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Abstract

Motivation: DNA methylation is an intensely studied epigenetic mark, yet its functional role is in-

completely understood. Attempts to quantitatively associate average DNA methylation to gene ex-

pression yield poor correlations outside of the well-understood methylation-switch at CpG islands.

Results: Here, we use probabilistic machine learning to extract higher order features associated

with the methylation profile across a defined region. These features quantitate precisely notions of

shape of a methylation profile, capturing spatial correlations in DNA methylation across genomic

regions. Using these higher order features across promoter-proximal regions, we are able to con-

struct a powerful machine learning predictor of gene expression, significantly improving upon the

predictive power of average DNA methylation levels. Furthermore, we can use higher order fea-

tures to cluster promoter-proximal regions, showing that five major patterns of methylation occur

at promoters across different cell lines, and we provide evidence that methylation beyond CpG is-

lands may be related to regulation of gene expression. Our results support previous reports of a

functional role of spatial correlations in methylation patterns, and provide a mean to quantitate

such features for downstream analyses.

Availability and Implementation: https://github.com/andreaskapou/BPRMeth

Contact: G.Sanguinetti@ed.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA methylation is a well-studied, heritable epigenetic modification

that plays an important role in gene regulatory mechanisms. It is asso-

ciated with a broad range of biological processes of direct clinical

relevance, including X-chromosome inactivation, genomic imprint-

ing, silencing of repetitive DNA and carcinogenesis (Baylin and Jones,

2011; Feinberg and Vogelstein, 1983; Li et al., 1993). Methylation

occurs when a methyl group is attached to a DNA nucleotide. In ver-

tebrate genomes, methylation is observed almost exclusively on 5-

methylcytosine (5-mC) residues in the context of CpG dinucleotides.

Due to increased vulnerability of 5-mC to randomly deaminate into

thymine, most of the genome is depleted from CpG dinucleotides, ex-

cept from small CpG-rich regions, termed CpG islands (CGIs) (Bird,

2002). Hyper-methylation of CGIs near promoter regions is generally

associated with transcriptional repression; however, outside of this

well documented case, the association between DNA methylation

across promoter-proximal regions and transcript abundance is con-

siderably weaker and poorly understood (Jones, 2012).

Recent advances in high-throughput sequencing technology have

made it possible to measure the methylation level of cytosines on a

genome-wide scale with single nucleotide resolution. Sodium bisul-

phite treatment of DNA followed by sequencing (BS-seq) efficiently

converts unmethylated cytosines to uracils (which are subsequently

amplified as thymines by PCR) and leaves the 5-mCs unmodified

(Krueger et al., 2012). To obtain DNA methylation levels, reads are

aligned to a reference genome allowing changes of cytosines to thy-

mines during the mapping procedure. A variant of BS-seq technol-

ogy, termed Reduced Representation Bisulphite Sequencing (RRBS)

(Meissner et al., 2005), uses methylation-sensitive restriction en-

zymes to cleave the DNA at specific loci before bisulphite treatment.

This results in measuring in greater coverage and at lower cost the

methylation level of CpG-rich regions genome-wide.

Despite the widespread take up of BS-seq technology, statistical

modeling of such data is still challenging, yet it is crucial in order to

uncover biological regulatory mechanisms. Analysis of BS-seq data

has mainly focused on identifying differentially methylated regions

(DMRs) across different conditions. Some notable DMR methods

are BSmooth (Hansen et al., 2012), Bi-Seq (Hebestreit et al., 2013)

and M3D (Mayo et al., 2015). While DMR detection methods are

often crucial ingredients in exploratory data analysis pipelines, they

do not provide a clear platform to quantitatively understand the
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relationship between DNA methylation and gene expression. Most

studies use DMR detection as a pre-filter, and then simply correlate

mean methylation levels across each region (often taken to be

promoter-proximal) with gene expression. Adopting this simple ap-

proach, genome-wide studies (Bock et al., 2012; Hansen et al.,

2011) have reported only modest correlation between average

DNA-methylation and gene expression (Pearson’s correlation coeffi-

cient r � �0.3).

In this article, we argue that part of the difficulty in quantita-

tively associating methylation levels with gene expression resides in

the simplistic encoding of DNA methylation across a region as a

simple average. DNA methylation often displays reproducible, spa-

tially correlated patterns (profiles); Figure 1 shows two examples

from an ENCODE datasets (Dunham et al., 2012). This spatial re-

producibility was exploited by Mayo et al. (2015) to provide more

powerful tests for DMR, and by Vanderkraats et al. (2013) to group

genes with similar differential methylation patterns and correspond-

ing expression changes. These results suggest that a precise quantifi-

cation of the spatial variability in the DNA methylation mark may

aid the quest to quantitatively understand the interplay between

methylation and transcription. We propose a probabilistic model of

methylation profiles, based on latent variable models, which allow

us to associate with each region of interest a set of features capturing

precisely the methylation profile across the region. We then show

that, using such features, we can construct an accurate machine

learning predictor of gene expression from DNA methylation,

achieving test correlations twice as large as previously reported.

The rest of the paper is organized as follows: we start off by pro-

viding a high-level description of our approach. We then describe

precisely the statistical methodology we propose. We illustrate our

approach on three ENCODE datasets, showing that higher order

features allow much more accurate predictions of gene expression.

We also show how such features can be used to cluster regions ac-

cording to their methylation profiles, and show that five prototyp-

ical methylation profiles appear to explain most variability in

promoter-proximal methylation in human cell lines.

2 Approach

In this article, we propose a novel probabilistic machine learning

methodology to quantify the profile of DNA methylation across

genomic regions from BS-seq data. Our motivation is practical: in-

spection of many BS-seq datasets reveals that methylation levels

across promoter-proximal regions often show reproducible, spatially

correlated profiles. Figure 1 shows two example promoter-proximal

regions which clearly display such spatial correlations, resulting in

characteristic methylation shapes. We propose a method to quanti-

tate such qualitative information.

The method is based on a Generalized Linear Model of basis

function regression coupled with a Binomial observation likelihood,

and allows us to associate each region with a set of basis function

coefficients which capture the methylation profile. We show how

such higher order features can then be used in downstream analysis

to yield a significantly improved estimate of the correlation between

methylation and gene expression, and to identify prototypical

methylation profiles across promoter regions.

3 Methods

3.1 Modeling DNA methylation profiles
As in most HTS-based assays, the output of a BS-seq experiment is a

set of reads aligned to the genome; the main difference is that the

bisulphite treatment changes to thymine any unmethylated cytosine.

Thus, the same base on the genome will appear as cytosine on some

reads, and as thymine on others; the ratio of reads containing a cyto-

sine readout to total reads gives a measurement of the sample

methylation level. This measurement process at a single cytosine can

be naturally modeled with a Binomial distribution, where the num-

ber of successes represents the number of reads on which the cyto-

sine actually appears as C, and the number of attempts is the total

number of reads mapping to the specific site. Let t be the total num-

ber of reads that are mapped to a specific CpG site, and let m of

these reads to contain methylated cytosines. Then, for each CpG site

we assume that m � Binomðt;pÞ, where p is the unknown methyla-

tion level.

In this article, and in many practical studies, we are interested in

learning the methylation patterns of fixed-width genomic regions,

e.g. promoters. Hence, each genomic region iði ¼ 1; . . . ;NÞ can be

represented as a vector of CpG locations xi, where each entry corres-

ponds to the location of the CpG in the genomic region, relative to a

reference point such as the Transcription Start Site (TSS). It should

be noted that the vector lengths Li may vary between different gen-

omic regions, since they depend on the number of actual CpG di-

nucleotides found in each region. For each region i, we also have a

vector of observations yi, containing the methylation levels of

the corresponding CpG sites; each entry consists of the tuple

yil ¼ ðmil; tilÞ, where, mil is the number of 5-mC reads mapped to

the l-th CpG site in region i, and til corresponds to the total number

of reads.

Direct comparison of the observation vectors yi for different re-

gions is complicated due to the variability in the vector lengths. To

enable comparisons between these regions, we formulate our prob-

lem as a regression problem, where the methylation profile of each

genomic region is modeled as a linear combination of a set of latent

basis functions. Let f ðxiÞ be a latent function representing the

methylation profile for genomic region i. Since the observed methy-

lation data contain the proportion of methylated reads out of the

total reads for each CpG site, each entry of the vector yi takes values

in the ½0; 1� interval. Thus, we introduce an unconstrained latent

function gðxiÞ defined so that f ðxiÞ is the probit transformation of

gðxiÞ: f ðxiÞ ¼ UðgðxiÞÞ, where Uð�Þ denotes the cumulative distribu-

tion function (cdf) of the standard normal distribution. Let fi ¼ f ðxiÞ
and gi ¼ gðxiÞ be shorthand for the values of the latent functions.

Given the values of the latent function fi for region i, the obser-

vations yil for each CpG site are independent and identically
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Fig. 1. Methylation patterns for the PLEKHH3 and CCR10 genes from the K562

cell line over 67kb promoter region. Each point represents the relative CpG

location w.r.t. TSS and the corresponding DNA methylation level. The dashed

horizontal lines show the average methylation level. The shapes of methyla-

tion profiles are very different, however, the average methylation level cannot

explain them. Also, note that there are no CpG measurements in the (�6 kb,

�4 kb) region for the CCR10 gene, and the learned methylation profiles can

be thought as imputing the missing values by taking into consideration the

spatial co-dependence of nearby CpGs
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distributed Binomial variables, so we can define the joint log-

likelihood for region i in factorized form:

log pðyijfiÞ ¼
XLi

l¼1

logfBinomðmiljtil;UðgilÞÞg (1)

From its final form, we refer to this observation model as the

Binomial distributed Probit Regression (BPR) likelihood function.

Notice that the BPR model explicitly accounts for the coverage vari-

ability across CpG sites through the use of the Binomial observation

model: as the variance of a Binomial distribution decreases rapidly

with the number of attempts, the model will be very strongly con-

strained by highly covered sites. Hence, it handles in a principled

way the uncertainty present in low coverage reads during the ana-

lysis of BS-seq data.

3.2 Feature extraction
To constrain the latent function gi we assume it is given as a linear

combination of fixed non-linear basis functions hjð�Þ of the input

space xi, of the form:

giðxi;wiÞ ¼
XM�1

j¼0

wjhjðxiÞ ¼ Hiwi (2)

where wi ¼ ðwi;0; . . . ;wi;M�1ÞT ; Hi is the Li �M design matrix,

whose elements are given by Hilj ¼ hjðxilÞ, and M denotes the total

number of basis functions. Hence, its probit transformation fi is

given by:

fiðxi;wiÞ ¼ Uðgiðxi;wiÞÞ ¼ UðHiwiÞ (3)

One should note that even though the function gi is linear with

respect to the parameters wi, the latent function fi is non-linear due

to the presence of the probit transformation. In this study, we con-

sider Radial Basis Functions (RBFs) since they are local functions of

the input variable, so that changes in one region of the input space

do not affect all other regions. For a single input variable x, the RBF

takes the form hjðxÞ ¼ expð�cjjx� ljjj2Þ, where lj denotes the loca-

tion of the jth basis function in the input space and c controls the

spatial scale.

Learning the methylation profiles fi for each genomic region, is

equivalent to optimizing the model parameters wi. The parameters

wi can be considered as the extracted features which quantitate pre-

cisely notions of shape of a methylation profile. Optimizing wi in-

volves maximizing Equation (1) for each genomic region; however,

by increasing the number of basis functions, we also increase the

resolution for the shape of the methylation profiles, which might

lead to overfitting. To ameliorate this issue, we maximize a

penalized version of Equation (1), by adding a regularization term E
ðwiÞ to the log-likelihood function which will encourage the weights

to decay to zero:

JðwiÞ ¼ log pðyijfi;wiÞ � EðwiÞ (4)

where EðwiÞ ¼ 1
2 wT

i wi is the squared two-norm. This approach is

known as ridge regression or weight decay. Direct maximization of

JðwiÞ w.r.t parameters wi is intractable due to presence of the probit

transformation, hence, we perform numerical optimization using

the Conjugate Gradient method (see Section 1 of the Supplementary

Material).

3.3 Predicting gene expression
The extracted higher-order methylation features across promoter-

proximal regions can be used for downstream analysis, such as

predicting transcript abundance, or performing clustering in order

to learn prototypical methylation patterns that occur at promoters

across different cell lines.

To quantitatively predict expression at each promoter region, we

construct a regression model by taking as input the higher-order

methylation features extracted from each promoter-proximal re-

gion. The performance of the regression model is evaluated by com-

puting the root-mean squared error (RMSE) and the Pearson’s

correlation coefficient (r) between the predicted and the measured

(log-transformed) gene expression levels. We compare our proposed

model’s performance with the standard approach (Bock et al., 2012;

Hansen et al., 2011) which uses the average methylation level across

a region as input feature (this approach can be thought of as fitting a

constant function across each genomic region). We have tested both a

linear regression model and a variety of non-linear models, such as

SVM regression, Random Forests and Multivariate Adaptive

Regression Splines (MARS) (Friedman, 1991). For the rest of our

analysis we use the SVM regression since it is consistently better than

the other models (see Section 3 of the Supplementary Material).

In addition to the methylation profile features, we consider two

supplementary sources of information which could plausibly act as

confounders in the predictions. The first feature accounts for

the goodness of fit of each methylation profile to the observed

methylation data using the RMSE as error measure, intuitively

quantitating the noisiness in the methylation profile. The second fea-

ture considers the number of CpG dinucleotides present in each pro-

moter region. It is thought that CpG density may play a functional

role in controlling gene expression, with the main evidence being the

existence of CpG islands (Deaton and Bird, 2011).

3.4 Clustering methylation profiles
To cluster methylation profiles, we consider a mixture modeling ap-

proach (McLachlan and Peel, 2004). We assume that the methyla-

tion profiles f can be partitioned into at most K clusters, and each

cluster k can be modeled separately using the BPR likelihood as our

observation model. The log-likelihood for the mixture model is

defined as:

pðyjHÞ ¼
XN
i¼1

log
XK

k¼1

pkpðyijfi;wk; zi ¼ kÞ
( )

(5)

where H ¼ ðp1; . . . ;pk;w1; . . . ;wkÞ, pk are the mixing proportions

(with pk 2 ð0;1Þ8k and
P

k pk ¼ 1), wk are the methylation profile

parameters and zi are the latent variables denoting to which cluster

each genomic region belongs. To avoid cluttering the notation, we

will omit the dependence of the observation model on the latent

variables zi.

3.4.1 Parameter estimation

To estimate the model parameters H ¼ ðp1; . . . ; pk;w1; . . . ;wkÞ, the

Expectation Maximization (EM) algorithm (Dempster et al., 1977)

is considered. EM is a general iterative algorithm for computing

maximum likelihood estimates when there are missing or latent vari-

ables, as in the case of mixture models. EM alternates between infer-

ring the latent variables given the parameters (E-step), and

optimizing the parameters given the posterior statistics of the latent

variables (M-step). Formally, during the E-step we compute the re-

sponsibility that component k takes for explaining observations yi:

cðzikÞ ¼
pkpðyijfi;wkÞPK
j¼1 pjpðyijfi;wjÞ

(6)
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The M-step consists of updating the model parameters so as to

maximize the expected complete data log-likelihood. The mixing

proportions pk are updated as follows:

pk ¼
1

N

XN
i¼1

cðzikÞ (7)

To re-estimate the observation model parameters wk, we need to

optimize the following quantity:

‘ðwkÞ ¼
X

i

cðzikÞ
X

l

logfBinomðmiljtil ;Uðgil; wkÞÞg (8)

However, direct optimization of ‘ðwkÞ w.r.t parameters wk is in-

tractable, thus, we resort again to numerical optimization strategies.

This variant of EM algorithm is known as Generalized EM, or

GEM, and it is proved to converge to the maximum likelihood esti-

mate (Wu, 1983). It should be noted that the penalized version of

the BPR likelihood, given in Equation (4), can be easily incorporated

in the clustering approach.

4 Datasets

To evaluate the performance of the proposed methodology we use

real datasets that are publicly available from the ENCODE project

consortium (Dunham et al., 2012). More specifically, the following

three Tier 1 cell lines are used:

1. K562 immortalized cell line, coming from a human female with

chronic myelogenous leukemia.

2. GM12878 lymphoblastoid cell line, produced from the blood of

a female donor with northern and western European ancestry by

EBV transformation.

3. H1-hESC embryonic stem cells, coming from a human male.

The RRBS data for all three cell lines are produced by the Myers

Lab at HudsonAlpha Institute for Biotechnology (GEO: GSE27584).

The data are already pre-processed and aligned to the hg19 human

reference genome, and can be downloaded from the web accessible

database at UCSC. For our analysis, we use the resulting BED files

and we ignore strand information. To obtain more accurate methyla-

tion level estimates, we pool together all available replicates. To inves-

tigate the correlation between DNA methylation profiles and

transcript abundance, we use the corresponding paired-end RNA-seq

data produced by Caltech (GEO: GSE33480). The RNA-seq data are

pre-processed and mapped to the hg19 human reference genome using

TopHat and transcription quantification, in FPKM (Fragments Per

Kilobase transcript per Million mapped reads), is produced using

Cufflinks (Trapnell et al., 2012). The RNA-seq data are filtered in

order to keep only protein-coding genes.

To define promoter regions, we extract the TSS from the corres-

ponding RNA-seq data, which are annotated based on both versions

v3c and v4 of GENCODE GRCh37. Then, we consider N base pairs

upstream and downstream from each TSS, resulting in promoter regions

of length 2N base pairs. Since the cell lines are coming from different

genders, the sex chromosomes are discarded from further analysis (see

Section 4 of the Supplementary Material for a detailed description).

5 Results

5.1 Methylation profiles are highly correlated with gene

expression
Initially, we examine whether gene expression levels might be pre-

dictable from DNA methylation patterns alone. We therefore ex-

tract higher-order features from promoter regions of 67kb around

the TSS by learning the corresponding methylation profiles using the

Binomial Probit Regression (BPR) observation model. To ensure

that the promoter-proximal regions will have enough data to learn

reasonable methylation profiles, we discard regions with less than

15 CpGs, and restrict our attention to regions which exhibit spatial

variability in methylation levels. We applied the same pre-

processing steps for the three ENCODE cell lines, which resulted in

7093 promoters for K562, 6022 for GM12878 and 5753 for H1-

hESC cell line.

We model the methylation profiles using nine RBFs, which re-

sults in ten extracted features including the bias term. In addition to

these features, we use the goodness of fit in RMSE and the CpG

density across each region. We then train the SVM model on the re-

sulting 12 features using a random subset of 70% of the promoter-

proximal regions. We test the model’s ability to quantitatively

predict expression levels on the remaining 30% of the data. Our re-

sults show a striking improvement in prediction accuracy when

compared to using the mean methylation level as input feature.

Figure 2A shows a scatter plot of the predicted and measured ex-

pression values for the K562 cell line, with Pearson’s r¼ 0.7

(P-value of t-test<2.2e�16) and RMSE¼2.63, demonstrating that

the shape of methylation patterns across promoter-proximal regions

is well correlated to mRNA abundance. Figure 2B shows the per-

formance of the regression model when using the mean methylation

level as input feature. It is evident that this approach cannot capture

the diverse patterns present across the promoter regions, leading to

poor prediction accuracy (r¼0.31 and RMSE¼3.52). Notice that

the mean methylation approach erroneously predicts gene expres-

sion values only in the (�2, 4) interval, whereas the BPR model cap-

tures more accurately the dynamic range of expression.

Interestingly, the mean approach erroneously predicts the majority

of genes to have expression value around �1, clearly indicating that

summarizing DNA methylation by a single average is insufficient to

capture the complex relationship with expression. Finally, one

should observe the horizontal stripe around �3 on both figures:

these are genes whose lack of expression cannot be attributed to

Fig. 2. Quantitative relationship between DNA methylation patterns and ex-

pression. (A) Scatter plot of predicted gene expression using the BPR model

on the x-axis versus the measured (log-transformed) gene expression values

for the K562 cell line on the y-axis. Each methylation profile is modeled using

nine RBFs. In addition to these features, the SVM regression model uses as

input the goodness of fit in RMSE and the CpG density. Each shaded blue dot

represents a different gene and the darker the color, the higher the density of

points. The red dashed line indicates the linear fit between the predicted and

measured expression values, which are highly correlated (Pearson’s r¼ 0.7,

P-value<2.2e�16), indicating a quantitative relationship between methyla-

tion profiles across promoter-proximal regions and transcript abundance.

The model performance is also assessed by RMSE, which is 2.63. (B) Scatter

plot of predicted and measured gene expression values when using the aver-

age methylation level as input feature in the SVM model; correlation has

decreased substantially (r¼ 0.31 and RMSE¼ 3.52)
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DNA methylation patterns, possibly implicating other regulating

mechanisms (e.g. histone marks, binding of transcription factors,

etc.), or difficulties in the measurement process of RNA-seq experi-

ments (e.g. due to genes having relatively non-unique transcript se-

quences or multiple promoters).

We then consider the relative importance of the various features

in predicting gene expression: in particular, we are interested in

determining whether including goodness of fit or CpG density as

covariates has any impact on predictive performance. For each cell

line, we learn five SVM regression models, each having a different

number of input features. The first four models consider as input the

extracted higher-order methylation features with a combination of

the two additional features we described in the previous section,

whereas the last model takes the average methylation level as input

feature. To statistically assess our results, we perform 20 random

splits in training and test sets and evaluate the model performance

on the corresponding test sets. Figure 3 shows boxplots of Pearson’s

r for the three ENCODE cell lines, where each boxplot indicates the

performance of the prediction model on the 20 random splits of the

data. The results demonstrate that by considering higher-order fea-

tures we can build powerful predictive models of gene expression;

and in the case of K562 and GM12878 we have more than 2-fold in-

crease in correlation.

Concentrating on the importance of the additional features for

the prediction process, we observe that the addition of CpG density

does not have a significant prediction improvement compared to

using only the shape of methylation profiles as input features (paired

Wilcoxon test P-value¼0.22, 0.18 and 0.02 for K562, GM12878

and H1-hESC, respectively). On the other hand, the goodness of fit

of the methylation profile in RMSE has a positive impact on the pre-

diction performance (paired Wilcoxon test P-value¼4.8e�05,

4.8e�05 and 0.0001 for K562, GM12878 and H1-hESC, respect-

ively). Finally, we explore the importance of considering different

promoter region windows. Table 1 shows Pearson’s r when con-

sidering various length promoter-proximal regions around the TSS.

In general, the BPR model maintains its high predictive power across

all cell lines for all different-length regions.

5.2 Methylation profiles are predictive of gene

expression across different ENCODE cell lines
We showed that gene expression is effectively predicted from the

BPR model by using higher-order methylation features among vari-

ous cell lines. Next, we further explore if the proposed model main-

tains predictive power across different cell lines. That is, we apply

the regression model trained on one cell line to predict expression

levels in another cell line, by using the learned methylation profiles

in those cell lines as input features to the regression model.

Figure 4A and B shows confusion matrices of correlation coefficients

for the cross-cell line prediction process, using the BPR model and

the mean methylation level approach, respectively. Figure 4C shows

an example of applying the model learned from GM12878 methyla-

tion patterns to predict expression levels of the K562 cell line. The

BPR model effectively predicts gene expression (r¼065 and 0.49

predicting K562 and H1-hESC, respectively), while, the mean

methylation approach provides a poor estimate of correlation

(r¼0.28 and 0.22 for predicting K562 and H1-hESC, respectively).

The results indicate that the quantitative relationship between

DNA methylation profiles and mRNA abundance is not cell line spe-

cific, but that the model captures patterns of association between

methylation and expression which hold across different cell lines.

Although the proposed models have high prediction accuracy across

all cell lines, the H1-hESC cell line shows consistently weaker correl-

ations. This finding is in line with recent studies, reporting weaker

correlations of gene expression and chromatin features for the H1-

hESC cell line (Dong et al., 2012), and with observations that

mRNA-encoding genes in stem cells are transcriptionally paused

during cell differentiation (Min et al., 2011).

5.3 Clustering DNA methylation profiles across

promoter-proximal regions
We next use the higher order methylation features to cluster DNA

methylation patterns across promoter-proximal regions and examine

whether distinct methylation patterns across different cell lines are

associated to gene expression levels. We apply the same pre-

processing steps described in the previous sections and we consider

genomic regions of 67kb around the TSS. We use the Bayesian

Information Criterion (BIC) to set the number of clusters to five. We

model the methylation profiles at a slightly lower spatial resolution,

using four RBFs, as we are interested in capturing broader similarities

between profiles, rather than fine details. Figure 5A shows the five dis-

tinct methylation profiles that were learned from each cell line after

applying the EM algorithm. To investigate the association of pro-

moter methylation profiles and transcription, in Figure 5B we show
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Fig. 3. Boxplot of Pearson’s correlation coefficients r for the three ENCODE

cell lines (K562, GM12878 and H1-hESC) with different input features for the

SVM regression. The ‘Profile full’ model corresponds to the extracted BPR

features plus the two additional features. Each boxplot indicates the perform-

ance using 20 random splits of the data in training and test sets. Paired

Wilcoxon test shows that the high quantitative relationship between the

shape of DNA methylation and expression exists in various cell lines, and is

significantly better predictor than using the average methylation level (P-val-

ue¼ 8.4e�12). Regarding the two additional features, we observe that the

goodness of fit measured in RMSE has a positive impact in correlation,

whereas the CpG density does not improve the prediction performance.

Paired Wilcoxon tests between K562 and other cell lines, show that K562 has

significantly higher prediction accuracy (P-value¼4.8e�05 for both GM12878

and H1-hESC)

Table 1. Pearson’s correlation coefficient r when considering differ-

ent promoter region windows

Cell line 62kb 63kb 64kb 65kb 66kb 67kb 68kb 69kb

K562 0.63 0.69 0.69 0.67 0.67 0.70 0.67 0.67

GM12878 0.62 0.62 0.64 0.61 0.62 0.61 0.61 0.61

H1-hESC 0.46 0.49 0.48 0.43 0.49 0.50 0.47 0.49

For various length promoter-proximal regions, we show the performance

(in Pearson’s r) of methylation profiles in accurately predicting gene expres-

sion. The BPR model has high correlation across all different-length regions

for all cell lines considered in this study. Bold values denote the selected pro-

moter region window for demonstrating the results of this article.

Methylation features for clustering and prediction i409

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/17/i405/2450762 by guest on 07 January 2021

Deleted Text: <italic>p</italic>
Deleted Text: <italic>p</italic>
Deleted Text: -
Deleted Text: -
Deleted Text:  - 


boxplots with the corresponding mRNA expression values that are as-

signed to each cluster for each cell line. From the resulting methyla-

tion profile clusters, we seek to characterize the common features that

are responsible for the corresponding mRNA abundance.

As expected, clusters corresponding to hyper-methylated regions

(Cluster 4, green) are associated with repressed genes across all cell

lines, confirming the known relationship of DNA methylation

around TSSs with gene repression. Also, two distinct patterns

emerge: an S-shape profile (Cluster 5, yellow) with hypo-methylated

CpGs upstream of TSS, which become gradually methylated at the

gene body, and the reverse S-shape pattern (Cluster 3, orange).

Genes associated with these profiles have intermediate expression

levels for K562 and GM12878, and relatively high expression for

H1-hESC. The most interesting pattern is the U-shape methylation

profile (Cluster 2, blue), with a hypo-methylated region around the

TSS surrounded by hyper-methylated domains. These profiles are

associated with high transcriptional activity at their associated genes

across all cell lines (t-test P-value<2.2e�16 for all paired cluster

comparisons across cell lines). Surprisingly, uniformly low-

methylated domains (Cluster 1, red) seem in general to be repressed,

except from the H1-hESC cell line, suggesting a different type of

relationship between DNA methylation and expression in embry-

onic stem cells. The clustering analysis confirms, in a complemen-

tary way, that DNA methylation profiles and transcriptional process

are tightly connected to each other, and this relationship can be gen-

eralized across all cell lines considered in this study.

To provide a biological insight on the potential methylation

mechanisms that regulate transcription, we consider the purity of

the clustering across different cell lines, i.e. which fraction of genes

assigned to a certain cluster in a certain cell line are assigned to the

same cluster in the other cell lines. Surprisingly, around 68% of the

genes assigned to the U-shape profile are present in all three cell

lines, while the intersection of genes assigned to the other clusters

ranges between 20% and 40% (see Section 5 of the Supplementary

Material). Interestingly, the promoter-proximal regions clustered to

the U-shape methylation profile are dominated by CGIs. Of all com-

mon promoters assigned to the U-shape profiles, 95.6% are CGI

associated. Not surprisingly, hyper-methylated promoters are only

35.7% CGI associated, however uniformly low-methylated pro-

moters are 65.9% CGI associated. This suggests that promoters

associated with totally unmethylated CGIs surrounded by hyper-

methylated domains are transcriptionally active across cell lines.

Fig. 4. Prediction accuracy across different cell lines. (A) Confusion matrix of Pearson’s correlation coefficients r across cell-lines when using the BPR model with

nine RBFs as input features to the regression model. Each (i, j) entry of the confusion matrix, corresponds to training a regression model from ith cell line and pre-

dicting gene expression levels for the jth cell line. The color of the confusion matrix corresponds to Pearson’s r value, the darker the color the higher the correl-

ation. (B) The corresponding correlation coefficients when using the mean methylation level as input feature to the regression model. Comparing both confusion

matrices, it is evident that the methylation profile approach is more powerful in predicting expression levels across different cell lines. (C) Application of the

model learned from GM12878 cell line to predict expression levels of the K562 cell line, using methylation profiles (top) and mean methylation levels (bottom) as

input features
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Indeed, we find that 35% of the U-shape profile genes are associated

with a curated set of housekeeping genes (Eisenberg and Levanon,

2013). In contrast, only a small fraction of genes assigned to hyper-

methylated domains or uniformly low-methylated domains are

housekeeping genes (1.4 and 17.7%, respectively). Finally, around

22% of the genes assigned to the S-shape and reverse S-shape pro-

files are associated with housekeeping genes.

6 Discussion

Alterations in DNA methylation are associated with regulatory roles

and are involved in many diseases, most notably cancer (Baylin and

Jones, 2011). Therefore, unraveling the function of DNA methyla-

tion and its relationship to transcription, is essential for understand-

ing biological processes and developing biomarkers for disease

diagnostics (Laird, 2003).

Our results demonstrate that representing methylation patterns

by their average level is insufficient to understand the link between

DNA methylation and expression, and one should consider the

shape of the methylation profiles at the vicinity of the promoters.

The contributions of this paper are twofold. First, we introduced a

generic modeling approach to quantitate spatially distributed methy-

lation profiles via the BPR model. The BPR features enabled us to

build a powerful predictive model for gene expression in various cell

lines which more than doubled the predictive accuracy of current

methods based on average methylation levels.

Second, we have shown how the BPR features can be used in

downstream analyses by clustering spatially similar methylation pro-

files. We revealed five distinct groups of methylation patterns across

promoter regions that are well correlated with gene expression and

are well reproducible across different cell lines. Some of these pat-

terns recapitulate existing biological knowledge. The U-shape

methylation profile, consisting of hypo-methylated CGIs followed

by hyper-methylated CGI shores, has been identified in different

studies, and is termed as ‘canyon’ (Jeong et al., 2014) or ‘ravine’

(Edgar et al., 2014). Our findings are in line with Edgar et al.

(2014), where ravines are in general positively correlated with

mRNA abundance. Since, the main difference of the U-shape

methylation profile and the uniformly low-methylated profile is the

CGI shore methylation, our results support the hypothesis that

hyper-methylation on the edges of CGIs enhances transcriptional

activity.

The existence of U-shape methylation profiles may help to ex-

plain observations that the methylation of gene body was sometimes

positively correlated with transcript abundance (Lou et al., 2014;

Varley et al., 2013). We hypothesize that these regions may corres-

pond to U-shape methylation profiles, or a mixture of U-shape and

S-shape methylation profiles. Another relevant study, showed that

hyper-methylation of CGI shores on the mouse genome was associ-

ated with increased DNMT3A activity, which resulted in positive

correlation with transcriptional activity; indicating that methylation

outside of CGIs may be used for maintaining active chromatin states

for specific genes (Wu et al., 2010).

In this study, we focused on RRBS data, however, given the con-

siderable robustness of the BPR model to low coverage, we expect

that it may also be well suited for Whole Genome Bisulphite

Sequencing data, which have the advantage of providing a more

comprehensive coverage of CpG sites genome-wide. As an extension

of this analysis, further work could include building a model to re-

late differential methylation profiles with differential gene expres-

sion levels, and evaluate the importance of profile changes in

regulation of gene expression across different cell types. More gener-

ally, it is increasingly clear that transcriptional activity is regulated by

a complex and still incompletely understood interaction network of

molecular players, including DNA methylation, histone modifica-

tions and transcription factor binding. Several recent computational
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Fig. 5. Clustering DNA methylation profiles across promoter-proximal regions. (A) Five clustered methylation profiles over 67 kb promoter region w.r.t. TSS in

the direction of transcription for the three ENCODE cell lines (K562, GM12878 and H1-hESC). Each methylation profile is modeled using four RBFs. Comparing the

clustered profiles it is evident that there are five prototypical methylation shapes across the cell lines. (B) Boxplots with the corresponding expression levels of

the protein-coding genes assigned to each cluster for each of the three cell lines. The colors match with the clustered methylation profiles shown above. The

numbers below each boxplot correspond to the total number of genes assigned to each cluster. T-test shows that the U-shape methylation profiles (Cluster 2,

blue) correspond to significantly higher expression (P-value<2.2e�16) compared to the expression of genes assigned to the remaining methylation profiles

Methylation features for clustering and prediction i411

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/17/i405/2450762 by guest on 07 January 2021

Deleted Text: O
Deleted Text:  the
Deleted Text: ry
Deleted Text: &hx0025;
Deleted Text: l
Deleted Text: l
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: Varley <italic>et<?A3B2 show $146#?>al.</italic>, 2013; 
Deleted Text: y


studies have highlighted the dependencies between these players

(Benveniste et al., 2014; Dong et al., 2012). The BPR model provides

an effective way of recapitulating DNA methylation patterns using

higher order features, and may therefore play an important role in

building more effective integrative models of high-throughput data.
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