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Abstract

We propose a categorification of the Chern character that refines earlier work of Toën and Vezzosi and of
Ganter and Kapranov. If X is an algebraic stack, our categorified Chern character is a symmetric monoidal
functor from a category of mixed noncommutative motives over X, which we introduce, to S1-equivariant
perfect complexes on the derived free loop stack LX. As an application of the theory, we show that Toën
and Vezzosi’s secondary Chern character factors through secondary K-theory. Our techniques depend on
a careful investigation of the functoriality of traces in symmetric monoidal (∞, n)-categories, which is of
independent interest.
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1. Introduction

In this paper, we develop a formalism of higher categorical traces and use it to refine in various ways the
categorified character theory developed by Toën and Vezzosi in [TV09, TV15]. Along the way we introduce
a theory of relative noncommutative motives and generalize work of Cisinski and Tabuada [CT12], and
Blumberg, Gepner, and Tabuada [BGT13]. We start by placing our results in the context of Toën and
Vezzosi’s work on secondary K-theory, and of the categorified homological algebra that emerges from the
work of Ben-Zvi, Francis, and Nadler [BZFN10].

1.1. Secondary K-theory and the secondary Chern character

The algebraic K-theory of a scheme or stack X measures the geometry of algebraic vector bundles on
X. The analogy with topological K-theory suggests that algebraic K-theory probes only the first chromatic
layer of the geometry of X. In the stable homotopy category, homotopy theorists have developed a rich
picture of the chromatic hierarchy of homology theories. In particular, homology theories of chromatic level
two have been the focus of intense investigation ever since work of Landweber, Stong, and Ravenel on elliptic
cohomology in the late 80’s. An important insight emerging from topology is that climbing up the chromatic
ladder is related to studying invariants of spaces that are higher-categorical in nature. A vast literature is
devoted to investigating cohomology theories of chromatic level two that are related to elliptic cohomology
and measure the geometry of higher-categorical analogues of vector bundles, see for instance [BDR04].

Motivated by these ideas from homotopy theory, Toën and Vezzosi introduced in [TV09] the notion of
secondary K-theory of schemes and stacks. Their work hinges on a categorification of coherent sheaf theory
where the role of the structure sheaf is taken up by the sheaf of symmetric monoidal∞-categories Perf(−) on
X, which maps affine open subschemes to their category of perfect complexes. Categorical sheaves are sheaves
of small stable ∞-categories on X that are tensored over Perf(−). By results of Gaitsgory [Gai15], they can
often be described in a global way as Perf(X)-linear ∞-categories: that is, as ∞-categories tensored over
Perf(X) (this holds for instance when X is a quasi-compact quasi-separated scheme, or a semi-separated
Artin stack of finite type over a field of characteristic zero). The definition of the secondary K-theory
spectrum of X, denoted by K(2)(X), is closely patterned after classical algebraic K-theory. In particular,

its group of connected components K
(2)
0 (X) = π0K

(2)(X) is the free abelian group on the set of equivalence
classes of dualizable categorical sheaves on X, modulo the relations

[B] = [A] + [C],
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where A→ B→ C is a Verdier localization.
Secondary K-theory is an intricate invariant of X and is related to several other fundamental invariants.

Derived Azumaya algebras over X are examples of dualizable categorical sheaves, and this gives rise to
a multiplicative map from the algebraic Brauer space Bralg(X) of Antieau–Gepner [AG14] to K(2)(X),
analogous to the multiplicative map from the Picard space of line bundles to ordinary K-theory. When X

is a scheme, this induces a map from the cohomological Brauer group H2
ét(X,Gm) to K

(2)
0 (X). Tabuada

has shown that this map is nontrivial in many cases, and that it is even injective when X = Spec k for k
a field of characteristic zero [Tab16]. In that case, Bondal, Larsen, and Lunts [BLL04] have constructed a

motivic measure on k-varieties with value in the ring K
(2)
0 (k) (under a different name, see [Tab16]): they

showed that the assignment X 7→ Perf(X), for X a smooth projective variety, induces a ring homomorphism

K0(Vark)/(L−1)→ K
(2)
0 (k), which is again nontrivial (although not injective). Finally, secondary K-theory

is closely related to iterated K-theory (see Remark 6.23 for a precise statement). From this perspective, the
analogy with elliptic cohomology is made precise by the work of Ausoni and Rognes [AR02, Aus10], who
showed that K(K(C)) is a spectrum of telescopic complexity 2 at primes ≥ 5.

One of the main results of [TV15] is the construction of a secondary Chern character for dualizable
categorical sheaves on a derived k-stack X. Toën and Vezzosi achieve this by developing a general formalism
of Chern characters using S1-invariant traces that applies also to the classical Chern character in ordinary
K-theory. Let

LX = RHom(S1, X) and L2X = RHom(S1 × S1, X)

be the free loop stack and the double free loop stack of X. When k is a field of characteristic zero and X is
a smooth k-scheme, the E∞-ring spectrum O(LX)hS

1

of S1-invariant functions on LX is closely related to
the de Rham cohomology of X: there is an equivalence

O(LX)hS
1

[u−1] ' Hper
dR (X),

where u is a generator of the cohomology of BS1 (in degree −2) and Hper
dR (X) is the 2-periodization of the

de Rham complex of X over k (see [TV11, §3]). From this perspective, the classical Chern character

K(X)→ Hper
dR (X) ' O(LX)hS

1

[u−1]

sends a vector bundle over X to the trace of the canonical monodromy operator on its pullback to LX
(see [TV15, Appendix B]). The fact that this trace is a homotopy S1-fixed point follows from a general
S1-invariance property of the trace, which is a consequence of the 1-dimensional cobordism hypothesis
[Lur08].

The construction of the secondary Chern character in [TV15] is in keeping with this picture of Chern
characters as traces of monodromy operators. For X a derived k-stack, Toën and Vezzosi’s secondary Chern
character is a map

ι0Catsat(X)→ Ω∞O(L2X)h(S1×S1), (1.1)

where ι0Catsat(X) is the ∞-groupoid of dualizable categorical sheaves on X (called sheaves of saturated
dg-categories in [TV15]). This map sends a dualizable categorical sheaf on X to the 2-fold trace of the pair
of commuting monodromy operators on its pullback to L2X.

One of our main applications is that (1.1) factors canonically through the secondary K-theory of X, and
even through a nonconnective version of it, denoted by K(2)(X):

Theorem 1.2 (see Theorem 6.20). The Toën–Vezzosi secondary Chern character is refined by a morphism
of E∞-ring spectra

K(2)(X)→ O(L2X)h(S1×S1).

This theorem is a consequence of a more fundamental result that we discuss in the next subsection.
When X = BG, O(L2X) is the set of conjugation-invariant functions on commuting pairs of elements of
G. In that case, the secondary Chern character of Theorem 1.2 is reminiscent of the character constructed
by Hopkins, Kuhn, and Ravenel [HKR92] for Morava E-theory at height 2, and it suggests that secondary
K-theory can be viewed as an algebraic (and integral) analogue of the latter.
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1.2. Categorified Hochschild homology and the categorified Chern character

In [BZFN10], Ben-Zvi, Francis and Nadler investigate categorified instances of Hochschild homology and
Hochschild cohomology of commutative algebra objects in symmetric monoidal ∞-categories. Their work
suggests a categorification of the Dennis trace map in which the role of topological Hochschild homology is
played by the ∞-category of quasi-coherent sheaves on the free loop space.

Let C be a symmetric monoidal ∞-category and let Alg(C) be the ∞-category of associative algebra
objects in C. Every associative algebra A ∈ Alg(C) has a canonical structure of A⊗Aop-module. Following
[BZFN10], we define the Hochshild homology of A by the formula

HH(A) = A⊗A⊗Aop A ∈ C.

If C = PrL is the ∞-category of presentable ∞-categories and A = QCoh(X) is the ∞-category of quasi-
coherent sheaves on a scheme X (or more generally on a perfect stack), their theory categorifies the picture
of Hochschild (co)homology of Calabi–Yau categories emerging from two-dimensional TQFT. In particular,
a key insight of [BZFN10] is that there is an equivalence of presentable stable ∞-categories

HH(QCoh(X)) ' QCoh(LX)

between the Hochschild homology of QCoh(X) and quasi-coherent sheaves on the free loop stack LX.
In ordinary algebra, one of the salient properties of Hochschild homology is that it is the recipient of

a trace map that takes perfect modules to Hochschild classes. Namely, let Perf(A) be the ∞-category of
perfect modules over an associative algebra A (in spectra, say) and denote by ι0Perf(A) its underlying space
of objects. Then the Hochschild homology of A is isomorphic to the Hochschild homology of Perf(A), and
this gives rise to a trace map

ι0Perf(A)→ HH(Perf(A)) ' HH(A). (1.3)

Note that in (1.3), contrary to the previous paragraph, the notation HH(Perf(A)) stands for the ordinary
Hochschild homology of small stable ∞-categories, which takes values in spectra. This trace map factors
through the nonconnective K-theory of A and lands in the homotopy fixed points of the S1-action on HH(A),
giving rise to the classical Chern character with value in the negative cyclic homology of A (see for example
[Kel98]):

ι0Perf(A) HH(A)

K(A) HH(A)hS
1

.

(1.3)

ch

If Cat(Perf(X)) denotes the (∞, 2)-category of small Perf(X)-linear stable ∞-categories, a categorified
analogue of (1.3) would be an (∞, 1)-functor

ι1Cat(Perf(X))→ HH(QCoh(X)) ' QCoh(LX), (1.4)

where ι1Cat(Perf(X)) denotes the maximal sub-(∞, 1)-category of Cat(Perf(X)). The formalism of Chern
characters developed by Toën and Vezzosi in [TV15] gives a partial construction of such a functor. Namely,
they construct a morphism of ∞-groupoids ι0Cat(Perf(X))→ ι0QCoh(LX), and they show that it factors

through the homotopy S1-fixed points ι0QCohS
1

(LX). When X is the classifying stack of an algebraic
group, their construction is an enhancement of Ganter and Kapranov’s 2-character theory [GK08].

One of our main results is that Toën and Vezzosi’s categorified Chern character is the shadow of a much
richer categorified character theory which is captured by an exact symmetric monoidal (∞, 1)-functor

ch: Mot(Perf(X))→ QCohS
1

(LX)

between the stable ∞-category of localizing Perf(X)-motives (see §1.3.2 below), and S1-equivariant quasi-
coherent sheaves on LX. More precisely:
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Theorem 1.5 (see Corollary 6.11). The Toën–Vezzosi categorified Chern character can be promoted to a
symmetric monoidal (∞, 1)-functor (1.4), which moreover fits in a commutative square

ι1Cat(Perf(X)) QCoh(LX)

Mot(Perf(X)) QCohS
1

(LX).

(1.4)

ch

This construction categorifies three key features of the ordinary trace map (1.3), namely its multiplicativ-
ity, its S1-invariance, and the fact that it splits exact sequences. In particular, this clarifies that the stable
(∞, 1)-category of noncommutative motives Mot(Perf(X)) can be viewed as the “nonconnective K-theory”
of the (∞, 2)-category Cat(Perf(X)).

Remark 1.6. If k is a field of characteristic zero and X is a smooth k-scheme, the categorified Chern character

ch: Mot(Perf(X))→ QCohS
1

(LX) is related to the Hodge realization of ordinary motives, see [TV15, §4.3].
More precisely, there is a commutative diagram of the form

Mot(Perf(X)) QCohS
1

(LX)

SH(X) MotA1(Perf(X)) Modfilt(DX),

ch

where SH(X) is Voevodsky’s stable A1-homotopy category over X [Voe98], MotA1(Perf(X)) ⊂Mot(Perf(X))
is the reflective subcategory of A1-local motives [Tab15], and Modfilt(DX) is some ∞-category of filtered
Z/2-graded D-modules over X. The lower composition sends a smooth X-scheme to the corresponding
variation of Hodge structure over X. See also work of Robalo [Rob15] for a different but closely related
formalism of noncommutative motives, and a comparison with Voevodsky’s stable A1-homotopy category.

1.3. The structure of the paper

We explain next our main results and the structure of the paper.

1.3.1. Higher traces

It is well known that the topological Hochschild homology HH(A,M) of a small stable ∞-category A

with coefficients in an A-bimodule M can be identified with the trace of M in a certain symmetric monoidal
(∞, 2)-category, whose objects are stable ∞-categories and whose morphisms are bimodules (we will recall
this identification in §4.5).

Consider the following features of topological Hochschild homology:

1. It is functorial in the pair (A,M) as follows: given an exact functor A → B and a morphism of A-
bimodules M→ N, where N is an B-bimodule, there is an induced morphism HH(A,M)→ HH(B,N).

2. When M = A, HH(A) = HH(A,A) has a canonical action of the circle group S1, which is moreover
natural in A.

3. It is a localizing invariant of stable categories: given a fully faithful inclusion A ↪→ B with Verdier
quotient B/A, there is a cofiber sequence of spectra

HH(A)→ HH(B)→ HH(B/A).

Our goal in Sections 2 and 3 is to show that (1)–(3) are general features of traces in symmetric monoidal
(∞, n)-categories. Given a symmetric monoidal (∞, n)-category C, endomorphisms of the unit object form
a symmetric monoidal (∞, n− 1)-category ΩC. We define in §2.2 a symmetric monoidal (∞, n− 1)-category
End(C), whose objects are pairs (X, f) where X ∈ C is dualizable and f is an endomorphism of X. A
1-morphism (X, f) → (Y, g) in End(C) is a pair (φ, α) where φ : X → Y is a right dualizable 1-morphism
and α : φf → gφ is a 2-morphism. The main construction of §2.2 can be summarized as follows:
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Theorem 1.7. Let C be a symmetric monoidal (∞, n)-category. Then the assignment (X, f) 7→ Tr(f) can
be promoted to a symmetric monoidal (∞, n− 1)-functor

Tr: End(C)→ ΩC,

natural in C.

This theorem generalizes the functoriality of Hochschild homology described in (1). In §2.3, we consider
a subcategory Aut(C) ⊂ End(C), whose objects are pairs (X, f) where X is a dualizable object and f is an
automorphism of X. There is a “tautological” action of the circle group S1 on Aut(C), and we show that
the trace functor Tr is S1-invariant:

Theorem 1.8 (see Theorem 2.14). Let C be a symmetric monoidal (∞, n)-category. Then the symmetric
monoidal (∞, n− 1)-functor

Tr: Aut(C)→ ΩC

admits a canonical S1-invariant refinement which is natural in C.

In particular, since (X, idX) is an S1-fixed point in Aut(C), Tr(idX) has a canonical action of S1 which is
natural in (X, idX). Specializing to the (∞, 2)-category of stable ∞-categories and bimodules, this theorem
recovers property (2) above. If n = 1, then Aut(C) and ΩC are ∞-groupoids, and Theorem 1.8 was proved
by Toën and Vezzosi in [TV15, §2.3]. The generalization to n ≥ 2 is not a mere formality, however, as
we will explain in §2.1. Our proof crucially relies on the formalism of higher lax transfors developed by
Johnson-Freyd and Scheimbauer in [JFS16].

A symmetric monoidal (∞, 2)-category is called linearly symmetric monoidal if its mapping∞-categories
are stable and if composition and tensor products of 1-morphisms are exact in each variable. The notion of
Verdier localization sequence makes sense in any such (∞, 2)-category, see Definition 3.2. We then have the
following generalization of (3):

Theorem 1.9 (see Theorem 3.4). Let C be a linearly symmetric monoidal (∞, 2)-category. Let X → Y → Z
be a localization sequence of dualizable objects in C, and let

X Y Z

X Y Z

=⇒
α

=⇒
β

f g h

be a commutative diagram where α and β are right adjointable. Then Tr(f) → Tr(g) → Tr(h) is a cofiber
sequence in ΩC.

We can regard Theorem 1.9 as a categorification of May’s theorem on the additivity of traces in symmetric
monoidal stable ∞-categories [May01]. An interesting question is what form this additivity theorem should
take for traces in symmetric monoidal (∞, n)-categories, for n ≥ 3.

1.3.2. Noncommutative E-motives

A theory of noncommutative motives was first sketched by Kontsevich in the mid 2000’s [Kon05], in
analogy with the theory of pure Chow motives of algebraic varieties. The objects of Kontsevich’s category
of noncommutative motives are smooth and proper triangulated dg-categories, and the mapping spaces are
given by the K-theory of bimodules. Tabuada’s work [Tab08] shifts the perspective by foregrounding a
universal property of noncommutative motives that is reminiscent of the universality of ordinary motives
within Weil cohomology theories. Roughly speaking, Tabuada defines the category of noncommutative
motives as the recipient of the universal invariant of dg-categories that satisfies Waldhausen additivity. In
Tabuada’s approach, the fact that the mapping spaces are given by bivariant K-theory is a theorem, rather
than being part of the definition. As a corollary, Kontsevich’s noncommutative motives sit inside Tabuada’s
as a full subcategory.
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We will rely on the theory of noncommutative motives of stable ∞-categories that was developed in
[BGT13]. After giving a short recapitulation of the theory of tensored ∞-categories in section 4, we devote
section 5 to extend to the enriched setting the results of [BGT13]. Let E be a small symmetric monoidal
∞-category that is rigid and stable, and let Catperf(E) be the ∞-category of small, stable, and idempotent
complete∞-categories that are tensored over E. As evinced in [CT12] and [BGT13], there are two meaningful
classes of invariants of stable E-linear ∞-categories (called additive and localizing, see Definition 5.11 and
5.16), and they pick out two different notions of noncommutative motives. The universal additive and
localizing invariants of E-linear categories are canonical functors

Uadd : Catperf(E)→ Mot(E), Uloc : Catperf(E)→Mot(E),

that map respectively to the category of additive and of localizing E-motives. In section 5.2 and 5.3 we
construct the categories of additive and localizing E-motives Mot(E) and Mot(E). We show that the ∞-
categories Mot(E) and Mot(E) are stable and presentable, and Uadd and Uloc are symmetric monoidal
functors. In its main lines our treatment follows [CT12] and [BGT13], and encompasses the theory of
[BGT13] as the special case when E is the ∞-category of finite spectra.

In Section 5.4, we prove that the K-theory of E-linear∞-categories is corepresentable in noncommutative
E-motives:

Theorem 1.10 (see Theorems 5.24 and 5.25). Let A be an∞-category in Catperf(E). Then there are natural
equivalences

Mot(E)(Uadd(E),Uadd(A)) ' K(A) and Mot(E)(Uloc(E),Uloc(A)) ' K(A),

where K(A) and K(A) are respectively the connective and nonconnective K-theory spectra of A.

By the functoriality properties of Mot(E) and Mot(E), the proof of Theorem 1.10 reduces to the absolute
case which was studied in [BGT13]. In the case of connective K-theory a substantially stronger corepre-
sentability result is available, see Theorem 5.24. Functoriality arguments however are insufficient to establish
Theorem 5.24, and the proof consists instead in an adaptation of the arguments of [Tab08] and [BGT13] to
the enriched setting.

1.3.3. The categorified Chern character

Let X be a derived stack over a base commutative ring k. In [TV09, TV15], Toën and Vezzosi consider
a generalization of the classical Chern character, which assigns to every perfect complex on X a rotation-
invariant function on the free loop stack LX. More precisely, they construct an additive and multiplicative
map

chpre : ι0Perf(X)→ O(LX)hS
1

, (1.11)

where ι0Perf(X) is the maximal sub-∞-groupoid of the (∞, 1)-category Perf(X). They also introduce a
categorified version of this construction, which is an additive and multiplicative map

chpre : ι0Catperf(X)→ ι0QCohS
1

(LX), (1.12)

where Catperf(X) is the (∞, 2)-category of sheaves of dg-categories on X. Finally, they combine (1.11) and
(1.12) to obtain the secondary Chern pre-character

chpre,(2) : ι0Catsat(X)→ O(L2X)h(S1×S1), (1.13)

where Catsat(X) is the (∞, 2)-category of sheaves of saturated dg-categories on X.
In Section 6, we use the main results of the previous sections to refine each of these constructions as

follows. First of all, we allow k to be a (potentially nonconnective) E∞-ring spectrum and X to be a spectral
prestack over k.
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1. In Theorem 6.5, we prove that (1.11) factors through the nonconnective deloopings of K-theory and
induces a morphism of E∞-ring spectra

ch: K(X)→ O(LX)hS
1

.

2. In Theorem 6.9, we prove that (1.12) lifts to a symmetric monoidal (∞, 1)-functor

chpre : ι1Catperf(X)→ QCohS
1

(LX),

which sends localization sequences to cofiber sequences. As a consequence, we obtain the morphism
of E∞-ring spectra K(2)(X)→ KS1

(LX) envisioned in [TV09, Section 4].

3. Finally, in §6.3, we combine these results and deduce that (1.13) descends to a morphism of E∞-ring
spectra

ch(2) : K(2)(X)→ O(L2X)h(S1×S1).
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1.5. Terminology and notation

We use the terms ∞-category and (∞, 1)-category interchangeably. We denote by S and Sp the ∞-
categories of spaces (i.e., ∞-groupoids) and of spectra, respectively. If A is an ∞-category and a, b ∈ A, we
write A(a, b) ∈ S for the space of maps from a to b in A. If A is stable, we will also write A(a, b) for the
spectrum which is the canonical infinite delooping of that space. If A admits filtered colimits, recall that
an object a ∈ A is compact if A(a,−) : Aop → S preserves filtered colimits; we denote by Aω ⊂ A the full
subcategory of compact objects.

2. Traces in symmetric monoidal (∞, n)-categories

2.1. Introduction

Let (C,⊗,1) be a symmetric monoidal category. Recall that an object X ∈ C is dualizable if there exists
an object X∨ and morphisms coevX : 1→ X ⊗X∨ and evX : X∨⊗X → 1 satisfying the triangle identities:
the composites

X
coevX⊗id−−−−−−→ X ⊗X∨ ⊗X id⊗evX−−−−−→ X,

X∨
id⊗coevX−−−−−−→ X∨ ⊗X ⊗X∨ evX⊗id−−−−−→ X∨

are identity morphisms.
If X is dualizable and f : X → X is any endomorphism, the trace Tr(f) of f is the endomorphism of 1

given by the composition

1
coevX−−−−→ X ⊗X∨ f⊗id−−−→ X ⊗X∨ ' X∨ ⊗X evX−−→ 1.

If φ : X → Y is an isomorphism in C, then Tr(f) = Tr(φ ◦ f ◦ φ−1). If we write End(C) for the groupoid
of endomorphisms of dualizable objects in C and ΩC for the set of endomorphisms of 1, the trace is thus a
functor

Tr: End(C)→ ΩC.
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Things become more interesting if C is a symmetric monoidal 2-category.1 Then ΩC is a category, and one
can ask to what extent the trace can be upgraded to a functor with values in ΩC. Recall that a 1-morphism
φ : X → Y in a 2-category C is right dualizable if there exists a 1-morphism φr : Y → X and 2-morphisms
η : idX → φr ◦ φ and ε : φ ◦ φr → idY satisfying the following triangle identities: the composites

φ
id◦η−−−→ φ ◦ φr ◦ φ ε◦id−−→ φ,

φr
η◦id−−−→ φr ◦ φ ◦ φr id◦ε−−→ φr

are identity 2-morphisms. We then say that φr is right adjoint to φ. Note that this agrees with the usual
notion of adjunction when C is the 2-category of categories.

Define a (2, 1)-category End(C) as follows:

• An object of End(C) is a pair (X, f) where X is a dualizable object in C and f is an endomorphism of
X.

• A 1-morphism (X, f) → (Y, g) in End(C) is a pair (φ, α) where φ : X → Y is a right dualizable
1-morphism and α : φf → gφ is a 2-morphism:

X Y

X Y .

φ

f g

φ

=⇒
α

• A 2-morphism (φ, α)→ (ψ, β) in End(C) is a 2-isomorphism ξ : φ
∼→ ψ such that (gξ)α = β(ξf).

It is easy to show that the trace can be upgraded to a functor Tr: End(C)→ ΩC: the image of a 1-morphism
(φ, α) : (X, f)→ (Y, g) is depicted by the diagram

X ⊗X∨ X ⊗X∨

1 1,

Y ⊗ Y ∨ Y ⊗ Y ∨

f ⊗ id

g ⊗ id

φ⊗ φr∨ φ⊗ φr∨
⇐=⇐= ⇐=

α⊗ id
(2.1)

where the unlabeled 2-morphisms are

(φ⊗ φr∨)coevX = (φφr ⊗ id)coevY
ε→ coevY ,

evX
η→ evX(φrφ⊗ id) = evY (φ⊗ φr∨).

Dually, the trace also has a functoriality with respect to left dualizable 1-morphisms. However, this is a
special case of the above functoriality, applied to the 2-category obtained from C by reversing the direction
of the 2-morphisms. As the symmetric monoidal 2-categories that occur in practice seem to favor right
dualizability, we only treat the right dualizable case explicitly.

Our goal in the section is to generalize this functoriality of the trace to the case where C is a symmetric
monoidal (∞, n)-category. In that case, ΩC is an (∞, n − 1)-category, and we will define an (∞, n − 1)-
category End(C) and a functor Tr: End(C)→ ΩC with the expected values on objects and 1-morphisms. As
an example, we will see in §4.5 that, if C is the symmetric monoidal (∞, 2)-category of compactly generated

1In this paper, we use the term “2-category” for what is often called a weak 2-category or a bicategory: the composition of
1-morphisms is only required to be associative up to a (specified) 2-isomorphism.
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stable ∞-categories, then End(C) is the (∞, 1)-category of pairs (A,M) where A is a small idempotent
complete stable ∞-category and M is an A-bimodule, and Tr: End(C) → Sp sends a bimodule to its
topological Hochschild homology.

Going back to the 1-categorical situation, one may observe that the functor C 7→ End(C) from symmetric
monoidal categories to groupoids is corepresentable. That is, there exists a symmetric monoidal category E

and an equivalence of categories
Fun⊗(E,C) ' End(C),

natural in C. The category E is the free rigid symmetric monoidal category on BN, the category with
one object and morphism set the monoid N. The above equivalence sends a symmetric monoidal functor
f : E→ C to the image by f of the “walking endomorphism” 1 ∈ N.

By the Yoneda lemma, the trace functor Tr: End(C) → ΩC, being natural in the symmetric monoidal
category C, is completely determined by the trace of the walking endomorphism, which is an element of the
set ΩE. In [TV15], Toën and Vezzosi used this observation to define a functorial enhancement of the trace
on a symmetric monoidal (∞, 1)-category C. If Cat⊗(∞,1) denotes the (∞, 1)-category of symmetric monoidal

(∞, 1)-categories, there is an adjunction

Frrig : Cat(∞,1) � Cat⊗(∞,1) : (−)rig,

where Crig ⊂ C is the full subcategory of dualizable objects. The existence of the left adjoint Frrig follows
from the adjoint functor theorem (a more explicit description of Frrig is given by the 1-dimensional cobordism
hypothesis with singularities [Lur08, §4.3], but we do not need this description for the time being). If End(C)
is the ∞-groupoid of endomorphisms of dualizable objects, it is then clear that the functor C 7→ End(C) is
corepresented by Frrig(BN). By the Yoneda lemma, the trace of the walking endomorphism in ΩFrrig(BN)
specifies a morphism of∞-groupoids Tr: End(C)→ ΩC, natural in C. Because symmetric monoidal functors
commute with traces, this morphism sends an object (X, f) ∈ End(C) to the trace of f , so it is indeed a
functorial enhancement of the trace.

One may hope to use a similar corepresentability trick to define the trace on a symmetric monoidal
(∞, 2)-category. This hope is quickly squashed by the observation that any corepresentable functor on
the (∞, 2)-category of rigid symmetric monoidal (∞, 2)-categories takes values in ∞-groupoids: a standard
argument shows that symmetric monoidal natural transformations between symmetric monoidal functors
with rigid domain are always invertible. To work around this problem, one is therefore led to consider lax
natural transformations. The formalism of lax natural transformations was developed by Johnson-Freyd
and Scheimbauer in [JFS16]. We will see that a natural definition of End(C), for C a symmetric monoidal
(∞, n)-category, is the (∞, n − 1)-category of symmetric monoidal oplax transfors Frrig(BN) → C, where
Frrig(BN) is the same category that was used in the case n = 1. One must be careful that categories of oplax
transfors are not the mapping objects of any higher category, and so there is no sense in which the functor
C 7→ End(C) is corepresentable. Instead of invoking the Yoneda lemma, we will therefore argue “by hand”
that an element in ΩFrrig(BN) gives rise to a natural morphism of (∞, n− 1)-categories End(C)→ ΩC.

2.2. The trace as a symmetric monoidal (∞, n− 1)-functor

We borrow terminology and notation from [JFS16]. In particular, (∞, n)-categories are modeled by
Barwick’s complete n-fold Segal spaces, where in this context “space” means Kan complex. A complete
n-fold Segal space C is in particular a collection of spaces C~k indexed by ~k ∈ (∆op)n. For p ≤ n, we denote
by (p) the n-tuple (1, . . . , 1, 0, . . . , 0), with p copies of 1. Then C(p) is the space of p-morphisms in C. We

denote by mapsh and ×h strictly functorial models for derived mapping spaces and homotopy fiber products
of presheaves of spaces (i.e., computed with respect to objectwise weak equivalences). If C is a complete
n-fold Segal space and m ≤ n, we denote by ιmC the complete m-fold Segal space defined by (ιmC)~k = C~k,~0.

Thus, ιmC models the maximal sub-(∞,m)-category of C. Note that ι0C = C(0) is the space of objects of C.

We will also use the computads Θ
~k and Θ

~k;~l, for tuples of natural numbers ~k and ~l, as defined in [JFS16].

The former are designed so that C~k ' mapsh(Θ
~k,C). Symmetric monoidal (∞, n)-categories are modeled

10



by strict functors from the category of pointed finite sets to the category of complete n-fold Segal spaces
satisfying the usual Segal condition; we commit the usual sacrilege of identifying such a functor with its
value on [1] (the set {0, 1} pointed at 0).

Let C be an (∞, n)-category. For ~k a n-tuple of natural numbers, let Lax~k(C) be the n-fold simplicial
space defined by

Lax~k(C)~• = mapsh(Θ
~k;~•,C).

By [JFS16, Theorem 5.11], Lax~k(C) is a complete n-fold Segal space, and moreover ~k 7→ Lax~k(C) is a
complete n-fold Segal object internal to complete n-fold Segal spaces. We have Lax(0)(C) ' C and, in the

notation of [JFS16], Lax(1)(C) ' C→. We also have Lax~k(C)(0) ' C~k, since Θ
~k;(0) = Θ

~k. In particular, the
space of objects of Lax(p)(C) is the space of p-morphisms in C. If C is symmetric monoidal, so is Lax~k(C)
with Lax~k(C)[m] = Lax~k(C[m]).

If B and C are (∞, n)-categories, the complete n-fold Segal space Funoplax(B,C) of oplax transfors is
defined by:2

Funoplax(B,C)~• = mapsh(B,Lax~•(C)).

If B and C are moreover symmetric monoidal, the complete n-fold Segal space Funoplax
⊗ (B,C) of symmetric

monoidal oplax transfors is similarly defined by:

Funoplax
⊗ (B,C)~• = mapsh⊗(B,Lax~•(C)).

Recall that an object in a symmetric monoidal (∞, n)-category C is called dualizable if it is dualizable in
the homotopy 1-category h1ι1C (in the classical sense recalled in §2.1). Similarly, a 1-morphism of C is called
right dualizable if it is so in the homotopy 2-category h2ι2C. We denote by Crig ⊂ C the full subcategory
spanned by the dualizable objects. The functor

(−)rig : Cat⊗(∞,n) → Cat(∞,n)

preserves filtered colimits as well as limits [Lur16, Proposition 4.6.1.11], and hence it admits a left adjoint

Frrig : Cat(∞,n) → Cat⊗(∞,n),

by the adjoint functor theorem [Lur09, Corollary 5.5.2.9]. For 1 ≤ m ≤ n, Frrig sends (∞,m)-categories to
(∞,m)-categories, since (ιmC)rig = ιm(Crig).

Definition 2.2. If C is a symmetric monoidal (∞, n)-category, the complete (n−1)-fold Segal space End(C)
is defined by:

End(C) = ιn−1 Funoplax
⊗ (Frrig(BN),C).

Remark 2.3. One can show that the (∞, n)-category Funoplax
⊗ (Frrig(BN),C) is in fact already an (∞, n− 1)-

category: the rigidity of Frrig(BN) implies that the components of a symmetric monoidal oplax k-transfor
Frrig(BN)→ C satisfy a one-sided dualizability condition, which amounts to invertibility for k = n.

If p ≤ n − 1, the space of p-morphisms in End(C) is thus the space of symmetric monoidal functors
Frrig(BN) → Lax(p)(C), i.e., the space of endomorphisms of dualizable objects in Lax(p)(C). Let us make
this more explicit for p = 1. An object in Lax(1)(C) is a morphism φ : X → Y in C, and an endomorphism
of such is a square

X Y

X Y .

φ

f g

φ

=⇒
α

2The fact that these are oplax rather than lax is explained by the asymmetry of the Gray tensor product: if A, B, and C are
(∞, n)-categories, then mapsh(A,Funoplax(B,C)) ' mapsh(B,Funlax(A,C)). The definition of Funoplax should be understood
as the special case of this formula with A = Θ~•.
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The following lemma shows that such a square is a 1-morphism in End(C), with source (X, f) and target
(Y, g), if and only if X and Y are dualizable and φ is right dualizable:

Lemma 2.4. Let C be a symmetric monoidal (∞, n)-category. An object φ : X → Y in Lax(1)(C) is dualizable
if and only if X and Y are dualizable in C and φ is a right dualizable 1-morphism in C. In that case, the
trace of an endomorphism (f, g, α) of φ is the endomorphism of id1 given by the the diagram (2.1).

Proof. Note that the assertion holds for C if and only if it holds for the homotopy 2-category h2ι2C. We
may therefore assume that C is a 2-category. Suppose that X and Y are dualizable and that φ : X → Y is
right dualizable, with right adjoint ψ and unit and counit η and ε. We claim that ψ∨ : X∨ → Y ∨ is dual to
φ in Lax(1)(C). Define coevφ : id1 → φ⊗ ψ∨ to be the following morphism in Lax(1)(C):

1 1

X ⊗X∨ Y ⊗ Y ∨,

id

coevX coevY

φ⊗ ψ∨

=⇒

where the 2-morphism is
(φ⊗ ψ∨)coevX = (φψ ⊗ id)coevY

ε→ coevY .

Similarly, let evφ : ψ∨ ⊗ φ→ id1 be the morphism given by evX , evY , and the 2-morphism

evX
η→ evX(id⊗ ψφ) = evY (ψ∨ ⊗ φ).

It is easy to check that evφ and coevφ determine a duality between φ and ψ∨ in Lax(1)(C).
Conversely, suppose that φ : X → Y admits a dual φ′ : X ′ → Y ′ in Lax(1)(C). The triangle identities

imply at once that X and Y are dualizable in C with duals X ′ and Y ′. The evaluation evφ thus consists
of the 1-morphisms evX and evY and a 2-morphism α : evX → evY (φ′ ⊗ φ). Let η : idX → φ′∨φ be the
2-morphism

idX = (idX ⊗ evX)(coevX ⊗ idX)
α→ (idX ⊗ evY (φ′ ⊗ φ))(coevX ⊗ idX) = φ′∨φ,

and let ε : φφ′∨ → idY be defined in a dual manner. It is easy to check that η and ε determine an adjunction
between φ and φ′∨ in C.

Let C be an (∞, n)-category. Given X,Y ∈ C, we have an (∞, n− 1)-category C(X,Y ) defined by

C(X,Y )~• = {X} ×hC0,~•
C1,~• ×hC0,~•

{Y }.

If C has a symmetric monoidal structure, we define

ΩC = C(1,1).

Note that ΩC is a symmetric monoidal (∞, n− 1)-category, with (ΩC)[m] = C[m](1,1).
If Θ is an (n−1)-computad, there is an “unreduced suspension” n-computad ΣΘ with the property that,

for every (∞, n)-category C,
mapsh(ΣΘ,C) ' mapsh(Θ,C1,~•).

Explicitly, ΣΘ has two vertices s and t, which are the source and target of every generating 1-morphism,
and for every k ≥ 0 there is a bijection σ between the generating k-morphisms of Θ and the generating
(k + 1)-morphisms of ΣΘ, compatible with sources and targets. Note that the underlying CW complex of
ΣΘ is the unreduced suspension of that of Θ.

For the proof of the following lemma, the reader will need to have the inductive definition of the Θ
~k;~l’s

from [JFS16, Definition 5.7] at hand.
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Lemma 2.5. There is a unique family of isomorphisms of computads

ΣΘ
~k;~l ' ∗ ∪Θ~k Θ

~k;1,~l ∪Θ~k ∗,

defined for all tuples of natural numbers ~k and ~l, such that:

• the vertices s and t are sent to the collapsed source and target Θ
~k’s, respectively;

• a generating morphism of type σ(θi,j) is sent to a generating morphism of type θi,j+1;

• these isomorphisms are natural with respect to the structural inclusions Θ~m;~n ↪→ Θ
~k;~l.

In the last condition, the “structural inclusions” are the horizontal source and target inclusions

sh, th : Θ(p−1);(q) ↪→ Θ(p);(q),

the n horizontal inclusions Θ(i),~k;~l ↪→ Θ(i−1),n,~k;~l, and their vertical analogues. Both assignments Θ
~k;~l 7→

ΣΘ
~k;~l and Θ

~k;~l 7→ Θ
~k;1,~l are functorial with respect to these inclusions in an obvious way.

Proof. As a reality check, note that the underlying CW complexes are homeomorphic, as an instance of the
fact that the unreduced suspension Σ(A×B) is obtained from A×ΣB by collapsing A× 0 and A× 1. We
must however verify that this homeomorphism preserves the directionality of each cell.

The three conditions determine the obvious isomorphisms ΣΘ(p) ' Θ(p+1). Suppose that ~k = (p) and
~l = (q) for some p, q ≥ 1. We extend the previous isomorphisms to this case by induction on p + q. The
skeletons ∂Θ(p);(q) and ∂Θ(p);(q+1) are obtained by gluing lower-dimensional Θ’s in the exact same way (see
[JFS16, Remark 3.6]). Using the induction hypothesis and the third condition, and noting that Σ preserves
pushouts of computads, we obtain the isomorphism

∂ΣΘ(p);(q) = Σ∂Θ(p);(q) ' ∗ ∪Θ(p) ∂Θ(p);(q+1) ∪Θ(p) ∗ = ∂(∗ ∪Θ(p) Θ(p);(q+1) ∪Θ(p) ∗).

Both ΣΘ(p);(q) and ∗∪Θ(p) Θ(p);(q+1)∪Θ(p) ∗ are obtained from their skeletons by adjoining a single generating
(p+ q+ 1)-morphism: for ΣΘ(p);(q), one adds the morphism σ(θp,q), which is uniquely determined by having
σ(shθp−1,q) in its source and σ(thθp−1,q) in its target; for ∗ ∪Θ(p) Θ(p);(q+1) ∪Θ(p) ∗, one adds the morphism
θp,q+1, which is uniquely determined by having shθp−1,q+1 in its source and thθp−1,q+1 in its target. By the
second and third conditions, the isomorphism between the skeletons extends uniquely to an isomorphism
ΣΘ(p);(q) ' ∗ ∪Θ(p) Θ(p);(q+1) ∪Θ(p) ∗. Finally, these isomorphisms extend uniquely to the general case by
induction, using the third condition.

Proposition 2.6. Let C be an (∞, n)-category, ~k ∈ (∆op)n−1, and X,Y ∈ C. Then

Lax~k,0(C)(X,Y ) ' Lax~k(C(X,Y )),

naturally in ~k. In particular, if C is a symmetric monoidal (∞, n)-category, then

Ω Lax~k,0(C) ' Lax~k(ΩC).

Proof. We have natural equivalences

Lax~k,0(C)(X,Y )~l = {X} ×hC~k,0
Lax~k,0(C)1,~l ×

h
C~k,0
{Y }

' {X} ×hC(0)
(C(0) ×hC~k,0

Lax~k,0(C)1,~l ×
h
C~k,0

C(0))×hC(0)
{Y }

' {X} ×hC(0)
mapsh(∗ ∪Θ~k Θ

~k;1,~l ∪Θ~k ∗,C)×hC(0)
{Y }

(∗)
' {X} ×hC(0)

mapsh(ΣΘ
~k;~l,C)×hC(0)

{Y }

' {X} ×hC(0)
mapsh(Θ

~k;~l,C1,~•)×hC(0)
{Y }

' mapsh(Θ
~k;~l, {X} ×hC(0)

C1,~• ×hC(0)
{Y }) = Lax~k(C(X,Y ))~l,

where (∗) is the isomorphism from Lemma 2.5.
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Let B and C be symmetric monoidal (∞, n)-categories. Then there is a morphism of complete (n−1)-fold
Segal spaces

Ω: ιn−1 Funoplax
⊗ (B,C)→ Funoplax

⊗ (ΩB,ΩC) (2.7)

defined levelwise as follows. Its component at ~k ∈ (∆op)n−1 is the composition

mapsh⊗(B,Lax~k,0(C))
Ω−→ mapsh⊗(ΩB,Ω Lax~k,0(C)) ' mapsh⊗(ΩB,Lax~k(ΩC)),

where the equivalence is Proposition 2.6.
If B and C are (symmetric monoidal) (∞, n)-categories, there is an evaluation morphism of complete

n-fold Segal spaces
ι0B× Funoplax

(⊗) (B,C)→ C (2.8)

defined levelwise as follows. Its component at ~k ∈ (∆op)n is the evaluation map

B(0) ×mapsh(⊗)(B,Lax~k(C))→ Lax~k(C)(0) = C~k.

Definition 2.9. Let C be a symmetric monoidal (∞, n)-category. Then the trace functor

Tr: End(C)→ ΩC

is the composition

End(C) = ιn−1 Funoplax
⊗ (Frrig(BN),C)

Ω−→ Funoplax
⊗ (ΩFrrig(BN),ΩC)→ ΩC,

where the last map is evaluation at the trace of the walking endomorphism.

We can describe this functor more explicitly as follows. If p ≤ n− 1, recall that a p-morphism in End(C)
is a dualizable object of Lax(p)(C) with an endomorphism. By definition, the functor Tr sends such a p-
morphism to the trace of the given endomorphism, which is an element of (Ω Lax(p)(C))(0) ' (ΩC)(p). The
case p = 1 is made explicit by Lemma 2.4: a dualizable object of Lax(1)(C) is a right dualizable morphism
φ : X → Y in C, and an endomorphism of such is a triple (f, g, α : φf → gφ). The trace of this endomorphism
in Lax(1)(C) is exactly the endomorphism of id1 in Lax(1)(C) depicted in (2.1).

Note that the trace functor of Definition 2.9 is natural in C. It can be upgraded to a symmetric monoidal
functor using a standard trick: any symmetric monoidal (∞, n)-category C is canonically a symmetric
monoidal object in symmetric monoidal (∞, n)-categories. More precisely, there is a diagram

Cat⊗(∞,n)

Fin∗ Cat(∞,n)

ev[1]

C

C̃ (2.10)

where C̃[n][m] = C[nm] (see [TV15, §2.5]). If A is an∞-category with finite products and F : Cat⊗(∞,n) → A

is a functor that preserves finite products, then

Cat⊗(∞,n) → CMon(A), C 7→ F ◦ C̃,

is a lift of F to the ∞-category of commutative monoids in A. Applying this to the functor

End: Cat⊗(∞,n) → Cat(∞,n−1),

we obtain a canonical symmetric monoidal structure on End(C), namely [n] 7→ End(C̃[n]). At the level of
objects, this symmetric monoidal product is given by (X, f)⊗ (Y, g) = (X ⊗ Y, f ⊗ g).
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Definition 2.11. Let C be a symmetric monoidal (∞, n)-category. The symmetric monoidal trace functor

Tr⊗ : End(C)→ ΩC

is the symmetric monoidal functor whose [n]th component is

Tr: End(C̃[n])→ Ω(C̃[n]) = C[n](1,1).

Remark 2.12. The trace functor of Definition 2.11 may be iterated, yielding for any k ≤ n a symmetric
monoidal (∞, n− k)-functor

Tr
(k)
⊗ : Endk(C)→ ΩkC

defined inductively as the composite

End(Endk−1(C))
End(Tr

(k−1)
⊗ )

−−−−−−−−→ End(Ωk−1C)
Tr⊗−−→ ΩΩk−1C.

Roughly speaking, an object in Endk(C) is an object of C equipped with k laxly commuting endomorphisms,
with the minimal dualizability conditions that make it possible to take their traces successively. For example,
if n = k = 2, End2(C) is the∞-groupoid of lax squares in the subcategory Cfd ⊂ C of fully dualizable objects,

and Tr
(2)
⊗ : End2(C)→ Ω2C is a homotopy coherent and multiplicative enhancement of the secondary trace

considered in [BZN13].

2.3. The circle-invariant trace

We conclude this section with a generalization of the S1-invariant trace from [TV15]. First we introduce
the subcategory Aut(C) ⊂ End(C) such that Aut(C)~k is the sub-space of End(C)~k consisting of those pairs
(X ∈ Lax~k(C), f : X → X) where f is an equivalence. Equivalently, if we denote by S1 = BZ the groupoid
completion of BN, then:

Aut(C) = Funoplax
⊗ (Frrig(S1),C).

Using (2.10), the assignment [n] 7→ Aut(C̃[n]) defines a symmetric monoidal structure on Aut(C) such that
the inclusion Aut(C) ⊂ End(C) is symmetric monoidal.

The groupoid S1 has the structure of an ∞-group, i.e., a group object in the ∞-category S. This group
structure can be specified in many equivalent ways: it is induced by complex multiplication on the unit
circle in C, by the group structure on the simplicial bar construction on Z, or by the homotopy equivalence
S1 ' Ω(CP∞).

Definition 2.13. If X is an object in an ∞-category C and G is an ∞-group, an action of G on X is a
functor BG→ C sending the base point to X.

An action of S1 on X ∈ C is thus a morphism of E2-spaces Z → Ω2
Xι0C. Such an action determines a

self-homotopy of idX (the image of 1 ∈ Z), but also some additional data, since Z is not freely generated by
1 as an E2-space.

Being an ∞-group, S1 acts on itself and hence it acts on Aut(C). The self-equivalence of the identity
functor on Aut(C) induced by this action is given by (f, idf2) : (X, f)→ (X, f).

Theorem 2.14. The symmetric monoidal trace functor

Tr⊗ : Aut(C)→ ΩC

(Definition 2.11) admits a canonical S1-invariant refinement which is natural in the symmetric monoidal
(∞, n)-category C.
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Proof. The morphisms (2.7) and (2.8) are natural in both B and C. In particular, they give rise to a
morphism of ∞-groupoids

ι0ΩB→ Map(ιn−1 Funoplax
⊗ (B,−),Ω)

natural in B, where the mapping space on the right-hand side is taken in the (∞, 1)-category of functors
Cat⊗(∞,n) → Cat(∞,n−1). Moreover, the construction (2.10) gives a natural map

Map(ιn−1 Funoplax
⊗ (B,−),Ω)→ Map⊗(ιn−1 Funoplax

⊗ (B,−),Ω),

where Map⊗ denotes a mapping space in the (∞, 1)-category of functors Cat⊗(∞,n) → Cat⊗(∞,n−1). Taking

B = Frrig(S1) with its action of S1, we obtain an S1-equivariant morphism of ∞-groupoids

ΩFrrig(S1)→ Map⊗(Aut,Ω),

which sends the trace of the walking automorphism to Tr⊗. Taking homotopy S1-fixed points, we obtain a
commutative square

(ΩFrrig(S1))hS
1

Map⊗(Aut,Ω)hS
1

ΩFrrig(S1) Map⊗(Aut,Ω).

(2.15)

At this point we invoke the 1-dimensional cobordism hypothesis via [TV15, Théorème 2.18]: the trace of the
walking automorphism lives in a contractible component of the ∞-groupoid ΩFrrig(S1), and hence the left
vertical map in (2.15) is an equivalence over that component. Thus, the trace of the walking automorphism
has a unique S1-invariant refinement, whose image by the top horizontal map of (2.15) is an element of

Map⊗(Aut,Ω)hS
1

refining Tr⊗, as desired.

Remark 2.16. By iterating the symmetric monoidal S1-invariant trace, as in Remark 2.12, we deduce that

the k-fold trace Tr
(k)
⊗ : Autk(C) → ΩkC is invariant for the action of the k-dimensional torus (S1)k on

Autk(C).

Remark 2.17. Concretely, the S1-invariant refinement of the trace provides, for every (A, f) ∈ Aut(C), a
homotopy between the morphism Tr(f)→ Tr(f) induced by f and the identity. When f = idA, it recovers
the action of S1 on the Euler characteristic χ(A) of A (see [Lur08, Proposition 4.2.1]). The functoriality
of the S1-invariant trace encodes in particular the S1-equivariance of the map χ(A) → χ(B) induced by a
right dualizable morphism A→ B.

3. A localization theorem for traces

The goal of this section is to show that, if C is a symmetric monoidal (∞, 2)-category C with stable
mapping (∞, 1)-categories, the trace sends special sequences in End(C), called localization sequences, to
cofiber sequences in ΩC. As we will see in §4.5, this result generalizes the localization theorem for topological
Hochschild homology from [BM12, §7]. In fact, the proof is based on the same key idea.

Definition 3.1. An (∞, 2)-category C is called linear if the following conditions hold:

• For every X,Y ∈ C, the (∞, 1)-category C(X,Y ) is stable.

• For every X,Y, Z ∈ C, the composition functor C(X,Y )× C(Y,Z)→ C(X,Z) is exact in each variable.

If C is moreover symmetric monoidal, we say that it is linearly symmetric monoidal if it is linear and if:

• For every X,Y, Z ∈ C, the functor (−)⊗ idZ : C(X,Y )→ C(X ⊗ Z, Y ⊗ Z) is exact.
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If C is a linearly symmetric monoidal (∞, 2)-category, then the restricted trace functor Tr: C(X,X)→ ΩC

is exact for every dualizable object X ∈ C. Indeed, it can be written as the composite

C(X,X)
(−)⊗idX∨−−−−−−−→ C(X ⊗X∨, X ⊗X∨)

(−)◦coev−−−−−−→ C(1, X ⊗X∨)
ev◦(−)−−−−→ C(1,1) = ΩC.

Recall that a 1-morphism (φ, α) : (X, f)→ (Y, g) in End(C) is a square

X Y

X Y

φ

f g

φ

=⇒
α

where φ has a right adjoint φr. We say that the morphism (φ, α) is right adjointable if the associated
push-pull transformation α[ : fφr → φrg is an equivalence. Note that morphisms in Aut(C) are always right
adjointable.

Definition 3.2. Let C be a linear (∞, 2)-category. A sequence

X
ι−→ Y

π−→ Z

in C is called a localization sequence if the following conditions hold:

• ι and π have right adjoints ιr and πr;

• the composite πι is a zero object in C(X,Z);

• the unit η : idX → ιrι and the counit ε : ππr → idZ are equivalences;

• the sequence ιιr → idY → πrπ, with its unique nullhomotopy, is a cofiber sequence in C(Y, Y ).

If C is a linearly symmetric monoidal (∞, 2)-category, a sequence

(X, f)
(ι,α)−−−→ (Y, g)

(π,β)−−−→ (Z, h)

in End(C) is called a localization sequence if X
ι→ Y

π→ Z is a localization sequence and moreover the
morphisms (ι, α) and (π, β) are right adjointable.

Given a localization sequence

(X, f)
(ι,α)−−−→ (Y, g)

(π,β)−−−→ (Z, h)

in End(C) and a zero object 0 ∈ C(Y, Y ), there is a unique commutative square

(X, f) (Y, g)

(Y, 0) (Z, h)

(ι, α)

(π, β)(ι, !)

(π, !)

(3.3)

in End(C), since the ∞-groupoid of zero objects in C(X,Z) is contractible. In particular, since Tr(0) is a
zero object in ΩC, the sequence

Tr(f)→ Tr(g)→ Tr(h)

is equipped with a canonical nullhomotopy.
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Theorem 3.4. Let C be a linearly symmetric monoidal (∞, 2)-category, and let

(X, f)
(ι,α)−−−→ (Y, g)

(π,β)−−−→ (Z, h)

be a localization sequence in End(C). Then

Tr(f)→ Tr(g)→ Tr(h)

is a cofiber sequence in ΩC.

Proof. Since C is linear, the trace functor Tr: C(Y, Y ) → ΩC preserves cofiber sequences. We will define a
cofiber sequence f ′ → g → h′ in C(Y, Y ) and a diagram

(X, f) (Y, g) (Z, h)

(Y, f ′) (Y, g) (Y, h′)

(ι, α) (π, β)

(id, α′) (id, β′)

(ι, ᾱ) (π, β̄) (3.5)

in End(C), commuting up to homotopy, such that the vertical maps induce equivalences on traces. The
uniqueness of the square (3.3) will then imply that the cofiber sequence Tr(f ′)→ Tr(g)→ Tr(h′) is equivalent
to the sequence Tr(f)→ Tr(g)→ Tr(h) with its nullhomotopy, and hence that the latter is a cofiber sequence.

Let f ′ = ιιrg, h′ = πrπg, and let

α′ : f ′ = ιιrg
ε→ g,

β′ : g
η→ πrπg = h′,

ᾱ : ιf
η→ ιfιrι

α[

→ ιιrgι = f ′ι,

β̄ : πh′ = ππrπg
ε→ πg

β→ hπ.

The commutativity of the diagram (3.5) is then clear. The cofiber sequence ιιr → idX → πrπ shows that
f ′ → g → h′ is a cofiber sequence in C(Y, Y ). It remains to show that (ι, ᾱ) and (π, β̄) induce equivalences
on traces.

The morphism induced by (ι, ᾱ) on traces looks as follows:

X ⊗X∨ X ⊗X∨

1 1.

Y ⊗ Y ∨ Y ⊗ Y ∨

f ⊗ id

f ′ ⊗ id

ι⊗ ιr∨ ι⊗ ιr∨⇐=⇐= ⇐=
ᾱ⊗ id

The third 2-morphism is an equivalence because η : idX → ιrι is an equivalence. Since moreover (ι, α) is right
adjointable, ᾱ is also an equivalence. The first 2-morphism becomes an equivalence when post-composed
with ιr ⊗ id and a fortiori when post-composed with f ′ ⊗ id, since f ′ ' ιfιr. This shows that Tr(ι, ᾱ) is an
equivalence.

The morphism induced by (π, β̄) on traces looks as follows:

Y ⊗ Y ∨ Y ⊗ Y ∨

1 1.

Z ⊗ Z∨ Z ⊗ Z∨

h′ ⊗ id

h⊗ id

π ⊗ πr∨ π ⊗ πr∨
⇐=⇐= ⇐=

β̄ ⊗ id
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The first 2-morphism is an equivalence because ε : ππr → idZ is an equivalence. The last 2-morphism is an
equivalence when it is pre-composed with πr ⊗ id, which happens if we decompose β̄ as

πh′
η→ πh′πrπ

β̄[

→ ππrhπ
ε→ hπ.

By assumption, ε is an equivalence. Since moreover (π, β) is right adjointable, β̄[ is also an equivalence. It
will therefore suffice to show that the 2-morphism

Tr(h′) = evY (h′ ⊗ id)coevY
η→ evY (h′ ⊗ id)(πrπ ⊗ id)coevY = Tr(h′πrπ)

is an equivalence. This follows from the fact that ηh′ : h′ → πrπh′ is an equivalence and the cyclicity of the
trace.

Remark 3.6. It is worth noting that the proof of Theorem 3.4 did not make full use of the linearity of C.
The same result holds if we only assume that each C(X,Y ) is a pointed ∞-category admitting cofibers, and
that composition and tensoring preserve zero objects and cofiber sequences.

4. Preliminaries on E-linear categories

In this section, we study the linearly symmetric monoidal (∞, 2)-category of E-linear categories, where
E is a symmetric monoidal ∞-category which is small, stable, idempotent complete, and rigid.

4.1. Categories tensored over E

Definition 4.1. We denote by

• Catperf , the ∞-category of small, stable, and idempotent complete ∞-categories and exact functors.

• PrL
St, the ∞-category of stable presentable ∞-categories and left adjoint functors.

By [Lur09, Proposition 5.5.7.10], the ind-completion functor Ind: Catperf → PrL
St induces an equivalence

between Catperf and the subcategory of PrL
St whose objects are the compactly generated stable∞-categories

and whose morphisms are the left adjoint functors preserving compact objects.
Given∞-categories (resp. stable∞-categories) A and B, we denote by FunL(A,B) (resp. by Funex(A,B))

the full subcategory of Fun(A,B) spanned by left adjoint functors (resp. by exact functors). If A is pre-
sentable, a functor A→ B is left adjoint if and only if it preserves small colimits [Lur09, Corollary 5.5.2.9]. If
A and B are stable, a functor A→ B is exact if and only if it preserves finite colimits or finite limits [Lur16,
Proposition 1.1.4.1]. As a special case of [Lur09, Proposition 5.3.6.2], the Yoneda embedding j : A ↪→ Ind(A)
induces an equivalence of ∞-categories

Funex(A,B) ' FunL(Ind(A),B), (4.2)

for any A ∈ Catperf and any cocomplete stable ∞-category B.
Recall from [BGT13, Section 3.1] that Catperf , and PrL

St admit symmetric monoidal structures such that
Ind: Catperf → PrL

St is a symmetric monoidal functor. Their tensor products will be denoted by ⊗ and ⊗L,
respectively. Given A,B ∈ Catperf , the stable ∞-category A ⊗ B is the recipient of the universal functor
A×B→ C which is exact in each variable. In other words, we have an equivalence of ∞-categories

Funex(A⊗B,C) ' Funex(A,Funex(B,C))

for all A,B,C ∈ Catperf . Similarly, given A,B,C ∈ PrL
St, the tensor product ⊗L is characterized by

FunL(A⊗L B,C) ' FunL(A,FunL(B,C)).

Let C be a complete and cocomplete symmetric monoidal ∞-category whose tensor product preserves
geometric realizations, and let A ∈ CAlg(C). Denote by ModA(C) the ∞-category of A-modules in C (see
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[Lur16, Section 4.5]). By [Lur16, Theorem 4.5.2.1], ModA(C) inherits a symmetric monoidal structure whose
tensor product we will denote by ⊗A. Given two A-modules M and N , M ⊗A N is the colimit of the usual
simplicial diagram

· · · M ⊗A⊗N M ⊗N .

In other words, M ⊗A N is the recipient of the universal A-bilinear map M ⊗N → P . If C has an internal
Hom object Hom(−,−), then ModA(C) also has an internal Hom object HomA(−,−): given A-modules M
and N , HomA(M,N) is the limit of the cosimplicial diagram

Hom(M,N) Hom(A,Hom(M,N)) · · · .

If Ĉat denotes the ∞-category of (possibly large) ∞-categories, a commutative algebra E in Ĉat (with
the cartesian symmetric monoidal structure) is exactly a symmetric monoidal ∞-category; we will refer to

objects and morphisms of ModE(Ĉat) as E-module ∞-categories and E-module functors, respectively. Given
E-module ∞-categories A and B, we denote by FunE(A,B) the ∞-category of E-module functors from A to
B [Lur16, Definition 4.6.2.7], which can be described as the limit of the cosimplicial diagram

Fun(A,B) Fun(E,Fun(A,B)) · · ·

(see [Lur16, Lemma 4.8.4.12]). In other words, FunE is the internal Hom object in ModE(Ĉat). We denote
by FunL

E(A,B) the full subcategory of FunE(A,B) defined by the cartesian square

FunL
E(A,B) FunE(A,B)

FunL(A,B) Fun(A,B).

If A and B are stable, we define Funex
E (A,B) ⊂ FunE(A,B) similarly. The objects of Funex

E (A,B) will also
be called E-linear functors.

Definition 4.3. Let E be a commutative algebra in Catperf , i.e., a small, stable, and idempotent complete
symmetric monoidal ∞-category whose tensor product E× E→ E is exact in each variable. We set

• Catperf(E) := ModE(Catperf).

• PrL(E) := ModInd(E)(PrL
St).

Remark 4.4. The ∞-category Spω of finite spectra is the unit for the symmetric monoidal structure on
Catperf . Hence, there are identifications Catperf(Spω) = Catperf and PrL(Spω) = PrL

St.

We denote the tensor products in Catperf(E) and PrL(E) by ⊗E and ⊗L
E, respectively. Thus, Funex

E is an

internal Hom object in Catperf(E), and FunL
E is an internal Hom object in PrL(E). Since Ind: Catperf → PrL

St

is a symmetric monoidal functor, it lifts to a symmetric monoidal functor between ∞-categories of modules:

Ind: Catperf(E)→ PrL(E).

Proposition 4.5. Let E ∈ CAlg(Catperf) and A ∈ Catperf(E). For any cocomplete stable∞-category B with
a colimit-preserving action of E, the Yoneda embedding A ⊂ Ind(A) induces an equivalence of E-modules

Funex
E (A,B) ' FunL

E(Ind(A),B).

Proof. This is a straightforward consequence of (4.2), using the definitions of Funex
E and FunL

E.

Recall that an ∞-category is compactly generated if it has the form Ind(C), where C is small and has
finite colimits.
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Lemma 4.6. Let C be a symmetric monoidal ∞-category and M a C-module. Suppose that M is compactly
generated and that, for each c ∈ C, the action c⊗− : M→M preserves colimits. Then, for every A ∈ CAlg(C),
the ∞-category ModA(M) is compactly generated.

Proof. By [Lur16, Corollary 4.2.3.7], ModA(M) is presentable. Let F : Ind(ModA(M)ω)→ ModA(M) be the
functor induced by the inclusion ModA(M)ω ↪→ ModA(M). Since compact objects are stable under finite
colimits, it remains to show that F is an equivalence. By [Lur09, Proposition 5.3.5.11 (1)], F is fully faithful,
and by [Lur09, Proposition 5.5.1.9], F preserves colimits. Hence, to conclude the proof, it suffices to show
that ModA(M) is generated under colimits by its compact objects. Any A-module in M is canonically the
colimit of a (split) simplicial diagram whose terms are free A-modules. Free A-modules are in turn filtered
colimits of free A-modules of the form A ⊗ X with X ∈ Mω. Since the forgetful functor ModA(M) → M

preserves filtered colimits, such A-modules are compact in ModA(M).

Proposition 4.7. For every E ∈ CAlg(Catperf), the ∞-category Catperf(E) is compactly generated.

Proof. By [BGT13, Corollary 4.25], the ∞-category Catperf is compactly generated. The result now follows
from Lemma 4.6 applied to C = M = Catperf .

4.2. The enriched Yoneda embedding

If E is a commutative algebra in Catperf and A ∈ Catperf(E), then A is naturally enriched over Ind(E).
Indeed, given a ∈ A, the functor E → A sending e to e ⊗ a preserves finite colimits and hence admits an
ind-right adjoint AE(a,−) : A→ Ind(E). One can hence define a functor

A→ Funex(Aop, Ind(E)), (4.8)

given informally by a 7→ AE(−, a). When E = Spω, the functor (4.8) is fully faithful, but this is not
true for more general E. Indeed, given a ∈ A, the functor AE(−, a) comes with extra structure, namely
that of an Ind(E)-enriched functor. Below we will consider an assumption on E that greatly simplifies the
situation: we will assume that E is rigid, i.e., that every object of E is dualizable. This will suffice for our
later applications. In that case, we will show that (4.8) factors through a fully faithful E-linear embedding
A ↪→ Funex

E (Aop, Ind(E)).
We denote by CAlgrig(Catperf) ⊂ CAlg(Catperf) the full subcategory spanned by the rigid symmetric

monoidal ∞-categories.3 We gather some immediate consequences of rigidity in the next proposition:

Proposition 4.9. Let E ∈ CAlgrig(Catperf). Then:

1. There is a canonical equivalence of symmetric monoidal ∞-categories

E ' Eop, e 7→ e∨ = Hom(e,1).

2. For any A ∈ PrL(E), the action of E on A restricts to the full subcategory Aω ⊂ A of compact
objects. In particular, if A is compactly generated, then it belongs to the essential image of the functor
Ind: Catperf(E)→ PrL(E).

3. For any E-module ∞-categories A and B and any F ∈ FunL
E(A,B), the right adjoint G : B→ A of F

has a canonical structure of E-module functor, and the unit idA → G◦F and counit F ◦G→ idB have
canonical structures of E-module natural transformations.

4. Let A and B be arbitrary E-module ∞-categories. Then there is a canonical equivalence of E-module
∞-categories

FunL
E(A,B) ' FunR

E(B,A)op,

sending a left adjoint E-module functor to its right adjoint.

3One of the reasons rigidity plays a special role is that objects of CAlgrig(Catperf) are smooth Frobenius algebras in Catperf ,
see [Lur16, §4.6.5].
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Proof. (1) The functor e 7→ e∨ is adjoint to itself, and the unit of the adjunction e→ (e∨)∨ is an equivalence
since e is dualizable.

(2) Since E is rigid, e ⊗ − : A → A is left adjoint to e∨ ⊗ −, for every e ∈ E. In particular, e∨ ⊗ −
commutes with filtered colimits. Hence, e⊗− preserves compact objects.

(3) In the language of [Lur16, §7.3.2], the E-modules A and B are encoded by cocartesian fibrations over
the ∞-operad LM⊗, and F is an LM⊗-monoidal functor between them. By [Lur16, Corollary 7.3.2.7],4

F admits a right adjoint relative to LM⊗, which is moreover a morphism of ∞-operads. In other words,
G has a structure of right-lax E-module functor and the unit and counit of the adjunction are E-module
transformations. To prove our assertion, it remains to show that, when E is rigid, the right-lax E-module
structure on G is strict, i.e., for every e ∈ E and b ∈ B, the map e⊗G(b)→ G(e⊗ b) is an equivalence. For
any a ∈ A, the induced map A(a, e⊗G(b))→ A(a,G(e⊗ b)) is the composition

A(a, e⊗G(b)) ' A(e∨ ⊗ a,G(b))

' B(F (e∨ ⊗ a), b)

' B(e∨ ⊗ F (a), b)

' B(F (a), e⊗ b)
' A(a,G(e⊗ b)).

(4) As E is rigid, it acts on A and B via left adjoint functors. Hence, FunL
E(A,B) is the limit of the

cosimplicial diagram

FunL(A,B) Fun(E,FunL(A,B)) · · · .

Dually, FunR
E(B,A)op is the limit of the cosimplicial diagram

FunR(A,B)op Fun(Eop,FunR(A,B)op) · · · .

Using the equivalence E ' Eop from (1) and the equivalence FunL(A,B) ' FunR(B,A)op from [Lur09,
Proposition 5.2.6.2], we can identify these two cosimplicial diagrams, and the result follows.

Proposition 4.10. Let E ∈ CAlgrig(Catperf). If A ∈ PrL(E) is compactly generated, then it is dualizable
with dual A∨ = Ind(Aω,op).

Proof. Note that A∨ is a meaningful object of PrL(E), by Proposition 4.9 (1,2). We must construct an
equivalence A∨ ⊗L

E B ' FunL
E(A,B), natural in B. By Proposition 4.9 (4), for any E-module ∞-categories

C and D, we have
FunL

E(C,D) ' FunL
E(Dop,Cop).

The rest of the argument is identical to [Lur16, Proposition 4.8.1.16]. If B,C ∈ PrL(E), we have natural
equivalences

FunL
E(A∨ ⊗L

E B,C) ' FunL
E(A∨,FunL

E(B,C))

' FunL
E(A∨,FunL

E(Cop,Bop))

' FunL
E(Cop,FunL

E(A∨,Bop))

' FunL
E(FunL

E(A∨,Bop)op,C),

so that A∨ ⊗L
E B ' FunL

E(A∨,Bop)op. Using Proposition 4.5 twice, we get

FunL
E(A∨,Bop)op ' Funex

E (Aω,op,Bop)op ' Funex
E (Aω,B) ' FunL

E(A,B),

as desired.

4This corollary is missing the assumption that F should preserve cocartesian edges.
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Corollary 4.11. Let E ∈ CAlgrig(Catperf). For any A,B ∈ Catperf(E), there is a canonical equivalence

Ind(Aop ⊗E B) ' Funex
E (A, Ind(B))

in PrL(E). In particular, Ind(A) ' Funex
E (Aop, Ind(E)).

Proof. By Proposition 4.10, we have

Ind(Aop)⊗L
E Ind(B) ' FunL

E(Ind(A), Ind(B)).

We conclude using Proposition 4.5.

By Corollary 4.11, if E is rigid and A ∈ Catperf(E), we have a fully faithful E-linear functor

jE : A ↪→ Funex
E (Aop, Ind(E)),

called the E-linear Yoneda embedding, exhibiting the right-hand side as the ind-completion of A. An E-linear
functor Aop → Ind(E) (resp. A → Ind(E)) is also called a right A-module (resp. a left A-module). Thus,
Ind(A) and Ind(A)∨ are canonically identified with the∞-categories of right and left A-modules, respectively.
Similarly, for A,B ∈ Catperf(E), Ind(A)∨ ⊗L

E Ind(B) is identified with the ∞-category of E-bilinear functors
Bop ×A→ Ind(E), called A-B-bimodules.

Definition 4.12. Let E ∈ CAlgrig(Catperf). We denote by

CatMor(E) ⊂ PrL(E)

the full subcategory spanned by the compactly generated ∞-categories.

By Proposition 4.9 (2), CatMor(E) is exactly the essential image of the functor Ind: Catperf(E)→ PrL(E).
We may therefore think of CatMor(E) as having the same objects as Catperf(E), but the morphisms from A

to B are now A-B-bimodules. Since Ind is symmetric monoidal, we also deduce that CatMor(E) is stable
under the tensor product ⊗L

E. Moreover, by Proposition 4.5, ind-completion induces a fully faithful functor

Funex
E (A,B) ↪→ FunL

E(Ind(A), Ind(B)) for every A,B ∈ Catperf(E). In particular, we can identify Catperf(E)
with a wide subcategory of CatMor(E), i.e., a subcategory obtained by discarding some noninvertible mor-
phisms.

4.3. Dualizable E-categories

In this subsection, we give a characterization of the dualizable objects in Catperf(E), where E ∈ CAlgrig(Catperf).
Our results are straightforward generalizations of facts that are well known in the case when E is the ∞-
categoy of perfect modules over a commutative ring. The theory in that case is due to Toën; a convenient
reference is [BGT13, Section 3].

Definition 4.13. Let E ∈ CAlgrig(Catperf) and let A ∈ Catperf(E). We say that A is:

• smooth if the object ∆ ∈ Ind(Aop ⊗E A) corresponding to the Yoneda embedding A ↪→ Ind(A) is
compact (see Corollary 4.11).

• proper if, for all a, a′ ∈ A, the mapping object AE(a, a′) ∈ Ind(E) is compact.

• saturated if it is both smooth and proper.

We denote by Catsat(E) ⊂ Catperf(E) the full subcategory of saturated E-module ∞-categories.

Lemma 4.14. Let E ∈ CAlgrig(Catperf) and let A ∈ Catperf(E). Then A is dualizable if and only if the two
maps

evInd(A) : Ind(Aop ⊗E A) ' Ind(Aop)⊗L
E Ind(A)→ Ind(E),

coevInd(A) : Ind(E)→ Ind(A)⊗L
E Ind(Aop) ' Ind(A⊗E Aop)

preserve compact objects. In that case, their restrictions to compact objects are the evaluation and coevalu-
ation of a duality between A and Aop.
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Proof. Assume that A is dualizable and let evA : A∨⊗EA→ E exhibit A∨ as dual to A. As Ind is symmetric
monoidal, Ind(evA) exhibits Ind(A∨) as dual to Ind(A). By uniqueness of duals [Lur16, Lemma 4.6.1.10],
Ind(evA) can be identified with evInd(A), which therefore preserves compact objects. A dual argument shows
that coevInd(A) preserves compact objects. Conversely, if evInd(A) and coevInd(A) preserve compact objects,
then their restrictions to compact objects satisfy the triangle identities and hence exhibit Aop as a dual of
A.

Proposition 4.15. Let E ∈ CAlgrig(Catperf) and let A ∈ Catperf(E). Then A is dualizable if and only if it
is saturated. In that case, the dual of A is Aop.

Proof. The proposition is a simple corollary of Lemma 4.14. Indeed, evInd(A) preserves compact objects if
and only if A is proper. Similarly, coevInd(A) preserves compact objects if and only if A is smooth.

Corollary 4.16. Let E ∈ CAlgrig(Catperf) and let A ∈ Catsat(E). Then the E-linear Yoneda embedding jE
induces an equivalence

A ' Funex
E (Aop,E).

Remark 4.17. In fact, the following finer statements hold. If A ∈ Catperf(E), both A and Funex
E (Aop,E) can

be identified with full subcategories of Funex
E (Aop, Ind(E)). Then:

• If A is proper, A ⊂ Funex
E (Aop,E).

• If A is smooth, Funex
E (Aop,E) ⊂ A.

Corollary 4.18. Let E ∈ CAlgrig(Catperf) and let A,B ∈ Catperf(E). If A is smooth and B is proper, then
every E-linear functor F : A→ B has an E-linear right adjoint.

Proof. The functor Ind(F ) has a right adjoint G : Ind(B)→ Ind(A) in CatMor(E), so it suffices to show that
G preserves compact objects. But G can be written as the composite

Ind(B)
coevInd(A)−−−−−−−→ Ind(A)⊗L

E Ind(Aop)⊗L
E Ind(B)

G∨−−→ Ind(A)⊗L
E Ind(Bop)⊗L

E Ind(B)
evInd(B)−−−−−→ Ind(A).

Since A is smooth and B is proper, coevInd(A) and evInd(B) preserve compact objects. Finally, G∨ = Ind(F op)
also preserves compact objects.

Proposition 4.19. Let E ∈ CAlgrig(Catperf). If A ∈ Catperf(E) is saturated, then A is compact.

Proof. By Proposition 4.15, there is an equivalence of mapping ∞-groupoids

Catperf(E)(A,−) ' Catperf(E)(E,Aop ⊗E −).

As Aop⊗E− preserves colimits, it suffices to show that the unit E is compact. The functor Catperf(E)(E,−)
is equivalent to the composition

Catperf(E)→ Catperf → Cat(∞,1)
ι0−→ S.

The first functor preserves all colimits [Lur16, Corollary 4.2.3.7], and ι0 clearly preserves filtered colimits.
The forgetful functor Catperf → Cat(∞,1) also preserves filtered colimits, by [Lur16, Proposition 1.1.4.6 and
Lemma 7.3.5.10].

Corollary 4.20. Let E ∈ CAlgrig(Catperf). Then the ∞-category Catsat(E) is small.

Proof. By Proposition 4.19, Catsat(E) is a subcategory of Catperf(E)ω, which is small by Proposition 4.7.
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4.4. The (∞, 2)-categorical structure

To apply the results of §2–3, we need to upgrade the symmetric monoidal ∞-categories

Catsat(E) ⊂ Catperf(E) ⊂ CatMor(E) ⊂ PrL(E)

to symmetric monoidal (∞, 2)-categories. We refer to [GR16, Chapter I.1, §6.1.8] for the construction of
the symmetric monoidal (∞, 2)-category of stable cocomplete ∞-categories.5 We let PrL

St denote the full
subcategory of the latter spanned by the presentable stable ∞-categories. For n ∈ ∆, the (∞, 1)-category

(PrL
St)n,• is the subcategory of Ĉat/(∆n)op whose objects are the presentable fibrations with stable fibers

and whose morphisms are the fiberwise equivalences. By construction, we have ι1PrL
St ' PrL

St as symmetric
monoidal (∞, 1)-categories, and the (∞, 1)-category of morphisms from A to B in PrL

St is FunL(A,B). More-
over, the notion of adjunction internal to the (∞, 2)-category PrL

St matches the usual notion of adjunction
between functors [GR16, Chapter I.1, Lemma 5.3.2].

Let C ∈ Cat⊗(∞,1) be a symmetric monoidal ∞-category compatible with geometric realizations [Lur16,

Definition 3.1.1.18]. Then, for every commutative algebra A ∈ CAlg(C), the ∞-category of A-modules
ModA(C) has a canonical symmetric monoidal structure. In fact, by [Lur16, Theorem 4.5.3.1], there exists
a functor

CAlg(C)→ Cat⊗(∞,1), A 7→ ModA(C). (4.21)

We will need a 2-categorical enhancement of this construction.
More generally, suppose that C ∈ Cat⊗(∞,n) is a symmetric monoidal (∞, n)-category whose underlying

symmetric monoidal (∞, 1)-category ι1C is compatible with geometric realizations. We construct a functor

CAlg(ι1C)→ Cat⊗(∞,n), A 7→ ModA(C), (4.22)

such that ι1ModA(C) ' ModA(ι1C). The functor (4.21) is obtained by straightening an explicit cocartesian
fibration Mod(C)⊗ → CAlg(C)× Fin∗, which is natural in C at the point-set level. In particular, if we plug
in the n-fold simplicial symmetric monoidal (∞, 1)-category

~k 7→ ι1 Fun(Θ
~k,C),

and pull back the resulting cocartesian fibrations to the initial object of (∆op)n, we obtain an n-fold simplicial
cocartesian fibration over CAlg(ι1C)× Fin∗. By straightening, this gives rise to a functor

CAlg(ι1C)× (∆op)n → Cat⊗(∞,1), (A,~k) 7→ ModA(ι1 Fun(Θ
~k,C)).

For fixed A ∈ CAlg(ι1C), we claim that this is a complete n-fold Segal object in symmetric monoidal (∞, 1)-
categories. Since Fun(Θ~•,C) is a complete n-fold Segal object, it suffices to show that ModA(−) preserves
limits of ι1C-modules, but this follows directly from the definition [Lur16, Definition 4.2.1.13]. Applying ι0,
we obtain the functor (4.22). The identification ι1ModA(C) ' ModA(ι1C) results from

ModA(ι1 Fun(∆n,C)) = ModA(Fun(∆n, ι1C)) ' Fun(∆n,ModA(ι1C)).

We apply this construction with C = PrL
St: given E ∈ CAlg(Catperf), we denote by PrL(E) the sym-

metric monoidal (∞, 2)-category ModInd(E)(PrL
St). Thus, ι1PrL(E) ' PrL(E). An equivalent construction

of this symmetric monoidal (∞, 2)-category can be found in [GR16, Chapter I.1, §8.3]. By unraveling the
construction, we see that for A,B ∈ PrL(E), there is an equivalence of (∞, 1)-categories

PrL(E)(A,B) ' FunL
E(A,B)

5In loc. cit., the authors use an axiomatic approach to (∞, 1)-categories. However, if we choose to use complete Segal spaces
as a model for (∞, 1)-categories, then their definitions of (∞, 2)-categories and symmetric monoidal structures coincide with
those used in [JFS16] and recalled in §2.2.
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compatible with binary composition and tensor product. In particular, PrL(E) is linearly symmetric
monoidal in the sense of Definition 3.1. By (4.22), we can moreover regard the assignment E 7→ PrL(E) as
a functor CAlg(Catperf)→ Cat⊗(∞,2).

Assume now that E is rigid. Since Catsat(E), Catperf(E), and CatMor(E) are (or can be identified with)
symmetric monoidal subcategories of PrL(E), they can be upgraded to symmetric monoidal (∞, 2)-categories
Catsat(E), Catperf(E), and CatMor(E), namely the corresponding subcategories of PrL(E). We thus have a
sequence of linearly symmetric monoidal (∞, 2)-categories

Catsat(E) ⊂ Catperf(E) ⊂ CatMor(E) ⊂ PrL(E).

For any morphism E → F in CAlgrig(Catperf), these subcategories are preserved by the change of scalars
functor PrL(E)→ PrL(F), and hence they vary functorially with E ∈ CAlgrig(Catperf).

Recall that any symmetric monoidal (∞, n)-category C has a (not necessarily full) subcategory Cfd ⊂ C

of fully dualizable objects [Lur08, §2.3]; this is the largest subcategory in which every object is dualizable
and every p-morphism, for 0 < p < n, has left and right adjoints. The following proposition is a rephrasing
of previous results:

Proposition 4.23. Let E ∈ CAlgrig(Catperf).

1. Every object in CatMor(E) is dualizable.

2. Catperf(E) is the wide subcategory of CatMor(E) on the right dualizable 1-morphisms.

3. Catsat(E) is the full subcategory of dualizable objects in Catperf(E).

4. Catsat(E) is the subcategory of fully dualizable objects in CatMor(E).

Proof. (1) This is Proposition 4.10.
(2) We must show that, for every A,B ∈ Catperf(E), the functor Funex

E (A,B) → FunL
E(Ind(A), Ind(B))

is fully faithful, and that its image is the subcategory of right dualizable 1-morphisms. By Proposition 4.5,
it is indeed a full embedding whose image consists of those functors that preserve compact objects. The
right adjoint of such a functor preserves colimits, and by Proposition 4.9 (3) it can be promoted to a right
adjoint in the (∞, 2)-category CatMor(E).

(3) This is Proposition 4.15.
(4) This follows from (1)–(3) and [Lur08, Proposition 4.2.3].

4.5. Hochschild homology as a trace

Let E ∈ CAlgrig(Catperf). We recall how the trace

Tr: End(CatMor(E))→ ΩCatMor(E) ' Ind(E)

can be identified with Hochschild homology (relative to Ind(E)). By Corollary 4.11, endomorphisms of
Ind(A) in CatMor(E) are A-bimodules. This leads to the following informal description of the (∞, 1)-category
End(CatMor(E)):

• An object of End(CatMor(E)) is a pair (A,M) where A ∈ Catperf(E) and M : Aop ×A→ Ind(E) is an
A-bimodule.

• A morphism (A,M) → (B,N) in End(CatMor(E)) is an E-linear functor φ : A → B together with a
morphism of A-bimodules M→ φ∗(N).

Let us recall the standard definition of the Hochschild homology of the pair (A,M). To do so we must
choose a set S of objects of A. Define a simplicial object C•(S,M) in Ind(E) by

Cn(S,M) =
∨

a0,...,an∈S
AE(an, an−1)⊗ · · · ⊗AE(a1, a0)⊗M(a0, an) ∈ Ind(E).
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Proposition 4.24. Let E ∈ CAlgrig(Catperf). Let (A,M) ∈ End(CatMor(E)) and let S be a set of objects
of A meeting all equivalence classes. Then there is an equivalence

Tr(A,M) ' colimC•(S,M)

in Ind(E), natural in (A, S,M).

Proof. The trace Tr(A,M) is the image of the A-bimodule M by the evaluation map Ind(A)∨ ⊗E Ind(A)→
Ind(E). We must therefore identify M 7→ colimC•(S,M) with the evaluation. By duality, it suffices to show
that the composition

Ind(A)
coev⊗id−−−−−→ Ind(A)⊗L

E Ind(A)∨ ⊗L
E Ind(A)

id⊗colimC•(S,−)−−−−−−−−−−−→ Ind(A)

is naturally equivalent to the identity. The coevaluation map Ind(E) → Ind(A) ⊗E Ind(A)∨ sends 1 to the
A-bimodule (x, y) 7→ AE(x, y) ∈ Ind(E). Hence, the above composition sends a right A-module N to the
right A-module

x 7→ colimC•(S,A
E(x,−)⊗N(−)).

There is an augmented simplicial object

C•(S,A
E(x,−)⊗N(−))→ N(x),

natural in N and x. If x ∈ S, this augmented simplicial object has an extra degeneracy sending Cn−1 to the
summand of Cn where an = x. Since S meets every equivalence class in A, this completes the proof.

Corollary 4.25. The functor

Fun(S1,Catperf(E)) ' Aut(CatMor(E))
Tr−→ Ind(E)

preserves filtered colimits.

Proof. Let (Aα, fα)α∈I be a filtered diagram in Fun(S1,Catperf(E)). Without loss of generality, we can
assume that I is a filtered poset. Then we can find a compatible diagram of sets of objects Sα ⊂ Aα meeting
all equivalence classes. Using the formula of Proposition 4.24, we deduce that Tr preserves the colimit of
(Aα, fα)α∈I.

5. Categories of E-motives

In this section, we extend the main results from [BGT13, Sections 6–9] to E-linear ∞-categories. We
assume throughout that E ∈ CAlg(Catperf) is rigid. We define the∞-categories of additive and localizing mo-
tives for Catperf(E), which are the recipients of the universal additive and localizing invariants on Catperf(E),
respectively. Their construction is reminiscent of that of the Grothendieck group of an exact category. We
then show that connective and nonconnective K-theory are corepresentable in these∞-categories. We follow
[BGT13] closely but we include for the reader’s convenience complete arguments or precise references. The
constructions in [BGT13] are recovered when E = Spω is the symmetric monoidal ∞-category of compact
spectra.

5.1. Exact sequences

Definition 5.1 ([BGT13, Definition 5.12 and Proposition 5.13]). A sequence A
f→ B

g→ C in Catperf is
exact if it is a cofiber sequence and f is fully faithful.

Note that “being a cofiber sequence” is a meaningful property, since the ∞-groupoid of equivalences
g ◦ f ' 0 is either empty or contractible. Whether a given sequence A→ B→ C is exact can be checked at
the level of triangulated homotopy categories: it is exact if and only if hA→ hB is fully faithful and hC is
the idempotent completion of the Verdier quotient hB/hA [BGT13, Proposition 5.15].
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Definition 5.2 ([BGT13, Definition 5.18]). A sequence A
f→ B

g→ C in Catperf is split exact if it is exact
and if f and g admit right adjoints.

Definition 5.3. A sequence

A
f→ B

g→ C

in Catperf(E) is called exact (resp. split exact) if its image by the forgetful functor Catperf(E) → Catperf is
exact (resp. split exact).

Proposition 5.4. A sequence in Catperf(E) is exact (resp. split exact) in the sense of Definition 5.3 if and
only if it is a localization sequence in the (∞, 2)-category CatMor(E) (resp. in the (∞, 2)-category Catperf(E)),
in the sense of Definition 3.2.

Proof. By Proposition 4.9 (3), the forgetful functors CatMor(E)→ CatMor and Catperf(E)→ Catperf reflect
localization sequences. Hence, we are reduced to the case E = Spω. The statement for split exact sequences
follows immediately from the statement for exact sequence. For the latter, since Ind: Catperf → PrL

St

preserves colimits, it suffices to prove the following: given a commutative square

A B

0 C

f

g

in PrL
St with f fully faithful, it is a pushout square if and only if gr is fully faithful and the null sequence

ffr → idB → grg

is a cofiber sequence. By [Lur09, Theorem 5.5.3.18], the above square is a pushout if and only if gr is fully
faithful with essential image (fr)−1(0). The result is now straightforward.

Proposition 5.5.

1. Every exact sequence A→ B→ C in Catperf(E) is a filtered colimit of exact sequences Aα → Bα → Cα
where each Bα is compact.

2. Every split exact sequence A → B → C in Catperf(E) is a filtered colimit of split exact sequences
Aα → Bα → Cα where Aα, Bα, and Cα are compact.

Proof. (1) Recall that every object in Catperf(E) is a filtered colimit of compact objects. Let I be a filtered∞-
category and let Bα, α ∈ I, be a filtered diagram of compact objects having colimit B. We set Aα := A×BBα.
Then the projection Aα → Bα is fully faithful, and we let Cα be its cofiber. Then Aα → Bα → Cα is a
filtered diagram of exact sequences whose colimit is A→ B→ C, and each Bα is compact, as desired.

(2) Let G be the subcategory of Fun(∆2,Catperf(E)) whose objects are split exact sequences and whose
morphisms are morphisms of sequences forming right adjointable squares [Lur09, Definition 7.3.1.2]. The
three evaluation functors

ev0, ev1, ev2 : G→ Catperf(E)

have right adjoints sending A to A
id−→ A→ 0,

A Fun(∆1,A) A,
ev1

ev0

and 0 → A
id−→ A, respectively. As these right adjoints preserve filtered colimits, the above evaluation

functors preserve compact objects. It will therefore suffice to show that G is compactly generated.
Consider the ∞-category H of triples (A,C, h), where A,C ∈ Catperf(E) and h : Ind(A) → Ind(C) is a

colimit-preserving E-linear functor. In other words, H is the ∞-category of cartesian fibrations X → ∆1
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with fiber-preserving action of E, such that X0 and X1 are compactly generated and the pullback functor
e∗ : X1 → X0 preserves colimits: such a fibration encodes the triple (Xω1 ,X

ω
0 , e
∗). Since Catperf(E) and

FunL
E(Ind(A), Ind(C)) ' Ind(Aop ⊗E C) are compactly generated, H is also compactly generated: an object

(A,B, h) ∈ H is compact if and only if A, C, and h are compact in their respective ∞-categories. Consider
the functor φ : G→ H sending the sequence

A
f→ B

g→ C

to the triple (A,C, grr ◦f). We claim that φ is an equivalence, which will conclude the proof. When E = Spω,
φ is a Catperf -module functor, and the general case is obtained from this case by passing to the∞-categories
of E-modules. Hence, we may assume that E = Spω. Given any split exact sequence as above, we observe that
Ind(B) is a recollement of the subcategories gr(Ind(C)) and frr(Ind(A)) in the sense of [Lur16, Definition
A.8.1]. In fact, using the notation of [Lur16, Remark A.8.19], a split exact sequence in Catperf is the same
thing as a stable compactly generated ∞-category D equipped with stable subcategories i∗ : D0 ↪→ D and
j∗ : D1 ↪→ D forming a recollement of D, with the additional condition that i∗ and j∗ preserve compact
objects. Since the pair of localization functors (i∗, j∗) is conservative, this additional condition is equivalent
to i! ◦j! being colimit-preserving. The fact that φ is an equivalence now follows from [Lur16, Remark A.8.18].
Explicitly, the inverse functor H → G sends a cartesian fibration p : X → ∆1 to the split exact sequence
Xω1 → Γ(p)ω → Xω0 .

5.2. Additive E-motives

Definition 5.6. Let C be a small (∞, 1)-category. We denote by

• P(C) := Fun(Cop, S), the ∞-category of presheaves on C.

• PSp(C) := Fun(Cop,Sp), the ∞-category of presheaves of spectra on C.

• Σ∞+ : P(C)→ PSp(C) the stabilization functor, given objectwise by Σ∞+ : S→ Sp.

Definition 5.7. We denote by
ψ : Catperf(E)→ PSp(Catperf(E)ω)

the filtered-colimit-preserving extension of the composition

Catperf(E)ω
j−→ P(Catperf(E)ω)

Σ∞+−−→ PSp(Catperf(E)ω),

where j is the Yoneda embedding.

Recall that an exact sequence in Catperf(E) is equipped with a canonical nullhomotopy, since Catperf(E)
is a linear (∞, 2)-category. Let Sadd be the class of morphisms in PSp(Catperf(E)ω) of the form

0→ Σnψ(0),

Σn(ψ(B)/ψ(A))→ Σnψ(C),

where A→ B→ C is a split exact sequence in Catperf(E) and n ≤ 0.

Definition 5.8. The ∞-category of additive E-motives is the full subcategory of PSp(Catperf(E)ω) spanned
by the Sadd-local objects, in the sense of [Lur09, Definition 5.5.4.1]. We denote it by Mot(E).

A priori, the definition of Mot(E) involves localizing with respect to a proper class of morphisms. However,
we now show that there exists a small set of morphisms S′add that generates the same strongly saturated
class as Sadd. In particular, Mot(E) is the full subcategory of PSp(Catperf(E)ω) consisting of the S′add-local
objects.

Proposition 5.9. The ∞-category Mot(E) is an exact ω-accessible localization of PSp(Catperf(E)ω). In
particular, Mot(E) is a stable compactly generated ∞-category.

29



Proof. Let S′add ⊂ Sadd be the small subset consisting of the maps 0 → Σnψ(0) and Σn(ψ(A)/ψ(B)) →
Σnψ(C), where A → B → C is a split exact sequence in Catperf(E)ω and n ≤ 0. By Proposition 5.5 (2),
every element of Sadd is a filtered colimit of elements of S′add in Fun(∆1,Catperf(E)). In particular S′add and
Sadd generate the same strongly saturated class of morphisms. Applying [Lur09, Proposition 5.5.4.15], we
deduce that Mot(E) is an accessible localization of PSp(Catperf(E)ω). By definition of Sadd, it is clear that
Mot(E) is closed under suspension, and hence it is stable by [Lur16, Proposition 1.4.2.11]. Finally, note that
S′add-local presheaves are stable under filtered colimits. Since PSp(Catperf(E)ω) is compactly generated, it
follows that Mot(E) is compactly generated.

Remark 5.10. By definition of S′add, a presheaf of spectra F : Catperf(E)ω,op → Sp belongs to Mot(E) if and
only if it preserves zero objects and carries split exact sequences in Catperf(E)ω to fiber sequences of spectra.

Thus, the inclusion Mot(E) ⊂ PSp(Catperf(E)ω) admits an exact left adjoint, and we denote by Uadd the
composition

Uadd : Catperf(E)
ψ→ PSp(Catperf(E)ω)→ Mot(E).

Note that Uadd preserves compact objects.

Definition 5.11. Let D be a stable presentable ∞-category and let F : Catperf(E) → D be a functor. We
say that F is an additive invariant if the following conditions are satisfied:

1. F preserves filtered colimits.
2. F preserves zero objects.
3. F sends split exact sequences in Catperf(E) to cofiber sequences in D.6

We denote by Funadd(Catperf(E),D) the ∞-category of additive invariants with values in D.

Theorem 5.12. The functor Uadd : Catperf(E)→ Mot(E) is the universal additive invariant. More precisely,
for any presentable stable ∞-category D, Uadd induces an equivalence of ∞-categories

FunL(Mot(E),D) ' Funadd(Catperf(E),D).

Proof. Note first that Uadd is an additive invariant: condition (1) is satisfied because ψ preserves filtered
colimits, and conditions (2) and (3) are satisfied by definition of Sadd. Next, observe that if D is a stable
presentable ∞-category, the functor ψ induces an equivalence

FunL(PSp(Catperf(E)ω),D) ' Funflt(Catperf(E),D),

where an object in the right-hand side is a functor that preserves filtered colimits. The claim now follows
from the universal property of the localization Mot(E).

We now briefly discuss symmetric monoidal structures (see also [CT12] for a different treatment in the
language of derivators). It follows immediately from the definition of ⊗E that, if A,B ∈ Catperf(E) are
compact, so is A ⊗E B. The ∞-category of presheaves P(Catperf(E)ω) therefore acquires a presentably
symmetric monoidal structure given by Day convolution, such that the Yoneda embedding

j : Catperf(E)ω ↪→ P(Catperf(E)ω)

becomes universal among symmetric monoidal functors to presentably symmetric monoidal ∞-categories
[Lur16, Proposition 4.8.1.10]. The stabilization functor

Σ∞+ : P(Catperf(E)ω)→ PSp(Catperf(E)ω)

can also be promoted to a symmetric monoidal functor with an obvious universal property [Rob15, Remark
2.25]. Note moreover that − ⊗E A preserves split exact sequences, for any A ∈ Catperf(E) (see [BGT14,
Lemma 5.5]). This implies, by [Lur16, Proposition 2.2.1.9], that Mot(E) acquires a symmetric monoidal
structure such that the localization functor PSp(Catperf(E)ω) → Mot(E) is symmetric monoidal and has a
universal property as such. Combining these universal properties, we obtain:

6Note that, as a consequence, F sends split exact sequences to split cofiber sequences.
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Theorem 5.13. The symmetric monoidal functor Uadd : Catperf(E) → Mot(E) is the universal symmetric
monoidal additive invariant. More precisely, for any presentably symmetric monoidal stable ∞-category D,
Uadd induces an equivalence of ∞-categories

FunL,⊗(Mot(E),D) ' Fun⊗add(Catperf(E),D).

Finally, we discuss the functoriality in E of Mot(E). Suppose that E,F ∈ CAlg(Catperf) are rigid and that
f : E→ F is an exact symmetric monoidal functor. Then f induces a symmetric monoidal base change functor
f∗ : Catperf(E)→ Catperf(F) between∞-categories of modules [Lur16, §4.5.3], with a colimit-preserving right
adjoint f∗. We claim that the composite functor

Catperf(E)
f∗−→ Catperf(F)

Uadd−−−→ Mot(F)

is an additive invariant. Conditions (1) and (2) are clear, and condition (3) follows from the fact that
f∗ preserves (split) exact sequences (see [BGT14, Lemma 5.5]). Thus, it induces a symmetric monoidal
colimit-preserving functor

f∗ : Mot(E)→ Mot(F).

In fact, the construction E 7→ Mot(E) can be promoted to a functor

Mot(−) : CAlgrig(Catperf)→ CAlg(PrL
St).

Indeed, by the universal property of the symmetric monoidal functor Catperf(E)ω → Mot(E) from Theo-
rem 5.13, this follows from the functoriality of E 7→ Catperf(E) (see (4.21)), and the fact that objectwise
solutions to a universal problem automatically determine a functor [Lur09, Proposition 5.2.4.2].

5.3. Localizing E-motives

Let Sloc be the class of morphisms in PSp(Catperf(E)ω) of the form

0→ Σnψ(0),

Σn(ψ(B)/ψ(A))→ Σnψ(C),

where A→ B→ C is an exact sequence in Catperf(E) and n ≤ 0.

Definition 5.14. The∞-category of localizing E-motives is the full subcategory of PSp(Catperf(E)ω) spanned
by the Sloc-local objects. We denote it by Mot(E).

Note that Mot(E) ⊂ Mot(E). As for Sadd, we show that there exists a (small) set of morphisms S′loc that
generates Sloc under filtered colimits.

Proposition 5.15. The ∞-category Mot(E) is an exact accessible localization of PSp(Catperf(E)ω). In
particular, Mot(E) is a stable presentable ∞-category.

Proof. Let S′loc ⊂ Sloc denote the subclass consisting of the maps 0 → Σnψ(0) and Σn(ψ(A)/ψ(B)) →
Σnψ(C), where A → B → C is an exact sequence with B ∈ Catperf(E)ω and n ≤ 0. By Proposition 5.5 (1),
every element of Sloc is a filtered colimit of elements of S′loc in Fun(∆1,Catperf(E)). In particular S′loc and Sloc

generate the same strongly saturated class of morphisms. Note that S′loc is essentially small, since Catperf(E)ω

is small and the collection of full subcategories of a given small ∞-category is small. Applying [Lur09,
Proposition 5.5.4.15], we deduce that Mot(E) is an accessible localization of PSp(Catperf(E)ω). By definition
of Sloc, Mot(E) is closed under suspension, and hence it is stable by [Lur16, Proposition 1.4.2.11].

Thus, the inclusion Mot(E) ⊂ PSp(Catperf(E)ω) admits an exact left adjoint, and we denote by Uloc the
composition

Uloc : Catperf(E)
ψ→ PSp(Catperf(E)ω)→Mot(E).
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Definition 5.16. Let D be a stable presentable ∞-category and let F : Catperf(E) → D be a functor. We
say that F is a localizing invariant if the following conditions are satisfied:

1. F preserves filtered colimits.

2. F preserves zero objects.

3. F sends exact sequences in Catperf(E) to cofiber sequences in D.

We denote by Funloc(Catperf(E),D) the ∞-category of localizing invariants with values in D.

Theorem 5.17. The functor Uloc : Catperf(E)→Mot(E) is the universal localizing invariant. More precisely,
for any presentable stable ∞-category D, Uloc induces an equivalence of ∞-categories

FunL(Mot(E),D) ' Funloc(Catperf(E),D).

Proof. Since Mot(E) is the full subcategory of Uadd(Sloc)-local objects in Mot(E), the claim follows from
Theorem 5.12 and the universal property of localization.

Noting that − ⊗E A preserves exact sequences, we deduce from [Lur16, Proposition 2.2.1.9] and Theo-
rem 5.13 that Mot(E) acquires a symmetric monoidal structure with the following universal property:

Theorem 5.18. The symmetric monoidal functor Uloc : Catperf(E) → Mot(E) is the universal symmetric
monoidal localizing invariant. More precisely, for any presentably symmetric monoidal stable ∞-category D,
Uloc induces an equivalence of ∞-categories

FunL,⊗(Mot(E),D) ' Fun⊗loc(Catperf(E),D).

If E,F ∈ CAlg(Catperf) are rigid and f : E→ F is an exact symmetric monoidal functor, the composition

Catperf(E)
f∗−→ Catperf(F)

Uloc−−−→Mot(F)

is a symmetric monoidal localizing invariant and hence induces a symmetric monoidal colimit-preserving
functor

f∗ : Mot(E)→Mot(F).

Its right adjoint f∗ is simply the restriction of f∗ : Mot(F)→ Mot(E) to the full subcategory Mot(F). As in
§5.2, Theorem 5.18 implies that this construction can be promoted to a functor

Mot(−) : CAlgrig(Catperf)→ CAlg(PrL
St).

5.4. Corepresentability of K-theory

In this subsection, we prove that the connective (resp. nonconnective) K-theory of objects in Catperf(E)
is corepresented by the unit in the symmetric monoidal stable ∞-category Mot(E) (resp. Mot(E)). These
are direct generalizations of [BGT13, Theorems 7.13 and 9.36]. In fact, for nonconnective K-theory, we
can easily deduce the corepresentability result from the case E = Spω. On the other hand, to get the
full corepresentability result for connective K-theory, we have to repeat the arguments from [BGT13], but
we introduce a simplification based on [Bar16]. We start by recalling the definition of the K-theory of
∞-categories.

The ∞-categorical version of the S•-construction was introduced in [Lur16, Definition 1.2.2.2]. Let
Catrex

∗ be the (∞, 1)-category of small pointed∞-categories admitting finite colimits and right exact functors
between them.

For all n ∈ ∆, let Ar[n] be the category such that:

• its objects are pairs (i, j) where 0 ≤ i ≤ j ≤ n,

• there is exactly one morphism (i, j)→ (k, l) if i ≤ k ≤ j ≤ l, and none otherwise.
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In other words, Ar[n] is the arrow category of the poset [n]. For A ∈ Catrex
∗ , denote by Sn(A) the full

subcategory of Fun(Ar[n],A) spanned by the functors F : Ar[n]→ A such that:

• for all i, F (i, i) is a zero object in A,

• if i ≤ j ≤ k then F (i, j)→ F (i, k)→ F (j, k) is a cofiber sequence in A.

For all n, Sn(A) is again an object in Catrex
∗ . Moreover, the ∞-categories Sn(A) assemble into a simplicial

∞-category S•(A) ∈ Fun(∆op,Catrex
∗ ).

Let ι0S•(A) be the simplicial pointed space obtained by taking the maximal subgroupoids of S•(A)
levelwise, and letting the initial objects be the base points. Denote by |ι0S•(A)| ∈ S its colimit.

Definition 5.19. Let A ∈ Catrex
∗ . The space Ω|ι0S•(A)| is the K-theory space of A.

As in the case of ordinary Waldhausen categories, the K-theory spectrum of A, denoted by K(A), can be
defined by iterating the S•-construction: more precisely, the nth space of the spectrum is K(A)n = |ι0Sn• (A)|
for n ≥ 1, see [BGT13, Section 7.1].

If A ∈ Catperf(E), then SnA is stable, idempotent complete, and tensored over E, and S• lifts to a functor

S• : Catperf(E)→ Fun(∆op,Catperf(E)).

Lemma 5.20. Let A,B ∈ Catperf(E). There is a natural equivalence

S•(Funex
E (A,B)) ' Funex

E (A, S•(B))

in Fun(∆op,Catperf(E))

Proof. For all m ∈ ∆, we have a natural equivalence of simplicial ∞-categories

S•(Funex(A⊗ E⊗m,B)) ' Funex(A⊗ E⊗m, S•(B)),

by [BGT13, Lemma 7.16]. Taking the limit over m ∈ ∆ and noting that Sn preserves limits concludes the
proof.

For A ∈ Catperf(E), denote by KA the presheaf of spectra on Catperf(E)ω defined by

KA(B) = K(Funex
E (B,A)).

Lemma 5.21. Let A ∈ Catperf(E). Then KA belongs to Mot(E).

Proof. By Remark 5.10, we must prove that KA(0) ' 0 and that KA takes split exact sequences in
Catperf(E)ω to fiber sequences. The former is clear, since Funex

E (0,A) ' 0. Let B1 → B2 → B3 be a
split exact sequence in Catperf(E)ω. Then the sequence

Funex
E (B3,A)→ Funex

E (B2,A)→ Funex
E (B1,A)

is split exact. By [Bar16, Proposition 10.12], applying K to a split exact sequence in Catperf yields a fiber
sequence of K-theory spectra, as desired.

Lemma 5.22. For any A ∈ Catperf(E), there is a natural equivalence KA ' Uadd(A) in Mot(E).

Proof. As in the proof of [BGT13, Proposition 7.17], there is a canonical levelwise split exact sequence in
Fun(∆op,Catperf(E)),

A• → PS•A→ S•A,

where A• is the constant simplicial object with value A and P (−) denotes the simplicial path object. By
applying Uadd and taking realizations, we obtain a cofiber sequence in Mot(E),

|Uadd(A•)| ' Uadd(A)→ |Uadd(PS•A)| ' Uadd(0)→ |Uadd(S•A)|.
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Thus, since Uadd(0) ' 0, ΣUadd(A) ' |Uadd(S•A)| in Mot(E). Iterating, we find

ΣnUadd(A) ' |Uadd(Sn•A)|, (5.23)

for any n ≥ 1. Next, consider the following equivalences of pointed presheaves on Catperf(E)ω, where n ≥ 1
and j(Sn•A) is pointed by j(0):

Ω∞−nKA ' |ι0Sn• (Funex
E (−,A))|

' |ι0 Funex
E (−, Sn•A)|

= |j(Sn•A)|.

The first equivalence follows from the definition of K-theory, and the second one from Lemma 5.20. Writing
KA as a colimit of desuspensions of its constituent spaces, we get

KA ' colim
n

Σ−nΣ∞|j(Sn•A)| ' colim
n

Σ−n|ψ(Sn•A)/ψ(0)|.

Hence, by Lemma 5.21 and (5.23), we have the following equivalences in Mot(E):

KA ' colim
n

Σ−n|Uadd(Sn•A)/Uadd(0)|

' colim
n

Σ−n|Uadd(Sn•A)|

' colim
n

Σ−nΣnUadd(A)

' colim
n

Uadd(A).

Comparing the construction of (5.23) with that of the structure maps of the K-theory spectrum, we see
that this last colimit is constant and hence that KA ' Uadd(A), as desired.

Theorem 5.24 (Corepresentability of connective K-theory). Let A,B ∈ Catperf(E) and assume that B is
compact. Then there is a natural equivalence of spectra

Mot(E)(Uadd(B),Uadd(A)) ' K(Funex
E (B,A)).

Proof. Since B is compact, the presheaf ψ(B) is representable. We then have a sequence of natural equiva-
lences of spectra:

Mot(E)(Uadd(B),Uadd(A)) ' PSp(Catperf(E)ω)(ψ(B),Uadd(A))

' PSp(Catperf(E)ω)(ψ(B),KA)

' KA(B) = K(Funex
E (B,A)).

The first holds by adjunction, the second by Lemma 5.22, and the third by the spectral Yoneda lemma.

Theorem 5.25 (Corepresentability of nonconnective K-theory). Let A,B ∈ Catperf(E) and assume that B
is saturated. Then there is a natural equivalence of spectra

Mot(E)(Uloc(B),Uloc(A)) ' K(Bop ⊗E A).

Proof. By Proposition 4.15, B is dualizable in Catperf(E) with dual Bop. Let f : Sω∞ → E be the unique
exact symmetric monoidal functor. Since Uloc is symmetric monoidal, we have

Mot(E)(Uloc(B),Uloc(A)) 'Mot(E)(Uloc(E),Uloc(Bop)⊗ Uloc(A))

'Mot(E)(Uloc(E),Uloc(Bop ⊗E A))

'Mot(E)(f∗Uloc(Spω),Uloc(Bop ⊗E A))

'Mot(Spω)(Uloc(Spω), f∗Uloc(Bop ⊗E A))

'Mot(Spω)(Uloc(Spω),Uloc(Bop ⊗E A))

' K(Bop ⊗E A),

where the last equivalence is [BGT13, Theorem 9.8].
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6. The categorified Chern character

6.1. Tannakian geometry

Our construction of the categorified Chern character naturally takes place in a slightly more general
context than that of spectral geometry, which we call Tannakian geometry. It is an ∞-categorical version
of Balmer’s tensor triangular geometry [Bal10]. This generality is merely a convenient way to streamline
some of the proofs, and the reader should feel free to replace all occurrences of “Tannakian” by “spectral”
or “derived”, or to ignore the word altogether.

We define the ∞-category AffTan of Tannakian affine schemes to be the opposite of the ∞-category
CAlgrig(Catperf) of symmetric monoidal ∞-categories that are small, stable, idempotent complete, and
rigid. Given such a symmetric monoidal ∞-category E, we denote by SpecE ∈ AffTan the corresponding
Tannakian affine scheme, and we denote by AffTan

E the overcategory (AffTan)/ SpecE. This homotopical
algebro-geometric context relates to the usual ones via forgetful functors

Affder → Affsp ↪→ Affnc ↪→ AffTan,

where (Affder)op, (Affsp)op, and (Affnc)op are the ∞-categories of simplicial commutative rings, connective
E∞-ring spectra, and arbitrary E∞-ring spectra, respectively. The last functor sends an E∞-ring spectrum
R to the symmetric monoidal ∞-category Perf(R) of perfect R-modules, and it is fully faithful by [Lur11,
Proposition 3.2.9].

Given X = SpecE ∈ AffTan, we write O(X) for the E∞-ring spectrum of endomorphisms of the unit in
E, Perf(X) for the symmetric monoidal ∞-category E itself, and QCoh(X) for Ind(Perf(X)). We also write
Catsat,perf,Mor(X) for Catsat,perf,Mor(E) and similarly for their (∞, 2)-categorical enhancements.

A Tannakian prestack is a presheaf of ∞-groupoids on AffTan which is a small colimit of representa-
bles. We denote by PrStkTan the ∞-category of Tannakian prestacks and by PrStkTan

E the overcategory
(PrStkTan)/ SpecE. The above functors on AffTan extend uniquely to limit-preserving functors

O : PrStkTan,op → CAlg(Sp),

Perf ⊂ QCoh: PrStkTan,op → Cat⊗(∞,1),

Catsat ⊂ Catperf ⊂ CatMor : PrStkTan,op → Cat⊗(∞,2).

For any X ∈ PrStkTan, Perf(X) is the full subcategory of dualizable objects in QCoh(X), since an object in
a limit of symmetric monoidal ∞-categories is dualizable if and only if each of its components is dualizable.
Similarly, Catsat(X) is the full subcategory of dualizable objects in Catperf(X), which is in turn the wide
subcategory of right dualizable morphisms in CatMor(X), which is itself rigid. In particular, as in Proposi-
tion 4.23 (4), we have Catsat(X) ' CatMor(X)fd. Note also that Perf(X) and Catsat(X) are small, being
small limits of small (∞, 2)-categories. Furthermore, we have the following relations between these functors,
where ΩSp denotes the spectrum of endomorphisms of the unit in a stable symmetric monoidal ∞-category:

ΩSp ◦ Perf = ΩSp ◦QCoh ' O,

Ω ◦Catsat = Ω ◦Catperf ' Perf, Ω ◦CatMor ' QCoh.

Indeed, since Ω and ΩSp preserve limits, all of these functors are right Kan extensions of their restrictions
to Tannakian affine schemes, where the given equivalences are clear.

The inclusion Affnc ↪→ AffTan induces, by left Kan extension, a fully faithful embedding of (noncon-
nective) spectral prestacks over an E∞-ring spectrum R into Tannakian prestacks over Perf(R). If X is a
spectral prestack viewed as a Tannakian prestack in this way, then O(X), Perf(X), and QCoh(X) have their
usual meanings, and CatMor(X) is the full subcategory of the (∞, 2)-category of quasi-coherent sheaves of
∞-categories on X, in the sense of [Gai15], consisting of those sheaves whose ∞-categories of sections over
any spectral affine scheme are compactly generated.

Definition 6.1. Let X be a Tannakian prestack. A sequence A→ B→ C in Catperf(X) is called exact (resp.
split exact) if it is a localization sequence in CatMor(X) (resp. in Catperf(X)) in the sense of Definition 3.2.
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When X is affine, this definition agrees with Definition 5.3, by Proposition 5.4. In general, a sequence
in Catperf(X) is exact (resp. split exact) if and only if its pullback to any affine is exact (resp. split exact).

Definition 6.2. Let X be a Tannakian prestack. The nonconnective K-theory of X, denoted by K(X), is
the nonconnective K-theory of the symmetric monoidal stable ∞-category Perf(X).

Thus, K(X) is an E∞-ring spectrum. Note that the affinization map X → Spec Perf(X) induces an
equivalence on Perf and hence on K.

6.2. Chern characters

From now on we fix a Tannakian affine base scheme SpecE ∈ AffTan.

Definition 6.3. Let X be a Tannakian prestack over E. The free loop space LX of X over E is the
Tannakian prestack over E defined by

LX = XS1

' lim
S1

X ' X ×X×EX X.

Note that LX is a relative construction and depends on the base E, although we choose not to indicate it
in the notation. If X = SpecC is affine, then LX = Spec(S1 ⊗E C), where ⊗E denotes the canonical action

of S on AffTan,op
E :

S1 ⊗E C = colim
S1

C ' C⊗C⊗EC C.

When E = Perf(R) for some E∞-ring spectrum R, the free loop space construction does not commute
with the inclusion of spectral prestacks over R into Tannakian prestacks over E. However, there is always
a canonical map from the free loop space of a spectral prestack X to its free loop space as a Tannakian
prestack, and it is an equivalence when X is affine.

Let X be a Tannakian prestack over E. We briefly recall the construction of the Chern pre-character
chpre : ι0Perf(X) → O(LX)hS

1

in this context, following Toën and Vezzosi [TV15, §4.2]. Given a perfect
complex over X, its pullback to the free loop space LX is equipped with a canonical monodromy automor-
phism m, whose trace Tr(m) ∈ Ω∞O(LX) has a canonical S1-invariant refinement in Ω∞O(LX)hS

1

. This
construction defines a map of E∞-semirings

chpre : ι0Perf(X)→ Ω∞O(LX)hS
1

, (6.4)

natural in X, called the Chern pre-character of the Tannakian prestack X.

Theorem 6.5. Let X be a Tannakian prestack over E. The Toën–Vezzosi Chern pre-character chpre descends
to K-theory and deloops to a morphism of E∞-ring spectra

ch: K(X)→ O(LX)hS
1

,

natural in X.

We will deduce this theorem from its categorified version, Theorem 6.9, below.

Remark 6.6. Theorem 6.5 is already interesting when X = SpecE: in that case, it states that the Euler
characteristic χ : ι0E → ΩE induces a morphism of E∞-ring spectra from the nonconnective K-theory of E
to the spectrum ΩSpE of endomorphisms of 1 ∈ E, and even to the mapping spectrum Hom(Σ∞+ BS

1,ΩSpE).
This is a refinement of May’s additivity theorem for Euler characteristics [May01, Theorem 0.1].

Remark 6.7. We emphasize that Theorem 6.5 is not a formal consequence of the universal property of K-
theory [BGT13, Bar16]. Indeed, the Chern character is only defined on rigid symmetric monoidal stable
∞-categories and not on arbitrary stable∞-categories, as would be required to invoke the universal property
of K-theory. We will see in Remark 6.12 that the Chern character of Theorem 6.5 is nevertheless an instance
of the Dennis trace map, but this is a corollary of our main result.
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The above construction of chpre is clearly very general: in [TV15], a Chern pre-character is constructed
for any sheaf of rigid symmetric monoidal ∞-categories on an ∞-topos, the “classical” case recalled above
corresponding to the tautological presheaf Perf on AffTan. Toën and Vezzosi also consider in [TV15, §4.3] a
categorified version of the classical case, where Perf is replaced by CatMor. Their construction then yields a
morphism of E∞-semirings

chpre : ι0Catperf(X)→ ι0QCohS
1

(LX), (6.8)

natural in X, where QCohS
1

(LX) = QCoh(LX)hS
1

is the ∞-category of S1-equivariant quasi-coherent
sheaves on the free loop space of X. Using our higher-categorical generalization of the S1-invariant trace
from §2.3, we can easily upgrade this morphism of E∞-semirings to a symmetric monoidal (∞, 1)-functor:

Theorem 6.9. Let X be a Tannakian prestack over E. The Toën–Vezzosi categorified Chern pre-character
lifts to a symmetric monoidal (∞, 1)-functor

chpre : Catperf(X)→ QCohS
1

(LX),

natural in X, which preserves zero objects and sends exact sequences to cofiber sequences.

Proof. To construct chpre, we repeat the construction of Toën and Vezzosi, using the symmetric monoidal
S1-invariant trace functor constructed in §2.3. The obvious functor

colim
S1

Catperf(X)→ Catperf(LX)

induces by adjunction a functor

Catperf(X)→ Fun(S1,Catperf(LX)),

sending a quasi-coherent sheaf of ∞-categories on X to its pullback to LX equipped with a canonical
monodromy automorphism. This functor is manifestly S1-equivariant for the trivial action on the source
and the diagonal action on the target. We then consider the symmetric monoidal composition

Catperf(X)→ Fun(S1,Catperf(LX)) ' Aut(CatMor(LX))

Tr⊗−−→ ΩCatMor(LX) ' QCoh(LX). (6.10)

Since the trace Tr⊗ is a natural transformation Aut → Ω which is S1-invariant for the action of S1 on
Aut (Theorem 2.14), we deduce that the whole composition is S1-equivariant, and hence yields the desired
symmetric monoidal functor chpre. The first part of (6.10) sends exact sequences in Catperf(X) to localization
sequences in Aut(CatMor(LX)), since any morphism in Aut(CatMor(LX)) is right adjointable. The fact
that chpre sends exact sequences to cofiber sequences then follows from Theorem 3.4 and the fact that the

forgetful functor QCohS
1

(LX)→ QCoh(LX) reflects colimits.

Corollary 6.11. Let SpecC be a Tannakian affine scheme over E. Then the symmetric monoidal functor
chpre : Catperf(C) → Ind(S1 ⊗E C)hS

1

is a localizing invariant, and hence it factors uniquely through the
symmetric monoidal ∞-category of localizing C-motives:

Catperf(C) Ind(S1 ⊗E C)hS
1

.

Mot(C)

chpre

ch

Proof. By Theorem 6.9, the only thing to check is that chpre preserves filtered colimits. This follows at once
from its definition (6.10) and Corollary 4.25.
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Proof of Theorem 6.5. Since the affinization map X → Spec Perf(X) is an equivalence on K, we can assume

that X = SpecC. Applying ΩSp to the symmetric monoidal functor ch: Mot(C) → Ind(S1 ⊗E C)hS
1

of

Corollary 6.11 and using Theorem 5.25, we get a morphism of E∞-ring spectra ch: K(C) → O(LX)hS
1

. It
is easy to check that this morphism refines the Chern pre-character in the desired way.

Remark 6.12. When C = E, the categorified Chern character of Corollary 6.11 is a colimit-preserving
symmetric monoidal functor ch: Mot(E) → Fun(BS1, Ind(E)). By construction, it sends A ∈ Catperf(E) to
the Hochschild homology of A over E with the S1-action of Remark 2.17, hence gives rise to morphisms of
spectra

K(Bop ⊗E A)→ Ind(E)(HH(B/E),HH(A/E))hS
1

for all A ∈ Catperf(E) and B ∈ Catsat(E). According to [Lur08, Example 4.2.2], this S1-action on HH(A/E)
coincides with the usual S1-action coming from the extension of the simplicial bar construction C•(S,A)
of §4.5 to a cyclic object. When B = E = Spω, it follows from [BGT13, Theorem 10.6] that the map
K(A)→ HH(A) is the classical Dennis trace map. Hence, Corollary 6.11 recovers the classical factorization
of the Dennis trace map through the homotopy S1-fixed points of topological Hochschild homology.

6.3. Secondary K-theory and the secondary Chern character

In the remainder of this section, we will use the categorified Chern character to construct a Chern
character for Toën’s secondary K-theory.

Let C be a small linear (∞, 2)-category (see Definition 3.1). We denote by Ploc
Sp (C) the ∞-category of

presheaves of spectra on ι1C that send initial objects7 to 0 and localization sequences to fiber sequences. As
the inclusion Ploc

Sp (C) ⊂ PSp(C) preserves filtered colimits, Ploc
Sp (C) is compactly generated. If C is moreover

linearly symmetric monoidal, tensoring with a fixed object preserves localization sequences. It follows from
[Lur16, Proposition 2.2.1.9] that the Day convolution symmetric monoidal structure on PSp(C) (see [Gla16])
descends to a symmetric monoidal structure on Ploc

Sp (C) and that the localization functor is symmetric
monoidal. In particular, we get a symmetric monoidal functor

ι1C→ Ploc
Sp (C)ω.

For example, the definition of the symmetric monoidal ∞-category Mot(E) can be summarized as

Mot(E) = Ploc
Sp (Catperf(E)ω).

For X a Tannakian prestack, we define

Motsat(X) = Ploc
Sp (Catsat(X))ω.

Thus, Motsat(X) is a small, stable, and idempotent complete symmetric monoidal∞-category. It is moreover
rigid since it is generated under finite colimits and retracts by the image of Catsat(X).

Remark 6.13. By definition, a localization sequence in Catsat(X) is a split exact sequence. However, since
Catsat(X) = CatMor(X)fd, any exact sequence in Catsat(X) is automatically split exact.

Remark 6.14. The proof of Lemma 5.22 can be repeated to show that the image in Motsat(E) of a saturated
E-category A is the presheaf of spectra B 7→ K(Funex

E (B,A)): the only thing to note is that all the terms
in the split exact sequence A → PSnA → SnA are saturated. Hence, for any A,B ∈ Catsat(E), the
spectrum of maps from B to A in Motsat(E) is the K-theory spectrum K(Bop ⊗E A). It follows that the
symmetric monoidal functor Motsat(E)→ Mot(E)ω induced by the inclusion Catsat(E) ⊂ Catperf(E)ω is fully
faithful. When E = Perf(k), this shows that Motsat(E) is an ∞-categorical enhancement of Kontsevich’s
triangulated category of noncommutative mixed motives over k (see [Kon10] or [CT12, §8.2]). In general,
we may therefore think of Motsat(X) as an ∞-category of noncommutative mixed motives parametrized by
the Tannakian prestack X.

7In a linear (∞, 2)-category C, an object X is initial iff it is final iff C(X,X) = 0.
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Remark 6.15. Unlike for K-theory, the affinization morphism X → Spec Perf(X) may not induce an equiva-
lence on Motsat. It does so however whenever X is 1-affine in the sense of Gaitsgory [Gai15], which includes
many nonaffine cases, such as quasi-compact quasi-separated schemes or classifying stacks BG, where G is
a linearly reductive linear algebraic group.

Corollary 6.16. Let X be a Tannakian prestack over E. The restriction of chpre to Catsat(X) induces an

exact symmetric monoidal functor ch: Motsat(X)→ PerfS
1

(LX):

Catsat(X) PerfS
1

(LX).

Motsat(X)

chpre

ch

Proof. Since chpre : Catperf(X)→ QCohS
1

(LX) is symmetric monoidal, it preserves dualizable objects and

hence restricts to a functor Catsat(X)→ PerfS
1

(LX). Since this functor has a stable target and sends exact
sequences to cofiber sequences, it factors uniquely through Motsat(X), by the definition of the latter and
the universal property of the Day convolution.

Definition 6.17. Let X be a Tannakian prestack. The nonconnective secondary K-theory of X, denoted
by K(2)(X), is the nonconnective K-theory of the symmetric monoidal stable ∞-category Motsat(X).

Remark 6.18. When X is the spectrum of a commutative ring, Definition 6.17 is closely related to Toën’s
definition of secondary K-theory in [Toë08, §5.4]. Toën considers the Waldhausen ∞-category structure on
Catsat(X) where the cofibrations are the fully faithful 1-morphisms; let us denote its K-theory spectrum

by K
(2)
Toën(X) (it is what we called K(2)(X) in §1.1). The stable ∞-category Motsat(X) defined above is in

a precise sense the closest approximation of this Waldhausen ∞-category by a stable idempotent complete
∞-category. In particular, we have a symmetric monoidal Waldhausen functor Catsat(X) → Motsat(X),
and hence a morphism of E∞-ring spectra

K
(2)
Toën(X)→ K(2)(X).

It seems plausible that K
(2)
Toën(X) is in fact the connective cover of K(2)(X). There are several reasons for

using Motsat(X) instead of Catsat(X) in our definition of nonconnective secondary K-theory: first, it gives a
more natural source for the secondary Chern character, and it makes Theorem 6.20 below stronger; second,
it allows us to relate secondary K-theory to iterated K-theory, see Remark 6.23; and finally, there is at this
time no construction of the nonconnective K-theory of a Waldhausen ∞-category in the literature.

Combining Theorem 6.5 and Corollary 6.16, we obtain the following commutative diagram of E∞-
semirings and E∞-ring spectra, natural in X ∈ PrStkTan

E , where a dotted arrow means a map to the
infinite loop space of the target:

ι0Catsat(X) ι0PerfS
1

(LX) O(L2X)h(S1×S1).

ι0Motsat(X) KS
1

(LX)

K(2)(X)

ι0chpre
chpre

ι0ch ch

K(ch)

(6.19)

Here, KS1

(LX) = K(PerfS
1

(LX)) is the S1-equivariant K-theory of the free loop stack LX. The diagonal
composition is the secondary Chern character

ch(2) : K(2)(X)→ O(L2X)h(S1×S1).
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It is thus a morphism of E∞-rings, natural in X ∈ PrStkTan
E . The top row of (6.19) is exactly the secondary

Chern pre-character constructed by Toën and Vezzosi in [TV15, §4.4]. In particular, we have proved the
following:

Theorem 6.20. The Toën–Vezzosi secondary Chern pre-character ι0Catsat(X) → O(L2X)h(S1×S1) is re-
fined by a morphism of E∞-ring spectra

ch(2) : K(2)(X)→ O(L2X)h(S1×S1),

natural in X ∈ PrStkTan
E .

Remark 6.21. The top row of (6.19) sends A ∈ ι0Catsat(X) to the secondary trace Tr(2) of the canonical
pair of commuting automorphisms of the pullback of A to the double free loop space L2X. It follows
from the 2-dimensional cobordism hypothesis that this map is in fact invariant for the action of the framed
diffeomorphism group of the torus on O(L2X). It is natural to ask whether the secondary Chern character
is also invariant for this action. Unfortunately, this seems difficult to answer from our construction, which
crucially depends on decomposing the torus as a product of circles. On the other hand, ch(2) admits an
asymmetrical refinement, namely the composition

K(2)(X)
K(ch)−−−→ KS

1

(LX) = K(PerfS
1

(LX))
ch−→ ΩSp(S1 ⊗E PerfS

1

(LX))hS
1

.

Remark 6.22. If F(X) is a symmetric monoidal (∞, n)-category varying functorially with X, the n-fold trace

Tr(n) similarly defines an n-ary Chern pre-character

ι0F(X)fd → ΩnF(LnX).

By the n-dimensional cobordism hypothesis, this map is invariant under the action of the framed diffeomor-
phism group of the n-dimensional torus on ΩnF(LnX). For n ≥ 3, however, we do not know what n-ary
K-theory is.

Remark 6.23. Let R be an E∞-ring spectrum. The computation of the mapping spaces in Motsat(R)
from Remark 6.14 shows that the ∞-category Modfree(K(R)) of finite free K(R)-modules is a full sym-
metric monoidal subcategory of Motsat(R). Since Motsat(R) is idempotent complete, we get a symmetric
monoidal exact functor Modproj(K(R)) → Motsat(R), where Modproj(K(R)) is the idempotent completion
of Modfree(K(R)). Since the K-theory of a connective ring spectrum A is equivalent to the group completion
of the E∞-space ι0Modproj(A), we obtain a canonical map of E∞-ring spectra K(K(R)) → K(Motsat(R)).
It is not difficult to show that the composition

K(K(R))→ K(Motsat(R))
K(ch)−−−−→ KS1

(HH(R))

is K of the Dennis trace map K(R)→ HH(R). This can be used to detect nonzero elements in the homotopy
groups πnK(2)(R) for n ≥ 0. For example, if R is a field of characteristic not 2, {±1} = K1(K(R)) →
π1K(2)(R) is injective.
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