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We consider the problem of computing first-passage time distributions for reaction processes modeled
by master equations. We show that this generally intractable class of problems is equivalent to a sequential
Bayesian inference problem for an auxiliary observation process. The solution can be approximated
efficiently by solving a closed set of coupled ordinary differential equations (for the low-order moments
of the process) whose size scales with the number of species. We apply it to an epidemic model and a
trimerization process and show good agreement with stochastic simulations.
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Many systems in nature consist of stochastically interact-
ing agents or particles. Such systems are frequently modeled
as reaction processes whose dynamics are described by
master equations [1]. There are several examples of the
stochastic modeling of reaction processes in the fields of
systems biology [2,3], ecology [4], epidemiology [5], social
sciences [6], andneuroscience [7]. Themathematical analysis
of such stochastic processes, however, is highly nontrivial.
A particularly important quantity of interest is the first-

passage time (FPT), that is, the random time it takes the
process to first cross a certain threshold [8,9]. FPT distribu-
tions play a crucial role both in the theory of stochastic
processes and in their applications across various disciplines,
as they allow us to investigate quantitatively the uncertainty
in the emergence of system properties within a finite time
horizon. For example, the time it takes cells to respond to
external signals by expressing certain genes may be modeled
as a FPT problem. Different characteristics of this first time
distribution, for example, the variance of the FPT, may
represent evolutionarily different strategies that organisms
adopt to filter fluctuations in the environment [10–12].
Examples from other disciplines include the extinction time
of diseases in epidemic models or the time it takes to form a
certain number of polymers in polymerization processes.
FPTs for stochastic processes have been of interest in

statistical physics for many decades [13]. For certain
random walk or spatial diffusion processes, analytic sol-
utions have been derived [14–16]. Recently, analytic results
have been found for effective one-dimensional diffusion
processes to a target [17–19]. For multidimensional dif-
fusion processes to small targets, approximate solutions

have been derived using singular perturbation methods and
matched asymptotic expansions [20–23].
The problem of computing FPT distributions for reaction

processes modeled by master equations, however, is much
less explored. Generally, no tractable evolution equations
exist except for one-variable, one-step processes [1,13] or
certain linear and/or catalytic processes [24–26]. For single-
time properties of the underlying master equation, efficient
approximation methods exist relying on continuous state
spaces [27], but it is not clear how to extend them for the
computation of FPTs. Spectral methods constitute efficient
approximations for small systems [28,29]. Since these
methods typically scale with the size of the state space,
they are not applicable to large systems. Some existing FPT
approaches for master equations consider rare events in
single-species systems and/or mean FPTs only [30–33].
In this Letter, we approach the problem of computing

FPTs from a novel perspective. We show that the FPT
problem can be formulated exactly as a Bayesian inference
problem. We achieve this by introducing an auxiliary
observation process that determines whether the process
has crossed the threshold up to a given time. This novel
formulation allows us to derive an efficient approximation
scheme that relies on the solution of a small set of ordinary
differential equations. We will use this approximation to
analyze the FPT distributions in several nontrivial exam-
ples. We focus on reaction networks with discrete state
spaces modeled by master equations, but the developed
method can also be applied to processes with continuous
state spaces modeled by Fokker-Planck equations.
The standard approach to compute the FPTof a process xt

to leave a certain region C is to compute the survival
probability Z½0;t�, that is, the probability that the process
remains in C on the time interval ½0; t� [13]. The FPT
distribution is then given by the negative time derivative
of Z½0;t�. The latter can be written as a path integral over the
process with an absorbing boundary ofC [13]. Equivalently,
one can reweigh the unconstrained process by an indicator
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function pðC½0;t�jx½0;t�Þ on the paths x½0;t� such that
pðC½0;t�jx½0;t�Þ ¼ 1 if xτ ∈ C for τ ∈ ½0; t� and zero otherwise.
One can thenwrite the survival probabilityZ½0;t� up till time t
as a path integral over the density pðx½0;t�Þ of the uncon-
strained process as

Z½0;t� ¼
Z

Dx½0;t�pðx½0;t�ÞpðC½0;t�jx½0;t�Þ: ð1Þ

At the heart of our method lies the interpretation of
pðC½0;t�jx½0;t�Þ as a binary observation process: An observer
external to the system assesses if the process has left the
region of interest or not. In this interpretation, the survival
probability Z½0;t� constitutes the marginal likelihood of this
auxiliary observation process. The problem of computing
Z½0;t� and hence the FPT distribution is thus formally
equivalent to a Bayesian inference problem. Note, however,
that there are no experimental data involved and no data are
being simulated.
Moreover, note that so far no approximations have been

made and (1) is exact. However, it is not obvious how
to compute the path integral in (1). To make progress, we
approximate the continuous-timeprocesswith pathsx½0;t� bya
discrete-time version ðxt0 ;…; xtN Þ at points t0 ¼ 0;…; tN ¼
t with spacingΔt ¼ t=N. The effects of such a discretization
of time on certain survival probabilities has recently been
studied in Ref. [34]. We will later take the continuum limit
Δt → 0 and are hence not concerned with such effects.
This means that the global observation process

pðC½0;t�jx½0;t�Þ can be written as a product of local obser-
vation processes pðCti jxtiÞ as

pðC½0;t�jxt0 ;…; xtN Þ ¼
YN
i¼0

pðCti jxtiÞ; ð2Þ

where pðCti jxtiÞ ¼ 1 if xti ∈ C and zero otherwise. This
gives the model a Markovian structure and allows us to cast
it into a sequential Bayesian inference problem, as follows.
First, we approximate the binary observation factors in (2)
by a smooth approximation of the form

pðCti jxtiÞ ≈ exp ½−ΔtUðxti ; tiÞ�; ð3Þ
where Uðxti ; tiÞ is a smooth function that is large for xti∉C
and close to zero for xti ∈ C, with a sharp slope at the
boundary. Moreover, we require Uðxti ; tiÞ to have a
tractable expectation with respect to a normal distribution.
The smooth approximation in (3) proves computationally
expedient in the algorithm below and will allow us to take
the continuum limit Δt → 0. Note that this approximation
is equivalent to approximating the global binary constraint
with the global soft (that is, continuous) constraint

pðC½0;t�jx½0;t�Þ ¼ exp

�
−
Z

t

0

dτUðxτ; τÞ
�
: ð4Þ

The survival probability Z½0;t� in (1) for the discrete-time
system factorizes as

Z½0;t� ≈ pðCt0Þ
YN−1

i¼0

pðCtiþ1
jC≤tiÞ; ð5Þ

where pðCt0Þ is the probability of being in C at time t0 and
pðCtiþ1

jC≤tiÞ≡pðCtiþ1
jCti ;Cti−1 ;…;Ct0Þ ¼

R
dxtiþ1

pðCtiþ1
j

xtiþ1
Þpðxtiþ1

jC≤tiÞ is the probability that the process is found
to be in C at time tiþ1, given that it was in C for all previous
time points. The computation of these factors corresponds
to a sequential Bayesian inference problem which can be
solved by iteratively (i) solving the master equation forward
between measurement points and (ii) updating the distri-
bution using the observation model. More specifically,
the two steps comprise (i) Suppose we know pðxti jC≤tiÞ≡
pðxti jCti ; Cti−1 ;…; Ct0Þ at time ti, that is, the marginal
distribution of the process at time ti conditioned on the
current and all previous observations. Suppose further that,
using this as the initial distribution, we can solve the system
(the master equation) forward in time until time point tiþ1

to obtain pðxtiþ1
jC≤tiÞ, that is, the marginal distribution of

the process at time tiþ1 conditioned on previous observa-
tions [note that pðxtiþ1

jC≤tiÞ does not include the obser-
vation Ctiþ1

at time tiþ1]. (ii) To obtain pðxtiþ1
jC≤tiþ1

Þ, we
need to take the observation pðCtiþ1

jxtiþ1
Þ at time point

tiþ1 into account. This is achieved by means of Bayes’
theorem as

pðxtiþ1
jC≤tiþ1

Þ ¼ pðCtiþ1
jxtiþ1

Þpðxtiþ1
jC≤tiÞ

Ztiþ1

; ð6Þ

where we defined the normalization Ztiþ1
¼ pðCtiþ1

jC≤tiÞ.
Note that the latter is just a factor in (5). Performing steps
(i) and (ii) iteratively from t0 to tN and keeping track of the
normalization factors in (6), one can thus, in principle,
compute the survival probability according to (5).
However, steps (i) and (ii) are generally intractable,

and we propose an approximation method in the following.
For step (i), we need to solve the system forward in time.
We do this approximately by means of the normal moment
closure [35–37], which approximates the discrete process
by a continuous one and assumes the single-time proba-
bility distribution to be a multivariate normal distribution
N ðxt; μt;ΣtÞ with mean μt and covariance Σt. Using this
assumption on the master equation leads to a closed set of
ordinary differential equations for μt and Σt which can be
solved numerically [27].
Now suppose that we have solved the system forward

from time t to tþ Δt using normal moment closure to
obtain μ̂tþΔt and Σ̂tþΔt and hence the distribution
pðxtþΔtjC≤tÞ ¼ N ðxtþΔt; μ̂tþΔt; Σ̂tþΔtÞ [step (i)]. We next
have to perform the observation update in (6) in step (ii) to
obtain pðxtþΔtjC≤tþΔtÞ. In order to be able to use normal
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moment closure again in the next (i) step, we approximate
pðxtþΔtjC≤tþΔtÞ by a multivariate normal distribution with
mean μtþΔt and covariance ΣtþΔt of the rhs in (6). This
approach is known as assumed-density filtering in the
statistics literature [38]. In summary, with the described
approximations, steps (i) and (ii) comprise (i) Solve normal
moment closure equations for μt and Σt from time t to
tþ Δt to obtain μ̂tþΔt and Σ̂tþΔt, where μt and Σt are,
respectively, the mean and covariance of the approximating
normal distribution N ðxt; μt;ΣtÞ. (ii) Compute the mean
μtþΔt and covariance ΣtþΔt of the rhs of (6) and approxi-
mate pðxtþΔtjC≤tþΔtÞ in (6) with a corresponding normal
distribution N ðxtþΔt; μtþΔt;ΣtþΔtÞ.
Next, we derive a continuous-time description combin-

ing steps (i) and (ii). This is achieved by first expanding the
update in step (i) leading from μt and Σt to μ̂tþΔt and Σ̂tþΔt
inΔt, which gives a single Euler step update of the moment
closure equations. Similarly, we expand step (ii), which
leads from μ̂tþΔt and Σ̂tþΔt to μtþΔt and ΣtþΔt, as follows.
Note first that, by definition, the normalization ZtþΔt in (6)
can be written as

ZtþΔt ≈
Z

dxN ðx; μ̂tþΔt; Σ̂tþΔtÞe−ΔtUðx;tþΔtÞ: ð7Þ

Taking the logarithm of both sides, expanding in Δt, and
taking derivatives with respect to μ̂t and Σ̂t, one can derive
the desired expansion of the update in step (ii). The
resulting expansions of steps (i) and (ii) can then be
combined to give unifying update equations for μt and
Σt (see Supplemental Material [39] for a derivation).
Finally, taking the continuum limit Δt → 0 gives the
following closed set of differential equations:

∂
∂t μt ¼

� ∂
∂t μt

�
MC

− Σt
∂
∂μt hUðxt; tÞiN ðxt;μt;ΣtÞ; ð8Þ

∂
∂tΣt ¼

� ∂
∂tΣt

�
MC

− 2Σt

� ∂
∂Σt

hUðxt; tÞiN ðxt;μt;ΣtÞ

�
Σt;

ð9Þ
∂
∂t logZ½0;t� ¼ −hUðxt; tÞiN ðxt;μt;ΣtÞ: ð10Þ

Here, the first terms on the rhs of (8) and (9) are, respectively,
the equations for the mean and covariance as obtained from
the normal moment closure (MC) for the unconstrained
system, while the second terms incorporate the auxiliary
observation. Equation (10) gives the desired survival prob-
ability for the process. We term this method for computing
FPT distributions Bayesian first-passage times (BFPT).
Equations (8)–(10) are the central result of this Letter.

They constitute closed form ordinary differential equations
for the mean, covariance, and log-survival probability of the
process, for which efficient numerical integrators exist.
Solving these equations forward in time on an interval

½0; t� provides an approximation of the survival probability
Z½0;τ� for all τ ∈ ½0; t� (on the time grid of the numerical
integrator), from which the FPT distribution pðτ;CÞ can be
derived for all τ ∈ ½0; t� by taking the negative derivative of
Z½0;τ�, that is, pðτ;CÞ ¼ −∂Z½0;τ�=∂τ. The number of equa-
tions scales with the square of the number of species, and the
method hence is applicable to large systems. Crucially, and
in contrast to stochastic simulations and spectral methods,
the complexity of the method is independent of the pop-
ulation size and the size of the state space. Similar equations
were obtained in a different context in Refs. [40,41] by
means of a variational approximation.
In the derivation of (8)–(10), we utilized three approx-

imations: After discretizing time, we approximated the
unconstrained process using normal moment closure and
the observation updates by projections onto a normal dis-
tribution. We then approximated the binary observation
model by a soft loss function, which allowed us to take the
continuum limit in time. Depending on the problem, the
relative contribution of the three sources to the overall error
may vary.
The choice of loss function Uðx; tÞ depends on the

problem at hand. In general, for computational convenience
one needs to be able to compute analytically the expect-
ation of the loss function with respect to a multivariate
normal distribution. In our examples, we use an exponential
loss function to constrain the ith component of the state
vector x about a threshold c:

Uðx; tÞ ¼ exp½aðxi − cÞ�; a ∈ R; c ∈ R: ð11Þ

The absolute value of the parameter a determines the steep-
ness of the loss function. In principle, we choose a as large as
numerically feasible. For a detailed discussion on the choice
of the loss function, see Supplemental Material [39].
We now examine the performance of BFPT on three

examples. For the analytically tractable Poisson birth
process, we find that BFPT captures the low-order
moments and the bulk mass of the distribution accurately
while giving the correct scaling law for the tail of the
distribution (see Supplemental Material [39] for details).
Next, we consider an epidemic system consisting of a

susceptible population S, an infected population I, and a
recovered population R and interactions

Sþ I!k1 2I; I!k2 R: ð12Þ

This system is frequently modeled as a continuous-time
Markov-jump process to model a disease spreading through
a population. k1 and k2 in (12) are the corresponding rate
constants. Let xt ¼ ðxt; yt; ztÞ, where xt, yt, and zt denote
the populations of S, I, and R, respectively. We are
interested in the probability distribution of time for the
disease to be permanently eradicated, that is, the time it
takes the process to reach a state with yt ¼ 0.
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Figure 1(b) shows the mean, variance, and mode of the
FPT to extinction as obtained from our method and the
stochastic simulation algorithm [42]. We find that BFPT
accurately captures the mean, variance, and mode of the
FPT over a wide range of varying initial values for S and I.
Figures 1(c) and 1(d) show the FPT distributions for four

different parameter sets. The modality, mode, and overall
shape of the FPT are well captured, even for highly skewed
and bimodal distributions [cf. the blue curves in Figs. 1(c)
and 1(d), respectively]. In some cases, the method predicts
less peaked distributions than actual (not shown here).
Figures 1(e) and 1(f) show the same results on the logarithmic
scale. We observe that our method correctly predicts an
exponential scaling (straight lines in the logarithmic scale),
although the scaling is not always accurate, indicating aworse
approximation in the tails of the distribution.
The value of the approach is borne out by considering its

computational efficiency: For the results shown in Fig. 1,
BFPT is several orders of magnitude faster than stochastic
simulations. For example, simulating 107 paths to obtain
the results shown in Figs. 1(c)–1(f) takes about 103–104 s

in our implementation of the direct stochastic simulation
algorithm [42], whereas BFPT takes less than a second.
Finally, we apply BFPT to a polymerization system

of monomers X, dimers XX, and trimers XXX with
interactions

X þ X!k1 XX; XX þ X!k2 XXX: ð13Þ
Starting from a fixed number of 103 of monomers, zero
dimers, and zero trimers, we are interested in the FPT it
takes to produce 200 trimers. We are interested in exploring
the dependence of this FPT distribution on the parameters
of the system (dimerization and trimerization rate k1 and k2,
respectively); such parameter exploration is computation-
ally too demanding to be performed by a brute force
simulation without access to dedicated hardware, since the
FPT distribution needs to be estimated for a large number
of parameter sets.
Figure 2 shows the results for this process. We observe

excellent agreement between BFPT and simulations for a
particular value of the parameters [Fig. 2(a)]. The heat plot
for the mean as a function of k1 and k2 indicates that for a
given trimerization rate k2 a minimal mean FPT is achieved
for an intermediate value of dimerization rate k1 [Fig. 2(b)].
We find a linear relationship k2 ≈ 2.3k1 between the two

(a) (b)

(c) (d)

(e) (f)

FIG. 1. Results for the epidemic system (12). (a) Simulated path
of the process. (b)Mean, variance, andmode of the FPT distribution
of species I becoming extinct as a function of the initial populations
x0 of speciesS, from the stochastic simulation algorithm (SSA, dots,
106 samples per point) and fromBFPT(lines). The rate constants are
set to k1 ¼ 0.5 and k2 ¼ 1, and the initial value for species I is set to
y0 ¼ 2x0. (c),(d) FPT distributions as obtained from the SSA (dots,
107 samples per parameter set) and BFPT (lines) for the parameter
set ðx0; y0; k1; k2Þ chosen as (6,1,0.25,1) [blue, (c)], (20,10,0.5,1)
[red, (c)], (20,1,0.5,2) [blue, (d)], and (40,10,0.25,1) [red, (d)]. The
parameter a in (11) was chosen as a ¼ −3 for the blue curve in (c)
and a ¼ −1.5 for all other figures. (e),(f) The same results as (c),(d)
but logarithmic scale.

(a)

(c) (d)

(b)

FIG. 2. Results for the polymerization system in (13). (a) FPT
distribution for the parameters k1 ¼ k2 ¼ 10−3 obtained from the
SSA (dots, 104 samples). (b),(c) Heat plots of the mean and the
coefficient of variation (defined as the standard deviation divided
by the mean) of the FPT to produce 200 trimers starting with 103

monomers, as a function of k1 and k2 on the logarithmic scale.
(d) Corresponding 3D plot for the normalization of the FPT
distribution, that is, the probability with which at least 200 trimers
are being produced. The white areas in (b) and (c) indicate that
either the value is larger than the plotted range or that the target
state is reached with such small probability that an estimation of
moments is not sensible. The parameter a in (11) was fixed to
a ¼ 0.2 for all figures.
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rates for the location of these minima. The variance of FPT
behaves quantitatively similarly (not shown in the figure).
The coefficient of variation [Fig. 2(c)], however, becomes
minimal for small values of k1 for a given k2. This reveals
an unexpected trade-off between an optimal mean FPT and
optimal noise-to-mean ratio (coefficient of variation).
Figure 2(d) shows the probability that the target state is
reached, that is, the probability that at least 200 trimers are
being produced. We find that there are two parameter
regions, one with a probability close to one and one with a
probability close to zero, and a small transition range
between these two with boundary k2 ≈ 0.55k1.
In conclusion, we have shown that the problem of

computing survival probabilities and FPT distributions for
stochastic processes can be formulated as a sequential
Bayesian inference problem. This novel formulation opens
the way for a new class of efficient approximation methods
from machine learning and computational statistics to
address this classical intractable problem. Here, we derived
an approximation for FPT distributions which relies on
solving a small set of ordinary differential equations. This
results in considerable efficiency gains; empirically, we
found the approximation to be highly accurate in several
examples. However, we do not have at present systematic
error estimates for the method; we leave the investigation of
such bounds and possible correction methods for future
work. In particular, it will be interesting to study the tail
behavior of FPTdistributionswith ourmethod, as thesewere
not always captured well in our examples. We notice that,
whilewe applied our method to processes with discrete state
spaces modeled by master equations, in principle, it can
equally easily be applied to processes with continuous state
spaces modeled by Fokker-Planck equations.
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