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Abstract

We prove the first bifurcation result of time quasi-periodic traveling wave so-
lutions for space periodic water waves with vorticity. In particular, we prove the
existence of small amplitude time quasi-periodic solutions of the gravity-capillary
water waves equations with constant vorticity, for a bidimensional fluid over a flat
bottom delimited by a space-periodic free interface. These quasi-periodic solutions
exist for all the values of depth, gravity and vorticity, and restrict the surface tension
to a Borel set of asymptotically full Lebesgue measure.
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1. Introduction and Main Result

The search for traveling surface waves in inviscid fluids is a very important
problem in fluid mechanics, widely studied since the pioneering work of Stokes
[38] in 1847. The existence of steady traveling waves, namely solutions which look
stationary in a moving frame, either periodic or localized in space, is nowadays
well understood in many different situations, mainly for bidimensional fluids.

On the other hand, the natural question regarding the existence of time quasi-
periodic traveling waves – which cannot be reduced to steady solutions in a moving
frame – has been not answered so far. This is the goal of the present paper. We con-
sider space periodic waves. Major difficulties in this project concern the presence
of “small divisors” and the quasi-linear nature of the equations. Related difficulties
appear in the search of time periodic standingwaveswhich have been constructed in
the last few years in a series of papers by Iooss, Plotnikov,Toland [22,23,25,34]
for pure gravity waves, by Alazard-Baldi [1] in presence of surface tension and
subsequently extended to time quasi-periodic standing waves solutions by Berti-
Montalto [6] and Baldi-Berti-Haus-Montalto [2]. Standing waves are not
traveling as they are even in the space variable. We also mention that all these
recent results concern irrotational fluids.

In this paper we prove the first existence result of time quasi-periodic travel-
ing wave solutions for the gravity-capillary water waves equations with constant
vorticity for bidimensional fluids. The small amplitude solutions that we construct
exist for any value of the vorticity (so also for irrotational fluids), any value of the
gravity and depth of the fluid, and provided the surface tension is restricted to a
Borel set of asymptotically full measure, see Theorem 1.5. For irrotational fluids
the traveling wave solutions that we construct do not clearly reduce to the standing
wave solutions in [6]. We remark that, in case of non zero vorticity, one cannot
expect the bifurcation of standing waves since they are not allowed by the linear
theory.

Before presenting in detail our main result, we introduce the water waves equa-
tions.

The water waves equations. We consider the Euler equations of hydrodynamics
for a 2-dimensional perfect, incompressible, inviscid fluid with constant vorticity
γ , under the action of gravity and capillary forces at the free surface. The fluid fills
an ocean with depth h > 0 (eventually infinite) and with space periodic boundary
conditions, namely it occupies the region

Dη,h :=
{
(x, y) ∈ T× R : −h � y < η(t, x)

}
, T := Tx := R/(2πZ). (1.1)
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The unknowns of the problem are the divergence free velocity field

(
u(t, x, y)
v(t, x, y)

)
,

which solves the Euler equation and the free surface y = η(t, x) of the time
dependent domain Dη,h. In case of a fluid with constant vorticity

vx − uy = γ,

the velocity field is the sum of the Couette flow

(−γ y
0

)
, which carries all the

vorticity γ of the fluid, and an irrotational field, expressed as the gradient of a
harmonic function �, called the generalized velocity potential.

Denoting by ψ(t, x) the evaluation of the generalized velocity potential at the
free interface ψ(t, x) := �(t, x, η(t, x)), one recovers � by solving the elliptic
problem

�� = 0 in Dη,h, � = ψ at y = η(t, x), �y → 0 as y →−h. (1.2)

The third condition in (1.2) means the impermeability property of the bottom

�y(t, x,−h) = 0 , if h <∞ , lim
y→−∞�y(t, x, y) = 0 , if h = +∞.

Imposing that the fluid particles at the free surface remain on it along the evolution
(kinematic boundary condition), and that the pressure of the fluid plus the capillary
forces at the free surface is equal to the constant atmospheric pressure (dynamic
boundary condition), the time evolution of the fluid is determined by the following
system of equations (see [8,42]):
⎧
⎪⎨

⎪⎩

ηt = G(η)ψ + γ ηηx
ψt=−gη−ψ

2
x

2
+ (ηxψx + G(η)ψ)2

2(1+ η2x )
+ κ

( ηx√
1+ η2x

)

x
+ γ ηψx + γ ∂−1x G(η)ψ.

(1.3)
Here g is the gravity, κ is the surface tension coefficient, whichwe assume to belong
to an interval [κ1, κ2] with κ1 > 0, and G(η) is the Dirichlet-Neumann operator

G(η)ψ := G(η,h)ψ :=
√
1+ η2x (∂�n�)|y=η(x) = (−�xηx +�y)|y=η(x). (1.4)

The water waves equations (1.3) are a Hamiltonian system that we describe in
Section 2.1, and enjoy two important symmetries. First, they are time reversible:
we say that a solution of (1.3) is reversible if

η(−t,−x) = η(t, x), ψ(−t,−x) = −ψ(t, x). (1.5)

Second, since the bottom of the fluid domain is flat, the equations (1.3) are invariant
by space translations. We refer to Section 2.1 for more details.

Let us comment shortly about the phase space of (1.3). As G(η)ψ is a function
with zero average, the quantity

∫
T
η(x) dx is a prime integral of (1.3). Thus, with no

loss of generality, we restrict to interfaces with zero spatial average
∫
T
η(x) dx = 0.

Moreover, sinceG(η)[1] = 0, the vector field on the right hand side of (1.4) depends
only on η and ψ − 1

2π

∫
T
ψ dx . As a consequence, the variables (η, ψ) of system
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(1.3) belong to some Sobolev space Hs
0 (T)× Ḣ s(T) for some s large. Here Hs

0 (T),
s ∈ R, denotes the Sobolev space of functions with zero average

Hs
0 (T) :=

{
u ∈ Hs(T) :

∫

T

u(x)dx = 0
}
,

and Ḣ s(T), s ∈ R, the corresponding homogeneous Sobolev space, namely the
quotient space obtained by identifying all the Hs(T) functions which differ only
by a constant. For simplicity of notation we shall denote the equivalent class [ψ] =
{ψ + c, c ∈ R}, just by ψ .
Linear water waves. When looking to small amplitude solutions of (1.3), a fun-
damental role is played by the system obtained linearizing (1.3) at the equilibrium
(η, ψ) = (0, 0), namely

{
∂tη = G(0)ψ

∂tψ = −(g − κ∂2x )η + γ ∂−1x G(0)ψ.
(1.6)

The Dirichlet-Neumann operator at the flat surface η = 0 is the Fourier multiplier

G(0) := G(0,h) =
{
D tanh(hD) if h <∞
|D| if h = +∞ , where D := 1

i
∂x , (1.7)

with the symbol

G j (0) := G j (0,h) =
{
j tanh(h j) if h <∞
| j | if h = +∞. (1.8)

As we will show in Section 2.2, all reversible solutions (see (1.5)) of (1.6) are
(
η(t, x)
ψ(t, x)

)
=

∑

n∈N

(
Mnρn cos(nx −�n(κ)t)
Pnρn sin(nx −�n(κ)t)

)

+
∑

n∈N

(
Mnρ−n cos(nx +�−n(κ)t)
P−nρ−n sin(nx +�−n(κ)t)

)
,

(1.9)

where ρn � 0 are arbitrary amplitudes and Mn and P±n are the real coefficients

Mj :=
⎛

⎝ G j (0)

κ j2 + g + γ 2

4
G j (0)
j2

⎞

⎠

1
4

, j ∈ Z\{0} , P±n := γ
2

Mn

n
± M−1n , n ∈ N.

(1.10)
Note that the map j �→ Mj is even. The frequencies �±n(κ) in (1.9) are

� j (κ) :=
√

(
κ j2 + g + γ

2

4

G j (0)

j2

)
G j (0)+ γ

2

G j (0)

j
, j ∈ Z\{0}. (1.11)

Note that the map j �→ � j (κ) is not even due to the vorticity term γG j (0)/j ,
which is odd in j . Note that� j (κ) actually depends also on the depth h, the gravity
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g and the vorticity γ , but we highlight in (1.11) only its dependence with respect
to the surface tension coefficient κ , since in this paper we shall move just κ as a
parameter to impose suitable non-resonance conditions; see Theorem 1.5. Other
choices are possible.

All the linear solutions (1.9), depending on the irrationality properties of the
frequencies �±n(κ) and the number of non zero amplitudes ρ±n > 0, are either
time periodic, quasi-periodic or almost-periodic. Note that the functions (1.9) are
the linear superposition of plane waves traveling either to the right or to the left.

Remark 1.1. Actually, (1.9) contains also standing waves, for example when the
vorticity γ = 0 (which implies �−n(κ) = �n(κ), P−n = −Pn) and ρ−n = ρn ,
giving solutions even in x . This is thewell known superposition effect of waveswith
the same amplitude, frequency and wavelength traveling in opposite directions.

Main result. We first provide the notion of quasi-periodic traveling wave.

Definition 1.2. (Quasi-periodic traveling wave) We say that (η(t, x), ψ(t, x)) is a
time quasi-periodic traveling wave with irrational frequency vector ω =
(ω1, . . . , ων) ∈ R

ν , ν ∈ N, that is ω · � �= 0, ∀� ∈ Z
ν\{0}, and “wave vectors”

( j1, . . . , jν) ∈ Z
ν , if there exist functions (η̆, ψ̆) : Tν → R

2 such that
(
η(t, x)
ψ(t, x)

)
=

(
η̆(ω1t − j1x, . . . , ων t − jνx)
ψ̆(ω1t − j1x, . . . , ων t − jνx)

)
. (1.12)

Remark 1.3. If ν = 1, such functions are time periodic and indeed stationary in a
moving frame with speed ω1/j1. On the other hand, if the number of frequencies
ν is � 2, the waves (1.12) cannot be reduced to steady waves by any appropriate
choice of the moving frame.

In this paper we shall construct traveling quasi-periodic solutions of (1.3) with
a diophantine frequency vector ω belonging to an open bounded subset � in R

ν ,
namely, for some υ ∈ (0, 1), τ > ν − 1, with � ⊂ R

ν ,

DC(υ, τ ) :=
{
ω ∈ � : |ω · �| � υ〈�〉−τ , ∀ � ∈ Z

ν\{0}, 〈�〉 := max{1, |�|}
}
.

(1.13)
Regarding regularity, we will prove the existence of quasi-periodic traveling waves
(η̆, ψ̆) belonging to some Sobolev space

Hs(Tν,R2) =
{
f̆ (ϕ) =

∑

�∈Zν
f� e

i�·ϕ, f� ∈ R
2 : ‖ f̆ ‖2s :=

∑

�∈Zν
| f�|2〈�〉2s <∞

}
.

(1.14)
Fixed finitely many arbitrary distinct natural numbers

S
+ := {n1, . . . , nν} ⊂ N , 1 � n1 < . . . < nν , (1.15)

and signs
� := {σ1, . . . , σν}, σa ∈ {−1, 1}, a = 1, . . . , ν , (1.16)
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consider the reversible quasi-periodic traveling wave solutions of the linear system
(1.6) given by

(
η(t, x)
ψ(t, x)

)
=

∑

a∈{1,...,ν : σa=+1}

(
Mna

√
ξna cos(nax −�na (κ)t)

Pna
√
ξna sin(nax −�na (κ)t)

)

+
∑

a∈{1,...,ν : σa=−1}

(
Mna

√
ξ−na cos(nax +�−na (κ)t)

P−na
√
ξ−na sin(nax +�−na (κ)t)

)
,

(1.17)

where ξ±na > 0, a = 1, . . . , ν. The frequency vector of (1.17) is

��(κ) := (�σana (κ))a=1,...,ν ∈ R
ν . (1.18)

Remark 1.4. If σa = +1, we select in (1.17) a right traveling wave, whereas, if
σa = −1, a left traveling one. By (1.15), the linear solutions (1.17) are genuinely
traveling waves: superposition of identical waves traveling in opposite direction,
generating standing waves, does not happen.

The main result of this paper proves that the linear solutions (1.17) can be
continued to quasi-periodic traveling wave solutions of the nonlinear water waves
equations (1.3), formost values of the surface tension κ ∈ [κ1, κ2], with a frequency
vector �̃ := (�̃σana )a=1,...,ν , close to ��(κ) := (�σana (κ))a=1,...,ν . Here is the
precise statement:

Theorem 1.5. (KAM for traveling gravity-capillary water waves with constant vor-
ticity) Consider finitely many tangential sites S+ ⊂ N as in (1.15) and signs �
as in (1.16). Then there exist s > 0, ε0 ∈ (0, 1) such that, for every |ξ | � ε20 ,
ξ := (ξσana )a=1,...,ν ∈ R

ν+, the following hold:

1. there exists a Cantor-like set Gξ ⊂ [κ1, κ2] with asymptotically full measure as
ξ → 0, that is limξ→0 |Gξ | = κ2 − κ1;

2. for any κ ∈ Gξ , the gravity-capillary water waves equations (1.3) have a
reversible quasi-periodic traveling wave solution (according to Definition 1.2)
of the form

(
η(t, x)
ψ(t, x)

)
=

∑

a∈{1,...,ν} : σa=+1

(
Mna

√
ξna cos(nax − �̃na t)

Pna
√
ξna sin(nax − �̃na t)

)

+
∑

a∈{1,...,ν} : σa=−1

(
Mna

√
ξ−na cos(nax + �̃−na t)

P−na
√
ξ−na sin(nax + �̃−na t)

)
+ r(t, x)

(1.19)

where, for some r̆ ∈ Hs(Tν,R2),

r(t, x) = r̆(�̃σ1n1 t − σ1n1x, . . . , �̃σνnν t − σνnνx), lim
ξ→0

‖r̆‖s√|ξ | = 0 ,

with a Diophantine frequency vector �̃ := (�̃σana )a=1,...,ν ∈ R
ν , depending

on κ, ξ , and satisfying limξ→0 �̃ = ��(κ). In addition these quasi-periodic
solutions are linearly stable.
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Let us make some comments.

1) Theorem 1.5 holds for any value of the vorticity γ , so in particular it guarantees
existence of quasi-periodic traveling waves also for irrotational fluids, that is
γ = 0. In this case the solutions (1.19) do not reduce to those in [6], which
are standing, that is even in x . If the vorticity γ �= 0, one does not expect the
existence of standing wave solutions since the water waves vector field (1.3)
does not leave invariant the subspace of functions even in x .

2) Theorem 1.5 produces time quasi-periodic solutions of the Euler equation with

a velocity field which is a small perturbation of the Couette flow

(−γ y
0

)
. In-

deed, from the solution (η(t, x), ψ(t, x)) in (1.19), one recovers the generalized
velocity potential �(t, x, y) by solving the elliptic problem (1.2) and finally

constructs the velocity field

(
u(t, x, y)
v(t, x, y)

)
=

(−γ y
0

)
+ ∇�(t, x, y). The time

quasi-periodic potential �(t, x, y) has size O(
√|ξ |), as η(t, x) and ψ(t, x).

3) In the case ν = 1 the solutions constructed in Theorem 1.5 reduce to steady pe-
riodic traveling waves, which can be obtained by an application of the Crandall-
Rabinowitz theorem, see for example [30,41,43].

4) Theorem 1.5 selects initial data giving raise to global in time solutions (1.19)
of the water waves equations (1.3). So far, no results about global existence
for (1.3) with periodic boundary conditions are known. The available results
concern local well posedness with a general vorticity, see for example [10], and
a ε−2 existence for initial data of size ε in the case of constant vorticity [21].

5) With the choice (1.15)–(1.16) the unperturbed frequency vector ��(κ) =
(�σana (κ))a=1,...,ν is diophantine for most values of the surface tension κ and
for all values of vorticity, gravity and depth. It follows by the more general
results of Sections 4 and 5.2. This may not be true for an arbitrary choice of the
linear frequencies � j (κ), j ∈ Z\{0}. For example, in the case h = +∞, the
vector

��(κ) = (
�−n3(κ),�−n2(κ),�−n1(κ),�n1(κ),�n2(κ),�n3(κ)

)

is resonant, for all the values of κ , also taking into account the restrictions
on the indexes for the search of traveling waves, see Section 3.4. Indeed, re-
calling (1.11) and that, for h = +∞, G j (0,h) = | j |, we have, for � =(− �n3 ,−�n2 ,−�n1 , �n1 , �n2 , �n3

)
that the system

��(κ) · �� = γ (�n1 + �n2 + �n3) = 0 , n1�n1 + n2�n2 + n3�n3 = 0 ,

has integer solutions. In this case the possible existence of quasi-periodic so-
lutions of the water waves system (1.3) depends on the frequency modulation
induced by the nonlinear terms.

6) Comparison with [6]. There are significant differences with respect to [6],
which proves the existence of quasi-periodic standing waves for irrotational
fluids, not only in the result – the solutions of Theorem 1.5 are traveling waves
of fluids with constant vorticity – but also in the techniques.
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(1) The first difference –which is a novelty of this paper– is a new formulation of
degenerate KAM theory exploiting the “momentum conservation”, namely
the space invariance of the Hamilton equations. The degenerate KAM theory
approach for PDEs has been developed in [3], and then [2,6], in order to prove
the non-trivial dependence of the linear frequencies with respect to a param-
eter –in our case the surface tension κ–, see the “Transversality” Proposition
4.5. A key assumption used in [2,3,6] is that the linear frequencies are sim-
ple (because of Dirichlet boundary conditions in [3] and Neumann boundary
conditions in [2,6]). This is not true for traveling waves (for example in case
of zero vorticity one has � j (κ) = �− j (κ) identically in κ). In order to deal
with these resonances we strongly exploit the invariance of the equations
(1.3) under space translations, which ultimately imply the restrictions to the
indexes (4.8)–(4.10). In this way, assuming that the moduli of the tangential
sites are all different as in (1.15), cfr. with item 5), we can remove some other-
wise possibly degenerate case. This requires us to keep track along all of the
proof of the “momentum conservation property” that we characterize in dif-
ferent ways in Section 3.4. Themomentum conservation law has been used in
several KAM results for semilinear PDEs since the works [16,17,28,35]; see
also [15,20,31] and references therein. The present paper gives a new appli-
cation in the context of degenerate KAM theory (with additional difficulties
arising by the quasi-linear nature of the water waves equations).

(2) Other significant differences with respect to [6] arise in the reduction in
orders (Section 7) of the quasi-periodic linear operators obtained along the
Nash–Moser iteration. In particular, we mention that we have to preserve the
Hamiltonian nature of these operators (at least until Section 7.4). Otherwise
it would appear a time dependent operator at the order |D|1/2, of the form
ia(ϕ)H|D| 12 , with a(ϕ) ∈ R independent of x , compatiblewith the reversible

structure, which can not be eliminated. Note that the operator ia(ϕ)H|D| 12
is not Hamiltonian (unless a(ϕ) = 0). Note also that the above difficulty was
not present in [6] dealing with standing waves, because an operator of the

form ia(ϕ)H|D| 12 does not map even functions into even functions. In order
to overcome this difficulty we have to perform always symplectic changes of
variables (at least until Section 7.4), and not just reversible ones as in [2,6].
We finally mention that we perform as a first step in Section 7.1 a quasi-
periodic time reparametrization to avoid otherwise a technical difficulty in
the conjugation of the remainders obtained by the Egorov theorem in Section
7.3. This difficulty was not present in [6], since it arises conjugating the
additional pseudodifferential term due to vorticity, see Remark 7.5.

7) Another novelty of our result is to exploit the momentum conservation also
to prove that the obtained quasi-periodic solutions are indeed quasi-periodic
traveling waves, according to Definition 1.2. This requires checking that the
approximate solutions constructed along the Nash–Moser iteration of Section
9 (and Section 6) are indeed traveling waves. Actually this approach shows
that the preservation of the momentum condition along the Nash–Moser-KAM
iteration is equivalent to the construction of embedded invariant tori which sup-
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port quasi-periodic traveling waves, namely of the form u(ϕ, x) = U (ϕ − �j x)
(see Definition 3.1), or equivalently, in action-angle-normal variables, which
satisfy (3.52). We expect that this method can be used to obtain quasi-periodic
traveling waves for other PDE’s which are translation invariant.

Literature. We now shortly describe the literature regarding the existence of time
periodic or quasi-periodic solutions of the water waves equations, focusing on the
results more related to Theorem 1.5. We describes only results concerning space
periodic waves, that we divide in three distinct groups:

(i) steady traveling solutions,
(i i) time periodic standing waves,
(i i i) time quasi-periodic standing waves.

This distinction takes into account not only the different shapes of the waves, but
also the techniques for their construction.

(i)Time and space periodic travelingwaveswhich are steady in amoving frame.
The literature concerning steady travelingwave solutions is huge, andwe refer to [7]
for an extended presentation. Here we only mention that, after the pioneering work
of Stokes [38], the first rigorous construction of small amplitude space periodic
steady traveling waves goes back to the 1920s with the papers of Nekrasov [33],
Levi-Civita [27] andStruik [39], in case of irrotational bidimensional flows under
the action of pure gravity. Later Zeidler [47] considered the effect of capillarity.
In the presence of vorticity, the first result is due to Gerstner [18] in 1802, who
gave an explicit example of periodic traveling wave, in infinite depth, and with a
particular non-zero vorticity. One has to await the work of Dubreil-Jacotin [14]
in 1934 for the first existence results of small amplitude, periodic traveling waves
with general (Hölder continuous, small) vorticity, and, later, the works of Goyon
[19] and Zeidler [48] in the case of large vorticity. More recently we point out
the works ofWahlén [41] for capillary-gravity waves and non-constant vorticity,
and ofMartin [30] andWalhén [42] for constant vorticity. All these results deal
with 2d water waves and can ultimately be deduced by the Crandall-Rabinowitz
bifurcation theorem from a simple eigenvalue.

We also mention that these local bifurcation results can be extended to global
branches of steady traveling waves by applying the methods of global bifurcation
theory. We refer to Keady-Norbury [29], Toland [40], McLeod [32] for irrota-
tional flows and Constantin-Strauss [9] for fluids with non-constant vorticity.

In the case of three dimensional irrotational fluids, bifurcation of small ampli-
tude traveling waves periodic in space has been proved in Reeder-Shinbrot [36],
Craig-Nicholls [11,12] for both gravity-capillary waves (by variational bifurca-
tion arguments a laWeinstein-Moser) and by Iooss-Plotnikov [23,24] for gravity
waves (this is a small divisor problem). These solutions, in a moving frame, look
steady bi-periodic waves.

(i i) Time periodic standing waves. Bifurcation of time periodic standing water
waves were obtained in a series of pioneering papers by Iooss, Plotnikov and
Toland [22,23,25,34] for pure gravity waves, and by Alazard-Baldi [1] for
gravity-capillary fluids. Standing waves are even in the space variable and so they
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do not travel in space. There is a huge difference with the results of the first group:
the construction of time periodic standing waves involves small divisors. Thus the
proof is based on Nash–Moser implicit function techniques and not only on the
classical implicit function theorem.

(i i i) Time quasi-periodic standing waves. The first results in this direction were
obtained very recently by Berti-Montalto [6] for the gravity-capillary system
and byBaldi-Berti-Haus-Montalto [2] for the gravitywaterwaves. Both papers
deal with irrotational fluids.

We finally mention the very recent numerical works ofWilkening-Zhao [44,
45] about spatially quasi-periodic gravity-capillary 1d-water waves. In particular,
the analysis in [45] is complementary to Theorem 1.5; the solutions (1.19) are
time-quasi-periodic traveling waves on a spatially periodic domain, whereas [45]
concerns pure traveling waves with multiple spatial periods.

2. Hamiltonian Structure and Linearization at the Origin

In this section we describe the Hamiltonian structure of the water waves equa-
tions (1.3), their symmetries and the solutions of the linearized system (1.6) at the
equilibrium.

2.1. Hamiltonian Structure

The Hamiltonian formulation of the water waves equations (1.3) with non-
zero constant vorticity was obtained by Constantin-Ivanov-Prodanov [8] and
Wahlén [42] in the case of finite depth. For irrotational flows it reduces to the
classical Craig-Sulem-Zakharov formulation in [13,46].

On the phase space H1
0 (T)× Ḣ1(T), endowed with the non canonical Poisson

tensor

JM (γ ) :=
(

0 Id
−Id γ ∂−1x

)
, (2.1)

we consider the Hamiltonian

H(η, ψ) = 1

2

∫

T

(
ψG(η)ψ + gη2

)
dx + κ

∫

T

√
1+ η2x dx + γ

2

∫

T

(
−ψxη

2 + γ
3
η3

)
dx .

(2.2)
Such Hamiltonian is well defined on H1

0 (T) × Ḣ1(T) since G(η)[1] = 0 and∫
T
G(η)ψ dx = 0.
It turns out [8,42] that equations (1.3) are the Hamiltonian system generated

by H(η, ψ) with respect to the Poisson tensor JM (γ ), namely

∂t

(
η

ψ

)
= JM (γ )

(∇ηH
∇ψH

)
, (2.3)

where (∇ηH,∇ψH) ∈ L̇2(T)× L2
0(T) denote the L2-gradients.
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Remark 2.1. The non canonical Poisson tensor JM (γ ) in (2.1) has to be regarded
as an operator from (subspaces of) (L2

0 × L̇2)∗ = L̇2 × L2
0 to L2

0 × L̇2, that is

JM (γ ) =
(

0 IdL2
0→L2

0−Id L̇2→L̇2 γ ∂−1x

)
.

The operator ∂−1x maps a dense subspace of L2
0 in L̇2. For sake of simplicity,

throughout the paper we may omit this detail. Above the dual space (L2
0 × L̇2)∗

with respect to the scalar product in L2 is identified with L̇2 × L2
0.

The Hamiltonian (2.2) enjoys several symmetries which we now describe.

Reversible structure. Defining on the phase space H1
0 (T)× Ḣ1(T) the involution

S
(
η

ψ

)
:=

(
η∨
−ψ∨

)
, η∨(x) := η(−x) , (2.4)

the Hamiltonian (2.2) is invariant under S; that is

H ◦ S = H ,

or, equivalently, the water waves vector field X defined in the right hand side on
(1.3) satisfies

X ◦ S = −S ◦ X. (2.5)

This property follows, noting that the Dirichlet-Neumann operator satisfies

G(η∨)[ψ∨] = (G(η)[ψ])∨ . (2.6)

Translation invariance. Since the bottom of the fluid domain (1.1) is flat (or in case
of infinite depth there is no bottom), the water waves equations (1.3) are invariant
under space translations. Specifically, defining the translation operator

τς : u(x) �→ u(x + ς) , ς ∈ R , (2.7)

the Hamiltonian (2.2) satisfies H ◦ τς = H for any ς ∈ R, or, equivalently, the
water waves vector field X defined in the right hand side on (1.3) satisfies

X ◦ τς = τς ◦ X, ∀ς ∈ R. (2.8)

In order to verify this property, note that the Dirichlet-Neumann operator satisfies

τς ◦ G(η) = G(τςη) ◦ τς , ∀ς ∈ R. (2.9)
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Wahlén coordinates. The variables (η, ψ) are notDarboux coordinates, in the sense
that thePoisson tensor (2.1) is not the canonical one for values of the vorticityγ �= 0.
Wahlén [42] noted that in the variables (η, ζ ), where ζ is defined by

ζ := ψ − γ
2
∂−1x η , (2.10)

the symplectic form induced by JM (γ ) becomes the canonical one. Indeed, under
the linear transformation of the phase space H1

0 × Ḣ1 into itself defined by
(
η

ψ

)
= W

(
η

ζ

)
, W :=

(
Id 0

γ
2 ∂
−1
x Id

)
, W−1 :=

(
Id 0

− γ2 ∂−1x Id

)
, (2.11)

the Poisson tensor JM (γ ) is transformed into the canonical one,

W−1 JM (γ )(W−1)∗ = J, J :=
(

0 Id
−Id 0

)
. (2.12)

Here W ∗ and (W−1)∗ are the adjoints maps from (a dense subspace of) L̇2 × L2
0

into itself, and the Poisson tensor J acts from (subspaces of) L̇2 × L2
0 to L2

0 × L̇2.
Then the Hamiltonian (2.2) becomes

H := H ◦W , that is H(η, ζ ) := H
(
η, ζ + γ

2
∂−1x η

)
, (2.13)

and the Hamiltonian equations (2.3) (that is (1.3)) are transformed into

∂t

(
η

ζ

)
= XH(η, ζ ), XH(η, ζ ) := J

(∇ηH
∇ζH

)
(η, ζ ) . (2.14)

By (2.12), the symplectic form of (2.14) is the standard one,

W
((
η1
ζ1

)
,

(
η2
ζ2

))
=

(
J−1

(
η1
ζ1

)
,

(
η2
ζ2

))

L2
= (−ζ1, η2)L2 + (η1, ζ2)L2 ,

(2.15)

where J−1 is the symplectic operator

J−1 =
(
0 −Id
Id 0

)
(2.16)

regarded as a map from L2
0 × L̇2 into L̇2 × L2

0. Note that J J
−1 = IdL2

0×L̇2 and

J−1 J = IdL̇2×L2
0
. The Hamiltonian vector field XH(η, ζ ) in (2.14) is characterized

by the identity

dH(η, ζ )[̂u] =W(
XH(η, ζ ), û

)
, ∀û :=

(
η̂

ζ̂

)
.

The transformation W defined in (2.11) is reversibility preserving, namely it com-
mutes with the involution S in (2.4) (see Definition 3.17 below), and thus also
the Hamiltonian H in (2.13) is invariant under the involution S, as well as H in
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(2.2). For this reason we look for solutions (η(t, x), ζ(t, x)) of (2.14) which are
reversible, that is see (1.5),

(
η

ζ

)
(−t) = S

(
η

ζ

)
(t). (2.17)

The corresponding solutions (η(t, x), ψ(t, x)) of (1.3) induced by (2.11) are re-
versible as well.

We finally note that the transformation W defined in (2.11) commutes with the
translation operator τς , therefore the HamiltonianH in (2.13) is invariant under τς ,
as well as H in (2.2). By Noether theorem, the horizontal momentum

∫
T
ζηx dx is

a prime integral of (2.14).

2.2. Linearization at the Equilibrium

In this section we study the linear system (1.6) and prove that its reversible
solutions have the form (1.9).

In view of the Hamiltonian (2.2) of the water waves equations (1.3), also the
linear system (1.6) is Hamiltonian and it is generated by the quadratic Hamiltonian

HL(η, ψ) := 1

2

∫

T

(
ψG(0)ψ + gη2 + κη2x

)
dx = 1

2

(
�L

(
η

ψ

)
,

(
η

ψ

))

L2
.

Thus, recalling (2.3), the linear system (1.6) is

∂t

(
η

ψ

)
= JM (γ )�L

(
η

ψ

)
, �L :=

(−κ∂2x + g 0
0 G(0)

)
. (2.18)

The linear operator �L acts from (a dense subspace) of L2
0 × L̇2 to L̇2 × L2

0. In
the Wahlén coordinates (2.11), the linear Hamiltonian system (1.6), that is (2.18),
transforms into the linear Hamiltonian system

∂t

(
η

ζ

)
= J�W

(
η

ζ

)
,

�W := W ∗�LW =
(−κ∂2x + g − ( γ

2

)2
∂−1x G(0)∂−1x − γ2 ∂−1x G(0)

γ
2G(0)∂

−1
x G(0)

) (2.19)

generated by the quadratic Hamiltonian

HL(η, ζ ) := (HL ◦W )(η, ζ ) = 1

2

(
�W

(
η

ζ

)
,

(
η

ζ

))

L2
. (2.20)

The linear operator �W acts from (a dense subspace) of L2
0 × L̇2 to L̇2 × L2

0. The
linear system (2.19) is the Hamiltonian system obtained by linearizing (2.14) at the
equilibrium (η, ζ ) = (0, 0). We want to transform (2.19) in diagonal form by using
a symmetrizer and then introducing complex coordinates. We first conjugate (2.19)
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under the symplectic transformation (with respect to the standard symplectic form
W in (2.15)) of the phase space

(
η

ζ

)
=M

(
u
v

)
,

where M is the diagonal matrix of self-adjoint Fourier multipliers

M :=
(
M(D) 0
0 M(D)−1

)
, M(D) :=

(
G(0)

κD2 + g − γ 2

4 ∂
−1
x G(0)∂−1x

)1/4

,

(2.21)
with the real valued symbol Mj defined in (1.10). The map M is reversibility
preserving.

Remark 2.2. In (2.21) the Fourier multiplier M(D) acts in H1
0 . On the other hand,

with a slight abuse of notation, M(D)−1 denotes the Fourier multiplier operator in
Ḣ1 defined as

M(D)−1[ζ ] := [∑

j �=0
M−1j ζ j e

i j x], ζ(x) =
∑

j∈Z
ζ j e

i j x .

where [ζ ] is the element in Ḣ1 with representant ζ(x).

By a direct computation, the Hamiltonian system (2.19) assumes the symmetric
form

∂t

(
u
v

)
= J�S

(
u
v

)
, �S :=M∗�WM=

(
ω(κ, D) −γ2 ∂−1x G(0)
γ
2G(0)∂

−1
x ω(κ, D)

)
, (2.22)

where

ω(κ, D) :=
√

κD2 G(0)+ g G(0)−
(γ
2
∂−1x G(0)

)2
. (2.23)

Remark 2.3. To be precise, the Fourier multiplier operator ω(κ, D) in the top left
position in (2.22) maps H1

0 into Ḣ1 and the one in the bottom right position maps
Ḣ1 into H1

0 . The operator ∂
−1
x G(0) acts on Ḣ1 and G(0)∂−1x on H1

0 .

Now we introduce complex coordinates by the transformation
(
u
v

)
= C

(
z
z

)
, C := 1√

2

(
Id Id
−i i

)
, C−1 := 1√

2

(
Id i
Id −i

)
. (2.24)

In these variables, the Hamiltonian system (2.22) becomes the diagonal system

∂t

(
z
z

)
=

(−i 0
0 i

)
�D

(
z
z

)
, �D := C∗�SC =

(
�(κ, D) 0

0 �(κ, D)

)
, (2.25)

where
�(κ, D) := ω(κ, D)+ i

γ

2
∂−1x G(0) (2.26)
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is the Fouriermultiplierwith symbol� j (κ) defined in (1.11) and�(κ, D) is defined
by

�(κ, D)z := �(κ, D)z, �(κ, D) = ω(κ, D)− i
γ

2
∂−1x G(0).

Note that �(κ, D) is the Fourier multiplier with symbol {�− j (κ)} j∈Z\{0}.
Remark 2.4. We regard the system (2.25) in Ḣ1 × Ḣ1.

The diagonal system (2.25) amounts to the scalar equation

∂t z = −i�(κ, D)z, z(x) =
∑

j∈Z\{0}
z j e

i j x , (2.27)

and,writing (2.27) in the exponential Fourier basis, to the infinitelymany decoupled
harmonic oscillators

ż j = −i� j (κ)z j , j ∈ Z\{0}. (2.28)

Note that, in these complex coordinates, the involution S defined in (2.4) reads as
the map (

z(x)
z(x)

)
�→

(
z(−x)
z(−x)

)
, (2.29)

which we may read just as the scalar map z(x) �→ z(−x). Moreover, in the Fourier
coordinates introduced in (2.27), it amounts to

z j �→ z j , ∀ j ∈ Z\{0}. (2.30)

In view of (2.28) and (2.30) every reversible solution (which is characterized as in
(2.17)) of (2.27) has the form

z(t, x) := 1√
2

∑

j∈Z\{0}
ρ j e

−i (� j (κ)t− j x) with ρ j ∈ R. (2.31)

Let us see the form of these solutions back in the original variables (η, ψ). First,
by (2.21), (2.24),

(
η

ζ

)
=MC

(
z
z

)
= 1√

2

(
M(D) M(D)

−iM(D)−1 iM(D)−1
)(

z
z

)

= 1√
2

(
M(D)(z + z)

−iM(D)−1(z − z)

)
,

(2.32)

and the solutions (2.31) assume the form
(
η(t, x)
ζ(t, x)

)
=

∑

n∈N

(
Mnρn cos(nx −�n(κ)t)
M−1n ρn sin(nx −�n(κ)t)

)

+
∑

n∈N

(
Mnρ−n cos(nx +�−n(κ)t)
−M−1n ρ−n sin(nx +�−n(κ)t)

)
.

Back to the variables (η, ψ) with the change of coordinates (2.11) one obtains
formula (1.9).



114 M. Berti, L. Franzoi & A. Maspero

Decomposition of the phase space inLagrangian subspaces invariant under (2.19).
We express the Fourier coefficients z j ∈ C in (2.27) as

z j = α j + iβ j√
2

, (α j , β j ) ∈ R
2, j ∈ Z\{0}.

In the new coordinates (α j , β j ) j∈Z\{0}, we write (2.32) as (recall that Mj = M− j )

(
η(x)
ζ(x)

)
=

∑

j∈Z\{0}

(
Mj (α j cos( j x)− β j sin( j x))
M−1j (β j cos( j x)+ α j sin( j x))

)
(2.33)

with

α j = 1

2π

(
M−1j (η, cos( j x))L2 + Mj (ζ, sin( j x))L2

)
,

β j = 1

2π

(
Mj (ζ, cos( j x))L2 − M−1j (η, sin( j x))L2

)
.

(2.34)

The symplectic form (2.15) then becomes

2π
∑

j∈Z\{0}
dα j ∧ dβ j .

Each 2-dimensional subspace in the sum (2.33), spanned by (α j , β j ) ∈ R
2 is

therefore a symplectic subspace. The quadratic HamiltonianHL in (2.20) reads as

2π
∑

j∈Z\{0}

� j (κ)

2
(α2j + β2j ). (2.35)

In view of (2.33), the involution S defined in (2.4) reads as

(α j , β j ) �→ (α j ,−β j ) , ∀ j ∈ Z\{0}, (2.36)

and the translation operator τς defined in (2.7) as

(
α j

β j

)
�→

(
cos( jς) − sin( jς)
sin( jς) cos( jς)

)(
α j

β j

)
, ∀ j ∈ Z\{0}. (2.37)

We may also enumerate the independent variables (α j , β j ) j∈Z\{0} as
(
α−n, β−n,

αn, βn
)
, n ∈ N. Thus the phase space H := L2

0 × L̇2 of (2.14) decomposes as the
direct sum

H =
∑

n∈N
Vn,+ ⊕ Vn,−

of 2-dimensional Lagrangian symplectic subspaces

Vn,+ :=
{(
η

ζ

)
=

(
Mn(αn cos(nx)− βn sin(nx))
M−1n (βn cos(nx)+ αn sin(nx))

)
, (αn, βn) ∈ R

2
}
, (2.38)
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Vn,− :=
{(
η

ζ

)
=

(
Mn(α−n cos(nx)+ β−n sin(nx))
M−1n (β−n cos(nx)− α−n sin(nx))

)
, (α−n, β−n) ∈ R

2
}
,

(2.39)

which are invariant for the linear Hamiltonian system (2.19), namely J�W :
Vn,σ �→ Vn,σ (for a proof see for example remark 2.10). The symplectic pro-
jectors �Vn,σ , σ ∈ {±}, on the symplectic subspaces Vn,σ are explicitly provided
by (2.33) and (2.34) with j = nσ .

Note that the involution S defined in (2.4) and the translation operator τς in
(2.7) leave the subspaces Vn,σ , σ ∈ {±}, invariant.

2.3. Tangential and Normal Subspaces of the Phase Space

We decompose the phase space H of (2.14) into a direct sum of tangential
and normal Lagrangian subspaces Hᵀ

S+,� and H∠
S+,� . Note that the main part of

the solutions (1.19) that we shall obtain in Theorem 1.5 is the component in the
tangential subspace Hᵀ

S+,� , whereas the component in the normal subspace H∠
S+,�

is much smaller.
Recalling the definition of the sets S

+ and � defined in (1.15) respectively
(1.16), we split

H = H
ᵀ
S+,� ⊕ H∠

S+,� (2.40)

where Hᵀ
S+,� is the finite dimensional tangential subspace

H
ᵀ
S+,� :=

ν∑

a=1
Vna ,σa (2.41)

and H∠
S+,� is the normal subspace defined as its symplectic orthogonal

H∠
S+,� :=

ν∑

a=1
Vna ,−σa ⊕

∑

n∈N\S+

(
Vn,+ ⊕ Vn,−

)
. (2.42)

Both the subspaces Hᵀ
S+,� and H∠

S+,� are Lagrangian. We denote by �ᵀ
S+,� and

�∠
S+,� the symplectic projections on the subspacesHᵀ

S+,� andH∠
S+,� , respectively.

SinceHᵀ
S+,� andH∠

S+,� are symplectic orthogonal, the symplectic formW in (2.15)

decomposes, for any v1, v2 ∈ H
ᵀ
S+,� and w1, w2 ∈ H∠

S+,� , as

W(v1 + w1, v2 + w2) =W(v1, v2)+W(w1, w2).

The symplectic projections �ᵀ
S+,� and �∠

S+,� satisfy

Lemma 2.5. We have that

�
ᵀ
S+,� J = J

(
�

ᵀ
S+,�

)∗
,

(
�

ᵀ
S+,�

)∗
J−1 = J−1�ᵀ

S+,� (2.43)

�∠
S+,� J = J

(
�∠

S+,�
)∗
,

(
�∠

S+,�
)∗

J−1 = J−1�∠
S+,�. (2.44)
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Proof. Since the subspaces Hᵀ := H
ᵀ
S+,� and H∠ := H∠

S+,� are symplectic or-
thogonal, we have, recalling (2.15), that

(J−1v,w)L2 = (J−1w, v)L2 = 0, ∀v ∈ Hᵀ , ∀w ∈ H∠.

Thus, using the projectors �ᵀ := �ᵀ
S+,� , �

∠ := �∠
S+,� , we have that

(J−1�ᵀv,�∠w)L2 = (J−1�∠w,�ᵀv)L2 = 0, ∀v,w ∈ H ,

and, taking adjoints, ((�∠)∗ J−1�ᵀv,w)L2 = ((�ᵀ)∗ J−1�∠w, v)L2 = 0 for any
v,w ∈ H, so that

(�∠)∗ J−1�ᵀ = 0 = (�ᵀ)∗ J−1�∠. (2.45)

Now inserting the identity �∠ = Id −�ᵀ in (2.45), we get

J−1�ᵀ = (�ᵀ)∗ J−1�ᵀ = (�ᵀ)∗ J−1

proving the second identity of (2.43). The first identity of (2.43) follows applying
J to the left and to the right of the second identity. The identity (2.44) follows in
the same way. ��

Note that the restricted symplectic form W|H∠
S+,�

is represented by the sym-

plectic structure

J−1∠ : H∠
S+,� → H∠

S+,� , J−1∠ := �L2

∠ J−1|H∠
S+,�

, (2.46)

where �L2

∠ is the L2-projector on the subspace H∠
S+,� . Indeed

W|H∠
S+,�

(w, ŵ) = (J−1∠ w, ŵ)L2 = (J−1w, ŵ)L2 , ∀w, ŵ ∈ H∠
S+,�.

We also denote the associated (restricted) Poisson tensor

J∠ : H∠
S+,� → H∠

S+,�, J∠ := �∠
S+,� J|H∠

S+,�
. (2.47)

In the next lemma we prove that J−1∠ and J∠ are each other inverses.

Lemma 2.6. J−1∠ J∠ = J∠ J−1∠ = IdH∠
S+,�

.

Proof. Let v ∈ H∠
S+,� . By (2.46) and (2.47), for any h ∈ H∠

S+,� one has

(J−1∠ J∠ v, h)L2 = (J−1�∠
S+,� Jv,�L2

∠ h)L2 = −(�∠
S+,� Jv, J−1h)L2

= −(Jv, (�∠
S+,�)

∗ J−1h)L2
(2.44)= −(Jv, J−1�∠

S+,�h)L2 = (v, h)L2 .

The proof that J∠ J−1∠ = IdH∠
S+,�

is similar. ��

Lemma 2.7. �∠
S+,� J�

L2

∠ = �∠
S+,� J .

Proof. For any u, h ∈ H we have, using Lemma 2.5,

(�∠
S+,� J�

L2

∠ u, h)L2 = −(�L2

∠ u, J (�∠
S+,�)

∗h)L2 = −(�L2

∠ u,�∠
S+,� Jh)L2

= −(u,�∠
S+,� Jh)L2 = (J (�∠

S+,�)
∗u, h)L2 = (�∠

S+,� Ju, h)L2 ,

implying the lemma. ��
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Action-angle coordinates. Finally we introduce action-angle coordinates on the
tangential subspace H

ᵀ
S+,� defined in (2.41). Given the sets S

+ and � defined
respectively in (1.15) and (1.16), we define the set

S := {j1, . . . , j ν} ⊂ Z \{0}, ja := σana, a = 1, . . . , ν , (2.48)

and the action-angle coordinates (θ j , I j ) j∈S, by the relations, for any j ∈ S,

α j =
√

1

π
(I j + ξ j ) cos(θ j ) , β j = −

√
1

π
(I j + ξ j ) sin(θ j ), ξ j > 0 , |I j | < ξ j .

(2.49)
In view of (2.40)–(2.42), we represent any function of the phase space H as

A(θ, I, w) := vᵀ(θ, I )+ w,

:= 1√
π

∑

j∈S

[(
Mj

√
I j + ξ j cos(θ j )

−M−1j
√
I j + ξ j sin(θ j )

)
cos( j x)+

(
Mj

√
I j + ξ j sin(θ j )

M−1j
√
I j + ξ j cos(θ j )

)
sin( j x)

]
+ w

= 1√
π

∑

j∈S

[(
Mj

√
I j + ξ j cos(θ j − j x)

−M−1j
√
I j + ξ j sin(θ j − j x)

)]
+ w (2.50)

where θ := (θ j ) j∈S ∈ T
ν , I := (I j ) j∈S ∈ R

ν and w ∈ H∠
S+,� .

Remark 2.8. In these coordinates the solutions (1.17) of the linear system (1.6)
simply read as Wvᵀ( ��(κ)t, 0), where ��(κ) := (� j (κ)) j∈S is given in (1.18).

In view of (2.50), the involution S in (2.4) reads as

�S : (θ, I, w) �→ (−θ, I,Sw) , (2.51)

the translation operator τς in (2.7) reads as

�τς : (θ, I, w) �→ (θ − �jς, I, τςw), ∀ς ∈ R , (2.52)

where
�j := ( j) j∈S = (j1, . . . , j ν) ∈ Z

ν\{0}, (2.53)

and the symplectic 2-form (2.15) becomes

W =
∑

j∈S
(dθ j ∧ dI j ) ⊕ W|H∠

S+,�
. (2.54)

We also note that W is exact, namely

W = d�, where �(θ,I,w)[θ̂ , Î , ŵ] := −
∑

j∈S
I j θ̂ j + 1

2

(
J−1∠ w, ŵ

)

L2
(2.55)

is the associated Liouville 1-form (the operator J−1∠ is defined in (2.46)).
Finally, given a Hamiltonian K : Tν×Rν×H∠

S+,� → R, the associated Hamil-
tonian vector field (with respect to the symplectic form (2.54)) is

XK :=
(
∂I K ,−∂θK , J∠∇wK

) = (
∂I K ,−∂θK ,�∠

S+,� J∇wK
)
, (2.56)
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where ∇wK denotes the L2 gradient of K with respect to w ∈ H∠
S+,� . Indeed, the

only nontrivial component of the vector field XK is the last one, which we denote
by [XK ]w ∈ H∠

S+,� . It fulfills

(J−1∠ [XK ]w, ŵ)L2 = dwK [ŵ] = (∇wK , ŵ)L2 , ∀ ŵ ∈ H∠
S+,� , (2.57)

and (2.56) follows by Lemma 2.6.We remark that along the paper we only consider
Hamiltonians such that the L2-gradient ∇wK defined by (2.57), as well as the
Hamiltonian vector field �∠

S+,� J∇wK , maps spaces of Sobolev functions into
Sobolev functions (not just distributions), with possible loss of derivatives.

Tangential and normal subspaces in complex variables. Each 2-dimensional sym-
plectic subspace Vn,σ , n ∈ N, σ = ±1, defined in (2.39)–(2.39) is isomorphic,
through the linear map MC defined in (2.32), to the complex subspace

H j :=
{(

z j ei j x

z j e−i j x
)
, z j ∈ C

}
with j = nσ ∈ Z.

Denoting by� j the L2-projection onH j , we have that�Vn,σ =MC� j (MC)−1.
Thus MC is an isomorphism between the tangential subspace H

ᵀ
S+,� defined in

(2.41) and

HS :=
{(

z
z

)
: z(x) =

∑

j∈S
z j e

i j x
}

and between the normal subspace H∠
S+,� defined in (2.42) and

H⊥
S0
:=

{(
z
z

)
: z(x) =

∑

j∈Sc0
z j e

i j x ∈ L2
}
, S

c
0 := Z\(S ∪ {0}). (2.58)

Denoting by�ᵀ
S
,�⊥

S0
, the L2-orthogonal projections on the subspacesHS andH⊥S0 ,

we have that

�
ᵀ
S+,� =MC�ᵀ

S
(MC)−1, �∠

S+,� =MC�⊥
S0
(MC)−1. (2.59)

The following lemma, used inSection5, is an easy corollary of the previous analysis.

Lemma 2.9. Wehave that (vᵀ,�Ww)L2 = 0, for any vᵀ ∈ H
ᵀ
S+,� andw ∈ H∠

S+,� .

Proof. Write vᵀ = MCzᵀ and MCz⊥ with zᵀ ∈ HS and z⊥ ∈ H⊥
S0
. Then, by

(2.22) and (2.25),
(
vᵀ,�Ww

)
L2 =

(
MCzᵀ,�WMCz⊥

)

L2
=

(
zᵀ,�Dz

⊥)

L2
= 0 ,

since �D preserves the subspace H⊥
S0
. ��

Remark 2.10. The same proof of Lemma 2.9 actually shows that (vn,−σ ,
�W vn,σ )L2 = 0 for any vn,±σ ∈ Vn,±σ , for any n ∈ N, σ = ±1. Thus W(vn,−σ ,
J�W vn,σ ) = (vn,−σ , J−1 J�W vn,σ )L2 = 0 which shows that J�W maps Vn,σ in
itself.

Notation. The notation a �s b means that a � C(s)b for some positive constant
C(s). We denote N := {1, 2, . . .} and N0 := {0} ∪ N.
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3. Functional Setting

Along the paper we consider functions u(ϕ, x) ∈ L2
(
T
ν+1,C

)
depending on

the space variable x ∈ T = Tx and the angles ϕ ∈ T
ν = T

ν
ϕ (so that Tν+1 =

T
ν
ϕ × Tx ) which we expand in Fourier series as

u(ϕ, x) =
∑

j∈Z
u j (ϕ)e

i j x =
∑

�∈Zν , j∈Z
u�, j e

i(�·ϕ+ j x). (3.1)

We also consider real valued functions u(ϕ, x) ∈ R, as well as vector valued
functions u(ϕ, x) ∈ C

2 (or u(ϕ, x) ∈ R
2). When no confusion appears, we denote

simply by L2, L2(Tν+1), L2
x := L2(Tx ), L2

ϕ := L2(Tν) either the spaces of
real/complex valued, scalar/vector valued, L2-functions.

In this paper a crucial role is played by the following subspace of functions of
(ϕ, x).

Definition 3.1. (Quasi-periodic traveling waves) Let �j := (j1, . . . , j ν) ∈ Z
ν be

the vector defined in (2.53). A function u(ϕ, x) is called a quasi-periodic traveling
wave if it has the form u(ϕ, x) = U (ϕ − �j x) where U : Tν → C

K , K ∈ N, is a
(2π)ν-periodic function.

Comparing with Definition 1.2, we find convenient to call quasi-periodic trav-
eling wave both the function u(ϕ, x) = U (ϕ − �j x) and the function of time
u(ωt, x) = U (ωt − �j x).

Quasi-periodic traveling waves are characterized by the relation

u(ϕ − �jς, ·) = τςu ∀ς ∈ R, (3.2)

where τς is the translation operator in (2.7). Product and composition of quasi-
periodic traveling waves is a quasi-periodic traveling wave. Expanded in Fourier
series as in (3.1), a quasi-periodic traveling wave has the form

u(ϕ, x) =
∑

�∈Zν , j∈Z, j+�j ·�=0
u�, j e

i(�·ϕ+ j x), (3.3)

namely, comparing with Definition 3.1,

u(ϕ, x) = U (ϕ − �j x), U (ψ) =
∑

�∈Zν
U�e

i�·ψ, U� = u�,−�j ·�. (3.4)

The traveling waves u(ϕ, x) = U (ϕ − �j x) where U (·) belongs to the Sobolev
space Hs(Tν,CK ) in (1.14) (with values in C

K , K ∈ N), form a subspace of the
Sobolev space

Hs(Tν+1) =
{
u =

∑

(�, j)∈Zν+1
u�, j e

i(�·ϕ+ j x) : ‖u‖2s :=
∑

(�, j)∈Zν+1
|u�, j |2〈�, j〉2s <∞

}

(3.5)
where 〈�, j〉 := max{1, |�|, | j |}. Note the equivalence of the norms (use (3.4))

‖u‖Hs (Tνϕ×Tx ) �s ‖U‖Hs (Tν ).
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For s � s0 :=
[
ν+1
2

]+ 1 ∈ N one has Hs(Tν+1) ⊂ C(Tν+1), and Hs(Tν+1) is an
algebra. Along the paper we denote by ‖ ‖s both the Sobolev norms in (1.14) and
(3.5).

For K � 1 we define the smoothing operator �K on the traveling waves

�K : u =
∑

�∈Zν , j∈Sc0, j+�j ·�=0
u�, j e

i(�·ϕ+ j x) �→ �K u =
∑

〈�〉�K , j∈Sc0, j+�j ·�=0
u�, j e

i(�·ϕ+ j x),

(3.6)
and �⊥K := Id −�K . Note that, writing a traveling wave as in (3.4), the projector
�K in (3.6) is equal to

(�K u)(ϕ, x) = UK (ϕ − �j x), UK (ψ) :=
∑

�∈Zν , 〈�〉�K

U�e
i�·ψ.

Whitney-Sobolev functions. Along the paper we consider families of Sobolev
functions λ �→ u(λ) ∈ Hs(Tν+1) and λ �→ U (λ) ∈ Hs(Tν) which are k0-times
differentiable in the sense of Whitney with respect to the parameter λ := (ω, κ) ∈
F ⊂ R

ν × [κ1, κ2] where F ⊂ R
ν+1 is a closed set. The case that we encounter

is when ω belongs to the closed set of Diophantine vectors DC(υ, τ ) defined in
(1.13). We refer to Definition 2.1 in [2], for the definition of a Whitney-Sobolev
function u : F → Hs where Hs may be either the Hilbert space Hs(Tν × T)

or Hs(Tν). Here we mention that, given υ ∈ (0, 1), we can identify a Whitney-
Sobolev function u : F → Hs with k0 derivatives with the equivalence class of
functions f ∈ Wk0,∞,υ(Rν+1, Hs)/ ∼ with respect to the equivalence relation
f ∼ g when ∂ jλ f (λ) = ∂ jλg(λ) for all λ ∈ F , | j | � k0 − 1, with equivalence of
the norms

‖u‖k0,υs,F ∼ν,k0 ‖u‖Wk0,∞,υ (Rν+1,Hs ) :=
∑

|α|�k0

υ |α|‖∂αλ u‖L∞(Rν+1,Hs ).

The key result is the Whitney extension theorem, which associates to a Whitney-
Sobolev function u : F → Hs with k0-derivatives a function ũ : Rν+1 → Hs ,
ũ in Wk0,∞(Rν+1, Hs) (independently of the target Sobolev space Hs) with an
equivalent norm. For sake of simplicity in the notation we often denote ‖ ‖k0,υs,F =
‖ ‖k0,υs .

Thanks to this equivalence, all the tame estimateswhich hold for Sobolev spaces
carry over for Whitney-Sobolev functions. For example the following classical
tame estimate for the product holds: (see for example Lemma 2.4 in [2]): for all
s � s0 > (ν + 1)/2,

‖uv‖k0,υs � C(s, k0)‖u‖k0,υs ‖v‖k0,υs0 + C(s0, k0)‖u‖k0,υs0 ‖v‖k0,υs . (3.7)

Moreover the following estimates hold for the smoothing operators defined in (3.6):
for any traveling wave u

‖�K u‖k0,υs � K α‖u‖k0,υs−α , 0 � α � s ,

‖�⊥K u‖k0,υs � K−α‖u‖k0,υs+α , α � 0.
(3.8)
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We also state a standard Moser tame estimate for the nonlinear composition oper-
ator, see for example Lemma 2.6 in [2],

u(ϕ, x) �→ f(u)(ϕ, x) := f (ϕ, x, u(ϕ, x)) .

Since the variables (ϕ, x) =: y have the same role, we state it for a generic Sobolev
space Hs(Td).

Lemma 3.2. (Composition operator) Let f ∈ C∞(Td × R,R). If u(λ) ∈ Hs(Td)

is a family of Sobolev functions satisfying ‖u‖k0,υs0 � 1, then, for all s � s0 :=
(d + 1)/2,

‖f(u)‖k0,υs � C(s, k0, f )
(
1+ ‖u‖k0,υs

)
.

If f (ϕ, x, 0) = 0 then ‖f(u)‖k0,υs � C(s, k0, f )‖u‖k0,υs .

Diophantine equation. If ω is a Diophantine vector in DC(υ, τ ), see (1.13), then
the equation ω · ∂ϕv = u, where u(ϕ, x) has zero average with respect to ϕ, has the
periodic solution

(ω · ∂ϕ)−1u :=
∑

�∈Zν\{0}, j∈Z

u�, j
iω · �e

i(�·ϕ+ j x) .

For all ω ∈ R
ν , we define its extension

(ω · ∂ϕ)−1extu(ϕ, x) :=
∑

(�, j)∈Zν+1

χ(ω · �υ−1〈�〉τ )
iω · � u�, j e

i(�·ϕ+ j x) , (3.9)

where χ ∈ C∞(R,R) is an even positive C∞ cut-off function such that

χ(ξ) =
{
0 if |ξ | � 1

3

1 if |ξ | � 2
3

, ∂ξχ(ξ) > 0 ∀ ξ ∈ ( 13 , 23 ). (3.10)

Note that (ω · ∂ϕ)−1extu = (ω · ∂ϕ)−1u for all ω ∈ DC(υ, τ ). Moreover, if u(ϕ, x) is
a quasi-periodic traveling wave with zero average with respect to ϕ, then, by (3.3),
we see that (ω · ∂ϕ)−1extu(ϕ, x) is a quasi-periodic traveling wave. It holds that

‖(ω · ∂ϕ)−1extu‖k0,υs,Rν+1 � C(k0)υ
−1‖u‖k0,υ

s+μ,Rν+1 , μ := k0 + τ(k0 + 1) , (3.11)

and, for F ⊆ DC(υ, τ )× R+, one has ‖(ω · ∂ϕ)−1u‖k0,υs,F � C(k0)υ−1‖u‖k0,υs+μ,F .
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Linear operators. Along the paper we consider ϕ-dependent families of linear
operators A : Tν �→ L(L2(Tx )), ϕ �→ A(ϕ), acting on subspaces of L2(Tx ), either
real or complex valued. We also regard A as an operator (which for simplicity we
denote by A as well) that acts on functions u(ϕ, x) of space and time; that is

(Au)(ϕ, x) := (A(ϕ)u(ϕ, · )) (x). (3.12)

The action of an operator A as in (3.12) on a scalar function u(ϕ, x) ∈ L2 expanded
as in (3.1) is

Au(ϕ, x) =
∑

j, j ′∈Z
A j ′
j (ϕ)u j ′(ϕ)e

i j x

=
∑

j, j ′∈Z

∑

�,�′∈Zν
A j ′
j (�− �′)u�′, j ′ei(�·ϕ+ j x).

(3.13)

We identify an operator Awith itsmatrix
(
A j ′
j (�−�′)

)
j, j ′∈Z,�,�′∈Zν , which is Töplitz

with respect to the index �. In this paper we always consider Töplitz operators as
in (3.12), (3.13).

Real operators. A linear operator A is real if A = A, where A is defined by
A(u) := A(u). Equivalently A is real if it maps real valued functions into real
valued functions. We represent a real operator acting on (η, ζ ) belonging to (a
subspace of) L2(Tx ,R

2) by a matrix

R =
(
A B
C D

)
, (3.14)

where A, B,C, D are real operators acting on the scalar valued components η, ζ ∈
L2(Tx ,R).

The change of coordinates (2.24) transforms the real operatorR into a complex
one acting on the variables (z, z), given by the matrix

R := C−1RC =
(R1 R2

R2 R1

)
,

R1 := 1

2
{(A + D)− i(B − C)} , R2 := 1

2
{(A − D)+ i(B + C)} . (3.15)

A matrix operator acting on the complex variables (z, z) of the form (3.15), we
call it real. We shall also consider real operators R of the form (3.15) acting on
subspaces of L2.

Lie expansion. Let X (ϕ) be a linear operator with associated flow �τ (ϕ) defined
by

{
∂τ�

τ (ϕ) = X (ϕ)�τ (ϕ)

�0(ϕ) = Id,
τ ∈ [0, 1].

Let �(ϕ) := �τ (ϕ)|τ=1 denote the time-1 flow. Given a linear operator A(ϕ), the
conjugated operator

A+(ϕ) := �(ϕ)−1A(ϕ)�(ϕ)



Traveling Quasi-periodic Water Waves with Constant Vorticity 123

admits the Lie expansion; that is for any M ∈ N0,

A+(ϕ) =
M∑

m=0

(−1)m
m! admX (ϕ)(A(ϕ))+ RM (ϕ) ,

RM (ϕ) = (−1)
M+1

M !
∫ 1

0
(1− τ)M (�τ (ϕ))−1adM+1X (ϕ) (A(ϕ))�

τ (ϕ) dτ ,

(3.16)

where adX (ϕ)(A(ϕ)) := [X (ϕ), A(ϕ)] = X (ϕ)A(ϕ) − A(ϕ)X (ϕ) and ad0X (ϕ) :=
Id.

In particular, for A = ω · ∂ϕ , since [X (ϕ), ω · ∂ϕ] = −(ω · ∂ϕX)(ϕ), we obtain

�(ϕ)−1 ◦ ω · ∂ϕ ◦�(ϕ) = ω · ∂ϕ +
M∑

m=1

(−1)m+1
m! adm−1X (ϕ)(ω · ∂ϕX (ϕ))

+ (−1)
M

M !
∫ 1

0
(1− τ)M (�τ (ϕ))−1adMX (ϕ)(ω · ∂ϕX (ϕ))�τ (ϕ) dτ.

(3.17)

For matrices of operators X(ϕ) and A(ϕ) as in (3.15), the same formula (3.16)
holds.

3.1. Pseudodifferential Calculus

In this section we report fundamental notions of pseudodifferential calculus,
following [6].

Definition 3.3. ( DO) A pseudodifferential symbol a(x, j) of order m is the re-
striction toR×Z of a function a(x, ξ)which is C∞-smooth onR×R, 2π -periodic
in x , and satisfies

|∂αx ∂βξ a(x, ξ)| � Cα,β〈ξ 〉m−β, ∀α, β ∈ N0.

We denote by Sm the class of symbols of order m and S−∞ := ∩m�0S
m . To a

symbol a(x, ξ) in Sm we associate its quantization acting on a 2π -periodic function
u(x) =∑

j∈Z u j ei j x as

[Op(a)u](x) :=
∑

j∈Z
a(x, j)u j e

i j x .

We denote by OPSm the set of pseudodifferential operators of orderm and OPS−∞
:=⋂

m∈R OPSm . For a matrix of pseudodifferential operators

A =
(
A1 A2
A3 A4

)
, Ai ∈ OPSm, i = 1, . . . , 4, (3.18)

we say that A ∈ OPSm .
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When the symbol a(x) is independent of ξ , the operator Op(a) is the multipli-
cation operator by the function a(x), that is Op(a) : u(x) �→ a(x)u(x). In such a
case we also denote Op(a) = a(x).

We shall use the following notation, used also in [1,2,6]. For any m ∈ R\{0},
we set

|D|m := Op
(
χ(ξ)|ξ |m)

,

where χ is an even, positive C∞ cut-off satisfying (3.10). We also identify the
Hilbert transform H, acting on the 2π -periodic functions, defined by

H(ei j x ) := −i sign ( j)ei j x ∀ j �= 0 , H(1) := 0 , (3.19)

with the Fourier multiplier Op(−i sign (ξ)χ(ξ)). Similarly we regard the operator

∂−1x

[
ei j x

]
:= − i j−1 ei j x ∀ j �= 0 , ∂−1x [1] := 0 , (3.20)

as the Fourier multiplier ∂−1x = Op
(−iχ(ξ)ξ−1) and the projector π0, defined on

the 2π -periodic functions as

π0u := 1

2π

∫

T

u(x) dx , (3.21)

with the Fourier multiplier Op
(
1− χ(ξ)). Finally we define, for any m ∈ R\{0},

〈D〉m := π0 + |D|m := Op
(
(1− χ(ξ))+ χ(ξ)|ξ |m)

.

Along the paper we consider families of pseudodifferential operators with a symbol
a(λ;ϕ, x, ξ) which is k0-times differentiable with respect to a parameter λ :=
(ω, κ) in an open subset �0 ⊂ R

ν × [κ1, κ2]. Note that ∂kλ A = Op
(
∂kλa

)
for any

k ∈ N
ν+1
0 .

We recall the pseudodifferential norm introduced in Definition 2.11 in [6].

Definition 3.4. (Weighted  DO norm) Let A(λ) := a(λ;ϕ, x, D) ∈ OPSm be a
family of pseudodifferential operators with symbol a(λ;ϕ, x, ξ) ∈ Sm , m ∈ R,
which are k0-times differentiable with respect to λ ∈ �0 ⊂ R

ν+1. For υ ∈ (0, 1),
α ∈ N0, s � 0, we define

‖A‖k0,υm,s,α :=
∑

|k|�k0

υ |k| sup
λ∈�0

∥∥∥∂kλ A(λ)
∥∥∥
m,s,α

,

where ‖A(λ)‖m,s,α := max0�β�α supξ∈R ‖∂βξ a(λ, ·, ·, ξ)‖s 〈ξ 〉−m+β . For a ma-

trix of pseudodifferential operators A ∈ OPSm as in (3.18), we define ‖A‖k0,υm,s,α :=
maxi=1,...,4 ‖Ai‖k0,υm,s,α .

Given a function a(λ;ϕ, x) ∈ C∞ which is k0-times differentiable with respect
to λ, the weighted norm of the corresponding multiplication operator is

‖Op(a)‖k0,υ0,s,α = ‖a‖k0,υs , ∀α ∈ N0. (3.22)
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Composition of pseudodifferential operators. If Op(a), Op(b) are pseudodiffer-
ential operators with symbols a ∈ Sm , b ∈ Sm

′
, m,m′ ∈ R, then the composi-

tion operator Op(a)Op(b) is a pseudodifferential operator Op(a#b) with symbol
a#b ∈ Sm+m′ . It admits the asymptotic expansion: for any N � 1

(a#b)(λ;ϕ, x, ξ) =
N−1∑

β=0

1

iββ!∂
β
ξ a(λ;ϕ, x, ξ)∂βx b(λ;ϕ, x, ξ)

+ (rN (a, b))(λ;ϕ, x, ξ),
(3.23)

where rN (a, b) ∈ Sm+m′−N . The following result is proved in Lemma 2.13 in [6]:

Lemma 3.5. (Composition) Let A = a(λ;ϕ, x, D), B = b(λ;ϕ, x, D) be pseu-
dodifferential operators with symbols a(λ;ϕ, x, ξ) ∈ Sm, b(λ;ϕ, x, ξ) ∈ Sm

′
,

m,m′ ∈ R. Then A ◦ B ∈ OPSm+m′ satisfies, for any α ∈ N0, s � s0,

‖AB‖k0,υm+m′,s,α �m,α,k0 C(s) ‖A‖k0,υm,s,α ‖B‖k0,υm′,s0+|m|+α,α
+ C(s0) ‖A‖k0,υm,s0,α ‖B‖k0,υm′,s+|m|+α,α . (3.24)

Moreover, for any integer N � 1, the remainder RN := Op(rN ) in (3.23) satisfies

‖Op(rN (a, b))‖k0,υm+m′−N ,s,α �m,N ,α,k0 C(s) ‖A‖k0,υm,s,N+α ‖B‖k0,υm′,s0+|m|+2N+α,N+α
+ C(s0) ‖A‖k0,υm,s0,N+α ‖B‖

k0,υ
m′,s+|m|+2N+α,N+α .

(3.25)

Both (3.24)–(3.25) hold with the constant C(s0) interchanged with C(s).
Analogous estimates hold if A and B are matrix operators of the form (3.18).

The commutator between two pseudodifferential operators Op(a) ∈ OPSm

and Op(b) ∈ OPSm
′
is a pseudodifferential operator in OPSm+m′−1 with symbol

a ! b ∈ Sm+m′−1, namely
[
Op(a),Op(b)

] = Op (a ! b), that admits, by (3.23), the
expansion

a ! b = −i {a, b} + r̃2(a, b) , r̃2(a, b) := r2(a, b)− r2(b, a) ∈ Sm+m′−2 ,
where {a, b} := ∂ξa∂xb − ∂xa∂ξb,

(3.26)
is the Poisson bracket between a(x, ξ) and b(x, ξ). As a corollary of Lemma 3.5
we have

Lemma 3.6. (Commutator) Let A = Op(a) and B = Op(b) be pseudodifferential
operators with symbols a(λ;ϕ, x, ξ) ∈ Sm, b(λ;ϕ, x, ξ) ∈ Sm

′
, m,m′ ∈ R. Then

the commutator [A, B] := AB − BA ∈ OPSm+m′−1 satisfies

‖[A, B]‖k0,υm+m′−1,s,α �m,m′,α,k0 C(s) ‖A‖k0,υm,s+|m′|+α+2,α+1 ‖B‖k0,υm′,s0+|m|+α+2,α+1
+ C(s0) ‖A‖k0,υm,s0+|m′|+α+2,α+1 ‖B‖

k0,υ
m′,s+|m|+α+2,α+1 .

(3.27)
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Finally we consider the exponential of a pseudodifferential operator of order 0.
The following lemma follows as in Lemma 2.12 of [5] (or Lemma 2.17 in [6]).

Lemma 3.7. (Exponential map) If A := Op(a(λ;ϕ, x, ξ)) is in OPS0, then eA is
in OPS0 and for any s � s0, α ∈ N0, there is a constant C(s, α) > 0 so that

‖eA − Id‖k0,υ0,s,α � ‖A‖k0,υ0,s+α,α exp
(
C(s, α)‖A‖k0,υ0,s0+α,α

)
.

The same holds for a matrix A of the form (3.18) in OPS0.

Egorov Theorem. Consider the family of ϕ-dependent diffeomorphisms of Tx de-
fined by

y = x + β(ϕ, x) ⇐⇒ x = y + β̆(ϕ, y), (3.28)

where β(ϕ, x) is a small smooth function, and the induced operators

(Bu)(ϕ, x) := u(ϕ, x + β(ϕ, x)), (B−1u)(ϕ, y) := u(ϕ, y + β̆(ϕ, y)). (3.29)

Lemma 3.8. (Composition) Let ‖β‖k0,υ2s0+k0+2 � δ(s0, k0) small enough. Then the
composition operator B satisfies the tame estimates, for any s � s0,

‖Bu‖k0,υs �s,k0 ‖u‖k0,υs+k0 + ‖β‖k0,υs ‖u‖k0,υs0+k0+1,

and the function β̆ defined in (3.28) by the inverse diffeomorphism satisfies
‖β̆‖k0,υs �s,k0 ‖β‖k0,υs+k0 .

The following result is a small variation of Proposition 2.28 of [5]:

Proposition 3.9. (Egorov)Let N ∈ N,q0 ∈ N0, S > s0 andassume that ∂kλβ(λ; ·, ·)
areC∞ for all |k| � k0. There exist constantsσN , σN (q0) > 0, δ = δ(S, N ,q0, k0) ∈
(0, 1) such that, if ‖β‖k0,υs0+σN (q0) � δ, then the conjugated operator B−1 ◦ ∂mx ◦ B,
m ∈ Z, is a pseudodifferential operator of order m with an expansion of the form

B−1 ◦ ∂mx ◦ B =
N∑

i=0
pm−i (λ;ϕ, y)∂m−iy +RN (ϕ),

with the following properties:

1. The principal symbol of pm is

pm(λ;ϕ, y) =
(
[1+ βx (λ;ϕ, x)]m

)
|x=y+β̆(λ;ϕ,y)

where β̆(λ;ϕ, y) has been introduced in (3.28). For any s � s0 and i =
1, . . . , N,

‖pm − 1‖k0,υs , ‖pm−i‖k0,υs �s,N ‖β‖k0,υs+σN . (3.30)

2. For anyq ∈ N
ν
0 with |q| � q0, n1, n2 ∈ N0 with n1+n2+q0 � N+1−k0−m,

the operator 〈D〉n1∂qϕRN (ϕ)〈D〉n2 isDk0 -tame with a tame constant satisfying,
for any s0 � s � S,

M〈D〉n1∂qϕRN (ϕ)〈D〉n2 (s) �S,N ,q0 ‖β‖k0,υs+σN (q0). (3.31)
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3. Let s0 < s1 and assume that ‖β j‖s1+σN (q0) � δ, j = 1, 2. Then ‖�12 pm−i‖s1
�s1,N ‖�12β‖s1+σN , i = 0, . . . , N, and, for any |q| � q0, n1, n2 ∈ N0 with
n1 + n2 + q0 � N − m,

‖〈D〉n1∂qϕ�12RN (ϕ)〈D〉n2‖B(Hs1 ) �s1,N ,n1,n2 ‖�12β‖s1+σN (q0).
Finally, if β(ϕ, x) is a quasi-periodic traveling wave, then B is momentum
preserving (we refer to Definition 3.24 and Lemma 3.30), as well as the con-
jugated operator B−1 ◦ ∂mx ◦ B, and each function pm−i , i = 0, . . . , N, is a
quasi-periodic traveling wave.

Dirichlet-Neumann operator. We finally remind the following decomposition of
the Dirichlet-Neumann operator proved in [6], in the case of infinite depth, and in
[2], for finite depth.

Lemma 3.10. (Dirichlet-Neumann) Assume that ∂kλη(λ, ·, ·) is C∞(Tν × Tx ) for

all |k| � k0. There exists δ(s0, k0) > 0 such that, if ‖η‖k0,υ2s0+2k0+1 � δ(s0, k0), then
the Dirichlet-Neumann operator G(η) = G(η,h) may be written as

G(η,h) = G(0,h)+RG(η) (3.32)

where RG(η) := RG(η,h) ∈ OPS−∞ satisfies, for all m, s, α ∈ N0, the estimate

‖RG(η)‖k0,υ−m,s,α � C(s,m, α, k0)‖η‖k0,υs+s0+2k0+m+α+3. (3.33)

3.2. Dk0 -Tame and Modulo-Tame Operators

We present the notion of tame and modulo tame operators introduced in [6]. Let
A := A(λ) be a linear operator as in (3.12), k0-times differentiable with respect to
the parameter λ in the open set �0 ⊂ R

ν+1.

Definition 3.11. (Dk0 -σ -tame) Let σ � 0. A linear operator A := A(λ) is Dk0 -σ -
tame if there exists a non-decreasing function [s0, S] → [0,+∞), s �→ MA(s),
with possibly S = +∞, such that, for all s0 � s � S and u ∈ Hs+σ ,

sup
|k|�k0

sup
λ∈�0

υ |k|
∥∥∥(∂kλ A(λ))u

∥∥∥
s

� MA(s0) ‖u‖s+σ +MA(s) ‖u‖s0+σ . (3.34)

We say that MA(s) is a tame constant of the operator A. The constant MA(s) =
MA(k0, σ, s) may also depend on k0, σ but we shall often omit to write them.
When the "loss of derivatives" σ is zero, we simply writeDk0 -tame instead ofDk0 -
0-tame. For a matrix operator as in (3.15), we denote the tame constantMR(s) :=
max

{
MR1(s),MR2(s)

}
.

Note that the tame constants MA(s) are not uniquely determined. An imme-
diate consequence of (3.34) is that ‖A‖L(Hs0+σ ,Hs0) � 2MA(s0). Also note that,
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representing the operator A by its matrix elements (A j ′
j (�− �′))�,�′∈Zν , j, j ′∈Z as in

(3.13), we have for all |k| � k0, j ′ ∈ Z, �′ ∈ Z
ν ,

υ2|k|
∑

�, j

〈�, j〉2s ∣∣∂kλ A j ′
j (�−�′)

∣∣2 � 2
(
MA(s0)

)2〈�′, j ′〉2(s+σ)+2(MA(s))
2〈�′, j ′〉2(s0+σ).

(3.35)
The class of Dk0 -σ -tame operators is closed under composition.

Lemma 3.12. (Composition, Lemma 2.20 in [6]) Let A, B be respectively Dk0 -
σA-tame andDk0 -σB-tame operators with tame constants respectivelyMA(s) and
MB(s). Then the composed operator A ◦ B is Dk0 -(σA + σB)-tame with tame
constant

MAB(s) � C(k0) (MA(s)MB(s0 + σA)+MA(s0)MB(s + σA)) .
It is proved in Lemma 2.22 in [6] that the action of aDk0 -σ -tame operator A(λ)

on a Sobolev function u = u(λ) ∈ Hs+σ is bounded by

‖Au‖k0,υs �k0 MA(s0)‖u‖k0,υs+σ +MA(s)‖u‖k0,υs0+σ . (3.36)

Pseudodifferential operators are tame operators. We use, in particular, the fol-
lowing lemma:

Lemma 3.13. (Lemma 2.21 in [6]) Let A = a(λ;ϕ, x, D) ∈ OPS0 be a family
of pseudodifferential operators satisfying ‖A‖k0,υ0,s,0 < ∞ for s � s0. Then A is

Dk0 -tame with a tame constant MA(s) satisfying, for any s � s0,

MA(s) � C(s)‖A‖k0,υ0,s,0 . (3.37)

The same statement holds for a matrix operator R as in (3.15).

In view of the KAM reducibility scheme of Section 8 we also consider the
stronger notion ofDk0 -modulo-tame operator, that we need only for operators with
loss of derivative σ = 0. We first recall the notion of majorant operator: given
a linear operator A acting as in (3.13), we define the majorant operator |A| by its

matrix elements (|A j ′
j (�− �′)|)�,�′∈Zν , j, j ′∈Z.

Definition 3.14. (Dk0 -modulo-tame) A linear operator A = A(λ) is Dk0 -modulo-
tame if there exists a non-decreasing function [s0, S] → [0,+∞], s �→ M

#
A(s),

such that for all k ∈ N
ν+1
0 , |k| � k0, the majorant operator

∣∣∂kλ A
∣∣ satisfies, for all

s0 � s � S and u ∈ Hs ,

sup
|k|�k0

sup
λ∈�0

υ |k|
∥∥∥
∣∣∣∂kλ A

∣∣∣ u
∥∥∥
s

� M
#
A(s0) ‖u‖s +M

#
A(s) ‖u‖s0 . (3.38)

The constant M#
A(s) is called a modulo-tame constant for the operator A. For a

matrix of operators as in (3.15), we denote the modulo-tame constant M#
R(s) :=

max{M#

R1
(s),M#

R2
(s)}.
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If A, B are Dk0 -modulo-tame operators with |A j ′
j (�)| � |B j ′

j (�)|, then M
#
A(s) �

M
#
B(s). A Dk0 -modulo-tame operator is also Dk0 -tame and MA(s) � M

#
A(s).

In view of the next lemma, given a linear operator A acting as in (3.13), we

define the operator 〈∂ϕ〉bA, b ∈ R, whose matrix elements are 〈�−�′〉bA j ′
j (�−�′).

Lemma 3.15. (Sumandcomposition,Lemma2.25 in [6])Let A, B, 〈∂ϕ〉bA, 〈∂ϕ〉bB
beDk0 -modulo-tame operators. Then A+B, A◦B and 〈∂ϕ〉b(AB) areDk0 -modulo-
tame with

M
#
A+B(s) � M

#
A(s)+M

#
B(s)

M
#
AB(s) � C(k0)

(
M
#
A(s)M

#
B(s0)+M

#
A(s0)M

#
B(s)

)

M
#

〈∂ϕ〉b(AB)(s) � C(b)C(k0)
(
M
#

〈∂ϕ〉bA(s)M
#
B(s0)+M

#

〈∂ϕ〉bA(s0)M
#
B(s)

+M
#
A(s)M

#

〈∂ϕ〉bB(s0)+M
#
A(s0)M

#

〈∂ϕ〉bB(s)
)
.

The same statement holds for matrix operators A, B as in (3.15).

By Lemma 3.15 we deduce the following result, cfr. Lemma 2.20 in [5].

Lemma 3.16. (Exponential) Let A and 〈∂ϕ〉bA be Dk0 -modulo-tame and assume

thatM#
A(s0) � 1. Then the operators e±A−Id and 〈∂ϕ〉be±A−Id areDk0 -modulo-

tame with modulo-tame constants satisfying

M
#

e±A−Id(s) �k0 M
#
A(s) , M

#

〈∂ϕ〉be±A−Id(s) �k0,b M
#

〈∂ϕ〉bA(s)+M
#
A(s)M

#

〈∂ϕ 〉bA(s0).

Given a linear operator A acting as in (3.13), we define the smoothed operator
�N A, N ∈ N whose matrix elements are

(�N A) j
′
j (�− �′) :=

{
A j ′
j (�− �′) if 〈�− �′〉 � N

0 otherwise.
(3.39)

We also denote �⊥N := Id −�N . It is proved in Lemma 2.27 in [6] that

M
#

�⊥N A
(s) � N−bM#

〈∂ϕ〉bA(s) , M
#

�⊥N A
(s) � M

#
A(s). (3.40)

The same estimate holds with a matrix operator R as in (3.15).

3.3. Hamiltonian and Reversible Operators

In this paper we shall exploit both the Hamiltonian and reversible structure
along the reduction of the linearized operators, that we now present.

Hamiltonian operators.Amatrix operatorR as in (3.14) is Hamiltonian if the
matrix

J−1R =
(
0 −Id
Id 0

)(
A B
C D

)
=

(−C −D
A B

)
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is self-adjoint, namely B∗ = B, C∗ = C , A∗ = −D and A, B,C, D are real.
Correspondingly, a matrix operator as in (3.15) is Hamiltonian if

R∗1 = −R1, R∗2 = R2. (3.41)

Symplectic operators. A ϕ-dependent family of linear operators R(ϕ), ϕ ∈ T
ν ,

as in (3.14) is symplectic if

W(R(ϕ)u,R(ϕ)v) =W(u, v) ∀u, v ∈ L2(Tx ,R
2) , (3.42)

where the symplectic 2-form W is defined in (2.15).

Reversible and reversibility preserving operators. LetS be an involution as in (2.4)
acting on the real variables (η, ζ ) ∈ R

2, or as in (2.51) acting on the action-angle-
normal variables (θ, I, w), or as in (2.29) acting in the (z, z) complex variables
introduced in (2.24).

Definition 3.17. (Reversibility) A ϕ-dependent family of operatorsR(ϕ), ϕ ∈ T
ν ,

is

• reversible ifR(−ϕ) ◦ S = −S ◦R(ϕ) for all ϕ ∈ T
ν ;

• reversibility preserving ifR(−ϕ) ◦ S = S ◦R(ϕ) for all ϕ ∈ T
ν .

Since in the complex coordinates (z, z) the involution S defined in (2.4) reads
as in (2.29), an operatorR(ϕ) as in (3.15) is reversible, respectively anti-reversible,
if, for any i = 1, 2,

Ri (−ϕ) ◦ S = −S ◦Ri (ϕ), resp. Ri (−ϕ) ◦ S = S ◦Ri (ϕ), (3.43)

where, with a small abuse of notation, we still denote (Su)(x) = u(−x). Moreover,
recalling that in the Fourier coordinates such involution reads as in (2.30), we obtain
the following lemma.

Lemma 3.18. A ϕ-dependent family of operators R(ϕ), ϕ ∈ T
ν , as in (3.15) is

• reversible if, for any i = 1, 2,

(Ri )
j ′
j (−ϕ) = −(Ri )

j ′
j (ϕ) ∀ϕ ∈ T

ν , that is (Ri )
j ′
j (�) = −(Ri )

j ′
j (�) ∀ � ∈ Z

ν ;
(3.44)

• reversibility preserving if, for any i = 1, 2,

(Ri )
j ′
j (−ϕ) = (Ri )

j ′
j (ϕ) ∀ϕ ∈ T

ν, that is (Ri )
j ′
j (�) = (Ri )

j ′
j (�) ∀ � ∈ Z

ν .

(3.45)

Note that the composition of a reversible operator with a reversibility preserving
operator is reversible. The flow generated by a reversibility preserving operator is
reversibility preserving. If R(ϕ) is reversibility preserving, then (ω · ∂ϕR)(ϕ) is
reversible.
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We shall say that a linear operator of the form ω · ∂ϕ + A(ϕ) is reversible if
A(ϕ) is reversible. Conjugating the linear operator ω · ∂ϕ + A(ϕ) by a family of
invertible linear maps �(ϕ), we get the transformed operator

�−1(ϕ) ◦ (ω · ∂ϕ + A(ϕ)
) ◦�(ϕ) = ω · ∂ϕ + A+(ϕ) ,

A+(ϕ) := �−1(ϕ)
(
ω · ∂ϕ�(ϕ)

)+�−1(ϕ)A(ϕ)�(ϕ) . (3.46)

The conjugation of a reversible operator with a reversibility preserving operator is
reversible.

Lemma 3.19. A pseudodifferential operator Op(a(ϕ, x, ξ)) is reversible, respec-
tively reversibility preserving, if and only if its symbol satisfies

a(−ϕ,−x, ξ) = −a(ϕ, x, ξ), resp. a(−ϕ,−x, ξ) = a(ϕ, x, ξ). (3.47)

Proof. If the symbols a satisfies (3.47), then, recalling the complex form of the
involution S in (2.29)–(2.30), we deduce that Op(a(ϕ, x, ξ)) is reversible, re-
spectively anti-reversible. The vice versa follows using that a(ϕ, x, j) = e−i j x
Op(a(ϕ, x, ξ))[ei j x ]. ��
Remark 3.20. Let A(ϕ) = R(ϕ) + T (ϕ) be a reversible operator. Then A(ϕ) =
R+(ϕ)+ T+(ϕ) where both operators

R+(ϕ) := 1
2 (R(ϕ)− SR(−ϕ)S), T+(ϕ) := 1

2 (T (ϕ)− ST (−ϕ)S) ,
are reversible. If R(ϕ) = Op(r(ϕ, x, ξ)) is pseudodifferential, then

R+(ϕ) = Op(r+(ϕ, x, ξ)), r+(ϕ, x, ξ) := 1
2 (r(ϕ, x, ξ)− r(−ϕ,−x, ξ))

and the pseudodifferential norms of Op(r) and Op(r+) are equivalent. If T (ϕ) is a
tame operator with a tame constant MT (s), then T+(ϕ) is a tame operator as well
with an equivalent tame constant.

Definition 3.21. (Reversible and anti-reversible function) A function u(ϕ, ·) is
called reversible if Su(ϕ, ·) = u(−ϕ, ·) (cfr. (2.17)), or is called anti-reversible
if −Su(ϕ, ·) = u(−ϕ, ·). The same definition holds in the action-angle-normal
variables (θ, I, w)with the involution �S defined in (2.51) and in the (z, z) complex
variables with the involution in (2.29).

A reversibility preserving operatormaps reversible, respectively anti-reversible,
functions into reversible, respectively anti-reversible, functions.

Lemma 3.22. Let X be a reversible vector field, according to (2.5), and u(ϕ, x) be
a reversible quasi-periodic function. Then the linearized operator du X (u(ϕ, ·)) is
reversible, according to Definition 3.17.

Proof. Differentiating (2.5) we get (du X)(Su) ◦ S = −S(du X)(u) and use
Su(ϕ, ·) = u(−ϕ, ·). ��

Finally we note the following lemma:
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Lemma 3.23. The projections�ᵀ
S+,� ,�

∠
S+,� defined in Section 2.3 commute with

the involution S defined in (2.4), that is are reversibility preserving. The orthogonal
projectors�S and�⊥S0 commutewith the involution in (2.29), that is are reversibility
preserving.

Proof. The involution S defined in (2.4) maps Vn,± into itself, acting as in (2.36).
Then, by the decomposition (2.33), each projector �Vn,σ commutes with S. ��

3.4. Momentum Preserving Operators

The following definition is crucial in the construction of traveling waves.

Definition 3.24. (Momentum preserving) A ϕ-dependent family of linear operators
A(ϕ), ϕ ∈ T

ν , is momentum preserving if

A(ϕ − �jς) ◦ τς = τς ◦ A(ϕ) , ∀ϕ ∈ T
ν , ς ∈ R , (3.48)

where the translation operator τς is defined in (2.7). A linear matrix operator A(ϕ)
of the form (3.14) or (3.15) is momentum preserving if each of its components is
momentum preserving.

Momentum preserving operators are closed under several operations.

Lemma 3.25. Let A(ϕ), B(ϕ) be momentum preserving operators. Then

(i) (Composition): A(ϕ) ◦ B(ϕ) is a momentum preserving operator.
(ii) (Adjoint): the adjoint (A(ϕ))∗ is momentum preserving.
(iii) (Inversion): If A(ϕ) is invertible then A(ϕ)−1 is momentum preserving.
(iv) (Flow): Assume that

∂t�
t (ϕ) = A(ϕ)�t (ϕ), �0(ϕ) = Id, (3.49)

has a unique propagator �t (ϕ) for any t ∈ [0, 1]. Then �t (ϕ) is momentum
preserving.

Proof. Item (i) follows directly by (3.48). Item (i i), respectively (i i i), follows by
taking the adjoint, respectively the inverse, of (3.48) and using that τ ∗ς = τ−ς =
τ−1ς . Finally, item (iv) holds because τ−1ς �t (ϕ − �jς)τς solves the same Cauchy
problem in (3.49). ��

We shall say that a linear operator of the form ω · ∂ϕ + A(ϕ) is momentum
preserving if A(ϕ) ismomentumpreserving. In particular, conjugating amomentum
preserving operator ω · ∂ϕ + A(ϕ) by a family of invertible linear momentum
preserving maps �(ϕ), we obtain the transformed operator ω · ∂ϕ + A+(ϕ) in
(3.46) which is momentum preserving.

Lemma 3.26. Let A(ϕ) be a momentum preserving linear operator and u a quasi-
periodic traveling wave, according to Definition 3.1. Then A(ϕ)u is a quasi-
periodic traveling wave.
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Proof. It follows by Definition 3.24 and by the characterization of traveling waves
in (3.2). ��
Lemma 3.27. Let X be a vector field translation invariant, according to (2.8). Let
u be a quasi-periodic traveling wave. Then the linearized operator du X (u(ϕ, ·)) is
momentum preserving.

Proof. Differentiating (2.8) we get (du X)(τςu) ◦ τς = τς (du X)(u), ς ∈ R. Then,
apply (3.2). ��

We now provide a characterization of the momentum preserving property in
Fourier space.

Lemma 3.28. Let ϕ-dependent family of operators A(ϕ), ϕ ∈ T
ν , is momentum

preserving if and only if the matrix elements of A(ϕ), defined by (3.13), fulfill

A j ′
j (�) �= 0 ⇒ �j · �+ j − j ′ = 0, ∀ � ∈ Z

ν, j, j ′ ∈ Z. (3.50)

Proof. By (3.13) we have, for any function u(x),

τς (A(ϕ)u) =
∑

j, j ′∈Z

∑

�∈Zν
A j ′
j (�)e

i jςu j ′e
i(�·ϕ+ j x)

and

A(ϕ − �jς)[τςu] =
∑

j, j ′∈Z

∑

�∈Zν
A j ′
j (�)e

−i�· �jςei j ′ςu j ′e
i(�·ϕ+ j x).

Therefore (3.48) is equivalent to (3.50). ��
We characterize the symbol of a pseudodifferential operator which is momen-

tum preserving.

Lemma 3.29. A pseudodifferential operator A(ϕ, x, D) = Op(a(ϕ, x, ξ)) is mo-
mentum preserving if and only if its symbol satisfies

a(ϕ − �jς, x, ξ) = a(ϕ, x + ς, ξ), ∀ ς ∈ R. (3.51)

Proof. If the symbol a satisfies (3.51), then, for all ς ∈ R,

τς ◦ Op(a(ϕ, x, ξ)) = Op(a(ϕ, x + ς, ξ)) ◦ τς = Op(a(ϕ − �jς, x, ξ)) ◦ τς ,
proving that τς ◦ A(ϕ, x, D) = A(ϕ− �jς, x, D)◦ τς . The vice versa follows using
that a(ϕ, x, ξ) = e−iξ x A(ϕ, x, D)[eiξ x ]. ��

Note that, if a symbol a(ϕ, x, ξ) satisfies (3.51), then (ω ·∂ϕa)(ϕ, x, ξ) satisfies
(3.51) as well.

Lemma 3.30. If β(ϕ, x) is a quasi-periodic traveling wave, then the operatorB(ϕ)
defined in (3.29) is momentum preserving.
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Proof. We haveB(ϕ− �jς)[τςu] = u(x+β(ϕ− �jς, x)+ς) = u(x+ς+β(ϕ, x+
ς)) = τς

(B(ϕ)u). ��
We also note the following lemma:

Lemma 3.31. The symplectic projections �ᵀ
S+,� , �

∠
S+,� , the L2-projections �L2

∠
and �S, �⊥S0 defined in Section 2.3 commute with the translation operators τς
defined in (2.7), that is are momentum preserving.

Proof. Recall that the translation τς maps Vn,± into itself, acting as in (2.37).
Consider the L2-orthogonal decomposition H = H∠ ⊕ H⊥∠, setting H∠ := H∠

S+,�
for brevity, to get

u = �L2

H∠u +�L2

H⊥∠
u, �L2

H∠u ∈ H∠, �L2

H⊥∠
u ∈ H⊥∠.

Applying τς we get τςu = τς�L2

H∠u + τς�L2

H⊥∠
u. As shown above, τς maps H∠

into itself for all ς . Thus also the L2-orthogonal subspaceH⊥∠ is invariant under the
action of τς and we conclude, by the uniqueness of the orthogonal decomposition,

that τς�L2

H∠u = �L2

H∠τςu, τς�
L2

H⊥∠
u = �L2

H⊥∠
τςu. ��

The next lemma concerns the Dirichlet-Neumann operator.

Lemma 3.32. The Dirichlet-Neumann operator G(η,h), evaluated at a quasi-
periodic traveling wave η(ϕ, x), is momentum preserving.

Proof. It follows by (2.9) and the characterization in (3.2) of the quasi-periodic
traveling wave η(ϕ, x). ��

Quasi-periodic traveling waves in action-angle-normal coordinates. We now dis-
cuss how the momentum preserving condition reads in the coordinates (θ, I, w)
introduced in (2.50). Recalling (2.52), if u(ϕ, x) is a quasi-periodic traveling wave
with action-angle-normal components (θ(ϕ), I (ϕ),w(ϕ, x)), the condition τςu =
u(ϕ − �jς, ·) becomes

⎛

⎝
θ(ϕ)− �jς

I (ϕ)
τςw(ϕ, ·)

⎞

⎠ =
⎛

⎝
θ(ϕ − �jς)
I (ϕ − �jς)
w(ϕ − �jς, ·)

⎞

⎠ , ∀ ς ∈ R. (3.52)

As we look for θ(ϕ) of the form θ(ϕ) = ϕ+$(ϕ), with a (2π)ν-periodic function
$ : Rν �→ R

ν , ϕ �→ $(ϕ), the traveling wave condition becomes

⎛

⎝
$(ϕ)

I (ϕ)
τςw(ϕ, ·)

⎞

⎠ =
⎛

⎝
$(ϕ − �jς)
I (ϕ − �jς)
w(ϕ − �jς, ·)

⎞

⎠ , ∀ ς ∈ R. (3.53)
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Definition 3.33. (Traveling wave variation) We call a traveling wave variation
g(ϕ) = (g1(ϕ), g2(ϕ), g3(ϕ, ·)) ∈ R

ν ×R
ν ×H∠

S+,� a function satisfying (3.53),
that is

g1(ϕ) = g1(ϕ − �jς), g2(ϕ) = g2(ϕ − �jς), τςg3(ϕ) = g3(ϕ − �jς), ∀ ς ∈ R ,

or, equivalently, D�τς g(ϕ) = g(ϕ− �jς) for any ς ∈ R, where D�τς is the differential
of �τς , namely

D�τς
⎛

⎝
$

I
w

⎞

⎠ =
⎛

⎝
$

I
τςw

⎞

⎠ , ∀ ς ∈ R.

According to Definition 3.24, a linear operator acting in R
ν × R

ν × H∠
S+,� is

momentum preserving if

A(ϕ − �jς) ◦ D�τς = D�τς ◦ A(ϕ), ∀ ς ∈ R. (3.54)

In a fashion similar to Lemma 3.26, one proves the following result:

Lemma 3.34. Let A(ϕ) be a momentum preserving linear operator acting onRν×
R
ν × H∠

S+,� and g ∈ R
ν × R

ν × H∠
S+,� be a traveling wave variation. Then

A(ϕ)g(ϕ) is a traveling wave variation.

4. Transversality of Linear Frequencies

In this section we extend the KAM theory approach of [3,6] in order to deal
with the linear frequencies � j (κ) defined in (1.11). The main novelty is the use of
the momentum condition in the proof of Proposition 4.5. We shall also exploit that
the tangential sites S := {j1, . . . , j ν} ⊂ Z\{0} defined in (2.48), have all distinct
modulus |ja | = na , see assumption (1.15).

We first introduce the following definition:

Definition 4.1. A function f = ( f1, . . . , fN ) : [κ1, κ2] → R
N is non-degenerate

if, for any c ∈ R
N\{0}, the scalar function f · c is not identically zero on the whole

interval [κ1, κ2].
From a geometric point of view, if f is non-degenerate it means that the image

of the curve f ([κ1, κ2]) ⊂ R
N is not contained in any hyperplane of RN .

We shall use in the sequel that the maps κ �→ � j (κ) are analytic in [κ1, κ2].
We decompose

� j (κ) = ω j (κ)+γ
2

G j (0)

j
, ω j (κ) :=

√

κ G j (0) j2 + g G j (0)+
(
γ

2

G j (0)

j

)2

.

(4.1)
Note that the dependence on κ of � j (κ) enters only through ω j (κ), because

G j (0)
j

is independent of κ . Note also that j �→ ω j (κ) is even in j , whereas the component

due to the vorticity j �→ γ
G j (0)

j is odd. Moreover this term is, in view of (1.8),
uniformly bounded in j .
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Lemma 4.2. (Non-degeneracy-I)The following frequency vectors arenon-degenerate:

1. ��(κ) := (� j (κ)) j∈S ∈ R
ν;

2.
( ��(κ),√κ) ∈ R

ν+1;
3.

( ��(κ),� j (κ)
) ∈ R

ν+1, for any j ∈ Z\ ({0} ∪ S ∪ (−S));
4.

( ��(κ),� j (κ),� j ′(κ)
) ∈ R

ν+2, for any j, j ′ ∈ Z\ ({0} ∪ S ∪ (−S)) and | j | �=
| j ′|.

Proof. Let

�̃ j (κ) :=
{
� j (κ) for j �= 0√
κ for j = 0 ,

ω̃ j (κ) :=
{
ω j (κ) for j �= 0√
κ for j = 0.

(4.2)

Recalling (4.1), we have that, for any j ∈ Z,

∂κ ω̃ j (κ) = λ j (κ)ω̃ j (κ) , λ j (κ) :=

⎧
⎪⎪⎨

⎪⎪⎩

G j (0) j2

2

(

κ G j (0) j2+g G j (0)+
(
γ
2

G j (0)
j

)2
) for j �= 0

1
2κ for j = 0.

(4.3)
Moreover ∂κλ j (κ) = −2λ j (κ)

2, for any j ∈ Z, and therefore, for any n ∈ N,

∂nκ ω̃ j (κ) = c̃nλ j (κ)
nω̃ j (κ) , c̃n := c1 · . . . · cn , cn := 3− 2n. (4.4)

Wenowprove items2and3, that is the non-degeneracyof thevector
( ��(κ), �̃ j (κ)

) ∈
R
ν+1 for any j ∈ Z\(S ∪ (−S)), where �̃ j (κ) is defined in (4.2). Items 1 and 4

follow similarly. For this purpose, by analyticity, it is sufficient to find one value of
κ ∈ [κ1, κ2] so that the determinant of the (ν + 1)× (ν + 1) matrix

A(κ) :=
⎛

⎜
⎝

∂κ�j1(κ) · · · ∂κ�jν (κ) ∂κ�̃ j (κ)
...

. . .
...

...

∂ν+1κ �j1(κ) · · · ∂ν+1κ �jν (κ) ∂
ν+1
κ �̃ j (κ)

⎞

⎟
⎠

is not zero.We actually show that detA(κ) �= 0 for any κ ∈ [κ1, κ2]. By (4.2)–(4.4)
and the multilinearity of the determinant function, we get

detA(κ) = C(κ) det

⎛

⎜⎜⎜
⎝

1 · 1 1
λj1(κ) · λjν (κ) λ j (κ)
...

. . .
...

...

λj1(κ)
ν · λjν (κ)ν λ j (κ)

ν

⎞

⎟⎟⎟
⎠
=: C(κ) detB(κ)

where

C(κ) :=
ν+1∏

q=1
c̃q ·

∏

p∈{j1,...,jν , j}
λp(κ)ω̃p(κ) �= 0, ∀ κ ∈ [κ1, κ2].

Since B(κ) is a Vandermorde matrix, we conclude that

detA(κ) = C(κ)
∏

p,p′∈{j1,...,jν , j},p<p′

(
λp(κ)− λp′(κ)

)
.
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Now, the fact that detA(κ) �= 0 for any κ ∈ [κ1, κ2] is a consequence from the
following

Claim: For any p, p′ ∈ {j1, . . . , j ν, j}, p �= p′, one has λp(κ) �= λp′(κ) for
any κ ∈ [κ1, κ2].

Proof of the Claim: If p′ = 0 and p �= 0, the claim follows because, by
(4.3),

λp(κ) = 1

2
(
κ + g

p2
+ γ 2

4
Gp(0)
p4

) <
1

2κ
= λ0(κ).

Consider now the case p, p′ �= 0.We now prove that the map p �→ λp(κ) is strictly
monotone on (0,+∞). In case of finite depth, Gp(0) = p tanh(hp), and

∂pλp(κ) = 1

2
(
κ + g

p2
+ γ 2

4
tanh(hp)

p3

)2

{
2g

p3
+ γ

2

4

3 tanh(hp)− (1− tanh2(hp))hp

p4

}
.

The function f (y) := 3 tanh(y) − (1 − tanh2(y))y is positive for any y > 0.
Indeed f (y)→ 0 as y→ 0, and it is strictly monotone increasing for y > 0, since
f ′(y) = 2(1− tanh2(y))(1+ y tanh(y)) > 0. We deduce that ∂pλp(κ) > 0, also if
the depth h = +∞. Since the function p �→ λp(κ) is even we have proved that that
it is strictly monotone decreasing on (−∞, 0) and increasing in (0,+∞). Thus, if
λp(κ) = λp′(κ) then p = −p′. But this case is excluded by the assumption (1.15)
and the condition j �∈ S ∪ (−S), which together imply |p| �= |p′|. ��

Note that in items 3 and 4 of Lemma 4.2 we require that j and j ′ do not belong
to {0}∪S∪ (−S). In order to deal in Proposition 4.5 when j and j ′ are in S∪ (−S),
we need also the following lemma. It is actually a direct consequence of the proof
of Lemma 4.2, noting that � j (κ)− ω j (κ) is independent of κ .

Lemma 4.3. (Non-degeneracy-II) Let �ω(κ) := (
ωj1(κ), . . . , ωjν (κ)

)
. The follow-

ing vectors are non-degenerate:

1. ( �ω(κ), 1) ∈ R
ν+1;

2.
( �ω(κ), ω j (κ), 1

) ∈ R
ν+2, for any j ∈ Z\ ({0} ∪ S ∪ (−S)).

For later use,weprovide the following asymptotic estimate of the linear frequencies:

Lemma 4.4. (Asymptotics) For any j ∈ Z\{0}, we have

ω j (κ) = √κ | j | 32 + c j (κ)√
κ | j | 12

, (4.5)

where, for any n ∈ N0, there exists a constant Cn,h > 0 such that

sup
j∈Z\{0}
κ∈[κ1,κ2]

∣∣∣∂nκ
c j (κ)√
κ

∣∣∣ � Cn,h. (4.6)
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Proof. By (4.1) we deduce (4.5) with

c j (κ) :=
κ | j | (G j (0)− | j |

)+ g G j (0)
| j |

(
1+ ( γ

2

)2 G j (0)

g| j |2
)

1+
√
1+ G j (0)−| j |

| j | + g G j (0)

κ| j |3
(
1+ ( γ

2

)2 G j (0)

g| j |2
) .

Then (4.6) follows exploiting that (both for finite and infinite depth) the quantities
| j |(G j (0)− | j |) and G j (0)/| j | are uniformly bounded in j , see (1.8). ��

Thenext proposition is the keyof the argument.We remind that �j = (j1, . . . , j ν)
denotes the vector in Zν of tangential sites introduced in (2.53).

Proposition 4.5. (Transversality) There exist m0 ∈ N and ρ0 > 0 such that, for
any κ ∈ [κ1, κ2], the following hold:

max
0�n�m0

|∂nκ ��(κ) · �| � ρ0〈�〉 , ∀ � ∈ Z
ν\{0} ; (4.7)

⎧
⎨

⎩

max
0�n�m0

|∂nκ ( ��(κ) · �+� j (κ))| � ρ0〈�〉
�j · �+ j = 0 , � ∈ Z

ν , j ∈ S
c
0 ;

(4.8)

⎧
⎨

⎩

max
0�n�m0

|∂nκ ( ��(κ) · �+� j (κ)−� j ′(κ))| � ρ0〈�〉
�j · �+ j − j ′ = 0 , � ∈ Z

ν , j, j ′ ∈ S
c
0 , (�, j, j

′) �= (0, j, j) ;
(4.9)

⎧
⎨

⎩

max
0�n�m0

|∂nκ ( ��(κ) · �+� j (κ)+� j ′(κ))| � ρ0〈�〉
�j · �+ j + j ′ = 0 , � ∈ Z

ν , j, j ′ ∈ S
c
0.

(4.10)

We call ρ0 the amount of non-degeneracy and m0 the index of non-degeneracy.

Proof. We prove separately (4.7)–(4.10). In this proof we set for brevity K :=
[κ1, κ2].

Proof of (4.7). By contradiction, assume that for anym ∈ N there exist κm ∈ K
and �m ∈ Z

ν\{0} such that

∣∣∣∂nκ ��(κm) ·
�m

〈�m〉
∣∣∣ <

1

〈m〉 , ∀ 0 � n � m. (4.11)

The sequences (κm)m∈N ⊂ K and (�m/〈�m〉)m∈N ⊂ R
ν\{0} are both bounded. By

compactness, up to subsequences κm → κ ∈ K and �m/〈�m〉 → c �= 0. Therefore,
in the limit for m →+∞, by (4.11) we get ∂nκ ��(κ) · c = 0 for any n ∈ N0. By the
analyticity of ��(κ), we deduce that the function κ �→ ��(κ) · c is identically zero
on K, which contradicts Lemma 4.2-1.

Proof of (4.8). We divide the proof in 4 steps.
Step 1. Recalling (4.1) and Lemma 4.4, we have that, for any κ ∈ K,

| ��(κ) · �+� j (κ)| � |� j (κ)| − | ��(κ) · �| � √κ1 | j | 32 − C〈�〉 � 〈�〉
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whenever | j | 32 � C0〈�〉, for some C0 > 0. In this cases (4.8) is already fulfilled
with n = 0. Hence we restrict in the sequel to indexes � ∈ Z

ν and j ∈ S
c
0 satisfying

| j | 32 < C0〈�〉. (4.12)

Step 2. By contradiction, we assume that, for any m ∈ N, there exist κm ∈ K,

�m ∈ Z
ν and jm ∈ S

c
0, with | jm |

3
2 < C0〈�m〉, such that, for any n ∈ N0 with

n � m,
{∣∣∂nκ

( ��(κ) · �m〈�m 〉 + 1
〈�m 〉� jm (κ)

)
|κ=κm

∣∣ < 1
〈m〉

�j · �m + jm = 0.
(4.13)

Up to subsequences κm → κ ∈ K and �m/〈�m〉 → c ∈ R
ν .

Step 3.Weconsider first the casewhen the sequence (�m)m∈N ⊂ Z
ν is bounded.

Up to subsequences, we have definitively that �m = � ∈ Z
ν .Moreover, since jm and

�m satisfy (4.12), also the sequence ( jm)m∈N is bounded and, up to subsequences,
definitively jm = j ∈ S

c
0. Therefore, in the limit m →∞, from (4.13) we obtain

∂nκ
( ��(κ) · �+�j(κ)

)
|κ=κ = 0 , ∀ n ∈ N0, �j · �+ j = 0.

By analyticity, this implies

��(κ) · �+�j(κ) = 0 , ∀ κ ∈ K , �j · �+ j = 0. (4.14)

We distinguish two cases:

• Let j /∈ −S. By (4.14) the vector
( ��(κ),�j (κ)

)
is degenerate according to

Definition 4.1 with c := (�, 1) �= 0. This contradicts Lemma 4.2-3.
• Let j ∈ −S. With no loss of generality suppose j = −j1. Then, denoting
� = (�1, . . . , �ν), system (4.14) reads, for any κ ∈ K,

{
(�1 + 1)ωj1(κ)+

∑ν
a=2 �aωja (κ)+ γ

2

(
(�1 − 1)

Gj1 (0)
j1
+∑ν

a=2 �a
Gja (0)
ja

)
= 0

(�1 − 1)j1 +
∑ν

a=2 �a ja = 0.
(4.15)

ByLemma4.3-1 thevector ( �ω(κ), 1) is non-degenerate,which is a contradiction
for γ �= 0. If γ = 0 we only deduce �1 = −1 and �2 = . . . = �ν = 0. Inserting
these values in the momentum condition in (4.15), we get 2j1 = 0. This is a
contradiction with j1 �= 0.

Step 4. We consider now the case when the sequence (�m)m∈N is unbounded. Up
to subsequences |�m | → ∞ as m →∞ and limm→∞ �m/〈�m〉 =: c �= 0. By (4.1)
and (4.5), for any n ∈ N0,

∂nκ
1

〈�m〉� jm (κm) = ∂nκ
( 1

〈�m〉
√
κ | jm | 32 + c jm (κ)

〈�m〉√κ | jm | 12
+ γ

2〈�m〉
G jm (0)

jm

)

|κ=κm
(4.6)→ d(∂nκ

√
κ)|κ=κ , for m →∞,
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with d := limm→∞ | jm | 32 /〈�m〉 ∈ R. Note that d is finite because jm and �m satisfy
(4.12). Therefore (4.13) becomes, in the limit m →∞,

∂nκ
( ��(κ) · c + d

√
κ
)
|κ=κ = 0, ∀ n ∈ N0.

By analyticity, this implies that ��(κ) ·c+d√κ = 0 for any κ ∈ K. This contradicts
the non-degeneracy of the vector ( ��(κ),√κ) in Lemma 4.2-2, since (c, d) �= 0.

Proof of (4.9). We split again the proof into 4 steps.
Step 1. By Lemma 4.4, for any κ ∈ K,

| ��(κ) · �+� j (κ)−� j ′(κ)| � |� j (κ)−� j ′(κ)| − | ��(κ) · �|
� √κ1

∣∣ | j | 32 − | j ′| 32 ∣∣− C〈�〉 � 〈�〉

whenever | | j | 32 − | j ′| 32 | � C1〈�〉 for some C1 > 0. In this case (4.10) is already
fulfilled with n = 0. Thus we restrict to indexes � ∈ Z

ν and j, j ′ ∈ S
c
0, such that

∣∣| j | 32 − | j ′| 32 ∣∣ < C1〈�〉 . (4.16)

Furthermore we may assume jm �= j ′m because the case jm = j ′m is included in
(4.7).

Step 2. By contradiction, we assume that, for any m ∈ N, there exist κm ∈ K,
�m ∈ Z

ν and jm, j ′m ∈ S
c
0, satisfying (4.16), such that, for any 0 � n � m,

{∣∣∂nκ
( ��(κ) · �m〈�m 〉 + 1

〈�m 〉
(
� jm (κ)−� j ′m (κ)

))
|κ=κm

∣∣ < 1
〈m〉

�j · �m + jm − j ′m = 0.
(4.17)

Up to subsequences κm → κ ∈ K and �m/〈�m〉 → c ∈ R
ν .

Step 3. We start with the case when (�m)m∈N ⊂ Z
ν is bounded. Up to subse-

quences, we have definitively that �m = � ∈ Z
ν . Moreover, if | jm | �= | j ′m |, there is

c > 0 such that

c
(| jm | 12 + | j ′m |

1
2
)

�
∣∣| jm | 32 − | j ′m |

3
2
∣∣ < C1〈�m〉 � C , ∀m ∈ N ,

If jm = − j ′m we deduce by themomentum relation that | jm | = | j ′m | � C〈�m〉 � C ,
and we conclude that in any case the sequences ( jm)m∈N and ( j ′m)m∈N are bounded.
Up to subsequences, we have definitively that jm = j and j ′m = j ′, with j, j ′ ∈ S

c
0

and such that
j �= j ′. (4.18)

Therefore (4.17) becomes, in the limit m →∞,

∂nκ
( ��(κ) · �+�j(κ)−�j ′(κ)

)
|κ=κ = 0 , ∀ n ∈ N0, �j · �+ j − j ′ = 0.

By analyticity, we obtain that

��(κ) · �+�j(κ)−�j ′(κ) = 0 , ∀ κ ∈ K, �j · �+ j − j ′ = 0. (4.19)

We distinguish several cases:
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• Let j, j ′ /∈ −S and |j | �= |j ′|. By (4.19) the vector ( ��(κ),�j (κ),�j ′(κ)) is
degenerate with c := (�, 1,−1) �= 0, contradicting Lemma 4.2-4.
• Let j, j ′ /∈ −S and j ′ = −j . In view of (4.1), system (4.19) becomes

{
�ω(κ) · �+ γ

2

(∑ν
a=1 �a

Gja (0)
ja
+ 2

Gj (0)
j

)
= 0, ∀κ ∈ K ,

�j · �+ 2j = 0.
(4.20)

By Lemma 4.3-1, the vector ( �ω(κ), 1) is non-degenerate, which is a contradic-
tion for γ �= 0. If γ = 0 the first equation in (4.20) implies � = 0. Then the
momentum condition implies 2j = 0, which is a contradiction with j �= 0.
• Let j ′ /∈ −S and j ∈ −S. With no loss of generality suppose j = −j1. In view
of (4.1), the first equation in (4.19) implies that, for any κ ∈ K,

(�1 + 1)ωj1(κ)+
ν∑

a=2
�aωja (κ)− ωj ′(κ)

+ γ
2

(
(�1 − 1)

Gj1(0)

j1
+

ν∑

a=2
�a

Gja (0)

ja
− Gj ′(0)

j ′
)
= 0.

By Lemma 4.3-2, the vector
( �ω(κ), ωj ′(κ), 1

)
is non-degenerate, which is a

contradiction.
• Last, let j, j ′ ∈ −S and j �= j ′, by (4.18). With no loss of generality suppose
j = −j1 and j ′ = −j2. Then (4.19) reads, for any κ ∈ K,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(�1 + 1)ωj1(κ)+
(
�2 − 1

)
ωj2 +

∑ν
a=3 �aωja (κ)

+ γ2
(
(�1 − 1)

Gj1 (0)
j1
+ (�2 + 1)

Gj2 (0)
j2
+∑ν

a=3 �a
Gja (0)
ja

)
)
= 0,

(�1 − 1)j1 + (�2 + 1)j2 +
∑ν

a=3 �a ja = 0.

(4.21)

By Lemma 4.3-1, the vector ( �ω(κ), 1) is non-degenerate, therefore the first
equation in (4.21) can hold only if �1 = −1, �2 = 1, �3 = . . . = �ν = 0.
Inserting these values in the momentum condition we obtain−2j1 + 2j2 = 0.
This contradicts j �= j ′.

Step 4. We finally consider the case when (�m)m∈N is unbounded. Up to subse-
quences |�m | → ∞ as m → ∞ and limm→∞ �m/〈�m〉 =: c �= 0. In addition, by
(4.16), up to subsequences

lim
m→∞

| jm | 32 − | j ′m |
3
2

〈�m〉 = d1 ∈ R. (4.22)

By (4.1) and (4.5) we have, for any n,

∂nκ
1

〈�m〉
(
� jm (κ)−� j ′m (κ)

)

|κ=κm
= ∂nκ

( √κ
〈�m〉

(| jm | 32 − | j ′m |
3
2
)

+ 1

〈�m〉√κ
(c jm (κ)

| jm | 12
− c j ′m (κ)

| j ′m |
1
2

)
+ γ

2〈�m〉
(G jm (0)

jm
− G j ′m (0)

j ′m

)

|κ=κm

)
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→ d1∂
n
κ (
√
κ)|κ=κ for m →∞ ,

using (4.22) and 〈�m〉 → ∞. Therefore (4.17) becomes, in the limit m →∞,

∂nκ
( ��(κ) · c + d1

√
κ
)
|κ=κ = 0, ∀ n ∈ N0.

By analyticity this implies ��(κ) · c + d1
√
κ = 0, for all κ ∈ K. Thus ( ��(κ),√κ)

is degenerate with c = (c, d1) �= 0, contradicting Lemma 4.2-2.
Proof of (4.10). The proof is similar to that for (4.9) and we omit it. ��

5. Nash–Moser Theorem and Measure Estimates

Under the rescaling (η, ζ ) �→ (εη, εζ ), the Hamiltonian system (2.14) trans-
forms into the Hamiltonian system generated by

Hε(η, ζ ) := ε−2H(εη, εζ ) = HL(η, ζ )+ εPε(η, ζ ) , (5.1)

whereH is thewaterwavesHamiltonian (2.13) expressed in theWahlén coordinates
(2.11),HL is defined in (2.20) and

Pε(η, ζ ) := 1

2ε

∫

T

(
ζ + γ

2
∂−1x η

)
(G(εη)− G(0))

(
ζ + γ

2
∂−1x η

)
dx

+ κ

ε3

∫

T

(√
1+ ε2η2x − 1− ε

2η2x

2

)
dx + γ

2

∫

T

(
−

(
ζ + γ

2
∂−1x η

)

x
η2 + γ

3
η3

)
dx .

We now study the Hamiltonian system generated by the Hamiltonian Hε(η, ζ ), in
the action-angle and normal coordinates (θ, I, w) defined in Section 2.3. Thus we
consider the Hamiltonian Hε(θ, I, w) defined by

Hε := Hε ◦ A = ε−2H ◦ εA (5.2)

where A is the map defined in (2.50). The associated symplectic form is given in
(2.54).

By Lemma 2.9 (see also (2.35), (2.49)), in the variables (θ, I, w) the quadratic
Hamiltonian HL defined in (2.20) simply reads, up to a constant, as

N := HL ◦ A = ��(κ) · I + 1
2 (�Ww,w)L2 ,

where ��(κ) ∈ R
ν is defined in (1.18) and �W in (2.19). Thus the Hamiltonian Hε

in (5.2) is
Hε = N + εP with P := Pε ◦ A. (5.3)

We look for an embedded invariant torus

i : Tν → R
ν × R

ν × H∠
S+,� , ϕ �→ i(ϕ) := (θ(ϕ), I (ϕ),w(ϕ)).

of the Hamiltonian vector field XHε := (∂I Hε,−∂θHε,�∠
S+,� J∇wHε) filled by

quasi-periodic solutionswithDiophantine frequency vectorω ∈ R
ν (which satisfies

also first and second order Melnikov non-resonance conditions, see (5.14)–(5.17)).
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5.1. Nash–Moser Theorem of Hypothetical Conjugation

For α ∈ R
ν , we consider the family of modified Hamiltonians

Hα := Nα + εP , Nα := α · I + 1
2 (w,�Ww)L2 , (5.4)

and the nonlinear operator

F(i, α) := F(ω, κ, ε; i, α) := ω · ∂ϕi(ϕ)− XHα (i(ϕ))

=
⎛

⎝
ω · ∂ϕθ(ϕ) −α − ε∂I P(i(ϕ))
ω · ∂ϕ I (ϕ) +ε∂θ P(i(ϕ))
ω · ∂ϕw(ϕ) −�∠

S+,� J (�Ww(ϕ)+ ε∇wP(i(ϕ)))

⎞

⎠ . (5.5)

If F(i, α) = 0, then the embedding ϕ �→ i(ϕ) is an invariant torus for the Hamil-
tonian vector field XHα , filled with quasi-periodic solutions with frequency ω.

Each Hamiltonian Hα in (5.4) is invariant under the involution �S and the trans-
lations �τς , ς ∈ R, defined in (2.51) and (2.52), respectively, as

Hα ◦ �S = Hα , Hα ◦ �τς = Hα , ∀ ς ∈ R. (5.6)

We look for a reversible traveling torus embeddingϕ �→ i(ϕ) = (θ(ϕ), I (ϕ),w(ϕ));
namely one satisfying

�Si(ϕ) = i(−ϕ), �τς i(ϕ) = i(ϕ − �jς) , ∀ ς ∈ R. (5.7)

Lemma 5.1. The operator F(·, α) maps a reversible, respectively traveling, wave
into an anti-reversible, respectively traveling, wave variation, according to Defini-
tion 3.33.

Proof. It follows directly by (5.5) and (5.6). ��
The norm of the periodic components of the embedded torus

I(ϕ) := i(ϕ)− (ϕ, 0, 0) := ($(ϕ), I (ϕ),w(ϕ)) , $(ϕ) := θ(ϕ)− ϕ , (5.8)

is ‖I‖k0,υs := ‖$‖k0,υHs
ϕ
+ ‖I‖k0,υHs

ϕ
+ ‖w‖k0,υs , where

k0 := m0 + 2 (5.9)

and m0 ∈ N is the index of non-degeneracy provided by Proposition 4.5, which
only depends on the linear unperturbed frequencies. Thus, k0 is considered as an
absolute constant and we will often omit to write the dependence of the various
constants with respect to k0. We look for quasi-periodic solutions of frequency ω
belonging to a δ-neighbourhood (independent of ε)

� := {
ω ∈ R

ν : dist (ω, ��[κ1, κ2]
)
< δ

}
, δ > 0,

of the curve ��[κ1, κ2] defined by (1.18).
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Theorem 5.2. (Nash–Moser) There exist positive constants a0, ε0,C depending on
S, k0 and τ � 1 such that, for all υ = εa, a ∈ (0, a0) and for all ε ∈ (0, ε0), there
exist

1. a k0-times differentiable function

α∞ :�× [κ1, κ2] �→ R
ν ,

α∞(ω, κ) := ω + rε(ω, κ) with |rε|k0,υ � Cευ−1; (5.10)

2. a family of embedded reversible traveling tori i∞(ϕ) (cfr. (5.7)), defined for all
(ω, κ) ∈ �× [κ1, κ2], satisfying

‖i∞(ϕ)− (ϕ, 0, 0)‖k0,υs0 � Cευ−1 ; (5.11)

3. a sequence of k0-times differentiable functions μ∞j : Rν × [κ1, κ2] → R,
j ∈ S

c
0 = Z \ (S ∪ {0}), of the form

μ∞j (ω, κ) = m∞3
2
(ω, κ)� j (κ)+ m∞1 (ω, κ) j + m∞1

2
(ω, κ) | j | 12 + r∞j (ω, κ) ,

(5.12)
with � j (κ) defined in (1.11), satisfying

|m∞3
2
− 1|k0,υ , |m∞1 |k0,υ , |m∞1

2
|k0,υ � Cε, sup

j∈Sc0
|r∞j |k0,υ � Cευ−1, (5.13)

such that, for all (ω, κ) in the Cantor-like set

Cυ∞ :=
{
(ω, κ) ∈ �× [κ1, κ2] : |ω · �| � 8υ〈�〉−τ , ∀ � ∈ Z

ν\{0} ; (5.14)
∣∣∣ω · �+ μ∞j (ω, κ)

∣∣∣ � 4υ | j | 32 〈�〉−τ , (5.15)

∀ � ∈ Z
ν, j ∈ S

c
0 with �j · �+ j = 0 ;

∣∣∣ω · �+ μ∞j (ω, κ)− μ∞j ′ (ω, κ)
∣∣∣ � 4υ 〈| j | 32 − | j ′| 32 〉〈�〉−τ , (5.16)

∀� ∈ Z
ν, j, j ′ ∈ S

c
0, (�, j, j

′) �= (0, j, j) with �j · �+ j − j ′ = 0 ,
∣∣∣ω · �+ μ∞j (ω, κ)+ μ∞j ′ (ω, κ)

∣∣∣ � 4υ
( | j | 32 + | j ′| 32 )〈�〉−τ ,

∀ � ∈ Z
ν, j, j ′ ∈ S

c
0 , with �j · �+ j + j ′ = 0

}
, (5.17)

the function i∞(ϕ) := i∞(ω, κ, ε;ϕ) is a solution of F(ω, κ, ε; i∞, α∞(ω, κ)) =
0. As a consequence, the embedded torus ϕ �→ i∞(ϕ) is invariant for the Hamilto-
nian vector field XHα∞(ω,κ) as it is filled by quasi-periodic reversible traveling wave
solutions with frequency ω.

We remind that the conditions on the indexes in (5.15)–(5.17) (where �j ∈ Z
ν

is the vector in (2.53)) are due to the fact that we look for traveling wave solutions.
These restrictions are essential to prove the measure estimates of the next section.
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5.2. Measure Estimates

By (5.10), the function α∞( · , κ) from � into its image α∞(�, κ) is invertible
and

β = α∞(ω, κ) = ω + rε(ω, κ) ⇔
ω = α−1∞ (β, κ) = β + r̆ε(β, κ), |r̆ε|k0,υ � Cευ−1 .

(5.18)

Then, for any β ∈ α∞(Cυ∞), Theorem 5.2 proves the existence of an embedded
invariant torus filled by quasi-periodic solutions with Diophantine frequency ω =
α−1∞ (β, κ) for the Hamiltonian

Hβ = β · I + 1
2 (w,�Ww)L2 + εP.

Consider the curve of the unperturbed tangential frequency vector ��(κ) in (1.18).
In Theorem 5.3 below we prove that for “most” values of κ ∈ [κ1, κ2] the vector
(α−1∞ ( ��(κ), κ), κ) is in Cυ∞, obtaining an embedded torus for the Hamiltonian
Hε in (5.2), filled by quasi-periodic solutions with Diophantine frequency vector
ω = α−1∞ ( ��(κ), κ), denoted �̃ in Theorem 1.5. Thus εA(i∞(�̃t)), where A is
defined in (2.50), is a quasi-periodic traveling wave solution of the water waves
equations (2.14) written in theWahlén variables. Finally, going back to the original
Zakharov variables via (2.10) we obtain solutions of (1.3). This proves Theorem
1.5 together with the following measure estimate.

Theorem 5.3. (Measure estimates) Let

υ = εa , 0 < a < min{a0, 1/(1+ k0)} , τ > m0(ν + 4), (5.19)

where m0 is the index of non-degeneracy given in Proposition 4.5 and k0 := m0+2.
Then, for ε ∈ (0, ε0) small enough, the measure of the set

Gε :=
{
κ ∈ [κ1, κ2] :

(
α−1∞ ( ��(κ), κ), κ

) ∈ Cυ∞
}

(5.20)

satisfies |Gε| → κ2 − κ1 as ε→ 0.

The rest of this section is devoted to prove Theorem 5.3. By (5.18) we have

��ε(κ) := α−1∞ ( ��(κ), κ) = ��(κ)+ �rε , (5.21)

where �rε(κ) := r̆ε( ��(κ), κ) satisfies
∣∣∣∂kκ �rε(κ)

∣∣∣ � Cευ−(1+k) , ∀ |k| � k0 , uniformly on [κ1, κ2]. (5.22)

We also denote, with a small abuse of notation, for all j ∈ S
c
0,

μ∞j (κ) := μ∞j
( ��ε(κ), κ

) := m∞3
2
(κ)� j (κ)+m∞1 (κ) j+m∞1

2
(κ) | j | 12 +r∞j (κ), (5.23)

wherem∞3
2
(κ) := m∞3

2
( ��ε(κ), κ),m∞1 (κ) := m∞1 ( ��ε(κ), κ),m∞1

2
(κ) := m∞1

2
( ��ε(κ), κ)

and r∞j (κ) := r∞j ( ��ε(κ), κ).
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By (5.13) and (5.22) we have
∣∣∂kκ

(
m∞3

2
(κ)− 1

)∣∣, |∂kκm∞1 (κ)|, |∂kκm∞1
2
(κ)| � Cευ−k, (5.24)

sup
j∈Sc0

∣∣∣∂kκ r
∞
j (κ)

∣∣∣ � Cευ−1−k , ∀ 0 � k � k0. (5.25)

Recalling (5.14)–(5.17), the Cantor set in (5.20) becomes

Gε :=
{
κ ∈ [κ1, κ2] : | ��ε(κ) · �| � 8υ〈�〉−τ , ∀ � ∈ Z

ν\{0} ;
| ��ε(κ) · �+ μ∞j (κ)| � 4υ| j | 32 〈�〉−τ ,
∀ � ∈ Z

ν , j ∈ S
c
0 , with �j · �+ j = 0 ;

| ��ε(κ) · �+ μ∞j (κ)− μ∞j ′ (κ)| � 4υ 〈| j | 32 − | j ′| 32 〉〈�〉−τ ,
∀� ∈ Z

ν, j, j ′ ∈ S
c
0, (�, j, j

′) �= (0, j, j) with �j · �+ j − j ′ = 0 ;
| ��ε(κ) · �+ μ∞j (κ)+ μ∞j ′ (κ)| � 4υ

(| j | 32 + | j ′| 32 )〈�〉−τ ,
∀ � ∈ Z

ν, j, j ′ ∈ S
c
0 with �j · �+ j + j ′ = 0

}
.

We estimate the measure of the complementary set

Gc
ε := [κ1, κ2]\Gε

=
⎛

⎝
⋃

� �=0
R(0)�

⎞

⎠ ∪

⎛

⎜⎜
⎝

⋃

�∈Zν , j∈Sc0�j ·�+ j=0

R(I )�, j

⎞

⎟⎟
⎠ ∪

⎛

⎜⎜
⎝

⋃

(�, j, j ′) �=(0, j, j), j �= j ′
�j ·�+ j− j ′=0

R(I I )
�, j, j ′

⎞

⎟⎟
⎠ ∪

⎛

⎜⎜
⎝

⋃

�∈Zν , j, j ′∈Sc0 ,
�j ·�+ j+ j ′=0

Q(I I )
�, j, j ′

⎞

⎟⎟
⎠ ,

(5.26)

where the “nearly-resonant sets”

R(0)
�
:= {

κ ∈ [κ1, κ2] : | ��ε(κ) · �| < 8υ〈�〉−τ }, (5.27)

R(I )
�, j :=

{
κ ∈ [κ1, κ2] : | ��ε(κ) · �+ μ∞j (κ)| < 4υ| j | 32 〈�〉−τ }, (5.28)

R(I I )
�, j, j ′ :=

{
κ ∈ [κ1, κ2] : | ��ε(κ) · �+ μ∞j (κ)− μ∞j ′ (κ)| < 4υ 〈| j | 32 − | j ′| 32 〉〈�〉−τ },

(5.29)

Q(I I )
�, j, j ′ :=

{
κ ∈ [κ1, κ2] : | ��ε(κ) · �+ μ∞j (κ)+ μ∞j ′ (κ)| < 4υ

(| j | 32 + | j ′| 32 )〈�〉−τ }.
(5.30)

Note that in the third union in (5.26) we may require j �= j ′ because R(I I )�, j, j ⊂ R(0)� .
In the sequel we shall always suppose the momentum conditions on the indexes
�, j, j ′ written in (5.26). Some of the above sets are empty.

Lemma 5.4. Consider the sets in (5.26)–(5.30). For ε ∈ (0, ε0) small enough, we
have that

1. If R(I )�, j �= ∅ then | j |
3
2 � C〈�〉;



Traveling Quasi-periodic Water Waves with Constant Vorticity 147

2. If R(I I )
�, j, j ′ �= ∅ then

∣∣| j | 32 − | j ′| 32 ∣∣ � C〈�〉;
3. If Q(I I )

�, j, j ′ �= ∅ then | j |
3
2 + | j ′| 32 � C〈�〉.

Proof. Weprovide the proof for R(I I )
�, j, j ′ . If R

(I I )
�, j, j ′ �= ∅ then there exists κ ∈ [κ1, κ2]

such that

∣∣∣μ∞j (κ)− μ∞j ′ (κ)
∣∣∣ <

4υ 〈| j | 32 − | j ′| 32 〉
〈�〉τ + | ��ε(κ) · �| � 4υ

∣∣| j | 32 − | j ′| 32 ∣∣+C〈�〉.
(5.31)

By (5.23) we have

μ∞j (κ)− μ∞j ′ (κ) = m∞3
2
(κ)(� j (κ)−� j ′(κ))+ m∞1 (κ)( j − j ′)

+ m∞1
2
(κ)(| j | 12 − | j ′| 12 )+ r∞j (κ)− r∞j ′ (κ).

Then, by (5.24)–(5.25) with k = 0, (4.5)–(4.6), the momentum condition j − j ′ =
−�j · �, and the elementary inequality || j | 32 − | j ′| 32 | � || j | 12 − | j ′| 12 |, we deduce
the lower bound

|μ∞j (κ)− μ∞j ′ (κ)| � (1− Cε)
√
κ
(∣∣| j | 32 − | j ′| 32 ∣∣− C

)

− Cε| �j · �| − Cε
∣∣| j | 12 − | j ′| 12 ∣∣− Cευ−1

�
√
κ

2

∣∣| j | 32 − | j ′| 32 ∣∣− Cε|�| − C ′ − Cευ−1.

(5.32)

Combining (5.31) and (5.32), we deduce || j | 32 −| j ′| 32 | � C〈�〉, for ε small enough.
��

In order to estimate the measure of the sets (5.27)–(5.30) that are nonempty,
the key point is to prove that the perturbed frequencies satisfy estimates similar to
(4.7)–(4.10).

Lemma 5.5. (Perturbed transversality) For ε ∈ (0, ε0) small enough and for all
κ ∈ [κ1, κ2],

max
0�n�m0

|∂nκ ��ε(κ) · �| �
ρ0

2
〈�〉 , ∀ � ∈ Z

ν\{0} ; (5.33)

{
max0�n�m0

|∂nκ ( ��ε(κ) · �+ μ∞j (κ))| � ρ0
2 〈�〉

�j · �+ j = 0 , � ∈ Z
ν , j ∈ S

c
0 ;

(5.34)

{
max0�n�m0

|∂nκ ( ��ε(κ) · �+ μ∞j (κ)− μ∞j ′ (κ))| � ρ0
2 〈�〉

�j · �+ j − j ′ = 0 , � ∈ Z
ν , j, j ′ ∈ S

c
0 , (�, j, j

′) �= (0, j, j) ; (5.35)

{
max0�n�m0

|∂nκ ( ��ε(κ) · �+ μ∞j (κ)+ μ∞j ′ (κ))| � ρ0
2 〈�〉

�j · �+ j + j ′ = 0 , � ∈ Z
ν , j, j ′ ∈ S

c
0.

(5.36)

We recall that ρ0 is the amount of non-degeneracy that has been defined in Propo-
sition 4.5.
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Proof. We prove (5.36). The proofs of (5.33), (5.34) and (5.36) are similar. By
(5.23) we have

��ε(κ) · �+ μ∞j (κ)− μ∞j ′ (κ) = ��(κ) · �+ �rε(κ) · �+� j (κ)−� j ′(κ)

+ (m∞3
2
(κ)− 1)

(
� j (κ)−� j ′(κ)

)+ m∞1 (κ)( j − j ′)

+ m∞1
2
(κ) (| j | 12 − | j ′| 12 )+ r∞j (κ)− r∞j ′ (κ).

(5.37)

By Lemma 4.4 we get that, for any n ∈ {0, . . . ,m0},
∣∣∂nκ (� j (κ)−� j ′(κ))

∣∣ � C(κ)
∣∣| j | 32 − | j ′| 32 ∣∣+ C � C ′(κ)〈�〉, (5.38)

because, by Lemma 5.4-2, we can restrict to indexes �, j, j ′ such that || j | 32 −
| j ′| 32 | � C〈�〉. Furthermore

∣∣| j | 12 − | j ′| 12 ∣∣ �
∣∣| j | 32 − | j ′| 32 ∣∣ � C〈�〉. (5.39)

Therefore, by (5.37), (5.24), (5.25), (5.22), (5.38), (5.39), and the momentum con-
dition j − j ′ = −�j · �, we have that, for any n ∈ {0, . . . ,m0},
|∂nκ ( ��ε(κ) · �+ μ∞j (κ)− μ∞j ′ (κ))| � |∂nκ ( ��(κ) · �+� j (κ)−� j ′(κ))|

− Cευ−(1+m0)〈�〉.

Since ��(κ) · �+� j (κ)−� j ′(κ) satisfies (4.10), we deduce that

max
0�n�m0

|∂nκ ( ��ε(κ) · �+ μ∞j (κ)− μ∞j ′ (κ))| � ρ0〈�〉 − Cευ−(1+m0)〈�〉 � ρ0
2 〈�〉

for ε > 0 small enough. ��
As an application of Rüssmann Theorem 17.1 in [37], we deduce the following

result:

Lemma 5.6. (Estimates of the resonant sets) The measure of the sets (5.26)- (5.30)
satisfy

|R(0)� | � (υ〈�〉−(τ+1)) 1
m0 , |R(I )�, j | �

(
υ| j | 32 〈�〉−(τ+1)) 1

m0 ,

|R(I I )
�, j, j ′ | �

(
υ 〈| j | 32 − | j ′| 32 〉〈�〉−(τ+1)) 1

m0 ,

|Q(I I )
�, j, j ′ | �

(
υ

(| j | 32 + | j ′| 32 )〈�〉−(τ+1)) 1
m0 ,

and, recalling Lemma 5.4,

|R(I )�, j | , |R(I I )�, j, j ′ | , |Q(I I )�, j, j ′ | � (υ〈�〉−τ ) 1
m0 .
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Proof. We estimate R(I I )
�, j, j ′ defined in (5.29). The other cases follow similarly.

Defining f�, j, j ′(κ) := ( ��ε(κ) · �+ μ∞j (κ)− μ∞j ′ (κ))〈�〉−1, we write

R(I I )
�, j, j ′ =

{
κ ∈ [κ1, κ2] :

∣∣ f�, j, j ′(κ)
∣∣ < 4υ 〈| j | 32 − | j ′| 32 〉〈�〉−τ−1}.

By Lemma 5.4-2 we restrict to indexes satisfying
∣∣| j | 32 −| j ′| 32 ∣∣ � C〈�〉. By (5.36),

max
0�n�m0

∣∣∂nκ f�, j, j ′(κ)
∣∣ � ρ0/2 , ∀ κ ∈ [κ1, κ2].

In addition, by (5.21)–(5.25), Lemma4.4, themomentumcondition | j− j ′| = | �j ·�|,
and (5.39), we deduce that max0�n�k0

∣∣∂nκ f�, j, j ′(κ)
∣∣ � C for all κ ∈ [κ1, κ2],

provided ευ−(1+k0) is small enough, namely, by (5.19) and ε small enough. In
particular, f�, j, j ′ is of class Ck0−1 = Cm0+1. Thus Theorem 17.1 in [37] applies. ��
Proof of Theorem 5.3 completed. Weestimate themeasure of all the sets in (5.26).
By Lemma 5.4 and Lemma 5.6 we have that

∣∣∣
⋃

� �=0
R(0)
�

∣∣∣ �
∑

� �=0
|R(0)
�
| �

∑

� �=0

( υ

〈�〉τ+1
) 1

m0 , (5.40)

∣∣∣∣∣∣∣∣∣

⋃

�, j∈Sc0�j ·�+ j=0

R(I )
�, j

∣∣∣∣∣∣∣∣∣

�
∑

| j |�C〈�〉
2
3

�j ·�+ j=0

|R(I )
�, j | �

∑

| j |�C〈�〉 23

( υ

〈�〉τ
) 1

m0 �
∑

�∈Zν
υ

1
m0

〈�〉
τ
m0
− 2

3

, (5.41)

∣∣∣∣∣∣∣∣∣

⋃

�, j, j ′∈Sc0
�j ·�+ j+ j ′=0

Q(I I )
�, j, j ′

∣∣∣∣∣∣∣∣∣

�
∑

| j |,| j ′|�C〈�〉 23
|Q(I I )
�, j, j ′ | �

∑

| j |,| j ′|�C〈�〉 23

(
υ

〈�〉τ
) 1

m0 �
∑

�∈Zν
υ

1
m0

〈�〉
τ
m0
− 4

3

.

(5.42)

We are left with estimating the measure of

⋃

(�, j, j ′) �=(0, j, j), j �= j ′
�j ·�+ j− j ′=0

R(I I )
�, j, j ′ =

⎛

⎜⎜
⎝

⋃

�, j∈Sc0�j ·�+2 j=0

R(I I )�, j,− j

⎞

⎟⎟
⎠ ∪

⎛

⎜⎜
⎝

⋃

�, j, j ′ , | j |�=| j ′|
�j ·�+ j− j ′=0

R(I I )
�, j, j ′

⎞

⎟⎟
⎠ . (5.43)

By the momentum condition �j · � + 2 j = 0 we get | j | � C 〈�〉, and, by Lemma
5.6,

∣∣∣
⋃

�, j∈Sc0, �j ·�+2 j=0
R(I I )�, j,− j

∣∣∣ �
∑

| j |�C〈�〉

∣∣R(I I )�, j,− j

∣∣ �
∑

| j |�C〈�〉

(
υ

〈�〉τ
) 1

m0 �
∑

�∈Zν
υ

1
m0

〈�〉 τm0
−1 .

(5.44)
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Finally we estimate the measure of the second union in (5.43). By Lemma 5.4-2 we
can restrict to indexes satisfying || j |3/2−| j ′|3/2| � C 〈�〉 .Now, for any | j | �= | j ′|,
we have

∣∣| j | 32 − | j ′| 32 ∣∣ = ∣∣| j | 12 − | j ′| 12 ∣∣ (| j | + | j ′| + | j | 12 | j ′| 12 )

� | j | + | j
′| + | j | 12 | j ′| 12

| j | 12 + | j ′| 12
� | j |

1
2 + | j ′| 12
2

,

implying the upper bounds | j |, | j ′| � C 〈�〉2. Hence
∣∣∣∣∣∣∣∣

⋃

�, j, j ′ , | j |�=| j ′ |
�j ·�+ j− j ′=0

R(I I )
�, j, j ′

∣∣∣∣∣∣∣∣

�
∑

| j |,| j ′|�C〈�〉2
|R(I I )
�, j, j ′ | �

∑

| j |,| j ′|�C〈�〉2

(
υ

〈�〉τ
) 1

m0 �
∑

�∈Zν
υ

1
m0

〈�〉 τm0
−4 .

(5.45)
As τ

m0
− 4 > ν by (5.19), all the series in (5.40), (5.41), (5.42), (5.44), (5.45) are

convergent, and we deduce
∣∣Gc
ε

∣∣ � Cυ
1
m0 .

For υ = εa as in (5.19), we get |Gε| � κ2 − κ1 − Cεa/m0 . The proof of Theorem
5.3 is concluded. ��

6. Approximate Inverse

In order to implement a convergent Nash–Moser scheme that leads to a solu-
tion of F(i, α) = 0, where F(i, α) is the nonlinear operator defined in (5.5), we
construct an almost approximate right inverse of the linearized operator

di,αF(i0, α0)[̂ı, α̂] = ω · ∂ϕ̂ı − di XHα (i0(ϕ)) [̂ı] − (̂α, 0, 0) .

Note that di,αF(i0, α0) = di,αF(i0) is independent of α0. We assume that the torus
i0(ϕ) = (θ0(ϕ), I0(ϕ),w0(ϕ)) is reversible and traveling, according to (5.7).

In the sequel we shall assume the smallness condition, for some k := k(τ, ν) >
0,

ευ−k % 1.

Weclosely follow the strategy presented in [4] and implemented for thewaterwaves
equations in [2,6]. The main novelty is to check that this construction preserves
the momentum preserving properties needed for the search of traveling waves.
Therefore, along this section we shall focus on this verification. The estimates are
very similar to those in [2,6].

First of all, we state tame estimates for the composition operator induced by
the Hamiltonian vector field XP = (∂I P,−∂θ P,�∠

S+,� J∇wP) in (5.5).



Traveling Quasi-periodic Water Waves with Constant Vorticity 151

Lemma 6.1. (Estimates of theperturbation P)LetI(ϕ) in (5.8) satisfy‖I‖k0,υ3s0+2k0+5
� 1. Then, for any s � s0, ‖XP (i)‖k0,υs �s 1 + ‖I‖k0,υs+2s0+2k0+3, and, for all

ı̂ := (θ̂ , Î , ŵ),
‖di X P (i)[̂ı]‖k0,υs �s ‖̂ı‖k0,υs+1 + ‖I‖k0,υs+2s0+2k0+4 ‖̂ı‖

k0,υ
s0+1 ,

∥∥∥d2i X P (i)[̂ı, ı̂]
∥∥∥
k0,υ

s
�s ‖̂ı‖k0,υs+1 ‖̂ı‖k0,υs0+1 + ‖I‖k0,υs+2s0+2k0+5 (‖̂ı‖

k0,υ
s0+1)

2.

Proof. The proof goes as in Lemma 5.1 of [6], using also the estimates of the
Dirichlet-Neumann operator in Lemma 3.10. ��

Throughout this section, we assume the following hypothesis, which is verified
by the approximate solutions obtained at each step of the Nash–Moser Theorem
9.2:

• ANSATZ. The map (ω, κ) �→ I0(ω, κ) = i0(ϕ;ω, κ) − (ϕ, 0, 0) is k0-times
differentiable with respect to the parameters (ω, κ) ∈ R

ν × [κ1, κ2] and, for
some μ := μ(τ, ν) > 0, υ ∈ (0, 1),

‖I0‖k0,υs0+μ + |α0 − ω|k0,υ � Cευ−1. (6.1)

As in [2,4,6], we first modify the approximate torus i0(ϕ) to obtain a nearby
isotropic torus iδ(ϕ), namely such that the pull-back 1-form i∗δ � is closed, where
� is the Liouville 1-form defined in (2.55). We first consider the pull-back 1-form

i∗0� =
ν∑

k=1
ak(ϕ)dϕk ,

ak(ϕ) := −
([∂ϕθ0(ϕ)]& I0(ϕ)

)
k + 1

2

(
J−1∠ w0(ϕ), ∂ϕkw0(ϕ)

)
L2 , (6.2)

and its exterior differential

i∗0W = di∗0� =
∑

1�k< j�ν
Akjdϕk ∧ dϕ j , Akj (ϕ) := ∂ϕk a j (ϕ)− ∂ϕ j ak(ϕ).

By the formula given in Lemma 5 in [4], we deduce, if ω belongs to DC(υ, τ ), the
estimate

∥∥Akj
∥∥k0,υ
s �s υ

−1( ‖Z‖k0,υs+τ(k0+1)+k0+1 + ‖Z‖
k0,υ
s0+1 ‖I0‖k0,υs+τ(k0+1)+k0+1

)
,

where Z(ϕ) is the “error function”

Z(ϕ) := F(i0, α0)(ϕ) = ω · ∂ϕi0(ϕ)− XHα0
(i0(ϕ)) .

Note that if Z(ϕ) = 0, the torus i0(ϕ) is invariant for XHα0
and the 1-form i∗0� is

closed, namely the torus i0(ϕ) is isotropic. We denote below the Laplacian �ϕ :=∑ν
k=1 ∂2ϕk .
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Lemma 6.2. (Isotropic torus) The torus iδ(ϕ) := (θ0(ϕ), Iδ(ϕ),w0(ϕ)), defined by

Iδ(ϕ) := I0(ϕ)+ [∂ϕθ0(ϕ)]−&ρ(ϕ) ,

ρ = (ρ j ) j=1,...,ν , ρ j (ϕ) := �−1ϕ
ν∑

k=1
∂ϕk Ak j (ϕ) , (6.3)

is isotropic. Moreover, there is σ := σ(ν, τ ) such that, for all s � s0,

‖Iδ − I0‖k0,υs �s ‖I0‖k0,υs+1 , (6.4)

‖Iδ − I0‖k0,υs �s υ
−1( ‖Z‖k0,υs+σ + ‖Z‖k0,υs0+σ ‖I0‖k0,υs+σ

)
(6.5)

‖F(iδ, α0)‖k0,υs �s ‖Z‖k0,υs+σ + ‖Z‖k0,υs0+σ ‖I0‖k0,υs+σ (6.6)

‖di (iδ)[̂ı]‖s1 �s1 ‖̂ı‖s1+1 , (6.7)

for s1 � s0 + μ (cfr. (6.1)). Furthermore iδ(ϕ) is a reversible and traveling torus,
cfr. (5.7).

Proof. Since i0(ϕ) is a traveling torus (see (3.52)), in order to prove that iδ(ϕ) is
a traveling torus it is sufficient to prove that Iδ(ϕ − �jς) = Iδ(ϕ), for any ς ∈ R.
In view of (6.3), this follows by checking that ∂ϕθ0(ϕ − �jς) = ∂ϕθ0(ϕ) and
ρ(ϕ − �jς) = ρ(ϕ) for any ς ∈ R. The first identity is a trivial consequence of the
fact that θ0(ϕ− �jς) = θ0(ϕ)− �jς for any ς ∈ R, whereas the second one follows
once we prove that the functions ak(ϕ) defined in (6.2) satisfy

ak(ϕ − �jς) = ak(ϕ) ∀ ς ∈ R , ∀k = 1, . . . , ν. (6.8)

Using that i0(ϕ) is a traveling torus, we get, for any ς ∈ R,
(
∂ϕkw0(ϕ − �jς), J−1∠ w0(ϕ − �jς)

)

L2
=

(
∂ϕk τςw0(ϕ), J

−1
∠ τςw0(ϕ)

)

L2

=
(
∂ϕkw0(ϕ), J

−1
∠ w0(ϕ)

)

L2

and, recalling (6.2), we deduce (6.8). Moreover, since i0(ϕ) is reversible, in order
to prove that iδ(ϕ) is reversible as well, it is sufficient to show that Iδ(ϕ) is even.
This follows by (6.2), Lemma 3.23 and S J−1 = −J−1S. Finally, the estimates
(6.4)–(6.7) follow for example as in Lemma 5.3 in [2]. ��

In the sequel we denote by σ = σ(ν, τ ) constants, which may increase from
lemma to lemma, which represent “loss of derivatives”.

In order to find an approximate inverse of the linearized operator di,αF(iδ), we
introduce the symplectic diffeomorphism Gδ : (φ, y,w)→ (θ, I, w) of the phase
space Tν × R

ν × H∠
S+,� ,

⎛

⎝
θ

I
w

⎞

⎠ := Gδ

⎛

⎝
φ

y
w

⎞

⎠ :=
⎛

⎝
θ0(φ)

Iδ(φ)+
[
∂φθ0(φ)

]−&
y + [(∂θ w̃0)(θ0(φ))]& J−1∠ w

w0(φ)+ w

⎞

⎠ ,

(6.9)
where w̃0(θ) := w0(θ

−1
0 (θ)). It is proved in Lemma 2 of [4] that Gδ is symplectic,

because the torus iδ is isotropic (Lemma 6.2). In the new coordinates, iδ is the trivial
embedded torus (φ, y,w) = (φ, 0, 0).
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Lemma 6.3. The diffeomorphism Gδ in (6.9) is reversibility and momentum pre-
serving, in the sense that

�S ◦ Gδ = Gδ ◦ �S, �τς ◦ Gδ = Gδ ◦ �τς , ∀ ς ∈ R , (6.10)

where �S and �τς are defined respectively in (2.51), (2.52).

Proof. We prove the second identity in (6.10), which, in view of (6.9), (2.52)
amounts to

θ0(φ)− �jς = θ0(φ − �jς) , ∀ς ∈ R , (6.11)

Iδ(φ)+
[
∂φθ0(φ)

]−&
y + [(∂θ w̃0)(θ0(φ))]

& J−1∠ w (6.12)

= Iδ(φ − �jς)+
[
∂φθ0(φ − �jς)

]−&
y + [

(∂θ w̃0)(θ0(φ − �jς))
]&

J−1∠ τςw ,

τςw0(φ)+ τςw = w0(φ − �jς)+ τςw. (6.13)

Identities (6.11) and (6.13) follow because iδ(ϕ) is a traveling torus (Lemma 6.2).
For the same reason Iδ(φ) = Iδ(φ − �jς) and ∂φθ0(φ) = ∂φθ0(φ − �jς) for any
ς ∈ R. Hence, for verifying (6.12) it is sufficient to check that [(∂θ w̃0)(θ0(φ))]& =
[(∂θ w̃0)(θ0(φ − �jς))]&τς (we have used that J−1∠ and τς commute by Lemma
3.31), which in turn follows by

τς ◦ (∂θ w̃0)(θ0(φ)) = (∂θ w̃0)(θ0(φ − �jς)) , ∀ς ∈ R , (6.14)

by taking the transpose and using that τ&ς = τ−ς = τ−1ς . We claim that (6.14) is
implied by w̃0 being a traveling wave, that is

τς w̃0(θ, ·) = w̃0(θ − �jς), ∀ς ∈ R. (6.15)

Indeed, taking the differential of (6.15) with respect to θ , evaluating at θ = θ0(ϕ),
and using that θ0(ϕ) − �jς = θ0(ϕ − �jς) one deduces (6.14). It remains to prove
(6.15). By the definition of w̃0, and since w0 is a traveling wave, we have

w̃0(θ − �jς) = w0(θ
−1
0 (θ − �jς)) = w0(θ

−1
0 (θ)− �jς) = τςw0(θ

−1
0 (θ)) = τς w̃0 ,

using also that θ−10 (θ − �jς) = θ−10 (θ) − �jς , which follows by inverting (6.11).
The proof of the first identity in (6.10) follows by (6.9), (2.51), the fact that iδ is
reversible, Lemma 3.23 and since J−1 and S anti-commute. ��

Under the symplectic diffeomorphism Gδ , the Hamiltonian vector field XHα
changes into

XKα = (DGδ)
−1 XHα ◦ Gδ where Kα := Hα ◦ Gδ. (6.16)

By (6.10) and (5.6) we deduce that Kα is reversible and momentum preserving, in
the sense that

Kα ◦ �S = Kα, Kα ◦ �τς = Kα , ∀ ς ∈ R. (6.17)

The Taylor expansion of Kα at the trivial torus (φ, 0, 0) is

Kα(φ, y,w) = K00(φ, α)+ K10(φ, α) · y + (K01(φ, α),w)L2 + 1
2K20(φ)y · y
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+(K11(φ)y,w)L2+ 1
2 (K02(φ)w,w)L2+K�3(φ, y,w) , (6.18)

where K�3 collects all terms at least cubic in the variables (y,w). By (5.4) and
(6.9), the only Taylor coefficients that depend on α are K00 ∈ R, K10 ∈ R

ν and
K01 ∈ H∠

S+,� , whereas the ν× ν symmetric matrix K20, K11 ∈ L(Rν,H∠
S+,�) and

the linear self-adjoint operator K02, acting on H∠
S+,� , are independent of it.

Differentiating the identities in (6.17) at (φ, 0, 0), we have (recalling (2.51))

K00(−φ) = K00(φ) , K10(−φ) = K10(φ) , K20(−φ) = K20(φ) ,

S ◦ K01(−φ) = K01(φ) , S ◦ K11(−φ) = K11(φ) ,

K02(−φ) ◦ S = S ◦ K02(φ) ,

(6.19)

and, recalling (2.52) and using that τ&ς = τ−ς = τ−1ς , for any ς ∈ R,

K00(φ − �jς) = K00(φ) , K10(φ − �jς) = K10(φ) , K20(φ − �jς) = K20(φ) ,

K01(φ − �jς) = τςK01(φ) , K11(φ − �jς) = τςK11(φ) ,

K02(φ − �jς) ◦ τς = τς ◦ K02(φ).

(6.20)

The Hamilton equations associated to (6.18) are

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ̇ = K10(φ, α)+ K20(φ)y + [K11(φ)]&w+ ∂y K�3(φ, y,w)

ẏ = −∂φK00(φ, α)− [∂φK10(φ, α)]&y − [∂φK01(φ, α)]&w
−∂φ

(
1
2K20(φ)y · y + (K11(φ)y,w)L2 + 1

2 (K02(φ)w,w)L2 + K�3(φ, y,w)
)

ẇ = J∠
(
K01(φ, α)+ K11(φ)y + K02(φ)w+∇wK�3(φ, y,w)

)

(6.21)
where ∂φK&10 is the ν × ν transposed matrix and ∂φK&01, K&11 : H∠

S+,� → R
ν are

defined by the duality relation (∂φK01[φ̂],w)L2 = φ̂ · [∂φK01]&w for any φ̂ ∈ R
ν ,

w ∈ H∠
S+,� . The transpose K&11(φ) is defined similarly.

On an exact solution (that is Z = 0), the terms K00, K01 in the Taylor expansion
(6.18) vanish and K10 = ω. More precisely, arguing as in Lemma 5.4 in [2], we
have

Lemma 6.4. There is σ := σ(ν, τ ) > 0, such that, for all s � s0,

∥∥∂φK00(·, α0)
∥∥k0,υ
s + ‖K10(·, α0)− ω‖k0,υs + ‖K01(·, α0)‖k0,υs

�s ‖Z‖k0,υs+σ + ‖Z‖k0,υs0+σ ‖I0‖k0,υs+σ ,
‖∂αK00‖k0,υs + ‖∂αK10 − Id‖k0,υs + ‖∂αK01‖k0,υs �s ‖I0‖k0,υs+σ ,
‖K20‖k0,υs �s ε(1+ ‖I0‖k0,υs+σ ) ,
‖K11y‖k0,υs �s ε(‖y‖k0,υs + ‖y‖k0,υs0 ‖I0‖k0,υs+σ ) ,
∥∥∥K&11w

∥∥∥
k0,υ

s
�s ε(‖w‖k0,υs + ‖w‖k0,υs0 ‖I0‖k0,υs+σ ).
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Under the linear change of variables

DGδ(ϕ, 0, 0)

⎛

⎝
φ̂

ŷ
ŵ

⎞

⎠ :=
⎛

⎝
∂φθ0(ϕ) 0 0
∂φ Iδ(ϕ) [∂φθ0(ϕ)]−& [(∂θ w̃0)(θ0(ϕ))]& J−1∠
∂φw0(ϕ) 0 Id

⎞

⎠

⎛

⎝
φ̂

ŷ
ŵ

⎞

⎠ ,

the linearized operator di,αF(iδ) is approximately transformed into the one ob-
tained when one linearizes the Hamiltonian system (6.21) at (φ, y,w) = (ϕ, 0, 0),
differentiating also in α at α0 and changing ∂t � ω · ∂ϕ , namely

⎛

⎜⎜
⎝

φ̂

ŷ
ŵ
α̂

⎞

⎟⎟
⎠ �→

⎛

⎜⎜
⎝

ω · ∂ϕφ̂ − ∂φK10(ϕ)[φ̂] − ∂αK10(ϕ)[̂α] − K20(ϕ)ŷ − [K11(ϕ)]&ŵ
ω · ∂ϕ ŷ + ∂φφK00(ϕ)[φ̂] + ∂α∂φK00(ϕ)[̂α] + [∂φK10(ϕ)]& ŷ + [∂φK01(ϕ)]&ŵ

ω · ∂ϕ ŵ− J∠
(
∂φK01(ϕ)[φ̂] + ∂αK01(ϕ)[̂α] + K11(ϕ)ŷ + K02(ϕ)̂w

)

⎞

⎟⎟
⎠ .

(6.22)
In order to construct an “almost approximate” inverse of (6.22), we need that

Lω := �∠
S+,�

(
ω · ∂ϕ − J K02(ϕ)

) |H∠
S+,�

(6.23)

is “almost invertible” (on traveling waves) up to remainders of size O(N−an−1),
where, for n ∈ N0

Nn := K p
n , Kn := K χ

n

0 , χ = 3/2. (6.24)

The (Kn)n�0 is the scale used in the nonlinear Nash–Moser iteration of Section 9

and (Nn)n�0 is the one in the reducibility scheme of Section 8. Let Hs
∠(T

ν+1) :=
Hs(Tν+1) ∩ H∠

S+,� .

(AI) Almost invertibility of Lω: There exist positive real numbers σ , μ(b), a, p,
K0 and a subset �o ⊂ DC(υ, τ ) × [κ1, κ2] such that, for all (ω, κ) ∈ �o, the
operator Lω may be decomposed as

Lω = L<ω +Rω +R⊥ω , (6.25)

where, for every traveling wave function g ∈ Hs+σ
∠ (Tν+1,R2) and for every

(ω, κ) ∈ �o, there is a traveling wave solution h ∈ Hs
∠(T

ν+1,R2) ofL<ω h = g
satisfying, for all s0 � s � S,

∥∥∥(L<ω )−1g
∥∥∥
k0,υ

s
�S υ

−1( ‖g‖k0,υs+σ + ‖g‖k0,υs0+σ ‖I0‖k0,υs+μ(b)+σ
)
. (6.26)

In addition, if g is anti-reversible, then h is reversible. Moreover, for any s0 �
s � S, for any traveling wave h ∈ H∠

S+,� , the operators Rω,R⊥ω satisfy the
estimates

‖Rωh‖k0,υs �S ευ
−1N−an−1

( ‖h‖k0,υs+σ + ‖h‖k0,υs0+σ ‖I0‖k0,υs+μ(b)+σ
)
,

∥∥∥R⊥ω h
∥∥∥
k0,υ

s0
�S K−bn

( ‖h‖k0,υs0+b+σ + ‖h‖
k0,υ
s0+σ ‖I0‖s0+μ(b)+σ+b

)
, ∀ b > 0 ,

∥∥∥R⊥ω h
∥∥∥
k0,υ

s
�S ‖h‖k0,υs+σ + ‖h‖k0,υs0+σ ‖I0‖k0,υs+μ(b)+σ .
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This assumption shall be verified by Theorem 8.10 at each n-th step of the Nash–
Moser nonlinear iteration.

In order to find an almost approximate inverse of the linear operator in (6.22)
(and so of di,αF(iδ)), it is sufficient to invert the operator

D
[
φ̂, ŷ, ŵ, α̂

] :=
⎛

⎝
ω · ∂ϕφ̂ − ∂αK10(ϕ)[̂α] − K20(ϕ)ŷ − K&11(ϕ)̂w

ω · ∂ϕ ŷ + ∂α∂φK00(ϕ)[̂α]
L<ω ŵ− J∠ (∂αK01(ϕ)[̂α] + K11(ϕ)ŷ)

⎞

⎠ (6.27)

obtained neglecting in (6.22) the terms ∂φK10, ∂φφK00, ∂φK00, ∂φK01 (they vanish
at an exact solution by Lemma 6.4) and the small remainders Rω, R⊥ω appearing
in (6.25). We look for an inverse of D by solving the system

D
[
φ̂, ŷ, ŵ, α̂

] =
⎛

⎝
g1
g2
g3

⎞

⎠ , (6.28)

where (g1, g2, g3) is an anti-reversible traveling wave variation (cfr. Definition
3.33), that is

g1(ϕ) = g1(−ϕ), g2(ϕ) = −g2(−ϕ), Sg3(ϕ) = −g3(−ϕ) , (6.29)

g1(ϕ) = g1(ϕ − �jς), g2(ϕ) = g2(ϕ − �jς), τςg3(ϕ) = g3(ϕ − �jς), ∀ς ∈ R.

(6.30)

We first consider the second equation in (6.27)–(6.28), that is ω · ∂ϕ ŷ = g2 −
∂α∂φK00(ϕ)[̂α]. By (6.29) and (6.19), the right hand side of this equation is odd in
ϕ. In particular, this has zero average, and so

ŷ := (ω · ∂ϕ)−1(g2 − ∂α∂φK00(ϕ)[̂α]). (6.31)

Since g2(ϕ) = g2(ϕ − �jς) for any ς ∈ R by (6.30) and ∂α∂φK00(ϕ)[̂α] satisfies
the same property by (6.20), we also deduce that

ŷ(ϕ − �jς) = ŷ(ϕ), ∀ς ∈ R. (6.32)

Next we consider the third equation L<ω ŵ = g3 + J∠(∂αK01(ϕ)[̂α] + K11(ϕ)ŷ).
The right hand side of this equation is a traveling wave by (6.30), (6.20), (6.32)
and since J∠ = �∠

S+,� J|H∠
S+,�

commutes with τς (by Lemma 3.31). Thus, by

assumption (AI), there is a traveling wave solution

ŵ := (L<ω )−1
(
g3 + J∠(∂αK01(ϕ)[̂α] + K11(ϕ)ŷ)

)
. (6.33)

Finally, we solve the first equation in (6.28), which, inserting (6.31) and (6.33),
becomes

ω · ∂ϕφ̂ = g1 + M1(ϕ)[̂α] + M2(ϕ)g2 + M3(ϕ)g3 , (6.34)

where

M1(ϕ) := ∂αK10(ϕ)− M2(ϕ)∂α∂φK00(ϕ)+ M3(ϕ)J∠∂αK01(ϕ) ,

M2(ϕ) := K20(ϕ)(ω · ∂ϕ)−1 + K&11(ϕ)
(L<ω

)−1
J∠K11(ϕ)(ω · ∂ϕ)−1 ,
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M3(ϕ) := K&11(ϕ)
(L<ω

)−1
.

In order to solve (6.34), we choose α̂ such that the average in ϕ of the right hand
side is zero. By Lemma 6.4 and (6.1), the ϕ-average of the matrix M1 satisfies
〈M1〉ϕ = Id + O(ευ−1). Then, for ευ−1 small enough, 〈M1〉ϕ is invertible and
〈M1〉−1ϕ = Id + O(ευ−1). Thus we define

α̂ := −〈M1〉−1ϕ
(〈g1〉ϕ + 〈M2g2〉ϕ + 〈M3g3〉ϕ

)
, (6.35)

and the solution of equation (6.34)

φ̂ := (ω · ∂ϕ)−1
(
g1 + M1(ϕ)[̂α] + M2(ϕ)g2 + M3(ϕ)g3

)
. (6.36)

Finally the property φ̂(ϕ− �jς) = φ̂(ϕ) for any ς ∈ R follows by (6.20), (6.32) and
the fact that ŵ in (6.33) is a traveling wave. This proves that (φ̂, ŷ, ŵ) is a traveling
wave variation, that is (6.30) holds. Moreover, using (6.29), (6.19), Lemma 3.23,
the fact that J andS anti-commutes and (AI), one checks that (φ̂, ŷ, ŵ) is reversible,
that is

φ̂(ϕ) = −φ̂(−ϕ), ŷ(ϕ) = ŷ(−ϕ), Sŵ(ϕ) = ŵ(−ϕ). (6.37)

In conclusion, we have obtained a solution (φ̂, ŷ, ŵ, α̂) of the linear system (6.28),
and, denoting the norm ‖(φ, y,w, α)‖k0,υs := max

{‖(φ, y,w)‖k0,υs , |α|k0,υ }
, we

have

Proposition 6.5. Assume (6.1) (with μ = μ(b) + σ ) and (AI). Then, for all
(ω, κ) ∈ �o, for any anti-reversible traveling wave variation g = (g1, g2, g3) (that
is satisfying (6.29)–(6.30)), system (6.28) has a solutionD−1g := (φ̂, ŷ, ŵ, α̂), with
(φ̂, ŷ, ŵ, α̂) defined in (6.36),(6.31),(6.33),(6.35), where (φ̂, ŷ, ŵ) is a reversible
traveling wave variation, satisfying, for any s0 � s � S

‖D−1g‖k0,υs �S υ
−1(‖g‖k0,υs+σ + ‖I0‖k0,υs+μ(b)+σ ‖g‖k0,υs0+σ

)
. (6.38)

Proof. The estimate (6.38) follows by the explicit expression of the solution in
(6.31), (6.33), (6.35), (6.36), and Lemma 6.4, (6.26), (6.1). ��

Finally we prove that the operator

T0 := T0(i0) := (DG̃δ)(ϕ, 0, 0) ◦ D−1 ◦ (DGδ)(ϕ, 0, 0)
−1 (6.39)

is an almost approximate right inverse for di,αF(i0), where G̃δ(φ, y,w, α) :=
(Gδ(φ, y,w), α) is the identity on the α-component.

Theorem 6.6. (Almost approximate inverse) Assume (AI). Then there is σ :=
σ(τ, ν, k0) > 0 such that, if (6.1) holds with μ = μ(b)+ σ , then, for all (ω, κ) ∈
�o and for any anti-reversible traveling wave variation g := (g1, g2, g3) (that is
satisfying (6.29)–(6.30)), the operator T0 defined in (6.39) satisfies, for all s0 �
s � S,

‖T0g‖k0,υs �S υ
−1(‖g‖k0,υs+σ + ‖I0‖k0,υs+μ(b)+σ‖g‖k0,υs0+σ

)
. (6.40)
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Moreover, the first three components of T0g form a reversible traveling wave vari-
ation (that is satisfy (6.37) and (6.30)). Finally, T0 is an almost approximate right
inverse of di,αF(i0), namely

di,αF(i0) ◦ T0 − Id = P(i0)+ Pω(i0)+ P⊥ω (i0) ,

where, for any traveling wave variation g, for all s0 � s � S,

‖Pg‖k0,υs �S υ
−1(‖F(i0, α0)‖k0,υs0+σ ‖g‖

k0,υ
s+σ

+ (‖F(i0, α0)‖k0,υs+σ + ‖F(i0, α0)‖k0,υs0+σ ‖I0‖
k0,υ
s+μ(b)+σ

)‖g‖k0,υs0+σ
)
,

(6.41)

‖Pωg‖k0,υs �S ευ
−2N−an−1

(‖g‖k0,υs+σ + ‖I0‖k0,υs+μ(b)+σ ‖g‖k0,υs0+σ
)
, (6.42)

‖P⊥ω g‖k0,υs0 �S,b υ
−1K−bn

(
‖g‖k0,υs0+σ+b + ‖I0‖

k0,υ
s0+μ(b)+b+σ‖g‖

k0,υ
s0+σ

)
, ∀ b > 0 ,

(6.43)

‖P⊥ω g‖k0,υs �S υ
−1(‖g‖k0,υs+σ + ‖I0‖k0,υs+μ(b)+σ‖g‖k0,υs0+σ

)
. (6.44)

Proof. We claim that the first three components of T0g form a reversible travel-
ing wave variation. Indeed, differentiating (6.10) it follows that DGδ(ϕ, 0, 0), thus
(DGδ(ϕ, 0, 0))−1, is reversibility andmomentum preserving (cfr. (3.54)). In partic-
ular these operatorsmap an (anti)-reversible, respectively traveling, waves variation
into a (anti)-reversible traveling waves variation (cfr. Lemma 3.34). Moreover, by
Proposition 6.5, the operator D−1 maps an anti-reversible traveling wave into a
vector whose first three components form a reversible traveling wave. This proves
the claim.

We now prove that the operators P,Pω and P⊥ω are defined on traveling waves.
They are computed for example in Theorem 5.6 of [2]. To define them, introduce
first the linear operators

RZ [φ̂, ŷ, ŵ, α̂] :=
⎛

⎝
−∂φK10(ϕ, α0)[φ̂]

∂φφK00(ϕ, α0)[φ̂] + [∂φK10(ϕ, α0)]& ŷ + [∂φK01(ϕ, α0)]&ŵ
− J∠∂φK01(ϕ, α0)[φ̂]

⎞

⎠

and

Rω[φ̂, ŷ, ŵ, α̂] :=
⎛

⎝
0
0

Rω [̂w]

⎞

⎠ , R
⊥
ω [φ̂, ŷ, ŵ, α̂] :=

⎛

⎝
0
0

R⊥ω [̂w]

⎞

⎠ . (6.45)

Next, we denote by � the projection (̂ı, α̂) �→ ı̂ , by uδ(ϕ) = (ϕ, 0, 0) the trivial
torus, and by E , Eω, E⊥ω the linear operators

E := di,αF(i0)−di,αF(iδ)+D2Gδ(uδ)
[
DGδ(uδ)

−1F(iδ, α0), DGδ(uδ)
−1�[ · ] ]

+ DGδ(uδ)RZ DG̃δ(uδ)
−1 ,

Eω := DGδ(uδ)RωDG̃δ(uδ)
−1 , E⊥ω := DGδ(uδ)R

⊥
ω DG̃δ(uδ)

−1. (6.46)
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It is then proved in Theorem 5.6 of [2] that P := E ◦ T0, Pω := Eω ◦ T0, P⊥ω :=
E⊥ω ◦T0. A direct inspection of these formulas shows thatP,Pω andP⊥ω are defined
on traveling wave variations. In particular, note that the operatorsRω,R⊥ω in (6.45)
are defined only if ŵ is a traveling wave, because the operators Rω,R⊥ω defined
in (AI) act only on a traveling wave. However, note that, if g is a traveling wave
variation, the third component of DG̃δ(uδ)−1T0g is a traveling wave and therefore
the operators Eω, E⊥ω in (6.46) are well defined.

The estimates (6.41)–(6.44) are proved as in Theorem 5.6 of [2], using Lemma
6.5. ��

7. The Linearized Operator in the Normal Subspace

We nowwrite an explicit expression of the linear operatorLω defined in (6.23).

Lemma 7.1. The Hamiltonian operator Lω defined in (6.23), acting on the normal
subspace H∠

S+,� , has the form

Lω = �∠
S+,�(L− εJ R)|H∠

S+,�
, (7.1)

where :

1. L is the Hamiltonian operator

L := ω · ∂ϕ − J∂u∇uH(Tδ(ϕ)) , (7.2)

where H is the water waves Hamiltonian in the Wahlén variables defined in
(2.13), evaluated at

Tδ(φ) := εA(iδ(φ)) = εA (θ0(φ), Iδ(φ),w0(φ))

= εvᵀ (θ0(φ), Iδ(φ))+ εw0(φ) ,
(7.3)

the torus iδ(ϕ) := (θ0(ϕ), Iδ(ϕ),w0(ϕ)) is defined inLemma6.2and A(θ, I, w),
vᵀ(θ, I ) in (2.50);

2. R(φ) has the finite rank form

R(φ)[h] =
ν∑

j=1

(
h, g j

)
L2 χ j , ∀ h ∈ H∠

S+,� , (7.4)

for functions g j , χ j ∈ H∠
S+,� which satisfy, for some σ := σ(τ, ν, k0) > 0, for

all j = 1, . . . , ν, for all s � s0,

∥∥g j
∥∥k0,υ
s + ∥∥χ j

∥∥k0,υ
s �s 1+ ‖Iδ‖k0,υs+σ ,∥∥di g j [̂ı]

∥∥
s +

∥∥diχ j [̂ı]
∥∥
s �s ‖̂ı‖s+σ + ‖̂ı‖s0+σ ‖Iδ‖s+σ .

(7.5)

The operator Lω is reversible and momentum preserving.
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Proof. In view of (6.18), (6.16) and (5.4) we have

K02(φ) = ∂w∇wKα(φ, 0, 0) = ∂w∇w (Hα ◦ Gδ) (φ, 0, 0)
= �L2

∠ �W |H∠
S+,�
+ ε∂w∇w (P ◦ Gδ) (φ, 0, 0) , (7.6)

where �W is defined in (2.19) and Gδ in (6.9). Differentiating with respect to w
the Hamiltonian

(P ◦ Gδ)(φ, y,w) = P
(
θ0(φ), Iδ(φ)+ L1(φ)y + L2(φ)w, w0(φ)+ w

)
,

where L1(φ) := [∂φθ0(φ)]−& and L2(φ) := [∂φw̃0(θ0(φ))]& J−1∠ (see (6.9)), we
get

∂w∇w(P ◦ Gδ)(φ, 0, 0) = ∂w∇wP(iδ(φ))+ R(φ) , (7.7)

where R(φ) := R1(φ)+ R2(φ)+ R3(φ) and

R1 := L2(φ)
&∂2I P(iδ(φ))L2(φ) , R2 := L2(φ)

&∂w∂I P(iδ(φ)) ,
R3 := ∂I∇wP(iδ(φ))L2(φ).

Each operator R1, R2, R3 has the finite rank form (7.4) because it is the composition
of at least one operator with finite rank R

ν in the space variable (for more details
see for example Lemma 6.1 in [6]) and the estimates (7.5) follow by Lemma 6.1.
By (7.6), (7.7), (5.3), (5.2), (5.1), we obtain

K02(φ) = �L2

∠ (∂u∇uH)(εA(iδ(φ)))|H∠
S+,�
+ εR(φ). (7.8)

In conclusion, by (7.8), Lemma 2.7, and since Tδ(φ) = εA(iδ(φ)), we deduce that
the operatorLω in (6.23) has the form (7.1)–(7.2). Finally theoperator�∠

S+,� J K02(ϕ)

is reversible and momentum preserving, by (6.19), (6.20), Lemmata 3.23, 3.31, and
the fact that J commutes with τς and anti-commutes with S. ��

Weremark thatL in (7.2) is obtained by linearizing thewaterwavesHamiltonian
system (2.13), (2.14) in the Wahlén variables defined in (2.11) at the torus u =
(η, ζ ) = Tδ(ϕ) defined in (7.3) and changing ∂t � ω · ∂ϕ . This is equal to

L = ω · ∂ϕ −W−1(dX)(WTδ(ϕ))W , (7.9)

where X is the water waves vector field on the right hand side of (1.3). The operator
L acts on (a dense subspace) of the phase space L2

0 × L̇2.
In order to compute dX we use the "shape derivative" formula, see for example

[26],

G ′(η)[̂η]ψ := lim
ε→0

1
ε

(
G(η + εη̂)ψ − G(η)ψ

) = −G(η)(Bη̂)− ∂x (V η̂), (7.10)

where

B(η, ψ) := G(η)ψ + ηxψx

1+ η2x
, V (η, ψ) := ψx − B(η, ψ)ηx . (7.11)
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It turns out that (V, B) = (�x ,�y) is the gradient of the generalized velocity
potential defined in (1.2), evaluated at the free surface y = η(x).

Using (7.9), (1.3), (7.10), (7.11), the operator L is

L = ω · ∂ϕ +
(

∂x Ṽ + G(η)B −G(η)
g − κ∂xc∂x + BṼx + BG(η)B Ṽ ∂x − BG(η)

)

+ γ
2

( −G(η)∂−1x 0
∂−1x G(η)B − BG(η)∂−1x − γ

2 ∂
−1
x G(η)∂−1x −∂−1x G(η)

)
,

(7.12)
where

Ṽ := V − γ η, c(η) := (1+ η2x )−
3
2 , (7.13)

and the functions B := B(η, ψ), V := V (η, ψ), c := c(η) in (7.12) are evaluated
at the reversible traveling wave (η, ψ) := WTδ(ϕ) where Tδ(ϕ) is defined in (7.3).

Remark 7.2. From now on we consider the operator L in (7.12) acting on (a dense
subspace of) the whole L2(T)× L2(T). In particular we extend the operator ∂−1x to
act on thewhole L2(T) as in (3.20). In Sections 7.1-7.6we are going tomake several
transformations, whose aim is to conjugate L to a constant coefficients Fourier
multiplier, up to a pseudodifferential operator of order zero plus a remainder that
satisfies tame estimates, both small in size, see L9 in (7.168). Finally, in Section
7.7 we shall conjugate the restricted operator Lω in (7.1).

Notation. In (7.12) and hereafter any function a is identifiedwith the corresponding
multiplication operators h �→ ah, and, where there is no parenthesis, composition
of operators is understood. For example, ∂xc∂x means: h �→ ∂x (c∂xh).

Lemma 7.3. The functions (η, ζ ) = Tδ(ϕ) and B, Ṽ , c defined in (7.11), (7.13)
are quasi-periodic traveling waves. The functions (η, ζ ) = Tδ(ϕ) are (even(ϕ, x),
odd(ϕ, x)), B is odd(ϕ, x), Ṽ is even(ϕ, x) and c is even(ϕ, x). The Hamiltonian
operator L is reversible and momentum preserving.

Proof. The function (η, ζ ) = Tδ(ϕ) is a quasi-periodic traveling wave and, using
also Lemmata 3.32 and 3.26, we deduce that B, Ṽ , c are quasi-periodic travel-
ing waves. Since (η, ζ ) = Tδ(ϕ) is reversible, we have that (η, ζ ) is (even(ϕ, x),
odd(ϕ, x)). Therefore, using also (2.6),wededuce that B is odd(ϕ, x), Ṽ is even(ϕ, x)
and c is even(ϕ, x). By Lemmata 3.22 and 3.27, the operatorL in (7.9) evaluated at
the reversible quasi-periodic traveling wave WTδ(ϕ) is reversible and momentum
preserving. ��

For the sequel we will always assume the following ansatz (satisfied by the ap-
proximate solutions obtained along the nonlinear Nash–Moser iteration of Section
9): for some constants μ0 := μ0(τ, ν) > 0, υ ∈ (0, 1), (cfr. Lemma 6.2)

‖I0‖k0,υs0+μ0
, ‖Iδ‖k0,υs0+μ0

� 1. (7.14)

In order to estimate the variation of the eigenvalues with respect to the approximate
invariant torus, we need also to estimate the variation with respect to the torus i(ϕ)
in another low norm ‖ ‖s1 for all Sobolev indexes s1 such that

s1 + σ0 � s0 + μ0 , for some σ0 := σ0(τ, ν) > 0. (7.15)
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Thus, by (7.14), we have

‖I0‖k0,υs1+σ0 , ‖Iδ‖k0,υs1+σ0 � 1.

The constants μ0 and σ0 represent the loss of derivatives accumulated along the
reduction procedure of the next sections. What is important is that they are in-
dependent of the Sobolev index s. In the following sections we shall denote by
σ := σ(τ, ν, k0) > 0, σN (q0) := σN (q0, τ, ν, k0), σM := σM (k0, τ, ν) > 0,
ℵM (α) constants (which possibly increase from lemma to lemma) representing
losses of derivatives along the finitely many steps of the reduction procedure.

Remark 7.4. In the next sections μ0 := μ0(τ, ν,M, α) > 0 will depend also on
indexes M, α, whose maximal values will be fixed depending only on τ and ν (and
k0 which is however considered an absolute constant along the paper). In particular
M is fixed in (8.5), whereas the maximal value of α depends on M , as explained
in Remark 7.14.

As a consequence of Moser composition Lemma 3.2 and (6.4), the Sobolev
norm of the function u = Tδ(ϕ) defined in (7.3) satisfies for all s � s0

‖u‖k0,υs = ‖η‖k0,υs + ‖ζ‖k0,υs � εC(s)
(
1+ ‖I0‖k0,υs

)
(7.16)

(the map A defined in (2.50) is smooth). Similarly, using (6.7),

‖�12u‖s1 �s1 ε ‖i2 − i1‖s1 , where �12u := u(i2)− u(i1).

We finally recall that I0 = I0(ω, κ) is defined for all (ω, κ) ∈ R
ν × [κ1, κ2]

and that the functions B, Ṽ and c appearing in L in (7.12) are C∞ in (ϕ, x), as
u = (η, ζ ) = Tδ(ϕ) is.

7.1. Quasi-periodic Reparametrization of Time

We conjugate the operator L in (7.12) by the change of variables induced by
the quasi-periodic reparametrization of time

ϑ := ϕ + ωp(ϕ) ⇔ ϕ = ϑ + ω p̆(ϑ) , (7.17)

where p(ϕ) is the real Tν-periodic function defined in (7.87). Since η(ϕ, x) is a
quasi-periodic traveling wave, even in (ϕ, x) (cfr. Lemma 7.3), it results that

p(ϕ − �jς) = p(ϕ) , ∀ς ∈ R, p is odd(ϕ). (7.18)

Moreover, by (7.87), (3.11), Lemma 3.2, (7.16) and (7.14) and Lemma 2.30 in [6],
both p and p̆ satisfy, for some σ := σ(τ, ν, k0) > 0, the tame estimates, for s � s0,

‖p‖k0,υs + ‖ p̆‖k0,υs �s ε
2υ−1

(
1+ ‖I0‖k0,υs+σ

)
. (7.19)
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Remark 7.5. Weperform as a first step the time reparametrization (7.17) ofL, with
a function p(ϕ) which will be fixed only later in Step 4 of Section 7.3, to avoid
otherwise a technical difficulty in the conjugation of the remainders obtained by
the Egorov theorem in Step 1 of Section 7.3. We need indeed to apply the Egorov
Proposition 3.9 for conjugating the additional pseudodifferential term in (7.12) due
to vorticity.

Denoting by

(Ph)(ϕ, x) := h(ϕ + ωp(ϕ), x), (P−1h)(ϑ, x) := h(ϑ + ω p̆(ϑ), x) ,
the induced diffeomorphism of functions h(ϕ, x) ∈ C

2, we have

P−1 ◦ ω · ∂ϕ ◦ P = ρ(ϑ)ω · ∂ϑ , ρ(ϑ) := P−1(1+ ω · ∂ϕ p). (7.20)

Therefore, for any ω ∈ DC(υ, τ ), we get

L0 := 1

ρ
P−1LP=ω · ∂ϑ + 1

ρ

(
∂x Ṽ + G(η)B −G(η)

g − κ∂xc∂x + BṼx + BG(η)B Ṽ ∂x − BG(η)

)

+ 1

ρ

γ

2

( −G(η)∂−1x 0
∂−1x G(η)B − BG(η)∂−1x − γ

2 ∂
−1
x G(η)∂−1x −∂−1x G(η)

)
, (7.21)

where Ṽ , B, c, V andG(η) are evaluated at (ηp, ψp) := P−1(η, ψ). For simplicity
in the notation we do not report in (7.21) the explicit dependence on p, writing for
example (cfr. (7.13))

c = (
1+ (P−1η)2x

)− 3
2 = P−1(1+ η2x

)− 3
2 . (7.22)

Lemma 7.6. ThemapsP ,P−1 areDk0 -(k0+1)-tame, themapsP−Id andP−1−Id
areDk0 -(k0+2)-tame, with tame constants satisfying, for some σ := σ(τ, ν, k0) >
0 and for any s0 � s � S,

MP±1(s) �S 1+ ‖I0‖k0,υs+σ , MP±1−Id(s) �S ε
2υ−1

(
1+ ‖I0‖k0,υs+σ

)
. (7.23)

The function ρ defined in (7.20) satisfies

ρ is even(ϑ) and ρ(ϑ − �jς) = ρ(ϑ) , ∀ς ∈ R. (7.24)

The operator L0 is Hamiltonian, reversible and momentum preserving.

Proof. Estimates (7.23) follow by (7.19) and Lemma 2.30 in [6], writing (P −
Id)h = p

∫ 1
0 Pτ (ω · ∂ϕh) dτ , where (Pτh)(ϕ, x) := h(ϕ+ τωp(ϕ), x). We deduce

(7.24) by (7.18) and (7.20). Denoting L = ω · ∂ϕ + A(ϕ) the operator L in (7.12),
then the operatorL0 in (7.21) isL0 = ω ·∂ϑ+A+(ϑ)with A+(ϑ) = ρ−1(ϑ)A(ϑ+
p̆(ϑ)ω). It follows that A+(ϕ) isHamiltonian, reversible andmomentumpreserving
as A(ϕ) (Lemma 7.3). ��
Remark 7.7. The map P is not reversibility and momentum preserving according
to Definitions 3.17 and, respectively, 3.24, but maps (anti)-reversible, respectively
traveling, waves, into (anti)-reversible, respectively traveling, waves. Note that the
multiplication operator for the function ρ(ϑ), which satisfies (7.24), is reversibility
and momentum preserving according to Definitions 3.17 and 3.24.
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7.2. Linearized Good Unknown of Alinhac

We conjugate the linear operator L0 in (7.21), where we rename ϑ with ϕ, by
the multiplication matrix operator

Z :=
(
Id 0
B Id

)
, Z−1 =

(
Id 0
−B Id

)
,

obtaining (in view of (3.46))

L1 := Z−1L0Z

= ω · ∂ϕ + 1

ρ

(
∂x Ṽ −G(η)

g + a − κ∂xc∂x Ṽ ∂x

)
− 1

ρ

γ

2

(
G(η)∂−1x 0

γ
2 ∂
−1
x G(η)∂−1x ∂−1x G(η)

)
,

(7.25)
where a is the function

a := Ṽ Bx + ρ (ω · ∂ϕB). (7.26)

The matrixZ amounts to introduce, as in [26] and [2,6], a linearized version of the
“good unknown of Alinhac”.

Lemma 7.8. The maps Z±1 − Id are Dk0 -tame with tame constants satisfying, for
some σ := σ(τ, ν, k0) > 0, for all s � s0,

MZ±1−Id(s) , M(Z±1−Id)∗(s) �s ε
(
1+ ‖I0‖k0,υs+σ

)
. (7.27)

The function a is a quasi-periodic traveling wave even(ϕ, x). There is σ :=
σ(τ, ν, k0) > 0 such that, for all s � s0,

‖a‖k0,υs + ‖Ṽ ‖k0,υs + ‖B‖k0,υs �s ε
(
1+ ‖I0‖k0,υs+σ

)
,

‖1− c‖k0,υs �s ε
2(1+ ‖I0‖k0,υs+σ

)
. (7.28)

Moreover, for any s1 as in (7.15),

‖�12a‖s1 + ‖�12Ṽ ‖s1 + ‖�12B‖s1 �s1 ε ‖i1 − i2‖s1+σ , (7.29)

‖�12c‖s1 �s1 ε
2 ‖i1 − i2‖s1+σ , (7.30)

‖�12(Z±1)h‖s1 , ‖�12(Z±1)∗h‖s1 �s1 ε ‖i1 − i2‖s1+σ ‖h‖s1 . (7.31)

The operator L1 is Hamiltonian, reversible and momentum preserving.

Proof. The estimates (7.28) follow by the expressions of a, Ṽ , B, c in (7.26),
(7.11), (7.13), (reparametrized by P−1 as in (7.22)), Lemma 3.2 and (7.23), (3.7),
(3.33), (3.37) and (3.36). The estimate (7.27) follows by (3.37), (3.22), (7.28) and

since the adjoint Z∗ =
(
Id B
0 Id

)
. The estimates (7.29)–(7.31) follow similarly.

Since B is a odd(ϕ, x) quasi-periodic traveling wave, then the operators Z± are
reversibility and momentum preserving. ��
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7.3. Symmetrization and Reduction of the Highest Order

The aim of this long section is to conjugate the Hamiltonian operator L1 in
(7.25) to the Hamiltonian operator L5 in (7.89) whose coefficient m 3

2
of the highest

order is constant. This is achieved in several steps. All the transformations of this
section are symplectic.

Recalling the expansion (3.32) of theDirichlet-Neumann operator,wefirstwrite

L1 = ω · ∂ϕ + 1

ρ

( − γ2G(0)∂−1x −G(0)
−κ∂xc∂x + g − ( γ

2

)2
∂−1x G(0)∂−1x − γ2 ∂−1x G(0)

)

+ 1

ρ

(
∂x Ṽ 0
a Ṽ ∂x

)
+ R1 ,

(7.32)

where

R1 := − 1

ρ

( γ
2RG(η)∂

−1
x RG(η)( γ

2

)2
∂−1x RG(η)∂

−1
x

γ
2 ∂
−1
x RG(η)

)
(7.33)

is a small remainder in OPS−∞.

Step 1: We first conjugate L1 with the symplectic change of variable (cfr. (3.42))

(Eu)(ϕ, x) := √
1+ βx (ϕ, x) (Bu)(ϕ, x), (Bu)(ϕ, x) := u(ϕ, x + β(ϕ, x)) ,

(7.34)
induced by a family of ϕ-dependent diffeomorphisms of the torus y = x+β(ϕ, x),
where β(ϕ, x) is a small function to be determined, see (7.68). We denote the
inverse diffeomorphism by x = y + β̆(ϕ, y). By direct computation we have that

E−1Ṽ ∂xE =
{B−1(Ṽ (1+ βx )

)}
∂y + 1

2

{B−1Ṽβxx (1+ βx )−1
}
, (7.35)

E−1∂x ṼE = {B−1(Ṽ (1+ βx )
)}
∂y + {B−1(Ṽx + 1

2 Ṽβxx (1+ βx )−1)} ,
(7.36)

E−1aE = {B−1a} , (7.37)

E−1∂x c∂xE = B−1(1+ βx )− 1
2B B−1∂xB B−1cB B−1∂xB B−1(1+ βx ) 12B

= {B−1(1+ βx ) 12
}
∂y

{B−1(c(1+ βx ))
}
∂y

{B−1(1+ βx ) 12
}
,

(7.38)

E−1ω · ∂ϕE = ω · ∂ϕ +
{
B−1 (

ω · ∂ϕβ
)}
∂y + 1

2 {B−1
(
(ω · ∂ϕβx )(1+ βx )−1

)}.
(7.39)

Then we write the Dirichlet-Neumann operator G(0) in (1.7) as

G(0) = G(0,h) = ∂xHT (h) , (7.40)

where H is the Hilbert transform in (3.19) and

T (h) :=
{
tanh(h|D|) = Id + Op(rh) if h < +∞ , rh(ξ) := − 2

1+e2h|ξ |χ(ξ) ∈ S−∞,
Id if h = ∞.

(7.41)
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We have the conjugation formula (see formula (7.42) in [2])

B−1G(0)B = {B−1(1+ βx )
}
G(0)+R1 , (7.42)

where
R1 :=

{B−1(1+ βx )
}
∂y

(
H(B−1Op(rh)B − Op(rh))

+(B−1HB −H)(B−1T (h)B)
)
.

(7.43)

The operatorR1 is inOPS−∞ because bothB−1Op(rh)B−Op(rh) andB−1HB−H
are in OPS−∞ and there is σ > 0 such that, for any m ∈ N, s � s0, and α ∈ N0,

‖B−1HB −H‖k0,υ−m,s,α �m,s,α,k0 ‖β‖k0,υs+m+α+σ ,
‖B−1Op(rh)B − Op(rh)‖k0,υ−m,s,α �m,s,α,k0 ‖β‖k0,υs+m+α+σ .

(7.44)

The first estimate is given in Lemmata 2.36 and 2.32 in [6], whereas the second one
follows by that fact that rh ∈ S−∞ (see (7.41)), Lemma 2.18 in [2] and Lemmata
2.34 and 2.32 in [6]. Therefore by (7.42) we obtain

E−1G(0)E = {B−1(1+ βx ) 12 }G(0) {B−1(1+ βx ) 12 } + R̃1 , (7.45)

where
R̃1 := {B−1(1+ βx )− 1

2 }R1 {B−1(1+ βx ) 12 }. (7.46)

Next we transform G(0)∂−1x . By (7.40) and using the identities H∂x∂−1x = H and
HT (h) = G(0)∂−1y on the periodic functions, we have that

E−1G(0)∂−1x E = E−1∂xHT (h)∂−1x E = G(0)∂−1y +R2 , (7.47)

where

R2 := {B−1(1+ βx )− 1
2 }[HT (h), {B−1(1+ βx ) 12 } − 1

]+ {B−1(1+ βx )− 1
2 } ◦

◦
(
(B−1HB −H)(B−1T (h)B)+H(B−1Op(rh)B − Op(rh)

)) {B−1(1+ βx ) 12 }.
(7.48)

The operatorR2 is in OPS−∞ by (7.44), (7.41) and because the commutator ofH
with any smooth function a is in OPS−∞, in particular (see Lemma 2.35 of [6])
there is σ > 0 such that, for any m ∈ N, s � s0, and α ∈ N0,

‖[HT (h), a]‖k0,υ−m,s,α �m,s,α,k0 ‖a‖k0,υs+m+α+σ . (7.49)

Finally we conjugate ∂−1x G(0)∂−1x . By the Egorov Proposition 3.9, we have that,
for any N ∈ N,

E−1∂−1x E =
{
B−1

( 1

1+ βx
)}
∂−1y + P(1)−2,N (ϕ, x, D)+ RN , (7.50)

where P(1)−2,N (ϕ, x, D) ∈ OPS−2 is

P(1)−2,N (ϕ, x, D) := {B−1(1+ βx )−
1
2 }

{[
p−1∂−1y ,B−1(1+ βx ) 12

]
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+
N∑

j=1
p−1− j∂

−1− j
y {B−1(1+ βx ) 12 }

}

with functions p−1− j (λ;ϕ, y), j = 0, . . . , N , satisfying (3.30) and RN is a reg-
ularizing operator satisfying the estimate (3.31). So, using (7.50) and (7.47), we
obtain

E−1∂−1x G(0)∂−1x E =
(
E−1∂−1x E

) (
E−1G(0)∂−1x E

)

= ∂−1y G(0)∂−1y + P(2)−1,N + R2,N , (7.51)

where

P(2)−1,N :=
(
−

{
B−1

( βx

1+ βx
)}
∂−1y + P(1)−2,N (ϕ, x, D)

)
G(0)∂−1y ∈ OPS−1

(7.52)
and R2,N is the regularizing operator

R2,N := (E−1∂−1x E)R2 + RNG(0)∂
−1
y . (7.53)

The smoothing order N ∈ N will be chosen in Section 8 during the KAM iteration
(see also Remark 7.11).

In conclusion, by (7.35)–(7.39), (7.45), (7.47) and (7.51) we obtain

L2 := E−1L1E = ω · ∂ϕ + 1

ρ

(
− γ2 G(0)∂−1y −a2G(0)a2

−κa2∂ya3∂ya2 + g − ( γ
2

)2
∂−1y G(0)∂−1y − γ2 ∂−1y G(0)

)

+ 1

ρ

(
a1∂y + a4 0

a5 −
( γ
2

)2 P(2)−1,N a1∂y + a6

)

+ R 2 + T2,N , (7.54)

where

a1(ϕ, y) := B−1((1+ βx )Ṽ +
(
ω · ∂ϕβ

))
, (7.55)

a2(ϕ, y) := B−1(
√
1+ βx ) , a3(ϕ, y) := B−1(c(1+ βx )

)
, (7.56)

a4(ϕ, y) := B−1
( Ṽβxx + (ω · ∂ϕβx )

2(1+ βx ) + Ṽx
)
, a5(ϕ, y) := B−1a , (7.57)

a6(ϕ, y) := B−1
( Ṽβxx + (ω · ∂ϕβx )

2(1+ βx )
)
, (7.58)

the operator P(2)−1,N ∈ OPS−1 is defined in (7.52) and

R 2 := −
1

ρ

( γ
2R2 R̃1
0 γ

2R2

)
+ E−1R1E , T2,N := − 1

ρ

(γ
2

)2 (
0 0

R2,N 0

)
, (7.59)

with R̃1, R2, R2,N defined in (7.46), (7.48), (7.53) and R1 in (7.33).
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Step 2: We now conjugate the operator L2 in (7.54) with the multiplication matrix
operator

Q :=
(
q 0
0 q−1

)
, Q−1 :=

(
q−1 0
0 q

)
,

where q(ϕ, y) is a real function, close to 1, to be determined. The mapsQ andQ−1
are symplectic (cfr. (3.42)). We have that

L3 := Q−1L2Q = ω · ∂ϕ + 1

ρ

(
A B
C D

)
+Q−1(R 2 + T2,N )Q , (7.60)

where

A := q−1
(− γ

2G(0)∂
−1
y + a1∂y + a4

)
q + ρq−1(ω · ∂ϕq) , (7.61)

B := −q−1a2G(0)a2q−1 , (7.62)

C := q
(− κa2∂ya3∂ya2 + g − ( γ

2

)2
∂−1y G(0)∂−1y + a5 −

( γ
2

)2
P(2)−1,N

)
q ,
(7.63)

D := q
(− γ

2 ∂
−1
y G(0)+ a1∂y + a6

)
q−1 − ρq−1(ω · ∂ϕq). (7.64)

We choose the function q so that the coefficients of the highest order terms of the
off-diagonal operators B and C satisfy

q−2a22 = q2a22a3 = m 3
2
(ϕ) , (7.65)

with m 3
2
(ϕ) independent of x . This is achieved by choosing

q :=
(

1

a3

)1/4

(7.66)

and, recalling (7.56), the function β, so that

(1+ βx (ϕ, x))3c(ϕ, x) = m(ϕ) , (7.67)

with m(ϕ) independent of x (the function c is defined in (7.22)). The solution of
(7.67) is

m(ϕ) :=
( 1

2π

∫

T

c(ϕ, x)−1/3 dx
)−3

, β(ϕ, x) := ∂−1x

(( m(ϕ)

c(ϕ, x)

)1/3 − 1
)
.

(7.68)
In such a way, by (7.56), we obtain (7.65) with m 3

2
(ϕ) := √m(ϕ). By (7.68) and

(7.22) we have

m 3
2
:= m 3

2
(ϕ) = P−1

( 1

2π

∫

T

√
1+ η2x (ϕ, x)dx

)− 3
2
. (7.69)

Note that, since by (7.65) the function q−1a2 is independent of x , we have

B = −q−1a2G(0)a2q−1 = −q−2a22G(0). (7.70)
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Moreover we have the expansion

qa2∂ya3∂ya2q = q2a22a3∂
2
y + (q2a22a3)y∂y + qa2(a3(qa2)y)y

(7.65)= m 3
2
(ϕ)∂2y + a7, a7 := qa2(a3(qa2)y)y .

(7.71)

In conclusion, the operator L3 in (7.60) is, in view of (7.61)–(7.64) and (7.70),
(7.71),

L3 = Q−1L2Q = ω · ∂ϕ + 1

ρ

( − γ2G(0)∂−1y −m 3
2
G(0)

m 3
2

(− κ∂2y + g − ( γ
2

)2
∂−1y G(0)∂−1y

) − γ2 ∂−1y G(0)

)

+ 1

ρ

(
a1∂y + a8 0
a9 + P(3)−1,N a1∂y + a10

)

+ R 3 + T3,N , (7.72)

where

a8 := a1q
−1qy + ρ q−1(ω · ∂ϕq)+ a4 , a9 := a5q

2 + g(q2 − m 3
2
)− κa7 , (7.73)

a10 := −a1q−1qy − ρ q−1(ω · ∂ϕq)+ a6 , (7.74)

P(3)−1,N := −
( γ
2

)2 (
qP(2)−1,Nq + (q2 − m 3

2
)G(0)∂−2y + q[G(0)∂−2y , q − 1]

)
, (7.75)

with P(3)−1,N ∈ OPS−1 and where R 3 ∈ OPS−∞,T3,N are the smoothing remain-
ders

R 3 :=
1

ρ

(− γ2 q−1[HT (h), q − 1] 0
0 − γ2 q[HT (h), q−1 − 1]

)
+Q−1R 2 Q, (7.76)

T3,N := Q−1T2,NQ. (7.77)

Step 3: We now conjugate L3 in (7.72), where we rename the space variable y by
x , by the symplectic transformation (cfr. (3.42))

M̃ :=
(
� 0
0 �−1

)
, M̃−1 :=

(
�−1 0
0 �

)
, (7.78)

where � ∈ OPS− 1
4 is the Fourier multiplier

� := 1√
gπ0 + M(D) , with inverse �−1 := √gπ0 + M(D)−1 ∈ OPS

1
4 ,

(7.79)
with π0 defined in (3.21) and M(D) in (2.21). We have the identity

�
(− κ∂2x + g − ( γ

2

)2
∂−1x G(0)∂−1x

)
� = �−1G(0)�−1 + π0 = ω(κ, D)+ π0 ,

(7.80)
where ω(κ, D) is defined in (2.23). In (7.79) and (7.80) we mean that the symbols
of M(D),M(D)−1 and ω(κ, D) are extended to 0 at j = 0, multiplying them by
the cut-off function χ defined in (3.10). Thus we obtain

L4 := M̃−1L3M̃ = ω · ∂ϕ + 1

ρ

( − γ2G(0)∂−1x −m 3
2
(ϕ)ω(κ, D)

m 3
2
(ϕ)ω(κ, D) − γ2G(0)∂−1x

)

+
(
0 0
π0 0

)
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+ 1

ρ

(
a1∂x + P(41)0 0

P(43)− 1
2

a1∂x + P(44)0

)

+ R 4 + T4,N , (7.81)

where

P(41)0 := �−1[a1∂x ,�] +�−1a8� ∈ OPS0, (7.82)

P(43)− 1
2 ,N
:= �a9�+�P(3)−1,N� ∈ OPS−

1
2 , (7.83)

P(44)0 := �[a1∂x ,�−1] +�a10�−1 ∈ OPS0 , (7.84)

and R 4 ,T4,N are the smoothing remainders

R 4 :=
(

0 0
(ρ−1m 3

2
− 1)π0 0

)

+ M̃−1R 3 M̃ ∈ OPS−∞,

T4,N := M̃−1T3,NM̃ = −γ
2

4ρ

(
0 0

�qR2,Nq� 0

)
.

(7.85)

Step 4: We finally move in complex coordinates, conjugating the operator L4 in
(7.81) via the transformation C defined in (2.24).We use the transformation formula
(3.15).Wechoose the function p(ϕ) in (7.17) in order to obtain a constant coefficient
at the highest order. More precisely we choose the periodic function p(ϕ) such that

m 3
2

ρ

(7.69),(7.20)= P−1
(
(

1
2π

∫
T

√
1+ η2x (ϕ, x)dx

)− 3
2

1+ ω · ∂ϕ p
)
= m 3

2
(7.86)

is a real constant independent of ϕ. Thus, recalling (3.9), we define the periodic
function

p(ϕ) := (ω · ∂ϕ)−1ext

( 1

m 3
2

( 1

2π

∫

T

√
1+ η2x (ϕ, x)dx

)− 3
2 − 1

)
(7.87)

and the real constant

m 3
2
:= 1

(2π)ν

∫

Tν

( 1

2π

∫

T

√
1+ η2x (ϕ, x)dx

)− 3
2
dϕ. (7.88)

Note that (7.86) holds forω ∈ DC(υ, τ ).Moreover, by Lemmata 3.2, 7.3 and (7.16),
p satisfies (7.19) and it is odd in ϕ. Let

�0 := −i C−1
(
0 0
π0 0

)
C = 1

2

(
π0 π0
−π0 −π0

)
.

Lemma 7.9. Let N ∈ N, q0 ∈ N0. For all ω ∈ DC(υ, τ ), we have that

L5 :=
(EQM̃C)−1L1

(EQM̃C)

= ω · ∂ϕ + im 3
2
�(κ, D)+ A1∂x + i�0 + R(0,d)5 + R(0,o)5 + T5,N ,

(7.89)

where:
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1. The operators E±1 areDk0 -(k0+1)-tame, the operators E±1− Id, (E±1− Id)∗
are Dk0 -(k0 + 2)-tame and the operators Q±1, Q±1 − Id, (Q±1 − Id)∗ are
Dk0 -tame with tame constants satisfying, for some σ := σ(τ, ν, k0) > 0 and
for all s0 � s � S,

ME±1(s) �S 1+ ‖I0‖k0,υs+σ , MQ±1(s) �S 1+ ‖I0‖k0,υs+σ , (7.90)

ME±1−Id(s)+M(E±1−Id)∗(s) �S ε
2(1+ ‖I0‖k0,υs+σ ) , (7.91)

MQ±1−Id(s)+M(Q±1−Id)∗(s) �S ε
2(1+ ‖I0‖k0,υs+σ ) ; (7.92)

2. the constant m 3
2
∈ R defined in (7.88) satisfies |m 3

2
− 1|k0,υ � ε2;

3. �(κ, D) is the Fourier multiplier (see (2.25), (2.26))

�(κ, D) =
(
�(κ, D) 0

0 −�(κ, D)
)
, �(κ, D) = ω(κ, D)+ i

γ

2
∂−1x G(0) ;

(7.93)
4. the matrix of functions A1 is

A1 :=
(
a(d)1 0
0 a(d)1

)

, (7.94)

for a real functiona(d)1 (ϕ, x)which is aquasi-periodic travelingwave, even(ϕ, x),
satisfying, for some σ := σ(k0, τ, ν) > 0 and for all s � s0,

‖a(d)1 ‖k0,υs �s ε(1+ ‖I0‖k0,υs+σ ) ; (7.95)

5. R(0,d)5 and R(0,o)5 are pseudodifferential operators in OPS0 of the form

R(0,d)5 :=
(
r (d)5 (ϕ, x, D) 0

0 r (d)5 (ϕ, x, D)

)

∈ OPS0 ,

R(0,o)5 :=
(

0 r (o)5 (ϕ, x, D)

r (d)5 (ϕ, x, D) 0

)

∈ OPS0 ,

(7.96)

reversibility andmomentumpreserving, satisfying, for someσN := σ(τ, ν, N ) >
0, for all s � s0, α ∈ N0,

‖R(0,d)5 ‖k0,υ0,s,α + ‖R(0,o)5 ‖k0,υ0,s,α �s,N ,α ε(1+ ‖I0‖k0,υs+σN+2α) ; (7.97)

6. For anyq ∈ N
ν
0 with |q| � q0, n1, n2 ∈ N0 with n1+n2 � N−(k0+q0)+ 5

2 , the
operator 〈D〉n1∂qϕT5,N (ϕ)〈D〉n2 is Dk0 -tame with a tame constant satisfying,
for some σN (q0) := σN (q0, k0, τ, ν) > 0 and for any s0 � s � S,

M〈D〉n1∂qϕT5,N (ϕ)〈D〉n2 (s) �S,N ,q0 ε
(
1+ ‖I0‖k0,υs+σN (q0)

) ; (7.98)
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7. Moreover, for any s1 as in (7.15), α ∈ N0, q ∈ N
ν
0 , with |q| � q0, and

n1, n2 ∈ N0, with n1 + n2 � N − q0 + 3
2 ,

‖�12(A)h‖s1 �s1 ε ‖i1 − i2‖s1+σ ‖h‖s1+σ , A ∈ {E±1, (E±1)∗,Q±1 = (Q±1)∗} ,
(7.99)

‖�12a
(d)
1 ‖s1 �s1 ε ‖i1 − i2‖s1+σ , |�12m 3

2
| � ε2 ‖i1 − i2‖s1+σ , (7.100)

‖�12R
(d)
5 ‖0,s1,α + ‖�12R

(o)
5 ‖0,s1,α �s1,N ,α ε ‖i1 − i2‖s1+σN+2α , (7.101)

∥∥〈D〉n1∂qϕT5,N (ϕ)〈D〉n2
∥∥L(Hs1 )

�s1,N ,q0 ε ‖i1 − i2‖s1+σN (q0) . (7.102)

The real operator L5 is Hamiltonian, reversible and momentum preserving.

Proof. By the expression of L4 in (7.81), using (3.15), and (7.86), we obtain that
L5 has the form (7.89). The functions β and q, defined respectively in (7.68) and
(7.66) with a3 defined in (7.56), satisfy, by Lemmata 3.8, 3.2 and (7.28), for some
σ := σ(k0, τ, ν) > 0 and for all s � s0,

‖β‖k0,υs �s ε
2(1+ ‖I0‖k0,υs+σ ) , ‖q±1 − 1‖k0,υs �s ε

2(1+ ‖I0‖k0,υs+σ ). (7.103)

The estimates (7.90)–(7.92) follow by Lemmata 3.12, 3.13, 3.8, (7.103) and writing

(B − Id)h = βBτ [hx ] , Bτ [h](ϕ, x) :=
∫ 1

0
hx (ϕ, x + τβ(ϕ, x)) dτ , (7.104)

B∗h(ϕ, y) = (1+ β̆(ϕ, y))h(ϕ, y+ β̆(ϕ, y)), and similar expressions forB−1−Id,
(B−1)∗. The estimate for m 3

2
follows by (7.88), Lemma 3.2 and (7.16). The real

function a(d)1 in (7.94) is

a(d)1 (ϕ, x) := ρ(ϕ)−1a1(ϕ, x) ,
where ρ and a1 are defined respectively in (7.20) and (7.55). Recalling Lemmata
7.3 and 7.6, the function a(d)1 is a quasi-periodic traveling wave, even in (ϕ, x).
Moreover, (7.95) follows by Lemma 3.2 and (7.16), (7.19), (7.28), (7.103). By
direct computations, we have

r (d)5 (ϕ, x, D) := 1

2ρ

(
P(41)0 + P(44)0 + iP(43)− 1

2 ,N
+ γ (ρ m 3

2
− 1)G(0)∂−1x

)
,

r (o)5 (ϕ, x, D) := 1

2ρ

(
P(41)0 − P(44)0 + iP(43)− 1

2 ,N

)
, (7.105)

where P(41)0 , P(43)− 1
2 ,N

, P(44)0 are defined in (7.82), (7.83), (7.84) and ρ m 3
2
= m 3

2
(ϕ)

withm 3
2
(ϕ) defined in (7.69) (cfr. (7.86)). Therefore, the estimate (7.97) follows by

(7.73), (7.71), (7.55), (7.56), (7.57), (7.58), (7.75), (7.52), (7.79), (2.21), applying
Lemmata 3.5, 3.6, 3.8, 3.2, Proposition 3.9 and estimates (7.16), (7.19), (7.28),
(7.103). The estimate (7.98), where

T5,N := C−1(R 4 + T4,N )C ,
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follows by (7.85), (7.77), (7.76), (7.59), (7.53), (7.50), (7.48), (7.46), (7.43), Lem-
mata 3.12, 3.13, estimates (7.44), (7.49), Proposition3.9 and (7.90), (7.103),Lemma
3.10 and Lemmata 2.34, 2.32 in [6]. The estimates (7.99), (7.100), (7.101), (7.102)
are proved in the same fashion. Since the transformations E ,Q, M̃ are symplectic,
the operator L4 is Hamiltonian. Hence the operator L5 obtained conjugating with
C is Hamiltonian according to (3.41). By Lemma 7.3, the functions β(ϕ, x) and
q(ϕ, x), defined in (7.68), (7.66) (with a3 defined in (7.56)), are both quasi-periodic
traveling waves, respectively odd(ϕ, x) and even(ϕ, x). Therefore, the transforma-
tions E and Q are momentum and reversibility preserving. Moreover, also M̃ and
C are momentum and reversibility preserving (writing the involution in complex
variables as in (2.29)). Hence, since L1 is momentum preserving and reversible
(Lemma 7.8), the operator L5 is momentum preserving and reversible as well, in
particular the operatorsR(0,d)5 andR(0,o)5 in (7.96) (for example check the definition
in (7.105), see also Remark 3.20). ��

7.4. Symmetrization up to Smoothing Remainders

The goal of this section is to transform the operatorL5 in (7.89) into the operator
L6 in (7.108) which is block diagonal up to a regularizing remainder. From this step
we do not preserve any further the Hamiltonian structure, but only the reversible
and momentum preserving one (it is now sufficient for proving Theorem 5.2).

Lemma 7.10. Fix M, N ∈ N, q0 ∈ N0. There exist real, reversibility and momen-
tum preserving operator matrices {Xm}Mm=1 of the form

Xm :=
(

0 χm(ϕ, x, D)
χm(ϕ, x, D) 0

)
, χm(ϕ, x, ξ) ∈ S−

1
2−m, (7.106)

such that, conjugating the operator L5 in (7.89) via the map

�M := eX1 ◦ · · · ◦ eXM , (7.107)

we obtain the real, reversible and momentum preserving operator

L6 := L(M)6 := �−1M L5 �M

= ω · ∂ϕ + im 3
2
�(κ, D)+ A1∂x + i�0 + R(0,d)6 + R(−M,o)6 + T6,N ,

(7.108)
with a block-diagonal operator

R(0,d)6 := R(0,d)6,M :=
(
r (d)6 (ϕ, x, D) 0

0 r (d)6 (ϕ, x, D)

)

∈ OPS0 ,

and a smoothing off diagonal remainder

R(−M,o)6 := R(−M,o)6,M :=
(

0 r (o)6 (ϕ, x, D)

r (o)6 (ϕ, x, D) 0

)

∈ OPS−M (7.109)
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both reversibility and momentum preserving, which satisfy for all α ∈ N0, for some
σN := σN (k0, τ, ν, N ) > 0, ℵM (α) > 0, for all s � s0,

‖R(0,d)6 ‖k0,υ0,s,α + ‖R(−M,o)6 ‖k0,υ−M,s,α �s,M,N ,α ε
(
1+ ‖I0‖k0,υs+σN+ℵM (α)

)
. (7.110)

For any q ∈ N
ν
0 with |q| � q0, n1, n2 ∈ N0 with n1 + n2 � N − (k0 + q0) + 5

2 ,
the operator 〈D〉n1∂qϕT6,N (ϕ)〈D〉n2 is Dk0 -tame with a tame constant satisfying,
for some σN (q0) := σN (k0, τ, ν,q0), for any s0 � s � S,

M〈D〉n1∂qϕT6,N (ϕ)〈D〉n2 (s) �S,M,N ,q0 ε(1+ ‖I0‖k0,υs+σN (q0)+ℵM (0)) . (7.111)

The conjugation map �M in (7.107) satisfies, for all s � s0,

‖�±1M −Id‖k0,υ0,s,0+‖
(
�±1M − Id

)∗ ‖k0,υ0,s,0 �s,M,N ε(1+‖I0‖k0,υs+σN+ℵM (0)) . (7.112)

Furthermore, for any s1 as in (7.15), α ∈ N0, q ∈ N
ν
0, with |q| � q0, and

n1, n2 ∈ N0, with n1 + n2 � N − q0 + 3
2 , we have

‖�12R
(0,d)
6 ‖0,s1,α + ‖�12R

(−M,o)
6 ‖−s1,M,α �s1,M,N ,α ε ‖i1 − i2‖s1+σN+ℵM (α) ,

(7.113)

‖〈D〉n1∂qϕ�12T6,N 〈D〉n2‖L(Hs1 ) �s1,M,N ,q0 ε ‖i1 − i2‖s1+σN (q0)+ℵM (0) ,
(7.114)

‖�12�
±1
M ‖0,s1,0 + ‖�12(�

±1
M )
∗‖0,s1,0 �s1,M,N ε ‖i1 − i2‖s1+σN+ℵM (0) .

(7.115)

Proof. The proof is inductive on the index M . The operator L(0)6 := L5 satisfy
(7.110)–(7.111) with ℵ0(α) := 2α, by Lemma 7.9. Suppose we have done already
M steps obtaining an operator L(M)6 as in (7.108) with a remainder �−1M T5,N�M ,
instead of T6,N . We now show how to perform the (M + 1)-th step. Define the
symbol

χM+1(ϕ, x, ξ) := −
(
2im 3

2
ω(κ, ξ)

)−1
r (o)6,M (ϕ, x, ξ)χ(ξ) ∈ S−

3
2−M , (7.116)

where χ is the cut-off function defined in (3.10) and ω(κ, ξ) is the symbol (cfr.
(2.23))

ω(κ, ξ) :=
√

G(0; ξ)
(
κξ2 + g + γ

2

4

G(0; ξ)
ξ2

)
∈ S

3
2 ,

G(0; ξ) :=
{
χ(ξ)|ξ | tanh(h|ξ |) , h < +∞
χ(ξ)|ξ | , h = +∞.

Note that χM+1 in (7.116) is well defined becauseω(κ, ξ) is positive on the support
of χ(ξ). We conjugate the operatorL(M)6 in (7.108) by the flow generated byXM+1
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of the form (7.106) with χM+1(ϕ, x, ξ) defined in (7.116). By (7.110) and Lemma
7.9-2, for any s � s0 and α ∈ N0,

‖XM+1‖k0,υ− 1
2−(M+1),s,α

�s,M,α ε
(
1+ ‖I0‖k0,υs+σN+ℵM (α)

)
. (7.117)

Therefore, by Lemmata 3.7, 3.5 and the induction assumption (7.112) for �M , the
conjugation map�M+1 := �MeXM+1 is well defined and satisfies estimate (7.112)
with M + 1. By the Lie expansion (3.16) we have

L(M+1)6 := e−XM+1 L(M)6 eXM+1

= ω · ∂ϕ + im 3
2
�(κ, D)+ A1∂x + i�0 + R(0,d)6,M (7.118)

− [
XM+1, im 3

2
�(κ, D)

]+ R(−M,o)6,M +�−1M+1T5,N�M+1

−
∫ 1

0
e−τXM+1[XM+1, ω · ∂ϕ + A(d)1 ∂x + i�0 + R(0,d)6,M

]
eτXM+1 dτ(7.119)

−
∫ 1

0
e−τXM+1

[
XM+1,R(−M,o)6,M

]
eτXM+1 dτ (7.120)

+
∫ 1

0
(1− τ)e−τXM+1

[
XM+1,

[
XM+1, im 3

2
�(κ, D)

]]
eτXM+1 dτ.(7.121)

In view of (7.106), (7.93) and (7.109), we have that

−[
XM+1, im 3

2
�(κ, D)

]+ R(−M,o)6,M =
(

0 ZM+1
ZM+1 0

)
=: ZM+1,

where, denoting for brevity χM+1 := χM+1(ϕ, x, ξ), it results
ZM+1 = im 3

2
(Op(χM+1)ω(κ, D)+ ω(κ, D)Op(χM+1))

+ m 3
2

γ
2

[
χM+1, ∂−1x G(0)

]
+ Op(r (o)6,M ). (7.122)

By (3.23), Lemma 3.5 and since χM+1(ϕ, x, ξ) ∈ S− 3
2−M by (7.116), we have that

Op(χM+1)ω(κ, D)+ ω(κ, D)Op(χM+1) = Op
(
2ω(κ, ξ)χM+1(ϕ, x, ξ)

)+ rM+1,

where rM+1 is in OPS−M−1. By (7.116) and (7.122)

ZM+1 = im 3
2
rM+1 + m 3

2

γ
2

[
χM+1, ∂−1x G(0)

]
+ Op(r (o)6,M (1− χ(ξ))) ∈ OPS−M−1.

The remainingpseudodifferential operators in (7.119)–(7.121) haveorderOPS−M− 3
2 .

Therefore the operator L(M+1)6 in (7.118) has the form (7.108) at M + 1 with

R(0,d)6,M+1+R(−(M+1),o)6,M+1 := R(0,d)6,M +ZM+1+ (7.119)+ (7.120)+ (7.121) (7.123)

and a remainder�−1M+1T5,N�M+1. By Lemmata 3.5, 3.6, the induction assumption

(7.110), (7.117), (7.95), we conclude that R(0,d)6,M+1 and R
(−(M+1),o)
6,M+1 satisfy (7.110)
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at order M + 1 for suitable constants ℵM+1(α) > ℵM (α). Moreover the opera-
tor �−1M+1T5,N�M+1 satisfies (7.112) (with M + 1) by Lemmata 3.12, 3.13 and
estimates (7.98), (7.112). Estimates (7.113), (7.114), (7.115) follow similarly. By
(7.116), (3.43), Lemmata 3.19, 3.29, and the induction assumption that R(−M,o)6,M is
reversible and momentum preserving, we conclude that XM+1 is reversibility and
momentum preserving, and so are e±XM+1 . By the induction assumption L(M)6 is

reversible and momentum preserving, and so L(M+1)6 is reversible and momentum

preserving as well, in particular the terms R(0,d)6,M+1 + R(−(M+1),o)6,M+1 in (7.123). ��
Remark 7.11. The number of regularizing iterations M ∈ N will be fixed by the
KAM reduction scheme in Section 8, see (8.5). Note that it is independent of the
Sobolev index s.

So far the operator L6 of Lemma 7.10 depends on two indexes M, N which

provide respectively the order of the regularizing off-diagonal remainder R
(− M

2 ,o)
6

and of the smoothing tame operator T6,N . From now on we fix

N = M. (7.124)

7.5. Reduction of the Order 1

The goal of this section is to transform the operator L6 in (7.108), with N = M
(cfr. (7.124)), into the operator L8 in (7.146) whose coefficient in front of ∂x is a
constant. We first eliminate the x-dependence and then the ϕ-dependence.

Space reduction. First we rewrite the operator L6 in (7.108), with N = M , as

L6 = ω · ∂ϕ +
(
P6 0
0 P6

)
+ i�0 + R(−M,o)6 + T6,M ,

having denoted

P6 := P6(ϕ, x, D) := im 3
2
�(κ, D)+ a(d)1 (ϕ, x)∂x + r (d)6 (ϕ, x, D). (7.125)

We conjugate L6 through the real operator

�(ϕ) :=
(
�(ϕ) 0
0 �(ϕ)

)
(7.126)

where �(ϕ) := �τ (ϕ)|τ=1 is the time 1-flow of the PDE
{
∂τ�

τ (ϕ) = iA(ϕ)�τ (ϕ) ,

�0(ϕ) = Id ,
A(ϕ) := b(ϕ, x)|D| 12 , (7.127)

and b(ϕ, x) is a real, smooth, odd (ϕ, x), periodic function chosen later, see (7.133),
(7.135), (7.141). Usual energy estimates imply that the flow �τ (ϕ) of (7.127) is

a bounded operator in Hs
x . The operator ∂

k
λ∂
β
ϕ � loses |D| |β|+|k|2 derivatives, which

are compensated by 〈D〉−m1 on the left hand side and 〈D〉−m2 on the right hand
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side, with m1,m2 ∈ R satisfying m1 + m2 = 1
2 (|β| + |k|), according to the tame

estimates in the Sobolev spaces Hs
ϕ,x of Proposition 2.37 in [2]. Moreover, since

b(ϕ, x) is odd(ϕ, x), then b(ϕ, x)|D| 12 is reversibility preserving as well as �(ϕ).
Finally, note that �π0 = π0 = �−1π0, which implies that

�−1�0� = �0�. (7.128)

By the Lie expansion (3.16), we have

�−1P6� = P6 − i[A, P6] − 1

2
[A, [A, P6]] +

2M+2∑

n=3

(−i)n
n! adnA(ϕ)(P6)+ TM ,

TM := (−i)2M+3
(2M + 2)!

∫ 1

0
(1− τ)2M+2�−τ (ϕ) ad2M+3A(ϕ) (P6)�

τ (ϕ)dτ ,

(7.129)

and, by (3.17),

�−1 ◦ ω · ∂ϕ ◦� = ω · ∂ϕ + i(ω · ∂ϕ A)(ϕ)−
2M+1∑

n=2

(−i)n
n! adn−1A(ϕ)(ω · ∂ϕ A(ϕ))+ T ′M ,

T ′M := −
(−i)2M+2
(2M + 1)!

∫ 1

0
(1− τ)2M+1�−τ (ϕ) ad2M+1A(ϕ) (ω · ∂ϕ A(ϕ))�τ (ϕ)dτ.

(7.130)

Note that ad2M+3A(ϕ) (P6) and ad
2M+1
A(ϕ) (ω ·∂ϕ A(ϕ)) are in OPS−M . The number M will

be fixed in (8.5). Note also that in the expansions (7.129), (7.130) the operators have
decreasing order and size. The terms of order 1 come from (7.129), in particular

from P6 − i[A, P6]. Recalling (7.125), that A(ϕ) := b(ϕ, x)|D| 12 , (3.26) and that
(cfr. (4.1), (4.5))

�(κ, ξ) = √κ|ξ | 32χ(ξ)+ r0(κ, ξ), r0(κ, ξ) ∈ S0, (7.131)

(the cut-off function χ is defined in (3.10)) we deduce that

[A, P6] = i 32
√
κ m 3

2
bx∂x +

( 1
2 (a

(d)
1 )xb − a(d)1 bx

)|D| 12 + Op(rb,0) , (7.132)

where rb,0 ∈ S0 is small with b. As a consequence, the first order term of P6 −
i[A, P6] is (a(d)1 + 3

2

√
κ m 3

2
bx )∂x and we choose b(ϕ, x) so that it is independent

of x : we look for a solution

b(ϕ, x) = b1(ϕ, x)+ b2(ϕ) (7.133)

of the equation

a(d)1 (ϕ, x)+ 3
2m 3

2

√
κ bx (ϕ, x) = 〈a(d)1 〉x (ϕ) :=

1

2π

∫

T

a(d)1 (ϕ, x)dx . (7.134)
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Therefore

b1(ϕ, x) := − 2
3m 3

2

√
κ
∂−1x

(
a(d)1 (ϕ, x)− 〈a(d)1 〉x (ϕ)

)
. (7.135)

We now determine b2(ϕ) by imposing a condition at the order 1/2. We deduce by
(7.129), (7.130), (7.125), (7.132)–(7.134), that

L7 := �−1(ϕ)
(
ω · ∂ϕ + P6

)
�(ϕ) = ω · ∂ϕ + im 3

2
�(κ, D)

+ 〈a(d)1 〉x (ϕ) ∂x + i a(d)2 |D|
1
2 + Op(r (d)7 )+ TM + T ′M ,

(7.136)

where a(d)2 (ϕ, x) is the real function

a(d)2 := − 1
2 (a

(d)
1 )xb1 + a(d)1 (b1)x + 3

4

√
κ m 3

2

(
(b1)

2
x −

1

2
(b1)xxb1

)

+ (ω · ∂ϕb1)−
( 1
2 (a

(d)
1 )x + 3

8

√
κ m 3

2
(b1)xx

)
b2 + (ω · ∂ϕb2)

(7.137)

and

Op(r (d)7 ) := Op(−irb,0 + rb,− 1
2
+ r (d)6 )

− 1

2

[
b|D| 12 , ( 12 (a(d)1 )xb − a(d)1 bx )|D| 12 + Op(rb,0)

]

+
M−1∑

n=3

(−i)n
n! adnA(ϕ)(P6)−

M∑

n=2

(−i)n
n! adn−1A(ϕ)(ω · ∂ϕ A(ϕ)) ∈ OPS0 ,

(7.138)

where rb,− 1
2
∈ S− 1

2 is small in b. In view of Section 7.6 we now determine the func-

tion b2(ϕ) so that the space average of the function a(d)2 in (7.137) is independent
of ϕ, that is

〈a(d)2 〉x (ϕ) = m 1
2
∈ R, ∀ϕ ∈ T

ν . (7.139)

Noting that the space average
〈( 1

2 (a
(d)
1 )x + 3

8m 3
2

√
κ(b1)xx

)
b2(ϕ)

〉
x = 0 and that

〈
ω · ∂ϕb1

〉
ϕ,x = 0, we get

m 1
2
:= 〈− 1

2 (a
(d)
1 )xb1 + a(d)1 (b1)x + 3

4

√
κ m 3

2

(
(b1)

2
x −

1

2
(b1)xxb1

)〉ϕ,x ,
(7.140)

b2(ϕ) := −(ω · ∂ϕ)−1ext

(〈− 1
2 (a

(d)
1 )xb1 + a(d)1 (b1)x+

+ 3

4
m 3

2

√
κ
(
(b1)

2
x −

1

2
(b1)xxb1

)+ (ω · ∂ϕb1)
〉
x − m 1

2

)
. (7.141)

Note that (7.139) holds for any ω ∈ DC(υ, τ ).
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Time reduction. In order to remove the ϕ-dependence of the coefficient 〈a(d)1 〉x (ϕ)
of the first order term of the operator L7 in (7.136), we conjugate L7 with the map

(Vu)(ϕ, x) := u(ϕ, x + '(ϕ)) , (7.142)

where '(ϕ) is a real periodic function to be chosen, see (7.145). Note that V is a
particular case of the transformation E in (7.34) for a function β(ϕ, x) = '(ϕ),
independent of x . We have that

V−1(ω · ∂ϕ)V = ω · ∂ϕ + (ω · ∂ϕ')∂x ,
whereas the Fouriermultipliers are left unchanged and a pseudodifferential operator
of symbol a(ϕ, x, ξ) transforms as

V−1Op(a(ϕ, x, ξ))V = Op(a(ϕ, x − '(ϕ), ξ)). (7.143)

We choose '(ϕ) such that

ω · ∂ϕ'(ϕ)+ 〈a(d)1 〉x (ϕ) = m1 , m1 := 〈a(d)1 〉ϕ,x ∈ R , (7.144)

(where a(d)1 is fixed in Lemma 7.9), namely we define

'(ϕ) := −(ω · ∂ϕ)−1ext

(〈a(d)1 〉x − m1
)
. (7.145)

Note that (7.144) holds for any ω ∈ DC(υ, τ ).
We sum up these two transformations into the following lemma.

Lemma 7.12. Let M ∈ N,q0 ∈ N0. Let b(ϕ, x) = b1(ϕ, x)+b2(ϕ) and'(ϕ) be the
functions defined respectively in (7.135), (7.141), (7.145). Then, conjugating L6 in
(7.108) via the invertible, real, reversibility preserving and momentum preserving
maps�,V defined in (7.126)–(7.127) and (7.142), we obtain, for anyω ∈ DC(υ, τ ),
the real, reversible and momentum preserving operator

L8 := V−1�−1L6�V
= ω · ∂ϕ + im 3

2
�(κ, D)+ m1∂x + iA(d)3 |D|

1
2 + i�0 + R(0,d)8 + T8,M ,

(7.146)
where:

1. the real constant m1 defined in (7.144) satisfies |m1|k0,υ � ε;
2. A(d)3 is a diagonal matrix of multiplication

A(d)3 :=
(
a(d)3 0
0 a(d)3

)

,

for a real function a(d)3 which is a quasi-periodic traveling wave, even(ϕ, x),
satisfying

〈a(d)3 〉x (ϕ) = m 1
2
∈ R, ∀ϕ ∈ T

ν , (7.147)

where m 1
2
∈ R is the constant in (7.140), and for some σ = σ(τ, ν, k0) > 0,

for all s � s0,

‖a(d)3 ‖k0,υs �s ευ
−1(1+ ‖I0‖k0,υs+σ ) ; (7.148)
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3. R(0,d)8 is a block-diagonal operator

R(0,d)8 =
(
r (d)8 (ϕ, x, D) 0

0 r (d)8 (ϕ, x, D)

)

∈ OPS0 ,

that satisfies for all α ∈ N0, for some σM (α) := σM (k0, τ, ν, α) > 0 and for
all s � s0,

‖R(0,d)8 ‖k0,υ0,s,α �s,M,α ευ
−1(1+ ‖I0‖k0,υs+σM (α)) ; (7.149)

4. For any q ∈ N
ν
0 with |q| � q0, n1, n2 ∈ N0 with n1 + n2 � M − 2(k0 +

q0)+ 5
2 , the operator 〈D〉n1∂qϕT8,M (ϕ)〈D〉n2 isDk0 -tame with a tame constant

satisfying, for some σM (q0) := σM (k0, τ, ν,q0), for any s0 � s � S,

M〈D〉n1∂qϕT8,M (ϕ)〈D〉n2 (s) �S,M,q0 ευ
−1(1+ ‖I0‖k0,υs+σM (q0)) ; (7.150)

5. The operators�±1−Id, (�±1−Id)∗ areDk0 - 12 (k0+1)-tame and the operators
V±1 − Id, (V±1 − Id)∗ are Dk0 -(k0 + 2)-tame, with tame constants satisfying,
for some σ > 0 and for all s0 � s � S,

M�±1−Id(s)+M(�±1−Id)∗(s) �S ευ
−1(1+ ‖I0‖k0,υs+σ ) , (7.151)

MV±1−Id(s)+M(V±1−Id)∗(s) �S ευ
−1(1+ ‖I0‖k0,υs+σ ) . (7.152)

Furthermore, for any s1 as in (7.15), α ∈ N0, q ∈ N
ν
0, with |q| � q0, and

n1, n2 ∈ N0, with n1 + n2 � M − 2q0 + 1
2 , we have

‖�12a
(d)
3 ‖s1 �s1 ευ

−1 ‖i1 − i2‖s1+σ , |�12m1| � ε ‖i1 − i2‖s0+σ , (7.153)

‖�12R
(0,d)
8 ‖0,s1,α �s1,M,α ευ

−1 ‖i1 − i2‖s1+σM (α) , (7.154)

‖〈D〉n1∂qϕ�12T8,M 〈D〉n2‖L(Hs1 ) �s1,M,q0 ευ
−1 ‖i1 − i2‖s1+σM (q0) , (7.155)

‖�12(A)h‖s1 �s1 ευ
−1 ‖i1 − i2‖s1+σ ‖h‖s1+σ , A ∈ {�±1, (�±1)∗,V±1, (V±1)∗} .

(7.156)

Proof. The function b(ϕ, x) = b1(ϕ, x)+b2(ϕ), with b1 and b2, defined in (7.135)
and (7.141) and the function '(ϕ) in (7.145), satisfy, by Lemma 3.8 and (7.95),

‖b1‖k0,υs �s ε(1+‖I0‖k0,υs+σ ) , ‖b‖k0,υs , ‖b2‖k0,υs , ‖'‖k0,υs �s ευ
−1(1+‖I0‖k0,υs+σ )

(7.157)
for some σ > 0 and for all s � s0. The estimate |m1|k0,υ � ε follows by (7.144)
and (7.95). The function

a(d)3 (ϕ, x) := V−1(a(d)2 ) = a(d)2 (ϕ, x − '(ϕ)) ,
where a(d)2 is defined in (7.137), satisfies (7.147) by (7.139).Moreover, the estimate
(7.148) follows by Lemma 3.8 and (7.95), (7.157). The estimate (7.149) for (cfr.
(7.143))

r (d)8 (ϕ, x, D) := V−1r (d)7 (ϕ, x, D)V = r (d)7 (ϕ, x − '(ϕ), D)
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with r (d)7 defined in (7.138), follows by Lemmata 3.5, 3.6, 3.8 and (7.157), (7.110).
The smoothing term T8,M in (7.146) is, using also (7.128),

T8,M :=V−1
(
�−1T6,M�+ i�0(�− Id)+�−1R(−M,o)6 �

)V

+ V−1
(
TM + T ′M 0

0 TM + T ′M

)
V

with TM and T ′M defined in (7.129), (7.130). The estimate (7.150) follows by
(7.125), Lemmata 3.12, 3.13, the tame estimates of � in Proposition 2.37 in [2],
and estimates (7.95), (7.157), (7.151), (7.111), noting that operators of the form
∂kλ∂

q
ϕV±1 lose |k|+|q| derivatives. The estimate (7.151) follows by Lemma 2.38 in

[2] and (7.157), whereas (7.152) follows by the equivalent representation for V as
in (7.104), Lemmata 3.12, 3.8 and (7.157). The estimates (7.153), (7.154), (7.155),
(7.156) are proved in the same fashion. By Lemma 7.9-3, the function a(d)1 is an
even(ϕ, x) quasi-periodic traveling wave, hence the function b1 in (7.135) is an
odd(ϕ, x) quasi-periodic traveling wave, the function b2 in (7.141) is odd in ϕ and
satisfies b2(ϕ − �jς) = b2(ϕ) for all ς ∈ R, whereas the function ' in (7.145) is
odd in ϕ and satisfies '(ϕ − �jς) = '(ϕ) for all ς ∈ R. By Lemmata 3.19, 3.29,
and 3.25, the transformations � and V are reversibility and momentum preserving.
Then the operator L8 is reversible and momentum preserving. The function a(d)3 is
an even(ϕ, x) quasi-periodic traveling wave. ��

7.6. Reduction of the Order 1/2

The goal of this section is to transform the operator L8 in (7.146) into the
operator L9 in (7.168) whose coefficient in front of |D|1/2 is a constant. We elim-
inate the x-dependence and, in view of the property (7.147), we obtain that this
transformation removes also the ϕ-dependence.

We first write the operator L8 in (7.146) as

L8 = ω · ∂ϕ +
(
P8 0
0 P8

)
+ i�0 + T8,M ,

where

P8 := im 3
2
�(κ, D)+ m1∂x + ia(d)3 |D|

1
2 + Op(r (d)8 ). (7.158)

We conjugate L8 through the real operator

�(ϕ) :=
(
 (ϕ) 0
0  (ϕ)

)
, (7.159)

where  (ϕ) :=  τ (ϕ)|τ=1 is the time-1 flow of

{
∂τ 

τ (ϕ) = B(ϕ) τ (ϕ) ,

 0(ϕ) = Id ,
B(ϕ) := b3(ϕ, x)H , (7.160)
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the function b3(ϕ, x) is a smooth, real, periodic function to be chosen later (see
(7.165)) and H is the Hilbert transform defined in (3.19). Note that  π0 = π0 =
 −1π0, so that

�−1�0� = �0�. (7.161)

By the Lie expansion in (3.16) we have

 −1P8 = P8 − [B, P8] +
M+1∑

n=2

(−1)n
n! adnB(ϕ)(P8)+ LM ,

LM := (−1)
M+2

(M + 1)!
∫ 1

0
(1− τ)M+1 −τ (ϕ) adM+2B(ϕ) (P8) 

τ (ϕ)dτ ,

(7.162)

and, by (3.17),

 −1 ◦ ω · ∂ϕ ◦ =

ω · ∂ϕ + (ω · ∂ϕB(ϕ))−
M∑

n=2

(−1)n
n! adn−1B(ϕ)(ω · ∂ϕB(ϕ))+ L ′M ,

L ′M :=
(−1)M
M !

∫ 1

0
(1− τ)M −τ (ϕ) adMB(ϕ)(ω · ∂ϕB(ϕ)) τ (ϕ)dτ.

(7.163)

The number M will be fixed in (8.5). The contributions at order 1/2 come from
(7.162), in particular from P8 − [B, P8] (recall (7.158)). Since B = b3H (see
(7.160)), by (3.26) and (7.131) we have

P8 − [B, P8] = im 3
2
�(κ, D)+ m1∂x + i

(
a(d)3 − 3

2m 3
2

√
κ(b3)x

) |D| 12
+ Op(r (d)8 + rb3,− 1

2
)− [B,m1∂x + i a(d)3 |D|

1
2 + Op(r (d)8 )] ,

(7.164)

where Op(rb3,− 1
2
) ∈ OPS− 1

2 is small with b3. Recalling that, by (7.147), the space

average 〈a(d)3 〉x (ϕ) = m 1
2
for all ϕ ∈ T

ν , we choose the function b3(ϕ, x) such that

a(d)3 − 3
2m 3

2

√
κ(b3)x = m 1

2
, namely

b3(ϕ, x) := 2
3m 3

2

√
κ
∂−1x (a(d)3 (ϕ, x)− 〈a(d)3 〉x (ϕ)) , 〈a(d)3 〉x (ϕ) = m 1

2
. (7.165)

We deduce by (7.162)–(7.163) and (7.164), (7.165) that

L9 :=  −1(ϕ)(ω · ∂ϕ + P8) (ϕ)

= ω · ∂ϕ + im 3
2
�(κ, D)+ m1∂x + im 1

2
|D| 12 + Op(r (d)9 )+ LM + L ′M ,

(7.166)
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where

Op(r (d)9 ) := Op(r (d)8 + rb3,− 1
2
)− [B(ϕ),m1∂x + i a(d)3 |D|

1
2 + Op(r (d)8 )] + (ω · ∂ϕB(ϕ))

+
M−1∑

n=2

(−1)n
n! adnB(ϕ)(P8)−

M∑

n=2

(−1)n
n! adn−1B(ϕ)(ω · ∂ϕB(ϕ)) ∈ OPS0.

(7.167)

Define the matrix� :=
(
1 0
0 −1

)
. Summing up, we have obtained the following

lemma.

Lemma 7.13. Let M ∈ N, q0 ∈ N0. Let b3 be the function defined in (7.165).
Then, conjugating the operator L8 in (7.146) via the invertible, real, reversibility
and momentum preserving map � defined in (7.159), (7.160), we obtain, for any
ω ∈ DC(υ, τ ), the real, reversible and momentum preserving operator

L9 :=  −1L8� = ω · ∂ϕ + im 3
2
�(κ, D)+ m1∂x + im 1

2
�|D| 12 + i�0 + R(0,d)9 + T9,M ,

(7.168)
where

1. the constant m 1
2
defined in (7.140) satisfies |m 1

2
|k0,υ � ε2;

2. R(0,d)9 is a block-diagonal operator

R(0,d)9 =
(
r (d)9 (ϕ, x, D) 0

0 r (d)9 (ϕ, x, D)

)

∈ OPS0,

that satisfies, for some σM := σM (k0, τ, ν) > 0, and for all s � s0,

‖R(0,d)9 ‖k0,υ0,s,1 �s,M ευ
−1(1+ ‖I0‖k0,υs+σM ) ; (7.169)

3. For any q ∈ N
ν
0 with |q| � q0, n1, n2 ∈ N0 with n1 + n2 � M − 2(k0 +

q0)+ 5
2 , the operator 〈D〉n1∂qϕT9,M (ϕ)〈D〉n2 isDk0 -tame with a tame constant

satisfying, for some σM (q0) := σM (k0, τ, ν,q0), for any s0 � s � S,

M〈D〉n1∂qϕT9,M (ϕ)〈D〉n2 (s) �S,M,q0 ευ
−1(1+ ‖I0‖k0,υs+σM (q0)) ; (7.170)

4. The operators �±1 − Id, (�±1 − Id)∗ are Dk0 -tame, with tame constants
satisfying, for some σ := σ(k0, τ, ν) > 0 and for all s � s0,

M�±1−Id(s)+M(�±1−Id)∗(s) �s ευ
−1(1+ ‖I0‖k0,υs+σ ) . (7.171)

Furthermore, for any s1 as in (7.15), α ∈ N0, q ∈ N
ν
0, with |q| � q0, and

n1, n2 ∈ N0, with n1 + n2 � M − 2q0 + 1
2 , we have

‖�12R
(0,d)
9 ‖0,s1,1 �s1,M ευ

−1 ‖i1 − i2‖s1+σM , |�12m 1
2
| � ε2 ‖i1 − i2‖s0+σ ,

(7.172)

‖〈D〉n1∂qϕ�12T9,M 〈D〉n2‖L(Hs1 ) �s1,M,q0 ευ
−1 ‖i1 − i2‖s1+σM (q0) , (7.173)

‖�12(�
±1)h‖s1 + ‖�12(�

±1)∗h‖s1 �s1 ευ
−1 ‖i1 − i2‖s1+σ ‖h‖s1+σ . (7.174)
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Proof. The function b3(ϕ, x) defined in (7.165), satisfies, by (7.148) and the esti-
mate of m 3

2
given in Lemma 7.9-2, for some σ > 0 and for all s � s0,

‖b3‖k0,υs �s ευ
−1(1+ ‖I0‖k0,υs+σ ). (7.175)

The estimate for m 1
2
follows by (7.140), (3.7) and (7.95), (7.157). The estimate

(7.169) follows by (7.167), (7.158), Lemmata 3.5, 3.6, and (7.148), (7.149), (7.175).
By (7.146), (7.158), (7.166), and (7.161), the smoothing term T9,M in (7.168) is

T9,M := �−1T8,M� + i�0(� − Id)+
(
LM + L ′M 0

0 LM + L ′M

)

with LM and L ′M introduced in (7.162), (7.163). The estimate (7.170) follows by
Lemmata 3.12, 3.13, 3.7, (7.158), (7.148), (7.150), (7.175), (7.171). The estimate
(7.171) follows by Lemma 3.13 and (7.175). The estimates (7.172), (7.173), (7.174)
are proved in the same fashion. By Lemma 7.12, the function a(d)3 is a even(ϕ, x)
quasi-periodic travelingwave.Hence the function b3 in (7.165) is a odd(ϕ, x) quasi-
periodic traveling wave. By Lemmata 3.19, 3.29, and 3.25, the transformation �

is reversibility and momentum preserving, therefore the operator L9 is reversible
and momentum preserving. ��
Remark 7.14. InProposition7.18we shall estimate‖[∂x ,R(0,d)9 ]‖k0,υ0,s,0 using (7.169)

and (3.27). In order to control ‖R(0,d)9 ‖k0,υ0,s,1 we used the estimates (7.97) for finitely
many α ∈ N0, α � α(M), depending on M . Furthermore in Proposition 7.18 we
shall use (7.172)–(7.173) only for s1 = s0.

7.7. Conclusion: Partial Reduction of Lω
By Sections 7.1-7.6, the linear operator L in (7.12) is semi-conjugated, for all

ω ∈ DC(υ, τ ), to the real, reversible andmomentum preserving operatorL9 defined
in (7.168), namely

L9 =W−12 LW1 , (7.176)

where

W1 := PZEQM̃C�M�V� , W2 := PρZEQM̃C�M�V�. (7.177)

Moreover L9 is defined for all ω ∈ R
ν .

Now we deduce a similar conjugation result for the projected operator Lω in
(6.23), that is (7.1), which acts in the normal subspace H∠

S+,� . We first introduce
some notation.

We denote by �ᵀ
S+,� and �∠

S+,� the projections on the subspaces Hᵀ
S+,� and

H∠
S+,� defined in Section 2.3. In view of Remark 7.2, we denote, with a small abuse

of notation, �ᵀ
S
+
0 ,�
:= �ᵀ

S+,� + π0, so that �ᵀ
S
+
0 ,�
+ �∠

S+,� = Id on the whole

L2 × L2. We remind that S0 = S ∪ {0}, where S is the set defined in (2.48). We
denote by �S0 := �ᵀ

S
+ π0, where �ᵀ

S
is defined below (2.58) together with the

definition of �⊥
S0
, so that we have �S0 +�⊥S0 = Id.
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Lemma 7.15. Let M > 0. There is σM > 0 (depending also on k0, τ, ν) such that,
assuming (7.14) with μ0 � σM, the following holds: the maps W1, W2 defined in
(7.177) have the form

Wi = M̃C +Ri (ε) , (7.178)

where, for any i = 1, 2, for all s0 � s � S,

‖Ri (ε)h‖k0,υs �S,M ευ
−1(‖h‖k0,υs+σM + ‖I0‖k0,υs+σM ‖h‖k0,υs0+σM

)
. (7.179)

Moreover, for ευ−1 � δ(S) small enough, the operators

W⊥1 := �∠
S+,�W1�

⊥
S0
, W⊥2 := �∠

S+,�W2�
⊥
S0
, (7.180)

are invertible and, for all s0 � s � S, i = 1, 2,

‖(W⊥i )±1h‖k0,υs �S,M ‖h‖k0,υs+σM + ‖I0‖k0,υs+σM ‖h‖k0,υs0+σM , (7.181)

‖�12(W⊥i )±1h‖s1 �s1,M ευ
−1 ‖i1 − i2‖s1+σM ‖h‖s1+σM . (7.182)

The operators W⊥1 , W⊥2 map (anti)-reversible, respectively traveling, waves, into
(anti)-reversible, respectively traveling, waves.

Proof. The formulae (7.178) and the estimates (7.179) follow by (7.177), Lem-
mata 3.12, 3.13, and (3.36), (7.23), (7.27), (7.91), (7.92), (7.112), (7.151), (7.152),
(7.171). The invertibility of eachW⊥i and the estimates (7.181) follow as in [2] and
noting that�∠

S+,� M̃C�⊥
S0
= �∠

S+,�MC�⊥
S0

are invertible on their ranges, with

inverses (�∠
S+,�MC�⊥

S0
)−1 = �⊥

S0
(MC)−1�∠

S+,� . Since Z, E,Q,M̃,�M ,�,

V,� are reversibility and momentum preserving and using Remark 7.7 and Lem-
mata 3.23, 3.31, we deduce thatW⊥1 ,W⊥2 map (anti)-reversible, respectively trav-
eling, waves, into (anti)-reversible, respectively traveling, waves. ��

Remark 7.16. The time reparametrizationP and themultiplication for the function
ρ (which is independent of the space variable), commutewith the projections�∠

S+,�
and �⊥

S0
.

The operator Lω in (6.23) (that is (7.1)) is semi-conjugated to

L⊥ := (W⊥2 )−1LωW⊥1 = �⊥S0 L9�
⊥
S0
+R f (7.183)

whereR f is, by (7.180), (7.176), (7.178) (recall thatM̃ is defined in (7.78)–(7.79)),
and (2.59),

R f := (W⊥2 )−1�∠
S+,�R2(ε)�S0L9�

⊥
S0

− (W⊥2 )−1�∠
S+,�L�ᵀ

S
+
0 ,�

R1(ε)�
⊥
S0
− ε(W⊥2 )−1�∠

S+,� J RW⊥1 . (7.184)
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Lemma 7.17. The operator R f in (7.184) has the finite rank form (7.4), (7.5).
Moreover, let q0 ∈ N0 and M � 2(k0 + q0) − 3

2 . There exists ℵ(M,q0) > 0
(depending also on k0, τ , ν) such that, for any n1, n2 ∈ N0, with n1 + n2 �
M−2(k0+q0)+ 5

2 , and anyq ∈ N
ν
0, with |q| � q0, the operator 〈D〉n1∂qϕR f 〈D〉n2

is Dk0 -tame, with a tame constant satisfying

M〈D〉n1∂qϕR f 〈D〉n2 (s) �S,M,q0 ευ
−1(1+ ‖I0‖k0,υs+ℵ(M,q0)), ∀s0 � s � S ,

(7.185)

‖〈D〉n1∂qϕ�12R f 〈D〉n2‖L(Hs1 ) �s1,M,q0 ευ
−1 ‖i1 − i2‖s1+ℵ(M,q0) , (7.186)

for any s1 as in (7.15).

Proof. The first two terms in (7.184) have the finite rank form (7.4) because of the
presence of the finite dimensional projector �S0 , respectively �

ᵀ
S
+
0 ,�

. In the last

term, the operator R has the finite rank form (7.4). The estimate (7.185) follows by
(7.184), (7.177), (7.180), (7.168), (7.4), (3.7) and (7.179), (7.181), (7.169), (7.170),
(7.5). The estimate (7.186) follows similarly. ��
Proposition 7.18. (Reduction of Lω up to smoothing operators) For all (ω, κ) ∈
DC(υ, τ )×[κ1, κ2], the operator Lω in (6.23) (that is (7.1)) is semi-conjugated via
(7.180) to the real, reversible and momentum preserving operator L⊥ in (7.183).
For all (ω, κ) ∈ R

ν×[κ1, κ2], the extended operator defined by the right hand side
in (7.183) has the form

L⊥ = ω · ∂ϕ1⊥ + iD⊥ + R⊥, (7.187)

where 1⊥ denotes the identity map of H⊥
S0

(cfr. (2.58)) and

1. D⊥ is the diagonal operator

D⊥ :=
(D⊥ 0

0 −D⊥
)
, D⊥ := diag j∈Sc0 μ j , S

c
0 := Z\(S ∪ {0}),

with eigenvalues μ j := m 3
2
� j (κ) + m1 j + m 1

2
| j | 12 ∈ R , where the real

constants m 3
2
,m1,m 1

2
, defined respectively in (7.88), (7.144), (7.140), satisfy

|m 3
2
− 1|k0,υ + |m1|k0,υ + |m 1

2
|k0,υ � ε ; (7.188)

in addition, for some σ > 0,

|�12m 3
2
| + |�12m1| + |�12m 1

2
| � ε ‖i1 − i2‖s0+σ . (7.189)

2. The operator R⊥ is real, reversible and momentum preserving. Moreover, for
anyq0 ∈ N0, M > 2(k0+q0)− 3

2 , there is a constantℵ(M,q0) > 0 (depending
also on k0, τ , ν) such that, assuming (7.14) with μ0 � ℵ(M,q0), for any
s0 � s � S, q ∈ N

ν
0, with |q| � q0, the operators ∂qϕR⊥, [∂qϕR⊥, ∂x ] are

Dk0 -tame with tame constants satisfying

M∂
q
ϕR⊥(s), M[∂qϕR⊥,∂x ](s) �S,M,q0 ευ

−1(1+ ‖I0‖k0,υs+ℵ(M,q0)) . (7.190)
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Moreover, for any q ∈ N
ν
0 , with |q| � q0,

‖∂qϕ�12R⊥‖L(Hs0 ) + ‖∂qϕ�12[R⊥, ∂x ]‖L(Hs0 ) �M ευ
−1 ‖i1 − i2‖s0+ℵ(M,q0) .

(7.191)

Proof. By (7.183) and (7.168) we deduce (7.187) with

R⊥ := �⊥S0(R(0,d)9 + T9,M )�
⊥
S0
+R f .

The estimates (7.188)–(7.189) follow by Lemmata 7.9, 7.12, 7.13. The estimate
(7.190) follows by Lemmata 3.6, 3.13, (7.169) and (7.170), (7.185), choosing
(n1, n2) = (1, 0), (0, 1). The estimate (7.191) follows similarly. The operator Lω
in (6.23) is reversible andmomentum preserving (Lemma 7.1). By Sections 7.2-7.6,
the maps Z, E,Q,M̃,�M ,�,V,� are reversibility and momentum preserving.
Therefore, using also (7.18), (7.24) and Lemmata 3.23 and 3.31, we deduce that
the operator L⊥ in (7.183) is reversible and momentum preserving. Since iD⊥ is
reversible and momentum preserving, we deduce thatR⊥ is reversible and momen-
tum preserving. ��

8. Almost-Diagonalization and Invertibility of Lω

In Proposition 7.18 we obtained the operator L⊥ in (7.187) which is diagonal
and constant coefficient up to the bounded operator R⊥(ϕ). In this section we
complete the diagonalization of L⊥ implementing a KAM iterative scheme. As
starting point, we consider the real, reversible and momentum preserving operator,
acting in H⊥

S0
,

L0 := L0(i) := L⊥ = ω · ∂ϕ1⊥ + iD0 + R(0)⊥ , (8.1)

defined for all (ω, κ) ∈ R
ν × [κ1, κ2], with diagonal part (with respect to the

exponential basis)

D0 :=
(D0 0

0 −D0

)
, D0 := diag j∈Sc0 μ

(0)
j , μ

(0)
j := m 3

2
� j (κ)+ m1 j + m 1

2
| j | 12 ,
(8.2)

where S
c
0 = Z\S0, S0 = S ∪ {0}, the real constants m 3

2
, m1, m 1

2
satisfy (7.188)–

(7.189) and

R(0)⊥ := R⊥ :=
(
R(0,d)⊥ R(0,o)⊥
R(0,o)⊥ R(0,d)⊥

)

, R(0,d)⊥ : H⊥
S0
→ H⊥

S0
, R(0,o)⊥ : H⊥−S0 → H⊥

S0
,

(8.3)
which is a real, reversible,momentumpreservingoperator satisfying (7.190), (7.191).
We denote H⊥±S0 = {h(x) =

∑
j �∈±S0 h j e±i j x ∈ L2}. Note that

D0 : H⊥−S0 → H⊥−S0 , D0 = diag j∈−Sc0(μ
(0)
− j ). (8.4)
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Proposition 7.18 implies that the operator R(0)⊥ satisfies the tame estimates of
Lemma 8.1 below by fixing the constant M large enough (which means performing
sufficiently many regularizing steps in Section 7.4), namely

M := [
2(k0 + s0 + b)− 3

2

]+ 1 ∈ N , (8.5)

where
b := [a] + 2 ∈ N , a := 3τ1 � 1 , τ1 := k0 + (k0 + 1)τ . (8.6)

These conditions imply the convergence of the iterative scheme (8.46)–(8.47), see
Lemma 8.8. We also set

μ(b) := ℵ(M, s0 + b) , (8.7)

where the constant ℵ(M,q0) is given in Proposition 7.18.

Lemma 8.1. (Smallness of R(0)⊥ ) Assume (7.14) with μ0 � μ(b). Then the op-

erators R(0)⊥ , [R(0)⊥ , ∂x ], and ∂s0ϕmR(0)⊥ , [∂s0ϕmR(0)⊥ , ∂x ], ∂s0+bϕm R(0)⊥ , [∂s0+bϕm R(0)⊥ , ∂x ],
m = 1, . . . , ν, are Dk0 -tame and, defining

M0(s) := max
{
MR(0)⊥

(s), M[R(0)⊥ ,∂x ](s),

M
∂
s0
ϕmR(0)⊥

(s), M[∂s0ϕmR(0)⊥ ,∂x ](s) , m = 1, . . . , ν
}
, (8.8)

M0(s,b) := max
{
M
∂
s0+b
ϕm R(0)⊥

(s), M[∂s0+bϕm R(0)⊥ ,∂x ]
(s) , m = 1, . . . , ν

}
, (8.9)

we have, for all s0 � s � S,

M0(s,b) := max{M0(s),M0(s,b)} � C(S)
ε

υ
(1+ ‖I0‖k0,υs+μ(b)) ,

M0(s0,b) � C(S)
ε

υ
.

(8.10)

Moreover, for all q ∈ N
ν
0 , with |q| � s0 + b,

‖∂qϕ�12R
(0)
⊥ ‖L(Hs0 ) , ‖�12[∂qϕR(0)⊥ , ∂x ]‖L(Hs0 ) � C(S)ευ−1 ‖i1 − i2‖s0+μ(b) .

(8.11)

Proof. Recalling (8.8), (8.9), the bounds (8.10)–(8.11) follow by (7.190), (8.5),
(8.7), (7.191). ��

We perform the almost-reducibility of L0 along the scale

N−1 := 1 , Nn := Nχ
n

0 , ∀n ∈ N0 , χ := 3/2. (8.12)

Theorem 8.2. (Almost-diagonalizationofL0:KAMiteration)There exists τ2(τ, ν) >
τ1(τ, ν) + a (with τ1,a defined in (8.6)) such that, for all S > s0, there is
N0 := N0(S,b) ∈ N such that, if

N τ20 M0(s0,b)υ
−1 � 1 , (8.13)

then, for all n ∈ N0, n = 0, 1, . . . ,n:
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(S1)n There exists a real, reversible and momentum preserving operator

Ln := ω · ∂ϕ1⊥ + iDn + R(n)⊥ ,

Dn :=
(Dn 0

0 −Dn

)
, Dn := diag j∈Sc0 μ

(n)
j ,

(8.14)

defined for all (ω, κ) in R
ν × [κ1, κ2], where μ(n)j are k0-times differentiable real

functions

μ
(n)
j (ω, κ) := μ(0)j (ω, κ)+ r

(n)
j (ω, κ) , μ

(0)
j = m 3

2
� j (κ)+ m1 j + m 1

2
| j | 12 ,
(8.15)

satisfying r
(0)
j = 0 and, for n � 1,

|r(n)j |k0,υ � C(S,b)ευ−1, |μ(n)j − μ(n−1)j |k0,υ � C(S,b)ευ−1N−an−2, ∀ j ∈ S
c
0 .

(8.16)

The remainder

R(n)⊥ :=
(
R(n,d)⊥ R(n,o)⊥
R(n,o)⊥ R(n,d)⊥

)

, R(n,d)⊥ : H⊥
S0
→ H⊥

S0
, R(n,o)⊥ : H⊥−S0 → H⊥

S0
(8.17)

is Dk0 -modulo-tame: more precisely, the operators R(n,d)⊥ , R(n,o)⊥ , 〈∂ϕ〉bR(n,d)⊥ ,

〈∂ϕ〉bR(n,o)⊥ , are Dk0 -modulo-tame with modulo-tame constants

M#
n(s) :=M

#

R(n)⊥
(s) := max{M#

R(n,d)⊥
(s),M#

R(n,o)⊥
(s)} ,

M#
n(s,b) :=M

#

〈∂ϕ〉bR(n)⊥
(s) := max{M#

〈∂ϕ〉bR(n,d)⊥
(s),M#

〈∂ϕ〉bR(n,o)⊥
(s)},

(8.18)

which satisfy, for some constant C∗(s0,b) > 0, for all s0 � s � S,

M#
n(s) � C∗(s0,b)M0(s,b)N

−a
n−1 , M#

n(s,b) � C∗(s0,b)M0(s,b)Nn−1.
(8.19)

Define the sets �υn = �υn(i) by �υ0 := DC(2υ, τ)× [κ1, κ2] and, for n � 1,

�υn :=
{
λ = (ω, κ) ∈ �υn−1 :
∣∣ω · �+ μ(n−1)j − μ(n−1)j ′

∣∣ � υ 〈| j | 32 − | j ′| 32 〉〈�〉−τ
∀ |�| � Nn−1 , j, j ′ /∈ S0 , (�, j, j

′) �= (0, j, j), with �j · �+ j − j ′ = 0 ,
∣∣ω · �+ μ(n−1)j + μ(n−1)j ′

∣∣ � υ
( | j | 32 + | j ′| 32 )〈�〉−τ

∀ |�| � Nn−1 , j, j ′ /∈ S0 with �j · �+ j + j ′ = 0
}
.

(8.20)
For n � 1 there exists a real, reversibility and momentum preserving map, defined
for all (ω, κ) ∈ R

ν × [κ1, κ2], of the form

�n−1 = eXn−1 , Xn−1 :=
(
X (d)n−1 X (o)n−1
X (o)n−1 X (d)n−1

)

, X (d)n−1 : H⊥S0 → H⊥
S0
, X (o)n−1 : H⊥−S0 → H⊥

S0
,
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such that, for all λ ∈ �υn, the following conjugation formula holds:

Ln = �−1n−1Ln−1�n−1 . (8.21)

TheoperatorsXn−1, 〈∂ϕ〉bXn−1, areDk0 -modulo-tamewithmodulo tame constants
satisfying, for all s0 � s � S,

M
#
Xn−1(s) � C(s0,b)υ

−1N τ1n−1N
−a
n−2M0(s,b) ,

M
#

〈∂ϕ〉bXn−1(s) � C(s0,b)υ
−1N τ1n−1Nn−2M0(s,b).

(8.22)

(S2)n Let i1(ω, κ), i2(ω, κ) such thatR
(n)
⊥ (i1),R

(n)
⊥ (i2) satisfy (8.10), (8.11). Then,

for all (ω, κ) ∈ �υ1n (i1) ∩�υ2n (i2) with υ1, υ2 ∈ [υ/2, 2υ],
‖|�12R

(n)
⊥ |‖L(Hs0 ) �S,b ευ

−1N−an−1 ‖i1 − i2‖s0+μ(b) , (8.23)

‖|〈∂ϕ〉b�12R
(n)
⊥ |‖L(Hs0 ) �S,b ευ

−1Nn−1 ‖i1 − i2‖s0+μ(b) . (8.24)

Furthermore, for n � 1, for all j ∈ S
c
0,

|�12(r
(n)
j − r

(n−1)
j )| � C‖|�12R

(n)
⊥ |‖L(Hs0 ) , (8.25)

|�12r
(n)
j | � C(S,b)ευ−1 ‖i1 − i2‖s0+μ(b) . (8.26)

(S3)n Let i1, i2 be like in (S2)n and 0 < ρ < υ/2. Then

ευ−1C(S)N τ+1n−1 ‖i1 − i2‖s0+μ(b) � ρ ⇒ �υn(i1) ⊆ �υ−ρn (i2). (8.27)

Theorem 8.2 implies also that the invertible operator

Un := �0 ◦ . . . ◦�n−1, n � 1 , (8.28)

has almost diagonalized L0. We have indeed the following corollary.

Theorem 8.3. (Almost-diagonalization ofL0) Assume (7.14)withμ0 � μ(b). For
all S > s0, there exist N0 = N0(S,b) > 0 and δ0 = δ0(S) > 0 such that, if the
smallness condition

N τ20 ευ
−2 � δ0 (8.29)

holds, where τ2 = τ2(τ, ν) is defined in Theorem 8.2, then, for all n ∈ N and for
all (ω, κ) ∈ R

ν × [κ1, κ2] the operator Un in (8.28) is well-defined, the operators
U±1n − 1⊥ are Dk0 -modulo-tame with modulo-tame constants satisfying, for all
s0 � s � S,

M
#

U±1n −1⊥
(s) �S ευ

−2N τ10 (1+ ‖I0‖k0,υs+μ(b)) , (8.30)

where τ1 is given by (8.6). MoreoverUn,U
−1
n are real, reversibility and momentum

preserving. The operator Ln = ω · ∂ϕ1⊥ + iDn + R(n)⊥ , defined in (8.14) with

n = n is real, reversible and momentum preserving. The operator R(n)⊥ is Dk0 -
modulo-tame with a modulo-tame constant satisfying, for all s0 � s � S,

M
#

R(n)⊥
(s) �S ευ

−1N−an−1(1+ ‖I0‖k0,υs+μ(b)).

Moreover, for all (ω, κ) in�υn = �υn(i) =
⋂n

n=0�υn, where the sets�υn are defined
in (8.20), the conjugation formula Ln := U−1n L0Un holds.
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Proof of Theorem 8.2

The proof of Theorem 8.2 is inductive. We first show that (S1)n-(S3)n hold
when n = 0.

The step n = 0. Proof of (S1)0. Properties (8.14)–(8.15), (8.17) for n = 0 hold
by (8.1), (8.2), (8.3) with r(0)j = 0. We now prove that also (8.19) for n = 0 holds.

Lemma 8.4. We have M#
0(s),M

#
0(s,b) �s0,b M0(s,b).

Proof. Let R ∈ {R(0,d)⊥ , R(0,o)⊥ }. We prove that 〈∂ϕ〉bR isDk0 -modulo-tame. Using
the inequality

〈�− �′〉2q0〈 j − j ′〉2 �q0 1+
∣∣�− �′∣∣2q0 + ∣∣ j − j ′

∣∣2 + ∣∣�− �′∣∣2q0 ∣∣ j − j ′
∣∣2 ,

it follows, recalling (3.35), (8.10), (the matrix elements of the commutator [∂x , A]
are i( j − j ′)A j ′

j (�− �′)), that, for any j ′ ∈ S
c
0, �
′ ∈ Z

ν ,

υ2|k|
∑

�, j

〈�, j〉2s〈�− �′〉2(s0+b)〈 j − j ′〉2∣∣∂kλR j ′
j (�− �′)

∣∣2

�b M0(s0,b)
2〈�′, j ′〉2s +M0(s,b)

2〈�′, j ′〉2s0 .
(8.31)

Let s0 � s � S. Then, for any |k| � k0, by Cauchy-Schwartz inequality, we have

∥∥|〈∂ϕ〉b∂kλR|h
∥∥2
s �

∑

�, j

〈�, j〉2s
(∑

�′, j ′
〈�− �′〉b∣∣(∂kλR) j

′
j (�− �′)

∣∣ ∣∣h�′, j ′
∣∣
)2

�
∑

�, j

〈�, j〉2s
(∑

�′, j ′
〈�− �′〉s0+b〈 j − j ′〉|(∂kλR) j

′
j (�− �′)||h�′, j ′ |

1

〈�− �′〉s0 〈 j − j ′〉
)2

�s0

∑

�, j

〈�, j〉2s
∑

�′, j ′
〈�− �′〉2(s0+b)〈 j − j ′〉2|(∂λR) j

′
j (�− �′)|2|h�′, j ′ |2

(8.31)
�s0,b υ

−2|k|∑

�′, j ′

∣∣h�′, j ′
∣∣2 (

M0(s0,b)
2〈�′, j ′〉2s +M0(s,b)

2〈�′, j ′〉2s0).

Therefore,weobtainM#

〈∂ϕ〉bR(s) �s0,b M0(s,b) and thenM
#
0(s,b) �s0,b M0(s,b).

The inequality M
#
0(s) �s0 M0(s,b) follows similarly. ��

Proof of (S2)0. The proof of estimates (8.23), (8.24) at n = 0 follows by (8.11),
arguing similarly to Lemma 8.4.

Proof of (S3)0. It is trivial since, by definition, �υ0 (i1) = DC(2υ, τ) ×
[κ1, κ2] ⊂ �υ−ρ0 (i2).
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The reducibility step. We now describe the generic inductive step, showing how to
transform Ln into Ln+1 by the conjugation with �n. For sake of simplicity in the
notation, we drop the index n and we write + instead of n + 1, so that we write
L := Ln, L+ := Ln+1,R⊥ := R(n)⊥ ,R(+)⊥ := R(n+1)⊥ , N := Nn, etc. We conjugate
L in (8.14) by a transformation of the form

� := eX , X :=
(
X (d) X (o)

X (o) X (d)

)
, X (d) : H⊥

S0
→ H⊥

S0
, X (o) : H⊥−S0 → H⊥

S0
,

(8.32)
where X is a bounded linear operator, chosen below in (8.37), (8.38). By the Lie
expansions (3.16)–(3.17) we have

L+ := �−1L�

= ω · ∂ϕ1⊥ + iD+ ((ω · ∂ϕX)− i[X,D] +�NR⊥)+�⊥NR⊥
−

∫ 1

0
e−τX[X,R⊥]eτX dτ −

∫ 1

0
(1− τ)e−τX[X, (ω · ∂ϕX)− i[X,D]]eτX dτ

(8.33)

where �N is defined in (3.39) and �⊥N := Id −�N . We want to solve the homo-
logical equation

ω · ∂ϕX− i[X,D] +�NR⊥ = [R⊥] (8.34)

where

[R⊥] :=
(
[R(d)⊥ ] 0

0 [R(d)⊥ ]

)

, [R(d)⊥ ] := diag j∈Sc0(R
(d)
⊥ )

j
j (0). (8.35)

By (8.14), (8.17) and (8.32), the homological equation (8.34) is equivalent to the
two scalar homological equations

ω · ∂ϕX (d) − i(X (d)D −DX (d))+�N R(d)⊥ = [R(d)⊥ ]
ω · ∂ϕX (o) + i(X (o)D +DX (o))+�N R(o)⊥ = 0.

(8.36)

Recalling (8.14) and since D = diag j∈−Sc0(μ− j ), acting in H⊥−S0 (see (8.4)) the
solutions of (8.36) are, for all (ω, κ) ∈ �υn+1 (see (8.20) with n � n+ 1)

(X (d)) j
′
j (�) :=

⎧
⎪⎪⎨

⎪⎪⎩

−
(R(d)⊥ )

j ′
j (�)

i(ω · �+ μ j − μ j ′)
if

{
(�, j, j ′) �= (0, j, j), j, j ′ ∈ S

c
0, 〈�〉 � N

� · �j + j − j ′ = 0

0 otherwise,

(8.37)

(X (o)) j
′
j (�) :=

⎧
⎪⎪⎨

⎪⎪⎩

−
(R(o)⊥ )

j ′
j (�)

i(ω · �+ μ j + μ− j ′)
if

{
∀ � ∈ Z

ν j,− j ′ ∈ S
c
0, 〈�〉 � N

� · �j + j − j ′ = 0

0 otherwise.

(8.38)

Note that, since − j ′ ∈ S
c
0, we can apply the bounds (8.20) for (ω, κ) ∈ �υn+1.
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Lemma 8.5. (Homological equations)The real operatorX defined in (8.32), (8.37),
(8.38), (which for all (ω, κ) ∈ �υn+1 solves the homological equation (8.20)))
admits an extension to the whole parameter space R

ν × [κ1, κ2]. Such extended
operator isDk0 -modulo-tame with a modulo-tame constant satisfying, for all s0 �
s � S,

M
#
X(s) �k0 N τ1υ−1M#(s) , M

#

〈∂ϕ〉bX(s) �k0 N τ1υ−1M#(s,b) , (8.39)

where τ1 := τ(k0 + 1) + k0. If υ/2 � υ1, υ2 � 2υ, then, for all (ω, κ) ∈
�
υ1
n+1(i1) ∩�υ2n+1(i2),

‖ |�12X| ‖L(Hs0 ) � N 2τ υ−1(‖ |R⊥(i2)| ‖L(Hs0 ) ‖i1 − i2‖s0+μ(b) + ‖ |�12R⊥| ‖L(Hs0 )) ,

(8.40)

‖|〈∂ϕ〉b�12X|‖L(Hs0 ) �
N 2τ υ−1(‖|〈∂ϕ〉bR⊥(i2)|‖L(Hs0 ) ‖i1 − i2‖s0+μ(b) + ‖|〈∂ϕ〉b�12R⊥|‖L(Hs0 )) .

(8.41)

The operator X is reversibility and momentum preserving.

Proof. We prove that (8.39) holds for X (d). The proof for X (o) holds analogously.
First, we extend the solution in (8.37) to all λ in R

ν × [κ1, κ2] by setting (without

any further relabeling) (X (d)) j
′
j (�) = i g�, j, j ′(λ)(R

(d)
⊥ )

j ′
j (�), where

g�, j, j ′(λ) := χ( f (λ)ρ
−1)

f (λ)
, f (λ) := ω · �+ μ j − μ j ′ , ρ := υ〈�〉−τ 〈| j | 32 − | j ′| 32 〉,

and χ is the cut-off function (3.10). By (8.15), (8.16), (7.188), (8.20), Lemma 4.4,
(5.39), together with (3.10), we deduce that, for any k1 ∈ N

ν
0, |k1| � k0,

sup
|k1|�k0

∣∣∂k1λ g�, j, j ′
∣∣ �k0 〈�〉τ1υ−1−|k1|, τ1 = τ(k0 + 1)+ k0 ,

and we deduce, for all 0 � |k| � k0,

|∂kλ(X (d)) j
′
j (�)| �k0

∑

k1+k2=k
|∂k1λ g�, j, j ′(λ)||∂k2λ (R(d)⊥ ) j

′
j (�)|

�k0 〈�〉τ1υ−1−|k|
∑

|k2|�|k|
υ |k2||∂k2λ (R(d)⊥ ) j

′
j (�)|. (8.42)

By (8.37) we have that (X (d)) j
′
j (�) = 0 for all 〈�〉 > N . Therefore, for all |k| � k0,

we have

‖|〈∂ϕ〉b∂kλX (d)|h‖2s �
∑

�, j

〈�, j〉2s
( ∑

〈�−�′〉�N , j ′
|〈�− �′〉b∂kλ(X (d)) j

′
j (�− �′)||h�′, j ′ |

)2

(8.42)
�k0 N 2τ1υ−2(1+|k|)

∑

|k2|�|k|
υ2|k2|

∑

�, j

〈�, j〉2s
(∑

�′, j ′
|〈�− �′〉b∂k2λ (R(d)⊥ ) j

′
j (�− �′)||h�′, j ′ |

)2
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�k0 N 2τ1υ−2(1+|k|)
∑

|k2|�|k|
υ2|k2|‖|〈∂ϕ〉b∂k2λ R(d)⊥ ||h|‖2s

(3.38),(8.18)
�k0 N 2τ1υ−2(1+|k|)

(
M#(s,b)2 ‖h‖2s0 +M#(s0,b)

2 ‖h‖2s
)
,

and, byDefinition 3.14, we conclude thatM#

〈∂ϕ〉bX (d) (s) �k0 N τ1υ−1M#(s,b). The

analogous estimates for 〈∂ϕ〉bX (o), X (d), X (o) and (8.40), (8.41) follow similarly.
By induction, the operator R⊥ is reversible and momentum preserving. Therefore,
by (8.32), (8.37), (8.38) and Lemmata 3.18, 3.28, it follows that X is reversibility
and momentum preserving. ��

By (8.33), (8.34), for all λ ∈ �υn+1, we have
L+ = �−1L� = ω · ∂ϕ1⊥ + iD+ + R(+)⊥ , (8.43)

where
D+ := D− i[R⊥] ,

R(+)⊥ := �⊥NR⊥ −
∫ 1

0
e−τX[X,R⊥]eτX dτ

+
∫ 1

0
(1− τ)e−τX[X,�NR⊥ − [R⊥]]eτX dτ.

(8.44)

The right hand side of (8.43)–(8.44) define an extension of L+ to the whole pa-
rameter space Rν × [κ1, κ2], since R⊥ and X are defined on R

ν × [κ1, κ2].
The new operator L+ in (8.43) has the same form of L in (8.14) with the non-

diagonal remainder R(+)⊥ which is the sum of a term �⊥NR⊥ supported on high
frequencies and a quadratic function of X and R⊥. The new normal form D+ is
diagonal:

Lemma 8.6. (New diagonal part) For all (ω, κ) ∈ R
ν × [κ1, κ2], the new normal

form is

iD+ = iD+ [R⊥] = i

(D+ 0
0 −D+

)
, D+ := diag j∈Sc0 μ

(+)
j , μ

(+)
j := μ j + r j ∈ R ,

where each r j satisfies, on R
ν × [κ1, κ2],

|r j |k0,υ = |μ(+)j − μ j |k0,υ � M#(s0). (8.45)

Moreover, given tori i1(ω, κ), i2(ω, κ), wehave |r j (i1)−r j (i2)| � ‖|�12R⊥|‖L(Hs0 ).

Proof. Recalling (8.35), we have that r j := −i(R(d)⊥ ) jj (0), for all j ∈ S
c
0. By the

reversibility of R(d)⊥ and (3.44) we deduce that r j ∈ R. Recalling the definition
of M#(s0) in (8.18) (with s = s0) and Definition 3.14, we have, for all 0 �
|k| � k0, ‖|∂kλR(d)⊥ |h‖s0 � 2υ−|k|M#(s0) ‖h‖s0 , and therefore |∂kλ(R(d)⊥ ) jj (0)| �
υ−|k|M#(s0) . Hence (8.45) follows. The last bound for |r j (i1) − r j (i2)| follows
analogously. ��
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The iterative step. Letn ∈ N0 and assume that the statements (S1)n-(S3)n are true.
We now prove (S1)n+1-(S3)n+1. For sake of simplicity in the notation (as in other
parts of the paper) we omit to write the dependence on k0, which is considered as
a fixed constant.

Proof of (S1)n+1. The real operatorXn defined in Lemma 8.5 is defined for all
(ω, κ) ∈ R

ν×[κ1, κ2] and, by (8.39), (8.19), satisfies the estimates (8.22) at the step
n + 1. The flow maps �±1n = e±Xn are well defined by Lemma 3.16. By (8.43),
for all λ ∈ �υn+1, the conjugation formula (8.21) holds at the step n + 1. The
operator Xn is reversibility and momentum preserving, and so are the operators
�±1n = e±Xn . By Lemma 8.6, the operator Dn+1 is diagonal with eigenvalues
μ
(n+1)
j : Rν × [κ1, κ2] → R, μ(n+1)j = μ(0)j + r

(n+1)
j with r

(n+1)
j := r

(n)
j + r(n)j

satisfying, using also (8.19), (8.16) at the step n+ 1. The next lemma provides the
estimates of the remainder R(n+1)⊥ = R(+)⊥ defined in (8.44).

Lemma 8.7. The operators R(n+1)⊥ and 〈∂ϕ〉bR(n+1)⊥ are Dk0 -modulo-tame with
modulo-tame constants satisfying

M
#
n+1(s) � N−bn M#

n(s,b)+ N τ1n υ
−1M#

n(s)M
#
n(s0) , (8.46)

M
#
n+1(s,b) �b M#

n(s,b)+ N τ1n υ
−1(M#

n(s,b)M
#
n(s0)+M#

n(s0,b)M
#
n(s)

)
.

(8.47)

Proof. The estimates (8.46), (8.47) follow by (8.44), Lemmata 3.15, 3.16, the
bounds (3.40) and (8.39), (8.19), (8.6), (8.12), (8.13). ��
Lemma 8.8. Estimates (8.19) holds at the step n+ 1.

Proof. It follows by (8.46), (8.47), (8.19) at the step n, (8.6), the smallness condi-
tion (8.13) with N0 = N0(s0,b) > 0 large enough and taking τ2 > τ1 + a.

��
FinallyR(n+1)⊥ is real, reversible andmomentum preserving asR(n)⊥ , sinceXn is

real, reversibility and momentum preserving. This concludes the proof of (S1)n+1.
Proof of (S2)n+1. It follows by similar arguments and we omit it.
Proofof (S3)n+1. The proof follows as for (S4)ν+1 ofTheorem7.3 in [6], using

(S2)n and the fact that the momentum condition in (8.20) implies | j − j ′| � Nn.

Almost invertibility of Lω
By (7.183) and Theorem 8.3 (where L0 = L⊥) we obtain

Lω =W2,nLnW
−1
1,n , W1,n :=W⊥1 Un , W2,n :=W⊥2 Un , (8.48)

where the operator Ln is defined in (8.14) with n = n. By (7.181) and (8.30), we
have, for some σ := σ(τ, ν, k0) > 0, for any s0 � s � S,

‖W±11,nh‖k0,υs , ‖W±12,nh‖k0,υs �S ‖h‖k0,υs+σ + ‖I0‖k0,υs+μ(b)+σ‖h‖k0,υs0+σ . (8.49)
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In order to verify the almost invertibility assumption (AI) of Lω in Section 6, we
decompose the operator Ln in (8.14) (with n instead of n) as

Ln = D<n +Q(n)⊥ + R(n)⊥ (8.50)

where
D<n := �Kn(ω · ∂ϕ1⊥ + iDn)�Kn +�⊥Kn

,

Q(n)⊥ := �⊥Kn
(ω · ∂ϕ1⊥ + iDn)�

⊥
Kn
−�⊥Kn

,
(8.51)

and the smoothing operator �K on the traveling waves is defined in (3.6), and

�⊥K := Id − �K . The constants Kn in (8.51) are Kn := K χ
n

0 , χ = 3/2 (cfr.
(6.24)), and K0 will be fixed in (9.5).

Lemma 8.9. (First order Melnikov non-resonance conditions) For all λ = (ω, κ)
in

�
υ,I
n+1 :=

{
λ ∈ R

ν × [κ1, κ2] : (8.52)

|ω · �+ μ(n)j | � 2υ
| j | 32
〈�〉τ , ∀ |�| � Kn, j ∈ S

c
0 , j + �j · � = 0

}
,

on the subspace of the traveling waves τςg(ϕ) = g(ϕ − �jς), ς ∈ R, such that
g(ϕ, ·) ∈ H⊥

S0
, the operator D<n in (8.51) is invertible and there exists an extension

of the inverse operator (that we denote in the same way) to the whole Rν ×[κ1, κ2]
satisfying the estimate

‖(D<n )−1g‖k0,υs �k0 υ
−1‖g‖k0,υs+τ1 , τ1 = k0 + τ(k0 + 1). (8.53)

Moreover (D<n )
−1g is a traveling wave.

Proof. The estimate (8.53) follows arguing as in Lemma 8.5. ��
Standard smoothing properties imply that the operator Q(n)⊥ in (8.51) satisfies,

for any traveling wave h ∈ H⊥
S0
, for all b > 0,

‖Q(n)⊥ h‖k0,υs0 � K−bn ‖h‖k0,υs0+b+ 3
2
, ‖Q(n)⊥ h‖k0,υs � ‖h‖k0,υ

s+ 3
2
. (8.54)

By the decompositions (8.48), (8.50), Theorem 8.3 (note that (6.1) and Lemma
6.2 imply (7.14)), Proposition 7.18, the fact thatW1,n,W2,n map (anti)-reversible,
respectively traveling, waves, into (anti)-reversible, respectively traveling, waves
(Lemma 7.15) and estimates (8.49), (8.53), (8.54), (3.8) we deduce the following
theorem.

Theorem 8.10. (Almost invertibility of Lω) Assume (6.1). Let a,b as in (8.6) and
M as in (8.5). Let S > s0 and assume the smallness condition (8.29). Then the
almost invertibility assumption (AI) in Section 6 holds with �0 replaced by

�υn+1 := �υn+1(i) := �υn+1 ∩�υ,In+1 , (8.55)

(see (8.20), (8.52)) and, with μ(b) defined in (8.7),

L<ω :=W2,nD<nW
−1
1,n , Rω :=W2,nR

(n)
⊥ W−11,n , R⊥ω :=W2,nQ

(n)
⊥ W−11,n.
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9. Proof of Theorem 5.2

Theorem 5.2 is a consequence of Theorem 9.2 below. We consider the finite
dimensional subspaces of traveling wave variations

En :=
{
I(ϕ) = ($, I, w)(ϕ) such that (3.53) holds : $ = �n$, I = �n I , w = �nw

}

where�nw := �Knw are defined as in (3.6) with Kn in (6.24), and we denote with
the same symbol �ng(ϕ) := ∑

|�|�Kn
g�ei�·ϕ . Note that the projector �n maps

(anti)-reversible traveling variations into (anti)-reversible traveling variations.
In view of the Nash–Moser Theorem 9.2 we introduce the constants

a1 := max{6σ1 + 13, χ(p(τ + 1)+ μ(b)+ 2σ1)+ 1}, a2 := χ−1a1 − μ(b)− 2σ1,
(9.1)

μ1 := 3(μ(b)+ 2σ1)+ 1, b1 := a1 + 2μ(b)+ 4σ1 + 3+ χ−1μ1 , χ = 3/2 (9.2)

σ1 := max{σ, 2s0 + 2k0 + 5} , S = s0 + b1 , (9.3)

where σ = σ(τ, ν, k0) > 0 is defined by Theorem 6.6, 2s0 + 2k0 + 5 is the largest
loss of regularity in the estimates of the Hamiltonian vector field XP in Lemma
6.1, μ(b) is defined in (8.7), and b = [a] + 2 is defined in (8.6). The exponent p
in (6.24) is required to satisfy

pa > 1
2a1 + 3

2σ1. (9.4)

By (8.6), and the definition of a1 in (9.1), there exists p = p(τ, ν, k0) such that
(9.4) holds, for example we fix

p := 3(μ(b)+ 4σ1 + 1)

a
.

Remark 9.1. The constant a1 is the exponent in (9.9). The constant a2 is the
exponent in the second bound in (9.7). The constant μ1 is the exponent in (P3)n.
The conditions on the constants μ1,b1,a1 to allow the convergence of the Nash–
Moser scheme in Theorem 9.2 are

a1 > 6σ1 + 12 , b1 > a1 + 2μ(b)+ 4σ1 + χ−1μ1 , pa > 1
2a1 + 3

2σ1 ,

as well asμ1 > 3(μ(b)+2σ1). In addition, we require a1 � χ(p(τ +1)+μ(b)+
2σ1)+ 1 so that a2 � p(τ + 1)+ χ−1, which is used in the proof of Lemma 9.3.

Given a function W = (I, β) where I is the periodic component of a torus as
in (5.8) and β ∈ R

ν , we denote ‖W‖k0,υs := ‖I‖k0,υs + |β|k0,υ .
Theorem 9.2. (Nash–Moser) There exist δ0,C∗ > 0 such that, if

K τ30 ευ
−2 < δ0 , τ3 := max{pτ2, 2σ1 + a1 + 4} ,

K0 := υ−1 , υ := εa , 0 < a < (2+ τ3)−1 ,
(9.5)

where τ2 = τ2(τ, ν) is given by Theorem 8.2, then, for all n � 0:
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(P1)n There exists a k0-times differentiable function W̃n : Rν × [κ1, κ2] →
En−1 × R

ν , λ = (ω, κ) �→ W̃n(λ) := (̃In, α̃n − ω), for n � 1, and W̃0 := 0,
satisfying

‖W̃n‖k0,υs0+μ(b)+σ1 � C∗ευ−1. (9.6)

Let Ũn := U0 + W̃n, where U0 := (ϕ, 0, 0, ω). The difference H̃n := Ũn −
Ũn−1, for n � 1, satisfies

‖H̃1‖k0,υs0+μ(b)+σ1 � C∗ευ−1 , ‖H̃n‖k0,υs0+μ(b)+σ1 � C∗ευ−1K−a2n−1 , ∀n � 2 .
(9.7)

The torus embedding ı̃n := (ϕ, 0, 0) + Ĩn is reversible and traveling, that is
(5.7) holds.
(P2)n We define

G0 := �× [κ1, κ2] , Gn+1 := Gn ∩�υn+1(̃ın) , ∀n � 0 , (9.8)

where �υn+1(̃ın) is defined in (8.55). Then, for all λ ∈ Gn , setting K−1 := 1,
we have

‖F(Ũn)‖k0,υs0 � C∗εK−a1n−1 . (9.9)

(P3)n (High norms) For all λ ∈ Gn, we have ‖W̃n‖k0,υs0+b1 � C∗ευ−1Kμ1
n−1.

Proof. The inductive proof follows exactly as in [2,6]. Note that the almost invert-
ibility property proved in Theorem 8.10, as well as in Theorem 6.6, is formulated
exactly as in [2,6]. The only novelty is to check that each approximate torus ı̃n
is reversible and traveling. Clearly i0 := (ϕ, 0, 0) satisfies (5.7). Supposing in-
ductively that ı̃n is reversible and traveling, we now prove that the successive
approximation ı̃n+1 defined by the modified Nash–Moser scheme in [2,6] is a re-
versible and traveling wave as well. By (9.5), the smallness condition (8.29) holds
for ε small enough. Moreover (6.1) holds by (9.6). Therefore Theorem 8.10 holds
and the almost invertibility assumption (AI) of Section 6 holds for all λ ∈ �υn+1,
see (8.55). Then Theorem 6.6 implies the existence of an almost approximate in-
verse Tn := Tn(λ, ı̃n) of the linearized operator di,αF (̃ın), which satisfies, for any
anti-reversible traveling wave variation g, the tame estimate (6.40). Moreover. the
first three components of Tng form a reversible traveling wave variation. For all
λ ∈ Gn+1 = Gn ∩�υn+1(̃ın) (cfr. (9.8)) we define the successive approximation

Un+1 := Ũn+Hn+1 , Hn+1 := (̂In+1, α̂n+1) := −�nTn�nF(Ũn) ∈ En×Rν ,
where�n is defined for any (I, α),withI a travelingwavevariation, by�n(I, α) :=
(�nI, α). By Lemma 5.1 and since ı̃n is a reversible traveling wave, we have that
F(Ũn) = F (̃ın, α̃n) is an anti-reversible traveling wave variation, i.e (6.29)–(6.30)
hold. Thus the first three components of Tn�nF(Ũn) form a reversible traveling
wave variation, as well as �nTn�nF(Ũn). Finally one extends Hn+1, defined for
λ ∈ Gn+1, to H̃n+1 defined for all λ ∈ R

ν × [κ1, κ2], with an equivalent ‖ ‖k0,υs -
norm. Set Ũn+1 := Ũn + H̃n+1.

The estimates (9.6)–(9.9) and (P3)n+1 follow exactly as in [2,6]. ��
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Proof of Theorem 5.2. Let υ = εa, with 0 < a < a0 := 1/(2 + τ3). Then, the
smallness condition in (9.5) holds for 0 < ε < ε0 small enough and Theorem 9.2
holds. By (9.7), the sequence of functions W̃n = Ũn− (ϕ, 0, 0, ω) = (̃In, α̃n−ω)
converges to a function W∞ : Rν × [κ1, κ2] → Hs0

ϕ × Hs0
ϕ × Hs0 × R

ν , and we
define

U∞ := (i∞, α∞) := (ϕ, 0, 0, ω)+W∞.

The torus i∞ is reversible and traveling, that is (5.7) holds. By (9.6), (9.7), we also
deduce

‖U∞ −U0‖k0,υs0+μ(b)+σ1 � C∗ευ−1, ‖U∞ − Ũn‖k0,υs0+μ(b)+σ1 � Cευ−1K−a2n , ∀n � 1.

(9.10)
In particular (5.10)–(5.11) hold.
By Theorem 9.2-(P2)n, we deduce that F(λ;U∞(λ)) = 0 for any

λ ∈
⋂

n∈N0

Gn = G0 ∩
⋂

n�1

�υn (̃ın−1)
(8.55)= G0 ∩

[ ⋂

n�1

�υn (̃ın−1)
]
∩

[ ⋂

n�1

�υ,In (̃ın−1)
]

where G0 := � × [κ1, κ2]. To conclude the proof of Theorem 5.2 it remains only
to define the μ∞j in (5.12) and prove that the set Cυ∞ in (5.14)–(5.17) is contained
in ∩n�0Gn. We first define

G∞ := G0 ∩
[ ⋂

n�1

�2υ
n (i∞)

]
∩

[ ⋂

n�1

�2υ,I
n (i∞)

]
. (9.11)

Lemma 9.3. G∞ ⊆ ∩n�0Gn, where Gn are defined in (9.8).

Proof. We shall use the inclusion property (8.27), with S fixed in (9.3). By (9.10)
we have

ε(2υ)−1C(S)N τ+10 ‖i∞ − i0‖s0+μ(b) � ε(2υ)−1C(S)K p(τ+1)
0 C∗ευ−1 � υ ,

and ∀n � 2 ,

ε(2υ)−1C(S)N τ+1n−1‖i∞−̃ın−1‖s0+μ(b) � ε(2υ)−1C(S)K p(τ+1)
n−1 Cευ−1K−a2n−1 � υ ,

since τ3 > p(τ + 1) (by (9.5) and τ2 > τ1 = τ(k0 + 1)+ k0) and a2 > p(τ + 1)
(see Remark 9.1). Therefore (8.27) implies �2υ

n (i∞) ⊂ �υn (̃ın−1), ∀n � 1. By
similar arguments we deduce that �2υ,I

n (i∞) ⊂ �υ,In (̃ın−1). ��
Then we define the μ∞j in (5.12), where m∞3

2
:= m 3

2
(i∞), m∞1 = m1(i∞), m∞1

2
=

m 1
2
(i∞), with m 3

2
,m1,m 1

2
provided in Proposition 7.18. By (8.16), the sequence

(r
(n)
j (i∞))n∈N, with r

(n)
j given by Theorem 8.2-(S1)n (evaluated at i = i∞), is a

Cauchy sequence in | · |k0,υ . Then we define r∞j := limn→∞ r
(n)
j (i∞), for any

j ∈ S
c
0, which satisfies |r∞j − r

(n)
j (i∞)|k0,υ � Cευ−1N−an−1 for any n � 0. Then,

recalling r(0)j (i∞) = 0 and (7.188), the estimates (5.13) hold (here C = C(S) with
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S fixed in (9.3)). Finally one checks (see for example Lemma 8.7 in [6]) that the
Cantor set Cυ∞ in (5.14)–(5.17) satisfies Cυ∞ ⊆ G∞, with G∞ defined in (9.11), and
Lemma 9.3 implies that Cυ∞ ⊆ ∩n�0Gn. This concludes the proof of Theorem 5.2.
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