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We study synchronisation between periodically driven, interacting classical spins undergoing a
Hamiltonian dynamics. In the thermodynamic limit there is a transition between a regime where
all the spins oscillate synchronously for an infinite time with a period twice as the driving period
(synchronized regime) and a regime where the oscillations die after a finite transient (chaotic regime).
We emphasize the peculiarity of our result, having been synchronisation observed so far only in
driven-dissipative systems. We discuss how our findings can be interpreted as a period-doubling
time crystal and we show that synchronisation can appear both for an overall regular and an overall
chaotic dynamics.

Since its discovery by Huygens, the phenomenon of
synchronisation [1–4] has emerged in the most diverse
contexts. Examples of systems undergoing synchro-
nised motion range from coupled mechanical oscillators
to chemical reactions, from modulated lasers to neuronal
networks or circadian rhythms in living organisms, just to
mention only few of them. The essence of synchronisation
can be very simply stated. Classical non-linear systems
may asymptotically approach self-sustained oscillations,
a tiny coupling between those systems can induce their
oscillations to be locked in phase space.

All known systems undergoing synchronised dynamics
are driven and dissipative. It is therefore natural to ask if
synchronisation can occur in a Hamiltonian classical sys-
tem. This is the problem we will address in this work. As
we will see below, this question, besides having a direct
impact on our understanding of dynamical systems, has
important connections to chaos and the the foundations
of statistical mechanics.

In the case of a finite number of coupled classi-
cal Hamiltonian systems whose dynamics is generically
chaotic, synchronisation can be ruled out. For more than
two degrees of freedom, even small integrability breaking
leads eventually to instability of the motion and chaos.
In the many-body case this fact leads to thermalisation
(at infinite temperature in the driven case) [5–7]. This
picture can drastically change if an infinite number of
coupled time-dependent classical Hamiltonian systems is
considered. In this work we will show that synchronisa-
tion is possible in this case. To the best of our knowl-
edge, synchronisation in Hamiltonian systems has not
been considered before.

This result has non-trivial connections to the founda-
tions of statistical mechanics. Usually, in the thermo-
dynamic limit, any integrability breaking of short-range
interacting classical Hamiltonian systems leads to an es-
sentially fully chaotic behaviour and hence to thermali-
sation [8, 9]. Nevertheless, this is not the whole story [6]

and there may be important cases where this scenario
does not apply. In many-body quantum systems, ergod-
icity can be broken in an extended region of coupling
parameters due to interference effects; relevant examples
are many-body localisation (see [10] for a review) and
many-body dynamical localisation [11–13]. The chal-
lenge is to get a similar stabilisation in classical Hamil-
tonian systems, where the quantum interference provides
no help. Here we provide an example in a driven context.

In this letter we consider a system of coupled classi-
cal spins undergoing a periodic pulsed driving. The key
point of our analysis will be considering long-range in-
teracting Hamiltonian systems. Here the dynamics can
be equivalent to one single collective degree of freedom
weakly coupled to other modes and the dynamics can be
regular [14, 15] in the thermodynamic limit [16]. The ef-
fect of periodic kicking on the regular/chaotic dynamics
of classical Hamiltonian systems has been already widely
investigated, see e.g. [6, 9, 25, 35–37]. Here we make a
step forward and analyse the synchronisation behaviour.

If uncoupled, the dynamics of the spins is regular and
they show entrainment with the external driving: The
magnetisation oscillates with a period double of that of
the driving field. Once the spins are coupled through
the driving (see Fig. 1), they show synchronised period-
doubling oscillations for a time which scales with the sys-
tem size and tends to infinity in the thermodynamic limit.
Therefore synchronisation is an emergent phenomenon,
occurring only in the thermodynamic limit of an infi-
nite interacting system, much like a spontaneous sym-
metry breaking (as the one occurring in the Kuramoto
model [32, 33]). We remark that the spins are both en-
trained with the external driving and synchronised with
each other.

Being a form of spatio-temporal order in the thermo-
dynamic limit, robust in a full region of the parameter
space and for many initial conditions, occurring as a pe-
riod doubling with respect to the driving, synchroniza-
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tion can be interpreted as a spontaneous breaking of the
discrete time-translation symmetry (from the symmetry
group Z to 2Z). Indeed, we can see this dynamics as
a classical Hamiltonian period doubling inspired by Flo-
quet quantum time crystals (see [26, 27]). Our result
is an example of spontaneous time-translation symme-
try breaking in a classical Hamiltonian system. Until
now, the only known examples of classical time crystal
are driven-dissipative systems [28, 29]. We remark that
other forms of synchronisation could be possible where
the non-trivial response of the system has the same pe-
riod of the driving: in this case there would be synchro-
nisation without time-translation symmetry breaking.

The Hamiltonian governing the N classical spins ~mi

is given by H(t) =
∑N
j=1H(0)(t) + V(t). The non-

interacting part has the form

H(0)(t) =

N∑
j=1

[
−2J(mz

j )
2 − 2hjm

x
j + φ δτ (t)mx

j

]
(1)

and the kicked long-range interaction term is

V(t) = −Kδτ (t)
∑
i, j 6=i

1

D
(α)
i,j

mx
im

x
j , (2)

where, as in [35], we define δτ (t) ≡∑n δ(t−nτ) to char-
acterise the periodic kicks of period τ and J , hj , φ and
K are tunable parameters. Throughout all the paper
we consider periodic boundary conditions, we have de-

fined D
(α)
i,j ≡ κ(α)[min {|i− j|, N − |i− j|}]α in order to

implement them with the same prescription of [38, 39]

(D
(α)
i,j ∼ κ(α)|i − j|α when |i − j| � N). The quantity

κ(α) is needed in order to make the interaction part of
the Hamiltonian extensive [34]: κ(α) ≡ N1−α if α < 1
and unit for α > 1, in the marginal case α = 1 equals
logN .

The dynamics of this Hamiltonian is obtained using
the Poisson-bracket rules of the classical-spin compo-
nents

{
mµ
i , m

ν
j

}
= εµ ν ρδi jm

ρ
j where the Greek indices

can take values in x, y, z, the Latin ones in 1, . . . , N and
εµ ν ρ is the Ricci fully antisymmetric tensor. With these
Poisson-bracket rules it is easy to write down the Hamil-
ton equations ṁν

j (t) = −
{
mν
j (t),H(t)

}
. Between two

kicks they are a set of N decoupled systems of 3 differ-
ential equations. Across a kick they can be explicitly
integrated and they give rise for each j to a rotation
around the x axis with angle depending on the values of
the {mx

l }.
Let us start from the case with no interactions (K ≡

0). In this case there is a range of parameters where
each classical spin can show a period-doubling response
to the driving [31]. When hj < J , the Hamiltonian
shows a Z2 symmetry breaking. The Hamiltonian is in-
deed symmetric under the π-rotation around the x axis
(my,z

l → −my,z
l , mx

l → mx
l ∀ l) but the trajectories with

energy smaller than a broken-symmetry edge [30] break

this symmetry. These trajectories are doubly degenerate
and appear in pairs transformed into each other by the
symmetry operation (see Fig. 1(b)). The system shows
period doubling if it is prepared in a symmetry-breaking
trajectory and the kicking with K ≡ 0 is used to swap
between this trajectory and its symmetric partner. The
kick produces a rotation of angle φ around the x axis. By
considering φ ≡ π there are period-doubling oscillations
of the z-magnetisations mz

j (perfect swapping of the sym-
metric trajectories). These oscillations are stable if φ is
made slightly different from π, there being a continuum
of symmetry breaking trajectories (see Ref. [31]).

The analysis of the interacting dynamics K 6= 0 is cru-
cial to understand when the period doubling is stable in
the thermodynamic limit. We will characterise the inter-
acting dynamics by analysing the average magnetisation
along the z−axis, mz(t) [see Eq. (3)]. For any finite size
we see period-doubling oscillations of mz(t). These os-
cillations mark the synchronisation of the oscillators and
are discrete rotations in time analogous to the continu-
ous ones of the Kuramoto order parameter [32, 33]. The
period-doubling oscillations die out after a transient; in
order to see how this transient scales with the system
size, we define the order parameter for period doubling

O(nτ) ≡ (−1)nmz(nτ) =
(−1)n

N

N∑
j=1

mz
j (nτ) , (3)

where mz(t) is the average z magnetisation. O(nτ)
remains non-vanishing keeping its sign until there are
period-doubling oscillations of the spins. For any finite
size of the system, we numerically see that this quan-
tity vanishes after a transient, reaching in this way the
thermal T = ∞ value OT=∞ = mz

T=∞ = 0. (The
T =∞ thermal values are computed in the microcanon-
ical ensemble for the Hamiltonian without kicking.) To
study the scaling of the transient, we quantify its dura-

tion as td/τ =
∑t∗/τ
n=1 n O(nτ)/

∑t∗/τ
n=1 O(nτ) . Here t∗/τ

is the first value of n where O(nτ) vanishes. In order
to have persistent synchronized period-doubling oscilla-
tions in the thermodynamic limit, td must diverge with
the system size N .

We initialise the system in a state where the order
parameter, O(0), is positive. A uniform initial state is
a very singular case: it is easy to show that for a uni-
form Hamiltonian the dynamics is equivalent to a sin-
gle spin. The synchronisation is trivial and corresponds
to the entrainment of the single oscillator. A nontriv-
ial situation arises in the case of a random initial state
(mz

j (0) =
√

1− ε2j , mx
j (0) = εj cosϕj , m

y
j (0) = εj sinϕj

with εj a random variable uniformly distributed in the in-
terval [0, ε] and ϕj uniformly distributed in [0, 2π]). We
can also include disorder in the Hamiltonian by taking
the hj random and uniformly distributed in the interval
[h−∆h, h+ ∆h]. In these random cases we average our
results over Nrand randomness realizations and evaluate
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FIG. 1. (a) Long-range coupled period-doubling classical spin systems. The blue boxes symbolise the single oscillators: Without
interactions they are entrained with the single-particle kicking of angle φ, swapping the two symmetry sectors at each kick.
The long arrows indicate the interacting part of the kicking which decays as a power law in the distance, with exponent α.
If α is small enough there is still synchronisation in the thermodynamic limit and appears as period-doubling oscillations in
the average z-magnetisation. (b) Symmetry-breaking in the phase space for a single oscillator (the plots are for my = 0).
Around each of the two degenerate minima and for energies smaller than the broken-symmetry edge E∗ (the central maximum
at mz = 0) there are trajectories which break the Z2 symmetry.

the errorbars of any randomness-dependent quantity S as
std(S)/

√
Nrand where std(S) is the standard deviation of

S over randomness realizations.

As we vary the parameters of the system we find two
regimes. In the synchronised regime the decay time of
the order parameter scales as a power-law, td ∼ N b,
and there is synchronisation in the thermodynamic limit.
In the thermalising regime, on the opposite, there is
not such a scaling and consequently no synchronisation.
Some examples of these two different scalings are shown
in Fig. 2(a). Here we have considered the case of a
kicking different from the perfect-swapping one (we take
φ = 0.99π instead of φ = π): synchronisation persists
also for this imperfect kicking, marking thereby the ro-
bustness of this phenomenon. Notice that well inside the
synchronized regime the scaling exponent b is very near
to 1 and consistent with a linear scaling. In order to show
the markedly different behaviour in the two regimes, in
Fig. 2(b) we provide some examples of evolution of the
order parameter for different sizes in a case where there
is synchronisation and in Fig. 2(c) we do the same for
a case where the system thermalises. Using the scaling
properties of td, we can clearly distinguish in the ther-
modynamic limit N → ∞ the synchronised regime from
the thermalising one and we can map a diagram of the
dynamical regimes. We plot this diagram in Fig. 3 for
uniform (ε = 0, trivial) and random (ε 6= 0, non-trivial)
initial conditions.

We remark that synchronisation is robust and survives
the randomness in the initial state. To better show this
fact, in Fig. 4(a) we plot α∗ (the critical value separating
synchronised from chaotic and ergodic) versus the ran-
domness amplitude ε for different values of h. synchroni-
sation is also robust if disorder is added to the model, as

it occurs for example in the Kuramoto model [1, 32, 33].
We have checked this, adding disorder to hj . The results
are shown in Fig. 4-(b) where we plot the value α∗ as a
function of the disorder strength ∆h.

Let us now move to consider the regularity/chaoticity
properties of the dynamics. The largest Lyapunov ex-
ponent (LLE) gives a measure of how much nearby
trajectories diverge exponentially and is thereby a
measure of chaos [41]. It is defined as LLE =

limd(0)→0 limt→∞
1
t ln d(t)

d(0) (d(t) is the distance between

trajectories at time t). We compute the LLE using
the orbit separation method (see [40, 41]). We consider
its average over the random-initial-conditions distribu-
tion introduced above: LLEε ≡ 〈LLE〉ϕj∈[0,2π], εj∈[0,ε].
In this way we fix the same distribution of the random
initial conditions and here we can compare the regular-
ity/chaoticity properties of the dynamics with the syn-
chronisation properties.

For N finite we find that LLEε is always larger than
0, as expected for a non-linear non-integrable system,
but we can notice two different behaviours in the limit
N →∞ (in the numerics we have fixed ε = 0.05). There
is a regime where LLEε stays finite in the limit N → ∞
and another regime where our numerics suggests that it
scales to 0 as a power law when N →∞: LLEε ∼ N−γε

with γε > 0 (as it occurs for the full LLE in the Kuramoto
model [42]). We show some examples in the Supplemen-
tary Material.We can mark the boundary between the
two regimes and plot it as a blue curve in Fig. 3. We
see that the regular region of vanishing LLEε is smaller
than the synchronised region. This suggests that there
are three regions in the parameter space for the consid-
ered ε. Regular synchronisation: There is synchronisa-
tion and the LLEε → 0 in the thermodynamic limit. In
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FIG. 2. (a) Scaling of td with N . Notice two possible
regimes, one in which there is the power-law scaling td ∼ Nb,
and another where there is no scaling. (b) Some examples of
evolution of the order parameter for different values of N and
parameters inside the synchronised region (α = 0.3). (c) The
same for parameters in the thermalising regime (α = 0.5).
Numerical parameters: h = 0.32, ∆h = 0, φ = 0.99π, K =
0.3, τ = 0.6, ε = 0.05, Nrand = 28.

this case the N → ∞-dynamics is essentially regular in
the region of phase space corresponding to the consid-
ered random initial conditions. Chaotic thermalisation:
Here LLEε > 0 and there is no synchronisation. The
dynamics here is essentially chaotic. Chaotic synchroni-
sation: There is chaos in the considered region of phase

0.0 0.1 0.2 0.3 0.4 0.5

h

0.0

0.2

0.4

0.6

0.8

1.0

α

Regular
synchronization

Chaotic

thermalization

Chaotic

synchronization

ε = 0

ε = 0.05
LLEε=0.05

FIG. 3. Regions in the parameter space. The red and black
curves separate synchronisation from thermalisation at infi-
nite size for different ε. The blue curve separates regular
behaviour (LLEε=0.05 → 0 in the thermodynamic limit) from
chaotic one. Notice the existence of an intermediate chaotic
but non thermalising region where LLEε=0.05 > 0 and there
is also synchronisation. (Numerical parameters: K = 0.3,
τ = 0.6, φ ≡ 0.99π, ∆h = 0, Nrand = 28.)
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FIG. 4. Transition point α∗ versus the initial-state random-
ness ε [panel (a)] and the randomness in the field hj [panel
(b)]. Numerical parameters: K = 0.3, τ = 0.6, φ = 0.99π,
Nrand = 20; for (a) ∆h = 0, for (b) h = 0.1.
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space (LLEε > 0) but forms of order like synchronisation
can emerge, in analogy with a related phenomenon of a
driven-dissipative system [43]. We remark that the reg-
ularity/chaoticity and synchronisation properties of the
dynamics depend on the region of phase space we con-
sider (given by the value of ε). We can see this in Fig. 4(a)
where synchronisation disappears beyond a threshold in
ε.

In conclusion we have found a form of synchronisa-
tion of a set of classical Hamiltonian oscillators which are
driven and long-range interacting. synchronisation cor-
responds to collective period-doubling oscillations lasting
for a time which scales as a power law with the system
size. The synchronisation is robust to randomness in the
Hamiltonian and the initial state and is connected to the
time-crystal phenomena. Perspectives of future research
include the analysis of quantum effects; indeed there are
examples of quantum spins with long-range interactions
which do not synchronise [44]. It is interesting to under-
stand if this phenomenon can be interpreted classically
or quantum effects are crucial. It is also important to
consider the role of thermal noise. The situation is very
well known for noisy dissipative models with short range
interactions [45, 46]: Noise generically destroys period n-
tupling for n > 2. Noisy dissipative long-range systems
have yet to be explored from this perspective. In our spe-
cific model we think that thermal noise would spoil syn-
chronisation, but this might not be a general feature for
long-range systems, especially moving towards the ther-
modynamic limit.

We acknowledge useful discussions with V. Latora,
S. Marmi and D. Mukamel. This work was supported
in part by European Union through QUIC project (un-
der Grant Agreement 641122).
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Supplementary Information

SCALING OF LLEε WITH THE SYSTEM SIZE

We provide here some examples of scaling of LLEε
with N . First, we consider cases in the regular-
synchronisation region. Here, our numerics suggests a
power-law scaling with the system size: LLEε ∼ N−γε

with γε > 0 [see Fig. S1(a) for ε = 0.05]. Unfortunately,
we can reach too small system sizes and we cannot do a
statement sharper than “suggest”. We remark that the
existence of this power-law decay strongly depends on
the choice of ε. Taking a larger ε (ε = 1 in Fig. S2) there
is no more decay. The point is that ε marks the size of
the region of phase space where we are probing the reg-
ularity/chaoticity behaviour. With small ε we restrict to
a regular region of phase space; with larger ε we embrace
also the chaotic part of the phase space.

On the opposite, in the chaotic-synchronisation re-
gion, LLEε=0.05 stays finite as N is increased and seems
to eventually saturate to a finite value [see Fig. S1(b)].
Here the dynamics shows chaos, but there is still syn-
chronisation. In the chaotic-thermalisation regime, the
behaviour of the LLE versus N is very similar to the
chaotic-synchronisation case and we do not show it.
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FIG. S1. LLEε=0.05 versus N in cases of regular synchronisa-
tion (upper panel) and chaotic synchronisation (lower panel).
Numerical parameters: K = 0.3, τ = 0.6, φ ≡ 0.99π, ∆h = 0,
ε = 0.05, Nrand = 28.
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FIG. S2. LLEε=1 versus N in cases where there is regular
synchronisation for ε = 0.05. Numerical parameters: K =
0.3, τ = 0.6, φ ≡ 0.99π, ∆h = 0, ε = 1, Nrand = 28.
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