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Abstract

Harini DESIRAJU

Painlevé tau-functions and Fredholm determinants

It is now known that the tau-functions associated to the generic solutions of the Painlevé
equations III, V, VI can be expressed as a Fredholm determinants. The minor expansion of
these determinants provide an interesting connection to random partitions. We show that
the generic tau-function of the Painlevé II equation can be written as a Fredholm deter-
minant of an integrable (Its-Izergin-Korepin-Slavnov) operator. The tau-function depends
on the isomonodromic time t and two Stokes parameters, and the vanishing locus of the
tau-function, called the Malgrange divisor is determined by the zeros of the Fredholm deter-
minant. As a mid-step, we show that the Fredholm determinant of the Airy kernel which
is also the tau-function of the Ablowitz-Segur family of solutions to Painlevé II, can be
expressed as the determinant of a combination of Toeplitz operators called the Widom con-
stant. Furthermore, constructing a suitable basis, we obtain the minor expansion of the
determinant of the Airy kernel labelled by colourless and chargeless Maya diagrams.

We also generalise the techniques to study the tau-functions of Painlevé III, V, VI to the
case of Fuchsian system with generic monodromies in GL(N, C) on a torus, and show that
associated the tau-function can be written as a Fredholm determinant of Plemelj operators.
We further show that the minor expansion of this Fredholm determinant is described by a
series labeled by charged partitions. As an example, we show that in the case of SL(2, C) this
combinatorial expression takes the form of a dual Nekrasov-Okounkov partition function.





vii

Acknowledgements

Foremost, I thank my advisors Prof. Tamara Grava and Prof. Marco Bertola for introducing
me to the beautifully intricate area of integrable systems. I am grateful for their valuable
guidance and continued support.

I thank my co-authors Dr. Fabrizio Del Monte and Dr. Pavlo Gavrylenko for many won-
derful discussions. I also express my gratitude to Prof. Mattia Cafasso, Prof. Alexander Its,
Prof. Oleg Lisovyy, Dr. Alexander Moll, Dr. Andrei Prokhorov, Dr. Giulio Ruzza for numer-
ous illuminating discussions from which I benefited a great deal. I especially thank Prof.
Alexander Its and Prof. Elizabeth Its for their warm hospitality during my visit to IUPUI.
I am grateful to Department of Mathematics and Statistics at Concordia University, Cen-
tre International de Rencontres Mathématiques, Luminy, and Department of Mathematical
sciences at IUPUI for their hospitality during my visits. I acknowledge LYSM grant and
H2020-MSCA-RISE-2017 PROJECT No. 778010 IPADEGAN for the financial support.

I thanks my colleagues, friends and family for their continued support. A special ac-
knowledgement to my mother Bharathi and father Satya Sai Babu for their love and sup-
port.

Finally, I am grateful to the SISSA staff and community for all their support during
trying COVID times.



viii

This project has received funding from the European Union’s
H2020 research and innovation programme under the Marie
Skłowdoska-Curie grant No. 778010 IPaDEGAN



ix

Contents

Abstract v

Acknowledgements vii

I Tau-functions and Painlevé equations 1

1 Introduction 3
1.1 Isomonodromic deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Painlevé equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Riemann-Hilbert problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Painlevé II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 Special solutions of Painlevé II . . . . . . . . . . . . . . . . . . . . . . . 16

2 Tau-functions and Fredholm determinants 19
2.1 "Determinant" of Toeplitz operators . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Symbols on a unit circle . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.2 Symbols on the imaginary axis . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Integrable kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Determinant of Plemelj operators . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Maya diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Aspects of the Airy kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 Airy kernel and Painlevé II . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.2 Integral representation of the Airy kernel . . . . . . . . . . . . . . . . . 37

II Fredholm determinants 41

3 Ablowitz-Segur family of solutions 43
3.1 Toy model: Ablowitz-Segur solution . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Computing the Widom constant . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Relation to the JMU tau-function . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 General solutions of Painlevé II 51
4.1 Riemann-Hilbert Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Parametrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Reduction to a RHP along the imaginary axis . . . . . . . . . . . . . . . . . . . 56
4.3 Integrable kernel and Fredholm determinant . . . . . . . . . . . . . . . . . . . 62

4.3.1 LU decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.2 Integrable kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.3 Malgrange forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



x

4.4 Fredholm determinant representation of Painlevé II tau-function . . . . . . . 72

5 Tau-function of a n-point torus 75
5.1 The 2-particle nonautonomous Calogero-Moser system: a toy model . . . . . 75
5.2 Tau-function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Pants decomposition and Plemelj operators . . . . . . . . . . . . . . . . 77
5.2.2 Constructing the Fredholm determinant . . . . . . . . . . . . . . . . . . 82
5.2.3 Relation to the Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Generalization to the n-punctured torus . . . . . . . . . . . . . . . . . . . . . . 93
5.3.1 Block-determinant representation of the tau-function . . . . . . . . . . 99
5.3.2 Relation to the Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . 102

III Combinatorics 109

6 Combinatorics of the Airy kernel 111
6.1 Minor expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Combinatorial representation of tau-functions on a torus 117
7.1 Charged partitions and Nekrasov functions . . . . . . . . . . . . . . . . . . . . 117

7.1.1 Minor expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.1.2 Reduction to rank-1 residues: the case of 2-particle nonautonomous

Calogero-Moser system . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.1.3 Elliptic Garnier system and Nekrasov functions . . . . . . . . . . . . . 127

Bibliography 135



1

Part I

Tau-functions and Painlevé equations
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Chapter 1

Introduction

Integrable systems are ubiquitous in several areas of mathematics and physics. There are
several compatible notions of integrability and they typically share the following character-
istics [62], [2]:

• existence of Lax pairs,

• presence of underlying geometric structure,

• explicit form of the solutions.

Consider a classical mechanical system with the Hamiltonian H(pi, qi). The equations of
motion read

dpi

dT
= −∂H

∂qi
,

dqi

dt
=

∂H
∂pi

. (1.0.1)

If the equations of motion can be written in terms of a set of matrices L, M, called the Lax
matrices, as

dL
dt

= [L, M] , (1.0.2)

the Hamiltonian system is said to be integrable. Such systems are also called isospectral
owing to the fact that the spectrum of the matrix L is conserved, i.e the spectral curve

det (L− λ1) = 0 (1.0.3)

is constant in time. Moreover, the quantities Tr Lk gives the integrals of motion

∂

∂t
Tr Lk = Tr

(
k [M, L] Lk−1

)
= 0. (1.0.4)

In this thesis, we focus on a particular subclass of integrable systems called the isomon-
odromic systems, which in contrast to the isospectral systems have time dependent Hamil-
tonians. Moreover, isospectral systems are obtained by an automous reduction of isomon-
odromic systems [2].

1.1 Isomonodromic deformations

This is a quick review of isomonodromic deformations. Refer to [43], [36], [68] for a com-
plete treatment of the subject, and [100, 101] for reviews covering the subject from a slightly
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different perspective. Our starting point is a linear system with rational coefficients and
n + 1 singularities

dY
dλ

= A(λ)Y, A(λ) =
n

∑
ν=1

rν+1

∑
k=1

Aν,k−1

(λ− aν)k −
r∞−1

∑
j=−1

λj A∞,j+1, (1.1.1)

where

Aν,k−1, A∞,j+1 ∈ slN (C) , (1.1.2)

and rν is called the Poincaré rank of the pole at λ = aν. We further assume that the highest
order matrix coefficients Aν,rν are diagonalizable

Aν,rν = GνΞν,rν G−1
ν ; Ξν,rν = diag (θν,1, . . . , θν,N) , (1.1.3)

and their eigenvalues are distinct and non-resonant in the sense that:
{

θν,α 6= θν,β, if rν ≥ 1, α 6= β,
θν,α 6= θν,β mod Z, if rν = 0, α 6= β.

(1.1.4)

Without loss of generality, Gν is chosen to be unimodular det Gν = 1 We also assume that
A∞,r∞ can be diagonalized, namely

A∞,r∞ = G∞Ξ∞,r∞ G−1
∞ , (1.1.5)

where G∞ can always be set to identity with a suitable transformation. The space of coeffi-
cients A is then defined as

A := {aν, Aν,k−1, A∞,j+1, Ξν,rν , Ξ∞,r∞ , Gν ; k = 1 . . . rν,

j = −1 . . . r∞ − 2, ν = 1 . . . n} (1.1.6)

and its dimension [100]

dim A =

(
n

∑
ν=1

rν + r∞

)
(N2 − 1) + (N − 1)(n + 1) + (N2 − 1)(n− 1) + n− 2. (1.1.7)

The formal solution of the linear system (1.1.1) at the singularity aν is unique, and reads

Y(ν)
form(λ) = GνΨ(ν)(λ)eΞν(λ), (1.1.8)

where

Ψ(ν)(λ) =

{
1 + ∑∞

k=1 Ψν,k(λ− aν)k, ν = 1, . . . , n,
1 + ∑∞

k=1 Ψ∞,kλ−k, ν = ∞,
(1.1.9)
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and Ξν(λ) is the matrix valued function

Ξν(λ) :=

{
∑rν

k=1
Ξν,k

k (λ− aν)−k + Ξν,0 log(λ− aν), ν = 1, . . . , n
−∑r∞

k=1
Ξ∞,k

k λk − Ξ∞,0 log λ, ν = ∞.
(1.1.10)

The matrix Ξν,rν is defined by (1.1.3), Ξν,k, k = 1, ..., rν are diagonal matrices, and along with
the matrix valued coefficients of the expression (1.1.9) Ψν,k, Ψ∞,k, are determined recursively
as polynomials of the matrix coefficients Aν,k−1, k = 1, ..., rν (for further details, refer to [43]),

Ξν,rν−1 + [Ψν,1, Ξν,rν ] = G−1
ν Aν,rν−1Gν,

Ξν,rν−2 + [Ψν,2, Ξν,rν ] = G−1
ν Aν,rν−2Gν + G−1

ν Aν,rν−1GνΨν,1 −Ψν,1Ξν,rν−1,
...

A system is called Fuchsian if rν = 0, r∞ = 0, i.e the only singularities in the system are
simple poles and viceversa.

The Fuchsian case

In this section we consider only the Fuchsian case. The solution Y(λ) is multivalued on
CP1\{aν}n

ν=1 and its analytic continuation around a closed loop oriented anti-clockwise
around aµ, depends solely on the homotopy class of the loop. For each µ we define as `µ

the close loop around aµ (see Figure 1.1)

`µ : [0, 1]→ CP1\{aν}n
ν=1, `µ(0) = `µ(1) = z0. (1.1.11)

The loops γ1, . . . γn form a set of generators of the fundamental group π1
(
CP1\{aν}n

ν=1; z0
)
,

and the map

M : π1

(
CP1\{aν}n

ν=1; z0

)
→ GLN(C). (1.1.12)

defines the monodromy representation of the Fuchsian system.

z0

.

`1

a1

`2

a2 a3
. . .

an

`n

FIGURE 1.1: Fundamental loops `ν.
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Any solution in (1.1.8) can be written as Y(ν)(λ)Cν, where Cν is some invertible constant
matrix. We choose Y(∞)(λ) as our fundamental matrix solution so that

Y(λ) =

{
Y(∞)(λ) = G∞Ψ(∞)(λ)eΞ∞(λ),
Y(ν)(λ)Cν = GνΨ(ν)(λ)eΞν(λ)Cν, ν = 1, . . . , n.

(1.1.13)

This unambiguously defines the connection matrices Cν. According to the above expansion,
it follows that under the transformation λ → `ν λ, where `ν λ stands for the point λ after a
counterclocksiwe loop around aν, we have

Y(`ν λ) = Y(λ)Mν,

where the monodromy matrix Mν is given by

Mν = C−1
ν e2πiΞν,0Cν. (1.1.14)

Note that the monodromy representation M (γν) = Mν is a group anti-homomorphism:

M (`1 `2) = M (`2)M (`1). (1.1.15)

Since
`n`n−1 . . . `1 = `−1

∞ ,

we obtain the constraint

M1...MnM∞ = 1. (1.1.16)

Remark 1.1. In the case of a Fuchsian system on a Riemann surface of genus g with n Fuchsian
singularities, the non-trivial holonomy around the A-cycles and B-cycles of the surface induces the

monodromy
(

MAj , MBj

)g

j=1
around the respective cycles. The monodromy constraint then reads

M1...Mn

g

∏
j=1

MAj M
−1
Bj

M−1
Aj

MBj = 1. (1.1.17)

The case for g = 1 will appear in chapter 5.

General case: Irregular singularities

Let us now consider systems with irregular singularities. The asymptotic behaviour of Y(λ)
in the neighbourhood of an irregular singularity aν exhibits the Stokes phenomenon which is
described as follows. Let ε > 0 be sufficiently small and consider the sector Ωj,ν defined as

Ωj,ν = {λ : 0 < |λ− aν| < ε,
π(j− 1)

rν
− ε < arg (λ− aν) <

π j
rν
} (1.1.18)

for j = 1, . . . , 2rν + 1, there exists a unique canonical solution Y(ν)
j satisfying the condition

Y(ν)
j (λ) ' Y(ν)

form(λ), as λ→ aν, λ ∈ Ωj,ν. (1.1.19)
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The Stokes matrices then relate the canonical solutions in different Stokes sectors:

S(ν)
j :=

(
Y(ν)

j

)−1
Y(ν)

j+1, j = 1 . . . 2rν. (1.1.20)

Stokes matrices satisfy a triangularity condition (up to a permutation); if the eigenvalues of
the diagonal matrix Θν,rν are ordered so that the real parts are strictly decreasing, then the
Stokes’ matrices are alternatively lower or upper triangular with ones on the diagonal. This
structure can be motivated by the fact that both Y(ν)

j , Y(ν)
j+1 behave as Yν in the asymptotic

limit, implying the following:

• the diagonal entries of S(ν)
j are 1,

• the multiplication by S(ν)
j on the right can only add a column of Y(ν)

j multiplied by a
scalar back to itself,

implying that S(ν)
j is alternatively lower or upper triangular, we refer to [43, 36, 68] for a

complete treatment. Choosing Y∞
1 as fundamental matrix solution, the connection matrices

are defined as

Cν :=
(

Y(ν)
1

)−1
Y(∞)

1 , ν = 1, . . . , n. (1.1.21)

and the monodromy matrix Mν around the singularitu aν reads

Mν := C−1
ν e2πiΞν,0

(
S(ν)

2rν

)−1
. . .
(

S(ν)
1

)−1
Cν. (1.1.22)

Let us now introduce the space of monodromy data M of the system which consists of
formal monodromy exponents Ξν,0, Connection matrices Cν and Stokes matrices S(ν)

j :

M := {S(ν)
j , Ξν,0, Cµ; j = 1, . . . 2rν, ν = 1, . . . , n, ∞ , µ = 1, . . . , n : M1 . . . MnM∞ = 1},

(1.1.23)

and the dimension [100]

dim M =

(
n

∑
ν=1

rν + r∞

)
(N2 − 1) + (N − 1)(n + 1) + (N2 − 1)(n− 1). (1.1.24)

Note that dim M is always even.
Let us now look for the deformations of the linear system (1.1.1) such that the mon-

odromies remain unchanged, i.e isomonodromic deformations. For a deformation to be isomon-
odromic, there should exist a matrix valued, meromorphic one form U such that

δY = UY (1.1.25)

where δ = daν
∂

∂aν
. The above fact can be easily verified:

δY(γ.λ) = UY(γ.λ)
(1.1.12)⇒ δ (YMγ) = UYMγ

(1.1.25)⇒ δMγ = 0. (1.1.26)
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The compatibility condition of (1.1.1), (1.1.25) reads

δA− dU
dz

= [A, U], δU = U ∧U. (1.1.27)

We can now introduce the set of isomonodromic times

T = {aµ, Ξν,k; k = −rν, . . . ,−1, ν = 1, . . . , n, ∞, µ = 1, . . . , n}, (1.1.28)

with dimension [100]

dim T = n +

(
n

∑
ν=1

rν + r∞

)
(N − 1)− 2. (1.1.29)

Note that dim A = dim M + dim T.

1.2 Painlevé equations

Painlevé equations are second order nonlinear ordinary differential equations (ODEs) of the
form

d2u
dx2 = F

(
u,

du
dx

, x
)

(1.2.1)

with F rational in
(

u, du
dx

)
, analytic in x, and posessing the Painlevé property such that the

general solutions cannot be written as contour integrals. Moreover, the solutions are free
from branch points and essential singularities that depend on the initial data [36, 43]. For
a linear ODE, the singularities of its general solution are uniquely determined by the coef-
ficients of the equation. In contrast, the singularities of the general solutions of nonlinear
ODEs depend on the initial data. The only movable singularities of the solutions to the
Painlevé equations are poles. The Painlevé equations were first formulated by Fuchs [48],
Gambier [51], Painlevé [97], and Picard [99]. The solutions of these equations, called the
Painlevé transcendents, are transcendental as the name suggests and are often regarded as
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nonlinear analogues of special functions. Here is the list of the six equations1:

PI : u′′ = 6u2 + x, (1.2.2)

PII : u′′ = 2u3 + xu + α, (1.2.3)

PII I : u′′ =
1
u
(
u′
)2 − 1

x
(u′) +

αu2

x
+

β

x
+ γu3 +

δ

u
, (1.2.4)

PIV : u′′ =
1

2u
(
u′
)2

+
3
2

u3 + 4xu2 + 2(x2 − α)u +
β

u
, (1.2.5)

PV : u′′ =
(

1
2u

+
1

u− 1

) (
u′
)2 − 1

x
u′ +

(u− 1)2

x2

(
αu +

β

u

)

+
γu
x

+
δu(u + 1)

u− 1
, (1.2.6)

PVI : u′′ =
1
2

(
1
u
+

1
u− 1

+
1

u− x

) (
u′
)2 −

(
1
x
+

1
x− 1

+
1

u− x

)
u′

+
u(u− 1)(u− x)

x2(x− 1)2

(
α +

βx
u2 +

γ(x− 1)
(u− 1)2 +

δx(x− 1)
(u− x)2

)
. (1.2.7)

The equations (1.2.2)-(1.2.7) have associated Lax pairs with the following singularity struc-
ture

PI : n = 0, r∞ = 5, (1.2.8)
PII : n = 0, r1 = 0, r∞ = 3, (1.2.9)
PII I : n = 1, r1 = 1, r∞ = 1, (1.2.10)
PIV : n = 1, r1 = 0, r∞ = 2, (1.2.11)

PV : n = 2, r1 = r2 = 0, r∞ = 1, (1.2.12)
PVI : n = 3, r1 = r2 = r3 = r∞ = 0, (1.2.13)

As an example, the Flaschka-Newell Lax pair of the Painlevé II equation (with isomon-
odromic time x) reads [42]

dY
dλ

=
[
−i
(

4λ2 + x + 2u2
)

σ3 + 4λuσ1 − 2vσ2 −
α

λ
σ1

]
Y, (1.2.14)

dY
dx

= [−iλσ3 + uσ1]Y, (1.2.15)

where v = u′, the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (1.2.16)

and the consistency condition (1.1.27) of the Lax pair (1.2.14),(1.2.15)

d
dx

dY
dλ

=
d

dλ

dY
dx

(1.2.17)

1Notation: ′ = d
dx
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gives Painlevé II (1.2.3). Painlevé equations have several interesting properties out of which,
we highlight two aspects relevant to this thesis in this chapter:

• Coalescence of equations,

• Hamiltonian structure.

Coalescence of Painlevé equations

All Painlevé equations can be obtain from an appropriate degeneration of Painlevé VI. As
an example, the transformation

u(x; α, β)→ u(x; α)

ε
+

1
4ε3 , x → εx− 1

4ε3 ;

α→ −2α− 1
32ε6 , β = − 1

512ε12 (1.2.18)

on Painlevé IV (1.2.5) under the limit ε→ 0 yields Painlevé II (1.2.3) [35].
The degeneration of Painlevé equations is best visualised through the coalescence dia-

gram that was proposed in [30, 31]. Starting from the underlying geometry of linear system
of Painlevé VI which is a Riemann sphere with 4 punctures, the geometries of the other
Painlevé linear systems are obtained by what are known as chewing gum moves that either
coalesce two holes to produce a Riemann sphere with one less hole, and two new cusps on
the boundary of the coalesced part, or reduce the number of cusps at one hole by 1 by a
process called cusp removal. This representation also highlights (the red circle in fig 4.1) the
pants decomposition of the associated Riemann surface.

PV I

PV

PVdeg

PIIID6

PIIID7 PIIID8

PIV

PIIFN

PI

PIIJM

FIGURE 1.2: Coalescence diagram.
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The singularity structure of the Painlevé equations can be read off from the above di-
agram. Each circle on the boundary represents a Fuchsian singularity and the cusps rep-
resent Stokes lines. The special solutions of Painlevé equations (obtained through specific
constraints on the initial data) are often expressed in terms of classical special functions [88,
91, 82, 86, 117]. For example, the special solutions of Painlevé VI are described by Gauss
hypergeometric functions, the one parameter solutions of Painlevé II are related to the Airy
functions. Such solutions also have a coalescence diagram similar to the general solutions
as in Fig: 1.3.

Gauss Whi�aker

Hermite

Bessel

Airy

FIGURE 1.3: Coalescence diagram for special functions.

Painlevé-Calogero correspondence

Painlevé equations have the remarkable property of appearing as equations of motion of
Hamiltonian systems of time dependent anharmonic oscillators [93]. As an example, Painlevé
II arises through the equations of motion

p :=
∂u
∂x

;
du
dx

=
∂H
∂p

,
dp
dx

= −∂H
∂u

, (1.2.19)

of the system with time dependent Hamiltonian H(p, u, x)

H(p, u, x) =
p2

2
+ V(u, x), V(u, x) := −u4

2
− xu2

2
− αu. (1.2.20)

Moreover, the Hamiltonians associated to Painlevé equations are related to rank-one case
of Inozemtsev extension [64] of Calogero-Moser systems, and this correspondence is called
the Painlevé-Calogero correspondence [111]. In turn, these Hamiltonians satisfy the so-
called sigma form of Painlevé equations [94]. In this thesis, the focus will be on Painlevé
VI which has a peculiar role as it is associated to a non-autonomous Hamiltonian system
with an elliptic potential. The first step to this result [80, 85, 96] was the key observation
that Painlevé VI (1.2.7) can be written in terms of elliptic integrals. Below, we outline the
computation in Takasaki’s paper [111]. Let us introduce the Picard-Fuchs operator Lx

Lx := x(1− x)
d2

dx2 + (1− 2x)
d

dx
− 1

4
, (1.2.21)
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that solves the Picard-Fuchs equation for complete elliptic integrals. The Painlevé VI equa-
tion for u = u(x) can be equivalently written as

x(1− x)Lx

∫ u

∞

dz√
z(z− 1)(z− x)

=
√

u(u− 1)(u− t)

×
[

α +
βx
u2 +

γ(x− 1)
(u− 1)2 +

(
δ− 1

2

)
x(x− 1)
(u− x)2

]
. (1.2.22)

Let us consider the change of dependent variable u → Q, and the independent variable
x → τ

Q(x) :=
1

2(e2 − e1)1/2

∫ u

∞

dz√
z(z− 1)(z− x)

, (1.2.23)

x =
e3(τ)− e1(τ)

e2(τ)− e1(τ)
, (1.2.24)

where for i = 0, 1, 2, 3,

ei = ℘(ωi), ω0 = 0, ω1 =
1
2

, ω2 =
1
2
+

τ

2
, ω3 =

τ

2
, (1.2.25)

τ being the modular parameter, and the Weirstrass ℘-function

℘(z|τ) = 1
z2 + ∑

(m,n) 6=(0,0)

(
1

(z + m + nτ)2 −
1

(m + nτ)2

)
(1.2.26)

with fundamental periods 1, τ. Under the transformation (1.2.23), (1.2.24), the form of
Painlevé VI in (1.2.22) reads

(2πi)2 d2Q(τ)

dτ2 =
3

∑
n=0

αn℘
′(Q + ωn), (1.2.27)

where the parameters αi’s are related to α, β, γ, δ in (1.2.22) as

α0 = α, α1 = −β, α2 = γ, α3 = −δ +
1
2

. (1.2.28)

Setting αi =
m2

8 , and using that ∑3
n=0 ℘

′(Q + ωn) = 8℘′(2Q), (1.2.27) reads

(2πi)2 d2Q(τ)

dτ2 = m2℘′(2Q|τ), (1.2.29)

which is also known as the nonautonomous Calogero-Moser system. This will be the start-
ing point of chapter 5.
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1.3 Riemann-Hilbert problems

Let us now introduce an analytic tool that proves critical in studying many aspects of
isomonodromic systems, called the Riemann-Hilbert problem [12, 13, 23, 43]. A Riemann-
Hilbert problem typically consists of finding an analytic function with prescribed ’jumps’
dictated by the monodromy data on a set of contours determined by the singularity data.
Finding such function is tantamount to finding a bijective map between the coefficient space
A and the space M×T, where M is the monodromy manifold and T is the space of isomon-
odromic times. Let us introduce a minimal setup of a Riemann-Hilbert problem (RHP): If
a N × N matrix valued function Ψ(λ, x) depending on the coordinate λ and a parameter x
with a jump on the smooth contour Σ defined in fig. 1.4 such that

Riemann-Hilbert problem 1.1.

• Ψ(λ, x) is analytic on C\Σ.

• On the contour Σ, the following boundary value problem is satisfied

Ψ+(λ, x) = Ψ−(λ, x)J(λ, x), (1.3.1)

where J(λ, x) ∈ Mat(N, C), det J = 1, and the jump is identity in the asymptotic limit.

Ψ+
Ψ−

Σ

FIGURE 1.4: Contour

• In the limit λ→ ∞,
Ψ(λ, x) = 1 +O(λ−1). (1.3.2)

When det J = 1, the solution of the RHP, if exists, is unique: unimodularity of the jump J
implies that det Ψ is analytic in λ ∈ C as it has no jump on the contour Σ, and the Liouville
theorem then implies that det Ψ = 1. This seemingly obscure construction is vital to provide
crucial insights into several aspects of integrable systems such as the asymptotics, and in
this thesis will prove essential in constructing what are called the τ-functions, that will be
introduced in the next chapter. Let us now study the RHP of Painlevé II.

1.3.1 Painlevé II

The equation
u′′ = 2u3 + ux (1.3.3)
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is called the homogeneous Painlevé II equation which is (1.2.3) with α = 0, and arises as a
consistency condition of the so called Jimbo-Miwa-Garnier Lax pair [71]

dY
dλ

=
[
−i
(

4λ2 + x + 2u2
)

σ3 + 4λuσ1 − 2vσ2

]
Y =: A(λ, x)Y, (1.3.4)

dY
dx

= [−iλσ3 + uσ1]Y =: U(λ, x)Y. (1.3.5)

The generalized monodromy data (including the Stokes matrices) [72] for the ODE (1.3.4)
defines a RHP depending locally analytically on x and on the Stokes data. Its solvability is
the (generalized) inverse monodromy problem [42]. We introduce the matrix Ψ(λ) defined
as

Ψ(λ) := Y(λ)eiθ(λ,x)σ3 , θ(λ) =
4
3

λ3 + xλ. (1.3.6)

The matrix Ψ(λ, x) ∈ GL(2, C) satisfies the following RHP on the contour in fig:1.5 (see e.g.
[43]).

Riemann-Hilbert problem 1.2.

• Ψ(λ, x) is piece-wise analytic for λ ∈ C\ ∪6
k=1 γk, where

γk =
{

λ ∈ C : arg λ =
π

6
+

π

3
(k− 1)

}
, k = 1, ..., 6, (1.3.7)

such that Ψ(λ, x) ≡ Ψk in the respective Stokes sector Ωk defined by

Ωk =
{

λ ∈ C :
π

6
(2k− 3) < arg λ <

π

6
(2k− 1)

}
, k = 1, ..., 6. (1.3.8)

• For λ ∈ γk, the following boundary condition is satisfied

Ψk+1 = ΨkSk, (1.3.9)

where the matrices Sk are alternatively lower or upper triangular

Sk =

(
1 0

ske2iθ(λ,x) 1

)
for k ≡ 1 mod 2, Sk =

(
1 ske−2iθ(λ,x)

0 1

)
for k ≡ 0 mod 2,

(1.3.10)

The symmetries of the system introduce constraints on Stokes parameters sk. We begin
by noting that the linear system (1.3.4) has the following symmetry

−A(−λ, x) = σ2A(λ, x)σ2, (1.3.11)

which in turn implies that

Y(−λ, x) = σ2Y(λ, x)σ2, Sn+3 = σ2Snσ2. (1.3.12)

Therefore the Stokes parameters sk satisfy the following constraint

sk+3 = −sk , s1 − s2 + s3 + s1s2s3 = 0. (1.3.13)
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• In the asymptotic limit λ→ ∞,

Ψ(λ, x) = 1 +O(λ−1). (1.3.14)

S1 =

(
1 0

s1e
2iθ 1

)

γ1

S2 =

(
1 s2e

−2iθ

0 1

) γ2

S6 =

(
1 −s3e−2iθ

0 1

)

γ6

S3 =

(
1 0

s3e
2iθ 1

)

γ3

S5 =

(
1 0

−s2e2iθ 1

)

γ5

S4 =

(
1 −s1e−2iθ

0 1

)
γ4

Ω1

Ω2

Ω3

Ω4

Ω5

Ω6

Ψ1

Ψ2

Ψ3

Ψ4

Ψ5

Ψ6

FIGURE 1.5: Stokes rays

The constraint on the Stokes data (1.3.13) implies that the solution Ψ(z, t) depends only
on two Stokes parameters. In this thesis, we are concerned with the generic 2-parameter
solutions that correspond to the following constraints on the Stokes parameters

s1s3 6= 1 ; arg(1− s1s3) ∈ (−π, π). (1.3.15)

The Painlevé II transcendent can then be obtained from the solution Ψ(λ, x) of the RHP 1.2:

u(x) = 2(Ψ(1))12 = 2Res λ=∞ (λ(Ψ)12) . (1.3.16)

Where Ψ(1) is obtained from the asymptotic expansion,

Ψ(λ) = 1 + Ψ(1)λ−1 + Ψ(2)λ−2 +O(λ−3). (1.3.17)

Indeed, rearranging the terms of the matrix A in (1.3.4) such that

A(λ) = A0 + A1λ + A2λ2 (1.3.18)

with

A0 := −i
(

x + 2u2
)

σ3 − 2vσ2, A1 := 4uσ1, A2 := −4iσ3, (1.3.19)
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we obtain (1.3.16) by substituting (1.3.6), (1.3.18) in (1.3.4) and comparing powers.
We can thus recast the general solution of Painlevé II in terms of the monodromy data

(s1, s2, s3) subject to the constraint (1.3.13)) of the linear system (1.3.4) as opposed to the data
of initial values of (1.3.3) as a consequence of the bijection between the spaces A, M× T

when the RHP is solvable2. Such a construction holds for all the Painlevé equations. Such a
formulation of the Painlevé transcendent proves useful to study the asymptotics [24, 70, 27,
38].

Remark 1.2. The local parametrices of the RHPs of Painlevé equations are usually described by the
Wronskians of special functions. For example, the local parametrices of Painlevé VI are described
by hypergeometric functions. This property is seen through the pants decomposition of the Riemann
surfaces associated to the Painlevé equations fig: 1.2. Painlevé VI is associated to a 4-point sphere
which can be cut into two 3-point spheres which in turn are associated to hypergeometric functions.
Such decomposition is feasible only for the Painlevé equations sitting on the top tier of the Coalescence
diagram as indicated by the red circles in fig: 1.2. We will however see that the local parametrices of
the RHP of Painlevé II, after a suitable transformation, are described by parabolic cylinder functions.

Remark 1.3. The ratio of the global solutions to the RHPs and their local parametrices often redefine
the RHP on a simpler contour. Such ratios will be a recurring theme of this thesis.

1.3.2 Special solutions of Painlevé II

Special solutions of Painlevé equations are obtained by specific conditions on the initial
data, which in turn are equivalent to a constraint on the monodromy data. One such im-
portant one-parameter class of special solutions of the homogeneous Painlevé II equation

u′′ = xu + 2u3 (1.3.20)

are the Ablowitz-Segur family [107] of solutions which are specified uniquely by the bound-
ary condition

u(x) ' κAi(x); x → +∞, κ ∈ C . (1.3.21)

or equivalently, setting the Stokes parameter

s2 = 0⇒ s1 = −s3, κ := s1. (1.3.22)

Under the constraint (1.3.22), and rotating by π
2 , fig. 1.5 transforms as

2For a detailed study of the coefficient space and monodromy space, refer to Chapters 1.6 and 4.2 of [43].
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γRγL

GR =

(
1κeθ(z)

0 1

)
GL =

(
1 0

κe−θ(z)1

)

FIGURE 1.6: Contour

and the RHP reads as follows

Riemann-Hilbert problem 1.3.

• Γ(λ, x) is analytic for λ ∈ C\ (γL ∪ γR).

• For λ ∈ (γL ∪ γR), the following bourdary condition is valid

Γ−1
− Γ+ = G =

{
GL, for λ ∈ γL

GR, for λ ∈ γR.
(1.3.23)

• In the limit λ→ ∞

Γ = 1 +O(λ−1). (1.3.24)

Ablowitz-Segur solutions are well known to be associated to the Airy kernel

u(x)2 = − d2

dx2 log det
[
1− κKAi|[x,∞)

]
, (1.3.25)

where KAi is the Airy kernel

KAi(z, w) =
Ai(z)Ai′(w)− Ai′(z)Ai(w)

z− w
. (1.3.26)

In fact special solutions of all Painlevé equations have such determinantal structure and
have applications in wide ranging areas of mathematical physics. Another example is a
special solution of Painlevé V which is related to the sine kernel. More will be said about
these kernels and Airy kernel in particular, in the next chapter.
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Chapter 2

Tau-functions and Fredholm determinants

In the theory of isomonodromic deformations, the tau-function (τJMU) was introduced by
the Kyoto school [102, 103, 104, 105, 106] and it is constructed starting from a certain 1-
form ωJMU on the space of the deformation parameters T [72]. If the parameters are of
isomonodromic type, then the form ωJMU is closed under differentiation with respect to the
parameters. The corresponding τJMU function is defined locally as

δ log τJMU = ωJMU (2.0.1)

where δ denotes total differentiation with respect to the parameters.
There are at least two ways of formulating the tau-function.

1. As a generator of isomonodromic Hamiltonian on the space A\{T = const.} [66] :

δ log τJMU := Hdt = ∑
ν=1,...,n,∞

Res λ=aν
tr
(

A(λ, x) δGνG−1
ν

)
, (2.0.2)

where A(λ, x) is the Lax matrix.

2. For the generic RHP 1.1, the tau-function is defined as a logarithmic potential of a
one-form called the Malgrange form1 on T [84]

ωM =: δ log τJMU =
∫

Σ

dz
2πi

Tr
[

Ψ−1
−

∂Ψ−
∂z

δJ J−1
]

. (2.0.3)

The locus in the parameter space where the problem becomes unsolvable is called the
Malgrange divisor because (in the language of algebraic geometry) it can be described
locally as the zero level set of a local analytic function.

Remark 2.1. The dependence of the tau-function on the Stokes data is studied by considering an
extension of the Malgrange form on M×T [6, 8]. In which case, δ depends not only on the isomon-
odromic times but also the Stokes parameters.

Remark 2.2. An important point to be stressed is that the tau-function is not unique and is defined
up to multiplicative factors depending only on the monodromy data, owing to the structure of the
tau-function as a section of a line bundle [9]. We put this fact to good use throughout this thesis as
will become clear.

Tau-functions play a central role in the study of integrable systems and are the main
object of interest in this thesis. Apart from the role tau-functions play in Riemann-Hilbert

1Here we are restricting to the δ = ∂
∂t dt
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analysis, they also appear in the study of partition functions and correlators of matrix mod-
els [45, 43, 46]. Typically, a tau-function also satisfies what is called the Hirota bilinear
equation. Please refer to [60] for a comprehensive treatment of the subject. In this thesis, we
use the above two notions and show that the tau-functions (2.0.2), (2.0.3) can be expressed
as Fredholm determinants. In particular, the Chapters 3, 4 thesis will be mostly concerned
with the Riemann-Hilbert approach whereas Chapter 5 will concern the Hamiltonian ap-
proach.

For the next two subsections, let us focus on the formulation of the tau-function in terms
of the RHP (2.0.3). The solvability of a generic RHP can be recast as invertiblity of an integral
operator. The determinants of such operators then contend to be a natural candidate for the
tau-function. In fact, when tau-functions are expressed as Fredholm determinants, their
zero locus uniquely describes the Malgrange divisor. Furthermore, the asymptotic data of
the system such as connection constants become calculable. Let us now present formulation
of the isomonodromic tau-function (2.0.3) as a Fredholm determinant of

1. a combination of Toeplitz operators called the Widom constant,

2. an integrable operator in the sense of IIKS.

In the final section, we motivate another formulation of the tau-function as a determinant
of Cauchy operators as the construction is case specific.

2.1 "Determinant" of Toeplitz operators

Toeplitz matrices and Toeplitz operators play a significant role in mathematical physics with
applications ranging from Statistical physics to non-commutative geometry. For example,
the correlation functions of two-dimensional Ising model are described by Toeplitz matrices
[120]. For the purposes of this thesis, it is sufficient to understand that a Toeplitz operator
is an operator that projects a L2-space on to its Hardy space.

2.1.1 Symbols on a unit circle

A generic RHP on a unit circle with the jump condition ψ+(z, t) = ψ−(z, t)G(z, t) (the jump
G(z, t) is called the symbol in the language of Toeplitz determinants) is solvable if and only
if the Toeplitz operator

TG := Π+G =
∫

S1

dw
2πi

G(w, t)
z− w

(2.1.1)

is invertible (see [33] for a proof), where Π+ is the Cauchy projection operator that maps
analytic functions on L2(S1) to the interior disk of the circle. Moreover, the jump on a unit
circle admits Birkhoff factorization which means that the matrix valued function G can be
factorized as

G = φ−(z, t)φ+(z, t)−1 = ψ−1
− (z, t)ψ+(z, t) (2.1.2)

where the ± parts represent the positive and negative parts of the Laurent series represen-
tation of the function G. The invertibility of the Toeplitz operator TG−1 then dictates the
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solvability of the RHP with the factorization G = φ−(z, t)φ+(z, t)−1 of the jump matrix. The
Widom constant is then defined as

τ[G] := det (TG−1 ◦ TG) , (2.1.3)

and it is the isomonodromic τ function up to a multiplicative factor. The quantity τ[G] in
(2.1.3) was obtained by Widom in the description of the asymptotic behaviour of Toeplitz
determinants [118], [119], when the size of the matrix tends to infinity, as a refinement of the
strong Szegö theorem. The description of the Widom constant in terms of Toeplitz matrices
was obtained by Borodin and Okounkov in [21]. Note that the determinant of a Toeplitz
operator is not well defined as the trace is divergent. But, when the symbol is on a unit
circle, the Toeplitz operators have the property that

TG−1 ◦ TG = 1 + trace class op. (2.1.4)

and its determinant (2.1.3) is therefore a determinant in the sense of Fredholm. The above
construction also holds for RHPs defined on straight line contours with the only difference
that the determinant of analogous Toeplitz operators (2.1.3) is usually Hilbert-Schmidt and
the determinant is therefore a regularized determinant. Notable examples of tau-function
assuming the form of a Widom constant are the Sato-Segal-Wilson tau-function [29], and
isomonodromic tau-functions of Painlevé equations III, V, VI [28].

Side note: An operator K belongs to the pth ideal Ip if Tr Kp is convergent. The operator
K is called trace class if p = 1, Hilbert-Schmidt if p = 2. The determinant det(1 + K) is
Fredholm if K is trace class, and a regularized determinant otherwise [109].

2.1.2 Symbols on the imaginary axis

We now start with a RHP with the jump condition

Ψ+(z, t) = Ψ−(z, t)J(z, t) (2.1.5)

on the imaginary axis where the jump J ∈ GL(N, C). The duplicability of the above exercise
for the present choice of contour lies in the fact that both the contours, the unit circle and
the straight line, split their respective L2 spaces orthogonally. The contour iR divides the
complex plane into the right half (negative side) and the left half (positive side). The space
L2 (iR, |dz|)⊗C2 can be split as the direct sum of two closed subspaces (Hardy spaces):

H = L2(iR, C2) = H+ ⊕H−

where the functions of H are thought of as column vectors. The two subspaces consist of
(vector valued) functions in L2(iR) that are boundary values from the left(+)/right(−) of
analytic functions that tend to 0 as <z > 0, |z| → ∞ respectively. On these spaces, one can
define projection operators Π± such that

Π+ : H → H+ ; Π− : H → H−.
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Explicitly, Π± are just the Cauchy transforms

Π+ f (z) =
∫

iR

dw
2πi

f (w)

w− z
<z < 0 (2.1.6)

Π− f (z) = −
∫

iR

dw
2πi

f (w)

w− z
<z > 0 (2.1.7)

with the equality Π+ + Π− ≡ 1. The Birkhoff factorization of the jump matrix J

J(z, t) = Θ−(z, t)Θ+(z, t)−1 = Ψ−1
− (z, t)Ψ+(z, t) (2.1.8)

introduces the dual RHP Θ+ = J−1Θ− in addition to the direct RHP (2.1.5). To define the
tau-function, we write the Toeplitz operator TJ : H → H+ for the symbol J

TJ( f ) = Π+(J f ) (2.1.9)

where the test function is acted upon by multiplication, followed by the projection, and its
inverse reads

(TJ)
−1( f ) = Π+Ψ−1

+ (Ψ− f ) : H+ → H+. (2.1.10)

It can be verified that (2.1.10) is the inverse of (2.1.9), i.e

(TJ)
−1 ◦ TJ = 1

(TJ)
−1 ◦ TJ( f ) = Π+Ψ−1

+ (Ψ−TJ( f ))

= Π+Ψ−1
+ (Ψ−Π+ J)( f )

= Π+Ψ−1
+ [Ψ−(1−Π−)(J f )]

= Π+Ψ−1
+ [Ψ+ f −Ψ−Π− J f ]. (2.1.11)

Since Ψ−Π− J f ∈ H−, Π+Ψ−1
+ [Ψ−Π− J f ] = 0, and Ψ+ f ∈ H+ implying that Π+Ψ−1

+ [Ψ+ f ] =
f . Therefore,

(TJ)
−1 ◦ TJ( f ) = f . (2.1.12)

Definition 2.1. We define the Widom constant for a symbol on a straight line contour as

τ[J] = det
(

TJ−1 ◦ TJ

)
. (2.1.13)

Proposition 2.1. The Widom constant τ[J] as defined in (2.1.13) admits an equivalent representa-
tion as the determinant

τ[J] = detH[1 + U] (2.1.14)

where 1 denotes the identity operator on H, U : H → H is an operator represented in the splitting

H± as U =

(
0 a
b 0

)
and a : H− → H+; b : H+ → H− are given by,

a = Ψ+Π+Ψ−1
+ −Π+ ; b = Π− −Ψ−Π−Ψ−1

− .
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Proof. Substituting (2.1.9) in (2.1.13) and manipulating the terms gives the familiar form of
the determinant representation of tau-function in [28].

τ[J] = detH+ [TJ−1 ◦ TJ ] = detH+ [Π+ J−1Π+ J]

= detH+ [Π+Ψ−1
+ Ψ−Π+Ψ−1

− Ψ+]

= detH+ [Ψ+Π+Ψ−1
+ Ψ−Π+Ψ−1

− ]

= detH+ [Ψ+Π+Ψ−1
+ Ψ−(1−Π−)Ψ−1

− ]

= detH+ [1− (Ψ+Π+Ψ−1
+ )(Ψ−Π−Ψ−1

− )]

= detH+ [1− (Ψ+Π+Ψ−1
+ −Π+)(Π− −Ψ−Π−Ψ−1

− )]

= detH[1 + U] (2.1.15)

where

U =

(
0 a
b 0

)
(2.1.16)

and
a = Ψ+Π+Ψ−1

+ −Π+ ; b = Π− −Ψ−Π−Ψ−1
− . (2.1.17)

Notice that
a : H− → H+ ; b : H+ → H−.

Now, one can repeat the same computation as above in terms of the dual RHP Θ± and
get the following.

a = Θ+Π+Θ−1
+ −Π+ b = Π− −Θ−Π−Θ−1

− . (2.1.18)

Proposition 2.2. The logarithmic derivative of Widom constant in (3.2.1) is related to the isomon-
odromic tau-function (2.0.3) as [28]

∂s log τ[J] =
∫

iR

dz
2πi

Tr
{

J−1∂t J
[
Ψ−1
+ ∂zΨ+ + ∂zΘ+Θ−1

+

]}
. (2.1.19)

Proof. Begin with the Fredholm determinant 2

τ[J] = det
[

TJ−1 ◦ TJ

]
= det [PQ] (2.1.20)

2This computation follows from Theorem 2.3 in [28]. The difference being the choice of factorisation.
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where P = TJ−1 = Π+ J−1 and Q = TJ = Π+ J. Inverses are P−1 = Θ−Π+Θ−1
+ and

Q−1 = Ψ−1
+ Π+Ψ−1

− . Computing the logarithmic derivative

∂t log det [PQ] = Tr
[
∂tPP−1 + Q−1∂tQ

]

= Tr
[
−Π+ J−1∂t J J−1Θ−Π+Θ−1

+ + Ψ−1
+ Π+Ψ−Π+∂t J

]

= Tr
[
−Π+ J−1∂t JΘ+Π+Θ−1

+ + Ψ−1
+ Π+Ψ+ J−1 (1−Π−) ∂t J

]

=
∫

iR

dz
2πi

Tr
{

J−1∂t J
[
Ψ−1
+ ∂zΨ+ + ∂zΘ+Θ−1

+

]}
(2.1.21)

to obtain the last expression we use the fact that J−1∂t J is a multiplication operator and only
the diagonal parts of Y+Π+Y−1

+ and Θ−1
+ Π+Θ+ contribute to the expression.

2.2 Integrable kernels

Another important notion of tau-functions is in the form of the determinants of ’integrable
kernels’ which were first introduced by Its, Izergin, Korepin and Slavnov [69] to study cer-
tain Fredholm determinants describing quantum correlation functions for Bose gas as the
tau-function of a special solution to the Painlevé V equation. Adhering to the theme of
this chapter, given an integrable operator K, the invertibility of the operator (1 − K) is
equivalent to solving a suitable Riemann-Hilbert problem on the complex plane. The name
integrable is due to the fact that any such operator solves some integrable equation (see
[37]). The tau-function is then defined as the determinant det(1−K) and we will show that
it is related to the isomonodromic tau-function (2.0.3) through multiplicative factors. The
advantage of the present construction is that the requirement of factorizability of the jump
function of the RHP can be lifted.

Let Σ ⊂ C be a collection of contours and Γ(z) solve the following RHP

Riemann-Hilbert problem 2.1.

• Γ(z) is a N × N matrix valued function is analytic for z ∈ C\Σ.

• The following jump condition holds for z ∈ Σ

Γ+(z) = Γ−(z)G(z); G(z) :=
(

1− 2πi f (z)gT(z)
)

(2.2.1)

where f (z), g(z) are rectangular matrices of suitable dimension under the constraint

f T(z)g(z) = 0. (2.2.2)

• In the limit z→ ∞,

Γ(z) = 1 +O(z−1). (2.2.3)

Let us now define the integral operator K with kernel K(z, w)

K(z, w) :=
f T(z)g(w)

z− w
, (2.2.4)
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and K(z, z) = f ′T(z)g(z). Moreover, the Jacobi variational formula reads:

δ log det (1−K) = −TrL2(Σ) ((1 +R) ◦ δK) (2.2.5)

whereR is the resolvent operator:

R := (1−K)−1 ◦ K. (2.2.6)

The important result [37], [69] is contained in the following theorem.

Theorem 2.1. The RHP 2.1 is solvable iff the operator (1 − K) is invertible and the resolvent
operator is also an integrable operator with kernel given by

R(z, w) := (1− K)−1 ◦ K(z, w) =
FT(z)G(w)

z− w
, (2.2.7)

where,

FT(z) := (1−K)−1 f T (2.2.8)

G(z) := g (1−K)−1 , (2.2.9)

Here the inverse is applied entry-wisely to the vectors f , g. Moreover, the solution of the RHP 2.1
determines the resolvent kernel

R(z, w) =
f T(z)ΓT(z)Γ−T(w)g(w)

z− w
. (2.2.10)

Proof. The equation for the resolvent is

(1 +R) ◦ (1−K) = 1 ⇔ R−K = R ◦K. (2.2.11)

Now we rewrite this equation using the expression (2.2.10)

R ◦ K(z, w) =
∫

Σ

f T(z)ΓT(z)Γ−T(x)g(x)
z− x

f T(x)g(w)

x− w
dx. (2.2.12)

To proceed we observe that the matrix Γ−T solves the jump condition

Γ−T
+ = Γ−T

−
(

1 + 2iπg f T
)

, z ∈ Σ. (2.2.13)

Observe also that for x ∈ Σ we have

Γ−T
+
− Γ−T

− = 2iπΓ−T
− g f T (2.2.14)
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and therefore the right hand side does not depend on the boundary value, namely Γ−T
− g f T =

Γ−T
+

g f T, by using (2.2.14) and recalling that gT f ≡ 0. Thus (2.2.12) yields

∫

Σ
f T(z)ΓT(z)

(
Γ−T
+ (x)− Γ−T

− (x)
)

g(w)
1

(z− x)(x− w)

dx
2iπ

= (2.2.15)

=
∫

Σ
f T(z)ΓT(z)

(
Γ−T
+ (x)− Γ−T

− (x)
)

g(w)
1

z− w

(
1

z− x
+

1
x− w

)
dx
2iπ

= (2.2.16)

=
f T(z)ΓT(z)

z− w

∫

Σ

(
Γ−T
+ (x)− Γ−T

− (x)
)( 1

z− x
+

1
x− w

)
dx
2iπ

g(w) (2.2.17)

This expressions splits into two similar integrals; for this purpose we choose z 6∈ Σ and,
using Cauchy’s theorem together with the fact that Γ(∞) = 1, we have

∫

Σ

Γ−T
+ (x)− Γ−T

− (x)
z− x

dx
2iπ

= 1− Γ−T(z) (2.2.18)

Continuing then the chain of equalities we find:

(2.2.12) =
f T(z)ΓT(z)

z− w

[
1−ΓT(z)︷ ︸︸ ︷

∫

Σ

(
Γ−T
− (x)− Γ−T

+ (x)
)

z− x
dx
2iπ

+ (2.2.19)

+

Γ−T(w)−1︷ ︸︸ ︷
∫

Σ

(
Γ−T
− (x)− Γ−T

+ (x)
)

x− w
dx
2iπ

]
g(w) = R(z, w)− K(z, w) (2.2.20)

and thus we have shownR ◦K = R−K.
We now show the converse statement; supposing that 1−K is an invertible operator, in

terms of the vector F(z) we construct the matrix Γ as a Cauchy–type integral

Γ(z) := 1−
∫

Σ
dx

F(x)gT(x)
x− z

. (2.2.21)

We then observe that, for z ∈ Σ, we have (Γ+(z)− Γ−(z)) f (z) = −2iπg(z) f t(z) = 0, so that
the two boundary values coincide. We then evaluate directly either of these two boundary
values as follows:

Γ±(z) f (z) = f (z)−
∫

Σ
dx

F(x)gT(x) f (z)
x− z

= f (z) + FKT = f + F− F(1−K)T (2.2.22)

= f + F− f (1−K)−T(1−K)T = f + F− f = F. (2.2.23)

Using (2.2.23) thus the formula for Γ (2.2.21) reads

Γ(z) := 1−
∫

Σ
dx

Γ(x) f (x)gT(x)
x− z

(2.2.24)

from which it follows that Γ solves the RHP (2.1).
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In order to write the tau-function of a RHP as a Fredholm determinant of an integrable
operator, it is therefore sufficient to express the associated jump function as (2.2.1) under
the constraint (2.2.2).

Relation to the Malgrange form

Theorem 2.2. The logarithmic derivative of the determinant of the integrable operator with kernel
(2.2.4) is related to the JMU tau-function (2.0.3) as follows

∂t log τJMU = ∂t log det (1− K)− H(J) (2.2.25)

where

H(J) =
∫

Σ

(
∂t f ′Tg + f ′T∂tg

)
dz− 2πi

∫

Σ
gT f ′∂tgT f dz (2.2.26)

See Appendix A of [10] for a proof.
Our goal in this thesis is to study the formulation of Painlevé tau-functions as Fredholm

determinants. Many relevant solutions of the Painlevé equations that appear in various
branches of mathematics turn out to be expressed as a Fredholm determinant of some IIKS
operator [113, 20, 22, 69]. A few notable examples are: the tau-function of the Painlevé II
equation which is expressed as a Fredholm determinant of the Airy kernel and describes
the Tracy-Widom distribution [113], the gap probability distribution in random matrices
that is described by the sine kernel (Painlevé V) [113], the correlation function of stochastic
point processes on a one-dimensional lattice that originated from representations of the
infinite symmetric group is a Fredholm determinant with hypergeometric kernel (Painlevé
VI) [20],[22].

2.3 Determinant of Plemelj operators

A third construction of tau-function as Fredholm determinants is case specific. The follow-
ing is the overview of the construction in [54] for the case of a Riemann sphere and Fuchsian
singularities. Let Y(z, t) be the solution of a linear problem on a Riemann sphere with n + 2
Fuchsian singularities. Such a surface can then be decomposed to n pairs of pants or trin-
ions T [k], k = 1, ..., n , which are glued together by annuli A [l], l = 1, ..., n− 1 . Let Φk(z, t)
solve the linear problem associated to each pair of pants T [k].

. . .T [1] T [2] T [n]

C [1]in C [1]out C [2]in C [2]out

C [n−1]
out C [n]in

A [1] A [2] A [n−1]

FIGURE 2.1: Pants decomposition for the n + 2-punctured sphere
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A Hilbert space H [k] of vector values functions can be associated to each trinion T [k] :

H [k] =
⊕

ε=in,out

(
H

[k]
ε,+ ⊕H

[k]
ε,−
)

, H
[k]

ε,± = CN ⊗ V±
(
C [k]ε

)
, (2.3.1)

where V± (C) denote the space of functions holomorphic inside and outside a neighbour-
hood of the contour C respectively, and the total Hilbert space H

H :=
n⊕

k=1

H [k] = H+ ⊕H−, (2.3.2)

We then define the following operators

• In terms of Φk(z, t) that solves the linear problem associated to the trinion T [k], we
define the operator P⊕ : H →H as

P⊕ :=
n⊕

k=1

P [k]; P [k] f [k](z) :=
∫

C [k]in ∪C
[k]
out

Φk(z)Φk(w)−1 f [k](w)

z− w
dw
2πi

(2.3.3)

where C [k]in , C [k]out are the contours shown in the fig. 2.1, and the functions f [k](z) ∈H [k].

• In terms of Y(z, t) that solves the linear problem associated to the n-point sphere, we
define the operator PΣ : H →H

PΣ f (z) :=
∫

CΣ

Y(z)Y(w)−1 f (w)

z− w
dw
2πi

, CΣ =
n−1⋃

k=1

C [k]out ∪ C
[k+1]
in (2.3.4)

where f (z) ∈H .

The singular factor 1
z−w in (2.3.3), (2.3.4) is interpreted by appropriately deforming the con-

tours Cin, Cout in order to avoid the pole at z = w. The tau-function is then defined as

τ := det
H+

[
P−1

Σ P⊕
]

. (2.3.5)

Furthermore, the logarithmic derivative of (2.3.5) relates to the Hamiltonian construction of
the tau-function (2.0.2) through multiplicative factors. Refer to [54] for the proof. The case
for genus 1 surface with n-punctures is presented in chapter 5.

Remark 2.3. Note that the constructions in Sections 2.1, 2.2 gave a Fredholm determinant interpre-
tation to the tau-function defined in terms of RHP (2.0.3) as opposed to the construction in Section
2.3 which enables us to write the Hamiltonian formulation of the tau-function (2.0.2) as a Fredholm
determinant.

2.4 Maya diagrams

One of the advantages of expressing the tau-function as a Fredholm determinant is that the
principal minor expansion labelled by Maya diagrams, yields a combinatorial representa-
tion of the tau-function. In this subsection, we review the construction [28].
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The determinant of an operator K ∈ Cm×m can be expanded in terms of its principal
minors. For a finite m×m matrix K, the minor expansion is

det (1 +K) =
∞

∑
n=0

∑
i1<...<in

det(Kip,iq)
n
p,q=1. (2.4.1)

This sequence obviously terminates after n = m. Now we generalise (2.4.1) if K is instead
an infinite dimensional matrix.

• The matrix K is now labelled by an infinite discrete set. Define a half-integer lattice
Z′ = Z + 1

2 . Then, the set of all finite subsets of Z′ is given by {0, 1}Z′ and χ ⊂
{0, 1}Z′ . For Z′∓ = Z′≶0, we define ’particles’ (pχ) to be the positions pχ = χ ∩Z′−
and ’holes’ (hχ) to be the positions hχ = χ ∩Z′+. (pχ, hχ) define point configurations
on Z′. Furthermore, for a block matrix, we have two indices.

– Expansion of the block determinant, given by the particles and holes (pχ, hχ)

– The index within the block, which is called the colour index.

• Maya diagram mχ is constructed by drawing filled circles at the points (Z′+\pχ) ∪ hχ

and empty circles at pχ ∪ (Z′−\hχ). Set of all Maya diagrams is denoted by M =
∪χmχ.

• For det(1 + K), the minors can be labelled by the half integer lattice Z′. Rows and
coloumns will now be labelled by χ ⊂ {0, 1}Z′ . The minor expansion is given by

det [1 +K] = ∑
χ⊂{0,1}Z′

detKχ (2.4.2)

• Maya diagrams can also be written as Young diagrams by playing the following game.
Reading the Maya diagram from the left end, draw the arrow (↘) for every filled
circle ( ) and a vertical line pointing downwards (↗) for every empty circle ( ).

• The charge of the Maya diagram mχ is defined as

Qχ := #hχ − #pχ, (2.4.3)

and the total charge is zero

∑
χ

Qχ = 0. (2.4.4)

Example:

Let K be a 2× 2 block operator acting on a Hilbert space that has an orthogonal decompo-
sitionH = H+ ⊕H−,

K =

[
0 A
B 0

]
(2.4.5)

and A, B are 2× 2 matrix valued operators acting onH∓ → H± respectively. Since A, B are
2× 2, the minors will be labelled by a set of 2 colours red and blue. For example, the entries
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of A are labelled as follows

A =

(
a11 a12
a21 a22

)
. (2.4.6)

The minor expansion is then obtained by expanding the operator in an appropriate basis
of the Hilbert space H that produces an infinite dimensional matrix K, and summing over
all the principal minors. We now explain the labelling for the following choice of a 3× 3
principal minor shown in fig. 2.2.

0 A

B 0

0

0

5
2

7
2

− 1
2

− 5
2

− 1
2

7
2

5
2 − 5

2

h

p

h p

FIGURE 2.2: Minor expansion

From fig. 2.2, let us collect the positive (holes) and negative (particles)2 of the two colours
blue and red:

pχ =

(
−5

2
,−1

2

)
; hχ =

(
5
2

,
7
2

)
(2.4.7)

Recalling that Young diagrams are constructed from the associated Maya diagrams by draw-
ing the arrow (↘) for every filled circle ( ) and a vertical line pointing downwards (↗) for
every empty circle ( ), the configurations of Maya diagrams and Young diagrams are the
following

2The notation of particles and holes, filled and empty circles can be interchanged in a consistent manner
taking care of the definition of the charge (2.4.3)
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. . . 13

2

11

2

9

2

7

2

5

2

3

2

1

2
−1

2
−3

2
−5

2
−7

2
. . .

Qr

FIGURE 2.3: mχ =
( 5

2 , 7
2

)
, the corresponding charge Qr = +2

. . . 5

2

3

2

1

2
−1

2
−3

2
−5

2
−7

2
−9

2
−11

2
. . .

Qb

FIGURE 2.4: mχ =
(
− 5

2 ,− 1
2

)
, the corresponding charge Qb = −2

As is evident from Fig. 2.3, 2.4, the total charge is zero, and since the minor associated to
any configuration of Fig: 2.2 that is chosen such that the total charge is non-zero vanishes.
Therefore, the labelling of the minors by Maya diagrams automatically retains only the non-
zero terms in the expansion.

Remark 2.4. The zero charge condition depends on the topology of the system. We will see in
Chapter 7 that for tau-functions on a torus, the total charge is not zero, but a constant and appears
as an overall exponential factor in the minor expansion.

Remark 2.5. A tau-function when expressed as a Fredholm determinant could have a combinatorial
interpretation through its minor expansion. Such structure however is possible only through the
existence of a suitable basis for minor expansion. We will see in this thesis that the tau-function
of the general solution of Painlevé II as we construct in Chapter 4 does not have a combinotrial
structure due to the lack of an appropriate basis.
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2.5 Aspects of the Airy kernel

In this section we highlight two computations concerning the Airy kernel which are well
known but we consider worthy of repetition. The first computation recovers the Painlevé
II equation: this exercise is beneficial to understand the working of IIKS kernels better. In
the second subsection, we highlight the integral representations of IIKS kernels through the
example of the Airy kernel. Similar expressions for Bessel kernel are well known in the
literature.

2.5.1 Airy kernel and Painlevé II

Besides constructing the tau-function, given an integrable kernel one can find the associated
integrable equation. In this subsection, we discuss the procedure to start form the Airy
kernel and obtain the Painlevé II equation. Although the procedure is well known, it is a
quick and important exercise that is worth repeating here3.

Let us recall the Airy kernel

KAi :=
Ai(x)Ai′(y)− Ai(y)Ai′(x)

x− y
=

f T(x)g(y)
x− y

, (2.5.1)

where

f (x) =
(

Ai(x)
Ai′(x)

)
; g(x) =

(
Ai′(x)
−Ai(x)

)
, (2.5.2)

and it is straightforward to see that f (x)Tg(x) = 0. A translation by a parameter t gives

Kt :=
Ai(x + t)Ai′(y + t)− Ai(y + t)Ai′(x + t)

x− y
=

f T(x + t)g(y + t)
x− y

. (2.5.3)

Invertibility of the operator (1−Kt) informs the solvability of the following RHP defined
on the interval Σ ≡ [0,+∞)

Riemann-Hilbert problem 2.2.

• Ψ(x, t) is analytic on C\Σ

• The following jump condition is valid

Ψ+(x, t) = Ψ−(x, t)J(x, t), (2.5.4)

where J(x, t) = 1− 2πi f (x + t)gT(x + t)

• Asymptotically,

Ψ(x, t) = 1 +
M1

x
+

M2

x2 + O(x−3). (2.5.5)

3We change the convention in this subsection with respect to (1.3.26). This subsection is to be studied with
the notation fixed by (2.5.1)
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Now, we show that the jump can be made constant by conjugation. To see this, we write

J(x, t) = 1− 2πi f (x + t)gT(x + t) = I − 2πi
(

Ai(x + t)
Ai′(x + t)

) (
Ai′(x + t) −Ai(x + t)

)

= 1− 2πi
(

Ai(x + t)Ai′(x + t) −Ai(x + t)2

(Ai′(x + t))2 −Ai′(x + t)Ai(x + t)

)

=

(
1− 2πi (Ai(x + t)Ai′(x + t)) −Ai(x + t)2

(Ai′(x + t))2 1 + 2πi (Ai′(x + t)Ai(x + t))

)
, (2.5.6)

and we know that the Airy functions solve the following equation

y′′(x)− xy(x) = 0, (2.5.7)

with 2 independent solutions: Ai(x), Bi(x), and the Wronskian satisfies the following iden-
tity

W [Ai(x), Bi(x)] =
1
π

. (2.5.8)

An important observation now is that the matrix

B :=
[

Ai(x + t) πBi(x + t)
Ai′(x + t) πBi′(x + t)

]
, (2.5.9)

satisfies the ODE
∂B
∂x

=

[
0 1

x + t 0

]
B, (2.5.10)

and brings J(x, t) to the desired constant form by conjugation

J0 = B−1(x, t)J(x, t)B(x, t) =
[

1 2πi
0 1

]
. (2.5.11)

The function Γ(x, t) := Ψ(x, t)B(x, t), where Ψ is the solution of (2.5.4), then has a constant
jump J0 on the contour Σ. The Lax pair (A, U) is computed as follows

dΓ
dx

Γ−1|x→∞ +
dΓ
dx

Γ−1|x→0 = A(x, t) = xA1 + A0 +
1
x

A−1, (2.5.12)

and
dΓ
dt

Γ−1|x→∞ +
dΓ
dt

Γ−1|x→0 = U(x, t) = xU1 + U0. (2.5.13)

Let us now study the local behaviour of dΓ
dx Γ−1 at 0 and ∞:

• Behaviour at 0: Near x = 0, Ψ(x, t) can at most have a logarithmic dependence on x

lim
x→0

Ψ(x, t) = O(log x). (2.5.14)
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The behaviour at 0 of Γ(x, t) = Ψ(x, t)B(x, t) is then determined by the jump. Given
the jump J0 on the contour [0, ∞), the local behaviour of the solution at 0 is

lim
x→0

Γ(x, t) = γ(x)x−
1

2πi log J0 = γ(x) exp
[
−
(

1
2πi

log J0

)
log x

]
. (2.5.15)

The term

log J0 = log
([

1 2πi
0 1

])
= log

(
I +

[
0 2πi
0 0

])
=

[
0 2πi
0 0

]
. (2.5.16)

Using the identity

log(1 + K) = K− K2

2
+ . . . (2.5.17)

and noticing that [
0 2πi
0 0

]2

= 0, (2.5.18)

(2.5.15) reads

lim
x→0

Γ(x, t) = γ(x) exp
[
−
(

1
2πi

log J0

)
log x

]
= γ(x) exp

[
−
(

0 1
0 0

)
log x

]

= γ(x)
[

1− log x
(

0 1
0 0

)]
. (2.5.19)

To obtain the last step, we expand the exponential and notice that powers of the matrix(
0 1
0 0

)
are all 0. Therefore,

dΓ
dx

Γ−1|x=0 = γ′(x)[1− log x(.)][1 + log x(.)]γ−1(x)

+γ(x)
[

0− 1
x

(
0 1
0 0

)]
[1 + log x(.)]γ−1(x)

= −1
x

γ(x)
(

0 1
0 0

)
γ−1(x) =

1
x

(
uv −u2

v2 −uv

)
, (2.5.20)

with

γ(x) =
[

u ũ
v ṽ

]
. (2.5.21)
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• Behaviour at ∞: A direct substitution of the asymptotics gives

dΓ
dx

Γ−1|x=∞ =

[(
1 +

M1

x
+

M2

x2

)
B(x, t)

]′
B(x, t)−1

(
1 +

M1

x
+

M2

x2

)−1

= −M1

x2

(
1− M1

x

)
+

(
1 +

M1

x
+

M2

x2

)
B(x, t)′B(x, t)−1

(
1 +

M1

x
+

M2

x2

)−1

=

(
1 +

M1

x

)(
0 1

x + t 0

)(
1− M1

x

)

=

(
1 +

M1

x

) [
x
(

0 0
1 0

)
+

(
0 1
t 0

)](
1− M1

x

)

= x
(

0 0
1 0

)
+

[
M1,

(
0 0
1 0

)]
+

(
0 1
t 0

)
. (2.5.22)

Denoting by

M1 =

(
m11 m12
m21 m22

)
, (2.5.23)

then the commutator gives
[

M1,
(

0 0
1 0

)]
=

(
m12 0

m22 −m11 −m12

)
. (2.5.24)

Substituting (2.5.24) in (2.5.22),

x
(

0 0
1 0

)
+

[
M1,

(
0 0
1 0

)]
+

(
0 1
t 0

)
= x

(
0 0
1 0

)

+

(
m12 0

m22 −m11 −m12

)
+

(
0 1
t 0

)

= x
(

0 0
1 0

)
+

(
m12 1

t + m22 −m11 −m12

)

= x
(

0 0
1 0

)
+

(
w 1
p −w

)
, (2.5.25)

where w := m12, p := t + m22 −m11.

Gathering all the terms,

A(x, t) =
dΓ
dx

Γ−1|x=∞ +
dΓ
dx

Γ−1|x=0

=
1
x

(
uv −u2

v2 −uv

)
+ x

(
0 0
1 0

)
+

(
w 1
p −w

)
. (2.5.26)

Since
B(x, t)′B(x, t)−1 = Ḃ(x, t)B(x, t)−1, (2.5.27)

U(x, t) = A0 + xA1 (2.5.28)
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To obtain the integrable equation, we simply compute the consistency condition of the Lax
matrices

At −Ux = [U, A]. (2.5.29)

Starting with the right hand side of the above equation

[U, A] =

[
(A0 + xA1) ,

(
1
x

A−1

)]
=

1
x
[A0, A−1] + [A1, A−1] , (2.5.30)

and the commutator

[A0, A−1] =

(
w 1
p −w

)(
uv −u2

v2 −uv

)
−
(

uv −u2

v2 −uv

)(
w 1
p −w

)

=

(
uvw + v2 −u2w− uv
puv− wv2 −pu2 + wuv

)
−
(

uvw− pu2 uv + wu2

wv2 − puv v2 + uvw

)

=

(
pu2 + v2 −2(u2w + uv)

2(puv− wv2) −pu2 − v2

)
. (2.5.31)

Similarly,

[A1, A−1] =

(
0 0
1 0

)(
uv −u2

v2 −uv

)
−
(

uv −u2

v2 −uv

)(
0 0
1 0

)

=

(
0 0

uv −u2

)
−
(
−u2 0
−uv 0

)

=

(
u2 0

2uv −u2

)
. (2.5.32)

Therefore,

At −Ux =
1
x
[A0, A−1] + [A1, A−1]

1
x

(
(uv)t −2uut
2vvt −(uv)t

)
+

(
wt 0
pt −wt

)
−
(

0 0
1 0

)
. (2.5.33)

Comparing constant coefficients in (2.5.30) and (2.5.33)

[A1, A−1] =

(
wt 0

pt − 1 −wt

)

(
u2 0

2uv −u2

)
=

(
wt 0

pt − 1 −wt

)

⇒ wt = u2 ; pt = 2uv + 1, (2.5.34)
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and comparing the coefficients of 1/x

[A0, A−1] =

(
(uv)t −2uut
2vvt −(uv)t

)

(
pu2 + v2 −2(u2w + uv)

2(puv− wv2) −pu2 − v2

)
=

(
(uv)t −2uut
2vvt −(uv)t

)

⇒ ut = uw + v ; vt = pu− wv. (2.5.35)

From (2.5.34) and (2.5.35), we see that

2uut = 2u2w + 2vu = 2wtw + pt − 1

⇒ u2 = w2 + p− t + const. (2.5.36)

Painlevé II is now derived from (2.5.34), (2.5.35) and (2.5.36)

utt = utw + uwt + vt = (uw + v)w + u3 + pu− wv = uw2 + pu + u3

= u(w2 + p) + u3 = u(u2 + t− const.) + u3

= 2u3 + ut . (2.5.37)

The const. can be set to zero by a translation (t→ t + const.).

Remark 2.6. The above procedure works only if the jump of the RHP can be conjugated to be a
constant and the Wronskian satisfies an ODE.

2.5.2 Integral representation of the Airy kernel

We now turn to integral representation of integrable kernels, which are better tailored to
the formalism of RHPs. In this section, we will represent the Airy kernel in terms of some
contour integrals on the Fourier space. Let us recall the kernel

Kt =
Ai(x + t)Ai′(y + t)− Ai′(x + t)Ai(y + t)

x− y
, (2.5.38)

and the following equality holds

d2

dz2 Ai(z + t) =
d2

dt2 Ai(z + t) =
d2

dz dt
Ai(z + t) = (z + t)Ai(z + t). (2.5.39)

With (2.5.39), the following statement about (2.5.38) is true:

d
dt

Kt =
Ai(x + t)Ai′′(y + t)− Ai′′(x + t)Ai(y + t)

x− y

=
(y + t)Ai(x + t)Ai(y + t)− (x + t)Ai(x + t)Ai(y + t)

x− y
= −Ai(x + t)Ai(y + t). (2.5.40)
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Therefore,

Kt = −
∫ +∞

0

dt
2πi

Ai(x + t)Ai(y + t). (2.5.41)

Furthermore, Airy functions have the following integral representation

Ai(z) =
∫ ∞e+iπ/3

∞e−iπ/3
e

s3
3 −zs ds

2πi
. (2.5.42)

Using (2.5.42), (2.5.41) can be rewritten as follows

Kt = −
∫ +∞

0

dt
2πi

Ai(x + t)Ai(y + t)

= −
∫ +∞

0

dt
2πi

∫ ∞e+iπ/3

∞e−iπ/3

ds
2πi

e
s3
3 −(x+t)s

∫ ∞e+iπ/3

∞e−iπ/3

ds′

2πi
e
(s′)3

3 −(y+t)s′ . (2.5.43)

transform s′ → −s′

(2.5.43) = −
∫ +∞

0

dt
2πi

∫ ∞e+iπ/3

∞e−iπ/3

ds
2πi

e
s3
3 −(x+t)s

∫ ∞e+iπ/3

∞e−iπ/3

ds′

2πi
e−

(s′)3
3 +(y+t)s′

= −
∫ ∞e+iπ/3

∞e−iπ/3

ds
2πi

e
s3
3 −xs

∫ ∞e+iπ/3

∞e−iπ/3

ds′

2πi
e−

(s′)3
3 +ys′

∫ +∞

0

dt
2πi

e−t(s−s′)

=
∫ ∞e+iπ/3

∞e−iπ/3

ds
2πi

∫ ∞e+iπ/3

∞e−iπ/3

ds′

2πi
1

s′ − s
e

s3
3 −xs− (s′)3

3 +ys′

=
∫

γs

ds
2πi

∫

γs′

ds′

2πi
eθx(s)−θy(s′)

s′ − s
, (2.5.44)

where θx(s) = s3

3 − xs. Therefore, the Airy kernel is

Kt =
∫

γs

ds
2πi

∫

γs′

ds′

2πi
eθx(s)−θy(s′)

s′ − s
, θx(s) =

s3

3
− xs. (2.5.45)

In the next chapter, we reproduce this kernel as the tau-function of the Ablowitz-Segur
family of solutions through Riemann-Hilbert techniques.

The story so far...

The recent works of Lisovyy, Cafasso, Gavrylenko [28, 54] provide a method to formulate
the isomonodromic tau-functions (related to the 2-parameter solutions) of certain Painlevé
equations (PIII, PV, PVI) as Fredholm determinants. Not only does the Fredholm deter-
minant representation of the tau function provide an explicit formulation of the general
solution to the Painlevé equations (Painlevé transcendents), but also reveals the combinato-
rial structure in terms of charged partitions underlying the tau functions, that are organized
as a convergent power series in the isomonodromic time: such a representation is especially
remarkable given the transcendental nature of these solutions. There are two key aspects
to their construction. One is the property that the RHPs of these Painlevé equations can be
reduced on to a RHP on the unit circle (see remark:1.3). The second feature is that the jump



2.5. Aspects of the Airy kernel 39

on the unit circle contour admits Birkhoff factorization enabling the formulation of the tau-
function as a determinant of Toeplitz operators called the Widom constant. This approach
cannot be directly implemented to the cases where the RHP is formulated on a contour that
is not a circle as is the case for the Painlevé equations PI, PII and PIV. However it is expected
that the generic RHP for these equations could be reduced to a RHP on the line for a jump
matrix G. Considering the Ablowitz-Segur family of solutions of Painlevé II as a toy model,
we show in Chapter 3 that the corresponding tau-function, which is the determinant of the
Airy kernel (2.5.45), can be expressed as a Widom constant on the imaginary axis 2.1.2. In
Chapter 4, we consider the general solutions of Painlevé II (1.3.3) and show that the corre-
sponding tau-function can be written as a Fredholm determinant of an Integrable kernel in
the sense of IIKS following the set up in Section 2.2. In Chapter 5, we instead shift the focus
to the formulation of Painlevé VI as the 2-particle non-autonomous Calogero-Moser system
(1.2.29) and show that the associated tau-function has the form of Fredholm determinant of
Plemelj operators 2.3 on a torus . In the final part of the thesis, we present the minor expan-
sion of two of the three tau-functions obtained in Part 2. In particular, we will show that
the Airy kernel has a combinatorial representation in terms of colourless, chargeless Maya
diagrams, and the minor expansion of the tau-functions on a torus are labelled by coloured
and charged partitions.
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Part II

Fredholm determinants
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Chapter 3

Ablowitz-Segur family of solutions

3.1 Toy model: Ablowitz-Segur solution

The special 1-parameter (Ablowitz-Segur) family of solutions to the Painlevé II equation
can be recast as a RHP on the imaginary axis as opposed to the unit circle in [28], hinting at
a similar structure for the general RHP of Painlevé II. As a consequence, the corresponding
tau-function which is known to be the determinant of the Airy kernel [113], can be formu-
lated as a Widom constant.

From the RHP 1.3, the isomonodromic tau-function of Ablowitz-Segur family of solu-
tions is defined by1 [72]

∂s log τJMU(s) = −Res z=∞ Tr
[
Γ(z, s)′Γ−1(z, s) (zσ3)

]
, (3.1.1)

and we have the relation

u2(s) = − d2

ds2 log τJMU(s).

The RHPs on each of the contours γL, γR can be solved locally and let ΘL,R(z, s) be the
respective solutions.

Riemann-Hilbert problem 3.1.

• The 2× 2 matrix valued functions Θi are analytic for z ∈ C\γi, i = L, R.

• For z ∈ γi,

Θi+ = Θi−Gi. (3.1.2)

• Asymptotically,

lim
z→∞

Θi = 1. (3.1.3)

The RHP 3.1 is easy to solve and it is straightforward to see that the solutions ΘL, ΘR are
given by the Cauchy transforms of the respective jumps GL, GR (see Fig. 3.1):

1In this chapter, we use the variables (z, s) instead of (λ, x).
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ΘL(z, s) =

[
1 0

κ
∫

γL
e−θ(λ,s)

λ−z
dλ
2πi 1

]
(3.1.4)

ΘR(z, s) =

[
1 κ

∫
γR

eθ(λ,s)

λ−z
dλ
2πi

0 1

]
. (3.1.5)

Define a new function

Ψ(z, t) =

{
ΓΘ−1

L , for<z < 0,
ΓΘ−1

R , for<z > 0.
(3.1.6)

Such function Ψ solves the following RHP on the imaginary axis

Riemann-Hilbert problem 3.2.

• Ψ(z, t) is analytic in z ∈ C\iR.

• The following jump condition on iR holds

Ψ+ = Ψ− J (3.1.7)

The jump J is explicitly

J(z, s) = Ψ−1
− Ψ+ = ΘR(z, s)ΘL(z, s)−1

=

[
1 κ

∫
γR

eθ(λ,s)

λ−z
dλ
2πi

−κ
∫

γL
e−θ(λ,s)

λ−z
dλ
2πi 1

]
. (3.1.8)

iR
γRγL

ΘL ΘR

GR =

(
1 κeθ(z)

0 1

)
GL =

(
1 0

κe−θ(z) 1

)

FIGURE 3.1: Contour

With the original RHP now recast as a RHP on the imaginary axis, we can construct the
tau-function as a Widom constant (see Section 2.1.2).
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3.2 Computing the Widom constant

In this section we want to make sense of the quantity det
(

TJ−1 ◦ TJ

)
introduced in (2.1.13)

when the matrix J admits Birkhoff factorization (3.1.8). In Proposition 2.1 we show that

τ[J] = det
(

TJ−1 ◦ TJ

)
= detH [1 + U] (3.2.1)

where 1 denotes the identity operator on H, and U =

(
0 a
b 0

)
with a : H− → H+;

b : H+ → H− given by,

a = ΘLΠ+Θ−1
L −Π+ ; b = Π− −ΘRΠ−Θ−1

R .

where the explicit form of ΘL, ΘR is known (3.1.4), (3.1.5). We now want to show that the
quantity (3.2.1) is a Fredholm determinant and coincides with the tau-function defined in
[7].

We remind the reader of the result in [7] where the tau-function of the Ablowitz-Segur
family of solutions for Painlevé II is given by the following Fredholm determinant1

τ(s) = det
[

IdL2(γ+∪γ−) − κ

[
0 F
G 0

]]
= det

[
IdL2(γ+) − κ2F ◦ G

]
(3.2.2)

with
F : L2(γ−)→ L2(γ+) G : L2(γ+)→ L2(γ−) (3.2.3)

and

(Fg)(z) = e−
i
2 θ(z,s)

∫

R−ic

dw
2πi

e
i
2 θ(w,s)g(w)

w− z
(3.2.4)

(Gg)(z) = e
i
2 θ(z,s)

∫

R+ic

dw
2πi

e−
i
2 θ(w,s)g(w)

w− z
(3.2.5)

Theorem 3.1. The tau-function (3.2.2) of the Ablowitz-Segur family of solutions of the Painlevé II
equation is the Widom constant defined in (3.2.1).

Proof. The Widom constant can be obtained from (3.2.1) by computing the operators a, b
explicity. Let f (z) ∈ H−, h(z) ∈ H+ be vector valued functions

f ≡
(

f1
f2

)
; h ≡

(
h1
h2

)
,

then

a f (z) =
∫

iR

dw
2πi

ΘR(z)Θ−1
R (w)− 1

w− z
f (w) (3.2.6)

bh(z) =
∫

iR

dw
2πi

1−ΘL(z)Θ−1
L (w)

w− z
h(w), (3.2.7)

1γ± are γ1,2 rotated by π/2 and this is also the source of the factor of i in the exponential in [7].
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with Θ1 and Θ2 are as in (3.1.5). We begin by computing (3.2.6)

ΘR(z)Θ−1
R (w)− 1 =

[
0 κ

∫
γR

(
eθ(λ,s)

λ−z − eθ(λ,s)

λ−w

)
dλ
2πi

0 0

]
(3.2.8)

substituting (3.2.8) in (3.2.7) and focusing on the only non-zero entry a12,

a12 f2(z) = −κ
∫

iR

dw
2πi

∫

γR

dλ

2πi
eθ(λ,s)

(λ− z)(λ− w)
f2(w) (3.2.9)

integrating over λ,

a12 f2(z) = −κ
∫

iR−ε

dw
2πi

eθ(w,s)

w− z
f2(w) (3.2.10)

A similar computation for b gives that the only non-zero entry is b21 that reads

b21h1(z) = κ
∫

iR

∫

γL

e−θ(λ,s)

(λ− z)(λ− w)
h1(w)

dλ

2πi
dw
2πi

(3.2.11)

integrating over λ

b21h1(z) = κ
∫

iR+ε

e−θ(w,s)

(w− z)
h1(w)

dw
2πi

(3.2.12)

Substituing a and b back in (3.2.1), we get the following

τ(s) = det
[

IdL2(iR)⊗C2 −
[

0 a
b 0

]]
= det


IdL2(iR)⊗C2 −




0 0 0 a12
0 0 0 0
0 0 0 0

b21 0 0 0





 (3.2.13)

= det
[

IdL2(iR) −
[

0 a12
b21 0

]]
. (3.2.14)

Further, it is straightforward to see that the operator
[

0 a
b 0

]
is Hilbert-Schmidt. In

other words, a12 and b21 are Hilbert-Schmidt

|a12|2 = −κ2
∫

iR+ε
|dz|

∫

iR−ε
|dw| e

θ(w,s)+θ(w̄)

|w− z|2 = −κ2
∫

iR+ε
|dz|

∫

iR−ε
|dw| e

2Reθ(w,s)

|w− z|2 < +∞ (3.2.15)

|b21|2 = −κ2
∫

iR−ε
|dz|

∫

iR+ε
|dw| e

−θ(w,s)−θ(w̄)

|w− z|2 = −κ2
∫

iR−ε
|dz|

∫

iR+ε
|dw| e

−2Reθ(w,s)

|w− z|2 < +∞ (3.2.16)

(3.2.16) and (3.2.15) are clearly convergent, implying that a21 and b12 are Hilbert-Schmidt
operators. Therefore, the determinant detH[1 + a ◦ b] is Fredholm and coincides with the
tau-function in (3.2.2).

Remark 3.1. Further, it is shown in [10] that

det
[

IdL2(γL∪γR)
+ U

]
= det

[
IdL2([s,∞)) − κKAi|[s,∞)

]
(3.2.17)
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where KAi is the Airy kernel, which implies the tau-function (3.2.14) is the determinant of the Airy
Kernel. It is a well known result [113] that the solution of (1.3.21) is related to the Airy Kernel as

u(s)2 = − d2

ds2 log det
[
1− κKAi|[s,∞)

]
(3.2.18)

3.3 Relation to the JMU tau-function

The logarithmic derivative of the Widom constant (3.2.1) can be shown to coincide with the
logarithmic derivative of the isomonodromic tau-function (3.1.1).

Notation: ′ ≡ ∂
∂z and ˙≡ ∂

∂s . All functions depend on z,s unless stated otherwise.
Using the above proposition we can identify the Widom constant with the isomon-

odromic τ function.

Proposition 3.1. The logarithmic derivative of the Widom constant (2.1.19) coincides exactly with
the logarithmic derivative of the (isomonodromic) JMU τ- function (3.1.1) for Ablowitz-Segur family
of solutions namely :

∂s log τ[J] = ∂s log τJMU = −Resz=∞ Tr
[
Γ−1Γ′ (zσ3)

]
. (3.3.1)

Proof. We prove the statement by simplifying the expression of ∂s log τ[J] in (2.1.19):

Tr
{

J−1 J̇
[
Ψ−1
+ Ψ′+ + Θ′+Θ−1

+

]}
. (3.3.2)

We first perform algebraic manipulation on Ψ−1
+ Ψ′+ with Θ+ ≡ ΘL, and using (3.1.6)

Ψ−1
+ Ψ+ =

(
ΘLΓ−1

) (
ΓΘ−1

L

)′

=
(

ΘLΓ−1
) (

Γ′Θ−1
L − ΓΘ−1

L Θ′LΘ−1
L

)

= ΘL

(
Γ−1Γ′ −Θ−1

L Θ′L
)

Θ−1
L (3.3.3)

and expressing J in terms of ΘL and ΘR we obtain

J−1 J̇ = (ΘLΘ−1
R )∂t(ΘRΘ−1

L )

= (ΘLΘ−1
R )(Θ̇RΘ−1

L −ΘRΘ−1
L Θ̇LΘ−1

L )

= ΘL(Θ−1
R Θ̇R −Θ−1

L Θ̇L)Θ−1
L

= −ΘL∆(Θ−1Θ̇)Θ−1
L (3.3.4)

where
∆(Θ−1Θ̇) = Θ−1

L Θ̇L −Θ−1
R Θ̇R.

Substituting (3.3.3) and (3.3.4) in (3.3.2) and using cyclicity of trace,

Tr
{

J−1 J̇ Ψ−1
+ Ψ′+

}
= −Tr

{
∆
(

Θ−1Θ̇
) (

Γ−1Γ′ −Θ−1
L Θ′L

)}
(3.3.5)
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The term Tr
[
∆
(
Θ−1Θ̇

)
Θ−1

L Θ′L
]

is explicit and cancels the term Tr
[

J−1 J̇Θ′LΘ−1
L

]
. After the

simplification, (2.1.19) is

−
∫

iR

dz
2πi

Tr
{

∆
(

Θ−1Θ̇
)

Γ−1Γ′
}

(3.3.6)

since Γ has no jump on iR, (3.3.6) can be further simplified

−
∫

iR

dz
2πi

Tr
{

∆
(

Θ−1Θ̇
)

Γ−1Γ′
}
= −

∫

iR

dz
2πi

Tr ∆
{

Θ−1Θ̇Γ−1Γ′
}

=
∫

Σ

dz
2πi

Tr ∆
{

Θ−1Θ̇Γ−1Γ′
}

=
∫

γL

dz
2πi

Tr ∆
{

Θ−1Θ̇Γ−1Γ′
}
+
∫

γR

dz
2πi

Tr ∆
{

Θ−1Θ̇Γ−1Γ′
}

(3.3.7)

Let us begin by computing the integral on γL in (3.3.7)

Tr ∆
{

Θ−1Θ̇Γ−1Γ′
}
= Tr

{
Θ−1

L+Θ̇L+Γ−1
+ Γ′+ −Θ−1

L−Θ̇L−Γ−1
− Γ′−

}
(3.3.8)

computing (3.3.8) term by term by substituting (1.3.23) for Γ+

Γ−1
+ Γ′+ = (G−1

L Γ−1
− )(Γ−GL)

′

= G−1
L

[
Γ−1
− Γ′− + G′LG−1

L

]
GL (3.3.9)

and (3.1.2) for ΘL+

Θ−1
L+Θ̇L+ = G−1

L Θ−1
L−∂t(ΘL−GL)

= G−1
L

[
Θ−1

L−Θ̇L− + ĠLG−1
L

]
GL. (3.3.10)

Substituting (3.3.9), (3.3.10) in (3.3.7) and using cyclicity

Tr
{(

Θ−1
L+Θ̇L+

)
Γ−1
+ Γ′+

}
= Tr

[(
Θ−1

L−Θ̇L− + ĠLG−1
L

) (
Γ−1
− Γ′− + G′LG−1

L

)]
(3.3.11)

In (3.3.11), notice that the term
(

Θ−1
L−Θ̇L− + ĠLG−1

L

) (
G′LG−1

L

)
is traceless. Furthermore,

we have the following identity 2ĠLG−1
L = −zGLσ3G−1

L + zσ3. The terms Θ−1
L−Θ̇L−Γ−1

− Γ′− in
(3.3.11) and (3.3.8) cancel each other out. So, all that is left to compute on the contour γL is
the following

∫

γL

dz
2πi

Tr
[

ĠLG−1
L Γ−1

− Γ′−
]
=

1
2

∫

γ1

dz
2πi

Tr
[(
−zGLσ3G−1

L + zσ3

)
Γ−1
− Γ′−

]
(3.3.12)

We begin by computing the following term

Tr
(

GLσ3G−1
L Γ−1

− Γ′−
)

(3.3.13)
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the term Γ−1
− Γ′− can be simplified by substituting (1.3.23)

Γ−1
− Γ′− =

(
GLΓ−1

+

) (
Γ+G−1

L

)′

= GL

(
Γ−1
+ Γ′+ − G−1

L G′L
)

GL (3.3.14)

substituting (3.3.14) in (3.3.13) and using the cyclic property of the trace

Tr
(

GLσ3G−1
L Γ−1

− Γ′−
)
= Tr

[
σ3Γ−1

+ Γ′+ − G−1
L G′Lσ3

]
(3.3.15)

note that G−1
L G′Lσ3 is traceless. Substituting (3.3.15) in (3.3.12) we have

1
2

∫

γ1

dz
2πi

Tr
[(
−zGLσ3G−1

L + zσ3

)
Γ−1
− Γ′−

]
=

1
2

∫

γ1

dz
2πi

Tr
[
−zσ3

(
Γ−1
+ Γ′+ − Γ−1

− Γ′−
)]

(3.3.16)
repeating this exercise and computing the integral on γR in (3.3.5), we get exactly the same
expression. Putting all together

∂s ln τ[J] =
∫

Σ

dz
2πi

Tr
[
−zσ3

(
Γ−1
+ Γ′+ − Γ−1

− Γ′−
)]

= −Resz=∞ Tr
(

zσ3Γ−1Γ′
)

(3.3.17)
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Chapter 4

General solutions of Painlevé II

In the previous chapter we saw that the Ablowitz-Segur family of solutions can be ex-
pressed as a Widom constant. Now let us investigate the case of general solutions of the
homogeneous Painlevé II equation (1.3.3):

u′′ = xu + 2u3 (4.0.1)

and relate the solution to an appropriate Fredholm determinant.

4.1 Riemann-Hilbert Problem

In order to modify the Riemann–Hilbert contour of Painlevé II, we restrict to the case x ∈ R

and perform the change of variables

λ = (−x)1/2z, t = (−x)3/2. (4.1.1)

The characteristic exponent exp (θ(λ)) in (1.3.10) is then replaced by

eitθ(z), θ(z) =
4
3

z3 − z. (4.1.2)

The stationary points are then z± = ±1/2. Noticing that the product of Stokes’ matrices
(S3S4S5)

−1 can be written as a product of lower triangular, diagonal and upper triangular
matrices (LDU) for s1s3 6= 1

(S3S4S5)
−1 =

(
1− s1s3 s1e2itθ(z)

s1e−2itθ(z) 1 + s1s2

)
= SLSDSU

=

(
1 0

s1(1− s1s3)
−1e−2itθ(z) 1

)(
1− s1s3 0

0 (1− s1s3)
−1

)(
1 s1(1− s1s3)

−1e2itθ(z)

0 1

)
,

(4.1.3)

the contour in fig: 1.5 can be transformed into fig 4.1, we call Σ, and one can easily check
the no monodromy condition around the points z = ±1/2.
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SD

S6

S2S
−1
U

S−1
L

S1
S3

S5SL

SU

S4

Σ

FIGURE 4.1: Deformed Painlevé II Riemann–Hilbert contour Σ.

On the contour Σ in fig:4.1, the function Ψ(z, t) in (1.3.4) solves the following RHP.

Riemann-Hilbert problem 4.1.

• Ψ(z, t) is analytic on z ∈ C\Σ.

• For z ∈ Σ, on each of the Stokes’ rays

Ψ−1
− (z, t)Ψ+(z, t) = G(z, t), (4.1.4)

where G(z, t) is piece-wise defined on each of the rays on the contour Σ.

• limz→∞ Ψ(z, t) = 1

In terms of the RHP (4.1.4), the tau-function (2.0.3) is

∂t log τPII ≡ ∂t log τΣ(t) :=
∫

Σ

dz
2πi

Tr
[
Ψ−1
− Ψ′−ĠG−1

]
, (4.1.5)

which we will express as the Fredholm determinant in Theorem 4.1.

4.1.1 Parametrices

To express the tau-function (4.1.5) in terms of a Fredholm determinant we need to construct
a “parametrix”, namely an “approximate solution” of the RHP in the sense that the actual
problem can be recast as the solution of a compact (trace–class) perturbation of the identity.

The effectiveness of the idea relies entirely upon the level of simplicity of this parametrix;
the simpler (or rather, more explicit) this reference parametrix is, the more practical the
approach is in studying the final problem.

Keeping this in mind, in this section we construct an explicit solution to a Riemann–
Hilbert problem to be used as parametrix for the final one. To this end we recall from ([43],
Ch.9 pg.318) the construction of the local parametrices of Painlevé II RHP in fig: 4.1(the
left and right parametrices around the points z = ±1/2 respectively), in terms of parabolic
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cylinder functions [43]. Define the right parametrix around z+ = 1/2 as

ψr(z, t) =
(

ζ(z)
z− z−
z− z+

)νσ3
(
−h1

s3

)−σ3/2

e
it
3 σ32−σ3/2

(
ζ(z) 1

1 0

)
Z(ζ(z))

(
−h1

s3

)σ3/2

eitθ(z)σ3 ,

(4.1.6)

and the left parametrix around z = −1/2 is determined through the relation

ψl(z, t) = σ2ψr(−z, t)σ2. (4.1.7)

In (4.1.6), the variable

ζ(z) = 2

√
−4it

3
z3 + itz− it

3
(4.1.8)

where the branch of the square root is defined by ζ(z) = e3πi/42
√

2t/3
(

z− 1
2

)√
z + 1, the

parameters ν and h1 are defined in terms of the Stokes’ parameters s1, s3 as follows

ν = − 1
2πi

log(1− s1s3) ; h1 =

√
2π

Γ(−ν)
eiπν, (4.1.9)

and the function
(

z−z−
z−z+

)ν
is defined on C\ [z−, z+] and the branch is fixed by the following

asymptotic condition for z→ ∞
(

z− z−
z− z+

)ν

→ 1. (4.1.10)

Furthermore, the matrix Z(ζ(z)) is determined by parabolic cylinder functions and solves
the following RHP.

Riemann-Hilbert problem 4.2.

• Z(ζ) is a piece-wise holomorphic function defined as follows in each sector shown in
fig:4.2

Z(ζ) =





Z0(ζ), arg ζ ∈
(
−π

4 , 0
)

Z1(ζ), arg ζ ∈
(
0, π

2

)

Z2(ζ), arg ζ ∈
(

π
2 , π

)

Z3(ζ), arg ζ ∈
(
π, 3π

2

)

Z4(ζ), arg ζ ∈
(3π

2 , 7π
4

)
.

(4.1.11)

Under the transformation ζ → −ζ following symmetry relation holds

σ3Zk+2

(
eiπζ

)
σ3 = Zk(ζ)e−iπ(ν+1)σ3 . (4.1.12)
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e2πiνσ3

Z0

H1

Z1

H3

Z4

H0H2

Z2

Z3

FIGURE 4.2: Riemann–Hilbert contour of parabolic cylinder function.

• In each sector, following jump conditions are satisfied

Zk+1(ζ) = Zk(ζ)Hk, arg ζ =
π

2
k, k = 0, 1, 2, 3, 4, (4.1.13)

and Z5 = Z0. The jump matrices

H0 =

(
1 0
h0 1

)
, H1 =

(
1 h1
0 1

)
, H4 ≡ HD = e2πiνσ3 ;

Hk+2 = eiπ(ν+ 1
2)σ3 Hke−iπ(ν+ 1

2)σ3 , for k = 0, 1.

(4.1.14)

The Stokes’ parameters h0 and h1 are defined as follows

h0 = −i
√

2π

Γ(ν + 1)
, h1 =

√
2π

Γ(−ν)
eiπν, 1 + h0h1 = e2πiν, (4.1.15)

and the identity e2πiνσ3 H0H1H2H3 = I implies the triviality of the monodromy at the
origin.

• As ζ → ∞,

Z(ζ) = ζ−σ/2 1√
2

(
1 1
1 −1

)(
1 + O(ζ−2)

)
e

(
ζ2
4 −(ν+ 1

2 ) log ζ

)
σ3

. (4.1.16)

In the zeroth sector, Z(ζ) is expressed in terms of the Wronskian of the parabolic cylinder
functions as follows

Z0(ζ) = 2−σ3/2

(
D−ν−1(iζ) Dν(ζ)

d
dζ D−ν−1(iζ) d

dζ Dν(ζ)

)(
ei π

2 (ν+1) 0
0 1

)
. (4.1.17)
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It is straightforward to check that, under the transformation (4.1.8), the parametrix on the
right half-plane ψr(z, t) defined in (4.1.6) holds sector-wise as shown in fig:4.3

ψ
(i)
r (z, t) =

(
ζ(z)

z− z−
z− z+

)νσ3
(
−h1

s3

)−σ3/2

e
it
3 σ32−σ3/2

(
ζ(z) 1

1 0

)
Zi(ζ(z))

(
−h1

s3

)σ3/2

eitθ(z)σ3 .

(4.1.18)

The jumps on Stokes’ rays in the right and left half planes are denoted by

Gr := G(z, t)|<(z)>0 ; Gl := G(z, t)|<(z)<0. (4.1.19)

As a consequence of (4.1.7),

Gl(z, t) = σ2Gr(−z, t)σ2 (4.1.20)

Remark 4.1. The transformation (4.1.8) is not valid at the point t = 0. This implies that τPII in
(4.4.1) is valid for t ∈ C\0.

e2πiνσ3

Z0

H1

Z1

H3

Z4

H0H2

Z2

Z3

G
(D)
r

G
(1)
r

G
(3)
r

G
(0)
r

G
(2)
rψ4

r

ψ0
r

ψ1
r

ψ2
r

ψ3
r

ζ(z) = 2t1/2
√

4iz3

3 − iz + i
3

FIGURE 4.3: Mapping the ζ-plane to the right-half of z-plane

We now establish the relation between the Stokes’ matrices of the parabolic cylinder
functions Hi in (4.1.14) and Gr ≡ G(i)

r in (4.1.19). Introducing the notation

h =

(
−h1

s3

)1/2

, (4.1.21)

in a sector i on the right half-plane in fig:4.1, ψr satisfies the following jump condition

ψi+1
r (z, t) = ψi

r(z, t)e−itθ(z)σ3

(
−h1

s3

)−σ3/2

Z−1
i Zi+1

(
−h1

s3

)σ3/2

eitθ(z)σ3

= ψi
r(z, t)e−itθ(z)σ3 h−σ3 Hihσ3eitθ(z)σ3

= ψi
r(z, t)Gi

r. (4.1.22)



56 Chapter 4. General solutions of Painlevé II

Note that Z5 = Z0 implies that ψ5
r (z, t) = ψ0

r (z, t). Therefore, in terms of Hi, Gr is

G(i)
r (z, t) = e−itθσ3 h−σ3 Hihσ3eitθσ3 . (4.1.23)

We define the variable
ξ(z, t) := ζ(−z, t) (4.1.24)

that maps the ξ-plane to the left half-plane of fig:4.1 and a similar computation follows for
the left parametrix due to the symmetry relation (4.1.7). We denote the jump condition in
each sector on the respective half-planes in fig:4.1 by

ψr,l;+(z, t) = ψr,l;−(z, t)Gr,l(z, t). (4.1.25)

4.2 Reduction to a RHP along the imaginary axis

Define a matrix function Θ(z, t) as a ratio of the global solution Ψ on Σ in (4.1.4) and the
local parametrices ψr in (4.1.6), ψl in (4.1.7).

Θ(z, t) :=

{
Ψ(z, t)ψ−1

r (z, t); <(z) > 0
Ψ(z, t)ψ−1

l (z, t); <(z) < 0.
(4.2.1)

Note that the local parametrices cancel the jump of the global parametrix on Σ, ensuring
that the function Θ(z, t) has a jump only on the imaginary axis, solving the following RHP.

Riemann-Hilbert problem 4.3.

• Θ(z, t) is analytic on z ∈ C\iR

• For z ∈ iR,
Θ+(z, t) = Θ−(z, t)J(z, t). (4.2.2)

• As z→ ∞, Θ(z, t) = 1.

G
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(0)
l

ψ
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r
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(4)
l ψ

(0)
r
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(D)
r
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G
(3)
r

ψ
(2)
r

ψ
(3)
r

G
(0)
r

G
(2)
r

ψ
(1)
r

G
(1)
l

G
(3)
l

ψ
(2)
l

G
(0)
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G
(2)
l

ψ
(1)
l

ψ
(3)
l

Σ

FIGURE 4.4: Reducing the Painlevé II RHP on to the imaginary axis.
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Remark 4.2. The solution of the RHP:4.1 defines, via (4.2.1) a solution of the RHP 4.3. Vice-
versa any solution of the RHP 4.3 provides a solution to the RHP:4.1 by means of the inverse of
the transformation (4.2.1). Thus we regard these two problems as equivalent in the sense that the
solvability of one of them is necessary and sufficient condition for the solvability of the other.

For later use we compute the expression of the jump matrix J in (4.2.2).

Lemma 4.1. The jump on the imaginary axis

J(z, t) = Θ−(z, t)−1Θ+(z, t) = ψ
(0)
r (z, t)

[
ψ
(4)
l (z, t)

]−1
=

( A(z, t) B(z, t)
C(z, t) D(z, t)

)
(4.2.3)

where

A(z, t) = 1
h4 ζνξνe

2i
3 t (−e−πiνh4D−ν(iζ)D−ν(iξ)− ν2e2πiνDν−1(ζ)Dν−1(ξ)

)

B(z, t) = − 1
h2

(
z−z−
z−z+

)2ν
ζνξ−ν

(
−ie−πiνh4D−ν(iζ)D−ν−1(iξ)− νe2πiνDν−1(ζ)Dν(ξ)

)

C(z, t) = B(−z, t) ; det J = 1.

(4.2.4)

The variables ζ ≡ ζ(z, t), ξ ≡ ξ(z, t) are defined in (4.1.8), (4.1.24); and h is defined in terms of
Stokes’ parameters in (4.1.21).

Proof. Since Ψ(z, t) has no jump on iR, J(z, t) can be determined solely in terms of ψ
(0)
r (z, t)

and ψ
(4)
l (z, t). One can check the no monodromy condition at the origin,

ψ
(0)
r (z, t)

[
ψ
(4)
l (z, t)

]−1
= ψ

(4)
r (z, t)

[
ψ
(0)
l (z, t)

]−1
. (4.2.5)

To ease the notation, we define

m(z) :=
z− z−
z− z+

, (4.2.6)

and observe that the following identities hold

θ(z) = 4
3 z3 − z = i ζ2

4t − 1
3 = −i ξ2

4t +
1
3 ,

(ζ2 + ξ2) = −8it
3 .

(4.2.7)

The function ψ
(0)
r (z, t) is computed by substituting the zeroth sector solution of the parabolic

cylinder function (4.1.17) in (4.1.18),

ψ
(0)
r (z) =

(
ζ(z)

z− z−
z− z+

)νσ3
(
−h1

s3

)−σ3/2

e
it
3 σ32−σ3/2

(
ζ(z) 1

1 0

)
Z0(ζ(z))

(
−h1

s3

)σ3/2

× eitθ(z)σ3

=

[
eiπν/2e−ζ2/4m(z)νζνD−ν(iζ) ν

h2 e2it/3eζ2/4m(z)νζνDν−1(ζ)

ih2eiπν/2e−2it/3e−ζ2/4m(z)−νζ−νD−ν−1(iζ) eζ2/4m(z)−νζ−νDν(ζ)

]
. (4.2.8)
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We use (4.2.7) to obtain the final form of ψ
(0)
r . The left parametrix ψ

(4)
l can be obtained in

a similar fashion, first by substituting Z4 = Z0e−2iπνσ3 from (4.1.13) in (4.1.18) to obtain ψ4
r

and using the relation (4.1.7) to obtain ψ
(4)
l as follows

ψ4
l (z, t) = σ2ψ4

r (−z, t)σ2 = σ2

(
ζ(−z)

z− z+
z− z−

)νσ3
(
−h1

s3

)−σ3/2

e
it
3 σ32−σ3/2

×
(

ζ(−z) 1
1 0

)
Z4(ζ(−z))

(
−h1

s3

)σ3/2

eitθ(z)σ3σ2

= σ2

(
ζ(−z)

z− z+
z− z−

)νσ3
(
−h1

s3

)−σ3/2

e
it
3 σ32−σ3/2

×
(

ζ(−z) 1
1 0

)
Z0(ζ(−z))H−1

D

(
−h1

s3

)σ3/2

eitθ(z)σ3σ2

=

[
e2πiνeξ2/4m(z)νξ−νDν(ξ) −ih2e−3πiν/2e−2it/3eξ2/4m(z)νξ−νD−ν−1(iξ)

−e2πiννh−2e2it/3eξ2/4m(z)−νξνDν−1(ξ) e−3πiν/2e−y2/4m(z)−νξνD−ν(iξ)

]
.

(4.2.9)

To obtain the last line, we substitute the expression for Z0 (4.1.17) and simplify the resulting
expression using (4.2.7).Furthermore,

det
[
ψ
(0)
r (z, t)

]
= 1 ; det

[
ψ
(4)
l (z, t)

]
= 1 (4.2.10)

due to the following identity for the Wronskian determinant of parabolic cylinder functions

W [D−ν−1(iζ), Dν(ζ)] = ie−iπν/2. (4.2.11)

The jump J(z, t) is then obtained by a straightforward substitution of (4.2.8) and (4.2.9) in
(4.2.3), and using (4.2.7).

J(z, t) = ψ
(0)
r (z, t)

[
ψ
(4)
l (z, t)

]−1
=

( A(z, t) B(z, t)
C(z, t) D(z, t)

)
(4.2.12)

where

A(z, t) = ζνξνe
2i
3 t (e−πiνD−ν(iζ)D−ν(iξ) + ν2h−4e2πiνDν−1(ζ)Dν−1(ξ)

)

B(z, t) =
(

z−z−
z−z+

)2ν
ζνξ−ν

(
ih2e−iπνD−ν(iζ)D−ν−1(iξ) + νh−2e2πiνDν−1(ζ)Dν(ξ)

)

C(z, t) =
(

z−z−
z−z+

)−2ν
ζ−νξν

(
ih2e−iπνD−ν−1(iζ)D−ν(iξ) + νh−2e2πiνDν(ζ)Dν−1(ξ)

)
= B(−z, t)

D(z, t) = ζ−νξ−νe−
2i
3 t (−e−πiνh4D−ν−1(iζ)D−ν−1(iξ) + e2πiνDν(ζ)Dν(ξ)

)

.

(4.2.13)

It is obvious that det J(z, t) = 1. Recall that (4.1.24):ξ(−z, t) = ζ(z, t) with ζ defined in

(4.1.8), h =
(
− h1

s3

)1/2
: (4.1.21) where h1, ν are determined by the Stokes’ parameters s1, s3
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as in (4.1.15), (4.1.9) respectively.

The two equivalent RHPs 4.1 , 4.3 give rise to two corresponding Malgrange forms.
Although the two problems are equivalent, the two corresponding tau-function may (and in
fact do) differ, but only by a non-vanishing term which we now set up to compute. Recalling
the Malgrange form of Painlevé II on Σ in (4.1.5):

∂t log τΣ =
∫

Σ

dz
2πi

Tr
[
Ψ−1
− Ψ′−ĠG−1

]
. (4.2.14)

Similarly on iR, the RHP:4.3 satisfies the jump condition Θ+ = Θ− J and the corresponding
Malgrange form (2.0.3) is

∂t log τiR =
∫

iR

dz
2πi

Tr
[
Θ−1
− Θ′− J̇ J−1

]
. (4.2.15)

Proposition 4.1. The Malgrange forms corresponding to the RHPs on the contours Σ and iR are
related as

∂t log τΣ = ∂t log τiR −
∫

iR

dz
2πi
F (z, t; ν, h)−

[
4iν
3

+
2ν2

t

]
, (4.2.16)

where F (z, t; ν, h) is a regular function explicit in terms of parabolic cylinder functions.

Proof. 4 We begin by computing the expression

Tr
{

Θ−1
− Θ′− J̇ J−1

}
. (4.2.17)

Computing (4.2.17) term by term using (4.2.1): Θ− = Ψψ−1
r ,

Θ−1
− Θ′− = (Ψψ−1

r )−1(Ψψ−1
r )′ = ψrΨ−1

(
Ψ′ψ−1

r −Ψψ−1
r ψ′rψ−1

r

)

= ψr

(
Ψ−1Ψ′ − ψ−1

r ψ′r
)

ψ−1
r . (4.2.18)

Since (4.2.3): J = ψrψ−1
l ,

J̇ J−1 =
∂

∂t
(ψrψ−1

l )(ψrψ−1
l )−1 =

(
ψ̇rψ−1

l − ψrψ−1
l ψ̇lψ

−1
l

)
ψlψ

−1
r

= −ψr∆
(

ψ−1ψ̇
)

ψ−1
r , (4.2.19)

where
∆(ψ−1ψ̇) = ψ−1

l ψ̇l − ψ−1
r ψ̇r.

Substituting (4.2.18) and (4.2.19) in (4.2.17) and using cyclicity of trace,

Tr
{

Θ−1
− Θ′− J̇ J−1

}
= Tr

{(
−Ψ−1Ψ′ + ψ−1

r ψ′r
)

∆
(

ψ−1ψ̇
)}

. (4.2.20)

4In the proof, we drop the z, t dependence for the ease of writing. All the functions here on depend on z, t
unless specified.
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Since the term ψ−1
r ψ′r∆

(
ψ−1ψ̇

)
is integrated on iR in (4.2.15),

∫

iR

dz
2πi

[
ψ−1

r ψ′r∆
(

ψ−1ψ̇
)]

=
∫

iR

dz
2πi

Tr
[(

ψ
(0)
r

)−1 (
ψ
(0)
r

)′ {(
ψ
(4)
l

)−1
ψ̇l

(4) −
(

ψ
(0)
r

)−1
ψ̇r

(0)
}]

(4.2.21)

with ψ
(0)
r defined in (4.2.8), ψ

(4)
l in (4.2.9). We collect the explicit terms and compute them

in the end. Since Ψ has no jump on iR, using Cauchy theorem

−
∫

iR

dz
2πi

Tr
{

Ψ−1Ψ′∆
(

ψ−1ψ̇
)}

= −
∫

iR

dz
2πi

Tr ∆
{

Ψ−1Ψ′
(

ψ−1ψ̇
)}

=
∫

Σ

dz
2πi

Tr ∆
{

Ψ−1Ψ′
(

ψ−1ψ̇
)}

=
∫

ΣL

dz
2πi

Tr ∆
{

Ψ−1Ψ′
(

ψ−1ψ̇
)}

+
∫

ΣR

dz
2πi

Tr ∆
{

Ψ−1Ψ′
(

ψ−1ψ̇
)}

. (4.2.22)

In order to estimate (4.2.22), we begin by computing the integrand on ΣL:

Tr ∆
{

Ψ−1Ψ′
(

ψ−1ψ̇
)}

= Tr
{

Ψ−1
+ Ψ′+

(
ψ−1

l+
˙ψl+

)
−Ψ−1

− Ψ′−
(

ψ−1
l− ˙ψl−

)}
. (4.2.23)

Computing (4.2.23) term by term using (4.1.4): Ψ+ = Ψ−Gl,

Ψ−1
+ Ψ′+ = (Ψ−Gl)

−1(Ψ−Gl)
′ = G−1

l Ψ−1
− (Ψ′−Gl + Ψ−G′l)

= G−1
l (Ψ−1

− Ψ′− + G′l G
−1
l )Gl. (4.2.24)

Since (4.1.25): ψl+ = ψl−Gl,

ψ−1
l+

˙ψl+ = G−1
l ψ−1

l−
(

˙ψl−Gl + ψl−Ġl
)

= G−1
l

(
ψ−1

l− ˙ψl− + ĠlG−1
l

)
Gl. (4.2.25)

The product of (4.2.24) and (4.2.25) under the trace reads

Tr
{

Ψ−1
+ Ψ′+

(
˙ψl+ψ−1

l+

)}
= Tr

[(
Ψ−1
− Ψ′− + G′l G

−1
l

) (
ψ−1

l− ˙ψl− + ĠlG−1
l

)]
. (4.2.26)

Substituting (4.2.26) in (4.2.23),

Tr ∆
{

Ψ−1Ψ′
(

ψ̇ψ−1
)}

= Tr
[
Ψ−1
− Ψ′−ĠlG−1

l + G′l G
−1
l

(
ψ−1

l− ˙ψl− + ĠlG−1
l

)]
(4.2.27)

A parallel computation for ΣR gives

Tr ∆
{

Ψ−1Ψ′
(

ψ̇ψ−1
)}

= Tr
[
Ψ−1
− Ψ′−ĠrG−1

r + G′rG−1
r

(
ψ−1

r− ˙ψr− + ĠrG−1
r

)]
. (4.2.28)
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Summing the terms (4.2.27) and (4.2.28), we obtain that

∂t log τiR =
∫

iR

dz
2πi

Tr
[
Θ−1
− Θ′− J̇ J−1

]
=
∫

ΣR

dz
2πi

Tr
[
Ψ−1
− Ψ′−ĠrG−1

r

]
+
∫

ΣL

dz
2πi

Tr
[
Ψ−1
− Ψ′−ĠlG−1

l

]

+
∫

ΣL

dz
2πi

Tr
[

G′l G
−1
l

(
ψ−1

l− ˙ψl− + ĠlG−1
l

)]
+
∫

ΣR

dz
2πi

Tr
[

G′rG−1
r

(
ψ−1

r− ˙ψr− + ĠrG−1
r

)]

+
∫

iR

dz
2πi

Tr
[
ψ−1

r ψ′r∆
(

ψ−1ψ̇
)]

=
∫

Σ

dz
2πi

Tr
[
Ψ−1
− Ψ′−ĠG−1

]
+
∫

iR

dz
2πi

Tr
[
ψ−1

r ψ′r∆
(

ψ−1ψ̇
)]

+
∫

ΣL

dz
2πi

Tr
[

G′l G
−1
l

(
ψ−1

l− ˙ψl− + ĠlG−1
l

)]
+
∫

ΣR

dz
2πi

Tr
[

G′rG−1
r

(
ψ−1

r− ˙ψr− + ĠrG−1
r

)]

= ∂t log τΣ +
∫

iR

dz
2πi

Tr
[
ψ−1

r ψ′r∆
(

ψ−1ψ̇
)]

+
∫

ΣL

dz
2πi

Tr
[

G′l G
−1
l

(
ψ−1

l− ˙ψl− + ĠlG−1
l

)]
+
∫

ΣR

dz
2πi

Tr
[

G′rG−1
r

(
ψ−1

r− ˙ψr− + ĠrG−1
r

)]
.

(4.2.29)

Notice that ψr,l and Gr,l are completely determined in terms of parabolic cylinder functions.
The final expression is

∂t log τΣ = ∂t log τiR −
∫

iR

dz
2πi

Tr
[
ψ−1

r ψ′r∆
(

ψ−1ψ̇
)]

−
∫

ΣL

dz
2πi

Tr
[

G′l G
−1
l

(
ψ−1

l− ˙ψl− + ĠlG−1
l

)]
−
∫

ΣR

dz
2πi

Tr
[

G′rG−1
r

(
ψ−1

r− ˙ψr− + ĠrG−1
r

)]
.

(4.2.30)

The following can be said about the explicit terms in (4.2.30).

• We can completely determine the integrals on ΣR,L. The symmetry relations (4.1.7),
(4.1.20) imply that
∫

ΣL

dz
2πi

Tr
[

G′l G
−1
l

(
ψ−1

l− ˙ψl− + ĠlG−1
l

)]
=
∫

ΣR

dz
2πi

Tr
[

G′rG−1
r

(
ψ−1

r− ˙ψr− + ĠrG−1
r

)]
.

(4.2.31)

Furthermore, (4.1.15) implies that the jump G(i)
r in (4.1.23) is lower triangular for i =

0, 2; upper triangular for i = 1, 3; diagonal and constant for i = 4. Therefore,

Tr
[

G′rG−1
r ĠrG−1

r

]
= Tr

[
G′l G

−1
l ĠlG−1

l

]
= 0. (4.2.32)

We now proceed to compute the following term in (4.2.30)

∫

ΣR

dz
2πi

Tr
[

G′rG−1
r ψ−1

r− ˙ψr−
]
=

5

∑
i=1

∫

Σi

dz
2πi

Tr
[
(G(i)

r )′(G(i)
r )−1(ψ

(i−1)
r− )−1 ˙ψr−

(i−1)
]

.

(4.2.33)



62 Chapter 4. General solutions of Painlevé II

In each sector, ψr and Gr can be computed starting from ψ
(0)
r in (4.2.8), and the jumps

in (4.1.23). A lengthy but straightforward computation yields

∫

ΣR

dz
2πi

Tr
[

G′rG−1
r

(
ψ−1

r− ˙ψr− + ĠrG−1
r

)]
=

[
2iν
3

+
ν2

t

]
. (4.2.34)

The relation (4.2.31) then implies,

∫

ΣL

dz
2πi

Tr
[

G′l G
−1
l

(
ψ−1

l− ˙ψl− + ĠlG−1
l

)]
+
∫

ΣR

dz
2πi

Tr
[

G′rG−1
r

(
ψ−1

r− ˙ψr− + ĠrG−1
r

)]
=

[
4iν
3

+
2ν2

t

]
.

(4.2.35)

• The remaining explicit term in (4.2.30)
∫

iR

dz
2πi

Tr
[
ψ−1

r ψ′r∆
(

ψ−1ψ̇
)]
≡
∫

iR

dz
2πi

Tr
[(

ψ
(0)
r

)−1 (
ψ
(0)
r

)′ {(
ψ
(4)
l

)−1
ψ̇l

(4) −
(

ψ
(0)
r

)−1
ψ̇r

(0)
}]

.

(4.2.36)

The functions ψ
(0)
r and ψ

(4)
l depend on z through ζ(z, t) as in (4.1.8) and ξ(z, t) as in

(4.1.24) respectively. In order to solve the integral, we need to compute integrals of
the form ∫ dz

2πi
Dν(ζ)Dµ(ξ)D−ρ(iζ)D−σ(iξ), (4.2.37)

which is not exactly solvable. The expression (4.2.36) is however, explicit. Defining a
function F as

F (z, t; ν, h) := Tr
[
ψ−1

r ψ′r
(

ψ−1
l ψ̇l − ψ−1

r ψ̇r

)]
, (4.2.38)

The final expression in (4.2.30) reads

∂t log τΣ = ∂t log τiR −
∫

iR

dz
2πi
F (z, t; ν, h)−

[
4iν
3

+
2ν2

t

]
. (4.2.39)

4.3 Integrable kernel and Fredholm determinant

Up to this point, we started with the RHP of Painlevé II in fig:4.1, used the description
of the local parametrices in terms of parabolic cylinder functions in the subsection 4.1.1 to
define a RHP on iR (4.2.2) in section 4.2. We then showed that the corresponding Malgrange
forms are related in proposition: 4.1. Our goal now reduces to expressing τiR as a Fredholm
determinant.

It is known that a jump J(z, t) ∈ SL(2, C) on non-intersecting contours can be expressed
in terms of lower and upper triangular matrices called the LULU decomposition and the
corresponding tau-function can then be written as a Fredholm determinant of an integrable
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operator [9]. Here, we modify the construction in [9] by using LDU decomposition instead,
which then gives us a simpler kernel. In this section, we

1. transform RHP:4.3 on to a set of two parallel lines with lower and upper triangular
jumps using the LDU decomposition,

2. formulate the tau-function on the set of parallel lines, call it τLU as a Fredholm deter-
minant of an integrable operator, and

3. prove that the Malgrange forms on the contours LU and iR coincide.

4.3.1 LU decomposition

The RHP on iR can be transformed on to a set of two parallel lines with jumps that are
upper and lower triangular respectively. We decompose the jump J(z, t) (4.2.3) into lower,
diagonal and upper triangular matrices, called the LDU decomposition [19], which recasts
the RHP:4.3 on to a set of three parallel lines.

J(z, t) =
( A(z, t) B(z, t)
C(z, t) D(z, t)

)
=

(
1 0
C(z,t)
A(z,t) 1

)(
A(z, t) 0

0 1
A(z,t)

)(
1 B(z,t)
A(z,t)

0 1

)

:= F1(z, t)F2(z, t)F3(z, t). (4.3.1)

l3 l2 l1

(
1 0
C
A 1

)
Aσ3

(
1 B

A
0 1

)

Y4 = L Y3 Y2 Y1 = R

FIGURE 4.5: LDU decomposition

The function Y(z, t) then solves the following RHP.

Riemann-Hilbert problem 4.4.

• Y(z, t) is a piecewise analytic in C\
(
∪3

i=1li
)
.

• On each line li in fig:4.5, the following jump condition holds

Yi+1(z, t) = Yi(z, t)Fi(z, t), (4.3.2)

with the identification

Y4(z, t) = Θ+(z, t) ; Y1(z, t) = Θ−(z, t). (4.3.3)

5The author thanks A.Its for suggesting LDU decomposition.
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Θ± are defined in (4.2.1).

• limz→∞ Y(z, t) = 1.

The RHP:4.4 can be further transformed with the observation that the function ϕ(z, t)σ3

defined as

ϕ(z, t) := exp
[∫

iR

dw
2πi

logA(w, t)
z− w

]
, (4.3.4)

solves RHP on l2 with the diagonal jump Aσ3 locally with A defined in (4.2.4). The ratio of
Y(z, t), ϕ(z, t)σ3

Ỹi(z, t) := Yi(z, t)ϕ(z, t)−σ3 (4.3.5)

is such that Ỹ(z, t) jumps only on l1 ∪ l3 and solves the following RHP.

Riemann-Hilbert problem 4.5.

• Ỹ(z, t) is piece-wise analytic in C\(l1 ∪ l3).

l3 l1

(
1 0

C
Aϕ
−2 1

)(
1 B

Aϕ
2

0 1

)

Ỹ4 Ỹ3 = Ỹ2 Ỹ1

FIGURE 4.6: RHP with lower and upper triangular jumps.

• The following jump conditions are valid on the contours li, i = 1, 3

Ỹi+1(z, t) = Ỹi(z, t)F̃i(z, t). (4.3.6)

Note that Ỹ(z, t) has no jump on l2, implying that Ỹ3(z, t) = Ỹ2(z, t).

The RHP:4.5 is of the ’integrable’ type and its solvability is determined by the invertibility
of an integrable operator i.e, its tau-function is the Fredholm determinant of an integrable
operator.

4.3.2 Integrable kernel

Proposition 4.2. The tau-function on l1 ∪ l3 denoted by τLU is a Fredholm determinant of an inte-
grable operator

τLU = det
[
1

L2(iR)
− K̃

]
(4.3.7)
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where

(
K̃g
)
(z) =

C(z, t)
A(z, t)

∫

iR

dw
2πi

∫

iR+ε

dw̃
2πi

ϕ2
+(w)ϕ−2

+ (w̃)

(z− w̃)(w̃− w)
A(w̃, t)B(w̃, t)g(w̃). (4.3.8)

The functions A, B, C are defined in (4.2.4) and ϕ+ is the positive (left of the imaginary axis)
boundary value of (4.3.4).

Proof. Let us start with the jumps in (4.3.6)

F̃(z, t) =





F̃1(z, t) =

(
1 0

C(z,t)
A(z,t) ϕ(z, t)2 1

)
; on l1

F̃3(z, t) =

(
1 B(z,t)
A(z,t) ϕ(z, t)−2

0 1

)
; on l3

. (4.3.9)

We define the functions

f (z, t) =
1

2πi




B(z,t)
A(z,t)χ3(z)

C(z,t)
A(z,t)χ1(z)


 ; g(z, t) =




ϕ(z, t)2χ1(z)

ϕ(z, t)−2χ3(z)


 (4.3.10)

where χ1(z), χ3(z) denote the characteristic functions on the contours l1, l3 respectively. The
jump F̃(z, t) can be written in terms of (4.3.10) as

F̃ = 1− 2πi f (z)gT(z), (4.3.11)

and clearly f T(z)g(z) = 0. The associated integrable kernel is then

K(z, w) =
f T(z)g(w)

z− w
=

=
1

(2πi)(z− w)

(
χ1(z) χ3(z)

)

 0 C(z,t)

A(z,t) ϕ−2(w, t)
B(z,t)
A(z,t) ϕ2(w, t) 0



(

χ1(w)
χ3(w)

)

≡
(

χ1(z) χ3(z)
) ( 0 K31(z, w)

K13(z, w) 0

)(
χ1(w)
χ3(w)

)
. (4.3.12)

The kernels K13(z, w) and K31(z, w) in (5.5) take the form

K13(z, w) =
B(z, t)ϕ2(w, t)

(2πi)A(z, t)(z− w)

K31(z, w) =
C(z, t)ϕ−2(w, t)

(2πi)A(z, t)(z− w)
.

We introduce the operators

K31 : L2(l3)→ L2(l1)

K13 : L2(l1)→ L2(l3),
(4.3.13)
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defined as

(K31h) (z) =
∫

l3
K31(z, w)h(w)dw,

(K13g) (z) =
∫

l1
K13(z, w)g(w)dw.

(4.3.14)

The tau-function corresponding to the RHP:4.5 is then

τLU(t) = det
[

1
L2(l1∪l3)

−
(

0 K31
K13 0

)]
. (4.3.15)

Since ϕ2(w, t) is analytic in <(w) > 0 and limw→∞ ϕ(w, t) = 1, K13, K31 are Trace–class.
Therefore we can write τLU(t) in the form

τLU(t) = det
[
1

L2(l3)
−K13 ◦ K31

]
. (4.3.16)

The form of the tau-function (4.3.16) can be further modified such that the operator acts
on L2(iR) instead of L2(l3). We begin by splitting the function h(z) as

h(z) = hL(z) + hR(z) (4.3.17)

where hL,R(z) are analytic to the left and right of l3 respectively, and hL,R(z) = O(z−1) as
z→ ∞. The integrable operator (4.3.14) acts on h(z) as

(K13K31hR) (z) ≡ 0⇒ (K13K31h) (z) = (K13K31hL) (z). (4.3.18)

We can therefore move the integration in w from l3 to iR in (4.3.14) and identify the space of
functions (K31h) (z) with HR(iR), the Hardy space on the right half–plane. So, the operator

(
K̃g
)
(z) := (K13K31g) (z) =

C(z, t)
A(z, t)

∫

l1

dw̃
2πi

∫

iR

dw
2πi

ϕ−2(w̃)

z− w̃
B(w̃, t)
A(w̃, t)

ϕ2
+(w, t)
w̃− w

g(w)

(4.3.19)

The kernel, K̃(z, w) is

K̃(z, w) =
C(z, t)
A(z, t)

ϕ2
+(w)

∫

l1

dw̃
2πi

ϕ−2(w̃)

(z− w̃)(w̃− w)

B(w̃, t)
A(w̃, t)

. (4.3.20)

We can now move l1 to iR + ε from the right without changing the kernel K̃

K̃(z, w) =
C(z, t)
A(z, t)

ϕ2
+(w)

∫

iR+ε

dw̃
2πi

ϕ−2
− (w̃)

(z− w̃)(w̃− w)

B(w̃, t)
A(w̃, t)

(4.3.21)

=
C(z, t)
A(z, t)

ϕ2
+(w)

∫

iR+ε

dw̃
2πi

ϕ−2
+ (w̃)

(z− w̃)(w̃− w)
A(w̃, t)B(w̃, t), (4.3.22)
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where in the last identity we use the relation from (4.3.2), (4.3.4): ϕ+(w̃) = ϕ−(w̃)A(w̃, t).
Therefore we conclude from (4.3.16) and the above discussion that

τLU(t) = det
[
1

L2(l3)
−K13 ◦ K31

]
= det

[
1

L2(iR)
− K̃

]
. (4.3.23)

Moreover, it is immediate to see from Theorem 2.2 that τLU(t) is indeed the JMU tau-
function.

4.3.3 Malgrange forms

In (4.3.23), we expressed the tau-function on LU as a Fredholm determinant. To relate τLU to
τΣ in (4.2.14), we will first prove that the tau-function corresponding to the RHP:4.4, call it
τLDU , is equal to τiR plus non-vanishing explicit factors as in proposition:4.1, and then show
that τLU is related to τLDU up to explicit terms. We know that the Malgrange form for the
RHP on iR (4.2.15) is :

∂t log τiR =
∫

iR

dz
2πi

Tr
[
Θ−1
− Θ′− J̇ J−1

]
. (4.3.24)

Similarly, the Malgrange form of the RHP on LDU (4.3.2): Yi+1 = YiFi is

∂t log τLDU =
3

∑
i=1

∫

li

dz
2πi

Tr
[
Y−1

i Y′i ḞiF−1
i

]
. (4.3.25)

Proposition 4.3. The Malgrange forms for the RHPs on the contours iR (RHP:4.3) and on LDU
(RHP:4.4) are related as

∂t log τiR = ∂t log τLDU −
∫

iR

dz
2πi

˙(B
A

) (
AC ′ −A′C

)
. (4.3.26)

the functions A, B, C are defined in (4.2.4).

Proof. We begin by substituting (4.3.1): J = F1F2F3 in the term

J̇ J−1 =
(

Ḟ1F2F3 + F1Ḟ2F3 + F1F2Ḟ3
) (

F−1
3 F−1

2 F−1
1

)

=
(

Ḟ1F−1
1 + F1Ḟ2F−1

2 F−1
1 + F1F2Ḟ3F−1

3 F−1
2 F−1

1

)
. (4.3.27)

Substituting in (4.3.27) in the integrand of (4.3.24),

Tr
[
Θ−1
− Θ′− J̇ J−1

]
= Tr

[
Θ−1
− Θ′−

(
Ḟ1F−1

1 + F1Ḟ2F−1
2 F−1

1 + F1F2Ḟ3F−1
3 F−1

2 F−1
1

)]
. (4.3.28)

The equivalence (4.3.3) along with the jump condition (4.3.2) imply that

Θ− = Y1 , Θ−F1 = Y2 , Θ−F1F2 = Y3. (4.3.29)
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Substituting (4.3.29) in (4.3.28),

Tr
[
Θ−1
− Θ′−

(
Ḟ1F−1

1 + F1Ḟ2F−1
2 F−1

1 + F1F2Ḟ3F−1
3 F−1

2 F−1
1

)]

= Tr
[
Θ−1
− Θ′− Ḟ1F−1

1 + F−1
1 Θ−1

− Θ′−F1Ḟ2F−1
2 + F−1

2 F−1
1 Θ−1

− Θ′−F1F2Ḟ3F−1
3

]

= Tr
[
Y−1

1 Y′1Ḟ1F−1
1 + Y−1

2 Y′2Ḟ2F−1
2 − F−1

1 F′1Ḟ2F−1
2 + Y−1

3 Y′3Ḟ3F−1
3 − (F1F2)

−1(F1F2)
′ Ḟ3F−1

3

]

=
3

∑
i=1

Tr
[
Y−1

i Y′i ḞiF−1
i

]
− Tr

[
F−1

1 F′1Ḟ2F−1
2 + (F1F2)

−1(F1F2)
′ Ḟ3F−1

3

]
. (4.3.30)

Therefore,

∫

iR

dz
2πi

Tr
[
Θ−1
− Θ′− J̇ J−1

]
=

3

∑
i=1

∫

li

dz
2πi

Tr
[
Y−1

i Y′i ḞiF−1
i

]
−
∫

iR

dz
2πi

Tr
[

F−1
1 F′1Ḟ2F−1

2

]

−
∫

iR

dz
2πi

Tr
[
(F1F2)

−1(F1F2)
′ Ḟ3F−1

3

]
. (4.3.31)

Let us analyze the explicit terms.

• Since F1 is upper triangular and F2 is diagonal as defined in (4.3.1),

Tr
[

F−1
1 F′1Ḟ2F−1

2

]
= 0. (4.3.32)

• Substituting F1,2,3 in the last term in (4.3.31),

Tr
[
(F1F2)

−1(F1F2)
′ Ḟ3F−1

3

]
=

˙(B
A

) (
AC ′ −A′C

)
(4.3.33)

where A, B, C are explicit in terms of parabolic cylinder functions (4.2.4).

Therefore,

∂t log τiR = ∂t log τLDU −
∫

iR

dz
2πi

˙(B
A

) (
AC ′ −A′C

)
. (4.3.34)

Recall from proposition:4.3, the Malgrange form of the RHP on LDU (4.3.25):

∂t log τLDU =
3

∑
i=1

∫

li

dz
2πi

Tr
[
Y−1

i Y′i ḞiF−1
i

]
. (4.3.35)

For the RHP on LU (RHP:4.5) with the jump condition (4.3.6): Ỹi+1 = Ỹi F̃i where i = 1, 3,
the Malgrange form reads

∂t log τLU = ∑
i=1,3

∫

li

dz
2πi

Tr
[
Ỹ−1

i Ỹ′i
˙̃Fi F̃−1

i

]
. (4.3.36)
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Proposition 4.4. The Malgrange forms of the RHPs on contours LDU (RHP:4.4) and LU (RHP:4.5)
are related as

∂t log τLDU = ∂t log τLU + 2
∫

iR

dz
2πi
Ȧ(z, t)
A(z, t)

∫

iR−

dw
2πi

A′(w, t)
A(w, t)(z− w)

. (4.3.37)

Proof. We will first simplify the integrals on l1 and l3 in (4.3.35). Given that (4.3.5):Yi = Ỹi ϕ
σ3

and (4.3.9):Fi = ϕ−σ3 F̃i ϕ
σ3 ,

∑
i=1,3

∫

li

dz
2πi

Tr
[
Y−1

i Y′i ḞiF−1
i

]

= ∑
i=1,3

∫

li

dz
2πi

Tr
[(

Ỹi ϕ
σ3
)−1 (

Ỹi ϕ
σ3
)′ ˙(

ϕ−σ3 F̃i ϕσ3

) (
ϕ−σ3 F̃−1

i ϕσ3
)]

= ∑
i=1,3

∫

li

dz
2πi

Tr
[(

Ỹi ϕ
σ3
)−1 (

Ỹi ϕ
σ3
)′ ˙(

ϕ−σ3 F̃i ϕσ3

) (
ϕ−σ3 F̃−1

i ϕσ3
)]

= ∑
i=1,3

∫

li

dz
2πi

Tr
[(

Ỹ−1
i Ỹ′i + σ3ϕ′ϕ−1

) (
−σ3 ϕ̇ϕ−1 + Ṁi F̃−1

i + F̃iσ3 ϕ̇ϕ−1F̃−1
i

)]

= ∑
i=1,3

∫

l1

dz
2πi

Tr
[
Ỹ−1

i Ỹ′i
˙̃Fi F̃−1

i

]
+ ∑

i=1,3

∫

li

dz
2πi

Tr
[(

Ỹ−1
i Ỹ′i

) (
−σ3 ϕ̇ϕ−1 + F̃iσ3 ϕ̇ϕ−1F̃−1

i

)]

+ ∑
i=1,3

∫

li

dz
2πi

Tr
[
σ3ϕ′ϕ−1

(
−σ3 ϕ̇ϕ−1 + ˙̃Fi F̃−1

i + F̃iσ3 ϕ̇ϕ−1F̃−1
i

)]
. (4.3.38)

In (4.3.38), F̃i are either lower or upper triangular (4.3.9). Therefore,
∫

l1∪l3

dz
2πi

Tr
[
σ3ϕ′ϕ−1

(
−σ3 ϕ̇ϕ−1 + Ṁi F̃−1

i + F̃iσ3 ϕ̇ϕ−1F̃−1
i

)]
= 0. (4.3.39)

Therefore, given (4.3.36), (4.3.38) reads

∑
i=1,3

∫

li

dz
2πi

Tr
[
Y−1

i Y′i ḞiF−1
i

]
= ∑

i=1,3

∫

li

dz
2πi

Tr
[
Ỹ−1

i Ỹ′i
˙̃Fi F̃−1

i

]

+ ∑
i=1,3

∫

li

dz
2πi

Tr
[(

Ỹ−1
i Ỹ′i

) (
−σ3 ϕ̇ϕ−1 + F̃iσ3 ϕ̇ϕ−1F̃−1

i

)]

= ∂t log τLU + ∑
i=1,3

∫

li

dz
2πi

Tr
[(

Ỹ−1
i Ỹ′i

) (
−σ3 ϕ̇ϕ−1 + F̃iσ3 ϕ̇ϕ−1F̃−1

i

)]
. (4.3.40)
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Recalling (4.3.6): Ỹi+1 = Ỹi F̃i, the second term in (4.3.40) can be further simplified

∑
i=1,3

∫

li

dz
2πi

Tr
[(

Ỹ−1
i Ỹ′i

) (
−σ3 ϕ̇ϕ−1 + F̃iσ3 ϕ̇ϕ−1F̃−1

i

)]

= ∑
i=1,3

∫

li

dz
2πi

Tr
[
−Ỹ−1

i Ỹ′i σ3 ϕ̇ϕ−1 + F̃−1
i Ỹ−1

i Ỹ′i F̃iσ3 ϕ̇ϕ−1
]

= ∑
i=1,3

∫

li

dz
2πi

Tr
[
−Ỹ−1

i Ỹ′i σ3 ϕ̇ϕ−1 + Ỹ−1
i+1Ỹ′i+1σ3 ϕ̇ϕ−1 − F̃−1

i F̃′i σ3 ϕ̇ϕ−1
]

= ∑
i=1,3

∫

li

dz
2πi

Tr
[
∆
(

Ỹ−1
i Ỹ′i

)
σ3 ϕ̇ϕ−1 − F̃−1

i F̃′i σ3 ϕ̇ϕ−1
]

= ∑
i=1,3

∫

li

dz
2πi

Tr
[
∆
(

Ỹ−1
i Ỹ′i

)
σ3 ϕ̇ϕ−1

]
, (4.3.41)

where ∆
(

Ỹ−1
i Ỹ′i

)
= Ỹ−1

i+1Ỹ′i+1− Ỹ−1
i Ỹ′i . The last line is obtained using the fact that Tr

[
F̃−1

i F̃′i σ3 ϕ̇ϕ−1
]
=

0 since F̃i is either lower or upper triangular and ϕ is scalar.
The final expression in (4.3.41) can be further simplified by noting that the function ϕ

has no jumps on l1 and l3. Beginning with the integral on l1,
∫

l1

dz
2πi

Tr
[
∆
(

Ỹ−1
1 Ỹ′1

)
σ3 ϕ̇ϕ−1

]
=
∫

l1

dz
2πi

Tr
[(

Ỹ−1
2 Ỹ′2 − Ỹ−1

1 Ỹ′1
)

σ3 ϕ̇ϕ−1
]

=
∫

l1

dz
2πi

Tr
[
Ỹ−1

2 Ỹ′2σ3 ϕ̇ϕ−1
]

. (4.3.42)

To obtain the last line, we notice that
∫

l1
dz

2πi Tr
[
Ỹ−1

1 Ỹ′1σ3 ϕ̇ϕ−1
]
= 0 by closing the contour

on the right. A similar computation follows for the integral on l3 in (4.3.41)
∫

l3

dz
2πi

Tr
[
∆
(

Ỹ−1
3 Ỹ′3

)
σ3 ϕ̇ϕ−1

]
=
∫

l3

dz
2πi

Tr
[(

Ỹ−1
4 Ỹ′4 − Ỹ−1

3 Ỹ′3
)

σ3 ϕ̇ϕ−1
]

= −
∫

l3

dz
2πi

Tr
[
Ỹ−1

3 Ỹ′3σ3 ϕ̇ϕ−1
]

. (4.3.43)

To obtain the last line, we note that
∫

l3
dz

2πi Tr
[
Ỹ−1

4 Ỹ′4σ3 ϕ̇ϕ−1
]
= 0 by closing the contour on

the left.
Gathering the terms (4.3.42), (4.3.43), and using (4.3.6):Ỹ2 = Ỹ3, (4.3.41) reads

∑
i=1,3

∫

li

dz
2πi

Tr
[
∆
(

Ỹ−1
i Ỹ′i

)
σ3 ϕ̇ϕ−1

]
=
∫

l1

dz
2πi

Tr
[
Ỹ−1

2 Ỹ′2σ3 ϕ̇ϕ−1
]
−
∫

l3

dz
2πi

Tr
[
Ỹ−1

3 Ỹ′3σ3 ϕ̇ϕ−1
]

= −
∫

l2

dz
2πi

Tr
[
Ỹ−1

2 Ỹ′2σ3 ϕ̇ϕ−1
]
+
∫

l2

dz
2πi

Tr
[
Ỹ−1

3 Ỹ′3σ3 ϕ̇ϕ−1
]
= 0. (4.3.44)

Substituting (4.3.44) in (4.3.40),

∑
i=1,3

∫

li

dz
2πi

Tr
[
Y−1

i Y′i ḞiF−1
i

]
= ∑

i=1,3

∫

li

dz
2πi

Tr
[
Ỹ−1

i Ỹ′i
˙̃Fi F̃−1

i

]
= ∂t log τLU . (4.3.45)
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We now compute the integral on l2 in (4.3.38)

∫

l2

dz
2πi

Tr
[
Y−1

2 Y′2Ḟ2F−1
2

]
=
∫

l2

dz
2πi

Tr
[(

Ỹ2ϕσ3
−
)−1 (

Ỹ′2ϕσ3
− + Ỹ2

(
ϕσ3
−
)′) Ḟ2F−1

2

]

=
∫

l2

dz
2πi

Tr
[

ϕ−σ3
− Ỹ−1

2

(
Ỹ′2ϕσ3

− + Ỹ2
(

ϕσ3
−
)′) Ḟ2F−1

2

]

=
∫

l2

dz
2πi

Tr
[
Ỹ−1

2 Ỹ′2Ḟ2F−1
2 + σ3ϕ−1

− ϕ′− Ḟ2F−1
2

]
. (4.3.46)

Since Ỹ2 does not jump on l2, Liouville theorem implies that

Tr
[
Ỹ−1

2 Ỹ′2Ḟ2F−1
2

]
= 0. (4.3.47)

The term

Tr
[
σ3ϕ−1

− ϕ′− Ḟ2F−1
2

]
(4.3.48)

in (4.3.46) is an explicit function of A(z, w) in (4.2.4). From (4.3.1),

F2 = Aσ3 ⇒ Ḟ2F−1
2 =

Ȧ
Aσ3. (4.3.49)

The function ϕ− is the boundary value of ϕ defined in (4.3.4)

ϕ− =
∫

iR−ε

dw
2πi

logA(w, t)
z− w

⇒ ϕ−1
− ϕ′− =

∫

iR−ε

dw
2πi

A′(w, t)
A(w, t)(z− w)

. (4.3.50)

The expression (4.3.46) simplifies as follows due to (4.3.49), (4.3.50)
∫

l2

dz
2πi

Tr
[
Y−1

2 Y′2Ḟ2F−1
2

]
=
∫

l2

dz
2πi

Tr
[
σ3ϕ−1

− ϕ′− Ḟ2F−1
2

]

=
∫

iR

dz
2πi

(
2
Ȧ(z, t)
A(z, t)

) ∫

iR−ε

dw
2πi

A′(w, t)
A(w, t)(z− w)

. (4.3.51)

Substituting (4.3.51) and (4.3.45), in (4.3.35)

∂t log τLDU =
3

∑
i=1

∫

li

dz
2πi

Tr
[
Y−1

i Y′i ḞiF−1
i

]

= ∑
i=1,3

∫

li

dz
2πi

Tr
[
Y−1

i Y′i ḞiF−1
i

]
+
∫

iR

dz
2πi

Tr
[
σ3ϕ−1

− ϕ′− Ḟ2F−1
2

]

= ∂t log τLU ++2
∫

iR

dz
2πi
Ȧ(z, t)
A(z, t)

∫

iR−

dw
2πi

A′(w, t)
A(w, t)(z− w)

(4.3.52)
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4.4 Fredholm determinant representation of Painlevé II tau-
function

Theorem 4.1. The tau-function of Painlevé II equation can be expressed in terms of a Fredholm
determinant of an integrable operator as follows

∂t log τPII = ∂t log det
[
1

L2(iR)
− K̃

]
−
[

4iν
3

+
2ν2

t

]
+F (t, ν, h). (4.4.1)

The kernel

K̃(z, w) =
C(z, t)
A(z, t)

ϕ2
−(w)

∫

iR−ε

dw̃
2πi

ϕ−2
− (w̃)

(z− w̃)(w̃− w)
A(w̃, t)B(w̃, t) (4.4.2)

with

ζ ≡ ζ(z, t) = 2t1/2

√
−4i

3
z3 + iz− i

3
; ξ = ζ(−z, t)

A(z, t) =
e−2πiν

h4 e
2i
3 tζνξν

(
−eiπνh4D−ν(iζ)D−ν(iξ)− ν2e4πiνDν−1(ζ)Dν−1(ξ)

)

B(z, t) = − e−2πiν

h2

(
z + 1/2
z− 1/2

)2ν

ζνξ−ν
(
−ieiπνh4D−ν(iζ)D−ν−1(iξ)− νe4πiνDν−1(ζ)Dν(ξ)

)

C(z, t) = B(−z, t) ; ϕ−(w, t) =
∫

iR−ε

dw′

2πi
logA(w′, t)

w− w′
. (4.4.3)

The coordinate z, isomonodromic time t are related to λ, x in (1.3.4) as

λ = (−x)1/2z, t = (−x)3/2. (4.4.4)

Dν(ξ) is the parabolic cylinder function, and the constants ν, h are determined by the Stokes’ pa-
rameters s1, s3.

ν = − 1
2πi

log(1− s1s3), (4.4.5)

h = −
√

2π

Γ(−ν)s3
eiπν. (4.4.6)

The term F (t, ν, h) is a regular function of t and the Stokes’ data and is defined in (4.4.9).

Proof. The Propositions 4.1, 4.3, 4.4 imply that the tau-functions τΣ and τLU are related
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through explicit factors, and Proposition 4.2 expresses τLU as a Fredholm determinant. There-
fore, the tau-function of Painlevé II equation defined in (4.1.5)

∂t log τPII ≡ ∂t log τΣ

(4.2.39)
= ∂t log τiR −

∫

iR

dz
2πi
F̃ (z, t; ν, h)−

[
4iν
3

+
2ν2

t

]

(4.3.34)
= ∂t log τLDU −

∫

iR

dz
2πi

{
˙(B
A

) (
AC ′ −A′C

)
+ F̃ (ζ, ξ, t; ν, h)

}
−
[

4iν
3

+
2ν2

t

]

(4.3.52)
= ∂t log τLU +

∫

iR

dz
2πi

{
2Ȧ(z, t)
A(z, t)

(∫

iR−ε

dw
2πi

A′(w, t)
A(w, t)(z− w)

)
−

˙(B
A

) (
AC ′ −A′C

)
− F̃ (z, t; ν, h)

}

−
[

4iν
3

+
2ν2

t

]

(4.3.23)
= ∂t log det

[
1

L2(iR)
− K̃

]
−
[

4iν
3

+
2ν2

t

]

+
∫

iR

dz
2πi

{
2Ȧ(z, t)
A(z, t)

(∫

iR−ε

dw
2πi

A′(w, t)
A(w, t)(z− w)

)
−

˙(B
A

) (
AC ′ −A′C

)
− F̃ (z, t; ν, h)

}
. (4.4.7)

In (4.4.7), the functions A, B, C defined in (4.2.4) are explicit in terms of parabolic cylinder
functions, F̃ is defined in (4.2.38), and the term

∫

iR

dz
2πi

{
2Ȧ(z, t)
A(z, t)

(∫

iR−ε

dw
2πi

A′(w, t)
A(w, t)(z− w)

)
−

˙(B
A

) (
AC ′ −A′C

)
− F̃ (z, t; ν, h)

}

(4.4.8)

depends only on h, ν and t. We then define

F (t, ν, h) :=
∫

iR

dz
2πi

{
2Ȧ(z, t)
A(z, t)

(∫

iR−ε

dw
2πi

A′(w, t)
A(w, t)(z− w)

)
−

˙(B
A

) (
AC ′ −A′C

)
− F̃ (z, t; ν, h)

}
.

(4.4.9)

In terms of F (t, ν, h), (4.4.7) reads

∂t log τPII = ∂t log det
[
1

L2(iR)
− K̃

]
+ F(t, ν, h)−

[
4iν
3

+
2ν2

t

]
. (4.4.10)

Therefore, the tau-function of Painlevé II can be expressed as a Fredholm determinant of an
integrable operator up to explicit factors. Furthermore, solving the RHP:4.5 is equivalent
to solving the RHP:4.3, which in turn is tantamount to solving the RHP:4.1. Therefore, the
zeros of τPII (solvability condition of 4.1) are completely determined by the zeros of the
Fredholm determinant (4.3.23).

Some further comments are in order.

1. The tau-function (4.4.1) is defined on C\ {0} and is analytic in t. Refer to Remark:4.1
for the details.

2. The degeneration limit from the general tau-function of Painlevé II in (4.4.1) to the tau-
function of the Ablowitz-Segur family of solutions (determinant of the Airy kernel) in
[40] is singular.
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Chapter 5

Tau-function of a n-point torus

In this chapter, we extend the determinant formalism of [54] that was summarized in Sec-
tion 2.3 to isomonodromic tau-functions on a torus with an arbitrary number of Fuchsian
singularities [76, 77, 79, 81, 110], providing both the Fredholm determinant representation
of the general case, and its minor expansion in terms of Nekrasov-Okounkov functions [90,
89] as will be seen in Chapter 7. This extends and completes the analysis of [15, 14], where
these cases were studied by using CFT methods.

5.1 The 2-particle nonautonomous Calogero-Moser system:
a toy model

Our starting point is the elliptic form of the Painlevé VI equation with an arbitrary param-
eter m ∈ C (1.2.29)

(2πi)2 d2Q(τ)

dτ2 = m2℘′(2Q(τ)|τ), (5.1.1)

which describes the equation of motion of the nonautonomous 2-particle Calogero-Moser
system [110]. The Weierstrass ℘ function is defined in terms of the theta function θ1 by

℘(z|τ) := − ∂2

∂z2 log θ1(z|τ)−
1
6

θ′′′1 (0|τ)
θ′1(0|τ)

≡ − ∂2

∂z2 log θ1(z|τ)−
1
6

θ′′′1
θ′1

, (5.1.2)

θ1(z|τ) := ∑
n∈Z

(−1)n− 1
2 eiπ(n+ 1

2)
2

e2πi(n+ 1
2)z, (5.1.3)

with the theta function satisfying the following periodicity properties:

θ1(z + 1|τ) = −θ1(z|τ), θ1(z + τ|τ) = −e−2πi(z+ τ
2 )θ1(z|τ). (5.1.4)

The Weierstrass ℘ function also has a series representation:

℘(z|τ) = 1
z2 + ∑

(p,q) 6=(0,0)

(
1

(z + p + qτ)2 −
1

(p + qτ)2

)
(5.1.5)

with fundamental periods 1, τ. The modular parameter of the torus τ lies in the upper-half
plane H and assumes the role of the isomonodromic time. The equation (5.1.1) arises as the
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compatibility condition of the following linear system1 on a torus with one puncture set at
zero [77, 81, 110],

∂zYCM(z, τ) = YCM(z, τ)LCM(z, τ),
2πi∂τYCM(z, τ) = YCM(z, τ)MCM(z, τ),

(5.1.6)

where (LCM, MCM) is the Lax pair of 2-particle non-autonomous Calogero-Moser system

LCM(z, τ) =

(
P(τ) mx(−2Q(τ), z)

mx(2Q(τ), z) −P(τ)

)
,

MCM(z, τ) = m
(

0 y(−2Q(τ), z)
y(2Q(τ), z) 0

)
.

(5.1.7)

The functions x(ξ, z), y(ξ, z) and P in (5.1.7) are respectively,

x(ξ, z) =
θ1(z− ξ|τ)θ′1(0|τ)

θ1(z|τ)θ1(ξ|τ)
, y(ξ, z) = ∂ξ x(ξ, z), P(τ) = 2πi

dQ(τ)

dτ
. (5.1.8)

As opposed the behaviour of the Lax matrices on the sphere, the Lax matrix LCM in (5.1.7)
is not single-valued, and satisfies the relations

LCM(z + 1, τ) = LCM(z, τ), LCM(z + τ, τ) = e−2πiQ(τ)σ3 LCM(z, τ)e2πiQ(τ)σ3 . (5.1.9)

Subsequently, the solution of the linear system (5.1.7) has the following monodromy prop-
erties around A,B cycles of the torus and around the puncture:

YCM(z + 1, τ) = MAYCM(z, τ), YCM(z + τ, τ) = MBYCM(z, τ)e2πiQ(τ)σ3 ,

YCM(e2πiz, τ) = M0YCM(z, τ),
(5.1.10)

under the constraint
M0 = M−1

A M−1
B MAMB, (5.1.11)

and without loss of generality, it is always possible to set MA to be diagonal by conjugation,
so that

MA = e2πiaσ3 , M0 ∼ e2πimσ3 , (5.1.12)

where ∼ means "in the same conjugacy class of", σ3 is the Pauli sigma matrix, and the
arbitrary constants a, m ∈ C.

5.2 Tau-function

The Hamiltonian of the system (5.1.7) is the A-cycle contour integral [77, 79]

HCM(τ) =
∮

A
dz

1
2

tr L2
CM(z, τ) = P(τ)2 −m2℘(2Q(τ)|τ) + 4πim2∂τ log η(τ), (5.2.1)

1Note that in this chapter we multiply the linear system from the left and the monodromies from the right.
This choice makes the computations that follow easier.
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where η(τ) is Dedekind’s eta function

η(τ) :=
(

θ′1(0|τ)
2π

)1/3

. (5.2.2)

The generator of the Hamiltonian HCM is called the (isomonodromic) tau-function TCM of
the 2-particle non-autonomous Calogero-Moser system, and is defined by

2πi∂τ log TCM(τ) := HCM(τ). (5.2.3)

Another notion of a tau-function describes it as a Fredholm determinant (if it exists)
of an operator whose vanishing locus, called the Malgrange divisor [84], defines the non-
solvability of some linear problem [8, 6]. In this spirit, following the construction in [54],
we define a tau-function as the Fredholm determinant of certain Plemelj operators. The
overview of the construction for the one-punctured torus is as follows:

• The pants decomposition [61] of the one-punctured torus consists of a trinion with
two legs identified [57], whose boundaries become the A-cycle of the torus;

• A linear system with 3 Fuchsian singularities, whose solution is explicitly described
by hypergeometric functions, is associated to the trinion;

• Boundary (Hilbert) spaces are defined on the two legs of the trinion;

• Two Plemelj operators, PΣ and P⊕, are defined in terms of the solutions to the linear
systems on the torus and on the trinion respectively. The Plemelj operators project
one boundary space on to the other, effectively ’gluing’ the cut along the A-cycle and
giving us the one-punctured torus.

• A tau-function is then defined in (5.2.32) as a determinant of some combination of
(restrictions of) the operators PΣ and P⊕.

5.2.1 Pants decomposition and Plemelj operators

Let us introduce the 2× 2 matrix-valued function Ỹ(z) that solves the following auxiliary
linear system on a cylinder with 3 punctures at −i∞, 0,+i∞:

∂zỸ(z) = Ỹ(z)L3pt(z), L3pt(z) = −2πiA0 − 2πi
A1

1− e2πiz , (5.2.4)

where A0, A1 are constant 2× 2 matrices, and the fundamental solution Ỹ(z) of the linear
system is described by hypergeometric functions, see [54, 15]. The local monodromy expo-
nents of the Lax matrix in (5.2.4) are chosen so that they coincide with those on the torus
(5.1.12):

A0 ∼ aσ3, A1 ∼ mσ3, (5.2.5)

and Ỹ(z) itself is chosen in such a way that

Ỹ(z)−1YCM(z)
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is regular and single-valued around z = 0 and has no monodromy around the A-cycles
closest to the annulus A . In other words, Ỹ(z) “approximates” analytic behavior of Y(z) in
the fundamental domain having the same monodromies around puncture and around two
closest A-cycles.

The trinion T can then be viewed as being obtained by cutting the torus along its
A-cycle, see Figure 5.1, inducing a homomorphism of monodromy groups 2 π1(C3,0) →
π1(C1,1)

MAM0M−1
B M−1

A MB = 1 = (MA)M0(M−1
B MAMB)

−1 := M3pt
−i∞M3pt

0 M3pt
i∞ , (5.2.6)

that defines the monodromies of the three-punctured cylinder around−i∞, 0,+i∞ in terms
of the monodromy representation of the torus as in Figure 5.1b.

M0

T

A

Cin Cout

(A) Pants decomposition of C1,1

T

M0

MA

Cin

M−1
B M−1

A MB

Cout

(B) Trinion

FIGURE 5.1

Remark 5.1. The linear system (5.2.4) is simply the usual three-point Fuchsian problem on the
sphere, having mapped the sphere to a cylinder by z → e−2πiz. The punctures at 0, 1, ∞ become
punctures at −i∞, 0, i∞ respectively.

Definition 5.1. Out of the solutions YCM(z), Ỹ(z) of the linear problems (5.1.6), (5.2.4) respec-
tively, we define two matrix-valued functions YCM(z), Ỹ(z) with diagonal monodromies around the
boundary circles Cin and Cout in Figure 5.1, by the following equations:

YCM(z)|Cin := YCM(z)|Cin ∈ Hin, YCM(z)|Cout := M−1
B YCM(z)|Cout ∈ Hout, (5.2.7)

Ỹ(z)|Cin ≡ Ỹin(z) := Ỹ(z)|Cin ∈ Hin, Ỹ(z)|Cout ≡ Ỹout(z) := M−1
B Ỹ(z)|Cout ∈ Hout. (5.2.8)

Notice that YCM(z) and Ỹ(z) also solve (5.1.6), (5.2.4) respectively. Moreover,

Ỹ(z)−1YCM(z) = Ỹ(z)−1YCM(z), (5.2.9)

so effectively they can be exchanged in the formulas where they appear in the form of such
ratios. Notice also that under such definition

YCM(z + τ) = YCM(z)e2πiQ, z ∈ Cin. (5.2.10)

2Cg,n represents a Riemann surface of genus g with n punctures.
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The Hilbert spaces Hin, Hout on the boundaries of the pants Cin, Cout respectively (see
Figure 5.1) have an orthogonal decomposition into spaces of positive and negative Fourier
modes. A Hilbert space H defined as the direct sum of Hin and Hout is then associated to
the trinion T :

H := Hin ⊕Hout = (Hin,− ⊕Hout,+)⊕ (Hin,+ ⊕Hout,−) := H+ ⊕H−, (5.2.11)

where
H+ = Hin,− ⊕Hout,+, H− = Hin,+ ⊕Hout,−. (5.2.12)

The functions f (z) ∈ H then have the decomposition

f (z) =
(

fin
fout

)
=

(
fin,−
fout,+

)
⊕
(

fin,+
fout,−

)
≡ f+ ⊕ f−, (5.2.13)

where

f+ =

(
fin,−
fout,+

)
∈ H+, f− =

(
fin,+
fout,−

)
∈ H−, (5.2.14)

and the ± parts of the function are defined by their Fourier expansions:

fin,+ = e2πiazσ3
∞

∑
n=0

fin,ne−2πinz, fin,− = e2πiazσ3
∞

∑
n=1

fin,−ne2πinz,

fout,+ = e2πiazσ3
∞

∑
n=0

fout,ne−2πinz, fout,− = e2πiazσ3
∞

∑
n=1

fout,ne2πinz.
(5.2.15)

On the space H we introduce two Plemelj projectors in terms of the solutions to the linear
systems (5.1.7), (5.2.4) respectively.

Definition 5.2. The Plemelj operator PΣ1,1 : H → H is defined in terms of the solution to the linear
system on the torus (5.1.7) as

(
PΣ1,1 f

)
(z) =

∫

Cin∪Cout

dw
2πi

YCM(z; τ)Ξ2(z, w; τ)YCM(w; τ)−1 f (w)

≡
∫

C
dw
2πi

YCM(z; τ)Ξ2(z, w; τ)YCM(w; τ)−1 f (w), (5.2.16)

where

Ξ2(z, w; τ) =




θ1(z−w+Q−ρ)θ′1(0)
θ1(z−w)θ1(Q−ρ)

0

0 − θ1(z−w−Q−ρ)θ′1(0)
θ1(z−w)θ1(Q+ρ)


 . (5.2.17)

The function Ξ2(z, w; τ)dw in (5.2.17) is a twisted Cauchy kernel, with the properties

Ξ2(z + τ, w; τ) = e−2πiQσ3+2πiρΞ2(z, w; τ), Ξ2(x, w + τ; τ) = Ξ2(z, w; τ)e2πiQσ3−2πiρ,
(5.2.18)

The variable3 Q ≡ Q(τ) is the solution of the non-autonomous Calogero-Moser system
(5.1.1), and ρ is a parameter encoding a U(1) B-cycle monodromy of the twisted Cauchy

3Here on, we drop the τ dependence of Q for brevity.
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kernel as can be seen in (5.2.18). It does not appear in the linear problem (5.1.6), but rather it
is an arbitrary parameter whose role will become clear later (see remark 5.2). The expansion
of Ξ2(z, w; τ) for z ∼ w reads

Ξ2(z, w; τ) =
I

z− w
+ diag

[
θ′1(Q− ρ)

θ1(Q− ρ)
,−θ′1(Q + ρ)

θ1(Q + ρ)

]
+

1
2
(z− w)diag

[
θ′′1 (Q− ρ)

θ1(Q− ρ)
,

θ′′1 (Q + ρ)

θ1(Q + ρ)

]

− I

6
(z− w)

θ′′′1
θ′1

+O
(
(z− w)2

)
.

(5.2.19)

Definition 5.3. Since the integrand in (5.2.16) has a singularity at w = z, we define the following
rule: each time w approaches z, we go around the singularity in clockwise direction. Sometimes it is
also useful to use the notation C = Cin ∪ Cout, and C, C for the shifted contours as in Figure 5.2.

One can verify that P2
Σ1,1

= PΣ1,1 , and that the space of functions on the annulus A ,
which is defined by the equation (5.2.39) (see also Figure 5.1a), is

HA ⊆ kerPΣ1,1 . (5.2.20)

Definition 5.4. The Plemelj operator P⊕ : H → H is defined in terms of the solution of the 3–point
linear system (5.2.4) as

(P⊕ f ) (z) =
∫

Cin∪Cout
dw

Ỹ(z)Ỹ(w)−1

1− e−2πi(z−w)
f (w)

=
∫

C
dw

Ỹ(z)Ỹ(w)−1

1− e−2πi(z−w)
f (w). (5.2.21)

For z ∼ w,

1
1− e−2πi(z−w)

=
1

2πi(z− w)
+

1
2
+

2πi
12

(z− w) +O
(
(z− w)2

)
. (5.2.22)

It can be verified that P2
⊕ = P⊕, and

ker P⊕ = H−. (5.2.23)

Furthermore, one can prove that

P⊕PΣ1,1 = PΣ1,1 , PΣ1,1P⊕ = P⊕, (5.2.24)

and therefore, the space of functions on the trinion T in Figure 5.1a is defined as

HT := im P⊕ = im PΣ1,1 . (5.2.25)
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T

C in Cout

C in Cout

A

FIGURE 5.2: Contours

The components of P⊕ under the orthogonal decomposition are obtained by computing
its action on the function f (z) ∈ H:

(P⊕ f )(z)in =
∮

Cin

dw
1

1− e−2πi(z−w)
fin(w)

+
∮

Cin

dw
Ỹin(z)Ỹin(w)−1 − 1

1− e−2πi(z−w)
fin(w)

+
∮

Cout
dw

Ỹin(z)Ỹout(w)−1

1− e−2πi(z−w)
fout(w),

(5.2.26)

(P⊕ f )(z)out =
∮

Cout
dw

1
1− e−2πi(z−w)

fout(w)

+
∮

Cout
dw

Ỹout(z)Ỹout(w)−1 − 1
1− e−2πi(z−w)

fout(w)

+
∮

Cin

dw
Ỹout(z)Ỹin(w)−1

1− e−2πi(z−w)
fin(w).

(5.2.27)

To analyze the formulas above we notice that

Ỹout(z) ∈ C[[e2πiz]]⊗ e2πiazσ3 End(C2), Ỹin(z) ∈ C[[e−2πiz]]⊗ e2πiazσ3 End(C2), (5.2.28)

and ∫ 1
2+ic

− 1
2+ic

dw
1

1− e−2πi(z−w)
f (w) =

{
f−(z), Im z < c
− f+(z), Im z > c.

(5.2.29)
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Because of (5.2.28), (5.2.29), the action of P⊕ on f (z) in (5.2.26), (5.2.27) can be rewritten as

(P⊕ f )(z) =
(
(P⊕ f )in,−
(P⊕ f )out,+

)
⊕
(
(P⊕ f )in,+
(P⊕ f )out,−

)
=

=

(
fin,−
fout,+

)
⊕
(

a b
c d

)(
fin,−
fout,+

)
,

(5.2.30)

where a, b, c, d are the components ofP⊕ with respect to the decompositionH = Hin⊕Hout:

(a f )(z) =
∮

Cin

dw
Ỹin(z)Ỹin(w)−1 − 1

1− e−2πi(z−w)
fin(w), z ∈ Cin,

(b f )(z) =
∮

Cout
dw

Ỹin(z)Ỹout(w)−1

1− e−2πi(z−w)
fout(w), z ∈ Cin,

(c f )(z) =
∮

Cin

dw
Ỹout(z)Ỹin(w)−1

1− e−2πi(z−w)
fin(w), z ∈ Cout,

(d f )(z) =
∮

Cout
dw

Ỹout(z)Ỹout(w)−1 − 1
1− e−2πi(z−w)

fout(w), z ∈ Cout.

(5.2.31)

The functions Ỹin, Ỹout are the local solutions of the three-point problem (5.2.4) around∓i∞,
defined in Definition 5.1. They are given by, respectively (5.2.50), which is well-defined as
a series in e−2πiz, convergent for |e−2πiz| < 1, and (5.2.51), which is well-defined as a series
in e2πiz.

Definition 5.5. The tau-function T (1,1) is defined, in terms of the Plemelj operators P⊕,PΣ1,1 in
definitions 5.4 and 5.2, as:

T (1,1)(τ) := det
H+

[
P−1

Σ1,1,+P⊕,+

]
, (5.2.32)

where
P·,+ := P·|H+ . (5.2.33)

In general, it is useful to introduce the following notation:

Notation 5.1. T (g,n) denotes the determinant tau-function on genus g Riemann Surfaces with n
Fuchsian singularities.

5.2.2 Constructing the Fredholm determinant

As a stepping stone to theorem 5.1, that links the determinant tau-function (5.2.32) to the
isomonodromic tau-function (5.2.3), in the following proposition we show that the tau-
function T (1,1) of Definition 5.5 depends solely on the operators a, b, c, d defined by the
three-point problem.

Proposition 5.1. The tau-function T (1,1)(τ) is the Fredholm determinant of an operator acting on
L2(S1)⊗C2, explicitly determined by hypergeometric functions

T (1,1)(τ) = det [I− K1,1] , (5.2.34)
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where

K1,1(z, w) =


 −e−2πiρ Ỹout(z+τ)Ỹin(w)−1

1−e−2πi(z−w+τ)

Ỹout(z+τ)Ỹout(w+τ)−1−I

1−e−2πi(z−w)

I−Ỹin(z)Ỹin(w)−1

1−e−2πi(z−w) e2πiρ Ỹin(z)Ỹout(w+τ)−1

1−e−2πi(z−w−τ)


 , (5.2.35)

Ỹin and Ỹout are the solutions of the three-point problem on the cylinder (5.2.4), given by (5.2.50)
and (5.2.51) respectively, ρ parametrizes the U(1) shift of the B-cycle monodromy of PΣ, and τ is
the modular parameter of the torus.

Proof. Starting from the definition (5.2.32) of T (1,1), we compute the action of P−1
Σ1,1,+P⊕,+

on a function f ∈ H+:

F := P−1
Σ1,1,+P⊕,+ f ⇒ PΣ1,1 F = P⊕ f , F ∈ H+. (5.2.36)

Noting that for any projector P acting on a vector x, one has x − Px ∈ ker P , and that4

ker PΣ1,1 = HA :

F = (F−PΣ1,1 F) + PΣ1,1 F = A + P⊕F, A := F−PΣ1,1 F ∈ HA . (5.2.37)

In components, A reads

A =

(
Ain,−(z)
Aout,+(z)

)
⊕
(

Ain,+(z)
Aout,−(z)

)
. (5.2.38)

The identification of Cin with Cout, that produces the torus from the trinion as in Figure 5.1,
is implemented at the level of functional spaces by setting

Ain,± = ∇−1Aout,±, (5.2.39)

where ∇ : Hin → Hout is a translation operator acting on an arbitrary function g(z) ∈ Hin
as

∇g(z) = e2πiρg(z− τ). (5.2.40)

The factor e2πiρ takes into account the U(1) B-cycle monodromy of the Cauchy kernel in
(5.2.18). Using the explicit form of P⊕ in (5.2.30), together with the fact that F ∈ H+,
equation (5.2.37) reads:

(
Fin,−
Fout,+

)
⊕
(

0
0

)
=

(
Ain,−
Aout,+

)
⊕
(

Ain,+
Aout,−

)
+

(
fin,−
fout,+

)
⊕
(

a b
c d

)(
fin,−

fout,+.

)
(5.2.41)

TheH− components of (5.2.41) are solved by

Aout,− = −c fin,− − d fout,+ = ∇Ain,− ,

Ain,+ = −a fin,− − b fout,+ = ∇−1Aout,+ ,
(5.2.42)

4When (I− K1,1) is invertible,H = HT ⊕HA, and therefore ker PΣ1,1 = HA .
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and substituting (5.2.42) into (5.2.41) gives

F =

(
Fin,−
Fout,+

)
=

(
fin,−
fout,+

)
−
(
∇−1c ∇−1d
∇a ∇b

)(
fin,−
fout,+

)
:=
(

I− K̂1,1

)
f . (5.2.43)

We note that the kernel K̂ in (5.2.43), when expressed in spherical coordinates, becomes the
one appearing in Section 4 of [15]. It is however more natural to conjugate the kernel K̂1,1
by the operator diag(1,∇−1):

K1,1 := diag(1,∇−1) K̂1,1 diag(1,∇) =
(
∇−1c ∇−1d∇

a b∇

)
(5.2.44)

The advantage of such a conjugation is the following: recall that we identify Cin and Cout
with two copies of the A-cycle obtained by cutting the B-cycle of the torus. They are given
by the segments in figure (5.3) with endpoints identified.

Cin

Cout

0 1

τ 1 + τ

FIGURE 5.3: Cin, Cout in coordinates on the torus

After the conjugation, K̂1,1 is defined on a single circle, since all the functions on Cout are
translated by τ, as is clear from the explicit expression

K1,1(z, w) =


 −e−2πiρ Ỹout(z+τ)Ỹin(w)−1

1−e−2πi(z−w+τ)

Ỹout(z+τ)Ỹout(w+τ)−1−I

1−e−2πi(z−w)

I−Ỹin(z)Ỹin(w)−1

1−e−2πi(z−w) e2πiρ Ỹin(z)Ỹout(w+τ)−1

1−e−2πi(z−w−τ)


 . (5.2.45)

The tau-function T (1,1) in (5.2.32) is therefore

T (1,1)(τ) = det
H+

[
P−1

Σ1,1,+P⊕,+

]
= det[I− K1,1]. (5.2.46)

Let us highlight the block determinant structure of the tau-function

T (1,1)(τ) = det
H+

[
P−1

Σ1,1,+P⊕,+

]
= det

[
I−

(
∇−1c ∇−1d∇

a b∇

)]
, (5.2.47)

which will prove important in theorem 5.2, that generalizes proposition 5.1 to the case of a
genus 1 surface with n punctures, with tau-function T (1,n).
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5.2.3 Relation to the Hamiltonian

In this section we prove that the logarithmic derivative of the tau-function (5.2.32) differs
from the Hamiltonian (5.2.1) by a factor that we compute.

Theorem 5.1. The isomonodromic tau-function TCM for the one-punctured torus is given by the
following expression:

TCM(τ) = det [I− K1,1]

(
e−2πiρη(τ)2

θ1(Q(τ)− ρ)θ1(Q(τ) + ρ)

)
e2πiτ(a2+ 1

6)Υ1,1(a, m), (5.2.48)

where ρ is an arbitrary constant, Q(τ) is the solution of the equation of motion for the 2-particle
nonautonomous Calogero-Moser system (5.1.1). The kernel K1,1(z, w; τ) reads

K1,1(z, w; τ) =


 −e−2πiρ Ỹout(z+τ)Ỹin(w)−1

e2πi(z−w+τ)−1
Ỹout(z+τ)Ỹout(w+τ)−1−I

1−e−2πi(z−w)

I−Ỹin(z)Ỹin(w)−1

1−e−2πi(z−w) e2πiρ Ỹin(z)Ỹout(w+τ)−1

e2πi(z−w−τ)−1


 . (5.2.49)

and the corresponding operator acts on L2(S1)⊗C2. The function

Ỹin(z) = (1− e−2πiz)m × diag(e2πiaz, e−2πiaz)×

×
(

2F1(m, m− 2a,−2a, e−2πiz) − m
2a 2F1(1 + m, m− 2a, 1− 2a, e−2πiz)

me−2πiz

2a+1 2F1(1 + m, 1 + m + 2a, 2 + 2a, e−2πiz) 2F1(m, 1 + m + 2a, 1 + 2a, e−2πiz)

)
,

(5.2.50)
is the local behavior of the solution to the associated three-point spherical problem for z → −i∞,
normalized in such a way that the monodromy around −i∞ is diagonal and equal to e2πiaσ3 , well-
defined as a series in e−2πiz, convergent for |e−2πiz| < 1, 2F1 are hypergeometric functions, and the
function Ỹout is defined by

Ỹout(z) := e2πi(ν+δν(a,m))σ3σ1Ỹin(−z)σ1, e2πiδν(a,m) =
Γ(−2a)Γ(1 + 2a−m)

Γ(1 + 2a)Γ(−2a−m)
. (5.2.51)

This expression for Ỹout, which is well-defined as a series in e2πiz, was obtained in [16], where ν
parametrizes the B-cycle monodromy MB and δν(a, m) is a shift depending on a, m. σ1 is a Pauli
sigma matrix, m is the monodromy exponent around the puncture, a is the monodromy exponent
around the A-cycle of the torus, and Υ1,1 is an arbitrary function of the monodromy data.

Proof. Recall from (5.2.16), (5.2.21) that

PΣ1,1 f (z) =
∫

C
dw
2πi

YCM(z, τ)Ξ2(z, w; τ)YCM(w, τ)−1 f (w) (5.2.52)

P⊕ f (z) =
∫

C
dw

Ỹ(z)Ỹ(w)−1

1− e−2πi(z−w)
f (w), (5.2.53)

and since P⊕ does not depend on τ, the logarithmic derivative of T (1,1) in (5.2.32) is (see
also pg. 20 in [54])

∂τ log T (1,1)(τ) = −trHP⊕∂τPΣ1,1 . (5.2.54)
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The computation of the τ-derivative of PΣ needs careful analysis. In principle, the operator
PΣ acts on different spaces for different values of the complex moduli: to define its deriva-
tive we need a local identification of these spaces (connection). In the spherical case such
an identification is absolutely natural, because we can keep the system of contours Cin,out
untouched while varying the complex moduli; which is no longer true in the torus case,
since the position of Cout depends on τ, see Figure 5.3. In order to make the space Hout τ-
independent we identify it withHin using the shift operator∇ defined in (5.2.40), by setting
Hout = ∇H′in, where the space H′in is isomorphic to Hin. This identification gives us a new
operator P ′Σ1,1

acting on “time-independent” spaces: P ′Σ1,1
: Hin ⊕H′in → Hin ⊕H′in.

P ′Σ1,1
:= diag(1,∇−1)PΣ1,1diag(1,∇). (5.2.55)

We identify H′in with the space of functions on C ′in, which is just another copy of Cin, in-
troduced for convenience to describe the block structure of P ′Σ by indicating the positions
of the arguments of the kernel. Using these notations, the kernel of P ′Σ is given by the
following expressions:

P ′Σ1,1
(w, z) = PΣ1,1(w, z), for w, z ∈ Cin,

P ′Σ1,1
(w, z) = e−2πiρPΣ1,1(w + τ, z), for w ∈ C ′in, z ∈ Cin,

P ′Σ1,1
(w, z) = e2πiρPΣ1,1(w, z + τ), for w ∈ Cin, z ∈ C ′in,

P ′Σ1,1
(w, z) = PΣ1,1(w + τ, z + τ), for w, z ∈ C ′in.

(5.2.56)

Now we define the τ-derivative of PΣ1,1 simply as

∂τPΣ1,1 := diag(1,∇)∂τP ′Σ1,1
diag(1,∇−1). (5.2.57)

Using (5.2.56) we get the kernel of ∂τPΣ1,1 explicitly:

(
∂τPΣ1,1

)
(w, z) = ∂τPΣ1,1(w, z) for w, z ∈ Cin,

(
∂τPΣ1,1

)
(w, z) = (∂τ + ∂w)PΣ1,1(w, z) for w ∈ Cout, z ∈ Cin,

(
∂τPΣ1,1

)
(w, z) = (∂τ + ∂z)PΣ1,1(w, z) for w ∈ Cin, z ∈ Cout,(

∂τPΣ1,1

)
(w, z) = (∂τ + ∂w + ∂z)PΣ1,1(w, z) w, z ∈ Cout.

(5.2.58)

Therefore5,

− trH(P⊕∂τPΣ1,1)

= −
∮

C
dw

∮

C
dz

2πi
1

1− e−2πi(z−w)
tr
{

Ỹ(z)Ỹ(w)−1∂τ

(
YCM(w)Ξ2(w, z)YCM(z)−1

)}

−
∮

C
dw

∮

Cout

dz
2πi

1
1− e−2πi(z−w)

tr
{

Ỹ(z)Ỹ(w)−1∂z

(
YCM(w)Ξ2(w, z)YCM(z)−1

)}

−
∮

Cout
dw

∮

C
dz

2πi
1

1− e−2πi(z−w)
tr
{

Ỹ(z)Ỹ(w)−1∂w

(
YCM(w)Ξ2(w, z)YCM(z)−1

)}

= −Iτ − Iz − Iw,

(5.2.59)

5We drop the τ dependence of YCM, LCM and MCM in this proof for brevity
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where

Iτ :=
∮

C
dw

∮

C
dz

2πi
1

1− e−2πi(z−w)
tr
{

Ỹ(z)Ỹ(w)−1∂τ (YCM(w)Ξ2(w, z)YCM(z)−1
}

, (5.2.60)

Iz :=
∮

C
dw

∮

Cout

dz
2πi

1
1− e−2πi(z−w)

tr
{

Ỹ(z)Ỹ(w)−1∂z

(
YCM(w)Ξ2(w, z)YCM(z)−1

)}
,

(5.2.61)

Iw :=
∮

Cout
dw

∮

C
dz

2πi
1

1− e−2πi(z−w)
tr
{

Ỹ(z)Ỹ(w)−1∂w

(
YCM(w)Ξ2(w, z)YCM(z)−1

)}
.

(5.2.62)

In the multiple integrals we always use the convention that z is inside w (recall that the
notation C, C is explained in Figure 5.2) and we close the contours in the direction of A .
The reason for such choice of the contour is the following: the kernel

(
∂τPΣ1,1

)
(w, z) is

regular at z = w since ∂τ
1

w−z = 0 and (∂τ + ∂z + ∂w)
1

w−z = 0, which means that the relative
positions of the arguments of ∂τPΣ1,1 can be arbitrary. Keeping this in mind we first act on(
PΣ1,1

)
(w, z0), viewed as a function of w, by P⊕(z, w): the action results in an integral over

w, whose contour should be chosen according to Definition 5.3. Namely, since P⊕(z, w)
has pole along the diagonal, we deform the contour for w to C, and also move z to C for
convenience. After this, we set z0 = z and integrate over z on C to take trace.

The integration of w over C then picks up the residue at w = z. Let us begin with the
integral Iz:

Iz =
∮

C
dw

∮

Cout

dz
2πi

1
1− e−2πi(z−w)

tr
{

Ỹ(z)Ỹ(w)−1∂z

(
YCM(w)Ξ2(w, z)YCM(z)−1

)}

= I(1)z + I(2)z ,
(5.2.63)

where

I(1)z :=
∮

C
dw

∮

Cout

dz
2πi

1
1− e−2πi(z−w)

tr
{

Ỹ(w)−1YCM(w)∂zΞ2(w, z)YCM(z)−1Ỹ(z)
}

,

(5.2.64)

I(2)z :=
∮

C
dw

∮

Cout

dz
1

1− e−2πi(z−w)
tr
{

Ỹ(w)−1YCM(w)Ξ2(w, z)∂zYCM(z)−1Ỹ(z)
}

. (5.2.65)
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To compute I(1)z , we expand Ξ2(w, z) as in (5.2.19), and use (5.2.22)

I(1)z =
∮

C
dw

∮

Cout

dz
2πi

1
1− e−2πi(z−w)

tr
{

Ỹ(w)−1YCM(w)∂zΞ2(w, z)YCM(z)−1Ỹ(z)
}

=
∮

C
dw
2πi

∮

C
dz

2πi
tr
{

Ỹ(w)−1YCM(w)

[
− 1
(w− z)3 +

iπ
(w− z)2

]
YCM(z)−1Ỹ(z)

}

+
∮

C
dw
2πi

∮

C
dz

2πi
tr





Ỹ(w)−1YCM(w)

2(w− z)






θ′′1 (Q−ρ)
θ1(Q−ρ)

0

0 θ′′1 (Q+ρ)
θ1(Q+ρ)


− 1

3
θ′′′1
θ′1
− 1

6
(2πi)2


YCM(z)−1Ỹ(z)





=
1
2

∮

Cout

dz
2πi

tr
{

∂2
z

(
Ỹ(z)−1YCM(z)

)
YCM(z)−1Ỹ(z)

}
− 1

2

∮

Cout

dztr
{

LCM − L3pt
}

−
∮

Cout

dz
2πi

tr





1
2




θ′′1 (Q−ρ)
θ1(Q−ρ)

0

0 θ′′1 (Q+ρ)
θ1(Q+ρ)


− I

6
θ′′′1
θ′1
− (2πi)2I

12



 , (5.2.66)

with LCM(z), L3pt(z) given in (5.1.7), (5.2.4) respectively. Similarly, I(2)z reads

I(2)z =
∮

C
dw

∮

Cout

dz
2πi

1
1− e−2πi(z−w)

tr
{

Ỹ(w)−1YCM(w)Ξ2(w, z)∂zYCM(z)−1Ỹ(z)
}

= −
∮

C
dw
2πi

∮

Cout

dz
2πi

tr
{

Ỹ(w)−1YCM(w)

[
1

(w− z)2

]
∂zYCM(z)−1Ỹ(z)

}

−
∮

C
dw
2πi

∮

Cout

dz
2πi

tr





Ỹ(w)−1YCM(w)

w− z






θ′1(Q−ρ)
θ1(Q−ρ)

0

0 − θ′1(Q+ρ)
θ1(Q+ρ)


− iπ


 ∂zYCM(z)−1Ỹ(z)





=
∮

Cout

dz
2πi

tr
{

∂z

(
Ỹ(z)−1YCM(z)

)
∂zYCM(z)−1Ỹ(z)

}

−
∮

Cout

dz
2πi

tr








θ′1(Q−ρ)
θ1(Q−ρ)

0

0 − θ′1(Q+ρ)
θ1(Q+ρ)


 LCM(z)



+

1
2

∮

Cout

dztr LCM(z). (5.2.67)

Plugging the expressions for I(1)z in (5.2.66) and I(2)z in (5.2.67) into (5.2.63), observing that
tr LCM = tr L3pt = 0, and rearranging the terms we find:

Iz =
1
2

∮

Cout

dz
2πi

tr
{

∂2
z

(
Ỹ(z)−1YCM(z)

)
YCM(z)−1Ỹ(z)

}

+
∮

Cout

dz
2πi

tr
{

∂z

(
Ỹ(z)−1YCM(z)

)
∂zYCM(z)−1Ỹ(z)

}

−
∮

Cout

dz
2πi

tr





1
2




θ′′1 (Q−ρ)
θ1(Q−ρ)

0

0 θ′′1 (Q+ρ)
θ1(Q+ρ)


− I

6
θ′′′1
θ′1
− (2πi)2I

12



 . (5.2.68)
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Let us integrate by parts the first two terms in (5.2.68):

1
2

∮

Cout

dz
2πi

tr
{

∂2
z

(
Ỹ(z)−1YCM(z)

)
YCM(z)−1Ỹ(z)

}

+
∮

Cout

dz
2πi

tr
{

∂z

(
Ỹ(z)−1YCM(z)

)
∂zYCM(z)−1Ỹ(z)

}

= −1
2

∮

Cout

dz
2πi

tr
{

∂z

(
Ỹ(z)−1YCM(z)

)
∂z

(
YCM(z)−1Ỹ(z)

)}

+
∮

Cout

dz
2πi

tr
{

∂z

(
Ỹ(z)−1YCM(z)

)
∂zYCM(z)−1Ỹ(z)

}

= −1
2

∮

Cout

dz
2πi

tr
{
−L3pt(z)2 + LCM(z)2

}
. (5.2.69)

Therefore,

−Iz =
1
2

∮

Cout

dz
2πi

tr



−L3pt(z)2 + LCM(z)2 + 2




θ′1(Q−ρ)
θ1(Q−ρ)

0

0 − θ′1(Q+ρ)
θ1(Q+ρ)


 LCM(z)





+
1
2

∮

Cout

dz
2πi

tr








θ′′1 (Q−ρ)
θ1(Q−ρ)

0

0 θ′′1 (Q+ρ)
θ1(Q+ρ)


− I

(
1
3

θ′′′1
θ′1

+
(2πi)2

6

)


(5.2.1)
= −2πia2 +

1
2πi

HCM +
P

2πi

(
θ′1(Q− ρ)

θ1(Q− ρ)
+

θ′1(Q + ρ)

θ1(Q + ρ)

)
+

1
4πi

(
θ′′1 (Q− ρ)

θ1(Q− ρ)
+

θ′′1 (Q + ρ)

θ1(Q + ρ)

)

−
(

1
6πi

θ′′′1
θ′1

+
(2πi)

6

)
. (5.2.70)

To compute the first term in (5.2.70), we use the explicit form (5.2.4), (5.2.5) and recall that
the contour Cout is simply the interval [τ, τ + 1]:

∮

Cout

dz
4πi

tr L2
3pt(z) = 2πia2. (5.2.71)

The second term of (5.2.70) is simply the isomonodromic Hamiltonian, while all the other
terms are constants, that are unaffected by the integration. The term Iw in (5.2.62) vanishes
because the z-loop is contractible.

Iw = 0. (5.2.72)

Finally, we compute Iτ:

Iτ =
∮

C
dw

∮

C
dz

2πi
1

1− e−2πi(z−w)
tr
{

Ỹ(z)Ỹ(w)−1∂τ

(
YCM(w)Ξ2(w, z)YCM(z)−1

)}

= I(1)τ + I(2)τ + I(3)τ ,
(5.2.73)
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where

I(1)τ :=
∮

C
dw

∮

C
dz

2πi
1

1− e−2πi(z−w)
tr
{

Ỹ(w)−1∂τ (YCM(w))Ξ2(w, z)YCM(z)−1Ỹ(z)
}

,

(5.2.74)

I(2)τ :=
∮

C
dw

∮

C
dz

2πi
1

1− e−2πi(z−w)
tr
{

Ỹ(w)−1YCM(w)∂τ (Ξ2(w, z))YCM(z)−1Ỹ(z)
}

(5.2.75)

I(3)τ :=
∮

C
dw

∮

C
dz

2πi
1

1− e−2πi(z−w)
tr
{

Ỹ(w)−1YCM(w)Ξ2(w, z)∂τ

(
YCM(z)−1

)
Ỹ(z)

}
.

(5.2.76)

Expanding Ξ2(z, w) as in (5.2.19) and using (5.2.22), I(1)τ reads,

I(1)τ =
∮

C
dw

∮

C
dz

2πi
1

1− e−2πi(z−w)
tr
{

Ỹ(w)−1∂τ (YCM(w))Ξ2(w, z)YCM(z)−1Ỹ(z)
}

= −
∮

C
dw
2πi

∮

C
dz

2πi
tr

{
Ỹ(w)−1∂τ (YCM(w))YCM(z)−1Ỹ(z)

(w− z)2

}

+
∮

C
dw
2πi

∮

C
dz

2πi
tr





Ỹ(w)−1∂τ (YCM(w))

w− z


iπI−




θ′1(Q−ρ)
θ1(Q−ρ)

0

0 θ′1(−Q−ρ)
θ1(−Q−ρ)




YCM(z)−1Ỹ(z)





= −
∮

C
dz

2πi
tr






iπI−




θ′1(Q−ρ)
θ1(Q−ρ)

0

0 θ′1(−Q−ρ)
θ1(−Q−ρ)




MCM



 = 0, (5.2.77)

where MCM is the matrix in equation (5.1.6). In the last line we use the fact that z lies inside
the contour of w, and MCM has no residue at the puncture z = 0. Now computing the
integral I(2)τ ,

I(2)τ =
∮

C
dw

∮

C
dz

2πi
1

1− e−2πi(z−w)
tr
{

Ỹ(z)Ỹ(w)−1YCM(w)∂τ (Ξ2(w, z))YCM(z)−1
}
= 0,

(5.2.78)
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because ∂τΞ2(z, w) is regular at w = z. Since I(1)τ and I(2)τ vanish, Iτ = I(3)τ . Finally, we
compute the integral I(3)τ by expanding Ξ as before:

Iτ = I(3)τ =
∮

C
dw

∮

C
dz

2πi
1

1− e−2πi(z−w)
tr
{

Ỹ(w)−1YCM(w)Ξ2(w, z)∂τYCM(z)−1Ỹ(z)
}

= −
∮

C
dw
2πi

∮

C
dz

2πi
tr

{
Ỹ(w)−1YCM(w)∂τ

(
YCM(z)−1) Ỹ(z)

(w− z)2

}

−
∮

C
dw
2πi

∮

C
dz

2πi
tr





Ỹ(w)−1YCM(w)

w− z


iπI−




θ′1(Q−ρ)
θ1(Q−ρ)

0

0 θ′1(−Q−ρ)
θ1(−Q−ρ)




 ∂τ

(
YCM(z)−1

)
Ỹ(z)





= −
∮

C
dz

2πi
tr
{

∂z

(
Ỹ(z)−1YCM(z)

)
∂τ

(
YCM(z)−1

)
Ỹ(z)

}

+
∮

C
dztr






iπI−




θ′1(Q−ρ)
θ1(Q−ρ)

0

0 θ′1(−Q−ρ)
θ1(−Q−ρ)




MCM





=
∮

C
dz

2πi
tr
{

∂z

(
Ỹ(z)−1YCM(z)

)
∂τ

(
YCM(z)−1

)
Ỹ(z)

}
. (5.2.79)

Again, in the last line of (5.2.79) we used the fact that MCM in (5.1.7), is regular at the
puncture. Therefore,

−Iτ = −
∮

C
dztr

{
∂z

(
Ỹ(z)−1YCM(z)

)
∂τ

(
YCM(z)−1

)
Ỹ(z)

}

= −
∮

C
dztr

{(
∂zỸ(z)Ỹ(z)−1 − ∂zYCM(z)YCM(z)−1

)
∂τYCM(z)YCM(z)−1

}

= −
∮

C
dz
{(

YCM(z)−1Ỹ(z)L3pt(z)(YCM(z)−1Ỹ(z))−1 − LCM

)
MCM

}
. (5.2.80)

To compute the above expression, we study the behavior of LCM, MCM, L3pt in (5.1.7) and
(5.2.4) respectively, at z = 0, using the expansions

x(2Q, z) =
1
z
+

θ′1(2Q)

θ1(2Q)
+O(z), (5.2.81)

and

y(2Q, z) =

[
θ′′1 (2Q)

θ1(2Q)
−
(

θ′1(2Q)

θ1(2Q)

)2
]
+O(z)

= ℘(2Q) +O(z).
(5.2.82)

Substituting (5.2.81) and (5.2.82) in the Lax matrices one finds (the solutions YCM(z), Ỹ(z)
can be simultaneously re-normalized in such a way that their monodromy around z = 0 is
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e2πimσ3)

LCM =
YCM(0)−1mσ3YCM(0)

z
− i

mθ′1(2Q)

θ1(2Q)
σ2 + Pσ3 +O(z),

MCM = ℘(2Q)σ1 +O(z), (5.2.83)

L3pt =
Ỹ(0)−1mσ3Ỹ(0)

z
− 2πi

(
A0 +

A1

2

)
+O(z).

From equation (5.2.83), it follows that

YCM(z)−1Ỹ(z)L3pt(z)(YCM(z)−1Ỹ(z))−1 − LCM

= −2πiYCM(0)−1Ỹ(0)
(

A0 +
A1

2

)
YCM(0)−1Ỹ(0) + i

mθ′1(2Q)

θ1(2Q)
σ2 − Pσ3, (5.2.84)

so, the integrand in equation (5.2.80) has no pole, and

Iτ = 0. (5.2.85)

We have thus shown that the logarithmic derivative of the tau-function T (1,1) in (5.2.54) is

2πi∂τ log det [I− K1,1]
(5.2.34)
= 2πi∂τ log T (1,1) (5.2.54)

= −2πitrHP⊕∂τPΣ

(5.2.59)
= 2πi (−Iτ − Iz − Iw)

(5.2.72),(5.2.85)
= −2πiIz

(5.2.70)
= −(2πi)2a2 + HCM −

(
1
3

θ′′′1
θ′1

+
(2πi)2

6

)

+ P
(

θ′1(Q− ρ)

θ1(Q− ρ)
+

θ′1(Q + ρ)

θ1(Q + ρ)

)
+

1
2

(
θ′′1 (Q− ρ)

θ1(Q− ρ)
+

θ′′1 (Q + ρ)

θ1(Q + ρ)

)

(5.2.3)
= 2πi∂τ log TCM − (2πi)2a2 −

(
1
3

θ′′′1
θ′1

+
(2πi)2

6

)

+ P
(

θ′1(Q− ρ)

θ1(Q− ρ)
+

θ′1(Q + ρ)

θ1(Q + ρ)

)
+

1
2

(
θ′′1 (Q− ρ)

θ1(Q− ρ)
+

θ′′1 (Q + ρ)

θ1(Q + ρ)

)

= 2πi∂τ log TCM − (2πi)2a2 − (2πi)2

6
+ 2πi

d
dτ

log
(

θ1(Q− ρ)θ1(Q + ρ)

η(τ)2

)
.

(5.2.86)

In the last line we used the heat equation for θ1

4πi∂τθ1(Q± ρ) = θ′′1 (Q± ρ), (5.2.87)
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as well as the fact that P = 2πi dQ
dτ , leading to

4πi
d

dτ
log θ1(Q± ρ) =

1
θ1(Q± ρ)

4πi
d

dτ
θ1(Q± ρ)

= 4πi
dQ
dτ

θ′1(Q± ρ)

θ1(Q± ρ)
+

1
θ1(Q± ρ)

∂τθ1(Q± ρ)

= 2P
θ′1(Q± ρ)

θ1(Q± ρ)
+

θ′′1 (Q± ρ)

θ1(Q± ρ)
,

(5.2.88)

and the expression for Dedekind eta function

η(τ) =

(
θ′1
2π

)1/3

, −4πi
d

dτ
log η(τ) = − 1

3θ′1
4πi

dθ′1
dτ

= −1
3

θ′′′1
θ′1

. (5.2.89)

Integrating (5.2.86) on both sides, we obtain (5.2.48) where the explicit form of the kernel
K1,1 is in (5.2.45).

Remark 5.2. Due to the factor θ1(Q+ρ)θ1(Q−ρ)
η(τ)2 in (5.2.48) between the isomonodromic tau-function

TCM and the determinant tau-function T (1,1), we have the following statement:

T (1,1)|ρ=±Q = 0, (5.2.90)

i.e. the zero locus of the Fredholm determinant in ρ computes the solution to the equation (5.1.1).
This is an isomonodromic version of Krichever’s solution of the isospectral elliptic Calogero-Moser
model [78, 15, 14], and justifies the introduction of the extra parameter ρ.

Remark 5.3. We see that, in contrast to the spherical case, now there are two different tau-functions,
TCM and T (1,1). It is usually supposed that the object called ’tau-function’ is related to free fermions,
has a determinant representation, and satisfies some bilinear relations. It turns out that only T (1,1)

has such properties, in particular, it was shown in [3] that equation (5.1.1) is equivalent to some
bilinear relations on the two ρ-independent parts of T (1,1). These bilinear relations are the con-
sequences of the blow-up relations for the theory with adjoint matter (for other examples of such
equations see [59]). The free-fermionic nature of T (1,1) was shown in [15]. Instead, TCM has one
property, which T (1,1) does not have: its derivative gives the Hamiltonian.

5.3 Generalization to the n-punctured torus

The results for the 2-particle nonautonomous Calogero-Moser system are further general-
ized to the isomonodromic problem on an n-punctured torus C1,n which is characterised by
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the following N × N system of linear differential equations [112, 79]

∂
∂zY

(
z; τ, {zi}

n

1

)
= Y

(
z; τ, {zi}

n

1

)
L
(

z; τ, {zi}
n

1

)
,

(2πi) ∂
∂τY

(
z; τ, {zi}

n

1

)
= Y

(
z; τ, {zi}

n

1

)
Mτ

(
z; τ, {zi}

n

1

)
,

∂
∂zk
Y
(

z; τ, {zi}
n

1

)
= Y

(
z; τ, {zi}

n

1

)
Mzk

(
z; τ, {zi}

n

1

)
,

z, z1, . . . , zn ∈ C1,n; τ ∈H,
k = 1, . . . , n

(5.3.1)

where6 Y(z) ∈ GL(N), and L, Mτ, Mzk ∈ glN are the Lax matrices. The isomonodromic time
evolution in this case is generated by n + 1 Poisson commuting Hamiltonians, that can be
obtained as before from contour integrals of 1

2 tr L2, and are generated by the isomonodromic
tau-function TH:

2πi∂τ log TH := Hτ =
1
2

∮

A
tr L2(z)dz, ∂zk log TH := Hk = Res z=zk

1
2

tr L2(z). (5.3.2)

In theorem 5.2 we show that the isomonodromic tau-function for the linear system (5.3.1)
is also described by a Fredholm determinant (5.3.51). Furthermore, theorem 7.2 generalizes
theorem 7.1, describing the tau-function of the elliptic Garnier system in terms of Nekrasov
partition functions.

We now generalize the discussion of the previous section to the GL(N) linear system
(5.3.1) on a torus with n punctures, using the expressions derived in [79] for the matrices
L, Mzk , Mτ. In this case the matrix elements Lij of the Lax matrix L(z) are

Lij(z) = δij

[
Pi +

n

∑
k=1

θ′1(z− zk)

θ1(z− zk)

(
S(k)

ii + Λk

)]

+ (1− δij)
n

∑
k=1

θ1(z− zk + Qi −Qj)θ
′
1(0)

θ1(z− zk)θ1(Qi −Qj)
S(k)

ij

(5.3.3)

while the matrix elements of the M-matrices (5.3.1) are

(Mzk)ij(z) = −δij
θ′1(z− zk)

θ1(z− zk)

(
S(k)

ii + Λk

)
− (1− δij)

θ1(z− zk + Qi −Qj)θ
′
1(0)

θ1(z− zk)θ1(Qi −Qj)
S(k)

ij , (5.3.4)

(Mτ)ij(z) =
1
2

δij

n

∑
k=1

θ′′1 (z− zk)

θ1(z− zk)

(
S(k)

ii + Λk

)
+

n

∑
k=1

y(Qj −Qi, z− zk)S
(k)
ij , (5.3.5)

where the function y(u, z) is defined in (5.1.8). The dynamical variables7 Q1, . . . , QN, P1, . . . , PN
satisfy ∑i Qi = ∑i Pi = 0 and are canonically conjugated, and the matrices S(k) satisfy the

6The dependence on the variables τ, z1, ..., zn of the functions Y(z), L(z), M(z), Hk, Hτ , TH is dropped
henceforth for brevity.

7In the interest of brevity, we omit writing the τ, z1...zn dependence of the functions L(z), M(z), Y(z) and
the dynamical variables Qi’s, Pi’s.
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Kirillov-Kostant Poisson bracket
{

Qi, Pj
}
= δij,

{
S(k)

a , S(m)
b

}
= δkm f ab

cS(k)
c , (5.3.6)

where we defined S(k) := S(k)
a ta in terms of a set of generators ta of slN, and f ab

c are the slN
structure constants. The residues take value in gl(N) due to the U(1) factors Λk.

. . .T [1] T [2] T [n]

C [1]in C [1]out

C [1]out C
[2]
in

C [2]in C [2]out

C [2]out C
[3]
in C [n−1]

out C [n]in

C [n]in C [n]out

C [n]outC [n+1]
in = C [1]in

A [1] A [2] A [n−1]

A [n]

FIGURE 5.4: Pants decomposition for the n-punctured torus

Notation 5.2. Given an N-tuple of parameters (ξ1, . . . ξN), and a function g(ξi), i = 1, . . . , N of
these parameters, we define

g(ξ) := diag ( f (ξ1), . . . , g(ξN)) . (5.3.7)

In particular, when g(ξi) = ξi, this is

ξ = diag (ξ1, . . . , ξN) . (5.3.8)

Remark 5.4. The generic isomonodromic problem on genus one surfaces is formulated in [79] under
the requirement that the matrices S(k), parametrizing the slN residues at the punctures zk, satisfy

n

∑
k=1

S(k)
ii = 0. (5.3.9)

For consistency of the construction, (5.3.9) will be imposed on the slN component of the residues,
S(k).

The matrices L, Mzk , Mτ are not single-valued on the torus, but rather under the shift
z→ z + τ behave as (using notation 5.2)

L(z + τ) = e−2πiQL(z)e2πiQ − 2πi
n

∑
k=1

Λk

Mzk(z + τ) = e−2πiQMzk(z)e
2πiQ + 2πi

n

∑
k=1

Λk, (5.3.10)

Mτ(z + τ) = e−2πiQ (Mτ(z) + L(z)) e2πQ − 2πiP− (2πi)2 1
2

n

∑
k=1

Λk,
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so that the solution of the linear system (5.1.7) will transform as follows:

Y(z + τ) = MBe−2πi ∑n
j=1(z−zj+

τ
2+

1
2)ΛjY(z)e2πiQ, (5.3.11)

where MB ∈ SL(N). The pants decomposition corresponding to the n-punctured torus
consists of n trinions, as shown in Figure 5.4, with each trinion T [k] associated to its own
three-point problem.

∂zỸ [k](z) = Ỹ [k](z)L[k]
3pt(z),

L[k]
3pt(z) = −2πiA[k]

0 − 2πi
A[k]

1
1− e2πiz , (5.3.12)

where

A[k]
0 ∼ σk, A[k]

1 ∼ µk, (5.3.13)

σk = ak −
k−1

∑
j=0

ΛjI, µk = mk + ΛkI (5.3.14)

for k = 1, . . . n. As in the 1-point case, we choose Ỹ [k](z) in such a way that

Ỹ [k](z)−1Y(z)

is regular and single-valued around z = zk and has no monodromies around two closest
A-cycles.

In (5.3.14) we introduced a U(1) parameter Λ0 shifting the monodromy exponent σ1

around C [1]in , whose significance will become apparent in sections 7.1.2 and 7.1.38. The mon-
odromy exponents mk, ak parametrize the SL(N) component of the monodromy, and the
ak’s satisfy an+1 = a1. In terms of the original problem on the torus, the monodromy ex-
ponents σk, µk in equation (5.3.12) are defined by the conjugacy class of the monodromies
around the punctures {zk}n

k=1, and around the circles Cin, Cout being glued in the pants
decomposition (see Figure 5.4), which are respectively

Mk ∼ e2πi µk , MC [k]in
= M−1

C [k−1]
out

= G−1
k e2πi σk Gk, (5.3.15)

for k = 1, . . . n, and

MC [n]out
= M−1

B e−2πi(σ1−∑n
j=1 ΛjI)MB. (5.3.16)

The matrix Gk is the matrix that diagonalizes MC [k]in
= M[k−1]

Cout
, while Gn+1 := MB is the

matrix that diagonalizes M[n]
Cout

as in the one-punctured case, and we fixed G1 = I. The total
Hilbert space H is decomposed into a direct sum of spaces H[k] corresponding to each pair

8From the point of view of the dynamical system, the monodromy exponents on C [1]in have the role of initial
conditions, so that it is natural that Λ0 doesn’t appear in the Lax matrix, contrary to Λ1, . . . , ΛN , which are
residues at the punctures.
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of pants:

H :=
n⊕

k=1

H[k] = H+ ⊕H−, (5.3.17)

where

H± :=
n⊕

k=1

(
H[k]

in,∓ ⊕H
[k]
out,±

)
, (5.3.18)

Definition 5.6. Corresponding to the solutions Y(z), Ỹ [k](z) of the linear problems (5.3.1), (5.3.12)
respectively, we define two matrix-valued functions: Y(z) with diagonal monodromies around the
boundary circles C [k]in and C [k]out, and Ỹ[k](z) with diagonal monodromies around C [k]in and C [k]out (see
Figure 5.4), by the following equations:

Y(z)|C [1]in
:= Y(z)|C [1]in

∈ H[1]
in , Y(z)|C [n]out

:= M−1
B Y(z)|C [n]out

∈ H[n]
out. (5.3.19)

Ỹ[k](z)|C [k]in
≡ Ỹ[k]

in (z) := G−1
k Ỹ [k](z)|C [k]in

∈ H[k]
in , (5.3.20)

Ỹ[k](z)|C [k]out
≡ Ỹ[k]

out(z) := G−1
k+1Ỹ [k](z)|C [k]out

∈ H[k]
out, (5.3.21)

with G1 = I, and Gn+1 = MB.

The functions f [k](z) ∈ H[k] are decomposed as

f [k](z) =

(
f [k]in,−
f [k]out,+

)
⊕
(

f [k]in,+

f [k]out,−

)
. (5.3.22)

The generalization of definition 5.4 to the n-punctured case is as follows:

P⊕ :=
n⊕

k=1

P [k]
⊕ (5.3.23)

where P [k] is the Plemelj operator given by the solution to the three-point problem (5.3.12)
in the pants decomposition,

(
P [k]
⊕ f [k]

)
(z) =

∫

C [k]in ∪C
[k]
out

dw
Ỹ[k](z)Ỹ[k](w)−1

1− e−2πi(z−w)
f [k](w)

:=
∫

C [k]
dw

Ỹ[k](z)Ỹ[k](w)−1

1− e−2πi(z−w)
f [k](w).

(5.3.24)

Equivalently,

P [k]
⊕ :

(
f [k]in,−
f [k]out,+

)
⊕
(

f [k]in,+

f [k]out,−

)
7→
(

f [k]in,−
f [k]out,+

)
⊕
(

a[k] b[k]

c[k] d[k]

)(
f [k]in,−
f [k]out,+

)
, (5.3.25)
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where

(a[k]g)(z) =
∮

C [k]in

dw
Ỹ[k]

in (z)Ỹ[k]
in (w)−1 − I

1− e−2πi(z−w)
gin(w), z ∈ C [k]in ,

(b[k]g)(z) =
∮

C [k]out

dw
Ỹ[k]

in (z)Ỹ[k]
out(w)−1

1− e−2πi(z−w)
gout(w), z ∈ C [k]in ,

(c[k]g)(z) =
∮

C [k]in

dw
Ỹ[k]

out(z)Ỹ
[k]
in (w)−1

1− e−2πi(z−w)
gin(w), z ∈ C [k]out,

(d[k]g)(z) =
∮

C [k]out

dw
Ỹ[k]

out(z)Ỹ
[k]
out(w)−1 − I

1− e−2πi(z−w)
gout(w), z ∈ C [k]out.

(5.3.26)

The functions Ỹ[k]
in , Ỹ[k]

out are the local solutions of the k-th three-point problem around ∓i∞,
respectively, defined in Definition 5.6. In the case of a semi-degenerate system (i.e. a linear
system with a single independent local monodromy exponent at z = 0 instead of N) these
solutions are described by generalized hypergeometric functions N FN−1 (see eq. 19 in [55]).
Similar to (5.2.23), P2

⊕ = P⊕, and

ker P⊕ = H−. (5.3.27)

Generalizing definition 5.2, we now introduce the Plemelj operator described by the
solution to the n-point linear system (5.3.1),

(
PΣ1,n f

)
(z) =

∮

CΣ

dw
2πi

Y(z)ΞN(z, w)Y(w)−1 f (w), (5.3.28)

where

CΣ :=
n⋃

k=1

C [k]out ∪ C
[k+1]
in , C [n+1]

in := C [1]in , (5.3.29)

and

ΞN(z, w) = diag
(

θ1(z− w + Q1 − ρ̃)θ′1(0)
θ1(z− w)θ1(Q1 − ρ̃)

, . . . ,
θ1(z− w + QN − ρ̃)θ′1(0)

θ1(z− w)θ1(QN − ρ̃)

)
, (5.3.30)

where

ρ̃ := ρ−
n

∑
j=1

Λj

(
zj −

τ

2
− 1

2

)
, (5.3.31)

and as before ρ is an arbitrary parameter, and ΞN transforms as

ΞN(z + τ, w) = e−2πiQ+2πiρ̃ ΞN(z, w), ΞN(x, w + τ) = ΞN(z, w)e2πiQ−2πiρ̃. (5.3.32)

The shift of the parameter ρ in (5.3.31) makes the monodromies of the Cauchy kernel time-
independent (see equation (5.3.11)), and the following is true:

HA ⊆ kerPΣ1,n , (5.3.33)
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where A :=
⋃n

k=1 A [k] in Figure 5.4, and the space of functions are defined by the equation
(5.3.47). It is straightforward to check that P2

Σ1,n
= PΣ1,n , and one can further prove:

P⊕PΣ1,n = PΣ1,n , PΣ1,nP⊕ = P⊕. (5.3.34)

The space of functions on T :=
⋃n

k=1 T [k] in Figure 5.4 is

HT := im P⊕ = im PΣ1,n . (5.3.35)

Definition 5.7. The determinant tau-function T (1,n) is defined in terms of the Plemelj operators in
equations (5.3.23), (5.3.28), as

T (1,n) := det
H+

[
P−1

Σ1,n
P⊕
]

. (5.3.36)

We now proceed to formulate the generalization of proposition 5.1 to the present case.

5.3.1 Block-determinant representation of the tau-function

Proposition 5.2. The tau-function T (1,n) in (5.3.36) is the Fredholm determinant of a block operator
acting on L2(S1)⊗CN:

T (1,n)(τ, z1, ..., zn) = det [I− K1,n] , (5.3.37)

where

K1,n =

0

0

c[1]

0

0

0

a[1] b[1] 0 0 0

0

b[n]∇
0

0 0 0 ∇−1c[n] ∇−1d[n]∇
0

0U1 V1

W1
0

0

U2

W2

V2

U
n

V
n−1

W
n−1

..
.

..
.

. . .

. . .

. . .

. . .

. . .
, (5.3.38)

and

Uk =

(
0 a[k+1]

d[k] 0

)
, Vk =

(
b[k+1] 0

0 0

)
, Wk =

(
0 0
0 c[k+1]

)
. (5.3.39)

The operators a[k], b[k], c[k], d[k] defined in (5.3.26), and ∇ is the shift operator defined in (5.3.43).
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Proof. The proof goes along the same lines as that of Proposition 5.1. Recalling the definition
of the tau-function in (5.3.36) and of the Plemelj operators in (5.3.24), (5.3.28), we compute
the action of P−1

Σ1,n,+P⊕,+ on a function f ∈ H+:

F := P−1
Σ1,n,+P⊕,+ f ⇒ PΣ1,n F = P⊕ f , F ∈ H+. (5.3.40)

Now we use that for any projector P acting on a vector x, one has x − Px ∈ ker P , and
that9 ker PΣ1,n = HA :

F = (F−PΣ1,n F) + PΣ1,n F = A + P⊕F, A := F−PΣ1,n F ∈ HA . (5.3.41)

The orthogonal decomposition of A is

A =
n⊕

k=1

A[k] =

(
A[k]

in,−
A[k]

out,+

)
⊕
(

A[k]
in,+

A[k]
out,−

)
. (5.3.42)

The z-dependent B-cycle monodromy in (5.3.11) implies that the monodromies around C [1]in

and C [n]out (see Figure 5.4) are given by (5.3.16), prompting the following expression for the
shift operator ∇ : H[1]

in → H
[n]
out

∇g(z) = e2πi
(

ρ−(z−τ)∑n
j=1 Λj

)
g(z− τ), (5.3.43)

in order to ’glue’ the boundary spaces on Cin, Cout. The factor e2πiz ∑n
j=1 Λj in the above defi-

nition of ∇ leads to the following action of ∇−1:

∇−1h(z) = e−2πi
(

ρ−z ∑n
j=1 Λj

)
h(z + τ). (5.3.44)

Identifying the boundaries C [n]out with C [1]in , and C [k]out with C [k+1]
in for k = 1...n− 1, produces

the torus from the pants decomposition as in Figure 5.4, and translates to the following
constraints on A in (5.3.42):

A[1]
in,± = ∇−1A[n]

out,±; A[k]
out,± = A[k+1]

in,± , k = 1, . . . , n− 1, (5.3.45)

where the translation operator ∇ : H[1]
in → H

[n]
out is defined as in (5.3.43). Component-wise,

equation (5.3.41) reads

F =

(
Fin,−
Fout,+

)
⊕
(

0
0

)

=
n⊕

k=1

(
A[k]

in,−
A[k]

out,+

)
⊕
(

A[k]
in,+

A[k]
out,−

)
+

(
f [k]in,−
f [k]out,+

)
⊕
(

a[k] b[k]

c[k] d[k]

)(
f [k]in,−
f [k]out,+

)
.

(5.3.46)

9As in the previous section, when (I− K1,n) is invertible,H = HT ⊕HA, and therefore ker PΣ1,n = HA .
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Imposing the condition that the H− component of F is zero, and using the constraints in
(5.3.45) we get

A[1]
in,+ = −a[1] f [1]in,− − b[1] f [1]out,+ = ∇−1A[n]

out,+,

A[k]
in,+ = −a[k] f [k]in,− − b[k] f [k]out,+ = A[k−1]

out,+, for k = 2...n,

A[k]
out,− = −c[k] f [k]in,− − d[k] f [k]out,+ = A[k+1]

in,− , for k = 1...n− 1,

A[n]
out,− = −c[n] f [n]in,− − d[n] f [n]out,+ = ∇A[1]

in,−.

(5.3.47)

Substituting (5.3.47) in (5.3.46),

F =
n⊕

k=1

(
A[k]

in,−
A[k]

out,+

)
+

(
f [k]in,−
f [k]out,+

)
=

n⊕

k=1

(
f [k]in,−
f [k]out,+

)

−




0 0 0 0 0 0 0 0 . . . 0 ∇−1c[n] ∇−1d[n]

0 0 a[2] b[2] 0 0 0 0 . . . 0 0 0
c[1] d[1] 0 0 0 0 0 0 . . . 0 0 0
0 0 0 0 a[3] b[3] 0 0 . . . 0 0 0
0 0 c[2] d[2] 0 0 0 0 . . . 0 0 0
0 0 0 0 0 0 a[4] b[4] . . . 0 0 0
...

...
...

... . . . ...
...

...
0 0 0 0 . . . 0 0 0 0 0 a[n] b[n]

0 0 0 0 . . . 0 0 0 c[n−1] d[n−1] 0 0
∇a[1] ∇b[1] 0 0 . . . 0 0 0 0 0 0 0







f [1]in,−
f [1]out,+

f [2]in,−
f [2]out,+

f [3]in,−
f [3]out,+

...
f [n]in,−
f [n]out,+




:=
(

I− K̂1,n

)
f . (5.3.48)

Similar to (5.2.44), we conjugate K̂1,n with the diagonal operator diag
(
1, 1, ...,∇−1)

K1,n := diag(1, ...,∇−1) K̂1,n diag(1, ...,∇) (5.3.49)

obtaining equation (5.3.38).

Remark 5.5. It is straightforward to recover (5.2.32) from
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0
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0
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0

a[1] b[1] 0 0 0

0

b[n]∇
0

0 0 0 ∇−1c[n] ∇−1d[n]∇
0

0U1 V1

W1
0

0
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. . .

. . .

FIGURE 5.5: Kernel K1,n in (5.3.49).

Moreover, the block form of the tau-function T (1,n) includes naturally an n× n sub-block iden-
tical to the tau-function appearing in pg. 18 of [54] for the n + 2-punctured sphere, as emphasised
in Figure 5.5. This is a consequence of the fact that if we cut the tube that joins the first and last
trinion in Figure 5.4, (i.e. if we take the limit τ → +i∞), we obtain a Fuchsian problem for an
n + 2-punctured sphere:

lim
τ→+i∞

T (1,n) ∝ T (0,n+2). (5.3.50)

5.3.2 Relation to the Hamiltonians

Theorem 5.2. The isomonodromic tau-function TH in (5.3.2) is related to the Fredholm determinant
of the operator K1,n in (5.3.38) as

TH(τ) = det [I− K1,n] eiπτtr (σ2
1+

I
6)e−iπNρ̃

N

∏
i=0

η(τ)

θ1 (Qi − ρ̃)

n

∏
k=1

e−iπzk(tr σ2
k+1−tr σ2

k)Υ1,n,

(5.3.51)

where Υ1,n is an arbitrary function of the monodromy data of the linear system (5.3.1), Qi ≡
Qi(τ, z1, ..., zn) are the Calogero-like dynamical variables in the linear system (5.3.3), σk = ak +
∑j<k Λj are the monodromy exponents defined in (5.3.15), and an+1 = a1,

ρ̃ = ρ +
n

∑
k=1

Λk

(
zk −

τ

2
− 1

2

)
, (5.3.52)

and ρ is an arbitrary parameter.
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Proof. Let us recall equation (5.3.36):

T (1,n) = det
H+

[
P−1

Σ1,n
P⊕
]

, (5.3.53)

where the operators P⊕, PΣ1,n are defined in (5.3.24) and (5.3.28) respectively. The logarith-
mic derivative of the tau-function T (1,n), has two main components: the derivatives with
respect to the modular parameter τ, and the position of the singularities {zk}n

k=1:

δ log T (1,n) = 2πidτ ∂τ log T (1,n) +
n

∑
k=1

dzk ∂zk log T (1,n). (5.3.54)

Computation of this derivative can be done exactly in the same way as in [54, page 20]:

δ log T (1,n) = −2πitrH
[
P⊕∂τPΣ1,n

]
dτ −

n

∑
l=1

trH[l]

[
P [l]
⊕ ∂zkPΣ1,n .

]
dzk (5.3.55)

The computation for the first term in (5.3.55) is the same as in the proof for Theorem 5.1 in
section 5.2.3: the τ-derivative is given by

−trH
[
P⊕∂τPΣ1,n

]
=

n

∑
l=1
−I(l)τ − Iw − Iz, (5.3.56)

where

I(l)τ =
∮

C [l]
dw

∮

C [l]
dz

2πi
1

1− e−2πi(z−w)
tr
[
Ỹ[l](z)Ỹ[l](w)−1∂τ

(
Y(w)ΞN(w, z)Y(z)−1

)]
,

Iz =
∮

C [n]
dw

∮

C [n]out

dz
2πi

1
1− e−2πi(z−w)

tr
[
Ỹ[n](z)Ỹ[n](w)−1∂z

(
Y(w)ΞN(w, z)Y(z)−1

)]
,

Iw =
∮

C [n]out

dw
∮

C [n]
dz

2πi
1

1− e−2πi(z−w)
tr
[
Ỹ[n](z)Ỹ[n](w)−1∂w

(
Y(w)ΞN(w, z)Y(z)−1

)]
.

(5.3.57)

Note that the contours of Iz, Iw involve only the final trinion, because the identification
z ∼ z + τ glues C [n]out to C [1]in , as in Figure 5.4. Like in the case of one puncture, Iτ = ∑l I(l)τ

vanishes because Mτ in (5.3.5) has zero residue at the punctures, while Iw vanishes because
the z-loop is contractible. Using the notation 5.2,

∑
i

θ′1(Qi − ρ̃)

θ1(Qi − ρ̃)
(L)ii ≡ tr

[
θ′1(Q− ρ̃)

θ1(Q− ρ̃)
L
]

, (5.3.58)



104 Chapter 5. Tau-function of a n-point torus

we are then left with the following expression (see (5.2.70) for comparison) for the first term
in (5.3.55):

−trH
[
P⊕∂τPΣ1,n

]
= −Iz =

1
2

∮

C [n]out

dz
2πi

tr
[
−L[n]

3pt(z)
2 + L2(z) + 2iπtr L[n]

3pt

]

+
1
2

∮

C [n]out

dz
2πi

[
2

θ′1(Q− ρ̃)

θ1(Q− ρ̃)
L(z) +

θ′′1 (Q− ρ̃)

θ1(Q− ρ̃)
− I

(
1
3

θ′′′1
θ1

+
(2πi)2

6

)]

=
Hτ

2πi
+

d
dτ

log

(
e−iπτtr (σ2

1+I/6)eiπτN ∑n
j=0 Λj

N

∏
i=1

θ1(Qi − ρ̃)

η(τ)

)
(5.3.59)

=
Hτ

2πi
+

d
dτ

log

(
e−iπτtr (σ2

1+I/6)eiπNρ̃
N

∏
i=1

θ1(Qi − ρ̃)

η(τ)

)
. (5.3.60)

In the last line we used
N

∑
j=0

Λj =
1
2

N

∑
j=1

Λj, (5.3.61)

so that

iπtr L[n]
3pt =

N
2
(2πi)2

n

∑
j=0

Λj
(5.3.31)
= 2πi∂τ log

(
eiπNρ̃

)
. (5.3.62)

Let us now compute the second term in (5.3.55):

−
n

∑
l=1

trH[l]

[
P [l]
⊕ ∂zkPΣ1,n

]

= −
n

∑
l=1

∮

C [l]
dw

∮

C [l]
dz

2πi
1

1− e−2πi(z−w)
tr
[
Ỹ[l](z)Ỹ[l](w)−1∂zk

(
Y(w)ΞN(w, z)Y(z)−1

)]

=
n

∑
l=1

(
I(l,1)zk + I(l,2)zk + I(l,3)zk

)
, (5.3.63)

where

I(l,1)zk := −
∮

C [l]
dw

∮

C [l]
dz

2πi
1

1− e−2πi(z−w)
tr
[
Ỹ[l](z)Ỹ[l](w)−1∂zkY(w)ΞN(w, z)Y(z)−1

]
= 0

(5.3.64)

since the z-loop is contractible, and

I(l,2)zk := −
∮

C [l]
dw

∮

C [l]
dz

2πi
1

1− e−2πi(z−w)
tr
[
Ỹ[l](z)Ỹ[l](w)−1Y(w)∂zk ΞN(w, z)Y(z)−1

]
= 0

(5.3.65)



5.3. Generalization to the n-punctured torus 105

since ∂zk ΞN(w, z) is regular in w ∼ z. The term I(l,3)zk is computed by expanding ΞN for
w ∼ z as in (5.3.30), and using (5.2.22) :

I(l,3)zk := −
∮

C [l]
dw
2πi

∮

C [l]
dz

2πi
1

1− e−2πi(z−w)
tr
[
Ỹ[l](z)Ỹ[l](w)−1Y(w)ΞN(w, z)∂zkY(z)

−1
]

=
∮

C [l]
dw
2πi

∮

C [l]
dz

2πi
tr
[

Ỹ[l](w)−1Y(w)
1

(w− z)2 ∂zkY(z)
−1Ỹ[l](z)

]

∮

C [l]
dw
2πi

∮

C [l]
dz

2πi
tr

[
Ỹ[l](w)−1Y(w)

w− z

(
θ′1(Q− ρ̃)

θ1(Q− ρ̃)
− iπ

)
∂zkY(z)

−1Ỹ[l](z)

]

=
∮

C [l]
dz

2πi
tr
{(

Y(z)−1Ỹ[l](z)L[l]
3pt(z)(Y(z)

−1Ỹ[l](z))−1 − L(z)
)

Mzk(z)
}

−
∮

C [k]
dz

2πi
tr
{(

θ′1(Q− ρ̃)

θ1(Q− ρ̃)
− iπ

)
Mzk(z)

}
. (5.3.66)

Note that (5.3.66) can be different from zero only for l = k, because the integrand is regular
for l 6= k. To compute the first and second term, we use the regular parts L(z)reg and

L[k]
3pt(z)reg of L(z) (eq. (5.3.3)) and L[k]

3pt (eq. (5.3.12)), as well as the explicit expression (5.3.4):
for Mzk :

∮

C [k]
dz

2πi
tr
{(

Y(z)−1Ỹ[k](z)L[k]
3pt(z)reg(Y(z)−1Ỹ[k](z))−1

)
Mzk(z)

}

= 2πitr
(

A[k]
1 A[k]

0

)
+ iπtr A[k]

1

2
= iπ

(
tr σ2

k+1 − tr σ2
k

)
=

d
dzk

log
(

eiπzk(tr σ2
k+1−tr σ2

k)
)

,

(5.3.67)

where we used the identity

tr
(

A[k]
0 A[k]

1

)
=

1
2

tr
(

A[k]
∞

2
− A[k]

0

2
− A[k]

1

2
)
=

1
2

(
tr σ2

k+1 − tr σ2
k − tr µ2

k

)
. (5.3.68)

To compute the second term in (5.3.66), we note that Mzk in (5.3.4) is simply the singular
part at zk of L in (5.3.3) with a negative sign, so that

−
∮

C [k]
tr L(z)Mzk(z)

dz
2πi

=
∮

C [k]
1
2

tr L2(z)
dz

2πi
= tr

(
SkL(zk)reg

)
= Hzk (5.3.69)

The last term in (5.3.66):

−
∮

C [k]
dz

2πi
tr
{(

θ′1(Q− ρ̃)

θ1(Q− ρ̃)
− iπ

)
Mzk(z)

}
=

N

∑
i=1

(
S(k)

ii + Λk

)(θ′1(Qi − ρ̃)

θ1(Qi − ρ̃)
− iπ

)

=
N

∑
i=1

(
S(k)

ii + Λk

) θ′1(Qi − ρ̃)

θ1(Qi − ρ̃)
− iπNΛk

(5.3.70)
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since tr S(k) = 0. To simplify (5.3.70) further, let us first substitute (5.3.3), (5.3.4) in (5.3.69):

Hzk =
N

∑
i=1

S(k)
ii Pi + (P-independent part) , (5.3.71)

which implies, together with the canonical Poisson bracket {Qi, Pj} = δij, that

dQi

dzk
=

∂Hzk

∂Pi
= S(k)

ii (5.3.72)

Then (5.3.70) becomes

∮

C [k]
dz

2πi
tr
{

θ′1(Q− ρ̃)

θ1(Q− ρ̃)
Mzk(z)

}
=

N

∑
i=1

(
S(k)

ii + Λk

) θ′1(Qi − ρ̃)

θ1(Qi − ρ̃)
− iπNΛk

(5.3.31)
=

N

∑
i=1

(
dQi

dzk
− dρ̃

dzk

)
θ′1(Qi − ρ̃)

θ1(Qi − ρ̃)
− iπNΛk

=
d

dzk
log

(
e−iπNzkΛk

N

∏
i=1

θ1(Qi − ρ̃)

)

(5.3.31)
=

d
dzk

log

(
eiπNρ̃

N

∏
i=1

θ1(Qi − ρ̃)

)
.

(5.3.73)

Substituting (5.3.67), (5.3.69), (5.3.73) back in (5.3.66),

I(l,3)zk = δl
k

[
d

dzk
log
(

eiπzk(tr σ2
k+1−tr σ2

k)eiπNρ̃
)
+ Hzk +

d
dzk

log
N

∏
i=1

θ1(Qi − ρ̃)

]
. (5.3.74)

Putting it all together (5.3.55):

δ log det [I− K1,n]
(5.3.37)
= δ log T (1,n) = −2πitrH

[
P⊕∂τPΣ1,n

]
dτ −

n

∑
l=1

trH[l]

[
P [l]
⊕ ∂zkPΣ1,n

]
dzk

(5.3.56),(5.3.63)
= −2πi

(
n

∑
l=1

I(l)τ + Iw + Iz

)
dτ +

n

∑
l=1

(
I(l,1)zk + I(l,2)zk + I(l,3)zk

)
dzk

(5.3.60),(5.3.64),(5.3.74)
= Hτdτ +

n

∑
k=1

Hzk dzk

+ 2πi
d

dτ
log

(
e−iπτtr (σ2

1+
I
6)eiπNρ̃

N

∏
i=1

θ1(Qi − ρ̃)

η(τ)

)
dτ

+
n

∑
k=1

[
d

dzk
log
(

eiπzk(tr σ2
k+1−tr σ2

k)eiπNρ̃
)
+

d
dzk

log
N

∏
i=1

θ1(Qi − ρ̃)

]
dzk

(5.3.2)
= δ log TH

+ δ log

[
e−iπτtr (σ2

1+
I
6)eiπNρ̃

N

∏
i=1

θ1(Qi − ρ̃)

η(τ)

n

∏
k=1

eiπzk(tr σ2
k+1−tr σ2

k)

]

(5.3.75)
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Integrating (5.3.75) and substituting (5.3.31), we obtain (5.3.51).





109

Part III

Combinatorics
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Chapter 6

Combinatorics of the Airy kernel

6.1 Minor expansion

The Hilbert space L2(S1) admits a natural orthonormal basis of Fourier modes (i.e. the
monomials zn, n ∈ Z). The minor expansion of the Fredholm determinant (2.1.3) in this
particular basis gives rise to interesting combinatorics. In the case of Painlevé VI, V, III the
combinatorics correspond to certain Nekrasov Partition functions of certain Gauge theories
[54].

In this spirit, we would like to propose, at least, a reasonable expansion of the Fredholm
determinant of our operator in a similar guise. In our case the underlying Hilbert space
L2(iR) does not immediately suggest a natural discrete orthonormal basis. Here below we
want to propose a very natural such basis: the main guiding principle is that of identifying
the Hardy space H+ with the Hardy space of the interior of the disk, and pulling back the
monomial basis.

Proposition 6.1. The Fredholm determinant of the tau-function in (3.2.1) can be expanded, on an
appropriate basis, in terms of minors, that can be labelled by Maya diagrams (mX)

τ[s] = ∑
mX∈M; |p|=|h|

αhX
pX β

pX
hX

(6.1.1)

where the coefficients αn
m, βm

n are as follows

β0
0 = α0

0 =

(
4

∂2

∂s2 − 1
)(

1− ∂

∂s

)−1

Ai(s) (6.1.2)

where Ai(s) is the Airy function, and

αn
m =

(−1)m+n

(m!)2n!(m + n + 1)!

(
D̃
)m+n

α0
0 (6.1.3)

βm
n =

(−1)m+n

(n!)2m!(m + n + 1)!

(
D̃
)m+n

β0
0 (6.1.4)

with D̃ = 2
(

∂
∂s − 1

)2 (
4 ∂2

∂s2 − s
)
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Proof. Recall that,

τ(s) = det
[

IdL2(iR) −
[

0 a
b 0

]]
= det


IdL2(iR)⊗C2 −




0 0 0 a12
0 0 0 0
0 0 0 0

b21 0 0 0





 (6.1.5)

of which a12 and b21 are the only non zero entries. Therefore, the determinant of the 4× 4
block operator can be reduced to a determinant of a 2× 2 block operator. Let us denote
a12 ≡ α, b21 ≡ β

τ[s] = det
[

IdL2(iR) −
(

0 a12
b21 0

)]
= det

[
IdL2(iR) −

(
0 α
β 0

)]
(6.1.6)

We remind the reader here that the block decomposition is due to the splitting L2(iR) =
H = H+ ⊕H−.

The first step to obtain the minor expansion is constructing a suitable basis to expand
α(z, w) and β(z, w),

α(z, w) : H− → H+ ; β(z, w) : H+ → H−. (6.1.7)

Basis construction

The spaces H± are Hardy spaces of functions analytic on the left and right half of the com-
plex planes respectively. To construct the bases of H±, we employ the Paley-Weiner theo-
rem which identifiesH+ as the image under Fourier transform of functions supported on a
half–line. Specifically, let C+ = {z : z = x + iy, y > 0},

H2(C+) =

{
f : f is analytic in C+ and sup

0<y<+∞

∫ +∞

−∞
| f (z)|2dx < ∞

}
. (6.1.8)

By definition, the boundary values of f ∈ H2(C+) on R define a function in L2(R) and we
can think of H2(C+) as a (closed) subspace of L2(R). With this understanding, the Paley–
Wiener theorem can be stated as the following identity:

FH2(C+) = L2[0, ∞). (6.1.9)

The spaceH+ can be isometrically mapped to H2(C+) by a variable change z→ iz. We have
that Laguerre functions (Lλ

n(z)zλe−z) provide a basis of L2(R+). Using the Paley–Wiener
theorem, upon inverse Fourier transform, they yield a basis for H2(C+) and an innocent
change of variable z → iz gives a basis on H+. We can comfortably restrict ourselves to
λ = 0. Following [108], the Fourier transform ( ˆ̀λ

n(t)) of the Laguerre functions Lλ
n(x)e−

x
2 x

λ
2

for λ = 0, and using the notation and L0
n ≡ Ln, is

Ln(x)e−
x
2 =

e−
x
2

n!

n

∑
k=0

(−n)kxk

k!
(6.1.10)

ˆ̀n(t) =
−2
n!

(
1 + 2it
2it− 1

)n 1
2it− 1

(6.1.11)
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ˆ̀n forms a complete basis on H2(C+, dt). With the change of variable 2it = z, (6.1.7) reads

ˆ̀n(z) =
−2
n!

(
1 + z
z− 1

)n 1
z− 1

(6.1.12)

and will form a basis on H2(H+, −i
2 dz). In conclusion

en
H+

=
i

n!

(
1 + z
z− 1

)n 1
z− 1

(6.1.13)

is a basis on H2(H+, dz). Similarly,

en
H− =

i
n!

(
z− 1
z + 1

)n 1
z + 1

(6.1.14)

is a basis on H2(H−, dz)

Minor expansion

Expanding α(z, w) and β(z, w) in the basis eH+ and eH− , the tau-function (3.2.1) can be
expressed as a minor expansion. Starting with α(z, w),

αn
m = 〈α(z, w)en

H− , em
H+

(z)〉

=
∫

iR

dz
2πi

ēm
H+

(z)
∫

iR−ε

dw
2πi

α(z, w)en
H−(w)

=
−κ

m!n!

∫

iR

dz
2πi

(
z̄ + 1
z̄− 1

)m 1
(z̄− 1)

∫

iR−ε

dw
2πi

eθ(w,s)

w− z

(
w− 1
w + 1

)n 1
(w + 1)

=
κ

m!n!

∫

iR−ε

dw
2πi

eθ(w,s)(w− 1)m+n

(w + 1)m+n+2 (6.1.15)

Similarly for β(w, z)

βn
m = 〈β(z, w)en

H+
, em
H−(z)〉

=
∫

iR

dz
2πi

ēm
H−(z)

∫

iR+ε

dw
2πi

β(z, w)en
H+

(w)

=
κ

m!n!

∫

iR

dz
2πi

(
z̄− 1
z̄ + 1

)m 1
(z̄ + 1)

∫

iR+ε

dw
2πi

e−θ(w,s)

w− z

(
w + 1
w− 1

)n 1
(w− 1)

=
−κ

m!n!

∫

iR+ε

dw
2πi

e−θ(w,s)(w + 1)m+n

(w− 1)m+n+2 (6.1.16)

Recurrence relations

αn
m, βn

m can be made explicit by noticing that the functions such as
∫ dw

2πi (w + 1)me−θ(w) can
be written as some derivatives of the Airy function. Define the function χm+n as

χm+n =
(w− 1)m+n

(w + 1)m+n+2 eθ(w,s). (6.1.17)
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Then αn
m in terms of χm+n is simply

αn
m =

κ

m!n!

∫

iR−ε

dw
2πi

eθ(w,s)(w− 1)m+n

(w + 1)m+n+2 =
κ

m!n!

∫

iR−ε

dw
2πi

χm+n (6.1.18)

and βm
n in terms of χm+n is

βm
n =

−κ

m!n!

∫

iR+ε

dw
2πi

e−θ(w,s)(w + 1)m+n

(w− 1)m+n+2

=
κ

m!n!

∫

iR−ε

dw
2πi

eθ(w,s)(w− 1)m+n

(w + 1)m+n+2 =
κ

m!n!

∫

iR−ε

dw
2πi

χm+n (6.1.19)

The function χm+n obeys a recursion relation that can be derived as follows

∫ dw
2πi

χm+n(w, s) =
∫ dw

2πi
(w− 1)m+n

(w + 1)m+n+2 eθ(w,s)

=
2

(m + n + 1)

∫ dw
2πi

eθ(w,s)∂w

[
(w− 1)m+n+1

(w + 1)m+n+1

]

= − 2
(m + n + 1)

∫ dw
2πi

[
(w− 1)m+n+1

(w + 1)m+n+1

]
∂weθ(w,s)

= − 2
(m + n + 1)

∫ dw
2πi

(w− 1)m+n−1

(w + 1)m+n+1 (w− 1)2(4w2 − s)eθ(w,s)

= − 2
(m + n + 1)

∫ dw
2πi

(
∂

∂s
− 1
)2(

4
∂2

∂s2 − s
)

χm+n−1(w, s) (6.1.20)

which gives the following equation

∫

iR

dw
2πi

[
χm+n +

2
(m + n + 1)

(
∂

∂s
− 1
)2 (

4
∂2

∂s2 − s
)

χm+n−1

]
= 0 (6.1.21)

We define a function Ci(t) as follows:

Ci(t) :=
∫ dw

2πi
1

(w + 1)
eθ(w) =

(
1− ∂

∂s

)−1

Ai(t) (6.1.22)

Then the function χ0 can be computed in terms of Ci(t)

∫

iR

dw
2πi

χ0 =
∫ dw

2πi
1

(w + 1)2 eθ(w,s) = −
∫ dw

2πi
∂w

(
1

w + 1

)
eθ(w,s)

=
∫ dw

2πi

(
1

w + 1

)
∂weθ(w,s) =

∫ dw
2πi

(
1

w + 1

)
(4w2 − s)eθ(w,s)

=
∫ dw

2πi

(
4

∂2

∂s2 − s
)(

1
w + 1

)
eθ(w,s)

=

(
4

∂2

∂s2 − s
)

Ci(s) (6.1.23)
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Since both αn
m and βm

n are integrals of χm+n(6.1.18), (6.1.19), the recurrsion relation (6.1.21)
and the expression for χ0 (6.1.23) give the explicit expressions for αn

m and βm
n . Starting with

the recursion relation for αn
m and βm

n

n(m + n + 1)αn
m + 2

(
∂

∂s
− 1
)2(

4
∂2

∂s2 − s
)

αn−1
m = 0 (6.1.24)

n(m + n + 1)βn
m + 2

(
∂

∂s
− 1
)2(

4
∂2

∂s2 − s
)

βn−1
m = 0 (6.1.25)

with

α0
0 =

(
4

∂2

∂s2 − 1
)(

1− ∂

∂s

)−1

Ai(s) (6.1.26)

Further,
nαn

m−1 = mαn−1
m ; nβn

m−1 = mβn−1
m (6.1.27)

Notice that (6.1.24) and (6.1.25) are recursive relations in n. Using (6.1.27) similar recursion
relations in m can be obtained

m(m + n + 1)αn
m + 2

(
∂

∂s
− 1
)2(

4
∂2

∂s2 − s
)

αn
m−1 = 0 (6.1.28)

m(m + n + 1)βn
m + 2

(
∂

∂s
− 1
)2(

4
∂2

∂s2 − s
)

βn
m−1 = 0 (6.1.29)

Define 2
(

∂
∂s − 1

)2 (
4 ∂2

∂s2 − s
)
= D̃. From (6.1.24)

αn
m = (−1)m+n (1 + m)

n!(m + n + 1)!
D̃nα0

m (6.1.30)

now using (6.1.28)

α0
m = (−1)m 1

m!(m + 1)!
D̃mα0

0 (6.1.31)

In terms of α0
0, αn

m is explicit

αn
m =

(−1)m+n

(m!)2n!(m + n + 1)!
D̃m+nα0

0 (6.1.32)

Repeating the same computation for βm
n

βm
n =

(−1)m+n

(n!)2m!(m + n + 1)!
D̃m+nβ0

0 (6.1.33)

Now for the Ablowitz-Segur tau-function,

τ[s] = det
[

1−
(

0 α
β 0

)]
(6.1.34)
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α and β can be expanded on a discrete basis eH±(z)

α(z, w) = ∑
m,n∈Z+

αn
meH+(z)

meH−(w)n; β(z, w) = ∑
m,n∈Z+

βn
meH−(z)

meH+(w)n (6.1.35)

Since αn
m and βm

n in (6.1.35) are not matrices themselves, the corresponding Maya dia-
grams are "colourless". If an

m and bm
n were N × N matrices themselves, the corresponding

entries in the expansion would be an;α
m;β and bm;β

n;α where α, β = {1, ..., N}would be the colour
indices. Furthermore, given the off-diagonal structure of the matrix U, the minors with
|p| 6= |h| vanish. Therefore, the minor expansion reads,

τ[s] = ∑
mχ∈M; |p|=|h|

α
hχ
pχ β

pχ

hχ
. (6.1.36)

The proof is now complete.

It would be extremely interesting to interpret the terms in this minor expansion in a
similar way to the case of Painlevé VI, V, III. However, to our knowledge, in the case of the
second Painlevé transcendent, there is no direct analog connection with some field theory.
Nonetheless the computation proceeds in a rather natural way and may prove of use in
future applications.
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Chapter 7

Combinatorial representation of
tau-functions on a torus

7.1 Charged partitions and Nekrasov functions

In this section, we expand the Fredholm determinant (5.3.37) in terms of its principal minors
labeled by random partitions, and show that the resulting combinatorial expression takes
the form of a Fourier series of Nekrasov functions, known as dual Nekrasov-Okounkov
partition function [89] in the self-dual Omega-background, for a class of four-dimensional
N = 2 supersymmetric gauge theories called circular quiver gauge theories. These are
gauge theories with multiple SU(N) gauge groups, each of which is coupled to two matter
hypermultiplets in the bifundamental representation, and their partition functions are equal
to free fermion conformal blocks on the torus.

7.1.1 Minor expansion

The Hilbert space L2(S1) admits a natural orthonormal basis of Fourier modes. We now
compute the minor expansion of the Fredholm determinant (5.3.37) in this particular basis.
The kernels of the operators a[k], b[k], c[k], d[k] in (5.3.26) read:

a[k](z, w) =
I− Ỹ[k](z)Ỹ[k](w)−1

1− e−2πi(z−w)
, z, w ∈ C [k]in ,

b[k](z, w) =
Ỹ[k](z)Ỹ[k](w)−1

1− e−2πi(z−w)
, z ∈ C [k]in , w ∈ C [k]out

c[k](z, w) = − Ỹ[k](z)Ỹ[k](w)−1

1− e−2πi(z−w)
, z ∈ C [k]out, w ∈ C [k]in

d[k](z, w) =
Ỹ[k](z)Ỹ[k](w)−1 − I

1− e−2πi(z−w)
, z, w ∈ C [k]out.

(7.1.1)

Since the solution Ỹ[k] to the k-th three-point problem defined in (5.3.12) is multivalued on
Cin, Cout, with monodromy determined by σk, σk+1 respectively as in equation (5.3.15), the
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matrix elements of the kernels in (7.1.1) have the following (twisted) Fourier series repre-
sentation:

a
[k]
α,β(z, w) = ∑

−r,s∈Z′+

a−r;α
s;β e2πiz

(
1
2−r+σ

(α)
k

)
e2πiw

(
− 1

2−s−σ
(β)
k

)
,

b
[k]
α,β(z, w) = ∑

r,s∈Z′+

b−r;α
−s;βe2πiz

(
1
2−r+σ

(α)
k

)
e2πiw

(
− 1

2+s−σ
(β)
k+1

)
,

c
[k]
α,β(z, w) = ∑

r,s∈Z′+

cr;α
s;βe2πiz

(
1
2+r+σ

(α)
k+1

)
e2πiw

(
− 1

2−s−σ
(β)
k

)
,

d
[k]
α,β(z, w) = ∑

r,s∈Z′+

dr;α
−s;βe2πiz

(
1
2+r+σ

(α)
k+1

)
e2πiw

(
− 1

2+s−σ
(β)
k+1

)
,

(7.1.2)

with α, β = 1, . . . , N, and Z′+ denoting the set of positive half-integers. The Fourier co-
efficients a−r;α

s;β , b−r;α
−s;β, cr;α

s;β, dr;α
−s;β were computed in [54], but we will not need their explicit

form. A submatrix of either a[k], b[k], c[k], d[k], of size i× j, is denoted by two unordered sets
{(r, α)1, . . . , (r, α)i} ∈ 2Z′+×{1,...,N} and {(s, β)1, . . . , (s, β)j} ∈ 2Z′+×{1,...,N} where r, s are the
Fourier indices in the expansion (7.1.2), and α, β are the matrix ("color") indices. Such sets
comprised of positive (negative) Fourier modes will be denoted by I (J). Minors of K will
then be denoted by collections of such sets~I := {I1, . . . , In}, ~J := {J1, . . . , Jn}, and a generic
minor K~I,~J has the form:

K~I,~J =




0 0 0 0 . . . 0
(
∇−1c[n]

)J1

Jn

(
∇−1d[n]∇

)J1

I1

0 0
(
a[2]
)I2

J2

(
b[2]
)I2

I3
. . . 0 0 0

(
c[1]
)J2

J1

(
d[1]
)J2

I2
0 0 . . . 0 0 0

0 0 0 0 . . . 0 0 0

0 0
(
c[2]
)J3

J2

(
d[2]
)J3

I3
. . . 0 0 0

...
...

. . .
...

...
...

0 0 . . . 0 0 0
(
a[n]
)In

Jn

(
b[n]∇

)In

I1

0 0 . . . 0
(
c[n−1]

)Jn

Jn−1

(
d[n−1]

)Jn

In
0 0

(
a[1]
)I1

J1

(
b[1]
)I1

I2
. . . 0 0 0 0 0




.

(7.1.3)

A combinatorial interpretation in terms of Maya diagrams and charged partitions proves
vital in expressing the minors as Nekrasov functions: the multi-indices (I, J) can be viewed
as the positions h(m(α)) and p(m(α)) of ’holes’ and ’particles’ respectively, of a coloured
Maya diagram m(α), where α = 1, ..., N, see figure 7.1. Each particle (hole) carries a positive
(negative) unit charge, so that the total charge associated to every Maya diagram is

Q(m(α)) := |p(m(α))| − |h(m(α))|. (7.1.4)
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Using the notation

~m :=
(

m(1), . . . , m(N)
)

, ~Q :=
(

Q(1), . . . , Q(N)
)

, (7.1.5)

the total charge is

Q :=
N

∑
α=1

Q(α), (7.1.6)

and it is the same for every N-tuple of coloured Maya diagrams appearing in our expan-
sions. Each Maya diagram determines uniquely a charged Young diagram (Y, Q) as ex-
emplified in figure 7.1. Consequently, the minors can be labeled by N-tuples of charged
partitions

(
~Y,~Q

)
.

Definition 7.1. With the labels in terms of partitions Y and charges Q, let us define the trinion
partition function by the following expression:

ZYk,Qk
Yk+1,Qk+1

(
T [k]

)
= ZIk,Jk

Ik+1,Jk+1

(
T [k]

)
:= (−1)|Ik+1| det




(
a[k]
)Ik

Jk

(
b[k]
)Ik

Ik+1

(
c[k]
)Jk+1

Jk

(
d[k]
)Jk+1

Ik+1


 , (7.1.7)

where k = 1, . . . , n, and In+1 = I1, Jn+1 = J1. T [k] is the k-th trinion in the pants decomposition
in figure 5.4.
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FIGURE 7.1: Young and Maya diagrams

Note that the determinant in (7.1.7) is non zero for |Ik+1|+ |Jk| = |Ik|+ |Jk+1|, which in
turn implies that all the Maya diagrams carry the same charge Q.



120 Chapter 7. Combinatorial representation of tau-functions on a torus

Proposition 7.1. The determinant tau-function T (1,n) in (5.3.75) has the following minor expan-
sion in terms of the trinion partition functions in (7.1.7):

T (1,n) = ∑
~Q1,...~Qn

∑
~Y1,...~Yn∈YN

e2πiτ
[

1
2(~Q+~σ1)

2− 1
2~σ

2
1+|~Y|

]
−2πi

(
ρ− τ

2+τ ∑n
j=1 Λj

)
Q

n

∏
k=1

Z
~Yk,~Qk
~Yk+1,~Qk+1

(T [k])

(7.1.8)

where~σ1 :=
(

σ
(1)
1 , . . . , σ

(N)
1

)
1 is the vector of monodromy exponents along the A-cycle of the torus,

with modular parameter τ.

Proof. From (7.1.3), we can read off the minor expansion of the tau-function (5.3.37) in terms
of the trinion partition functions in (7.1.7):

T (1,n) = ∑
(~I,~J)

n−1

∏
k=1

ZIk,Jk
Ik+1,Jk+1

(
T [k]

)
× (−1)|I1| det




(
a[n]
)In

Jn

(
b[n]
)In

I1

(
c[n]
)J1

Jn

(
d[n]
)J1

I1


 . (7.1.9)

1Note that here, differently from (5.3.15) where we collected the monodromy exponents σ
(1)
i , . . . , σ

(N)
i into

diagonal matrices denoted by σi, we organize them into vectors~ai, since they are summed with the charges
~Qi, that are vectors in the root lattice ZN of glN .
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Additionally, we can write the last factor in (7.1.9) as follows

det




(
a[n]
)In

Jn

(
b[n]∇

)In

I1

(
∇−1c[n]

)J1

Jn

(
∇−1d[n]∇

)J1

I1




(5.3.43),(5.3.44)
=


 ∏

(r,α)∈J1

e−2πiρe2πiτ
(

1
2+r+σ

(α)
1 −∑n

j=1 Λj

)

det




(
a[n]
)In

Jn

(
b[n]
)In

I1

(
c[n]
)J1

Jn

(
d[n]
)J1

I1




×

 ∏

(s,β)∈I1

e2πiρe2πiτ
(
− 1

2+s−σ
(β)
1 +∑n

j=1 Λj

)



= det




(
a[n]
)In

Jn

(
b[n]
)In

I1

(
c[n]
)J1

Jn

(
d[n]
)J1

I1


 exp



 ∑

(r,α)∈J1

[
−2πi

(
ρ− τ

2
+ τ

n

∑
j=1

Λj

)
+ 2πiτ

(
r + σ

(α)
1

)]




× exp



 ∑

(s,β)∈I1

[
2πi

(
ρ− τ

2
+ τ

n

∑
j=1

Λj

)
+ 2πiτ

(
s− σ

(β)
1

)]




= det




(
a[n]
)In

Jn

(
b[n]
)In

I1

(
c[n]
)J1

Jn

(
d[n]
)J1

I1


 e2πiτ

[
1
2(~Q+~σ1)

2− 1
2~σ

2
1+|~Y|

]
−2πi

(
ρ− τ

2+τ ∑n
j=1 Λj

)
Q. (7.1.10)

In the second line of (7.1.10), we used the fact that if σ1 is the monodromy exponent on C [1]in ,
then the monodromy exponent on Cout is σ1 − ∑n

j=1 Λj Since s ∈ I1, the hole positions in
the corresponding Maya diagram m are h(m) = {−s1, ...,−sk}, and since r ∈ J1, the particle
positions are p(m) = {r1, ..., rl}.
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FIGURE 7.2: Pictorial proof of (7.1.11)

To obtain the last line in (7.1.10), we use the following equalities:

∑
l

rl + ∑
k

sk =
Q(m)2

2
+ |~Y|, #r− #s = Q(m), (7.1.11)

which can be read off from Figure 7.2 noting that the r’s and s’s are to the left and right sides
of the axis respectively. As an example, in the Figure 7.2, p(m) =

{
13
2 , 9

2 , 3
2

}
, h(m) =

{−3
2

}
.

|Y| is the #boxes in the Young diagram which in the present example is 12. The charge
Q(m) = 2. ∑ r is the blue area and ∑ s is the red area in the Figure 7.2. Equations (7.1.9),
(7.1.10) imply (7.1.8).

Although the determinant tau-function T (1,n) in (5.3.37) admits the expansion (7.1.8),
the trinion partition functions (7.1.7) are known explicitly in terms of Nekrasov functions
only in the case where the Lax matrix residues are of rank-1. We denote the determinant
tau-function for a generic Fuchsian system on the torus with rank-1 residues,i.e. residues of
the form µk = (µ1, 0, . . . , 0), and monodromy exponents around C [k]in given by~σk by T̃ (1,n) :=

det
[
I− K̃1,n

]
. Using the expressions for ZYk,Qk

Yk+1,Qk+1
(T [k]) computed in [54, 53] for the rank-1
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case, we obtain2

T̃ (1,n) = ∑
~Q1,...~Qn

∑
~Y1,...~Yn

e−2πiQ
(

ρ− τ
2+τ ∑n

j=1 Λj+
1
2 ∑n

j=1 Λj

)
e2πiτ[ 1

2 (
~Q1+~σ1)

2− 1
2~σ

2
1+|~Yn|]

×
n

∏
j=1

e−2πi(zj−zj−1)
[

1
2 (~σj+~Qj)

2− 1
2~σ

2
j +|~Yj|

]

×
n

∏
k=1

e2πi~Qi·~νi
Zpert

(
~σk +~Qk,~σk+1 +~Qk+1

)

Zpert (~σk,~σk+1)
Zinst

(
~σk +~Qk,~σk+1 +~Qk+1|~Yk,~Yk+1

)

= det
[
I− K̃1,n

]

(7.1.12)

where we set z0 := zn, the Fourier series parameters ~νi were defined in [54, 53] in terms of
the normalization of the three-point solution, and we have used introduced the functions

Zpert (~σ,~µ) :=
N

∏
α,β=1

G
(

1 + σ(α) − µ(β)
)

G
(
1 + σ(α) − σ(β)

) , (7.1.13)

G(x) being the Barnes’ G-function, and

Zinst

(
~σ,~µ|~Y, ~W

)
:=

N

∏
α,β=1

Zbif

(
σ(α) − µ(β)|Y(α), W(fi)

)

Zbif
(
σ(α) − σ(β)|Y(α), Y(β)

) , (7.1.14)

with

Zbif

(
x|Y′, Y

)
:=

N

∏
α,β=1

∏
2∈Y′

(x + 1 + aY′(2) + lY(2)) (x− 1− aY(2)− lY′(2)) . (7.1.15)

In the above equations,~σ,~µ ∈ CN,~Y, ~W ∈ YN, ere, aY(2) and lY(2) denote respectively the
arm and leg length of the box 2 in the Young diagram Y, as in figure 7.3.

Remark 7.1. In (7.1.12), the expression

ZD := e2πiτ~σ2
1 det

[
I− K̃1,n

]
(7.1.16)

is the Nekrasov-Okounkov dual partition function [89] of a circular quiver N = 2, SU(N) gauge
theory. By the AGT correspondence [1], ZD is equal to a conformal block of N free fermions on the
torus, as in [14]. Consequently, we expect ZD in (7.1.16) to satisfy appropriate bilinear equations,
along the lines of [5, 4].

Our next goal is to relate the explicit expression (7.1.12) for the tau-function T̃ (1,n) of a
linear system on the torus with rank-1 residues, to the tau-function TH of an isomonodromic
problem, where the residues are generic and satisfy the constraint (5.3.9). With the obser-
vation that any SL(2) matrix can be reduced to rank-1 by a scalar transformation, we will

2Time-independent term 1
2 ∑n

j=1 Λj comes from the ratios of the asymptotics of U(1) corrections to solutions

of the 3-pt problems, given explicitly by (sin π(z− zk))
Λk .
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s
a(s)

l(s)

FIGURE 7.3: Arm and leg length

do this for the cases of the 2-particle nonautonomous Calogero-Moser system and of the
elliptic Garnier system, which is the restriction to N = 2, Λ(j) = 0, j = 1, . . . , n of the linear
system (5.3.1).

7.1.2 Reduction to rank-1 residues: the case of 2-particle nonautonomous
Calogero-Moser system

With the above considerations in mind, we formulate the tau-function of the equation (5.1.1)
in terms of the dual Nekrasov-Okounkov partition function (7.1.12) for the N = 2∗ gauge
theory3: the Lax matrix LCM in (5.1.6) behaves as follows around the puncture z = 0

LCM(z) =
(

P mx(2Q, z)
mx(−2Q, z) −P

)
=

mσ1

z
+O(1), (7.1.17)

so that it has rank-2 residue. To make it rank-1, we perform the scalar gauge transformation

LCM(z)→ L̃CM := LCM(z)− λCM(z)−1∂zλCM(z)I2, λCM(z) = θ1(z)m, (7.1.18)

after which the Lax matrix and its behavior around the puncture become

L̃CM(z) =


 P−m θ′1(z)

θ1(z)
mx(2Q, z)

mx(−2Q, z) −P−m θ′1(z)
θ1(z)


 =

m
z

( −1 1
1 −1

)
+O(1). (7.1.19)

As a consequence of (7.1.18), the monodromies will be dressed by additional scalar factors
that we denote by gB(z), g1 for the B-cycle and for the monodromy around the puncture
respectively. The absence of a factor gA for the A-cycle, as well as the expression for gB(z),
are determined by the periodicity of theta functions:

λCM(z + τ) = θ1(z + τ)m = e−2πi(z+ τ+1
2 )mλCM(z) := gB(z)λCM(z), (7.1.20)

λCM(z + 1) = θ1(z + 1)m = eiπmλCM(z) := gAλCM(z). (7.1.21)

The z-dependence of the factor gB(z) leads to a nontrivial factor g1 for the monodromy
around z = 0:

g1 = e−2πim. (7.1.22)

3This is the SU(2), N = 2 Super Yang-Mills theory with one massive adjoint hypermultiplet.
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The Hamiltonian tau-function T̃CM associated to the gauge-transformed Lax matrix (7.1.19)
is:

2πi∂τ log T̃CM :=
1
2

∮

A
dztr L̃2

CM. (7.1.23)

Proposition 7.2. The tau-function (5.2.48) of the equation (5.1.1) is related to the tau-function
(7.1.23) of the rank-1 Lax matrix in (7.1.18) as

TCM(τ) = T̃CM(τ)
(

η(τ)e
iπτ

6

)−2m2

, (7.1.24)

where m is the monodromy exponent at the puncture and τ is the isomonodromic time.

Proof. We begin with the equation (7.1.23):

2πi∂τ log T̃CM =
1
2

∮

A
dztr L̃2

CM
(7.1.18)
=

1
2

∮

A
dztr L2

CM +
∮

A
dz
(

λ−1
CM(z)∂zλCM(z)

)2

= 2πi∂τ log TCM + m2
∫ 1

0
dz
(

θ′1(z)
θ1(z)

)2

.
(7.1.25)

A

Cε

0 1

τ

iε

FIGURE 7.4: Contour of integration

To compute the last term in (7.1.25), consider the following integral over the deformed
contour Cε as in Figure 7.4

2πi Res z=τ

(
θ′1(z)
θ1(z)

)3

=
∮

Cε

(
θ′1(z)
θ1(z)

)3

dz

=

[∫ 1+iε

iε
+
∫ 1+iε+τ

1+iε
+
∫ iε+τ

1+iε+τ
+
∫ iε

iε+τ

] (
θ′1(z)
θ1(z)

)3

dz

=
∫ 1+iε

iε

[(
θ′1(z)
θ1(z)

)3

−
(

θ′1(z)
θ1(z)

− 2πi
)3
]

dz

= 6πi
∫ 1+iε

iε
dz
(

θ′1(z)
θ1(z)

)2

− 3(2πi)2
∫ 1+iε

iε

θ′1(z)
θ1(z)

+ (2πi)3

= 6πi
∫ 1+iε

iε
dz
(

θ′1(z)
θ1(z)

)2

+
5
2
(2πi)3.

(7.1.26)

To obtain the last line we use that
∫ 1+iε

iε

θ′1(z)
θ1(z)

dz = [log θ1(z)]
1+iε
iε = −iπ. (7.1.27)
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The residue on the left hand side of (7.1.26) is computed shifting z by τ and expanding
around 0:

Res z=τ

(
θ′1(z)
θ1(z)

)3

= Res z=0

(
θ′1(z + τ)

θ1(z + τ)

)3

, (7.1.28)

and
(

θ′1(z + τ)

θ1(z + τ)

)3

=

(
θ′1(z)
θ1(z)

− 2πi
)3

=
1
z3 −

6πi
z2 +

1
z

(
θ′′′1
θ′1

+ 3(2πi)2
)
+O(1). (7.1.29)

Therefore,

Res z=τ

(
θ′1(z)
θ1(z)

)3

=
θ′′′1
θ1

+ 3(2πi)2. (7.1.30)

Substituting (7.1.30) in (7.1.26), and taking the limit ε→ 0 we get

2πi
m2 ∂τ log

(
T̃CM

TCM

)
(7.1.25)
= lim

ε→0

∫ 1+iε

iε
dz
(

θ′1(z)
θ1(z)

)2

=
1
3

θ′′′1
θ′1

+
1
6
(2πi)2

(5.2.89)
= 2πi∂τ log η(τ)2eiπτ/3.

(7.1.31)

Therefore,
η(τ)−2m2

e−iπτm2/3T̃CM = TCM, (7.1.32)

having set the integration constant to 1 without any loss of generality.

Theorem 7.1. The isomonodromic tau-function TCM admits the following combinatorial expansion:

TCM(τ) =

(
η(τ)e−iπτ/12)2(1−m2)

θ1

(
Q(τ) + ρ− m(τ+1)

2

)
θ1

(
Q(τ)− ρ + m(τ+1)

2

) e−2πi[ρ− τ
2 (m+ 1

2)−m
2 ]

×∑
~Q

∑
~Y∈Y2

e2πiτ[ 1
2 (
~Q+~a)2+|~Y|]e2πi

[
~Q·~ν−Q

(
ρ−m(τ+1)

2 − τ
2

)]

×
Zpert

(
~a +~Q,~a +~Q + m

)

Zpert (~a,~a + m)
Zinst

(
~a +~Q,~a +~Q + m|~Y,~Y

)
Υ̃1,1,

(7.1.33)

where~a = (a,−a), with a the local monodromy exponent around the A-cycle of the torus, m is the
monodromy exponent at the puncture z = 0, ρ is an arbitrary parameter, Q is the solution of the
equations of motion of the 2-particle nonautonomous Calogero-Moser system (5.1.1), ~Q is the vector
of charges (7.1.5), Q is the total U(1) charge (7.1.6), Υ̃1,1 is an integration constant depending on
monodromy data, and Zinst, Zpert are defined in (7.1.14),(7.1.13).

Proof. The linear system (7.1.19) is the specialisation of (5.3.3) to the case n = 1 (with the
puncture at 0), N = 2. The corresponding monodromy exponents~σ1,~σ2, and the U(1) shifts
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Λ0, Λ1 in (5.3.14), and the parameter ρ̃ in (5.3.31), for the present case are

~σ1 =
(

a− m
2

,−a− m
2

)
, ~σ2 =

(
a +

m
2

,−a +
m
2

)
, (7.1.34)

Λ0 =
m
2

, Λ1 = −m, ρ̃ = ρ− m(τ + 1)
2

. (7.1.35)

Theorem 5.2 then implies that the tau-function T̃CM in (7.1.24) can be written as a Fred-
holm determinant of an operator we call K̃1,1 whose minor expansion has an interpretation
through Nekrasov functions as in (7.1.12), of the tau-function in (5.3.51). Therefore,

TCM
(7.1.24)
= η(τ)−2m2

e−iπτm2/3T̃CM

(5.3.51)
= η(τ)−2m2

e−iπτm2/3eiπτtr (σ2
1+

I
6)e−2πiρ̃ η(τ)2

θ1(Q + ρ̃)θ1(Q− ρ̃)
det

[
I− K̃1,1

]
Υ̃1,1,

(7.1.34),(7.1.35)
=

(
η(τ)e−

iπτ
12

)2−2m2

e2πiτa2

θ1(Q + ρ− m(τ+1)
2 )θ1(Q− ρ + m(τ+1)

2 )
e−2πi[ρ− τ

2 (m+ 1
2)−m

2 ] det
[
I− K̃1,1

]
Υ̃1,1

(7.1.12)
=

(
η(τ)e−

iπτ
12

)2−2m2

e−2πi[ρ− τ
2 (m+ 1

2)−m
2 ]

θ1

(
Q + ρ− m(τ+1)

2

)
θ1

(
Q− ρ + m(τ+1)

2

) ∑
~Q

∑
~Y∈Y2

e2πiτ[ 1
2 (
~Q+~a)2+|~Y|]

× e2πi
[
~Q·~ν−Q

(
ρ−m(τ+1)

2 − τ
2

)]Zpert

(
~a +~Q,~a +~Q + m

)

Zpert (~a,~a + m)
Zinst

(
~a +~Q,~a +~Q + m|~Y,~Y

)
Υ̃1,1.

(7.1.36)

Remark 7.2. Equation (7.1.33) coincides with equations (3.48) (4.10) in [15], obtained by CFT
methods. To compare the two expressions, one has to set σ = 0 and send ρ + 1

2 +
τ
2 → −ρ + m(τ+1)

2
in the expressions of [15].

7.1.3 Elliptic Garnier system and Nekrasov functions

For the N × N case, it is in general only possible, with a scalar gauge transformation, to
reduce the rank of the residues to N − 1, which means that the minors can be written in
terms of Nekrasov functions only in the case of semi-degenerate residues, as in [52, 53].4

Therefore, we restrict the Lax matrix in (5.3.3) to N = 2, which can always be reduced to
rank-1 by the scalar gauge transformation

λ(z) =
n

∏
k=1

θ1(z− zk)
mk (7.1.37)

4In the context of class S theories [49, 50] these are called minimal punctures. The AN−1 six-dimensional
theory compactified on a torus with n minimal punctures gives rise to a four-dimensional circular quiver
gauge theory.



128 Chapter 7. Combinatorial representation of tau-functions on a torus

where mk is the local monodromy exponent at the puncture zk. The new Lax matrix is

L̃ := L− λ(z)−1∂zλ(z)I2 = L(z)−
n

∑
k=1

mk
θ′1(z− zk)

θ1(z− zk)
. (7.1.38)

The U(1) factors around the punctures are given by

gk = e−2πimk , (7.1.39)

while gA, gB(z), are induced as before by the periodicity of theta functions:

λ(z + τ) =
n

∏
k=1

θ1(z− zk + τ)mk

= e−2πi ∑n
k=1(z−zk+

τ+1
2 )mk λ(z) := gB(z)λ(z),

(7.1.40)

λ(z + 1) =
n

∏
k=1

θ1(z− zk + 1)mk = eiπmλ(z) := gAλ(z), (7.1.41)

where we defined

m :=
n

∑
j=1

mj. (7.1.42)

Again, we want to find the relation between the isomonodromic tau-function TH of the
SL(2) elliptic Garnier system [76, 112, 79], and the GL(2) tau-function T̃H for the system
with rank-1 residues obtained from the scalar gauge transformation (7.1.37), defined by

2πi∂τ log T̃H =
∮

A
dz

1
2

tr L̃(z)2, ∂zk log T̃H = Res zk

1
2

tr L̃(z)2. (7.1.43)

Proposition 7.3. The tau-function T̃H (7.1.43) of the rank-1 system is related to the tau-function
TH (5.3.2) of the Garnier system (whose Lax matrix is (5.3.3) restricted to N = 2, Λi = 0 for
i = 1, . . . , n) as

TH(τ) = T̃H(τ)
n

∏
k=1

(
η(τ)e

iπτ
12

)−2m2
k ∏

l 6=k

(
θ1(zk − zl)

η(τ)e−
iπτ

3

)−mkml

, (7.1.44)

where mk is the local monodromy exponent at the puncture zk, k = 1, . . . , n, and τ is the modular
parameter of the torus.
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Proof. Under the transformation (7.1.37), the zk-derivative of T̃H is

∂zk log T̃H = Res zk

1
2

tr L̃2 = Res zk

1
2

tr L2 + Res zk

(
λ−1(z)∂zλ(z)

)2

= ∂zk log TH +
n

∑
j=1

Res zk


m2

j

(
θ′1(z− zj)

θ1(z− zj)

)2

+ ∑
l 6=k

mjml
θ′1(z− zj)

θ1(z− zj)

θ′1(z− zl)

θ1(z− zl)




= ∂zk log TH + ∂zk log

[
∏
l 6=k

(θ1(zk − zl))
2mkml

]
. (7.1.45)

In the last line we use that

n

∑
j=1

∑
l 6=k

mjmlRes zk

(
θ′1(z− zk)

θ1(z− zk)

θ′1(z− zl)

θ1(z− zl)

)
= ∂zk log

(
∏
l 6=k

θ1(zk − zl)
2mkml

)
, (7.1.46)

and

Res zk

(
θ′1(z− zk)

θ1(z− zk)

)2

= 0. (7.1.47)

We now turn to the computation of the τ-derivative:

2πi∂τ log T̃H =
∮

A
dz

1
2

tr L̃2 =
∮

A
dz

1
2

tr L2 +
∮

A
dz
(

λ−1(z)∂zλ(z)
)2

= 2πi∂τ log TH +
n

∑
k=1

∫ 1

0
dz

[
m2

k

(
θ′1(z− zk)

θ1(z− zk)

)2

+ ∑
l 6=k

mkml
θ′1(z− zk)

θ1(z− zk)

θ′1(z− zl)

θ1(z− zl)

]
(7.1.48)

Let us consider the A-cycle integral of the first term in equation (7.1.48).

C

0 1

τ

FIGURE 7.5: Contour of integration

The computation goes along the same lines as in the n = 1 case (7.1.26), but in the present
case we do not shift the contour by iε, since the singularity zl is now in the interior of the
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contour C in figure 7.5:

2πi Res z=zl

(
θ′1(z− zl)

θ1(z− zl)

)3

=

[∫ 1

0
+
∫ τ+1

1
+
∫ τ

τ+1
+
∫ 0

τ

] (
θ′1(z− zl)

θ1(z− zl)

)3

dz

= 6πi
∫ 1

0

(
θ′1(z− zl)

θ1(z− zl)

)2

dz− 3(2πi)2
∫ 1

0

θ′1(z− zl)

θ1(z− zl)
dz + (2πi)3

= 6πi
∫ 1

0

(
θ′1(z− zl)

θ1(z− zl)

)2

dz− 1
2
(2πi)3,

(7.1.49)

while

2πi Res z=zl

(
θ′1(z− zl)

θ1(z− zl)

)3

= 2πi
θ′′′1
θ′1

(5.2.89)
= 3(2πi)2∂τ log η(τ)2. (7.1.50)

Equating (7.1.49), (7.1.50), we see that the first term of (7.1.48) simply consists of n copies of
the 1-point computation (7.1.31):

∮

A
dz

n

∑
k=1

m2
k

(
θ′1(z− zk)

θ1(z− zk)

)2

= 2πi∂τ log

[
n

∏
k=1

(
η(τ)e

iπτ
6

)2m2
k

]
. (7.1.51)

We then turn to the computation of the second term of (7.1.48):

Ikl :=
∮

A
dz

θ′1(z− zk)

θ1(z− zk)

θ′1(z− zl)

θ1(z− zl)
. (7.1.52)

To compute Ikl, we consider the following integral over the deformed contour C in figure
7.5:

[∫ 1

0
+
∫ 1+τ

1
+
∫ τ

1+τ
+
∫ 0

τ

]
dz

θ′1(z− zk)

θ1(z− zk)

(
θ′1(z− zl)

θ1(z− zl)

)2

= 2πi ( Res z=zk + Res z=zl)
θ′1(z− zk)

θ1(z− zk)

(
θ′1(z− zl)

θ1(z− zl)

)2

.

= 2πi

[(
θ′1(zk − zl)

θ1(zk − zl)

)2

+
d

dzk

(
θ′1(zk − zl)

θ1(zk − zl)

)]
(5.2.87)
= 2πi

θ′′1 (zk − zl)

θ1(zk − zl)

= (2πi)2∂τ log θ1(zk − zl)
2. (7.1.53)
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The left-hand side of (7.1.53) is

[∫ 1

0
+
∫ 1+τ

1
+
∫ τ

1+τ
+
∫ 0

τ

]
dz

θ′1(z− zk)

θ1(z− zk)

(
θ′1(z− zl)

θ1(z− zl)

)2

=
∫ 1

0
dz

θ′1(z− zk)

θ1(z− zk)

(
θ′1(z− zl)

θ1(z− zl)

)2

−
∫ 1

0
dz
(

θ′1(z− zk)

θ1(z− zk)
− 2πi

)(
θ′1(z− zl)

θ1(z− zl)
− 2πi

)2

= 4πiIkl −
1
2
(2πi)3 + 2πi

∫ 1

0
dz
(

θ′1(z− zl)

θ1(z− zl)

)2

(7.1.51)
= 4πiIkl −

1
2
(2πi)3 + (2πi)2∂τ log

(
η(τ)2e

iπτ
3

)
. (7.1.54)

Equating (7.1.54) and (7.1.53), we find

Ikl = 2πi∂τ log

(
θ1(zk − zl)

η(τ)e−
iπτ

3

)
. (7.1.55)

Therefore, the second term of (7.1.48) reads

n

∑
k=1

∑
l 6=k

mkml

∫ 1

0
dz

θ′1(z− zk)θ
′
1(z− zl)

θ1(z− zk)θ1(z− zl)
= 2πi

n

∑
k=1

∑
l 6=k

mkml∂τ log

(
θ1(zk − zl)

η(τ)e−
iπτ

3

)

= 2πi∂τ log

[
n

∏
k=1

∏
l 6=k

(
θ1(zk − zl)

η(τ)e−
iπτ

3

)mkml
]

. (7.1.56)

Substituting (7.1.51) and (7.1.56) in (7.1.48),

2πi∂τ log T̃H = 2πi∂τ log TH + 2πi∂τ log

[
n

∏
k=1

(
η(τ)e

iπτ
6

)2m2
k ∏

l 6=k

(
θ1(zk − zl)

η(τ)e−
iπτ

3

)mkml
]

.

(7.1.57)

Combining (7.1.45) and (7.1.57) we find

2πi∂τ log T̃H +
n

∑
k=1

∂zk log T̃H = 2πi∂τ log TH +
n

∑
k=1

∂zk log TH

2πi∂τ log

[
n

∏
k=1

(
η(τ)e

iπτ
6

)2m2
k ∏

l 6=k

(
θ1(zk − zl)

η(τ)e
−iπτ

3

)mkml
]

+
n

∑
k=1

∂zk log

[
∏
l 6=k

θ1(zk − zl)
2mkml

]
(7.1.58)

Integrating the above equation on both sides and setting the integration constant to 1, we
obtain

T̃H

TH
=

n

∏
k=1

(
η(τ)e

iπτ
6

)2m2
k ∏

l 6=k

(
θ1(zk − zl)

η(τ)e−
iπτ

3

)mkml

. (7.1.59)
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Remark 7.3. Note that (7.1.44) takes the form of the partition function for a Coulomb gas on a torus,
with the first term encoding the self-interaction of the particles, while the second term encodes the
pairwise interactions.

Using Proposition 7.3, it is possible to write the tau-function of the elliptic Garnier sys-
tem as a Fourier series of Nekrasov partition functions.

Theorem 7.2. The isomonodromic tau-function of the elliptic Garnier system (see (5.3.51) restricted
to N = 2) admits the following combinatorial expression:

TH(τ) = Υ̃1,n
e−2πi(ρ̃− τ

4 )

θ1 (Q− ρ̃) θ1 (Q + ρ̃)

n

∏
k=1

(
η(τ)e

−iπτ
12

)2−2m2
k e−2πizkm2

k ∏
l 6=k

(
θ1(zk − zl)

η(τ)e−
iπτ

6
e−iπ(zk−zl)

)−mkml

× ∑
~Q1,...~Qn

∑
~Y1,...~Yn

e−2πiQ(ρ̃− τ
2 )e2πiτ[ 1

2 (
~Q1+~a1)

2+|~Yn|]
n

∏
j=1

e−2πi(zj−zj−1)[ 1
2 (~aj+~Qj)

2+|~Yj|]

n

∏
k=1

e2πi~Qi·~νi
Zpert

(
~ak +~Qk,~ak+1 + mk +~Qk+1

)

Zpert (~ak,~ak+1 + mk)
Zinst

(
~ak +~Qk,~ak+1 + mk +~Qk+1|~Yk,~Yk+1

)
,

(7.1.60)

where~ak = (ak,−ak), ak being the sl2 local monodromy exponent on the circle C [k]in in figure 5.4, mk
is the sl2 monodromy exponent at the puncture zk, Q ≡ Q(τ; z1, ..., zn) is the Calogero-like variable
in the Lax matrix (5.3.3) specialized to N = 2, τ is the modular parameter,Zinst, Zpert are defined
in (7.1.14),(7.1.13), Υ̃1,n is an integration constant that depends on the monodromy data, (~Y,~Q) are
charged partitions,

ρ̃ = ρ−
n

∑
j=1

Λj

(
zj −

(τ + 1)
2

)
, (7.1.61)

and ρ is an arbitrary parameter.

Proof. The Lax matrix (7.1.38) is the same as (5.3.3) specialised to n-punctures, N = 2. The
monodromy exponents ~σk, the U(1) shifts Λk in (5.3.14), and the parameter ρ̃ defined in
(5.3.31) read as follows for the present case:

Λj = −mj for j = 1...n, Λ0 =
m
2

, (7.1.62)

with m defined in (7.1.42), and

~σk =

(
ak −

k−1

∑
j=0

Λj, −ak −
k−1

∑
j=0

Λj

)
, ρ̃ = ρ−

n

∑
j=1

Λj

(
zj −

(τ + 1)
2

)
. (7.1.63)

Theorem 5.2 then implies that the tau-function T̃H in (7.1.44) can be written in terms of a
Fredholm determinant of an operator we call K̃1,n which in turn can be written in terms of
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Nekrasov functions as in (7.1.12).

TH
(7.1.44)
=




n

∏
k=1

(
η(τ)e

iπτ
6

)−2m2
k ∏

l 6=k

(
θ1(zk − zl)

η(τ)e−
iπτ

3

)−mkml

 T̃H

(5.3.51)
=




n

∏
k=1

(
η(τ)e

iπτ
6

)−2m2
k ∏

l 6=k

(
θ1(zk − zl)

η(τ)e−
iπτ

3

)−mkml

 eiπτtr (σ2

1+
I
6)e−2iπρ̃

× η(τ)2

θ1(Q− ρ̃)θ1(Q + ρ̃)

(
n

∏
k=1

e−iπzk(tr σ2
k+1−tr σ2

k)

)
det

[
I− K̃1,n

]
Υ̃1,n,

(7.1.62),(7.1.63)
=

e2πiτa2
1e−2πi(ρ̃− τ

4 )

θ1(Q− ρ̃)θ1(Q + ρ̃)

n

∏
k=1

(
η(τ)e

−iπτ
12

)2−2m2
k ∏

l 6=k

(
θ1(zk − zl)

η(τ)e−
iπτ

6

)−mkml

×
n

∏
k=1

e−2πizk

(
a2

k+1−a2
k+m2

k+mk ∑k−1
j=1 mj+mk

)
det

[
I− K̃1,n

]
Υ̃1,n

(7.1.12)
=

e−2πi(ρ̃− τ
4 )

θ1(Q− ρ̃)θ1(Q + ρ̃)

n

∏
k=1

(
η(τ)e

−iπτ
12

)2−2m2
k e−2πizkm2

k ∏
l 6=k

(
θ1(zk − zl)

η(τ)e−
iπτ

6
e−iπ(zk−zl)

)−mkml

×
n

∏
k=1

e−2πizk(a2
k+1−a2

k+mk)Υ̃1,n × ∑
~Q1,...~Qn

∑
~Y1,...~Yn

e−2πiQ(ρ̃− τ
2 )

× e2πiτ[ 1
2 (
~Q1+~a1)

2+|~Yn|]
n

∏
j=1

e−2πi(zj−zj−1)
[

1
2 (~aj+~Qj)

2− 1
2~a

2
j +|~Yj|

]

n

∏
k=1

e2πi~Qi·~νi
Zpert

(
~ak +~Qk,~ak+1 + mk +~Qk+1

)

Zpert (~ak,~ak+1 + mk)
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(
~ak +~Qk,~ak+1 + mk +~Qk+1|~Yk,~Yk+1

)
.

(7.1.64)
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