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1 Introduction

A quantum circuit constructs a target state from a given reference state through a sequence
of gates chosen within a set of allowed gates. The circuit complexity has been introduced
in quantum information theory as the minimum number of allowed gates employed to
construct the circuit [1-5]. During the past few years the circuit complexity has been
investigated in the context of quantum gravity through the gauge/gravity (holographic)
correspondence [6-15]. It is worth exploring the circuit complexity also in quantum field
theory and in quantum many-body systems.

Within the class given by the quantum many-body systems, it is natural to start with
quantum circuits made by Gaussian states in free systems [16, 17]. The complexity of
these circuits when only pure states are allowed has been investigated, obtaining explicit
expressions both for bosonic and for fermionic lattices [18-26].



It is important to quantify the complexity also for quantum circuits made by mixed
states, which are characterised by density matrices [27-32]. The reduced density matri-
ces provide an important class of mixed states that are crucial to study the bipartite
entanglement. Given the spatial bipartition A U B of a quantum system in a state char-
acterised by the density matrix p whose Hilbert space can be factorised accordingly as
H = Ha ® Hp, the reduced density matrix pg = Try,p of the spatial subsystem A (nor-
malised by Try, pa = 1) characterises a mixed state. An important quantity to consider
is the entanglement entropy S4 = —Tr(palogps). When the entire system is in a pure
state, S4 = Sp (see [33-39] for reviews). The subsystem complexity C4 is defined as the
complexity of a circuit where both the reference state and the target state are reduced
density matrices associated to the same spatial subsystem A.

It is insightful to compare C4 and S4. At equilibrium, this comparison has been
discussed in lattice models [29, 30] and in various gravitational backgrounds within the
holographic correspondence [11, 15, 28, 40-42], finding that a major distinction occurs in
the leading divergence: while for S4 it is determined by the volume of the boundary of A
(this law is violated in a 2D conformal field theory in its ground state, e.g. when A is an
interval and therefore the boundary of A is made by two points [43-45]), for C4 it grows
like the volume of A, with a power that depends on the choice of the cost function [29, 30].

Quantum quenches are interesting protocols to study the dynamics of isolated quantum
systems out of equilibrium (see [46, 47] for reviews). Given a system prepared in a state |to),
consider a sudden change at ¢ = 0 that provides the time-evolved state |1 (t)) = e~ t|zq)
for t > 0. Since typically |¢g) is not an eigenstate of the evolution Hamiltonian H, this time-
evolved pure state is highly non trivial. The kind of sudden change leads to identify two
main classes of quantum quenches. Global quenches are characterised by sudden changes
that involve the entire system (e.g. a modification of a parameter in the Hamiltonian) [48—
50]. Instead, in local quenches the sudden change occurs only at a point. For instance,
local quenches where either two systems are joined together [51, 52] or a local operator
is inserted at some point [53, 54] have been explored. The temporal evolutions of the
entanglement entropy S4 after various quantum quenches (either global or local) have
been widely studied during the past few years [55-61]. For systems in a finite volume,
revivals occur in some temporal evolutions [58, 62, 63].

It is worth investigating the temporal evolutions of the circuit complexity for the en-
tire system and of the subsystem complexity after different quantum quenches. For some
global quenches, holographic prescriptions have been employed to determine numerically
the temporal evolutions of the complexity for the entire system [64—66] and of the subsys-
tem complexity [67-70]. In free lattice models, the temporal evolutions of the complexity
after some global quenches have been studied, both for the entire system [71-76] and for
subsystems [72, 76, 77]. The temporal evolution of the holographic entanglement entropy
after a local quench has been explored in [78-84]. For the local quench corresponding to
an operator insertion the temporal evolution of the holographic subsystem complexity has
been considered [85, 86], while for the local quench where two systems are joined together
only the holographic entanglement entropy has been studied [79, 83].
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Figure 1. The local quench considered in this manuscript: two harmonic chains containing N; = rN
and N, = (1 — r)N sites are joined together at ¢ = 0 into a single chain made by N = N, + N,
sites (top panel). The subsystem A is a block of L consecutive sites (red segment), either adjacent
to the left boundary (bottom left panel) or centered at the midpoint of the chain, when r = 1/2
(bottom right panel).

In this manuscript, we are interested in the temporal evolution of the circuit complexity
after a local quench. We consider the local quench described by Eisler and Zimborés in [87],
where two harmonic chains containing /N and (1 — )N sites are joined at ¢ = 0 (here r is
a rational number 0 < r < 1), as shown in the top panel in figure 1. We focus on circuits
made only by Gaussian states. First we study the temporal evolution of the complexity for
the entire chain; then we investigate the temporal evolution of the subsystem complexity
C4 for the subsystem A given by a block of L consecutive sites (the spatial bipartitions
considered in the manuscript are shown in the bottom panels of figure 1), by employing
the complexity for mixed states based on the Fisher information geometry [30].

The outline of this manuscript is as follows. In section 2 we describe the local quench
protocol, introducing the covariance matrices characterising the states involved in the con-
struction of the optimal circuit. In section 3 we evaluate numerically the temporal evolution
of the circuit complexity for the entire chain, choosing the (pure) initial state at ¢ = 0 as
the reference state and the (pure) state at generic time ¢ > 0 after the local quench as
the target state. In section 4 we discuss our numerical analysis of the temporal evolutions
of the subsystem complexity for a block of consecutive sites. Some conclusions and open
questions are drawn in section 5. The appendices A, B and C contain further technical
details and supplementary results.

2 Covariance matrix after the quench

The Hamiltonian of the harmonic chain made by N sites (we set i = 1) reads

N 2
~ 1 mw K
oS (L™ 2 B a2 21
; ( om b; + 9 q; + 9 (q1+1 CIz) ( )
where the position and the momentum operators §; and p; are hermitean operators sat-
isfying the canonical commutation relations [§;, ;] = [pi,p;] = 0 and [g;, p;] = i6; ;. The
Dirichlet boundary conditions (DBC) §p = gn+1 = 0 and po = 0 are imposed at the
endpoints.



The initial state is given by the following pure state

[U5) = |1h) @ [,) (2.2)

where |1,) is the ground state of the Hamiltonian H,, defined by (2.1) for the sites labelled
by 0 < ¢ < N, with the physical parameters m,, w, and x, and DBC imposed at ¢ = 0
and ¢ = N, + 1. Similarly, |¢,) is the ground state of the Hamiltonian H, in (2.1) for the
chain made by the sites labelled by N, < i < N, + N, + 1, with parameters m,, w, and k,
and DBC imposed at i = N, and i = N, + N, + 1. Thus, the initial state (2.2) depends on
Ny, my, wy, K1, Ny, m,, w, and k,. The total number of sites is N = N, + N,. Equivalently,
we can describe the initial state in terms of N and of the position parameter 0 < r < 1
(in unit of N), that determines the separation between the left and the right chain; indeed
N, = Nrand N, =N(1—r).
Given the state (2.2) at ¢ = 0, the time evolved state at ¢ > 0 through (2.1) is

W (1)) = e Ty ) (2.3)

This setup describes different quantum quenches. A global quench can be obtained by
setting N, = N and N, = 0 (or viceversa, equivalently), xk;, = k, = kg, m; = m, = my and
w, = w, = wp. In this case the initial state is the ground state of a single chain made by
N sites. If kg # Kk, mg # m and wy # w, the global quench involves all the parameters
occurring in the Hamiltonian (2.1). An important special case is the global quench of
the frequency parameter [49] discussed in appendix A.1l. In appendix A.2 we consider the
global quench of the spring constant and of the frequency, which corresponds to my = m,
ko # Kk and wy # w.

In this manuscript we consider the local quench described in [87], where two discon-
nected harmonic chains, containing N, = rN and N, = (1 — )N sites, are joined at t = 0,
as represented pictorially in the top panel of figure 1. This quench protocol corresponds to
m,=m; =m, ke = K1 = K and wr = W, = w.

The bosonic Gaussian states in harmonic lattices are fully characterised by their co-
variance matrix [16, 17]. In the quench protocol that we are considering [87], the initial
state (2.2) is Gaussian and the time evolution generated by (2.1) preserves its Gaussian
nature; hence (2.3) is Gaussian too, for any ¢ > 0. The time evolved state (2.3) is com-
pletely characterised by the 2N x 2N covariance matrix v%*(¢), whose generic element is
defined as

,r A A A A S A N t
i (8) = Re[(7:(t) 75(1))] P(t) = (@1(t), - dn (1), D1(E), - BN (E) . (24)
The covariance matrix of the initial state (2.2) at ¢ = 0 reads [87]
%" =VoTo Vo (2.5)

where the superscript indicates that this covariance matrix corresponds to an initial con-
figuration made by two disjoint chains, containing N, and N, sites respectively, and

1 1
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with T being the following diagonal matrix
To = diag(ml Qv m Q%,mr Q... m, Q%) (2.7)

written in terms of the dispersion relations

< dr [ . 7k 2
Qz‘)_\lw?—i— " |:Sll’l <2(]Vs—i-1)):| lgngs SG{],r} (28)
The matrix Vj in (2.5) is block diagonal too and it can be written as
Vo=Voa Vo Vo=V, &V, (2.9)

where the elements of the ‘7N1 and VNr are given by

2 . wik .
1<,k <N, Lr}. 2.1
)= v () ik el (210

Notice that, since the matrices f/NS defined by (2.10) are orthogonal, Vo is symplectic

and orthogonal. Thus, also Vj in (2.9) is symplectic and orthogonal.

We find it worth remarking that, in the expression (2.5) for 7(1 ® the parameters m,
wy, K1, M, w, and k, occur in Qg and Py, while V depends only on N, and N,.

The covariance matrix (2.4) of the pure state (2.3) at any ¢t > 0 after the quench is
written in terms of the covariance matrix of the initial state (2.5) as [87]

~ED () = E(t) 43" B(t)* (2.11)

where the time dependence occurs only through the matrix E(t).
A convenient block decomposition of (2.11), which is employed in section 4.1, reads

0= (o0 i) (212)

where Q(t), P(t) and M (t) are the N x N correlation matrices whose elements are Q( )ij =

(Yol Gi(t) 4;(t) [vho), P(t)i; = (ol Di(t) D;(t) [tbo) and M(t)i; = Re[{vbo| Gi(t) p;(t) [to0)] re-

spectively. All these three matrices provide a non trivial temporal dependence.
An insightful decomposition for the matrix E(t) in (2.11) is [87]

E@t)=V'E®)V V=Vya&Vy (2.13)

in terms of the matrix YN/N, whose generic element is given by (2.10) with NN, replaced by
N, and of the matrix £(t), whose block decomposition reads

_ (D(t) A(t)
Et) = ( i (t)) (2.14)

with D, A and B being diagonal matrices whose elements are respectively

Sin(th)

Dy, (t) = cos(Qxt) Ai(t) = o

B (t) = —m Qy, sin (1) (2.15)



where € is the dispersion relation given by

4K mk 2
Q = 24 —|sin | =0 1<k N. 2.1
k \lw m{sm(% 1)” (2.16)

Since Vy is orthogonal, V is symplectic and orthogonal. This observation and the fact that
E(t =0) = 1 lead to E(t = 0) = 1; hence, from (2.11), we have that "7 (t = 0) = ~{"",
as expected. Notice that, by using (2.15), one finds that £(¢) in (2.14) is symplectic;
hence, since V' is symplectic too, we conclude that E(t) in (2.13) is symplectic. Thus, E(t)
implements on the initial covariance matrix the unitary transformation on the initial state
given in (2.3).

In order to investigate the circuit complexity, we find it worth employing also the
Williamson’s decompositions [16, 88] of the covariance matrices of the reference and of the
target states.

The Williamson’s decomposition of the initial covariance matrix ’yg’r> in (2.5) reads

1 _
70" =5 Wo Wo Wo = X Vo XH=T, o (2.17)

where the symplectic matrix Vj has been defined in (2.9). Since the initial state (2.2) is
pure, all the symplectic eigenvalues of its covariance matrix 'y(()l’r) are identical and equal to
1/2. Notice that X} = I'g, where Ty has been introduced in (2.5).

Plugging the Williamson’s decomposition (2.17) into (2.11), it is straightforward to
obtain the Williamson’s decomposition of the covariance matrix v"(t) at any ¢t > 0,
which characterises the pure state (2.3). It reads

20 (1) = %W(t)t W) W) = Wo Bt (2.18)

where the matrices E(t) and Wy have been defined in (2.13) and (2.17) respectively. Since
both Wy and E(t) are symplectic matrices, the matrix W (¢) is symplectic too.

3 Complexity for the harmonic chain

In this section we discuss the temporal evolution of the complexity for the entire chain
after the local quench defined in section 2; hence both the reference and the target states
are pure. We focus on the simplified setup where the quantum circuits are made only by
bosonic Gaussian states with vanishing first moments.

3.1 Optimal circuit and complexity

The reference and the target states are fully characterised by their covariance matrices,
which are vz and v respectively. The circuit complexity obtained from the Fisher-Rao
distance between vz and y reads [89, 90]

C= 21ﬂ \/Tr{[log (r %?1)}2}- (3.1)



This complexity, which corresponds to the F5 cost function, has been studied for both pure
states [18, 19] and mixed states [30].

The optimal circuit that allows to construct v from g is made by the following
sequence of covariance matrices [90]

Go(rn,1m) = W (P e v ) W 0<s<1 (3.2)

which satisfies Go(Vr ,vr) = Y& and G1(Y& , Y1) = Yr-
Denoting by tg and t; the values of time t corresponding to the reference and to the
target states respectively, for their covariance matrices we have

Yo =" (tr) Yo =" (tr) . (3.3)

In the most general setup, these matrices depend on the sets of parameters given by
Vs = {mys, Kis, Wis, Mus, Krs, Wes, Ms, ks, ws }, with S = R and S = T for the reference
and the target state respectively. The corresponding states can be interpreted as the states
obtained through the time evolutions at t =ty > 0 and t = t; > ¢y respectively, through
two different quenches determined by the parameters Vg and Yr respectively, as described
in section 2.

The circuit complexity (3.1) can be evaluated by finding the eigenvalues of v ;L.

From (2.5), (2.11) and (2.13) for the reference and the target states (where V is or-
thogonal) with & = £(tg) and Er = E(tr), we find

Vvt = (VIEV) (Vg Toa Vo) (VO ELV) (VEET V) (Vo T Vo) (VI ELTV)
=V &V Vi Tox VOV ELES VTR Vo VEELT V. (3.4)
This expression is difficult to deal with mainly because of V' Vj, which encodes the spatial

geometries before and after the local quench.
Notice that, when tg =ty = 0, we have & = & = 1; hence (3.4) simplifies to

rm =ViToxTon Vo (3.5)

Since Vj defined in (2.9) is orthogonal and the matrices I'g + and I'g  in (2.6) are diagonal,
the eigenvalues of v ;! in (3.5) are the ratios of the entries of I'g r and I'g r. By employing
this observation and (3.1), we obtain the following expression for the circuit complexity

2 (r) 2
} +Z {log[ ‘Tg”” (3.6)

in terms of the dispersion relations (2.8). In the special case where m, g = m, 1, M, g = M, 7
and either N, = 0 or N, = 0, the expression (3.6) becomes the result obtained in [18].
The above results can be employed to study the temporal evolution of the complexity

N M

1 mayr Q3

co g 2 {los 2t
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after a global quench, as already mentioned in section 2. In appendix A.1 we discuss the case
of the quench of the mass parameter, showing that the analysis of [87] allows to recover the
correlators obtained in [50], which have been employed to evaluate the temporal evolutions



both of the complexity of the entire chain [73, 77] and of the subsystem complexity [77]
after this kind of global quench. Instead, in appendix A.2 the temporal evolution of the
complexity after the global quench of the spring constant is mainly considered, with the
initial state (which is also the reference state) given by the unentangled product state
(i.e. the ground state of the hamiltonian (2.1) with a certain frequency and vanishing
spring constant), that has been adopted as the reference state in various studies about
complexity [18-20, 29, 71].

In this manuscript we are interested in circuits whose reference and the target states
are pure states along the time evolution of a given local quench at different times ¢z and
tr. This can be done by choosing the parameters introduced in section 2 as follows

m=myr ="My ="Mr ="M, 7= "MRr = Mr
K =K,r = KT = Kr = Kyt = KR = Kt (3'7)

W=WR =W,T = WRr =W T=WR=Wp.

From (2.6), we have that I'g ¢ and I'g g do not depend on time and the setting given by (3.7)
leads to I'g v = T'gr = I'p. Thus, (3.4) simplifies to

Ve = VIEV VT W VIELES VT W ViES V. (3.8)

In our analysis we mainly consider the initial state (2.2) as the reference state. This
choice corresponds to set tx = 0 in (3.3) and 1z = 'y(()l’r) given by (2.5). In this case,
from (2.14) and (2.15), one finds that & = £(t = 0) = 1 and that (3.8) simplifies to

YRt = VEEVVET VO VEE VVET LY, (3.9)

where the notation & = £ has been introduced. Finding the eigenvalues of (3.9) analyti-
cally is complicated; hence we study them numerically.

When both the reference and the target states are pure, the Williamson’s decomposi-
tions of their covariance matrices (3.3) read respectively

1 1
where Wy and W are symplectic matrices. By introducing the following symplectic matrix
Won = W Wi ! (3.11)

it is straightforward to realise that the complexity (3.1) becomes [19]

C= 2\1/5 \/Tr { [tog (Wi Wia)]*}. (3.12)

In the case where the reference and the target states are pure states along the time
evolution of a given local quench and, furthermore, the initial state is chosen as the reference
state, we have that Wy = Wy and Wy = W (t), where Wy and W (t) are defined in (2.17)



and (2.18) respectively. From the expressions of Wy and W (t) and the fact that V4 in (2.5)
is orthogonal, for (3.11) one obtains

Wi = WoE@) Wy = XV VEER) VAL, (3.13)
By using that X2 = Iy, where Iy is given in (2.5), we find that
WEWer = X ' Vo VEER) VVETo VoVEER) VIV X5t (3.14)

The diagonalisation of this matrix is as difficult as the one of (3.9). However, this form
could be helpful in future attempts to obtain analytic results for the complexity (3.12).

The Euler decomposition (also known as Bloch-Messiah decomposition) of a symplectic
matrix S reads [91]

S=LXR X=e'ge™ L,Re K(N)=Sp(2N,R)NO(2N)  (3.15)

where the diagonal matrix A = diag(A1, ..., Ay) contains the squeezing parameters A; > 0.

From (3.12), it is straightforward to realise that the complexity of circuits made by
pure states can be written in terms of the squeezing parameters (Arg); corresponding to
the symplectic matrix Wiy as follows [19]

N
C= > (Aw)]. (3.16)
j=1

The symplectic matrix £(t)' can be decomposed into four N x N blocks which are
diagonal matrices (see (2.14)); hence we can find its Euler decomposition £(¢)' = Le Xe Re
(where all the three matrices can depend on t) by following the procedure discussed in
appendix B. Plugging this decomposition into (3.13), one obtains

Wir = Xo VoViLe Xe Re V VX5 L. (3.17)

This expression does not provide the Euler decomposition of Wiy because of the occur-
rence of the diagonal matrix Xy, which is not orthogonal. By contradiction, if Xy were
orthogonal, (3.17) would be the Euler decomposition of Wiy with the squeezing parame-
ters given by Xg because Lg, Rg, V and Vj are symplectic and orthogonal matrices. This
would lead to a complexity (3.16) independent of the position of the joining point because
Xe depends only on £ in (2.14), which is determined by the parameters characterising the
evolution Hamiltonian. The numerical analysis performed in section 3.3 shows that this is
not the case.

3.2 Initial growth

It is worth exploring the leading term of the initial growth of the temporal evolution of
the complexity (3.1) for the entire chain when the reference state is the initial state (i.e.
e = 75" in (2.5)) and the target state is the state at time ¢ after the local quench that
we are exploring (i.e. yp = y®(¢) in (2.11)).



By expanding £(t) in (2.14) as t — 0, one finds

Et) = <tj\/’ t11> +O(t?) N=-m diag((ﬁ, . Q?V) (3.18)

where €, is given in (2.16). By employing (3.18) in (2.13) and the fact that Vi is orthog-
onal, we obtain

0 13
N

where the N x N matrix V]E,/\/' Vi is not diagonal. By using the expansion (3.19), for the
covariance matrix (2.11) we find

YO(8) =98 + ((Bs™ + 387 EG) ) t+O(#) (3.20)
where the O(t) term is symmetric, as expected. This straightforwardly leads to
Yot =1+ [ By +257 Bl (67) 7] t+0() . (3.21)
This expansion provides the following linear growth for the complexity (3.1)
C=cit+O(t?) (3.22)
where for the coefficient ¢; we find (see the appendix C for its derivation)
i

C

N N N
{ 3 o) Z Q) -23" 02
k=1 k=1 k=1

e

T[N T T Q0 T T A T TP ) } (3.23)

Simplifying further the last term in this expression is complicated, hence we evaluate it
numerically, as done in the bottom panel of figure 4 to determine the dashed straight line.

As a consistency check for (3.23), let us consider the trivial case where the quench
does not occur, which corresponds to set N; = N and N, = 0 (or viceversa), implying that
Vo = V. By using that Vy is orthogonal, (2.6) and (2.7), one finds that the last term
in (3.23) simplifies to S8 ; Q2. Then, since N, = 0, the second sum in (3.23) does not
occur and therefore ¢; = 0, as expected, consistently with the fact that the initial state
does not evolve.

3.3 Numerical results

In this section we discuss some temporal evolutions of the complexity for the entire chain
after a local quench where two chains are joined (see section 2), evaluated numerically
through (3.1). The reference and the target states are respectively the initial state (tg = 0)
and the pure state corresponding to a generic value of ¢t =t > 0 along the evolution after

~10 -
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Figure 2. Temporal evolution of the complexity C in (3.1) for the entire chain (made by N sites)
after a local quench with w = 0 w.r.t. the initial state at ¢ = 0. Here either » = 1/2 (left panels)
or r = 1/4 (right panels). The dashed curve in the top left panel corresponds to (3.24), while the
ones in the bottom panels are obtained from (3.25).

the quench. The parameters of this quench protocol are set as in (3.7). The data points
reported in all the figures shown in the main text have been obtained for m =1 and k = 1.

In figure 2 and figure 3, the temporal evolutions corresponding to critical Hamiltonians
are considered; i.e. w = 0. Since the volume is kept finite, revivals are observed, as
already discussed for the temporal evolutions of other quantities [62]. The different cycles
correspond to p < t/(2N+2) < p+1, with p being a non-negative integer. This approximate
periodic behaviour is observed also in the correlators providing the covariance matrix. For
instance, in figure 2 the cycles corresponding to p = 0 and p = 1 are displayed.

Within each cycle we can identify three temporal regimes: (I) p < t/(2N +2) <p+r,
characterised by an initial growth, a local maximum and a subsequent decrease; (II) p+r <
t/(2N +2) < p+ 1 —r, where the evolution is almost stationary (a slight convexity of the
curves is observed by zooming in); (III) p+ 1 —r < t/(2N + 2) < p + 1, characterised by
a growth until a local maximum is reached and a subsequent decrease. The last regime is
very similar the first one, after a time reversal; indeed, the curve of C(t) within each cycle
remains roughly invariant after a reflection with respect to the value of ¢ corresponding to
the center of the cycle.

In the special case of 7 = 1/2 (see the top left panel of figure 2 and the black symbols in
figure 3), the second regime does not occur; hence the cycles correspond to p < t/(N+1) <

p + 1, with p being a non-negative integer.

- 11 -
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Figure 3. Temporal evolution of the complexity C in (3.1) for the chain with N = 100 after a local
quench with w = 0 w.r.t. the initial state, for various positions of the joining point (see the top
panel of figure 1).

In the top panels of figure 2, the temporal evolutions of C — % log(N + 1) are displayed
for r = 1/2 (left panel) and r = 1/4 (right panel). When N is large enough, the data for
different values of IV nicely collapse, except for the beginning and the end of each cycle, as
discussed below. In the top left panel of figure 2, where r = 1/2, also the following curve

C(t)= é log { (N:l> ‘sin(Nﬂ_i 1> ’ } + const (3.24)

which nicely agrees with the data points in the middle of each cycle p < t/(N +1) < p+1,
when N is large enough.

is shown

In the bottom panels of figure 2, we consider the temporal regime of initial growth for
C subsequent to the early linear growth (3.22). We find that the data corresponding to
different values of N nicely collapse on the curve given by

1
C= 1 log(t) + const (3.25)

with const ~ 0.5346 within a temporal regime whose width increases with N. Notice
that (3.25) does not correspond to the leading term of (3.24) when ¢/(NN + 1) — 0 because
the coefficients multiplying the logarithms are different. This is consistent with the fact
that the data in the top panels of figure 2 do not collapse at the beginning and at the end of
each cycle. Taking t/(2N +2) instead of ¢ as the independent variable in the bottom panels
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of figure 2, the data collapse is observed for C — § log(N + 1) and not for C — % log(N +1),
which is plotted in the top panels of the same figure. This is consistent with the data
corresponding to the black symbols in the right panels figures 6 and 8 and in the left panels
of figure 10, which describe the complexity of the entire chain. Let us anticipate that also
for the subsystem complexity C4 different temporal regimes occur where the data points for
Caq —alog(N +1) corresponding to increasing values of N collapse, with different values of
a in the different regimes (see section 4). By comparing the two bottom panels in figure 2,
we observe that the initial growth of the complexity is independent of the value of r.

In figure 3 we consider a longer range of ¢, in order to include more cycles and to
highlight the fact that the approximate periodicity persists, for various values of r. Notice
that the values of the local maximum within each cycle increases with r until » = 1/2.
Furthermore, the height of the plateaux characterising the second temporal regime within
each cycle grows with r until certain value r, (from figure 3, we have 0.25 < r, < 0.35), then
it decreases. Instead, the duration of this plateaux is always decreasing for 0 < r < 1/2 and
vanishes at r = 1/2. The symmetry of the problem straightforwardly leads to realise that
the temporal evolution of the complexity for a given r is equal to the one corresponding to
1 —r, for the same choice of all the other parameters. We have obtained numerical data for
the temporal evolutions of the complexity displayed in figure 3 also for N = 200, finding
that the data points of C — % log(N +1) for N = 100 and N = 200 approximatively collapse
(see also the top panels of figure 2). In figure 3 we have reported only the numerical curves
for N = 100 in order to display in a clear way the qualitative changes in the temporal
evolutions corresponding to different r.

Some temporal evolutions of the complexity determined by gapped Hamiltonians after
the local quench are shown in figure 4, where the different coloured curves correspond to
different values of wN < 50.

In the top panels of figure 4, we show that the curves for C — i log(N + 1) correspond-
ing to different values of N collapse. We remind that this collapse has been observed for
C— %log(N + 1) when w = 0 (see the top panels of figure 2). It would be interesting to
understand this numerical observation. Furthermore, by comparing the temporal evolu-
tions in the top panels of figure 4 with the ones in figure 3, we notice that the periodicity
highlighted for w = 0 does not occur when wN > 0 in general.

When wN < 1, the initial part of the temporal evolution is similar to the one observed
in the case of w = 0 (see figure 2), as one realises from the curves corresponding to wN =1
in the top panels of figure 4. For large values of wN 2 10, the temporal evolution of
C— %log(]\f + 1) is roughly described by a complicated oscillation about a constant value.
This constant value decreases with w/N and, when wN is large enough, is independent of r.
Also the amplitude of the oscillations about this constant value decreases as wlN increases.

The bottom panel of figure 4 focuses on the initial growth of C; hence it is instructive
to compare it against the bottom panels of figure 2 where w = 0. In the temporal regime
considered in the bottom panel of figure 4, the curves corresponding to different values of
N nicely collapse. Furthermore, for small values of wN a collapse is observed for different
values of r (see also the bottom panels of figure 2), while they are clearly different for
wN = 30, after a certain time. For ¢ < 1/2, all the numerical curves displayed in the panel
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Figure 4. Temporal evolution of the complexity C in (3.1) for the entire chain after local quenches
characterised by various w > 0 w.r.t. the initial state (the data corresponding to N = 300 have
been joined through a piecewise line), with either » = 1/2 (top left panel) or r = 1/4 (top right
panel). The initial growth is shown in the bottom panel, where the dashed grey line corresponds
to (3.22) and (3.23) with w =0, r =1/2 and N = 200.

collapse on the same approximate dashed gray line, which has been obtained by setting
w=0,r=1/2and N =200 in (3.22) and (3.23). Although the lines corresponding to the
other values of w, r and N are different, they roughly overlap with the only one that we
have displayed.

We find it worth mentioning some results about the temporal evolution of the com-
plexity evaluated within the gauge/gravity correspondence.

The temporal evolution of the holographic complexity in the Vaidya gravitational
spacetimes, which model the formation of a black hole through the collapse of a shell
and have been exploited to study the gravitational duals of global quenches [92, 93], has
been studied in [7-9, 12, 13, 64-66]. Qualitative comparisons between these results and the
temporal evolution of the complexity in harmonic chains have been discussed in [71, 72, 77].

A gravitational background dual to the local quench obtained through the insertion
of a local operator [53, 54] has been proposed in [78]. The temporal evolution of the
holographic complexity in this spacetime has been studied in [85, 86]. However, this local
quench is very different from the one considered in this manuscript, where two systems
initially disconnected are glued together at some point. A gravitational dual for this local
quench has been studied e.g. in [79, 80, 83] by employing the AdS/BCFT setup discussed
in [94, 95]. It would be interesting to investigate the temporal evolution of the holographic

complexity for the entire system in this spacetime.
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3.4 Evolution Hamiltonians made by two sites

In the simplest case, two separate systems containing only one site are joined at ¢t = 0;
hence N, = N, =1 and N = 2, i.e. the evolution Hamiltonian describes two sites.
In order to specialise (3.9) to this case, one first observes that (2.10) gives

Vi=1 %:\2(1 _11) (3.26)

which (from (2.9) and (2.13)) provide respectively Vp =1 and

szﬁKj—:>@<ijJ] (3.27)

that is symmetric and orthogonal. Since Vj = 1, in this case (3.9) simplifies to
YRt =VEVTVE V! (3.28)

where
L. 1)7-1 1)7-1 1 1 1
I'y= 3 d1ag<[mﬂg )] , [ng )} ,mY | mal )) O = w2+ 26/m (3.29)

and, by using (2.14), we have

VaDVy ‘72A‘72> (3.30)

VoD Vy %B%)
VaBVa VoDV,

t
vev=( vev=(Gan non
with A = diag(A1, As), B = diag(B1, B2) and D = diag(D;, D3) being the diagonal matrices
whose elements are given by (2.15) with NV = 2. From (3.28) and (3.30) one observes that
the structure of ;v ! is not very easy already in this simple case of N = 2.

From (3.29) and (3.30), one obtains an explicit expression for yp 75! in (3.28), which
is not reported here because we find it not very insightful. Its eigenvalues are grg 1, gT_Pil,

grr,2 and g;é 9, in terms of

2

1 2 _
((2k‘ + 1)% + 2w2> — % cos(2Qt)  (3.31)

Ik =42k — DE +w2) (2£ 1 u2)

- 2 - 2 -
V2 % sin (Qxt) \l ((2k + 1)% + 2@2) + 4(2 % + (,ﬂ)Qi — % cos (2Q1)

where Q, = \/w2 + (2k — 1) £, with k£ = 1,2. Notice that (3.31) depends only on the two
dimensionless parameters @ = w/+/k/m and wt. For any given k, the oscillatory behaviour
is governed by the frequency 7/ Q. This result is qualitatively similar from the one obtained
for the temporal evolution of the complexity after the global quench of the mass; indeed,
also in that case the temporal evolution associated to each mode is determined by a single
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Figure 5. Temporal evolution of the complexity C for the chain made by two sites after a local
quench with various w w.r.t. the initial state. Setting x = 1 and m = 1, in the left panel (3.33)
is shown as function of Q¢ (see below (3.31)), while in the right panel (3.36) is compared against
data points obtained numerically for N > 2 from (3.1).

frequency (see eq. (3.7) of [77]). When the evolution is critical, (3.31) is written through
Qe = Qifw=0 = /(2k — 1) 5, with k = 1,2 as follows

1 ~ ~ =
grrkly_o = SR =1) {(2k—|— 1)% —cos(29%t) — V2 sin (Qyt) \/4k(l<: +5) — 7 — cos(2Qt) }
(3.32)
By employing the above expressions for the eigenvalues of vrvy;!, we find that the

complexity (3.1) in this case can be written as follows

1
C= 9 \/[IOggTR,ﬂ2 + [IOg gTR,2]2 (3.33)

in terms of the expressions in (3.31).

We find it worth investigating the asymptotic regime given by @ = w/\/k/m — oo,
while wt is kept fixed and finite; hence the condition wt < @ is imposed. In this regime,
the expansion of (3.31) reads

grrk = 1+ b;(;) + bf:,(:) + O(l/dJG) 0= :/m (3.34)

where
b1(t) = — sin(wt) ba(t) = i((2k—3)2—2(2k—1) wt cos(wt)—cos(2wt)+2(2k+1) sin(wt))
(3.35)

and we find it worth remarking that b;(¢) is independent of k. By employing (3.34), it is
straightforward to obtain the first terms in the expansion of the complexity (3.33) in this
asymptotic regime. The leading term reads

| sin(wt)| 5
C= N +0(1/&%) . (3.36)

In figure 5 we show some temporal evolutions for the complexity (3.33), where the
evolution Hamiltonian is made by two sites.
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The expression (3.31) tells us that gpgx with k& = 1,2, which provide the complex-
ity (3.33), are oscillating functions whose periods are 7/ Q. A straightforward numerical
inspection shows that grgr,1 > grr,2 in the whole ranges of & and of wt. This leads us to
plot the complexity in terms of Qit in the left panel of figure 5, where @ is not too large
(in this case this argument does not apply because of (3.34)). Interestingly, we observe
that the local extrema of the curves having different w occur approximatively at the same
values of Q;t.

Notice that the temporal evolution corresponding to w = 0 in the left panel of figure 5
is very different from the one displayed in the top left panel of figure 2, obtained for N > 1.

In the right panel of figure 5, the data points, obtained numerically for N = 10 and
N = 20 and three values of w, are compared against the leading term given in (3.36).
We find it worth remarking that (3.36) nicely agrees with the temporal evolution of the
complexity for small values of ¢, even when N > 2. The agreement between the analytic
curve and the data improves as w grows, as expected.

4 Subsystem complexity

In this section we investigate the temporal evolution of the subsystem complexity C4 after
the local quench introduced in section 2, when the reference and the target states are the
reduced density matrices of the block A in the configurations shown in the bottom panels
of figure 1.

4.1 Optimal circuit and subsystem complexity

In the harmonic lattices in the pure states that we are considering, the reduced density
matrix associated to a spatial subsystem A characterises a mixed Gaussian state which
can be fully described through its reduced covariance matrix v4 [16, 33, 96], defined as the
2L x 2L real, symmetric and positive definite matrix (L denotes the number of sites in A)

_ ([ Qa(t) Ma(t)
Ya(t) = (MA(t)t PA(t)> (4.1)

where Qa(t), Pa(t) and Ma(t) are the reduced correlation matrices, obtained by select-
ing the rows and the columns corresponding to A in (2.12), namely Q(t);;, P(t);; and
M(t); ;, with 4,5 € A. The reduced correlation matrices usually depend on the time ¢ after
the quench.

In this section we study the circuit complexity when both the reference and the target
states are mixed states corresponding to a subsystem A. In particular, we apply to the
local quench that we are investigating the results for the circuit complexity of mixed states
based on the Fisher information geometry [30], as done in [77] for a global quench.

We consider the reference state given by the reduced density matrix for the subsystem
A at time ti > 0 obtained through the local quench protocol characterised by {mg, kg, wr }
and the target state given by the reduced density matrix of the same subsystem at time
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ty > tg, constructed through the quench protocol described by {mr,kr,wr} (see sec-
tion 3.1). The corresponding reduced covariance matrices, denoted by Vg, 4(tr) and yr a(tr)
respectively, can be decomposed as done in (4.1).

The approach to the circuit complexity of mixed states based on the Fisher information
geometry [30] provides also the optimal circuit connecting vg a(tr) to Y a(tr) [90]

Gt a(tn) ¥, A () = Yo, (t) 2 (e, (1) 2 w4 (tr) A () ™/2) i a ()2
(4.2)
where 0 < s < 1, which is a covariance matrix for any s [97]. The length of the optimal
circuit (4.2) is proportional to its complexity

Ca= 2\1/§ \/Tr { [log (yr,a(tr) ’YR,A(tR)fl)F} . (4.3)

Both the reduced covariance matrices in (4.3) have the form (4.1), obtained by re-
stricting to A the covariance matrix ~y(¢) in (2.11), as discussed above.

In our analysis we consider the simplest setup where the reference state is the initial
state (i.e. tg = 0) and the target state corresponds to a generic value of ¢t =t > 0 after
the local quench. The remaining parameters are fixed to wg = wr = w, kg = kr = k and
mgr = mr = m. In this case the subsystem complexity (4.3) reads

Ca= 2\1/5 \/Tr{[log('yA(t) fyA(O)—l)]2}. (4.4)

It is instructive to compare the temporal evolution of C4 against the temporal evolution
of the entanglement entropy Sa after the same local quench, which can be evaluated from
the symplectic spectrum of vy4(t) in the standard way [34, 36, 98, 99]. The considerations
above can be easily adapted to harmonic lattices in any number of spatial dimensions.

4.2 Numerical results

In the following we discuss some numerical results for the temporal evolution after a local
quench of the subsystem complexity (4.4) in the case where the subsystem A is a block made
by L consecutive sites in harmonic chains made by N sites. Let us remind that the reference
state is the initial state (tx = 0) and the target state corresponds to the state at the generic
value t+ = ¢t > 0 after the local quench, whose protocol is specified by the values of the
parameters in (3.7) with m = 1 and k = 1. For a given local quench, we display both the
temporal evolution of the subsystem complexity C4 and of the entanglement entropy Sa.

The temporal evolutions in figures 6, 7, 8, 9, 11, 12 and 13 correspond to blocks A
adjacent to the left boundary of the chain (as shown pictorially in the bottom left panel
of figure 1) and for this bipartition the joining point is outside the subsystem whenever
L < rN. The temporal evolutions in figure 10 correspond to blocks A whose midpoint
coincides with the joining point (see figure 1, bottom right panel). While the temporal
evolutions in figures 6, 7, 8, 9 and 10 are determined by the critical evolution Hamiltonian,
for the ones in figures 11, 12 and 13 the evolution Hamiltonian is gapped.
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Figure 6. Temporal evolution of the subsystem complexity C4 in (4.4) for a block A made by L
consecutive sites adjacent to the left boundary of harmonic chains made by N sites (see figure 1,
bottom left panel) after a local quench with w = 0 and = 1/2. The size of the blocks is L < Nr
in the left panels and L > Nr in the right panels. The black dashed curves in the top left panel
correspond to (4.6). The insets zoom in on the initial growth (the dashed curve in the bottom right
panel corresponds to (3.25)). The data points corresponding to L/N = 1 in the right panels are
also reported in the top left panel of figure 2.

Let us consider first local quenches whose evolution Hamiltonian is critical, i.e. w = 0.
The corresponding temporal evolutions for C4 and S4 are shown respectively in figure 6
and figure 7 when r = 1/2 and respectively in figure 8 and figure 9 when r = 1/4.

Both the temporal evolutions of C4 and S, exhibit revivals because our system has
finite volume. For a generic values of 7, the cycles correspond to p < t/(2N+2) < p+1, with
p non negative integer (see figure 8 and figure 9), while only for » = 1/2 they correspond
top <t/(N+1) <p+1 (see figure 6 and figure 7) because of the symmetry provided by
the fact that the joining point coincides with the midpoint of the chain [58, 62].

Focussing on the temporal evolution during a single cycle, as N and L increase with
L/N kept fixed, two different scalings are observed: one at the beginning and at the end
of the cycle and another one in its central part. In these two temporal regimes, the curves
obtained for different values of N collapse when the time independent quantity alog(/N +1)
is subtracted, with different values of a.

In figure 6 and figure 8 we show some temporal evolutions of C4 — aclog(N + 1) when
r =1/2 and r = 1/4 respectively. We find that o depends on (a) whether the joining point
is outside (L < rN) or inside (L > rN) the subsystem; (b) the temporal regime within the
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Figure 7. Temporal evolution of the entanglement entropy S, in the same setup described for
figure 6. The size of the blocks is L < Nr in the left panels and L > Nr in the right panels. The
black dashed curves in the top panels correspond to (4.5).

cycle where the collapse of the data is observed (either the central part of the cycle or its
extremal parts).

When the entangling point coincides with the joining point, i.e. L = rN, the collapses
of the data in the different temporal regimes is observed for values of « that are slightly
different from the ones adopted in the vertical axes of the panels in figure 6 and figure 8.
In particular, when C4 is not constant, the black curves in the left panels of these figures
collapse with o =~ 1/7, otherwise the data collapse is observed with a ~ 1/10 (see figure 8,
left panels).

The different scalings in the diverse temporal regimes within each cycle pointed out in
(b) occur also for the temporal evolution of S4 after a local quench [51, 52, 59]. Numerical
results for the temporal evolution of S 4 after the same quench and for the same bipartition
considered above (see the bottom left panel of figure 1) are reported in figure 7 and figure 9
for r = 1/2 and r = 1/4 respectively. In the case of » = 1/2, these numerical outcomes for
S are well described by the analytic curve discussed in [59], namely*

1 t
—log(N+1 — c T
G og(N+1)+a N—|—1€ 0

o (22 () oo o e

!See eq. (39) of [59] with ¢ =1 and vp = 1.

Sa(t)=
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(see the black dashed curves in figure 7) within the first cycle (then extended periodically
to the subsequent cycles), where d = % - ﬁ parameterises the distance between the
entangling point and the joining point and we have introduced the temporal regimes Ty =
(0,d)U (1 —d,1) and Ty = (d,1 — d). The expression (4.5) holds only when r = 1/2
and the interval A is adjacent to one of the boundaries of the segment. The different
scalings corresponding to the two different regimes within the cycle, which lead to subtract
alog(N +1) with either o = 1/3 (top panels) or o = 1/6 (bottom panels), agree with (4.5).
We remark that, since r = 1/2, the numerical curves in the left panels of figure 7 are
identical to the ones in the right panels characterised by the same coloured marker: this is
because the entanglement entropy of a subsystem is equal to the entanglement entropy of
its complement when the entire state is in a pure state (this is the case for any ¢ > 0 after
the local quench that we are exploring).

As for the temporal evolution of the subsystem complexity C4, when r = 1/2 and
L < N/2, hence the joining point is outside the subsystem (see the left panels of figure 6),
we find that it is qualitatively similar to the temporal evolution of S4. Combining this
observation with the different scalings obtained numerically, we are led to consider the
following ansatz

t
0 €T
Np1 'O

f()log{(]\:—:lfKsin(l\;ﬁl))2—(sin(7rd))2}}—1—5 o en

within the first cycle (the parameter d and the temporal regimes are introduced in (4.5)),

Ca(t)= (4.6)

which is then extended periodically to any value of ¢ > 0. In the top left panel of figure 6, a
remarkable agreement is observed between the numerical data and the ansatz (4.6), which
corresponds to the black dashed curves.

Considering also the right panels of figure 6, where r = 1/2 again but L > N/2,
we find that the temporal evolutions of C4 for blocks that include the joining point are
qualitatively different from the ones corresponding to blocks that do not contain the joining
point. Indeed, in the right panels of figure 6, focussing e.g. on the first cycle and considering
t/(N+1) < 1/2 (the regime t/(N +1) > 1/2 is obtained straightforwardly through a time
reversal), we observe three regimes: an initial growth until a local maximum, followed by
a fast decrease and then another growth, milder than the previous one (it becomes almost
flat as L/N increases).

When r # 1/2, the symmetry under a spatial reflection with respect to the midpoint
of the chain does not occur and more regimes are observed within a cycle, for both Cy4
and Sy4.

The same quantities considered in figure 6 and figure 7, where r = 1/2, are shown in
figure 8 and figure 9 for r = 1/4. Notice the different periodicity with respect to the case
of r = 1/2, as already mentioned above. The main feature to highlight is the qualitative
difference between the temporal evolutions of C4 when the joining point lies outside A (see
figure 8, left panels) and the ones corresponding to blocks that include the joining point
(see figure 8, right panels). Furthermore, the temporal evolution of C4 when the joining
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Figure 8. Temporal evolution of the subsystem complexity C4 in (4.4) for a block A made by L
consecutive sites adjacent to the left boundary of harmonic chains made by N sites (see figure 1,
bottom left panel) after a local quench with w = 0 and r = 1/4. The size of the blocks is L < Nr
in the left panels and L > Nr in the right panels. The insets zoom in on the initial growth (the
dashed curve in the bottom right panel corresponds to (3.25)). The data points corresponding to
L/N =1 in the right panels are also reported in the top right panel of figure 2.

point lies outside A is also qualitatively similar to the one of the corresponding S4 (see
figure 9, left panels).

When L < rN, focussing on the temporal evolutions in the first half of the first cycle
(ie. 0 < 2Ntﬁ < 1/2), for both C4 and S we observe three regimes (left panels of figure 8
and figure 9): first a flat curve, then a growth followed by a decrease and finally another
regime where the evolution is almost constant. This means that, when L < rN, for the
temporal evolutions within the first cycle we identify five regimes. The values of 2Ntﬁ
at which the changes of regime occur are given by N — L, L +rN, 2N — L — rN and
2N —rN + L, whose time ordering depends on the explicit values of N, r and L. In the
special case of r = 1/2, we have only three regimes within the first cycle (first a flat regime,
then a growth/decrease regime and finally another flat regime), as one can observe from
figure 6 and figure 7, but also from the analytic expressions in (4.5) and (4.6).

When L > rN and therefore the joining point is inside the subsystem, by comparing
the right panels of figure 8 against the right panels of figure 9, it is straightforward to realise
that the temporal evolutions of C4 and S4 are qualitatively very different. In particular,
while the temporal evolutions of S, in the right panels of figure 9 are similar to the ones
displayed in the left panels of the same figure (e.g. the same five regimes mentioned above),
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Figure 9. Temporal evolution of the entanglement entropy S4 in the same setup described for
figure 8. The size of the blocks is L < rN in the left panels and L > rN in the right panels.

as expected from the fact that S4 = Sp for the spatial bipartition AU B of the system in a
pure state (the qualitative difference is only due to the asymmetric position of the joining
point), the temporal evolutions of C4 in the right panels of figure 8 are more complicated
than the ones in the left panels of the same figure, which correspond to blocks that do
not include the joining point. For instance, considering the temporal evolution of Cy4
immediately after the quench, a rapid initial growth is observed when L > rN (highlighted
in the insets in the right panels of figure 8), while it remains stationary when L < rN. We
remind that, whenever L # rN, also the temporal evolution of S right after the quench
remains stationary (see figure 7 and figure 9). As for initial growth of C4 when L > rN,
an interesting numerical observation that we find it worth remarking is the fact that the
logarithmic curve (3.25), which has been first employed in the bottom panels of figure 2 to
describe the logarithmic growth for the complexity of the entire chain, occurs also in the
temporal evolution of the subsystem complexity; indeed it corresponds also to the dashed
lines displayed in the bottom right panels of figure 6 and figure 8. Notice that, when
the joining point is outside the subsystem (see the left panels of figure 6 and figure 8),
a logarithmic growth right after the stationary regime is observed, but in this case the
coefficient of the logarithm is different from the one in (3.25), as one can infer from the
second line of (4.6) when r =1/2 and t/(N + 1) ~ d.

Comparing the left and the right panels in figure 8, it is straightforward to observe that
the qualitative behaviour of temporal evolutions of C4 is more complicated when the joining
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Figure 10. Temporal evolution of the subsystem complexity C4 (left panels) and entanglement
entropy Sa (right panels) for a block A made by L sites whose midpoint is given by the joining
point at r = 1/2 (see figure 1, bottom right panel) after a local quench with w = 0. The insets
zoom in on the initial growth (the dashed curve in the bottom left panel is given by (3.25)).

point lies inside A, as anticipated above. For instance, focussing on t/(2N + 2) < 1/2 for
the magenta and the cyan curves, after the first local maximum two subsequent temporal
regimes occur where the curves decrease before becoming constant. Furthermore, when
L/N > 1—r (see the orange curves) and considering again only ¢/(2N +2) < 1/2, after the
first local maximum, the two decreases and the flat regime mentioned above, we observe
another growth followed by a regime where C4 becomes constant again (at a higher value
w.r.t. the previous flat regime). We remark that, when L/N 2 r (see the brown curves),
two local maxima occur in the temporal evolution of Ca for 5 1\; = < % (the first one is
highlighted in the insets). A more systematic analysis is needed to determine the values of
t/(2N + 2) that identify the various regimes occurring in these temporal evolutions.
While in figures 6, 7, 8 and 9 the block A is adjacent to a boundary (see figure 1,
bottom left panel) and therefore only one entangling point occurs, in figure 10 we consider
some temporal evolutions of C4 and Sy when r = 1/2 and the joining point coincides
with the midpoint of A (see figure 1, bottom right panel), hence two entangling points
separate A from its complement B, which is made by two disjoint intervals adjacent to

different boundaries. By construction, for this configuration the joining point is always
inside the subsystem. The blocks providing the reduced covariance matrix (4.1) for this
bipartition are obtained by restricting the indices of the matrices @, P and M in (2.12) to
je{f-L+1,...,5+L}
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The numerical results shown in figure 10 for some temporal evolutions of C4 (left
panels) and S4 (right panels) after local quenches correspond to critical evolution Hamil-
tonians, i.e. with w = 0. Also in this numerical analysis we subtract alog(N + 1) with
the proper value of «, in order to observe collapses of data sets corresponding to the same
L/N when N is large enough, finding that o depends both on the quantity (either C4 or
S4) and on the temporal regime within the cycle where the data collapses are observed
(either the central regime or the initial and final regimes). Interestingly, by comparing
the left panels of figure 10 against the right panels of figure 6, we observe that, when the
joining point is inside the subsystem A, the temporal evolutions of C 4 are qualitatively very
similar, despite the fact that the number of entangling points is different in the two figures.
Moreover, the values of a employed are the same, which are therefore independent of the
number of the entangling points. Instead, let us remind that the values of a to employ for
S 4 depend on the number of the entangling points, as one realises by comparing the right
panels of figure 10 against the right panels of figure 7.

Focussing on bipartitions where the joining point lies inside the subsystem, by com-
paring the left and the right panels of figure 10, one notices that, while S4 is constant at
the beginning of its evolution, C4 increases immediately. This feature has been highlighted
also during the comparison of the right panels of figure 6 and figure 8 against the right
panels of figure 7 and figure 9, where only one entangling point occurs.

Another interesting difference between the temporal evolutions corresponding to the
~ L 1

two bottom panels in figure 1 is that the first local minimum occurs at ﬁ ~ % — 5 in
the right panels of figure 6 (one entangling point) and at NLH ~ % in the left panels of

figure 10 (two entangling points).

We find it worth mentioning some intriguing similarities between the temporal evo-
lution of C4 after the local quench discussed above and the one after the global quench
studied in [77]. Let us consider the block made by L consecutive sites in the infinite chain
and compare the temporal evolution of C4 after the global quench of the mass parameter,
as done in [77], against the one after the local quench where two half-lines are joined at the
midpoint of A. The latter temporal evolution can be inferred by taking e.g. the red curves
in the left panels of figure 10 for ﬁ < %, while the former one corresponds e.g. to the
black data points in the top panel of figure 14 of [77]. These temporal evolutions are qual-
itatively very similar. However, important differences occur when these curves are studied
quantitatively. For instance, while at the beginning a logarithmic growth is observed in the
case of the local quench, as remarked above, a power law behaviour occurs in the case of
the global quench [77]. Notice that, by performing the same comparison for the temporal
evolutions of the corresponding Sy, qualitatively different behaviours are observed (see the
red data points in the right panels of figure 10 against the black data points in the bottom
panel of figure 14 in [77]). It would be interesting to explore further these comparisons by

considering different kind of quenches and performing a quantitative analysis.

In the final part of this discussion we consider temporal evolutions of C4 and S4 after
local quenches characterised by gapped evolution Hamiltonians, for some fixed values of
wN > 0.
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Figure 11. Temporal evolution of the subsystem complexity C4 in (4.4) for a block A made by L
consecutive sites adjacent to the left boundary of harmonic chains made by N sites (see figure 1,
bottom left panel) after a local quench with w > 0 and r = 1/2. The size of the blocks is fixed to a
value L/N < r in the left panels and to a value L/N > r in the right panels.

Since for w = 0 the qualitative behaviour of the temporal evolution of C4 depends
on whether the joining point is located inside or outside the block A, let us explore these
two cases also when w > 0. Considering the bipartition shown in the bottom left panel
of figure 1, where r = 1/2, in figure 11 we display some temporal evolutions of C4 for
two fixed values of L/N such that the joining point is either outside (left panels) or inside
(right panels) the block A. In figure 12 the same analysis is performed in the case of
r = 1/4. These numerical results show that the temporal evolution of C4 depends on
whether the joining point is inside or outside the subsystem. The temporal evolutions of
Sa for these quenches are reported in figure 13 and, since S4 = Sp for any ¢ > 0 (the
entire chain is A U B), whether the joining point is inside or outside the block does not
influence the qualitative temporal evolution of S4, as already remarked above (once the
eventual asymmetric position of the joining point is taken into account).

The approximate periodicity highlighted in the evolutions corresponding to w = 0 is
not observed in general when w > 0. For small values of wN an approximate periodicity
can be identified for a temporal regime whose duration decreases as wlN increases.

When the block A contains the joining point, C4 has a non-trivial initial growth, while
the evolution of the corresponding S 4 is constant at the beginning. This is the same feature
highlighted for the critical evolution through the comparison of figure 6 against figure 7,
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Figure 12. Temporal evolution of the subsystem complexity C4 in (4.4) for a block A made by L
consecutive sites adjacent to the left boundary of harmonic chains made by N sites (see figure 1,
bottom left panel) after a local quench with w > 0 and r = 1/4. The size of the blocks is fixed to a
value L/N < r in the left panels and to a value L/N > r in the right panels.

of figure 8 against figure 9 and of the left panels of figure 10 against the right panels of the
same figure.

Approximate collapses of the data points corresponding to large values of N while
L/N is kept fixed are observed when the constant «log(/N + 1) is subtracted, with the
same values of a employed in figure 6 and figure 8 for the subsystem complexity and
in figure 7 and figure 9 for the entanglement entropy. Because of the absence of clear
revivals, it is more difficult to identify different temporal regimes as done in the case of
critical evolution Hamiltonians. These difficulties arise also in the analysis of the temporal
evolutions of S4 when w > 0 displayed in figure 13.

Let us conclude our discussion by mentioning some results about the temporal evolu-
tions of the subsystem complexity obtained within the gauge/gravity correspondence [67—
70, 85].

In the Vaidya gravitational spacetimes, the temporal evolution of the holographic
subsystem complexity has been studied through the prescription based on the volume of a
particular spacetime slice [67, 68], finding curves that qualitatively agree with the temporal
evolution of the subsystem complexity after a global quench of the mass parameter in the
harmonic chains discussed in [77].

It would be interesting to perform a comparison between the qualitative behaviour of
the temporal evolutions of the subsystem complexity discussed in this manuscript and the
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Figure 13. Temporal evolution of the entanglement entropy S4 in the setup described either in
figure 11 (left panels) or in figure 12 (right panels).

one of the temporal evolutions of the holographic subsystem complexity in the spacetime
describing the gravitational dual of the joining local quench [79, 83].

4.3 Single site in the chain made by two sites

In the following we discuss the temporal evolution of C4 after the local quench that we
are exploring for the chain made by two sites, described in section 3.4, and the subsystem
made by a single site.

From (3.29) and (3.30) we have that the covariance matrices of the reference and the
target states are respectively

Y =T Y =VEVTVEV. (4.7)
The blocks occurring in (3.30) are 2 x 2 matrices that can be written as
Fi+F2 Fi—F ) :

Vo F Vi F; € {A},B;,Dj e{1,2 4.8

2 V2= <]_—1_]_—2 FL+F i € {4,B;,D;} jed{1,2} (4.8)

where the expressions for A;, Bj and D; are obtained by specifying (2.15) to N = 2 and
V5 has been defined in (3.26).
Considering the subsystem A made by the first oscillator of the chain, for the 2 x 2
reduced covariance matrices of the reference and of the target states we find respectively
1. 1)7-1
TR,A = By dlag([mﬁg )]

,m) (4.9)
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and
1 (Dg +D2 + (m{V)? (A2 + A2) s + (mQ{Y)* 114 )

YA = —5
2m0}" s + (mO{) 114 B2 + B2 + (m{")?[D2 + D2 ]
(4.10)

where le) has been defined in (3.29) and we have introduced Ay = A; + Ay, By = B1+85
and D4+ = Dy &= D5y, which allow to construct

HA =A_D_+ .A.A,_D+ HB =B_D_+ B+D+ . (4.11)

The quantities A;, B; and Dj, with j € {1,2}, depend on t and on the parameters of the
local quench m, x and w as reported in (2.15). The eigenvalues of the matrix v, 4 Vr, }4 can
be written in terms of these quantities as follows

1
gt =D3 +D? + YR { B2+ B2 + (mQ{") (A2 + A2) (4.12)
1

2 2
+ \/[Bi + 82 — (mV) (A3 +.42)] + 2mQY)? (s + (mOfY) 114 } .

By employing these results into (4.4), we obtain the subsystem complexity

1
Ca= 2v2 \/[IOg QTR,+]2 + [loggTR’_}Q (4.13)

whose explicit expression in terms of m, x, w and ¢ is quite cumbersome; hence we have
not reported it here.

In the top left panel of figure 14, the subsystem complexity (4.13) is shown for various
w < 2and k =1 and m = 1. The local maxima of the curves corresponding to different
w occur at the same values of Qot given by multiple integers of 7 (see the vertical lines),
where €, with k € {1,2} is defined below (3.31). The same feature is observed also for the
local minima, if Q¢ is employed as the independent variable on the horizontal axis instead
of ﬁgt.

In the asymptotic regime given by @ — oo, where @ has been introduced in (3.34),
while wt is kept fixed and finite (introduced in section 3.4), the expansion of (4.12) reads

grr+ =1+ ﬁ ([Sin(wt)]2 + \/[sin(wt)}z — wt sin(2wt) + uﬂt?) +0(1/a%) . (4.14)

By employing this result, for the expansion of (4.13) one finds

! \/[sin(wt)]4 + [sin(wt)]2 + wt [wt — sin(2wt)] + O(1/&%) . (4.15)

Ca= g

In the top right panel of figure 14, this expression corresponds to the black solid line, while
the other curves have been drawn through the exact formula (4.13). In the same panel,
we have also reported C4 of half chains with N = 2L > 2 (coloured symbols). We find
remarkable their agreement with (4.13) for early times, which improves as w increases.
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Figure 14. Temporal evolution of the subsystem complexity C4 after the local quench w.r.t. the
initial state at ¢ = 0 when A contains a single site and the chain is made by two sites. In the
top left panel (4.13) is shown for small values of w. In the top right and in the bottom panel we
compare (4.13) for larger values of w against (4.15) (black solid line) and (4.16) (black dashed line)
respectively. In the top right panel, numerical data for the subsystem complexity of half chains
with N > 2 are also reported. In all the panels k =1 and m = 1.

Comparing figure 14 and figure 5, we notice that, while for the complexity of the
entire chain made by two sites only a main oscillatory behaviour is observed, for the
subsystem complexity we can identify two kinds of oscillations: one has a larger amplitude
and period 7&? /w and another one is characterised by a smaller amplitude and period 7 /w.
When @ > 1, the amplitude of the latter oscillation becomes negligible and we find that
the temporal evolution of the single site subsystem complexity is nicely described by the
following ansatz

Ca | sin [(wt)/&%]| (4.16)

T 4g?

which is compared against the exact result (4.13) in the bottom panel of figure 14.

5 Conclusions

We studied the temporal evolutions of the circuit complexity and of the subsystem com-
plexity after a local quench by considering harmonic chains in a segment with Dirichlet
boundary conditions and the local quench where two finite chains made by N and (1—7)N
sites (with 0 < r < 1) are joined at t = 0 [87]. The subsystem complexity C4 in (4.3) has
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been evaluated by employing the complexity of mixed bosonic Gaussian states based on
the Fisher information geometry [30], which provides also the optimal circuit (4.2). For
the sake of simplicity, we considered only the case where the subsystem is a block of L
consecutive sites and we mainly studied the complexity of circuits whose reference state is
the initial state at t = 0.

The covariance matrices of the reference state and of the target state at time ¢ > 0
along the temporal evolution have been introduced in section 2. Then, in section 3 they
have been employed to evaluate some temporal evolutions of the circuit complexity for the
entire harmonic chain.

For any value w > 0 of the mass occurring in the evolution Hamiltonian, we found
that the initial growth of the complexity immediately after the quench is linear (see (3.22))
with a slope given by (3.23), which can be evaluated numerically, as done in the bottom
panel of figure 4. When the evolution Hamiltonian is critical (i.e. w = 0), after the above
mentioned initial growth we observe a logarithmic growth independent of r (see (3.25) and
the bottom panels of figure 2). We expect to observe this feature also when the system is
infinite. In our numerical analysis we have considered only finite systems. The temporal
evolutions of the complexity for finite systems and w = 0 display revivals, independently
of r. Three temporal regimes are observed within the first half of the temporal interval
containing a single revival: a growth followed by a decrease and finally a regime where the
complexity does not evolve (see the top right panel of figure 2 and figure 3). In the case
of r = 1/2, the latter regime does not occur; hence this choice halves the duration of a
revival (see the top left panel of figure 2). When w > 0, the temporal evolutions of the
complexity are more complicated; indeed, for instance, an approximate periodicity is not
observed (see figure 4). When wN is large, the complexity rapidly changes through small
variations about a constant value that is independent of r. Importantly, we have identified
different temporal regimes where different scaling behaviours are observed as N increases.
It would be interesting to explain these scalings through quantum field theory methods.

In section 4 we have explored the temporal evolutions of C4 for the bipartitions shown
in the bottom panels of figure 1, where either one entangling point or two entangling points
occur. One of our main results is given by the numerical evidences that the qualitative
behaviour of the temporal evolutions of C4 depends on whether the block A contains the
joining point. In the case of the spatial bipartition shown in the bottom left panel of
figure 1, where one entangling point occurs, this qualitative difference is evident once the
left panels are compared against the corresponding right panels both in figure 6 and figure 8
(where r = 1/2 and r = 1/4 respectively) when w = 0 and both in figure 11 and figure 12
(where, again, » = 1/2 and r = 1/4 respectively) when w > 0. When the evolution
Hamiltonian is critical and the joining point is inside the block, during the initial regime of
the temporal evolution of C4 we observe the same logarithmic growth (3.25) occurring in
the temporal evolution of the complexity of the entire chain (compare the insets of figure 6
and figure 8 against the bottom panels of figure 2). Furthermore, in the case of r = 1/2
and when the joining point lies outside the block, we find that the analytic expression (4.6)
for the temporal evolution of C4 nicely reproduces the behaviour of the numerical data.
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It is very instructive to compare a temporal evolution of C4 (in this manuscript we
have considered only circuits where the reference state is the initial state) against the
corresponding temporal evolution of S4, obtained for the same bipartition and the same
quench protocol. The temporal evolutions of S4 for the bipartition shown in the bottom
left panel of figure 1 have been reported in figure 7 and figure 9 (where r = 1/2 and
r = 1/4 respectively) for w = 0 and in figure 13 for w > 0. We remark that, whenever the
block A does not contain the joining point, the temporal evolutions of C4 and of S4 are
qualitatively similar (for instance, both these quantities do not evolve immediately after
the quench whenever L # rN). Instead, they are qualitatively very different when the
joining point is inside the subsystem; indeed, for instance, when L # rN we find that Cx
rapidly grows immediately after the quench, while S4 remains constant for a while.

In this manuscript we have considered both the spatial bipartitions shown in the bot-
tom panels of figure 1, in order to investigate the influence of the number of entangling
points on the temporal evolution of C4. By comparing the right panels of figure 6 against
the left panels of figure 10, where r = 1/2 and w = 0, we observed that, when the joining
point is located inside the block, both the qualitative behaviour of the temporal evolution
of C4 and the values of the scaling parameter « are not influenced by the number of en-
tangling points. Instead, the values of the scaling parameter a for S4 do depend on the
number of entangling points (see the right panels of figure 7 and figure 10).

We find it worth remarking that the logarithmic growth of C4 highlighted in the inset
of the bottom right panels of figure 6 and of figure 8 for one entangling point and of the
bottom left panel of figure 10 for two entangling points is described by the same curve (3.25),
including the additive constant, which has been found for the temporal evolution of the
complexity of the entire chain (see the bottom panels of figure 2).

We have also explored the temporal evolutions of the complexity for the entire chain
and of the subsystem complexity after the local quench in the minimal setup where the
chain is made by two sites, and therefore the subsystem A contains only one site (see
section 3.4 and section 4.3). In this simple setup, we have obtained the analytic expressions
given by (3.31) and (3.33) (see also figure 5) for the complexity of the chain and by (4.12)
and (4.13) (see also figure 14) for the subsystem complexity. While these analyses are
useful to get some insights about some regimes of the parameters (e.g. small ¢ and large
@), they do not capture many important features observed for large values of N.

As for the local quench considered in this manuscript, it would be interesting to explore
more systematically the temporal evolutions of the subsystem complexity when w > 0 or for
asymmetric bipartitions involving two or even more entangling points, to obtain analytic
results in the thermodynamic limit, to find bounds that still describe some essential features
of the temporal evolution of the subsystem complexity and also to study the thermalisation
of the subsystem complexity, as done in [77] for a global quench of the mass parameter.

The Gaussian states can be employed to investigate the temporal evolution of the
subsystem complexity after some local quenches in higher dimensions and also in free
fermionic lattice models. It could be instructive to explore these temporal evolutions by
employing the entanglement spectrum or the entanglement Hamiltonians [34, 36, 96, 100—
111], as done in [30] at equilibrium. It would be insightful to explore also the dependence
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of the temporal evolution of C4 on the reference state, by adopting a state different from
the initial one as the reference state (e.g. the unentangled product state).

In this manuscript we have compared the temporal evolutions of the subsystem com-
plexity against the ones of the corresponding entanglement entropy, but it could be in-
teresting to perform analogue comparisons against the temporal evolutions of other en-
tanglement quantifiers like the entanglement negativity [87, 112-119], the entanglement
contours [120, 121] and the relative entropies [122].

We remark that investigating the temporal evolutions of the subsystem complexity af-
ter various quantum quenches through lattice methods and quantum field theory techniques
in interacting models is a very challenging task that deserves future studies. Holography
can provide important benchmarks. Interesting analyses have been performed [123-136]
and it would be interesting to employ these methods to explore also the out-of-equilibrium
dynamics of the circuit complexity.
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A Global quenches

The approach developed in [87] and discussed in section 2 allows to study the temporal
evolution of the covariance matrix after various quenches. While in the main text of
this manuscript we mainly consider the temporal evolution of the complexity after a local
quench where two harmonic chains are joined at ¢ = 0, in this appendix we explore the
evolution of the same quantity after two global quenches. In appendix A.1 we study the
quench of the frequency parameter. In appendix A.2, considering the unentangled product
state as the initial state (and also as reference state), at ¢ = 0 we perform a quench of the
spring constant and of the frequency.

A.1 Mass quench

Consider the ground state of the Hamiltonian defined by (2.1) where w is replaced by
wo. Given this pure state as the initial state for the evolution, at ¢t = 0 the sudden change
wo — w is performed; hence the evolution Hamiltonian becomes (2.1). The temporal evolu-
tions after this global quench of the complexity [71-73] and of the subsystem complexity [77]
have been investigated.

The initial state of this global quench is obtained by setting the parameters introduced
in section 2 to (N, N;) = (N,0), k; = k. = K, m; = m, = m and w; = w, = wp; hence its
covariance matrix (2.5) becomes

Yo =V'ToV Fo=Qo®Po (A.1)
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with V' being the orthogonal matrix defined in (2.13) and

1 _ _ 1
Q= diag((m,) ™", (M n) ) Py = 5 diag(mQo,1 .., mQN)  (A2)

where Qg ;. is (2.16) with w replaced by wp.
From (A.1), (2.11) and (2.13), for the temporal evolution of the covariance matrix
in (A.1) we find
Y(t)=Et)nE) =V E®)To L)V . (A.3)
A characteristic feature of this quench is the occurrence of the same matrix V both in E(t)

and in 7y, which leads to the crucial simplification highlighted in (A.3). This feature is not
verified when both N, and N, are non vanishing, as discussed in section 3.1. From (A.1)

and (2.14), we obtain
E(D)To &) = <AQ4(8) /7\34(%)) (A.4)

where the block matrices Q(t), P(t) and M(t) in the r.h.s. are diagonal matrices whose
diagonal elements are respectively

Qp(t) = - (m[wsmm]ﬂﬂo”“ [sin(ﬂkt>]2>

- Qka QO,k Qk
Q Q Q
Prn(t) = o [ 2% (gin(Qut)]2 + —2 [cos(Qpt)]? (A.5)
2 Qo Qp
1 Qor QL
M}@k(t) = 5 (m m) Sln(th) COS(th)

and €y is defined in (2.16). The expressions (A.5) have been first obtained in [50] and
recently employed in [77] to study the subsystem complexity after the global quench of the
mass. Thus, also the global quench of the mass can be described through the formalism
of [87].

A.2 Quench of the spring constant

In the following we consider the temporal evolution of the complexity when the initial state
of the global quench is given by an unentangled product state. In terms of the parameters
introduced in section 2, this quench corresponds to (N, N,) = (N,0), k, = k, = 0, m; =
m, = m and w, = w, = . At t = 0 all the spring constants of the chain are suddenly
switched on and the evolution Hamiltonian becomes (2.1). For the sake of generality, we
consider p # w; hence we suddenly change both the spring constant to x > 0 and the
frequency from p to w. Setting p = w provides the global quench where only the spring
constant is changed.

Since (N, N,) = (N,0), we have V =V} (see (2.9) and (2.13)). By specialising (2.7),
(2.5) and (2.6) to this case, one finds the following covariance matrix for the initial state

crnn (e (4
")/()—V POV FO_(Qmul D B) 1. (Aﬁ)

Since Vi in (2.13) is orthogonal, from (2.13) and (A.6) we obtain that o = T'g.
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By employing (2.11) and (2.13) (where Vy is orthogonal), we find that the temporal
evolution of (A.6) reads
V() =V EMTeER) V. (A7)

From (A.6) and the block decomposition in (2.14), we get

E(H) Ty E(1) = < MQV((’?) Agg))) (A.8)

where Q(t), P(t) and M(t) are diagonal matrices whose diagonal elements are given re-
spectively by (A.5) with Qg j replaced by pu.

We consider the temporal evolution of the complexity where the reference and the
target states are the states at the values of time tyz and ¢; respectively along a given
quench, namely v = y(tg) and yp = y(tr), with y(¢) given in (A.7).

Following the analysis reported in [77] (see also [72, 73]), we compute the eigenvalues
of ¥r 95 1 which provide the complexity (3.1), finding

N
\l Z larccosh(Chrg k)]2 (A.9)

with
Q2
Q. p

where €, is given in (2.16). Notice that, when p # w, we can set w = 0 and obtain a

M 2
Crrip=1+2 5 ( sin [Qp (tr — tR)]> (A.10)

finite result for the complexity in (A.9). Since Cirg in (A.10) is an oscillating function of
|tr — tg| for any k, the complexity C is finite, also for large values of |t; — tg].

In figure 15 we show some temporal evolutions of the complexity (A.9) when tx = 0
and tp = ¢. In the top panels we keep pu # w, setting either w = 0 (left panel) and w > 0
(right panel). These temporal evolutions are qualitatively similar to the ones observed for
the global quench discussed in appendix A.l, as expected from the fact that the role of
Qo 1, is played by p in this case.

In the case where only the quench of the spring constant is performed, i.e. when u = w
(see the bottom panels of figure 15), by using the explicit expression of ) in (2.16), one
obtains

2
Crrir =1+ 1( Ar [sin(mk/[2(N + 1)])]2 sin [Qp (tr — tR)]> (A.11)
’ 2\ mw Qy

which provides the complexity through (A.9). In this case the critical evolution cannot be
explored because (A.11) diverges for any k as w — 0.

For a given w > 0, the coefficient of (sin[Q(ty — tx)])? in the r.h.s. of (A.11) becomes
negligible when NLH < 1, while it reaches its maximum when NLH ~ 1. Thus, the main
contributions to the complexity given by (A.9) and (A.11) come from the modes such that

k 2(N+1 ]| =~ 1; hence sm[Qk(tT — tg)] ~ sin[vVw? +4 (tr —

~vo7 = 1. For these modes |sin[537
tr)]. This leads us to identify two regimes in w: when w? < 4, the complexity oscillates
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Figure 15. Temporal evolution of the complexity (A.9) for the entire chain after the global quench
of the frequency and of the spring constant. The expression for Crg  reported in (A.10) and
in (A.11) has been used respectively in the top and in the bottom panels.

with frequency approximately equal to 2, independently of w; instead, when w? > 4, the
frequency of the oscillations is Vw2 + 4. This behaviour can be observed in the bottom
panels of figure 15, where some temporal evolutions of the complexity given by (A.9)
and (A.11) are shown, in the case of tx = 0 and ¢ = t, i.e. when the reference state is
the (initial) unentangled product state. When w € {0.05,0.2,0.5}, in the initial part of
the evolution the curves for C/ VN collapse displaying the same oscillatory behaviour with
frequency independent of w and approximately equal to 2. Instead, when w € {1.5,4} and
therefore w? ~ 4, the frequency of the oscillations in the initial part of the curves depends
also on w and it is given by vw? + 4.

B Euler decomposition for a class of symplectic matrices

The Euler decomposition is a powerful tool to evaluate the circuit complexity for pure
states. Indeed, (3.1) can be written also in terms of the squeezing parameters of the
symplectic matrix Wrg (see (3.16)), as discussed in section 3.1 [19, 72, 77]. In this appendix
we derive the analytical expressions for the matrices in the Euler decomposition (3.15) for
a specific class of symplectic matrices. This provides the Euler decomposition of the matrix
& defined in (2.14), which is exploited to get (3.17).

Consider a 2N x 2N matrix M partitioned into the four N x N blocks S, U, ) and
Z which are diagonal matrices (we denote respectively by sk, uk, yk, zx their k-th element
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on the diagonal) whose elements can be reorganised into a block diagonal matrix having
non vanishing 2 x 2 blocks M}, along the diagonal, where k£ = 1,... N, namely

w-(5Y) ()

It is straightforward to check that M is symplectic if and only if M}, is symplectic for
any k=1,...,N. A 2 x 2 symplectic matrix has three independent parameters; hence let
us consider the following parametrisation?

Q. COS Gk ﬂk sin Qk >
M, = B.2
k ( — 6,;1 sin 0, oz,;l cos 0, (B.2)

where oy, and [ are non vanishing real numbers. We also assume that (o, Br) # (1,1)
because in this case M} is orthogonal, therefore its Euler decomposition is trivial.
For the Euler decomposition of (B.2) we find

My = Ly, Xy, Ry, (B.3)

where (see (3.15))
© e A ®) . .(R)
cos 6 sin 6 et 0 cos 6 sin
L= k k X, = R. = k k B4
* ( —sin 6" cos )" ) ’ ( 0 e ) * ( —sind cosdf” ) (B4

with the non-vanishing elements of X}, given by

a? + B2) (282 +1) + (a2 — B2) (i B — 1) cos(26})
A /gz—l gkz( i+ Be) (B +1) 42%5,3 i) (B — 1) ‘

(B.5)
The matrix Lj is the symplectic and orthogonal matrix whose columns are the eigenvectors
of My M}, while Ry, is the symplectic and orthogonal matrix whose rows are the eigenvectors
of M} M. Evaluating the eigenvectors of MM}, and MyM] leads to

(L)
1
cos 9,(:) = :lzvki2 sin 9,(;) = F— (B.6)
1+ () 1+ ()
(R)
oS «9,(;‘) = Uk’72 sin 9,(;‘) = % (B.7)
L+ (o) L+ (o)
where
NN (87 — af) cos(20%) (B.8)
K 2 oy By; (€M — a2 cos? 0y, — B sin® by,) '
U](cR) - (232 — 1) cos(26k) (B.9)

C 2af (eAe — af cos? Oy, — B, 2sin? 6)

2This parametrisation does not include the 2 x 2 symplectic matrices having three non vanishing elements.
However, the analysis reported in this appendix can be easily adapted to this class of symplectic matrices.
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The sign in (B.6) has to be fixed case by case, checking that the correct matrix M}, is
obtained through the decomposition (B.3), once (B.4) with (B.6) and (B.7) is employed.

Finally, by using (B.2), (B.3) and (B.4), we can write the Euler decomposition of M
in terms of Ay, GI(CL), HISR) given respectively in (B.5), (B.6) and (B.7) as follows

A
v=(Gs ) )G a) B0
where e} = diag(e™, ..., eM) and
Cp, = diag (cos 0%1“), ...,CO8 95{?) Sy, = diag (sin 951“), ...,sin 91(\1;)) (B.11)
Cgr = diag (cos GgR‘), ...,CO8 9](?)> Sg = diag (sin 9§R), ..., sin 9%?) . (B.12)

C Derivation of the initial growth

In this appendix we report the derivation of (3.22) and (3.23), which provide the initial
linear growth of the complexity (3.1) after a local quench.
As t — 0, from (3.21) we find the following expansion

—1\12 r r
[og (v+ 1 )]* = | Eqy + 78V By (36™) } +0(t) (C.1)
r r r _1
= [y +907 (E) 00"+ { By 287y (067) 7} + o)

where {A, B} is the anticommutator of two matrices. From this expansion, the complex-
ity (3.1) becomes (3.22) with

1
_ 2 a0 ) WD) gt (00
@ = 272 \/ﬂ[E( %’ (E(1)) (7o' ) {E(l) %" Eq(0"”) H (C.2)

where the matrix within the argument of the trace has non-negative eigenvalues; hence
C1 2 0.
By exploiting the cyclicity of the trace, one finds

N

Tr {’Ygr (E(tl)) (’V(()l r>) } Tr E(21) =2 Z 03 (C.3)
k=1
where the last step has been obtained by using that
117t %
~ VYN Vy 0
By =™V S C4
b= (7 Leen) .

whose trace can be easily computed by using that Vy is orthogonal and the matrix N
defined in (3.18) is diagonal.

From (C.3) we have that the first two terms within the square root in (C.2) are negative;
thus, in order to have c¢; > 0, the term containing the anticommutator under the square
root must be positive. For this term we find

Tr[{ By, 987 B (8 T = 2T [Bay 48 B (8 T - (C.5)
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From (3.19), (2.5) and (2.6), we get

1 17t —11;
_ =5 Vo PoQy Vo 0
E (0 ft amn~1 _ [ m2z Yo 0 _ - o - -~ ~
%" Ey (o) 0 Vi N Uy Vi Qo Vo Vi N Wy T Py Wi
(C.6)
where Vj has been defined in (2.9). Then, by exploiting (2.6) and (2.7), we obtain
-1 4l ), & 2
Tr| Eq) VBl’r)E(tl) (’Y(()l’r)) } = Z [Qg)] + Z [Qg)] (C.7)
k=1 k=1

+ Te | VA N Viy Vg Qo Vo Ve N Va Vi Pyt Wi |

where Q) and Q2 are given by (2.8) and m, = m, = m for the local quench that we
are considering. Since we are not able to simplify Vn XN/Ot, we cannot write an analytic
expression for the last term in the r.h.s. of (C.7). Finally, by using (C.3), (C.5) and (C.7),
we obtain that the slope ¢; in (C.2) becomes the expression (3.23) in the main text.
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References

[1] M.A. Nielsen, A Geometric Approach to Quantum Circuit Lower Bounds, Quant. Inf.
Comput. 6 (2006) 213 [quant-ph/0502070].

[2] M.A. Nielsen, M.R. Dowling, M. Gu and A. Doherty, Quantum computation as geometry,
Science 311 (2006) 1133 [quant-ph/0603161].

[3] M.R. Dowling and M.A. Nielsen, The Geometry of Quantum Computation, Quant. Inf.
Comput. 8 (2008) 861 [quant-ph/0701004].

[4] J. Watrous, Quantum Computational Complezity, in Encyclopedia of Complexity and
Systems Science, pp. 7174-7201 (2009) [DOI] [arXiv:0804.3401].

[5] S. Aaronson, The Complexity of Quantum States and Transformations: From Quantum
Money to Black Holes, arXiv:1607.05256 [INSPIRE].

[6] L. Susskind, Computational Complezity and Black Hole Horizons, Fortsch. Phys. 64 (2016)
24 [Addendum ibid. 64 (2016) 44] [arXiv:1403.5695] [INSPIRE].

[7] L. Susskind and Y. Zhao, Switchbacks and the Bridge to Nowhere, arXiv:1408.2823
[INSPIRE].

[8] D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051
[arXiv:1409.8180] [INSPIRE].

[9] D. Stanford and L. Susskind, Complezity and Shock Wave Geometries, Phys. Rev. D 90
(2014) 126007 [arXiv:1406.2678] INSPIRE].

[10] L. Susskind, Entanglement is not enough, Fortsch. Phys. 64 (2016) 49 [arXiv:1411.0690]
[INSPIRE].

-39 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.26421/QIC6.3
https://doi.org/10.26421/QIC6.3
https://arxiv.org/abs/quant-ph/0502070
https://doi.org/10.1126/science.1121541
https://arxiv.org/abs/quant-ph/0603161
https://doi.org/10.26421/QIC8.10
https://doi.org/10.26421/QIC8.10
https://arxiv.org/abs/quant-ph/0701004
https://doi.org/10.1007/978-0-387-30440-3_428
https://arxiv.org/abs/0804.3401
https://arxiv.org/abs/1607.05256
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.05256
https://doi.org/10.1002/prop.201500092
https://doi.org/10.1002/prop.201500092
https://arxiv.org/abs/1403.5695
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.5695
https://arxiv.org/abs/1408.2823
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.2823
https://doi.org/10.1007/JHEP03(2015)051
https://arxiv.org/abs/1409.8180
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1409.8180
https://doi.org/10.1103/PhysRevD.90.126007
https://doi.org/10.1103/PhysRevD.90.126007
https://arxiv.org/abs/1406.2678
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.2678
https://doi.org/10.1002/prop.201500095
https://arxiv.org/abs/1411.0690
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.0690

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

[28]

M. Alishahiha, Holographic Complexity, Phys. Rev. D 92 (2015) 126009
[arXiv:1509.06614] [INSPIRE].

A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic Complexity
Equals Bulk Action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].

A R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complezity, action, and
black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] INSPIRE].

J.L.F. Barbén and E. Rabinovici, Holographic complexity and spacetime singularities, JHEP
01 (2016) 084 [arXiv:1509.09291] [INSPIRE].

D. Carmi, R.C. Myers and P. Rath, Comments on Holographic Complexity, JHEP 03
(2017) 118 [arXiv:1612.00433] [INSPIRE].

C. Weedbrook et al., Gaussian quantum information, Rev. Mod. Phys. 84 (2012) 621
[arXiv:1110.3234].

A. Serafini, Quantum Continuous Variables: A Primer of Theoretical Methods, CRC Press
(2017).

R. Jefferson and R.C. Myers, Circuit complezity in quantum field theory, JHEP 10 (2017)
107 [arXiv:1707.08570] [iNSPIRE].

S. Chapman et al., Complexity and entanglement for thermofield double states, SciPost
Phys. 6 (2019) 034 [arXiv:1810.05151] InSPIRE].

M. Guo, J. Hernandez, R.C. Myers and S.-M. Ruan, Circuit Complexity for Coherent
States, JHEP 10 (2018) 011 [arXiv:1807.07677] [InSPIRE].

L. Hackl and R.C. Myers, Circuit complexity for free fermions, JHEP 07 (2018) 139
[arXiv:1803.10638] [INSPIRE].

R. Khan, C. Krishnan and S. Sharma, Circuit Complexity in Fermionic Field Theory, Phys.
Rev. D 98 (2018) 126001 [arXiv:1801.07620] [INSPIRE].

P. Braccia, A.L. Cotrone and E. Tonni, Complexity in the presence of a boundary, JHEP 02
(2020) 051 [arXiv:1910.03489] [INSPIRE].

S. Chapman and H.Z. Chen, Charged Complexity and the Thermofield Double State, JHEP
02 (2021) 187 [arXiv:1910.07508] [INSPIRE].

M. Doroudiani, A. Naseh and R. Pirmoradian, Complexity for Charged Thermofield Double
States, JHEP 01 (2020) 120 [arXiv:1910.08806] [INSPIRE].

M. Guo, Z.-Y. Fan, J. Jiang, X. Liu and B. Chen, Circuit complexity for generalized
coherent states in thermal field dynamics, Phys. Rev. D 101 (2020) 126007
[arXiv:2004.00344] [INSPIRE].

D. Aharonov, A. Kitaev and N. Nisan, Quantum Circuits with Mized States,
quant-ph/9806029.

C.A. Agdén, M. Headrick and B. Swingle, Subsystem Complexity and Holography, JHEP 02
(2019) 145 [arXiv:1804.01561] [INSPIRE].

E. Caceres, S. Chapman, J.D. Couch, J.P. Herndndez, R.C. Myers and S.-M. Ruan,
Complexity of Mized States in QFT and Holography, JHEP 03 (2020) 012
[arXiv:1909.10557] [INSPIRE].

40 —


https://doi.org/10.1103/PhysRevD.92.126009
https://arxiv.org/abs/1509.06614
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.06614
https://doi.org/10.1103/PhysRevLett.116.191301
https://arxiv.org/abs/1509.07876
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.07876
https://doi.org/10.1103/PhysRevD.93.086006
https://arxiv.org/abs/1512.04993
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.04993
https://doi.org/10.1007/JHEP01(2016)084
https://doi.org/10.1007/JHEP01(2016)084
https://arxiv.org/abs/1509.09291
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.09291
https://doi.org/10.1007/JHEP03(2017)118
https://doi.org/10.1007/JHEP03(2017)118
https://arxiv.org/abs/1612.00433
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.00433
https://doi.org/10.1103/RevModPhys.84.621
https://arxiv.org/abs/1110.3234
https://doi.org/10.1007/JHEP10(2017)107
https://doi.org/10.1007/JHEP10(2017)107
https://arxiv.org/abs/1707.08570
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.08570
https://doi.org/10.21468/SciPostPhys.6.3.034
https://doi.org/10.21468/SciPostPhys.6.3.034
https://arxiv.org/abs/1810.05151
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.05151
https://doi.org/10.1007/JHEP10(2018)011
https://arxiv.org/abs/1807.07677
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.07677
https://doi.org/10.1007/JHEP07(2018)139
https://arxiv.org/abs/1803.10638
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.10638
https://doi.org/10.1103/PhysRevD.98.126001
https://doi.org/10.1103/PhysRevD.98.126001
https://arxiv.org/abs/1801.07620
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.07620
https://doi.org/10.1007/JHEP02(2020)051
https://doi.org/10.1007/JHEP02(2020)051
https://arxiv.org/abs/1910.03489
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.03489
https://doi.org/10.1007/JHEP02(2021)187
https://doi.org/10.1007/JHEP02(2021)187
https://arxiv.org/abs/1910.07508
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.07508
https://doi.org/10.1007/JHEP01(2020)120
https://arxiv.org/abs/1910.08806
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.08806
https://doi.org/10.1103/PhysRevD.101.126007
https://arxiv.org/abs/2004.00344
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.00344
https://arxiv.org/abs/quant-ph/9806029
https://doi.org/10.1007/JHEP02(2019)145
https://doi.org/10.1007/JHEP02(2019)145
https://arxiv.org/abs/1804.01561
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.01561
https://doi.org/10.1007/JHEP03(2020)012
https://arxiv.org/abs/1909.10557
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.10557

[30]

[31]

32]

[43]

[44]

[45]

[46]

[47]

[48]

G. Di Giulio and E. Tonni, Complexity of mixed Gaussian states from Fisher information
geometry, JHEP 12 (2020) 101 [arXiv:2006.00921] [INSPIRE].

S.-M. Ruan, Purification Complexity without Purifications, JHEP 01 (2021) 092
[arXiv:2006.01088] [INSPIRE].

H.A. Camargo, L. Hackl, M.P. Heller, A. Jahn, T. Takayanagi and B. Windt, Entanglement
and complexity of purification in (1 4 1)-dimensional free conformal field theories, Phys.
Rev. Res. 3 (2021) 013248 [arXiv:2009.11881] [INSPIRE].

J. Eisert, M. Cramer and M.B. Plenio, Area laws for the entanglement entropy — a review,
Rev. Mod. Phys. 82 (2010) 277 [arXiv:0808.3773] [INSPIRE].

H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42
(2009) 504007 [arXiv:0905.2562] INSPIRE].

P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42
(2009) 504005 [arXiv:0905.4013] [INSPIRE].

I. Peschel and V. Eisler, Reduced density matrices and entanglement entropy in free lattice
models, J. Phys. A 42 (2009) 504003 [arXiv:0906.1663].

M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy, Springer (2017).

M. Headrick, Lectures on entanglement entropy in field theory and holography,
arXiv:1907.08126 [INSPIRE].

E. Tonni, An Introduction to Entanglement Measures in Conformal Field Theories and
AdS/CFT, Springer Proc. Phys. 239 (2020) 69 [INSPIRE].

R. Abt, J. Erdmenger, M. Gerbershagen, C.M. Melby-Thompson and C. Northe,
Holographic Subregion Complezity from Kinematic Space, JHEP 01 (2019) 012
[arXiv:1805.10298] [INSPIRE].

M. Alishahiha, K. Babaei Velni and M.R. Mohammadi Mozaffar, Black hole subregion
action and complexity, Phys. Rev. D 99 (2019) 126016 [arXiv:1809.06031] [INSPIRE].

R. Auzzi, S. Baiguera, A. Legramandi, G. Nardelli, P. Roy and N. Zenoni, On subregion
action complexity in AdSs and in the BTZ black hole, JHEP 01 (2020) 066
[arXiv:1910.00526] [INSPIRE].

C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55
[hep-th/9401072] [iNSPIRE].

C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal
field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].

P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat.
Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

F.H.L. Essler and M. Fagotti, Quench dynamics and relaxation in isolated integrable
quantum spin chains, J. Stat. Mech. 1606 (2016) 064002 [arXiv:1603.06452] [INSPIRE].

P. Calabrese and J. Cardy, Quantum quenches in 1 + 1 dimensional conformal field
theories, J. Stat. Mech. 1606 (2016) 064003 [arXiv:1603.02889] [INSPIRE].

P. Calabrese and J.L. Cardy, Fvolution of entanglement entropy in one-dimensional
systems, J. Stat. Mech. 0504 (2005) P04010 [cond-mat/0503393] [INSPIRE].

— 41 —


https://doi.org/10.1007/JHEP12(2020)101
https://arxiv.org/abs/2006.00921
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.00921
https://doi.org/10.1007/JHEP01(2021)092
https://arxiv.org/abs/2006.01088
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.01088
https://doi.org/10.1103/PhysRevResearch.3.013248
https://doi.org/10.1103/PhysRevResearch.3.013248
https://arxiv.org/abs/2009.11881
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.11881
https://doi.org/10.1103/RevModPhys.82.277
https://arxiv.org/abs/0808.3773
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0808.3773
https://doi.org/10.1088/1751-8113/42/50/504007
https://doi.org/10.1088/1751-8113/42/50/504007
https://arxiv.org/abs/0905.2562
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0905.2562
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1088/1751-8113/42/50/504005
https://arxiv.org/abs/0905.4013
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0905.4013
https://doi.org/10.1088/1751-8113/42/50/504003
https://arxiv.org/abs/0906.1663
https://arxiv.org/abs/1907.08126
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.08126
https://doi.org/10.1007/978-3-030-35473-2_2
https://inspirehep.net/search?p=find+J%20%22Springer%20Proc.Phys.%2C239%2C69%22
https://doi.org/10.1007/JHEP01(2019)012
https://arxiv.org/abs/1805.10298
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.10298
https://doi.org/10.1103/PhysRevD.99.126016
https://arxiv.org/abs/1809.06031
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.06031
https://doi.org/10.1007/JHEP01(2020)066
https://arxiv.org/abs/1910.00526
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.00526
https://doi.org/10.1016/0370-2693(94)91007-3
https://arxiv.org/abs/hep-th/9401072
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9401072
https://doi.org/10.1016/0550-3213(94)90402-2
https://arxiv.org/abs/hep-th/9403108
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9403108
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://arxiv.org/abs/hep-th/0405152
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0405152
https://doi.org/10.1088/1742-5468/2016/06/064002
https://arxiv.org/abs/1603.06452
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.06452
https://doi.org/10.1088/1742-5468/2016/06/064003
https://arxiv.org/abs/1603.02889
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.02889
https://doi.org/10.1088/1742-5468/2005/04/P04010
https://arxiv.org/abs/cond-mat/0503393
https://inspirehep.net/search?p=find+EPRINT%2Bcond-mat%2F0503393

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum
quench, Phys. Rev. Lett. 96 (2006) 136801 [cond-mat/0601225] [INSPIRE].

P. Calabrese and J. Cardy, Quantum Quenches in Extended Systems, J. Stat. Mech. 0706
(2007) P0O6008 [arXiv:0704.1880] [iNSPIRE].

V. Eisler and I. Peschel, Evolution of entanglement after a local quench, J. Stat. Mech.
2007 (2007) P06005 [cond-mat/0703379].

P. Calabrese and J. Cardy, Entanglement and correlation functions following a local quench:
a conformal field theory approach, J. Stat. Mech. 0710 (2007) P10004 [arXiv:0708.3750]
[INSPIRE].

M. Nozaki, T. Numasawa and T. Takayanagi, Quantum Entanglement of Local Operators in
Conformal Field Theories, Phys. Rev. Lett. 112 (2014) 111602 [arXiv:1401.0539]
[INSPIRE].

M. Nozaki, Notes on Quantum Entanglement of Local Operators, JHEP 10 (2014) 147
[arXiv:1405.5875] [INSPIRE].

S. Sotiriadis and J. Cardy, Quantum quench in interacting field theory: A Self-consistent
approzimation, Phys. Rev. B 81 (2010) 134305 [arXiv:1002.0167] [INSPIRE].

J.S. Cotler, M.P. Hertzberg, M. Mezei and M.T. Mueller, Entanglement Growth after a
Global Quench in Free Scalar Field Theory, JHEP 11 (2016) 166 [arXiv:1609.00872]
[INSPIRE].

V. Eisler, D. Karevski, T. Platini and I. Peschel, Entanglement evolution after connecting
finite to infinite quantum chains, arXiv:0711.02809.

J. Cardy, Measuring Entanglement Using Quantum Quenches, Phys. Rev. Lett. 106 (2011)
150404 [arXiv:1012.5116] [INSPIRE].

J.-M. Stéphan and J. Dubail, Local quantum quenches in critical one-dimensional systems:
entanglement, the Loschmidt echo, and light-cone effects, J. Stat. Mech. 2011 (2011)
P08019 [arXiv:1105.4846].

C.T. Asplund and A. Bernamonti, Mutual information after a local quench in conformal
field theory, Phys. Rev. D 89 (2014) 066015 [arXiv:1311.4173] [INSPIRE].

R. Modak, V. Alba and P. Calabrese, Entanglement revivals as a probe of scrambling in
finite quantum systems, J. Stat. Mech. 2008 (2020) 083110 [arXiv:2004.08706] [INSPIRE].

J. Cardy, Thermalization and Revivals after a Quantum Quench in Conformal Field
Theory, Phys. Rev. Lett. 112 (2014) 220401 [arXiv:1403.3040] [INSPIRE].

E. da Silva, E. Lopez, J. Mas and A. Serantes, Collapse and Revival in Holographic
Quenches, JHEP 04 (2015) 038 [arXiv:1412.6002] [INSPIRE].

M. Moosa, FEvolution of Complezity Following a Global Quench, JHEP 03 (2018) 031
[arXiv:1711.02668] [INSPIRE].

S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes.
Part I, JHEP 06 (2018) 046 [arXiv:1804.07410] [inSPIRE].

S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes.
Part II, JHEP 06 (2018) 114 [arXiv:1805.07262] [INSPIRE].

B. Chen, W.-M. Li, R.-Q. Yang, C.-Y. Zhang and S.-J. Zhang, Holographic subregion
complexity under a thermal quench, JHEP 07 (2018) 034 [arXiv:1803.06680] [INSPIRE].

— 492 —


https://doi.org/10.1103/PhysRevLett.96.136801
https://arxiv.org/abs/cond-mat/0601225
https://inspirehep.net/search?p=find+EPRINT%2Bcond-mat%2F0601225
https://doi.org/10.1088/1742-5468/2007/06/P06008
https://doi.org/10.1088/1742-5468/2007/06/P06008
https://arxiv.org/abs/0704.1880
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0704.1880
https://doi.org/10.1088/1742-5468/2007/06/p06005
https://doi.org/10.1088/1742-5468/2007/06/p06005
https://arxiv.org/abs/cond-mat/0703379
https://doi.org/10.1088/1742-5468/2007/10/P10004
https://arxiv.org/abs/0708.3750
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0708.3750
https://doi.org/10.1103/PhysRevLett.112.111602
https://arxiv.org/abs/1401.0539
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.0539
https://doi.org/10.1007/JHEP10(2014)147
https://arxiv.org/abs/1405.5875
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.5875
https://doi.org/10.1103/PhysRevB.81.134305
https://arxiv.org/abs/1002.0167
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1002.0167
https://doi.org/10.1007/JHEP11(2016)166
https://arxiv.org/abs/1609.00872
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.00872
https://arxiv.org/abs/0711.0289
https://doi.org/10.1103/PhysRevLett.106.150404
https://doi.org/10.1103/PhysRevLett.106.150404
https://arxiv.org/abs/1012.5116
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1012.5116
https://doi.org/10.1088/1742-5468/2011/08/p08019
https://doi.org/10.1088/1742-5468/2011/08/p08019
https://arxiv.org/abs/1105.4846
https://doi.org/10.1103/PhysRevD.89.066015
https://arxiv.org/abs/1311.4173
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.4173
https://doi.org/10.1088/1742-5468/aba9d9
https://arxiv.org/abs/2004.08706
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.08706
https://doi.org/10.1103/PhysRevLett.112.220401
https://arxiv.org/abs/1403.3040
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.3040
https://doi.org/10.1007/JHEP04(2015)038
https://arxiv.org/abs/1412.6002
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.6002
https://doi.org/10.1007/JHEP03(2018)031
https://arxiv.org/abs/1711.02668
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.02668
https://doi.org/10.1007/JHEP06(2018)046
https://arxiv.org/abs/1804.07410
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.07410
https://doi.org/10.1007/JHEP06(2018)114
https://arxiv.org/abs/1805.07262
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.07262
https://doi.org/10.1007/JHEP07(2018)034
https://arxiv.org/abs/1803.06680
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.06680

[68] R. Auzzi, G. Nardelli, F.I. Schaposnik Massolo, G. Tallarita and N. Zenoni, On volume
subregion complexity in Vaidya spacetime, JHEP 11 (2019) 098 [arXiv:1908.10832]
[INSPIRE].

[69] Y. Ling, Y. Liu, C. Niu, Y. Xiao and C.-Y. Zhang, Holographic Subregion Complexity in
General Vaidya Geometry, JHEP 11 (2019) 039 [arXiv:1908.06432] [INSPIRE].

[70] Y.-T. Zhou, X.-M. Kuang, Y.-Z. Li and J.-P. Wu, Holographic subregion complexity under a
thermal quench in an FEinstein-Mazwell-azion theory with momentum relaxation, Phys. Rewv.
D 101 (2020) 106024 [arXiv:1912.03479] [INSPIRE].

[71] D.W.F. Alves and G. Camilo, Fvolution of complezity following a quantum quench in free
field theory, JHEP 06 (2018) 029 [arXiv:1804.00107] [INSPIRE].

[72] H.A. Camargo, P. Caputa, D. Das, M.P. Heller and R. Jefferson, Complezity as a novel
probe of quantum quenches: universal scalings and purifications, Phys. Rev. Lett. 122
(2019) 081601 [arXiv:1807.07075] [InSPIRE].

[73] T. Ali, A. Bhattacharyya, S. Shajidul Haque, E.H. Kim and N. Moynihan, Time Evolution
of Complexity: A Critique of Three Methods, JHEP 04 (2019) 087 [arXiv:1810.02734]
[INSPIRE].

[74] J. Jiang, J. Shan and J. Yang, Circuit complexity for free Fermion with a mass quench,
Nucl. Phys. B 954 (2020) 114988 [arXiv:1810.00537].

[75] T. Ali, A. Bhattacharyya, S. Shajidul Haque, E.H. Kim and N. Moynihan, Post-Quench
Evolution of Complexity and Entanglement in a Topological System, Phys. Lett. B 811
(2020) 135919 [arXiv:1811.05985].

[76] A. Bhattacharyya, S.S. Haque and E.H. Kim, Complezity from the Reduced Density Matrix:
a new Diagnostic for Chaos, arXiv:2011.04705 [INSPIRE].

[77] G. Di Giulio and E. Tonni, Subsystem complezity after a global quantum quench, JHEP 05
(2021) 022 [arXiv:2102.02764] INSPIRE].

[78] M. Nozaki, T. Numasawa and T. Takayanagi, Holographic Local Quenches and
Entanglement Density, JHEP 05 (2013) 080 [arXiv:1302.5703] [INSPIRE].

[79] T. Ugajin, Two dimensional quantum quenches and holography, arXiv:1311.2562
[INSPIRE].

[80] A.F. Astaneh and A.E. Mosaffa, Quantum Local Quench, AdS/BCFT and Yo-Yo String,
JHEP 05 (2015) 107 [arXiv:1405.5469] [INSPIRE].

[81] C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic Entanglement
Entropy from 2d CFT: Heavy States and Local Quenches, JHEP 02 (2015) 171
[arXiv:1410.1392] [INSPIRE].

[82] A. Jahn and T. Takayanagi, Holographic entanglement entropy of local quenches in
AdS4/CFT3: a finite-element approach, J. Phys. A 51 (2018) 015401 [arXiv:1705.04705]
[INSPIRE].

[83] T. Shimaji, T. Takayanagi and Z. Wei, Holographic Quantum Clircuits from
Splitting/Joining Local Quenches, JHEP 03 (2019) 165 [arXiv:1812.01176] InSPIRE].

. Caputa, T. Numasawa, T. Shimaji, T. Takayanagi and Z. Wei, Double Local Quenches in
84] P. C T.N T. Sh T. Tak d Z. Wei, Double Local @ h
2D CFTs and Gravitational Force, JHEP 09 (2019) 018 [arXiv:1905.08265] [INSPIRE].

43 —


https://doi.org/10.1007/JHEP11(2019)098
https://arxiv.org/abs/1908.10832
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.10832
https://doi.org/10.1007/JHEP11(2019)039
https://arxiv.org/abs/1908.06432
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.06432
https://doi.org/10.1103/PhysRevD.101.106024
https://doi.org/10.1103/PhysRevD.101.106024
https://arxiv.org/abs/1912.03479
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.03479
https://doi.org/10.1007/JHEP06(2018)029
https://arxiv.org/abs/1804.00107
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.00107
https://doi.org/10.1103/PhysRevLett.122.081601
https://doi.org/10.1103/PhysRevLett.122.081601
https://arxiv.org/abs/1807.07075
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.07075
https://doi.org/10.1007/JHEP04(2019)087
https://arxiv.org/abs/1810.02734
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.02734
https://doi.org/10.1016/j.nuclphysb.2020.114988
https://arxiv.org/abs/1810.00537
https://doi.org/10.1016/j.physletb.2020.135919
https://doi.org/10.1016/j.physletb.2020.135919
https://arxiv.org/abs/1811.05985
https://arxiv.org/abs/2011.04705
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.04705
https://doi.org/10.1007/JHEP05(2021)022
https://doi.org/10.1007/JHEP05(2021)022
https://arxiv.org/abs/2102.02764
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.02764
https://doi.org/10.1007/JHEP05(2013)080
https://arxiv.org/abs/1302.5703
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1302.5703
https://arxiv.org/abs/1311.2562
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.2562
https://doi.org/10.1007/JHEP05(2015)107
https://arxiv.org/abs/1405.5469
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.5469
https://doi.org/10.1007/JHEP02(2015)171
https://arxiv.org/abs/1410.1392
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.1392
https://doi.org/10.1088/1751-8121/aa8afa
https://arxiv.org/abs/1705.04705
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.04705
https://doi.org/10.1007/JHEP03(2019)165
https://arxiv.org/abs/1812.01176
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.01176
https://doi.org/10.1007/JHEP09(2019)018
https://arxiv.org/abs/1905.08265
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.08265

[85]

[86]

[87]

[88]

[89]
[90]
[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

D.S. Ageev, I.Y. Aref’eva, A.A. Bagrov and M.I. Katsnelson, Holographic local quench and
effective complexity, JHEP 08 (2018) 071 [arXiv:1803.11162] INSPIRE].

D. Ageev, Holographic complexity of local quench at finite temperature, Phys. Rev. D 100
(2019) 126005 [arXiv:1902.03632] [INSPIRE].

V. Eisler and Z. Zimboréas, Entanglement negativity in the harmonic chain out of
equilibrium, New J. Phys. 16 (2014) 123020 [arXiv:1406.5474].

J. Williamson, On the Algebraic Problem Concerning the Normal Forms of Linear
Dynamical Systems, Am. J. Math. 58 (1936) 141.

C. Atkinson and A. Mitchell, Rao’s Distance Measure, Sankhya 43 (1981) 345.
R. Bhatia, Positive Definite Matrices, Princeton University Press (2007).

Arvind, B. Dutta, N. Mukunda and R. Simon, The Real symplectic groups in quantum
mechanics and optics, Pramana 45 (1995) 471 [quant-ph/9509002] [INSPIRE].

V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement
entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic Evolution of Entanglement
Entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].

T. Takayanagi, Holographic Dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602
[arXiv:1105.5165] [INSPIRE].

M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043
[arXiv:1108.5152] [INSPIRE].

I. Peschel, Calculation of reduced density matrices from correlation functions, J. Phys. A 36
(2003) L205 [cond-mat/0212631].

R. Bhatia and T. Jain, On symplectic eigenvalues of positive definite matrices, J. Math.
Phys. 56 (2015) 112201 [arXiv:1803.04647].

K. Audenaert, J. Eisert, M.B. Plenio and R.F. Werner, Entanglement Properties of the
Harmonic Chain, Phys. Rev. A 66 (2002) 042327 [quant-ph/0205025] [INSPIRE].

M. Cramer, J. Eisert, M.B. Plenio and J. Dreissig, An Entanglement-area law for general
bosonic harmonic lattice systems, Phys. Rev. A 73 (2006) 012309 [quant-ph/0505092]
[INSPIRE].

H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement
entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

A .M. Lauchli, Operator content of real-space entanglement spectra at conformal critical
points, arXiv:1303.0741 [INSPIRE].

J. Cardy and E. Tonni, Entanglement hamiltonians in two-dimensional conformal field
theory, J. Stat. Mech. 1612 (2016) 123103 [arXiv:1608.01283] [INSPIRE].

R. Arias, D. Blanco, H. Casini and M. Huerta, Local temperatures and local terms in
modular Hamiltonians, Phys. Rev. D 95 (2017) 065005 [arXiv:1611.08517] INSPIRE].

V. Eisler and I. Peschel, Analytical results for the entanglement Hamiltonian of a
free-fermion chain, J. Phys. A 50 (2017) 284003 [arXiv:1703.08126] [INSPIRE].

— 44 —


https://doi.org/10.1007/JHEP08(2018)071
https://arxiv.org/abs/1803.11162
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.11162
https://doi.org/10.1103/PhysRevD.100.126005
https://doi.org/10.1103/PhysRevD.100.126005
https://arxiv.org/abs/1902.03632
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.03632
https://doi.org/10.1088/1367-2630/16/12/123020
https://arxiv.org/abs/1406.5474
https://doi.org/10.2307/2371062
https://doi.org/10.1007/BF02848172
https://arxiv.org/abs/quant-ph/9509002
https://inspirehep.net/search?p=find+J%20%22Pramana%2C45%2C471%22
https://doi.org/10.1088/1126-6708/2007/07/062
https://arxiv.org/abs/0705.0016
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0705.0016
https://doi.org/10.1007/JHEP11(2010)149
https://arxiv.org/abs/1006.4090
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1006.4090
https://doi.org/10.1103/PhysRevLett.107.101602
https://arxiv.org/abs/1105.5165
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.5165
https://doi.org/10.1007/JHEP11(2011)043
https://arxiv.org/abs/1108.5152
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1108.5152
https://doi.org/10.1088/0305-4470/36/14/101
https://doi.org/10.1088/0305-4470/36/14/101
https://arxiv.org/abs/cond-mat/0212631
https://doi.org/10.1063/1.4935852
https://doi.org/10.1063/1.4935852
https://arxiv.org/abs/1803.04647
https://doi.org/10.1103/PhysRevA.66.042327
https://arxiv.org/abs/quant-ph/0205025
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CA66%2C042327%22
https://doi.org/10.1103/PhysRevA.73.012309
https://arxiv.org/abs/quant-ph/0505092
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CA73%2C012309%22
https://doi.org/10.1007/JHEP05(2011)036
https://arxiv.org/abs/1102.0440
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1102.0440
https://arxiv.org/abs/1303.0741
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.0741
https://doi.org/10.1088/1742-5468/2016/12/123103
https://arxiv.org/abs/1608.01283
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.01283
https://doi.org/10.1103/PhysRevD.95.065005
https://arxiv.org/abs/1611.08517
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.08517
https://doi.org/10.1088/1751-8121/aa76b5
https://arxiv.org/abs/1703.08126
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.08126

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

E. Tonni, J. Rodriguez-Laguna and G. Sierra, Entanglement hamiltonian and entanglement
contour in inhomogeneous 1D critical systems, J. Stat. Mech. 1804 (2018) 043105
[arXiv:1712.03557] InSPIRE].

V. Alba, P. Calabrese and E. Tonni, Entanglement spectrum degeneracy and the Cardy
formula in 1+ 1 dimensional conformal field theories, J. Phys. A 51 (2018) 024001
[arXiv:1707.07532] INSPIRE].

V. Eisler, E. Tonni and I. Peschel, On the continuum limit of the entanglement
Hamiltonian, J. Stat. Mech. 1907 (2019) 073101 [arXiv:1902.04474] [INSPIRE].

G. Di Giulio and E. Tonni, On entanglement hamiltonians of an interval in massless
harmonic chains, J. Stat. Mech. 2003 (2020) 033102 [arXiv:1911.07188] InSPIRE].

G. Di Giulio, R. Arias and E. Tonni, Entanglement hamiltonians in 1D free lattice models
after a global quantum quench, J. Stat. Mech. 1912 (2019) 123103 [arXiv:1905.01144]
[INSPIRE].

J. Surace, L. Tagliacozzo and E. Tonni, Operator content of entanglement spectra in the
transverse field Ising chain after global quenches, Phys. Rev. B 101 (2020) 241107(R)
[arXiv:1909.07381] [INSPIRE].

V. Eisler, G. Di Giulio, E. Tonni and I. Peschel, Entanglement Hamiltonians for non-critical
quantum chains, J. Stat. Mech. 2010 (2020) 103102 [arXiv:2007.01804] [INSPIRE].

G. Vidal and R.F. Werner, Computable measure of entanglement, Phys. Rev. A 65 (2002)
032314 [quant-ph/0102117] [INSPIRE].

M.B. Plenio, Logarithmic Negativity: A Full Entanglement Monotone That is not Conver,
Phys. Rev. Lett. 95 (2005) 090503 [quant-ph/0505071] [INSPIRE].

P. Calabrese, J. Cardy and E. Tonni, Entanglement negativity in quantum field theory,
Phys. Rev. Lett. 109 (2012) 130502 [arXiv:1206.3092] [INSPIRE].

P. Calabrese, J. Cardy and E. Tonni, Entanglement negativity in extended systems: A field
theoretical approach, J. Stat. Mech. 1302 (2013) P02008 [arXiv:1210.5359] [InSPIRE].

P. Calabrese, J. Cardy and E. Tonni, Finite temperature entanglement negativity in
conformal field theory, J. Phys. A 48 (2015) 015006 [arXiv:1408.3043] [INSPIRE].

A. Coser, E. Tonni and P. Calabrese, Entanglement negativity after a global quantum
quench, J. Stat. Mech. 1412 (2014) P12017 [arXiv:1410.0900] nSPIRE].

V. Eisler and Z. Zimborés, Entanglement negativity in two-dimensional free lattice models,
Phys. Rev. B 93 (2016) 115148 [arXiv:1511.08819)].

C. De Nobili, A. Coser and E. Tonni, Entanglement negativity in a two dimensional
harmonic lattice: Area law and corner contributions, J. Stat. Mech. 1608 (2016) 083102
[arXiv:1604.02609] INSPIRE].

Y. Chen and G. Vidal, Entanglement contour, J. Stat. Mech. 2014 (2014) P10011
[arXiv:1406.1471].

A. Coser, C. De Nobili and E. Tonni, A contour for the entanglement entropies in harmonic
lattices, J. Phys. A 50 (2017) 314001 [arXiv:1701.08427] INSPIRE].

D.D. Blanco, H. Casini, L.-Y. Hung and R.C. Myers, Relative Entropy and Holography,
JHEP 08 (2013) 060 [arXiv:1305.3182] [INSPIRE].

45 —


https://doi.org/10.1088/1742-5468/aab67d
https://arxiv.org/abs/1712.03557
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.03557
https://doi.org/10.1088/1751-8121/aa9365
https://arxiv.org/abs/1707.07532
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.07532
https://doi.org/10.1088/1742-5468/ab1f0e
https://arxiv.org/abs/1902.04474
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.04474
https://doi.org/10.1088/1742-5468/ab7129
https://arxiv.org/abs/1911.07188
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.07188
https://doi.org/10.1088/1742-5468/ab4e8f
https://arxiv.org/abs/1905.01144
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.01144
https://doi.org/10.1103/PhysRevB.101.241107
https://arxiv.org/abs/1909.07381
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.07381
https://doi.org/10.1088/1742-5468/abb4da
https://arxiv.org/abs/2007.01804
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.01804
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevA.65.032314
https://arxiv.org/abs/quant-ph/0102117
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CA65%2C032314%22
https://doi.org/10.1103/PhysRevLett.95.090503
https://arxiv.org/abs/quant-ph/0505071
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C95%2C090503%22
https://doi.org/10.1103/PhysRevLett.109.130502
https://arxiv.org/abs/1206.3092
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.3092
https://doi.org/10.1088/1742-5468/2013/02/P02008
https://arxiv.org/abs/1210.5359
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1210.5359
https://doi.org/10.1088/1751-8113/48/1/015006
https://arxiv.org/abs/1408.3043
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.3043
https://doi.org/10.1088/1742-5468/2014/12/P12017
https://arxiv.org/abs/1410.0900
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.0900
https://doi.org/10.1103/PhysRevB.93.115148
https://arxiv.org/abs/1511.08819
https://doi.org/10.1088/1742-5468/2016/08/083102
https://arxiv.org/abs/1604.02609
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.02609
https://doi.org/10.1088/1742-5468/2014/10/p10011
https://arxiv.org/abs/1406.1471
https://doi.org/10.1088/1751-8121/aa7902
https://arxiv.org/abs/1701.08427
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.08427
https://doi.org/10.1007/JHEP08(2013)060
https://arxiv.org/abs/1305.3182
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.3182

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Anti-de Sitter Space
from Optimization of Path Integrals in Conformal Field Theories, Phys. Rev. Lett. 119
(2017) 071602 [arXiv:1703.00456] [InSPIRE].

P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Liouville Action as
Path-Integral Complexity: From Continuous Tensor Networks to AdS/CFT, JHEP 11
(2017) 097 [arXiv:1706.07056] [INSPIRE].

S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski, Toward a Definition of
Complexity for Quantum Field Theory States, Phys. Rev. Lett. 120 (2018) 121602
[arXiv:1707.08582] INSPIRE].

A. Bhattacharyya, P. Caputa, S.R. Das, N. Kundu, M. Miyaji and T. Takayanagi,
Path-Integral Complezity for Perturbed CFTs, JHEP 07 (2018) 086 [arXiv:1804.01999]
[INSPIRE].

P. Caputa and J.M. Magan, Quantum Computation as Gravity, Phys. Rev. Lett. 122 (2019)
231302 [arXiv:1807.04422] INSPIRE].

S. Chapman, D. Ge and G. Policastro, Holographic Complexity for Defects Distinguishes
Action from Volume, JHEP 05 (2019) 049 [arXiv:1811.12549] InSPIRE].

H.A. Camargo, M.P. Heller, R. Jefferson and J. Knaute, Path integral optimization as
circuit complexity, Phys. Rev. Lett. 123 (2019) 011601 [arXiv:1904.02713] [INSPIRE].

D. Ge and G. Policastro, Circuit Complexity and 2D Bosonisation, JHEP 10 (2019) 276
[arXiv:1904.03003] [INSPIRE].

J. Erdmenger, M. Gerbershagen and A.-L. Weigel, Complexity measures from geometric
actions on Virasoro and Kac-Moody orbits, JHEP 11 (2020) 003 [arXiv:2004.03619]
[INSPIRE].

M. Flory and M.P. Heller, Geometry of Complexity in Conformal Field Theory, Phys. Rev.
Res. 2 (2020) 043438 [arXiv:2005.02415] [INSPIRE].

M. Flory and M.P. Heller, Conformal field theory complezity from Euler-Arnold equations,
JHEP 12 (2020) 091 [arXiv:2007.11555] [INSPIRE].

N. Chagnet, S. Chapman, J. de Boer and C. Zukowski, Complezity for Conformal Field
Theories in General Dimensions, arXiv:2103.06920 [INSPIRE].

A. Bernamonti, F. Galli, J. Hernandez, R.C. Myers, S.-M. Ruan and J. Simén, First Law of
Holographic Complexity, Phys. Rev. Lett. 123 (2019) 081601 [arXiv:1903.04511] INSPIRE].

A. Bernamonti, F. Galli, J. Hernandez, R.C. Myers, S.-M. Ruan and J. Simén, Aspects of
The First Law of Complexity, arXiv:2002.05779 [INSPIRE].

— 46 —


https://doi.org/10.1103/PhysRevLett.119.071602
https://doi.org/10.1103/PhysRevLett.119.071602
https://arxiv.org/abs/1703.00456
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.00456
https://doi.org/10.1007/JHEP11(2017)097
https://doi.org/10.1007/JHEP11(2017)097
https://arxiv.org/abs/1706.07056
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.07056
https://doi.org/10.1103/PhysRevLett.120.121602
https://arxiv.org/abs/1707.08582
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.08582
https://doi.org/10.1007/JHEP07(2018)086
https://arxiv.org/abs/1804.01999
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.01999
https://doi.org/10.1103/PhysRevLett.122.231302
https://doi.org/10.1103/PhysRevLett.122.231302
https://arxiv.org/abs/1807.04422
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.04422
https://doi.org/10.1007/JHEP05(2019)049
https://arxiv.org/abs/1811.12549
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.12549
https://doi.org/10.1103/PhysRevLett.123.011601
https://arxiv.org/abs/1904.02713
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.02713
https://doi.org/10.1007/JHEP10(2019)276
https://arxiv.org/abs/1904.03003
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.03003
https://doi.org/10.1007/JHEP11(2020)003
https://arxiv.org/abs/2004.03619
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.03619
https://doi.org/10.1103/PhysRevResearch.2.043438
https://doi.org/10.1103/PhysRevResearch.2.043438
https://arxiv.org/abs/2005.02415
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.02415
https://doi.org/10.1007/JHEP12(2020)091
https://arxiv.org/abs/2007.11555
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.11555
https://arxiv.org/abs/2103.06920
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.06920
https://doi.org/10.1103/PhysRevLett.123.081601
https://arxiv.org/abs/1903.04511
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.04511
https://arxiv.org/abs/2002.05779
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.05779

	Introduction
	Covariance matrix after the quench
	Complexity for the harmonic chain
	Optimal circuit and complexity
	Initial growth
	Numerical results
	Evolution Hamiltonians made by two sites

	Subsystem complexity
	Optimal circuit and subsystem complexity
	Numerical results
	Single site in the chain made by two sites

	Conclusions
	Global quenches
	Mass quench
	Quench of the spring constant

	Euler decomposition for a class of symplectic matrices
	Derivation of the initial growth

