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Abstract: In the field of parametric partial differential equations, shape optimization represents a1

challenging problem due to the required computational resources. In this contribution, a data-driven2

framework involving multiple reduction techniques is proposed to reduce such computational3

burden. Proper orthogonal decomposition (POD) and active subspace genetic algorithm (ASGA) are4

applied for a dimensional reduction of the original (high fidelity) model and for an efficient genetic5

optimization based on active subspace property. The parameterization of the shape is applied directly6

to the computational mesh, propagating the generic deformation map applied to the surface (of the7

object to optimize) to the mesh nodes using a radial basis function (RBF) interpolation. Thus, topology8

and quality of the original mesh are preserved, enabling application of POD-based reduced order9

modeling techniques, and avoiding the necessity of additional meshing steps. Model order reduction10

is performed coupling POD and Gaussian process regression (GPR) in a data-driven fashion. The11

framework is validated on a benchmark ship.12

Keywords: Shape optimization; reduced order modeling; high-dimensional optimization; parameter13

space reduction; computational fluid dynamics14

1. Introduction15

In the framework of parameterized partial differential equation (PDE) problems for engineering,16

reduced order models (ROMs) and optimization algorithms are two instruments that particularly17

benefit a synergic use. In several cases of engineering interest in which PDEs solution require18

considerable computational effort, ROMs enable in fact a remarkable reduction in the resources19

required for each calculation. There are of course several ways to reduce the dimensionality of20

discretized PDEs. The most naive approaches, such as coarsening the computational grids clearly have21

negative effects on the quality of the solutions. This is particularly true for problems characterized by22

complex physics and geometrical features, which in most cases require a very high number of degrees23

of freedom, ultimately resulting in expensive computations. In the context of an optimization algorithm24

execution, where many discretized PDE solutions must be computed, the overall computational load25

often becomes unaffordable. With only modest negative effects on the PDE solution accuracy, ROMs26

can be conveniently exploited to reduce the high dimensionality of the original discrete problem — to27

which we will herein refer to as full order model (FOM) or high fidelity model. ROM algorithms can be28

employed in several industrial design processes, and in particular to shape optimization, in which29

the objective of the computations is to find the best shape of a particular product or artifact. Such30

problems are in fact typically modeled through parametric PDEs, in which input parameters control31

the geometric features of the object at hand. ROMs efficiently approximate the numerical solution of32

the full order PDE with a suitable reduced surrogate, enabling drastic reduction in the computational33

burden of the overall optimization procedure.34
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There are of course several different algorithms which allow for an efficient reduction of the35

dimensionality of parametric problem. In the present contribution, we make use of a data-driven36

approach based on proper orthogonal decomposition (POD) [1,2]. The equation-free nature of37

such method is often an essential feature in the industrial sector, where modularity and solvers38

encapsulation play a fundamental role. Indeed, the data-driven POD based ROM employed in the39

present optimization framework can be coupled with any PDE solver, as the data integration is40

enforced through the output of interest of the full order problem. Similar reduced methods have been41

proposed in [3,4] for the shape optimization of a benchmark hull, while additional improvements have42

been made coupling the ROM with active subspace analysis and different shape parameterization43

algorithms in [5–8]. We refer the readers interested in parametric hull shape variations using ROMs44

to [9], while we mention [10,11] for design-space dimensionality reduction in shape optimization with45

POD. Moving from hulls to propellers, data-driven POD has also been successfully incorporated in the46

study of marine propellers efficiency [12,13] as well as hydroacoustics performance [14].47

A further aspect of novelty of the optimization framework proposed is related to the48

parameterization of the geometry. In typical shape optimization cycles, the surface of the object49

under study is deformed before the domain discretization takes place. Thus, the meshing phase is50

repeated for any deformed entity. Such approach has the clear advantage of allowing for good control51

of the quality of the computational grid produced for each geometry tested. Yet, it suffers of two main52

problems: i) the meshing step may be expensive, both because its CPU time might be comparable to the53

resolution of the problem itself, and because mesh generation is specially intensive in terms of human54

operator hours required; ii) a different mesh for each geometry does not allow for the application of55

POD or several other ROM approaches, which require that the mesh topology, as well as the number56

of degrees of freedom of the discretized problem, are conserved across all the shapes tested. Thus,57

assuming a generic deformation map is available, which morphs the initial object surface — not the58

grid —, we exploit such deformation to train a radial basis function (RBF) interpolation that will59

extend the surface deformation to the nodes of the PDE volumetric mesh. In this sense, the method is60

capable to learn and propagate any deformation to a given mesh. Properly selecting the RBF kernel,61

we can then obtain a smooth deformation in all the discretized domain, not only ensuring that the62

overall parameterization map preserves the initial mesh quality but also its topology. We remark that63

in this work, free-form deformation (FFD) is used to deform the surface of the object under study. Yet,64

we stress that the RBF extension methodology is completely independent from the parameterization65

method chosen for the object geometry. A similar approach has been recently investigated in [15].66

The optimization algorithm used in this work is the recently developed active subspaces extension67

of the classical genetic algorithm called ASGA [16], which performs the mutation and cross-over steps68

on a reduced dimensional space for a faster convergence.69

All the algorithms used in this work are implemented in open source software libraries [17–20],70

which we will briefly introduce in the discussions of the corresponding numerical methods. In Figure 171

we depicted an outline of the whole numerical pipeline we are going to present, emphasizing the72

methods and the softwares used. One of the main goals of this contribution it that of testing the full73

pipeline composed by data-driven POD ROM, combined FFD-RBF shape parameterization algorithm74

and ASGA optimizer on a problem that can be both meaningful to the ship hydrodynamics community75

and easily reproducible. For such reason, the test case considered is that of the DTC hull [21], for76

which online tutorials are available to run fairly accurate flow simulations in fixed sink and trim77

conditions. Since in such set up, the hull optimizing resistance is a trivial, zero volume hull, the78

DTC benchmark hull is here optimized based on the total resistance coefficient Ct. We organize the79

contribution as follows: Section 2 presents a deeper discussion about the parameterization of the80

object and of the computational grid; Section 3 describes the full order model and the reduced order81

one, while Section 4 is devoted to an algorithmic discussion about the optimization algorithm and its82

supporting mathematical tools. The final sections, 5 and 6, show the numerical results obtained and83

present the conclusive summary, respectively.84
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REDUCED ORDER MODEL
CONSTRUCTION

From a solutions database to
modal coefficients regression

POD-GPR with EZyRB

OPTIMIZATION
PROCEDURE

Genetic algorithm enhanced by
parameter space reduction

ASGA with DEAP and ATHENA

APPROXIMATED OPTIMUM
HULL

The optimal hull is validated
and the solutions database

enriched, if needed

SELF-LEARNING 
MESH MORPHING

From surface to mesh
deformation propagation

FFD and RBF with PyGeM

FULL ORDER SIMULATION

Computation of the fields of
interest given a morphed hull

Incompressible RANS
and VOF with OpenFOAM

Figure 1. Illustration of the key steps of the proposed optimization pipeline with the methods and the
softwares used.

2. Shape and grid parameterization85

Whenever industrial design processes as the ones discussed in this work are aimed at improving,86

among other aspects, the geometric features of a particular artifact, a shape parameterization87

algorithm is a cornerstone of the whole optimization pipeline. Optimization tools, as well as the88

non-intrusive model reduction techniques employed in the present investigation, are in fact based89

on the parameterized PDEs paradigm introduced in the previous section. In such framework, a set90

of geometric input parameters affects the output of a parametric PDE through the deformation of its91

domain geometry. Thus, the shape parameterization algorithm role is that of mapping the variation92

of a set of numerical parameters, to the corresponding deformation of the PDE domain geometry. In93

other words, since optimization tools are mathematical algorithms which must be fed with numbers,94

the shape parameterization algorithms translate shape deformations into variations of the numeric95

quantities they need.96

2.1. How to combine different shape parametrization strategies97

In this work, we make combined use of two general purpose shape parameterization algorithms98

to deform the three dimensional geometry of a ship hull, and accordingly update the volumetric99

grid used for ship hydrodynamics simulations in a fully automated fashion. More specifically, free100

form deformation (FFD) is first used to generate a family of deformations of the surface of a base101

hull. In a second step, radial basis functions (RBF) interpolation is used to propagate the hull surface102

deformation to the internal nodes of the fluid dynamic simulation computational grid. For visual103

reference, Figure 2 depicts the side view (on the left) and front view (on the right) of a container104

ship hull bow region. In the picture, several sections perpendicular to the hull longitudinal axis are105

indicated by red lines.106

Despite an extensive discussion of FFD and RBF theoretical foundations is clearly beyond the scope107

of the present contribution, this section will introduce the key concept upon which both algorithms are108

based and describe their combined deployment in the framework of our optimization pipeline.109
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Figure 2. Side view (left) and front view (right) of a typical container ship hull bow region.

The first shape parameterization algorithm applied in this work is the free form deformation [22–110

24]. As mentioned, it is a general purpose algorithm, designed to be applied to arbitrarily shaped111

geometries. FFD is fundamentally made up of three different geometrical transformations, as illustrated112

in Figure 3. The first transformation ψ maps the physical domain Ω into a reference domain Ω̂. In such113

domain, a lattice of points is generated, and are used as the control points of a set of smooth shape114

functions such as the Bernstein polynomials used in this work. Thus, once a displacement is prescribed115

to one or more of the control points in the lattice, the shape functions are used to propagate such116

displacement to all the points in the reference domain Ω. The smooth displacement field obtained,117

is the second and most important transformation T̂ in the FFD process. In the third, final step, the118

deformed reference domain is mapped back into the physical one by means of ψ−1 to obtain the119

resulting morphed geometry.

ψ ψ−1

Ω(µ)Ω

T̂(·, µ)

T(·, µ)

Ω̂ Ω̂(µ)

Figure 3. A two dimensional sketch of the FFD procedure applied to the surface of a container ship
hull, including the three transformations ψ, T̂(·, µ) and ψ−1 composing the process.

120

The current description suggests that the parameters µ of the final FFD map T(·, µ) are the121

displacements prescribed to one or more of the lattice control points. The procedure can account122

for both a variable number of lattice points and of displaced control points. For such reason, FFD123

deformations can be built with an arbitrary number of parameters.124

We point out that the FFD algorithm results in a displacement law for each 3D space point within125

the control points lattice. Thus, it can be readily deployed to deform shapes specified through surface126

triangulations (such as STL geometries) and surface grids in general. In addition, it can be also used to127

directly deform volumetric grids used for fluid dynamic simulations. Yet, mainly for practical reasons,128

in this work we only make use of FFD to deform the STL surface triangulation describing the hull129

geometry. In fact, we must point out that if FFD has to be used to modify the volumetric mesh used130
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for CFD simulations, the control points lattice dimensions must be much bigger than those needed131

when only deforming the hull surface, leading to infeasible optimization procedures. This is due to132

the fact that when deforming volumetric meshes, it is often convenient to distribute the deformations133

over a high number of cells, rather than concentrating all the displacements in a very confined region134

in which cells can get distorted or even inverted. But because FFD only affects points located within135

the control points lattice, this means that the latter must extend for a bigger volume. In addition, to136

maximize the volumetric mesh quality, the user must include more control points in the lattice to make137

sure that different deformation magnitudes are imposed in regions close to the hull and far from it.138

Such manual control over the local mesh deformation can often become quite cumbersome.139

For such reasons, after the hull surface mesh has been modified by means of FFD, we resort to
RBF to propagate the hull boundary displacements to the internal nodes of the volumetric mesh for
CFD simulations. In a broader sense, RBF is an interpolation algorithm, in which linear combinations
of radial bases are used to approximate a function with values prescribed only in a finite number of
points, in every point of a domain. In the case of interest, the displacement field function prescribed
on the points of the hull surface must be interpolated in the positions corresponding to every
node of the volumetric mesh. Thus, the displacement obtained from the m surface nodes original
position {s1, . . . , sm} and the corresponding displaced position {s′1, . . . , s′m}must be interpolated at
the positions {v1, . . . , vn} of the n volumetric mesh nodes. Such interpolation reads

d(x) =
m

∑
j=1

wj ϕj(x), (1)

where the radial bases ϕj(x) = ϕj(||x− xj||) are functions that only depend on the distance between
evaluation point x and control point xj. The weights wj are computed by imposing the interpolation
constraints d(si) = s′i − si, after a radial basis has been centered at every constrained point (xj = sj).
This results in the linear system

AX = B, (2)

where

A =

 ϕ1(s1) . . . ϕ1(sm)
...

. . .
...

ϕm(s1) . . . ϕm(sm)

 , X =


w1
...

wm

 , B =


s′1 − s1

...
s′m − sm

 . (3)

Linear system (2) is solved in a pre-processing phase, and the weights computed are then used140

to compute the displacement of every node of the volumetric mesh by means of Equation (1). The141

latter operation can be conveniently carried out in a parallel fashion, and is highly efficient. On the142

other hand, A is a full m×m matrix which can make the solution of system (2) quite time and memory143

demanding when a large number of RBF control points are considered. That is why, in some cases only144

a portion of the surface mesh nodes are used as RBF control points, which limits the computational145

cost more than linearly, and in most cases has only modest effect on the morphing accuracy.146

Both the FFD and RBF algorithms briefly described in this section have been implemented in147

the Python library for geometrical morphing PyGeM [17], which has been used to produce all the148

deformed geometries and computational grids used in this work. An example of the RBF application to149

volumetric mesh morphing described in this paragraph is presented in Figure 4. The figure illustrates150

all the steps involved in the procedure, which starts with a) a first volumetric mesh around the hull,151

and b) a surface mesh on the hull surface. In step c) the latter mesh is then deformed and d) the surface152

mesh displacement field is finally used to feed the RBF algorithm and propagate the boundary motion153

to the internal volumetric mesh nodes. As it can be appreciated in the illustration, to avoid distortion154

of the volumetric mesh symmetry plane, the surface mesh must include both sides of the hull. In the155

present work, the deformation of the surface mesh has been carried out by means of FFD. Yet, we156
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a) b)

c) d)

Figure 4. A section view example illustrating the RBF morphing steps carried out to propagate the hull
surface deformations to a volumetric mesh for ship hydrodynamics simulations.

remark that any deformation law which results in a one to one correspondence between original and157

deformed surface grids can be propagated to the nodes of the volumetric mesh with RBF interpolation.158

3. The mathematical model for incompressible fluids159

The computational gain of the proposed pipeline is obtained by using a model order reduction160

based on proper orthogonal decomposition (POD) to approximate the solution of the parametric PDEs161

describing the studied phenomenon. This technique assumes an initial solutions database produced by162

solving the full order model (FOM), for some values of the parameters. We refer to such solutions as163

high-fidelity solutions, or snapshots. Depending on the intrusiveness of the reduced order method, also164

the discrete operators of the numerical problem can be required. In this contribution, we propose a165

non-intrusive approach, constructing a reduced order model (ROM) within a data driven setting using166

the FOM snapshots and the corresponding parameter values (described in Section 2). This allows a167

modular structure where any numerical solver, also commercial, can be adopted, since the ROM relies168

only on input and output couples.169

The following paragraphs present the full order model used in this work and the ROM constructed170

with it. We briefly describe the incompressible Reynolds Averaged Navier–Stokes (RANS) equations171

and its numerical solution in a finite volume framework, then we proceed with an algorithmic analysis172

of the proper orthogonal decomposition with Gaussian process regression (POD-GPR).173

3.1. The full order model: incompressible RANS174

The FOM used in this work is the Reynolds Averaged Navies–Stokes (RANS) model175

complemented by a Volume of Fluid (VOF) front capturing method to deal with the multi phase176

nature of the fluid surrounding the hull. The resulting govern equations are discretized by means177
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of a Finite Volumes (FV) strategy implemented in the open source library openFOAM [25]. Such178

mathematical and numerical setup is nowadays adopted in many industrial naval contexts thanks179

to its robustness and accuracy. The test case considered is one of the tutorials of the library, which is180

designed to reproduce the DTC experiments reported in reference [21]. We here provide a minimal181

overall description of the model. We refer to the original documentation of the library for all the182

numerical and technical details.183

The RANS equations model the turbulent incompressible flow, while the volume of fluid (VOF)
technique [26] is applied to handle the biphase nature of the fluid (water and air). The equations
governing our system are the following

∂ū
∂t + (ū · ∇)ū−∇ · (ũ⊗ ũ) = − 1

ρ∇ p̄ +∇ · ν∇ū + g,

∇ · ū = 0,
∂α
∂t +∇ · (ūα) = 0,

(4)

where ū and ũ refer to the mean and fluctuating velocity after the RANS decomposition, respectively,184

p̄ denotes the mean pressure, ρ is the density, ν the kinematic viscosity, and α is the discontinuous185

variable belonging to interval [0, 1] representing the fraction of the second flow in the infinitesimal186

volume. Finally, vector g represents the body accelerations associated with gravity.187

The first two equations are the continuity and momentum conservation, where the new term,
the Reynolds stresses tensor ũ⊗ ũ, have to be modeled with additional equations in order to close
the system. Among all the turbulence models available in literature, we use the SSTk−ω turbulence
model [27]. The third equation represents the transport of the VOF variable α. Such variable controls
also the density ρ and the kinematic viscosity ν, since they are defined using an algebraic formula
expressing them as a convex combination of the corresponding properties of the two flows such that

ρ = αρair + (1− α)ρwater, ν = ανair + (1− α)νwater. (5)

To compute the steady solution in a discrete environment, we apply the finite volume (FV) approach.188

We set a pseudo–transient simulation, applying a first order implicit local scheme for the temporal189

discretization, while for the spatial scheme we apply the linear upwind one. Regarding the software,190

as mentioned the simulation is carried out using the C++ library OpenFOAM [25].191

3.2. The reduced order model: POD-GPR192

POD is a linear dimensional reduction technique capable to construct a reduced order model
from a set of high-fidelity snapshots. Such space is spanned by (typically few) basis functions, that are
computed by minimizing the error between the original snapshots and their orthogonal projection [28].
In a parametric context, it enables — provided a proper set of parameter samples — the possibility to
approximate the solution manifold in a very efficient way. Formally, we define the set of parameters
{µi}M

i=1 such that µi ∈ P ⊂ Rp for i = 1, . . . , M. For each parameter, the solution is computed using the
FOM. Let N be number of degrees of freedom of the full simulation, we obtain the solutions xi ∈ XNi
for i = 1, . . . , M. Since the finite volume space is created only once and then it is deformed, all the
geometric configurations have the same dimensionality even if they belong to different spaces. The
vectorial solutions are arranged as columns of the snapshots matrix, such that

X =

 | . . . |
x1 . . . xM
| . . . |

 ∈ RN×M. (6)

The basis of the POD space, composed by the so called POD modes, is computed using the singular193

value decomposition (SVD) of the snapshots matrix X = UΣV∗. The unitary matrix U ∈ RN×M
194

contains the left-singular vectors of X, which are the POD modes. Moreover the diagonal matrix195
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Σ = diag(λ1, . . . , λM), where λ1 ≥ λ2 ≥ . . . ≥ λM, contains the singular values, which indicate the196

energetic contribution of the corresponding modes. By looking at the spectral decay we can retain the197

first N most energetic modes, which span the optimal space of dimension N.198

Such basis can be exploited in a Galerkin projection framework [29–31] , in an hybrid framework
combining data-driven methods with projection [32,33], or used to project onto the reduced space the
initial snapshots. Thus we can approximate the snapshots xj as a linear combination of the modes as

xj =
M

∑
i=1

ci
jψi ≈

N

∑
i=1

ci
jψi for j = 1, . . . , M, (7)

where ψi refers to the i-th POD mode. The coefficients ci
j of the linear combination represent the199

low-dimensional solution and are usually called modal coefficients. Using the matrix notation, to200

compute such coefficients it is sufficient a matrix multiplication C = UT
NX, where the columns of C are201

the vectors cj ∈ RN for j = 1, . . . , N, the matrix UN ∈ RN×N contains the first N POD basis and the202

superscript T indicates the matrix transpose.203

The new pairs (µi, ci), for i = 1, . . . , M, we can be exploited in order to find a function f : P→ RN

capable to predict the modal coefficients for untested parameters. Several options are available
in literature to reach this goal: for instance n-dimensional linear interpolator [34,35], radial basis
functions (RBF) interpolator [36], artificial neural networks [37], Gaussian process regression [38,39].
As anticipated, in this work we apply a GPR [40], fitting the distribution of the modal coefficients with
a multivariate Gaussian distribution, such that

f (µ) ∼ GP(m(µ), K(µ, µ)), (8)

where m(·) and K(·, ·) indicate the mean and the covariance of the distribution, respectively. Given a204

covariance function, an optimization step is required to set the corresponding hyperparameters. In this205

contribution we use the squared exponential covariance defined as K(xi, xj) = σ2 exp
(
− ‖xi−xj‖2

2l

)
.206

Once the hyperparameters (σ and l) of the covariance kernel have been fit to the input dataset, we207

can query such distribution to predict the new modal coefficients . Finally the modal coefficients are208

projected back to the high-dimensional vector space RN using (7). It is easy to note the differences from209

the computational point of view between FOM and ROM: whereas in the full order model it is required210

to solve a non-linear problem of dimension N , in the reduced order model to predict the solution211

we just need to query a distribution and perform a matrix multiplication. From the computational212

perspective, in fact the cost of the ROM is mainly due to its construction and not to the prediction213

phase: relying on the SVD, the method shows an algorithmic complexity ofO(min(N , M)NM). Thus,214

dealing with complex FOM as the one presented in this work, POD space construction can be neglected215

in the overall computational need.216

On the technical side, we construct and exploit the POD-GPR model using EZyRB [19], an open217

source Python package which deals with several data-driven model order reduction techniques,218

exploiting the library GPy [20] for the GPR implementation.219

4. Optimization procedure with built-in parameters reduction220

In this work we make use of the active subspaces extension of the genetic algorithm (ASGA)221

introduced in [16]. Such optimization method has been selected as it outperforms standard GA,222

especially when high-dimensional target functions are considered. Its performance have been proved223

both for classical academic benchmark functions and for industrial CFD test cases.224

The following sections report a description of both the classical genetic algorithm and the active225

subspaces technique main features. Finally, we will discuss how the two algorithms have been226

combined to obtain an efficient optimization procedure.227
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Figure 5. Active subspaces-based genetic algorithm scheme. The main step of the classical GA are
depicted from top to bottom. The yellow boxes represent projections onto and from lower dimension
active subspace. Thus, they are specific to ASGA.

4.1. Genetic algorithm228

Genetic algorithm (GA) is an optimization algorithm, first introduced by Holland in [41]. Inspired229

by natural selection, it falls into the category of population based search algorithms. For a detailed230

discussion of the method and its several modifications we refer the interested reader to [42–44]. Here,231

we briefly present the simplest genetic algorithm, which is composed by three fundamental steps:232

selection, reproduction, and mutation. Such phases are illustrated in Figure 5 — which also includes233

yellow boxes which will be discussed in the following sections.234

The algorithm starts with a random population S0 composed of T individuals, each one having r235

genes. In the selection step the individuals with the best fitness value, for instance S (1)0 and S (2)0 , are236

retained. During the reproduction phase, an offspring Q is produced from these two individuals with a237

crossover probability PC. Then, in the last step Q undergoes a mutation with probability PM, generating238

Q′. This new offspring Q′ is added in the new population S1 together with the best individuals of S0.239

The three steps are repeated until a predetermined computation budget is reached.240

4.2. Active subspaces241

The active subspaces (AS) [45–47] property is an emerging technique for dimension reduction of242

parameterized problems. Let us initially assume that the input/output relationship of the problem243

under study is represented by function f (µ) : Ω ⊂ Rn → R. The reduction is performed by computing244

a linear transformation of the original parameters µM = Aµ, in which A is an M × n matrix, and245

M < n. In the last years AS has been extended to vector-valued output functions [46], and to nonlinear246

transformations of the input parameters using the kernel-based active subspaces (KAS) method [48].247

AS has been also coupled with reduced order methods such as POD-Galerkin [49] in cardiovascular248
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studies, and POD with interpolation [50] and dynamic mode decomposition [51] for CFD applications.249

Application to multi-fidelity approximations of scalar functions are also presented in [52,53].250

The matrix A is computed based on the second moment matrix C of the target function f gradient.
The latter matrix is defined as

C := E [∇µ f ∇µ f T ] =
∫
(∇µ f )(∇µ f )Tρ dµ, (9)

where with E[·] we denote the expected value, ∇µ f ≡ ∇ f (µ) ∈ Rn, and ρ : Rn → R+ is a probability
density function representing the uncertainty in the input parameters. The gradients appearing in
C are typically approximated [45] with local linear models, global linear models, GP regression, or
finite difference. The second moment matrix C is constructed with a Monte Carlo procedure. We
proceed by decomposing the uncentered covariance matrix as C = WΛWT , where Λ is the diagonal
eigenvalues matrix (arranged in descending order) and W is the orthogonal matrix containing the
corresponding eigenvectors. To bound the error on the numerical approximation associated with
Monte Carlo simulations, we make use of the gap between the eigenvalues. Looking at the energy
decay, we can select a scalar M < n and decompose Λ and W as

Λ =

[
Λ1

Λ2

]
, W = [W1 W2] , W1 ∈ Rn×M, (10)

where M is the dimension of the active subspace – which can also be prescribed a priori. The251

decomposition described is exploited to map the input parameters onto a reduced space. Thus, the252

principal eigenspace corresponding to the first M eigenvalue defines the active subspace of dimension253

M. In particular we define the active variable as µM := WT
1 µ ∈ RM and the inactive variable as254

η := WT
2 µ ∈ Rn−M.255

Exploiting the higher efficiency of most interpolation strategy in lower dimensional spaces, we
can now approximate f using a response surface over the active subspace, namely

g(µM = WT
1 µ) ≈ f (µ), µM ∈ P := {WT

1 µ | µ ∈ Ω}, (11)

where P is the polytope in RM (the ranges of the parameters are intervals) defined by the AS.256

The active subspaces technique and several other methods for parameter spaces reduction are257

implemented in the ATHENA1 Python package [18].258

4.3. Active subspaces-based genetic algorithm259

We enhance the classical GA by adding two fundamental steps before the reproduction and after260

the mutation phase. These involve the application of the projection of the current population onto261

its active subspace, given a prescribed dimension. So, the idea is to perform the crossover and the262

random mutation in the smaller dimension space. Such space in fact only includes the directions in263

which the highest variation of the fitness function f is observed.264

By a mathematical standpoint, we add the following operations to the GA: let W1 be the
eigenvectors defining the active subspace of the current population, say S0. We project its best
individuals onto the current active subspace with

s(1)0 = WT
1 S

(1)
0 , s(2)0 = WT

1 S
(2)
0 , (12)

where s(1)0 and s(2)0 are the reduced individuals. The reproduction and mutation steps are performed as
usual. The only difference is that in the described framework they conveniently are carried out within

1 Freely available at https://github.com/mathLab/ATHENA.

https://github.com/mathLab/ATHENA
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Figure 6. The surface of the DTC hull. The highlighted sections divide the ship into 20 equispaced
chunks at the free-surface level.

a smaller dimension space, where reduced number of genes is exploited for speed up purposes. After
these phases are completed, we obtain the offspring q and q′, respectively. Finally, the back mapping
from the active subspace to the full space is performed by sampling the inactive variable η in order to
obtain

Q′ = W1q′ + W2η, with − 1 ≤ Q′ ≤ 1, (13)

where 1 denotes a vector with all components equal to 1 — the original parameters are usually265

rescaled in [−1, 1]n before applying AS —. We remark that there is in principle the possibility that266

multiple points in the full space are mapped onto the same reduced point in the active subspace.267

Hence, the number B of individuals resulting from the back mapping is an hyperparameter which268

can be prescribed a priori. For the specifics about this procedure please refer to [16]. In Figure 5 we269

emphasized with yellow boxes the new fundamental steps represented by Equations (12) and (12). For270

the actual implementation of the genetic algorithm part we used DEAP [54].271

5. Numerical results272

In this section, we describe the application of the proposed optimization pipeline to the DTC hull273

surface. Table 1 shows the main particulars in the design loading condition at model scale (which is274

set to 1 : 59.407). This will provide a test case which closely simulates a typical workflow for industrial275

hull design problems. Figure 6 shows the original CAD geometry of the hull used in this work, where276

we marked 21 longitudinal sections which divide the ship into 20 equispaced chunks. Such 21 slices277

will be referred to as sections during the results discussion, and are numbered from 1 to 21 going from278

the ship stern to its bow.279

The structure of this section mirrors that of the whole article, reporting the intermediate results of280

all the methods employed throughout the optimization pipeline.281

5.1. Self-learning mesh morphing parameters282

To set up the FFD hull surface deformation, we position the control points lattice in order to283

control the immersed part of the ship prow region. The equispaced control points are positioned as284

follows:285

• x axis: 7 points layers located on sections 10, 12, 14, 16, 18, 20, 22;286

• y axis: 11 points layers that cover the whole hull beam, with the second and the second-to-last287

positioned on the lateral walls of the ship;288

• z axis: 7 points layers that cover the whole hull draft, aligning the 2nd and the 5th of them to the289

hull bottom and to the waterline, respectively.290

As can be appreciated by the values reported, to distribute the FFD control points, we have made use of291

an additional 22nd virtual section located ahead of the bow. The motion of the 7× 11× 7 = 539 points292

Table 1. Main quantities of the DTC at scale model.

Quantity Value
Length between perpendiculars Lpp [m] 5.976
Waterline breadth Bwl [m] 0.859
Draught midships Tm [m] 0.244
Volume displacement V [m3] 0.827
Block coefficient CB 0.661
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Table 2. FFD control points displacement. The indices refer to the relative position of the points within
the lattice.The layers order, which starts from 0, is maintained consistent with the reference system.
The intervals indicated by the – symbol are inclusive.

Lattice Points Parameter Displacement directionindex x index y index z
2 0 2–4 µ0 x
2 10 2–4 µ0 x
3 0 2–4 µ1 x
3 10 2–4 µ1 x
4 0 2–4 µ2 x
4 10 2–4 µ2 x
4 2–4 2 µ3 y
4 6–8 2 −µ3

2 y
4 2–4 3 µ4 y
4 6–8 3 −µ4

2 y
4 2–4 4 µ5 y
4 6–8 4 −µ5

2 y
3 2–4 2 µ6 y
3 6–8 2 −µ6

2 y
5 2–4 3 µ7 y
5 6–8 3 −µ7

2 y
4 0–1 2 µ8 z
4 9–10 2 µ8 z
5 0 3 µ9 z
5 10 3 µ9 z

is governed by only 10 parameters, which are described in Table 2. We point out that the displacement293

of all the boundary points in the x and z direction is set to zero so as to enforce surface continuity. In294

addition, the displacement of the points on the internal x and z layers closest to the boundary ones is295

also set to zero so as to enforce continuity of all surface derivatives. Finally, the hull symmetry along y296

direction is ensured by selecting symmetric values for parameters associated to x and z displacements,297

as well as antisymmetric values for parameters associated to y displacements (the latter points are also298

indicated in the table by the corresponding footnote).299

Once defined the geometric parameters µ = [µ0, . . . , µ9], we set the parametric space to P =300

[−0.2, 0.2]10. The parameter space boundary values are selected so as to obtain feasible deformations301

from an engineering point of view and, at same time, to explore a large variety of possible shapes.302

Figure 7 shows the two “extreme” hull deformations, obtained setting all the parameters equal to the303

lower and upper bound of the space, respectively.304

The FFD deformation of the hull points has been extended to the nodes of the volumetric grid for
the CFD simulations making use of the Beckert-Wendland radial basis function kernel [55], defined as
follows

ϕj(||x− xj||) =
(

1−
||x− xj||

R

)4

+

(
1 + 4

||x− xj||
R

)
, (14)

where R > 0 is a prescribed finite radius and the (·)+ symbol indicates the positive part.305

The output of the OpenFOAM library checkMesh utility has been used to assess the quality of the306

grids obtained with the combined FFD/RBF methodology. Figure 8 presents some of the main quality307

indicators of the 200 meshes generated for the present campaign, as computed by checkMesh. In308

particular, the indicators considered are minimum face area (top left plot), minimum cell volume (top309

right plot), maximum mesh non-orthogonality (bottom left plot) and average mesh non-orthogonality310

2 Imposed for y symmetry conservation.
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Figure 7. Visual examples of hull deformation with µ = [−0.2]10 (on left) and µ = [0.2]10 (on right).
The red surface refers to the deformed ships, while the blue one is the original hull.

(bottom right plot). In all the diagrams, the vertical axis refers to the mesh quality indicator considered,311

while the variable associated with the horizontal axis is the index corresponding to each of the200312

volumetric meshes produced for the simulation campaign.313

The minimum face area and minimum cell volume results indicate that the morphing procedure314

does not produce negative cells or faces which would impair the simulations. In fact, the average315

of both indicators across the 200 grids produced is extremely close to the corresponding value of316

the original grid. The lowest value of minimum face area observed in the 200 grids generated is317

less than 0.1% off the original value, while the lowest value of minimum cell volume observed is318

merely 0.01% off the original mesh minimum cell volume. Such trend is confirmed by the maximum319

non-orthogonality values reported in the bottom left diagram. In the plot, is possible to appreciate that320

the average over the 200 grids produced falls exactly on value of the original mesh, and the highest321

difference with respect to the original mesh non-orthogonality is merely 0.05%. These values ensured322

that all the simulations in the present campaign could be completed in fully automated fashion without323

crashes were reported or significant issues were observed. The results reported in the bottom right324

plot indicate that the effect of the mesh morphing algorithm proposed is that of increasing the grid325

average non-orthogonality values. This is somewhat expected, as the original volumetric grid in326

this work was generated making use of the snappyHexMesh tool of the OpenFOAM library. In such327

framework, most of the cells in the internal regions of the domain are substantially the result of an328

octree refinement of an original block mesh aligned with the coordinate axes. It is clear that the RBF329

procedure described in Section 2 does quite clearly alter in a non negligible way the orthogonal angles330

of a portion of the hexahedral cells produced by snappyHexMesh. Yet, the average increase in the331

average mesh non-orthogonality index is 2%, while the maximum increase observed is 7.2%, which332

are values that should not significantly affect the results of the simulations.333

5.2. Reduced order model construction334

We set the full order model in scale 1 : 59.407, keeping it unaltered from the original work335

mainly for validation purpose. The computational domain, that is a parallelepiped of dimension336

[−26, 16]× [−19, 0]× [−16, 4] along x, y and z directions is discretized in 8.5× 105 cells, with anisotropic337

vertical refinements located particular in the free-surface region, in order to avoid a too diffusive338

treatment of the VOF variable. Boundaries of such domain are imposed as follows:339

• at the inlet we set constant velocity, fixed flux condition for the pressure and a fixed profile for340

the VOF variable;341

• at the outlet we set constant average velocity, zero-gradient condition for the pressure and variable342

height flow rate condition for VOF variable;343

• at the bottom and lateral planes, we impose symmetric conditions for all the quantities;344

• at the top plane, we set a pressure inlet outlet velocity condition for the velocity and nil pressure;345

VOF variable is fixed to 1 (air);346
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Figure 8. Values of the main mesh quality indicators as reported by checkMesh utility of OpenFOAM
library, as a function of the index corresponding to each of the 200 volumetric meshes produced for the
simulation campaign.

• at the hull surface, we impose no-slip condition for velocity, fixed flux condition for the pressure347

and zero-gradient condition for VOF variable.348

The adopted solver is interFoam, which is able to solve the Navier Stokes equations for two349

incompressible, isothermal immiscible fluids. Time discretization uses a first order implicit scheme350

with local-step, since we are interested to the steady solution. For the spatial discretization, we351

apply a Gaussian integration using second order upwind scheme for divergence operators and linear352

interpolation for gradient and laplacian operator. By imposing a inlet velocity of 1.668 m/s, the Froude353

number is around 0.22. The time required to converge to the steady solution within such setting on a354

parallel machine (32 processors) is approximately 2 hours.355

For the construction of the reduced order model, we randomly sample the parametric space356

with uniform distribution. We performed 203 simulations with the full order model, collecting the357

corresponding pressure and shear stress distributions (the latter implicitly containing the distribution358

of the VOF variable) over the hull surface. Thus, only the surface fields are considered at the reduced359

level. We then flatten the shear stress vector field in order to construct two snapshots matrices, one360

for the pressure and one for the stress. Both are then decomposed using POD technique. The number361

of modes considered is fixed to 20. Approximating the manifold with the GPR method, we obtain362

two different POD-GPR model that approximate the pressure field and the shear stress field. Such363

quantities are used for the computation of the objective function during the optimization procedure.364

Even if the difference of hardware used for full order model simulations and for reduced order365

approximation limits the possible speedup obtained — a HPC facilities versus an ordinary personal366

computer —, we achieve satisfactory computational gain. In fact, whereas the FOM lasts approximately367

two hours, the ROM approximation only consisting in two distribution queries and two matrix368

multiplications, takes less than 1 second in a single-processor environment. Such results are very369

effective in the framework of an iterative process, as the optimization pipeline here proposed. The370

overall time is in fact mainly constituted by the initial FOM simulations needed for the offline database,371

while the ROM approximation can be considered negligible from the computational point of view.372

Moreover, it can be performed on significantly less powerful machines.373
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Figure 9. ASGA runs. The reduction of the Ct is to be intended with respect to the undeformed
reference hull.

Adopting data-driven methodologies rather than projection-based ones has different advantages374

which we have already discussed, but shows also some drawback in the error bounding. For an a375

posteriori quantification of the ROM accuracy we need then to validate the approximated optimal376

result by carrying out a FOM simulation. We remark that we consider the output of such simulation as377

truth solution. This requires an additional computational cost, but allow also for an effective refinement378

of the ROM. Once a geometrical configuration is validated in such fashion, depending on the error379

observed we can add this last snapshot to the database and re-build the ROMs.380

5.3. Optimization procedure381

We first define the objective function we applied to the optimization procedure. The quantity to
minimize is the total resistance coefficient Ct, which is defined as

min
µ

Ct ≡ min
µ

∫
Ω(µ)

τxρ− pnx
1
2 ρV2S

, (15)

where τx is the x-component of the shear stress, ρ is the fluid density, p indicates the pressure, nx the382

x-component of the surface normal, V and S = ∆2/3 the reference fluid velocity and the reference383

surface, respectively. As reported, the CFD simulations have been carried out in fixed sink and trim384

conditions. Thus, the specific reference surface used to obtain Ct has been selected to penalize hulls385

obtaining resistance gains through immersed volume reduction. All the geometrical quantities, as well386

as the normals and the reference surface depend by the imposed deformation. Thus, to evaluate the Ct387

for any design, we deform the hull surface using the FFD map, then project the ROM approximated388

fields — pressure and shear stress — on it to numerically compute the integral defined in Equation (15).389

Regarding the ASGA hyperparameters, we set the probability of crossover and mutation as390

PC = PM = 0.5. For each solutions database we perform an optimization run with ASGA composed391

by 150 generations, with an initial random population of 100 individuals and an offspring of 20392

individuals. The number of points returned by the AS back mapping is B = 2, while the dimension of393

the AS is set to 1 for every population. The covariance matrix for the active subspace computation is394

approximated using local linear models [45].395

For each optimum found by ASGA we run a new high-fidelity simulation for validating the396

approximated Ct, adding the high-fidelity snapshots to the database in order to refine the POD-GPR397

model. In Figure 9 we show the comparison of all the runs. The third and last optimization reached a398

reduction of ∼ 1.4% of the Ct coefficient compared to the original shape.399
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Figure 10. The sections (from 10 to 20) of the original ship in blue and of the optimized one in red.

Figure 10 presents the frontal sections of the optimal shape compared to the undeformed one,400

showing a volumetric increment in the frontal part which balances the reduction near the central zone.401

The a posteriori validation confirmed the positive trend: the Ct coefficient of the optimal shape is 1.2%402

less, with a relative error of the ROM model of 0.18%. As is appreciable in Figure 10, the optimal hull403

has a wider section in the region immediately downstream with respect to the bulbous bow, while it404

appears slightly narrower in the middle ship sections. The immersed volume of the optimized hull405

is only 0.08% different from that of the original hull, which suggests that the Ct reduction obtained406

is the result of a total resistance reduction. A possible interpretation of such a resistance decrease is407

that having a more streamlined hull along the longitudinal direction, is likely able to reduce the extent408

and dimension of the separation bubble located on the side of the bulbous bow, and corresponding409

to the dark blue strip visible in the wall shear stress contours presented in Figures 11 and 12. As a410

consequence, the optimal hull presents slightly lower pressures with respect to the original hull, in the411

region located downstream of the bulbous bow. Such a minimal reduction is hardly noticeable in the412

pressure contour plots presented in Figures 13 and 14. More appreciable differences are visible instead413

in the free surface elevation plot presented in Figure 15. Reducing the extent of the aforementioned414

detachment bubble, the shape modification leading to the optimal hull has the effect of moving forward415

the trough which follows the bow. This indicates that the pressures in the bow region are reduced,416

which results in a net decrease of the resistance pressure component. In fact, this leads to a 4.92%417

reduction in the pressure component of the resistance, against a more modest 0.55% reduction of418

viscous resistance. Yet, considering that the latter component accounts for approximately 83% of the419

total resistance, this translates into the 1.2% reduction reported. Finally, to exclude the possibility that420

the differences observed in the total resistance coefficient values are a result of possible discretization421

error due to the mesh morphing procedure, we report that the average and maximum values of wall y+422

of the optimized hull do not significantly differ from those obtained with the original one. The average423

and maximum wall y+ values for the original hull simulation are 6.18426 and 99.5631, respectively,424

while the corresponding average and maximum values for the optimized hull are 6.19071 and 99.6255,425

respectively. We point out that the y+ maxima here reported for the DTC tutorial appear outside of426

the range prescribed for the turbulence model here used. Yet, the accuracy of the DTC tutorial results427

suggests that maxima y+ is likely located outside the water. In fact, considering the small density of428

air with respect to water, the impact of the resulting inaccurate estimation of surface derivatives is429

minimal.430

We remark that the POD-GPR model approximates the distribution of the output of interest, not431

the objective function — which is computed using the predicted fields. For this reason, we can also432

compare the pressure and shear stresses over the optimal hull with respect to the undeformed one.433

Figures 11 and 13 present the graphical investigations about the ROM approximation error distribution434
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Figure 11. Distribution of the shear stresses measured in Pascal over the undeformed hull: the FOM
validation (top) is compared to the ROM approximation (middle) and the absolute error is shown
(bottom).

Figure 12. Distribution of the shear stresses measured in Pascal over the optimal hull: the FOM
validation (top) is compared to the ROM approximation (middle) and the absolute error is shown
(bottom).

over the undeformed hull, both for pressure and stresses distributions. For a more realistic comparison,435

we specify that the FOM snapshots referring to the undeformed geometry has been removed from the436

database, emulating the approximation any untested parameter. We proceed in the same way also437

for the optimal shape (Figures 12 and 14), not only to measure the accuracy of the POD-GPR model,438

but also for investigating the reasons of the Ct reduction from a physical perspective. The absolute439

error is quite small, but it is possible to note that for both the fields it is mainly concentrated along the440

free-surface.441

Comparing the original hull with the optimal one we emphasize that the optimal shape seems442

to be able to slightly reduce the height of the wave created by its body, inducing a reduction of the443

wet surface. The friction resistance computed as the integral of the x component of shear stresses over444

the two hulls shows in fact this marginal gain: the 12.76 N of the original ship becomes 12.69 N in the445

optimal configuration. However, the main contribution of the resistance reduction comes from the446

pressure resistance. While in the original shape we measure 2.64 N, in the optimized such quantity447

decreases to 2.51 N.448



Version February 2, 2021 submitted to J. Mar. Sci. Eng. 18 of 23

Figure 13. Distribution of pressure measured in Pascal over the undeformed hull: the FOM validation
(left) is compared to the ROM approximation (center) and the absolute error is shown (right).

Figure 14. Distribution of the pressure measured in Pascal over the optimal hull: the FOM validation
(left) is compared to the ROM approximation (center) and the absolute error is shown (right).

Figure 15. Contours of free surface elevation field around the original hull (top half) and optimal
(bottom half).
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6. Conclusions449

In this work we presented a complete numerical pipeline for the hull shape design optimization450

of the DTC benchmark hull. We proposed a self-learning geometrical deformation technique, where451

different morphing methods are coupled together to propagate surface deformations to volumetric452

meshes. Though in this work we used a FFD approach for the CAD modifications, we emphasize453

that our methodology can exploit any surface deformation. The optimization procedure is based on a454

coupling between active subspaces and genetic algorithm, called ASGA. For the evaluation of the total455

resistance coefficient for new untested parameters we exploits the non-intrusive data driven reduced456

order method called POD-GPR. This results in a great computational saving for the computation of the457

pressure and viscous forces fields, while preserving a good accuracy. We performed 3 optimization458

runs, with high-fidelity validation of the approximated optimum and enrichment of the solutions459

database to increase the accuracy of the ROM in its neighborhood. We obtained a reduction of the total460

resistance coefficient equal to 1.2% with respect to the original reference hull.461

In the future, further investigations will be carried out to study a dynamic selection of the active462

subspace dimension, and a varying number of points returned by the back mapping procedure. Further463

improvements in the shape parameterization algorithms could be obtained improving the efficiency464

of the RBF weights computation. This could be obtained with a smarter selection of the RBF control465

points or, in a more invasive fashion, by resorting to fast algorithms — such as Fast Multipole Method466

— for the computation of the control points mutual distances.467

Author Contributions: Methodology, N.D., M.T., A.M., G.R.; software, N.D., M.T., A.M.; investigation, N.D., M.T.,468

A.M.; writing–original draft, N.D., M.T., A.M.; writing–review and editing, N.D., M.T., A.M., G.R.; visualization,469

N.D., M.T., A.M.; supervision, G.R.. All authors have read and agreed to the published version of the manuscript.470

Funding: This work was partially supported by an industrial Ph.D. grant sponsored by Fincantieri S.p.A., and471

partially funded by the project UBE2 - “Underwater blue efficiency 2” funded by Regione FVG, POR-FESR472

2014-2020, Piano Operativo Regionale Fondo Europeo per lo Sviluppo Regionale. It was also partially supported473

by European Union Funding for Research and Innovation — Horizon 2020 Program — in the framework of474

European Research Council Executive Agency: H2020 ERC CoG 2015 AROMA-CFD project 681447 “Advanced475

Reduced Order Methods with Applications in Computational Fluid Dynamics” P.I. Gianluigi Rozza.476

Conflicts of Interest: The authors declare no conflict of interest.477

Abbreviations478

The following abbreviations are used in this manuscript:479

480

AS Active subspaces
ASGA Active subspaces genetic algorithm
CAD Computer-aided design
CFD Computational fluid dynamics
FFD Free form deformation
FOM Full order model
GA Genetic algorithm
GPR Gaussian process regression
HPC High performance computing
PDE Partial differential equation
POD Proper orthogonal decomposition
POD-GPR Proper orthogonal decomposition with Gaussian process regression
RBF Radial basis functions
RANS Reynolds averaged Navier–Stokes
ROM Reduced order method
STL Stereolithography tesselation language
VOF Volume of fluid
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