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ABSTRACT

We present a method for estimating parameters in stochastic models of
biochemical reaction networks by fitting steady-state distributions using
Wasserstein distances. We simulate a reaction network at different parameter
settings and train a Gaussian process to learn the Wasserstein distance
between observations and the simulator output for all parameters. We
then use Bayesian optimization to find parameters minimizing this distance
based on the trained Gaussian process. The effectiveness of our method is
demonstrated on the three-stage model of gene expression and a genetic
feedback loop for which moment-based methods are known to perform
poorly. Our method is applicable to any simulator model of stochastic
reaction networks, including Brownian Dynamics.

Keywords Wasserstein distance · Bayesian optimization · Chemical Master Equation ·
parameter estimation

1 Introduction

Modern experimental methods such as flow cytometry and fluorescence in-situ hybridization
(FISH) allow the measurement of cell-by-cell molecule numbers for RNA, proteins and other
substances for large numbers of cells at a time, opening up new possibilities for the quantitative
analysis of biological systems. Of particular interest is the study of biological reaction systems
describing processes such as gene expression, cellular signalling and metabolism on a molecular
level. It is well established that many of these processes are inherently stochastic [1–3] and
that deterministic approaches can fail to capture properties essential for our understanding of
these systems [4, 5]. Despite recent technological and conceptual advances, modelling and
inference for stochastic models of reaction networks remains challenging due to additional
complexities not present in the deterministic case. The Chemical Master Equation (CME) [6]
in particular, while frequently used to model many types of reaction networks, is difficult to
solve exactly, and parameter inference in practice often relies on a variety of approximation
schemes whose accuracy and efficiency can vary widely and unpredictably depending on the
context [7].
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The diffusion approximation and the system size expansion [6] are two well-known approx-
imations to the CME and frequently used for inference [8, 9]. However, in the presence of
bimolecular reactions such as enzyme-substrate or protein-DNA interactions these approx-
imations are unable to deal with low copy numbers frequently found in biological systems,
rendering them unsuitable for inference in reaction systems involving species such as e.g. in-
dividual genes or mRNA, which is often present in copy numbers of less than 20 per cell
[10].

Other methods for parameter inference rely on fitting moments of the particle number distribu-
tions returned by the CME to experimental data [11–14]. Moments can often be computed
or approximated by solving a set of coupled equations, bypassing expensive simulations of
the system in question. However, as pointed out in [13, 15, 16] these moment-based methods
are not always suitable for inference. Computing the moments for reaction systems with
bimolecular interactions usually necessitates the use of so-called moment closure approx-
imations, validity conditions for which are not well-understood [17–19]. Given the wide
variety of moment closure schemes it is not generally clear a priori which, if any, will prove
suitable for a given reaction system, and the right method is usually chosen empirically based
on its performance [20]. In addition, moment closure typically results in a set of coupled
nonlinear equations which can have multiple different solutions, further complicating their use
in parameter inference. We will provide an example of a genetic feedback loop based on [20]
for which many commonly used moment approximations break down or provide inaccurate
moment estimates.

In this paper we propose a method to estimate parameters for the Chemical Master Equa-
tion from population snapshot data by matching steady state distributions using Wasserstein
distances [21], also known as Earth Mover’s distances in the literature. Since Wasserstein
distances can in general not be computed analytically we take sample-based estimates and
emulate the complex dependency of the output on the parameters by using a Bayesian re-
gression approach. We train a Gaussian process (GP) to learn the distances between the
observed data and the steady-state distributions at different parameter settings, obtained using
simulations, and apply Bayesian optimization (BO) to find the parameters minimizing this
distance, sequentially selecting the next parameter settings to evaluate until the optimum is
found. Our approach requires orders of magnitude fewer evaluations than grid searches and
is suitable for any simulator-based model of reaction networks, including models such as
Brownian Dynamics for which the previously mentioned inference methods are not available.

The idea of performing parameter inference based on considering full distributions has been
previously explored in [15] and [16], where it is shown that estimating parameters by matching
moments can result in reduced predictive power and inaccurate fits of the actual distributions.
Both [15] and [16] perform parameter inference by maximizing the likelihood of the observed
data; this requires computing the likelihood function which is commonly done by solving
a finite-dimensional approximation of the Chemical Master Equation, the so-called Finite
State Projection (FSP) [22]. The FSP involves solving a large system of coupled ordinary
differential equations and scales poorly for larger reaction systems as the number of equations
grows exponentially with the number of species considered. Our method in contrast does
not require the likelihood function and instead relies on empirically approximating the steady
state distribution using simulations, rendering it more scalable and more flexible than current
likelihood-based approaches.

One drawback of the method we present is that is only provides point estimates for parameters
and does not return a measure of confidence that would enable one to assess uncertainty.
While Bayesian optimization is used to infer the location of the optimal parameters it does not
yield a posterior distribution over parameters as in Bayesian inference. To the knowledge of
the authors efficient Bayesian inference for the CME based on steady-state observation data
remains an intractable problem in general.
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2 Background

2.1 The Chemical Master Equation

In this section we briefly review biochemical reaction networks and the Chemical Master
Equation, referring to [7] for a more comprehensive treatment. A reaction network consists of
species Sj , j = 1, . . . , s and reactions Ri, i = 1, . . . , r of the form

ai,1S1 + . . .+ ai,sSs −→ bi,1S1 + . . .+ bi,sSs (1)

where ~ai := (ai,1, . . . , ai,s) and ~bi := (bi,1, . . . , bi,s) are vectors of nonnegative integers, the
stoichiometric coefficients of the reaction. The Chemical Master Equation approach models the
reaction network as a Markov chain whose states are given by tuples ~n := (n1, . . . , ns) ∈ Ns
defining the number of particles of each species present at each time. The transitions of the
Markov chain correspond to reactions, with the transition rate of reaction Ri determined by
the state-dependent propensity function ρi(~n). The forward Kolmogorov equation for this
Markov chain is called the Chemical Master Equation and reads:

∂

∂t
P (~n, t) =

r∑
i=1

[
ρi

(
~n− ~Si

)
P
(
~n− ~Si, t

)
− ρi(~n)P (~n, t)

]
(2)

Here ~Si := ~bi − ~ai describes the net change in reactant numbers during reaction i.

The form of the transition functions ρj(~n) depends on the specific reaction, but the most
commonly used transition functions are given by the mass-action law,

ρi(~n) := λi

(
n1
ai,1

)
. . .

(
ns
ai,s

)
(3)

for rate constants λi > 0. While our approach can handle general transition functions, in what
follows we restrict ourselves to mass-action propensities of the form (3). With this setup the
task of inferring parameters for the CME reduces to finding the appropriate rate constants λi.

We remark that the steady state distribution of a reaction system does not change if all transition
rates are rescaled by a common factor c > 0. Thus by observing the steady state one can
only identify the rate constants up to a common scaling factor, which can be fixed if any one
reaction rate is known. It is frequently possible to measure the degradation rate of reaction
species experimentally, which removes this ambiguity - such an approach to inference is taken
for example in [23]. In the remainder of this paper we will always assume that one reaction
rate is given and estimate the remaining rate constants.

2.2 Wasserstein distances

We perform parameter estimation based on population snapshot data by minimizing the
discrepancy between the observed distribution over particle numbers and the distributions
returned by the simulator. In this section we motivate and describe our choice of discrepancy
measure, namely Wasserstein distances and refer to [24] for a general discussion of parameter
estimation in biology.

There are a variety of commonly used discrepancy measures in the literature that can be
used to compare and match distributions directly. Information-theoretic measures like the
Kullback-Leibler or Jensen divergences often become infinite if the compared distributions
do not have identical support (which is rarely the case for the empirical distributions we
consider), rendering them essentially useless for our purposes. Other metrics like the total
variation and Hellinger distances do not provide a usable measure of distance for distributions

3



1-Wass TV Hell Jen KL(1‖2) KL(2‖1)
d( , ) 14.8 0.999 0.997 ∞ ∞ ∞
d( , ) 48.9 1.000 1.000 ∞ ∞ ∞
d( , ) 34.0 0.999 0.996 ∞ ∞ ∞
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Figure 1: Common discrepancy measures for probability distributions do not provide usable
distance metrics for simulated data. The histograms show empirical estimates of the steady-
state distributions for a simple birth-death process with three different ratios of birth and
death rates r (r = 1, r = 16, r = 50). The table compares their 1-Wasserstein (1-Wass),
total variation (TV) and Hellinger (Hell) distances, their Jensen divergences (Jen) and their
Kullback-Leibler divergences (KL). Even though the two outer histograms are significantly
further apart than the neighbouring pairs, the total variation and Hellinger distances in all cases
differ by less than 1%, and the Kullback-Leibler and Jensen divergences between any two
of these histograms are infinite. The 1-Wasserstein distance on the other hand captures an
intuitive notion of distance between these histograms.

without significant overlap, a common scenario where particle numbers can vary over orders
of magnitude (see Fig. 1). In contrast, Wasserstein distances are generally well-defined and
provide an interpretable distance metric between distributions. This is important for our global
approach used for optimization described in Section 2.3.

The steady-state distribution for a reaction system can be represented as a normalized histogram
over the state space Ns, where s is the number of reactant species. Wasserstein distances
measure the discrepancy between two such histograms by considering how much and how far
probability mass has to be moved in order to reshape one histogram into the other; for this
reason they are often called Earth Mover’s Distances (see Fig. 2). The concept of moving mass
between histograms is formalized by transport plans introduced below.

Consider two histograms P , Q over Ns; the value of the histogram P at~i = (i1, . . . , is) ∈ Ns
is denoted P~i. A transport plan T between P and Q is a histogram on Ns ×Ns whose first and
second marginals are P and Q, respectively,∑

~j

T~i,~j = P~i

∑
~i

T~i,~j = Q~j (4)

The value T~i,~j can be viewed as the amount of probability mass that has to be moved from
~i to ~j in order to convert the histogram P into Q; Eq. (4) then represents the conservation
of probability mass during this process. The simplest transport plan between P and Q is the
independent coupling given by

(P ⊗Q)~i,~j = P~i ·Q~j (5)

which specifies that the probability mass in every bin of P is to be distributed evenly across Q.
We denote the space of transport plans between P and Q by U(P,Q).
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Figure 2: (a) Optimal transport distances between histograms measure how much mass has to
be moved in order to convert one histogram into the other. (b) Illustration of a transport plan
between the two histograms in (a). The joint histogram shows the amount of mass transported
between different locations in the histograms. Mass on the diagonal (dotted line) is not moved
during transport.

Optimal transport maps are defined by assigning to each move a certain cost. We define a cost
function C to be a nonnegative function on Ns × Ns, where C~i,~j represents the cost involved
in transporting a unit of probability mass from~i to ~j. While this is not necessary for the theory
we will assume that the cost function is a distance metric on the ground space Ns, ie. there is a
metric d on Ns such that C~i,~j = d(~i,~j). The optimal transport problem with cost function C
reads

WC(P,Q) := inf
T∈U(P,Q)

〈C, T 〉 = inf


∑
~i,~j

C~i,~jT~i,~j : T~i,~j ≥ 0,

∑
~j

T~i,~j = P~i,
∑
~i

T~i,~j = Q~j

 (6)

One can check that the Wasserstein distanceWC defines a metric on the space of probability
distributions on Ns. More generally one can verify that the p-Wasserstein distance

W(p)
C (P,Q) :=WCp(P,Q)1/p (7)

defines a metric on the space of probability distributions on Ns for all p ≥ 1. Here the cost is
given by Cp~i,~j = d(~i,~j)p.
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A commonly used class of metrics on the space Ns is given by the weighted `q-metrics defined
by

d
(w)
`q (~i,~j) =

 s∑
k=1

wqk|ik − jk|
q

 1
q

(8)

for q ≥ 1 and positive weights wk. These metrics are all equivalent and yield equivalent
classes of p-Wasserstein metrics for fixed p; the exact choice of q and the weights is therefore
not important in most applications. We will use the notationWp(P,Q) for the p-Wasserstein
distance when the ground metric is understood.

2.3 Bayesian optimization

Since the dependence of the Wasserstein distance between observed data and simulator output
on the parameters of the CME is not available in closed form and can only be evaluated by
running simulations we are faced with the task of minimizing a function that is expensive to
evaluate and about which no gradient information is available. In order to do this efficiently
we rely on Bayesian optimization, a method for efficiently optimizing expensive black-box
functions in low to moderate dimensions based on a Gaussian process surrogate of the function
to be optimized. See [25] for a comprehensive reference on Gaussian processes and [26] for an
overview of Bayesian optimization going beyond the description in this paper.

In order to apply Bayesian optimization to our problem we start by placing a Gaussian process
prior on the loss function L(x), which is defined on a space X , that measures the discrepancy
with the observed data:

L̂ ∼ GP(µ(x), k(x,x′)) (9)

with mean function µ(x) and covariance kernel k(x,x′). Thus L̂ is a statistical model of the
true function L. In our case L will be the Wasserstein loss measuring the Wasserstein distance
between the steady-state distributions, X will be the chosen space of parameters and the x will
be individual parameter settings. We assume that we can use a simulator to compute noisy
observations of L(xi):

L̃(xi) = L(xi) + εi (10)

at any given point ~xi, where the εi are observation noise. We assume that the εi are iid. normal
random variables with mean zero; the standard deviation of the observation noise can be
interpreted as a hyperparameter of the Gaussian process. With this setup our Gaussian process
L̂ can be updated by obtaining data points Di = {xi, L̃(xi)} for different xi and computing
the posterior L̂ | D.

Our goal is to minimize L(x) with as few evaluations of L̃(x) as possible. Bayesian optimiza-
tion consists of a procedure for sequentially choosing the points x1, . . . ,xn ∈ X at which
L̃(x) is to be evaluated in order to decrease the uncertainty about the location of the optimum,
based on the Gaussian process L̂. This is done by considering a so-called acquisition function
α(x;L | D) depending on the collected observations D and choosing the next point to evaluate
as

xn+1 = arg max
x∈X

α(x;L | D1:n) (11)

The acquisition function returns a point xn+1 such that computing L̃(xn+1) yields additional
knowledge about the minimum of L(x), e.g. by choosing a point which is likely to be near the
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true minimum. It should be simpler to evaluate and optimize than the target function so that
one can use standard optimization methods for finding xn+1 with little overhead. After finding
xn+1 and running the simulator to compute L̃(xn+1) one updates the Gaussian process L̂ with
the data Dn+1 = {xn+1, L̃(xn+1)} and repeats this procedure until the true optimum of L(x)
is found. An illustration of Bayesian optimization can be seen in Fig. 3.

A common choice for the acquisition function α is Expected Improvement, defined by the
following formula:

αEI(x;L | D) := EL|D

[(
min
xi∈D

L̃(xi)− L̂(x)− β
)+
]

(12)

Here β ≥ 0 is a small “jitter” parameter used to reduce the time spent in local optima and
increase exploration. With this acquisition function the predicted optimum of L(x) is typically
computed as:

x∗ := arg min
xi∈D

L̃(xi) (13)

Since Eq. (12) can be computed in closed form the expected improvement at a point x can
be evaluated quite cheaply, and gradients can be computed at little additional cost. It is
known that Bayesian optimization using this acquisition function is guaranteed to find the
optimum of the target function L under some mild assumptions on L and the Gaussian process
prior [27]. This combined with its simplicity and empirical performance properties make
Expected Improvement a popular choice of acquisition function in Bayesian optimization.
Other common acquisition functions are Upper Confidence Bound, Probability of Improvement
and Knowledge Gradient [26], which we shall not consider here.

G
P

x

A
F

(a) Before update

G
P

x

A
F

(b) After update

Figure 3: Illustration of Bayesian opti-
mization in one dimension. Plotted are a
Gaussian process (GP) and its acquisition
function (AF) before and after an update
step. The shaded area represents two stan-
dard deviations around the mean. Each
round consists of computing the loss func-
tion at the point maximizing the acquisi-
tion function (vertical line) and updating
the GP with the computed value. After
the update step the acquisition function
changes to reflect the information gained
in the process, and a new point is chosen
for the next round.
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3 Methods

3.1 Computing Wasserstein distances

Computing Wasserstein distances by finding an explicit optimal transport map in Eq. (6)
requires solving a constrained linear optimization problem with a large number of variables
and constraints. As this approach quickly gets impracticable for realistic histogram sizes we
use an adaptation of the Sinkhorn algorithm presented in [28], which computes the optimum
of a relaxed version of the transport problem:

W(ε)
C (P,Q) = inf

T∈U(P,Q)
〈C, T 〉 − εH(T ) (14)

where the regularizer H(T ) is defined as

H(T ) = −
∑
~i,~j

T~i,~j log T~i,~j (15)

with the convention that H(T ) = −∞ if one of the entries of T is not positive. One can
derive error bounds on the differenceW(ε)

C (P,Q)−WC(P,Q) and show that the solutions to
Eq. (14) converge to the solution of the unregularized problem as ε→ 0. We can thus compute
Wasserstein distances approximately by solving Eq. (14) for small enough ε.

The Sinkhorn algorithm is an iterative solver for Eq. (14), a description of which can be
found in [28]. One drawback of this algorithm is that the number of iterations required for
convergence increases as ε→ 0; in order to compute the solution to Eq. (14) for small ε we
therefore use an annealing procedure starting with a large value of ε (typically ε = 10) and
multiplying it by an annealing factor δ < 1 at each step. We run each step until the two margin
constraints (4) are satisfied to a specified tolerance ε′ in the `1-norm. To improve convergence
speed for small ε we use the overrelaxation method presented in [29].

Due to the large numerical range encountered in the Sinkhorn algorithm all computations
are performed in log-space. In addition, when computing the p-Wasserstein distance with a
weighted `q ground metric, for p = q the cost matrix Cp~i,~j = d

(w)
`q (~i,~j)p decomposes as a sum

of terms, one for each histogram dimension,

Cp~i,~j =

s∑
k=1

wpk|is − js|
p (16)

which permits vectorization of the relevant matrix-vector products in the Sinkhorn algorithm.
For this reason and since the exact choice of q does not matter (see Section 2.2) we will
generally set p = q for efficiency.

We remark that (unweighted) Wasserstein distances in one dimension can be evaluated using
a simpler and more straightforward algorithm: if F and G are the cumulative distribution
functions of two probability distributions f and g on R, respectively, then one can prove [21]
that

Wp(f, g) =

(∫ 1

0

∣∣∣F−1(x)−G−1(x)
∣∣∣p dx

)1/p

(17)

For discrete histograms this integral can be computed exactly with little overhead, making
Wasserstein distances in one dimension especially suited for computational purposes.
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3.2 Bayesian optimization

At this stage we are given experimentally observed data P (a histogram over particle numbers)
and a parametrized simulator model Q(x) whose output is a histogram depending on the
parameters x ∈ X . In our case the function Q(x) is the steady state distribution of the system
with parameters x. Our goal is to find parameters x minimizing a chosen Wasserstein distance

L(x) :=Wp(Q(x), P ) (18)

We can approximate L for any set of parameters by simulating the Chemical Master Equation
for sufficiently long times using the Stochastic Simulation Algorithm [30]. As described in
Section 2.3 we optimize the loss using Bayesian optimization; in this section we describe the
details of our setup.

Assuming our task is to infer d different parameters we start by choosing a (bounded) search
space X ⊆ Rd. In practice one should choose a reasonably large region in which the true
parameters are expected to be found; if this is not the case after optimization one can enlarge
the search space and continue optimization until the optimum is found. We sample m points
x1, . . . ,xm ∈ X spread across the search space and evaluate L̃(x1), . . . , L̃(xm) in order
to pre-train the GP. The choice of m usually depends on the dimension and the expected
roughness of the loss landscape. We sample the points using Latin hypercubes in order to
achieve uniform coverage of the parameter space.

The mean of the Gaussian process L̂ is set to a constant equal to the mean of the L̃(xi). For
the covariance kernel we initially choose a squared exponential function of the form

k(x,x′) = σ2
y exp

[
−1

2
(x− x′)TΛ(x− x′)

]
(19)

The hyperparameters for this setup are the marginal variance σ2
y and the precision matrix Λ,

restricted to be diagonal for simplicity. We fit the kernel hyperparameters by maximizing the
marginal likelihood of the data D1:m, a common procedure for determining hyperparameters
for Gaussian process regression [25].

Bayesian optimization now consists of repeatedly optimizing the acquisition function, comput-
ing the loss function L(x∗) at the optimum x∗ and updating the Gaussian process L̂ with this
information. In order to improve the fit of the Gaussian process we periodically refit the kernel
after sampling enough new points. The resulting procedure is summarized in Algorithm 1.

We often found the value of the loss function L(x) to range over orders of magnitude, making
it difficult to fit a Gaussian process to L(x) in a way that models the function accurately
around the minimum. We therefore use a modified version of the loss function given by
Llog(x) := log(1 + L(x)) which satisfies Llog(x) ≈ L(x) for small L(x) and grows more
slowly for large values of L. This significantly reduces the dynamic range of the function
modelled by the Gaussian process, improving the efficiency of Bayesian optimization on these
problems.

3.3 Non-stationary Bayesian optimization

One issue with the squared exponential kernel commonly used in Gaussian process regression
is that it is stationary, that is, the covariance k(x,x′) only depends on the relative difference
x − x′. This makes it unsuitable for modelling functions which have different levels of
roughness in different parts of parameter space. The loss functions we encountered often
displayed a minimum located in a narrow valley surrounded by a large plateau where the
loss showed little variation. A Gaussian process with a stationary kernel would either choose
very short length scales in order to fit the valley accurately, resulting in a lot of unnecessary

9



Algorithm 1 Bayesian optimization-based parameter estimation
Input: Pobs - observed histogram
Options: N > 0 - number of rounds before refitting GP hyperparameters

m > 0 - number of pre-training samples
ε > 0 - tolerance

Output: x∗ - parameter estimate

sample x1, . . . ,xm ∈ X
for all i = 1, . . . ,m do

compute L̃(xi) by running simulator
Di ← {xi, L̃(xi)}

end for
fit mean and kernel hyperparameters of L̂ to D1:m

n← m
loop

maximize α(x; L̂ | D1:n)

xn+1 ← arg maxx α(x; L̂ | D1:n)

compute L̃(xn+1) by running simulator
if L̃(xn+1) < ε then

x∗ ← xn+1

break
update L̂ with Dn+1 = {xn+1, L̃(xn+1)}
n← n+ 1
if n−m = 0 (mod N) then

refit kernel hyperparameters of L̂ to D1:n

end loop
return x∗

uncertainty far away from the minimum and an inefficient optimization procedure due to
overexploration, or it would pick large length scales to fit the plateau and treat the observations
around the valley as statistical outliers, rendering the optimization routine unable to find the
minimum.

Following [31] we thus consider a weighted superposition of two independent Gaussian
processes, f = wgfg + wlfl with

fg ≈ GP(0, kg(x,x
′)) fl ≈ GP(0, kl(x,x

′)) (20)

and weight functions wg(x), wl(x) to be determined later. This enables us to decompose the
Gaussian process into a global component wgfg modelling the smooth large-scale behaviour of
the loss function and a local componentwlfl that can fit the function accurately at the minimum.
We choose squared exponential kernels kg(x,x′) and kl(x,x′) for these two Gaussian process
components. The weights are parametrized as

wg(x) =

√
1

1 + ν(x)
wl(x) =

√
ν(x)

1 + ν(x)
(21)

for a nonnegative function ν(x). We set ν(x) to be a squared exponential basis function of the
form

ν(x) = exp

[
−1

2
(x− xν)TΛν(x− xν)

]
(22)

10



for Λν a symmetric positive-definite matrix, chosen to be diagonal in our case, and an anchor
point xν .

The kernel of the total Gaussian process f = wgfg + wlfl can be computed to be

k(x,x′) = wg(x)wg(x
′)kg(x,x

′) + wl(x)wl(x
′)kl(x,x

′) (23)

As before we fit the hyperparameters by maximum likelihood estimation, constraining xν to
be the location of the current best observation each time the kernel is refit. This is consistent
with our observation that the loss function typically exhibits the largest amount of variation
around the minimum.

4 Results

4.1 General setup

In all our experiments we chose the 1-Wasserstein distance with a weighted `1 ground metric
on Ns. The weight for each species is chosen to be inversely proportional to the mean particle
number in the reference distribution, wi ∝ E[ni]

−1; this avoids scenarios where mismatches
in abundant species are responsible for the bulk of the Wasserstein loss, leading the optimizer
to ignore low-copy number species as it tries to make the largest gains in the loss function.

Our focus on 1-Wasserstein distances is due to the fact that the p-Wasserstein distances are
numerically more difficult to compute using the Sinkhorn algorithm for p > 1. If the reference
distribution can be matched exactly given the right parameters, these parameters will be the
global minimum of the Wasserstein loss for all p ≥ 1, so the choice of p will not affect results.
If there is a model mismatch and the reference distribution cannot be reproduced with any
set of parameters our algorithm will return parameters minimizing the p-Wasserstein distance
to that distribution; in this case the minimum will in general depend on the chosen distance.
While we have not investigated this issue in detail, we believe that the effect of outliers will be
more pronounced for larger p and that p = 1 is therefore the most stable choice for limited
sample sizes.

The steady state distribution of a reaction network can be obtained in two ways: one can
perform simultaneous measurements for a population of cells in the steady state, or one can
measure the time average of a single instance of the system over long time scales by the ergodic
theorem. Population-level measurements are suitable for experimental data and are commonly
realized using e.g. flow cytometry, while in our simulations we prefer to run one instance of the
system for long times and compute the time average. Depending on the level of parallelization
desired it is possible to run multiple independent simulations for each set of parameters and
combine the results, speeding up the inference procedure. All simulations were performed
using the Stochastic Simulation Algorithm (SSA) [30].

We check convergence to the steady state distribution by computing Wasserstein distances
between the time averages at time points nT , n = 1, 2, . . ., where T is the chosen epoch
length. The epoch length T is chosen heuristically such that simulating the system for a
few epochs yielded accurate estimates of the steady state distribution for the ground truth
system. Simulations are stopped when the distance at two consecutive time points becomes
less than 0.02. In order to avoid wasting computation time for parameter settings yielding very
bad fits to the observed data we also stop simulations if the distance at two consecutive time
points becomes less than 2% of the approximate Wasserstein distance to the observed data.
As computing joint Wasserstein distances in multiple dimensions can be expensive, in our
simulations we computed the sum of the Wasserstein distances of the marginals when checking
for convergence; we found that this did not seem to measurably affect results at the chosen
tolerances.
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The standard deviation of the observation noise in Eq. (10) for our Gaussian processes is set to
0.03, which is on the same order of magnitude as the typical measurement error due to finite
simulation lengths. In general this hyperparameter can be fit together with the rest of the kernel
parameters, but we found this value to work well across experiments. The jitter parameter β
in Eq. (12) was set to 0.01, a value commonly used in practice, being e.g. the default in the
Python library scikit-learn.

Since reaction rates are positive and often range over orders of magnitude we use the log
reaction rates for inference.

4.2 Three-stage gene expression model

Our first experiment consisted of identifying the parameters in the three-stage model of gene
expression found in [32], described by the following reactions:

G
ρm−−−→ G+M M

ρp−−−→M + P M
δm−−−→ ∅ (24)

G
σd−−⇀↽−−σa

G∗ P
1−−→ ∅

This model consists of four reactant species: a gene in an activated (G) and inactivated (G∗)
form, mRNA (M ) and protein (P ). We fix the protein degradation rate to 1 and perform
inference over the remaining five rate constants by observing joint distributions over mRNA
and proteins.

We fix ground truth values for all parameters (taken from Fig. 3 in [32] with γ = 1) and use
the SSA to obtain a reference steady state distribution. We then apply our method to recover
the parameter values based on the observed distribution. The search range for the parameters
is set to cover two orders of magnitude per dimension and includes the ground truth values; the
results of this experiment can be seen in Fig. 4. We re-ran the same experiment comparing
marginal mRNA and protein numbers (without using the joint distribution) and obtained very
similar results, suggesting that it is not always necessary to measure joint distributions to
perform parameter inference for the CME if the marginals are fit precisely.

A typical run for this experiment lasts about 9–10 hours (Intel Xeon CPU at 3.30 GHz, 32
GB RAM). In comparison, parameter inference for this system using moment equations takes
a few minutes. Since the three-stage gene expression model is a linear reaction system it is
possible to compute the steady state moments of protein and mRNA numbers exactly without
having to resort to moment-closure approximations; parameters can then be estimated exactly
using standard optimization methods. While moment-based inference provides a fast and
accurate inference method for linear reaction systems, the three-stage gene expression model
demonstrates that our method works for nontrivial examples. In the next example, however,
we will encounter a nonlinear reaction system for which moment equations perform less well,
requiring the use of alternative methods for parameter estimation.

4.3 Bursty feedback loop

In our second experiment we considered a bursty version of the genetic feedback loop described
by the following list of reactions, taken from [33] and [20]:

Gu
ρu−−−→ Gu + k P Gb

ρb−−−→ Gb + k P k ∼ Geom(b) (25)

Gu + P
σb−−⇀↽−−σu

Gb P
1−−→ ∅

This system describes a protein which can bind to its gene and hence influence its own
transcription rate. The number of proteins produced at each translation event follows a
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(b)
mM mP sM sP rM,P

Obs. � 3.00 30.1 2.16 17.6 0.73
BO 2.96 29.9 2.14 17.5 0.73

(c)
ρm σd σa ρp δm

Range 0.1–10 0.01–1 0.01–1 1–100 0.1–10
GT � 4.00 0.20 0.60 10.0 1.00
BO 4.13 0.18 0.56 10.1 1.06

Figure 4: Results for the three-stage gene expression model in Eq. (24). (a): Steady steady
state distribution over mRNA and protein numbers for the observed data (contours) and the
parameters estimated using Bayesian optimization (shaded). (b): Means (m) and standard
deviations (s) of mRNA and protein numbers as well as their Pearson correlation coefficient (r).
Both the shape and the moments of the observed distribution are matched by our method.
(c): Ground truth and estimated parameters for the observed data and the chosen search ranges.
The results were obtained after 362 rounds starting with 300 initial samples, where the GP
kernel was refit every 75 rounds during optimization.

geometric distribution with mean b,

p(k) =
bk

(1 + b)k+1
(k ≥ 0)

which is a common approximation of mRNA-mediated protein production when the lifetime
of mRNA is very short compared to the mean protein lifetime [34].

The system (25) displays different types of behaviour depending on whether ρu > ρb (negative
feedback) or ρu < ρb (positive feedback). In [20] the authors compare different moment
closure approximations as well as the Linear Mapping Approximation [35] and show that for
the negative feedback loop it is possible to efficiently obtain accurate parameter estimates
using a suitable moment closure scheme. In this section we will focus on the positive feedback
case, which we found to be more challenging for the approach presented in [20].
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Figure 5: Mean protein numbers plotted against the binding rate σb for the bursty positive
feedback loop. There is a sharp increase around σb ≈ 2 as the system switches from being
in the inactivated state most of the time to the activated state. The steady state distributions
differ qualitatively depending on σb, with the intermediate region characterized by bimodal
protein number distributions. The values of the remaining parameters are ρu = 0.3, σu = 400,
ρb = 105, b = 2.

Positive feedback in this system can result in strong sensitivity to parameter values (see Fig. 5).
We chose parameters that resulted in the gene spending non-negligible amounts of time in both
the bound and the unbound state. This regime (which we shall call the intermediate regime)
is characterized by a bimodal steady state distribution over protein numbers which changes
rapidly with σb and ρb.

In order to test how well moment closure methods can approximate the positive feedback loop
we applied six different moment closure schemes from [20]: conditional derivative matching
and conditional Gaussian [36], both conditioned on either the bound or the unbound states
of the gene (denoted CDM1 and CDM2, resp. CG1 and CG2), as well as unconditional
Gaussian (Gauss) and derivative matching (DM) [37]. We also considered the Linear Mapping
Approximation (LMA) [35] as it yields a set of moment equations that can be solved directly,
similar to classical moment closure schemes. In addition we tested the conditional negative
binomial approximation, again conditioned on both the bound and the unbound state of the
gene, which we respectively denote CNB1 and CNB2.

We found that none of the nine methods tested were able to accurately predict mean and
standard deviation of the protein number distribution for our system (Fig. 6). While many were
able to model the system outside the intermediate regime, the presence of large fluctuations in
that regime significantly decreased the accuracy of the methods. The closed moment equations
are nonlinear and usually admit multiple solutions, yielding complex, negative or outlandishly
high predictions for moments. This is similar to the scenario tested in [17] where the considered
moment closure schemes failed to yield unique solutions in general. We found that with the
exception of the LMA all tested moment closure methods broke down in different parts of
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Figure 6: Eight different mo-
ment closure schemes and the
LMA applied to the positive
feedback loop, using ground
truth the parameters given in
Fig. 7. CG1 and DM failed
to yield a solution predicting
a positive mean. Even the
best approximation (CNB1) is
more than 30% off in its esti-
mate of both the mean and the
standard deviation of protein
numbers.

the intermediate regime, and while the LMA itself always yields an interpretable solution it
returns inaccurate predictions of moments for our system (cf. Fig. 6).

Given that none of the moment closure methods used for the negative feedback case capture
the intermediate regime in the positive feedback case one has to rely on alternative inference
methods for our problem. The complicated dependence of the steady state on the parameters
makes this task challenging in general. In the intermediate regime very small changes in σb
or ρb will typically lead to large changes in the steady state distribution, while in the regime
where the gene is mostly unbound the system will virtually be independent of σb (cf. Fig. 5).
Hence the loss landscape looks very different at different points in parameter space, causing
problems for both global and local optimization approaches. A grid search for σb for example
would need to sample values at very short intervals in order to find the correct value in the
intermediate regime, while a local optimization routine would likely get stuck if initialized in a
region where the loss function is flat.

We tested our method on this problem by performing joint inference over σb, ρu and σu in
the intermediate regime, based on observing the (marginal) protein number distribution. The
results are shown in Fig. 7. We recovered a set of parameters that yield a steady state protein
distribution closely matching the input data and which themselves are in broad agreement
with the ground truth. We suspect that the observed discrepancy of about 10 − 15% is due
to local non-identifiability of the parameters, consistent with previous observations for the
negative feedback loop [20]. We remark that changing only σb from its ground truth value
does not yield a similar steady state distribution as can be seen in Fig. 5, suggesting that the
non-identifiability involves trade-offs between different parameters.

The time required for a typical run of our algorithm with this reaction system was 3.5 hours,
which is noticeably faster than the three-stage gene expression model due to the reduced
number of simulations needed for convergence.
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Figure 7: Results for the bursty positive
feedback loop. (a): Steady state distri-
bution over protein numbers for the ob-
served data (contours) and the estimated
parameters (shaded). (b): Means and stan-
dard deviations of the two distributions.
(c): Ground truth and estimated parame-
ters for the observed data. The results were
obtained after 130 rounds starting with 75
initial samples, where the kernel was refit
every 25 rounds during optimization. The
remaining parameters are ρb = 105, b = 2
(cf. Fig. 5).

4.4 Further experiments

In order to gain a better understanding of the relationship between parameter estimation using
Wasserstein distances and existing methods we performed additional tests, investigating the
accuracy of our method for limited sample sizes and for variations of the bursty feedback loop
from Section 4.3.

In practical applications one does not usually have direct access to the steady-state distribution
of a reaction system due to the finite number of cells that can be measured at once. The
reference distribution will therefore always be an empirical measure of the ground truth, where
sample sizes of at least 100 are common for population snapshot data. It is therefore important
to understand how well our method performs when the input distribution is such an empirical
distribution.

We tested our method on the three-stage gene expression model, the positive feedback loop and
negative feedback loop considered in [20], taking as inputs empirical estimates of the ground
truth distribution for different sample sizes. Results are displayed in Tables 1 and 2. In all cases
the estimated parameters yield steady-state distributions that are similar to both the empirical
(input) distribution and the original ground truth data, where the quality of the fit improves
with the sample size. We found that larger sample sizes seem to be necessary where multiple
species are observed simultaneously. The estimated steady-state distributions try to match the
means and standard variations of the empirical data, which is not surprising as convergence
in any of the Wasserstein distance generally implies convergence of the moments [21]. This
suggests that Wasserstein-based inference behaves similarly to moment-based inference in the
context of limited sample sizes.

Existing inference methods for the CME for steady-state data fall broadly into the category of
moment-based inference methods and direct, likelihood-based methods. The direct approach
in [15, 16] differs from our proposal in that it uses the Finite State Projection algorithm (FSP)
to compute the steady-state distribution. The computational time required by the FSP depends
on the number of states considered, which in turn is determined by the desired accuracy and
typically increases exponentially in the number of species. As the time complexity of the FSP
is cubic in the number of states it does not scale as well as the simulation-based approach for
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N = 500
Obs. BO

mM mP sM sP rM,P mM mP sM sP rM,P

2.89 29.9 2.05 17.2 0.69 2.92 30.3 2.07 16.2 0.67

N = 1000
Obs. BO

mM mP sM sP rM,P mM mP sM sP rM,P

2.98 29.7 2.16 17.4 0.71 2.99 29.7 2.03 17.2 0.76

Table 1: Marginal means and standard deviations over mRNA and protein counts as well
as their correlation coefficients for the three-stage gene expression network given empirical
input distributions with sample sizes N = 500 and 1000. Our method was run for 325 rounds
starting with 300 initial samples, with the remaining setup as in Section 4.2.

System
N = 100 N = 500 N = 1000

Obs. BO Obs. BO Obs. BO
mP sP mP sP mP sP mP sP mP sP mP sP

PFL 30.1 28.6 30.6 28.2 30.0 27.5 29.1 26.7 33.2 27.7 32.4 28.4
NFL 25.2 22.0 25.0 21.0 28.6 19.1 28.5 19.1 28.0 19.7 28.1 19.2

Table 2: Mean and standard deviation over protein counts for the three-stage gene expression
network given empirical input distributions with sample sizes N = 100, 500 and 1000. Our
method was run for 150 rounds starting with 75 initial samples, with the remaining setup as in
Section 4.3.

nontrivial reaction systems and we therefore concentrated on moment-based inference in the
following comparison.

To investigate the accuracy of moment-based inference for a nonlinear reaction network
we evaluated the performance of both approaches on four variations of the feedback loop
considered in Section 4.3 with different parameters. The first is the negative feedback loop
(NFL) considered in [20], and the remainder was obtained by randomly drawing parameters for
the entire reaction system and taking the first three parameter settings that yielded nontrivial
steady-state distributions (mP > 5), which we call R1, R2 and R3. The chosen parameters
and search ranges are given in Table 3. For moment-based inference we tested all of the 9
moment-closure schemes listed in Section 4.3. For our method the setup is the same as in
Section 4.3, each run consisting of 150 optimization rounds starting with 75 initial samples.

We found moment-based inference to work well for the negative feedback loop, with all but
two of the listed moment-closure schemes achieving accuracy comparable to our results (see
Appendix A). In some of these cases the mean and variance of the steady-state distribution were
matched accurately, but the shape of the distributions differed perceptibly, which suggests that
means and variances are not always enough to uniquely characterise steady-state distributions
(see Fig. 8). Results for the remaining three networks were mixed: while some moment-closure
schemes worked well for either R2 or R3, many introduced a perceptible bias into the results,
and for R1 the resulting standard deviation was consistently too low. We report the results
of our experiments in Tables 4 and 5, choosing the most accurate moment-closure scheme
for each system as a representative of moment-based inference. Results for the remaining
moment-closure schemes are given in Appendix A.

Parameter values returned by either method frequently differed from their ground truth values
even when the steady-state distributions matched up. This suggests that parameter identifiability
is a common problem for this class of reaction networks (cf. [20]).
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We point out that the accuracy of our method matches that of moment-based inference in all
cases despite the fact that our approach is model-agnostic and can be applied to any reaction
system without modifications, whereas all but two of the moment-closure schemes we used
are tailored to the genetic feedback loop. The wealth of moment-closure schemes available
for this reaction system is due to its structure as a genetic switch and conditional moment-
closure schemes or the LMA [35] do not in general have equivalents for other types of reaction
networks.

Runtimes for our method were on the order of one hour, except for the negative feedback loop
(2.5 hours) and the positive feedback loop (3.5 hours). Moment-based inference was very fast,
usually taking less than a minute per (convergent) run. We found that some moment-closure
methods ran into numerical issues during optimization for some of the systems considered,
consistent with the issues we reported for the positive feedback loop in Section 4.3 and leading
to drastically increased runtimes.

System ρu Range σu Range σb Range ρb b
NFL 13 1–100 0.1 0.01–1 0.001 10−4–0.01 0 3
R1 1.3 1–100 42 1–100 1.5 0.1–10 63 1.5
R2 9.3 0.1–10 1 0.1–10 0.7 0.1–10 0.4 8.3
R3 1 0.1–10 355 10–1000 7.9 0.1–10 20.1 2.4

Table 3: Ground truth parameter values and search ranges for the additional reaction networks
tested in this section.

System GT BO MBI
mP sP mP sP mP sP Method

PFL 32.6 28.0 33.1 28.3 31.9 21.4 CG1
NFL 27.9 19.5 27.9 19.5 28.5 19.3 CG2
R1 66.4 16.1 66.4 15.8 66.5 13.5 CG2
R2 11.4 10.1 11.3 9.9 11.6 10.1 CG2
R3 9.9 9.3 9.7 9.2 10.7 9.0 CG1

Table 4: Mean and standard deviation over protein counts for the ground truth (GT), our
method (BO) and moment-based inference (MBI), as well as the corresponding moment-
closure scheme in the last column.
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System GT BO MBI
ρu σu σb ρu σu σb ρu σu σb

PFL 0.3 400 2.5 0.34 355 2.22 1.41 1000.0 5.45
NFL 13 0.1 0.001 12.7 0.055 0.0006 12.9 0.071 0.0007
R1 1.3 42 1.5 22.2 15.1 0.28 40.2 50.2 0.17
R2 9.3 1 0.7 1.54 6.43 0.10 1.49 10.0 0.10
R3 1 355 7.9 1.14 88.2 1.87 1.36 326.4 6.67

Table 5: Parameters estimated by our method and using moment-based inference (see Table 4).

5 Conclusion

We presented a general-purpose method for parameter estimation for simulator-based stochastic
reaction networks. We computed Wasserstein distances between steady state distributions to
quantify the discrepancy between observed data and simulator output for different parameters
and constructed a probabilistic model of the Wasserstein distance at unexplored parameter
settings by training a Gaussian process with these data. Bayesian optimization was applied
in order to (i) iteratively choose parameter settings that are likely to be close to the optimum,
(ii) evaluate the system at the chosen parameters and (iii) update the model until the results
are consistent with observations. We applied our method to two inverse problems for the
Chemical Master Equation: a five-dimensional problem based on the classical three-stage
gene expression model, and a three-dimensional problem based on a genetic feedback loop,
recovering data consistent with observations in both cases. We performed further experiments
that demonstrated that our method compares favourably with moment-based inference in terms
of accuracy.

Our method only relies on having access to a simulator and does not require the computation
of likelihoods. It is thus especially suited to models such as Brownian Dynamics which
can be sampled from but which are in general not tractable analytically. Given the fact that
many simulator models are expensive to evaluate, Bayesian optimization provides an effective
method to perform inference with a limited number of simulations. To our knowledge there
is no previous literature on efficient parameter estimation for Brownian Dynamics or related
models, and we hope that the approach presented will provide a first stepping stone in this
direction.

Bayesian optimization has previously been used for likelihood-free inference e.g. in [38]. One
potential limitation of global optimization approaches like Bayesian optimization is that they
are often difficult to apply to high-dimensional problems. The number of evaluations needed
until convergence usually scales with the dimension of the parameter space, reducing their
usability for problems with many parameters. The effectiveness of Bayesian optimization in
particular depends strongly on the ability to model complex high-dimensional functions using
a Gaussian process given a limited amount of evaluations, a nontrivial task. We are positive
that continuing research on non-stationary Bayesian optimization methods [31, 39] will enable
us to deal with these problems more effectively in the future.

In this paper we used Wasserstein distances to match distributions, one problem with these
being that the computations can become expensive for large histogram dimensions. There
are multiple possible remedies for this. The Sinkhorn algorithm consists mostly of repeated
matrix-vector operations and can be easily implemented on GPUs, potentially resulting in
significant speed gains compared to using a CPU. For systems with large particle numbers one
can coarse-grain the histogram by binning particle numbers and approximating the Wasserstein
distances using the coarsened histograms. Finally one can compute Wasserstein distances
between lower-dimensional marginals separately and minimize the sum of the distances. While
this method may potentially lose information about correlations between different species
we have observed it to yield near identical results for the three-stage gene expression model.
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Since it is difficult to experimentally measure joint distributions of several distinct species,
fitting marginalized distributions is a reasonable approach in these situations and we found it
to perform well in practice.

Data availability

The code for this project is available at https://github.com/kaandocal/wasserstein_
inference.
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A Results for moment-based inference

Method PFL NFL R1 R2 R3
ρu σu σb ρu σu σb ρu σu σb ρu σu σb ρu σu σb

GT 0.3 400 2.5 13 0.1 0.001 1.3 42 1.5 9.3 1 0.7 1 355 7.9
CDM1 0.15 1000.0 5.82 12.6 0.025 0.0002 43.2 100.0 0.10 3.26 1.62 0.26 0.10 356.5 10.0
CDM2 0.97 74.7 5.13 2.14 0.031 0.0076 1.20 54.1 0.71 1.65 0.19 0.11 3.73 12.1 2.22
CG1 1.41 1000.0 5.45 12.6 0.012 0.0001 43.2 100.0 0.10 3.32 0.66 0.11 1.36 326.3 6.67
CG2 7.78 619.6 2.07 12.9 0.070 0.0007 40.2 50.2 0.17 1.49 10.0 0.10 2.46 192.7 2.38

CNB1 0.15 1000.0 5.86 13.9 0.24 0.0032 43.2 100.0 0.10 4.21 1.25 0.30 0.10 341.3 10.0
CNB2 0.42 39.1 0.98 86.2 0.051 0.0027 4.38 31.3 7.91 3.45 1.27 7.77 0.62 552.5 0.30
Gauss - - - 12.6 0.017 0.0002 43.2 100.0 0.10 - - - - - -
DM 0.15 1000.0 5.90 14.3 0.29 0.0042 43.2 100.0 0.10 3.74 1.23 0.25 0.10 336.1 10.0

LMA 15.0 1000.0 0.79 13.7 0.068 0.0008 43.2 100 0.10 6.75 0.75 0.19 4.53 1000.0 0.10

Table 6: Ground truth and inferred parameters for the five reaction networks considered in Section 4.4 using the tested moment-closure
schemes. Gaussian moment closure failed to converge in most cases.

Method PFL NFL R1 R2 R3
mP sP mP sP mP sP mP sP mP sP

GT 32.6 28.0 27.9 19.5 66.4 16.1 11.4 10.1 9.9 9.3
CDM1 15.8 22.8 28.4 19.2 66.5 13.1 11.8 9.8 3.5 7.6
CDM2 195 25.2 2.57 4.39 16.6 15.1 5.3 7.1 43.6 12.9
CG1 31.9 21.4 28.7 19.1 66.6 13.1 11.1 10.4 10.7 9.0
CG2 36.6 15.2 28.5 19.3 66.5 13.5 11.6 10.1 10.7 7.8

CNB1 13.2 20.7 27.8 19.6 66.7 13.3 11.8 10.2 3.7 7.9
CNB2 169 26 25.8 61.9 90.5 15.5 4.8 6.2 1.5 2.3
Gauss - - 29.4 19.0 66.4 13.1 - - - -
DM 16.8 23.1 27.9 19.7 66.7 13.1 11.8 10.0 4.2 8.5

LMA 34.8 11 27.8 21.0 67.1 13.1 13.7 12.2 11.0 6.2

Table 7: Mean and standard deviation over protein counts for the ground truth parameters and
those inferred using moment-based inference.
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