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POD-Galerkin Model Order Reduction for Parametrized Time
Dependent Linear Quadratic Optimal Control Problems in

Saddle Point Formulation

Maria Strazzullo], Francesco Ballarin], and Gianluigi Rozza]

]mathlab, Mathematics Area, International School for Advanced Studies (SISSA), Via Bonomea 265,
I-34136 Trieste, Italy

Abstract

In this work we recast parametrized time dependent optimal control problems governed by
partial differential equations in a saddle point formulation and we propose reduced order
methods as an effective strategy to solve them. Indeed, on one hand parametrized time
dependent optimal control is a very powerful mathematical model which is able to describe
several physical phenomena; on the other hand, it requires a huge computational effort.
Reduced order methods are a suitable approach to have rapid and accurate simulations.
We rely on POD-Galerkin reduction over the physical and geometrical parameters of the
optimality system in a space-time formulation. Our theoretical results and our methodology
are tested on two examples: a boundary time dependent optimal control for a Graetz flow
and a distributed optimal control governed by time dependent Stokes equations. With these
two experiments the convenience of the reduced order modelling is further extended to the
field of time dependent optimal control.

Keywords: reduced order methods, proper orthogonal decomposition, time dependent parametrized
optimal control problems, time dependent PDEs state equations, saddle point formulation.
AMS: 49J20, 76N25, 35Q35

1 Introduction

Parametrized optimal control problems (OCP(µ)s) governed by parametrized partial differential
equations (PDE(µ)s) play a ubiquitous role in several applications, yet are very challenging to
analyse theoretically and simulate numerically. In a parametrized setting, where a parameter
µ ∈P ⊂ Rd could represent physical or geometrical features, OCP(µµµ)s can be helpful in order
to describe and simulate different configurations of several physical and natural phenomena.
Indeed, optimal control framework is very versatile and it has been exploited in many contexts
and fields: from shape optimization, see e.g. [18, 23, 36], to fluid dynamics, see e.g. [16, 37,
39, 15], from biomedical applications [6, 32, 54, 60] to environmental ones [41, 42, 53, 54]. Even
if OCP(µµµ)s are a very powerful tool widespread in many research fields, their complexity and
computational demanding simulations still limit their applicability. Furthermore, the required
computational efforts get even larger if the optimization is constrained to a time dependent
PDE(µµµ). Surely, time optimization makes the mathematical model more complete and it arises
in many applications, see e.g. [25, 27, 33, 50, 51, 52].
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The computational effort required for OCP(µµµ)s simulations becomes unbearable and not viable
when the time dependent optimal control depends on a variety of physical and/or geometri-
cal parameters: indeed, in this context, many configurations are studied for several values of
µµµ ∈ P, increasing the necessary time in order to understand the phenomena behaviour with
respect to different parameters. A rapid and suitable approach to manage this drawback is
to rely on reduced order methods (ROMs), which allow us to solve the parametrized optimal-
ity system in a low dimensional framework, reducing the computational costs, see for example
[24, 40, 44, 45]. Literature is quite complete with respect to the applications of ROM techniques
for parametrized steady OCP(µµµ)s, the interested reader may refer to the following far-from-
exhaustive list [4, 5, 17, 20, 28, 29, 30, 31, 37, 38, 42], where reduced optimal control is treated
and analyzed for several state equations and managed with different approaches and method-
ologies.
We seek therefore to extend the consolidated knowledge about ROM for steady OCP(µµµ)s to
time dependent OCP(µµµ)s.

Our purpose is to adapt the formulation presented in [37, 38] for steady OCP(µµµ)s to quadratic
optimization models constrained to linear time dependent PDE(µµµ)s. We propose two simple
test cases in order to validate our theoretical framework:

• a time dependent boundary optimal control problem for Graetz flow;

• a time dependent distributed optimal control problem for Stokes equations.

Both the proposed examples have geometrical and physical parametrization.
The main merit of this work is to recast linear quadratic time dependent OCP(µµµ)s in the very
well known and general framework of saddle point problems. To the best of our knowledge,
another element of novelty is the numerical simulation and subsequent reduction of a time de-
pendent OCP(µµµ) governed by Stokes equations. The proposed techniques have some limitations
in practical applications: indeed, we rely on direct solvers for very complex linear systems. This
limits our capability to increase the resolutions both in time and space for simulations. This is-
sue could be overcome using more computational resources and through preconditioned Krylov
solvers and multigrid approaches: we refer the interested reader to [9, 48, 51, 52]. We high-
light that the proposed iterative approaches may only lighten the computational effort needed
for the linear system at hand during the so-called offline phase of the ROM. Due to this, we
are aware that the numerical simulations of time dependent OCP(µµµ)s in the all-at-once saddle
point framework could still be unfeasible for actual real-time applications because of the ex-
tremely large CPU time required by the offline stage. Nonetheless, this paper aims at showing
how ROMs can recover the behaviour of full order simulations with a substantial reduction of
computational time. Indeed, we validate our methodology thanks to several experiments for aca-
demic test cases. This is only a first step towards the study of new approaches for the application
of ROMs to more general and complicated time dependent OCP(µµµ)s in saddle point formulation.

This work is outlined as follows. In section 2, we rely on theoretical formulation for time de-
pendent optimal control presented in [26] and [55], then, we prove the well-posedness of linear
quadratic parabolic time dependent OCP(µµµ)s in a saddle point framework verifying the standard
hypotheses of Brezzi’s theorem [11, 12]. A brief introduction of the full order Finite Element
(FE) approximation precedes the discretization of the optimality system, treated exploiting an
all-at-once approach proposed in [51, 52, 59]. Section 3 introduces the reduced order approxi-
mation following [24, 29] and how to apply Proper Orthogonal Decomposition (POD) sampling
algorithm for OCP(µ)s in saddle point framework with a brief mention of aggregated reduced
space strategy used in [17, 37, 38] and affine decomposition, see e.g. [24]. In section 4, numerical
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results for geometrical and physical parametrization of a boundary optimal control problem for
Graetz flow are shown: it is a time dependent version of an OCP(µµµ) presented in [38]. In section
5, we analyze the saddle point structure of time dependent OCP(µµµ)s governed by Stokes equa-
tions. We prove the well-posedness of the mixed problem and we briefly show the discretization
techniques used extending the strategies already described in sections 2 and 3. In section 6 we
will present a distributed optimal control problem governed by time dependent Stokes equations
having consistent results with respect to those in [25, 52]. Conclusions follow in section 7.

2 Problem Formulation and Full Order Discretization for Linear
Quadratic Parabolic Time Dependent OCP(µµµ)s

In this section parabolic time dependent OCP(µµµ)s are presented in saddle point formulation. To
the best of our knowledge, the saddle point theoretical analytic framework in the context of time
dependent OCP(µµµ)s is a novelty element, even if it is quite a standard approach for stationary
linear state equations [29, 37, 38, 46]. First of all, the well-posedness of the saddle point structure
is proved in a space-time formulation. Then, we will introduce the full order discretized problem:
the high fidelity approximation is presented following the all-at-once structure exploited in [25,
48, 51, 52].

2.1 Saddle Point Structure of Linear Quadratic Parabolic Time Dependent
OCP(µµµ)s: Theoretical Analysis

This section aims at recasting OCP(µµµ)s governed by linear time dependent PDE(µµµ)s in a saddle
point formulation. In the systems at hand the parameter µµµ ∈ P ⊂ Rp could be physical or
geometrical. In the following analysis we assume a physical parametrized PDE(µµµ), but the
reached conclusions do not change for the case of geometrical parametrization.
Let us consider Ω ⊂ Rn an open and bounded regular domain and the time interval (0, T ). Let
us indicate with ΓD and ΓN the portions of the boundary ∂Ω where Dirichlet and Neumann
boundary conditions are applied, respectively. Let Y and H be two separable Hilbert spaces
which verify Y ↪→ H ↪→ Y ∗ and let us consider other two Hilbert spaces U and Z ⊇ Y .
Let us define the Hilbert spaces Y = L2(0, T ;Y ), Y∗ = L2(0, T ;Y ∗), U = L2(0, T ;U) and
Z := L2(0, T ;Z) ⊇ Y. Finally, we define the space Yt :=

{
y ∈ Y s.t. ∂y

∂t
∈ Y∗

}
. The problem

to be solved is the following: for a given µµµ ∈P find the pair (y, u) ∈ Yt × U which solves

min
(y,u)∈Yt×U

1
2

∫ T

0

∫
Ω

(y − yd(µµµ))2 dΩdt+ α

2

∫ T

0

∫
Ω
u2 dΩdt (1)

under a constraint of the form

∂y

∂t
+Da(µµµ)y = Dc(µµµ)u+ f in Ω× (0, T ),

∂y

∂n
= 0 on ΓN × (0, T ),

y = g on ΓD × (0, T ),
y(0) = y0 in Ω,

(2)

where α > 0 is a fixed constant, Da(µµµ) and Dc(µµµ) are general parametrized differential operators
associated to state and control, respectively, and yd(µµµ) is an observation in the space Z. Further-
more, for the sake of simplicity we assume that ‖y0‖2H = 0 and Z = Yt. Problems of this kind
have been covered extensively in classical references as [34, 55], for example, where the topic of
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optimal control is treated in its entirety. Basically, we are adding a parametrization framework
to this very versatile mathematical model, in order to study different physical and/or geomet-
rical configurations. Indeed, we underline that we are actually looking for solutions which are
parameter dependent, but for the sake of notation we write y := y(µµµ) and u := u(µµµ): depending
on the case, we will omit the parameter dependence from now on.
Moreover, we suppose that for every µµµ ∈P and every control variable u there exists an unique
solution y := y(u). The time dependent state equation (2) can be expressed in the following
weak formulation:


∫ T

0

〈∂y
∂t
, q
〉
Y ∗,Y

dt+
∫ T

0
a(y, q;µµµ) dt =

∫ T

0
c(u, q;µµµ) dt+

∫ T

0
〈G(µµµ), q〉Y ∗,Y dt ∀q ∈ Yt,

y(0) = y0 in Ω,
(3)

where a : Yt×Yt → R and c : U ×Yt → R are the bilinear forms associated to Da(µµµ) and Dc(µµµ),
respectively, while G ∈ Y∗ collects forcing and boundary terms of the state equation. In our
applications it will always be the case c(u, q;µµµ) =

∫
Ω
uq dΩ. We further remark that we consider

q ∈ Yt rather than q ∈ Y as it will be convenient to restrict q to Yt for a proper definition of the
adjoint variable. Let us define the following bilinear forms

m : Yt × Yt → R m(y, z) =
∫ T

0

∫
Ω
yz dΩdt, (4)

n : U × U → R n(u, v) =
∫ T

0

∫
Ω
uv dΩdt, (5)

which represent the objective for the state variable and for the control variable in the whole
time interval, respectively. Thus, let us define the functional

J(y, u;µµµ) = 1
2m(y − yd(µµµ), y − yd(µµµ)) + α

2 n(u, u). (6)

The OCP(µµµ) reads as follows: given µµµ ∈P, find the solution of

min
(y,u)∈Yt×U

J(y, u;µµµ) such that (3) is satisfied. (7)

In order to set the problem in a mixed formulation, we need to define the state-control product
space X = Yt × U . Given x = (y, u) and w = (z, v) elements of X , the scalar product of X
is defined by (x,w)X = (y, z)Yt + (u, v)U , that induces the norm ‖·‖X , since (·, ·)Yt and (·, ·)U
define the following norms, respectively:

‖y‖2Yt
= ‖y‖2Y +

∥∥∥∥∂y∂t
∥∥∥∥2

Y∗
=
∫ T

0
‖y‖2Y dt+

∫ T

0

∥∥∥∥∂y∂t
∥∥∥∥2

Y ∗
dt, ‖u‖2U =

∫ T

0
‖u‖2U dt.

Moreover, in the following, we need the forms:

A : X × X → R, A(x,w) = m(y, z) + αn(u, v), ∀x,w ∈ X ,

B : X × Yt → R, B(w, q;µµµ) =
∫ T

0

〈∂z
∂t
, q
〉
dt+

∫ T

0
a(z, q;µµµ) dt−

∫ T

0
c(v, q;µµµ) dt, ∀w ∈ X ,∀q ∈ Yt,

F (µµµ) ∈ X ∗,
∫ T

0
〈F (µµµ), w〉 dt = m(yd(µµµ), z). ∀w ∈ X .
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We underline that for the analysis and for sake of notation, the problem we propose has a
distributed control, but it can be extended also for boundary control if one defines:

‖u‖2U =
∫ T

0
‖u‖2U(Γc) dt,

where Γc ⊆ ∂Ω is the boundary portion where the control is applied. An application of boundary
control will be presented in Section 4.
As we did for the state and the control variables, for the sake of notation we define p := p(µµµ). In
order to build the optimality system, first of all we construct the following Lagrangian functional

L (y, u, p;µµµ) = J ((y, u);µµµ) + B((y, u), p;µµµ) +
∫ T

0
〈G(µµµ), p〉 dt, (8)

where
J ((y, u),µµµ) = 1

2A(x, x;µµµ)−
∫ T

0
〈F (µµµ), x〉 dt, (9)

recalling that x = (y, u). Then, we perform a differentiation by the adjoint variable p, the state
variable y and the control u. The minimization of (8) is equivalent to find the solution of the
following system: given µµµ ∈P, find (x, p) ∈ X × Yt such that

DyL (y, u, p;µµµ)[z] = 0 ∀z ∈ Yt,
DuL (y, u, p;µµµ)[v] = 0 ∀v ∈ U ,
DpL (y, u, p;µµµ)[q] = 0 ∀q ∈ Yt.

(10)

The framework introduced is totally general and it also holds for nonlinear time dependent
problems.
We now focus on the case of parabolic linear governing equations. In this case, the system
of equations related to (10) could be written in the following form:

A(x,w) + B(w, p;µµµ) =
∫ T

0
〈F (µµµ), w〉 dt ∀w ∈ X ,

B(x, q;µµµ) =
∫ T

0
〈G(µµµ), q〉 dt ∀q ∈ Yt.

(11)

As one can see, the classical structure of saddle point formulation that characterizes steady
linear quadratic OCP(µµµ)s is preserved also in the linear time dependent case. We now want to
provide the well-posedness of the problem (11) through the fulfillment of [10, Proposotion 1.7],
a Proposotion based on Brezzi’s theorem [11, 12]:

Proposition 1. Assume that the Brezzi’s theorem is verified, i.e.

1. A(·, ·) is continuous and weakly coercive on the kernel of B(·, ·;µµµ), that we indicate with
X0 ⊂ X , i.e. for every x,w ∈ X0 it holds:

inf
w∈X0\{0}

sup
x∈X0\{0}

A(x,w)
‖x‖X0‖w‖X0

> 0 and inf
x∈X0\{0}

sup
w∈X0\{0}

A(x,w)
‖x‖X0‖w‖X0

> 0. (12)

2. B(·, ·;µµµ) is continuous and satisfies the inf-sup condition, i.e. for every x ∈ X and q ∈ Yt
the following inequality is verified:

inf
q∈Yt\{0}

sup
x∈X\{0}

B(x, q;µµµ)
‖x‖X ‖q‖Yt

= β(µµµ) > 0. (13)
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Let us assume further that the bilinear form A(·, ·) is symmetric, non-negative, and coercive on
X0, then the minimization of the functional (9) constrained to equation (2) and the resolution
of the saddle point problem (11) are equivalent.

In order to prove that the hypotheses over A(·, ·) and B(·, ·;µµµ) hold for OCP(µµµ)s governed
by linear time dependent state equations, first of all, we require that:

Assumptions 1. the bilinear forms c(·, ·;µµµ), a(·, ·;µµµ), n(·, ·) and m(·, ·) verify the properties

(i) |c(u, q;µµµ)| ≤ cc(µµµ)‖u‖U‖q‖Y ∀u ∈ U and ∀q ∈ Yt;

(ii) |a(y, q;µµµ)| ≤ ca(µµµ)‖y‖Y ‖q‖Y ∀y, q ∈ Yt;

(iii) a(y, y;µµµ) ≥Ma(µµµ)‖y‖2Y ∀y ∈ Yt;

(iv) n(·, ·) is symmetric, continuous and such that n(u, u) ≥ γn‖u‖2U ;

(v) m(·, ·) is symmetric, continuous and positive definite.

Furthermore, we will exploit the following inequalities in order to assert the inequalities (12)
and (13):

I. by definition, for every y ∈ Yt and u ∈ U it holds:∥∥∥∥∂y∂t
∥∥∥∥
Y∗
≤ ‖y‖Yt , ‖y‖Y ≤ ‖y‖Yt , ‖y‖Yt ≤ ‖x‖X and ‖u‖U ≤ ‖x‖X ; (14)

II. for y solution of a parabolic PDE(µµµ) with forcing term f and y(0) = y0, there exists
k(µµµ) > 0 such that:

‖y‖Yt ≤ k(µµµ)(‖f‖L2(0,T ;Y ) + ‖y0‖Y ). (15)

Two more ingredients used to guarantee the inf-sup condition (13) are the following two lemmas.

Lemma 1. Let q be a function in Yt, then the following inequality holds:

‖q‖2Y
‖q‖2Yt

≥ 1
6 .

Proof. We divide the proof in two cases: first of all, let us assume
∥∥∥∥∂q∂t

∥∥∥∥
Y∗
≤ ‖q‖Y then

‖q‖2Yt
≤ 2‖q‖2Y . This leads to the following inequality:

‖q‖2Y
‖q‖2Yt

≥
‖q‖2Y
2‖q‖2Y

= 1
2 >

1
6 .

We now want to prove a similar inequality for q ∈ Yt such that
∥∥∥∥∂q∂t

∥∥∥∥
Y∗
> ‖q‖Y . This assumption

allows us to assert that:

2‖q‖2Y < ‖q‖2Yt
⇒ 1

2‖q‖2Y
>

1
‖q‖2Yt

, (16)

and, by definition of ‖q‖Yt ,

‖q‖2Yt
+ 2

∥∥∥∥∂q∂t
∥∥∥∥2

Y∗
≥ 3

∥∥∥∥∂q∂t
∥∥∥∥2

Y∗
⇒ − 1

‖q‖2Yt
+ 2

∥∥∥∥∂q∂t
∥∥∥∥2

Y∗

≥ − 1

3
∥∥∥∥∂q∂t

∥∥∥∥2

Y∗

. (17)
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Then, we can prove that

‖q‖2Y
‖q‖2Yt

=
2‖q‖2Y

2‖q‖2Y + 2
∥∥∥∥∂q∂t

∥∥∥∥2

Y∗

≥︸︷︷︸
for (16)

2‖q‖2Y

‖q‖2Yt
+ 2

∥∥∥∥∂q∂t
∥∥∥∥2

Y∗

=
2‖q‖2Y +

∥∥∥∥∂q∂t
∥∥∥∥2

Y∗
−
∥∥∥∥∂q∂t

∥∥∥∥2

Y∗

‖q‖2Yt
+ 2

∥∥∥∥∂q∂t
∥∥∥∥2

Y∗

≥
min{1, 2}‖q‖2Yt

max{1, 2}‖q‖2Yt

−

∥∥∥∥∂q∂t
∥∥∥∥2

Y∗

‖q‖2Yt
+ 2

∥∥∥∥∂q∂t
∥∥∥∥2

Y∗

≥︸︷︷︸
for (17)

1
2 −

∥∥∥∥∂q∂t
∥∥∥∥2

Y∗

3
∥∥∥∥∂q∂t

∥∥∥∥2

Y∗

= 1
2 −

1
3 = 1

6 .

Let us now prove a second lemma needed to show the well-posedness of problem (11).

Lemma 2. Given a function v ∈ Yt, there exists ȳ ∈ Yt which verifies:∫ T

0

〈∂ȳ
∂t
, q
〉
dt+

∫ T

0
a(ȳ, q;µµµ) dt =

∫ T

0
a(v, q;µµµ) dt ∀q ∈ Yt, (18)

with ȳ(0) = 0. Moreover, there exists a positive constants k̄(µµµ) such that the following inequality
holds:

‖ȳ‖Yt ≤ k̄(µµµ)‖v‖Y . (19)

Proof. The existence of the solution ȳ is actually proposed in the proof of property (A.3) of the
Theorem 5.1 in [49], where the existence of ȳ ∈ Yt is guaranteed for a given v ∈ Y ⊃ Yt and for
every initial condition.
Now, for t ∈ (0, T ) let us consider the linear operator Da(µµµ) : Y → Y ∗ defined by 〈Dav, q〉H∗,H .
We define CDa(µµµ) = ‖Da‖H∗ which is finite since Da is a continuous operator. Furthermore,
since ȳ verifies (18), from the standard inequality (15) we can derive the inequality

‖ȳ‖Yt ≤ k(µµµ)‖Dav‖L2(0,T ;H) ≤ k(µµµ)CDa‖v‖L2(0,T ;H).

Since Y ↪→ H, it holds ‖q‖H ≤ C̄‖q‖Y , then, setting k̄(µµµ) = k(µµµ)CDaC̄, we can prove the thesis
and

‖ȳ‖Yt ≤ k̄(µµµ)‖v‖Y . (20)

We now have all the ingredients which will help us proving the well-posedness of the saddle point
system (11). Indeed, the following theorem provides conditions (12) and (13) for linear parabolic
time dependent OCP(µµµ)s, i.e. the existence and the uniqueness of an optimal solution for the
minimization problem defined by (11).

7



Theorem 1. The saddle point problem (11) satisfies the hypotheses of Proposition 1 under the
Assumptions 1, i.e. it has a unique optimal solution.

Proof. Let us consider the continuity of A(·, ·).

|A(x,w)| ≤ ‖y‖Yt‖z‖Yt + α‖u‖U‖v‖U
≤ max{1, α}‖x‖X ‖w‖X .

Indeed, the above inequality follows from continuity of the bilinear forms m(·, ·) and n(·, ·),
which can be shown as follows:

∣∣∣ ∫ T

0

∫
Ω
yz dΩdt

∣∣∣ ≤︸︷︷︸
Cauchy

( ∫ T

0
‖y‖Y ‖z‖Y dt

)
≤︸︷︷︸

Holder

√∫ T

0
‖y‖2Y dt

√∫ T

0
‖z‖2Y dt = ‖y‖Y‖z‖Y

≤︸︷︷︸
II

‖y‖Yt‖z‖Yt .

The same argument can be used for n(·, ·), since

∣∣∣ ∫ T

0

∫
Ω
uv dΩdt

∣∣∣ ≤︸︷︷︸
Cauchy

( ∫ T

0
‖u‖U‖v‖U dt

)
≤︸︷︷︸

Holder

√∫ T

0
‖u‖2U dt

√∫ T

0
‖v‖2U dt=‖u‖U‖v‖U .

Thanks to the hypothesis (iv) and (v), A(·, ·) is symmetric, positive definite and continuous.

We can now prove the coercivity of A on X0. If x ∈ X0, then it holds
∫ T

0

〈∂y
∂t
, q
〉
dt+a(y, q;µµµ) =

c(u, q;µµµ) and then ‖y‖Yt ≤ k(µµµ)(‖u‖U + ‖y0‖H) = k(µµµ)‖u‖U by assumption over the initial
condition of y. Then, it holds:

A(x, x) = m(y, y) + αn(u, u) ≥ ‖y‖2Y + α

2 ‖u‖
2
U + α

2 ‖u‖
2
U

≥ α

2k(µµµ)2 ‖y‖
2
Yt

+ α

2 ‖u‖
2
U ≥ min

{ α

2k(µµµ)2 ,
α

2
}
‖x‖2X .

Let us prove on the continuity of B(·, ·;µµµ). Exploiting the continuity of a(·, ·;µµµ) and c(·, ·;µµµ), it
holds:

|B(x, q;µµµ)| ≤
∫ T

0

∣∣∣〈∂y
∂t
, q
〉∣∣∣ dt+

∫ T

0
ca(µµµ)‖y‖Y ‖q‖Y dt+

∫ T

0
cc(µµµ)‖u‖U‖q‖Y dt

≤︸︷︷︸
Cauchy + Hölder

∥∥∥∥∂y∂t
∥∥∥∥
Y∗
‖q‖Yt + ca(µµµ)‖y‖Yt‖q‖Yt + cc(µµµ)‖u‖U‖q‖Yt

≤︸︷︷︸
I

max{1, ca(µµµ), cc(µµµ)}‖x‖X ‖q‖Yt ,

where ca(µµµ) and cc(µµµ) are the continuity constants of a(·, ·;µµµ) and c(·, ·;µµµ). respectively.
Now we focus on the fulfillment of the inf-sup condition for the bilinear form B(·, ·;µµµ). First of
all, let us consider q ∈ Yt and ȳ ∈ Yt the solution of the problem (18) presented in Lemma 2
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with v ≡ q. Then,

sup
0 6=x∈X

B(x, q;µµµ)
‖x‖X ‖q‖Yt

= sup
06=(y,u)

∫ T

0

〈∂y
∂t
, q
〉
dt+

∫ T

0
a(y, q;µµµ) dt−

∫ T

0
c(u, q;µµµ) dt

‖x‖X ‖q‖Yt

≥︸︷︷︸
x=(ȳ,0)

∫ T

0

〈∂ȳ
∂t
, q
〉
dt+

∫ T

0
a(ȳ, q;µµµ) dt

‖ȳ‖Yt‖q‖Yt

≥

∫ T

0
a(q, q;µµµ) dt

‖ȳ‖Yt‖q‖Yt

≥︸︷︷︸
Lemma 2

Ma(µµµ)‖q‖2Y
k̄(µµµ)‖q‖2Yt

≥︸︷︷︸
Lemma 1

Ma(µµµ)
6k̄(µµµ)

> 0.

Since we have proved the inequality for all q ∈ Yt, it holds:

inf
06=q∈Yt

sup
06=x∈X

B(x, q;µµµ)
‖x‖X ‖q‖Yt

≥ Ma(µµµ)
6k̄(µµµ)

:= β(µµµ) > 0.

The theorem just presented guarantees the existence and uniqueness of an optimal solution for
time dependent OCP(µµµ)s.

We now propose a brief overview on the FE approach, that we exploit as full order approximation
in order to build the reduced order model.
For the spatial discretization, first of all we define the triangulation T N of Ω. We can now define
discretized spatial spaces as Y N = Y ∩X N

r and UN = U ∩X N
r , where

X N
r = {vN ∈ C0(Ω) : vN |K ∈ Pr, ∀K ∈ T N }.

The space Pr is the space of all the polynomials of degree at most equal to r and K is a
triangular element of T N . Then, the function spaces considered are: YN = L2(0, T ;Y N ),
Y∗N = L2(0, T ;Y ∗N ) and UN = L2(0, T ;UN ). The full order state variable will be considered
in YNt :=

{
y ∈ YN s.t.

∂y

∂t
∈ Y∗N

}
. As we did in section 2.1, for the mixed formulation, we

exploit the product space XN = YNt × UN ⊂ X . The Galerkin FE discretization of the saddle
point problem (11) reads as follows: given µ ∈P, find (xN , pN ) ∈ XN × YN such that

A(xN , wN ) + B(wN , pN ; µ) =
∫ T

0
〈F (µ), wN 〉 dt ∀vN ∈ XN ,

B(xN , qN ; µ) =
∫ T

0
〈G(µ), qN 〉 dt ∀qN ∈ YNt ,

(21)

where xN := xN (µµµ) and pN := pN (µµµ) are parameter dependent solutions. Following the same
strategies used in Section 2.1, it can be shown that Brezzi’s Theorem [11, 12] holds at the discrete
level. Moreover one can prove the coercivity of the form A(·, ·): then, the minimization problem
(21) is well-posed [10].
In this section we introduced the general formulation for linear time dependent OCP(µµµ)s and
we recast it in a saddle point system of the form (11). Then, we provided a proof for Theorem
1 which led to a unique optimal solution, after having introduced all the assumptions and
lemmas needed in order to have Proposition 1 verified. Furthermore, we introduced FE element
approximation as our full order discretization technique.
In the next section, the full order problem will be shown in space-time formulation following the
approaches already presented for parabolic PDEs(µµµ) in [21, 56, 57, 58].
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2.2 Algebraic System and All-at-Once Approach

In this section we introduce a discretized version of time dependent OCP(µµµ)s. Practically, we
follow the all-at-once space-time discretization already proposed in [25, 51, 52].
We now want to consider the full order discretization of the OCP(µµµ) introduced in (7). Let us
suppose to have discretized the spaces considered in Section 2.1 with FE technique in order to
solve the full order optimality system (21). We aim at showing how the saddle point structure
is reflected also in the algebraic formulation of the problem. We recall that the solution (y, u, p)
solves the following optimality system

y − ∂p

∂t
+D∗a(p) = yd in Ω× (0, T ),

αu−D?c (p) = 0 in Ω× (0, T ),
∂y

∂t
+Da(y)−Dc(u) = g in Ω× (0, T ),

y(0) = y0 in Ω,
p(T ) = 0 in Ω,
boundary conditions on ∂Ω× (0, T ),

(22)

where Da, Dc, D?a and D?c are the differential operators associated to a(·, ·;µµµ) and c(·, ·;µµµ) and
their adjoint bilinear form, respectively. The time integral has been approximated exploiting the
composite rectangle quadrature rule formula. The time interval is divided in Nt sub-intervals of
length ∆t.

Remark 1. The applied time discretization is actually equivalent to a classical implicit Euler
approach [19, 57]. We underline that the state equation is discretized forward in time with a
backward Euler method. The adjoint equation will be discretized backward in time using the
forward Euler method, which is equivalent to backward Euler with respect to time T − t, for
t ∈ (0, T ).

Let us begin our analysis from the state equation. Let us define yyy = [y1, . . . , yNt ]T and
uuu = [u1, . . . , uNt ]T and ppp = [p1, . . . , pNt ]T , where yi ∈ Y N , ui ∈ UN and pi ∈ Y N for 1 ≤ i ≤ Nt

are the vectors of all the discrete variables at each time step. With yi, ui and pi we indicate the
row vectors containing the coefficients of the FE discretization for state, control and adjoint,
respectively.
The vector representing the initial condition for the state variable is yyy0 = [y0, 0, . . . , 0]T . The vec-
tor ggg = [g1, . . . , gNt ]T corresponds to the forcing term. Finally, the vector yyyd = [yd1 , . . . , ydNt

]T
is our discretized desired state.
Let Da and Dc be the matrices associated to the bilinear forms applied to the basis func-
tions of the FE spaces Y N := span{φi, 1 ≤ i ≤ N} and UN := span{ψi, 1 ≤ i ≤ N}, i.e.
Daij = a(φi, φj ;µµµ) and Dcij = c(ψi, φj ;µµµ) for i, j = 1, . . . ,N , respectively. For the sake of
notation, the dependence of the matrix on the parameter µµµ is dropped.
The state equation to be solved is

Myk + ∆tDayk −∆tDcuk = Myk−1 + gk∆t for k ∈ {1, 2, . . . , Nt},

where M is the mass matrix relative to the FE discretization.
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In order to solve the system in an all-at-once approach we can write:
M + ∆tDa

−M M + ∆tDa

−M M + ∆tDa

. . . . . .
−M M + ∆tDa


︸ ︷︷ ︸

K


y1
y2
y3
...
yNt



−∆t


Dc 0 · · ·

Dc

Dc

. . .
Dc


︸ ︷︷ ︸

C


u1
u2
u3
...
uNt

=


My0 + ∆tg1

0 + ∆tg2
0 + ∆tg3

...
0 + ∆tgNt

 .

Then, the above system could be written in the following form:

Kyyy −∆tCuuu =Myyy0 + ∆tggg,

where M is a block diagonal matrix in RN·Nt × RN·Nt which diagonal entries are [M, · · · ,M ].
In the same way we can analyze the adjoint equation: we have to solve the first equation of the
optimality system (22) at each time step as follows:

Mpk = Mpk+1 + ∆t(−Myk −DT
a pk +Mydk

) for k ∈ {Nt − 1, Nt − 2, . . . , 1}.

As we did for the state equation, one could use an all-at-once strategy and consider the following
system:
M + ∆tDT

a −M
M + ∆tDT

a −M
. . . . . .

M + ∆tDT
a −M

M + ∆tDT
a


︸ ︷︷ ︸

KT


p1
p2
p3
...
pNt

+


∆tMy1
∆tMy2
∆tMy3

...
∆tMyNt

 =


∆tMyd1

∆tMyd2

∆tMyd3
...

∆tMydNt

 .

Then, the adjoint system to be solved is:

KTppp+ ∆tMyyy = ∆tMyyyd.

Now, if we consider the optimality equation given by the differentiation of (8) with respect to
the control variable, at every time step we have to solve the equation α∆tMuk −∆tDT

c pk = 0.
In a vector notation we have α∆tMuuu−∆tCTppp = 0. In the end, the final system considered and
solved through an one shot approach is the following:∆tM 0 KT

0 α∆tM −∆tCT
K −∆tC 0


yyyuuu
ppp

 =

 ∆tMyyyd
0

Myyy0 + ∆tggg

 . (23)

Now, let us denote with

A =
[
∆tM 0

0 α∆tM

]
, B =

[
K −∆tC

]
, F =

[
∆tMyyyd

0

]
and G =Myyy0 + ∆tggg.
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Then, the system (23) can be written as follows:[
A BT

B 0

] [
xxx
ppp

]
=
[
F
G

]
. (24)

The global dimension of the full order model presented is Ntot = 3×Nt×N . We underline that
the saddle point structure does not depend on the used time approximation scheme: indeed, this
framework can be extended to more general time discretization. We managed to solve the linear
system (23) through a direct approach. Nevertheless, iterative methods based on Krylov solvers
and Schur preconditioning are a very common choice in the solution of saddle point structures
[9] and they have been applied in the optimal control framework in [48, 52], for example.
Now that we have introduced the FE discretization as our full order approximation, we can
exploit it in order to build a reduced system, as it will be specified in the following section.

3 POD-Galerkin ROM Applied to Parabolic Time Dependent
OCP(µµµ)s

This section aims at introducing ROM approximation for time dependent OCP(µµµ)s into the
framework of saddle point problems by applying the techniques already used for the steady case
in [37, 38]. After a general introduction of the main ideas behind ROM applicability, we will
briefly introduce the affine assumption over the bilinear and linear forms involved in the problem
formulation. Then, in Section 3.3 we will describe the POD-Galerkin algorithm, see for example
[7, 13, 14, 24] as references, and we will extend it to parametrized time dependent OCP(µµµ)s. In
the end, we will show how to guarantee the well-posedness of reduced OCP(µµµ)s thanks to the
aggregated space strategy [17, 37, 38].

3.1 Reduced Problem Formulation

In Section 2.1, we showed that linear quadratic time dependent OCP(µµµ)s could be seen as
saddle point problems of the form (11). We recall to the reader that our state-control variable
is x(µ) = (y(µ), u(µ)) ∈ X : in this case we highlight the parameter dependency which is of
crucial importance in the understanding of the reduced formulation concepts. We assume that
our parametric solution defines a smooth solution manifold

M = {(x(µ), p(µ)) | µ ∈P}.

The FE approximation is reflected also in the solution manifold: indeed one can define a ap-
proximated solution manifold:

MN = {(xN (µ), pN (µ)) | µ ∈P}.

Once again, we assume that also the approximated manifold has a smooth dependence with
respect to µ. Reduced order methodology wants to recover the structure of MN through basis
functions derived from properly chosen full order solutions xN (µ) and pN (µ) called snapshots. In
other words, we construct the reduced bases exploiting FE solutions evaluated for some specific
µµµ ∈ P. Let us assume to have already built XN ⊂ XN ⊂ X and YtN ⊂ YNt ⊂ Yt as reduced
product state-control space and reduced adjoint space, respectively. We have all the ingredients
to define the reduced problem as follows: given µ ∈ P, find (xN (µ), pN (µ)) ∈ XN × YtN such
that 

A(xN (µ), wN ) + B(wN , pN (µ); µ) =
∫ T

0
〈F (µ), wN 〉 dt ∀wN ∈ XN ,

B(xN (µ), qN ; µ) =
∫ T

0
〈G(µ), qN 〉 dt ∀qN ∈ YtN .

(25)
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Also at the reduced level, in order to assert the well-posedness of the reduced saddle point
problem (25), Brezzi’s theorem has to be verified. In Section 3.4, we will show how to recover
the existence and the uniqueness of the reduced minimizing solution (xN (µ), pN (µ)) ∈ XN×YtN .

3.2 Affine Assumption: Offline–Online decomposition

Let us briefly underline the crucial hypothesis which guarantees efficient applicability of reduced
order methods: affine assumption. A problem in a saddle point framework (11) is affinly de-
composed with respect to the parameter if the involved bilinear forms and functionals can be
recast as:

A(x,w; µ) =
QA∑
q=1

Θq
A(µ)Aq(x,w), B(w, p; µ) =

QB∑
q=1

Θq
B(µ)Bq(w, p),

〈G(µ), p〉 =
QG∑
q=1

Θq
G(µ)〈Gq, p〉, 〈F (µ), w〉 =

QF∑
q=1

Θq
F (µ)〈F q, w〉,

(26)

for some finite QA, QB, QG, QF , where Θq
A,Θ

q
B,Θ

q
G,Θ

q
F are µ−dependent smooth functions,

whereas Aq,Bq, Gq, F q are µ−independent bilinear forms and functionals.
Thanks to this assumption, the solving process of our OCP(µµµ) can be divided in two different
phases: an offline stage where the reduced spaces are derived and the µ−independent quantities
are assembled. This stage could be very expensive but it is performed only once. Then, an online
stage follows and all the µ−dependent quantities are assembled and the whole reduced system
is solved. The online phase is performed for every new parameter evaluation in order to study
different physical and/or geometrical configurations.
If the problem does not fulfill the affine assumption, the empirical interpolation method can be
exploited in order to recover it, as presented in [8] or in [24, Chapter 5].

3.3 POD Algorithm for OCP(µ)s

In this section we introduce the POD-Galerkin strategy which we exploited in order to build the
reduced spaces needed for time dependent OCP(µµµ)s, following [7, 13, 14, 24].
The first step of the the POD-Galerkin approach is to choose a discrete subset of parameters
Ph ⊂P. Thanks to this new finite dimensional parametric set, we can define a specific solution
manifold:

MN (Ph) = {(xN (µ), pN (µ)) | µ ∈Ph},

which cardinality is Nmax = |Ph| and which satisfies the inclusion MN (Ph) ⊂ MN since
Ph ⊂P. When the finite parameter space Ph is large enough, the manifold MN (Ph) can be
a reliable representation of the discrete manifold MN . The POD-Galerkin approach compresses
the redundant information contained in the snapshots of MN (Ph).
We exploited a partitioned approach, i.e. the POD algorithm has been applied separately for
state, control and adjoint variables. In the end, the POD algorithm provides N−dimensional
reduced spaces that minimize the quantities:√√√√ 1

Nmax

∑
µ∈Ph

min
zN∈YtN

‖yN (µ)− zN‖2Yt
,

√√√√ 1
Nmax

∑
µ∈Ph

min
vN∈UN

‖uN (µ)− vN‖2U ,
√√√√ 1
Nmax

∑
µ∈Ph

min
qN∈YtN

‖pN (µ)− qN‖2Yt
.

(27)
We are going to introduce the POD-Galerkin procedure for the state solution y(µµµ). The same
strategy has been used for control and adjoint variables as well.
Let us consider ordered parameters µ1, . . . ,µNmax

∈Ph and the resulting ordered FE solutions
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yN (µ1), . . . , yN (µNmax
). Furthermore, we define the correlation matrix Cy ∈ RNmax×Nmax of

snapshots of the state variable, i.e.:

Cy
ml = 1

Nmax
(yN (µm), yN (µl))Yt , 1 ≤ m, l ≤ Nmax.

We look for the N -largest eigenvalue-eigenvector pairs (λyn, vyn), which solve the following equa-
tions:

Cyvyn = λynv
y
n, 1 ≤ n ≤ N,

with ‖vyn‖ = 1. Let us order the eigenvalues λy1 ≥ λy2 ≥ · · · ≥ λyN from the largest to the
smallest. This order reflects on the basis functions {ξy1 , . . . , ξ

y
N} of the reduced space YtN =

span {ξy1 , . . . , ξ
y
N}. The basis satisfies:

ξyn = 1√
λym

M∑
m=1

(vyn)myN (µm), 1 ≤ n ≤ N,

where (vyn)m is m-th component of the state eigenvector vyn ∈ RM .

Remark 2. We underline that, even if we applied the POD algorithm separately for the different
variables, we have not separated time instances, i.e. each snapshot still contains the solution at
all temporal steps. In this way, the reduced basis functions comply with the space-time formu-
lation introduced in (21), and the resulting POD-Galerkin ROM is a space-time reduced order
model.

3.4 Aggregated Spaces Approach

As we underlined in Section 2.1, the adjoint variable p(µµµ) is considered in the state space Yt, in
order to ensure the well-posedness of the whole OCP(µµµ). It is well known that a POD for state
and adjoint variables will not lead necessarily to the same reduced space approximation. Indeed,
let us assume to have applied the POD algorithm with the same value of Nmax and retaining
the first N eigenvalues for all the involved variables, as described in Section 3.3: the procedure
provides reduced spaces for state, control and adjoint variables as

YtN = span{yN (µn) n = 1, . . . , N},
UN = span{uN (µn) n = 1, . . . , N},
QtN = span{pN (µn) n = 1, . . . , N},

respectively. As already done for the continuous and full order versions of the problem, we define
the product space XN = YtN ×UN . Once the reduced spaces are available, it remains to prove if
the Brezzi’s theorem is still valid, i.e. if the reduced saddle point problem (25) admits an unique
solution. The continuity of the bilinear forms A(·, ·) and B(·, ·;µµµ) are directly inherited from
the FE approximation, as well as the coercivity of A(·, ·) over the kernel XN0 = {wN ∈ XN :
B(wN , q;µµµ) = 0, ∀q ∈ QtN }, even if the state and the adjoint reduced spaces do not coincide.
Although, it is not guaranteed the fulfillment of the reduced inf-sup condition. Indeed, only the
following inequality holds:

inf
06=q∈YtN

sup
06=x∈XN

B(x, q;µµµ)
‖x‖X ‖q‖Yt

≥ βN (µµµ) > 0, (28)

i.e. the reduced inf-sup condition (28) in verified only when YtN ≡ QtN , which is not the case
for a standard POD approach.
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In order to avoid this inconvenience, we exploit the aggregated spaces technique as presented in
[17, 37, 38]. The main feature of this approach is to define a common space for state and adjoint
variables, given by

ZN = span {yN (µn), pN (µn), n = 1, . . . , N}.

The space ZN is then used to describe both the reduced state variable yN (µµµ) and the reduced
adjoint variable pN (µµµ). The new product space is now XN = ZN ×UN , where the control space
is of the standard form

UN = span {uN (µn), n = 1, . . . , N}.

This choice will lead to a global dimension Ntot = 5N . Thanks to this strategy, the reduced
optimality system is well-posed since all the hypotheses of Brezzi’s theorem hold with the reduced
inf-sup of the following form

inf
0 6=q∈ZN

sup
06=x∈XN

B(x, q;µµµ)
‖x‖X ‖q‖Yt

≥ βN (µµµ) > 0. (29)

Now we have all the necessary notions needed in order to show some applications of ROM for
time dependent OCP(µµµ)s. In the next Section we will show how advantageous reduced modelling
could be in this very costly context.

4 Numerical Results: Time Dependent OCP(µµµ) for Graetz flows

In this section we are going to present a numerical example in order to validate the performances
of POD-Galerkin method for time dependent OCP(µµµ)s: we will apply our methodology to a time
dependent version of the test case proposed in [38].
The proposed test case deals with a time dependent OCP(µµµ) governed by a Graetz flow with
a control over the boundary ΓC = ([1, 1 + µ3]× {0}) ∪ ([1, 1 + µ3]× {1}), which is represented
in Figure 4. In this case, µ3 is a geometrical parameter which stretches the length of Ω2(µ3) :=
[1, 1 +µ3]× [0.2, 0.8] and Ω3(µ3) := [1, 1 +µ3]× [0, 0.2]∪ [1, 1 +µ3]× [0.8, 1] as Figure 4 shows.
We now introduce the other two parameters: µ1 which represents the diffusivity coefficient of the
system and µ2 which is the desired profile solution we want to reach in Ω3(µ3). The parameter
µµµ = [µ1, µ2, µ3] is considered in P = [1/20, 1/6]× [1, 3]× [1/2, 3].
Let us specify the function spaces Y and U needed. For this test case we define y ∈ Yt where
Y = H1

ΓD
(Ω(µ3)) and u ∈ U where U = L2(ΓC(µ3)). Furthermore, let X be the product space

Yt×U . All the data of the test case are recap in Table 1. The problem we consider reads: given
µµµ ∈P, find the state-control variable (y, u) ∈ X which solves:

min
(y,u)∈X

J(y, u;µµµ) = min
(y,u)∈X

1
2

∫ T

0

∫
Ω3

(y − yd(µµµ))2dxdt+ α

2

∫ T

0

∫
ΓC

u2dxdt (30)

constrained to the equation

∂y

∂t
+ µ1∆y + x2(1− x2) ∂y

∂x1
= 0 in Ω(µ3)× (0, T ),

y = 1 on ΓD(µ3)× (0, T ),

µ1
∂y

∂n
= u on ΓC(µ3)× (0, T ),

µ1
∂y

∂n
= 0 on ΓN (µ3)× (0, T ),

y = y0 in Ω(µ3)× {0},

(31)

15



where x1 and x2 are the spatial components, y0 is the null function in the domain which respects
the boundary conditions and yd(µµµ) ≡ µ2. As already presented in Section 2.1, we applied a
Lagrangian approach and the optimize-then-discretize technique in order to recover the following
optimality system: given µµµ ∈P, find ((y, u), p) ∈ X × Yt such that

y − ∂p

∂t
+ µ1∆p− x2(1− x2) ∂p

∂x1
= yd(µµµ) in Ω(µ3)× (0, T ),

p = 0 on ΓD(µ3)× (0, T )

µ1
∂p

∂n
= 0 on ΓN (µ3)× (0, T ),

p = 0 in Ω(µ3)× {T},
αu = p in ΓC(µ3)× (0, T ),
∂y

∂t
+ µ1∆y + x2(1− x2) ∂y

∂x1
= 0 in Ω(µ3)× (0, T ),

y = 1 on ΓD × (0, T ),

µ1
∂y

∂n
= u on ΓC(µ3)× (0, T ),

µ1
∂y

∂n
= 0 on ΓN (µ3)× (0, T ),

y = y0 in Ω(µ3)× {0}.

(32)

The problem has been solved exploiting the following strategy: first of all, we traced back
the original problem into the reference domain presented in Figure 4. The reference domain
corresponds to µ3 = 1. The full order discretization is performed as described in Section 2.2: we
used ∆t = 1/6 over the interval (0, T ) = (0, 5), with a resulting number of time steps Nt = 30.
Moreover, for the space discretization, we used P1 elements for all the variables involved with
N = 3487, working with function spaces of the form XN := YtN ×UN and YtN , for every time
step of state-control and adjoint variables, respectively. The total number of degree of freedom
of the full order approximation is Ntot = 3 × Nt × N = 313′830. We built the reduced spaces
applying the POD-Galerkin approach as presented in Section 3.3. For all the variables we choose
Nmax = 70 snapshots. The basis functions were obtained retaining the first N = 35 eigenvectors
of the snapshots correlation matrix: from now on we will define N as the basis number. In
order to guarantee the well-posedness of the reduced saddle point problem arising from the
constrained optimization, we exploited aggregated space technique described in Section 3.4: it
led to a total reduced dimension of Ntot = 5N = 175. The basis considered are sufficient and
they well represent the optimal solution as one can observe from the average relative error1 plots
in Figure 1 and the solution plots in Figure 2. The FE simulations and the reduced simulations
are compared in Figure 2: they match for different time instances. In Figure 1, we show the
average relative errors over a testing set of 50 parameters, uniformly distributed: as expected,
it decreases for a high basis number N , with a minimum value of 10−4 for all the variables.
In Figure 1, we also present the average relative error between the FE and the ROM values of
the functional J(·, ·;µµµ), i.e. our output. We specify that the effort needed for solving an offline
phase for time dependent OCP(µµµ)s drastically increases for high values of Nmax: still, our choice
for the number of snapshots gave us a good overview of the whole parametrized system in a
reasonable amount of time. Let us now focus on the computational time involved both in the
full and in the reduced order simulations. In Figure 3, the speedup index for this test case is
presented. The speedup represents how many reduced order simulations can be performed in the
time of a single full order FE element simulation. It reaches a maximum value of 1, 8 ·105, while

1The error for state, control and adjoint variables are presented in the following norms: ‖yN − yN‖2H1 ,
‖uN − uN‖2L2 and ‖pN − pN‖2H1 , respectively.
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the lowest values associated to an increasing value of N are not below 105. The speedup index
underlines how convenient is ROM system for repeated parametric instances of time dependent
OCP(µµµ)s, since the very expensive formulation of the whole system (23) is projected in a low
dimensional framework which recovers the evolution of the optimality system and permits to
study several configurations in the online phase.

Table 1: Data for the OCP(µµµ) governed by a Graetz flow.

Data Values

P [1/20, 1/6]× [1, 3]× [1/2, 3]

(µ1, µ2, µ3, α) (1/12, 2, 5/2, 10−2)

Nmax 70

Basis Number N 35

Sampling Distribution Uniform

Ntot 313′830

Nt 30

ROM System Dimension 175

Figure 1: FE vs ROM relative errors with respect to the basis number N in logarithmic scale. Top left:
state error; top right: control error; bottom left: adjoint error; bottom right: output error.
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Figure 2: FE vs ROM simulations of state and control variables for µµµ = [1/12, 2, 2.5] and α = 10−2.
First row: FE state for t = 0.17, 1.5, 3.5, 5; second row: ROM state for t = 0.17, 1.5, 3.5, 5; third row:
FE control for t = 0.17, 1.5, 3.5, 5; fourth row: ROM control for t = 0.17, 1.5, 3.5, 5. In order to better
visualize the boundary control, we represent it in a third dimension.

Figure 3: Speedup analysis in logarithmic scale shown with respect to the basis number N .
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Figure 4: Considered reference domain and subdomains for µ3 = 1.

5 Linear Quadratic Time Dependent OCP(µµµ)s governed by Stokes
Equations

In this section, we introduce a distributed OCP(µµµ) governed by time dependent Stokes equations.
As we did for the parabolic case in section 2.1, first of all, we provide the proof of well-posedness
of this specific linear quadratic OCP(µµµ) in a saddle point framework. Then, we will adapt the
space-time discretization and the aggregated POD-Galerkin technique of Sections 2.2 and 3.4,
respectively, to this more complex problem.

5.1 Problem Formulation

First of all, we would like to specify the nature of the parametrized problem: in our applications
we consider µµµ = [µ1, µ2]. The parameters µ1 and µ2 characterize the physics and the geometry
of the governing equation, respectively. Let us consider the parametrized domain Ω(µ2) ⊂ R2.
We indicate with ΓD(µ2) the portion of the domain where Dirichlet boundary conditions are
applied, while ΓN (µ2) is the part of ∂Ω characterized by Neumann conditions. Let us specify the
function spaces involved in this example: let us introduce the space V = H1

ΓD(µ2)(Ω(µ2)), the

space P = L2(Ω(µ2)), Vt = {y ∈ V := L2(0, T ;V ) s.t. ∂y
∂t
∈ L2(0, T ;V ∗)} and P = L2(0, T ;P ).

Our parameter dependent state variable (y, p) ∈ Yt := Vt × P is controlled by the variable
u ∈ U := L2(0, T ;L2(Ω(µ2))). Following the structure described in Section 2.1, we will exploit
the velocity-pressure-control variable x ∈ X := Yt × U , where x := x(µµµ) represents the triplet
(y, p, u) := (y(µµµ), p(µµµ), u(µµµ)). The norm of the space X is ‖x‖2X = ‖y‖2Vt

+‖p‖2P+‖u‖2U . In order
to build the OCP(µµµ) we need to define the adjoint variable (λ, ξ) ∈ Yt. From now on, the pair
(λ, ξ) will be indicated with σ. For a given µµµ in a suitable parameter space P ⊂ R2, we want
to find (y, p, u) ∈ X which solves:

min
(y,p,u)∈X

1
2

∫ T

0

∫
Ω

(y − yd)2 dΩdt+ α

2

∫ T

0

∫
Ω
u2 dΩdt (33)

constrained to the time dependent Stokes equations:

∂y

∂t
− µ1∆y +∇p = u in Ω(µ2)× (0, T ),

div(y) = 0 in Ω(µ2)× (0, T ),
∂y

∂n
= 0 on ΓN (µ2)× (0, T ),

y = g on ΓD(µ2)× (0, T ),
y(0) = y0 in Ω(µ2)× {0},

(34)

19



where yd ∈ Vt is a desired velocity profile defined on the whole domain. Also in this application,
‖y0‖L2(Ω(µ2)) = 0. Again, for the sake of notation, we have omitted the parameter dependency
of the variables.
In order to build the optimality system, first of all we consider the linear state equation in its
weak formulation, after a lifting procedure. Let w = (z, q) ∈ Yt be a test function: again we
consider w ∈ Yt rather than w ∈ Y in order to guarantee a future proper definition of the adjoint
variable. As we already did in Section 2.1, we can specify the following forms:

A : X × X → R, A(x,w) = m(y, z) + αn(u, v), ∀x,w ∈ X ,

B : X × Yt → R, B(x,w;µµµ) =
∫ T

0

∫
Ω

∂y

∂t
z dΩdt+

∫ T

0
a((y, p), (z, q);µµµ) dt−

∫ T

0
c(u, z) dt, ∀w ∈ Yt,

F (µµµ) ∈ X ∗, 〈F (µµµ), w〉 =
∫

Ω
yd(µµµ)z dΩ, ∀w ∈ Yt,

G ∈ Y∗t , 〈G(µµµ), w〉 = 0, ∀w ∈ Yt,

where

m : Yt × Yt → R, m(y, z) =
∫ T

0

∫
Ω
yz dΩdt,

n : U × U → R, n(u, v) =
∫ T

0

∫
Ω
uv dΩdt,

a : Yt × Yt → R, a((y, p), (z, q);µµµ) = µ1

∫
Ω
∇y · ∇z dΩ−

∫
Ω
pdiv(z) dΩ−

∫
Ω

div(y)q dΩ,

c : U × Y → R, c(u, q) =
∫

Ω
uq dΩ.

In the end, let us define the bilinear forms involved in the Stokes equations as:

a : Vt × Vt → R, a(y, z;µµµ) =
∫ T

0
〈∂y
∂t
, z〉 dt+ µ1

∫ T

0

∫
Ω
∇y · ∇z dΩdt, (35)

b : Vt × P → R, b(z, p) = −
∫ T

0

∫
Ω
pdiv(z) dΩdt. (36)

We are now able to define the functional of the form (9) and, then, the Lagrangian functional:

L ((y, p), u, (λ, ξ);µµµ) = J ((y, u);µµµ) + B(x, σ;µµµ), (37)

where J (·, ·;µµµ) is defined as in (9). After the differentiation of the functional (37) with respect
to the variables (y, p, u, λ, ξ), we obtain the optimality system of the form (10):

DyL ((y, p), u, (λ, ξ);µµµ)[z] = 0 ∀z ∈ Vt,
DpL ((y, p), u, (λ, ξ);µµµ)[q] = 0 ∀q ∈ P,
DuL ((y, p), u, (λ, ξ);µµµ)[v] = 0 ∀v ∈ U ,
DλL ((y, p), u, (λ, ξ);µµµ)[χ] = 0 ∀χ ∈ Vt.
DξL ((y, p), u, (λ, ξ);µµµ)[τ ] = 0 ∀τ ∈ P.

(38)

Since the time dependent Stokes equations (34) are linear, the weak formulation of the optimality
system (38) can be recast in a saddle point problem of the form (11), already introduced in
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Section 2.1.
Given a parameter µµµ ∈ P, we claim that solving the optimality system (38) is equivalent to
find the solution (x, σ) ∈ X × Yt ofA(x,w) + B(w, σ;µµµ) =

∫ T

0
〈F (µµµ), w〉 dt ∀w ∈ X ,

B(x, ζ;µµµ) = 0 ∀ζ ∈ Yt.
(39)

We assert that the problem (39) is well-posed. In order to prove the claim, we need the following
two lemmas. The first one will be exploited for the inf-sup condition of the form B(·, ·;µµµ). Indeed,
the well-posedness of time dependent Stokes equations in mixed formulation implies the second
hypothesis of the Brezzi’s theorem for the whole state equation B(·, ·;µµµ).

Lemma 3. Time dependent Stokes equations with ‖y0‖L2(Ω(µ2)) = 0 in their saddle point struc-
ture verifies Brezzi’s theorem.

Proof. The continuity of a(·, ·;µµµ) and of b(·, ·) is obvious. Moreover, the inf-sup condition for
the bilinear form b(·, ·) follows from [22, Theorem 4.7 and Proposition 2.2].
It remains to prove the weakly coercivity of a(·, ·;µµµ) over the kernel of b(·, ·). In our case, the
bilinear form a(·, ·;µµµ) is actually coercive over the whole space Vt since

a(y, y;µµµ) =
∫ T

0
〈∂y
∂t
, y〉 dt+ µ1

∫ T

0

∫
Ω
∇y · ∇y dΩdt = 1

2‖y(T )‖2L2(Ω(µ2)) + µ1‖y‖2V

≥ µ1‖y‖2V
‖y‖2Vt

‖y‖2Vt

≥︸︷︷︸
for Lemma 1

µ1
6 ‖y‖

2
Vt
.

A second lemma is needed to demonstrate the coercivity of the bilinear form A(·, ·). Let us in-
dicate the kernel of B as X0, as we did in the parabolic case: we are going to prove a norm
equivalence which will be used in the proof of the well-posedness of (39).

Lemma 4. On the space X0, the norm ‖·‖2X is equivalent to ‖·‖2Vt
+ ‖·‖2U .

Proof. Let us consider x = (y, p, u) in the kernel of B. First of all, it is obvious that ‖·‖2X ≥
‖·‖2Vt

+ ‖·‖2U . Then, it remains to prove that there exists a positive constant Ce(µµµ) such that

‖·‖2X ≤ Ce(µµµ)(‖·‖2Vt
+ ‖·‖2U ). (40)

If x ∈ X0, it holds that

b(w, p) = c(u,w)− µ1

∫ T

0

∫
Ω
∇y · ∇w dΩdt−

∫ T

0
〈∂y
∂t
, w〉 dt ∀w ∈ Vt.

Then, we can derive the following inequalities for all w ∈ Vt:

b(w, p) ≤ ‖u‖U‖w‖V + µ1‖y‖V‖w‖V +
∥∥∥∥∂y∂t

∥∥∥∥
V∗
‖w‖V

≤ min{1, µ1}(‖y‖Vt + ‖u‖U )‖w‖Vt .

Now, since the above inequality does not depend from w and p, from lemma 3 we know that

β̄‖p‖P‖w‖Vt ≤ inf
06=p∈P

sup
06=w∈Vt

b(w, p) ≤ min{1, µ1}(‖y‖Vt + ‖u‖U )‖w‖Vt .
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Moreover, applying Young’s inequality, we have that

‖p‖2P ≤
min{1, µ1}2

β̄2 (‖y‖Vt + ‖u‖U )2 ≤ 2min{1, µ1}2

β̄2 (‖y‖2Vt
+ ‖u‖2U ).

Setting C̄e(µµµ) =
(
2min{1, µ1}2

β̄2

)
the inequality (40) is verified with Ce(µµµ) = min{1, C̄e(µµµ)}.

Thanks to these two lemmas, we are now able to demonstrate the following theorem, which guar-
antees existence and uniqueness of the optimal solution for OCP(µµµ)s governed by time dependent
Stokes equations.

Theorem 2. The problem (39) is equivalent to the minimization problem (33) under the con-
straint (34). Moreover, the saddle point problem (39) admits a unique solution.

Proof. In order to prove existence and uniqueness of the solution of problem (39) and its equiv-
alence with the minimization problem (33)-(34), we exploit Proposition 1, i.e. we show that:

• A(·, ·) is a symmetric positive definite continuous bilinear form coercive on X0;

• B(·, ·;µµµ) is continuous and satisfies the inf-sup condition.

The form A(·, ·) is trivially symmetric and positive definite thanks to its definition. The conti-
nuity of the bilinear forms A(·, ·) and B(·, ·;µµµ) can be derived using the same techniques already
presented in theorem 1. Let us now focus on the coercivity of A(·, ·). For every x ∈ X0 we want
to prove that there exists a positive constant C such that

A(x, x) ≥ C‖x‖2X .

Since norm of ‖·‖2X is equivalent to ‖·‖2Vt
+‖·‖2U as we proved in Lemma 4, it is sufficient to show

that
A(x, x) ≥ C(‖·‖2Vt

+ ‖·‖2U ).

When x ∈ X0 it means that the pair (y, p) verifies the Stokes equations with the control as forcing
term. It is well known that the velocity solution of Stokes equations with ‖y0‖L2(Ω(µ2)) = 0 and
control as forcing term admits a k(µµµ) > 0 such that ‖y‖Vt ≤ k(µµµ)‖u‖U , see [43, Chapter 13].
Then for x ∈ X0

A(x, x) ≥ ‖y‖2L2(0,T ;H) + α‖u‖2U ≥
α

2 ‖u‖
2
U + α

2 ‖u‖
2
U ≥

α

2k(µµµ)2 ‖y‖
2
Vt

+ α

2 ‖u‖
2
U

≥ min
{ α

2k(µµµ)2 ,
α

2
}

(‖y‖2Vt
+ ‖u‖2U ).

It remains to show that
inf

0 6=q∈Yt

sup
06=x∈X

B(x, q;µµµ)
‖x‖X ‖q‖Yt

> β(µµµ) > 0. (41)

First of all, let us consider the bilinear form A : Yt × Yt → R defined as A((y, p), (w, q);µµµ) =
a(y, w) + b(w, p) + b(v, q). We can now proceed as presented in [37, Appendix A.1]. Thanks to
lemma 3, we infer that the operator A(·, ·;µµµ) is a well-posed mixed problem, then the Babuška
inf-sup constant βB(µµµ) is well defined as
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βB(µµµ) = inf
06=(y,p)∈Yt

sup
0 6=(w,q)∈Yt

A((y, p), (w, q);µµµ)
‖(y, p)‖Yt‖(w, q)‖Yt

= inf
06=(w,q)∈Yt

sup
06=(y,p)∈Yt

A((y, p), (w, q);µµµ)
‖(y, p)‖Yt‖(w, q)‖Yt

,

(42)
see the classical reference [3]. Then we have the following inequalities:

sup
0 6=x∈X

B(x, σ;µµµ)
‖x‖X ‖σ‖Yt

≥︸︷︷︸
x=(y,p,0)

sup
06=(y,p)∈Yt

A((y, p), (w, q);µµµ)
‖(y, p)‖Yt‖(w, q)‖Yt

≥ inf
06=(w,q)∈Yt

sup
06=(y,p)∈Yt

A((y, p), (w, q);µµµ)
‖(y, p)‖Yt‖(w, q)‖Yt

≥ βB(µµµ)

Since the above inequality does not depend on the choice of σ ∈ Yt, then the inequality (41) is
verified and the OCP(µµµ) is well-posed.

In this section we generalized the saddle point theory of OCP(µµµ)s governed by parabolic state
equations to OCP(µµµ)s under Stokes equations constraint. After the introduction of the min-
imization problem, we provided a proof for the well-posedness of the OCP(µµµ) in the saddle
point framework. The next Section will focus on the full order discretization of the OCP(µµµ)
proposed.

5.2 Finite Element Discretization and Time Discretization for OCP(µµµ)s gov-
erned by Stokes Equations: all-at-once approach

In this section we introduce the discretized version of time dependent OCP(µµµ)s governed by
Stokes equations following the properties of the schemes already presented in [25, 52].
In order to expose the discrete formulation of the optimality system (38), we need its strong
formulation. The minimization of the functional (33) constrained to time dependent Stokes
equations (34) is equivalent to find the pair (x, σ) ∈ X ×Yt such that the state, the adjoint and
the optimality equations read as follows:

∂y

∂t
− µ1∆y +∇p = u in Ω(µ2)× (0, T ),

div(y) = 0 in Ω(µ2)× (0, T ),
y(t) = g(t) on ΓD(µ2)× (0, T ),
∂y

∂n
= 0 on ΓN (µ2)× (0, T ),

y(0) = y0 in Ω(µ2)× {0},

y − ∂λ

∂t
− µ1∆λ+∇ξ = yd in Ω(µ2)× (0, T ),

div(λ) = 0 in Ω(µ2)× (0, T ),
λ(t) = 0 on ∂Ω(µ2)× (0, T ),
λ(T ) = 0 in Ω(µ2)× {T},
αu = λ in Ω(µ2)× (0, T ),
boundary conditions on ∂Ω× (0, T ).

(43)

In order to discretize in time and in space the system (43), we will exploit the technique already
presented in Section 2.2 for parabolic time dependent OCP(µµµ)s.
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Let us define yyy = [y1, . . . , yNt ]T , ppp = [p1, . . . , pNt ]T , uuu = [u1, . . . , uNt ]T and λλλ = [λ1, . . . , λNt ]T ,
ξξξ = [ξ1, . . . , ξNt ]T , i.e. the vectors where yi, ui, pi, λi and ξi for 1≤ i ≤ Nt are row vectors
representing the coefficients of the FE discretization of each time instance. Also in this case we
divided the time interval in Nt sub-intervals of length ∆t. The vector representing the initial
condition for the state variable is yyy0 = [y0, 0, . . . , 0]T . The discretized desired state and the
forcing term are given by yyyd = [yd1 , . . . , ydNt

]T and ggg = [g1, . . . , gNt ]T , respectively.
In order to create the time steps, we used the rectangle composite quadrature formula following
the same arguments as already presented in Remark 1. The discretized state equation reads as
follows:{

Myk + µ1∆tKyk + ∆tDT pk = ∆tMuk +Myk−1 + ∆tgk for k ∈ {1, 2, . . . , Nt},
Dyk = 0 for k ∈ {1, 2, . . . , Nt},

(44)

where M and K are the mass and the stiffness matrices relative to the FE discretization,
respectively. Moreover, D is the differential operator representing to the continuity equation.
Then, in order to solve the system in an all-at-once approach we have to solve the following
system:

K[yyy,ppp]−∆tCuuu =Myyy0 + ∆tggg,

where:

K =



M − µ∆tK 0 · · · 0 ∆tDT 0 · · · 0
D 0
−M M − µ∆tK 0 · · · 0 ∆tDT 0 · · · 0

0 D
. . . . . .

. . . . . .
. . . . . .

. . . . . .
0 · · · 0 −M M − µ∆tK 0 · · · 0 ∆tDT

0 · · · D 0 · · · 0


and C =M∈ RN·Nt×RN·Nt is the block diagonal matrix which diagonal entries are [M, · · · ,M ].
Then, we discretize the optimality equation, which has the following form:

α∆tMuk −∆tMλk = 0 for k ∈ {1, 2, . . . , Nt}.

This means that the system considered is of the form:

α∆tMuuu−∆tCTλλλ = 0.

Finally, we are able to treat the adjoint equation. We use a forward Euler as we did for the
parabolic case in Section 2.2. Thanks to this approach, it holds:{
Mλk = Mλk+1 + ∆t(−Myk + µ1∆tKλk −∆tDT ξk +Mydk

) for k ∈ {Nt − 1, Nt − 2, . . . , 1},
Dλk = 0 for k ∈ {Nt − 1, Nt − 2, . . . , 1}.

(45)
In the end, the adjoint equation has the following form:

∆tMyyy +KT [λλλ,ξξξ] = ∆tMyyyd.
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Then, the final parametrized system to be solve trough a one shot approach is the of the form
presented in (23), i.e.:∆tM 0 KT

0 α∆tM −∆tCT
K −∆tC 0


(yyy,ppp)

uuu
(λλλ,ξξξ)

 =

 ∆tMyyyd
0

Myyy0 + ∆tggg

 . (46)

Now, calling

A =
[
∆tM 0

0 α∆tM

]
, B =

[
K −∆tC

]
, F =

[
∆tMyyyd

0

]
and G =Myyy0 + ∆tggg

the system (23) can be written as follows:[
A BT

B 0

] [
xxx
χχχ

]
=
[
F
G

]
, (47)

where xxx = ((yyy,ppp),uuu) and χχχ = (λλλ,ξξξ).
As in the parabolic case, we used a direct approach in order to find the solution to the saddle
point system (47), even if iterative solvers are widely exploited for this kind problem: the
interested reader may refer to [25, 48, 52].
We now move towards ROM version of the system, focusing on supremizers aggregated space
technique [37] which guarantees the well-posedness of the reduced optimality system.

5.3 Reduced basis method: Supremizer Stabilization and Aggregated Spaces

In this section, we exploit a POD-Galerkin strategy in order to recast the full order optimality
system in a reduced framework. The technique used is the same already presented in Section
3.3: we remark that in this case we apply the POD algorithm for each space-time FE variables
vN , pN , uN , λN and ξN , which contain all the temporal instances.
Let us suppose to have built the reduced spaces with the POD approach, then the reduced
optimality system reads: given µµµ ∈P, find (xN (µµµ), σN (µµµ)) ∈ XN × YN such that{

A(xN (µµµ), wN ) + B(wN , σN (µµµ);µµµ) = 〈F (µµµ), wN 〉 ∀wN ∈ XN ,
B(xN (µµµ), ζN ;µµµ) = 〈G(µµµ), ζN 〉 ∀ζN ∈ YN .

(48)

Anyway, in this case we are managing a nested saddle point structure, since we are dealing with
Stokes equations as constraints. Indeed, the state equation problem is formulated as: given
µµµ ∈P, find (yN (µµµ), pN (µµµ)) ∈ VtN × PN such that{

a(yN (µµµ), zN ;µµµ) + b(zN , pN (µµµ)) = 0 ∀zN ∈ VtN ,
b(yN (µµµ), ζN ) = 0 ∀ζN ∈ PN ,

(49)

where the bilinear forms a(·, ·;µµµ) and b(·, ·) are defined as (35) and (36), respectively, and VtN
and PN are the reduced spaces obtained trough POD algorithm over velocity and pressure
variables. It is well known that, in order to guarantee the well-posedness of the reduced Stokes
state equations (49), the reduced inf-sup stability condition is required for the bilinear form b(·, ·)
and it is not directly inherited from the FE approximation. In other words, we have to build our
reduced spaces for velocity and pressure variables such that there exists a β̄N > 0 which verifies

inf
pN∈PN

sup
yN∈VtN

b(yN , pN ;µµµ)
‖yN‖Vt‖pN‖P

≥ β̄N (µµµ) > 0 ∀µµµ ∈P. (50)
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To ensure the inequality (50) at the reduced level, we follow the strategy of pressure supremizers
[47]: let us consider the supremizer operator Tµµµp : PN → VtN defined as follows:

(Tµµµp s, φ)Vt = b(φ, s;µµµ), ∀φ ∈ VNt . (51)

Then, we enrich the reduced velocity space with supremizers and we build a new space as follows:

VtµµµN = span{yN (µµµn), Tµµµn

p pN (µµµn), n = 1, . . . , N}.

If we exploit this new reduced space VtµµµN for velocity, then (50) is verified.
Once proved the stability of the Stokes equations, we can focus on the whole OCP(µµµ) governed
by this particular state equation. In order verify the reduced inf-sup condition for the bilinear
form B(·, ·;µµµ), we used the aggregated spaces strategy already presented in Section 3.4. As
shown in [37], we define the aggregated spaces for both the state and adjoint pressure variables
as

PN = span{pN (µµµn), ξN (µµµn), n = 1, . . . , N}, (52)

while, for the state and the adjoint velocity variables, we consider

Vtµµµ
n

N = span {yN (µµµn), Tµµµn

p pN (µµµn), λN (µµµn), Tµµµn

p ξN (µµµn), n = 1, . . . , N}. (53)

Let us now define the following aggregated space for state and adjoint velocity-pressure variables

YN = Vtµµµ
n

N × PN .

Finally, the control space is:

UN = span {uN (µµµn), n = 1, . . . , N}. (54)

Considering the product space XN = YN × UN , the well-posedness of the reduced optimality
system (48) in its nested saddle point structure is verified. The stability of these techniques is
numerically demonstrated in [7, 20, 37, 44, 46]. Thanks to this new reduced spaces formulation,
the dimension of the state and the adjoint spaces is 6N , whereas the control space has dimension
N , for a total reduced dimension Ntot = 13N . In the next section, we are going to test this
methodology in a numerical simulation, showing that ROM online phase could be of great
advantage, despite the increasing value of Ntot.

6 Numerical Results: Time Dependent OCP(µµµ) for a Cavity
Viscous Flow

In this section we propose a geometrical and physical parametrized version of the test case al-
ready presented in [25, 52]: it is a time dependent OCP(µµµ) for cavity viscous flow problem. The
parametrization presented has been studied also in [2], where several stabilization techniques
are proposed. In this case, we deal with the consistent FE pair P2−P1 for velocity and pressure
variables, respectively: then, no stabilization is needed except for the supremizer techniques
described in Section 5.3. For the discretization of the control variable, we exploited P2 poly-
nomials for its FE approximation. We call Ny, Np and Nu the FE dimensions for velocity,
pressure and control space, respectively. Our space discretization leads to Ny = Nu = 4554 and
Np = 591. Then we define the global FE dimension as N = 2Ny + 2Np +Nu. The OCP(µµµ) is
based on the minimization of the functional (33) with (34) as state equation. We now provide
the information about the numerical test, which are resumed in Table 2. First of all, let us
specify the role of the parameters: µ1 is physical parameter describing the diffusivity action of
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the system, while µ2 changes the geometry of the problem, stretching the length of the domain.
In order to deal with the geometrical parametrization, we traced back Ω(µ2) ⊂ R2 into a two
dimensional square (0, 1) × (0, 1) as reference domain, where ΓIN = (0, 1) × {1} is the inlet
boundary and ΓD = ∂Ω \ ΓIN is characterized by homogeneous Dirichlet boundary conditions.
The reference domain structure is presented in Figure 6. Since we considered Dirichlet bound-
ary conditions all over the domain, we assumed p ∈ P = L2(0, T ;L2

0(Ω(µ2)))2. The aim of the
OCP(µµµ) proposed is to make the state velocity y the most similar to a target velocity yd, given
µµµ ∈P = [10−3, 10−1]× [0.5, 2.5]. The target velocity profile yd is defined as the FE solution of
the uncontrolled time dependent Stokes equations with Dirichlet boundary conditions given by
the constant velocity components (1, 0) in ΓIN and homogeneous Dirichlet boundary conditions
in ΓD, for µ1 = 1 fixed. The target velocity has been simulated in (0, T ) = (0, 1). For the
OCP(µµµ) test case, we consider a different time dependent inlet boundary condition: the state
velocity profile is y =

(
1+ 1

2 cos(4πt−π), 0
)

over ΓIN for t ∈ (0, T ) = (0, 1). As already specified,
homogeneous Dirichlet boundary conditions are considered elsewhere. The distributed control u
has the role to reduce the impact of the periodic inlet over the system. The FE discretization is
performed as presented in Section 5.2. For the time discretization we used ∆t = 0.05, resulting
in Nt = 20 time instances. The total number of degree of freedom is Ntot = Nt ×N = 296′880.
In order to reduce the dimension of the FE system, we applied the POD-Galerkin algorithm
described in Section 3.3. For all the variables involved, we choose Nmax = 70 snapshots for the
correlation matrix and we only retain the first N = 25 eigenvectors as basis functions of our
low-dimensional spaces. Once again, we will call N the basis number. As already specified in
Section 4, the choice of the number of snapshots Nmax is strongly related to the complexity of
the offline phase of the time dependent optimality system, which turned out to be very expensive
to be solved. The total dimension of the reduced system is Ntot = 13N = 325, tanking into
account supremizer aggregated space technique for the nested saddle point problem given by
the Stokes equations and the optimal control structure, as already specified in Section 5.3. A
comparison between FE and ROM state velocity and state pressure profiles is shown in Figure 5:
the ROM simulations recover the behaviour of the FE solutions for different time instances. The
accuracy of the method is also underlined by the plots in Figure 8, where the average relative
error3 plots over a testing set of 35 uniformly distributed parameters are presented: the greater
is the value of N the better are the results, as expected. The relative error is about 10−3 for
all the involved variables. In Figure 8, we also show the relative error between the value of
the functional output (33) evaluated for the FE solution and for the ROM solution: it reaches
the very low value of 10−8. Also in this test case, ROM is a strategy which reaches accurate
results in a small computational time. In Figure 7 we show the speedup index for this test
case: the POD-Galerkin approach could be very useful for time dependent OCP(µµµ)s governed
by Stokes equations, since it guarantees a good approximation of a quite complex system in
low-dimensional framework. The number of reduced problem one can perform in a single FE
simulation decreases with respect to the value of N , but still it is never below the value of 6 ·104.
Also in this case, from the high speedup values, we can conclude that ROM is a good approach

2 The space L2
0(Ω(µ2)) is made by functions p ∈ L2(Ω(µ2)) which satisfy

∫
Ω
p dΩ = 0. In the reduced model

the aggregated basis associated to the state and adjoint pressure was built in order to satisfy this constraint, i.e.

the reduced adjoint variable ξN verifies
∫

Ω
ξN dΩ = 0.

3The error for state velocity and pressure, control and adjoint velocity and pressure variables are: ‖yN−yN‖2H1 ,
‖pN − pN‖2L2 , ‖uN − uN‖2L2 , ‖λN − λN‖2H1 and ‖ξN − ξN‖2L2 , respectively. We underline that in order to make

the FE and ROM adjoint pressures comparable we define ξN := ξ̄N −
∫

Ω
ξ̄Ndx, where ξ̄N is the actual truth

solution.
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to manage several repeated simulations for different values of the parameter considered.

Figure 5: FE vs ROM simulations of state velocity and pressure variables for µµµ = [1/2, 10−2] and
α = 10−2. First row: FE state velocity for t = 0.05, 0.5, 0.75; second row: ROM state velocity for
t = 0.05, 0.5, 0.75; third row: FE state pressure for t = 0.05, 0.5, 0.75; fourth row: ROM state pressure
for t = 0.05, 0.5, 0.75.
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Figure 6: Domain and boundary considered.

Table 2: Data for the OCP(µµµ) governed by a Stokes equation.

Data Values

P [0.5, 2.5]× [10−3, 10−1]

(µ1, µ2, α) (10−2, 3/2, 10−2)

Nmax 70

Basis Number N 25

Sampling Distribution Uniform

Ntot 296′880

Nt 20

ROM System Dimension 325

Figure 7: Speedup analysis in logarithmic scale shown with respect to the reduced basis dimension N .
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Figure 8: FE vs ROM errors in logarithmic scale. Top left: state error (velocity and pressure), top
right: control error, bottom left: adjoint error (velocity and pressure), bottom right: output error.

7 Conclusions and Perspectives

In this work we have exploited ROM in OCP(µµµ)s dealing with time dependent linear state equa-
tions. First of all we showed how the saddle point structure for linear quadratic OCP(µµµ) is
maintained also for the time dependent case. Then, we have exploited a POD-Galerkin method
as sampling strategy for the projection of the systems in a low dimensional framework in order to
solve them in an accurate and fast way. The results have been tested, on one side, for a boundary
OCP(µµµ) governed by a Graetz flow, on the other side, the test case has been performed over
an OCP(µµµ) constrained to time dependent Stokes equations. To the best of our knowledge,
the main novelty of this work is in the POD-Galerkin reduction used for this all-at-once time
dependent optimal control problems recast in saddle point formulation: it is a very versatile
approach due to the great speedup index, for both the state equations analyzed.
Some improvements of this work will follow. First of all, we would like to stress that the used
all-at-once approach is not the most appropriate. Indeed, it leads to a very costly formulation
and complex linear systems to deal with. This issue can be overcome thanks to more com-
puting power and/or preconditioned iterative strategies as proposed in [9, 48, 51, 52]. Some
improvements are needed in this direction, since the direct solution of such a system affects not
only the resolutions of full order solutions and, consequently, of the reduced ones, but also the
time needed for the offline phase. Indeed, the proposed all-at-once formulation is the major
reason for an expensive basis construction. Even if we accomplished our goal of showing how
ROMs can be very effective in lowering the computational time needed for online parametrized
simulations, we pay a huge amount of computational resources for the offline stage. We propose
our methodology as a starting point which needs a deeper analysis and improvements in order
to reach better performances: overcaming this issue will pave the way to applications of ROMs

30



to more complicated OCP(µµµ)s.
Moreover, we are moving towards nonlinear state equations in order to recover a complete op-
timal control model that could have impact in several fields of applications. Time dependent
nonlinear OCP(µµµ)s could be a way to simulate more and more realistic physical phenomena.
Reduced order modelling, most of all in its nonlinear time dependent formulation, could actually
be a suitable and versatile approach to be used, in order to drastically reduce the computational
costs in real time contexts. Another step forward could be adding a parameter stochastic depen-
dency and uncertainty quantification in the optimality system. For sure, another improvement
is based on the development of proper error estimators. The extension of classical estimates for
steady linear quadratic OCP(µµµ)s to time dependent state equations will be the topic of future
investigations.
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