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Introduction

Characterizing the function of proteins is an extremely important step in under-

standing biological processes. This characterization can be performed, in principle,

by dedicated experiments, both in a wet lab or through computational simulations

- which are overall expensive. The number of proteins that have been characterized

with such methods is still relatively small. Instead, in the last decades the num-

ber of protein sequences known has grown exponentially, especially thanks to High

Throughput Genomic sequencing experiments. Proteins that are known only at a

sequence level outnumber those with an experimental characterization by orders of

magnitude, and we expect this gap to increase over the next years.

Proteins are polymers constituted of amino acidic monomers. The shapes they

take, the functions they perform and their interactions with other molecules depend

on their amino acidic sequence. Many successful and popular tools in bioinformatics

are based on the same key idea: if a group of proteins share similar amino acidic

sequences, they will have the same structural fold, and may share similar functions.

A family is typically defined as an ensemble of protein regions that are evolu-

tionary related (homologous). Homologous regions need not span the entire length

of any sequence. In fact, many proteins are covered by multiple families which they

share independently with several other proteins. In particular, two proteins A and

B can have sequences that are homologous only in one of their regions, and can be

totally unrelated over the remainder of the sequence. The region of protein A which

is unrelated to protein B can in turn be homologous to a region of a third protein,

C. The set of protein families that characterize a protein is what we call its ”family

architecture”. Nature seems to use families as Lego bricks, by combining families

of di↵erent shapes and functions in di↵erent architectures, to obtain more complex

shapes and functions in whole proteins [1].

Many protein family databases exist, such as Pfam [2], SUPERFAMILY [3],

Gene3D [4], ECOD [5] or InterPro [6]. These databases have been built over many

years, often with significant manual work for their curation. Protein families de-

xi



xii Introduction

fined in these databases are very reliable, and allow to classify a vast quantity of

protein sequences. Manual curation, however, can be a rather slow process and

with the rapid increase of protein sequences that are being deposited into public

databases such as UniProtKB, large areas of the sequence space remain without

family annotation.

In this thesis we describe an algorithm for defining protein families which is to-

tally unsupervised and based only on sequence information. We are not the first

attempting to develop an approach based on these premises. For example, until

2015 Pfam used the ADDA [7] algorithm to automatically generate Pfam-B, a com-

plementary database of Pfam-A, its human-curated collection of families. Similarly

the EVEREST algorithm [8] defines protein families from sequence data, through

pairwise alignments and using a machine learning method to infer the concept of

”family” from Pfam. Our approach takes a di↵erent path from these former contri-

butions, and it has been developed to be able to deal with the large size of current

protein sequence databases. It is an attempt to port in the field of protein anno-

tation Density Peak Clustering [9], a recently developed algorithm which has been

successfully used for unsupervised classification in many di↵erent fields. The proto-

col clusters together local pairwise alignments using Density Peak Clustering (DPC)

in a two-step procedure. Given a set of proteins to analyse (the ”query set”), we

first search for local pairwise alignments on a large database of sequences, UniRef50

[10], or the “search set”. Next, independently for each query sequence, we identify

all regions that align to sequences in the search set. Alignments between a query

sequence and sequences in the search datasets are typically many thousands, sharing

di↵erent degrees of overlap on the query. We cluster them by DPC, obtaining what

we call ”primary clusters”, which provide a first approximation of the architecture of

the query sequence: each cluster, potentially, belong to a separate family. However,

the information derived from this first clustering is extremely specific to the query

sequence. To reduce this specificity, primary clusters of di↵erent query sequences

are grouped into ”metaclusters” (MCs), based on the number of search sequence

regions they have in common. This step is performed once again with DPC: clusters

of regions obtained in this way are named ”metaclusters”. Each MC is then what we

define as a potential seed for a protein family. We call our new method ”DPCfam”,

and it is described in Section 2.

We first use DPCfam on two small sets of query sequences, each containing

sequences in a single Pfam clan (PUA [11] and P53-like [12], respectively), where

the Pfam database [2] is what we use as ground truth to compare our results with.
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This part of the thesis serves as a proof-of-principle experiment. We wrote a first

implementation of DPCfam (described in Section 2.3), and we performed an in-

depth analysis of the metaclusters it produced (Section 3.2). Most of the Pfam

families of the query sets are found also as metaclusters (MCs), together with some

apparently inconsistent MC. In this last case, we perform an in-depth analysis of the

clustered protein regions using structural data (when available), sequence analysis or

profile-profile comparisons. This allows us to better understand the reasons behind

DPCfam’s alternative family annotation of these regions. Interestingly, in a few

cases, we are able to propose improvements to the Pfam classification in terms of

family boundaries, clan membership and existence of new families. This analysis

has been submitted as a paper to ”BMC bioinfomatics” (currently in review).

The main novel contribution presented in this thesis is an all-to-all clustering

of the protein database of reference, UniRef50. Such a task is computationally

expensive, and to e↵ectively implement the DPCfam protocol required a careful

optimization and parallelization of the code. In Section 2.4 we describe this imple-

mentation, with a focus on the measures we took to speed up the method’s running

time. The clustering approach handles data volumes of the order of 5 TeraBytes.

To give an idea of the di�culty of the computational problem that we had to solve,

the matrix containing the distances between all the primary clusters (necessary to

build metaclusters) has 25 · 109 non-zero entries. Its computation took around

30,000 CPU hours. The computational pipeline has been designed in order to make

it recursively updatable. This allows reducing notably the computing time required

to build incremental versions of DPCfam MCs.

From the all-to-all clustering of UniRef50 we obtain about 45,000 metaclusters,

bound to contain more than 50 protein regions and to have an average amino-acidic

length larger than 50. While replicating on all of these families the in-depth analysis

done for the proof-of-principle experiments is outside of the scope of this work, we

are still able to apply to them a lot of the concepts we developed there especially

for what concerns the comparison with the Pfam gold standard (Section 3.3.1).

The Pfam database counts around 18,000 families: we restricted the comparison

to those that have more than 100 member regions in proteins that belong to our

reference sequence database UniRef50. In 80% of the cases at least half of the fam-

ily members are found as members of a same MC, not necessarily with the same

boundaries; but in 30% of the cases, also the family boundaries are very well repli-

cated by the DPCfam classification. We recall that a significant fraction of families

in the Pfam database are defined (or refined) by taking advantage of additional
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information besides sequence, including structure and function of their members,

when available. Although this information is encoded in the sequence of proteins,

there is no guarantee that it can be consistently, meaningfully extracted from local

sequence alignments: we therefore believe that the agreement that we find between

the manually-curated Pfam classification and the automatically-generated DPCfam

classification, though partial, constitutes a non-trivial and thus encouraging result.

In addition, our protocol finds many thousands more potential families than

those found in Pfam. While it is true that redundancies are possible (still, the most

evident are reduced by the merging step of DPCfam, described in Section 2.2.2.3),

there are more than 10,000 metaclusters whose regions have no Pfam annotation

and which are candidate new protein families. The clustering protocol we developed

can then both assist in refining family annotation (when families are already known)

and be used to define possible novel families. Results obtained so far will be made

available to the scientific community in a dedicated repository.

The Thesis is organized as follows:

• In Chapter 1 we present an introduction on protein families, focusing on the

homology relationships between protein regions of the same family. We subse-

quently introduce the main theory needed for protein sequence analysis, includ-

ing Local Pairwise Alignments and Hidden Markov Models. Finally, we present

the most relevant protein sequence databases, protein families databases, and

we describe some of the existing methods for automatic protein family classi-

fication.

• In Chapter 2 we introduce our clustering method. First we describe the Density

Peak Custering algorithm, and the automatization procedure we introduced.

Then, we describe the general algorithm, named DPCfam. Finally we describe

the two implementations we developed: DPCfam0, used for the small, proof-

of-concept analysis, and the DPCfam optimized version, tailored to the HPC

facilities at our disposal.

• In Chapter 3 we present the results obtained from the two implementations of

DPCfam. We first present the measures we developed to analyze metaclusters,

with particular attention on comparing MCs to Pfam families. In Section 3.2
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we show the results obtained on two small datasets of proteins (PUA UR50

and P53 UR50), namely the proof-of-principle experiment: this includes an

in-depth analysis of the metaclusters, including making large use of structural

data. In Section 3.3 we show results obtained clustering all UniRef50 protein

database.

• In Chapter 4 we present the conclusions and discuss the future perspectives of

the method.





Chapter 1

Protein families

Proteins are essential components of any living organism: with no metaphor

they can be described as nanomachines, each of them devoted to specific jobs in

the complex organizational network of a cell. We are allowed to think of them as

the main component that makes an organism function: thus, the necessity to study,

characterize and classify proteins is evident.

The Central Dogma of Molecular Biology [13] tells us that biological information

flows from DNA to RNA, and from RNA to proteins; a similar concept has been

developed for Structural Biology : in this case, information flows from the protein

sequence to the protein structure, and from structure to function [14]. In the last

decades both dogmas have been somehow invalidated by the discovery of functional

RNA and of natively unstructured proteins, but both are still useful guides in un-

derstanding the protein world. In our bravest dreams of reductionist physicist, we

would like to be able to completely infer any protein’s characteristic just by knowing

the DNA sequence that produced it, by following the information flow of the two

dogmas: DNA make RNA, which makes protein sequence; protein sequence deter-

mines structure, which determines function. By limiting ourselves to the Central

Dogma of Structural Biology, we can re-shape our purpose: we want to infer the

characteristics of any protein from its amino-acidic sequence (protein sequence de-

termines structure, which determines function... ”more or less”). Such a purpose

becomes more and more meaningful if we consider that in the last years we have

witnessed an exponential growth of protein sequences deposited in public databases,

covering a large variety of organisms. The largest public database for protein se-

quences (UniRef database of UniprotKB [10]) counts today (v. 2020 05) 242,399,302

total entries, and it more than doubled from November 2016 - the month when I

started my PhD.

1



2 Protein families

What to do with all this information that has been and is constantly being

collected? How to exploit at best the relationship between a protein’s amino-acidic

sequence and its structure and function?

Here protein families enter the game.

The concept of protein family has been a key for understanding the protein

world in the last decades [1] [15] [16]. The next sections provide a review on protein

families and on all the concepts and instruments involved in their definition. We will

then give a brief description of some protein sequence databases, with a particular

attention to UniprotKB [10]. We will also describe Pfam [2], a well-known database

of protein families. Both UniprotKB and Pfam have been widely used in this thesis.

1.1 Families and Domains

As a general description of a protein family, we can say that: a ”protein family”

is a set of protein 1 modules (or protein regions) derived from a common ancestor.

Members of the same protein families share the same three-dimensional structure

(if any), and may share similar functions.

A key concept in understanding protein families is their modularity. Protein

families do not necessarily span whole proteins, but very often only protein regions.

Usually, but not always, an evolutionarily conserved protein region (or module) is

contiguous though the amino-acidic sequence. Moreover, these modules can appear

in the same protein, in succession (named repeats), or together with other modules,

arranged in di↵erent orders, namely with di↵erent architectures.

At the basis of the definition of protein families lies evolution. Proteins - in

particular, their amino-acidic sequence - are the result of evolution: this a↵ects

strongly protein families. Since member regions of a family originate from a common

ancestor, their sequences show evolutionary patterns. For example, studying the

relationships between members of the same family one can infer phylogenetic trees.

These evolutionary patterns are strongly constrained: modules of the same family

fold in the same overall three-dimensional structure, and the preservation of such

fold imposes a constraint on the amino-acidic sequence that a member of the family

can take. This property can be used backwards: from a set of amino-acidic sequences

of the same family, one can infer the structural constraints, for example using Direct

Coupling Analysis [17], extracting structural information from sequence information.

1
When writing about ”proteins” specifically refer to single chains, or amino-acidic sequences,

as most of the literature in bioinformatics does.
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While we can say that members of the same protein family share the same fold,

their functional relationship is less direct. In general, the slightest change in amino-

acidic sequence can change the function of a protein. For example, the bonding

a�nity of a protein for a ligand can notably change with a single amino-acidic

substitution, while the same substitution would not a↵ect at all the protein’s fold.

Still, oftentimes proteins within the same family share functions that are similar: if

we know the function of a member of the family, we can hope to infer important

information about the function of the rest of the family members.

Figure 1.1: Schematic organization of protein families as evolutionary modules. Top
Panel : schematic representation of a protein as a sequence, with three evolutionary
modules of three di↵erent families (A,B and C). Bottom Left Panel : a set of similar
modules, appearing in di↵erent proteins, is a protein family. Bottom Right Panel :
the ordered set of di↵erent module in a protein (A, B and C, cfr. Top Panel) defines
che protein’s architecture (A B C)

To summarize, finding, cataloguing and describing families of evolutionary re-

lated (homologous) protein regions can provide important information for anno-

tating these regions’ structure and function. Crucially, traces of the evolutionary

relationships between members of the same family can generally be found in their

sequences. In fact, sequence similarity is the most widely measure used to group

protein sequences into families.

In the next sections we will present some of the main methods and instruments

that are used to identify sequence similarities, and how they are used in some well-
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known protein family databases, such as Pfam.

1.2 Sequence Alignments

Amino-acidic sequences (proteins) are made from 20 standard amino-acids, which

are conventionally named using letters from the Latin alphabet: therefore we can

think of them as a string of letters. Length of such strings can vary from few dozens

to several thousands of letters. Proteins are under evolutionary constraint: changes

in the DNA coding sequences can a↵ect proteins’ sequence. There are three main

mutations in sequences: the substitution of an amino-acid with another one, the

deletion of an amino-acid from the sequence, and the insertion of a novel amino-

acid in the sequence.

1.2.1 Pairwise Alignments

A pairwise sequence alignment compares two protein sequences, trying to un-

derstand if they are biologically related. If related, they should share a common

ancestor: but such ancestor is unknown and cannot be used in the comparison.

Still, we can compare directly the two sequences, and try to recollect the most prob-

able set of mutations that can transform one sequence in the other one. In doing

to, we ”align” the two sequences.

Let us consider the simplest case: we want to align two sequences which di↵er

only in one amino-acid. An alignment of this type is the following:

ACDKDC
| ||||
AGDKDC

Here lines represent the exact matches (being the mutation here in the second

amino-acid). As another simple case, we want to align two sequences with a dele-

tion/insetion. For example:

D-KLP
| |||
DGKLP

The dash in the first sequence represent a ”gap”. A gap can be both interpreted as

a deletion or as a an insertion event. As the number of mutations between one se-
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quence and the other one increases, the process of aligning becomes more and more

di�cult. However, this task can be performed by a deterministic algorithm, namely

the Needleman-Wunsch algorithm [18]. This is dynamic programming algorithm

that is computationally expensive but guarantees to find the best global pairwise

alignment(s) between two sequences. To obtain the ”best” pairwise alignment, we

need a scoring system. There are two kind of events to score - amino-acid substitu-

tion and insertion/deletion (or gap opening). In the first case, substitution matrices

are used: for each couple of amino-acids, the matrix gives a score, associated to

the probability to observe the substitution from amino-acid (a.a.) i to a.a. j in

homologous proteins. The more probable the substitution, the better the scoring

(and vice-versa). A large number of these substitution matrices has been defined

using di↵erent strategies, statistical instruments, and datasets of reference; the most

famous are BLOSUM matrices [19] and PAM matrices [20]. Di↵erent matrices are

devoted to align sequences whose homology depends on di↵erent evolutionary times:

some are more e↵ective in detecting close relationships (short evolutionary time,

e.g. BLOSUM80), other in detecting mid and far relationships (longer evolutionary

times, e.g. BLOSUM62 and BLOSUM45).

In the second case (gap opening), the insertion/deletion event can be modeled

in several ways, but the most used is the ”a�ne gap penalty model” [21]. Here we

have ”gap opening” and a ”gap extension” contribution: the first one takes into

account the cost of generating a gap in a sequence; the second one accounts for the

gap’s length. Thus, if we consider the case

D--LP
| ||
DGKLP

we must take into account both the the ”opening” contribution, scoring a certain

penalty (G), and then the elongation contribution, counting for the two gaps each

with a penalty L: as a result, this two-dashes gap will cost G+2L. In general, a gap

of length n will count a G + nL penalty. Values of G and L are usually empirical,

and can vary depending on the purpose of the alignment.

1.2.2 Local Pairwise Alignments

One, instead of aligning entire proteins, can be willing to align subsections of

proteins. For local alignments, the counterpart of the previously cited Needleman-
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Wunsch algorithm is the Smith–Waterman algorithm [22], which is in turn a de-

terministic dynamic programming algorithm. It can be computationally expensive,

but guarantees to find the best scoring local alignment(s). Also in this case scoring

matrices and gap penalties are used.

Local pairwise alignments are those of our interest, being capable to find local

homologies in protein sequences, which are at the basis of the definition of protein

families. As we will see further, in this thesis we use huge amounts of local pairwise

alignments to identify potential families in a protein dataset. We start with a given

protein (query), and we search for all meaningful local alignments that we can find

on any other protein (searches). Intuitively, finding several local alignments on

the same region of a query protein signals the presence of a possible evolutionary

conserved region, namely a protein region that is part of a family.

To do this, we must first know what do we mean by meaningful alignment.

1.2.3 Assessing homology between alignments: E-Value

The scoring system we described is used to find, among all those possible, the

best pairwise alignment between two sequences: however, even the best scoring

alignment may be a nonsense alignment. Let us consider the case where we want

to align the sequence DKP to AAITESDKFFINGSNW: at a glance, we can guess the

best alignment between these two sequences to be

------DKP-------
......||.
AAITESDKFFINGSNW

for a global alignment, and (maybe)

DKP
||.
DKF

for a local alignment. Here we signaled with the ”.” the presence of a good (high

scoring) substitution between P and F.

While the global alignment will have a very low score, the local alignment may

score fine enough. But this alignment has another ”property”: the first sequence

(DKP) has been obtained typing randomly on the keyword; while the second sequence

is a chunk of a real protein. Does such an alignment make sense? Not much. Indeed,
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it is very easy to find local alignments with very small sets of amino-acids. But it is

also possible with longer strings, especially if the database we are searching is very

large. When we want to assess if an alignment may actually represent a homology

relationship between two sequences, we can ask ourselves what was the chances

that such a match happened randomly. In particular, what was the probability

to find this match in the case one of the two sequences was randomly generated?

This is measured by the E-Value [23][24]. It is a proxy of a probability measure:

small E-Values tell us that it was improbable to generate randomly a sequence that

produced exactly this match, and thus fosters the hypothesis that the two aligned

sequences are homologous. Karlin and Altschul [24] defined the E-Value of a pairwise

alignment as:

E = Kmne��S (1.1)

where S is the alignment’s score,m is the number of amino-acids in a query sequence,

while n is the total number of amino-acids in the protein database where we are

searching. The � parameter is used to normalize scores, and it depends on the

substitution matrix used; K can be thought as another normalization factor, which

takes in consideration the correlation between local alignments starting at very close

positions [23], therefore it represent a normalization factor based on the properties

of the protein sequence space searched.

We note that the concept of the E-Value is asymmetric: it considers one of the

two sequences to be possibly random (the search sequence), not the other one. More-

over, the concept of ”random sequence” is not based on a purely random sequence

generator, but on the substitution matrix used and on its statistical properties. Fi-

nally, when considering the probability to find randomly an alignment, the E-Value

takes into account the size of the proteins’ set we are searching for local alignments.

1.2.4 Percent Identity

Being often used in this work, we describe briefly the Percent Identity (PI) of an

alignment. Given the two aligned sequences, for each site one can check if the two

contain exactly the same amino-acid: doing this for every site will give a measure of

how much the two sequences are ”identical”. 100 PI is achieved with two identical

sequences (in global alignment), or when one sequence is exactly a sub-sequence of

the other one (in local alignments). We note that alignments between two protein

regions of the same family usually score below 50 PI (most commonly around 30
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PI). Indeed, families contains sequences that during evolution diverged significantly.

1.2.5 BLAST

Smith-Waterman [22] algorithm is too computationally expensive to perform a

large quantity of local pairwise alignments; in this case heuristic algorithms are

preferred. These algorithms do not find the perfect scoring alignments between two

sequences, but are much faster. ”Good enough” alignments found in this way are

still very useful, and heuristic algorithms are the most used in bioinformatics. Of

these, a ”gold standard” for local pairwise alignment is BLAST [25] [26], ”Basic

Local Alignment Search Tool”.

BLAST searches for local pairwise alignments on a query sequence scanning a

protein sequence database. As a result, BLAST finds local alignments between

a query sequence and a search sequence found in the database, within a certain

score or E-Value. In fact, the query and search terminology we used so far is

borrowed from BLAST’s vocabulary. Also the concept of E-Value [23] [24] has been

developed initially by the BLAST creator himself, Stephen F. Altschul, testifying

the importance that this algorithm has in bioinformatics.

BLAST’s search strategy is based on searching in the database for matches be-

tween small ”words” (3-4 amino-acids) contained in the query and small words

contained in the search sequences. Searching by small words is an easy task be-

cause of their reduced statistics. The program compiles matching tables that fasten

the search. Once it finds a significant match between small words, it extends the

alignment in both directions, adding pairs of amino acids. The extension is stopped

once the score drops under a certain value: in this way, two sub-sequences (one of

the query, one of the search sequence) are found, and an optimal alignment between

them is computed: this will be the resulting local alignment (one of the many)

reported by BLAST.

Several implementations and varied versions of this algorithm exists; in this thesis

we will use the NCBI BLAST+ suite [27], and in particular the blastp program,

which is specific for protein-protein alignment. The standard scoring matrix used

by blastp is BLOSUM62.

1.2.6 Multiple Sequence Alignments

As one can align two sequences, the same can be done for a larger set of sequences.

This task is much more complicated than the previous one. [28].
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Figure 1.2: Example of a MSA. First 23 rows (of 55) of the SH3 1 Pfam family
seed. Some columns are colored to show the persistence of a certain kind of amino-
acid over the sequences in the same position, e.g. dark blue highlights small or
hydrophobic amino-acids (C,A,V,L,I,M,F,W).

In building MSAs, the general goal is to collect on the same column those amino-

acids that, belonging to homologous proteins, occupy the same three-dimensional

position in the proteins’ fold. The existence of a homology relationship between

the elements of the MSA is of extreme importance, being the basic assumption on

which the MSA is built. If we believe that all the sequences we are aligning are

evolutionary related, we are allowed to search for conserved - or almost conserved

- regions, and to interpret a MSA’s column as a set of amino-acids that originated

from the same ancestor, diverging across evolution. MSAs are one of the objects

used to represent protein families, possibly the older one. As we will see, most of the

protein family databases are based on manually-curated MSAs representing protein

families.

Implementing a reasonable scoring system for MSAs is not straightforward.

Hand-made MSAs, built by experts with a trained eye, are often more reliable than

those automatically generated searching for the optimal alignment by an unsuper-

vised approach. It is not uncommon for bioinformaticians to build MSAs starting

from automatically generated ones, and then to correct them manually. In the

last decades several algorithms and programs to generate automatically MSAs have

been proposed: while dynamic programming methods are possible, heuristic ones
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are more feasible. As examples we can cite T-COFFEE [29], Clustal Omega [30]

and MUSCLE [31].

1.3 Modeling families as profile-HMM

We said that protein families can be represented as MSAs; from these, one

can build a compact representation called profile-HMMs[32]. A profile-HMM of a

protein family is based on a Hidden Markov Model, and it aims to give a statistical

representation of the family using information from its MSA.

For example, given a column (or site) of a MSA, we can compute the probability

for a certain amino-acid to appear, building something similar to a scoring matrix

(specifically a PSSM, Position Specific Scoring Matrix). This is easily done in MSAs

(or MSAs’ regions) with no gaps, but MSAs of protein families usually contain a

vast quantity of gaps, including a number of regions which are mostly gaps: it is

then necessary to model gaps too.

Profile-HMMs provide a probabilistic representation of a family. In principle

profile-HMMs are generative models, capable to generate new sequences of the family

they represent; such a process can be used to score the probability for a given

sequence to be produced by the profile-HMM: if this is the case, the sequence found

as a ”hit” can be considered as a family member. To assess the quality of a hit one

uses the E-value.

HMMER [33] [34] is one of the most used software to generate profile-HMMs

and to use them to search for hits in a protein database.

1.3.1 A brief overview of profile-HMMs

Given a family MSA of C columns, a first step to generate its profile-HMM is to

compute its PSSM. Since PSSM does not take into account gaps or insertions, usually

profile-HMM generating algorithms remove from the MSA all columns containing

an excessive number of dashes, namely columns where gaps appear with a frequency

larger than a threshold ✓. Then, from a reduced MSA containing c columns, the

PSSM is computed on the remaining columns, ignoring dashes when they occur.

Subsequently, a first Markov Chain [35] is built: this is a linear sequence of

states Mi, one for each column. In this particular chain, the probability to jump

from one state Mi to the subsequent Mi+1 is 1 (corresponding to moving through

the sequence): once in state i, the probability to emit a certain amino-acid is defined
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by the previously computes PSSM. This model can generate sequences following the

PSSM distribution. These sequences are ungapped, therefore they always have the

same length (c) (see Figure 1.3).

Figure 1.3: Graphical representation of the first steps to build a profile-HMM from
a MSA based on a toy-model MSA. First, the MSA is reduced to significant columns,
from which a PSSM is inferred. Then a Markov Chain is created, so that it can
generate ungapped sequences according to the given PSSM.

The second step is to add to this simple Markov Chain a set of hidden states,

which will transform it in a Hidden Markov Chain (or Hidden Markov Model). Such

hidden states model insertion and deletion events. For example, from any state Mi

it is possible to move to state Ii, which will result in adding a gap between the

amino-acids emitted by Mi and Mi+1. However, we must account for the possibility

to have gaps longer than a single site: this is obtained by moving from state Ii to Ii

itself, adding dashes to the sequence being generated. Deletion states, on the other

hand, account for the possibility to jump directly from site Mi to Mi+n, where n

is the length of deletions; therefore, once in state Mi it is possible to jump on the

deletion state Di+1, from which again it is possible to go back to Mi+2 (skipping
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site Mi+1) or to continue to delete, moving to state Di+2. Finally, to coordinate

all these states, a Start state and an End state are added at the beginning and at

the end of the Markov chain. The graph representing states and transition states is

represented in Figure 1.4

Figure 1.4: Graphical representation of a profile-HMM’s states, including amino-
acid emission states (Mi), insertion states (Ii), deletion states (Di), and Start/End
states.

The probability to move between sequence states (Mi), insertion states (Ii) and

deletion states (Di) is usually computed using the Viterbi algorithm for Markov

Models (see [33] for further details).

1.4 Protein databases

In this section we will give a brief overview of the main protein databases freely

available to the scientific community. We will first focus on the Uniprot’s protein

sequence databases, and then we will introduce the Protein Data Bank (PDB), which

is the largest public repository of protein structures.

1.4.1 Protein Sequence Databases: Uniprot

The Uniprot database [10] can be considered the largest and most comprehensive

database for protein sequences. The main database, named The UniProt Knowledge-

base or UniProtKB, is the sum of two historical sequence databases: Swiss-Prot and
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TrEMBL [36]. The first one contains ”curated” entries, namely protein sequences

that have been assessed at an experimental level; the second one is automatically

generated, containing proteins inferred from genomic data. The two databases grow

at a very di↵erent pace (see Figure 1.5); currently Swiss-Prot counts about 550,000

entries, while TrEMBL around 195,000,000.

Figure 1.5: UniProtKB (Swiss-Prot and TrEMBL) statistics over time, according
to the UniProt webiste (https://www.uniprot.org/) (Updated at version 2020 05)

1.4.1.1 UniRef

UniRef is a set of non-redundant databases defined by the UniProt consortium.

The largest (and most redundant) database, named UniRef100, contains protein se-
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quences form UniProtKB and some selected entries of another database, UniParc.

Sequences with 100 Percent Identity (P.I.) are aggregated, and a single sequence

is used as a representative. UniRef90 is built from UniRef100 reducing the redun-

dancy between sequences to 90 P.I.: sequences with more than 90 P.I. are clustered

together, using CD-HIT [37], and only one representative among them is chosen.

Subsequently, from UniRef90 is derived the UniRef50 database, using again CD-

HIT so that sequences with more than 50 P.I. are clustered together. The UniRef50

database o↵ers a good representation of the known protein sequence space at a

low-redundancy level.

1.4.1.2 Reference Proteomes

Reference Proteomes are sets of proteins derived from organism the genome of

which has been fully sequenced. This protein sequence dataset aims to provide broad

coverage of the tree of life. While this is commonly considered as a non-redundant

database, it may contain multiple proteome versions for species of particular rele-

vance.

1.4.2 Protein Structure Databases: PDB

The Protein Data Bank (PDB) [38] is a protein structure database containing

the largest set of publicly available three-dimensional protein structures. These

have been solved using X-Ray crystallography, NMR or other techniques. We note

that normally PDB entries do not contain full-length proteins, but rather chunks of

proteins, often in contact with each other. The di↵erent objects captured in a PDB

entry are named chains, usually labeled with capitals letters (A, B... etc.). Proteins

in PDB entries are usually part of the Swiss-Prot database.

1.5 Protein Family Databases

Several resources have been developed to identify and catalog protein families.

Usually, family databases use di↵erent definitions to build a seed Multiple Sequence

Alignment (MSA) for each of their families. In many cases such MSAs are used

to search for other members of the family in a protein sequence database: results

obtained as such are collected in the actual definition of the given protein family.

There are several ways to perform this search: here we will focus on databases that



Protein Family Databases 15

generate profile-HMMs (see Section 1.3) of seeds’ MSAs, and then use them to search

for other members of the family.

Family databases can be distinguished between those which build seeds using

structural information and those which use more sequence-based information. Ad-

ditionally, we can distinguish between databases using human-curated information

and automatically generated databases: in the protein family databases panorama,

the first ones are dominant. Finally, there are cross-referencing resources (such as

InterPro [6]) combining data derived from di↵erent databases.

1.5.1 Structure-based Protein Family Databases

Structure-based Protein Family databases, such as CATH-Gene3D [4], SUPER-

FAMILY [3], or ECOD [5], build seeds starting from structure-based MSAs. For

example, the CATH database contains structural families, built starting from struc-

tural data: a mixture of automatic and manual methods are used to build CATH’s

families and the respective MSAs. Profile-HMMs of CATH’s families are used by

Gene3D to scan through a large protein database, increasing the set of members

of each family. Similarly, SUPERFAMILY uses as seeds SCOP’s [39] structural

families. Both Gene3D and SUPEFAMILY databases use iterative profile building.

A more recent database, named ECOD, builds its own structure-based seeds and

associated families.

These databases, the seeds of which are based on structural data, usually o↵er

high-quality definition of protein families, detecting far homologies. On the other

hand, building seeds starting from structure data limits the protein sequence space

regions that can be explored by their profile-HMMs.

1.5.2 Sequence-based Protein Family Databases: Pfam

Sequence-based databases of protein families aim to classify the protein sequence

space widely; here we will focus on the Pfam database [2]. Pfam’s seeds are built

using a variety of sources of information. For example, at the very beginning of

Pfam’s history (1997 [40]), Pfam’s seeds were built using information from other

existing domain databases, articles, structural data, BLAST results and other kind

of databases such as repeats databases. Protein families originated from these kind of

information constitute the Pfam-A family database. During Pfam’s history, several

automatic tools (such as Domainer [41] or ADDA [7]) have been used to build a

complement to the main database, named Pfam-B. This second database contained
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automatically-generated families which were gradually integrated in the Pfam-A

collection using manual curation. The origin of Pfam’s families is then extremely

heterogeneous.

Pfam o↵ers as a family description two objects: the seed’s profile-HMM and the

MSA of the ”full alignment”. This last MSA is the result of the respective seed’s

search through a non-redundant database (usually the Reference Proteomes), and

according to Pfam it constitutes the family definition.

Currently Pfam-A contains about 18,000 protein families. In 2018, Pfam-A

residue coverage of the UniProtKB [2] was around 53% with about 20% of all

UniProtKB sequences lacking any type of annotation. These numbers have been

quite stable in the last five years, being almost the same in 2016 [42]. Similarly

to structure-based databases, the portion of the sequence space covered by profile-

HMMs obtained through human curation is limited by the amount of work that goes

into building each family. As a consequence, even if databases such as Pfam-A can

provide a broad description, they still cannot be fully exhaustive.

The Pfam-B database has been built using di↵erent algorithms, including ADDA

(see Section 1.5.4.1 ). When choosing data to use as input for the automatic algo-

rithms, any region already annotated in Pfam-A is removed, so that a double annota-

tion is not possible. The last version of Pfam-B based on ADDA has been dismissed

in 2015. In June 2020 Pfam announced on its blog (https://xfam.wordpress.com/2020/06/30/a-

new-pfam-b-is-released/) a new Pfam-B version, with no clear details yet about the

algorithm used to produce it, except that they used the protein clustering software

named MMseqs2 [43], and that a publication on the topic is going to appear in the

near future.

Pfam also collects families in larger groups, named clans. Families of the same

clan must share a common evolutionary origin, mostly assessed using structural

evidence or profile-profile information. Indeed, the similarity between two Pfam

families can be scored using HHpred [44]. HHpred assesses the similarity between

two profile-HMMs by evaluating the probability that the two profiles are representing

the same family. This probability is expressed using a score that ranges from 0 to

100, where 100 means 1 in terms of true probabilities. The ”relationship” table of a

Pfam clan collects all its families in a graph, where edges are weighted according to

the respective HHpred probabilities. We note that it is not uncommon to find clans

where HHpred finds no similarity between profile-HMMs, and in particular where

one or more profiles are completely isolated from the rest of the graph. These are

usually cases in which structural information is used to determine clan membership
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of a family.

1.5.3 Interpro

Interpro [6] is a resource we specifically want to mention because of its nature

as a meta-database. It is a database collecting information from several resources,

including protein family databases such as Pfam or CATH-GENE3D, and many

other annotations with di↵erent kinds of protein signatures. To do so, it uses models

provided from these di↵erent databases. As an interesting feature, Interpro displays

di↵erent annotations for the same protein sequences, showing di↵erences in the

annotation from databases built using di↵erent information.

1.5.4 Automatically-generated family databases and algo-

rithms

An alternative approach to manually curated family classification is automatic,

sequence-based clustering of protein regions. Unsupervised clustering generally re-

sults in a less accurate classification, but it has the advantage that high coverage

of the protein sequence space can be achieved, at limited cost. Automated family

classification has a long history in protein bioinformatics. In 1998 the ProDom [45]

database was released, based on the MKDOM program [46], applied on about 20,000

proteins. The growth of protein sequence databases, together with more sophisti-

cated bioinformatics methods and computational resources, has led over the years

to the development of algorithms such as ADDA [7], EVEREST [8], and MCL [47],

among others. The majority of these algorithms cluster full sequences rather than

protein regions; ADDA and EVEREST are two of the few algorithms focused on

protein regions, namely tackling the problem of defining protein families boundaries.

1.5.4.1 ADDA and Pfam-B

ADDA [7] is an algorithm first published in 2003 which searches families starting

from an all-to-all set of BLAST alignments. As a first step, ADDA performs a

sophisticated domain decomposition on each protein sequence, which aims to identify

correctly the boundaries of each possible family appearing in the protein, especially

for complicated architectures or in cases of sequence fragments. Subsequently it

proceeds to cluster together such domains, building families.

Until 2015, the ADDA clustering algorithm was used to produce Pfam-B (see
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Section 1.5.2), and it has since been discontinued due to the heavy computational

cost of running ADDA on modern day, large sequence databases [42]. While for sure

part of the bottleneck in ADDA is due to the all-to-all BLAST alignment genera-

tion, the domain decomposition procedure appears itself to be quite computational

demanding.

A brief description of the ADDA algorithm As described in [7], the ADDA

algorithm starts with an all-versus-all BLAST search using soft E-value thresh-

olds (< 1). Alignments are represented in a graph, with sequences as vertices and

alignments as edges. The graph is then cleaned by applying a 40 P.I. redundancy

reduction over sequences (vertices).

Subsequently, domain cutting is performed by a two-step procedure. First, given

a protein sequence, the domain boundaries are defined, so that intra-domain correla-

tion is maximised and inter-domain correlation minimised. The algorithm selects as

”splits” those residues in the sequence marking with a higher confidence the presence

of two distinct domains. To estimate such confidence, ADDA uses the boundaries of

the local pairwise alignments found in that sequence. Once defined the first possible

split, further splits are found by iterating the procedure, obtaining as a result a set

of nested putative domains organised in a tree. Secondly, domains are selected from

the sets of putative domains, generated for each sequence. Such selection relies on

an objective function modeling the block structure of BLAST multiple alignments;

the objective function is a likelihood-function determining the likelihood of observ-

ing a specific pair of domains in two sequences sharing an alignment. Since the

space of all possible domain partitions of all sequences is too large to enumerate

exhaustively, ADDA uses a greedy optimisation strategy, through the pre-computed

nested-domains trees. The optimization starts form the top of the tree and then

iterates over the list of all domains in the tree. Descending one level in the tree, if

the likelihood of the new partition increases, the split is accepted. This procedure

is iterated, descending the trees until no additional cut in any domain increases the

likelihood.

After the domains’ boundaries are obtained, the sequence space graph is con-

verted into a domain graph, where a vertex is a domain and an edge is an alignment

between domains. Edges are weighted by the relative overlap between the align-

ments. If the alignment covers one of the domains by less than 20% of its length,

the edge is removed; if a domain is linked to several adjacent domains, all found on

another sequence, only those with highest overlap are saved, removing the rest of
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the edges. Such domain graph is decomposed into connected components, using a

minimum spanning tree. Then, each domain in the same minimum spanning tree is

considered as part of the same family.

1.5.4.2 EVEREST

EVEREST [8] has been proposed in 2006 and, similarly as ADDA, starts with

an all-to-all BLAST search. The algorithm aims to collect together similar align-

ments to find homologous regions through transitive relationships. Also in this

case a cautious refinement is performed, and in particular final families are selected

using a machine learning strategy. Using as a training set the Pfam-A database,

a general notion of protein domain is learned: this machine learning procedure is

used to select, among all families found by the algorithm, the ”good” ones. There-

fore, EVEREST cannot be considered a purely unsupervised method. Similarly to

ADDA, the procedure is sophisticated and, considering also the machine-learning

component, it appears to be computationally demanding. Two databases have been

published based on the EVEREST algorithm, in 2006 and in 2008.

A brief description of the EVEREST algorithm EVEREST uses as initial

input a protein database (in Ref. [8] the Swiss-Prot database), on which an all-

to-all BLAST search is performed, allowing for high E-Values. A first redundancy

reduction is done using BLAST alignments: a protein is considered equivalent to

another one (and neglected) if their BLAST alignment covers at least 95% of each,

with E-value < 10�90. Subsequently, EVEREST aims at removing repeats from

proteins. Every protein is compared to itself, using an iterative variation of the

Smith-Waterman algorithm, searching for repeated regions; all but the first and the

last repeats found are removed, and the procedure is replicated to seek for other

repeats in the protein. A list of possibly-similar pairs of proteins is then generated:

this is obtained by asking for E-Values < 100 in BLAST alignments. Then, the

above variant of the Smith-Waterman algorithm is applied to each pair of proteins

in the list. Here, those segments that are significantly similar are collected into a

segment database: therefore, each segment in the database has another segment

paired with it. This database is a database of putative domains, with two similarity

measures defined upon them: i) the sequence similarity between a segment and the

one paired with it; ii) an overlap similarity between every two segments on the same

protein (if any). Then, segments on each protein are clustered into groups according

to the second measure, and the sequence similarity of the segments is inherited by
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their group, requiring every two segments that are in the same group to have an

overlap higher than a certain threshold. This allows filtering against false transitivity

induced by sequence similarity. These groups are clustered together according to

their sequence similarity, using an average linkage algorithm [48]. At this point on

each protein there are several segments belonging to a specific cluster. To consider

the possibility of homo or multi-domain proteins, multiple occurrences of the same

pattern are identified using the connected components in the graph built to perform

average linkage clustering. Each connected component defines a domain in the

family, and the boundaries of the domain are defined by the 40th percentile from

outside of the boundaries of the segments in the connected component. After this

cleaning procedure, each cluster of segments is a candidate family.

Finally, machine learning techniques are used to discard those families that are

inappropriate. A randomly chosen set of half of the Pfam-A families is used as

training set to infer the ”concept of family”, and then each cluster is scored according

to the training set, removing the low scoring ones.
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The DPCfam protocol

DPCfam clusters together homologous regions of protein sequences obtained from

pairwise alignments, using the Density Peak Clustering [9] at its core. This chapter

is dedicated to the description of the DPCfam protocol and to present its imple-

mentations. In Section 2.1 we will describe the Density Peak Clusteing algorithm,

at the basis of the protocol. In Section 2.2 we will describe the general workflow of

DPCfam. Finally, in the last two Sections we will describe the two implementations

of DPCfam we developed: one for small, proof-of-concepts clustering (Section 2.3)

and one for large, all-to-all clustering of UniRef50 database (Section 2.4)

2.1 Density Peak Clustering

The Density Peak Clustering algorithm (DPC) has been proposed in 2014 by

Rodriguez and Laio [9]. This algorithm is based on the idea that clusters correspond

to density peaks, and that cluster centers are characterized by a higher density than

their neighbours, together with a large distance from points with higher density.

DPC is capable to cluster data in a non-parametric manner: it only requires that

a mathematical distance can be defined on the dataset; moreover, it is in principle

capable to detect clusters of any shape.

The first step of DPC consists in estimating, for each point i of the dataset, its

local density ⇢i. The easiest way to do this[9] is to use a step-wise kernel estimator:

namely, to count for every point i the number of its neighbours closer than a certain

threshold distance µ:

⇢i =
X

j

�(di,j � µ) (2.1)

where �(a) = 1 if a < 0 and zero otherwise.

21
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In [9] the authors identify a simple and e↵ective rule of thumb to decide which

value of µ should give the best results on a given dataset: one can choose the

threshold distance µ so that the average number of neighbors is around 1 to 2% of

the total number of points in the dataset. Di↵erent datasets have di↵erent values

for the µ to be used, but the rule is always the same.

The second step is finding, for each point i, the distance between i and its closest

neighbour with higher density, here denoted as �i:

�i = min
j:⇢j>⇢i

di,j (2.2)

These two quantities, ⇢i and �i, are those that allow identifying density peaks.

Indeed, a density peak is a local density maximum: this means that points that have

no close neighbours with higher densities are reasonably density peaks; thus, any

point with a high �i is a good candidate to be a density peak. On the other hand,

a significant density peak should be dense, thus points with a small ⇢i should not

be taken into account. This qualitative reasoning has been translated by Rodriguez

and Laio into searching, by eyesight, for isolated points in the so-called Decision

Graph, a scatter plot that puts into relation ⇢i and �i, respectively on the x and on

the y axis.

An example of Decision graph in shown in figure 2.1: the top panel shows a toy-

model dataset of 2-dimensional data, and the bottom panel its Decision Graph. As

it can be seen, in the Decision Graph most of the data points are located close to the

x axis, while only few stand out in the top-right section. These points, highlighted in

red, are selected as density peaks, and are thus cluster centers. The decision about

what point is reasonably an isolated point in [9] has been left to visual inspection.

The assignation of a point to a cluster is subsequently done by following vari-

ations in the values of ⇢i: each point is assigned to the same cluster as the one to

which is assigned his closer neighbour with higher density.

The usage of DPC in DPCfam has to meet two requirements:

• to use the simpler, lighter and faster implementation of DPC: this is because

DPCfam performs a clustering of a huge quantity of data and also repeats the

clustering a huge number of times.

• to find a reasonable strategy to automatically select density peaks form the

decision graph, in line with the previous point.

As an addendum, we needed to redefine the assignation procedure, not only to



Density Peak Clustering 23

Figure 2.1: Example of a Decision Graph. Top panel shows a 2-dimensional dis-
tribution of points to be clustered using DPC. Bottom panel shows the respective
Decision Graph, where the red points represent those selected as density peaks,
highlighted in red also in the top panel to show their position in the dataset.

meet these two requisites but also to build clusters coherently with the purpose of

automatically identifying protein families from alignments data.

Specific modifications of DPC used in DPCfam will be discussed in Section 2.2.2,

when presenting DPCfam pipeline. In the next section we explain in detail the two

strategies used to automatically select density peaks.

2.1.1 Automatic selection of density peaks: two strategies

In DPCfam we needed to automatically select density peaks from the Decision

Graph. As we will explain better in Section 2.2, the DPCfam procedure is used on

two di↵erent kind of data, subsequently. In the two cases, Decision Graphs shows
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notable di↵erences, which suggested us to use di↵erent strategies to find isolated

points.

2.1.1.1 The gap strategy

As done in [9], we introduce the quantity �i = �i⇢i. Being a density peak a

point far from any other point with higher density (thus with large �i) and, being

it a density peak (high ⇢i), points with high values of �i are good candidates to be

density peaks. Surely, the point with largest �i will be a density peak; but what

about other peaks? Up to which value of �i can a point be considered a density

peak?

In the DPC paper the authors show that, looking at the sorted values of �s, the

beginning of an anomalous growth in their values can signal the presence of density

peaks. Starting from these considerations, we can select automatically density peaks

by assuming that an ”anomalous growth” corresponds to a gap in the sorted list

� = {�s, �s > �s+1 8s} larger than a given threshold �. Using this strategy, we

select as density peaks those data points whose � is larger than a certain value �g,

defined by the following condition:

�g�1

�g
� 10� &

�s�1

�s
< 10� 8s > g & g  gmax (2.3)

Indeed, we search for the gap only between the first gmax elements of �, since we

do not want to find an excessive number of clusters. Here � is a free parameter,

which has been chosen as � = 0.5. Note that in the bottom panel of Figure 2.1,

isolated points highlighted in red have actually been selected using this automated

procedure, using - as it will be done in the algorithm - gmax = 20. Varying � to

smaller values results in more density peaks selected, while enlarging it will reduce

them. For example, referring to the toy-dataset in Figure 2.1, using � = 0.5 results

in finding 5 peaks, while for � = 0.25 we find 7 peaks. For � = 1. we still find 5

peaks and with � = 2 we find only one peak. In general, as we will show, the results

of the algorithm are stable if we vary � by 10% around the value of � = 0.5, used

in this thesis.

2.1.1.2 The maximum � strategy

This method to find density peaks is strictly related to the kind of data to be

clustered and to the distance di,j defined on them: in particular, in this work we

define two distances, both of them upper bounded to 1 ( sup(di,j) = 1 ). This
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maximum value has a well defined meaning: if the distance between two points is 1,

then the objects that the two points represent have nothing in common, and can be

considered as isolated from each other. Thus, we can state that any point having

�i = 1 is a point that is isolated from any other having larger density: it has, then,

to be a local density maximum.

Such a consideration becomes very useful when a notable number of points in

the dataset to cluster has �i = 1: in this case, selecting any of these points as

density peak is a fast and reasonable way to automatize the procedure. In the

worst-case scenario, we might end up selecting very small peaks as clusters, that

could be subsequently be trashed or merged to other clusters. To be consistent to

the definition of a density peak, we also require the local density of such points to

be larger than 1, being these points otherwise completely isolated from any other in

the dataset, and thus meaningless.

2.2 DPCfam workflow

DPCfam aims to find a set of automatically generated protein families as a re-

sult of clustering together homologous protein regions obtained from local pairwise

alignments. Such a task cannot be performed without a large and non-redundant

reference database: in this work, we used the Uniref50 database [10], which con-

tains proteins with less than 50 Percent Identity from UniRef, a database collecting

virtually any known sequence from any known organism (see Section 1.4.1.1).

To find homologous regions between pair of proteins, we use BLAST (see Section

1.2.5), specifically the blastp program of the BLAST+ package [27]: however, other

pairwise alignment software can be used. DPCfam performs a two-step clustering,

using in both cases the DPC algorithm (see Section 2.1). The clustering procedure

is blind to the nature and the quality of the pairwise alignments: everything it needs

to know are the starting and ending positions of the alignments, both on the query

and on the search sequences (see Section 1.2.2). This is the information needed

to define a distance between alignments, firstly, and a distance between clusters of

alignments, secondly. After the second run of DPC, the protocol applies a simple

merging procedure aimed at eliminating redundancies, obtaining metaclusters.

Metaclusters are collections of homologous protein sequence regions: the final

output of DPCfam is therefore a set of protein regions labeled with the respective

metacluster. Such set can be both inspected directly or it can be used to build profile-

HMMs (see Section 1.3), to be used to search in the protein sequence database and
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Figure 2.2: Representation of the clustering and metaclustering process. Schemati-
cally, alignments that lie on the same region of the query sequence are clustered (B);
subsequently, di↵erent clusters are ”metaclustered”, by considering close those clus-
ters that contains a number of alignment overlapping on the same search sequence
of the other cluster’s alignments (C); finally, metaclusters are merged by grouping
those that still share a significant number of search sequence regions (D).

collect all those sequences that have not been clustered directly by DPCfam, but

are reasonably similar to the members of a metacluster.

A notable feature of DPCfam is its flexibility. While it can be used to find

families in a large protein database (in this work, UniRef50), it can also be used

to analyze subsets of query sequences containing several orders of magnitude of

elements less than the full database, still being able to provide meaningful results,

as we will show in Section 3.2. This is because the objects analyzed by DPCfam are

pairwise alignments obtained by searching on the full database (UniRef50). These

alignments include a vast number of search sequences that will add information not

directly contained in the query set.

In the following subsections we will describe the DPCfam workflow, which con-

sists of (see Figure 2.2):
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• A) finding BLAST alignments of a query dataset on a protein database

(Uniref50). As discussed above, the query database may be both the database

itself or a smaller set of sequences, which in principle do not need to be a

subset of the database.

• B) primary clustering of alignments lying on the same query sequence

• C) metaclustering of primary clusters

• D) merging of metaclusters to eliminate redundancies

Finally, we will explain the filtering procedure used to remove outlier sequences in

a metacluster.

2.2.1 BLAST alignments

For each sequence (query) in the query dataset, we perform a local alignment

search on the full UniRef50 database [10] using blastp from NCBI BLAST+ [27]

(v. 2.2.30+). We save all alignments with E-value < 0.1 (see Section 1.2.3). We

are interested in collecting a large number of alignments (when possible), and so we

set the max target seqs option of blastp to 200,000 or 5,000,000, depending on the

implementation.

We define here the BLAST alignment object, generally labeled by an index i,

as:

Bi =
⇣
qi, si,Qi,Si

⌘
(2.4)

where qi is the identifier of the query sequence, si is the identifier of the search

sequence, Qi and Si are regions on, respectively, the query and the search sequence.

More in detail, Qi and Si represent the boundaries (start and end positions) of

the pairwise alignments on the query and on the search sequences, respectively (see

Figure 2.3 A). Note that gaps and insertions are not taken into account.

2.2.2 Clustering of BLAST alignments

As explained in Section 2.1, DPC entails the following steps: i) defining a distance

in the space of the objects that are to be clustered; ii) for each object estimating its

local density; iii) selecting density peaks (cluster centers) and, finally, iv) assigning

non-peak objects to density peaks (clustering). DPCfam performs two rounds of

DPC: the first round (primary clustering) allows clustering alignments that cover
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Figure 2.3: (A) Schematic representation of a pairwise alignment Bi =
(qi, si,Qi,Si). The aligned regions are shown in green (query) and red (search).
(B) Representation of two di↵erent alignments (Bi and Bj) on the same query q0
. The aligned regions on the query are shown in green. The dark-gray portion of
the protein represents the intersection between region Qi and region Qj , namely
Qi \Qj ; the dark-gray+light grey region represents union of region Qi and region
Qj, namely Qi [Qj.

similar regions on the query sequences; the second round groups together primary

clusters that share a number of overlapping alignments (metaclustering).

2.2.2.1 Primary clustering

For a query q0 we write the set of all of its alignments as:

Bq0 = {Bi : qi = q0} (2.5)

We define the distance between alignments in Bq0 as:

dQi,j = 1� |Qi \Qj|
|Qi [Qj|

(2.6)

where |Qi \ Qj| is the length (intended as number of residues) of the intersection

between the segments identified by Qi and Qj, while |Qi [Qj| is the length of their

union (see Figure 2.3 B). This distance is 0 if Bi and Bj are aligned to the same

portion of the query q0, that is, Qi = Qj; while it is 1 if Qi and Qj do not overlap

at all. As defined, dQi,j represents a metric since it is symmetric, positive defined and
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satisfies the triangular inequality.

Using the distance in Eq. 2.6, we estimate the density ⇢i of the alignment i, using

the estimator in 2.1:

⇢i =
X

j

�(di,j � µ1) (2.7)

Thus, the density of an alignment Bi is given by the number of alignments that

belong to the same set Bq0 and that are found at a distance from Bi smaller than

µ1. In the algorithm we set µ1 = 0.2, according to the rule of thumb discussed

in Section 2.1. When two alignments with the same search sequence are such that

dQi,j < µ1, we retain only the alignment with the lowest E-value. For each query, this

happens in 1% or less of the alignments.

Next, we search for density peaks: in this step, we use the gap strategy (see

Section 2.1.1.1): we sort the alignments according to decreasing values of �i, �(q0) =

{�s, �s > �s+1 8s}, and we select density peaks by identifying a �g 2 �(q0) such

that �g�1

�g
� 10� & �s�1

�s
< 10� 8s > g & g  gmax. We recall that the number of

peaks we allow is limited by the parameter gmax, which is set to 20. Such a decision

is derived from the belief that it is very improbable for a protein to contain such a

large number of distinct families. A peculiar case is the one of repeats: sometimes

a protein can contain tens of repeats, which means that the gmax we chosen will not

allow to separately identify all of them as primary clusters. However, the fact that

we cannot identify by design every single occurrence of a repeat in a query protein is

not problematic: through the metaclustering we will still be able to get a description

of a repeated family, thanks to the vast number of alignments collected together. In

return, using a relatively small value of gmax allows us to limit as much as possible

the noise which may occur by using instead larger and more permissive values.

Once we detected the density peaks, we proceed to assign the non-peak data to

a cluster. To do this, we assign to each density peak all alignments that are found

at a distance smaller than µ1 from the peak, and further away from any other peak:

the set of alignments assigned to a peak constitutes what we call a primary cluster.

This procedure di↵ers from the standard DPC assignation procedure [9], because

not all alignments are assigned to a primary cluster, but only those close to a peak.

Indeed, we aim to collect together sequences that are close each other, which helps

us to identify an homology region on the protein, where the clustered alignments

will lie. We then discard the non-clustered alignments from the rest of the analysis.

Thus, the clusters we obtain are subsets of the previously defined Bq0 set, where each

subset includes alignments located around the same region of the query sequence.
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The clustering procedure we described is schematically shown in Figure 2.2 (A and

B), and two examples of primary clustering are shown in Figure 2.4.

Figure 2.4: Examples of primary clustering results for two proteins from namely
A0A142XZI2 (A) and Q5BH58 (B). Thick, black lines represent the query sequence.
Red lines in the top section of each panel show a random subset of the regions of the
query that have been aligned by BLAST to other sequences in the search set. The
bottom part of each panel shows instead a comparison between the protein’s Pfam
annotation and the primary clusters obtained form the query sequences. Clusters’
centers are represented as purple lines and vertically ordered with respect to their
⇢ value.

2.2.2.2 Metaclustering

The goal of this step is to collect together primary clusters that share a large

number of regions (specifically, regions of search sequences) together. What we will

do is to perform once again a Density Peak Clustering, clustering not the alignments

but the set of primary clusters we found on the query set. We will, then, need to

define a distance between primary clusters.

We denote the set of alignments belonging to a primary cluster c as Bc and we

call Nc the number of its elements.

We then define the distance between two primary clusters c and c0, associated

to two queries q and q0 as:

Dc,c0 = 1� 1

min(Nc, Nc0)

X

m2Bc,n2Bc0

�smsn�µd
(dSm,n) (2.8)
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where dSi,j is defined as in Eq. 2.6 using segments Si and Sj in place of Qi and

Qj, and µd = 0.2 is chosen coherently with µ1 in Eq.2.6. This distance is shorter

the higher the number of alignments in the two clusters sharing the same search

sequence and having a significant overlap, namely dSi,j < µd. Also in this case, we

have Dc,c0 = 1 when the two primary cluster have nothing in common; if Dc,c0 = 0

the smaller of the two clusters is contained in the larger.

We estimate the density ⇢c, again using the estimator described in Eq. 2.1:

⇢c =
X

c0

�µ2(Dc,c0) (2.9)

where µ2 = 0.9 was again chosen following the rule of thumb in [9].

We then proceed computing

�c = min
c0:⇢c0>⇢c

Dc,c0 (2.10)

and selecting the density peaks. In this step, we use the maximum � strategy to

select cluster centers, which consists in choosing as density peaks all points having

�c = 1 and ⇢c > 1 (see Section 2.1.1.2). Now we can explain why we prefer this

strategy to the gap strategy, used in primary clustering, by focusing on the di↵erent

goals of the two procedures. Primary clustering aims to identify, on a given query

sequence, regions and respective alignments that could be reasonably be part of a

”family”, which to us correspond to those regions where we found several align-

ments. Metaclustering clusters together these sets of alignments, with the purpose

of building proper families. Protein families should be as separated as possible,

which in our algorithm can be easily achieved asking for cluster centers (density

peaks) to have �c = 1 (see Section 2.1.1.2). As we will see, this greedy strategy still

leads to a too large number of metaclusters, and we need a merging step to reduce

this redundancy. This excludes the necessity to use more sophisticated strategies

such as the gap strategy to select density peaks.

Again, we assign to each density peak all primary clusters that are found at a

distance smaller than µ2 from the peak, and further away from any other peak.

The set of primary clusters assigned to a peak constitutes a raw metacluster.

Primary clusters not assigned to any peak are discarded.
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2.2.2.3 Merging metaclusters

DPC metaclustering is very conservative in assuring that primary clusters col-

lected together are similar each other; however, di↵erent raw MCs can contain pri-

mary clusters very similar each other, which are considered redundant. We mitigate

this redundancy by adding, after metaclustering, an extra merging step. We merge

similar raw MCs by computing the quantity

DMC0,MC00 =
2

NMC0NMC00

X

c02MC0,c002MC00

Dc0,c00 (2.11)

where MC 0 and MC 00 are any two metaclusters and NMC0 and NMC00 is the number

of their primary clusters. DMC0,MC00 is the average of the distances between primary

clusters contained in the two MCs, where Dc0,c00 is computed following Equation 2.8.

We merge all MC pairs for which DMC0,MC00 < 0.9.

2.2.2.4 Filtering metaclusters’ alignments and building profile-HMMs

A metacluster is a collection of protein regions Si. In order to reduce the level

of noise coming from outlier sequences within a MC, from the list of all regions

obtained in the previous section we remove those that don’t overlap with any other

sequence in the MC. More specifically, we keep region i if it exists another region j

in the same MC such that �sisj�µd
(dSi,j) = 1 (cfr. Eq. 2.9). We additionally reduce

redundancy at 95 percent identity using Cd-Hit (v4.7) [37].

For the purpose of building MC-associated profile-HMMs, we further reduce

MCs’ size by reducing redundancy at 60% using Cd-Hit.

2.3 DPCfam0: a Python/C++ implementation

for proof of concepts analysis

DPCfam0 constitutes the first implementation we wrote of the DPCfam proce-

dure. DPCfam0 is capable to build metaclusters starting from a relatively small set

of pairwise alignments. In particular, we used it to cluster the PUA UR50 and the

P53 UR50 datasets (see Section 3.2) This software repository is published at

https://gitlab.com/ETRu/dpcfam0
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2.3.1 General description of the implementation

DPCfam0 is constituted by a Python code orchestrator (DPCF.py) and a set

of C++ programs performing the most computationally expensive tasks of the pro-

tocol. In addition, it includes the possibility to run a BLAST search (provided a

blastp program is installed) to generate pairwise alignments of a query set with re-

spect to a protein database. Each step of the protocol is separated and can be ran

independently, provided the input files needed exists and are located in the correct

folder.

The three C++ programs are devoted to:

• perform primary clustering (primarycl.cc) of BLAST alignments

• build the distance matrix among primary clusters (link.cpp)

• perform secondary clustering on the distance matrix (secondarycl.cc)

These programs are not encapsulated in the Python code: we compile them

separately, and then we use the subprocess library in Python, which directly calls

the programs each time through a shell command. In a similar manner, the blastp

command is called (if needed) by the Python orchestrator. Beyond this, the Python

ochestrator manages the input and output file, performing files parsing and trans-

formations when needed, and finally it performs the filtering of the MCs produced

by the secondary clustering C++ program.

In the following we will give a brief description of each step of this implementa-

tion.

2.3.2 Generating BLAST alignments

DPCfam0 uses blastp to generate local pairwise alignments to be clustered. To

do so, a protein sequence database is needed (in our case, UniRef50) using numerical

(integer) IDs for fastening the process. We collect all the query sequences of interest

in a fasta file, and we search using blastp setting the E-Value threshold to 0.1 (see

Section 1.2.3) and the max target seqs parameter to 5,000,000. This last parameter

allows us to extract virtually all the local pairwise alignments possible: indeed,

max target seqs indicates the maximum number of alignments per query, and its

default value is 500. In fact, when searching for alignments one is usually interested

in a reduced number of results - but in our case, we want to extract as much as

possible relevant local pairwise alignments. To do so, we enlarge the maximum
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value of this parameter by several orders of magnitude. This request can slow down

the BLAST search, but we gain a large quantity of alignments to work with.

The output produced by blastp is a single tab-separated file, each line repre-

senting an alignment. For each alignment, we save the following data: the query

sequence ID, the search sequence ID, start and end position of the query aligned

region, start and end position of the search aligned region; moreover, other data

about the alignment are outputted, such as the query’s and search’s lengths, the

alignment’s length, the E-Value, etc. Finally, we also get both the query aligned

sequence and the search aligned sequence.

2.3.3 Primary clustering

The primary clustering program (primarycl.cc) works on a single query sequence.

Therefore, the Python orchestrator first splits the blastp output in a series of files,

each containing alignments derived from one specific query. Then, the C++ program

is called by the orchestrator for each of these files.

primarycl.cc computes the matrix distance between the query’s alignments (see

Eq. 2.6) and performs the density peak clustering using the ”gap strategy” to find

cluster centers (see Section 2.2.2.1 ). First of all, a single query alignments file is

read. The algorithm computes the distance dQi,j, and also the quantities needed for

clustering, ⇢i (see Equations 2.1 and 2.7) and �i (see Equation 2.2.). A first clean-

ing step removes those alignments which, obtained form the same search sequence,

overlap too much each other: only those with the best E-value is saved. Then, the

local density is estimated for each alignment: first, it is set to a value around to 1

(specifically, the score of the alignment divided by its length, in order to give a small

priority to those alignments with better score); then, for each couple of alignments

i, j we compute the distance dQi,j and we add 1 to ⇢i and ⇢j if their distance is smaller

than the distance kernel µ1. We add to the distance computed an extremely small

(OOM 10�5) pseudo-random noise from a uniform distribution to avoid degeneracy,

namely cases in which �i = �j and ⇢i = ⇢j. We then compute the �i of the align-

ments, searching for each alignment i those alignments with ⇢j larger than ⇢i , and

then selecting the smaller distance between such i and j. Here again the distance

is re-computed, adding the small noise to remove degeneracy. We note that noise is

added using the RAND() C++ function, initialized with an hard-coded seed at the

very beginning of the program. Thus, the results are deterministic with a specific

input-file.
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Once ⇢i and �i are computed, the program searches for the cluster centers (or

density peaks) following the ”gap strategy” (see Section 2.1.1.1). We select the first

20 alignments with higher �i = ⇢i�i, sorted according to this quantity, as putative

centers. For each consecutive couple we compute the gap and we check if it is larger

(as a logarithm) than 0.5; we track the last one with this property and we remove

from the center’s putative list all those centers listed after the last relevant gap.

Those remaining are the cluster’s centers.

To assign an alignment to a cluster, we compute the distance between the align-

ment and each cluster center: as we go through the centers’ list, we save the match

with the smaller distance. At the end of this search, we print in the output the

alignment assigned to the closer cluster center, provided that the distance is smaller

enough (< µ1, see 2.2.2.1); otherwise, the alignment is not reported in the output.

As a final output is produced a file for each query. Such file contains in each line

information about an alignment that has been clustered for that query.

Using the Python orchestratorl, we split each output file in as much files as

the number of clusters found in the respective query: we introduce here a labeling

system to univocally define primary clusters. Therefore, a primary cluster is labeled

using the following number:

cid = qid ⇤ 1000000 + cenid (2.12)

where qid is the query ID (numeric) and cenid is a numeric id assigned to the cluster’s

center alignment.

2.3.4 Secondary Clustering

In DPCfam0 the ”secondary clustering” includes both the metaclustering and

the metaclusters’ merging steps (see Sections 2.2.2.2 and 2.2.2.3). In detail, we

separated the procedure in three sections:

• the generation of the distance matrix between primary clusters (link.cpp)

• actual metaclustering (secondarycl.cc)

• merging (done by the Python orchestrator)
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2.3.4.1 Distance matrix generation

To better understand the implementation done in link.cpp, it is useful to consider

the meaning of Equation 2.8, defining Dc,c0 . To compute this distance, we basically

need to compare the alignments contained in two primary clusters (c and c0), and

check for any couple of alignments (each from a di↵erent cluster) deriving form the

same search sequences (�smsn). Given this match, we check if the two alignments

are close enough (�µd, with µd = µ1 = 0.2 ): if this is the case, we add 1 to a

”total” which will then be normalised to the maximum possible number of matches.

The quantity obtained so far, D̃, allows computing the distance as Dc,c0 = 1� D̃c,c0 .

Moreover, we note that if there is an alignment belonging to primary cluster c having

search protein sm and there is no other alignment in cluster c0 with same search

sequence sm, this alignment will not contribute in the computation of Dc,c0 . Indeed,

any contribution to the distance will be obtained only from couples of alignments

sharing the same search sequence.

To implement this computation in an e�cient manner, we preprocess the pri-

mary cluster data (via the Python orchestrator) as it follows: we collect in a single

file all the clustered alignments, assigning each the primary cluster label defined in

Equation 2.12. Then we sort the alignments with respect to their search sequence

numerical identifier. From such a list, we can easily discriminate those alignments

whose search sequence appears only once in the full list: as said before, such align-

ments won’t contribute to the computation of any entry in the distance matrix Dc,c0 ,

and we can discard them. The rest of the alignments we collect (and sort) consti-

tute the input to the link.cpp C++ program. To compute the distance, the program

collects in a vector a consecutive set of alignments sharing the same search ID. Such

groups of alignments are relatively small, and an all-to-all search within them is

much faster than an all-to-all performed on the full set of alignments. Thus, given

a group of alignments sharing the same search ID, for each couple m,n we compute

the distance dSm,n, and, if it smaller than µd, we add 1 to the matrix element asso-

ciated to the alignments’ primary clusters. In this way, we are computing D̃ (yet

to be normalized). Finished this all-to-all search the vector we used is cleaned, and

another group of alignments with the same search ID is loaded from the input file.

At the end of the alignment’s input file, we know that there is no other contribution

to the distance matrix to take into account, and so we proceed to normalize D̃ and

compute the distance as D = 1� D̃. The final output produced by this step (after

some manipulation done by the Python orchestrator) is a triangular matrix in the

form i,j,Di,j. i and j are novel IDs for clusters, from 1 to C (being the latter the
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number of primary clusters). A mapping from this IDs to those defined in equation

2.12 is saved in a separated file, containing also the size (Nc) of the primary clusters.

We note that the main problem of link.cpp (solved in the parallel optimization,

described in Section 2.4) is that we allocate the full distance matrix in memory.

2.3.4.2 Metaclustering

Metaclustering of primary clusters is performed directly by secondarycl.cc pro-

gram, which uses the previous triangular matrix (i,j,Di,j form) as an input: again,

the entire matrix is loaded in memory. The program is then very similar to prima-

rycl.cc, computing ⇢ and �. Finally, cluster centers are selected using the maximum

� strategy. The rest of the points are assignated to the closest density peaks, pro-

vided that distance with it is smaller than µ2 = 0.9 (see Section 2.2.2.2 ). Two

output files are printed: one contains the number of primary clusters in each MC,

the other reports to which MC each primary cluster has been assigned.

2.3.4.3 Merging and Filtering

The final merging and filtering step is performed by the Python orchestrator.

Using files produced so far, it first computes the MC-MC distances (see Equation

2.11 ). Then, for each MC, it searches for other MC closer to it than the merging

threshold (0.9), and merges them iteratively.

A new version of the previous output file is written, containing the information

of the new, merged, MCs.

We then proceed to write the single MCs’ files, filtered. Filtering procedure

consists in printing only those sequences that had generated a contribution to the

distance between primary clusters of the same MC. To do so, we apply a strategy

very similar to the one we used to compute the distance matrix Dc,c0 : we collect all

the alignments of a metacluster and we sort them with respect to their search ID.

Search IDs appearing only in one alignment tells us that such alignment couldn’t

contribute to the computation of the distance, and then we remove them. Then, we

select groups of alignments with the same search sequence, and for each of them we

check if there exists at least another element in the group with dSm,n < µd: if this is

the case, we save that alignment. Once we have the list of all the ”good” alignments

in the MC, we trace back to their proteins’ sequences. For each MC, we output a

file containing the aligned region of the search sequence of each ”good” alignment.

Each sequence is labeled using the search ID and the start-end position on it of the
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aligned sequence reported.

2.4 Parallel and optimised DPCfam implementa-

tion

In the following we will discuss some of the main aspects of the DPCfam imple-

mentation that has been used to cluster protein sequences in the UniRef50 database

(v. 2017 07), which contains 23,531,980 proteins. Here UniRef50 serves both as

query set and search database.

The complete run of this DPCfam implementation, applied to pairwise align-

ments, costed about 40,000 CPU hours. The generation of such pairwise alignments,

namely the blastp all-to-all search on UniRef50, costed about 190,000 CPU hours.

Results obtained from this implementation are discussed in Section 3.3.

2.4.1 Generating BLAST alignments

As a very first step, we shu✏e the UniRef50 database and assign to each sequence

a numeric, integer and random ID, from 1 to 23,531,980. In particular we ”sort” the

list of the proteins’ names using the random (”-R”) option of the sort bash program;

we assign to each sequence the numerical ID corresponding to the row number of

its protein name after shu✏ing. This step is necessary to balance the computations

to be done in the following; moreover, using numerical IDs both fastens the BLAST

search and helps the optimization of the DPCfam protocol.

We generate local pairwise alignments using the blastp program of BLAST+ (v.

2.2.30) suite; we run it in parallel by using the program’s native multithreading

system together with a simple bash command parallelization. We set the maximum

E-value allowed for the alignments to 0.1 and the max target seqs option to 200,000:

this last choice limits to 200,000 the number of results obtained when searching a

query against the UniRef50 database. We note that the value we use (200,000) is

higher than the default value o↵ered by BLAST (500) but lower than the value used

in Section 2.3.2 (5,000,000). We opted for this middle ground solution in order to

speed-up the computation: limiting the per-query results to 200,000 matches is a

reasonable compromise between generating a useful number of pairwise alignments

and limiting the time required by this step.

Alignments have been obtained using the local cluster, on Xeon E5-2680 v2 nodes

(2 sockets, 10 cores, 2 threads, 40GB of RAM).
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We run blastp using about 100,000 query files, containing 200 query sequences

each. Each query file is searched against the (shu✏ed) UniRef50 database, prepared

with the makeblastdb program of the BLAST+ suite. We set the blastp multithread-

ing system to 4 threads (-num threads 4) and run in parallel 4 blastp commands for

each node, resulting in 16 nodes fully occupied by the blastp program. To speedup

the I/O, we load on the local node a entire copy of the UniRef50 database.

As an output we report mostly data useful to the DPCfam protocol on an ASCII

tab-separated file. Specifically, we save 12 columns: the query sequence ID, the

search sequence ID, start and ending positions of the alignment on the query se-

quence, start and ending positions of the alignment on the search sequence, the

lengths of the region aligned on the query sequence, the lengths of the region aligned

on the search sequence, the alignment length, the P.I. of the alignment, the E-value

and the score.

Each file contains the alignments obtained from 200 query sequences. As a

result, we obtain about 3.5 TB of data, containing about 55 billions of local pairwise

alignments.

2.4.2 Primary clustering

The primary clustering has an embarrasingly parallel workload. For each query

sequence we need to analyse only the subset of alignments obtained from that spe-

cific query. Such a subset is a partition of the whole set of alignments we previously

produced, which makes the primary clustering performed for query qa totally inde-

pendent from the one performed for query qb. Primary clustering is implemented as

a C++ code that takes, as input, the blastp output as described before; it is run

in parallel using MPI [49]. MPI usage is limited to pass to each process a number

of query sequences (and relative alignments) to cluster, sequentially. This step took

around 2,500 cpu hours, obtaining about 33 billions of alignments clustered in 27

millions of primary clusters. At this level, reducing as much as possible the files’

size becomes essential: on one hand, because of disks capacity, on the other, because

time spent loading data from hard-disks to RAM became relevant in the subsequent

computations. The output produced by primary clustering has been reduced to the

essential data needed for the rest of the clustering procedure: for each clustered

alignment we save the query ID, the search ID, a cluster identifier and finally its

start and end positions on the search sequence. To reduce further the files’ size, we

convert them to a binary representation intended to use a minimal number of bits for
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each column. For example, proteins IDs takes integer values that cannot be larger

than 23,531,980 (number of total proteins in UniRef50): therefore search IDs can be

represented using a particular C++ variable type, ”uint32 t”, which ”costs” only 4

bytes and where such numbers easily fit. Similarly, start and end positions of the

alignments are integer values that ranges from 0 to about 30,000, and can be rep-

resented using the ”uint16 t” variable type, which costs 2 bytes. To label clusters,

we use a similar method as in Equation 2.12, with some precautions. Since for each

query the maximum number of clusters is 20, by using numbers from 1 to 20 to label

a query’s cluster cqueryid we can use as a generic cluster label cid = qid ⇤ 100 + cqueryid .

In this way, cid is a positive integer smaller than 2,353,198,020, a number that can

still be represented using the ”uint32 t” variable type. With this strategy, we finally

can represent clustered alignments using 16 bytes for each alignment, using about

500GB to store all of them.

2.4.3 Generating the distance matrix between primary clus-

ters

The distance matrix between primary clusters is needed for the subsequent meta-

clustering: generating it is computationally heavy and also RAM occupation during

the computation became an issue. The reasoning done in Section 2.3.4.1 is useful

also in this context: we report it also here for sake of readability. To compute the

distance Dc,c0 (see Equation 2.8), we need to compare alignments contained in two

primary clusters (c and c0), and search for any couple of alignments (each from a

di↵erent cluster) having the same search ID (�smsn). Given this match, we still need

to check if the two alignments are close enough (�µd, with µd = µ1 = 0.2): if this

is the case, we add 1 to a ”total” which will then be normalised to the maximum

possible number of matches. The quantity obtained so far, D̃, allows computing the

distance as Dc,c0 = 1 � D̃c,c0 . In DPCfam0 we worked with clustered alignments

sorted with respect to the search ID (see Section 2.3.4.1): this allowed us to collect

sets of alignments with the same search ID. For each couple of alignments in these

sets, we added their contribution to the respective primary clusters’ D̃ element (if

the aligned regions were close enough). In the all-to-all scenario we deal both with a

massive input and a massive output: we have 500GB of input data containing align-

ments grouped in 27 ·106 primary clusters, leading to a distance matrix of (27 ·106)2

elements (sparse). Moreover, sorting all alignments with respect to the search ID

is a heavy and expensive task. Using the exact strategy as used in the DPCfam0
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implementation is not feasible.

Figure 2.5: Schematic representation of distance matrix divided in blocks. Here we
have groups of (about) 3 primary clusters, and to each couple of groups corresponds
a block (included couples made of the same group). Since the matrix is symmetric,
we can consider a single block for each couple. Blue blocks represent o↵-diagonal
blocks, green blocks represent diagonal blocks.

We decided to split the problem in a set of sub-problems, which also allows us

to proceed in parallel. Let us first consider the distance matrix we are going to

build: as shown in Figure 2.5 we can split it in blocks by dividing primary clusters

in N groups, obtaining N2 blocks. The content of each block can be computed

independently, and we need to actually work on N(N+1)
2 blocks, being the distance

matrix symmetric.

The computing strategy is still similar to the one adopted in DPCfam0, with the

di↵erence that instead of using a single input file we will use two input files for each

block. First, we divide primary clusters in N groups. This is an easy task: indeed,
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primary clustering output is already organized in groups of queries. Since primary

clusters are defined on a query, each group of queries will contain a group of primary

clusters. Moreover, we can expect to find in each group of queries more or less the

same number of primary clusters, obtaining balanced groups of primary clusters

from the previous output. Within each group we sort the alignments with respect

to the search ID: this is a much easier tasks than sorting all 33 billions alignments

together. Here use a C++ program to sort the binary files, based on the radix sort

algorithm [50]. We exploit this sorting to search for sets of alignments with the

same search ID, so that we can compute their contribution to the D̃ elements of the

primary clusters. Then, to compute the matrix block Bi,j, we read simultaneously

the two files containing alignments of group i and of group j. Our goal is to identify

a set of alignments in group i and another in group j that share the same search ID.

The first alignments found in each file will have search ID si,1 and sj,1, respectively.

Two cases are possible:

• si,1 = sj,1 : we found a match between search IDs in the two files. We continue

reading the files collecting alignments in two vectors, vi and vj, stopping to

collect them when the search IDs change. The two vectors may contain a

di↵erent number of elements. For each alignment in vi we compute the distance

dS with any other alignment in vj: if the distance of two alignments is smaller

than 0.2, we add one to the D̃ entry of the respective primary clusters.

• si,1 > sj,1 or si,1 < sj,1 : this means that the search IDs we found are di↵erent,

and necessarily one is larger than the other. Let us consider the specific case

where si,1 > sj,1: since alignments are sorted in both files, this means that in

group i there is no alignment with a search ID smaller than sj,1. Therefore,

we can scroll the lines of group i file until we find si,n � sj,1. Specifically, if

si,n = sj,1, we can compute distances (see previous point); if si,n > sj,1 we find

ourselves in the same situation as before, requiring this time to scroll trough

the lines of group j file searching for sj,m � si,n.

The reading procedure is schematically represented in Figure 2.6. At the end of

the two input files, we normalize the values of D̃ and we convert them in entries of

D, recalling that D = 1� D̃.

We can distinguish between two types of blocks (see Figure 2.5): o↵-diagonal

(blue) and diagonal (green). When computing diagonal blocks, we change slightly

the procedure: we add an ”if” condition checking that we are not working on couples
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Figure 2.6: Schematic representation of the strategy used to compute a block of
the distance matrix. We highlight the reading procedure that allows to find sets
of sequences sharing the same search ID, which are those that will contribute to
compute the matrix elements.

of alignments from the same primary cluster. This allow to reduce the number of

comparison to be done between diagonal blocks.

We note that it is very important to set a balanced number of groups N . Indeed,

if N is small (N = 2 as extreme case) we will need to store in memory the entire

distance matrix in the process. This, we estimated, would require several Terabytes

of RAM. In this case, the gain is that we need to compute only three blocks: B1,2,

B1,1 and B2,2. On the other hand, with a large N we need less RAM for each com-

putation, but we need to compute N(N +1)/2 blocks. While having a large number

of independent blocks is useful to compute them in parallel, we must consider also

that with more blocks we are increasing the I/O required by the full computation.

Consider the case of N = 2: each group of alignments will weight 250 GB, and we

will compute 3 blocks loading two groups each time. At the and of the computation

we’ll have moved from disk to RAM 1TB. If we double to N = 4, our groups will

weight 125GB each, but we will compute 10 blocks, moving from disk to RAM 2.5

TB. If N becomes too large, the time took by I/O becomes dominant and slows

down the entire process. There is also another reason why we prefer a smaller num-

ber of groups: the strategy we use to compute the matrix elements relies on finding

sets of alignments sharing the same search ID. As the number of groups increases
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the number of sequences they contain is reduced, and the probability to find this

sets becomes smaller: while the time required by I/O increases, the e↵ectiveness of

our computation strategy decreases.

Besides making parallel the computation of the distance matrix by using the

blocks’ strategy, we also used a multithreading strategy to compute each single

block: in particular, we used a consumer-producer scheme [51], with C consumer

threads and P producer threads. ”Producer” threads scrolled through the input files,

computing partial values for D̃ entries as they found sets of alignments with same

search IDs; ”consumer” threads stored these values in a binary tree, representing the

matrix block, which is sparse. Navigating the binary tree is quite time consuming,

leading to need much more consumers than producers.

Reasonable values of N , C and P strongly depends on the features of the super-

computer we use. To run this analysis, we used 10 nodes with 2 Intel(R) Xeon(R)

Gold 6126 CPU @ 2.60GHz (24 cores) and 768GB of RAM. We divided the input

data in N = 50 groups, computing 1,275 blocks, each using P = 3 producer threads

and C = 20 consumer threads. Each block computation occupied about 500 GB in

RAM. The complete computation took about 30,000 CPU hours.

2.4.4 Metaclustering and merging

Once computed the distance matrix, the last steps of the protocol are not CPU

intensive, but rather memory intensive, due to the amount of data we need to

manage.

We compute metaclusters by Density Peak Clustering: the core of the method

relies on calculating for each primary cluster i the local density, ⇢i and its minimum

distance to points of higher density, �i (see Section 2.1). To compute these quantities

we need to consider that the distance matrix to be used is stored in 1,275 files, of 2

GB each. First, we pre-allocate a vector for each quantity, ⇢i and �i. Both vectors

are of size 2,353,198,020, such that the indexes correspond to the cluster ids, cid, as

defined in Section 2.4.2. Such vectors are sparsely populated, making the approach

not e�cient in terms of memory: on the other hand, this strategy allows for a fast

access to the vectors’ elements, and it improves significantly the code readability.

We then loop through each file, saving the relevant information in the vectors while

processed. Note that, since �i is a function of ⇢i, we need to calculate these quantities

sequentially: we need then to loop twice through all distance matrix files. Once �i

and ⇢i are defined we select density peaks using the maximum � strategy, namely
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choosing as peaks all those primary clusters with � = 1 and ⇢ = 1 (see Section

2.1.1.2). We found 504,507 peaks, which have been then used to label the rest of the

primary clusters based on the metacluster peak they have closer. If the minimum

distance to a peak is bigger than µ2 = 0.9 we leave that primary cluster without

classification. This step implies a third read of the distance matrix files.

Once defined metaclusters using DPC, we proceed to merge them (see Section

2.2.2.3). At this point we need to compute DMC0,MC00 , namely the distance matrix

between metaclusters, based on Equation 2.11. This computation does not involve

a large number of operations: rather we have a memory constrain, since we need to

handle a 504, 507⇥ 504, 507 matrix of ”doubles” (8 bytes variables), corresponding

to roughly 1TB of RAM (exploiting the fact that the matrix is symmetric). Luckily,

with the resources we had we could load the whole matrix in RAM without need of

further data partition. After the merging step we end up with 210, 994 metaclusters.

The output obtained so far is a list of primary clusters with their respective

metacluster label, the last spanning from 0 to 210, 993.

Since the implementation is sequential we use only one HPC node with 2 Intel(R)

Xeon(R) Gold 6154 CPU @ 3.00GHz (36 cores) and 1536GB of RAM, also known as

”fat nodes” because of their large RAM. The computation occupied approximately 1

TB of RAM and it took near 8 CPU hours to completion. The former is the biggest

bottleneck of this step, the latter is negligible compared to the steps described in

the previous sections.

2.4.5 Filtering

The result of the metaclustering procedure is a list of primary clusters, asso-

ciated to a MC through a label. Tracing back each primary cluster to its search

sequences, we end up with the final output of DPCfam: a list of protein regions Si

classified into 210, 994 metaclusters. The output is organized in a set of di↵erent

files to simplify the navigation. As a last step we performed the filtering procedure,

intended to remove outlier sequences, namely those that do not overlap with any

other sequence in the same MC. To do this we first sort the output files with respect

to the search ID. Then, we do a ”stable sort” with respect to the MC label. In this

way sequences of the same MC are stored contiguously, sorted with respect to the

search ID. The sorting is done again using a C++ implementation of the radix sort

algorithm. Thanks to this trick we just need to check, for each MC, if sequences

with a given search ID overlap enough with any other with the same search ID.
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If not, the sequence is removed. Since sequences are sorted with respect of the

search IDs, it is easy to collect groups of sequences with the same search ID and

do a fast comparison. We note that the remaining sequences in the MC having the

same search ID should represent very similar regions of the same protein. This is a

redundancy that has to be removed: of all ”good” sequences found in the MC with

same search ID, we save the one that best overlaps with the average boundaries of

such set. This procedure requires very few time, not a↵ecting the total computing

time of DPCfam.
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Results

We produced two implementations of the DPCfam protocol. The first one, also

named DPCfam0, has been written and used for a proof-of-concept experiment,

while the second one, tightly optimised and parallellized, has been used to run an

all-to-all analysis of the UniRef50 database. In this chapter we will present the

results obtained using the two implementations.

In Section 3.1 we describe the main measures we developed to investigate MCs’

content and quality. To assess evolutionary consistency, we mostly refer to a ground

truth (Pfam [2]) as a comparison. However, we know that such a ground truth

should not be considered as an actual truth: indeed every classification we can

compare with may contain errors and is prone to corrections. The measures we use

here have been developed to take this into account: as we will see, it is often useful

to integrate them with deeper analysis, using for example structural information.

In Section 3.2 we describe the results obtained by analysing small query datasets

of protein sequences containing well-known Pfam families. Results obtained in this

way have been deeply analysed, using structural-based information when available

and other bioinformatics tools, such as HHpred [44] or DALI [52], to understand

the nature of the clustered sequences and, when present, the reasons of inconsisten-

cies between the classification resulting from our MCs and the Pfam classification.

We also introduce some coverage measures, useful to understand how many known

families have been identified by DPCfam, and how. Again, as a reference we use

the Pfam database. These coverage measures are specific for small datasets as those

presented in Section 3.2

In the Section 3.3 we present results obtained from the complete clustering of

UniRef50. The number of MCs obtained here is orders of magnitude larger with

respect to the previous analysis: it is beyond the scopes of this work to reach the

47



48 Results

same level of insight of metaclusters as we did before. Our results will finally be

deposited in a database, which will be made accessible to other researchers for in-

depth analysis. In order to analyze this large set of metaclusters we will introduce

some broader coverage measures, to assess how many protein families DPCfam finds,

and how. Again, we use Pfam as a reference.

3.1 Main measures to assess MCs’ quality

To understand what kind of protein regions a MC includes and the quality of

such grouping, we use two kinds of measures: absolute measures and ground truth

related measures.

In the first case we gather general information about the clustered sequences: we

focus on the sequences’ length distribution and on the quantity of low complexity

regions [53] contained in the sequences:

• A good MC should contain regions of about the same length: to asses this we

compute the average length of each MC’s sequences and its standard deviation.

A MC with a large ratio between average length and its standard deviation

makes us to flag it as possibly bad quality MC. In some cases, MCs may show a

bimodal distribution: in this cases we expect such bimodality to be removed by

profile-HMMs. When a profile-HMM is built, only the most conserved regions

are considered for the model: this result in trimming the longer regions.

• Low Complexity regions (LC) are usually not frequent in families with a well-

defined structural fold. This does not prevent sequences with many LCs to

be part of a family, but still allow us to flag them as ”questionable”. For

each sequence in a metacluster we search for LCs using the segmasker tool

of NCBI BLAST+ [27]; we then compute the fraction of amino acids in LCs

with respect to all amino acids collected in the MC. High values of this fraction

makes us flag such an MC as a possibly bad quality MC.

As we will see, in the majority of the cases MC perform well with respect to these

measures, showing coherence in their sequence’s lengths and a very small quantity

of LCs.

Ground truth related measures are more complicated. We will describe most of

them in the following; while some other measures, specific to some particular case,

will be introduced later.
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3.1.1 Defining the Ground Truth of a protein region and of

a MC

In order to compare MCs to any protein family database, we need to know

the respective annotation of their protein regions. Such information is not always

available, and in di↵erent situations we used di↵erent strategies to obtain it. Being

Pfam the main ground truth we use in this thesis, in the following we will describe

the procedure and the definitions to compare our classification to Pfam’s.

Figure 3.1: Schematic representation of Pfam ground truth architecture (GTA)
assignment to a generic alignment Bi(si, Si). In this example, the full-length pro-
tein si has the following three-family architecture: PFAAAAA + PFBBBBB +
PFCCCCC; the aligned region of the search sequence, Si, instead covers (par-
tially) only PFAAAAA and PFBBBBB; thus, the Pfam ground truth of Bi is
pi=PFAAAAA PFBBBBB (note that a 1-residue overlap of Si with a family is
enough for the latter to be included into the GTA); in orange we show Pi, that is,
the full region covered by the GTA families on the sequence si.

Let us assume that we know the Pfam classification for every protein collected

by our MCs: in particular, we know the Pfam annotation of the respective protein

sequences. We define the Pfam Ground Truth Architecture (GTA) pi of a region Si

as the ordered set of Pfam families that overlap with Si, if any. The order of the

families reflects their relative position along Si. For example, suppose that we want

to determine the GTA of the region of protein si =Q5BH58 spanning positions 132

to 567. Pfam annotation for Q5BH58 is as follows: PF02190 (aa 10-258), PF00004

(aa 482-625), PF05362 (aa 706-915). In this case, the GTA of Si is represented by

pi =PF02190 PF00004, comprising all Pfam families having at least a one-residue

overlap with this region. We can alternatively define the GTA in terms of Pfam clans

to which each Pfam family is associated (in this case pi(clan) =CL0178 CL0023);

again, the GTA is an ordered string of (clan) ids. If a family is not associated to



50 Results

a clan in Pfam, we use the family id in the clan GTA. The boundaries of the sub-

region of Si covered by the GTA pi will be indicated as Pi. If pi includes two or

more families, Pi will span also non-annotated residues between those families, if

present (see Figure 3.1). In the example above the Pi of Si is the interval between

residue 132 and 567.

Next, we define the Pfam Dominant ground truth Architecture (DA) of a meta-

cluster as the most abundant GTA among all of its member regions. The DA can

be defined both at a family or at a clan level.

3.1.2 Comparing MCs with their ground truth: evolution-

ary consistency

When using Pfam annotations to analyze the evolutionary consistency of our MC

classification, we take into account the following: i) evolutionary distances between

families within a Pfam clan can di↵er greatly; in particular, some families may be

very closely related to each other. For this reason, it is often more informative to

look at consistency of annotation in MCs at the clan level (see Section 1.5.2); ii)

along with many full-length sequences, UniRef50 also contains sequence fragments.

This may be relevant when comparing MC member annotations, especially for those

MCs associated to multi-family DAs. iii) Pfam classification of families and clans

can be incomplete; as a consequence, regions in UniRef50 that are not currently

annotated in Pfam may still belong to known Pfam families and clans.

Given a MC, we first determine its DA both at the family and at the clan level,

and we indicate, respectively, %DA and %DAC (C=clan) their relative percentages

among MC members. Hereafter, we call ”DA members” those for which, at the clan

level, have the DA as Ground Truth Architecture. Next, we consider MC members

that match the DA (again, at the clan level) only partially. While this makes sense

in light of observations (ii) and (iii) above, it also allows for some variability in length

among MC members. We compute the percentage of MC members with a GTA that

lacks one or more of the DA clans but, at the same time, doesn’t feature any extra

clan(s). We sum this percentage to %DAC and report it as %DACF (F=fewer); we

still ask that the remaining clans are in the same order as in the DA. Note that MC

members lacking any Pfam annotation are counted in %DACF. This is consistent

with the idea that having no Pfam annotation does not imply that a region is not

part of an existing Pfam clan (observation (iii) above). Finally, we compute the

percentage of MC members with a GTA that features one or more Pfam clans not
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Figure 3.2: Graphical explanation of %DA, %DAC, %DACF and %DACFA on
a toy MC containing 5 sequences. Yellow boxes represent the clustered region on
proteins, the latter being s1, s2, s3, s4 and s5. Coloured blocks represent Pfam
families, where the same color indicate the same family, while lighter/darker shades
of the same color indicate families in the same clan.

found in the DA but, at the same time, contains at least one of the original DA

clans. We sum this to %DACF and call it %DACFA (A=additional). In Figure

3.2 we give a graphical representation of this procedure on a toy MC containing 5

regions. In this MC, the DA at the family level would be A B (A: blue block, B:

orange block), with %DAF=40. At the clan level, also region on protein s3 would

be included, being the light blue block of the same clan of A: the DA(clan) would

be CLA CLB and then %DAC=60. Region on protein s4 lacks of the orange block,

and therefore would be counted in the %DACF computation, so that %DACF=80.

Finally, the last region includes an extra family (green) in place of A (blue), and

still captures a portion of B (orange) family. Such a sequence will be counted in the

%DACFA computation, so that %DACFA=100. Note that if s5 didn’t contain the

orange block, this region could not be considered as ”additional” and the final value

of %DACFA would have been 80.

%DA or %DAC close to 100% indicate that, according to Pfam, most members

of the metacluster share a homologous core region that covers all families or clans in

the DA. As we will see, the analysis of di↵erences between these percentage scores

greatly facilitates the identification of MCs that may not be evolutionarily sound,

as well as those MCs that may help improving the Pfam classification by expanding

family and clan membership, by uncovering novel domains or by pointing to potential

inconsistencies in the existing annotation. Schematically:
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• Di↵erences between %DA and %DAC tell us to which extent member se-

quences are spread out across multiple families pertaining to the clan(s) rep-

resented in the DA.

• Large increases from %DAC and %DACF can point to MCs with the potential

to increase coverage of existing Pfam families or clans.

• Large increases in %DACF and %DACFA can be a sign of an incomplete Pfam

annotation for members of the families in the DA.

• Low %DAC and high %DACF indicate MCs constituted of member sequences

that are devoid of any Pfam annotation: such MCs are good candidates for

protein family discovery.

Results reported in Section 3.2 will give more insights to justify and explain these

a�rmations.

3.1.3 Comparing MCs with their ground truth: boundaries

Comparison between the DPCfam and Pfam classifications cannot be reduced to

the percentage of families and clans among MC members. The degree of agreement

between the boundaries of a MC’s region Si and the boundaries of the respective

Pfam annotation Pi is also important.

We here introduce two measures, namely Fred and Fext, which allow quantifying

boundaries agreement.

Fred,i =
|Pi|�|Si \ Pi|

|Pi|
=

|Pi|�|Ii|
|Pi|

(3.1)

Fext,i =
|Si|�|Si \ Pi|

|Si|
=

|Si|�|Ii|
|Si|

(3.2)

Fred,i represents the fraction of the Pfam region Pi that is not covered by the clus-

tered region Si; vice versa, Fext,i is the fraction of the region Si that is not covered

by the Pfam region Pi (see Figure 3.3 A).

We compute these quantities using the MC’s Dominant Architecture (DA) rather

than the regions’ Ground Truth Architecture (GTA), more specifically using the DA

at a clan level. We restrict the computation only to those MC’s regions that are

actually DA members: therefore, to characterize boundaries of an entire MC with

respect to its DA we compute the averages of Fred,i and Fext,i on the subset of the

DA members. We denote these averages as FMC
red and FMC

ext .
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Figure 3.3: A) Graphical representation of the elements used to compute Fred and
Fext of a protein region S (blue) with respect to its ground-truth associated region
P (orange). B) Pictorial representation of the four categories of metaclusters we
defined based on FMC

ext and FMC
red values.

To provide some qualitative insight, we classify MCs into the following four cat-

egories according to the agreement of their DA members with the DA’s boundaries,

developing a color-code that will be used in the following tables and graphs (see

Figure 3.3 B):

• equivalent : both FMC
ext and FMC

red < 0.2, yellow;

• reduced : FMC
ext < 0.2 and FMC

red � 0.2, blue;

• extended : FMC
ext � 0.2 and FMC

red < 0.2, pink;

• shifted : both FMC
ext and FMC

red are � 0.2, green.

3.2 Proof-of-concept on PUA and P53 clans

As a proof-of-concept for DPCfam, we analysed two small query sets derived

from two Pfam clans, PUA [11] and P53-like [12]. Such datasets contain a limited

number of proteins (⇠2,000 to ⇠4,000), representative of proteins of the respective

clan. The procedure to obtain one of these datasets is the following: given a Pfam
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clan, for example PUA, we generate a dataset constituted of all UniRef50 full-length

sequences that carry a PUA clan member annotation. This annotation is obtained

by matching UniProtKB sequences’ identifiers with those of sequences in Pfam-A.full

v. 31, namely Pfam anotation of Reference Proteomes. The dataset obtained is then

named PUA UR50, containing 4,083 protein sequences. With the same procedure

we obtain P53 UR50, containing 2,022 protein sequences.

3.2.1 Defining the Pfam Ground truth

In Section 3.1.1 we explained how we assign a GTA to a protein region contained

in a MC. Such procedure requires to know the Pfam annotation of the respective

full-length protein; however, obtaining this is not straightforward. As previously

mentioned, our protein database of reference is UniRef50 (v. 2017 07). Not all

sequences in UniRef50 are annotated in Pfam, thus we are not able to use the

Pfam database family assignments directly to inspect the MCs’ content. Pfam

o↵ers annotation of the UniprotKB database, which still does not cover entirely

UniRef50. Therefore, in this analysis we decided perform a de novo annotation of

the MCs’ proteins, following the Pfam method. We first collect all the full-length

proteins whose regions appear in our MCs. Then we ran each protein sequence

against the set of all Pfam A.hmm models (v. 31) using the hmmscan program from

the HMMER 3.1b2 suite [54], and we assign to each protein sequence a Pfam family

architecture according to the models’ manually-curated gathering thresholds. In the

case of multiple significant matches overlapping along the same protein sequence,

we keep only the Pfam annotation corresponding to the lowest E-value. Overlaps

are calculated using start and end alignment positions. Note that this protocol does

not allow domain nesting.

3.2.2 Clustering of proteins from the PUA clan

Starting from the PUA UR50 query dataset, our clustering method produces 71

MCs in total (Figure 3.4) for the MC size distribution). We find 19 MCs mapping to

PUA families (Table 3.1) and 52 mapping to PUA associated families (Table 3.2).

As previously mentioned, MCs can represent single or multi-family architectures

and their DAs may or may not contain PUA clan families. Also, di↵erent MCs can

map to the same Pfam family or architecture.
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MC DA % DAF %DAC %DACF %DACFA FMC

ext

FMC

red

Extra

Clans

1 PF02190 81.3 81.3 83.4 98.9 0.03 0.03 1
2 PF02190 PF00004 PF05362 62.2 62.2 95.2 100.0 0.00 0.14
3 PF04146 98.5 98.5 99.0 99.9 0.07 0.03
4 PF04266 69.1 69.1 99.6 99.7 0.16 0.01
5 PF04266 98.4 98.4 100.0 100.0 0.05 0.02
6 PF17126 PF13636 47.1 47.1 100.0 100.0 0.00 0.16
7 PF17125 PF01189 PF17126 PF13636 42.1 42.1 99.5 100.0 0.00 0.01
8 PF01878 97.7 97.7 98.0 99.5 0.02 0.03
9 PF14306 PF01747 85.1 85.1 96.5 99.6 0.00 0.08

10 PF04266 62.9 62.9 99.2 99.2 0.02 0.03
11 PF06221 PF04266 71.7 71.7 98.3 100.0 0.13 0.00
12 PF03657 70.6 71.6 100.0 100.0 0.03 0.06
13 PF04266 86.0 86.0 100.0 100.0 0.05 0.61
14 PF04146 99.7 99.7 100.0 100.0 0.01 0.66
15 PF02190 PF03226 26.5 26.5 99.7 99.7 0.00 0.52
16 PF14306 98.1 98.1 100.0 100.0 0.01 0.36
17 PF02190 99.4 99.4 100.0 100.0 0.08 0.51
18 PF01472 38.4 38.4 75.0 98.5 0.47 0.01 2
19 PF02190 94.4 94.4 99.4 100.0 0.58 0.78

Table 3.1: DA annotation of PUA UR50 MCs containing PUA families. For each
MC, we report: the family-level Pfam Dominant ground truth Architecture (DA);
the percentage of members featuring a DA annotation either at the family (%DAF)
or at the clan (%DAC) level; %DAC plus the percentage of members lacking one or
more of the DA clans but having no additional clan’s annotation (%DACF); %DACF
plus the percentage of members having clans outside of the DA but at least one DA
clan (%DACFA); for DA members, the average extent of the overlap with the DA,
FMC
ext , FMC

red ; the number of extra clans that feature in %DACFA (only those present
in at least 5% of clan members). MCs are colored according to the overlap between
DA members and DA annotation: equivalent (yellow), reduced (blue), extended
(pink) and shifted (green) (see Sections 3.1.2 and 3.1.3 for definitions).



56 Results

MC DA % DAF %DAC %DACF %DACFA FMC

ext

FMC

red

Extra

Clans

A1 PF00069 82.8 98.8 98.8 99.9 0.02 0.15
A2 PF13561 21.2 31.8 75.7 100.0 0.04 0.12
A3 PF13923 23.6 97.1 99.6 99.6 0.15 0.02
A4 PF00004 77.3 96.8 97.4 100.0 0.15 0.05
A5 PF01189 75.3 75.6 75.8 100.0 0.13 0.10
A6 PF00270 70.9 73.9 99.4 99.9 0.17 0.01
A7 PF13181 6.6 33.7 87.4 99.8 0.15 0.10
A8 PF00271 PF04408 56.6 56.6 62.4 100.0 0.09 0.09 1
A9 PF00083 70.4 94.6 94.8 100.0 0.07 0.10

A10 PF08282 99.1 99.1 99.1 100.0 0.02 0.02
A11 PF05362 83.5 97.0 98.6 99.7 0.06 0.10
A12 PF13302 99.7 99.7 99.7 100.0 0.09 0.00
A13 PF01509 PF16198 53.0 53.6 80.0 99.8 0.13 0.02 1
A14 PF00696 51.9 51.9 52.0 99.8 0.09 0.01 1
A15 PF01583 98.1 99.1 99.1 99.9 0.08 0.01
A16 PF01507 98.3 98.3 99.2 100.0 0.08 0.04
A17 PF04408 PF07717 84.4 84.4 99.7 100.0 0.16 0.10
A18 PF13187 23.7 71.8 73.2 89.6 0.15 0.09
A19 PF04752 99.1 99.1 99.1 100.0 0.03 0.03
A20 PF00719 99.0 99.0 99.2 100.0 0.13 0.03
A21 PF10343 99.0 99.0 99.0 100.0 0.13 0.07
A22 PF00383 93.7 94.7 99.5 99.5 0.20 0.13
A23 PF06221 99.4 99.4 100.0 100.0 0.03 0.16
A24 PF13744 58.6 98.1 99.4 99.4 0.08 0.16
A25 PF00076 62.3 62.3 99.3 99.3 0.16 0.00
A26 PF02470 PF02470 68.9 68.9 99.3 100.0 0.07 0.01
A27 PF00067 97.1 97.1 97.5 100.0 0.01 0.37
A28 PF01189 66.7 66.9 66.9 100.0 0.19 0.62
A29 PF05958 45.2 98.9 99.0 100.0 0.01 0.55
A30 PF01509 PF16198 74.7 74.7 100.0 100.0 0.00 0.75
A31 PF07728 13.1 17.0 100.0 100.0 0.18 0.21
A32 PF00083 79.3 100.0 100.0 100.0 0.01 0.37
A33 PF13733 PF02709 97.6 97.6 99.1 100.0 0.08 0.20
A34 PF10539 100.0 100.0 100.0 100.0 0.01 0.21
A35 PF07728 8.1 11.2 100.0 100.0 0.17 0.61
A36 PF00011 100.0 100.0 100.0 100.0 0.00 0.40
A37 PF08423 91.4 91.4 91.4 100.0 0.07 0.24 1
A38 PF07728 98.0 98.3 99.9 99.9 0.42 0.10
A39 PF00642 27.6 31.3 77.9 99.7 0.69 0.14
A40 PF10672 93.1 97.3 97.7 99.8 0.37 0.00
A41 PF01702 98.8 98.8 99.5 100.0 0.37 0.08
A42 PF13516 PF13516 20.1 20.6 60.4 97.2 0.55 0.00
A43 PF06221 93.3 93.3 99.6 100.0 0.70 0.01
A44 PF00642 92.3 92.3 92.8 100.0 0.27 0.00
A45 PF00011 88.2 88.2 90.3 100.0 0.53 0.06
A46 PF01253 84.3 84.3 87.6 100.0 0.75 0.02 1
A47 PF02195 99.1 99.1 100.0 100.0 0.58 0.03
A48 PF00004 6.2 7.2 99.0 99.0 0.89 0.91
A49 PF01509 PF16198 50.1 50.1 58.2 99.5 0.36 0.65 1
A50 PF01583 99.6 99.6 99.6 100.0 0.21 0.57
A51 PF07728 5.1 5.1 100.0 100.0 0.91 0.90
A52 PF00226 94.4 94.4 97.6 97.6 0.62 0.62

Table 3.2: DA annotation of PUA UR50 MCs containing PUA associated families.
MCs are labeled with ”A” prefix (as ”associated”). (See Table 3.1).
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Figure 3.4: Size distribution of PUA UR50 metaclusters after redundancy reduction
at 95% sequence identity. Here, we include also MCs with less than 100 elements.

3.2.2.1 Evolutionary consistency of MCs

The first question we address is whether DPCfam-generated MCs are evolution-

arily consistent. In other words, we ask if MCs are formed of member sequences

that share a core homologous region and could thus potentially be used as seeds for

building protein families. In Tables 3.1 and 3.2 we report the percentage of member

regions with a GTA that matches exactly (%DAF - family level and %DAC – clan

level) or partially (%DACF and %DACFA) the DA of the cluster. %DAF or %DAC

close to 100% indicate that, according to Pfam, most member sequences share a ho-

mologous core region that covers all families or clans in the DA. For example, 99.7%

of 1,795 MC-A12 PUA member regions are annotated in Pfam as Acetyltransf 3

(PF13302). Overall, 43.7% of MCs have %DAC>95%. Di↵erences between %DAF

and %DAC can tell us to which extent member sequences are spread out across mul-

tiple families pertaining to the clan(s) represented in the DA. The number of Pfam

families and clans and their relative weight within an MC can be better appreciated

from the graphical representation in Figure 3.5 (for MCs with >500 members). For

instance, MC-A3 PUA maps to several di↵erent families within the RING (CL0229)

clan. This is not surprising given that the Pfam evolutionary profiles of zinc finger

families within the RING clan tend to overlap (see e.g. the E-values of the families’

profile-profile alignments in the clan’s “Relationships” tab on the Pfam webserver).

When we add to %DAC all those members with a GTA matching only partially
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Figure 3.5: PUA UR50 MCs vs Pfam annotation. On the x-axis, we list the 32
MCs (both PUA and non-PUA) with more than 500 member regiones; on the y-
axis we list the Pfam GTAs (family level) represented in each MC. We report only
GTAs mapping to at least 10% of MC members and we aggregate all the remaining
ones under the label ”other”; finally, we label “UNK” MC members with no Pfam
annotation. The heatmap is colored according to GTA fraction.

the DA of the MC (%DACF and, finally, %DACFA) we achieve close to full coverage

in most MCs. Indeed, only one MC (MC-A18 PUA) has %DACFA<90 (Figure 3.6

and, again, Table 3.2).

Large percentage increases in the %DACF and %DACFA columns can point to

MCs with the potential to increase coverage of existing Pfam families or clans. For

example, metaclusters MC-A6 PUA and MC-4 PUA feature rather large increases

in %DACF (25.7% and 30.5%, respectively). Given that the DA of these MCs

is single-domain, such increases correspond to the percentage of member regions

lacking any annotation in Pfam. MC-A6 PUA DA is composed of the helicase family

DEAD (PF00270). Unannotated MC-A6 PUA member regions are almost always
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Figure 3.6: Violin plots of the distribution of %DAF, %DAC, %DACF and
%DACFA. See Section 3.1.2 for definitions. (A) MCs generated from the
PUA UR50 dataset (B) MCs generated from the P53 UR50 dataset. Violin plots
are such that their width is proportional to the fraction of MCs with a given value
of the respective consistency measure. We label outlier MCs for %DACFA.

found at the N-terminus of proteins with one or more families in the Helicase C

+ HA2 + OB NTP bind architecture. Since this is a common Pfam architecture

for the DEAD domain, unannotated regions in MC-A6 PUA are likely to represent

yet unrecognized members of the DEAD family. The DA of MC-4 PUA, instead,

corresponds to the ASCH domain (PUA clan), with about 69% of member regions

carrying this Pfam annotation. While the vast majority of remaining regions are

not annotated in Pfam, in InterPro many carry an ASCH/PUA-related annotation.

A closer examination reveals that MC-4 PUA is constituted of regions that are

part of the ”ASC-1 proper family”, as defined in the work by Iyer et al. [55], in

which ASCH domains were defined for the first time. The ”ASC-1 proper family”

was there characterized as having a long insertion between the 3rd and 4th strand

of the ASCH fold. Now that structures are available for this particular ASCH

subfamily, we can additionally recognize that the domain as originally defined was
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cut slightly short at the C-terminus, excluding a final, extra strand and short alpha-

helix (see Figure 3.7). The presence of PDB structures for the C-terminal ASC-

1 domain of human activating signal cointegrator 1 protein (e.g. 2E5O, 5Y7D),

allowed us to build an alignment covering the whole structural domain that the

family represents. Using this alignment to build a profile-HMM and running it

against the Reference Proteomes database appears to capture a good number of yet

unannotated regions. A large increase in %DACFA can similarly be a sign of an

incomplete Pfam annotation for members of the families in the DA. One example

is likely to be MC-A8 PUA, in which several member regions are likely to lack

annotation for the C-terminal domain OB NTP bind - PF07717.

Figure 3.7: Structure of PDB protein chain 2e5o A (NMR model #0.1). (A) We
highlight in red the Pfam ASCH annotation, roughly corresponding to the bound-
aries of the ”ASC-1 proper family” as found in Iyer et al.. It can be seen that the
final strand-helix motif is missing from the annotation. (B) We highlight in yellow
the region captured by MC-4 PUA profile-HMM, which captures the whole ASCH
region, plus the extra strand. Annotation according to Pfam v32.0.

In other instances, percentage increases in the %DACF and %DACFA columns

are not due to incomplete Pfam annotation but rather to the presence of subgroups

of MC members featuring radically di↵erent lengths. Two such examples are MC-

A14 PUA and MC-2 PUA (Figures 3.8 A and B). In these cases, di↵erences in

annotation between members could be easily resolved, for example, by trimming
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the respective MSA alignments to the shortest lengths. Further, there are cases in

which the DA does not provide an accurate description of the annotation of the

MC. This happens when a family has only a marginal overlap with a number of

member regions and absolutely no overlap with others. In this case, we can have

large increases in %DACF or %DACFA that are artifacts of the way we annotate

the GTA of MC members.

Figure 3.8: Distribution of member regions’ length for MC-A14 PUA (A) and MC-
2 PUA (B). For each plot, we show the distribution of lengths of DA regions (i.e.
matching the DA exactly) (blue) and, additionally, of those matching the second
most abundant GTA in the MC (orange); we report the percentage of members
with a given architecture next to each violin plot (note that percentages need not
sum to 100%).

One example is MC-A28 PUA where about 33% of member regions overlap with

a small portion of family PF17125, which is located at the N-terminus and is not

part of the DA of the metacluster. We note that in principle it would be possible

for members counted as part of %DACFA to map to completely di↵erent, non-

overlapping sections of the DA. These would be regions that are not homologous to

each other. During our analysis of the PUA clan and associated families, however,

we did not come across any such example, suggesting that these are unlikely to be

common occurrences.

A quick look at Table 3.1, reveals a couple of outstanding cases among all MCs

produced. First MC-A18 PUA, which is by far the metacluster with the lowest

%DACFA (89.6%). This indicates that >10% of member regions carry Pfam anno-

tation that appears to be incompatible with the DA of the MC; in other words, these

regions would appear to be evolutionary unrelated to the others. The metacluster’s
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DA is constituted of Pfam family Fer4 9 (PF13187), which itself is part of the 4Fe-

4S (CL0344) clan. Most families in this clan represent iron-sulfur cluster binding

motifs (Fe-S BMs) characterized by a CxxCxxCxxxC signature and they often fea-

ture two consecutive copies of such motif, PF13187 being one of them. A more

than 45% increase in member coverage from %DAF to %DAC for MC-A18 PUA

indicates that Pfam annotation of MC members covers other families of the 4Fe-4S

clan. Examples are members annotated as part of the double-motif families Fer4 7

(PF12838) and Fer4 10 (PF13237) as well as those annotated with two copies of

the single motif family Fer4 (PF00037). All of the above are families with close

evolutionary relationships within the clan. There is, however, a fraction of members

that are annotated as belonging to families such as Radical SAM (PF04055) and

DUF362 (PF04015) that are found in clans other than CL0244. What is happening

in these cases, however, is that the MC members span Fe-S BM regions that are

nested within these longer domains. As mentioned above, our in-house Pfam anno-

tation protocol does not take into take into consideration nested domains. If family

A spans region a to b of a protein and family B the region a’ to b’ of the same

protein with a’>a and b’<b, region a’-b’ is assigned to one family only, the one with

the lowest E-value, which will generally belong to the longest family. This is what

happens for some of the MC-A18 PUA members, whereby regions that in Pfam are

annotated as Fe-S BMs are instead annotated by our protocol as belonging to the

family the BMs are nested within; we show one example of this in Figure 3.9. In

conclusion, we can say that the vast majority of MC-A18 PUA member sequences

consistently represent regions spanning Fe-S BMs.

A second outstanding case is represented by MC-18 PUA. This metacluster has

a significant number of member regions that feature extra clans not part of the DA

represented by the PUA (PF01472) family (>20% increase in %DACFA). While

other clans have even larger %DACFA increases, MC-18 PUA is unique in that it is

the only one featuring two extra non-DA clans (last column in Table 3.1).This would

not constitute a problem if the clans were added sequentially along the sequence but

could be problematic if the two clans were found in a similar position upstream or

downstream of the DA in di↵erent MC members. For this reason, MC-18 PUA needs

to be analysed in detail. We start by observing that FMC
ext = 0.47, indicating that

even DA members typically extend well beyond their PUA domain although in a (in

this case N-terminal) region not annotated by Pfam. A number of other MC mem-

bers, however, feature additional Pfam annotation at the N-terminus of the PUA

domain: 13.6% feature a TGT C2 (PF14810) domain, 8.4% a DUF1947 (PF09183)



Proof-of-concept on PUA and P53 clans 63

Figure 3.9: Example (protein R5WQE2) of nesting of an MC-A18 PUA region into
a family of the “DUF362-like superfamily” - CL0471 clan. Solid-colored rectangles
mark Pfam family annotations. The light red rectangle shows the region of R5WQE2
that aligns to the DUF362 profile-HMM. Note that in this specific case, even in the
Pfam annotation nesting of Fer4 21 into DUF362 is not accounted for. The yellow
box marks a hit obtained using the profile-HMM derived from MC-A18 PUA.

domain and, finally, 1% a TruB C 2 (PF16198) domain. When present, these fami-

lies are well covered by the MC-18 PUA member sequences: 97% of TGT C2 amino

acids are covered, 67% of DUF1947 and 61% of TruB C 2, respectively. Worryingly,

these three families are not found in the same Pfam clan, that is, they are not rec-

ognized as homologous by the Pfam classification: DUF1947 is part of the pre-PUA

(CL0668) clan that, as the name indicates, is constituted of regions that are found

N-terminal to PUA domains, TruB C 2 is part of the PseudoU synth (CL0649)

clan and, finally, TGT C2 is not part of any Pfam clan. We notice, however, that

TGT C2 regions are almost always found N-terminal to PUA domains; more im-

portantly, alignment between representative structures of TGT C2 and DUF1947

reveals striking similarities (see Figures 3.10 and 3.11) thus suggesting a common

evolutionary origin for the two families. TGT C2 would then represent a novel pre-

PUA domain to be added to the Pfam clan of the same name. Interestingly, even a

very sensitive profile-profile alignment method such as HHpred [44] appears not to

be able to find a relationship between TGT C2 and pre-PUA. In particular, when

we ran HHpred using the Pfam seed multiple sequence of family TGT C2 against

Pfam v33.1 we found no significant match to any of the pre-PUA clan families. The

other extra family found in about 1% of MC-18 PUA member regions, TruB C 2, is

instead structurally (thus evolutionarily) unrelated to both DUF1947 and TGT C2.

Indeed, most MC-18 PUA alignments that feature TruB C 2 have E-values of bor-

derline significance (>0.01) further supporting the notion that these are likely to
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represent noise.

In summary, analysis performed using Pfam annotation suggests that the vast

majority of MCs are evolutionarily sound with member sequences that share between

them a core homologous region. This core region may correspond to the DA of the

metacluster or be longer/shorter as we will discuss more in detail in the following.

Figure 3.10: Annotation for protein Q68827 and B1L6M8 (A) Top: Pfam annota-
tion for Q68827; the yellow box indicates a hit obtained using profile-HMMs derived
from the metacluster MC-18 PUA. Bottom: Pfam annotation of protein B1L6M8;
the yellow box indicates a hit obtained using profile-HMMs derived from the meta-
cluster MC-18 PUA.

Figure 3.11: Structural alignment of DUF1947 domain is pdb structure 1q7h
(A:3-66) (protein Q9HIB8) with TGT C2 domain in pdb 1iq8 (A:438-506) (pro-
tein O58843). Aligned with Dali (Holm, 2019) ; Z 4.5 , rmsd 3.0, nres 60 and %ID
12 .
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MC (PUA) Size

Average

Length SDL

LC

fraction MC (PUA) Size

Average

Length SDL

LC

fraction

1 1575 207.4 42.5 0.04 11 120 396.3 *61.8 0.04
2 862 623.1 *102.9 0.04 12 109 154.2 26.7 0.02
3 791 152.7 30.5 0.02 13 430 40.6 3.3 0.00
4 682 125.1 16.9 0.01 14 399 54.2 3.1 0.00
5 487 119.7 10.9 0.02 15 309 125.9 35.5 0.01
6 452 109.8 14.4 0.02 16 162 95.5 11.1 0.02
7 432 441.4 44.8 0.03 17 162 115.8 15.5 0.05
8 392 136.7 19.9 0.02 18 675 148.5 24.0 0.02
9 282 320.7 48.7 0.02 19 339 88.4 13.3 0.07

10 251 102.3 8.7 0.02

MC (A-PUA) Size

Average

Length SDL

LC

fraction MC (A-PUA) Size

Average

Length SDL

LC

fraction

A1 69369 223.7 29.9 0.02 A28 1365 83.9 13.2 0.02
A2 8908 203.9 19.1 0.05 A29 615 84.5 8.4 0.04
A3 8324 49.1 5.6 0.00 A30 506 47.7 4.8 0.01
A4 4523 158.6 36.5 0.02 A31 464 99.5 10.8 0.01
A5 3559 210.2 28.7 0.03 A32 406 191.7 18.6 0.06
A6 3386 193.1 17.9 0.05 A33 340 183.3 33.4 0.02
A7 2934 102.7 12.1 0.02 A34 294 99.0 10.6 0.03
A8 2915 347.2 *76.5 0.04 A35 285 48.8 6.6 0.01
A9 2870 392.0 48.9 0.06 A36 248 59.6 7.5 0.03

A10 2735 257.3 12.6 0.02 A37 198 210.5 30.9 0.03
A11 2392 146.5 40.2 0.03 A38 1588 226.5 45.2 0.01
A12 1795 153.3 11.4 0.01 A39 691 86.7 19.7 0.00
A13 1751 235.9 25.9 0.03 A40 565 369.6 35.2 0.04
A14 986 289.8 *57.4 0.05 A41 430 339.6 36.9 0.01
A15 851 164.1 13.9 0.03 A42 359 328.7 *52.0 0.03
A16 839 193.3 26.1 0.01 A43 267 165.1 32.6 0.08
A17 700 259.4 29.3 0.03 A44 208 36.3 3.6 0.00
A18 556 46.8 5.0 0.02 A45 186 181.8 37.9 0.09
A19 452 173.0 17.0 0.02 A46 121 311.9 26.4 0.04
A20 384 189.3 32.3 0.01 A47 110 211.3 23.1 0.02
A21 193 293.9 36.0 0.02 A48 677 87.5 15.4 0.02
A22 190 114.7 13.7 0.02 A49 625 119.5 19.9 0.03
A23 172 43.0 4.2 0.00 A50 277 77.9 6.4 0.01
A24 162 60.4 4.8 0.01 A51 178 132.0 15.4 0.01
A25 146 86.6 16.1 0.04 A52 126 62.2 10.2 0.11
A26 135 216.7 12.3 0.02
A27 3181 196.9 21.1 0.02

Table 3.3: Member region’s statistics for PUA UR50 MCs. Top section: MCs
containing PUA domains; bottom section, MCs containing PUA-associated domains
(A-PUA, with ”A” prefix). For each MC, we report size (i.e., number of sequence
members), average and standard deviation of members’ lengths and, the fraction of
residues (of all members) that are found in low-complexity regions (LC fraction).
We flag MCs (*) for which the SDL is larger than 50 amino acids (about the size of
a small domain).

3.2.2.2 Comparison between MCs and Pfam families boundaries

Another important aspect of comparing two protein classifications entails inves-

tigating by how much the boundaries of the respective clusters or families di↵er

when evaluated on the same sequences. The quantities F ext
MC and F red

MC in Table 3.1

indicate the extent of the agreement between the boundaries of DA members and

the respective Pfam annotations, as explained in Section 3.1.3 .

Equivalent MCs are the closest to the DA architectures in terms of their bound-

aries; the other categories feature cases that may be worthy of further inspection.

MC-A29 PUA, for example, features member regions that typically cover only about

half of the DA family tRNA (Uracil-5-)-methyltransferase (PF05958) as annotated

by Pfam in the full-length proteins they belong to. Structural data indicate that,
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in fact, Pfam family PF05958 covers two structural domains: a so-called central

domain, which hosts a [Fe4S4] cluster, and a catalytic domain typical of SAM-

dependent methyltransferases. MC-A29 PUA covers only the catalytic domain of

the tRNA (Uracil-5-)-methyltransferase, albeit imperfectly (see Figure 3.12). In

another example, the MC-18 PUA(FMC
ext = 0.47) metacluster we already discussed,

the ’true’ DA is likely to be constituted of the double-domain architecture pre-

PUA+PUA rather than by PUA only.

Interesting cases are constituted by MC-1 PUA and MC-17 PUA, both mapping

to the Lon substr Bdg family (PF02190). While the first MC has ”equivalent”

status, the second one is a ”reduced” MC mapping only to half of the domain.

However, the Lon Substr bdg domain contains two structural units (see Supp. Fig.

S5), of which MC-17 PUA captures only the first.

When discussing boundaries, we should not forget that some MCs feature a bi-

modal distribution of their members’ lengths (see for example Figure 3.8 A and B).

In these cases, the average measures Fext and Fred cannot capture the full complexity

of boundary di↵erences with respect to the Pfam annotation.

Figure 3.12: X-ray crystal structure of RumA, an E.coli class I SAM-dependent
methyltransferase (PDB:2bh2 A). Structural domains (following (Lee et al., 2004):
N-terminal domain (orange, aa15-74), Central domain (light blue, aa75–92 and
125–262) and C-terminal (catalytic) domain (light green, aa93–124 and green,
aa263–431); (center) Pfam annotation: TRAM (PF01938) (orange, aa10-67) and
tRNA U5-meth tr (PF05958) (cyan, aa95-432); (right) Region that aligns (HMMER
online v3.3) to the profile-HMM built of MC-A29 PUA (aa285-369, red).
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3.2.2.3 MCs with minimal Pfam annotation

Three MCs with single-family DA feature low %DAC and high %DACF in-

dicating that, for the most part, they are constituted of member sequences that

are devoid of any Pfam annotation; these are MC-A7 PUA, MC-A39 PUA and

MC-A48 PUA. MC-A48 PUA member regions, 92% of which are unannotated, are

found in ATP-dependent Lon protease proteins and typically cover a helical region

located at the N- terminus of the AAA (PF00004) ATPase domain (Figure 3.13).

This region could potentially be built into a short “pre-AAA” motif. MC-A7 PUA

(54% of unannotated members) and MC-A39 PUA (46.5%) map, respectively, to

tetratricopeptide-like repeats or TPRs (CL0020) and Cys3His zinc-binding domains

(CL0537) also often found in tandem repeats. Tandem repeats such as these, which

are relatively short and often feature a high degree of divergence in sequence, are

notoriously di�cult to classify exhaustively. It is thus not surprising that many

elements of these MCs do not carry annotation in Pfam. Note that increases of

%DACFA in these two MCs are mostly due to the presence of members with a

higher number of repeated domains than found in the DA. There might be scope

for using these MCs as a basis to boost coverage of the respective clans.

Figure 3.13: Structure of PDB protein chain 4ypl A (protein A0A059VAZ3). Red
and blue section show Pfam annotation: AAA region in red (aa. 351-491) and
LON C in blue (aa. 568-772). Yellow region (aa. 245-339) shows the hit of MC-
A48 PUA profile-HMM.



68 Results

Figure 3.14: Structure of PDB protein chain 3ljc A (protein P0A9M0). Red section
show Pfam annotation (Lon substr bdg aa. 10-202). Green region (aa. 17-207)
shows the hit of MC-1 PUA profile-HMM (E-value 2.2E-26); blue region (aa. 17-
109) shows the hit of MC-17 PUA profile-HMM (E-value 1.1E-5).

3.2.2.4 Degeneracy of MCs with respect to Pfam families

In some instances, DPCfam produces multiple clusters that map to the same

Pfam family or group of families. Here it is worth pointing out that we cluster

alignments rather than protein sequences. This means that alignments of the same

protein region to di↵erent proteins are treated as separate entities. DPCfam tries

to ensures that when two regions of the same protein of about the same size have

a large overlap, they are classified as belonging to the same cluster. For overlaps

that are small with respect to the length of the alignments being compared, the

regions may end up in di↵erent MCs. One such example is represented by the trio

of clusters MC-A30 PUA, MC-A13 PUA and MC-A49 PUA, all of which feature

the same DA, namely, TruB N + TruB C 2 (PF01509+PF16198). Both of these

Pfam families are part of the PseudoU synth (CL0649) clan. In Figure 3.15, taking

as sample sequence one for which a structure is available, we show that although

the 3 clusters share the same DA, the actual set of families they cover is quite

di↵erent. In fact, the three MCs belongs to three di↵erent boundary categories (see

Table 3.1): reduced (MC-A30 PUA), equivalent (MC-A13 PUA) and shifted (MC-
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A49 PUA). Contrary to MC-A13 PUA, that truly corresponds to the DA families,

MC-A30 PUA covers mainly TruB C 2 with minimum overlap to the first family,

and MC-A49 PUA covers mainly TruB C 2, but also extends beyond it in a region

that when annotated is reported to be part of a PUA-clan family.

In the Pfam clan, the pseudouridine synthase domain has sometimes been split

into two families (TruB N +TruB C 2, PseudoU synth 1x2, PseudoU synth 1+DUF2344)

or otherwise classified as a single family (PseudoU synth 2, TruD). The di�culty

for a consistent evolutionary classification of this domain comes primarily from two

things: (i) the pseudouridine synthase domain appears to be formed by a tandem

duplication the two moieties of which share often very little sequence similarity with

each other (and only structural similarity in terms of their general topology) and

(ii) the two homologous moieties feature strand swapping and sometimes nesting of

additional domains. The latter is the case for sequences in the TruD family, which

in Pfam additionally covers a nested domain that should instead be built as a sep-

arate family outside of the CL0649 clan (see Figure 3.16). Also, the boundaries

of paired families such as TruB N and TruB C 2 do not seem to reflect the struc-

tural organization of the duplication very well (see red and blue regions in Figure

3.17). Indeed, the current boundaries of the two families represent regions of very

di↵erent structure, with the TruB C 2 open and elongated structure not reminis-

cent of a typical structured domain. There is, for example, no pairwise structural

alignment produced by DALI with default settings for the TruB N and TruB C 2

Pfam annotated regions of PDB structure 3u28 A. We suggest that building a family

covering the entire pseudouridine synthase domain would also in this case (as in,

for example, PseudoU synth 2) be the best option. Finally, the Pfam nomenclature

of families that map to tRNApseudouridine synthase B proteins is quite confusing.

TruB N is the N-terminal part of a PseudoU synth domain, TruB C is a PUA do-

main, TruB C 2 is the C-terminal part of a PseudoU synth domain and TruB-C 2

is again a PUA domain. Although we understand family names have a historical

relevance, a rethinking of this particular set of names may be beneficial. It is in-

teresting to note that in our automatic classification the N-terminal boundary of

the TruB C 2 family is well matched by both MC-A30 PUA and MC-A49 PUA,

highlighting the distant evolutionary relationship between the two moieties of the

pseudouridine synthase domain.
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Figure 3.15: Annotation for protein Q57612 (2apo in pdb). (A) Sequence with Pfam
annotation; yellow boxes shows the hits obtained using profile-HMMs derived from
the metaclusters MC-A30 PUA, MC-A13 PUA and MCA-49 PUA. (B) Structure of
2apo PDB chain A, colored following Pfam classification in panel A and according
to the matches with the profile-HMMs of MC-A30 PUA (aa 187-237) in yellow,
MC-A13 PUA (aa 66-271) in gold and MC-A49 PUA (aa 188-324) in dark gold.

3.2.2.5 Coverage of the PUA clan by DPC-generated MCs.

So far, we have looked at how consistent the Pfam annotations are within the

DPCfam MCs (in other words, we looked at the accuracy of our classification).

Clearly, it is also important to know to what extent the automatically-generated

classification recapitulates Pfam’s coverage of the sequence space. Here we inves-

tigate coverage of PUA clan regions within the UniRef50 database: we consider

all regions that produce significant alignments to the MCs-derived profile-HMMs

(hmmsearch run against PUA UR50, sequence E-value <0.01, Hit E-value <0.03).

We say that an MC covers a PUA region if there is at least one of the profile-HMM

hits covers >=75% or =100% of it. We plot the cumulative coverage of the Pfam

PUA clan when ranking MCs from the one that contributes the highest coverage to

the one that contributes the lowest coverage (Figure 3.18); we note that proteins

are counted only once, even if covered by more than one MC. It is interesting to

see that coverage converges after a number of MCs that is roughly equivalent to



Proof-of-concept on PUA and P53 clans 71

.

Figure 3.16: Structure of PDB protein chain 5kkp A. The colored region (red+gold)
covers a TruD domain as annotated in Pfam. The nested gold domain (roughly,
aa384-577) is not related in structure to domains in the PseudoU synth clan and, as
such, should be built as a separate Pfam family not part of the clan. Regions not
annotated in Pfam are colored tan. TruD annotation according to Pfam 32.0.

the number of Pfam families in the PUA clan (11 total). We see that >80% of the

PUA clan regions are covered for at least 75% of their length by the top 15 clusters.

While a fraction of Pfam regions in the PUA clan is not covered by MCs, we should

point out that most PUA-covering MCs include at least some additional regions not

currently annotated in Pfam, which are likely to represent new clan members. The

flattening out of the curves that we observe after 10-15 MCs reflects the fact that

most of our 71 MCs cover PUA-associated families rather than PUA families.

3.2.3 Clustering of proteins from the P53-like clan

Clustering of the PUA clan, which is described in detail in the previous sections,

has uncovered several interesting features of the relationships between the Pfam

families involved. Our clustering procedure utilizes few adjustable parameters and

we did not perform any systematic exploration of the parameter space. Rather,
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Figure 3.17: Structure of PDB protein chain 3u28 A. Colors identify Pfam families
annotated on the structure (from N- to C-terminus): DKCLD (green), TruB N (red),
TruB C 2 (blue) and PUA (yellow). Regions not annotated in Pfam are colored tan.
Annotation according to Pfam 32.0.

parameters were mostly chosen following heuristic rules from the literature, thus

considerably limiting the risk of over-fitting. Nevertheless, we did use the PUA

clan to tune some aspects of our procedure (e.g. thresholds for merging MCs). As a

consequence, in this section, we report on results obtained when running DPC-based

clustering on a second Pfam clan, when all parameters have been left unchanged with

respect to the ones used for PUA. This should provide additional evidence of the

fact that our method could be successfully extended to the analysis of larger portion

of the sequence space. In particular, we run our DPC procedure on the P53-like

clan (Tables 3.4 and 3.5). Overall, the results appear to be in line with the ones

obtained for PUA. Our procedure generates 28 MCs of size >100, of which 53.6%

have %DAC> 95%. Only two MCs, MC-19 P53 and MC-28 P53, have %DACFA<

98%. MC-19 P53 is peculiar in that the vast majority of its members lack Pfam

annotation (+95.4% in the %DACF column with respect to the single-domain DA).

This may be explained by the high value of the low-complexity residue fraction in
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Figure 3.18: Coverage of proteins in UniRef50 including at least a region of the
PUA clan according to Pfam-A. By running the profile-HMMs derived from the
metaclusters, we search for hits with at least 75% of coverage and 100% of coverage.
The graph shows the fraction of the PUA clan covered using an increasing number
of metaclusters. After after the 15-th metacluster, the fraction does not improve,
because of some redundancy in PUA MCS, which are 19. Also, MCs appearing after
the 19-th do not map to a PUA clan family, and do not contribute to any increase
in the coverage.

this MC (LC = 0.58, Table 3.4), suggesting that its member regions are unlikely

to represent a structural domain. Additionally, low-complexity regions are more

likely to align to non-homologous sequences (thus %DACFA=95.9%). MC-28 P53

contains 132 sequences, 54% of which are not annotated, 33% annotated as PF09270

(BTD), 7% annotated as PF01833 (TIG) and, finally, 5% annotated as BTD + TIG.

BTD is not a P53-like family, however, it is found by our clustering algorithm because

BTD is commonly located at the C-terminus of the P53-like LAG1-DNAbind family.

Although the BTD annotation is the most present in MC-28 P53, the domain it

represents is poorly covered. Indeed, only a few amino-acids at the C-terminus of

BTD are found in MC-28 P53 members. On the contrary, when present, TIG regions

are well covered. Searching the Reference Proteome dataset with a MC-28 P53

generated profile-HMM we found 2,083 significant hits (hmmsearch, sequence E-

value <0.01, Hit E-value <0.03). About half of these mapped to TIG domains, while

the rest although often found C-terminal to a LAG1-DNAbind + BTD architecture

are not annotated in Pfam. Finally, we ran MC 28-P53 profile-HMM against the

PDB, finding as top matches yet unannotated regions located at the C-terminus of

LAG1-DNAbind + BTD architectures (see Figure 3.21 A-C for an example). Of
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these, we focused on SUH HUMAN (Q06330, PDBid 3nbn A). The region of 3nbn

A aligned to the MC-28 P53’s profile-HMM appears to be well-structured (Figure

3.21 B, yellow) and it is structurally similar to TIG domains (Figure 3.21 C.). In

conclusion, MC-28 P53 is likely to represent a TIG family covering a good number of

TIG domains not yet annotated in Pfam. Coverage of Pfam P53-like clan’s regions

by P53 MCs is comparable to the one observed for the PUA clan (see Figure 3.19).

Figure 3.19: Coverage of proteins in UniRef50 including at least a region of the
P53-like clan according to Pfam-A. By running the profile-HMMs derived from the
metaclusters, we search for hits with at least 75% of coverage and 100% of coverage.
The graph shows the fraction of the P53 clan covered using an increasing number
of metaclusters.

In general, in the case of the P53 clan, we notice two main di↵erences with

respect to the clustering of the PUA clan. First, we see what appears to be a higher

degree of MC redundancy with respect to the Pfam classification. For example, 6

MCs have PF00907 as their DA and 4 MCs feature PF05224 in theirs. It should be

noted, however, that in the case of PF00907 only two MCs have an average length

of more than 50aa. In fact, MC-14 P53 and MC-27 P53 have length <30aa, which

is shorter than the length of the average protein domain [56]. In Figure 3.20 we

show a graphical view of how the di↵erent MCs map to this Pfam family. Second,

with respect to the PUA clan, on average, MC boundaries appear to match less well

those of the DA families. Indeed, in Table 3.4 we observe several MCs with high

FMC
ext and/or FMC

red . We notice, again, that this is often the case for MCs of short

average length.
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Figure 3.20: Coverage of P53 UR50 redundant metaclusters with respect to their
common PF00907 (T-Box) DA. We used HHpred to determine the position of each
MC with respect to the T-box profile-HMM (the first match for all these MCs, with
hhpred probability>98%).

MC Size

Average

Length SDL

LC

fraction MC Size

Average

Length SDL

LC

fraction

1 25859 185.9 30.8 0.02 16 281 126.1 13.5 0.01
2 941 171.9 26.9 0.01 17 254 68.2 7.4 0.01
3 481 279.4 30.7 0.01 18 213 45.8 2.9 0.00
4 467 465.9 *92.3 0.01 19 194 111.6 15.0 0.58
5 462 204.5 31.0 0.02 20 154 39.0 3.1 0.02
6 231 494.3 *106.3 0.02 21 145 34.0 3.5 0.01
7 231 340.8 *52.0 0.05 22 9428 207.9 17.6 0.03
8 225 191.1 29.7 0.02 23 699 135.1 21.9 0.02
9 166 475.7 *107.6 0.02 24 124 399.5 *58.8 0.03

10 163 126.0 10.4 0.01 25 203 136.3 15.9 0.01
11 110 421.4 *53.4 0.05 26 158 111.1 14.2 0.01
12 761 67.8 8.7 0.01 27 137 28.2 2.6 0.00
13 531 43.6 4.4 0.00 28 132 137.7 21.0 0.05
14 525 29.6 2.7 0.00
15 363 38.2 5.0 0.00

Table 3.4: Member region’s statistics for P53 UR50 MCs (see Table 3.3).

MC DA % DAF %DAC %DACF %DACFA FMC

ext

FMC

red

Extra

Clans

1 PF12796 PF12796 26.1 52.2 68.0 100.0 0.10 0.11

2 PF00907 97.7 97.7 97.7 100.0 0.03 0.02

3 PF00554 PF16179 88.8 88.8 96.7 100.0 0.03 0.00

4 PF00400 [...] PF00400 18.2 19.3 52.9 100.0 0.02 0.04

5 PF05224 98.7 98.7 99.8 100.0 0.16 0.01

6 PF02865 PF01017 PF02864 PF00017 29.0 29.0 95.2 100.0 0.06 0.11

7 PF09271 PF09270 86.6 86.6 92.6 100.0 0.13 0.01

8 PF00870 84.9 84.9 88.0 100.0 0.07 0.06 1

9 PF03068 53.0 53.0 53.0 100.0 0.12 0.05 2

10 PF00853 99.4 99.4 99.4 100.0 0.04 0.04

11 PF09751 88.2 88.2 88.2 100.0 0.16 0.01

12 PF00907 98.3 98.3 99.1 100.0 0.03 0.57

13 PF00907 99.2 99.2 100.0 100.0 0.01 0.73

14 PF00907 98.1 98.1 100.0 100.0 0.13 0.76

15 PF00907 99.4 99.4 99.7 100.0 0.14 0.77

16 PF00554 99.6 99.6 99.6 100.0 0.03 0.28

17 PF05224 99.6 99.6 100.0 100.0 0.04 0.61

18 PF00554 100.0 100.0 100.0 100.0 0.08 0.72

19 PF15709 0.5 0.5 95.9 95.9 0.11 0.41

20 PF00853 100.0 100.0 100.0 100.0 0.06 0.60

21 PF09271 97.9 97.9 100.0 100.0 0.07 0.69

22 PF00005 95.8 95.8 95.8 100.0 0.30 0.02

23 PF13884 82.5 82.8 83.5 100.0 0.57 0.00

24 PF05224 PF13884 PF13887 85.5 85.5 98.4 100.0 0.24 0.00

25 PF02864 PF00017 67.5 67.5 99.5 99.5 0.21 0.60

26 PF05224 98.7 98.7 100.0 100.0 0.27 0.57

27 PF00907 98.5 98.5 99.3 100.0 0.38 0.87

28 PF09270 33.3 33.3 87.9 93.2 0.94 0.93 1

Table 3.5: DA annotation of P53 UR50 MCs (see Tables 3.1 for column description).
Highlighted in bold MCs contain P53 domains. DA including ”[...]” represent a very
long repeat, which has not been reported entirely for formatting reasons.)
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Figure 3.21: Annotation for protein Q06330 (A): Sequence Pfam annotation; the
yellow box marks a hit obtained using the profile-HMM derived from metacluster
MC-28 P53. (B): Pfam and MC-28 P53 annotations of panel (A) mapped to one
of the available structures of Q06330 (PDBid 3nbn:A). Color code for families and
regions is the same as in (A). (C): Structural alignment between the MC-28 P53’s
annotated region of 3nbn (yellow) and the TIG domain of PDB structure 4hw6
(light blue). Alignment obtained with DALI pairwise online tool; alignment features:
Z=6.2, RMSD=2.2, percent sequence identity=25).

3.2.4 A robustness test for DPCfam parameters

We already mentioned that our clustering procedure utilizes few adjustable pa-

rameters, mostly chosen following heuristic rules from the literature: this means

that no systematic exploration of the parameters’ space has been done. We note

that such a procedure would have required to define some quality measure on MCs

with respect to a ground truth. In the previous sections showed how the concept of

Ground Truth in this case is complicated to define and to relate with, and that we

may not dislike finding MCs in disagreement with the Pfam classification, since in

Pfam it is possible to find unannotations or boundaries imperfections. Nonetheless,

we still wanted to test the robustness of the parameters used, to be sure that the

DPCfam results are stable with respect to small variations on its main parameters,

namely µ1, µ2 and �. Thus, we tested (a posteriori) the robustness of DPCfam

metaclustering of P53 UR50, with respect to small variations (±10%) of µ1, µ2 and
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�. In addition, we tested the case of reducing by half the size of the query sequence

dataset. In particular, we compare the assignment of alignments to metaclusters

before the filtering step (see Table 3.6). In our comparison, we use: i) the number of

alignments that are assigned to metaclusters; ii) the percenage of alignments meta-

clustered with the standard set of parameters that are still assigned to metaclusters

when utilising the modified parameters; iii) the Normalized Mutual Information.

The NMI is given by NMI(C1, C2) =
2I(C1,C2)

H(C1)+H(C2))
2 [0, 1], where C1 and C2 are the

class labels assigned to alignments by two di↵erent clustering procedures, I is the

Mutual Information between the two classifications and H(C) is the entropy of a

single classification. Two identical classifications gives NMI= 1. To compute NMI,

we consider those alignments that have been metaclustered by both the reference

and the alternative clustering procedure (i.e, those counted in the third column of

Table 3.6).

Parameters

Number of
alignments

metaclustered

Percentage of
µ1 = 0.2, µ2 = 0.9, � = 0.5

alignments’
metaclustered

NMI
over common
alignments

µ1 = 0.2, µ2 = 0.9, � = 0.5 1,350,496 - -

µ1 = 0.2 + 10% 1,484,231 94% 0.96

µ1 = 0.2� 10% 1,351,613 89% 0.99

µ2 = 0.9 + 10% 1,494,990 95% 0.99

µ2 = 0.9� 10% 1,259,045 93% 0.99

� = 0.5 + 10% 1,326,511 98% 0.99

� = 0.5� 10% 1,374,507 98% 0.95

Query Dataset

Number of
50% P53 UR50

alignments
metaclustered

Percentage of
644,648

alignments
metaclustered

NMI
over common
alignments

P53 UR50 644,648 - -

50% P53 UR50 642,223 99% 0.99

Table 3.6: Metaclusters’ robustness upon ±10% variation of the µ1, µ2, � param-
eters and, additionally, when reducing by half the number of query sequences. Test
are performed on the P53 UR50 dataset. We consider alignments assigned to meta-
clusters before the filtering step (see Methods). µ1 = 0.2, µ2 = 0.9, � = 0.5 are the
parameters used throughout the main analysis. NMI stands for Normalized Mutual
Information (see Results for the definition).

In general, parameters’ variation does not result in significant changes in the

number of alignments assigned to a metacluster. Variations in µ1 and µ2 imply

smaller or larger cuto↵s in the density estimations, and a more or less restrictive

criterion for assigning alignments to cluster centers. Not surprisingly, larger values
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of µ1 and µ2 produce more metaclustered alignments, while smaller values produce

less (see second column of Table 3.6). This is reflected also in the percentage of

alignments metaclustered using the standard procedure that are also retrieved when

varying µ1 and µ2, with smaller percentages obtained using smaller values (see third

column of Table 3.6). However, despite of these di↵erences, the NMI with the

results obtained with the reference setup is always extremely high, indicating that

the results are robust with respect to the choice of this parameter. Di↵erent values

of � result in adding or removing density peaks: the small variations performed do

not change significantly the number of alignments metaclustered (changes of about

2%), covering the vast majority (98%) of the alignments clustered with the standard

procedure. Also in this case the NMI with respect to the reference setup is very high.

We also repeated the whole procedure on a query dataset containing only half of the

sequences, selected at random (50% P53 UR50). In this analysis we collect 642,223

alignments in metaclusters. In the same subset of sequences, performing the analysis

on the full dataset we assign to metaclusters 644,648 alignments. Almost all these

alignments are in common (see third column of Table 3.6 ) and, consistently, the

NMI between the two metacluster partitions is 0.99.

3.2.5 A discussion on the proof-of-principle results

In this proof-of-principle experiment we showed that, in most cases, automatically-

generated metaclusters (MCs) represent single or multi-domain architectures which,

overall, display a good agreement with the Pfam annotation. With respect to the

presence of multi-domain MCs, we emphasize that our procedure clusters evolution-

ary modules (using sequence similarity) rather than directly structural domains: it

may be di�cult for our method to split into separate MCs structural domains that

are only (or overwhelmingly) observed in joint architectures, unless these domains

are separated by long regions of low conservation. We also observe, especially in

the analysis of the P53-like clan, a certain degree of redundancy between MCs (i.e.

multiple MCs mapping to the same Pfam family). Although it is possible that

this redundancy could be significantly reduced by discarding short length MCs, we

think that the results indicate that MC-merging step of DPCfam could potentially

be improved.

In general, significant di↵erences between clans exist in terms of size, evolu-

tionary divergence, complexity of architecture and structural class of their families.

Although these diversity cannot be recapitulated in full by the analysis of only two
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Pfam clans done in this section, it is worth pointing out that our clustering experi-

ment allowed finding numerous families outside of the PUA and P53-like clans (see

Tables 3.2 and 3.5). This is due to the fact that our method runs on full-length

sequences and that about 45% and 39% of PUA and P53-like member regions, re-

spectively, are part of multi-domain proteins.

These preliminary result brought us to believe that DPCfam can support man-

ual annotation by pointing to opportunities for expanding existing families or clans

and, occasionally, by identifying inconsistencies in the current classification (in-

cluding incorrect domain boundaries and incomplete clan memberships). Given

these encouraging results, we decided to optimize the computational implementa-

tion, as discussed in Section 2.4, and make it suitable to perform the full clustering

of UniRef50.

3.3 All-to-all clustering of UniRef50

In this section we will present the results obtained from the all-to-all clustering

of UniRef50, performed as described in Section 2.4. The analysis is performed, we

recall, on UniRef50 v. 2017 07, which counts 23,531,980 protein sequences.

First, we will show some results with measures performed without making refer-

ence to a ground truth; then we will compare our metaclusters to Pfam. Due to the

quantity of MCs to analyse, we avoided any kind of deep, protein-wise analysis of

the MC content, as done in Section 3.2. We instead used general measures based on

what we learned from the proof-of-concept analysis. Being a large scale analysis, a

direct comparison with Pfam becomes meaningful: to this extent, we focused more

on coverage measures, and we will dedicate an entire subsection to the subject.

DPCfam produced 210,802 metaclusters. Most of analysis presented here will

consider MCs and their content before applying 95 P.I. reduction with Cd-Hit.

3.3.1 General properties of DPCfam MCs

The 210,802 MCs generated display a power-law distribution in sizes (Figure

3.22), namely in the number of protein regions they contain. This is an encouraging

result, considering that it has been observed that protein families display power-

law like distribution occurrences [57]. This distribution is normally ascribed to

the biological processes at the base of evolution, such as gene duplication or gene

generation, driving the protein families’ generative process.
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Figure 3.23 show the MCs’ regions average length, here named AL, with the

respective standard deviation (SDL) as error-bar. MCs are sorted with respect to

AL. From panel A, we see that most of the MCs have AL> 50 (88% of MCs), and

that is not frequent to find MCs with AL> 500 (4% of MCs) . Panel B shows the

ratio SDL/AL, which is distributed around 0.1 and rarely larger than 0.2 (5.5%

of MCs). This suggests that regions collected in a MC are consistent in terms of

amino-acidic lengths.

Figure 3.22: Metacluster’s sizes with respect to their rank. MCs’ are sorted with
respect their size (number of sequences), obtaining this rank-size plot, in a log-log
scale. We note that this kind of plot is strictly related to the cumulative distribution
of MC sizes, and it shows a strong power-law behaviour.

From these considerations, we decided to include in the downstream analysis

only those MCs that have more than 50 regions and whose regions’ average length

is larger than 50 a.a., which results in 45,679 MCs.

We next computed the Low Complexity (LC) fraction for each MC: this is the

fraction of amino-acids found in a low complexity regions of the MC over the total

number of amino-acid in the MC. The average value of LC fraction of all MCs is

0.04, with 4,743 MCs (10%) with an LC fraction larger than 0.1 and only 698 MCs

(1,5%) with an LC fraction larger than 0.2 .
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Figure 3.23: A) Average lengths of MCs’ regions (AL), with respective standard
deviation (SDL) as error-bar. MCs’ are sorted with respect their sequences average
length, obtaining this rank-size plot. Violet points show MCs with AL<= 50, while
green those with AL> 50. B) Metacluster’s SDL/AL ratio, with MCs ranked with
respect to their AL, as in panel A. Colors as in panel A.

Total MCs generated 210,802
MCs with > 50 regions 51,874

MCs with > 50 regions and AL> 50 45,679
MCs with > 50 regions, AL> 50, with UniprotKB v. 2019 08 proteins 45,670

Table 3.7: Number of MCs meeting di↵erent requirements. We note that in the
next subsections we will analyze MCs satisfying the last requirement.

3.3.2 Assigning a Pfam ground truth to UniRef50 proteins

As we already mentioned, the main reference for known protein families used

in this work is Pfam (Section 1.5.2). On one hand, we used Pfam annotation to

inspect the content of MCs, on the other, we investigated whether MCs covers,

and how, Pfam families. Similarly to what we did in Section 3.2.1, first of all

we need to annotate all the UniRef50 proteins. Since Pfam o↵ers also UniprotKB

annotation, we decided to use directly this information. We note two things: first

of all, UniRef50 contain proteins that are not present in UniprotKB (see Section
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1.4.1.1); secondly, Pfam does not annotate every UniprotKB release, but only one

per Pfam release. Since UniprotKB databases are released at a very faster pace than

Pfam’s, the UniprotKB v. 2017 07 (the one associated to the UniRef50 database

we are using) has no direct Pfam annotation. Moreover, the Pfam version used in

Section 3.2, namely v. 31, annotate a UniprotKB version older than the one we

use (v. 2016 10 instead of v. 2017 07). Therefore, we moved to the last Pfam

version available, specifically Pfam v. 33.01, to annotate UniRef50 regions using the

respective UniprotKB annotation.

The annotated set of proteins we have, therefore, is the intersection between

UniprotKB v. 2019 08 (with Pfam v. 33.0 annotation) and UniRef50 v. 2017 07.

While this subset may be partially incomplete, it should provide a useful description

of UniRef50 v. 2017 07 Pfam annotation.

UniprotKB v. 2019 08 contains 172,062,311 proteins, of which 132,522,154 are

annotated by Pfam v. 33.0, with a sequence coverage of 77.03%. In UniRef50 v.

2017 07 there are 23,531,980 proteins; of these, 18,891,393 (80%) are also part of the

UniProtKB v. 2019 08. Within this intersection, 9,315,206 sequences are annotated,

with a sequence coverage of 43.9%. When inspecting MCs’ content we will take in

consideration only these 9,315,206 sequences part of the intersection between the

two protein databases.

We removed from the downstream analysis all those Pfam families for which we

found less than 100 regions in UniRef50, obtaining 10,631 Pfam families to compare

with. Indeed, it is di�cult for our algorithm to find such small families. Some

further consideration will be done in Section 3.3.4.

3.3.3 Evolutionary consistency of DPCfam MCs

The analysis of MCs’ evolutionary consistency uses the measures defined in Sec-

tion 3.1. The same measures have been used in Section 3.2. In this analysis we will

focus more on the global behaviour of such measures.

We recall that, as defined in 3.1.1, the Ground Truth Architecture (GTA) of a

region Si is the set of Pfam families that, being annotated on that region’s protein,

are covered at any level by the region (see Figure 3.1). Regions in the same MC

may display di↵erent GTAs: the most frequent one defines the MC’s the Dominant

Architecture (DA). DAs can be defined either at a family level or at a clan level.

1
Pfam v. 33.0 has not been o�cially released, but it is available at the Pfam ftp website. The

o�cial release is actually 33.1, which is the 33.0 version with extra information on SARS-CoV-2

models. Being these beyond of our scope, we opted for version 33.0 as a ”stable” version.
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Figure 3.24: %DA and %UNK of the 31,935 MCs with at least one region with
Pfam annotation.

We start computing the DA for each MC, at a family and at a clan level. We

find that 13,734 MCs (30% of the total) contain only protein regions with no Pfam

annotation. These MCs are very interesting to be inspected, being possibly novel

families. However, a in-depth analysis of these MCs is beyond the scopes of this the-

sis, so we will just signal their existence and continue analysing the remaining 31,836

MCs containing at least one Pfam annotated protein region. For such MCs, we can

compute the quantities described in Section 3.1.2 nameley: %DAF (percentage of

regions having the DA as GTA, at a family level) , %DAC (percentage of regions

having the DA as GTA, at a clan level), %DACF (percentage of regions having the

DA or a subset of the DA as GTA, clan level) and %DACFA (percentage of regions

having the DA, a subset of the DA or a superset of the DA as GTA, clan level). In

addition, we can compute for each MC the percentage of regions lacking any Pfam

annotation, %UNK (as ”unknown”).

In Figure 3.24 we show a scatter plot of the MCs’ %DAF and %UNK, with the

respective distributions near to the respective axes. We recall that MCs lacking

any Pfam annotation (%UNK=100) are excluded from the analysis. Points are

organized in two main clusters, one at the top left and one at the bottom right

of the plot. While the second represents MCs with good annotation, the first one
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Figure 3.25: Violin plots of the distribution of %DAF, %DAC, %DACF and
%DACFA for MCs, where those with %UNK= 100 are excluded from the anal-
ysis. See Section 3.1.2 for definitions. Violin plots are such that their width is
proportional to the fraction of MCs with a given value of the respective consistency
measure. We note that about 10% of MCs have %DACF< 90, and only 1% have
%DACFA< 90.

includes those MCs that are mostly not annotated, being possibly novel families (the

few Pfam annotations recorded are most probably noise). There is a third group

of MCs, namely those with low %UNK but not optimal %DAF, located around the

x-axis: these MCs contain di↵erent Pfam annotations. To investigate these last

cases, it is more useful to compare the distributions of %DAF, %DAC, %DACF and

%DACFA, represented as violin plots in Figure 3.25. We can see that distributions

of %DAF and %DAC are extremely similar, and bimodal. %DACF distribution

changes notably, and instead of a bimodal distribution we find a single peak around

100: only about 10% of MCs have %DACF< 90. Indeed, when we compute %DACF

we include in the computation those sequences lacking part of the DA in their Pfam

annotation, besides Pfam un-annotated sequences. The change in the distribution is

due to all those MCs that display significant increases from %DAC and %DACFA.

Such MCs are, as said in Section 3.1.2 and seen in Section 3.2.2.1, either i)MCs

with the potential to increase coverage of existing Pfam families or clans, or ii)

MCs constituted of many sequences missing any Pfam annotation, which are good

candidates for protein family discovery. This last case, in particular, requires for
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notably low %DAC and high %DACF: we can estimate the number of these MCs

by counting how many display %DAC< 20 and %DACF> 90, which are 20% of

the analysed MCs. We recall that also all un-annotated MCs (which have been

excluded from this analysis, being such) are candidates for protein family discovery.

Case i) requires a large increase in the MC’s %DAC to %DACF: for example, we

could say that MCs with potential to increase coverage of a Pfam family/clan are

those with an increase of at least 30% between %DAC and %DACF, provided that

they have a %DACF> 90. We find that 33% of MCs display this feature. Finally,

only 1% of MCs (313) have %DACFA< 90, 2% have %DACFA< 95 and 9% have

%DACFA< 99. In the analysis of PUA UR50 and P53 UR50 datasets (see Section

3.2.2.1 and Figure 3.6) some very interesting MCs lied in this regions. While MCs

with ”low” %DACFA should be classified as evolutionary not consistent according

to Pfam classification, in some special cases they could reveal some inconsistency in

the Pfam classification itself. The fact that there are very few MCs with this features

indicates a reasonable agreement with Pfam classification; however, we believe that

those MCs with %DACFA < 95 should be inspected at a deeper level in the future.

We note that, comparing figure 3.25 with Figure 3.6, the shapes of violin distri-

butions displayed are similar, suggesting that the quality of results obtained in this

all-to-all analysis are similar to the proof-of-concept experiment.

3.3.3.1 Comparison between MCs and Pfam families boundaries

As done in section 3.2.2.2, to investigate by how much the boundaries of MCs’

regions and the respective DAs’ regions di↵er, we use the quantities F ext
MC and F red

MC ,

defined in Section 3.1.3 (see Equations 3.2 and 3.1). Here we will add another

measure, less specific than F ext
MC and F red

MC , but still very useful, namely the overlap

between a clustered region and its Ground Truth Architecture (GTA). Given a

protein region Si, where Pi is the protein region covered by its GTA, we can compute

the overlap between Si and Pi as:

OSi,Pi =
|Si \ Pi|
|Si [ Pi|

(3.3)

This definition of overlap is strictly related to the distances used in DPCfam, in

particular to dQi,j (see Equation 2.6). We can say that dSi,Pi is the distance between

Si and Pi (being both on the same protein sequence); therefore

OSi,Pi = 1� dSi,Pi (3.4)
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Annotated MCs: 31,935

MCs with low %DAC and
high %DACF (%DAC<20
and %DACF>90)

20% Candidates for protein
family discovery

MCs with a large in-
crease %DAC to %DACF:
(+30% from %DAC to
%DACF,%DACF>90)

33% MCs with the poten-
tial to increase cover-
age of existing Pfam
families or clans

MCs with low %DACFA
(%DACFA<95)

2% MCs with evolution-
ary inconsistencies

Un-annotated MCs
(%UNK=100)

13,734 Candidates for protein
family discovery

Table 3.8: Resume table of MCs, clarifying some characteristics based on values
and di↵erences of %DAC , %DACF and %DACFA. Also un-annotaed MCs are
reported (for which those quantities cannot be computed and are not considered in
the analysis), being in general candidates for protein family discovery.
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As we did for F ext
MC and F red

MC , we can define OMC as the average overlap between

MCs regions and its DA (computed on the subset of DA member regions).

In Figure 3.26 we can see, once again, that MCs with a well-defined DA (namely,

those for which the %DAF is larger than %UNK, corresponding to the bottom-

right section of Figure 3.24) contain mostly high %DAF (points accumulate around

%DAF=90-100). Comparing %DAF with the average overlap with the DA, OMC ,

we can distinguish two regions: A) (top right) contains MCs matching Pfam families

(or architectures) both at a %DAF level and at boundaries level; B) (bottom right)

contains MCs with good evolutionary consistency, but not matching Pfam families’

boundaries. We can expect region A to contain mostly ”equivalent” MCs, while

”reduced”, ”extended” and ”shifted” will be located in region B (see definitions in

Section 3.1.3).

Figure 3.26: %DAF and average overlap (OMC) for MCs with a well-defined DA.
A) MCs with good boundaries and consistency with Pfam families/architectures; B)
MCs with poor boundaries but good consistency with Pfam families/architectures.

Figure 3.27 shows an histogram of the average overlap OMC computed on the

DA at a family and at a clan level, limiting to those MCs with %UNK<%DAF

(23,234 MCs) and %UNK<%DAC (23,317 MCs) respectively. We see that there is

not a notable di↵erence in defining the DA at a family or at a clan level, as already

Figure 3.25 suggested. The two peaks of this bimodal distribution represent regions

A (OMC > 0.7) and B (OMC < 0.7) labeled in Figure 3.26

We then proceed to label each of these MCs as ”equivalent”, ”reduced”, ”ex-
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Figure 3.27: Average overlap (OMC) histogram for MCs with a well-defined DA, at
a family level (top panel) and at a clan level (bottom panel).

tended” or ”shifted”, as explained in 3.1.3. As we did in the proof-of-concept anal-

ysis, we compute FMC
ext and FMC

red averaging over DA members, where the DA is

intended at a clan level. We again exclude those MCs with %UNK>%DAC . Fig-

ure 3.28 shows the average ovelap histogram of Figure 3.27 (bottom panel), where

columns are colored di↵erently if the MCs contributing are ”equivalent” (yellow, 25%

of MCs), ”reduced” (blue, 35% of MCs), ”extended” (pink, 17% of MCs) or ”shifted”

(green, 21% of MCs). We note that, as we speculated before, region A of figure 3.26

contains mostly ”equivalent” MCs, while region B is dominated by ”reduced” MCs,

namely those capturing a sub-region of known Pfam families. Moreover, equivalent

MCs show redundancies on Pfam families only in 2.5% of the cases, namely only

154 MCs are associated to a redundant DA (at a family level), while 6,003 MCs are

associated to a unique DA (at a family level).

3.3.4 Coverage of Pfam families by DPCfam MCs

Another question to be addressed to evaluat the performances of DPCfam is the

coverage of Pfam families. Here, we investigate if and how we cover any Pfam family

present in the database. As explained in Section 3.3.2, in the intersection between
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Figure 3.28: Average overlap (OMC) histogram for MCs with a well-defined DA, at
a clan level. Columns are colored according to the contribution of each MC category
(equivalent, reduced, extended and shifted, see Section 3.1.3 for definitions). Key
includes counts of MCs of each category, including a wider count including ill defined
(%UNK>%DAC) and pure ”UNK” (unannotated, %UNK=100) metaclusters.

UniRef50 v. 2017 07 and the Pfam v. 33.0 annotated proteins in UniprotKB v.

2019 08 there are 10,631 Pfam families represented by at least 100 regions. This is

the subset of Pfam families analyzed in this section.

3.3.4.1 Measures to assess Pfam families coverage

Here we will introduce the measures used to assess Pfam families coverage. These

are similar to the measures used to inspect MCs’ content described in Sections 3.1

and 3.3.3.1, but their definition includes some conceptual di↵erences that need to be

explained. In this analysis we focus on two quantities: i) the percentage of the family

regions covered by the regions of a MC; ii) the overlap of family regions with MCs’

regions. The first quantity measures the percentage of a Pfam family which is also

contained in a DPCfam MC, the second one assesses the quality of the boundaries.

As done before, together with the overlap we will compute quantities such as F red
i

and F ext
i (see Equations 3.1 and 3.2) to classify the nature of the overlap found.

Let us consider a Pfam family, PF, containing n protein regions Ri,
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PF = {R1,R2, ...,Rn};

we compare PF with one of our MCs, containing m regions Sj:

MCi = {S1,S2, ...,Sm}.

First, we estimate the average overlap between PF and any MC i, OPF,MCi . To

do so, we use a definition similar to the average overlap OMC used previously: we

search for all couples of regions Ri 2 PF and Sj 2 MCi lying on the same protein,

and as in Equation 3.3 we compute

ORi,Sj =
|Ri \ Sj|
|Ri [ Si|

(3.5)

OPF,MCi is the average of ORi,Sj , restricted to the the subset of Ri with a companion

regions Sj in the same protein. Measuring OPF,MCi alone is not meaningful, since

we could obtain OPF,MCi = 1 with a single region in PF perfectly matching a region

of MCi, when the other regions in the MC have nothing in common at all. To

solve this, we need to consider the other quantity, that is the number of common

sequences between PF and MCi: we define the %MCi of PF as the percentage of

PF’s proteins also found in MCi, regardless with the overlap.

Using these two quantities we define the Dominant MC (DMC) of a Pfam family

PF as the MCi that maximises OPF,MCi , provided that %MCi > 50. From this we

define %DMC as the %MCi of the Dominant MC. Since we set a threshold on the

%MCis, also %DMC> 50.

If a Pfam family has a defined DMC, we also compute the F PF
red and F PF

ext quan-

tities, by applying Equations 3.1 and 3.2 to Pfam regions and the corresponding

DMC regions, then averaging over all Pfam regions with a companion DMC region.

Then, F PF
red tells us how much (in terms of amino-acids) of the Pfam regions are not

covered by the respective DMC regions, and F PF
ext how much of the DMC regions are

not covered by the respective Pfam regions. Again, we can use the four categories

introduced in 3.1.3 to find families with an equivalent DMC, families with a reduced

(smaller) DMC, with an extended (larger) DMC and with a shifted DMC (see also

Figure 3.3, noting that in this case Si is the DMC region and Pi is the PF region).
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3.3.4.2 Pfam families coverage using MCs’ regions

Here we use the MCs’ content to provide an estimate of Pfam families coverage

by DPCfam. We stress that MCs’ regions are collected in a conservative way (see the

filtering procedure in Section 2.2.2.4), and therefore we do not expect to find high

coverage rates. However, we believe that this measure is qualitatively meaningful.

We analyse how many Pfam families are covered by a MC. Non-covered Pfam

families are those for which there is no MC sharing any common region with it: 402

families with more than 100 elements are not covered, corresponding to 3.7% of such

families (10,631). If we consider all Pfam families, including those with less than

100 elements, we find that 4,072 are not covered by any MC, corresponding to the

22.4% of the total (18,189 families). Indeed, as we expected, the coverage of small

(<100 elements) Pfam families is notably worse than for larger families. In Figure

3.29 we studied how the coverage of Pfam families varied with respect to their size

(blue line). To do so, we computed for each family the best %MCi as the family’s

”percentage coverage”, with no considerations on the average overlap but to be non-

zero. Note that this measure is not equivalent to %DMC. Ranking Pfam families

from the largest to the smallest, we compute a rolling mean of their coverage. We

find that the average percentage coverage is quite stable for large families (around

60%), and we see that it become worse for sizes smaller than 100-50 elements. We

can also see how the average number of non-covered families (orange line in Figure

3.29) rises notably as we reach small sizes.

We then proceed to define for each family the respective Dominant Metacluster

(DMC). We note that Pfam families for which it is possible to define a DMC are

less than those that have been considered covered in the previous paragraph, since

we now ask for a %DMC>50. If without this bound we covered 96.2% of Pfam

families (with at least 100 elements), with it we cover 69.1% of them. Still, since we

are comparing MCs regions rather than results of profile-HMMs searches, this is a

notable number. In Figure 3.30 we show the relationship between the %DMC and

the average overlap of Pfam families. We recall that the DMC has been selected to

maximise the average overlap, while preserving %DMC>50. We note an accumula-

tion of data points in the top right region of the plot, corresponding to families with

a large %DMC and also a large average overlap.

We now apply to Pfam families the same classification we used for MCs in Section

3.3.3.1, by using the DMC as a reference. Therefore, we can distinguish between

”equivalent”, ”reduced”, ”extended” and ”shifted” Pfam families (see Section 3.1.3

for definitions). Points in the top region of figure 3.30 are then ”equivalent” families,
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Figure 3.29: Coverage of Pfam families by MCs regions, with respect to Pfam fam-
ilies sizes. Pfam families are ranked with respect to their size (number of sequences
in UniRef50), from the largest (148,920 elements) to the smallest (1 element). Cov-
erage is defined as the best %MCi found for each family (left vertical tics), and it is
averaged on a running window of 100 familes (blue line, with error bars as light-blue
band). The orange line represents the fraction of non-covered families (right vertical
tics), namely those for which it is not possible to find any metacluster covering the
family; also in this case we show the average over a window of 100 elements).

namely families for which it is possible to find a MC with a good coverage which

also reproduces well its boundaries. In Figure 3.31 we present an histogram of the

average overlap of Pfam families with their DMC. Columns are coloured with respect

to families classification. We see that the overlap distribution has a maximum at

high values of OPF,DMC , where ”equivalent” families are found. Of all Pfam families

with a DMC (7,350), almost half have an ”equivalent” DMC (46.9%). Only 757

families (10.3%) are represented by shorter DMCs (reduced), and even less by a

”shifted” DMCs (436, 5.9%). On the other hand, a large number of families have a

wider (”extended”) DMC (2,710, 36.9%).

3.3.5 HMMs models of the metaclusters

DPCfam’s MCs are built in a conservative way: the method to generate them

aims to collect together homologous protein regions, but not ”all” of them. Indeed,
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Figure 3.30: Scatter plot of Pfam families’ %DMC as a function of OPF,DMC .
Results obtained using MCs regions to define DMC and compute OPF,DMC .

during the clustering process we discard from a MC a large quantity of protein

regions that could be still homologous to its elements, but for our criteria are not

enough reliable. Thus, DPCfam’s MCs cannot be considered as the final ”families”

found, but rather they should be considered as families’ seeds. On par with what

protein families databases do (see Section 1.5), we use MC’s regions to generate

profile-HMMs to extend our ”families” definition (see Section 1.4).

For each MC, we build its respective profile-HMM with the following procedure:

first we reduce MCs’ redundancy to 60 P.I. (using Cd-Hit [37]), then we automat-

ically build MSAs by using MUSCLE [31]. Before building MSAs, we allow for a

maximum of 5,000 sequences in each of them: when we have too many, we select

randomly 5,000 representative sequences. From these MSAs we build the respective

profile-HMMs using hmmbuild, v. 3.1b2. Finally we use profile-HMMs to search for

hits in UniRef50: a ”hit” corresponds to a protein region that is found to match the

profile-HMM. We use hmmsearch (v. 3.1b2) imposing an E-value domain threshold

of 0.01 and an E-value protein threshold of 1 (following the standard values used in
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Figure 3.31: Histogram of Pfam families’ average overlap with DMC (OPF,DMC),
with columns colored according to the family classification (equivalent, reduced,
extended and shifted, see Section 3.1.3). Results obtained defining the DMC and
computing OPF,DMC using MCs’ protein region.

the hmmsearch website).

3.3.5.1 Evaluating DPCfams’ profile-HMMs quality

Our first question is whether or not DPCfam’s profile-HMMs are reliable. Such

a question is not easy to answer: for example, one could think that profile-HMMs

producing hits with very good E-values are the best ones, but this is a naive interpre-

tation. Being profile-HMMs used to generalise a seed MSA over a protein database,

one would like to find not only hits evolutionarily close to the model (reaching very

low E-Values, namely very good ones), but also those that are less close to the orig-

inal seed, while still meaningful (with higher E-values). To understand how di�cult

it is to define a generally ”meaningful” hit obtained with profile-HMMs, we note

that in Pfam each model has a specific gathering threshold [58], namely a threshold

on the bitscore (derived of the score) set to avoid false positives, besides overlap with

other families, when using hmmsearch. Such threshold is family-specific and manual

curation plays a relevant role in defining it. This procedure cannot be easily applied

on DPCfam’s profile-HMMs, for which, by now, we use a standard E-Value thresh-

old. Overall, E-values averages or similar quantities are not a su�cient measure of
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quality for a profile-HMM.

First of all, we study the general statistical properties of profile-HMMs, and we

compare them to those of Pfam’s models. Such a study does not require to run

hmmsearch and is therefore free from E-value/gathering thresholds. The hmmer

suite o↵ers a specific program to compute profile-HMMs statistics, hmmstats [59].

Some interesting quantities computed by hmmstat are (definitions are directly taken

form the manual):

• e↵ nseq - The e↵ective number of sequences that the profile was estimated

from, after HMMER applied an e↵ective sequence number calculation such as

the default entropy weighting.

• relent - Mean relative entropy per match state, in bits. This is the ex-

pected (mean) score per consensus position. This is what the default entropy-

weighting method for e↵ective sequence number estimation focuses on, so for

default HMMER3 models, you expect this value to reflect the default target

for entropy-weighting.

• compKL - Kullback-Leibler distance [60] between the model’s overall average

residue composition and the default background frequency distribution. The

higher this number, the more biased the residue composition of the profile is.

We start analysing ”relent”: as specified in the description, this quantity is

the one optimized by hmmbuild: in particular, the target for entropy weighting

is set to relent= 0.59. Together with this parameter, also the minimum relative

entropy contibutes in the optimization: its value is bounded to a minimal value (45.0

bits) which ”has the e↵ect of making short models have higher relative entropy per

position” (from [59], hmmbuild). Therefore, as a minimal sanity check we should

expect that i) short profile-HMMs should have relent>0.59, growing as the profiles

lengths decrease; and ii) other profile-HMMs should reach the optimal relent value,

0.59. This property is confirmed and can be seen in Figure 3.32 both for DPCfam’s

models and Pfam-A’s models, as a function of the profile-HMMs length (M). We

note that the general behaviour described above is replicated, but some of DPCfam’s

profiles show a smaller relent value than the minimal value expected (about 30

profiles). This may signal a bad quality for the original MSAs, displaying a too high

level of noise. Still, the fraction of DPCfam’s profile-HMMs for which this happens

is very small.
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Figure 3.32: Values of relent (mean relative entropy per match state, in bits) for
DPCfam and Pfam-A profile-HMMs, in function of the model’s length (M). We show
cases with M < 600

In general, it is better to compare profile-HMMs of similar lengths (M). We divide

profile-HMMs in three categories: 50 <M< 100 , 100 <M< 200 and 200 <M<

500, and we compute the respective distributions of e↵ nseqs, both for Pfam and

DPCfam models (Figure 3.33 A). As an interesting result, we note that DPCfam’s

profile-HMMs tend to have a larger number of e↵ective sequences: this is reasonable

to us if we consider that Pfam-A’s seeds are defined by human curation, while

DPCfam’s MCs are obtained clustering UniRef50 sequences, and cleaning the results

by redundancy reduction (less than 60 P.I. among sequences of the same MC).

Similarly, we compute the distributions for compKL (Figure 3.33 B). This quan-

tity evaluates how much the model’s overall average residue composition is close

to the default background frequency distribution. Small values accounts for pro-

files that are basically reproducing the background frequency, while at higher values

models have large compositional biases. From the plots we can see that Pfam-A

models and DPCfam models does not show significant di↵erences in the distirbu-

tions of these values, in the respective ranges of M. In conclusion, from HMMs

statistical properties we can basically say than DPCfam and Pfam-A models show

similar characteristics, suggesting that there is no striking di↵erence between man-

ually curated models and automatically-generated DPCfam models, at least from

the quantities estimated from hmmstat.
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Figure 3.33: Distributions for A) e↵ective sequence number (e↵ nseqs) and B)
KL distance from average composition (compKL), for Pfam-A profile-HMMs and
DPCfam profile-HMMs. Models are divided in categories (top, middle and bottom
panels) according to their lengths (M).

3.3.5.2 Comparing DPCfam to Pfam-A profile-HMMs hits for ”equiva-

lent” metaclusters

In the particular case of MCs matching to a Pfam family at an ”equivalent” level

(see Section 3.1.3), we can directly compare their profile-HMM results with those

obtained with the respective Pfam-A model. In this case we search using Pfam-

A profile-HMMs using the same threshold as we did for DPCfam’s models (thus,

ignoring the profile-specific gathering threshold). This allow for a fairer comparison

between the two sets of matches.

As a first example, in Figure 3.34 we report results for 19 MCs randomly chosen

among ”equivalent” MCs with a single-family architecture. We collect all hits, in

terms of proteins found, and we divide them between common hits, hits found only

by DPCfam and hits found only by Pfam-A: in panel A we display all results,
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Figure 3.34: Comparison between profile-HMMs hits obtained from Pfam-A models
and DPCfam models of a subset of 19 ”equivalent” MCs. Each column corresponds
to a MC-Pfam family couple, where gray regions correspond to proteins found by
both models, light-red regions correspond to proteins found only by DPCfam’s mod-
els and blue regions correspond to proteins found only by Pfam’s models. The frac-
tion is computed over the total number of proteins found by both models. Pfam
families on the x-axis are ranked according to the fraction of common hits. Panel
A: all hits; Panel B: ”good” hits (sequence E-value<0.0001)

while in panel B we restrict ourselves to ”good” hits, namely with sequence E-value

<0.0001. For almost every family the fraction of common hits is notably high (larger

than 0.6 of all hits), and restricting to good hits increases this fraction. In di↵erent

cases, Pfam or DPCfam display higher number of hits. At the right side of the

plots we find two ”problematic” families, corresponding to PF09179 and PF10345.

Pfam family PF10345 has a very small seed (19 elements) while the respective MC

found 228 elements, with about 20% of unannotated regions. Such a di↵erence in

seeds’ sizes can easily lead DPCfam’s model to cover more protein regions than

Pfam’s. At this level, we cannot say anything about which of the two models can

be considered better than the other. Pfam family PF09179 displays the opposite

situation: our MC found only 118 regions, while Pfam’s seed counts over 210 regions.

It is then probable that DPCfam found a subset of the family, and cannot extend

the annotation to regions of the protein space that are not represented in the MC.

Figure 3.35 shows the sequence E-value pseudo-distributions for hits obtained

using the Pfam family profile-HMM or DPCfam’s MC profile-HMM. Panel E and
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F shows the two bad-performing cases described above, while panels A, B C and D

show other better cases. We can see that in the first four panels E-value distributions

of the two models are very similar.

Figure 3.35: Examples of E-value pseudo-distributions of ”equivalent” MC’s profile-
HMM hits, together with the same obtained from the respective Pfam family’s
profile-HMM. Pseudo-distributions are non-normalized distribution, in order to show
the di↵erence in hits between the two models. Hits have been obtained searching
with hmmsearch on UniRef50, with standard parameters (sequence E-value< 1,
domain E-value< 0.01). Blue areas show Pfam’s models’ E-values, while red areas
show the respective MC profile-HMMs’ results.

Besides the 19 example MCs shown above, we analyze all ”equivalent” MCs

mapping to a single Pfam family (⇠ 5, 000 MCs). In Figure 3.36 A, the black line

shows the fraction of hits obtained by both the MC model and the respective Pfam

family model, computed with respect to all hits found by both models. In most

of the cases (⇠ 80%) the two models have a fraction of common hits larger than

0.6. Restricting to good hits (E-value < 0.0001, Figure 3.36 B), further enlarges
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the fraction of common hits. The blue line and red line show the fraction of hits

obtained only by the MC’s derived profile-HMMS and Pfam’s profile-HMMs. Values

are sorted independently from the largest to the smallest. We note that MC’s profile

HMM tend, on average, to find more hits than Pfam’s models. This is somehow

expected, considering that MC’s MSA tend in general to include more sequences

that Pfam’s curated seeds.

Figure 3.36: Comparison between profile-HMMs hits obtained from Pfam-A models
and DPCfam models of ”equivalent” MCs, mapping to a single-family Dominant
Architecture. The black line shows the fraction of common hits between the two
models, sorted; the red line shows the fraction of hits found only by the MC’s
models, sorted; the blue line shows the fraction of hits found only by the Pfam
models. Fractions are computed with respect to the sum of all hits found by both
the MC and the Pfam model. X-axis represents MC-Pfam family couples, sorted
di↵erently for lines of di↵erent colors. Panel A: all hits; Panel B: ”good” hits
(sequence E-value<0.0001)

In Figure 3.37 we plot, for each couple of MC and Pfam family, the fraction

of common hits as a function of the MC’s percentage of Dominant Architecture,

specifically %DAF. We recall that %DAF is the percentage of regions in the MC

whose Ground Truth Architecture (GTA) matches the MC’s Dominant Architecture

(DA) at a family level. MCs with small %DAF include therefore also sequences

that, according to Pfam, are not part of the DA’s family. In Panel A we notice that

the vast majority of MCs which are equivalent to a Pfam family display a %DAF

between 90 and 100. The fraction of common hits of the respective profile-HMMs

accumulate around 0.9, but we note that low fractions are possible also for large
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values of %DAF. However, good hits (Panel B) display a significantly larger average

fraction of common hits. MCs with a large %DA and a relatively small fraction

of common hits are most probably MCs smaller than the respective Pfam family’s

seed: in this case only a subset of the family can be represented, which lowers the

fraction of common hits while still the MC’s DA is large (see the case of PF09179

in the previous example).

Figure 3.37: Comparison between the fraction of common hits found by both an
”equivalent” MC profile-HMM model and the respective Pfam family model (y axis)
and the %DAF of the MC (x axis). MCs considered maps to a single family. Panel
A: all hits; Panel B: ”good” hits (sequence E-value<0.0001)

Analysis done so far cannot be reproduced straightforwardly on non-equivalent

MCs. However, we believe that there is no striking reason to say that MCs found

to be equivalent to a Pfam family should have a di↵erent quality to non-equivalent

MCs. To support this idea, we computed for a set of profile-HMMs derived from

MCs of di↵erent categories the fraction of good hits they found (E-value<0.0001).

Figure 3.38 shows the distributions of such fraction, for di↵erent model lengths (M).

Such distributions are overall very similar within the range of M selected. This

makes us believe that the quality level found in ”equivalent” profile-HMMs can be

found also in other categories of MCs. This is particularly relevant for ”unknown”

MCs, namely those MCs with no Pfam family associated that may represent novel

families.

To sum up, in the particular case of ”equivalent” MCs associated to a single

Pfam family, the agreement between DPCfam’s and Pfam’s models is notably high.
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Figure 3.38: Distributions of fraction of profile-HMMs’s good hits (E-value<0.0001).
Distributions have been divided by models’ length (M) and MC’s category. Here, red
lines represent ”equivalent” MCs, yellow lines represent ”reduced” MCs , grey lines
represent ”extended” MCs, black lines represent ”shifted” MCs and blue lines repre-
sent ”unknown” MCs. The latters are MCs with %UNK=100. Category definitions
are described in Section 3.1.3 .

The relatively few cases where either DPCfam’s models or Pfam’s models find more

hits than the others are possibly due to di↵erences in the sizes of the respective

MSA’s used to generate the profile-HMMs. In most cases, the two models obtained

with two di↵erent methods produces similar results.
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3.3.5.3 Protein databases coverage

An important measure to evaluate a set of protein families is the number of

proteins that can be ”annotated” by the set, namely which are found as hits by

at least one profile-HMM. The percentage of annotated proteins in a database is

commonly called ”sequence coverage”[2]. Each new Pfam release reports UniprotKB

coverage as one of the useful measures to evaluate the family database’s progression.

For example, Pfam-A v. 31.0 covers 75.5% of UniprotKB’s proteins (v. 2016 10),

while the more recent version 33.0 covers 77.0% of UniprotKB’s protein (v. 2019 08).

To e↵ectively compare Pfam’s coverage to DPCfam’s, we must restrict to the protein

database used by both. We note that if we restrict to UniprotKB’s proteins that

are also part of the UniRef50 (v. 2017 07) database the coverage of Pfam-A v. 33.0

drops to 43.9%.

Protein
Database

DPCfam
HMMs hits

Pfam-A
UniprotKB
annotation

Pfam-A
HMMs hits

Pfam-A
HMMs hits
(restricted)

UniProtKB v. 2019 08 // 77.0% // //

UniRef50 v. 2017 07 58.9% // 54.4% 51.2%

UnirotKB \ UniRef50 58.6% 43.9% 54.1% 51.0%

Table 3.9: Protein coverage of DPCfam and Pfam-A of di↵erent protein databases.
DPCfam profile-HMMs hits (second column) and Pfam-A profile-HMMs hits (fourth
colum) have been obtained by running hmmsearch on UniRef50 (v. 2017 07) with
sequence E-value < 1 and domain E-value < 0.01. In fifth column we restrict
the computation to Pfam families which are ”large enough” (at least 50 a.a. of
regions’ average length and 100 elements). Third column is the o�cial annotation
of UniprotKB (v. 2019 08) released by Pfam. Using Pfam v. 33.0 and hmmsearch
v. 3.1b2.

We compare the coverage of profile-HMMs hits of Pfam-A families and DPCfam

families, considering three di↵erent protein databases: UniprotKB (v. 2019 08),

UniRef50 (v. 2017 07) and the intersection between these two. We note that it is

not always possible to define the coverage on the first two databases, which makes

the intersection between UniprotKB and UniRef50 the actual reference.

DPCfam’s profile-HMMs covers 13,866,000 proteins, corresponding to 58.9% of

all UniRef50 proteins. If we restrict to the subset of proteins both in UniRef50

and UniprotKB (see Section 3.3.2) DPCfam profile-HMMs cover 58.6% of proteins,

while Pfam-A annotation (see Section 3.3.2) covers 43.9% of proteins. For a better

comparison of the coverage, we run hmmsearch with the same parameters used
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in DPCfam models using Pfam-A models (excluding then family-specific gathering

thresholds). With this method, Pfam-A covers 54.4% of UniRef50 proteins, and

54.1% of proteins in the intersection between UniprotKB and UniRef50. We recall

that we exclude from the analysis DPCfam’s MCs with average length smaller than

50 amino acids; moreover, it is di�cult for the protocol to find families with few

representatives. Therefore, a fairest comparison should exclude Pfam families which

are too short (less than 50 amino acids as average length of their members) and with

too few representatives (less than 100 elements in Pfam-A annotation). With these

restrictions, Pfam-A’s profile-HMMs covers 51.2% of UniRef50 (and 51.0% of the

intersection of UniRef50 with UniProtKB). See Table 3.9 for a summary of these

results.

3.3.5.4 Pfam Families’ coverage using profile-HMMs’ hits

As we did for MCs in Section 3.3.4.2, we computed the coverage of Pfam families.

Here we used MCs’ profile-HMMs’ hits in place of MCs’ regions. First, we analysed

how much DPCfam’s models covered Pfam families. In this case, we do not cover

420 Pfam families with more than 100 elements, while we do not cover 5,519 families

with any number of elements. We note that these numbers rose a bit from the same

numbers computed using MCs regions. This is most probably due to the ”trimming”

of protein regions done by hmmbuild, which removed some non-relevant amino acids

actually covering a bit of Pfam families which where, otherwise, not covered in any

other way. Such a coverage was spurious, and has been correctly removed when

building the profile-HMM. Comparing Figure 3.39 to Figure 3.29, we see that the

coverage of Pfam families is notably increased (from an average of 60% to 80%).

Moreover, the size e↵ect for familes with less than 100 elements becomes more

relevant. This indicates that, even if from Figure 3.29 it seemed that DPCfam was

somehow able to detect such small families, the resulting profile-HMMs models are

of a poor quality. We continue, then, to exclude from the further analysis Pfam

families with less than 100 elements.

We then compute for each Pfam family the DMC, the %DMC and the average

overlap OPF,DMC . In Figure 3.40 we put in relation %DMC and OPF,DMC . If we

compare to the results obtained on MCs’ regions (Figure 3.30) we see a notably

di↵erent distribution, here with much more points located around large values of

%DMC. This e↵ect is due to the large increase of regions covered thanks to profile-

HMMs. This leads i) to a general increase in %DMC for Pfam families, which have

more chances to be better covered, and ii) to a larger number of Pfam families
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Figure 3.39: Coverage of Pfam families by MC’s profile-HMMs regions, with respect
to Pfam families sizes. Pfam families are ranked with respect to their size (number
of sequences in UniRef50), from the largest (148,920 elements) to the smallests (1
element). Coverage is defined as the best %MCi (computed using profile-HMMs’
hits as MC regions) found for each family (left vertical tics), and it is averaged on
a running window of 100 familes (blue line, with error bars as light-blue band).
The grey line shows the coverage computed only on MC’s regions (Figure 3.29 )
for a comparison. The orange line represents the fraction of non-covered families
(right vertical tics), namely those for which it is not possible to find any metacluster
covering the family; also in this case we show the average over a window of 100
elements).

covered by a DMC. Using MCs’ regions, 69.1% of all Pfam families (with more than

100 regions) had a DMC, using profile-HMMs hits 84.5% of such Pfam families have

a DMC.

The e↵ect of increasing the coverage using profile-HMMs hits can be seen also

in Figure 3.41. This histogram, compared to that in Figure 3.31 shows a larger

number of ”equivalent” families: 49.0% of all 8,988 found with a DMC (it was 46.9%

over 7,350 with MCs). Moreover, we find a notably smaller number of ”extended”

families: 27.6%, namely 2,477 (we had 2,710 extended families in Figure 3.31, 36.9%

of the total in that case).
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Figure 3.40: Scatter plot of Pfam families’ %DMC compared to OPF,DMC . Results
obtained using MCs’ profile-HMMs’ hits to define the DMCs and compute OPF,DMC .

3.3.6 A discussion of the all-to-all clustering results

The clustering of all UniRef50 database by DPCfam produced about 40,000

metaclusters, of which about a third are classified as ”unknown”, namely their

regions do not overlap with any Pfam family region: these MCs are very interesting

candidate to discover new protein families. Among the other MCs, about 23,000

have sequences that contains a reasonable number of protein regions mapping to the

same Pfam family (or architecture), 6,000 of which replicate such Pfam annotation

with notably good boundaries. Results show a good agreement with the Pfam

classification: Pfam families are well covered by DPCfam’s MCs (Figure 3.39), and

abour 30% of all Pfam families are represented by a DPCfam MC with a good family

coverage and high-quality boundaries (see Figure 3.41). DPCfam profile-HMMs

covers a larger number of UniRef50 sequences than Pfam-A models (58.9% DPCfam,

51.2% Pfam, see Table 3.9). We note that it is improbable that all UniRef50 proteins

actually contain a protein family, so that the best possible sequence coverage is

smaller than 100%: therefore, the di↵erence between DPCfam and Pfam protein

coverages is more relevant than it appears. Results obtained are encouraging about
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Figure 3.41: Histogram of Pfam families’ average overlap with DMC (OPF,DMC),
with columns colored according to the family classification (equivalent, reduced,
extended and shifted, see Section 3.1.3). Results obtained using MCs’ profile-HMMs’
hits to define the DMCs and to compute OPF,DMC

the e↵ectiveness of DPCfam protocol. We do not expect DPCfam automatically

generated clusters to completely replicate Pfam’s classification, considered the very

di↵erent methods used to define families in the two approaches. As we learned in

the proof-of-concept experiment (Section 3.2), situations where DPCfam and Pfam

classifications disagree are not straightforward to evaluate. Thanks to the measures

described in section 3.1, we are in principle capable to identify those MCs that could

help in extending Pfam family classification or whose apparent disagreement with

the latter hides a possible novel family definition (see Table 3.8).





Chapter 4

Conclusions and Perspectives

In the characterization of proteins, protein families play an essential role. Protein

regions that are members of the same family are homologous, stemming from a

common ancestor. If structured, they typically share a similar fold. Moreover,

they may share similar functions. For a protein region, family membership can be

determined using only sequence-based information. Novel protein sequences can be

therefore annotated by searching for amino-acidic regions that are members of known

families: information derived from family architecture of a protein allows to infer

its likely three-dimensional structure and function. Many protein family databases

exist, and most of them use manually curated family definitions. These annotation

methods (also known as annotation transfer by homology) become more relevant as

the ratio between the number of structurally and functionally characterized proteins

and the number of protein for which we only know the sequence decreases.

In this thesis we developed a method to automatically define protein families,

based only on sequence data. In this way, we aimed to both i) exploit the homology

information contained in large protein sequence databases, and ii) avoid definition

biases that can be induced by human curation. This idea is of course not new. Indeed

there are several algorithms in literature that tackle the problem, such as ADDA

[7] and EVEREST [8]. The method presented here builds on these tools, with a

particular attention to scalability with respect to the size of protein databases in the

foreseeable future. It is an attempt to port in the field of protein annotation Density

Peak Clustering [9], a recently developed algorithm which has been successfully used

for unsupervised classification in many di↵erent fields.

The development of the algorithm, named DPCfam, has been the main task per-

formed in my PhD. DPCfam’s general workflow is described in Section 2.2, and it

is based on a two-step clustering procedure performed with an automatized version

109



110 Conclusions and Perspectives

of Density Peak Clustering. The procedure aims to first identify on single proteins

those regions that are often found to be homologous with other proteins’ regions;

then, it groups together regions across di↵erent proteins that fall into putative fam-

ilies. In doing so, DPCfam uses solely local pairwise alignments data obtained from

a large and non-redundant database (UniRef50 [10]). As shown in Section 3.2.4, the

method is robust with respect to the few meta-parameters used, most of which have

been selected on the basis of already known general criteria.

A major step in our work consisted in writing an e�cient implementation of

DPCfam. A first working implementation, named DPCfam0, is described in Sec-

tion 2.3. This is a ”developer” version of DPCfam, implemented for testing the

method on two Pfam clans (PUA and P53-like) in the proof-of-principle experiment

described in Section 3.2. As such, it is not intended to manage large quantities of

alignments and can be used only for the clustering of small sequence datasets. A

more mature implementation of DPCfam, parallelized and optimized, is described

in Section 2.4. Its development required a major e↵ort. Thanks to it, it has been

possible to do a complete analysis of the UniRef50 database, which contains about

23 millions of sequences. To perform the various steps required by the method, we

exploited as much as possible the intrinsic properties of its pipeline to accelerate

computation without a↵ecting, at any level, the quality of the results (both DPC-

fam implementations we developed will produce the same metaclusters if applied

to the same dataset). This last implementation needs HPC facilities to run, and

it has been developed with the help of a HPC expert. It is structured in a way

that allows for incremental updates of metaclusters: when adding new sequences

to the database it is not necessary to compute from scratch of the distance matrix

(see Section 2.4.3), namely the most demanding step of the protocol, but it can be

updated, thus dramatically reducing running times.

Results both for the proof-of-concept experiment (Section 3.2) and the complete

UniRef50 analysis (Section 3.3) are encouraging. To assess the quality of metaclus-

ters found by DPCfam, we decided to compare our results to Pfam’s [2] families. This

required another step in our work, namely defining a set of comparison measures,

which are described in Section 3.1.1. Results obtained from the proof-of-concept ex-

periment show a good agreement between Pfam and DPCfam’s classifications. On

one hand, DPCfam has been able to find, with similar boundaries, Pfam families

that were well represented in the protein dataset. On the other hand, some of DPC-

fam’s MCs show inconsistencies with respect to the Pfam classification. In some

cases the MC’s quality is actually low: such a poor quality can be assessed from
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some intrinsic property of the MC, such as the fraction of Low Complexity regions of

its sequences, together with the distribution of the sequence’s length (measures de-

scribed in Section 3.1). In other cases, thanks to a in-depth analysis often performed

using available structural data, we propose some possible adjustments in Pfam an-

notation, and we find a metacluster that may represent a novel protein family (see

for example Section 3.2.2.1). An interesting feature of DPCfam arises from these

experiments: it is possible to use it on small sequence datasets with meaningful re-

sults, and this is due to the fact that the protocol clusters local pairwise alignments

between the small dataset and a large database (UniRef50).

The all-to-all clustering of the full UniRef50 database with DPCfam produced

about 40,000 metaclusters. In this situation a direct comparison with the Pfam

classification was possible. DPCfam finds about 30% of all Pfam families with a

good boundary agreement: MCs of this type are named ”equivalent”. MCs can also

represent smaller sub-regions of Pfam families: these are ”reduced” MCs. These

MCs can be the result of DPCfam splitting single domains into smaller, highly

conserved, subregions or, on the contrary, of Pfam families covering multidomain

regions, which are then broken up by DPCfam. It should also be stressed that

MCs can be redundant, with di↵erent MCs covering overlapping parts of the same

proteins. Additional MC categories are ”extended” - MCs that cover regions larger

than those of the Pfam family they map to - and ”shifted” - MCs that typically

have imperfect overlaps with the matching Pfam families. Taking all these cases

into account, a total of 8,988 Pfam families map at least partially to one or more

MCs. A very large number of MCs (⇠ 13, 000) clustered together regions with no

Pfam annotation (”unknown” MCs): these constitute a very interesting set of MCs,

defining possibly novel families. Understanding exactly what these MCs are is a

major challenge for future analysis.

We analyzed in detail the fraction of MCs that exhibit at least some overlap with

the Pfam classification, by looking at their evolutionary consistency, their sequence

coverage and at the statistical properties of the profile-HMM that we derive from

them. This was important to establish the ability of DPCfam to generate bona fide

single or multi-domain families. In particular, we inspected the relationship be-

tween Pfam’s profile-HMMs and DPCfam’s profile-HMMs using ”equivalent” MCs:

in this case a direct comparison between the two models is indeed possible. We

noted a strong agreement in terms of the hits respectively found by Pfam families

and their ”equivalent” models, suggesting they are actually representing the same

family. While more work remains to be done on these MCs that might reveal in-
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teresting di↵erences with the family Pfam classification (as seen in a few examples

from the analysis of the proof-of-concept experiment in Section 3.2), likely the most

important contribution of our work to protein family classification lies in the subset

of ”unknown” MCs, for which no member region could be found to have a Pfam

annotation. We note that hits statistics for the profile-HMMs of ”unknown” MCs

are similar to those observed for those that map to known Pfam families, indicating

that these are ”sensible” models. The most important question regarding this sub-

set of MCs, however, is what type of families they represent and in particular what

structure and function they might have. While it is clear that a detailed answer to

these questions will require a lot of manual work on individual families, a coarse-

grained level, automatic analysis could still give us important hints on their nature.

First, in order to verify whether a ”low-hanging fruit” structural annotation might

be available, we plan to run our Pfam-unannotated HMMs against sequences in the

Protein Data Bank. This might allow identifying a number of MCs as known struc-

tural domains not yet classified by Pfam. Second, for those MCs that will return

no significant match against PDB proteins [38] (likely the majority), we intend to

take advantage of methods that predict generic structural features such as intrin-

sic disorder, transmembrane helices and coiled-coil regions. This would allow us to

gain a better understanding of the structural universe that these MCs are sampling.

Further, we plan to look into the phylogenetic classification of the organisms repre-

sented in each MC. Once again, this may reveal interesting features of our potential

new families, this time in terms of the phylogenetic niches they occupy. Finally,

we might want to run our MC-derived profile-HMMs against Pfam family and PDB

protein profiles, using a method such as HHpred [44] for profile-profile alignment.

Significant matches to Pfam families obtained in this way might suggest ways to ex-

pand existing (or create new) Pfam clans, while matches to PDB profiles will again

provide structural and/or functional information potentially independently on the

Pfam classification.

Besides gaining a deeper understanding of DPCfam’s results obtained so far,

there are future perspectives regarding the protocol itself. As we have discussed,

protein families defined by DPCfam can overlap, showing a certain degree of re-

dundancy mostly due to the possibility that a single MC captures a multi-family

architecture, or a set of MCs finds di↵erent conserved subregions of a family (either

overlapping or non-overlapping). As a further step in the protocol, it may then

be necessary to implement a procedure to annotate proteins with non-overlapping

DPCfam’s families, either following strategies already adopted by other databases
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(e.g. Pfam’s model-specific GAs) and/or through a reduction of MCs to ”minimal”

families, exploiting once again alignment information.

There is no doubt that the protocol can be improved in a number of other areas,

such as the MCs’ merging procedure (see Section 2.2.2.3). It is, in principle, possible

to use pairwise alignments derived from di↵erent algorithms than BLAST, which

can notably accelerate the entire clustering process. However, di↵erent alignment

methods may result in di↵erent MCs’ definitions, and the impact of such di↵erence

should be assessed before moving to faster methods. We also note that, while well

optimized, the parallel implementation of DPCfam can be further improved in some

of its steps.

As we already said, it is possible to recursively update DPCfam’s MCs without

re-reunning all the clustering steps. This is mostly doable thanks to the ”block”

strategy described in Section 2.4.3: we can add new blocks to the distance matrix,

derived from new cluster groups obtained from new queries, and limit the calcula-

tions to such blocks instead of recomputing the whole matrix. The following step,

the metaclustering procedure, is fast (see Section 2.4.4) and scales linearly with re-

spect to the number of primary clusters. This will allow us, in the future, to o↵er

to the scientific community updated versions of DPCfam as a database of MSAs or

profile-HMMs or, given proper resources, as an interactive website.
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