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Abstract

In this thesis, I focus on the issue of contamination to the polarization of the Cos-

mic Microwave Background (CMB) anisotropies from di↵use Galactic foregrounds,

which is known to be one of the greatest challenges to the detection of the curl

(B) modes of the signal, which might be sourced by cosmological gravitational

waves. I take parallel approaches along these lines. I apply the most recent tech-

niques capable of parametrizing, fitting, and removing the main known Galactic

foregrounds in a multi-frequency CMB dataset to one of the forthcoming powerful

CMB polarization experiments, the Large Scale Polarization Explorer (LSPE). I

presented the result of the complete simulation done for the parametric component

separation pipeline of this experiment. On the other hand, I explored the latest

Machine Learning and Artificial Intelligence algorithms and their application in

CMB data analysis, specifically component separation and foreground cleaning. I

start the investigation of the relevance of Neural Networks (NNs) in the under-

standing of the physical properties of foregrounds, as it is necessary before the

foreground removal layer, by implementing a novel algorithm, which I test on sim-

ulated data from future B-mode probes. The results of the implemented NN’s

prediction in discerning the correct foreground model address the high accuracy

and suitability of this model as a preceding stage for the component separation

procedure. Finally, I also investigate how di↵erent NNs, as a generative model,

could be used for reconstructing CMB anisotropies where the removal is impossi-

ble, and data have to be abandoned in the analysis. Lots remain to be done along

each of these three investigations, which have been published in scientific journals,

and constitute the basis of my future research.
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Chapter 1

Introduction

The Cosmic microwave background (CMB) is made of photons that decoupled

from the hot and dense phase of the early Universe, about ⇠380,000 years after

the Big Bang. On the basis of the knowledge that we have at this moment, the

CMB represents one of the main pillars of the standard cosmological model. Since

its discovery, in the middle 60s of the past centuries, the CMB and its anisotropies

have been observed by satellites, balloons, and ground-based telescopes [see 1–5,

and references therein]. These observations shed light on the di↵erent aspects of

our understanding of the evolution and composition of the Universe, from small to

large cosmological scales. Several mysteries remain, such as the quasi-exponential

expansion due to transient vacuum energy, an era known as Inflation, in the very

early Universe, at energy not accessible by ordinary or foreseen laboratories. The

CMB radiation is predicted [6] and found to be linearly polarized, [4, 5, 7] and its

pattern can be decomposed into curl-free, and divergence-free quantities called E-

and B-modes, respectively [8]. Primordial Gravitational Waves (GWs) produced

by the Inflationary era in the early Universe are sources of the CMB B-mode

anisotropies, and represent the main observational target of ongoing and future

CMB probes [see 9, and references therein]. The GW contribution to B-modes,

parametrized by its amplitude relative to primordial scalar perturbations, the

tensor-to-scalar ratio, r, induces anisotropies at the degree and super-degree scale.

To date, there is no detection for r, while only upper limit exist, r < 0.044 (at

95% confidence level) [10].
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Introduction 2

The search for primordial GWs is complicated by the fact that the polarized emis-

sions from the Galaxy are comparable or dominant with respect to the CMB B-

modes signal in all the frequencies and all over the sky, representing one of the main

obstacles in observing CMB polarization anisotropies [11–13]. This occurrence has

stimulated the creation of a new layer of CMB data analysis algorithms, the com-

ponent separation, which has the goal of subtracting the Galactic foregrounds,

with confidence and accurately estimated errors, despite of the complexities of the

Galactic signal which is removed from the multi-frequency datasets.

In this Thesis, we push forward several fronts along this line of investigation. First,

we consider the most advanced component separation procedures in order to assess

their predicted performance in one of the forthcoming B-mode probe, the Large

Scale Polarization Explorer (LSPE). It follows from our analysis that the LSPE

will be able to set an upper limit for tensor-to-scalar ratio r at the level of 10�2

and detect a r = 0.03 with 95% confidence limits. In parallel, and looking at the

challenges described earlier, we are motivated to investigate innovative algorithms

based on Neural Networks (NNs) as a subset of Machine Learning (ML) and

Artificial Intelligence (AI). We start the construction of a new layer of analysis

of multi-frequency CMB datasets, to be exploited prior to component separation,

designed to discern the right physical parametrization of foregrounds when the

polarized Galactic emissions vary across the sky: we introduce the implement a

NN model for the foreground recognition in the context of CMB B-mode data

analysis for the first time. The established model is able to classify the foreground

models correctly, in the absence or presence of the noise, with higher than 90%

accuracy. Moreover, in Comparison with �
2 information shows advantages in terms

of accuracy. Finally, we consider a di↵erent algorithm based on NNs, the so-called

Generative Adversarial Networks (GANs), in order to check the possible potential

for generating the CMB signal when it is missing due to harsh removal due to a

high level of contamination. We quantify how much these techniques are able to

fill-in the CMB signal in the masked regions due to point sources.

The Thesis is organized as follows: we review the fundamental physics of the

CMB radiation in Chapter 2. In Chapter 3, we describe the contamination of the

CMB B-mode polarization signal, discuss the di↵erent Galactic emissions that

play the dominant role in this occurrence, and set the current status of the CMB

B-mode observations, as well as the expectations from future probes. Chapter

4 is dedicated to the component separation forecasts for the LSPE experiment,
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using the most advanced component separation techniques. In Chapter 5, we

illustrate the NN algorithm, which is able to discern di↵erent CMB foreground

models in di↵erent regions of the sky, as a pre-processing phase with respect to the

component separation pipeline in terms of accuracy and e�ciency as a foreground

classifier. In Chapter 6, we study the GAN in the context of reconstructing the

CMB signal where is missing due to point sources removal. The latter three

Chapters have been taken from an equal number of original papers. Each of them

represents the starting point for future investigations, as we stress in the relevant

Chapter, as well as in Chapter 7, where we summarize the results obtained in the

Thesis and indicate the desired forthcoming steps along each of these lines.



Chapter 2

Physics of the Cosmic Microwave

Background

The purpose of this Chapter is to introduce the scientific context in which the

work for this Thesis has been carried out. First, we highlight the standard model

of Cosmology in Section 2.1. We explain how the CMB is generated, and also

how it has been observed across decades, in Section 2.1.1. After that. in Section

2.1.2 we describe the inflationary paradigm for introducing the science case which

motivates the data analysis e↵orts presented in the following Chapters. Finally,

Section 2.2 reviews the sources of CMB anisotropies and their scientific relevance,

besides the direct imprint of inflationary perturbations.

2.1 The standard cosmological model

The current Standard Model of Cosmology, also called the “Concordance Cos-

mological Model”, is based on the ”Big Bang” theory, which assumes that the

Universe started from a very hot and dense state, 13.8 billions years ago. This

model predicts that the Universe has been expanding over time with an expan-

sion rate depending on the types of matter and energy in it. The first evidence

of cosmological expansion has been obtained by Hubble [14, 15], observing the

recession velocity of nearby galaxies. He discovered that galaxies are moving away

from each other with speed proportional to their distance; therefore, the spec-

trum of light emitted by them is redshifted. In other words, he observed that the

light emitted by galaxies has progressively more reddening because of the Doppler

4
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e↵ect, increasing with their distance. Based in this observation, he formulated

what it is known today as the Hubble low, v = H0D, where v and D are the

velocity and proper distance from galaxy to the observer respectively, measured

typically in Mega Parsec (Mpc); H0 is the Hubble’s constant where the subscript

0 shows the value of H (Hubble parameter) at the time of observation. Two prin-

ciples state that the Universe is homogeneous and isotropic at cosmological scales,

corresponding to about hundreds of Mpc or more, which means that there is no

preferred location or direction in any observable we may access. Both expansion

and Large Scale Structure (LSS) formation follow the Einstein’s General Rela-

tivity (GR). The cosmological metric in GR consists of 4 dimensions, 3 spatial

dimensions plus time explaining expansion on large scales, as well as LSS forma-

tion following local curvature due to gravitational collapse. By considering the

cosmological principles and GR, the four-dimensional space-time can be written

as Friedmann-Lemaitre-Robertson-Walker (FLRW) metric [16]:

ds
2 = �dt

2 + a
2(t)


dr

2

1�Kr2
+ r

2(d✓2 + sin
2
✓d�

2)

�
. (2.1)

Where (r, ✓, �) are comoving (i.e. at rest with respect to the cosmological ex-

pansion) coordinates and t is the cosmological proper time, a(t) is known as scale

factor which is a dimensionless quantity describing the cosmological expansion,

usually assumed to have the value a0 = a(t0) = 1 at the present time t0. K is

the curvature parameter, assuming positive, negative, or a null value, meaning

respectively that the metric is close, open, or flat.

The standard model of cosmology is also known as the “⇤CDM Model”, where

⇤ refers to the Cosmological constant and CDM stand for Cold Dark Matter

[17]. The cosmological constant is a particular case of the broad range of models

corresponding to the Dark Energy (DE), responsible for the accelerated expansion

of the Universe, which was discovered by observation of supernovae type Ia by

Riess et al. [18], Perlmutter et al. [19]. Instead, the CDM is referred to non-

relativistic and non-baryonic particles that move slowly respect to the speed of

light (cold) and interact with ordinary matter and electromagnetic radiation very

weakly. The existence of CDM was proposed to describe the shape of the galaxy

rotation curves [see e.g. 20, and references therein], the galaxy cluster dynamics

[21], and several other processes associated to LSS.
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The expansion of the Universe as we described before is described by the Fried-

mann equations, determining the behavior of the scale factor a(t) in relation to

the matter and energy content of the Universe, as well as its curvature:

H
2 =

8⇡G

3
⇢tot �

K

a2
. (2.2)

G is the Netwon gravitational constant, the Hubble parameter H ⌘ 1
a

da

dt
explains

the expansion of universe and ⇢tot ⌘ ⌃i⇢i is the total energy density, summed

over each ⇢i indicating the energy density of each cosmological component. The

current value for the Hubble parameter is H0 = 100.hkms
�1
Mpc

�1 with h = 0.67

and known with sub-percent precision [22, 23]. Typically, the energy densities

of the di↵erent components of the universe ⇢i are expressed in units of so-called

critical density ⇢c:

⌦i ⌘
⇢i

⇢c
=

8⇡G⇢i

3H2
. (2.3)

Each cosmological component is assumed to behave as a perfect relativistic fluid,

characterized by a specific Equation of State (EoS) between pressure and energy

density:

!i =
pi

⇢i
. (2.4)

In the ⇤CDM framework, the Universe is composed by three components: DE

which is described as a cosmological constant within current constraints (charac-

terize by its own abundance parameter ⌦⇤), non-relativistic matter consisting of

DM and baryionic matter (⌦m = ⌦DM +⌦b), and relativistic photon and neutrino

components (⌦r = ⌦� + ⌦⌫). The EoS of the cosmological constant is !⇤ = �1

while for non-relativistic matter !b = !DM = 0. The photon contribution to the

radiation component has an EoS !� = 1/3, following the assumption of thermal

equilibrium in the energy density distribution. This EoS is valid also for the neu-

trinos, as they are characterized by a mass making them e↵ectively in a relativistic

regime in all the relevant cosmological epochs, m⌫ ⌧ 1 eV. As we will see, ob-

servations show that the Universe has a global zero curvature (K ' 0), meaning

that the total density ⇢tot should be equal to the critical density ⇢c which means

⌦tot = ⇢tot/⇢c ' 1. Based on the latest measurements, the current values for the

relative densities of DE, DM, baryonic matter and radiation are: ⌦⇤ ' 68.3%,

⌦DM ' 26.8%, ⌦b ' 4.9%, and ⌦r ' 10�5 [22].

We are interested in probing Cosmology at very high energy scales, right after

the Big bang, in order to investigate physical mechanisms at the edge of our
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knowledge. This regime is known as the Planck scale. The Planck energy, time,

and length scales can be obtained by combining the Newton, Planck and light

speed constants, obtaining extreme values, such as the Planck length ⇠ 10�35 m

and, in terms of time, the Planck time ⇠ 10�44 seconds. As we discuss with more

detail in Section 2.1.2, according to the current picture of the cosmological model

at those extreme epochs, a process named Inflation took place and lasted just for

about ⇠ 10�33 seconds, expanding the size of Universe in an accelerated, quasi-

exponential manner, by a factor of at least ⇠ 1026 [24, 25]. Inflation is known

to solve three main problems of the pre-inflationary cosmology: flatness, horizon,

and magnetic-monopole problem [26, 27], associated to the remarkable vanishing

value of the observed curvature, the apparent homogeneity in the distribution of

structures, as well as the absence of relics from phase transitions. Moreover, by

describing the Inflation as triggered by a scalar field known as the Inflation, it has

been realized how its quantum fluctuations appear to be the seeds of the observed

LSS. It can be seen how the emergent spectrum of inflationary fluctuations in

the energy density is characterized as a Gaussian random process, where the only

quantity which matters is the variance at each cosmological wavenumber, k =

2⇡/lambda, which is described as a power law with exponent ns [28] which is

know today to be close by lower with respect to 1 by about 4%.

One of the most important evidence of the Big bang theory and the standard model

of cosmology is the Cosmic Microwave Background (CMB) radiation, which we

will describe extensively in the next Section.

2.1.1 The Cosmic Microwave Background

The standard model of cosmology, as we described in the previous Section, predicts

the existence of thermal radiation as a remnant of the hot and dense stage of

the very early Universe, known as CMB. Following Inflation, the hot and dense

gas made of relativistic and non-relativistic components, started to cool down

and get rarefied due to the expansion. Within the first seconds, baryons formed

and de-coupled out of thermal equilibriuum with the cosmic plasma when the

temperature of the Universe dropped below ⇠ 100 keV, while relativistic particles

like electrons, positrons and photons remained in equilibrium. After that, with

the cooling continuing, the nuclei of elements started to form, but due to the low

speed of nuclear reactions with respect to the Universe expansion, only helium and
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hydrogen nuclei were produced at an appreciable level. This era is the Big Bang

Nucleosynthesis, which lasts for less than one thousand seconds.

Later, the Universe gets too cold to provide the needed energy for the nuclear

reaction of the elements heavier than helium. As the expansion goes on and the

temperature drops to ⇠ 1 eV, the fraction of neutral hydrogen gets very small.

Photons are tightly coupled to electrons via Compton scattering and electrons to

photons via Coulomb scattering. Although the binding energy of neutral hydrogen

atom is ✏0 = 13.6 eV, and we expect the ionized hydrogen converts to neutral

atoms at that energy, the high ratio of photon/electron prohibits any electron

from staying bound to nuclei. Hydrogen atom formation happens only when the

temperature comes down to ⇠ 0.1 eV, and photons are no longer in thermal

equilibrium with the matter. Recombination is the era in which electron and

atomic nuclei construct the neutral atoms, and the Universe for the first time

becomes transparent. Before the recombination, the mean free path of photons was

of the order of length corresponding to one atom, meaning opacity to radiation.

After atom formation, the photons can travel freely and their mean free path

increasis up to cosmological scales. This era is the origin of CMB photons and is

associated with the Last Scattering Region (LSR), the most distant portion of the

Universe which we can access through electromagnetic radiation. Recombination

happens at redshift z ⇡ 1100, in other words, when the Universe was around

380,000 years old. The collision with electrons before the last scattering guarantees

the fact that photons were in equilibrium and they keep a black body spectrum.

The CMB was predicted for the first time by Gamow [29] and Alpher and Herman

[30], but its discovery was postponed to about 17 years later [1]. They measured

isotropic microwave radiation in one single frequency turns out to be the most

important evidence of the Big bang theory. The black-body shape of the CMB

temperature spectrum was reported weeks after the launch of Cosmic Background

Explorer satellite from the National Aeronautic Space Administration, [COBE,

NASA, see 2, and references therein], showing an almost perfect black-body shape.

Figure 2.1 indicates the observational data of Far Infrared Absolute Spectropho-

tometer (FIRAS) instrument of COBE on top of the theoretical black-body curve.

The COBE mission ended in 1994 [31] and represented a milestone along the way

for the next generation of balloon and ground based experiments during the 90s.

The Wilkinson Microwave Anisotropy Probe (WMAP) [3], supported again by

NASA, was launched in 2001. WMAP had five frequencies from 22.8 GHz to 93.5
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Figure 2.1: The FIRAS measurements of the CMB radiation on top of a
theoretical black-body curve. Figure from [33]. The errorbars are artificially

augmented by a factor of 100, in order to make them graphically visible.

GHz and took data for nine years. In 2009, the Planck satellite from the Euro-

pean Space Agency (ESA), equipped with nine frequencies from 30 GHz to 857

GHz, was launched in 2009 and in operation till 2013 [32]. Planck consisted of two

di↵erent instruments the High Frequency Instrument (HFI) and Low Frequency

Instrument (LFI). As we anticipated, satellites represent only one component of

all e↵orts concerning CMB observations; a number of ground based and balloon

borne observatories operated in parallel to satellites. It is di�cult to quote prop-

erly all e↵orts along these lines, but the reader can look at the repository available

at lambda.gsfc.nasa.gov for a complete list of past and operating observations.

Planck observed the CMB temperature power spectrum with very high precision,

in terms of sensitivity and angular resolution, reaching a few arcminutes. It also

probed polarization down to an angular scale corresponding to about 10 arcmin-

utes, while leaving the high precision polarization observation to the more sensitive

instruments corresponding to the next generation of CMB experiments, which we

will describe extensively in Chapter 3.

2.1.2 The Inflationary Paradigm

In this Section we describe the main features of the Inflation, which we already

anticipated. Our goal is to review how the early Universe is thought to produce

cosmological perturbations with the properties of tensors, i.e. gravitational waves,
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and their abundance with respect to scalar (density) perturbations. Indeed, the

search for cosmological gravitational waves is the main target of CMB experi-

ments where the methodologies developed in this Thesis found their motivation

and application.

The pre-inflationary cosmology was a✏icted by the horizon and flatness problems.

As it is well known, see e.g. Dodelson [17], the horizon is the maximum comoving

distance traveled by light since the beginning. At the time of recombination, the

size of the horizon corresponded to ⇠ 2� in the sky today, which means that the

objects in the distance larger than the horizon didn’t exchange information and

they were not causally connected. This was in conflict with several evidences,

such as the fact that the CMB temperature exhibits changes of one part per a

hundred thousands all over the sky. Therefore, the horizon problem corresponds

to the question: how did the CMB photons coming from di↵erent regions with

super-horizon distances thermalize and share such similar temperatures?

On the other hand, the flatness problem refers to the curvature density, ⌦K (ex-

plained in Equation 2.3), which is probed by CMB measurements as we will see,

and found to be smaller than ⇠ 10�2 [22]. Since the curvature density has a di-

rect dependency with the scale factor, proportional to a
�2, we can compute this

parameter at the Planck time, and find ⌦K 6 10�63. So the question would be:

why did the Universe favor a flat geometry, i. e. K = 0, in its initial state?

In 1980 Alan Guth introduced an answer to these questions: prior to the Big Bang,

there was a phase of very rapid accelerated expansion driven by a scalar field, with

a negative-pressure equation of state ! ⇡ �1. This scalar field, named Inflaton,

would be also responsible for quantum fluctuations generating cosmological density

and metric perturbations. One year earlier, the accelerated expansion and the

generation of gravitational waves from quantum fluctuations was studied by [34].

Starobinsky proposed a simple model of inflation where the scalar field � was

obeying a dynamics dictated by the potential V (�).

We describe here the fluctuations produced by the Inflation, which become later

the LSSs. The background metric depends only on time, whereas the metric

fluctuations depend on both space and time, see Durrer [35] for reviews. Since the

metric is a symmetric tensor, there are ten fluctuating degrees of freedom. There

are four degrees of freedom that correspond to scalar metric fluctuations. The

other four correspond to vectors, and the last two to tensors. A gauge freedom,
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due to reference frames di↵erent from the comoving one at the linear level, reduce

the physically relevant scalar and vector perturbations to 2, and tensors to 1, In

longitudinal gauge, the perturbed metric can be written as

ds
2 = �(1 + 2 )dt2 + a

2(t)[(1� 2�)�ij + 2hij]dx
i
dx

j
, (2.5)

where  and � are the gauge invariant scalar Bardeen potentials [36] and hij is

transverse and traceless, rihij = 0 which consists of the tensorial part of the

perturbations and describes gravitational waves. For a perfect fluid or quasi-

Newtonian matter made of non-relativistic particles, the two Bardeen potentials

are equal (with the exception of the sign) and analogue to the Newtonian grav-

itational potential. The metric perturbations are related to perturbations in the

energy momentum tensor of matter by Einstein’s equations. We also define the

curvature perturbation R which is an important quantity for inflationary models

in terms of the Bardeen potentials:

�R =
2

3(1 + !)

⇥
 +H

�1�
⇤
. (2.6)

The Equation above is similar to 2.4, where ! is the EoS of the entire content

of the stress energy tensor. R is proportional to the perturbation of the spatial

Riemann curvature in the comoving gauge. Following the calculation in [35], the

power spectrum of the curvature fluctuation, R, on super Hubble scales can be

written as

P(k) = �2
R

✓
k

k⇤

◆(ns�1)

, (2.7)

where ns � 1 is the spectral tilt, k⇤ is an arbitrary pivot scale and �R is the

amplitude of the power spectrum at this scale. The spectral tilt and the amplitude

depend on the details of the inflationary model. In the FRLW metric, the equation

of motion for a scalar field is the Klein Gordon equation which is written as

�̈+ 3H�̇+ V,� = 0 . (2.8)

The Friedmann equation mentioned in Equation 2.2, without curvature, takes the

form

H
2 =

8⇡G

3
⇢ =

8⇡G

3

✓
1

2
�̇
2 + V (�)

◆
' 8⇡G

3
V (�) , (2.9)

where �̇
2
/2 is the kinetic term and V is the potential of the scalar field.
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A key property of inflationary models is the capability of performing a slow roll

of the potential mean value down to the minimum of the potential, in order to

produce the amount of expansion which is required to solve the horizon and flatness

problems. One can introduce two slow roll parameters

✏ ⌘ � Ḣ

H2
=

m
2
p

16⇡

✓
V,�

V

◆2

' 3

2

�̇
2

V
⌧ 1 , (2.10)

and

⌘ ⌘
m

2
p

8⇡

✓
V,��

V

◆
=

V,��

3H2
, (2.11)

where V,� and V,�� are the first and second derivatives of the potential and mp is

the Planck mass. Inflationary models need to satisfy both conditions ✏ ⌧ 1 and

⌘ ⌧ 1, in order to keep the slow roll regime for inflation [37]. It is possible to

show that in this regime, the curvature fluctuations obey the relation

�2
R =

H
2

⇡✏m2
p

����
H=k⇤/a

, ns � 1 = �6✏+ 2⌘ , (2.12)

where |H=k⇤/a means that the Hubble parameter which is varying very slowly

should be evaluated when the pivot scale k⇤ corresponds to the Hubble expansion

rate H, a moment which is also known as horizon exit. During Inflation, the

quantum fluctuations which oscillate at constant amplitude as long as k/a � H,

and those in the tensor perturbations hij correspond to cosmological gravitational

waves. Once the scale factor has grown su�ciently, reaching k/a ' H, the oscil-

lations freeze and when k/a ⌧ H, hij (in Equation 2.5) becomes constant. It is

possible to show that the constancy of cosmological gravitational waves on scales

larger than the horizon keeps being valid also after Inflation ends. Therefore, their

detection would be not only a unique evidence of inflationary field but also it would

be a most important carrier of information about the features of Inflation itself.

It is possible to show that the power spectrum of gravitational waves produced in

this way during single field slow roll inflation is given by

Ph(k) = �
2
h

✓
k

k⇤

◆nt

, (2.13)

with

�2
h
=

16H2

⇡m2
p

����
H=k⇤/a

, nt = �2✏ . (2.14)
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Therefore, by having the amplitude of both tensor and scalar modes, we can define

the observable parameter, tensor to scalar ratio, r:

r =
�2

h

�2
R

= 16✏ = �8nt . (2.15)

For a more complete review of a variety of inflationary models, we refer to [38].

2.2 CMB Anisotropies

In this Section, we will introduce the main properties of the CMB anisotropies,

consisting in their link to cosmological perturbations, and focusing on the decom-

position of their polarization. At the end, we review some of the main secondary

sources for them, mainly due to LSS formation.

2.2.1 Temperature anisotropies

By indicating with T the temperature of the CMB, the signature of quantum

fluctuations generated during inflation can be seen on the CMB temperature field

at the level of �T/T ⇠ 10�5. Figure 2.2 shows the temperature anisotropies

of the CMB, observed by the Planck satellite [4]. The map is characterized by

fluctuations on all visible scales, from the entire sphere, down to the arcminute,

and we will outline the main phenomenology leading to those imprints in this

Section. At any given time t, the CMB temperature field T is a function of

position x and direction n, T (x, t,n). The direction dependence can be expanded

on the sphere as:

T (x, t,n) = T̄ (t)
X

`

`X

m=�`

a`m(x, t)Y`m(n) , (2.16)

where Y`m are the scalar spherical harmonics, ` and m determine the wavelength

and the shape of the mode. The expansion coe�cients are given by a`m. T̄ (t) is the

average of T over all the directions in the spherical coordinate system at the given

time. The CMB temperature at present is T0 ⇠ 2.7255 Kelvin. The statistical

isotropy means that for di↵erent `’s and m’s, the random variables a`m(x, t) are
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not correlated. Therefore we can write:

ha`m(x, t)a⇤`0m0(x, t)i = �``0�mm0C`(t), (2.17)

where the latter term represents the variance at each given scale `, and the set of

values for all scales is known as the CMB angular power spectrum for temperature.

Since the CMB, as a result of inflationary perturbation, is nearly Gaussian, as it

is confirmed by Planck observations, [39], most of its characterizations are coded

in angular power spectra. By taking the average over every ` and m, we obtain

C` =
1

2`+ 1

X

m

|a`m|2 . (2.18)

Given the Gaussian nature of the field the sample variance which a↵ects the unique

observation we have of the CMB is given by

�C` =

r
2

2`+ 1
C` . (2.19)

The actual values of the coe�cients of the CMB temperature power spectrum are

obtained by integrating the photon geodesic along the Line Of Sight (LOS) [see e.g.

40, and references therein]. By solving Einstein’s equations for the evolution of the

geometry and the Boltzmann equation for the evolution of the photon distribution

function to first order, we can derive the temperature fluctuation spectrum for a

given initial spectrum of curvature fluctuations, which has the expression

`(`+ 1)C`

2⇡
=

Z
dk

k
⇥2

T
(k, `)P(k) , (2.20)

where ⇥2
T
(k, `) is the transfer function which encodes all the changes of the fluctua-

tions from the initial time, when the primordial spectrum of density perturbations

P(k), defined in 2.7, were produced. The above expression, of course, transfers

the power of the primordial density perturbations only, while, as we will see later,

the other kinds of perturbations, namely tensors, also a↵ect CMB anisotropies.

The transfer function is a result of the integration of the Boltzmann equation. We

report here just the more significant highlights of these calculations, referring to

Durrer [35] for a complete treatment. The LOS integration gives:

�T

T
(n) = [

1

4
�
(�)
g

+V(b)
.n+( +�)](tdec+xdec)+

Z
t0

tdec

@t( +�)(t,x(t))dt . (2.21)
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Here �
(�)
g is the radiation density fluctuation, V(b) is the baryon peculiar velocity

and  and � (the same as Equation 2.5) are the Bardeen potentials. All these

parameter are evaluated at the time of photon decoupling from photon-baryon

fluid (tdec + xdec). The first and the third term in the square bracket together

combine to the ordinary Sachs-Wolfe e↵ect on large angular scales [41], meaning

the e↵ects due to gravitational potensials on the Last Scattering Region, as well

as their evolution along the line of sight (Integrated Sachs-Wolfe, ISW). Meaning

that, the photon coming to the observer at (x0, t0) from a direction n, starting

on the last scattering surface from the Bardeen potential at the position (x
dec

).

One can show that, on large angular scales, i.e. larger than the scale subtended

by the horizon at decoupling, i.e. about 2 degrees, the temperature fluctuations

from adiabatic inflationary initial fluctuations are given by

�T

T0
(x0, t0,n) =

1

3
 (tdec + xdec) , (2.22)

meaning that on those scales, temperature CMB anisotropies are a faithful tracer

of the inflationary initial conditions, via the Sachs-Wolfe e↵ect, shown in Figure

2.3 with pink color. The power imprinted by Inflation on all scales represents the

source of the oscillatory part of the spectrum. Indeed, a characteristic process

of the CMB consists in the Baryon Acoustic Oscillations (BAO). At the time of

recombination, in the photon-baryon fluid, radiation pressure resists the gravita-

tional compression of the fluid into potential wells, and sets up acoustic oscillations

in the fluid. Due to gravity which is powered by the initial conditions imprinted

by Inflationary perturbations, the baryon density grows and due to photon pres-

sure response, they start a bouncing process. The regions with compression and

rarefaction represent the hot (overdensity) and cold (underdensity) zones of CMB

temperature. The baryon density controls the relative heights of overdensity and

rarefaction peaks [42]. The integral part in Equation 2.21 corresponds to the ISW,

which we’ll comment in more detail later in the Chapter, and corresponds to the

green line in Figure 2.3). The second term in the square bracket of Equation

2.21 is the Doppler e↵ect, which is caused by photons emitted from electrons with

non-zero peculiar velocity in the direction of the emission (blue line in Figure 2.3).



Cosmic Microwave Background physics 16

P
S
fr
ag

re
p
la
ce
m
en
ts

-300 300 µK

Figure 2.2: The 2018 Planck map of the temperature anisotropies of the
CMB. The gray outline shows the extent of the galactic mask. Plot taken from

the Planck legacy archive. From [11].

Figure 2.3: The variance (C` coe�cients, defined in the text) as a function
of the angular multipole, related to the angle at which the anisotropy is probed
by the approximate relation ` ' 220/✓ [degrees]. The main contributions of the
various terms in Equation 2.21, discussed in the text, are shown. The green,
blue and pink represent ISW, Doppler and SW e↵ects respectively, while black
line describes their sum. The units of the spectrum are arbitrary. Plot from

[43].
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Figure 2.4: Left: Thomson scattering of radiation with a quadrupole
anisotropy generating linear polarization. Blue colors (thick lines) represent
hot and red colors (thin lines) cold radiation. Right: Polarization in the x̂ � ŷ
plane along the outgoing ẑ axis. The component of the polarization that is
parallel or perpendicular to the wavevector k is called the E-mode and the one

at 45� angles is called the B-mode. Plot from [42]

2.2.2 Polarization Anisotropies

Just like the scattering producing temperature anisotropies, the process respon-

sible for polarizing the CMB radiation is the Thomson scattering between pho-

tons and electrons at the epoch of recombination [6]. A quadrupole temperature

anisotropy in the radiation generates a net linear polarization from Thomson scat-

tering and a quadrupole can be generated causally by the motion of photons when

the Universe is optically thin to Thomson scattering. Therefore, the order of

magnitude and orientation of the polarization anisotropies are proportional to the

magnitude and orientation of the radiation’s quadrupole. The left panel of Figure

2.4 shows how Thomson scattering of radiation with quadrupole anisotropy, com-

ing from cold and hot spots of the CMB, generates linear polarization. Here we

make use of well-known Stokes parameters (I, Q, U , and V ) in order to describe

the polarization field of monochromatic electromagnetic wave. The parameter I

quantifies the relative intensity of the wave, corresponding to �T/T as described

above, Q measures the linear polarization in the direction of x axis, where U gives

the same information along the axis rotated by 45�. Finally, V is the parameter

that encodes circular polarization, which is usually ignored in cosmology, since the

Thomson scattering is not expected to produce any circular polarization. CMB

polarization can be described by the Q and U parameters, which are coordinate

dependent [44], and transform under the rotation angle along the axis perpen-

dicular to the wave. Q and U , in terms of spherical harmonics, can be written
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as

(Q± iU)(n̂) =
X

l,m

a
±2
l,m

Y
±2
l,m

(n̂), (2.23)

where at this time we exploit the tensor spherical harmonics, Y ±2
l,m

. We can also

define the polarized intensity P =
p
Q2 + U2. Figure 2.5 shows the Polarized

intensity of the CMB, observed by Planck [4].

2.2.2.1 The E and B modes

The CMB polarization pattern can also be decomposed into an alternative base,

the E and B-modes, gradient and curl components, with odd and even behavior

with respect to parity transformation, respectively [8, 45]. In the real space, they

are defined as:

E(n̂) =
X

l,m

a
E

l,m
Yl,m (n̂), B(n̂) =

X

l,m

a
B

l,m
Yl,m (n̂) . (2.24)

In the harmonic space, aE
l,m

and a
B

l,m
are defined as

a
E

l,m
= �(�a

2
l,m

+�a
�2
l,m

) /2 , a
B

l,m
= i(�a

2
l,m

+�a
�2
l,m

) /2 . (2.25)

Unlike Q and U , B and E-modes are coordinate-independent on the sphere. The

right panel of Figure 2.4 demonstrates the di↵erence between E and B-modes

patterns. In principle, we can calculate all the combination of temperature T , and

polarization E, B power spectra along with their correlations: C
TT

`
, CEE

`
, CBB

`
,

C
TE

`
, CTB

`
, CEB

`
. Under parity transformation T and E transform di↵erently re-

spect to B, therefore, due to parity conservation C
TB

`
, CEB

`
will be zero. In Figure

2.6, we show C
TT

`
, CEE

`
, CBB

`
, CTE

`
, power spectra in blue, orange, green and red

respectively. As we have seen in Section 2.2.1, the reason for the oscillations in the

TT and EE power spectra is related to the acoustic oscillations of photon-baryon

fluid inside the gravitational wells. The polarization signal arises from the gradient

of the peculiar velocity of the photon fluid (⌫�). However, there is a di↵erence in the

oscillation phase of TT and EE in such a way that the peak of TT is the opposite

of EE. This phase shift is due to the fact that the monopole and the quadrupole

are the main contributors to TT and EE power spectra, respectively. The dif-

ference in power between temperature and polarization is due to the e�ciency

of Thomson scattering in converting into polarization a portion of the incoming
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Figure 2.5: The 2018 Planck map of the polarized CMB anisotropies, shown
as rods whose direction and length represent the direction and amplitude of
polarized CMB. The colored background is the map of intensity anisotropies,
smoothed to 5 degrees. Plot taken from the Planck legacy archive [see 32, and

references therein].

intensity quadrupole. In the next Section, we will discuss di↵erent features of the

BB power spectrum and its sources. Before concluding, we highlight the region at

l < 10, which is a↵ected by what is known as the reionization bump. Reionization

happens around redshift z ' 7 [22], when free electrons produced through reion-

ization of the intergalactic medium are hit by CMB photons along their path to us.

The e↵ect boosts anisotropies at large angular scales, corresponding to the angle

subtended by the horizon at reionization, as a second scattering region, closer to

the observer with respect to the recombination. The e↵ect powers up polarization

anisotropies, as the new era of Thomson scattering reprojects anisotropies from

the quadrupole coming from the last scattering at recombination. The reioniza-

tion is characterized by one very relevant parameter, corresponding to the optical

depth from here to the beginning of the process, ⌧ =
R
ne�Tdt/a(t), where ne is

the free electron density, and �T the Thomson scattering cross section. Current

measurements [22] set this parameter to be ⌧ ' 0.0544.

2.2.3 Sources of B-mode Polarization

The CMB B-mode polarization can be generated by two main mechanisms: (i)the

gravitational lensing of CMB photons by LSS, (ii) the primordial gravitational

waves which are generated by Inflation in the very early universe.
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Figure 2.6: CMB TT , EE and BB power spectra, for a cosmological model
with r = 0.01, and including CMB lensing.

2.2.3.1 Gravitational Lensing

The gravitational potentials produced by the LSS are able to bend the CMB

photons and as a result, the hot and cold spots of the CMB temperature field

distort around the foreground sources, generating an e↵ect which is commonly

known as CMB lensing. Not only CMB Lensing changes the temperature field

but also the polarization. Lensing conserves surface brightness, therefore it only

a↵ects anisotropies and since the fluctuations are already first order, the lensing

e↵ect is second order in the perturbation theory. [46]. Looking in direction n,

we actually see the temperature fluctuation not as it was at position nr⇤ but

at position (n + ↵)r⇤, where ↵ denotes the deflection angle. To first order in

perturbation theory the deflection angle [47] is given by:

↵ = �2

Z
r⇤

0

dr
�(r⇤ � r)

�(r⇤)�(r)
r? (t(r), r,#,') ⌘ r?�(#,') , (2.26)

where  is the Bardeen potential, n is given by (#,') and r? is the gradient on

the sphere of photon directions. The lensing potential is given by

�(#,') = �2

Z
r⇤

0

dr
�(r⇤ � r)

�(r⇤)�(r)
 (t(r), r,#,') . (2.27)

The distribution of the deflection angle is approximately Gaussian, with a standard

deviation of about 2 arcmintes, for the standard cosmological model [48]. The
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Figure 2.7: Theoretical B-mode polarization power spectra from lensing of E-
modes, CMB lensing (solid) and from the tensor modes, primordial gravitational
waves for r = 0.1 (dashed), r = 10�2 (dotted) and r = 10�3 (dot-dashed). The
y-axis of this Figure should be multiplied by (2.725⇥106µK)2 to be normalized

in physical units and compared with Figure 2.6. Plot from [35].

lensing potential can be expanded into spherical harmonics following the same

procedure of Equation 2.16 to 2.18, which leads to the definition of the lensing

power spectrum C
��

`
. The e↵ect is detected today by a multitude of experiments,

[see 49, and references therin]. The CMB lensing distorts the polarization tensor,

causing a leakage of E to B-modes [47]. In Figure 2.7, the solid line shows the B-

mode polarization power spectra from CMB lensing which completely dominates

the power at arcminute scales. In terms of scientific relevance, the CMB lensing

signal is fundamental for investigating the dark cosmological components through

LSS formation, and it is a powerful tool to understand and constrain dark energy

and modified gravity models [50]. In order to detect the CMB B mode generated

by primordial gravitational waves, CMB lensing removal in B modes is necessary,

through the so called de-lensing class of algorithms and techniques [51].

2.2.3.2 Primordial Gravitational waves

As we mentioned in Section 2.1.2, di↵erent inflationary models suggest the exis-

tence of primordial gravitational waves due to the exponential expansion of the

Universe in the early phases [6]. Since primordial gravitational waves are gen-

erated by the tensor perturbations, they can source B-mode polarization in the

CMB power spectrum. The observable parameter which relate the amplitude of

primordial gravitational waves to energy scale of inflation model is tensor-to-scalar
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ratio r as we described in Section 2.1.2, Equation 2.15: it is defined on the basis

of the slow roll parameters of the Inflation, as it is described by Equation

r = 16✏ =


0.1⇥ V

(2⇥ 1016 GeV)4

�
. (2.28)

Therefore, cosmological gravitational waves might have tremendous implications

for cosmology and high energy physics, as they are directly related to the produc-

tion during inflation, and the details of the latter. In Figure 2.7, the CMB B-mode

polarization power spectrum generated by gravitational waves for di↵erent values

of r is plotted. However, B-modes polarization due to gravitational waves has not

yet been discovered and only upper limits exist so far for its amplitude, corre-

sponding to r < 0.06 (at 95% confidence level) [52]. The next generation of CMB

experiments either ground-based or satellite, as we will discuss more in Section

3.4, aim to push this limit to the r  0.001 limit.

2.2.4 Other Secondary Anisotropies

We close this Chapter by quoting the most important e↵ects sourcing CMB anisotropies

after recombination, i.e. along the LOS to us, known as secondary anisotropies. In

the last Sections, we mentioned the CMB lensing, which is secondary anisotropy

caused by gravitational lensing. Here we listed the other main mechanisms.

2.2.4.1 ISW

As we anticipated in the Section 2.2.1, the dynamics in the gravitational poten-

tial may lead to contribution to CMB temperature anisotropies through the ISW.

Such a dynamics happens for example when the equation of state changes in

time. Therefore, the ISW e↵ect has contributions both from the early and late

time Universe. During recombination, the Universe is almost completely mat-

ter dominated; therefore,  in Equation 2.21 evolves due to the non-negligible

presence of radiation, which gets rapidly diluted (early ISW). Also, at late times,

the Universe becomes dark energy dominated, making the gravitational potentials

evolving again (late ISW). The two aspects of the ISW appear on the size of the

horizon at the relevant time, i.e. a few degrees (early ISW) or the entire sky (late

ISW). The e↵ect is now detected with great confidence [53].
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2.2.4.2 Rees-Sciama E↵ect

The non-linear regime of ISW is known as Rees Sciama (RS) e↵ect [54]. If we

consider a single isolated structure, its potential changes due to its own evolution

through gravitational collapse. causing photons to experience a di↵erent potential

perturbation in and out the same structure, gathering a net e↵ect on their tem-

perature. These fluctuations have a very small e↵ect on the temperature of CMB

photons and they are very hard to detect.

2.2.4.3 Sunyaev-Zel’dovich (SZ) E↵ect

The SZ e↵ect happens if CMB photons pass through a cluster of galaxies and

scatter o↵ by the hot electron gas present in the galaxy clusters and intercluster

medium via inverse Compton [55]. This process creates spectral distortion in the

CMB (y-type) and also generates additional temperature fluctuations [56]. There

are two main types of SZ e↵ect, classified by the di↵erent physical process involved:

Thermal Sunyaev-Zel’dovich (tSZ) and Kinetic Sunyaev-Zel’dovich (kSZ) [57].

The tSZ occurs when CMB photons interact with a gas of hot electrons at a

temperate TCMB ⌧ Tgas which modifies the Planck spectrum. By passing through

a hot plasma, the low energy Rayleigh-Jeans regime of the photon spectrum is

depleted and the high energy, Wien part is enhanced. An important property of

the tSZ e↵ect is that it is independent of the redshift of the galaxy cluster [58].

The kSZ e↵ect arises when the scattering of CMB photons with electrons takes

place in a bulk motion of a non-linear perturbation with respect to the CMB.

Essentially it is a Doppler term related to electron velocity projected along the

line of sight [59].



Chapter 3

Di↵use Foreground

Contamination for B-mode

polarization

As we already mentioned, in recent years the observation of the CMB B-mode

polarization became one of the greatest challenges for detecting the imprint of

primordial gravitational waves generated during the inflationary era, as we men-

tioned in Chapter 2. One of the most important obstacles on the way of CMB

B-mode polarization observation is represented by the foreground electromagnetic

radiation of astrophysical objects along the LOS, and more specifically, the di↵use

polarization from our own Galaxy. This Chapter has three main purposes. First,

in Section 3.1, and 3.2 we will explain the level of foreground contamination for

CMB B-mode signal and then introduce the foreground emissions responsible for

this contamination. Second, in Section 3.3, we will mention the common methods

for controlling and removing the foreground emission from the CMB signal. At

the end of the Chapter, in Section 3.4, we describe state of CMB observations and

future prospects for B-mode observations.

3.1 Contamination to B-modes

The evidence for the significance of the contamination from the di↵use polarized

Galactic foreground to CMB B-mode polarization is now widely accepted, Krach-

malnico↵ et al. [see 13, and references therein]. Figure 3.1 shows the CMB power

24
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Figure 3.1: Contamination from di↵use CMB foregrounds onto the CMB B
mode power spectrum. The figure shows the angular power spectra of total
intensity (black line), E-modes (red line), lensing B modes (gray line) and
the primordial B modes (blue lines) for di↵erent values of r. The level of the
power spectra of the two dominant Galactic foregrounds, to be described later
in the Chapter, known as synchrotron and thermal dust, are shown as an orange

shaded area in comparison with primordial B-modes. From [60].

spectra in temperature (black line), E-modes (red line), lensing B-modes (gray

line), primordial B-modes (blue lines) for di↵erent tensor to scalar ratio r, and the

total contribution of polarized B-mode foregrounds (dust plus synchrotron, which

we’ll describe in the following), expected on the cleanest 1-90 % of the sky, at 100

and 200 GHz (orange shaded areas). As we mentioned, the best constrain that we

have for r is less than 0.06; therefore we can immediately conclude that polarized

B-mode foregrounds are comparable or dominant with respect to the primordial

B-modes signal. This is consistent with the latest evidences from Planck 2018

[11], where the level of CMB polarization signal in all the frequency channels is

sub-dominant respect to di↵use polarized Galactic emissions. In Figure 3.2, the

polarized intensity rms (root mean square) amplitude of synchrotron and ther-

mal dust emissions as a function of Planck frequencies are compared with the

CMB rms for a ⇤CDM model with reionization optical depth corresponding to

⌧ = 0.05. In this plot, the sum of foregrounds is evaluated over three di↵erent

masks with fsky = 0.83, 0.52, 0.27. Thus, the foreground challenge for the B-mode

observation is very serious and needs an accurate treatment at the level of ancil-

lary studies, and data analysis, for which we are going to present our contribution

in Chapter 5.
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Figure 3.2: Polarized intensity rms amplitude of synchrotron and thermal
dust emissions as a function of frequency, for areas of the sky excluding the
Galactic plane, with highlighted areas corresponding to Planck frequencies. The
green band indicates polarized synchrotron emission, and the red band indicates
polarized thermal dust emission. The cyan curve shows the CMB rms for a
⇤CDM model with ⌧ = 0.05, and is strongly dominated by E-mode polariza-
tion. The dashed black lines indicate the sum of foregrounds evaluated over
three di↵erent masks with fsky = 0.83, 0.52, and 0.27. From the Planck 2018

results [11].

3.2 Polarized CMB foregrounds

In this Thesis, we focus on the di↵use B mode foregrounds from our own Galaxy,

representing the most important challenge to the detection of primordial B-modes

from cosmological gravitational waves. The Galaxy is filled with a large scale

Galactic magnetic field, which bends the trajectory of cosmic ray particles, mostly

electrons, emitting polarized synchrotron. Also, dust grains heated back by starlight

constitutes a quasi-thermal emission, known as thermal dust. They are known to

be the ones with largest polarized emission, for obvious reasons for synchrotron,

and because the dust grains have a magnetic dipole, which also gets aligned with

the local direction of the Galactic magnetic field. In addition, we will also consider

the Anomalous Microwave Emission (AME), possibly associated to the spinning

dust grains.

3.2.1 Synchrotron emission

The synchrotron radiation is generated by cosmic ray electrons accelerating in the

Galactic magnetic field. This emission depends on the number and energy spectral
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index of their population (N(E) / E
�p) where p is the electron-energy distribu-

tion index. It also depends on the strength of the magnetic field, B, which can

vary across the Galaxy, resulting di↵erent spectral behaviour for the synchrotron

emission. This emission dominates over the CMB at frequencies . 70 GHz and

possesses a steep Spectral Energy Distribution (SED) due to the corresponding

energy distribution of electrons. The propagation of the electrons in the uniform

magnetic field results the linear polarization of the synchrotron radiation charac-

terized by the fraction [61]:

fs =
p+ 1

p+ 7/3
=

3�s + 3

3�s + 1
. (3.1)

By considering the synchrotron spectral index �s ⇡ �3, synchrotron can be po-

larized up to ⇡ 70%. The observed value of synchrotron polarization ( 20%) is

lower due to non-uniform magnetic field directions along line of sight. The mean

polarization fraction can have di↵erent values and morphology across the sky, and

this value drops to about 4% near the Galactic plane and can rise up to 20 % at

high Galactic latitude (|b| > 50�) [11]. In Figure 3.3, the polarized intensity of syn-

chrotron emission at 30 GHz is shown. This map describes the strong intensity of

synchrotron in the Galactic plane as well as the North and South Galactic spurs as

observed by Planck [11]. At the present level of knowledge, Krachmalnico↵ et al.

[see 13, and references therein], the synchrotron SED can be parameterized as a

simple power-law in brightness temperature. Nonetheless, the energy distribution

of electrons may be responsible for a curvature in the SED, which departs from a

pure power-law. Thus, a general model for synchrotron emission can be written

as

T (n̂, ⌫) = As(n̂)

✓
⌫

⌫0

◆�s(n̂)+C(n̂) log (⌫/⌫0)

, (3.2)

where As is synchrotron amplitude at the pivot frequency ⌫0, �s is the synchrotron

spectral index, and C parameterizes SED curvature. In general, all quantities are

functions of the sky direction n̂. The synchrotron spectral index has a typical value

�s ⇡ �3, with a variation between -2.98 and -3.12 in the sky, on the degree scale

[62]. In another recent work, the synchrotron spectral index variation has been

found to be in the range between -2.5 and -4.4, with a mean value of �s ' �3.2;

this has been obtained by considering low frequency channels from 2.3 to 33 GHz,

combining radio observations by the S-band Polarization All Sky Survey (S-PASS,

see [63]), WMAP and Planck data [13]. Non-zero curvature is suggested by cosmic

ray energy spectrum at frequencies above 23 GHz in total intensity, resulting in
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Figure 3.3: Planck observed polarized synchrotron amplitude map at 40’
FWHM resolution. Plot from [11].

C = �0.052± 0.005 [64]. Krachmalnico↵ et al. [13] have derived an upper limit to

the curvature value in polarization: the reported value is between 0.07 and 0.14

depending on the considered sky region and angular scales.

3.2.2 Thermal dust emission

Polarized thermal dust emission [see 65, and references therein] comes from inter-

stellar dust grains which are mostly made of graphites, silicates, and Polycyclic

Aromatic Hydrocarbons (PAHs), and they tend to align perpendicularly to the

Galactic magnetic field, therefore emitting partially linearly polarized radiation.

Dust grains are heated back by starlight and possess a modified black body SED,

known as the grey body, with a temperature Td with values around 20 K and

varying across the sky. The SED is also described by a multiplicative emissivity

correction ⌫
�d , which determines the deviation from a pure black body, with �d

assuming values around 1.6 and a variation between 1.53 and 1.67 across the sky.

Dust grains have di↵erent shapes, and polarization is expected only from the ones

with non-spherical shapes and a preferential axis of alignment. The magnetic

moments of the dust grains will preferentially align with the ambient magnetic

field, therefore as these aligned grains rotate, they emit polarized radiation [66].

The thermal dust polarization radiation has a dependency on the frequency, since

the degree of alignment varies according to the size of dust grains. Similar to the

synchrotron radiation, thermal dust polarization fraction on the Galactic plane is

few percent while at the intermediate latitude can reach up to ⇠ 20% [65].
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Figure 3.4: The polarized intensity of the thermal dust as observed by Planck,
at 5 arcminutes FWHM resolution. Plot from [11].

Thermal dust emission dominates the polarized sky radiation at frequencies &
70 GHz [see 11, and references therein]. Figure 3.4 shows the distribution of

polarized intensity of thermal dust emission which can be seen across the sky, as

reconstructed by Planck. The analytic form of the brightness emission of the SED

can be written as:

T (n̂, ⌫) = Ad(n̂)

✓
⌫

⌫0

◆�d(n̂)

B(⌫, Td(n̂)) , (3.3)

where Ad defines the dust amplitude varying across the sky at the pivot frequency

⌫0, and B represents the standard black body spectrum at the temperature Td and

frequency ⌫ [65]. The aforementioned values for the dust spectral index �d and

T are based on the simplistic assumption that thermal dust emission is generated

by one population of dust grains. There are di↵erent modellings of dust grain

and populations which can fit the spectra. One of the models which is mostly

adopted in modern literature consist of two populations of dust grains, shining

di↵erently at di↵erent frequencies; therefore the model has two spectral indices

�d 1,2 = (1.67, 2.70) and two dust temperatures T1,2 = (9.4, 16) [67].

It is also known that thermal dust and synchrotron emission are spatially corre-

lated as shown in [68, 69]. They are anti-correlated in such a way that there is

a rise in polarization SED towards low frequencies by a synchrotron component

while in the higher frequencies thermal dust lift the polarization SED up [70].
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3.2.3 Anomalous Microwave Emission

In total intensity, the AME has been observed by the Q, U and I Joint Observatory

in TEnerife (QUIJOTE) and Planck in the frequency range ⇡ 10-60 GHz [71]. A

possible explanation of this emission is represented by the spinning of the dust

grains, which rotate at GHz frequencies and emit electric dipole radiation if they

have an electric dipole moment [72], or magnetized dust grains and free-floating

ferromagnetic material [73]. The AME SED is expected to exhibit a bell shape

form, characterized by a peak at around 30 GHz, associated to the frequency of

the grain rotation. If the AME is polarized, its polarization fraction must be

very small, at the level of a per cent [71]. QUIJOTE [74] has constrained the

AME polarization to be less than 2.8% with a 95% confidence level in the Perseus

molecular complex. In another paper [75], the upper limit correspond to 0.39%,

and by combining the data with WMAP, it tightened the constrain to 0.22% for

the W43 molecular complexes. Note that the aforementioned limits are measured

for specific regions and cannot be applied to the whole sky. Remazeilles et al. [76]

have shown that neglecting 1% polarized AME can bias the extracted r value,

particularly for satellite missions.

The AME parameterization is based on the paper by Ali-Haimoud et al. [77].

The spinning dust grains with angular velocity ! of electric dipole moment µ can

radiate as follows

P =
2

3

µ
2
?!

4

c3
, (3.4)

where P is the radiation power and µ? is the perpendicular component of µ with

respect to the angular velocity. The emissivity of electric dipole radiation per

Hydrogen (H) atom can be calculated through

I⌫

nH

=
1

d⇡

Z
amax

amin

da
1

nH

dngr

da
4⇡!2

fa(!)2⇡
2

3

µ
2
a?!

4

c3
, (3.5)

where ! = 2⇡⌫. The term 1
nH

dngr

da
determines the grain size distribution function,

which gives the number of dust grains per unit size per H atom, µ(a) is the

electric dipole moments as a function of grain size and fa(!) is the angular velocity

distribution function which depends upon the grain radius and environmental

condition. This function is calculated for a cold neutral medium in the simulations

we adopt. In this work, we adopt the standard model of the AME, constituting

of simulated polarized maps with thermal dust polarization angles and nominal
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AME intensity. The assumption of a complete mixture of small and big grains

leads to consider the same angles as thermal dust. The AME polarization can be

written as:

Qame = fI⌫cos(2�353), Uame = fI⌫sin(2�353) , (3.6)

where f is polarization fraction. In this work, we have considered a global 2% po-

larization fraction, within the limits observed by WMAP, Planck, and QUIJOTE

in Perseus.

3.3 Component separation methods

The component separation problem usually addresses the following question: given

a number of observations of the sky at di↵erent frequencies, how can we isolate

the CMB signal from all the di↵erent astrophysical processes contributing to the

total observed emission? There are several ways to answer to this question but

usually that is treated on the basis of statistical approaches, which assume that the

observed emission just follows the linear superposition of a number of independent

components.

Many di↵erent approaches have been studied in order to tackle component separa-

tion. Some methods are based on the internal template subtraction [78, 79], some

exploit statistical independence of the sky components [80, 81], others invoke the

maximum-entropy principle [82], or perform a parametric fit to the data [83–85].

The reconstruction of the di↵erent foreground emissions in a given CMB experi-

ment are largely based on these approaches, Akrami et al. [see 11, for reviews]. In

general, di↵erent component separation methods can be divided into three main

classes: Parametric, Blind, and Template-fitting, and we give a basic description

of those in the following Sections.

3.3.1 Parametric fitting

In the parametric approach to component separation it is assumed that the func-

tional form of the frequency scaling for all relevant components is known, and all

the prior knowledge and physical modelling of di↵erent foregrounds are exploited.

The relative simplicity of its implementation makes this approach widely used,

and as we mentioned already, the Galactic foregrounds from Planck have been
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obtained using this technique. Moreover, it is characterized by a flexibility, and

elegant mathematical casting, through a maximum likelihood form [86]. On the

other hand, in the case of low signal to noise ratio on the pixel scale, the numerical

e�ciency drops and parameter estimation can face challenges. Also, given a large

number of pixels in the CMB experiments with high sensitivity, the parametric

technique should perform the non-linear and high-dimensional parameter fitting,

which is computationally expensive. We describe here the approach developed by

Stompor et al. [87] which is currently used for quantifying the science outcome

of future B-mode probes [see e.g. 9, and references therein]. We refer to these

papers for further details on this approach, limiting ourselves to the definition of

quantities of relevance for the present work. The data model is usually written as

dp(⌫) =
X

c

a
c

p
(⌫)sc

p
+ np(⌫) ⌘ Apsp + np , (3.7)

where dp contains measured signal at each frequency ⌫ and sky direction p, summed

over all components whose amplitude is written as s
c

p
. Ap is the mixing matrix

which contains the parametric SED model to fit, depending in principle on the sky

direction, and np represents the noise. The component separation process consists

in obtaining an estimate s̃p = Wpdp of the components, by means of a kernel

operator Wp, given by:

Wp ⌘ (AT

p
N�1

p
Ap)

�1AT

p
N�1

p
, Np ⌘ np

T
np , (3.8)

where Np represents the noise correlation matrix. The kernel operator is the result

of the maximization of the likelihood:

� 2 logL = �
X

p

(dp �Apsp)
TN�1

p
(dp �Apsp) , (3.9)

which is valid in the case in which the noise is block diagonal, i.e. correlations are

allowed between Stokes parameters in a given pixel only. The �
2 is defined as:

�
2(p) =

NbandX

⌫=1

✓
d⌫ � s⌫(p)

�⌫(p)

◆2

, (3.10)

where �⌫(p) represents the uncertainty due to the presence of noise. The cor-

responding approach to component separation has been implemented into the
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publicly available code called ForeGround Buster (FGBuster)1.

3.3.2 Blind component separation and template fitting

As opposed to parametric fitting, blind methods apply minimal assumptions about

the components and suppose that the sky components are statistically indepen-

dent. For these methods, one of the emissions is the signal of interest (CMB), and

the rest are the unwanted foregrounds. The Internal Linear Combination (ILC)

[80] belongs to this category. This scheme uses only the CMB column of mix-

ing matrix A in Eq 3.7 to minimize the variance of the cleaned map. The main

advantage of this method is represented by the minimal assumptions concerning

the unknown or poorly known astrophysical components and the instrumental

noise. The only requirement is that the component of interest must have a known

emission law, and it must un-correlated to the contaminating foregrounds. This

approach is widely used in CMB experiments like WMAP [88], but it introduces a

well-known bias that comes from an empirical correlation between the CMB and

the foregrounds [89].

Also in the category of blind approaches, the Independent Component Analysis

that (ICA) uses just the statistically independent property of the di↵erent com-

ponents to recover the full mixing matrix A. This methodology has been cased in

the spectral domain, through the Spectral Matching ICA (SMICA) method [90]

solving the problem of measuring parameters of modelled multi-component spec-

tral covariances, using empirical covariances computed on multi-detector data sets

and in this way, works in a smaller dimension space which contains foregrounds.

Finally, the template fitting is a pixel based algorithm which does not model the

emission laws, and the analysis is done by maximizing the likelihood over CMB and

the amplitudes of each foreground component. [91]. The Spectral Estimation Via

Expectation-Maximization [92] builds foreground templates with a combination of

a subset of the input frequency maps to add more constraints and to reduce the

foreground subspace size consequently.

1https://github.com/fgbuster/fgbuster
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3.4 Status of B-mode CMB observations and fu-

ture probes

An intense and global e↵ort is currently ongoing towards the measurement of

the B-mode polarization. Lensing B-modes have been detected for the first time

by the South Pole Telescope [SPTpol, see 93, and references therein] through

cross-correlation, and directly by POLARBEAR [94]. Moreover, they have been

observed by the Planck satellite [95], the Background Imaging of Cosmic Extra-

galactic Polarization 2 (BICEP2) [5], the Atacama Cosmology Telescope (ACT)

[96]. On the other hand, only upper limits exist so far for the amplitude of the

cosmological GWs, corresponding to r < 0.06 (at 95% confidence level) by the

combination of BICEP2/Keck and Planck data [52]. Only recently, a tighter con-

strain, r < 0.044, has been presented by adding Planck 2018 polarization data to

BICEP2/Keck 2015 data release [10].

Figure 3.5 shows the status of CMB measurements and their accuracy limits.

Planck 2018 (in black) determines the TT and EE power spectra very well while

SPT and BICEP2 and Keck array has been used to have a better picture in the

BB power spectrum.

In relation to foreground studies, a significant progress on the knowledge of the

B-mode emission has been possible through low frequency surveys. SPASS [63]

is surveying the entire southern sky at 2.3 GHz, aiming at characterizing the

synchrotron polarized emission for progressing on the knowledge of the CMB fore-

grounds, as well as the Galactic magnetism. C-BASS measures both the brightness

and the polarization of the sky at 5 GHz by two telescopes, one at the Owens Valley

Observatory (OVRO) in California, and the other in South Africa [97]. QUIJOTE

is an ongoing project, started in 2012 in the northern hemisphere at the Teide

observatory, by having four di↵erent channels 11, 13, 17, and 19 GHz. The focus

of this experiment is on measuring CMB polarization and Galactic emissions, from

synchrotron and AME [98].

Future CMB experiments will mostly focus on the detection of primordial gravi-

tational waves and the improvement of our knowledge from reionization history,

which we can extract from CMB polarization. The list of all the upcoming CMB

experiments is long. We will report here the ones which are more relevant in our

work, to be considered in the following Chapters.
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Large Scale Polarization Explorer (LSPE): LSPE is the first large scale

experiment after Planck which is designed to observe the B-modes of CMB po-

larization. LSPE is made by two instruments: (i) a ground-based telescope, the

Survey TeneRIfe Polarimeter (STRIP), observing at 44 GHz, plus a 95 GHz chan-

nel for atmospheric measurements from the Teide observational site in the North

pole, (ii) a balloon-borne instrument, Short-Wavelength Instrument for the Polar-

ization Explorer (SWIPE), which will observe the sky from the Arctic stratosphere

at 145, 220, and 240. STRIP will observe the sky, starting from summer 2021 for

two years, instead, for SWIPE two weeks flight is scheduled during winter 2020/21.

In Chapter 4, we explain the scientific goals and specifications of the LSPE, base

on a recent publication [99], which represent the context in which we tested our

implementation of the parametric component separation.

Lite (Light) satellite for the studies of B-mode polarization and Infla-

tion from cosmic background Radiation Detection: LiteBIRD is the first

satellite mission after Planck with the goal of observing the CMB polarization

over the full sky with unprecedented precision. LiteBIRD is selected by JAXA2

with international collaboration of ESA3 and NASA4 and Canada. Three years of

a full-sky survey from a Lagrangian point L2 are planned by launching LiteBIRD

in 2027 at 15 frequency bands between 34 and 448 GHz. The most important

scientific target of LiteBIRD is achieving �r < 0.001, following B-mode obser-

vations in at large angular scale which corresponds to 2  `  200 in terms of

multiple, when �r is the total error on tensor-to-scalar ratio r. The high number

of frequency channels would enable LiteBIRD to study and model CMB galactic

foregrounds precisely. [100, 101]

Simons Observatory (SO): the SO will be put in the Atacama Desert in Chile

and will observe the south pole sky measuring the CMB temperature and polar-

ization anisotropies in six di↵erent frequencies from 27 GHz to 280 GHz. SO will

include three small-aperture 0.5 m telescopes (SATs) and one large-aperture 6 m

telescope (LAT) in the initial phase. SATs will observe 10% of the sky at the

largest angular scales observable from Chile, while the LAT will scan 40% of the

sky at arcminute angular resolution. SO’s target is to measure primordial tensor-

to-scalar ratio, r, at the level of �(r) = 0.003. For the moment, SO is at the last

stages of construction and it is planned to be in operation from 2021-22 [102, 103].

2Japan Aerospace Exploration Agency
3European Space Agency
4National Aeronautics Space Administration
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CMB-S4: The next generation of ground-based CMB experiments is called ”stage

VI”, CMB-S4 that is consists of highly sensitive telescopes at the South Pole, the

high Chilean Atacama plateau, and possibly northern hemisphere sites. CMB-

S4 targets very high sensitivity by putting all of these telescopes together and

having more than 500,000 detectors. Its final aim is to detect the primordial

gravitational waves for r � 10�3 with 5�. It has been predicted that by finishing

2020, CMB experiments will start entering the ”stage VI” and by 2024, CMB-S4

will be complete. Apart from detecting primordial gravitational waves, CMB-

S4 has the following subjects in its scientific goals: determining the number and

masses of the neutrinos, constraining possible new light relic particles, providing

precise constraints on the nature of dark energy, and testing general relativity

on large scales [60]. The gray shaded area in Figure 3.5 shows the predicted

improvement of CMB-S4 in measuring the EE and BB power spectra.

European Low Frequency Survey (ELFS): The ELFS is a proposal to the

European Research Council, which would focus observations and foreground con-

trol, especially at low frequencies, in the interval ranging from 5 to 120 GHz. It

would be all-sky, constituted by two Large (6 meters) telescopes, with resolution

increasing from 20 arcminutes at 5 GHz to about a few arcminutes at 120 GHz.

The survey would complement the CMB-S4 and LiteBIRD, and would solve the

problem of monitoring the Galactic synchrotron completely.
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Figure 3.5: Current measurements of the angular power spectrum of the CMB
temperature and polarization anisotropy from di↵erent experiments. Planck
2015, ACTPol, BICEP2/Keck, Polarbear, and SPT in black, dark blue, purple,
light blue, and cyan respectively. The gray shaded area shows the predicted
improvement of CMB-S4 for a ⇤CDM with r = 0 cosmological model. From

[60]



Chapter 4

Component separation for the

LSPE experiment

In this Chapter we present the first amongst our set of original investigations. We

focus on the most advanced parametric component separation technique presented

in the previous Chapter and use it for evaluating the foreseen capabilities of one

of the forthcoming B-mode probes. In Section 4.1, we give a broad overview on

the scientific goals of the LSPE experiment, instrument specifications and project

timeline. Section 4.2 specified to the explanation of the simulation done consider-

ing the foreseen instrument specifications, while in Section 4.3 the details of the

component separation runs are shown. Finally, we describe the results and con-

clude in Sections 4.4, and 4.5. The content of this Chapter is based on the LSPE

project’s paper [99].

4.1 Overview of the experiment

As we described in Section 3.4, LSPE will focus on observation of the CMB B-

mode polarization, with the following main objectives:

• detection of CMB B-modes polarization at a level corresponding to a tensor

to scalar ratio r=0.03 with 99.7% confidence;

• setting an upper limit to tensor to scalar ratio r=0.01 at 68% confidence

level;

38



Component separation for the LSPE experiment 39

• improving the measurement of the optical depth to the CMB ⌧ , observed

from the large scale E-mode CMB polarization;

• investigating the low-` anomaly, a series of anomalies observed in the large

angular scales of the CMB polarization, including lack of power, asymmetries

and alignment of multiple moments [104, 105],

• preparing wide maps of polarized foreground produced in our Galaxy by

synchrotron and thermal dust emission, which will be important to map the

Galactic magnetic field and to study the properties of the ionized gas and

the di↵use interstellar dust in the Milky Way;

• studying the quality of the atmosphere at Teide Observatory (Tenerife) for

CMB polarization measurements.

LSPE has a wide range of frequency to control the CMB foregrounds. It consists

of two instruments: Survey TeneRIfe Polarimeter (STRIP) and Short-Wavelength

Instrument for the Polarization Explorer (SWIPE). STRIP is a ground-based tele-

scope which will be observing at 43 GHz at the Teide Observatory (Tenerife) for

two years, investigating polarized synchrotron. Moreover, STRIP will have an-

other frequency at 95 GHz that will be specific to do atmospheric studies. Figure

4.2 shows the schematic view of STRIP instrument which is a coherent polarime-

ter array with three-axis allowing the rotation of the optical assembly around the

boresight direction. STRIP will be in operation from April 2021 to April 2023.

On the other side, SWIPE is a balloon-borne mission that will be working at 145,

210 and 240 GHz in a night Arctic stratospheric flight for two weeks. SWIPE

has been optimized to be very sensitive to CMB polarization with one broad-

band channel matching the peak of CMB brightness. Since SWIPE has higher

frequencies (210 and 240 GHz), the understanding and cleaning of thermal dust

emission will be within its main scientific goals. In Figure 4.1, the optical system

of SWIPE is shown. The detectors arrays are cooled at 0.3 K by a large wet

cryostat, which also cools the polarization modulator and the entire telescope.

SWIPE measurements are currently scheduled for Winter 2021/22.

The scanning strategies of both SWIPE and STRIP is shown in Figure 4.3 and the

combination of two scanning strategies will produce full-frequency coverage over

37% of the sky. The specifications of STRIP and SWIPE are written in Table 4.1.
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Figure 4.1: SWIPE optical system overview. The instrument that contains
the optical elements is equipped to a large Helium cryostat.

Figure 4.2: STRIP schematic optical system overview. This three-axis mount
will be installed in the Teide observatory.

Instrument STRIP SWIPE
Site . . . . . . . . . . . . . . . . . Tenerife balloon
Freq (GHz) . . . . . . . . . . . . . 43 95 145 210 240
Bandwidth . . . . . . . . . . . . . 17% 8% 30% 20% 10%
Angular resolution FWHM (arcmin) . 20 10 85
Number of detectors Ndet . . . . . . 49 6 162 82 82
Observation time . . . . . . . . . . 2 years 8 - 15 days
Sky coverage fsky . . . . . . . . . . 37% 38%
Map sensitivity �Q,U (µKCMB · arcmin) 102 777 10 17 34

Table 4.1: LSPE baseline instrumental parameters.
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Figure 4.3: LSPE scanning strategy in Equatorial coordinates, The yellow and
blue areas represent the SWIPE and STRIP sky coverage respectively, while the
green area shows their overlap. The map also shows the position of the Crab and
Orion nebulas, of the Perseus molecular cloud and the trajectories of Jupiter
(orange), Saturn (dark red) and the Moon (white) from April 2021 to April

2023.

4.2 Simulations

In this Section, we explain the procedure concerning the simulations of the sky

maps needed for the component separation pipeline. Our multi-frequency sky

maps consist of 1000 CMB realizations and the basic model of thermal dust and

synchrotron as polarized foregrounds. The CMB maps are simulated by CAMB

code with the cosmological parameters based on Planck 2018 paper [22] and the

optical depth ⌧ = 0.06 and tensor-to-scalar ratio r = 0. For the thermal dust

and synchrotron emissions, we exploit the publicly available package Python Sky

Model (PySM)
1 which generates the full-sky simulation in intensity and polar-

ization [106]. The synchrotron brightness is modeled as a power law decaying in

frequency with a constant spectral index �s = �3 as we explained in equation 3.2.

The dust component is modeled as a grey body, i.e. an almost thermal compo-

nent at a temperature of Td = 20K, heated back by starlight, represented by a

frequency dependent optical depth, with spectral index �d = 1.54 in Equation 3.3.

We also include noise realizations according to the SWIPE and STRIP sensitivity.

The rms of the sensitivity maps are reported in Table 4.1. We did not consider

any correlated noise from a pixel to another in our work.

Together with the LSPE bands, we also consider the observations of the Planck

satellite between 30 and 353 GHz [4], and the ones of QUIJOTE at 11 GHz

1https://github.com/bthorne93/PySM public
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[98, 107]. In order to evaluate the power of the LSPE, we have tested di↵erent

setups, by considering di↵erent combinations of LSPE bands with Planck LFI, HFI

and QUIJOTE low-frequency band. In the minimal case, we have contemplated

LSPE frequencies and only 30 GHz band from Planck which is reported in Table

4.3. All maps, including noise realizations, use the Hierarchical Equal Latitude

Pixelization (HEALPix and its Python package (healpy)2 [108] with resolution

parameter Nside = 128, corresponding to about half a degree in the sky. In the

component separation runs, in order to deal with frequency channels at di↵erent

resolutions, we smoothed all the component maps to a Gaussian beam with 85

arcminutes FWHM, which is the largest beam associated to LSPE channels.

4.3 Component separation pipeline

For the analysis presented in this work, we consider the component separation ap-

paratus represented by the ForeGroundBuster3, which is currently used to assess

the foreground cleaning capabilities of a number of CMB B-mode probes [9, 85].

This pipeline makes use of parametric component separation method as we ex-

plained in Section 3.3.1. The method fits the multi-frequency maps, in each pixel

observed by both STRIP and SWIPE, for CMB signal, amplitude, spectral indices

and curvature of synchrotron, temperature, amplitude and emissivity of dust.

The component separation procedure is performed only on polarization maps and

on the masked region which is the overlap of SWIPE and STRIP. This method

recovers the value of the spectral indices �s, �d (a single value for the full map),

as well as the amplitude of the thermal dust Ad(n̂), and synchrotron emission

signal As(n̂). In this procedure, after component separation, we extract the CMB

signal which has the noise instrumental e↵ect. The EE and BB power spectra

are calculated for these CMB maps and after that, by subtracting the extracted

CMB map from the input one, the residual maps and noise power spectra are

computed, respectively. In the upper panel of Figure 4.4 we show one sample of

CMB output map after the component separation. In lower panel of this Figure,

the average of 1000 residual maps has been shown. Very faint residual of the

Galactic foregrounds can be seen in the residual map which are the consequence

2https://github.com/healpy/healpy
3https://github.com/fgbuster/fgbuster
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Figure 4.4: Upper panel: one realization of CMB map after components
separation for the baseline case. Lower panel: the average of 1000 residual

(input minus output) CMB maps.

of considering the simplest models for foreground emissions and the limitation of

the fitting procedure adopted here.

By considering the sensitivity of STRIP at 43 GHz, it has been important to

include low frequency channel of QUIJOTE 11 GHz and Planck 30 GHz, in order

to constrain the spectral index of synchroton emission �s. However, as we will

explain in the next Section, for thermal dust spectral index �d, SWIPE has the

most sensitive channel of the LSPE and one could exclude Planck HFI channels

without increasing the error bar on the results.
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4.4 Results

In this Section, we present the result of component separation pipeline for the

baseline and minimal case. A key element of component separation is the W ma-

trix (in Equation 3.8), which is the linear operator that mixes the frequency maps

in the component maps, taking into account the sensitivity and the contribution

of each frequency to each astrophysical component. The elements Wi,j of the W

matrix (often referred to as weights) admit negative values for frequencies that

must be subtracted in order to solve for the astrophysical component.

Frequency bands and weights for each component are shown in Table 4.2 for our

baseline. From this table it is clear that the 145GHz channel is the most important

one for reconstructing the CMB, because of the relevance of wCMB, clearly adding

sensitivity to the currently available datasets. The Table also shows quantitatively

the relevance for what concerns the wings of the frequency interval for fitting and

subtracting foregrounds. As we mentioned before, the LSPE 210 and 240 GHz

are the most important channels for constraining thermal dust foregrounds and

having larger numbers of wDust; on the other hand, for synchrotron the QUIJOTE

11 GHz and Planck 30 GHz are necessary. In Table 4.3, we show the minimal

setup of our baseline, where we have used just the 30 GHz channel of Planck

and LSPE frequencies. This table confirms our results with the same scheme of

weights distribution; by decreasing the number of frequencies, the weights change

in the component separation solver. Moreover, in Table 4.4 we show the accuracy

of the component separation in terms of dust and synchrotron spectral indices.

As an illustration, Figure 4.6 indicates the distribution of �s and �d as a result

of the component separation. Fig. 4.5 shows the polarization CMB power spec-

tra obtained by averaging 1000 simulations where the error-bars come from the

noise power spectrum after component separation. The cut-o↵ at ` ⇡ 110, where

error-bars increase dramatically, reflects the angular resolution of the combined

instruments.

4.5 Summary

We conclude here this Chapter, as an application of parametric fitting component

separation, to a very relevant and forthcoming CMB experiment, characterized
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Figure 4.5: CMB E-modes (blue) and B-modes (orange) power spectra aver-
aged over 1000 simulations after component separation simulated for the LSPE

experiment.

Band (GHz) Probes wCMB ⇥103 wDust ⇥103 wSynch ⇥103

11 Q -1.1 0.24 56
30 P 2.52 -1.1 18
43 ST 4.43 -1.9 8.03
44 P 1.92 -0.82 3.2
70 P 2.85 -1.1 0.86
100 P 14 -5.3 0.41
143 P 26.4 -7.4 -2.2
145 SW 1226 -330 -107
210 SW -130 204 5.6
217 P -7.1 8.5 0.48
240 SW -150 130 14
353 P -9.9 6.5 1.2

Table 4.2: Component separation weights for each component in each channel,
where P , Q, ST and SW stand for: Planck, QUIJOTE, STRIP and SWIPE
respectively. The highest value for wCMB shows that 145 GHz channel is the

most important one in extraction of CMB signal.

by a marked multi-frequency, the LSPE. We have implemented an end-to-end

simulation of the CMB and foreground components, along with running a full set

of the components separation pipeline for the LSPE project. As a result, we foresee

that the LSPE will be able to set an upper limit for tensor-to-scalar ratio r at the

level of 10�2 and detect a r = 0.03 with 95% confidence level. This improvement in

the CMB polarization and its B-mode component is extremely important. On the

other hand, it is very important for more and more realistic studies to include more

complicated Foreground models such as variation of dust and synchrotron spectral

indices across the sky, synchrotron power-law with curvature, and considering two
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Band (GHz) Probes wCMB ⇥103 wDust ⇥103 wSynch ⇥103

30 P -15 2.7 870
43 ST -2.6 -0.45 390
145 SW 1400 -410 -1600
210 SW -190 240 28
240 SW -202 160 340

Table 4.3: Component separation weights for each component in each channel
for the minimal case: Planck + LSPE (STRIP, SWIPE).

Parameter Mean �

�d 1.539 0.001
�s -2.999 0.002

Table 4.4: Dust and synchrotron spectral indices obtained by parametric com-
ponent separation. The component separation algorithm fits for a single value
in each map. The uncertainties are derived from the standard deviation of 1000

realizations of the noise in the maps.

Figure 4.6: Histograms of dust �d (left) and synchrotron spectral index
�s (right) distribution as the result of 1000 running of component separation

pipeline.

populations of dust for thermal dust emission. Moreover, one could add AME

component as a polarized component with a contribution less than a percent.

These variations are present in the available sky simulations, and we will test

these cases as well. On the other hand, in view of more complicated foreground

models to consider, an interesting question arises, precisely consisting of how to be

able to recognize, in a pre-component separation phase, the right modelization of

the foregrounds to fit in the sky. Given this aspect’s novelty, which will end up in

one of the initial brick of a pre-processing component separation phase, dedicated

to learning the physical processes in the sky before fitting them, we focus on this

aspect in the next Chapter.



Chapter 5

Neural Networks for foreground

model recognition

As we anticipated, in this Chapter, we are going to build up the case for the

relevance of NNs in the context of the CMB data analysis and, in particular,

component separation. In Section 5.1, we describe our motivation and goals from

this project, and before going to the details of the work, we introduce the required

concepts in the NNs fields in Section 5.2. After that, in Sections 5.3 and 5.4, we

describe the implemented NN architecture designed for our specific problem and

the detail of multi-frequency maps simulations. Later, we present our results by

testing our NN in di↵erent cases, in the presence or absence of noise from Section

5.5 to 5.7; also, we compare our result with the state of the art of component

separation method in terms of accuracy in Section 5.8. Finally, we bring up our

conclusions and summarize the Chapter in Section 5.9. The results presented in

this Chapter are based on the paper by Farsian et al. [109].

5.1 Motivation

As we explained in Chapter 3, in the last few years, it has become clear that one of

the greatest challenges for the detection of primordial B-modes is represented by

the control and removal of the di↵use emission from our own Galaxy. As a matter

of fact, Galactic polarized radiation has an amplitude larger than the cosmological

signal on the degree and super-degree scales, at all frequencies and in all the sky

regions [see 11–13, and references therein]. In order to face this challenge and be

47
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able to extract a clean cosmological signal, future CMB probes are characterized by

a multi-frequency coverage, with very high sensitivity detectors in all the frequency

channels. Along this line, and following the example of the LSPE, which we

described in the previous Chapter, several observatories are currently being built.

As we described in some more detail in Chapter 3, the SA [102] is observing along

with others, and the SO [103] will start operations in 2022. On a longer term,

the CMB-S4 [60] and LiteBIRD [110] are designed to reach an accuracy, after

foreground subtraction, corresponding to the capability of detecting a B-mode

signal with r as low as 10�3 with a high confidence level.

The computational procedure dedicated to the removal of di↵use foregrounds from

the CMB signal is known as component separation, and consists of combining

multi-frequency observations in order to reconstruct clean maps of the CMB as well

as maps of each foreground emission. In particular, typical methods for component

separation are based on parametric fitting of the multi-frequency maps, where the

parameters are represented by the amplitude and frequency scaling of the di↵erent

foreground components [87, 111]. A crucial aspect, and a necessary pre-processing

of data with respect to component separation, in order to reach these extreme

precision, is represented by the need of an accurate modeling of the foreground

emissions and how the relevant parametrization might vary across the sky, as it

is clearly shown in recent and comprehensive analyses concerning proposals of

future satellite missions [112]. An incorrect or inaccurate modeling of Galactic

emissions could indeed lead to high residuals in the final CMB maps, preventing

the measurement of the faint B-mode cosmological signal [60].

This issue can be thought as a model recognition problem, which represents one of

the most important applications of Artificial Intelligence (AI). NNs and Machine

Learning (ML) in general, as a subset of AI, can be very useful in Cosmology

and specifically in the CMB field. In particular, NNs are non-linear mathematical

tools characterized by many parameters which are able to model di↵erent problems

with high complexity. For this reason, they are widely used in scientific applica-

tions. In the recent years, several works include applications in this direction,

ranging from estimating cosmological parameters from dark matter [113], to real-

time multi-messenger astronomy for the detection of the GW signal from black

hole merger [114] and weak lensing reconstruction via deep learning [115]. Recent

applications, specific to CMB, include: foreground removal from CMB tempera-

ture maps using an MLP neural network [116], convolutional neural networks for
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cosmic string detection in CMB temperature map [117], lensing reconstruction

[118] and convolutional NNs on the sphere [119].

In this Chapter, we present a new NN application concerning the classification of

the appropriate foreground model across the sky, identifying the physical parametriza-

tion which describes better a multi-frequency dataset in the di↵erent sky regions.

This classification has to be seen as a pre-processing to the component separation

phase, in order to instruct the latter with the proper functions to be exploited for

the fitting. As a case study, in terms of frequency coverage, angular resolution,

and sensitivity, we have considered the specifications of the complete frequency

coverage of the LiteBIRD satellite [110] and the low frequencies channels of QUI-

JOTE [98]. For testing our NN model, we have focused on the analysis on the

di↵use Galactic emissions which dominate the low frequency range, i.e. 70 GHz

or less, in the CMB B-mode observations. Our goal is to study if a pre-processing

model recognition phase is possible, and with which e�ciency and accuracy.

5.2 Neural Network basic concepts

The concept behind NNs is quite old even though only in the last decade converts

to a very hot topic and the related literature is flourishing [120]. The reason behind

this popularity is the always increasing amount of available data along with the

advancement of technology and computational power. The idea and development

of the first NNs come from biological neurons back to 50’s. The first NN, so-called

Perceptron was designed by [121], by formalizing how biological neurons work.

5.2.1 Perceptron

The term perceptron was coined during the ’50s and its way of working was al-

ready incredibly similar to how modern NNs work. Since the perceptron can be

considered an ancestor of the modern NNs and since they have a lot in common,

we’ll describe how a simple perceptron works.

The whole perceptron can be represented by a function that takes a vector of

inputs x̄ and gives a binary output. For each input the perceptron has one internal

parameter called weight denoted by w̄ and a bias term b, that encodes the prior
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Figure 5.1: Schematic view of the perceptron.

knowledge. The perceptron does one very simple thing: it weights the external

input x̄ with the internal parameters w̄, it sums them up along with b and it

applies to the result an activation function that determines the final output of the

perceptron. Nowadays non-linear activation functions are the most used although

there is a vast literature about them [122].

The activation function of the perceptron is called Heaviside – a simple step func-

tion – and is defined as follows:

act(z) =

8
<

:
1 z � 0

0 z < 0

The output of the single perceptron will be given by

act(b+ (x̄T
w̄)) = act

 
b+

nX

i=1

xiwi

!

This definition is inspired by biological neurons and their electrophysiology: they

receive some inputs, combine them and then, through the equivalent of the acti-

vation function, decide whether or not to propagate the signal [121].

5.2.2 Deep Neural Network

Like in the animal brains, we can achieve interesting flexibility of the model when

we link multiple perceptrons together. In particular, during the years the com-

munity started following the approach of structuring the NNs in a layered fashion

[123] although, in the recent years, researchers are exploring new ways of opti-

mizing and structuring di↵erently the NNs in order to gain in performance [124],

[125].

What makes a neural network ”deep” is actually the number of layers between the

input layer and the output layer of the network. These layers are called hidden.
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Figure 5.2: Schematic representation of a Deep Neural Network ans its layers.

The Deep Neural Network (DNN) are those kind of NNs with multiple (more than

two) hidden layers. Schematic graph of a DNN is shown in Figure 5.2 with the

input, hidden, and output layers.

The basic structure of NN is a neuron. Neurons are organized in layers; in each

neuron a linear combination of all the elements of the previous layer is computed.

These linear combinations are activated through a non-linear activation function,

and the outputs of this operation become the inputs of the following layer. In

the input layer, neurons take the value of the elements of the input x, while in

the output layer the neurons take the values of the elements of ỹ. For a general

description of NN architectures can be found in [126].

In a layered NN, the outputs of the previous layer are the inputs to the next layer.

With the exception of a few more sophisticated structures, NNs usually form an

acyclic graph, known as feed-forward network.

It can be proven that a NN is a universal approximator of functions [127], this

means that it is possible to approximate with arbitrary precision any measurable

function depending on the number of neurons present in the NN. It is worth men-

tioning that choosing a non-linear activation function allows the NN to approxi-

mate even non-linear behaviours. This is usually a common practice, especially

when using DNN.
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5.2.3 Training of a Neural Network

Generally speaking, NNs are algorithms that recognize underlying relationships

in a set of data [128]. Given a function f , that maps an input x into an output

y, the goal of a NN is to find the best approximation f
⇤ of f . In order to do

that, the NN recursively applies non-linear functions to linear combinations of the

input elements. In this way, the function f
⇤ depends on several parameters ✓ (the

coe�cient of the linear combinations) which need to be optimized in order to get

f
⇤(✓) ⇡ f . This is done through a training set, i.e. a set of data for which the

real output y = f(x) is known: by computing the NN output ỹ for the elements of

the training set, and by minimizing the distance between y and ỹ, the best values

for the NN parameters ✓ are found. The optimization is done numerically, usually

with a stochastic gradient descent (SGD) method, which searches for the optimal

parameters in the directions where the gradient is lower. The stochasticity is used

to add noise to the trajectory and to avoid getting stuck into a local minima [129].

All these information are encoded in the function that determines the distance

between y and ỹ which is called loss function [130].

The set of ✓ values which constitutes the best approximation of f is obtained

through an iterative process, where the NN runs on the training set elements and

the minimum of the loss function is found. Minimizing such loss function is not

easy due to the high dimensionality of the problem and the underlying high non-

linearity. The standard procedure that set a turning point in the world of NNs

and that helps to solve e�ciently this problem is called backpropagation [131]. The

backpropagation algorithm computes, for each unit of the NN, the derivative of

the error with respect to the weights in order to come up with the gradient of the

error. Once the gradient has been computed, we use an optimization algorithm

that minimizes the error and updates the weights of the NN accordingly. The

values of the ✓ parameters are updated at each epoch. The number of epochs is

one of the NN hyper-parameters and simply defines the number of iterations that

are needed before the minimum of the loss function is reached. Given the very

large number of parameters that a NN needs to optimize, over-fitting may occur;

in this case, the NN approximates well the function f on the training set but it is

unable to generalize to another set of data. In order to monitor the performance of

the NN during the training, usually, a subset of the training set will be separated

and used as the validation set. The validation set that has the known real output

y = f(x), can show how is the accomplishment of the NN on the unseen data and



Neural Network for foreground model recognition 53

if it is falling to the over-fitting problem or not. To avoid over-fitting, a typical

approach is to introduce the so-called dropout, i.e. a mechanism for which, in each

epoch, some of the neurons of the NN are randomly switched o↵. This prevents

the NN to rely on any specific parameter and allow it to mitigate over-fitting.

After training the NN model with the training dataset, the saved model should be

checked on an unseen set of data. This unseen dataset is so-called test set, which

is independent of the training set but follows the same probability distributions,

therefore if the NN model is able to fit the training data, it also fits the test set

well.

5.3 Neural Network architecture

In this work, we have used NNs to recognize the actual parameterization of Galac-

tic foregrounds in the sky. There exist several NN architectures. In this work we

make use of the so-called fully connected ones. The architecture in this network

is such that all the neurons, in one layer are connected to the neurons in the next

layer. We have built the NNs in the Keras1 environment, which is a Python li-

brary, with Tensorflow2 backend. We have considered two NN architectures, which

correspond to the problems we want to analyze, as described in the following.

As the purpose of this work is to solve a classification problem (assigning each

pixel in the sky to a specific foreground model), the output of the NN is a vector

where each element gives the probability that the input pixel belongs to any of the

considered classes (models). The dimension of the output vector depends on how

many possible sky models are considered, as explained in the following Sections.

5.3.1 Architecture for Binary classification

In our problem, the input of the NN are vectors of dimension 2⇥17. Each element

of this vector represents the amplitude of the sky signal in a given pixel at the

di↵erent considered frequencies (17 in total) for one of the polarization Stokes

parameters. The two vectors of 17 elements each for Q and U are then stacked

together to get the 34 elements long input vector.

1https://keras.io
2https://www.tensorflow.org
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Figure 5.3: Schematic NN architecture used for binary classification: each
circle represents a neuron, and the dashed circles indicate the application of

dropout to a layer.

In the first considered case, we have trained the NN to perform a binary clas-

sification, meaning that its goal is to assign to each pixel in the sky one out of

two possible foreground models. As we specified above, the NN input layer has

dimension of 34, after that 3 hidden layers are present, including 68, 34, and 17

neurons each, with tanh as an activation function. In order to prevent overfitting,

a dropout layer with a dropout rate = 0.5 is applied on the layer with the largest

number neurons. Since we are in the case of binary classification, the output layer,

activated with a sigmoid function, has, in this case, dimensionality 1, correspond-

ing to the probability of the input to belong to the first class. Figure 5.3 shows

the schematic architecture of our binary classifier. The loss function is defined as

a binary-crossentropy function: L = �(zlog(p) + (1 � z)log(1 � p)), where p is

the predicted probability for each input to belong to the specific class and z is the

binary indicator associated to the two classes (0 or 1). We have used Adadelta

optimizer with learning rate = 1.0 which is implemented in Keras. Adadelta is an

adaptive learning rate method which dynamically changes the learning rate based

on a moving window of gradient updates. Therefore this method needs no manual

tuning of the learning rate during the learning and turns out to be robust to noisy

gradient information [132].
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5.3.2 Architecture for Multi classification

As we explain in the following Sections, we have also considered a case where

the NN has to distinguish among four di↵erent sky models. Due to the enhanced

complexity with respect to the binary classification, we increase the number of

layers and neurons accordingly. In this case, the NN has 5 hidden layers with 272,

136, 68, 34, and 17 neurons, with tanh activation function. As before, a dropout

layer with a dropout rate = 0.5 is applied to the first hidden layer with 272 neurons.

The output layer is a multi-classification, with softmax as activation function.

A Sparse-Categorical-Cross-entropy is chosen as loss function, corresponding to

L = �
P

M

c=1 zo,clog(po,c), where M is the number of categories for classification,

p is the predicted probability for specific observation (o) of category c, and z

represents the correct class indicator for that observation (o). The same optimizer

as the binary classification is considered.

5.3.3 Hyper-parameters

The values of the hyper-parameters describing the architecture of a NN appara-

tus is usually determined empirically. That is the case of the number of layers

and the number of neurons per layer. A large number of these quantities en-

sure performance, at the expense of computational e�ciency and speed. Usually,

large values of hyper-parameters are chosen and progressively reduced while keep-

ing the performance stable, reaching minimum value which is then frozen in the

NN apparatus. Moreover, the model is prone to overfitting problem by having

large but not necessary number of neurons and layers. In our work, we have tried

several NN configurations, and have selected, for both the cases of binary or multi-

classification, the architecture which showed the best performance with the least

number of parameters to be optimized during training. See [126] and references

therein for a general description of the hyper-parameter definition and derivation

for NNs.

5.4 Simulations

In this Section we describe the set up adopted to simulate the sky maps used to

train and test our NN. As anticipated, we focus on low frequency foregrounds, and
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we consider all the frequency channels covered by the future LiteBIRD satellite

[110] plus the two lowest frequency bands with specifications of the QUIJOTE

telescope [98]. Our results are conservative in this sense, because more powerful

low frequency observations are being planned [133] and would results in more low

frequency channels to be combined with LiteBIRD, and with more sensitivity. On

the other hand, in this work we choose to see which results are achievable with

the existing data. The corresponding frequencies, together with sensitivities and

angular resolutions for all the considered channels are summarized in Table 5.1.

Therefore, the sky emissions included in our simulations are CMB, Galactic syn-

chrotron, thermal dust and polarized AME. All the components are simulated

using the PySM.

In particular, the CMB maps are generated as random Gaussian realizations of the

Planck best fit ⇤ Cold Dark Matter (⇤CDM) power spectrum [134]. For dust, we

have used the PySM template, rescaled as a modified blackbody, as in Equation

(3.3), with constant spectral index (�d, Td) = (1.54, 20K). For synchrotron, we

have considered two di↵erent models. In the first one, the template is extrapo-

lated in frequency with a simple power-law model. The spectral index is spatially

varying, considering a Gaussian distribution with mean value �s = -3 and stan-

dard deviation equal to 0.2. In the second case, a curvature is included in the

synchrotron SED, with a constant value of C = �0.052, as indicated by Kogut

[64] with 23 GHz as the pivot frequency; this setup is also compatible with the

recent analysis by Krachmalnico↵ et al. [13]. Finally, as explained in the following

Sections, we have also included, in some specific cases, the AME polarized signal,

assumed to have a 2% polarization fraction. The noise is simulated uniformly

in the sky, through Gaussian realizations with standard deviations given by the

parameters listed in Table 5.1. In Table 5.2 we have shown the summary of con-

sidered foreground models and their parameterizations. As an illustration of the

relative relevance of the various components, in Figure 5.4 we plot the rms of their

polarized intensity, in brightness temperature units and gridding the sky with 4

degree pixels, for all the sky emissions and frequencies considered in this work.

We have applied Planck 2018 component separation common mask in polarization

with fsky = 78%.
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Figure 5.4: Polarized intensity rms amplitude as a function of frequency and
di↵erent foreground component models which is used in our simulation. The
plot refers to a sky fraction fsky = 78% with 4 degrees pixel gridding, and units

are in brightness temperature.

Experiment Frequency [GHz] Sensitivity [µK-arcmin] FWHM [arcmin]

Quijote
11.0 840.0 55.2
13.0 840.0 55.2

LiteBIRD

40.0 36.1 69.2
50.0 19.6 56.9
60.0 20.2 49.0
68.0 11.3 40.8
78.0 10.3 36.1
89.0 8.4 32.3
100.0 7.0 27.7
119.0 5.8 23.7
140.0 4.7 20.7
166.0 7.0 24.2
195.0 5.8 21.7
235.0 8.0 19.6
280.0 9.1 13.2
337.0 11.4 11.2
402.0 19.6 9.7

Table 5.1: Frequencies and instrumental specifications for QUIJOTE and Lite-
BIRD. The values are consistent with recent studies, [135], [9], respectively.
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Foreground models Parameterization

Synchrotron power-law µ(�s) = �3, �(�s) = 0.2

Synchrotron curvature µ(�s) = �3, �(�s) = 0.2, C = -0.052

Thermal dust �d = 1.54, Td = 20K

AME fp = 2%

Table 5.2: Summary of the foreground models considered in this work. The
parameterization is based on Equation 3.2 for synchrotron, Equation 3.3 for
thermal dust and Equation 3.6 for AME. µ(�s) and �(�s) are the synchrotron
spectral index mean and standard deviation, respectively. fp represents the

polarization fraction.

5.5 Discerning two di↵erent foreground models

(Binary classification)

We first use the binary classifier described in Section 5.3.1 to distinguish between

two di↵erent foreground models. In particular, in the first case, we train the

NN in order to understand whether low frequency data are fitted better by a

synchrotron model, which does or does not include curvature of the spectral index

(see Equation 3.2). Next, we focus on the case in which a pure power-law describes

the synchrotron emission, and the NN is trained to recognize the presence of

polarized AME.

5.5.1 Synchrotron with and without curvature

We have trained the NN with four sets of simulated multi-frequency maps. Each

set consists in 34 maps, i.e. 17 frequencies for Stokes Q and U emissions. In each

set we have included the emission coming from the CMB, polarized thermal dust

and synchrotron simulated as described in Section 5.4. In two sets of maps, the

synchrotron emission is scaled in frequency with a pure power-law, while in the

remaining two a curvature is added to the spectral index. We have considered a

di↵erent random realization of the CMB emission for each set of maps, as well as

a di↵erent realization of the synchrotron spectral index spatial variation, which

is taken from a Gaussian distribution with mean -3 and standard deviation 0.2.

The synchrotron curvature in the two sets of maps is constant, with a value of

C = �0.052, and 23 GHz as the pivot frequency. All the maps have been simulated

at Nside = 1024, meaning that in total we have about 5 ⇥ 107 vectors, each of
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which consists of 34 elements, which are used for training. Among these, we have

randomly selected 20%, which are not used for optimizing the NN weights, but

as a validation set, as it is typically done for validating the performance of a NN.

The size of the training set has been chosen in order to find the optimal balance

between NN performances and computational costs. Since we have considered all

the pixels in the sky maps for training the NN, and given the high level of non-

stationarity of the Galactic signals, the vectors in the training set cover a very

large dynamic range, of about four orders of magnitude. As it is done in preparing

the data for NN training, we normalized each input vectors in the range between

-1 and 1 as follows: the minimum and maximum value for each input vector are

computed; the minimum value is subtracted to the vector elements, and the result

is divided by the di↵erence between maximum and minimum. This procedure is

shown in the following equation

std(x) =
x�min(x)

max(x)�min(x)
, scaled(x) = std(x)(1� (�1)) + (�1) (5.1)

Where x and x are a vector and a member of the vector from training and validation

set respectively. And scaled(x) is the scaled member of the vector inside the

desirable range [-1, 1].

In order to further generalize the training set and make it substantially di↵erent

from the test one, we have shifted the amplitude of each Galactic component. In

particular, we have applied a multiplication to both the templates of synchrotron

and thermal dust (at 23 and 353 GHz respectively): in each template, each pixel

in Q and U is multiplied by a random value drawn from a Gaussian distribution

with standard deviation equal to 30% of the amplitude of the pixel itself. The

multi-frequency maps are then obtained by applying the correct frequency scaling

to these modified templates.

In Figure 5.5 we show the training history with the accuracy reached by the NN as

a function of epochs. Since we are working on a classification problem, in this case

the accuracy represents the percentage of elements in the training (or validation)

set which are classified correctly. We recall that the NN outputs the probability for

each input pixel to belong to each considered class and that each pixel is assigned

to the class that has the highest probability.

Once the NN is trained, we can apply it to the test set. In particular, we have built

test maps, by making use of the PySM library, that include CMB, synchrotron,
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and thermal dust. Maps of the test set have been generated at Nside = 16 and

without the modulation of the foreground templates in order to make our test

set considerably di↵erent from the training one. In some regions, the synchrotron

emission has been scaled in frequency with a simple power-law, in others, we have

modified the SED by including a running parameter of the spectral index. An

example of a test set map is reported in Figure 5.6: in the pixels belonging to the

red regions the synchrotron SED is a pure power-law, while in the blue region a

curvature is added. The color scales in Figure 5.6 report the output of the NN, i.e.

the probability that each pixel belongs to the correct class. In particular, pixels

shown with darker colors are those where the NN assigned the correct class, while

pixels with lighter colors are those where the NN has missed the right foreground

model. For sake of clarity, in the right panel of Figure 5.6, we show, in white,

the pixels where the NN has made an incorrect prediction. The achieved accuracy

(i.e. the percentage of correctly classified pixels) is about 98%. We have tried

di↵erent combinations of patterns for synchrotron power-law and curvature in the

sky, assessing that the accuracy reached by the NN is stable and does not depend

on the considered sky configuration.

We have also investigated the physical properties of those pixels where the NN

assigned the wrong model. In particular, we have found that when the relative

amplitude of the synchrotron emission over dust is small, the NN has the tendency

to misclassify the model. This happens for example in the region near Galactic

coordinate (230�, +40�) where the synchrotron amplitude is known to be extremely

weak, or on the Galactic plane where dust emission is very bright. We have

quantified this e↵ect in Figure 5.7, where we show the fraction of misclassified

pixels as a function of the relative amplitude of synchrotron over dust emission.

In particular, we have considered a map at Nside = 256 (corresponding to about

7.8⇥105 pixels) where we have scaled the synchrotron emission with a pure power-

law on the whole sky. For each pixel, we have computed the synchrotron over dust

amplitude at the frequency of 11 GHz and for the total polarized intensity. We have

applied a binning on this ratio such that in each bin we have the same number of

pixels (about 1600). A threshold corresponds to each bin, and we have counted the

ratio of misclassified pixels over the total number of pixels with log(Asynch/Adust)

below the threshold. The results in Figure 5.7 show that when the synchrotron

over dust amplitude is small, the fraction of misclassified pixels increases, up to

about 38%, while for the pixels where synchrotron emission is high compare to

dust, the faction of misclassified pixels decreases dramatically.
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Figure 5.5: NN accuracy across training with respect to epochs for binary
classification between synchrotron with and without curvature, in the noiseless

case.

Figure 5.6: Left panel: NN prediction on test set for the binary classification
for Galactic synchrotron with (blue regions) and without curvature (red regions)
in the ideal case of noiseless maps. The color bar shows the NN probability
assigned to the corresponding model across the sky. White pixels are those
where the incorrect model is assigned. Right panel: For clarity, correct (black)

and incorrect (white) pixels are also shown with a binary color scale.

5.5.2 Synchrotron and AME

We have used the same NN architecture developed for binary classification with

the goal of identifying those pixels where AME polarized radiation is present in

the sky. The two models considered in this case correspond therefore to Galac-

tic synchrotron with a pure power-law SED, or synchrotron plus polarized AME

component with the specifications described in Section 5.4.

For what concerns the training, we have followed a procedure analogue to the one

presented in the previous Section. The training consists of four sets of maps; in two

of them we have simulated the sky emission by considering the presence of CMB,
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Figure 5.7: The faction of misclassified pixels respect to relative amplitude of
synchrotron power-law to dust emission for binary classification of the Galactic

synchrotron with and without curvature case at 11 GHz.

synchrotron and thermal dust radiation, while in the remaining two we have also

included polarized AME. As before, the total number of vectors in the training set

is about 5⇥107 and the templates of foreground emissions (dust, synchrotron and

AME) have been modified by applying the multiplication factor as described in

the previous Section. Results are presented in Figure 5.9, where AME is present

are shown in green. In the ideal noiseless case, the NN is able to correctly classify

the foreground model in about 97% of the cases. We highlight that pixels where

the NN fails in classifying correctly the foreground models are those where the

AME emission is faint with respect to the synchrotron one. In Figure 5.10 we

report the fraction of misclassified pixels as a function of the relative amplitude

of AME over synchrotron at 40 GHz (the frequency closest to the AME peak),

similarly to what we have done for Figure 5.7. The results show that, as expected,

the smaller AME amplitude is compared to synchrotron, the higher is the fraction

of misclassified pixels, up to about 40%.

5.6 Discerning four di↵erent foreground models

(Multi classification)

We now extend the study performed so far and consider a more complex case in

which the NN is trained to classify four di↵erent foreground models in the simu-

lated sky. In this case we have used the NN architecture described in Section 5.3.2.

As before, we have built our simulated maps by including CMB and thermal dust,
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Figure 5.8: NN accuracy across the training with respect to epochs for binary
classification between synhrotron power-law and AME, in the noiseless case.

Figure 5.9: Left panel: NN prediction on test set for the binary classification
for power-law synchrotron only (red regions) and without AME (green regions).
The color bar shows the NN probability assigned to the corresponding and
correct synchrotron model across the sky. Right panel: White pixels are those
that the incorrect model is indicated by the NN with the highest accuracy.

These results are for the noiseless case.

Figure 5.10: The fraction of misclassified pixels respect to relative ampli-
tude of AME to synchrotron power-law emission for binary classification of the

Galactic synchrotron in the presence of AME or not at 40 GHz.
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Figure 5.11: NN accuracy across training with respect to epochs for multi-
class classification between synchrotron with and without curvature, with and

without AME, in the noiseless case.

while the low frequency foregrounds include synchrotron with or without a curved

SED and possibly AME.

The training set has been generated from four sets of maps as before, for a total of

about 5⇥ 107 vectors used for optimizing the NN weights. The training history is

shown in Figure 5.11: the NN reaches about 87% of accuracy on the training set

after 220 epochs. It is worth noticing that as a result of the enhanced complexity

in the simulations, the NN training takes more time to optimize weights.

Results on a test map are shown in Figure 5.12. In this case the sky is divided into

four di↵erent regions, corresponding to the four models that the NN has to classify:

synchrotron with a pure power-law SED (red), synchrotron with running of the

spectral index (blue) and presence of polarized AME (green when AME is added

to the synchrotron power-law model and purple when it is added to synchrotron

with curvature). As before, color bars report the probability obtained by the

NN that a given pixel belongs to the correct class, with lighter colors showing

pixels where the NN has been assigned with the incorrect foreground model. The

reached accuracy on the test set is at the level of about 93% and as before it does

not depend on the specific pattern of models in the sky.

In Table 5.3 we report a summary of the performance of the NN in the di↵erent

considered configurations. We notice that in some cases the accuracy reached on

the test set is higher than the one on the training set, as it could happen as a

consequence of having exploited dropout during training.
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Figure 5.12: Left panel: NN prediction on test set for the multi-class classi-
fication for pure power-law synchrotron with (green regions) and without AME
(red regions), curvature with (purple) and without (blue) AME. The color bars
show the NN probability assigned to the corresponding and correct synchrotron
model across the sky. Right panel: white pixels are those where an incorrect
model is indicated by the NN with the highest accuracy. These results are for

the noiseless case.

5.7 Classification in presence of noise

We have tested the performances of our NNs when instrumental noise is present

on maps. In particular, we have considered the specification of the LiteBIRD and

QUIJOTE experiments, with the sensitivities reported in Table 5.1 and uniform

white noise distribution across the sky.

Our first approach has been to change only the test sets, by adding noise on

the test maps, but keeping the weights of the NNs unchanged, therefore with

the values optimized with the noiseless training. The first column of Table 5.4

reports the accuracy reached on the test sets for the three classification schemes

we considered: binary classification for synchrotron models, presence of AME, and

multi-classification. For the binary classification, we reached acceptable accuracy;

While the accuracy drops significantly, reaching about 68% in the more complex

multi-classification case.

In order to get better results, we have trained the NN with noise in the training set.

We have considered two di↵erent approaches. In the first one, we have added one

noise realization on the multi-frequency maps used previously as the training set.

We have then taken the NN trained previously on noiseless data, and performed a
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second phase of training with the noisy training set. In this way, the NN shows a

remarkable improvement in accuracy, being able to reach ⇠ 90% on the test set for

the multi-classification. In the second approach, we have built new training sets,

consisting in 100 maps for each model at low resolution (Nside = 16), resulting

in 400 sets of maps included in the training set, corresponding to more than 1

million pixels. Similarly to the previous case, the accuracy is pretty high, at the

level of about 93%, proving that, during training, the NN is able to learn the noise

properties and take those into account during the model classification.

In Figures 5.13 and 5.14 we show the results on the test map for the binary

classification, for the case in which the training has been done with noiseless

simulations (upper panels) and the one where the training set was obtained from

low resolution maps (lower panels). Figure 5.13 is specified for the recognition

of Galactic synchrotron emission with curvature or not in presence of noise while

Figure 5.14 shows the classification of Galactic synchrotron emission in presence

of AME or not when the test maps are noisy.

Instead, Figure 5.15 demonstrates the same setting for the multi-model classifica-

tion. The upper panel shows the NN, trained with noiseless dataset, prediction

on the noisy test map; while the lower panel shows the clear improvement of the

NN prediction by training with noisy training set. A summary of all the results is

reported in Table 5.4.

5.8 Comparison with chi-squared information

In this Section, we compare quantitatively the information retrieved via our NN

apparatus with the ordinary goodness of fit represented by a �
2 test following a

parametric component separation analysis. We adopt in the rest of the work for

calculating the �2 after component separation, using the same input maps used so

far for the NN. We restrict this analysis to the classification in the simplest cases

of pure power-law or curved SED for synchrotron, i.e. the first case analyzed in

the previous Section, in the binary classification mode. We run FGBuster on the

skies used to test the NN in the presence of noise, and calculate the �2 accordingly.

For all the pixels we fit two di↵erent models: in one case, the parameters to fit

with FGBuster are synchrotron, dust amplitudes and synchrotron spectral index,

while in the other case, in addition to those, we also fit for synchrotron curvature.



Neural Network for foreground model recognition 67

Figure 5.13: The e↵ect of including the noise in the training set. The color
scales for the considered models are the same as Figure 5.6. The upper panels
indicate the NN accuracy on the noisy test set, and lower panels show the NN
accuracy on the same noisy test set after re-training with 100 noise realizations
at Nside = 16; As before, white pixels in the right panels are those where the

NN indicates the incorrect model with the higher probability.

Since the parameterization of two synchrotron models is di↵erent, in order to have

a fair comparison between the two �
2 tests, we have computed the reduced �

2

taking into account the degrees of freedom.

From the reduced �
2 we compute the probability for each pixel to belong to the

correct model that we show in the upper panel of Figure 5.16. As usual, darker

colors indicate the pixels where thanks to the �
2 computation we retrieve the

correct model, while lighter colors are for those pixels where the classification

is wrong. We compare the results obtained from the �
2 with those of the NN

(lower panel of 5.16, in the case where we have re-trained the NN with 100 noise

realization at Nside = 16 (see Section 5.6). The reached accuracy calculated from

reduced �
2 is at the level about 73%, while the NN is able to distinguish two

models with of 97% accuracy. This clearly shows the gain in using a NN for model

recognition.
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Figure 5.14: The e↵ect of including the noise in the training set. The color
scales for the considered models are the same as Figure 5.9. The upper panels
indicate the NN accuracy on noisy test set and lower panels show the NN ac-
curacy on the same noisy test set after re-training with 100 noise realizations
at Nside = 16; As before, white pixels in the right panels are those where the

incorrect model is indicated by the NN with the higher probability.

In Figure 5.17 we also show the di↵erence between the �
2 values computed in

each pixel for the two di↵erent cases (with or without fitting for curvature) across

the sky. As it is clear, the di↵erence between the two reduced �
2 is very close to

zero in the region where the sky signal is low (greenish regions at intermediate

and high Galactic latitudes). These are the regions where the �2 analysis leads to

a higher probability of misclassification of the foreground model, due to the low

signal-to-noise ratio. The same e↵ect does not seem to a↵ect the NN classification

so strongly.

5.9 Summary and outlook

As outlined in this Chapter, throughout this PhD Thesis, we have started to in-

vestigate the relevance of NN in recognizing the physical properties of the di↵use
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Figure 5.15: The e↵ect of including the noise in the training set. The color
scales for the considered models are the same as Figure 5.12. The upper panels
indicate the NN accuracy on the noisy test set, and lower panels show the NN
accuracy on the same noisy test set after re-training with 100 noise realizations
at Nside = 16; As before, white pixels in the right panels are those where the

NN indicates the incorrect model with the higher probability.

linearly polarized emission from our own Galaxy at microwave frequencies, which

represents the main astrophysical contaminant to the measurement of the CMB

B-mode polarization sourced by GWs in the early Universe. The problem is par-

ticularly challenging and urgent, due to the scientific relevance of the cosmological

signal, and the di�culty in disentangle it from the much brighter foreground emis-

sion.

We want to summarize the main aspect of this work here and the future possibili-

ties, as we think, this is the beginning of a new layer for foreground recognition and

cleaning. The latter is usually performed via parametric fitting, which implies the

necessity of identifying the physical parameters describing the foreground model
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Figure 5.16: Comparison of �2 analysis with NN prediction in the presence of
noise on test maps. Upper panels: on the left, we report the probability for each
pixel to belong to the correct model as obtained via the �2 approach. In the red
regions the correct model is represented by a synchrotron power law SED, while
in the blue region a curvature is present. Lighter pixels are those where the �2

analysis leads to a wrong model classification (also shown in white in the right
panel). Lower panels: same as the upper panels, but in this case the probability
has been obtained via the NN approach. This comparison shows the advantage
of using a NN approach, leading to a correct classification on about 97% of the

pixels with respect to about 73% when the �2 information is used.

Figure 5.17: Reduced �2 di↵erence for each pixel, obtained when the fit is
done considering pure power-law SED for synchrotron and when the curvature
is included. Pixels at intermediate and high Galactic latitudes (in green) are

those where �2 is unable to distinguish between the two models.
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in each portion of the sky, fitting and marginalizing them on the basis of a suitable

multi-frequency coverage. On the other hand, foreground physical properties and

model do vary in the sky, in a manner which is currently only partially revealed

by observations, and yet crucial, because the right parametrization of them is nec-

essary to perform a good fitting and to prevent the presence of large foreground

residual in the CMB maps which could bias the scientific results.

Therefore, we study the possibility to identify the right physical parametrization

of foregrounds, varying across the sky, in a pre-foreground cleaning phase. We do

it with NNs, trained on simulations, and applied to test cases. We focus on the

properties of Galactic synchrotron and AME, which have a rich phenomenology,

resulting in possible di↵erent parametrization across the sky. We take care of

making the simulations substantially di↵erent from observations, by explicitly and

microscopically altering the training set with respect to the test one, at each

resolution element. We find a good performance of the NN in recognizing the

right parametrization of foregrounds, which achieve better results with respect

to a standard �
2 test on the goodness of fit, making our results interesting and

suitable for future studies.

The combination of the simulations based on the specification of the QUIJOTE

telescope and the LiteBIRD satellite, with a good coverage of the relevant frequen-

cies, are analyzed in the binary and multi-class classification modes, i.e. when two

and four models have to be recognized in the sky, respectively. In all cases, the rate

of success in recognizing the right foreground model is equal or larger than 90%.

This is true even in the case where four foreground models have to be recognized,

namely pure power-law SED with or without curvature for synchrotron, with and

without AME. We compare the NN information concerning model recognition

with the �2 distribution following a parametric component separation assuming a

given model, implemented and ran through the publicly available FGBuster code.

We find that the NN performs better with respect to the �
2, in particular at

intermediate and high Galactic latitudes.

Moreover, we have repeated the same analysis done in this Chapter for a more

complex case, and results are explained in Appendix A. In particular, we con-

sidered the thermal dust emission with a variable spectral index all over the sky,

while in the simulation presented in this Chapter, this parameter was constant. It

is interesting to see even by adding complexity to the foreground models, the NN
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Sky models Accuracy
on training
set

Accuracy
on test set

Pure power-law & Curvature 99% 98%
AME & Pure power-law 93% 97%
AME & Pure power-law & Curvature 87% 93%

Table 5.3: Accuracy on training and test sets of the NN for di↵erent sky
models in the basic configuration without noise.

Sky models

Acc on test set for
training with noise-
less data

Acc for Re-
Training with
Nside = 1024, 1
noise realization

Acc for Re-
Training with
Nside = 16, 100
noise realizations

Pure power-law &
Curvature

82% 95% 97%

AME & Pure
power-law

78% 92% 94%

AME & Pure
power-law &
Curvature

68% 90% 93%

Table 5.4: Accuracy of the NN for the binary and Multi-classification in pres-
ence of noise with di↵erent approaches for training.

accuracy for predicting sky models reaches higher than 90% for both noisy and

noiseless cases.

We believe that these results are quite interesting, and a promising first step into

the construction of a model recognition layer of data analysis in B-mode CMB

measurements. Further lines of investigation for this work can be done by the

extension of other foreground models, as well as the inclusion of possible realistic

systematic e↵ects. We will come back to these comments, and future directions,

in the final Chapter of this Thesis.



Chapter 6

Generative Adversarial Networks

for CMB maps

We will now turn to another application acting on multi-frequency CMB maps,

and dealing with the control of the other foreground emission, due to point-like

extra-Galactic sources, following their removal at the level of maps. We don’t

discuss here the actual point source removal of sources; for reviews of algorithms,

testing, results and catalogues following point source extraction, Ade et al. [see

136, and references therein]. Instead, we focus on the post-processing concerning

point source removal, i.e. the treatment of the regions where the sources have

been removed in order to regain the sky coverage. As in the previous chapter,

here we consider, implement, test an innovative approach, by considering GANs

to fill in the masked regions due to point source removal. In Section 6.1, we

describe the context and motivation. We explain the basic concepts concerning the

generative models and the NN architecture in Section 6.2, and its implementation

and testing in Section 6.3. We discuss our methodology and results in Section 6.4,

and we conclude the chapter by summarizing the results and indicating the future

prospects of the project in Section 6.5. The content of this Chapter is based on

the paper: [137].

6.1 Motivation

Following point source removal, in order to avoid biases in the evaluation of the

CMB angular power spectrum of the available sky fraction, a class of algorithms is

73
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studied to replace the missing sky fraction with a statistical realization of the un-

derlying CMB signal, known as ”In-painting” or ”Filling-in”. Inpainting method-

ologies have also been used in CMB fields in order to estimate and recover specific

parts of the sky. One of the most used methods in the CMB community is Gaus-

sian Constrained Realizations (GCR) [138], which is based on the reconstruction

of the Gaussian random field from its residual respect to the mean value of the

field. Bucher and Louis [139] have made use of GCR to present a solution for filling

in the CMB masked regions both on a spatially flat sky with periodic boundary

conditions and on the pixelized sphere. Kim et al. [140] discuss this method in the

context of pixel dataset of the order of Planck, with millions of pixels, commenting

on its computational cost. They propose the same methodology, operating di↵er-

ently, in the harmonic space. Akrami et al. [11] have also exploited the Gaussian

realization method with limited prior to restore the missing parts. Gruetjen et al.

[141] applied inpainting to cut-sky CMB power spectrum and bispectrum estima-

tors.

On the other hand, ML and specifically Deep Learning (DL) have been proposed

as a solution to various problems concerning computationally expensive portions

of data analysis in Cosmology [142–145]. For a comprehensive and inspiring refer-

ence about ML applications in cosmology, see Ntampaka et al. [146] and references

therein. Also, ML and NNs have been used to improve di↵erent aspects of CMB

analysis such as: cosmic string detection with tree-based machine learning in CMB

data [147], predicting CMB dust foreground using galactic 21 cm data via NNs

[148], Inpainting Galactic Foreground Intensity and Polarization maps using Con-

volutional Neural Network [149]. Moreover, and recently, the inpainting problem

was addressed via DL by Yi et al. [150]; they have used another method as a subset

of DL, known as the Variational AutoEncoders (VAE) in order to fill in the point

source masked regions for the map-based CMB analysis.

GANs are a branch of deep NNs which are able to generate new realizations of a

data set learning from a given training set. They are able to preserve the same

statistics of input vectors. These networks are widely used in image inpainting

applications and Image-processing. There is a vast literature on image inpainting

by using GANs which address di↵erent capabilities and challenges [151]. They

have been used in cosmology as well, especially in cases characterized by an high

computational cost like LSS N-body simulations [152], detecting the 21cm emission

from cosmic neutral hydrogen (HI) simulations [153] and generating weak lensing
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convergence map [154]. Considering that GANs learns to replicate all statistical

properties without any priory assumption, there is still a lot of room to investigate

with GANs. One clear advantage of using GANs is they are capable of replicating

either Gaussian or non-Gaussian distributions where other algorithms like GCR

assume Gaussian distribution. Another advantage of GANs is related to their

e�ciency and flexibility. After training a GAN model on the real or simulated

data, they can generate a large volume of data for high resolution maps. Moreover,

their performance does not depend on the shape of the masked regions, and they

are able to handle areas with di↵erent shapes and sizes. In the rest of this chapter,

we are going to study the application of GANs in the context of filling in the CMB

maps following point source masking. Relying on the GANs’ advantages, we would

like to check if GANs are able to fill-in the masked regions of the CMB intensity

map. Later, we will compute the inpainted map’s intensity power spectrum and

check if GANs hold our desirable statistics.

6.2 GAN architecture

We have used a specific type of NNs, GAN, to inpaint masked regions of the sky

in CMB maps following a point source removal process. In this Section, the basic

concepts of GAN are defined, and after that, we explain our applied architecture

and loss function.

6.2.1 Basic Concepts

Generally speaking, GAN is made of two models that play competitive roles: a

generative model G and a discriminative model D. The role of the Discriminator

is to distinguish between actual and generated (fake) data while the Generator has

the responsibility of creating data in such a way that it can fool the Discriminator

[155].

The generator is a NN G(z, ✓G) where ✓G indicates the network’s parameters and

z is a noise vector drawn from a given prior distribution Pz. G is a generative

model that tries to learn the mapping between Pz and the distribution PG learnt

from the data distribution Pdata. The output of G, given z ⇠ Pz, is a sample of
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the distribution PG. This sample, coming from the estimated distribution of PG,

will resemble the samples drawn from the data distribution Pdata.

The discriminator is a NN D(x, ✓D) where ✓D indicates the network’s parameters

and x is a vector of data. D is a classifier that outputs the probability for the

vector x to come from the training distribution Pdata or from the learnt distribution

PG.

The general loss function of GAN architecture, considering the complete data set,

by the combination of the generator and discriminator’s loss function will be as

follow:

min
G

max
D

V (D,G) = min
G

max
D

(Ex⇠Pdata(x)
[log(D(x))]+Ez⇠Pz(z)

[log(1�D(G(z)))]).

(6.1)

where E is the expectation function. From this equation, we can observe how D

tries to maximize the number of correct classifications of the original data – the

part log(D(x)) – and the generated data – the part log(1 �D(G(z))) – while G,

on the other hand, by tuning its internal parameters ✓G, tries to minimize the

number of correctly classified fake images producing more likely results. From the

formula above, one could derive the individual loss functions that may be adapted

to the specific problem’s domain [156].

The training phase is finished when neither of the two models can get better results

by adjusting their parameters; in other words, the Discriminator will not be able to

distinguish between the real and fake data anymore. At this level, the Generator

has learned to produce good enough data with characterization coming from the

real data. This status is so-called Nash equilibrium. [157]

6.2.2 Applied Architectures

We have used a modified version of GAN architecture proposed by [158], which is

called Context Encoder. This network aims to reconstruct the missing part(s) of

an arbitrary image. By having this network as our baseline, we have adapted the

architecture of Discriminator and Generator with respect to our target. Moreover,

we have changed the type of applied Loss function, which we explain in the next

Section. First of all, we describe the type of our input images for Generator and
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Discriminator, which are CMB patches, and the applied mask. We can show the

masked patch as follows:

Pm = Pi �M. (6.2)

where Pi is the complete (real) CMB patch as input and M is the mask, which

includes value 0 for masked pixels and 1 for the rest and the sign, �, is the

element-wise product operator, therefore Pm is the masked CMB patch.

Then to inpaint the masked patch, the Generator, which we indicate as G needs

two inputs Pm and 1�M that makes it aware of where it should inpaint. We can

call the inpainted patch Pg where:

Pg = G(Pm, (1�M)). (6.3)

Finally, the Discriminator D should predict if either a patch is real or fake, so:

P = D(P⇧), (6.4)

where ⇧ can be either i, meaning real CMB patches as input, or g, meaning fake

CMB patch inpainted by the Generator, and P is prediction vector.

The optimized architecture for image and video recognition, image classification,

and analysis is the Convolutional Neural Networks (CNN); So we have used fully

convolutional architecture both for Discriminator and Generator as well. Not

including fully connected layers, specifically in Generator, gives our network the

flexibility advantage. By just having convolutional layers, we are able to give

an arbitrary squared patch of CMB as an input to our network. Typically, the

bottleneck layer of a Generator is formed by a fully connected layer. The fully

connected layer is essential for the usual image recognition problem because by

including only the convolutional layer, the information cannot propagate directly

from a corner of the feature map to the other part. But this is not the case for our

analysis since we are inpainting CMB patches locally, and only the neighborhood

information is needed, since the long range correlation of the CMB field is not

very significant. In Figure 6.1, we show the schematic architecture of our GAN.

The details of hidden layers and di↵erent considered cases about Discriminator
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and Generator architecture are explained separately in the following paragraphs.

We have tried three diverse architectures with various depths. It came out that

the deepest architecture was prone to overfitting, so here we address the two

architecture with the best results.

6.2.2.1 Discriminator

For the first case, given a CMB patch 64⇥ 64 pixels, which can be the real CMB

or inpainted by the Generator, we use three 2D convolutional layers with Leaky

ReLU as the activation function and following three batch normalization layers.

Rectified Linear Unit (ReLU) is one of the most popular activation functions

which has the form of f(x) = max(0, x). Besides having many advantages such

as faster performance, ReLU has some caveats, which the most important one is

prone to create dead neurons because if the units are not activated initially, they

stay inactive with zero gradients. This problem can be solved by adding a small

negative gradient in x < 0 part of the function; the result is the so-called Leaky

ReLU [159]. Batch normalization is a technique usually applied for deep neural

networks in order to improve the speed and stability. It is used to normalize the

previous layer’s activation, which causes decreasing the training epochs [160]. Our

convolutional layers’ kernel size is equal to 3, and we are using stride=2 for moving

the filter. Here, the output layer is a simple dense layer with one value 0 or 1 to

classify the fake or real image.

The second case has the same architecture, as mentioned in the first case, but with

four 2D convolutional layers and the following batch normalization layers.

6.2.2.2 Generator

The Generator includes two important parts, the encoder and decoder. The en-

coder has the role of learning the features and structures of the given image by

convolutional layers, and then the decoder takes the responsibility of reconstruct-

ing the missing area by using deconvolutional layers. For both cases, the input

and output layers have the same shape of CMB patch, 64⇥64 pixels. For the first

case, hidden layers consist of nine 2D convolutional layers. First, there are four

2D convolutional layers with Leaky ReLU as the activation function. Then, the

batch normalization (Encoder part) of the Generator. Given an input image with

a size of 64⇥64, we use these four layers to compute a feature representation with
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Figure 6.1: Schematic view of the training flow. G and D show the Generator
and Discriminator architecture while L1 and L2 are traditional GAN loss and
MSE loss function respectively. The modified loss we use for our network is

L = ↵L1 + (1� ↵)L2.

dimension 16 ⇥ 16 ⇥ 72. Next, four 2D convolutional layers, in the decoder part

of the Generator, are up-convolution which is simply up-sampling following by a

convolutional layer [161] with ReLU activation function, The last convolutional

layer with tanh activation function returns the inpainted CMB patch.

The second case has the same architecture as mentioned in the first one, but

with eleven 2D convolutional layers (five convolutional for the encoder and five

deconvolutional for the decoder) and following batch normalization layers.

6.2.3 Applied Loss Function

The Generator has to fill the masked regions by exploiting the competitive role

with respect to the Discriminator, preserving the statistics of the CMB. Therefore,

to achieve better results, we have trained our generative model based on two

loss functions: First L1 = LGAN where LGAN is defined in Equation 6.1 and

L2 = MSE(Pi,Pg). Mean Square Error (MSE) is one of the most common

loss functions for regression. We have exploited the L2 to apply the regression of

ground truth for the masked regions and reconstructing the overall structure of

the missing part, while L1 has the responsibility to create a fake image that looks

real. In our architecture, these two loss functions are related to the ↵ parameter.
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Therefore applied loss function will be as follows:

L = ↵L1 + (1� ↵)L2. (6.5)

The control coe�cient ↵ changes from 0.01 to 0.2 while the model learns. At the

beginning of the training, the value for ↵ is low, which means the main goal is

minimizing L2 that has the role of learning about filling the exact missing region.

As the training goes on, we relax this condition through the training process and let

G learn more about the statistics. In this way, in higher epochs, ↵ value increases,

and the Generator contributes more in filling the masked region. Also, we applied

an adaptive learning rate for G and D during the training phase, considering the

loss value in such a way that in each epoch, the G loss is compared with D. In

this method, if G loss is larger than D loss, the ratio of G loss to D loss: n = LG

LD is

calculated and Generator takes n times training more in epoch and vice versa. In

this way, we prevent to reinforce one of two opponents, just for some epochs that

this ratio might be extreme, we put a threshold n < 20, which means at maximum

G or D can train 20 times more than the other one.

6.2.4 Working environment

In our work, we used Keras 1 package with Tensorflow backend. We trained

di↵erent architectures for 70000 epochs using 64 ⇥ 64 pixels images and 32 as

batch size. The number of layers, kernel size, the latent space dimension and

number of filters are evaluated as di↵erent parameters of the architectures. The

learning rate is initiated with 0.5 and decayed with the factor 0.9997. The ↵ values

we investigate are 0.01, 0.05, 0.1 and 0.2 where the masked areas are chosen from

one of these ranges: [10� 30], [80� 100], [150� 170], [220� 240] and [290� 310]

pixels. The model is trained on NVIDIA Tesla P100 and Quadro RTX 5000 GPUs

and 30 GigaByte of memory.

1https://keras.io
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6.3 Data set

In order to train the network and test the capability of generating the CMBmasked

part, we have used publicly available Planck simulated maps 2 and the correspond-

ing mask. To avoid complications, we chose to work with ”Spectral Matching

Independent Component Analysis” (SMICA) component separation method and

assumed that the component separation procedure works well except in the masked

region. SMICA has been obtained by combining the multi-frequency Planck 2018

dataset to mitigate the foreground emission. SMICA [162] represents one of the

four component separation approaches included in the Planck analysis [11]. We

have also used the Planck intensity mask map, so the masked regions’ shapes and

distribution are exactly as they are in Planck observation.

The used simulated maps are noiseless but include all the systematic e↵ects (ef-

fect of Time-ordered information and beams) entering the Planck observation and

analysis pipeline. There are more details about the simulation pipeline and corre-

sponding systematic e↵ects in [163] for interested readers. We have tried di↵erent

patch sizes and chosen 64 ⇥ 64 pixels due to the best result and computational

costs. In fact, this choice prevents our generative model G from learning about

larger scales, and the larger patches would need huge memory and is very time

consuming. To train our network, we have used ten full-sky CMB simulations,

and in total, more than 105 CMB patches as the training set, and five full-sky

simulations are used for the test set.

In this work, we target to fill in the CMB missing regions, which are masked be-

cause of point sources, with di↵erent areas. In order to have a clear idea of the

distribution of these masked regions in terms of size and area, Figure 6.2 shows

that a large number of masked regions has an area less than 1000 pixels.

In order to have more quantitative statistics, in Table 6.1, by considering a thresh-

old on the maximum area for masked regions (Amasked), we calculate which per-

centage of the total number of the masks with less than or equal to di↵erent

limits, Nr, and the sky fraction associated to them, Ar. Moreover, Ar indicates

the percentage of the masked sky by the masks with an area for the corresponding

Amasked. We have used these values for testing our models and their statistics. For

instance, by choosing Amasked  1500 pixels, the GAN will fill in 96.08% of the

total number of the masks and 2.97% of the whole masked area. In the typical

2http://pla.esac.esa.int
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Figure 6.2: Masked regions area distribution for Planck intensity mask. The
masked regions with area Am ⇡ 100 pixel2 are the most probable.

Amasked  [pixels] Amasked  [arcmin
2] Nr(%) Ar(%)

100 295 74.49 1.14
200 590 89.83 1.80
500 1475 93.11 2.10
1000 2951 94.79 2.51
1500 4426 96.08 2.97
2000 5901 96.81 3.37

Table 6.1: The percentage of masked regions in term of number, Nr, and frac-
tion of masked regions respect to the whole sky (4⇡), Ar, for di↵erent Amasked.

masking procedure of an all sky CMB map, the majority of the excluded region is

in the mask applied to the Galactic plane, needed in order to mask out the di↵use

Galactic foreground signals. Still, a relevant fraction of point sources is masked

out also at low Galactic latitudes.

6.4 Results and Discussion

We discuss the results of each architecture and case aforementioned in this Section.

In order to do so, we need to define our methodology to compare di↵erent cases.
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Figure 6.3: The di↵erent range of isolated masked areas which are used in our
training. From left to right: 150  Amasked  170, 220  Amasked  240 and

290  Amasked  310.

6.4.1 Methodology

It is common to visually compare the real and fake images provided by GAN to

check the GAN performance. In the context of CMB analysis, though, we will

consider the angular power spectrum as a diagnostics of the proposed algorithm’s

good functioning. Although, concerning the scientific goal, there is the possibility

to apply another kind of statistical metric as a benchmark. This work will focus

on the total intensity only, leaving the polarization to future works. That is also

because it is expected that point source masking plays a less important role in

polarization, with respect to total intensity [164].

In order to investigate how G can learn through di↵erent masked sizes, we have

used two di↵erent masked area conditions for the training and test. The parameter

Amasked sets the allowed range of masked regions. In our method, in the training

phase, the Amasked has both upper and lower bands, limited to 20 pixels for all the

models to focus on a specific range of areas. We have trained our model on masked

regions with Amasked = [10�30], [80�100], [150�170], [220�240] and [290�310]

pixel area. The last three ones are reported in Table 6.2 and 6.3, resulting in a

better performance for the current analysis. Figure 6.3 shows three samples of

these applied masked areas. Instead, in the test set, we have just limited Amasked

with an upper limit, and the maximum Amasked is equal and less than 2000, as

reported in Table 6.4.

Our methodology is based on comparing the theoretical CMB intensity power

spectrum with the inpainted one, for this purpose, we will use the same definition

of the CMB power spectrum C` as Equation 2.18. For performance comparison

and considering higher `s, we will plot the D` which is defined as D` =
`(`+1)C`

2⇡ .
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In this analysis, we have used HEALPix anafast function for the power spectrum

computations after the CMB patches are reassembled on the sky sphere. We

cut and project back the CMB patches after the inpainting procedure using the

CCGPack 3 package. The di↵erence between the inpainted map power spectrum

D
inp

`
and theoretical Dtruth

`
one varies through di↵erent Amasked and g, so �D` can

be written as:

�D`(Amasked, g) = D
inp

`
(Amasked, g)�D

truth

`
. (6.6)

The variable g is referred to the inpainted CMB patch by the Generator. Now, we

are ready to define our cost function, which will be used for testing the generative

model performance:

C(Amasked, g) =
X

`

⇣
�D`(Amasked, g)

⌘2
. (6.7)

Since this is a function of Amasked, and Amasked might be di↵erent from a patch

to another, we need to define a reference case in order to have a fair comparison

for the large inpainted areas with respect to small ones. We defined a worst-case

scenario for each chosen Amasked to compare how well the D
inp

`
is reconstructed.

The worst-case scenario power spectrum D
w

`
is achieved if we assume that the

masked regions are filled using the average of the rest of the map, which means

that for each patch P the following relation will be valid:

P =

8
<

:
Pi Mi = 1

T Mi = 0
, (6.8)

Here, T is the averaged intensity of the whole unmasked sky map, and i shows the

pixel number. Then the cost of the worst-case scenario, Cw, can be defined as:

Cw(Amasked, g) =
X

`

⇣
D

w

`
(Amasked, g)�D

truth

`

⌘2
. (6.9)

Finally, we can define the relative cost, which from now on, we will indicate as Cr
to compare di↵erent results for the di↵erent Generator architectures and Amasked.

3https://github.com/vafaei-ar/ccgpack
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Cr =
C(Amasked, g)

Cw
. (6.10)

6.4.2 Results

We have applied our algorithm on two di↵erent types of CMB patches that hence-

forth we will refer to the hypothetical and the Planck mask. In the hypothetical

mask, the generative model is asked to inpaint the same masked area size as it

learns in the training phase, while in the Planck mask, the Generator should deal

with any kind of mask sizes less than the specified Amasked.

The hypothetical mask is created assuming: one masked area exits within the

intervals defined in Section 6.4.1 in each patch with 64⇥ 64 pixels. Of course, the

number of masked regions within this range is much smaller in the Planck mask,

but we investigate this case to evaluate model performance by training for a full

sky mask. On the other hand, the di↵erent chosen maximum areas for the Planck

mask are listed in Table 6.4 in order to check the model performance in case of

facing larger masked regions.

We have probed various hyper-parameter spaces, including the appropriate depth

of the G and D as well as di↵erent ↵ parameters for the loss function and Amasked.

In total, we have trained 60 various networks for 70000 epochs with di↵erent

parameters. Here we are reporting the selected ones with the best results.

Table 6.2 and 6.3 show obtained Cr from inpainted CMB patches for di↵erent

Amasked and ↵ in the case of hypothetical sky by having 9 and 11 layers in G.
The number of D layers is always lD = lG

2 , where lG is the number of layers in

the Generator, due to our trial and error that indicates G needs to be deeper

than D. Each specific network architecture is trained on 3 di↵erent range of

areas 150  Amasked  170, 220  Amasked  240 and 290  Amasked  310

pixels and for the test, a full-sky map with the masked area inside the threshold,

is given to the network. Table 6.2 demonstrates that a GAN with Generator

with nine layers as it is described in Section 6.2.2.2 and Discriminator with four

layers, as Section 6.2.2.1 on the range of area = [150, 170] pixels has the best

performance and least Cr. Figure 6.4 shows a sample of 4 patches of ground

truth CMB patches next to each other, masked and inpainted CMB, in the same

architecture, for the visual comparison. From this Figure, one clearly can notice
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the masked areas have di↵erent shapes but a size inside the range. Furthermore,

we have computed the intensity power spectrum of our hypothetical CMB maps in

all the cases and plotted the best case in Figure 6.5. In this Figure, for comparison,

we have shown the observed CMB power spectrum as a baseline, D`, the worse,

D
w

`
, and the best, Dp

`
, inpainted scenario. Dp

`
in this plot corresponds to the green

cell in Table 6.2. Since the power spectrum itself is not very representative of the

di↵erence between them, we have plotted power spectrum residual, �D`, and error

percentage in the middle and lower panels. In order to have more statistics, we

have simulated 5 di↵erent hypothetical sky masks and done the same procedure.

The shaded areas, which are 95% confidence level in Figure 6.5 come from these

map realizations. We can see in the range ` less than 1700 the error is about

1%. Moreover, we followed the same procedure to plot the power spectrum for

the cases, when 220  Amasked  240 and 290  Amasked  310, the results are

demonstrated in the Figure 6.10, which are compatible with the yellow and orange

highlighted cells in Table 6.3.

Now we would like to test our network with the same procedure on the real Planck

2018 intensity mask. In this step, we also drop the architecture with 11 layers since

the result for the architecture with 9 layers turns out to be the best among the

two. In addition, we picked the model trained on 290  Amasked  310, which

is favorable because it has less Cr for the larger masked area on the real Planck

mask. Again, Figure 6.6 shows a sample of inpainted CMB patch compared to

the input CMB. Our model is able to deal with di↵erent masked areas in terms of

both size and shape. In Table 6.4, the Cr from inpainted CMB patches for di↵erent

Amasked  2000 pixels and ↵ for the real sky, are reported. We would like to recall

that our model, in this case, is just trained on masked areas with Amasked  310,

but it is able to predict and inpaint regions much larger on the real sky. For each

di↵erent upper limit on Amasked, we have added the plot of the best predicted

power spectra in comparison with the baseline in Figure 6.12. Still, owing to the

fact Amasked  1500 is the largest area in which the generative model can inpaint

with minimum error. We have shown this case in Figure 6.7. As before, observed

CMB D`, Dw

`
, Dp

`
, inpainted scenario power spectrum are compared. Dp

`
belongs

to the cell with the blue highlight in Table 6.4 with ↵ = 0.01. We can notice that

for ` < 1500 the deviation of inpainted CMB map is negligible and around 1%.

Finally, we consider more examples of inpainted CMB patches as a visual com-

parison in Figure 6.8 and 6.9 for the hypothetical mask and in Figure 6.11 for the
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Amasked[pix]

↵
0.01 0.05 0.1 0.2

150:170 0.64 1.10 0.56 0.98

220:240 1.29 1.06 0.85 0.77

290:310 1.81 1.87 1.64 1.58

Table 6.2: Obtained Cr for trained model with 9 layers architecture considering
di↵erent ↵ and Amasked on hypothetical sky mask. The highlighted cell shows

the least Cr specifications. All the values are multiplied by 102.

Amasked[pix]

↵
0.01 0.05 0.1 0.2

150:170 2.76 2.55 2.43 4.22

220:240 1.53 0.99 0.81 0.77

290:310 1.71 1.53 1.02 1.53

Table 6.3: Cr for the trained model with 11 layers architecture considering
di↵erent ↵ and Amasked on hypothetical sky mask. The yellow and orange
highlighted cells show the least Cr for 220  Amasked  240 and 290  Amasked 
310 respectively, taking to account both this Table and Table 6.2. All the values

are multiplied by 102 .

Planck intensity mask. Also the power spectra comparison in the cases of Amasked

= 220 and 290 for hypothetical mask in Figure 6.10 is plotted. As the last plot

also we have shown all the Amasked cases mentioned in Table 6.4 to check with the

inpainted CMB maps with our baseline.

We wrap up the di↵erent cases in Figure 6.13. Cr versus di↵erent upper limits

of Amasked for di↵erent ↵ is plotted with 95% confidence level. We see that by

enlarging the masked areas, Cr value gradually increases, but for Amasked � 1500,

this growth is significant, so we rely on our generative model up to Amasked  1500.

Also, from this Figure, it is clear the change of ↵ does not have a remarkable e↵ect

on Cr taking into account di↵erent statistical variations of inpainted maps.
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Figure 6.4: One sample including 4 patches of input CMB patch (left), masked
patch in the middle and the prediction (right). The inpainted patches are
produced using a hypothetical mask and ↵ = 0.1, 9 layers Generator and

150  Amasked  170 model.

Figure 6.5: Upper panel demonstrates the comparison of CMB intensity power
spectrum D` for the worse Dw

`
and best Dp

`
scenario which is the intensity

power spectrum of inpainted CMB maps for the hypothetical full sky mask.
The middle and lower panel show the deviation and residual percentage from
the observed CMB power spectrum. The Dp

`
is the case with green highlight in

Table 6.2. The shaded areas show the 2� confidence level.
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Figure 6.6: One sample of inpainted 64⇥ 64 pixels CMB patch. Input CMB
patch (left), masked patch in the middle and the prediction on a large masked

region (right). The masked areas come from Planck 2018 intensity mask.

Figure 6.7: Upper panel demonstrates the comparison of CMB intensity power
spectrum D` for the worse Dw

`
and best Dp

`
scenario inpainted CMB maps for

the real full sky mask with Amasked  1500. The middle and lower panel show
the deviation and residual percentage from the observed CMB power spectrum.
The Dp

`
is the case with the blue highlight in Table 6.4. The shaded areas show

the 2� confidence level.
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Amasked[pix]

↵
0.01 0.05 0.1 0.2

 100 2.64 2.92 2.56 2.64

 200 3.66 3.82 3.66 3.74

 500 5.26 4.98 5.47 5.25

 1000 10.08 10.25 10.10 10.22

 1500 10.95 20.35 10.98 20.22

 2000 40.84 50.83 40.91 5.52

Table 6.4: Cr for trained model with 9 layers architecture and Amasked =
290 : 310 considering di↵erent ↵ and Amasked on Planck mask. All the values
are multiplied by 102. The highlighted blue cell shows the best performance of

Amasked  1500 which is our favourite model.

Figure 6.8: One sample including 16 patches of input CMB patch (left),
masked patch in the middle and the prediction (right). The filled in patches
are produced using a hypothetical mask and ↵ = 0.2, 11 layers Generator and

Amasked = 220 model.

Figure 6.9: One sample including 4 patches of input CMB patch (left),
masked patch in the middle and the prediction (right). The filled in patches
are produced using a hypothetical mask and ↵ = 0.1, 11 layers Generator and

Amasked = 290 model.
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Figure 6.10: The caption is the same for Figure 6.5, but for Amasked = 220
and 290 pixels from left to right. The corresponding cases are yellow and orange

highlighted cells in Table 6.3.

Figure 6.11: One sample of inpainted 64⇥ 64 pixels CMB patch. Input CMB
patch (left), masked patch in the middle and the prediction on a large masked

region (right). The masked areas come from Planck 2018 intensity mask.

6.5 Summary and outlook

In this chapter, we consider an GAN based approach to face the issue concerning

the inpainting of the masked regions following point source removal in CMB maps,

while keeping their statistics, such as the power spectrum, unchanged. We develop

a modified generative model that is able to inpaint the CMB masked areas less

than 1500 pixels with around 1% error on the CMB intensity power spectrum for

` < 1500. Our model does not use any kind of prior and in the case of training on

observed CMB patches, preserves the statistic, and therefore it is not limited to

the reconstruction of Gaussian random fields.

Di↵erent setups are explored as well as diverse architectures. Considering the best

results, we suggest a modified GAN architecture with 9 layers for Generator and

4 layers for Discriminator, trained on 290  Amasked  310. Also, our network
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Figure 6.12: The caption is the same for Figure 6.7, but for Amasked less than
100, 200, 500, 1000, 2000 pixels sequentially, and ↵ in these cases corresponds

with the least Cr for each Amasked reported in Table 6.4.
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Figure 6.13: The summarizing Cr values for di↵erent Amasked upper limits
and ↵, where the shaded areas show the 2� confidence level.

takes advantage of using both MSE and GAN loss functions to learn the best

strategy to inpaint di↵erent masked areas, and these two loss functions are related

to each other by the ↵ parameter. We have used a novel method in using a

dynamic training rate of G and D, calculated during each epoch, for the network.

Furthermore, our model is not limited to a specific shape of the CMB patch, as

well as a missing area smaller than 1500 pixels.

We have defined the Cr parameter, which is a measure of the network performance

established on the power spectrum residual. The results of testing our model on

both hypothetical and Planck 2018 intensity masks is reported in Table 6.2, 6.3 and

6.4. We have shown that our applied GAN architecture, in the best scenario, up

to Amasked  1500 and ` < 1500, is able to inpaint the masked areas of the CMB

map in such a way that the CMB intensity power spectrum is barely di↵erent,

about 1%. Moreover, the generative model is almost insensitive to the choice of ↵

between [0.01, 0.05, 0.1, 0.2] considering the statistical analysis.

We believe that the exploitation of the GAN and generative model as a part of

the mapmaking pipeline in the next generation of CMB experiments might be

relevant. In addition, as it is described, our generative model has the capability

of not being biased to Gaussian fields; Since it does not have any Gaussian prior

in the training phase, in case of having observed CMB as the training set. In

future works, we will focus on larger masked regions. In that case, one needs

more e↵ective architecture to deal with very large inputs. Also, we’ll be able to

concentrate on either power spectrum or higher-order statistics optimization using

multi-level CNN operations for the intensity maps as well as polarization. We will
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keep discussing the future prospects concerning this line of investigation in the

final chapter of this Thesis.



Chapter 7

Conclusions

In the forthcoming years, an incredible e↵ort will take place towards detecting

primordial GWs, which are the imprint of the inflationary era in the very early

Universe. Detection and characterization of the amplitude of primordial gravita-

tional waves or tensor-to-scalar ratio r will be possible by observing CMB polariza-

tion, specifically B-modes, with extremely high sensitivity. Over the last decade,

operating CMB experiments looking at the CMB polarization made it clear that

di↵use Galactic foregrounds are the main non-instrumental challenge for the de-

tection of primordial GWs. The application of component separation techniques

for extracting the Galactic foregrounds out of the multi-frequency CMB datasets

turns out to be extremely important for the next generation of CMB experiments,

in order to achieve the detection limit for r, down to 10�3.

In this Thesis, we test the component separation on simulated data by one of

the forthcoming CMB probes, the LSPE experiment. At the same time, we make

the first steps into the implementation of novel, NN based algorithms, used for

a physical understanding of the actual parameterization of foregrounds, prior to

component separation, as well as for filling in regions where the foregrounds were

so intense that the considered was masked out.

Our studies show that the LSPE will be able to set an upper limit for tensor-

to-scalar ratio r at the level of 10�2 and detect a r = 0.03 with 95% confidence

limits.

For this analysis, we assumed the common and basic models for the di↵use fore-

ground emissions in polarization. On the other hand, as mentioned before, there is

95



Conclusions 96

strong evidence of the variability of foreground models in the sky. This variability

makes a di↵erence in the actual parameterization of foreground models that are

needed to fit them out across the sky. We wanted to start considering methods

that have to be applied before actual component separation, which are able to

learn, from data, the actual parameterization of foregrounds, which is most conve-

nient for their fitting and removal. Therefore, a new methodology is proposed and

based on NNs, in Chapter 5. We have tested our model on di↵erent synchrotron

models, AME, i.e. with di↵erent SEDs, presence of AME, and having thermal dust

spectral index variable across the sky. The implemented NN has been check in

two general ways: binary and Multi-class classifications. We have shown that the

NN can reach an accuracy higher than 90%, meaning that the algorithm returns

the correct foreground modeling in 93% of the considered sky area, in all the cases

mentioned above when the test data set is with noise. Moreover, comparisons of

the NN to a standard �
2 information extracted from parametric component sep-

aration for the classification of foreground emission in the noisy case, shows the

advantage of the NN in terms of accuracy. For the only case considered for this

comparison, synchrotron with and without curvature in the SED, the accuracy

reaches 97% for discerning synchrotron power law from curvature, including the

noise, which is 20% more than the same accuracy estimated via �
2 statistics.

In Chapter 6, we used NNs to face the issue of actual missing areas in CMB

maps due to point source removal. Precise restoration of CMB masked regions is

important in a number of post-processing of CMB maps, for example reducing the

cosmological parameter estimation uncertainty. This operation, known in general

as inpainting, consists in the reconstruction of lost, missed or damaged parts of

an image. We have considered GANs algorithms to face this issue and we report

di↵erent types of GAN architecture on various CMB masked areas. Moreover, we

analyse the CMB power spectrum after the inpainting process for various cases and

show that the inpainted maps, in the best case scenario, have a negligible deviation

from the theoretical and observed intensity power spectrum. This deviation in the

masked area less than 1500 pixels and ` < 1500 is about 1%. Due to importance of

CMB B-mode observations, we are going to apply the same method on the CMB

polarization maps and power spectra reconstruction.

Each of the works presented in this Thesis is the beginning of investigation lines.

On the LSPE front, one should realize that the experiment represents the first one

dedicated to polarization, to observe large sky fraction for constraining B-modes,
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over a large frequency interval. Therefore, the study would benefit from consider-

ing more complex foreground models, with enhanced variability of spectral indices,

as well as new templates, including correlations between the main polarized fore-

grounds. On the NN side, the model recognition would also benefit from being

applied to more complex skies, but also, its performance combined with component

separation needs to be investigated further, beyond the promising comparison with

the �2 statistics. In addition, one could go further from the Gaussian noise model

on the noise simulation part and include other systematic e↵ects. Finally, the

NNs for inpainting should be used on real data analysis. Also, we plan to extend

the analysis to the CMB polarization maps, where due to the fainter amplitude

of the signal, the generative model’s training is more challenging. On the other

hand, all these new studies can be undertaken on the basis of the good results we

got in the present Thesis, along the three considered lines of investigations, which

we hope will be a stimulus for future ones. The studies, novel methodologies and

tests presented in this Thesis represent the basis for new implementations, and

applications to the future simulated and real CMB data from the B-mode probes

that we discussed in Chapter 3.



Appendix A

Classification in presence of

variant dust spectral index

As we mentioned in Chapter 3, Planck 2018 observations showed that thermal

dust spectral index �d is not constant all over the sky. In order to complete our

analysis and get closer to the realistic case, we have also included a thermal dust

model with a non-constant spectral index. All the results that we discussed in

Chapter 5, are obtained based on simulations with a constant spectral index, as

we described in Section 5.4. In this appendix, we explain the same analysis that

we have done from Section 5.5 to 5.8, but this time in the presence of spatially

variant dust spectral index.

For simulating the training and test maps, we have followed the same procedure as

described in Section 5.4 with a di↵erence for simulating the thermal dust emission

model. Therefore the synchrotron, AME, and CMB radiations are untouched with

respect to Section 5.4. For the thermal dust component, still we have used the

PySM template, rescaled as a modified blackbody, as in Equation 3.3 but with

spatially variant spectral index, considering a Gaussian distribution with mean

value �d = 1.54 and standard deviation equal to 0.1 which is motivated by Planck

2018 [11]. While the dust temperature remains constant Td = 20K. The number

of map components, training, test, and validation set vectors will be the same as

before.

In order to avoid repetition, here we just bring the results of analysis and the

maps concerning the NN predictions in the di↵erent cases. In case of changes in

the NN’s architecture, we have explained in each Section internally.
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A.1 Binary classification

The architecture of the networks for the binary classification stays the same as

before, meaning that NN for discerning the existence of synchrotron curvature of

AME in the sky, has the same architecture of Section 5.3.1.

A.1.1 Synchrotron with and without curvature

We have applied the same procedure as Section 5.5.1 to distinguish synchrotron

emission with curvature from the usual synchrotron power-law when there is a

spatially variant dust spectral index. The number and resolution of simulated

multi-frequency maps both for the training and test sets stay identical. In this

case, the NN after 70 epochs get to 97% accuracy in the training phase, and

the same accuracy can be obtained for the test set as well, which is reported

in Table A.1. Figure A.1 shows the prediction of NN for the noiseless case. In

general, we would expect by increasing the variables and adding complications to

the foreground models, the accuracy drops. However, in this case, we see that

accuracy decreases just by 1% with respect to the case of discerning simple power-

low synchrotron from synchrotron with curvature when the thermal dust spectral

index was constant.

Moreover, by investigation of the pixels where the NN associated the wrong model

(white pixels in Figure A.1) and comparison to Figure 5.13, we realized the same

physics properties apply here as well, which means that the NN has the tendency

to misclassify the model when the relative amplitude of the synchrotron emission

over dust is small. For example, in the region near Galactic coordinate (230�,

+40�) where is well-known for the low amplitude of synchrotron, there are several

misclassified pixels. In comparison to Figure 5.13, the misclassified pixels in this

region slightly increased, which confirms our expectation.

A.1.2 Synchrotron and AME

We have followed a similar setup as mentioned in Section 5.5.2 to distinguish the

presence of AME or not but this time, the dust spectral index is variant across

the sky in our simulated maps. The NN with this setting, after 120 epochs is
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Figure A.1: NN prediction of synchrtron emission with and without curvature
when dust spectral index is changing, the color scale and caption are the same

as Figure 5.6
.

Figure A.2: The e↵ect of including noise for the case of Figure A.1. Upper
and lower panels shows NN prediction trained with training set without noise

and with noise respectively.
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Figure A.3: NN prediction of synchrtron emission in presence of AME or not
when dust spectral index is changing, the color scale and caption are the same

as Figure 5.9

able to learn the di↵erence of sky 90% in the training phase and 96% for the test

set without noise (shown in Table A.1). Figure A.3 is showing the result of this

analysis, which indicates some similarities in comparison with Figure 5.14. The

same as the last Section, the physical interpretation of the misclassified pixels stays

identical to Section 5.5.2. Therefore, it is hard for the NN to classify the model

with or without AME where the AME emission is faint concerning the synchrotron

one.

A.2 Multi classification

For this exercise, the number of simulated maps and vectors stay the same as

Section 5.6. Although, the major di↵erence of this analysis regarding the procedure

done in Chapter 5 is changing the network’s architecture in the case of Multi-class

classification. Due to adding more complexity to the classification problem the

architecture described in Section 5.3.2 was not able to reach the high accuracy

mentioned in Table 5.3 and 5.4 for the di↵erent cases. We have added another

layer with 272 neurons to the network mentioned in Section 5.3.2, so the applied

architecture for classifying four foreground models has seven hidden layers with

272, 272, 136, 68, 34, and 17 neurons, with tanh activation function. Moreover,

there are three dropout layers with a dropout rate = 0.2, applied to the first three

hidden layers.

By changing the architecture as explained above, the NN after 171 epochs is able

to learn four di↵erent combinations of the foreground models with almost the
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Figure A.4: The e↵ect of including noise for the case of Figure A.3. Upper
and lower panels shows NN prediction trained with training set without noise

and with noise respectively.

Sky models Accuracy
on training
set

Accuracy
on test set

Pure power-law & Curvature 97% 97%
AME & Pure power-law 90% 96%
AME & Pure power-law & Curvature 82% 95%

Table A.1: Same as Table 5.3, accuracy on training and test sets of the NN
for di↵erent sky models in the basic configuration without noise, in presence of

dust spectral index variant.

same accuracy of Section 5.6. The accuracy in the training reaches 82% while for

the test set it arrives to 95% (as mentioned in Table A.2). Figure A.3 shows the

NN prediction of four models in the noiseless case when the dust spectral index

is variant. By looking at this Figure, we could conclude that most misclassified

pixels are in the regions where AME is present. This fact was quite predictable

since AME emission is fainter than synchrotron and thermal dust emissions.
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Figure A.5: NN prediction of multi foreground models classification when
dust spectral index is changing, the color scale and caption are the same as

Figure 5.12.

Sky models

Acc on test set for
training with noise-
less data

Acc for Re-
Training with
Nside = 1024, 1
noise realization

Acc for Re-
Training with
Nside = 16, 100
noise realizations

Pure power-law &
Curvature

81% 96% 97%

AME & Pure
power-law

78% 92% 91%

AME & Pure
power-law &
Curvature

63% 91% 90%

Table A.2: Same as Table 5.4, but in presence of variant dust spectral index.

A.3 Classification in presence of noise

We have tested our NN, also for the challenging case, in the presence of noise

and variable thermal dust spectral index. The noise simulations and instrument

sensitivities are the same as Section 5.7. We have applied two di↵erent approaches

for testing the NN for the noisy data, as it is explained in Section 5.7. In the first

approach, we checked the NN’s performance when the NN had been trained only

on noiseless data. In the second one, after the first step of training based on
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Figure A.6: The e↵ect of including the noise in the training set in the case of
having dust spectral index variety in the sky. The color scales for the considered

models and panels explanations are the same as Figure 5.15.

noiseless data and saving the model, we have re-trained the model with fixed

weights on the noisy data in two manners of high resolution (Nside = 1024) but

one noise realization, and low resolution (Nside = 16) with one hundred noise

realizations. These results and the NN predictions, including noisy and noiseless

cases for di↵erent foreground components, are summarized in Table A.2.

In Figure A.2, the NN prediction for classifying synchrotron power-low from syn-

chrotron curvature in the presence of noise and variable thermal dust spectral

index has been shown. The Upper and lower panels of this Figure indicate that

the NN has been trained without and with noisy data. In the upper panel, the
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NN’s prediction accuracy is 81% (first approach), but this accuracy increases up

to 97% in the lower panel (second approach).

Figure A.4 carries the same information about the binary case for the discerning

presence of AME in the sky or not. The upper panel of Figure A.4 shows 78%

accuracy of the NN prediction for this case in the presence of noise and variable

thermal dust spectral index. This accuracy can make progress to 91% for the

NN re-trained with the noisy data. Figure A.6 shows the e↵ect of including the

noise in the Multi classification case. Upper and lower panels with 63% and 90%

accuracy indicate the NN’s improvement in classifying the correct model in the

presence of noise. The important message taken from these figures is that the NN

trained on only noiseless data is prone to misclassify the foreground model and has

less accuracy while for the NN re-trained with noisy data, the accuracy increase

significantly.

A.4 Comparison with chi-squared information

In this Section, we compare the chi-squared information with the NN prediction for

discerning synchrotron with or without curvature when the dust spectral index is

variant and in the presence of noise. In Figure A.7, we are showing this comparison

where the upper panel indicates the preference of �2 information and lower panel

is the NN prediction. The color scale and panel explanations are the same as

Figure 5.16. Here, the upper panel that comes from chi-squared information show

less accuracy (68%) with respect to Section 5.8 (73%). Due to adding another

parameter (dust spectral index) to the solver of component separation in FGBuster

while keeping the same signal-to-noise ratio, the numerical instabilities increases

and the accuracy based on �
2 information drops. The results shown in the lower

panel are coming from the NN prediction when the model is re-trained with the

low resolution (Nside = 16) but one hundred noise realizations. In this case, the

NN distinguishes the foreground model with 97% accuracy correctly. This results

indicate a significant improvement when the NN is applied to the noisy case in

comparison to chi-squared information.

Figure A.8 shows the di↵erence between �
2 values in each pixel for the two di↵erent

cases across the sky in the presence of variant dust spectral index. The same as
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Figure A.7: Same as Figure 5.16, Comparison of �2 analysis with NN predic-
tion in the presence of variant dust spectral index and noise on test maps. This
comparison shows the advantage of using a NN approach, leading to a correct
classification on about 97% of the pixels (lower panels) with respect to about

68% when the �2 information is used (upper panels).

Figure 5.17, in the region where the sky signal is low at intermediate and high

galactic latitudes, the di↵erence between the two models is very near zero.
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Figure A.8: Reduced �2 di↵erence for each pixel, obtained when the fit is
done considering pure power law SED for synchrotron and when curvature is
included in presence of dust spectral index variant, meaning that in fitting
procedure dust spectral index is another free parameter, The colorbar is the

same as Figure 5.17.
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