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One-loop E�ective Action in Quantum
Gravitation
A. Codello, R. Percacci and L. Rachwa l

Abstract We present the formalism of computing one-loop e�ective actionfor Quantum Gravitation using non-local heat kernel methods. We foundagreement with previous old results. In main part of my presentation I con-sidered the system of E-H gravitation and scalar �elds. We were able to derivenonlocal quantum e�ective action up to the second order in heat kernel gen-eralized curvatures. By going to at spacetime expressions for gravitationalformfactors are possible to construct and compare with the results from ef-fective �eld theory for gravity.

1 Truncation ansatz and 'inverse propagator'
In this work we will review the results of computation of 1-loop e�ective ac-tion in a system, where we have standard Einstein-Hilbert gravitation anda minimally coupled scalar �eld. Standard computation, known in the liter-ature, are mainly based on perturbative quantization methods and they ex-ploit Feynman diagrams techniques [3]. Here we will follow a di�erent route.Namely we will obtain 1-loop quantum e�ective action as the e�ect of inte-grating average e�ective action along the RG ow trajectory from UV downto IR limit. Moreover in the core of our calculation we will use non-local heatkernel techniques to evaluate some functional traces. We will pay special at-tention to the appearance of nonlocal terms in the quantum e�ective action.All the calculations will be performed in Euclidean spacetimes and later wewill specify to four spacetime dimensions. One of the goal of such calculation
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2 A. Codello, R. Percacci and L. Rachwa l
is the quantum e�ective action per se. Another is related to gravitationalformfactors of simple interactions with scalars.Now we want to introduce the notion of the average e�ective action (EAA).The EAA is a scale-dependent generalisation of the standard e�ective action,that interpolates smoothly between the bare action for k ! 1 and thestandard quantum e�ective action for k ! 0. In this way, we avoid theproblems of performing the functional integral. Instead they are convertedinto the problem of integrating the exact ow of the EAA from the UV tothe IR. The EAA formalism deals naturally with several di�erent aspectsof quantum �eld theories. One aspect is related to the discovery of non-Gaussian �xed points of the RG ow. In particular, the EAA framework is auseful setting to search for Asymptotically Safe theories, i.e. theories valid upto arbitrarily high energy scales. A second aspect, in which the EAA revealsits big usefulness, is the domain of nonperturbative calculations. In fact, theexact ow, that EAA satis�es is a valuable starting point for inventing newapproximation schemes.In EAA the crucial point is the separation between high and small en-ergy modes of quantum �elds. The elimination of higher energy modes isperformed by separating the low energy modes, to be integrated out, fromthe high modes in a covariant way. To do this we introduce a cuto� actionconstructed using the covariant d'Alambertian, that respects the symmetriesof the underlying theory. In full generality in order to construct EAA we addto the bare action S an infrared (IR) \cuto�" or regulator term �Sk of theform:

�Sk = 12
Z ddxpg �Rk(�)� : (1)

In above formula the operator kernel Rk is chosen in such a way to suppressthe �eld modes �n, eigenfunctions of the covariant second di�erential operator
�, with eigenvalues smaller than the cuto� scale vn < k2. Generic �elds ofour quantum �eld theory are denoted here by �. We will call �Sk the cuto�action. The functional form of the cuto� kernels Rk(z) is arbitrary exceptfor the requirements that they should be monotonically decreasing functionsin both z and k arguments, i.e. rigorously that Rk(z) ! 0 for z � k2 andthat Rk(z) ! k2 for z � k2. It is important to recall two limits of EAA.First in the IR limit (k = 0) quantum e�ective action is obtained. On theother hand, when k !1, then EAA equals to the bare action of consideredquantum theory. In this way we obtain the scale dependent generalisation ofthe standard e�ective action, which interpolates between the two.Quantum gravity gives unambiguous predictions at low energy in theframework of e�ective �eld theories. The low energetic action contains onlythe simplest Einstein-Hilbert term (with a possibility of adding a cosmolog-ical constant, which we however neglect here). In this e�ective theory thereexist observables, which do not depend on the particular way of UV comple-tion. They are genuine predictions of quantum gravity. The quantum diver-
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gences, which must be absorbed during the renormalization procedure, arecontained in local, but not universal terms in the quantum e�ective action.We are mainly interested in nonlocal terms in quantum e�ective action. Thereason for this is that they are universal terms in low-energetic e�ective �eldtheory of quantum gravity [4, 5]. They do not depend on any speci�c wayof UV completion of gravity. There exist di�erent ways, by which, one canobtain quantum e�ective action in the infrared limit. However it is withoutany doubt that low-energetic predictions of quantum gravity are calculableand solid, regardless of any complicated dynamics, which saves the theory inUV. In our method for integration RG ows we will use exact (also known asfunctional) Renormalization Group equations. In integration of RG ow ofscale-dependent e�ective action such nonlocal terms originate from the partof integration done for the lowest momentum scales.We will use the following ansatz for the form of the action of our system

S = Z ddxpg � 1K2R� 12(@�)2 � V (�)�� 12K2�
Z ddxpg �2

+ Z ddxpg �C� (����� �R�� )C� ; (2)
where d'Alambertian is given by � = r�r�. Due to the gauge di�eomor-phism symmetry present in the system we are forced to introduce gauge�xing conditions necessary for perturbative quantization of the system:�� = r�h�� � 1

2r�h . Moreover another consequence of this gauge redun-dancy is that for consistency, we also had to add vector ghosts denoted byC� in the second line of (2). In our computation we use the background �eldmethod and we take the metric perturbations in the form h�� = �g�� andin contracted version h = g��h�� . All covariant derivatives are with respectto the background metric. As we can see in the action (2) we included mini-mally coupled scalar �eld � and we allow for the existence of potential V (�)for it. Gravitational coupling appears there as K, which has the inverse en-ergy dimension. In the gravitational part of the action R is the only presentcurvature invariant built out of the full metric g�� . Additionally constant �is a gauge parameter in our gauge �xing condition.When we have the explicit form of the action, then the next step is to com-pute the second variational derivative w.r. to all uctuating quantum �eldslike in [1]. Usually this takes the form of second order di�erential operator,which is of fundamental importance in our construction of the cuto� kernelsin the EAA.
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2 Exact RG ows
Using the methods of nonlocal heat kernel we will now exploit the power ofExact RG formalism applied to the EAA. At the beginning we need to knowows of which terms to consider and for this reason we �rst look for simpletask related to local terms.

2.1 Local terms of one-loop e�ective action

Firstly we will look for local terms in 1-loop e�ective action for our system.They are related to UV divergences of the theory. In general these divergencesgive rise to the renormalization of couplings in front of local terms. They arenot universal and depend on the precise way of UV completion. However weassume, that the bare action (in UV) is given by (2). At one loop order thequantum e�ective action is given by the integral
� [�; g] = �12

Z 1
0

dss Tr e�sŜ(2) ; (3)
where Tr e�sŜ(2) is the functional trace of some di�erential operator, whichwe are going to compute with the heat kernel techniques. For our applicationsin the exponent of heat kernel we use inverse propagator, spoken about inthe previous section, denoted here by Ŝ(2) (second variational derivative ofthe action S with respect to all uctuating �elds). This operator, as otherquantities with a hat over, is a matrix in �eld space of gravitons and scalar�eld perturbations. In order to �nd logarithmically divergent part of one-loope�ective action to second order in curvature we can use the Schwinger-DeWittmethod for quadratic operators:

Tr e�sŜ(2) = 1(4�s)d=2
Z ddxpg tr�1̂ + sP̂ + s2 �12 P̂ 2 + 112R̂��R̂��+

+ 1180Riem21̂� 1180R��R�� 1̂�� : (4)
We will restrict ourselves to second order contribution in operators P̂ ,R̂�� and gravitational curvatures. (We don't consider here application ofthis method to the ghost part of the action, because we are mainly inter-ested in terms with nonminimally coupled matter.) Using Schwinger-DeWitttechnique we reduced the functional trace to matrix traces. The terms, whichappear explicitly in the above expression are the basis for consideration ofRG ows for nonlocal operators.
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2.2 Nonlocal terms and their exact RG ows

In order to go beyond Schwinger-DeWitt technique and �nd form of nonlo-cal part of one-loop action we insert nonlocal structure functions. They arefunctions of s parameter and box operator � = r�r� (acting under theintegral). We insert these structure functions between two matrix operatorspresent at the second order as in the detailed formula below
1(4�s)d=2

Z ddxpg s2 trnhP̂ fP (�s�) P̂ + R̂��fR (�s�) R̂��+
+P̂ fPR (�s�)R + RfR (�s�)R 1̂ + R��fRic (�s�)R�� 1̂io : (5)

It must be emphasised, that the leading order in s contribution is equal toconstants, which were written in the formula (4) in section above (for P̂Roperator this constant vanishes). Moreover we have used the Euler identityhere. The traces of matrix terms of order curvature square are modi�ed withrespect to expressions given in previous section by the appearance of structurefunctions fP , fR, fPR, fR and fRic.Now we want to consider the exact RG ow of EAA, which will be de-noted here by ��k. As the ansatz for it we choose the nonlocal expressionabove, understood that all the couplings and structure functions now acquiredependence on the momentum scale k. The exact RG ow equation for thebackground e�ective average action (bEAA) is the following
@t ��k[�; g] = 12Tr @tRk(�D2))�D2 + Rk(�D2) � Tr @tRk(�gh)�gh + Rk(�gh) : (6)

In the above formula D is a general operator of the covariant derivative andRk are cuto� kernels (suitably chosen functions of momenta to suppress thecontributions from high energy modes in the path integral). The r.h.s. of thisequation expresses itself by functional traces of some di�erential operatorsand the RG time derivatives of cuto� kernels t = log k=k0. We note thatin the denominator we have di�erential part D2 of our inverse propagatoroperator. The r.h.s. of the ow equation is then schematically given as
@t ��k[�; g] = 1(4�)d=2

Z ddxpg �Oi;1 �Z 1
0

ds ~hk(s) s2� d
2 ~fi(s�)�Oi;2� ;

(7)where the structure functions ~fi(x) were derived combining non-local heatkernel structure functions and Oi;1;2 stand for operators in between whichwe insert these structure functions. In this derivation we follow [6].
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3 E�ective action and formfactors
Finally integrating the ow (7) and putting some boundary conditions in UV,we arrive to the following explicit form for one-loop quantum e�ective actionin our model of scalar �eld interacting minimally with Quantum Gravitation:
��0
��
R2 = 132�2

Z d4xpg�7130R�� log���k20
�R�� + 7160R log���k20

�R+
+ 52K4m4�2 log���k20

��2 � 2K2m4� log���k20
�� (8)

� 133 K2m2R log���k20
��2 � 16m2R + 12m4 + 52K4 (r�)2 log���k20

� (r�)2
+ K4m2�2 log���k20

� (r�)2 � 23K2R log���k20
� (r�)2 �K2m2 (r�)2� :

This 1-loop quantum e�ective action is the main, solid result of this work.The goal of this section would be to compute one-loop corrections to three-point vertex from above action. Above we have computed it to the secondorder in operators of heat kernel and we arrived at a nonanalytic expressionwith low-energetic logarithms. We want to consider the simplest vertex ofinteraction within our theory | with one gravitons and two scalar �elds.That's why we shall compute the third variational derivative with respect tomentioned uctuations. At the end we specify at gravitational backgroundand vanishing background scalar �eld. We also prefer to write the expressionfor the vertex in the momentum space and in such way we can compare to theperturbative results. Such comparison and more details of this computationand these techniques can be found in [2]. However in this short contributionwe shed light only on the most important aspects of the lengthy calculations.
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