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ABSTRACT
More and more observations indicate that young star clusters could retain imprints of their
formation process. In particular, the degree of substructuring and rotation are possibly the
direct result of the collapse of the parent molecular cloud from which these systems form.
Such properties can, in principle, be washed-out, but they are also expected to have an impact
on the relaxation of these systems. We ran and analysed a set of 10 hydrodynamical simulations
of the formation of embedded star clusters through the collapse of turbulent massive molecular
clouds. We systematically studied the fractality of our star clusters, showing that they are all
extremely substructured (fractal dimension D = 1.0–1.8). We also found that fractality is
slowly reduced, with time, on small scales, while it persists on large scales on longer time-
scales. Signatures of rotation are found in different simulations at every time of the evolution,
even for slightly supervirial substructures, proving that the parent molecular gas transfers part
of its angular momentum to the new stellar systems.

Key words: methods: numerical – stars: kinematics and dynamics – ISM: clouds – ISM: kine-
matics and dynamics – galaxies: star clusters: general.

1 IN T RO D U C T I O N

The theoretical study of star clusters needs a more realistic de-
scription of their initial conditions. There are stronger and stronger
indications that the properties of these systems could be the imprints
of their formation process. For example, young massive clusters
and open clusters show substrutctures with complex kinematics and
fractality (e.g. Cartwright & Whitworth 2004; Sánchez & Alfaro
2009; Parker & Meyer 2012; Cantat-Gaudin et al. 2019; Kuhn et al.
2019), traces of ongoing dispersal (e.g. Cantat-Gaudin et al. 2019;
Kuhn et al. 2019), believed to be due to sudden gas expulsion (e.g.
Tutukov 1978; Lada, Margulis & Dearborn 1984; Geyer & Burkert
2001; Baumgardt & Kroupa 2007) and indications of rotation (e.g.
Hénault-Brunet et al. 2012).

Understanding the formation of star clusters in the local Universe
might also be crucial to explain the properties of older systems as
globular clusters. Signatures of rotation are also found for these
more evolved systems (e.g. van Leeuwen et al. 2000; Pancino et al.
2007; Bianchini et al. 2013; Fabricius et al. 2014; Kamann et al.
2018). Furthermore, globular clusters show multiple populations
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of stars with slightly different chemical properties, kinematics
and segregation (see Gratton, Sneden & Carretta 2004; Marino
et al. 2008; Milone et al. 2010; Carretta et al. 2011; Gratton,
Carretta & Bragaglia 2012; Bastian & Lardo 2018; Milone et al.
2020, and references therein). These distinct populations might
be explained by a non-monolithic formation of their host cluster
(Perets & Mastrobuono-Battisti 2014; Bekki & Tsujimoto 2016;
Gavagnin, Mapelli & Lake 2016; Mastrobuono-Battisti & Perets
2016; Mastrobuono-Battisti et al. 2019).

The degree of fractality (i.e. of substructuring) and the amount
of rotation of a young star cluster are both expected to have an
impact on its dynamical evolution, particularly at the early stages
of its assembly. In particular, they are both enhancing the local
probability of two-body encounters, e.g. shortening the two-body
relaxation of such systems. This impact on the relaxation time-scale
is particularly important because dynamics is predicted to play a
crucial role, for example, in the formation of intermediate-mass
black holes (Colgate 1967; Ebisuzaki et al. 2001; Portegies Zwart
et al. 2004; Freitag, Gürkan & Rasio 2006; Giersz et al. 2015;
Mapelli 2016) and the formation and evolution of massive binary
systems, which might be the precursors of compact object mergers
(Ziosi et al. 2014; Kimpson et al. 2016; Mapelli 2016; Banerjee
2017; Fujii, Tanikawa & Makino 2017; Banerjee 2018a, b; Di
Carlo et al. 2019; Kumamoto, Fujii & Tanikawa 2019).
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Fractality has been quite widely investigated for observed sys-
tems and through pure N-body simulations. However, few studies
focused on the fractality of star clusters forming in hydrodynam-
ical simulations of the collapse of turbulent molecular clouds.
A first attempt was performed by Schmeja & Klessen (2006).
These authors tested the so-called Q parameter, first defined by
Cartwright & Whitworth (2004), on both observations of young
embedded star clusters and the smoothed-particle hydrodynamics
(SPH) simulations by Schmeja & Klessen (2004). They reported
values of Q comparable between their models and real star clusters
and found no significant correlation between the fractality of their
sink particle distributions and the properties of the turbulent field
induced in the simulated collapsing molecular clouds. A similar
attempt can be found in Maschberger et al. (2010), who analysed two
simulations with cloud mass equal to 103 and 104 M�, performed
by Bonnell, Bate & Vine (2003) and Bonnell, Clark & Bate (2008),
respectively. The resulting sink particle clusters were both forming
with low values of Q (of the order of 0.4–0.5), typical of a very
high degree of substructuring. However, for the lower mass cluster,
which is bound, Q evolves to values typical of no fractality in around
a couple of free-fall times, while for the higher mass cluster, which
is initially unbound, Q stays more or less constant. This is a proof
that star clusters assembling hierarchically are expected to form
fractal and then to ‘lose’ substructures due to their mergers and to
relaxation processes.

Low values of Q at the early stage of star formation have also
been found by Girichidis et al. (2012), though for much smaller
(100 M�) and strongly unstable clouds. Girichidis et al. (2012)
also found a possible dependence (though quite mild) of Q on both
the initial density profile and mode of turbulence of the collapsing
cloud. Finally, no strong dependence of Q on stellar feedback was
found in the hydrodynamical simulations analysed in Parker & Dale
(2015) and Gavagnin et al. (2017). In general, an evolution of Q
from small values to larger values (no fractality) is found also in
these studies.

Rotation in embedded star (proto-)clusters forming in hydrody-
namical simulations has been way less investigated in literature.
Recent studies by Lee & Hennebelle (2016) and Mapelli (2017)
showed that such star clusters inherit significant rotation from their
parent cloud, by large-scale torques from the gas and from angular
momentum conservation in the collapse of the densest cores. Indeed,
possible signatures of rotation are found in observations (through
different gas tracers) of collapsing molecular clouds, sometimes
at large scales (e.g. Galván-Madrid et al. 2009; Li, Wyrowski &
Menten 2017), but most importantly at the loci of convergence
of different turbulence-induced filaments (Ho & Haschick 1986;
Zhang & Ho 1997; Liu et al. 2012; Beuther, Linz & Henning 2013;
Dalgleish et al. 2018; Juárez et al. 2019; Liu et al. 2019; Treviño-
Morales et al. 2019).

In this paper, we study these two properties for 10 hydrodynamic
simulations of the formation of star clusters by the collapse of mas-
sive molecular clouds. A brief description of the initial conditions
and methods adopted to run our set can be found in Section 2. In
Section 3.1, we present our analysis of fractality, performed through
the adoption of few different diagnostic indicators. The analysis of
rotation can be found in Section 3.2. A discussion of our results is
presented in Section 4. We summarize our results in Section 5.

2 H Y D RO DY NA M I C A L S I M U L AT I O N S

We analysed 10 hydrodynamical simulations of turbulent molec-
ular clouds performed with the SPH code GASOLINE (Wadsley,

Stadel & Quinn 2004; Wadsley, Keller & Quinn 2017). We
adopted an adiabatic equation of state, coupled to the radiative
cooling algorithm described in Boley (2009) and Boley et al.
(2010). The cooling is calculated from the divergence of the flux
∇ · F = −(36π)1/3s−1σ (T 4 − T 4

irr)(�τ + 1/�τ )−1, where σ is the
Stefan–Boltzmann constant, Tirr represents the incident radiation,
s = (m/ρ)1/3 and �τ = skρ, with m and ρ being the particle mass and
density and k being the local opacity. For k, tabulated values of the
Planck and Rosseland dust opacities are used, taken from D’Alessio,
Calvet & Hartmann (2001), while we adopted Tirr = 10 K.

The clouds have an initial uniform density and temperature of
250 cm−3 and 10 K, respectively, distributed on a sphere with mass
equal to 104−105 M� (see Table 1). This leads to a fixed cloud
free-fall time of tff = 2 Myr.

All the clouds are initially turbulent, so to be in a marginally
bound state. This means that their virial ratio αvir = T/|V| = 1,
where T and V are the kinetic and potential energy, respectively. The
turbulence consists of a divergence-free Gaussian random velocity
field, following a Burgers (1948) power spectrum. The turbulence
seed is different for each simulation.

All the simulations have a fixed number of 107 gas particles,
corresponding to a mass resolution of 10−3 to 10−2 M�, with
gravitational softening of ε = 10−4 pc.

We modelled the formation of stars through a sink particle
algorithm adopting the same criteria as in Bate, Bonnell & Price
(1995). In particular, we adopted a density threshold1 of 107 cm−3

and we set a sink radius of rs = 2 × 10−3 pc.

3 R ESULTS

Unless differently stated, we analyse the simulations at an evolution-
ary time of tsim = 3 Myr (i.e. equal to 1.5 times the original cloud
free-fall time tcl,ff), at which we investigated the main properties
of the sinks, as summarized in Table 1. This choice is somewhat
arbitrary, but it is roughly consistent with the time at which we
expect stellar feedback to start expelling gas from the parent cloud
and lead to a saturation of star formation. As shown in Table 1, the
sink formation efficiency, defined as εsf = Ms/Mmc (where Mmc is the
initial cloud mass and Ms is the mass in sinks), ranges between 0.28
and 0.45, consistent with previous simulations, that also considered
stellar feedback (e.g. Vázquez-Semadeni et al. 2010; Dale et al.
2014; Gavagnin et al. 2017; Li et al. 2019).

Fig. 1 shows projection maps of the gas density at the end of the
simulations, while Fig. 2 shows the distribution of the sinks formed
in each cloud.

In the following, we will focus on some major structural and
kinematic properties of the formed star clusters and of their sub-
clumps.

3.1 Fractality

All the simulated star clusters appear to be strongly substructured,
compared to the relaxed distributions of older stellar systems. This

1The main difference between our simulation set-up and the one of Mapelli
(2017) is the density threshold, being 105 cm−3 in Mapelli (2017). This
difference affects the initial virial state of the simulated sink clusters: our
star clusters end up having αvir � 0.5, while the clusters simulated by
Mapelli (2017) are sub-virial. This deserves further analysis and should be
kept into account when interpreting the results of numerical studies based
on sink particle algorithms.
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Table 1. Properties of the simulated star clusters at tsim = 3 Myr.

Mmc (M�) Rmc (pc) Ns Ms (M�) εsf DB3D,s DB2D,s DC3D,s DC2D,s Q2D,s Q3D,s

104 5.4 2531 4.22 × 103 0.42 1.38 ± 0.03 1.20 ± 0.02 1.04 ± 0.04 0.87 ± 0.03 0.40 0.24
2 × 104 6.8 2571 6.69 × 103 0.33 1.40 ± 0.03 1.19 ± 0.02 1.38 ± 0.04 1.06 ± 0.03 0.40 0.25
3 × 104 7.8 2825 1.03 × 104 0.34 1.34 ± 0.03 1.21 ± 0.02 1.51 ± 0.03 1.22 ± 0.02 0.49 0.31
4 × 104 8.6 2868 1.44 × 104 0.36 1.30 ± 0.03 1.04 ± 0.02 1.76 ± 0.02 1.69 ± 0.01 0.76 0.32
5 × 104 9.2 2231 1.41 × 104 0.28 1.48 ± 0.03 1.34 ± 0.02 1.51 ± 0.02 1.40 ± 0.02 0.35 0.20
6 × 104 9.8 3054 2.04 × 104 0.34 1.52 ± 0.02 1.33 ± 0.02 1.43 ± 0.02 1.25 ± 0.01 0.37 0.21
7 × 104 10.3 4214 3.15 × 104 0.45 1.40 ± 0.02 1.12 ± 0.01 1.30 ± 0.03 1.34 ± 0.01 0.69 0.26
8 × 104 10.8 2945 2.83 × 104 0.35 1.56 ± 0.04 1.30 ± 0.01 1.61 ± 0.03 1.42 ± 0.02 0.46 0.28
9 × 104 11.2 3161 3.05 × 104 0.34 1.49 ± 0.04 1.27 ± 0.02 1.60 ± 0.02 1.48 ± 0.02 0.43 0.27
105 11.6 3944 3.80 × 104 0.38 1.40 ± 0.03 1.17 ± 0.01 1.49 ± 0.04 1.41 ± 0.02 0.53 0.28

Notes. Column 1 (Mmc): initial molecular cloud mass; column 2 (Rmc): initial molecular cloud radius; column 3 (Ns): number of sink particles formed after
1.5 tff; column 4 (Ms): total mass of sink particles after 1.5 tff; column 5 (εsf): star formation efficiency at 1.5 tff; column 6 (DB3D, s): 3D fractal dimension
of sink particles calculated with the box-counting method (see the text for details); column 7 (DB2D,s): 2D fractal dimension of sink particles calculated with
the box-counting method; column 8 (DC3D,s): 3D fractal dimension of sink particles calculated with the neighbour-counting method (see the text for details);
column 9 (DC2D,s): 2D fractal dimension of sink particles calculated with the neighbour-counting method; column 10 (Q2D,s): Q parameter of sink particles
calculated in two dimensions; column 11 (Q3D,s): Q parameter of sink particles calculated in three dimensions.

is extremely important, since substructures in the cluster are usually
very dense and might be the loci of strong dynamical interaction
between stars. One way to quantify the degree of irregularity of
an object is the so-called fractal dimension D. Several works in
literature tried to quantify the fractal dimension, from both an
observational point of view and a theoretical one. We calculated
the fractal dimension of our simulated clusters in different ways.

First of all, we calculated the fractal dimension DB through a
‘box-counting’ method. This is the inverse process of what is usually
done to build fractal distributions (e.g. Bate, Clarke & McCaughrean
1998; Cartwright & Whitworth 2004; Küpper et al. 2011; Lomax,
Whitworth & Cartwright 2011). In this case, we constructed a series
of n = 60 3D/2D grids embedding the star cluster, composed of
cubic cells. The size Lk of each cell, in the k-th grid is equal to
the maximum x, y, z-size S of the star cluster, divided by a factor
ranging from 2 to 200 in a logarithmic scale. According to this
definition, the fractal dimension DB is calculated as the slope of
the curve log Nocc versus log L−1, where Nocc is the number of cells
occupied by at least one sink.

Fig. 3 shows the aforementioned curves for the full set of
simulations, calculated for the 3D distribution of the sinks and
for their distribution in the x−y projection, while Table 1 lists the
values of DB obtained from a fit of those curves, calculated for
Nocc,max = 0.1 Nsinks, i.e. roughly when the curves start saturating.
The saturation occurs because the number of ‘boxes’ is tending
to the number of sinks at L � 1 pc, which means DB is mostly
probing the degree of substructures on larger scales. As visible in
Table 1, the values of DB are ranging from 1.30 to 1.56 for the 3D
calculation and from 1.04 to 1.34 in the 2D case, which is on the
lower end, but compatible, with the values obtained in observations
(see Sánchez & Alfaro 2010, and references therein).

We then calculated the fractal dimension through a ‘neighbour-
counting’ method. This is strongly related to calculating the so-
called ‘correlation integral’ (e.g. de La Fuente Marcos & de La
Fuente Marcos 2006; Sánchez et al. 2007)

C(r) = 1

Ns (Ns − 1)

Ns∑

i=1

ni(r), (1)

where Ns is the number of sinks and ni(r) is the number of neigh-
bours of the i-th sink, contained in a 3D sphere (or 2D circle) with
radius r. Fig. 4 shows the resulting values of C ′(r) = (Ns − 1) C(r)

as a function of r, both for the 3D distribution and for its 2D x−y
projection. Also in this case, we obtained DC as the slope of the
curve log C

′
(r) versus log r, calculated for C

′
(r)max = Nsinks/3, i.e.

roughly when the curves start saturating. In this case, the saturation
occurs since for r that tends to half of the size of the cluster, the
corresponding sphere (circle) is basically encompassing most of
the sinks. So, opposite to DB, DC is mostly probing the degree of
substructures on small/intermediate scales. It is also worth noting
that the derivative of such curves depends on r. This happens
because the sinks in some simulations are distributed in few (two
or three) major sub-clumps. Hence, C

′
(r) may change regime when

r reaches the typical size of such sub-clumps. The values of DC

listed in Table 1 are typically smaller than those of DB, though still
compatible with the observed values for the youngest star clusters
(see Sánchez & Alfaro 2010, and references therein). However, this
is partially the result of our simple linear fitting of curves with
clearly varying slope. As also shown in Sánchez & Alfaro (2008),
DC can also strongly depend on the actual 3D distribution of the
sinks (particularly, on how ‘flat’ the distribution is, along the line
of sight), especially at low values of their actual fractal dimension.

Finally, we estimated the so-called Q parameter, which is likely
the most popular indicator of fractality in the literature, used for the
analysis of both observations and simulations (e.g. Cartwright &
Whitworth 2004; Schmeja & Klessen 2006; Bastian et al. 2009;
Cartwright 2009; Sánchez & Alfaro 2010; Maschberger et al. 2010;
Parker & Meyer 2012; Parker 2014; Parker & Dale 2015). Q is
defined as the ratio of the mean edge length of the minimum-
spanning-tree (MST) m̄ and the mean inter-particle distance s̄. For
this calculation, s̄ should be normalized to a typical size of the
star cluster. We chose this length rcl to be half of the maximum
distance between the sinks (i.e. we chose the radius of the circle, in
2D, or sphere, in 3D, encompassing the whole cluster). Following
Cartwright (2009), m̄ was normalized by (πr2

cl/Ns)1/2 for a 2D
calculation and by (4πr3

cl/(3Ns))1/3 for a 3D calculation.
In Table 1, we listed the value of Q for our set of simulations,

calculated using the 3D distribution and the 2D x−y projection of
the sinks. We show that Q2D and Q3D are both significantly smaller
than 0.8 (for the 2D calculation) and 0.7 (for the 3D calculation),
which are the values expected for non-fractal distributions. The
only outliers, with values �0.7, are Q2d for the Mcl = 4 × 104 M�
and Mcl = 7 × 104 M� simulations. This is explained by the
particular choice of their 2D projections, which made the cluster
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Figure 1. Projection map of the gas particle density at tsim = 3 Myr, for all the simulations of our set.

appear almost spherical and brought Q to a value that is more typical
of low fractality. However, the high fractality of these clusters is still
revealed through the 3D calculation and the previous DB and DC

indicators.
As shown in Cartwright (2009), s̄–m̄ plots are an even better

diagnostic test of fractality. Fig. 5 can be directly compared to figs 1
and 2 of Cartwright (2009). Our values of s̄ and m̄ sit in a region of
such plots typical of extremely high fractality, i.e. fractal dimension
�1.6.

Fig. 6 show the evolution of DB,C for the Mcl = 2 × 104 M�
simulation, while Fig. 7 shows the evolution of Q for the Mcl = 2,
4, 6 × 104 M� simulations. Both DC and Q show a clear increase
with time, while DB stays almost constant during the evolution of
the whole cluster. This can be explained by the fact that DC and Q
are mostly probing the degree of fractality on small scales, which
decreases with time, due to the merger of such substructures and

to their internal dynamical relaxation (see also Maschberger et al.
2010; Parker 2014). In contrast, DB mostly probes the amount of
substructures on larger separations, i.e. those due to the large-scale
modes of the initially induced turbulence, which are more slowly
affected by dynamics. As already discussed, the Mcl = 4 × 104 M�
simulation shows a big increase in Q2D with time, reaching values
even bigger than 0.8, i.e. what is expected for no-fractality. However,
as shown by the Q3D curve this is mostly due to the particular choice
of its 2D projection.

3.2 Rotation

We studied rotation of substructures in our simulations, performing
a similar analysis as in Mapelli (2017). In particular, we selected
regions with the highest mass density and angular momentum of the
sinks and, for these regions, we rescaled the position and velocity

MNRAS 496, 49–59 (2020)
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Figure 2. Projection of the sink particle distribution at tsim = 3 Myr, for all the simulations of our set.

of the sinks to their centre of mass. Finally we moved them to a
new frame of reference, where z′ has the same direction as the total
angular momentum of the selected sinks and x′ and y′ are arbitrarily
oriented in the plane perpendicular to z′.

Fig. 8 shows scatter plots and Voronoi tessellation maps for the
three components of the velocity v′

x′ , v′
y′ , and v′

z′ in the x′−y′ plane,
for the highest angular momentum cluster of the Mcl = 2 × 104 M�
simulation at tsim = 3 Myr. The graphs of v′

x′ and v′
y′ show a
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Figure 3. Fractal dimension, as calculated through the ‘box-counting’ method, for the 3D distribution (left) and a 2D projection (right) of the sink position.
The plot shows the number of cells (with size L) occupied by at least one sink, for 3D/2D grids covering the sink clusters (see text for a detailed explanation).
The slope of such logarithmic curves is equal to the fractal dimension DB. The three dotted lines show the ideal curves for DB = 1.6, 2.0, 3.0.

Figure 4. Fractal dimension, as calculated through the ‘neighbour-counting’ method, for the 3D distribution (left) and a 2D projection (right) of the sink
position. The plot shows the number of sinks contained in a circle/sphere of radius r (see text for a detailed explanation). The slope of such logarithmic curves
is equal to the fractal dimension DC. The three dotted lines show the ideal curves for DC = 1.6, 2.0, 3.0.

distribution of mostly positive velocity components on half of the
plot and mostly negative velocity components on the other half. In
contrast, the plots of v′

z′ show no clear trend. This can be interpreted
as rotation of such sub-cluster around the z′ axis.

Fig. 9 shows Voronoi tessellation maps of the same sub-cluster
as in Fig. 8 but shown at a later time, at tsim = 4 Myr. The rotation
signature is still present and has comparable magnitude even after
1 Myr.

We can further confirm that the signature visible in Figs 8 and
9 are actually due to rotation, by looking at Fig. 10, for tsim =
4 Myr. In this plot we show, for each ‘position’ bin, the average
velocity components of the sinks and their dispersion σ , calculated
as the standard deviation of each velocity component with respect
to its average. The upper panels of Fig. 10 show profiles for v′

x′ (y ′)
and v′

y′ (x ′). Such plots should be a good representation of what
an observed line-of-sight velocity would look like in the plane
perpendicular to the total angular momentum of the sub-cluster. The
lower panels of Fig. 10 show profiles for the tangential (rotational)
and radial velocity components, v′

tan and v′
rad, in the new frame

of reference. The profiles are done over φ′ and r′, where φ′ is the

azimuthal position and r′ is the distance from the centre of the
sub-clump, in the newly defined frame of reference.

A rotation feature is visible in all of these plots, with the average
value of each velocity component associated with rotation being
≈3–5 km s−1 and comparable to its dispersion. Such magnitudes
are similar to the values obtained in both observations (for the
young star cluster R136 observed by Hénault-Brunet et al. 2012)
and hydrodynamical simulations (Mapelli 2017). Furthermore, the
red circles in the lower panels show the average radial velocity in
each bin, which is always close to 0, again strengthening the idea
that our scatter and contour maps are actually showing a rotation
feature, rather than collapse towards the centre of the sub-clump.

We performed the same analysis for all our simulations, but
signatures of rotation are not always easily found for substructures
in all of the clouds. Fig. 11 shows the same plots as Fig. 8, but for
the simulations with Mcl = 6, 10 × 104 M�. The highest angular
momentum region in the simulation with Mcl = 6 × 104 M� is
occupied by a single sub-cluster. This sub-cluster shows indications
of rotation, even though the feature is more noisy, because such
sub-cluster is composed of less stars than the one in Fig. 8. Even
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Figure 5. Mean inter-particle distance s̄ versus mean edge length of the
minimum-spanning-tree m̄ (see text for details) for all the simulations in
our set at tsim = 3 Myr. The squares and solid line are relative to the
2D calculation, while the triangles and dotted line are relative to the 3D
calculation.

Figure 6. Evolution of the fractal dimension for Mcl = 2 × 104 M�. The
results for the ‘box-counting’ method are shown by the solid (2D) and dotted
(3D) lines, while those for the ‘neighbour-counting’ method are shown by
the dashed (2D) and dashed-dotted (3D) lines.

if the signature is less evident in this case, the rotation velocity is
roughly of the same order of magnitude as in Fig. 8.

In the Mcl = 105 M� simulation, the highest angular momentum
region consists of two sub-clusters rotating around a common centre
of mass. These two sub-clusters are about to merge and form a
single, fast rotating star cluster.

4 D ISCUSSION

We mainly focused our study on fractality and rotation, since these
phenomena are mostly linked to the formation phase of young
star clusters and to the interplay between stars and the gas still
embedding them. Such phase is crucial to understand the assembly
history of star clusters.

We showed that all the star clusters formed in our simulations
(and composed of sink particles) have highly fractal distributions,
from small to large scales, particularly at early stages (≈ 1.5 tff ). The

Figure 7. Evolution of the Q parameter for Mcl = 2, 4, 6 × 104 M�
(circles, triangles, and squares, respectively). The solid and dotted lines
show the results for the 2D and 3D calculation, respectively.

values of different fractality indicators obtained for our clusters are
consistent with observations, especially for the youngest embedded
star clusters, such as Taurus, Lupus, Chamaeleon I or the Pipe
Nebula (see Cartwright & Whitworth 2004; de La Fuente Marcos &
de La Fuente Marcos 2006; Schmeja & Klessen 2006; Sánchez &
Alfaro 2010; Dib & Henning 2019). On small scales, the degree
of fractality is slowly reduced with time, as shown by the trend
of DC in Fig. 6. This happens because our star clusters form
hierarchically (smaller substructures merge to form a major, more
centrally concentrated star cluster Schmeja & Klessen 2006), and
because each sub-structure relaxes by efficient two-body relaxation
(the two-body relaxation timescale for our main substructures is
of the order of 0.5 Myr). In contrast, the degree of fractality on
large scales (as shown by the trend of DB in Fig. 6) remains nearly
constant in our simulations. This is due to the fact that the box-
counting method is not capable to probe fractality on small scales
(the curves in Fig. 3 saturate for L � 1 pc). In more physical terms,
DB is not considerably varying since the substructures on large
scales are mostly the imprint of the large-scale modes of the initial
turbulence on the distribution of the star-forming gas, rather than
of stellar dynamics. The merger of such substructures occurs on
longer dynamical timescales, compared to the evolutionary times
of our simulations.

Such hierarchical assembly is crucial: for example, Fujii,
Saitoh & Portegies Zwart (2012) showed, by means of pure N-
body simulations, that the properties of young star clusters and
open clusters are best explained when these systems are the result
of mergers of smaller substructures, since the latter typically have
smaller relaxation times and the merger product preserves the
memory of the dynamical evolution of its constituents. Here, we
show that the hierarchical assembly starts already in the embedded
phase of these systems and occurs over different timescales, at
different length-scales.

Rotation can be found in substructures throughout the whole
set of simulations, already at the early stages of their formation.
As discussed by Mapelli (2017), this is due to angular momentum
conservation in the collapse of the densest gas forming the stellar
substructures, as well as angular momentum transfer by torques
from the gas to the already formed substructures. The magnitude
of the rotation signature measured in our simulations is consistent
with that found in the R136 cluster by Hénault-Brunet et al. (2012).

MNRAS 496, 49–59 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/496/1/49/5856009 by Sissa user on 09 April 2021



56 A. Ballone et al.

Figure 8. Scatter plots (upper panels) and Voronoi tessellation maps (lower panels) of the highest angular momentum sub-cluster formed in the Mcl =
2 × 104 M� simulation, at 3 Myr. We show the x′−y′ plane, where z′ is the direction of the angular momentum of the sub-cluster. The colour map refers to
the three components of the velocity: v′

x′ (left), v′
y′ (centre), and v′

z′ (right).

Figure 9. Scatter plots (upper panels) and Voronoi tessellation maps (lower panels) of the highest angular momentum sub-cluster formed in the Mcl =
2 × 104 M� simulation, at 4 Myr. We show the x′−y′ plane, where z′ is the direction of the angular momentum of the sub-cluster. The colour map refers to
the three components of the velocity: v′

x′ (left), v′
y′ (centre), and v′

z′ . The sub-cluster is the same as in Fig. 8, but shown at tsim = 4 Myr.

Furthermore, rotation is visible not only in single, almost spher-
ically symmetric substructures, but also in the rotation of different
stellar sub-clumps, rotating around a common centre of mass (see
Fig. 11). Compared to Mapelli (2017), by looking at Fig. 10, we
can even more strongly exclude that the rotation signature visible
in Figs 8, 9, 10, and 11 is actually due to the collapse of the
substructure. This is particularly important, since an undergoing

collapse along some axis might be totally mistaken for rotation
(Rigliaco et al. 2016).

It is worth noting that rotation persists also at later times. This is,
again, a proof that stars inherit their rotation from the parent gas,
until they are embedded and the gas is expelled by stellar feedback.

Finally, we might expect that the collapse of our clouds is mostly
governed by the adimensional parameter γ , defined by the ratio
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Figure 10. Upper panels: Velocity profiles (v′
x′ , left; v′

y′ , right) of the fastest rotating sub-cluster in the Mcl = 2 × 104 M� simulation, at 4 Myr. The blue dots
show the velocity of each individual sink, the orange crosses represent the average of the velocity, while the green triangles represent the velocity dispersion
at each position (see text for details). Lower panels: azimuthal (left) and radial profiles (right) for the tangential (rotational) v′

tan and v′
rad velocity of the same

sub-cluster. The blue dots show the rotational velocity of each individual sink, the orange crosses represent the average rotational velocity, the green triangles
represent the rotational velocity dispersion, and the red circles represent the average radial velocity at each position (see text for details).

between the cloud-crossing time-scale and its free-fall time-scale.
In our case, since our clouds are highly turbulent, the relevant cloud-
crossing time-scale can be defined as tcross ∝ Rmc/σ turb, where Rmc

is the cloud radius and σ turb is the turbulence-induced velocity dis-
persion. The free-fall time-scale is instead tff ∝ R3/2

mc /M1/2
mc , where

Mmc is the cloud mass. Hence, γ ∝ (Mmc/Rmc)1/2/σturb ∝ √
αvir. As

mentioned in Section 2, the virial ratio of our simulated clouds is
uniform throughout our set. So, in our simulations the only ‘control’
parameter is the turbulence random seed, which has a marginal
impact on our results (see e.g. Figs 3, 4, 5, and 7), even though it
leads to quite different large-scale structures. Since γ ∝ √

αvir, we
expect that similar results in terms of rotation and fractality are to be
expected for any initial condition with similar virial ratios. Instead,
we expect lower (higher) virial ratio star clusters to have their
substructures and rotation washed out faster (slower), as shown,
e.g. in the recent study by Daffern-Powell & Parker (2020).

A possible caveat of our approach is in the lack of stellar
feedback. Our simulations retain gas until their end and they keep
on converting it into sink particles, though most of the regions of
highest stellar density are already devoid of gas, at the times at which

we focused our analysis. It would be interesting to check whether
rotation is lost at earlier stages in more sophisticated simulations,
including ‘gentle’ pre-supernova feedback (such as photoionization
or stellar winds; see e.g. Vázquez-Semadeni et al. 2010; Dale et al.
2014; Gavagnin et al. 2017; Li et al. 2019). Our simulations also
lack a direct-summation gravity integrator, which would allow to
accurately study processes happening at the very early formation
of these systems, such as the core collapse (Fujii et al. 2012), the
formation and evolution of binary stars (e.g. Mapelli & Bressan
2013) and binary compact objects (e.g. Ziosi et al. 2014; Banerjee
2017; Fujii et al. 2017; Di Carlo et al. 2019) and the runaway
collision path for the formation of intermediate mass black holes
(Ebisuzaki et al. 2001; Portegies Zwart et al. 2004; Freitag et al.
2006). This could be done in the future, by either integrating such
more accurate methods in the hydrodynamical simulation (this
was recently attempted by Wall et al. 2019, but it is extremely
computationally challenging) or by using these simulations as initial
conditions of runs with direct N-body codes (as in the case of
Moeckel & Bate 2010; Moeckel et al. 2012; Parker & Dale 2013;
Fujii & Portegies Zwart 2016).
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Figure 11. Scatter plots for different regions in the Mcl = 6 × 104 M� (first row) and Mcl = 105 M� simulations (second row), at tsim = 3 Myr. The left,
central, and right columns show the three components of the velocity v′

x′ (left), v′
y′ (centre), and v′

z′ (right) in the x′–y′ plane, where z′ is the direction of the
angular momentum of the region.

5 SU M M A RY A N D C O N C L U S I O N S

We studied the evolution of fractality and rotation in embedded
star clusters, by means of SPH simulations of turbulent massive
molecular clouds with mass ranging from 104 to 105 M�. The
formation of star clusters by gas fragmentation is modelled via sink
particles. In our analysis, we found that all the resulting star clusters,
at the early stages of their formation (1.5 tcl,ff) have an extremely
high degree of fractality (D ≈ 1.0−1.8, Q3D ≈ 0.20−0.3). We also
showed that the degree of sub-structuring slightly decreases with
time at small scales, but it stays almost constant on large scales, on
timescales of the order of 1 − 2 tff . Furthermore, we also show that
these substructures are often rotating and that rotation can persist
as long as the star cluster is embedded in its parent cloud, since
angular momentum is continuously fed by gas converging towards
the most massive stellar structures formed. The signature of rotation
can be even stronger, if we start from rotating molecular clouds (see
Li et al. 2017), which are not considered here, because we chose to
adopt a conservative approach.

Fractality and rotation could have a significant impact on the
evolution of the densest regions of young star clusters, by boosting
the local probability of two-body encounters. This should be taken
into account when studying dynamical processes believed to happen
at the very early formation of these systems. In future work, we will
thus focus on studying if and how fast rotation is erased by relaxation
processes, after gas removal.
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