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Abstract
This contribution describes the implementation of a data-driven shape optimization pipeline
in a naval architecture application. We adopt reduced order models in order to improve
the efficiency of the overall optimization, keeping a modular and equation-free nature to
target the industrial demand. We applied the above mentioned pipeline to a realistic cruise
ship in order to reduce the total drag. We begin by defining the design space, generated by
deforming an initial shape in a parametric way using free form deformation. The evaluation
of the performance of each new hull is determined by simulating the flux via finite volume
discretization of a two-phase (water and air) fluid. Since the fluid dynamics model can result
very expensive—especially dealing with complex industrial geometries—we propose also
a dynamic mode decomposition enhancement to reduce the computational cost of a single
numerical simulation. The real-time computation is finally achieved by means of proper
orthogonal decomposition with Gaussian process regression technique. Thanks to the quick
approximation, a genetic optimization algorithm becomes feasible to converge towards the
optimal shape.
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1 Introduction andmotivations

A shape optimization problem consists of finding the geometric configuration of an object
that maximizes the performance of such object. Due to the number and the complexity of
methods to integrate together—i.e. a shape parametrization algorithm, a numerical solver,
an optimization procedure—, this task remains challenging even nowadays. One of the most
common problems is the computational cost required to solve the mathematical model, nec-
essary to predict the performance of the deformed object. Addressing complex phenomena,
even exploiting high-performance facilities, the total computational load may make the pro-
cedure unfeasible, since the performance evaluation has to be repeated for each new deformed
configuration.

In this work, we extend the computational pipeline already presented in [5], using two
different reduced order modeling (ROM) approaches to address the high computational
demand of optimization problems based on partial differential equations (PDEs) in para-
metric domains. The goal is obtaining the optimal shape of the input object—in our case,
the naval hull of a cruise ship—with a reasonable demand of computational resources. For
different version of this shape optimization pipeline, we suggest [6] for a POD reduction
to geometrical parametrization, [1,43] as example of hyper-reduction techniques application
within the optimization pipeline, [9,10,44] for constrained optimization, and [27,39] for an
additional parameter space analysis by means of active subspace property. ROM provides a
model simplification, bartering a slightly increased error in the model output with a remark-
able reduction of the computational cost. The real-time response of such models helps to
accelerate the entire optimization process. Other similar framework regarding ROM have
been presented in [34,40].

In details, the two adopted ROM techniques are: (i) the data-driven proper orthogonal
decomposition (POD) coupledwithGaussian process regression (GPR) for the approximation
of the solution manifold for the parametric model, and (ii) the dynamic mode decomposi-
tion (DMD) algorithm to estimate the regime state of the transient fluid dynamics problem.
We specify that the GPR approach has be applied in this context thanks to its capability of
providing good precision even with very few snapshots, but other techniques are available
in a data-driven context. Among all the possible alternatives we highlight the usage of inter-
polation [11,36] or the usage of neural networks [17], which tends to be very accurate but
requiring larger datasets. Exploiting POD-GPR andDMD, not onlywe need a limited number
of high-fidelity (and expensive) simulations but we are able even to reduce the computational
cost of the latter. The main advantage is that the optimization procedure, which has to iterate
towards the optimum, uses the reduced order model to estimate the performance of any new
deformed object in a very quickly manner. An additional value of the proposed framework
is the complete modularity for the data-driven nature of the ROM methods. In fact, they are
based only on the output of the system, without the necessity to know the governing equa-
tions or, from a technical viewpoint, to access to the discrete operators of the problem. We
propose in this work an application on the shape optimization of a cruise ship, but the pipeline
can be easily modified to plug different algorithms or software. All these features make the
framework especially suited for industry, thanks to the huge speedup in optimization—but
also design—contexts and the natural capacity to be even coupled with commercial software.
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Fig. 1 The flowchart of the complete computational pipeline

The work is structured as following: in Sect. 2 we described in the details how the compo-
nents are combined together, going into the deeper mathematical formulation of all of them in
the next subsections. In particular: Sect. 2.1 will focus on the free-form deformation (FFD),
the algorithm used for the shape parametrization; Sect. 2.2 will introduce the full-order model
we adopt and its numerical solution using the finite volume (FV) approach; Sects. 2.2.1 and
2.3will introduce the algorithmic formulation of theDMDandPOD-GPR techniques, respec-
tively; Sect. 2.4 will summarize the genetic algorithm (GA), i.e. the optimization method we
used. Finally, in Sect. 3 we present the numerical setting of the resistance minimization prob-
lem for a parametric cruise ship and the results obtained by applying the described framework
on it, before proposing a conclusive comment and some future perspectives in Sect. 4.

2 The complete computational pipeline

This section focuses on the integration of all the components into a single pipeline capa-
ble of optimizing an input object with a generic shape Ω ∈ R

3. We will provide details
about the methodologies stack, specifying the interfaces between methods in order to let the
reader capable to understand the workflow. The proposed framework can be however, thanks
to the data-driven feature, easily extended, replacing one or more techniques, increasing
integrability of such pipeline (Fig. 1).

As first ingredient, we need a map M : R
3 → R

3 that, depending on some numeric
parameters, deforms the original domain such thatΩ(μ) = M(Ω,μ). Dealingwith complex
geometries, we chose the free-form deformation (FFD) [37] to deform the original object,
because of its capability to preserve continuity on the surface derivatives and to performglobal
deformation even with few parameters. The parameters μ ∈ P ⊂ R

P , for this method,
control the displacement of some points (along some directions) belonging to a lattice of
points around the object. This motion produce a deformation in all the space embedded by
the lattice. Chosen the parameter space P , we sample this latter N times to obtain the set
{μi }Ni=1, and, using the FFD, the corresponding set of deformed shapes {Ω(μi )}Ni=1.

The performance of all the samples have to be evaluated, using an accurate numerical
solver. In this case, since the analyzed problem is related to an incompressible turbulent
multiphase flow, we use the Reynolds-averaged Navier–Stokes (RANS) equations with the
volume of fluid (VOF) approach to describe themathematicalmodel, and a finite volume (FV)
discretization to numerically solve it. Suchmodel requires, both for the complex geometry and
the complexity of equations, a not-negligible amount of computational resources. Even if, as
in this case, the number of these high-fidelity simulations is limited to N , the overall loadmay

123



N. Demo et al.

result too big. We can gain additional speedup exploiting the dynamic mode decomposition
(DMD) [24] to predict the regime state of the simulation. In our test, the time-dependent
problem shows a quasi-periodic behaviour, continuing to oscillate around the asymptotic
configurations. DMD catches this kind of patterns in the temporal evolution of a system,
allowing to easilymakepredictionswith a good accuracy.Wecan combine the two techniques,
by computing the initial temporal snapshots—aka the output of interest of such system at a
certain time—with the high-fidelity model, then feeding the DMD algorithms with the latter
in order to predict the regime snapshots. We define the snapshots yki as the output of interest
of the parametric domain Ω(μi ) at time k: the regime state ym+c

i is then predicted collecting

the snapshots {y j
i }mj=0, for i = 1, . . . , N . It is important to specify that the computational

grids built around the objects Ω(μi ) are not enforced to share the same topology, or the
same number of degrees of freedom, but for the DMD is necessary that the grids do not
change during the temporal evolution of the system. In this work we do not use the pressure
and velocity fields as output of interest, but directly to the distribution of total resistance
(over the surface of hull). Since the data-driven approach, this does not imply any additional
complexity. Our database contains thus the discrete distribution of the total resistance for all
the samples.

After this step, we obtain a set of N pairs composed by the input parameters and the regime
states, that is {(μi , y

m+c
i )}Ni=1. In case of output with different dimensions, we need to project

the solution from the FV discretized space to the original deformed geometry Ω(μ). Being
originated by the FFD, all the geometries share the same topology. Assuming the geometry
Ω is discretized in N degrees of freedom, the resulting new pairs are defined as (μi , ŷi ),
with μi ∈ P and ŷi ∈ R

N , for i = 1, . . . , N .
Proper orthogonal decomposition (POD) [16] is now involved to reduce the dimensionality

of the snapshots. The outputs ŷi ∈ R
N are projected onto the POD space, which typically

has a very lower dimensions, obtaining the reduced space representation ci ∈ R
NPOD of the

original states. The input-output pairs are now (μi , ci ) for i = 1, . . . , N : assuming that
a mapping F : P → R

NPOD exists between input and output such that c = F(μ), we
can exploit the collected outputs to approximate the output itself for different parameter
value using any interpolation/regression method. In this contribution, we adopt a Gaussian
process regression (GPR) [32] to approximate the input-output relation with a Bayesian
approach. Other examples for the POD-GPR coupling can be found in [15,30]. Finally, the
low-dimensional output is projected back to the full-order space to obtain the approximated
solution. Combining the techniques, we are able to build a reduced order model based only
on the system output capable to provide an approximation of the output y j

ROM for untried
parameters μ j in real-time. Additionally, the uncertainty in the Gaussian process regression
provides an estimator for the accuracy of the reduced order model. In our test, we remember
we use the resistance distribution as output of interest.

The optimization procedure is then applied over the reduced order model, by comput-
ing the objective function on the state predicted using POD-GPR. Thanks to the negligible
time required for the performance evaluation of a new shape, we can explore the parameter
space with a genetic algorithm (GA) [21] to converge to the optimal shape. The quantity to
minimize, in our numerical experiments, is the total resistance, that is nothing but the inte-
gral of corresponding field. The objective function relies hence on the previously mentioned
methods, since to compute it we need to project the POD-GPR approximation over the new
shape obtained by FFD. At the end, we get the optimal parameter μ∗ and correspondent
(approximated) output y∗

ROM. Such parameter can be used to restart the pipeline, performing
the morphing over the geometry then testing it by using the high-fidelity solver for the valida-
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tion of the result. Not only: this latter simulation can be further exploited by adding it to the
snapshots database, resulting in an iterative process where the approximated output is used
for the reduced order model, enriching in this way the accuracy of the model itself. Thanks
to this validation and enrichment step, we are able to limit the error induced by the ROM
techniques: due to equation-free nature of the pipeline, we are not able to bound the error
without any information regarding the full-order model, but we can estimate it by validating
the parametric configuration with the high-fidelity solutions.

2.1 Free-form deformation for shape parametrization

Free-formdeformation (FFD) is a geometric tool, extensively employed in computer graphics,
used to deform a rigid object based on the movement of some predefined control points.
Introduced in [37], it has seen various improvements over the years. The reader can refer
for example for a more recent review [3,25,35] for a coupling with ROM techniques. The
main idea behind FFD is to define a regular lattice of points around the object (or part
of it) and manipulate the whole embedded space by moving some of those control points.
Mathematically, this is obtained by mapping the physical space enclosed by the lattice to a
unit cube D = [0, 1]d by using an invertible map ψ : Rd → D.

Inside the unit cube we define a cubic lattice of control points, with L ,M and N points
respectively in x ,y and z directions:

P0
l,m,n =

⎛
⎝

l/L
m/M
n/N

⎞
⎠ ∈ D, (1)

where l = 0, . . . , L , m = 0, . . . , M and n = 0, . . . , N . We move these points by adding a
motion μl,m,n such that:

Pl,m,n = P0
l,m,n + μl,m,n . (2)

The parametric map T̂ : D → D that performs the deformation of reference space is then
defined by:

T̂ (s, t, p;μ) =
L∑

l=0

M∑
m=0

N∑
n=0

bLl (s)bMm (t)bNn (p)Pl,m,n, (3)

where:

bLl (s) = (L
l

)
(1 − s)(L−l)sl ,

bMm (t) = (M
m

)
(1 − t)(M−m)tm,

bNn (p) = (N
n

)
(1 − p)(N−n) pn .

(4)

The FFD map T : R3 → R
3 is then composed as it follows:

T (·;μ) = (ψ−1 ◦ T̂ ◦ ψ)(·;μ). (5)

We applied the FFD algorithm directly to input object using the open source Python package
called PyGeM [31].
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2.2 Finite volume for high-fidelity database

We now discuss the full order model (FOM), which generates what we call the high fidelity
solution. The Reynolds-averaged Navier–Stokes (RANS) equations model the turbulent
incompressible flow around the naval hull, while for the modeling of the two different
phases—e.g. water and air—we adopt the volume of fluid (VOF) technique [20]. The equa-
tions governing our system are then:

⎧⎪⎨
⎪⎩

∂ ū
∂t + (ū · ∇)ū + 1

ρ
∇ p̄ − ∇ · ν∇ū − ∇ · (ũ ⊗ ũ) = 0,

∇ · ū = 0,
∂α
∂t + ∇ · (ūα) = 0,

(6)

where ū and ũ refer the mean and fluctuating velocity after the RANS decomposition, p̄
denote the (mean) pressure, ρ is the density, ν the kinematic viscosity and α is the discon-
tinuous variable belonging to interval [0, 1] representing the fraction of the second flow in
the infinitesimal volume.

The first two equations are the continuity and momentum conservation, while the third
one represent the transport equation for the VOF variable α. The Reynolds stresses tensor
ũ ⊗ ũ can be modeled by adding additional equations in order to close the system: in this
work, we use the SSTk −ω turbulence model [26]. For the multiphase nature of the flow, the
density ρ and the kinematic viscosity ν are defined using an algebraic formula expressing
them as a convex combination of the corresponding properties of the two flows:

ρ = αρ1 + (1 − α)ρ2,

ν = αν1 + (1 − α)ν2. (7)

To solve such problem, we apply the finite volume (FV) approach. We adopted a 1st order
implicit Euler scheme for the temporal discretization, while for the spatial scheme we apply
the linear upwind one. Regarding the software, the simulation is carried out using the C++
library OpenFOAM [28].

2.2.1 Dynamic mode decomposition for regime state prediction

Dynamic mode decomposition (DMD) is a data-driven ROM technique that approximates
the evolution of a complex dynamical system as the combination of few features linearly
evolving in time [24,36]. The basic idea is to provide a low-dimensional approximation of
the Koopman operator [23] based on few temporarily equispaced snapshots of the studied
system. DMD assumes the evolution of the latter can be expressed as:

yk+1 = Ayk, (8)

where yk+1 ∈ R
N and yk ∈ R

N are two snapshots at the time t = k and t = k + 1,
respectively, whileA refers to a discrete linear operator. A least-square approach can be used
to calculate this operator. After collecting a set of snapshots defined as {yt0+kΔt }Mk=0, we can
arrange them into two matrices Y = [

y0 . . . yM−1
]
, Ẏ = [

y1 . . . yM
] ∈ R

N×M such that
the correspondent columns of the two matrices represent two sequential snapshots.

We can now minimizing the error ‖AY − Ẏ‖F by the following matrix multiplication
A = ẎY†, where the symbol † indicates the Moore–Penrose pseudoinverse. While we can
already use the operator A to analyze the system, in practice because of its considerable
dimension and the difficulties that would arise in order to obtain it numerically. DMD uses
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then the singular value decomposition (SVD) to compute the reduced space onto which
projecting the operator. Formally

Y = U�VT , (9)

where U ∈ R
N×M , � ∈ R

M×M and V ∈ R
M×M . The left singular vectors (the columns of

U) span the optimal low-dimensional space, allowing us to project the operator A onto it:

Ã = U
T
AU = UT ẎV


−1
(10)

to compute the reduced operator. The interesting feature is that the eigenvalues of Ã are equal
to the non-zero ones of the high dimensional operatorA, and also the eigenvectors of the two
operators are related each other [41]. In particular:

� = ẎV�−1W, (11)

where Φ is the matrix containing the A eigenvectors, the so-called DMD modes, and W is
the matrix of Ã eigenvectors. Defining � as the diagonal matrix of eigenvalues, we have:

Y ≈ AX = ���†X (12)

that implies that any snapshots can be approximated computing yk = ��k�†y0.
We apply the DMD on the snapshots coming from the full-order model (discussed in

Sect. 2.2) in order to perform fewer temporal iterations using the high-fidelity solver, and
predict the output we are interested to analyze in order to gain an additional considerable
speedup. The results are obtained using PyDMD [8], a Python package that implements the
most common version of DMD.

2.3 Reduced order model exploiting proper orthogonal decomposition

Reduced basis (RB) is aROMmethod that approximates the solutionmanifold of a parametric
problem using a low number of basis functions that form what we call the reduced basis [16,
33]. In this community, proper orthogonal decomposition (POD) is a widespread technique
[4,38] since its capability to provide orthogonal basis that have an energetically hierarchy.
While a possible approach for turbulent flows involving projection-based ROM is available
in [18], we prefer the data-driven approach for the higher integrability in many industrial
workflows. POD needs as input a matrix containing samples of the solution manifold. We
defineN the number of degrees of freedom of our numerical model and y ∈ R

N its solution
for a generic parameter μ. Thus, the snapshots matrix Y ∈ R

N×n is defined as:

Y =
⎡
⎣ y1 y2 . . . yn

⎤
⎦ . (13)

The POD basis is defined as basis that maximizes the similarity (as measured by the square
of the scalar product) between the snapshots matrix and its elements, under the constraint of
orthonormality. Formally, the POD basis {ψi }li=0 of dimension l is defined as:

max
ψ1,...ψl

l∑
i=1

n∑
j=1

|〈y j , ψi 〉RN |2 (14)
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such that 〈ψ̃i , ψ̃i 〉RN = δi, j , for 1 ≤ i, j ≤ l. Singular value decomposition (SVD) is a
method that computes the POD basis [42] by decomposing the snapshots matrix:

Y = U�V∗, (15)

where matrices U ∈ R
N×n and V ∈ R

n×n are unitary while � ∈ R
n×n is diagonal. In

particular, the columns of U are POD basis. We project the original snapshots onto the POD
space to have a low-dimensional representation. In matrix form:

C = UTY, c ∈ R
n×n . (16)

The columns of C are the modal coefficients ci ∈ R
n .

We can now exploit this reduced space in order to build a probabilistic response surface
using the Gaussian process regression (GPR) [32]. In particular, assuming there is a natural
relation F : P → R

n between our geometric parameters μ and the low-dimensional output
c such that c = F(μ), we try to approximate it with a multivariate Gaussian distribution. We
define:

f (μ) ∼ GP(M(μ),K(μ,μ)), (17)

where M refers to the mean of the distribution and K to its covariance. There are many
possible choices for the covariance functionK : P × P → R, in our case we use the squared
exponential one defined asKSE (μi ,μ j ) = σ 2 exp(− 1

2‖μi −μ j‖2). The prior joint Gaussian
distribution for the outputs c results then

c|μ ∼ N (0,K(μ,μ)). (18)

Being the output a vector c = [
c1 . . . cn

]
, we apply the GPR to each component, treating

these components as independent variable. For sake of simplicity we assume that the GP has
mean equal to zero: the entire process results defined only by the covariance function. In
order to specify the GP for our dataset, we need to maximize the marginal likelihood varying
the hyper-parameters of the covariance function, in this case only the σ . Once obtained the
output distribution, we can just sample it at the test parameters to predict the output—which,
we remember, is the low-dimensional snapshot—by exploiting the joint distribution:

c̄|μ̄,μ, c ∼ N (m,C) (19)

with

m = K(μ̄,μ)K(μ,μ)−1c,

C = K(μ̄, μ̄) − K(μ̄,μ)K(μ,μ)−1K(μ, μ̄), (20)

where μ and μ̄ refer to the input parameters and the test parameters, and where c and c̄ are
the corresponding train and test output.

We compute the modal coefficients of all (untested) new parameters. To approximate the
high-dimensional snapshots we need just to back map the modal coefficients to the original
space. In matricial form:

ȳ = Uc̄. (21)

An additional gain of such method is the complete division between two computational
phases often called offline and online steps We can easily note that, to collect the input
snapshots, we initially need to compute several snapshots using the chosen high-fidelity
model. This is the most expensive part, and usually is carried out on powerful machines. This
offline step is fortunately independent from the online one, where actually the snapshots are
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combined to span the reduced space and approximate the new reduced snapshots. Since this
latter can be easily performed on standard laptops, the computational splitting in two steps
allows also to efficiently exploit all different resources.

For the implementation, we developed and released this version of data-driven POD in
the numerical open source package EZyRB [7], exploiting the library GPy [14] for the GPR
step.

2.4 Genetic algorithm for global optimization

Genetic algorithms (GA) denote in literature the family of computational methods that are
inspired by Darwin’s theory of evolution. In an optimization context, emulating the natural
behaviour of living beings, this methodology gained popularity due to its easy application
and the capability to not get blocked in local minima. The algorithm was initially proposed
by Holland in [2,21,22] and it is based on few fundamental steps: selection, mutation and
mate. We consider any sample of the parameter domain as an individual μi ∈ P ⊂ R

P

with P chromosomes. The fitness of the individuals is quantify by a scalar objective function
f : P → R. We define the initial populationM0 = {μi }N0

i=1 composed by N0 individuals that
are randomly created within the parameter space. The corresponding fitnesses are compute
and the evolutive process of individuals starts.

The first step is the selection of the best individuals in the population. Intuitively, the basic
approach results choosing the N individuals that have the highest fitnesses, but for large
population, or simply to reinforce the stochastic component of the method, a probabilistic
selection can be performed. The selected individuals are often referred as the offspring that
will breed the future generation.

We are now ready to reproduce the random evolution of such individuals. This is done in
the mutation and mate steps. In the mutation, chromosomes of the individuals can change,
partially or entirely, in order to create the new individuals. Several approaches are available
for themutation, but usually they are based to amutation probability to reproduce the aleatory
nature of evolution. In the mate step, individuals are coupled into pairs and, still randomly,
the chromosomes of the parent individuals are combined to originate the two children. In
particular, the mate step emulates the reproduction step, and for this reason can be usually
called also cross-over.

The population is now composed by the new (mated and mutated) individuals. Iterating
this process, the population will converge toward the optimal individual, but depending on
the shape of fitness function it may requires many generations to converge.

For the numerical experiments, we use the GA implementation provided by the DEAP
[13] package, an open source library for evolutionary algorithms.

3 Numerical results: a cruise ship shape optimization

In this section, we will present the results obtained by applying the described computational
pipeline to optimize the shape of a cruise ship.Wemaintain the same structure of the previous
section, discussing the intermediate results for any mentioned technique (Fig. 2).
Free-form deformation We set the domain D, aka the space enclosed by the lattice of FFD
control points, in order to deform only the immersed part of the hull, in the proximity of the
bow. The lattice is illustrated in Fig. 3, and we can see that it is positioned, in x direction,
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Fig. 2 The undeformed hull

on sections 10, 12, 14, 16, 18, 20 and 22.1 For z direction, the points are displaced around
the waterline, while along y axis the points are positioned for the entire width of the ship. In
total, 539 FFD points are used.

Concerning the motion of such points only part of the points in the lattice are displaced:
we use 6 parameters to control the movements along x (the first three parameters) and along
y. An example of this motion is sketched in Fig. 4, where red arrows refers to control points
movements. The layers corresponding to sections 10, 12, 20 and 22 remain fixed, together
with the two upper and lower layers, the two far left and the two far-right layers and, finally,
the layer over the longitudinal symmetry plane. Except for this last one, that is kept fixed
to maintain symmetry, the other layers are kept fixed in order to achieve the continuity and
smoothness of the shapes, required especially in the x direction where the deformation must
link in a smooth way to the rest of the boat.

The parameter range have been chosen in order to avoid a high decrease of the hull volume
and, at the same time, explores a large variety of new shapes. In details, we have a tolerance
of the 10/00 for the volume constraint. With a trial and error approach we define the parameter
ranges, obtaining a parameter space that is P = [−0.08, 0.08]6 (the dimension of such space
is the number of parameters, 6 in this test). We underline that the parameters refer to the
motion normalized for the D length along the corresponding direction.

We create a set of 100 samples taking with uniform distribution on the parametric space.
These are the input parameters of the high-fidelity database required for ROM.

Finite volume discretization We simulate the flow pasting around the ship using the FV
method, computing for each deformed object the distribution of the total resistance over
the hull. The simulations are run on model scale (1:25). The computational grid (defined in
[−39, 24]×[−29, 0]×[−24, 6]) is built from scratch around all the deformed hulls, enforcing
the mesh quality. The computational grid counts ≈ 1.5 × 106 cells. To the VOF model, we
need an extra refinement around the waterline in order to avoid a diffusive behavior of the
fraction variable α, which is discontinuous. A region of the computation grid is reported in
Fig. 5 for demonstrative purpose. The numerical schemes adopted are mentioned in Sect. 2.2,
and we report in Table 1 the main physical quantities we fix in our setting. The Reynolds
number is near to 2 × 107. The integration in time is carried out for t ∈ [0, 40] s, with an

1 In naval architecture a boat is divided, no matter the size, in 20 chunks, generated by 21 equally spaced cuts
obtained with planes perpendicular to the x-axis.
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Fig. 3 x- and y-normal view of the set D (in blue) and the lattice of points P0
l,m,n (in red) over the undeformed

hull (color figure online)

Fig. 4 Example of shape morphing with μ = [0.08, 0.08,−0.06, 0.08,−0.08, 0.08]

initial step of Δt = 1 × 10−3 s and an adjustable time-stepping governed by the Courant
number (we impose it to be lower than 5). We clarify that, even if the time stepping is not
fixed, we save the equispaced temporal snapshots of the system in order to feed the DMD
algorithm. In this work, we are interested to the total resistance of the ship: after computing
the pressure, velocity and fraction variable unknowns (from the VOF-RANS model), we can
exploit them in order to calculate the resistance distribution (both the viscous and the friction
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Fig. 5 The refined computational grid

Table 1 Summary of the
numerical variable for
VOF-RANS model

Inlet velocity u 2.263 36m/s

Water density ρW 1.09 × 10−6 m2/s

Air density ρA 1.09 × 10−5 m2/s

Water kinematic viscosity νW 998.8 kg/m3

Air kinematic viscosity νA 1 kg/m3

Dissipation rate ω 70.497 21/s

Turbulent kinetic energy k 7.6841 × 10−4m2/s2

terms) over the hull surface. Regarding the computing time, on a parallel architecture with
40 processes, the simulation lasts approximately 8 h.

Dynamic mode decomposition We applied DMD on the FOM snapshots. It is important to
specify that we fit a DMDmodel for each geometric deformation, as a sort of post-processing
on the output. We train the model using 40 snapshots per simulation, collected within the
interval t ∈ [20, 40) s with Δt = 0.5 s. The first 20 s of the simulation are discarded
since they are not particularly meaningful for the boundary conditions propagation. In this
contribution, we analyze the DMD operator from a spectral perspectives. Figure 6 reports in
fact the eigenvalues (computed for a single simulation) after projecting the output onto a POD
space of dimension 5, that is sufficient to extract the most important contribution, from an
energetic perspective, of the dynamical systems. The position of eigenvalues in the complex
plane provide information about the dynamics of all the DMD modes. In particular, the
imaginary part is related to frequency, while the distance between them and the unit circle is
related to the growth-rate. We can neglect the dumped modes (the two eigenvalues inside the
circle) since their contribution is useless for future dynamics and focus on the remaining ones:
two modes present a stable oscillatory trend, that actually catch the asymptotic oscillations
of the FOM, and the last one (1 + 0i) is practically constant. We isolate the contribution of
only this latter mode, assuming it represents the regime state to which the FOM converges,
using it as final output. In our setting, having built the computational grid for all the deformed
ships from scratch, we need as last step to project the resistance distribution over the initial
geometry Ω(μ), in order to ensure same dimensionality for all the outputs. In our case we
use a closest neighbors interpolation. Thanks to the application of DMD, we can perform
fewer time iterations in the full-order model: instead of simulating 60 seconds using the
full-order model, we simulate only 40 s and we exploit the collected high-fidelity snapshots
for approximating the regime state with DMD. This of course implies a reduction of 1/3 of
the overall time required to run all the simulations.
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Fig. 6 First 5 DMD eigenvalues for a single simulation

Proper orthogonal decomposition with Gaussian process regression We exploit the col-
lected database in order to build a kind of probabilistic response surface to predict the
resistance of new shapes. We remember the starting set is composed by 100 input-output
pairs {(μi , yi )}100i=1, where μ is the geometrical parameters provided to FFD and y is the
resistance distribution over the deformed hull. Of the entire set, we use the 80% for train the
POD-GPR framework and exploit the remaining pairs to test our method. Firstly we applied
the POD on the snapshots matrix to reduce the dimension of the output. In this case the
singular values extracted are reported in Fig. 7 from an energetic perspective. The decay-rate
is not very steep, probably due to the discontinuous component for the VOF variable α,
which is directly involved in the resistance computation. Despite this, the POD allows to
remarkably reduce the dimension of the output, simplifying the next phase. We exploit the
computed modal coefficient in order to optimize the GP, then query for the new parametric
solutions. Tomeasure the accuracy, we propose in Figs. 8 and 9 two different sensitivity anal-
ysis varying the number of POD modes used to span the reduced space and the number of
snapshots to train the method, respectively. For sake of completeness, we compare the results
with similar data-driven methodologies that involve, instead the GPR, other interpolation
techniques for modal coefficient approximation, as the linear interpolation one or the radial
basis function (RBF) one. We propose here the simplest RBF interpolation, but we make the
reader aware that better results can be achieved tuning the smoothness of RBF, producing a
non-interpolating RBF method. For more details we refer [29]. The error refers to the mean
relative error computed on the test dataset (of dimension 20), using the resistance distribution
coming from DMD as truth solution. The GPR method is able to reach the minimum error
respect to the other interpolation, resulting in a relative error near to 5% adopting 20 modes,
but reducing its accuracy increasing the number of modes. This trend is shown also by RBF
error, that after an initial decreasing, becomes very large for many modes. Using a higher
number of modes we can, in fact, increase the precision of projecting the solutions onto the
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reduced space, but—since we apply all the methods using a component-wise approach—this
implies an increasing number of interpolation/regression. The gain of having more dimen-
sion in the reduced space is vanished by the sum of all the interpolation errors along such
dimensions. Even if also the probabilistic framework suffers this weakness, the GPR return
better accuracy with respect to the RBF method. Varying the number of snapshots (Fig. 9),
the difference between RBF and GPR is even more evident. While the RBF reaches an error
slightly less than the 8%, the GPR is able to stay beyond the 6% with 80 snapshots. We note
that we get the highest difference between the methods using few snapshots: the GPR shows
higher accuracy even with few samples and a pretty constant trend for database with greater
dimension. Finally, we conclude with a graphical visualization of the resistance distribution
on (a limited region2 of) the hull in Fig. 10, comparing the ROM approximation with the
FOM validation. Even if the difference is notable, the reduced model can express the main
physics behaviour of the original model. Regarding the computational cost reduction, the
reduced model can approximate the parametric solution only sampling an already defined
distribution, and even on a personal laptop it takes no more than few seconds, whereas the
FV solver takes 8 h, resulting in a very huge speedup.

Genetic algorithm The goal of the entire pipeline is the minimization of the total resistance
(only in the direction of the flow). To ensure feasibility of the deformed shape from the
engineering viewpoint, we add a penalization on the hulls whose volume is lower that 9990/00
of the original hull. In other words, we penalize the configurations that lead a volume decrease
greater than 1/1000 with respect to the original volume. Our optimization problem reads:

min
μ

{∫Ω(μ) τxρ − pnx if ∫Ω(μ) ρgh ≥ 0.999 ∫Ω ρgh
∞ otherwise

(22)

where τx is the x component of the (viscous and turbulent) tangential stresses, ρ is the density
of the fluid (computed according to the VOFmodel), p is the pressure, nx is the x component
of the normal to the surface, g is the gravity acceleration and h is the distance between
the surface and the waterline (∫Ω ρgh results the volume of the immersed hull using an

2 The bulbous bow is one of the region where the pressure resistance is higher, and then difficult to predict.
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Fig. 8 Sensitivity analysis on the accuracy of POD-GPR method varying the number of POD modes used.
The number of snapshots is fixed to 80
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Fig. 9 Sensitivity analysis on the accuracy of POD-GPRmethod varying the number of snapshots. The number
of POD modes is fixed to 20

hydrostatic approach). To compute the objective function for a generic parameters, we need
to perform the FFD morphing then project the POD-GPR solutions over the deformed ship,
in order to numerically compute such integral. We clarify that with the reduced order model
returns the distribution of viscous and pressure forces over the hull, that is τρ − p in Ω(μ).
As already mentioned, these methods have a negligible computational cost, allowing us to
optimize the shape in a very efficient manner. Despite its easiness of application, GA requires
a good tuning of the hyper-parameters to result successful. In this work, we applied the one
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Fig. 10 Value of total resistance over the bulbous bow for the FOM (on the left) and for the ROM (on the
right)

point crossover [12] for the mate procedure, while for the mutation a Gaussian mutation [19]
with σ = 0.1 has been involved. We set the mate and mutation probability to 0.8 and 0.2,
respectively. Moreover, we use an initial population dimension N0 = 200, reducing it to
N = 30 during the evolution. The stopping criteria in this case is the number of generations,
which is set to 15. Robustness of this setting is proved in Fig. 11, where 15 different runs
have been run and, for each run, the optimal shape is plotted both in terms of resistance and
volume. We can note in fact that all the runs have converged to the same fitness, despite
the stochastic component of the method itself, ensuring that the hyper-parameters are set
to fully explore the parameter space (and then globally converge to the optimal point). The
penalization we impose avoids the creation of unfeasible deformations: the optimum of all
the runs show a slight decreased volume, but within the initial tolerance, while the resistance
results decreased by more than the 4%.

We specify that this is the optimum for the reduced model. In order to obtain an accurate
value, the optimal parameter can be plug in the pipeline and the optimal shape is then validated
using the full-order FVmethod.Additionally, this latter can be insert in the snapshots database
and used to enrich the precision of the POD-GPR model. In our case, after the validation, the
gain in term of resistance is lower with respect to the ROM approximation, but reaching the
3.3% it results in a very good outcome in the engineering context. Regarding the performance
point of view, the computation of the solution using the full-order model requires 8 h, on
a parallel machine, while using the reduced order model just few seconds on a standard
personal computer. The different architectures deny any accurate comparison, but neglecting
all the minor contribution in the pipeline and counting only the high-fidelity simulations,
we can estimate the computational gain. Since the optimization algorithm produces 620
individuals (200+14×30) and we use 100 samples for the construction of the reduced order
space, it is easy to note that with the introduction of the POD-GPRmethod we can reduce the
computational cost to 1/6 of the original cost. Considering 8 h for a single full-order simulation
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Fig. 11 Optimal shapes produced by 15 different application of GA, in terms of resistance and volume as
percentage respect to the original ship

(we remark the computational gain coming by DMD is excluded in this speedup analysis,
since already mentioned in previous sections), the proposed pipeline will reach the end after
800 h while replicating it without the reduction, the procedure takes 4960 h for converging.
Of course, such gain grows exponentially if we repeat the optimization procedure many
times: in the reduced framework we need just the 100 initial samples, independently from
the number of optimization runs, while in a conventional way the 620 individuals created
during the evolution have to be multiplied by the number of runs.

4 Conclusion and future perspectives

In this work, we propose a complete computational framework for shape optimization prob-
lems. To overcome the computational barrier, the dynamic mode decomposition (DMD)
and the proper orthogonal decomposition with Gaussian process regression (POD-GPR) are
involved. This pipeline aims at reducing the number of high-fidelity simulation needed to
converge to the optimal shape, making its application very useful in all the context where the
performance evaluation of the studied object results computationally expensive. We applied
such framework to an industrial shape optimization problem, minimizing the total resistance
of a cruise ship advancing in calmwater. Exploitation of ROM techniques drastically reduces
the overall time, and even if the accuracy of the reduced model is decreased (with respect
to the full-order one) the final outcome presents a remarkable reduction of the resistance
(3.3%).

Future developments regarding this integrated methodology may interest the extension
to constraint optimization problems, the involvement of machine learning techniques in the
optimization procedure, or a greedy approach that enriches the reduced ordermodel by adding
iteratively the approximated optimal shape.
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