values of the ratio w/τ . As we are
now going to show, for ` � 4w/τ the band curvature drops to zero faster
than exponentially.

We can quantify the bending of the bands Ej(k) by making an es-
timate based on the Hellmann-Feynman theorem. Consider the model
without the hard wall, and let u be the hopping amplitude between sites
r = 0 and r = 1, and w̃k be the hopping amplitude on all the other
links. For u = w̃k the eigenenergies are E`(k) = τ` and the eigenfunc-
tions φu=w̃k

k,` (r) = J`−r (2ξloc cos k), with ξloc = g/h = 2w/τ . On the other
hand, if we adiabatically turn off the hopping amplitude between r = 0, 1,
we obtain the eigenenergies E`(k) of the same model with the hard wall.
From the Hellmann-Feynman theorem, we find that

δE`(K) = E`(k)− τ` = 2 cos k

∫ 0

w̃k

[(
φuk,`(0)

)∗
φuk,`(1) + h.c.

]
du, (C.25)

where φuk,`(r) is the eigenfunction for a certain value of u.
We can estimate this integral by replacing the integrand with the average

between the values at the two extrema. Since φ(j,K)
0 (0) = 0, we find the

correction to the dispersion relation

δE`(k) ' −2|w| cos kJ` (2ξloc cos k) J`−1 (2ξloc cos k) (C.26)

' − (2|w| cos k)2`

`!(`− 1)! |τ |2`−1
, (C.27)

where, in the last approximation, we used only the asymptotic behaviour
of the eigenfunction for `� ξ2

loc [417]. In Fig. C.4, these approximations are
compared with numerical diagonalization of the one-kink problem with the
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Figure C.4: Correction to the energy Ej of the j-th eigenfunction, induced
by the hard-wall potential. The dots correspond to the results of an exact
diagonalization, the dashed line is the value estimated from Eq. (C.26) and
the dotted line is the one obtained from Eq. (C.27). The energies are in
units of g cos k and the different colours refer to the different values of h
reported in the legend.

hard wall: The first asymptotic estimate is found to be extremely accurate
in the considered quasilocalized regime ` & 2ξloc. In a semiclassical picture,
asymptotically exact for ` � 1, ξloc � 1 and fixed `/ξloc, this regime cor-
responds to having the two particles at the edges of the string performing
non-overlapping Bloch oscillations of amplitude ξloc each. We observe that
the last asymptotic estimate in Eq. (C.27) agrees with the perturbation-
theory argument for which nonvanishing corrections to the eigenenergy of
the `-th bound state occur only at the 2`-th order in ξloc; we emphasize,
however, that the equations above are valid for arbitrarily large localization
lengths, provided the string length is even larger.

The result in Eq. (C.27) can be recovered from the exact single-string
energy spectrum, expressed as a solution of the implicit equation

J−E`/τ (2ξloc cos k) = 0, (C.28)

first derived in Ref. [316]. From the series expansion [417]

Jν(z) =
(z

2

)ν ∞∑
p=0

(−1)p

Γ(p+ 1)Γ(p+ 1 + ν)

(z
2

)2p

(C.29)

one readily realizes that the leading correction δE`(k) in z = 2ξloc cos k to
the flat band energy level E`(k) = τ` is given precisely by Eq. (C.27).

From the above result, the maximal group velocity

vmax
` = max

k∈[0,π)

∣∣∂k δE`(k)
∣∣ (C.30)
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of the `-th bound state can be computed. In particular, for ` � ξ2
loc, one

finds

vmax
` ' |τ |

2

(2`)3/2

(`!)2

(w
τ

)2`

e−1/2 = |h|(2`)
3/2

(`!)2

( g
2h

)2`

e−1/2. (C.31)

Note that these speeds dramatically drop to zero for ` � |g/h|. The delo-
calization time in Eq. (9.13), is estimated by taking the inverse of vmax

` .
The fast increase of delocalization time with ` is due to Wannier-Stark

localization of particles in a linear potential: Single, isolated particles can
be seen to perform a finite oscillatory motion (Bloch oscillations) with an
amplitude of ξloc = g/h = 2w/τ lattice sites. Correspondingly, their eigen-
states are localized around each lattice site, with a localization length ξloc.
When two particles are initialized at a distance much larger than 2ξloc,
they perform independent oscillations without touching each other, and the
meson is thus immobile and localized. The mobility is provided by the hard-
core interaction between the two kinks, which is suppressed as the overlap
between the two localized wavefunction tails, corresponding to the estimate
in Eq. (C.24) [6].

We observe that from the exact eigenvalues and eigenfunctions of the
two-kink problem, one can obtain the dynamics of the entanglement entropy
S(t) associated with a bipartition of the chain. The bottom right panel of
Fig. 9.3 reports the growth of S(t) for the evolution of isolated strings, com-
pared with the corresponding growth for initial dilute states with multiple
strings. For an initial condition given by kinks located at sites i, j = n1,2

and bipartition cut at site r, the growth of S(t) turns out to approximately
consist of a discrete sequence of "jumps", associated with the delocalization
of the various components of the initial state on the eigenstates with quan-
tum number ` = 1, 2, . . . , their weight being maximal around ` ≈ |n2− n1|.
Eventually, S(t) converges to log 2 as t→∞, since the diffusing string will
asymptotically be either entirely on the left or entirely on the right of the
cut, with equal amplitude. Before this eventual saturation, S(t) can attain
values larger than log 2, caused by transient correlations between the two
particles located on opposite sides of the cut. Using the fact that particles
are confined, it is straightforward to formulate an upper bound for S(t). In
fact, for wavefunctions supported in the region |i − j| ≤ d, i.e., with the
two particles separated by no more than d lattice sites, the maximal von
Neumann entanglement entropy is log(d + 1). For the considered initial
condition, this bound holds with d ≈ |n2 − n1|+ 2ξloc.

We finally observe that there exist solutions of the Schroedinger equation
(9.8) with complex momentum k and energy E , with the same wavefunction
(9.11) and the same (analytically continued) energy-momentum relation
(9.10). Such solutions correspond to evanescent waves and are important
in the scattering problem that will be analyzed below.
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C.4 Solution of the four-body problem

The four-body Hamiltonian for m→∞ is obtained by projecting Eq. (8.2)
onto the four-fermion subspace. It can be written in the basis of the fermion
positions as

H4-body =
∑

j1<j2<j3<j4

[
τ(j2−j1 +j4−j3) |~j〉 〈~j|+w

4∑
n=1

(
|~j + ên〉 〈~j|+H.c.

)]
(C.32)

where ~j = (j1, j2, j3, j4) and we defined the unit vectors ê1 = (1, 0, 0, 0),
ê2 = (0, 1, 0, 0), etc. The sum is constrained by Pauli exclusion.

The diagonal term ∝ τ can be viewed as the two confining potentials for
the first and last pair of adjacent fermions. These potentials give rise to two
bound states (mesons). These mesons experience no residual interactions;
they only interact when they bump into each other, due to Pauli exclusion.
For later convenience, we define the center-of-mass positions s1 = j1 + j2,
s2 = j3 + j4 and relative distances r1 = j2 − j1, r2 = j4 − j3 for the two
mesons.

We are interested in the problem of a scattering event with incoming
mesons in states (`1, k1), (`2, k2). This asymptotic state defines the total
energy E ≡ E`1(k1) + E`2(k2) and the total momentum K ≡ k1 + k2 mod π
of the system. Since meson-meson interactions are local, we formulate an
ansatz in terms of the product state

χ`′1,k′1,`′2,k′2(s1, r1, s2, r2) = ψ`′1,k′1(s1, r1)ψ`′2,k′2(s2, r2), (C.33)

where ψ`′1,2,k′1,2 are eigenstates of the two-body problem with quantum num-
bers `′1,2 and generally complex momenta k′1,2 ∈ C. For Im(k′1) ≤ 0,
Im(k′2) ≥ 0, the ansatz χ`′1,k′1,`′2,k′2 is an asymptotic solution, and solves the
Schrödinger equation in the full domain (s2 − s1 − r1 − r2)/2 = j3 − j2 > 0
away from the scattering region (that is the hyperplane j2 = j3).

To obtain the complete solution for given scattering data, we first need
to determine the set of parameters {(`α1 , kα1 ), (`α2 , k

α
2 )}α=1,2,... which simulta-

neously satisfy the conservation laws of total energy and momentum

E = E`α1 (kα1 ) + E`α2 (kα2 ), (C.34)

K = kα1 + kα2 mod π. (C.35)

Note that, while E and K are real, kα1,2 and E`α1,2(kα1,2) are generally com-
plex. Solutions with real momentum and energy correspond to incoming or
outgoing states, are only a finite number. The candidate scattering solution
is a linear superposition of the form

Ψ(s1, r1, s2, r2) = χ`1,k1,`2,k2 +
∑
α

Aαχ`α1 ,kα1 ,`α2 ,kα2 . (C.36)
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The sum in Eq. (C.36) has to be restricted to the asymptotic solutions with
outgoing current (see below) among those with real energy/momentum, and
includes all the evanescent states that decay exponentially with the distance
from the scattering region among those with complex energy/momentum.

The values of the coefficients Aα are then obtained by imposing the
continuity of the solution in the scattering region. More explicitly, we have
to impose that Ψ ≡ 0 on the hyperplane j2 = j3. We define S = (s1 +s2)/2,
R = s2−s1, representing the global center-of-mass position and the distance
between the two mesons, respectively. Hence, we have

Ψ(S,R, r1, r2) = eiKS
[
eipRφ`1,K/2−p(r1)φ`2,K/2+p(r2)

+
∑
α

Aαe
ipαRφ`α1 ,K/2−pα(r1)φ`α2 ,K/2+pα(r2)

]
(C.37)

where p = (k2 − k1)/2, pα = (kα2 − kα1 )/2, and φ`,k are the solutions to
Eq. (9.8). The boundary condition applied to Eq. (C.37) reads∑

α

M(r1,r2),αAα = B(r1,r2), (C.38)

where
M(r1,r2),α = eipα(r1+r2)φ`α1 ,K/2−pα(r1)φ`α2 ,K/2+pα(r2), (C.39)

B(r1,r2) = −eip(r1+r2)φ`1,K/2−p(r1)φ`2,K/2+p(r2). (C.40)
The coefficients Aα are then obtained by solving the linear system in

Eq. (C.38), truncated to a finite set of values of α and r1,2 ≤ rmax. The
truncation in α can be safely performed: the open outgoing channels are
only a finite number, and the evanescent states with increasingly high quan-
tum numbers have large Im(pα), resulting in negligible contributions. The
truncation to r1, r2 ≤ rmax is also legitimate: B(r1,r2) decays exponentially
fast with r1 and r2, thanks to the spatial decay of the mesonic wavefunctions
φ`,k; the coefficients M(r1,r2),α decay for the same reason when α represents
an outgoing solution with p ∈ R, whereas the normalizability condition
Im(p) > 0 guarantees the decay of the prefactor eipα(r1+r2) when α repre-
sents an evanescent solution. In all the calculation presented in the Chapter
10, we have checked convergence with respect to these truncation cutoffs.

C.5 Mesonic current
For sufficiently large m (see C.6), in a scattering process, the number of
mesons is globally conserved. This conservation law is associated with a
continuity equation. We now illustrate this continuity equation for the
generic case of q mesons (i.e., in the 2q-fermion sector) in limit m → ∞.
We define the density operator for the i-th meson at position x

χi(x) =
∑

j1<j2<···<j2q

δj2i−1+j2i , x |~j〉 〈~j| (C.41)
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Figure C.5: (a) Profile of J(x, t) in a scattering event. The parameters of the
simulation and the initial state are the same as in Fig. 10.3. (b) Violation of
current conservation law in the analytical solution of the scattering problem.
This quantity serves as a consistency check for the theory. Except for a
small number of points (for which we attribute the inaccuracy to numerical
instabilities in determining the set of solutions), the observed error in the
current conservation is small.

with ~j = (j1, j2, . . . , j2q), and the total mesonic density

ρ(x) =

q∑
i=1

ρi(x) ≡
q∑
i=1

〈Ψ|χi(x) |Ψ〉 . (C.42)

The mesonic current is defined as J(x) =
∑q

i=1 Ji(x), with

Ji(x) = −2w
∑

j1<j2<···<j2q

δj2i+j2i+1 , x Im
{

Ψ∗(~j)
[
Ψ(~j + ê2i) + Ψ(~j + ê2i+1)

]}
,

(C.43)
where ên is the unit vector along the direction of jn. As an example, in
Fig. C.5-(a) we plot the time-evolving profile of the meson current J(x, t)
for the scattering event discussed in Fig. (10.3). The red (blue) color is
associated to positive (negative) current, i.e., to a meson moving to the
right (left).

The mesonic density and current satisfy the continuity equation

∂tρ(x) = −J(x) + J(x− 1). (C.44)

The proof of this equation is reported in the next section. We now derive the
constraints imposed on the scattering solutions of the Schroedinger equation
by the continuity equation.

Let us first consider the case of a single meson, with internal quantum
number ` and momentum k. The density current associated with it can be
written in terms of its dispersion relation E`(k) and wavefunction φ`,k(r) as

J(x) = −2wIm
{∑

r>0 φ
∗
`,k(r)e

ik[φ`,k(r + 1) + φ`,k(r − 1)]
}

=
∑

r>0 φ
∗
`,k(r)(−2w sin k)[φ`,k(r + 1) + φ`,k(r − 1)]

= 〈φ`,k| ∂kHk |φ`,k〉 = ∂kE`(k) = v`(k). (C.45)
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where
Hk =

∑
r>0

2w cos k
(
|r〉 〈r + 1|+ H.c.

)
+ τr |r〉 〈r| (C.46)

is the reduced Hamiltonian for the internal coordinate of the meson with
center-of-mass momentum k [see Eq. (9.8)]. We obtain that the mesonic
current corresponds to the group velocity of the meson, in analogy with the
case of a structureless quantum particle.

We now apply the continuity equation to the solution Ψ(s1, r1, s2, r2) of
the stationary Schrödinger equation for the scattering problem discussed
in Chapter 10. Equation (C.44) implies that JR = JL, where JR and JL
are the currents on the right and on the left, very far from the scattering
region. There, the density current can be easily computed as the sum of the
currents of the isolated mesons. Since evanescent waves do not contribute
far from the scattering region, only propagating waves (i.e., those with qα ∈
R) should be taken into account. Therefore, in a scattering process with
incoming mesons of quantum numbers `1 and `2 and momenta k1 and k2,
the two currents read

JL = v(`1, k1) +
∑
α|qα∈R

|Aα|2v(`α1 , k
α
1 ) (C.47)

JR = v(`2, k2) +
∑
α|qα∈R

|Aα|2v(`α2 , k
α
2 ). (C.48)

where kα1 = qα, kα2 = K − qα are the momenta of the outgoing mesons.
The condition JR = JL can be equivalently formulated as an equality

between the incoming and outgoing currents Jin = Jout, defined as

Jin = v(`1, k1)− v(`2, k2) (C.49)

and
Jout =

∑
α

Jα =
∑
α

|Aα|2[−v(`α1 , k
α
1 ) + v(`α2 , k

α
2 )]. (C.50)

The equation Jin = Jout has an immediate physical interpretation as a
conservation of probability: in a scattering event, at t = −∞ the two
mesons are with probability 1 in the state {(`1, k1), (`2, k2)}; at t = +∞, the
outgoing meson states {(`α1 , kα1 ), (`α2 , k

α
2 )} have fractional probabilities Pα =

Jα/Jin. Similarly to the scattering of structureless quantum particles, the
probability of finding a certain scattering outcome (or total cross section) is
proportional to the width of the wavepacket, which is determined by both
the squared amplitude |Aα|2 and the group velocity.

We stress that the sign of the total current defines outgoing states, char-
acterized by −v(`α1 , k

α
1 ) + v(`α2 , k

α
2 ) > 0. In computing the amplitudes of a

scattering event, one has to select the set of propagating asymptotic solu-
tions according to this criterion, as anticipated in C.4 above.
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We finally note that the conservation law Jin = Jout represents a consis-
tency check on our results for the coefficients Aα obtained from the trunca-
tion of the linear system in Eq. (C.38). In Fig. C.5-(b) we plot the relative
violation of this conservation law, for the computations involved in Fig.
10.2.

C.5.1 Proof of the continuity equation

We prove here the continuity equation (C.44).
In the sector with q mesons, we define the operators ∆+ =

∑q
i=1 ∆+

i

where

∆+
i =

∑
j1<j2<···<j2q

∑
s=2i,2i+1

w(1− δjs+1,js+1) |~j + ês〉 〈~j| . (C.51)

The Hamiltonian can be written as H = ∆+ + ∆−+V , where ∆− = (∆+)†,
V =

∑
i Vi and

Vi =
∑

j1<j2<···<j2q

τ(j2i+1 − j2i) |~j〉 〈~j| . (C.52)

The Heisenberg evolution of the meson density reads

∂tρ(x) = i
∑q

i=1 〈Ψ| [H,χi(x)] |Ψ〉
= i
∑q

i=1 〈Ψ| [∆+
i + ∆−i , χi(x)] |Ψ〉

= 2
∑q

i=1 Im 〈Ψ|χi(x)(∆+
i + ∆−i ) |Ψ〉 . (C.53)

By using the properties ∆−i χi(x) = χi(x − 1)∆−i and 〈Ψ|∆−i χi(x) |Ψ〉 =
(〈Ψ|χi(x)∆+

i |Ψ〉)∗ we get

∂tρ(x) = 2
∑m

i=1 Im 〈Ψ|χi(x)∆−i + χi(x)∆+
i |Ψ〉

= 2
∑m

i=1 Im 〈Ψ|χi(x)∆−i −∆−i χi(x) |Ψ〉
= 2

∑m
i=1 Im 〈Ψ| (χi(x)− χi(x− 1))∆−i |Ψ〉

= −J(x) + J(x− 1) , (C.54)

i.e., Eq. (C.44).

C.6 Finite fermion mass

For the sake of simplicity, the discussion in Chapter 10 focuses on the limit
m→∞. We compactly summarize here the effects of a finite fermion mass.

Perturbative corrections to the exact spectra and scattering so-
lution – The main consequence of the finiteness of the fermion mass m
is to produce a perturbative dressing of the vacuum and of the excitations.
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These effects can be explicitly computed order by order via the Schrieffer-
Wolff transformation introduced in Section C.2. The approximate Hamilto-
nian obtained by neglecting the higher-order remainder conserves the total
fermion number, and exactly accounts for all perturbative n-th order tran-
sitions within each fermion-number sector occurring through up to n virtual
transitions involving intermediate states in other sectors.

Upon restricting the transformed Hamiltonian to the 2q-fermion sector,
one ends up with higher-order corrections to H2q-body. For example, the
first correction involves next-nearest-neighbor particle hopping terms with
amplitudes w2/2m:

H
(1)
2q-body =

∑
j1<···<j2q

[
τ

2q∑
n=1

(−)njn |~j〉 〈~j|+ w

2q∑
n=1

(
|~j + ên〉 〈~j|+ H.c.

)

− w
2

2m

2q∑
n=1

(
|~j + 2̂en〉 〈~j|+ H.c.

)]
(C.55)

with the understanding that

|j1, . . . , jn = jn+1, . . . , j2q〉 ≡ 0, (C.56)
|j1, . . . , jn = jn+1 + 1, . . . , j2q〉 ≡ − |j1, . . . , jn+1, jn, . . . , j2q〉 . (C.57)

Similarly, corrections of order wr/mr−1 introduce new hopping terms of
range r and renormalize shorter-range terms.

From the perturbatively corrected Hamiltonian, we can in principle de-
rive the mesonic spectra, the scattering amplitudes and the mesonic currents
to arbitrarily good accuracy, as long as m� |w|.

Particle pair creation in high-energy collisions – In the regime con-
sidered in this work, fermionic pair creation is energetically forbidden, be-
cause the fermion mass ∼ m exceeds by far the kinetic bandwidth of exci-
tations ∼ w. However, this phenomenon becomes relevant when m ' 2|w|.
This can be inferred from the exact spectrum of the free fermions for
τ = 0, obtained from the equivalence with the solvable transverse-field
Ising chain [359]:

Efree(k) = m

√
1 +

4w2

m2
+ 4

w

m
cos k. (C.58)

Whenm approaches 2|w| (from above), the renormalized mass µ ≡ mink E(k) =
m−2|w| of fermionic particles decreases to small values, and the bandwidth
is ∼ 2m. Thus, if a weak string tension τ 6= 0 is considered, the kinetic en-
ergy of mesons can reach values much larger than their rest mass ∼ 2µ, and
thus high-energy collisions could generate extra mesons. This phenomenon
goes beyond the theoretical analysis presented in Section 10, but could be
accessed with quantum simulators.
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Decay of heavy mesons – A finite fermion mass may also trigger the in-
stability of heavy mesons, which can decay into two or more lighter mesons
when their gauge field string is sufficiently extended (string breaking). The
lifetime of unstable mesons is (at least) exponentially long in the ratio
m/|w|, as discussed in Section 9.1.1; James et al. [210] have argued that it
may even be infinite, based on numerical evidence. Thus, this phenomenon
is not relevant in the regime studied in Chapter 10. The instability thresh-
old is instead relevant when approaching the continuum limit m ↘ 2|w|,
where the model exhibits an emergent Lorentz invariance. In this regime,
the lifetimes of mesons with mass M > 4µ is only perturbative ∼ τ 3, as
computed by Rutkevich [234].

C.7 Kink scattering phases
In the gapped antiferromagnetic phase of the XXZ chain, in the absence of
external magnetic fields, the elementary excitations are spin-1/2 topological
excitations, |Kαβ(ϑ)〉s interpolating between the two degenerate vacua α, β.
Their momenta and z spin component are labeled by ϑ and s, respectively.
Their dispersion relation can be parameterized by the so-called rapidity
variable λ ∈ [π/2, π/2] as [418]

ϑ(λ) =
π

2
− am(2Kλ/π, k) , (C.59a)

ω(λ) =
2K

π
sinh(γ)dn(2Kλ/π, k) , (C.59b)

where K = K(k) is the complete elliptic integral of modulus k with

K(
√

1− k2)

K(k)
=
γ

π
, (C.60)

and am(x, k) and dn(x, k) are the Jacobi amplitude and delta amplitude.
The parameterization (C.59) is equivalent to the form (12.17) in the main
text.

These particles are interacting which is manifested in their nontrivial
scattering properties. In the total spin zero channel, corresponding to the
scattering of a s = 1/2 and a s = −1/2 particle, the scattering matrix is
diagonalized by the combinations

|Kαβ(ϑ1)Kβα(ϑ2)〉± =
1√
2

(
|Kαβ(ϑ1)Kβα(ϑ2)〉 1

2
,− 1

2
± |Kαβ(ϑ1)Kβα(ϑ2)〉− 1

2
, 1
2

)
.

(C.61)
The scattering phases are defined as

|Kαβ(ϑ1)Kβα(ϑ2)〉ss = w0(ϑ1, ϑ2)|Kαβ(ϑ2)Kβα(ϑ1)〉ss , (C.62a)
|Kαβ(ϑ1)Kβα(ϑ2)〉± = w±(ϑ1, ϑ2)|Kαβ(ϑ2)Kβα(ϑ1)〉± . (C.62b)
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They were obtained in Ref. [368] using Bethe ansatz with the result

w(ϑ1, ϑ2) = −eiφη(ϑ1,ϑ2) , (C.63)
φη(ϑ1, ϑ2) = Φη(λ1 − λ2) , (C.64)

Φ0(λ) = −λ−
∞∑
n=1

e−nγ sin(2λn)

n cosh(nγ)
, (C.65)

Φ±(λ) = Φ0(λ) + χ±(λ) , (C.66)

χ+(λ) = −i ln

(
−sin[(λ− iγ)/2]

sin[(λ− iγ)/2]

)
, (C.67)

χ−(λ) = −i ln

(
cos[(λ− iγ)/2]

cos[(λ− iγ)/2]

)
(C.68)

with ϑk = ϑ(λk) as in Eq. (C.59a). The scattering phases φη(ϑ1, ϑ2) are
the ones that appear in Eqs. (12.29) and (12.30) with η chosen according
to the the total spin of the particles.

C.8 Spectral statistics for non-zero topological
angle

We report here the average level statistics for the Schwinger model (Eq.13.2)
with θ 6= 0. In Fig. C.6. we show r versus J for two other values. Within
error bars, we do not observe any difference between confining and decon-
fining regimes: in both cases, ergodicity breaks down in the same coupling
window.
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(a) (b)

Figure C.6: Average level spacing ratio for the Schwinger model with non-
zero topological angle θ = π/2 (a) and θ = π (b). A non-zero θ does
not change the outcome w.r.t. θ = 0 (see Fig.13.1 (b)), not even in the
deconfined regime θ = π.
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