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Abstract

This thesis discusses and presents some developments toward new data services within the EU NFFA-

EUROPE project. The work performed originates by the need to rationalize and organize large scien-

tific data-sets using a FAIR approach. The activity leverages on results obtained in previous MHPC

work and tackle some of the issues about FAIR principle that are coming out due to an increase in

size of variety of the original datasets.

More specifically the overall goal of the thesis is to setup well organized data services to manage all

the SEM images coming from different sources and partner within the NFFA-EUROPE project.

The specific goals within this thesis are the following;

• Creation of python application to collect and enrich metadata for SEM images coming from

different sources.

• Develop a massive parallel processing approach to be able to reduce time in collecting metadata

on a large amount of images.

• Plan and develop of an easy to setup and portable computational ecosystem to accomplish

the above goal based on Kubernetes and Spark, with the idea to easily deploy in on different

computational infrastructure.

• Measure performance on different computational infrastructure of the massive data processing.

Keywords: Kubernetes, Docker, Apache Spark
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Chapter 1

The NFFA-EUROPE Project

This thesis work is embedded within the scientific data management activities of NFFA-

EUROPE project [1]. The project provides open access to large and distribute European

scientific infrastructure that allows the implementation of integrating multidisciplinary re-

search at the nanoscale, extending from synthesis to nanocharacterization including theory

and numerical simulation. One of the crucial goals within NFFA-EUROPE project was to

set up an overarching information and Data management Repository Platform (IDRP) for

nanoscience multidisciplinary research and associated data management tools.

In this chapter, we will briefly illustrate the Data infrastructure and some data services re-

cently built on the top of it. We will focus in particular on the services to manage a large

amount of Scanning Electron Microscope (SEM) images coming from the CNR-IOM instru-

ments and, more recently from the other instruments coming from the wider NFFA scientific

community.

1.1 The NFFA data infrastructure

NFFA-EUROPE data platform is dedicated for serving nanoscience research, and within such

distributed research infrastructure the first overarching Information and Data management

Repository Platform (IDRP) was developed for nanoscience. Within the same efforts the

project defined as well a nanoscience the scientific metadata standards for data sharing among

the NFFA-EUROPE community and also beyond. The standard is now a component of an

1



Chapter 1. The NFFA-EUROPE Project 2

open collaborative initiative within the framework of the Research Data Alliance (RDA) [2].

The NFFA-EUROPE data infrastructure is composed by the following key elements:

1.1.1 NFFA Datashare

NFFA-EUROPE Datashare service provides cloud platform and secure storage for all the

NFFA-EUROPE researchers. Every researcher has an automated access to NFFA Datashare

under NFFA credentials, whereas a file share and the collaboration platform are hosted in

the local server at the CNR-IOM [3] under its custody. The produced research data are

retained by the NFFA-EUROPE rules, and hence all researchers have efficient control on

their produced data, so that they can access, process, or retrieve their data at any time.

1.1.2 Information and Data Repository Platform (IDRP.nffa.ue)

NFFA-EUROPE established the first integrated Information and Data Repository Platform

(IDRP) for the nanoscience community. The goal of such IDRP repository is to record all

relevant metadata for a given nanoscience project/experiment, by means of a structured on-

line data catalogue where users can access, share, and widely publish their data to larger

research groups. This facilitates the process of re-producibility and re-preparations of scien-

tific experiments. Additionally, it allows the scientists, from the nanoscience community, to

perform comparison besides validation studies on the results obtained, from the shared data,

using different methods.

1.1.3 SEM images data services: sem-classifier.nffa.eu

In addition to data storage and metadata registration, the data infrastructure aims to offer also

advanced analysis tools for raw data. The first of these services is a SEM image classification,

which has been developed by CNR-IOM. This tool was developed due to the fact that CNR-

IOM SEM facility stores over a 10 year services period a lot of images collected by different

research groups, for a total of about 15000, unique images in the Tagged Image File Format

format (TIFF). Among them, 18577 have been manually labelled to create a full dataset,

called dataset1, composed by ten categories. Such dataset has been then used to train a
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neural network to automatically identifies images. A first data services has then developed

to offer a way to identify and classify any image accordingly to this ten categories.

1.2 The SEM images problem

The on-going scientific activities of this thesis is a prosecution of started work in 2016 and

is focused on the data produced by a single instrument, the Scanning Electron Microscope

(SEM) located at CNR-IOM. This is an extremely versatile instrument, routinely used in

nanoscience and nanotechnology to explore the structure of materials with spatial resolution

down to 1 nanometer. Almost 150,000 images were collected and such large amount of data

were the basis for several interesting MHPC research theses. We remark that such data-set

was actually collected in June 2016 and span over a period of 8/10 years of activity in the

TASC laboratory at CNR-IOM in Trieste. From June 2016 on the SEM images are constantly

increasing and for this reason now the storage associated to instruments in synchronized

constantly on the Datashare facility of the institute. A further set of images coming from

another instruments located at CNR-IOM has been recently shared and synchronized on the

Datashare, making thus the total number of images larger and more variegate. Moreover, the

results so far obtained on the classification procedure have been presented to other NFFA-

EUROPE partners and some of the SEM instruments within the project showed interest and

started sharing some initial images on the Datashare. This means that new sources of SEM

data are foreseen to arrive on the the Datashare. We thus face the problem to classify and

store them in a FAIR [4] way, keeping track of all the embedded metadata. The aim of this

thesis is therefore to develop some tools to collect and well organize all metadata pertaining

to the images we are collecting. The elements of such tools are described in Chapter 2, while

in Chapter 3 we presented the scalable infrastructure that can allow us to process a massive

amount of data.



Chapter 2

Scientific Image Analyses

As we have mentioned in Chapter 1, the increasingly number of images obtained by means

of SEM instruments within the NFFA-EUROPE project requires us to arrange a clear and

unique procedure to be handled in a proper way to make the dataset FAIR. Such procedure

includes the following steps:

1. extracting the standard metadata within the TIFF format coming from different SEM

instruments within NFFA-EUROPE project,

2. measuring the SEM image scales and performing an Object Character Recognition

(OCR) to finally calculate the image pixel size,

3. running SEM linear regression/classification (SEM inference problem) and

4. committing all the resultant metadata to a dedicated MySQL database.

This chapter is aimed to describe the SEM dataset and Python script developed in this work

to implement the steps sketched above.

2.1 The SEM dataset

The input datasets analyzed in this work are scientific nanoscale images produced by a SEM

instrument in a TIFF format, at different nanoscience research groups within the NFFA-

EUROPE project. The SEM images are available at the cloud storage platform provided

4
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by NFFA-EUROPE Datashare service as well as the C3HPC cluster in a nested structure.

Figure 2.1 presents an example of SEM images from three different research groups (CNR-

IOM, TASC, and ZEISS) within the NFFA-EUROPE project.

FIGURE 2.1: An example of three images produced by the SEM instrument at different nanoscience
research groups - CNR-IOM (top left), TASC (top right), and ZEISS (bottom middle) - within the

NFFA-EUROPE project.

In the following sections, we present the main four parts of SEM analyses executed by the

Python code.

2.2 Extracting the standard metadata within TIFF format

Metadata is data that describes other data. Namely, it provides descriptive information about

the main dataset (SEM images) contents, such as metadata of image width, length, resolution



Chapter 2. Scientific Image Analyses 6

unit, brightness, creation date, electron beam time, noise reduction, and pixel size. Metadata

can describe individual files, single objects, or complete collections and has the criteria of

being descriptive, structural, and administrative or technical. The metadata of SEM images

goes into two main categories:

1. Exchangeable image file format (Exif) metadata;

2. Instrument metadata.

Both of these two types are recorded and stored in the actual image file by means of SEM

instrument. The SEM metadata has been accessed by Pillow/PIL library [5] which allows us

to fetch the typical Exif metadata, for every single SEM image overall the dataset, by means

of SEMEXIF function defined in Listing 2.1.
1 @proper ty
2 d e f SEMEXIF( s e l f ) :
3 s e l f . e x i f _ d i c t = d i c t ( [ ( k , v ) f o r v , k i n E x i f T a g s . TAGS . i t e m s ( ) ] )
4 # make a l i s t o f a l l a v a i l a b l e keys
5 s e l f . e x i f _ k e y s = [ key f o r key i n s e l f . e x i f _ d i c t ]
6 # t h e n c r e a t e a l i s t o f t h e c o r r e s p o n d i n g t a g numbers
7 s e l f . e x i f _ n u m b e r s = [ s e l f . e x i f _ d i c t [ k ] f o r k i n s e l f . e x i f _ k e y s ]
8 r e t u r n s e l f . e x i f _ d i c t , s e l f . e x i f _ k e y s , s e l f . e x i f _ n u m b e r s

LISTING 2.1: An auxiliary function of SEMEXIF defined for extracting the standard Exif metadata.

The SEMEXIF function returns three objects of a dictionary and two lists shown in snippet 2.2.

The Exif dictionary self.exif_dict includes all Exif keys together with corresponding tag

numbers given as values. The lists self.exif_keys and self.exif_numbers contain the

keys and corresponding values (Exif tags/tag numbers), respectively.
1 s e l f . e x i f _ d i c t = { ' P r o c e s s i n g S o f t w a r e ' : 11 , ' NewSubfi leType ' : 254 , ' S u b f i l e T y p e ' : 255 , '

ImageWidth ' : 256 , ' ImageLength ' : 257 , ' B i t s P e r S a m p l e ' : 258 , ' Compress ion ' : 259 , . . . }
2 s e l f . e x i f _ k e y s = [ ' P r o c e s s i n g S o f t w a r e ' , ' NewSubfi leType ' , ' S u b f i l e T y p e ' , ' ImageWidth ' , '

ImageLength ' , ' B i t s P e r S a m p l e ' , ' Compress ion ' , . . . ]
3 s e l f . e x i f _ n u m b e r s = [ 1 1 , 254 , 255 , 256 , 257 , 258 , 259 , . . . ]

LISTING 2.2: Contents of the standard Exif dictionary along with lists of keys and values.

The returned Exif tags besides ImageMetadata function shown in Listing 2.3 enable us to

obtain all SEM Exif metadata available in the image.
1 d e f ImageMetada ta ( s e l f , imm) :
2 s e l f . image_me tada t a = imm . t a g
3 s e l f . i m a g e _ t a g s = np . a r r a y ( s e l f . image_me tada t a )
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4 r e t u r n s e l f . image_metada ta , s e l f . i m a g e _ t a g s

LISTING 2.3: The metadata function ImageMetadata defined for extracting the SEM images
metadata and corresponding available tags in the image. The function takes one argument imm,

which is the image object returned from opening the image by means of Pillow library.

The structure of the SEM Exif metadata for a single image from the SEM dataset is presented

in Listing 2.4.
1 { ' NewSubfi leType ' : 0 , ' ImageWidth ' : 1024 , ' ImageLength ' : 768 , ' B i t s P e r S a m p l e ' : 8 , '

Compress ion ' : 1 , . . . , ' N o i s e P r o f i l e ' : ' Not found ' }

LISTING 2.4: An example of structure of the Exif metadata for one single SEM image. Exif keys
that are not existing in the image are assigned to “Not found" value.

All SEM images have Exif metadata either in a partial or a full format. A “Not found" value

is assigned for those Exif keys that are not available in the image.

Extracting the Instrument metadata has been proceeded, as the Exif one, by means of SEM

tags and image object, whereas all Instrument metadata of the SEM images are attributed

to a specific tag number based on the characteristics of SEM instrument. In our analysis

the Instrument tag was assigned to a value of 34118. This tag value does exist in all SEM

images, particularly those belong to CNR-IOM research groups within the NFFA-EUROPE

project, and it differs from one SEM instrument to another. The structure of an obtainable

Instrument metadata is shown in Listing 2.5.
1 { 'DP_VENT_INVALID_REASON ' : ' Vent i n h i b i t = Beam P r e s e n t ' , 'DP_OPTIMODE ' : ' OptiBeam Mode =

R e s o l u t i o n ' , ' DP_FIXED_APERTURE ' : 'VP A p e r t u r e = No ' , 'DP_INPUT_LUT_MODE ' : ' I n p u t
LUT Mode = T r a n s p a r e n t ' , 'DP_BSD_AUTOLEVEL_MODE ' : 'BSD A u t o l e v e l Mode = Normal ' , . . ,
'AP_AR_GAS_FLOW_ACTUAL ' : ' Argon Gas Flow i s = 0 . 0 % ' , . . . , 'AP_GAMMA ' : 'Gamma =
1 .0000 ' , . . . , ' AP_PIXEL_SIZE ' : ' P i x e l S i z e = 4 .218 nm ' , . . . }

LISTING 2.5: An example of structure of the Instrument metadata for one single SEM image.
Exif keys that do not exist in the image are assigned to “Not found" value.

We found that the Instrument metadata of SEM images is distributed over two main classes:

(a) images with Instrument metadata; (b) images without Instrument metadata. Nevertheless,

the Instrument tag is available in the entire SEM dataset. In Fig. 2.2, we show statistics for

the two classes of complete and partial Instrument metadata over a dataset of 150,000 SEM

images.
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complete metadata

64.3%

partial metadata

35.7%

FIGURE 2.2: Percentage of SEM images of complete (64.3%) and partial (35.7%) Instrument meta-
data. Images of complete metadata contain both Exif and Instrument parameters, while images of
partial metadata have Exif parameters only. Namely, the value of pixel size is not available. The
SEM dataset used to establish this pie chart is available on the C3HPC high performance computing

cluster [6, 7] under /lustre/exact/SEM-images/new_dati_SEM/ directory.

2.3 Measuring SEM scales and performing OCR

Scale problem analysis of SEM images has been investigated previously in MHPC work done

by Coronica [8]. This problem is originated from the fact that SEM images are distributed

over a broad nanoscale band ranging from 1 pm to 300 µm (see Fig. 2.3). Therefore, it has

been thought that splitting SEM images based on their scale could improve the unsupervised

machine learning techniques being developed [8–11] for SEM images classification.

Similar to what has been performed in [8], we used in this work OpenCV library [12] for

image segmentation and contour detection, in addition to, Tesseract engine for Optical

Character Recognition (OCR). The algorithm can be described in the following clauses:

• opening the image using OpenCV library and extracting the information bar from the

image body,

• cleaning the information bar by means of thresholding methods, such as THRESH_BINARY,

THRESH_BINARY_INV, and THRESH_OTSU,

• selecting the scale segment and measuring its width,

• performing OCR for the purpose of reading the digit as well as unit and
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• calculating the pixel size for every image.

Figure 2.3 shows the ration of pixel size range, over which a SEM dataset from CNR-IOM

hosted on NFFA Datashare platform (datashare.iom.cnr.it) is distributed.
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FIGURE 2.3: Range of pixel size ratio of CNR-IOM dataset hosted on NFFA Datashare platform
(datashare.iom.cnr.it). Left panel: Range of pixel size ratio extracted from the original metadata
saved in the image. Right panel: Range of pixel size ratio resulted from our analysis using OpenCV
library and OCR engine. A fraction of ∼5% of the data is not accessible. Namely, the scale, digit,
and unit are not readable by the SEM Python code, and then the quantity of pixel size is not measured.

The third part of the SEM Python code (inference) is presented in § 2.4.

2.4 Inference of SEM images

Classification of SEM images has been presented in MHPC work in 2016 by Aversa [10]

through supervised machine learning technique using TensorFlow [13]. A deep neural net-

work has been trained over large SEM dataset, which automatically assigned for that purpose.

Similar to what has been performed in Refs. [10] and [11], we employed the pre-trained SEM

model [14] in order to measure the SEM image inference on our distributed software infras-

tructure. The essential operations used in measuring the SEM inference are given by the

following functions:

• reading the pre-trained model using tf.gfile.GFile TensorFlow module;
1 d e f ReadModel ( s e l f , semmodel ) :
2 wi th t f . g f i l e . GFi l e ( semmodel , ' r b ' ) a s f :
3 mode l_da ta = f . r e a d ( )
4 r e t u r n mode l_da t a
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• running the model with saving the score rates into a dictionary;
1 d e f RunModel ( s e l f , mode l_da t a_bc_va lue , i m a g e _ a r r a y ) :
2 graph = t f . Graph ( )
3 wi th g raph . a s _ d e f a u l t ( ) a s g :
4 g r a p h _ d e f = t f . GraphDef ( )
5 g r a p h _ d e f . P a r s e F r o m S t r i n g ( m o d e l _ d a t a _ b c _ v a l u e )
6 t f . i m p o r t _ g r a p h _ d e f ( g raph_de f , name= ' ' )
7 sem_human_s t r ing , sem_score = [ ] , [ ]
8 wi th t f . S e s s i o n ( ) a s s e s s :
9 s o f t m a x _ t e n s o r = s e s s . g raph . g e t _ t e n s o r _ b y _ n a m e ( ' f i n a l _ r e s u l t : 0 ' )

10 p r e d i c t i o n s = s e s s . run ( s o f t m a x _ t e n s o r , { ' DecodeJpeg : 0 ' : i m a g e _ a r r a y } )
11 t op_k = p r e d i c t i o n s [ 0 ] . a r g s o r t ( ) [− l e n ( p r e d i c t i o n s [ 0 ] ) : ] [ : : − 1 ]
12 f o r node_ id i n top_k :
13 h u m a n _ s t r i n g = s e m _ l a b e l s [ node_ id ]
14 s c o r e = p r e d i c t i o n s [ 0 ] [ node_ id ]
15 s c o r e = ( ' %.5 f ' ) % s c o r e
16 sem_human_s t r ing = (* sem_human_s t r ing , h u m a n _ s t r i n g )
17 sem_score = (* sem_score , s c o r e )
18 s e l f . i n f e r e n c e = d i c t ( z i p ( sem_human_s t r ing , sem_score ) )
19 r e t u r n s e l f . i n f e r e n c e
20

In the above function, two nodes are essentially required for running the model and per-

forming the image inference: (a) final result node final_result; (b) decode image node

DecodeJpeg. Accessing these information is carried out using TensorBoard model visual-

ization tool [15], and hence the SEM model graph is presented in Fig 2.4.

FIGURE 2.4: SEM model graph obtained using TensorBoard.

As a consequence of running the SEM inference over a dataset of 16000 SEM images from

datashare.iom.cnr.it, the statistics of inference high score (> 0.8) for the SEM 10 cate-

gories is presented in Fig. 2.5.
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FIGURE 2.5: Inference top score categories > 0.8.

As aforementioned in the beginning of this Chapter, the analyses have been performed on

SEM images of TIFF format. On the contrary, the SEM model was pre-trained over JPG

SEM images. Therefore, the returned TIFF object has been converted to JPG one, so that the

resultant image content (image_array) and the SEM model became compatible for running

SEM inference analysis:
1 g e t _ j p g = imm . c o n v e r t ( 'RGB ' )
2 i m a g e _ a r r a y = np . s q u e e z e ( np . a r r a y ( g e t _ j p g ) [ : , : , 0 : 3 ] )

We describe in § 2.5 the database of SEM images.

2.5 SEM Database

Our SEM analyses resulted in significant amount of metadata that provides comprehensive

description of the scientific images. Such SEM metadata has been managed into relational

database by means of Structured Query Language (SQL). The database can be accessed using

MySQL [16], which is a portable, high performance, and scalable database platform widely

used in Data Management and Data Science disciplines.
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We built up the SEM database on OpenStack of the CNR-IOM computing system [17] where

MySQL is installed on the base layer, while phpMyAdmin [18] is set up on the top one.

phpMyAdmin is a web-interface tool written in PHP language and made for handling and

administrating MySQL database. These data management efficient tools have enabled us

to structure and organize our analyses output and easily share it with a wide community of

nanoscience research from the NFFA-EUROPE project.

Prior to the use of MySQL and phpMyAdmin, the following configuration parameters have

been set in mysql.cnf file, see Listing 2.6.
1 [ mysqld ]
2 max_con nec t i ons = 300
3 i n n o d b _ s t r i c t _ m o d e = 0
4 max_a l lowed_packe t = 1G
5 i n n o d b _ l o g _ f i l e _ s i z e = 2G
6 i n n o d b _ l o g _ b u f f e r _ s i z e = 512M
7 i n n o d b _ f i l e _ f o r m a t = b a r r a c u d a
8 i n n o d b _ f i l e _ p e r _ t a b l e = 1
9 s q l−mode="NO_AUTO_CREATE_USER, NO_ENGINE_SUBSTITUTION"

LISTING 2.6: Database configurations.

The above configuration parameters set under [mysqld] section are aimed to optimize MySQL

database for receiving long query buffers of SEM metadata. Such configurations are followed

by restarting MySQL and phpMyAdmin services:
1 s y s t e m c t l r e s t a r t mysql . s e r v i c e
2 s y s t e m c t l r e s t a r t apache2

The SEM database is an organized collection of scientific images metadata spanned over four

main tables; Exif, Instrument, Pixel size, and Inference metadata. We created our database by

means of Python via importing mysql.connector and the DatabaseConnection function

defined in Listing 2.7.
1 @proper ty
2 d e f D a t a b a s e C o n n e c t i o n ( s e l f ) :
3 s e l f . d b _ c o n n e c t i o n = mysql . c o n n e c t o r . c o n n e c t (
4 h o s t = " h o s t " ,
5 u s e r = " u s e r " ,
6 passwd= " passwd " ,
7 d a t a b a s e =None ,
8 c h a r s e t = ' u t f 8 ' ,
9 u s e _ u n i c o d e =True )

10 # c r e a t i n g ' d b _ c u r s o r ' i n s t a n c e c l a s s t o e x e c u t e t h e 'SQL ' s t a t e m e n t s
11 s e l f . d b _ c u r s o r = s e l f . d b _ c o n n e c t i o n . c u r s o r ( )
12 # s e t t i n g mysql t o g l o b a l mode f o r ve ry long t a b l e s
13 s e l f . d b _ c u r s o r . e x e c u t e ( "SET @@global . sql_mode= ' ' ; " )
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14 r e t u r n s e l f . d b _ c o n n e c t i o n , s e l f . d b _ c u r s o r

LISTING 2.7: A function of DatabaseConnection defined in the SEM Python code.

After setting the communication with MySQL, the SEM database has been created using the

function shown in Listing 2.8.
1 d e f C r e a t e D a t a b a s e ( s e l f , dbname=None ) :
2 s e l f . d b _ c u r s o r . e x e c u t e ( "CREATE DATABASE IF NOT EXISTS %s " %(dbname ) )
3 s e l f . d b _ c u r s o r . e x e c u t e ( "USE %s " %(dbname ) )
4 r e t u r n

LISTING 2.8: A function of CreateDatabase defined in the SEM Python code.

The SEM database structure is shown in Fig. 2.6.

exif_meta

ID INT(11)

ImageOriginalName VARCHAR(255)

ImageHashName VARCHAR(100)

NewSubfileType VARCHAR(101)

ImageWidth VARCHAR(104)

ImageLength VARCHAR(103)
12 more...

Indexes

inference

ID INT(11)

ImageOriginalName VARCHAR(255)

ImageHashName VARCHAR(100)

porous sponge VARCHAR(17)

biological VARCHAR(17)

8 more...

Indexes

instrument_meta

ID INT(11)

ImageOriginalName VARCHAR(255)

ImageHashName VARCHAR(100)

DP_APERTURE VARCHAR(116)

DP_STAGE_INIT VARCHAR(123)

DP_DETECTOR_CHANNEL VARCHAR(117)

DP_IMAGE_STORE VARCHAR(129)
36 more...

Indexes

pixel_size

ID INT(11)

ImageOriginalName VARCHAR(255)

ImageHashName VARCHAR(100)

SEMPixelSize VARCHAR(25)

ComputedPixelSize VARCHAR(25)

Indexes

FIGURE 2.6: A general structure of SEM database obtained using MySQL Workbench [19] visualiz-
ing database architects tool. Four main tables contain all the resultant metadata of Exif, Instrument,

Pixel size, and inference analyses.

Creating the four main tables of the SEM database has been implemented by means of

CreateTables function presented in Listing 2.9.
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1 d e f C r e a t e T a b l e s ( s e l f , t a b l e s _ l i s t , d ic tname , d i c t ) :
2 # g e t m e t a d a t a v a l u e s and e s c a p e s t r i n g s t o a v o i d s q l i n j e c t i o n
3 v a l u e s = [ s e l f . E s c a p e S t r i n g s ( s t r ( y ) ) f o r y i n d i c t . v a l u e s ( ) ]
4 # g e t m e t a d a t a keys and s e t VARCHAR s i z e
5 meta_keys = ' , ' . j o i n ( " ` " + s t r ( x ) + " ` VARCHAR(%d ) DEFAULT NULL" % i n t ( l e n ( y ) +100)

f o r x , y i n z i p ( d i c t . keys ( ) , v a l u e s ) )
6 s e l f . d b _ c u r s o r . e x e c u t e ( "CREATE TABLE IF NOT EXISTS %s ( %s ) ; " % ( dic tname , meta_keys

) )
7 s e l f . d b _ c u r s o r . e x e c u t e ( "SHOW COLUMNS FROM %s " %( d i c t n a m e ) )
8 # make a l i s t o f a l l t a b l e s
9 l i s t _ c o l u m n s = s e l f . L i s t M e t a

10 i f ' ID ' and ' ImageOrig ina lName ' and ' ImageHashName ' i n l i s t _ c o l u m n s :
11 p r i n t ( ' ID , ImageOriginalName , and ImageHashName columns do e x i s t ! ' )
12 e l s e :
13 s e l f . d b _ c u r s o r . e x e c u t e ( "ALTER TABLE %s ADD ID INT ( 1 1 ) NOT NULL
14 AUTO_INCREMENT PRIMARY KEY FIRST , \
15 ADD ImageOrig ina lName VARCHAR( 2 5 5 ) DEFAULT NULL AFTER ID , \
16 ADD ImageHashName VARCHAR( 1 0 0 ) DEFAULT NULL AFTER ImageOrig ina lName "% ( d i c t n a m e ) )
17 r e t u r n

LISTING 2.9: A function of CreateTables defined in the SEM Python code.

The CreateTables function sets all tables for hosting SEM buffers with creating three addi-

tional columns of ID, ImageOriginalName, and ImageHashName which represent the order

along with image original and hash names, respectively. The function calls two auxiliary

functions needed for the following purposes:

• avoiding SQL injection [20] attack1 by means of EscapeStrings function.

• listing all column objects of the database using ListMeta function, which is made to

avoid re-adding the entries of ID, ImageHashName, and ImageOriginalName into the

database.

Every individual SEM image has a unique hash name returned by the following function.
1 d e f ImageHash ( s e l f , imm) :
2 image_hash_name = h a s h l i b . md5 ( imm . t o b y t e s ( ) ) . h e x d i g e s t ( )
3 r e t u r n image_hash_name

LISTING 2.10: A function of ImageHashName defined in the SEM code where imm is the image
object.

The above ImageHash function calls message digest algorithm (MD5) module [21] imported

from hashlib library [22] and returns a unique hash name, which is given based on the
1SQL injection is a code injection technique used for malicious SQL statements which can thereby demolish

the database.
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structure of pixels within the image. Such hash name enables us to identify the database

main entry and connect all tables together, and hence specify, e.g., duplicated images over

the entire dataset (see Fig. 2.7).

SEM database

97.5%

Duplicated

2.5%

FIGURE 2.7: Ratio of duplicated images within a SEM database of a size of 150 GB available on
the C3HPC high performance computing cluster. The corresponding database named c3e_sem_db is

available on the SEM MySQL.

The SEM analyses code is parallelized by means of Apache Spark framework [23] in stan-

dalone mode within containerized environment, see Chapter 3 for details. Therefore, MySQL

connector MySQL Connector/J is used in order to allow communication with the SEM

database, see Listing 2.11.
1 d e f SparkMySQL ( s e l f , sem_schema , d b t a b l e =None ) :
2 sem_schema . w r i t e . f o r m a t ( ' j d b c ' ) . o p t i o n s (
3 u r l = ' j d b c : mysql : / / h o s t : p o r t ' ,
4 # t o a v o i d e Java e x c e p t i o n o f e n c o d i n g problem
5 useUnicode = ' t r u e&c h a r a c t e r E n c o d i n g = u t f 8 ' ,
6 d r i v e r = 'MySQL Connec to r / J ' ,
7 d b t a b l e = d b t a b l e ,
8 u s e r = ' u s e r ' ,
9 password = ' password ' ) . mode ( ' append ' ) . s ave ( " append " )

10 r e t u r n

LISTING 2.11: A function of SparkMySQL defined in the parallel SEM code.

The SparkMySQL function open communication with MySQL by means of JDBC Driver-

Manager Interface [24], in order to manage resultant metadata into the SEM database.
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2.5.1 Example of usage and profiling

Profiling the SEM SQL database in finding relevant information/metadata is a crucial matter

in evaluating performance. Therefore, we present in this section detailed profile result of an

example of SEM metadata usage: fetching a list of SEM images defining inference rates of

patterned surface category along with DP_TILTED, ImageWidth, and SEMPixelSize meta-

data via joining the four SEM metadata tables (exif_meta, instrument_meta, inference, and

pixel_size). This has been performed by means of the SQL query presented in Listing 2.12.
1 SELECT i n f e r e n c e . ID , i n f e r e n c e . ImageOriginalName , i n f e r e n c e . ImageHashName ,
2 i n f e r e n c e . ` p a t t e r n e d s u r f a c e ` , i n s t r u m e n t _ m e t a . DP_TILTED ,
3 e x i f _ m e t a . ImageWidth , p i x e l _ s i z e . SEMPixelSize
4 FROM i n f e r e n c e JOIN i n s t r u m e n t _ m e t a ON i n f e r e n c e . ID = i n s t r u m e n t _ m e t a . ID
5 JOIN e x i f _ m e t a ON e x i f _ m e t a . ID = i n f e r e n c e . ID
6 JOIN p i x e l _ s i z e ON p i x e l _ s i z e . ID = i n f e r e n c e . ID ;

LISTING 2.12: SQL query of fetching a list of images defining ID, ImageOriginalName,
ImageHashName, patterned surface inference rates, DP_TILTED parameter, ImageWidth, and
SEMPixelSize metadata. The four tables of SEM SQL database are joined in executing this query.

Detailed profile of the query is shown in Fig. 2.8.

FIGURE 2.8: Profiling the SQL query shown in Listing 2.12.



Chapter 2. Scientific Image Analyses 17

The Total execution time of the above SQL query is in the order of µs. The query, its output,

and time taken are presented in Fig.2.9.

FIGURE 2.9: SQL query of joining the four SEM metadata tables (exif_meta, instrument_meta, in-
ference, and pixel_size). The query is executed in the SQL shell of phpMyAdmin. The total execution

time of the query is in the order of µs.



Chapter 3

Kubernets and Apache Spark Containers

In this chapter we present and discuss our approach of developing a distributed and scalable

software infrastructure in order to process massive amounts of images; this has been accom-

plished via containerizing the application, i.e., the script described in the previous chapter

by means of Docker. The isolation property of containers is a great advantage in developing

applications that can run on multiple platforms, but unfortunately so far this isolating ability

of Docker containers limited the possibility of exploiting a large number of physical hosts.

To overcome this problem we use Kubernetes described in the following sections.

3.1 Kubernetes

Kubernetes [25] is a container-orchestration engine and portable open source platform. It is

originally developed by Google for managing containerized services and applications, such

as Docker technology [26], across a cluster of computing nodes. Kubernetes is widely used

in data science and aimed to provide better handling and automation for applications within

containerized environments. In our work, we have used Kubernetes to orchestrate Spark

containers installed on our infrastructures. In § 3.1.1 we present Kubernetes deployment

process, while in § 3.2 Apache Spark architecture and installation are discussed.

18
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3.1.1 Kubernetes deployment

Deployment of Kubernetes on the top of set of nodes allows us to have a Kubernetes cluster,

which brings individual Docker daemons into communication and orchestrate the workload.

In this work, we set up a cluster that consists of two fundamental modalities:

• Standalone cluster configuration that allows the nodes membership to be recognized

and transparent to every single node of the cluster;

• Kubernetes cluster for performing advanced operations such as managing communica-

tion among nodes in a containerized environment, along with balancing the workload.

We performed the SEM analyses utilizing the containerization technology, so that Docker

and Kubernetes have been installed on the OpenStack from CNR-IOM cloud computing sys-

tem [17], IRON machine from CNR-IOM infrastructure as well as C3HPC high performance

computing cluster. Kubernetes has been set up on the lowest layer of our software infrastruc-

ture on top of it Docker has been installed. The software deployment has been implemented

by means of Ansible’s configuration deployment and orchestration language [27] that sets all

the necessary components, dependencies, and configurations for our software infrastructure

on all available nodes in an automatic way.

In the following, we summarize the automation deployment process of Kubernetes cluster,

on the CNR-IOM OpenStack, by means of Ansible’s playbooks (YAML files):

• setting up Kubernetes via adding its repository (kubernetes apt-key) and installing its

dependencies (kubelet, kubeadm, and kubectl) using the following YAML file;

1 −−−
2 − name : i n s t a l l k u b e r n e t s d e p e n d e n c i e s
3 h o s t s : a l l
4 become : yes
5 t a s k s :
6 − name : add K u b e r n e t e s ap t−key
7 a p t _ k e y :
8 u r l : h t t p s : / / p a c k a g e s . c l o u d . g oo g l e . com / a p t / doc / ap t−key . gpg
9 s t a t e : p r e s e n t

10 − name : add K u b e r n e t e s APT repo
11 a p t _ r e p o s i t o r y :
12 r epo : deb h t t p : / / a p t . k u b e r n e t e s . i o / k u b e r n e t e s −x e n i a l main
13 s t a t e : p r e s e n t
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14 f i l e n a m e : ' k u b e r n e t e s '
15 − name : i n s t a l l k u b e l e t kubeadm wi th a p t
16 a p t :
17 name : " {{ p a c k a g e s }} "
18 s t a t e : l a t e s t
19 v a r s :
20 p a c k a g e s :
21 − k u b e l e t
22 − kubeadm
23 − name : i n s t a l l k u b e c t l on t h e m a s t e r node
24 h o s t s : m a s t e r
25 become : yes
26 t a s k s :
27 − name : i n s t a l l k u b e c t l
28 a p t :
29 name : k u b e c t l
30 s t a t e : p r e s e n t
31 f o r c e : yes
32 − name : d i s a b l i n g s w a p p i n e s s
33 h o s t s : a l l
34 become : yes
35 t a s k s :
36 s h e l l : |
37 swapof f −a
38 a r g s :
39 e x e c u t a b l e : / b i n / bash
40 . . .

• initializing Kubernetes cluster by means of the following YAML file;

1 −−−
2 − name : k u b e r n e t e s c l u s t e r i n i t i a l i z a t i o n
3 h o s t s : m a s t e r
4 become : yes
5 t a s k s :
6 − name : i n i t i a l i z e k u b e r n e t e s c l u s t e r on t h e m a s t e r pod
7 s h e l l : kubeadm i n i t −−pod−network−c i d r = 1 0 . 2 4 4 . 0 . 0 / 1 6 −−token− t t l =0 >>

i n i t i a l i z e _ k u b e r n e t e s . t x t
8 a r g s :
9 c h d i r : $HOME

10 c r e a t e s : i n i t i a l i z e _ k u b e r n e t e s . t x t
11 − name : c r e a t e . kube d i r e c t o r y
12 become : yes
13 f i l e :
14 p a t h : $HOME / . kube
15 s t a t e : d i r e c t o r y
16 mode : 0755
17 − name : copy admin . con f f i l e t o kube c o n f i g
18 copy :
19 s r c : / e t c / k u b e r n e t e s / admin . con f
20 d e s t : $HOME / . kube / c o n f i g
21 r e m o t e _ s r c : yes
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22 owner : r o o t
23 − name : s e t k e r n e l b r i d g e module s y s c t l b r i d g e−nf−c a l l − i p t a b l e s t o 1
24 s h e l l : s y s c t l n e t . b r i d g e . b r i d g e−nf−c a l l − i p t a b l e s =1
25 a r g s :
26 e x e c u t a b l e : / b i n / bash
27 − name : de p lo y f l a n n e l pod ne twork
28 s h e l l : k u b e c t l a p p l y −f h t t p s : / / raw . g i t h u b u s e r c o n t e n t . com / c o r e o s / f l a n n e l /2140

ac876e f134e0ed5a f15c65e414c f26827915 / Documenta t ion / kube−f l a n n e l . yml >> pod_ne t . t x t
29 a r g s :
30 c h d i r : $HOME
31 c r e a t e s : pod_ne t . t x t
32 . . .

In order to verify the initialization of Kubernetes cluster, we execute the following

kubectl command-line [28] on the master node:

1 # g e t s t a t u s o f t h e m a s t e r node
2 ( ba se ) root@spark−m a s t e r : ~ # k u b e c t l g e t nodes
3 NAME STATUS ROLES AGE VERSION
4 spa rk−m a s t e r Ready m a s t e r 118 s v1 . 1 6 . 3

• joining worker nodes to Kubernetes cluster using the YAML file listed below;

1 −−−
2 − name : b u i l d up k u b e r n e t e s c l u s t e r
3 h o s t s : m a s t e r
4 become : yes
5 g a t h e r _ f a c t s : f a l s e
6 t a s k s :
7 − name : f e t c h j o i n c l u s t e r command and r e g i s t e r i t
8 s h e l l : kubeadm t o k e n c r e a t e −−p r i n t −j o i n −command
9 r e g i s t e r : join_command

10 − name : s e t j o i n c l u s t e r command
11 s e t _ f a c t :
12 join_command : " {{ join_command . s t d o u t _ l i n e s [ 0 ] }} "
13 − name : j o i n worke r s t o t h e c l u s t e r
14 h o s t s : compute
15 become : yes
16 t a s k s :
17 − name : f i n a l l y , s e t up worker nodes
18 s h e l l : " {{ h o s t v a r s [ ' l o c a l h o s t ' ] . join_command }} "
19 a r g s :
20 e x e c u t a b l e : / b i n / bash
21 . . .

After executing this Ansible playbook the two worker nodes became members of our

Kubernetes cluster, see Listing 3.1.
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1 ( ba se ) root@spark−m a s t e r : ~ # k u b e c t l g e t nodes
2 NAME STATUS ROLES AGE VERSION
3 spa rk−m a s t e r Ready m a s t e r 7d v1 . 1 7 . 0
4 spa rk−s l a v e 0 1 Ready <none > 7d v1 . 1 7 . 0
5 spa rk−s l a v e 0 2 Ready <none > 7d v1 . 1 7 . 0

LISTING 3.1: Kubernetes cluster deployed on OpenStack of CNR-IOM computing system.

The cluster shows Ready for STATUS, and hence we installed pod network which al-

lows communication among nodes within the cluster. The flannel virtual network-

ing [29] has been installed for such target.

In the next sections we discuss the main features, architecture, and deployment of the Apache

Spark framework.

3.2 Apache Spark

The architecture of Kubernetes cluster discussed in the previous section serves as the low-

est layer of the software infrastructure exploited in our SEM analyses. On the top of such

layer we deployed the Spark cluster. Apache Spark [23] is an open source, cluster-computing

framework widely used in the realm of Big Data analysis. Spark is written in Scala and de-

veloped to process large workloads along with datasets, being MapReduce-like engine made

for low latency iterative jobs. Spark has achieved big success in data engineering and analyt-

ics, since Spark overcomes the limitations of its ancestor frameworks, such as Hadoop [30]

and MapReduce [31], due to Spark’s speed and efficiency in handling complicated analytics.

Moreover, Spark can achieve, in processing big dataset workloads, low latency on a short

timescale of sub-second. This backs to the fact that Spark has the ability to utilize data local-

ity and work in-memory not only for computation, but also for objects storage. Therefore,

once a given dataset loaded by Spark it turns into an immutable resilient distributed dataset

(RDD) abstraction. Namely, data are split and collected as partitions across several nodes

of distributed infrastructure. Such abstraction makes the data to be processed as a whole,

even though they are distributed over several machines. RDDs in Spark are Scala immutable

distributed collection of objects cached in RAM, and can be coded using maps in creating

new RDDs of user-defined functions or reduce in collecting the result from distributed nodes.

These features allow much faster data processing compared to MapReduce and Hadoop, in

which data can be mapped or reduced if only stored on disk. MapReduce is a distributed
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system aimed to orchestrate operations on large volume workloads executed within a cluster

worker nodes, where the master node mange the job through remote calls for reducing and

collecting data. In MapReduce, memory is mainly used for the program computation, i.e.,

not for objects storage.

In Spark, we perform computation through various parallel operations on RDDs cashed in

the memory. Operations on RDDs are divided into two main types: (a) transformations; (b)

actions. Transformations are those operations on RDDs, e.g., map and filter that return a

new RDD, while actions are operations that return results to the driver node, where the spark

application is launched, such as collect and count. Computation of transformed RDD is

performed lazily, i.e., computation will not be performed until the results is called by the

driver program through an action.

There are other frameworks designed to tackle with processing large data volume in different

ways, such as distributed stream processing computation (Apache Storm [32]), interactive

processing (Apache Tez [33]), and graph processing (Neo4j [34]). Apache Spark allows

instead a unified processing pipelines to several sources of big data storage, e.g, HDFS,

Cassandra, HBase, and S3. Spark enable higher-level languages interpreter, such as Java,

Scala, R, and Python for different computation tasks. Additionally, it provides wide set of

efficient libraries for different use in big data analyses, suchlike machine learning, SQL, and

graph processing.

In the next sections we discuss the Spark architecture besides our methodology in deploy-

ing the Spark framework on HPC systems by means of Kubernetes container-orchestration

engine.

3.2.1 Spark architecture

A Spark cluster has only one master and workers that can be expanded over any number of

nodes. Spark copes with jobs on its cluster architecture through the manager node by means

of Java virtual machine (JVMs) processes. These processes are spanned over two types:

driver processes, in which data and tasks are distributed to executor processes, which are

distributed across workers. The master-worker architecture is shown in Fig. 3.1.
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FIGURE 3.1: Spark cluster architecture diagram. Taken from [35].

In the above Spark master-worker architecture the driver program communicate with the

cluster manger by means of SparkContext. Hence, Spark manger interacts with its workers,

which are in charge in computation, in order to send the application code and allocate re-

sources for the job in terms of, e.g., memory, number of executors, number of cores per each

worker node. A related point to consider is SparkContext enables several communications

with different types of cluster managers, such as Standalone, Apache Mesos, and Hadoop

YARN. In our work, we set up the Spark framework in Standalone cluster manager.

After setting all necessary Spark configuration parameters, jobs are submitted to the cluster

using spark-submit command. Consequently, the driver splits jobs into tasks which are

assigned to the workers by SparkContext to be executed.

In the following sections, we present and discuss Spark platform automatic deployment

mechanism by means of Kubernetes container-orchestration engine.

3.2.2 Spark platform deployment

The mechanism of Spark cluster auto-deployment is performed using YAML files and can

be summarized in the items listed below:

• installing Docker on the master and worker nodes using the following YAML file;
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1 −−−
2 − h o s t s : a l l
3 become : yes
4 t a s k s :
5 − name : i n s t a l l do c ke r
6 s h e l l : |
7 # u p d a t e t h e a p t package i n d e x
8 ap t−g e t u p d a t e
9 # i n s t a l l p a c k a g e s t o a l l o w a p t t o use a r e p o s i t o r y ove r HTTPS

10 ap t−g e t −y i n s t a l l ap t−t r a n s p o r t −h t t p s ca−c e r t i f i c a t e s \
11 c u r l gnupg−a g e n t s o f t w a r e−p r o p e r t i e s −common
12 # a dd in g Docker ' s o f f i c i a l GPG key
13 c u r l −fsSL h t t p s : / / download . d o ck e r . com / l i n u x / ubun tu / gpg | sudo ap t−key add −
14 ap t−key f i n g e r p r i n t 0EBFCD88
15 add−ap t−r e p o s i t o r y " deb [ a r c h =amd64 ] h t t p s : / / download . d oc ke r . com / l i n u x / ubun tu \
16 $ ( l s b _ r e l e a s e −cs ) s t a b l e "
17 # t h e n re−u p d a t e
18 ap t−g e t u p d a t e
19 # i n s t a l l t h e l a t e s t v e r s i o n o f Docker CE
20 ap t−g e t −y i n s t a l l docker−ce docker−ce−c l i c o n t a i n e r d . i o
21 # l i s t t h e v e r s i o n s a v a i l a b l e i n your r epo
22 ap t−cache madison docker−ce
23 # i n s t a l l v e r s i o n 5:18 .09 .5~3 −0~ ubuntu−b i o n i c
24 ap t−g e t −y i n s t a l l docker−ce =5:18.09.5~3 −0~ ubuntu−b i o n i c \
25 docker−ce−c l i =5:18.09.5~3 −0~ ubuntu−b i o n i c c o n t a i n e r d . i o
26 # e n a b l e and s t a r t s e r v i c e
27 s y s t e m c t l s t a r t d o ck e r
28 s y s t e m c t l e n a b l e d o ck e r
29 # t o c o n f i g u r e do ck e r and run i t a s a normal u s e r ( non−r o o t ) u s e r
30 usermod −aG d oc k e r ubun tu
31 a r g s :
32 e x e c u t a b l e : / b i n / bash
33 . . .

• creating Docker-Spark image, in standalone mode, by means of Dockerfile which

contains the Spark optimal configurations along with all packages needed for executing

the Spark code over SEM images coming from different sources;

1 # base image
2 FROM ubuntu : 1 8 . 0 4
3

4 # d e f i n e s p a r k & hadoop v e r s i o n s
5 ENV SPARK_VERSION = 2 . 4 . 4
6 ENV HADOOP_VERSION= 2 . 7 . 1
7

8 # expose t h e UI P o r t 8080
9 Expose 8080−8081

10

11 # s e t a r g s f o r spa rk , hadoop , j a v a p a t h s
12 ARG SPARK_URL= h t t p s : / / a r c h i v e . apache . o rg / d i s t / s p a r k / spa rk−${SPARK_VERSION } / spa rk−${

SPARK_VERSION}−bin−hadoop2 . 7 . t g z
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13 ARG HADOOP_URL= h t t p s : / / a r c h i v e . apache . o rg / d i s t / hadoop / common / hadoop−${HADOOP_VERSION} /
hadoop−${HADOOP_VERSION} . t a r . gz

14 ARG JAVA_URL= h t t p s : / / download . j a v a . n e t / j a v a /GA/ jdk10 / 1 0 . 0 . 2 / 1 9
aef61b38124481863b1413dce1855f / 1 3 / openjdk −10 .0 .2 _ l i n u x−x64_bin . t a r . gz

15 ARG ENV_PATH=/ u s r / l o c a l / s b i n : / u s r / l o c a l / b i n : / u s r / s b i n : / u s r / b i n : / s b i n : / b i n : / u s r / b i n / s c a l a
: / u s r / l o c a l / s p a r k / b i n : / u s r / l o c a l / s p a r k / s b i n : / u s r / b i n / s c a l a

16

17 # i n s t a l l aux . p a c k a g e s
18 RUN apt−g e t u p d a t e −qq && \
19 ap t−g e t i n s t a l l −qq −y wget ne t− t o o l s i p u t i l s −p ing l i b g l 1 −mesa−g l x s c a l a python−p i p

python3−p i p vim t ime
20

21 # download and i n s t a l l s p a r k
22 RUN wget −−no−v e r b o s e ${SPARK_URL} && t a r −x z f spa rk−${SPARK_VERSION}−bin−hadoop2 . 7 . t g z \
23 && mv spark−${SPARK_VERSION}−bin−hadoop2 . 7 / u s r / l o c a l / s p a r k \
24 && rm spark−${SPARK_VERSION}−bin−hadoop2 . 7 . t g z
25

26 # download and i n s t a l l hadoop
27 RUN wget −−no−v e r b o s e ${HADOOP_URL} && t a r −x z f hadoop−${HADOOP_VERSION} . t a r . gz \
28 && mv hadoop−${HADOOP_VERSION} / u s r / l o c a l / hadoop \
29 && rm hadoop−${HADOOP_VERSION} . t a r . gz
30

31 # download and i n s t a l l j a v a
32 RUN wget −−no−v e r b o s e ${JAVA_URL} && \
33 t a r −xvf openjdk −10 .0 .2 _ l i n u x−x64_bin . t a r . gz && \
34 mkdir −p / u s r / l i b / j d k && mkdir −p / u s r / l o c a l / o r a c l e −j ava −10 && \
35 cp −r jdk −1 0 . 0 . 2 / * / u s r / l o c a l / o r a c l e −j ava −10 && \
36 mv jdk −10 .0 .2 / u s r / l i b / j d k && \
37 rm / openjdk −10 .0 .2 _ l i n u x−x64_bin . t a r . gz
38

39 # download and i n s t a l l anaconda
40 RUN wget h t t p s : / / r epo . anaconda . com / a r c h i v e / Anaconda3 −2019.10−Linux−x86_64 . sh \
41 && bash Anaconda3 −2019.10−Linux−x86_64 . sh −b −p / r o o t / anaconda3 \
42 && rm Anaconda3 −2019.10−Linux−x86_64 . sh \
43 && echo " s o u r c e a c t i v a t e base " > ~ / . b a s h r c
44 ENV PATH / r o o t / anaconda3 / b i n : $PATH
45

46 # c r e a t e conda e n v i r o n m e n t
47 ADD c o n d a _ e n v s _ f i n a l . yml / r o o t /
48 RUN conda env c r e a t e −f / r o o t / c o n d a _ e n v s _ f i n a l . yml \
49 && echo " s o u r c e a c t i v a t e sem " > ~ / . b a s h r c
50 ENV PATH / r o o t / anaconda3 / envs / sem / b i n : $PATH
51

52 # download and i n s t a l l mysql c o n n e c t o r
53 RUN wget h t t p s : / / dev . mysql . com / g e t / Downloads / Connec tor−J / mysql−c o n n e c t o r−j a v a _ 8 .0.16 −1

ubuntu18 . 0 4 _ a l l . deb
54 RUN dpkg − i mysql−c o n n e c t o r−j a v a _ 8 .0.16 −1 ubuntu18 . 0 4 _ a l l . deb \
55 && rm / mysql−c o n n e c t o r−j a v a _ 8 .0.16 −1 ubuntu18 . 0 4 _ a l l . deb
56

57 # i n s t a l l s p a r k m e a s u r e package
58 RUN p i p i n s t a l l s p a r k m e a s u r e
59

60 # i n s t a l l t e s s e r a c t −o c r e n g i n e
61 # and t e s s e r a c t −o c r f i l e s f o r Greek l a n g u a g e
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62 RUN apt−g e t u p d a t e −qq && \
63 ap t−g e t i n s t a l l −qq −y t e s s e r a c t −o c r l i b t e s s e r a c t −dev t e s s e r a c t −ocr−e l l
64

65 # add s p a r k con f f i l e s
66 ADD spark−env . sh / u s r / l o c a l / s p a r k / con f / spa rk−env . sh
67 ADD spark−d e f a u l t s . con f / u s r / l o c a l / s p a r k / con f / spa rk−d e f a u l t s . con f
68

69 # e x p o r t p a t h s
70 RUN echo " e x p o r t PATH=${ENV_PATH } : / u s r / l o c a l / s p a r k / b i n " >> ~ / . b a s h r c && \
71 echo " e x p o r t PATH=${ENV_PATH } : / u s r / l o c a l / s p a r k / s b i n " >> ~ / . b a s h r c && \
72 echo " e x p o r t PATH=${ENV_PATH } : / u s r / b i n / s c a l a " >> ~ / . b a s h r c
73

74 # add i n i t m a s t e r & worker f i l e s
75 ADD i n i t −worker . sh i n i t −m a s t e r . sh /
76 RUN chmod +x / i n i t −m a s t e r . sh / i n i t −worker . sh
77

78 # s e t spa rk , s c a l a , and j a v a envs
79 ENV PATH $PATH : / u s r / l o c a l / s p a r k / b i n
80 ENV PATH $PATH : / u s r / l o c a l / s p a r k / s b i n
81 ENV PATH $PATH : / u s r / b i n / s c a l a
82 ENV PATH $PATH : / u s r / l o c a l / o r a c l e −j ava −10
83

84 CMD [ " / b i n / bash && s o u r c e a c t i v a t e sem " ]

LISTING 3.2: A Dockerfile of Spark image. The necessary packages (SEM conda environment)
along with Spark optimal configurations contained in spark-defaults.conf file are set for

running the SEM Spark code within containerized environment.

The Docker-Spark image shown in Listing 3.2 has been built up and tagged on the

master node using Docker command-lines:
1 # b u i l d up s p a r k image
2 $ do ck e r b u i l d − t IMAGE_NAME:TAG .
3 # t a g s p a r k image
4 $ do ck e r t a g IMAGE_NAME:TAG MASTER_IP : PORT /IMAGE_NAME:TAG

Consequently, we show in the following snippet our Spark and its tagged images along-

side the Ubuntu base image:
1 REPOSITORY TAG IMAGE ID CREATED SIZE
2 1 9 2 . 1 6 8 . 1 0 . 2 1 : 3 0 0 0 3 / spa rk−hadoop 2 . 4 . 4 6 a2068bec6b2 About a minu te ago 1 2 . 5GB
3 spa rk−hadoop 2 . 4 . 4 6 a2068bec6b2 About a minu te ago 1 2 . 5GB
4 ubun tu 18 .04 549 b9b86cb8d 2 weeks ago 6 4 . 2MB

• deploying a docker local registry that serves as an image repository. To do so, we

developed a registry YAML file [36] shown in Listing 3.3;

1 −−−
2 k ind : P e r s i s t e n t V o l u m e C l a i m
3 a p i V e r s i o n : v1
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4 m e t a d a t a :
5 name : d o c k e r r e g i s t r y −pvc la im
6 l a b e l s :
7 app : d o c k e r r e g i s t r y
8 spec :
9 accessModes :

10 − ReadWriteMany
11 r e s o u r c e s :
12 r e q u e s t s :
13 s t o r a g e : 25 Gi
14 . . .
15 −−−
16 k ind : Deployment
17 a p i V e r s i o n : apps / v1
18 m e t a d a t a :
19 name : d o c k e r r e g i s t r y −de p l oy
20 l a b e l s :
21 app : d o c k e r r e g i s t r y
22 spec :
23 r e p l i c a s : 1
24 s e l e c t o r :
25 matchLabe l s :
26 app : d o c k e r r e g i s t r y
27 t e m p l a t e :
28 m e t a d a t a :
29 l a b e l s :
30 app : d o c k e r r e g i s t r y
31 spec :
32 nodeName : spa rk−m a s t e r
33 c o n t a i n e r s :
34 − image : r e g i s t r y
35 name : d o c k e r r e g i s t r y −pod
36 i m a g e P u l l P o l i c y : Always
37 env :
38 − name : r e g i s t r y −r o o t d i r −s t o r a g e
39 v a l u e : / r o o t / k u b e r n e t e s / images
40 volumeMounts :
41 − name : spa rk−image−s t o r e
42 mountPath : / r o o t / k u b e r n e t e s / images
43 volumes :
44 − name : spa rk−image−s t o r e
45 h o s t P a t h :
46 p a t h : / r o o t / k u b e r n e t e s / images
47 t y p e : D i r e c t o r y O r C r e a t e
48 . . .
49 −−−
50 k ind : S e r v i c e
51 a p i V e r s i o n : v1
52 m e t a d a t a :
53 name : d o c k e r r e g i s t r y −s r v
54 l a b e l s :
55 app : d o c k e r r e g i s t r y
56 spec :
57 s e l e c t o r :



Chapter 3. Kubernets and Apache Spark Containers 29

58 app : d o c k e r r e g i s t r y
59 t y p e : NodePor t
60 p o r t s :
61 − p o r t : 5000
62 t a r g e t P o r t : 5000
63 n o d e P o r t : 30003
64 p r o t o c o l : TCP
65 . . .

LISTING 3.3: A Docker registry YAML file used in deploying a Docker local registry on our
Kubernetes cluster to host the Spark image. The registry YAML file has three main sections: (a)
PersistentVolumeClaim section to claim and save storage resources for the Spark image; (b)
Deployment section that allows us to deploy the Docker local registry on the Kubernetes cluster;

(c) Service section which enables us to expose the registry service on each Kubernetes node.

In order to check the status of registry deployment, the following kubectl command-

lines is executed in the terminal:
1 # g e t pods
2 ( ba se ) root@spark−m a s t e r : ~ # k u b e c t l g e t pods
3 NAME READY STATUS RESTARTS AGE
4 d o c k e r r e g i s t r y −deploy −746 cfbccd4−gwqsj 1 / 1 Running 0 103m
5 # g e t dep loymen t s
6 ( ba se ) root@spark−m a s t e r : ~ # k u b e c t l g e t dep loymen t s
7 NAME READY UP−TO−DATE AVAILABLE AGE
8 d o c k e r r e g i s t r y −de p l oy 1 / 1 1 1 103m

• declaring the local image repository via editing /etc/docker/daemon.json file on

all Kubernetes nodes with the contents of:
1 ' { " i n s e c u r e − r e g i s t r i e s " : [ " REGISTRY \_NAME:TARGET\ _PORT " , " IP :NODE\ _PORT " ] } '

Hence, all cluster nodes get an access to the Spark image. This step is automatically

executed on the master and compute nodes by means of the following YAML file;

1 −−−
2 − h o s t s : a l l
3 become : yes
4 t a s k s :
5 − name : e d i t do c ke r daemon , r e l o a d daemon , and r e s t a r t d oc ke r s e r v i c e
6 s h e l l : |
7 echo ' { " i n s e c u r e − r e g i s t r i e s " : [ " REGISTRY_NAME: TARGET_PORT" , " IP :NODE_PORT" ] } ' >>

/ e t c / do ck e r / daemon . j s o n
8 s y s t e m c t l daemon−r e l o a d
9 s y s t e m c t l r e s t a r t d o ck e r . s e r v i c e

10 a r g s :
11 e x e c u t a b l e : / b i n / bash
12 . . .
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As it is shown in the above YAML file, editing Docker daemon.json file is followed

by reloading the daemon and restarting Docker service, respectively:
1 s y s t e m c t l daemon−r e l o a d
2 s y s t e m c t l r e s t a r t do ck e r . s e r v i c e

• pushing our Spark image to the local registry by means of Docker command-line exe-

cuted in the terminal of master node;

1 $ do ck e r push IP : PORT /IMAGE_NAME:TAG
2 # wi th an o u t p u t :
3 The push r e f e r s t o r e p o s i t o r y [ IP : PORT /IMAGE_NAME]
4 a 5 f 3 f 7 7 3 5 7 6 c : Pushed
5 bbf5 f4d0d5a5 : Pushed
6 64 d1ce7c0ac6 : Pushed
7 ed840b5ee2 fe : Pushed
8 99 e785337496 : Pushed
9 d41886438118 : Pushed

10 e4 f114c705ec : Pushed
11 8 be938d350a0 : Pushed
12 9211 bd989187 : Pushed
13 19750959 e936 : Pushed
14 06 f109d446b4 : Pushed
15 1356 e 7 6 f 7 c a b : Pushed
16 8 e2016793e6f : Pushed
17 17 abcd11b353 : Pushed
18 965 c5708673f : Pushed
19 3 cdd13f6c042 : Pushed
20 918 e f b 8 f 1 6 1 b : Pushed
21 27 dd43ea46a8 : Pushed
22 9 f 3 b f c c 4 a 1 a 8 : Pushed
23 2 dc9 f76 fb25b : Pushed
24 2 . 4 . 4 : d i g e s t : sha256 :1381650 c94751bd317eaa f3d86f3b9e5d0404da74a8e2f11add9e567c5b85bf7

s i z e : 4516

After the implementation of above steps, the cluster is ready for master and worker Spark

Pods deployment via using kubectl Kubernetes command-line over relevant YAML files

presented in next sections.

Spark-Master deployment

In order to get Spark-Master deployment with all optimal configurations, we developed a

YAML file available at [37]. Our Spark-Master YAML file has two main parts of kind of

Deployment and Service shown in Listing 3.4.
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1 −−−
2 k ind : Deployment
3 a p i V e r s i o n : apps / v1
4 m e t a d a t a :
5 name : spa rk−m a s t e r
6 l a b e l s :
7 app : spa rk−m a s t e r
8 spec :
9 r e p l i c a s : 1

10 s e l e c t o r :
11 matchLabe l s :
12 component : spa rk−m a s t e r
13 t e m p l a t e :
14 m e t a d a t a :
15 l a b e l s :
16 component : spa rk−m a s t e r
17 spec :
18 nodeName : spa rk−m a s t e r
19 volumes :
20 − name : n e x t c l o u d
21 h o s t P a t h :
22 p a t h : / n e x t c l o u d / d a t a
23 t y p e : D i r e c t o r y
24 c o n t a i n e r s :
25 − name : spa rk−m a s t e r
26 image : l o c a l h o s t : 3 0 0 0 3 / spa rk−hadoop : 2 . 4 . 4
27 i m a g e P u l l P o l i c y : " I f N o t P r e s e n t "
28

29 name : spa rk−m a s t e r
30 p o r t s :
31 − c o n t a i n e r P o r t : 7077
32 − c o n t a i n e r P o r t : 8080
33 p r o t o c o l : TCP
34 volumeMounts :
35 − mountPath : " / n e x t c l o u d "
36 name : n e x t c l o u d
37 command : [ " / b i n / bash " ]
38 a r g s : [ "−c " , " . / i n i t −m a s t e r . sh ; s l e e p i n f i n i t y " ]
39 hos tNe twork : t r u e
40 d n s P o l i c y : D e f a u l t
41 . . .
42 −−−
43 k ind : S e r v i c e
44 a p i V e r s i o n : v1
45 m e t a d a t a :
46 name : spa rk−mas te r−s r v
47 l a b e l s :
48 app : spa rk−m a s t e r
49 spec :
50 s e l e c t o r :
51 app : spa rk−m a s t e r
52 p o r t s :
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53 − name : webui
54 p o r t : 8080
55 t a r g e t P o r t : 8080
56 p r o t o c o l : TCP
57 − name : s p a r k
58 p o r t : 7077
59 t a r g e t P o r t : 7077
60 p r o t o c o l : TCP
61 . . .

LISTING 3.4: Spark-Master deployment YAML file with all optimal configurations pertained
to volumes, containers, ports, volumeMounts. The YAML file has two main parts of
Spark Deployment and Service. The deployment was executed on the master node using kubectl

command-line over the YAML script.

The Spark-Master YAML file sets indispensable configurations of Spark cluster deployment

by means of Kubernetes. Three essential sections are set in the part of Deployment, such

as volumes, containers, and mount point (volumeMounts). The section of volumes contains

the input parameters (hostPath, path) for SEM dataset host path. Under containers section,

we set the crucial information of Docker-Spark image (name and tag), while volumeMounts

section hosts the information of mount point of the SEM dataset input. The Spark-Master

Service part contains the parameters for configuring Spark ports and network communica-

tion protocol - Transmission Control Protocol (TCP). To check the status of Spark-Master

deployment, we execute in terminal kubectl command-line as shown in the following snip-

pet.
1 ( ba se ) root@spark−m a s t e r : ~ # k u b e c t l g e t pods
2 NAME READY STATUS RESTARTS AGE
3 d o c k e r r e g i s t r y −deploy −746 cfbccd4−rzmtm 1 / 1 Running 0 18h
4 spa rk−mas te r −587 bc5579f−9snw7 1 / 1 Running 0 18h

Our Spark cluster shows two Pods of Docker local registry and Spark-Master. Both Pods are

Ready with a single replica and register Running as a status. The Spark cluster is therefore

well prepared to spawn worker nodes.

Spark-Workers deployment

Similar to the Spark-Master deployment, we developed the Spark-Workers YAML file [37]

with only one replica shown in Listing 3.2.2.
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1 −−−
2 k ind : Deployment
3 a p i V e r s i o n : apps / v1
4 m e t a d a t a :
5 name : spa rk−worker
6 spec :
7 r e p l i c a s : 1
8 s e l e c t o r :
9 matchLabe l s :

10 component : spa rk−worker
11 t e m p l a t e :
12 m e t a d a t a :
13 l a b e l s :
14 component : spa rk−worker
15 spec :
16 volumes :
17 − name : n e x t c l o u d
18 h o s t P a t h :
19 p a t h : / n e x t c l o u d / d a t a
20 t y p e : D i r e c t o r y
21 c o n t a i n e r s :
22 − name : spa rk−worker
23 image : l o c a l h o s t : 3 0 0 0 3 / spa rk−hadoop : 2 . 4 . 4
24 i m a g e P u l l P o l i c y : " I f N o t P r e s e n t "
25 name : spa rk−worker
26 p o r t s :
27 − c o n t a i n e r P o r t : 7078
28 − c o n t a i n e r P o r t : 8081
29 p r o t o c o l : TCP
30 volumeMounts :
31 − mountPath : " / n e x t c l o u d "
32 name : n e x t c l o u d
33 command : [ " / b i n / bash " ]
34 a r g s : [ "−c " , " . / i n i t −worker . sh ; s l e e p i n f i n i t y " ]
35 hos tNe twork : t r u e
36 d n s P o l i c y : D e f a u l t
37 . . .

The Spark-Worker YAML file has one main part, of kind of Deployment, which contains the

three main sections of volumes, containers, and mount point (volumeMounts). Such Spark-

Worker deployment with one replica was performed using kubectl command-line over the

YAML file. Hence, our cluster has one master and worker nodes, along with the Docker local

registry:
1 ( ba se ) root@spark−m a s t e r : ~ # k u b e c t l g e t pods
2 NAME READY STATUS RESTARTS AGE
3 d o c k e r r e g i s t r y −deploy −746 cfbccd4−rzmtm 1 / 1 Running 0 18h
4 spa rk−mas te r −587 bc5579f−9snw7 1 / 1 Running 0 18h
5 spa rk−worker −7764 b7c74f−b t lpw 1 / 1 Running 0 18h
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Scaling the Spark platform over all remaining nodes was the last step in such Kubernetes-

Spark auto-deployment process. Such step is executed using kubectl command-line over

number of available compute nodes n:
1 k u b e c t l s c a l e −n d e f a u l t dep loyment spa rk−worker −− r e p l i c a s =n

After executing all the above procedures, the Spark cluster is ready for performing our SEM

analysis. In § 3.2.3, we list all Kubernetes-Spark Pods deployed on OpenStack infrastructure

with results obtained.

3.2.3 OpenStack Kubernetes-Spark cluster

The auto-deployment procedures implemented on OpenStack of CNR-IOM computing sys-

tem results in a fully functional Kubernetes-Spark cluster composed of one master and two

worker nodes and/or Pods of 4 cores each (see Listing 3.5).

1 ( ba se ) root@spark−m a s t e r : ~ # k u b e c t l g e t pods
2 NAME READY STATUS RESTARTS AGE
3 d o c k e r r e g i s t r y −deploy −746 cfbccd4−rzmtm 1 / 1 Running 0 2 d20h
4 spa rk−mas te r −587 bc5579f−9snw7 1 / 1 Running 0 2 d20h
5 spa rk−worker −7764 b7c74f−b t lpw 1 / 1 Running 0 2 d20h
6 spa rk−worker −7764 b7c74f−h89n7 1 / 1 Running 0 2 d20h

LISTING 3.5: OpenStack Kubernetes-Spark cluster. The cluster is running with one master and
two worker nodes/Pods via employing 4 cores each. The input SEM images are accessible by all

nodes/Pods by means of Ceph filesystem.

The cluster is tested and used in processing a reference dataset of 2000 SEM images mounted

on every Kubernetes-Spark node/Pod by means of Ceph filesystem (FS) [38]. Figure 3.2

shows OpenStack Kubernetes-Spark cluster architecture consisted of one master and two

worker nodes/Pods. The SEM data input is accessible by every node/Pod via employing

Ceph FS. The SEM metadata output is committed to MySQL database and shared with a

nanoscience community through phpMyAdmin web-interface.



Chapter 3. Kubernets and Apache Spark Containers 35

Nextcloud: datashare.nffa.eu
   datashare.iom.cnr.it, reference dataset phpMyAdmin
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FIGURE 3.2: OpenStack Kubernetes-Spark cluster architecture diagram. The cluster has in total
three nodes/Pods (one master and two workers with 4 cores each). The SEM dataset is accessible by
all Pods using Ceph FS. The analyses output is shared with the community of nanoscience research

and visualized through phpMyAdmin web-interface.

In this work, we intend to process a large number of SEM images coming from different

sources within the NFFA EUROPE project via employing two Spark executor approaches [39]

known as Fat and Tiny within containerized environment on different infrastructure and

filesystems. In Spark Fat executors approach, we assign a single executor instance and

memory per worker and/or Pod while in Spark Tiny executors approach, a single execu-

tor instance and memory are allocated for every single core involved in computation. In

both Spark approaches, a driver memory instance has to be allocated based on the available

resources and workload. Snippets 3.6 and 3.7 show an example of Spark configuration pa-

rameters generated in an automatic way, for the Fat and Tiny executor approaches, once the

job is launched:

1 s p a r k . k u b e r n e t e s . t a s k . cpus 1
2 s p a r k . k u b e r n e t e s . d r i v e r . memory 5G
3 s p a r k . k u b e r n e t e s . e x e c u t o r . memory 5G
4 s p a r k . k u b e r n e t e s . e x e c u t o r . i n s t a n c e s 2
5 s p a r k . k u b e r n e t e s . e x e c u t o r . c o r e s 4
6 s p a r k . k u b e r n e t e s . c o r e s . max 8
7 s p a r k . k u b e r n e t e s . t o t a l . e x e c u t o r . c o r e s 8

LISTING 3.6: An example of configuration parameters of the Spark Fat executors approach for
a distributed job of 8 cores on OpenStack Kubernetes-Spark cluster. Two executor instances are
assigned for the two Spark workers/Pods. A memory of 5 G is allocated for the Spark driver
(master Pod) and every single Spark worker/Pod. Only 4 cores per Spark executor (worker Pod)

are in charge in computation.
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The configuration parameters of Spark Tiny executors approach utilized in executing a par-

allel job of 8 cores are listed in the following Snippet:

1 s p a r k . k u b e r n e t e s . t a s k . cpus 1
2 s p a r k . k u b e r n e t e s . d r i v e r . memory 5G
3 s p a r k . k u b e r n e t e s . e x e c u t o r . memory 1G
4 s p a r k . k u b e r n e t e s . e x e c u t o r . i n s t a n c e s 8
5 s p a r k . k u b e r n e t e s . e x e c u t o r . c o r e s 1
6 s p a r k . k u b e r n e t e s . c o r e s . max 8
7 s p a r k . k u b e r n e t e s . t o t a l . e x e c u t o r . c o r e s 8

LISTING 3.7: An example of configuration parameters of the Spark Tiny executors approach for
a distributed job of 8 cores on OpenStack Kubernetes-Spark cluster. One executor instance is
assigned for every core, i.e., we employ in total 8 executor instances. Similar to Fat approach, 5 G
of memory is allocated for Spark driver (master Pod), while 1 G of memory is assigned for every

core involved in computation.

As a test run, the OpenStack architecture presented in Fig. 3.2 has been used in processing a

reference dataset of 2000 SEM images. The elapsed time and strong scalability, of this test

run, as a function of number of cores is shown in Fig. 3.3.
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FIGURE 3.3: Elapsed time and strong scalability of a workload of 2000 images processed on Open-
Stack. Left panel presents total elapsed time as a function of number of cores. Right panel presents

strong scalability with maximum speedup 5 times a serial process.

With respect to Fig. 3.3, the total elapsed time (left plot) decreases with increasing number

of cores and strong scalability (right plot) reached 5 times a serial process with using 8

cores. Nevertheless, the OpenStack architecture did not reach a plateau speedup feature.

Namely, employing more resources with increasing SEM images workload will lead to better

scalability.
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This test run result motivated us to expand and deploy our Kubernetes-Spark cluster on larger

and scalable infrastructure. Therefore, the auto-deployment steps of Kubernetes-Spark plat-

form presented in § 3.1.1 and § 3.2.2 have been implemented on IRON node from CNR-

IOM infrastructure and C3HPC cluster. In next sections, we present the architecture of

Kubernetes-Spark platform deployed on both IRON node and C3HPC cluster.

3.2.4 IRON machine Kubernetes-Spark cluster

Similar to OpenStack of CNR-IOM cloud computing system, Kubernetes-Spark cluster has

been installed on the IRON node, which belongs to CNR-IOM infrastructure. The IRON

node has 20 cores in total of a type of Intel Broadwell, and then three Kubernetes-Spark

Pods shown in Listing 3.8 have been deployed in the form of one master and two worker

Pods.

1 [ r o o t @ i r o n ~] # k u b e c t l g e t pods
2 NAME READY STATUS RESTARTS AGE
3 c s i−c e p h f s p l u g i n −2knrz 3 / 3 Running 0 18d
4 c s i−c e p h f s p l u g i n −p r o v i s i o n e r −7966 f9c69c−n6wbn 4 / 4 Running 0 18d
5 c s i−c e p h f s p l u g i n −p r o v i s i o n e r −7966 f9c69c−vbpwx 4 / 4 Running 0 18d
6 c s i−c e p h f s p l u g i n −p r o v i s i o n e r −7966 f9c69c−v s z p r 4 / 4 Running 0 18d
7 spa rk−mas te r −5dc6bf4d59−qmcjm 1 / 1 Running 0 8d
8 spa rk−worker −77c88ddb94−d j h 8 r 1 / 1 Running 0 8d
9 spa rk−worker −77c88ddb94−wps8t 1 / 1 Running 0 8d

LISTING 3.8: IRON machine Kubernetes-Spark cluster. The cluster is running and used in
processing SEM images coming from different sources within the NFFA-EUROPE project with
one master and two worker Pods via employing 20 cores in total. The input SEM images are

accessible by the machine and all Pods using Ceph filesystem.

The IRON node Kubernetes-Spark platform architecture is shown in Fig. 3.4.
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Nextcloud: datashare.nffa.eu
                      datashare.iom.cnr.it

phpMyAdmin

MySQL

SEM ImagesDocker

Kubernetes

Master

Worker 02Worker 01

Ceph FS

FIGURE 3.4: IRON Kubernetes-Spark cluster architecture diagram. The cluster employs three Pods
(one master and two workers) with 20 cores in total. The SEM dataset from different sources is
accessible by every Pod via using Ceph FS. The resultant output of the SEM analyses is visualized
through phpMyAdmin web-interface tool and shared with wide community of nanoscience research.

The above architecture presented in Fig. 3.4 has been used in processing large number of

SEM images coming from different sources within the NFFA-EUROPE project. The SEM

input dataset is mounted on the IRON node and every Pod by means of Ceph FS. All Pods

are connected with MySQL database which hosts the resultant output of our SEM analyses.

The results obtained are presented and discussed in Chapter 4.

3.2.5 C3HPC Kubernetes-Spark cluster

Analogous to CNR-IOM OpenStack, the auto-deployment steps of Kubernetes-Spark plat-

form have been performed on C3HPC cluster with employing 9 nodes in total. One master

along with 8 worker pods are forming the Kubernetes-Spark architecture, shown in List-

ing 3.9 and depicted in Fig. 3.5. On C3HPC, every single node/Pod has 24 cores of a type of

Intel Ivybridge.

1 [ a k h a l i l @ l o g i n ~] $ k u b e c t l g e t pods
2 NAME READY STATUS RESTARTS AGE
3 d o c k e r r e g i s t r y −01−dep−5c77fd7b8−qhrmv 1 / 1 Running 0 14d
4 spa rk−mas te r−c7dc46ccd−k r c r p 1 / 1 Running 0 8d
5 spa rk−worker −5757 b9cbcc−2rcgm 1 / 1 Running 0 8d
6 spa rk−worker −5757 b9cbcc −665b9 1 / 1 Running 0 8d
7 spa rk−worker −5757 b9cbcc−7qmrn 1 / 1 Running 0 8d
8 spa rk−worker −5757 b9cbcc−c l q h l 1 / 1 Running 0 8d
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9 spa rk−worker −5757 b9cbcc−kk28 t 1 / 1 Running 0 8d
10 spa rk−worker −5757 b9cbcc−nk jng 1 / 1 Running 0 8d
11 spa rk−worker −5757 b9cbcc−p 9 f f 4 1 / 1 Running 0 8d
12 spa rk−worker −5757 b9cbcc−r 4 5 s k 1 / 1 Running 0 8d

LISTING 3.9: C3HPC Kubernetes-Spark cluster. The cluster is running and used in processing
SEM images coming from different research groups within the NFFA-EUROPE project with
one master and 8 worker nodes/Pods via employing 24 cores each. The input SEM images are

accessible by all nodes and/or Pods using Lustre filesystem.

The C3HPC Spark-Kubernetes cluster presented in Fig. 3.5 has been used in processing

large and different SEM datasets produced from several experiments within NFFA-EUROPE

project.
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FIGURE 3.5: C3HPC Kubernetes-Spark cluster architecture diagram. The cluster has 9 nodes/Pods in
total (one master and 8 workers) with 24 cores each of a type of Intel Ivybridge. The SEM dataset
from different sources is accessible by every node and/or Pod by means of Lustre FS. All Pods are
connected to MySQL, where SEM analyses output is committed. The output is therefore visualized
through a web-interface tool (phpMyAdmin) and shared with a wide community of nanoscience

research within the NFFA-EUROPE project.
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The SEM images input data are hosted on the cluster and accessible by every node and/or

Kubernetes-Spark Pod by means of Lustre filesystem [40]. The SEM analyses output is

committed to MySQL database, and hence visualized through phpMyAdmin web-interface

tool to be shared with the nanoscience community within the NFFA-EUROPE project. The

results obtained are presented and discussed in Chapter 4.



Chapter 4

Results

The infrastructure described in Chapter 3 is used in processing large number of scientific

images coming from SEM instruments within the NFFA-EUROPE project with a goal of ob-

taining all the metadata. Therefore, the SEM analyses have been performed on a distributed

infrastructures of a single and multiple nodes by means of Apache Spark big data cluster-

computing framework. The Spark has been used in different SEM analyses presented in

MHPC work in 2016 and 2018 by Rossella Aversa [10] and Luca Ciuffreda [11], respectively.

The results presented there do not show a strong tendency of Spark to scale under different

conditions. Aversa found out that the filesystem choice is an important input in processing

SEM images. In this context, Lustre was scaling much better than the local filesystem.

As we have discussed in Chapter 2, the SEM analyses, on our distributed infrastructure,

tackle with four main parts of:

1. scientific metadata saved in the image;

2. image pixel size by means of OpenCV library and OCR engine;

3. image classification with calculating top predictions of the image over ten labels and

4. managing all the analyses output into MySQL database.

This Chapter is aimed to report the results obtained from detailed benchmark study for the

SEM Spark code on different architectures of a single and multiple nodes: the IRON node

from CNR-IOM infrastructure alongside C3HPC of the Carnia Industrial Park [6] high per-

formance computing cluster provided by the eXact-lab srl [7]. The IRON node has 20 cores

41
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in total of Intel Broadwell type, while a single node of C3HPC has 24 cores of a type

Intel Ivybridge. Two different SEM workloads are used in this benchmark analysis: (a)

small dataset of 16000 SEM images; (b) large dataset of 118000 SEM images. Both datasets

are spanned over a nested structure and accessible by means of Ceph and Lustre filesystems

on the IRON node and C3HPC cluster, respectively.

As already mentioned in Chapter 3, we have deployed the Spark platform on top of Kuber-

netes cluster within a containerized environment on the IRON node and C3HPC cluster. This

distributed architecture is tested and in a ready status to perform our massive SEM analyses

using two different Spark executor approaches [39] called Fat and Tiny. It is therefore cru-

cial to understand the Spark application performance on different filesystems and identify the

code’s bottleneck. However, measuring the Spark performance is not an easy task, since lot

of components and configuration parameters are involved during the code execution process.

4.1 Measuring Spark performance

As we discussed in Chapter 2, Spark is a cluster computing engine and at a high level par-

allelism Spark creates RDDs from the input data (SEM images). The application then starts

to do lazy transformation among processes/nodes and finally carries out actions of reducing

and collecting data to the manager node. Such Spark operations of transformation and action,

along with the several instances that have to be set for getting an Spark application running

can give us an idea about the bottlenecks of Spark code which can be challenging to resolve.

We are interested in measuring the Spark performance, on different architectures and filesys-

tems, with the two Spark approaches of Fat and Tiny executors by means of SparkMeasure [41,

42] library, which serves as an efficient tool for monitoring [43] Spark performance work-

loads. The library returns necessary information for workload benchmark analysis known

as Spark Executor Task Metric and/or aggregated Spark performance metrics shown in List-

ing 4.1.

1 S c h e d u l i n g mode = FIFO
2 Spark C o n t e x t d e f a u l t d e g r e e o f p a r a l l e l i s m = 20
3 Aggrega ted Spark s t a g e m e t r i c s :
4 numStages => 9
5 sum ( numTasks ) => 104
6 e l apsedT ime => 4282053 ( 1 . 2 h )
7 sum ( s t a g e D u r a t i o n ) => 4279030 ( 1 . 2 h )
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8 sum ( executorRunTime ) => 58748591 ( 1 6 . 3 h )
9 sum ( executorCpuTime ) => 18815 (19 s )

10 sum ( e x e c u t o r D e s e r i a l i z e T i m e ) => 12224 (12 s )
11 sum ( e x e c u t o r D e s e r i a l i z e C p u T i m e ) => 1527 (2 s )
12 sum ( r e s u l t S e r i a l i z a t i o n T i m e ) => 38 (38 ms )
13 sum ( jvmGCTime ) => 4700 (5 s )
14 sum ( s h u f f l e F e t c h W a i t T i m e ) => 0 (0 ms )
15 sum ( s h u f f l e W r i t e T i m e ) => 0 (0 ms )
16 max ( r e s u l t S i z e ) => 23131416 ( 2 2 . 0 MB)
17 sum ( numUpda tedBlockS ta tu se s ) => 92
18 sum ( d i s k B y t e s S p i l l e d ) => 0 (0 Bytes )
19 sum ( memoryBy te sSp i l l ed ) => 0 (0 Bytes )
20 max ( peakExecut ionMemory ) => 0
21 sum ( r e c o r d s R e a d ) => 0
22 sum ( by te sRead ) => 0 (0 Bytes )
23 sum ( r e c o r d s W r i t t e n ) => 0
24 sum ( b y t e s W r i t t e n ) => 0 (0 Bytes )
25 sum ( s h u f f l e T o t a l B y t e s R e a d ) => 0 (0 Bytes )
26 sum ( s h u f f l e T o t a l B l o c k s F e t c h e d ) => 0
27 sum ( s h u f f l e L o c a l B l o c k s F e t c h e d ) => 0
28 sum ( s h u f f l e R e m o t e B l o c k s F e t c h e d ) => 0
29 sum ( s h u f f l e B y t e s W r i t t e n ) => 0 (0 Bytes )
30 sum ( s h u f f l e R e c o r d s W r i t t e n ) => 0

LISTING 4.1: An example of aggregated Spark stage metrics of a SEM job executed on the IRON
node, from the CNR-IOM infrastructure, via using 20 cores.

Based on the above output parameters returned by the Spark stage metrics, we present

benchmark analysis for two different SEM workloads as a function of number of cores and

nodes/Pods. The measurements have been performed over the small and large SEM datasets

on the IRON node and C3HPC cluster. On the IRON node, we processed the small SEM input

of 16000 images from datashare.iom.cnr.it, where the data are stored in the cloud platform

provided by NFFA-EUROPE Datashare service, and hence all input images are accessible

by every container of the IRON node (one Kubernetes master along with two worker Pods)

utilizing Ceph filesystem. The data storage is different on the C3HPC cluster, where the large

and small SEM datasets are stored on the Lustre parallel filesystem.

In this benchmark analysis we collected the aggregated output of Spark Task Metric class of

the following parameters:

• elapsedTime: total execution time of the spark application;

• executorCpuTime: total CPU time spent by the Spark executor in executing the pro-

cesses including fetching-shuffle data time;
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• executorRunTime: total elapsed time spent by the executor in running the processes

including fetching-shuffle data time;

• executorDeserializeTime: total time taken by the executor in deserializing the task;

• jvmGCTime: total time taken by the Java Virtual Machine (JVM) in garbage collection

resulted from memory allocation during the task execution.

In the next sections we discuss the results of both Fat and Tiny executor approaches on the

IRON node (Ceph filesystem) and C3HPC cluster (Lustre filesystem).

4.1.1 Fat executors approach

On the IRON node: We show in Fig. 4.1 the performance results for a workload of 16000

using Fat executors approach, in which the number of executors is fixed to one executor per

Pod with changing number of cores.
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FIGURE 4.1: Spark Measure Metric of Fat executors approach for a workload of 16000 images pro-
cessed on IRON node. The measurements of this Spark stage metric are averaged over two iterations.

We can see clearly significant increase in the number of images processed at higher level

parallelism Ncores = (8,16,20) compared to the low one, with elapsed time around 70 min-

utes for a workload of 16000 SEM images. However, there is a drop in performance mainly

correlated to the time taken by two Task Metric parameters; (a) executorDeserializeTime, (b)

jvmGCTime at Ncores = (16,20).

On the C3HPC cluster: The same workload of 16000 SEM images stored on the Lustre

parallel FS has been analyzed, and hence the Spark Measure Metric is shown in Fig. 4.2.
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FIGURE 4.2: Spark Measure Metric of Fat executors approach for a workload of 16000 images
processed on C3HPC cluster. The measurements of this Spark stage metric are averaged over four

iterations.

Despite of the difference in FS on IRON (Ceph) and C3HPC (Lustre), the above results from

Spark stage metrics, on the C3HPC, are in agreement with the ones obtained on the IRON

node for same workload. Compared to a single node process, an increase in the number of

images processed per second is observed with utilizing the fourth and eighth node. Similar

to the IRON node, the performance obtained with including the fourth and eighth nodes

in computation is mainly affected by the deserialization and JVM garbage collector times.

Namely, time spent by deserialization processes, in which input images are converted into

an object instances, along with JVMs garbage collectors for data stored in the memory is

increasing with processing large number of images and nodes.

In this regard, Ciuffreda in his study [11] found out that the time spent by JVMs garbage

collection can be insignificant parameter in Spark performance with decreasing the work-

load, whereas no clear correlation was found between JVMs garbage collection time and the

system performance with a smaller workload of 12000 SEM images.

Large SEM dataset: We performed using the approach of Fat executors the analyses of

the large SEM dataset of 118000 images, corresponding to 155 GB on the C3HPC cluster.

This dataset is stored in C3HPC cluster under Lustre parallel FS. We allocated in this Fat

executors approach analysis one driver node with a driver.memory of 16 GB and 8 nodes

with executor.memory of 16 GB per (executor instance/Pod). The Spark Measure Metric

for such large workload is presented in Fig. 4.3.
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FIGURE 4.3: Spark Measure Metric of Fat executors approach for a workload of 118000 images
processed on C3HPC cluster. The measurements of this Spark stage metric are averaged over four

iterations.

The IRON node is excluded from such large dataset processing, since the total elapsed time

summed over all processes would take so long (in total ∼10 days).
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4.1.2 Tiny executors approach

Contrary to the Fat executors approach presented in § 4.1.1, the number of executors is

changing for each run per node/Pod. In this Spark Tiny approach, one driver node is allo-

cated with driver.memory of 16 GB and one executor instance is assigned per core with

executor.memory of 1 GB. In the following, we present and discuss the results obtained us-

ing the Tiny executors approach on both IRON node (small SEM dataset) and C3HPC cluster

(small and large SEM datasets).

On the IRON node: We executed the SEM Spark code with assigning one executor for

each core involved in the computation. Namely, for a single process only one executor is

employed for the single core, while 20 executors, as an example, are employed for a process

of 20 cores. The resources allocated using this approach on the IRON node are shown in

Tab. 4.1.

Number of cores 1 2 4 8 16 20
Number of executors 1 2 4 8 16 20
Total executor memory [G] 1 2 4 8 16 20

TABLE 4.1: Resources of Tiny executors approach used on IRON node. In this executors approach
we assigned a single executor with 1 G for every single core and the driver.memory equals 16 G.

The results of Spark Measure Metric obtained using this executors approach on the IRON

node is shown in Figs. 4.4.
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FIGURE 4.4: Spark Measure Metric of Tiny executors approach for a workload of 16000 images pro-
cessed on IRON node. The measurements of this Spark stage metric are averaged over two iterations.

In this Tiny executors approach executed on a single node, the total elapsed time declines,

while the rate of processed images increases as a function of number of cores/executors. This

result is in agreement with the one of Fat executors approach, and then we can conclude that

both Spark executor approaches show a good performance on the scale of a single node.

On the C3HPC cluster: The SEM Spark code was executed over 8 nodes, i.e., in total 192

cores are in charge with computation. Hence, a number of 24 executors per node/Pod have

been assigned. Table 4.2 summarizes the resources allocated on the C3HPC cluster for the

Spark Tiny executor approach.

Number of nodes 1 2 4 8
Number of executors 24 48 96 192
Total executor memory [G] 24 48 96 192

TABLE 4.2: Resources of Tiny executors approach used on C3HPC cluster. In this approach we
employ a single executor instance with executor.memory of 1 G for every single core, i.e., in total

24 G of memory has been allocated per node/Pod and the driver.memory equals 16 G.

The resultant Spark Measure Metric is presented in Fig. 4.5.
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FIGURE 4.5: Spark Measure Metric of Tiny executors approach for a workload of 16000 images
processed on C3HPC cluster. The measurements of this Spark stage metric are averaged over four

iterations.

Large SEM dataset: In order to complete our detailed benchmark study, on the C3HPC

cluster, we implemented the Spark Tiny executors approach over the large SEM dataset of

a volume of 118000 images located under Lustre FS. Here, we allocated same resources

(driver.memory, executor.memory, executor.instances/cores) as the small SEM dataset. The

Spark Measure Metric for such large workload is presented in Fig. 4.6.
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FIGURE 4.6: Spark Measure Metric of Tiny executors approach for a workload of 118000 images
processed on C3HPC cluster. The measurements of this Spark stage metric are averaged over four

iterations.

4.2 Strong scalability analysis

In this section, we investigate the scalability of the infrastructure (single and multiple nodes)

after setting up the optimal configuration parameters of the Spark cluster deployed within

containerized environment on the IRON node and C3HPC cluster. We are also interested
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here in measuring the effect of Ceph and Lustre filesystems, by which the input SEM dataset

is accessible on each Pod.

As already mentioned, there are two Spark executor approaches involved in this benchmark

study on both IRON node and C3HPC cluster. On IRON machine we have in total three

Pods; one master and two workers. On the C3HPC we have large number of nodes/Pods

(one master node/Pod and 8 worker nodes/Pods) over which the Spark cluster is deployed by

means of Kubernetes container-orchestration engine.

IRON node speedup is calculated as a relative gain in total elapsed time as a function of

number of cores. As a consequence of the above results from Spark Measure Metric, we

present in Fig. 4.7 total elapsed time and corresponding scalability of the IRON node.
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FIGURE 4.7: Elapsed time and strong scalability of IRON node with Fat and Tiny executor ap-
proaches. Left panel presents total elapsed time as a function of number of cores for both Fat and
Tiny approaches. Right panel presents strong scalability of the IRON node with speedup gain of 5
for Fat executors approach, while it is around 4 for the Tiny one. The measurements of elapsed time

and speedup are averaged over two iterations for a workload of 16000 SEM images.

The IRON machine achieved speedup gain at 5 with Spark Fat executors approach, while

speedup around 4 is obtained using the Tiny one. A workload size of 16000 SEM images is

used in this analysis for two iterations. In the following, we present and discuss the speedup

analysis with both Spark executor approaches on multiple nodes – C3HPC cluster.

C3HPC cluster total elapsed time and speedup are presented in Fig. 4.8 as a function of

number of nodes with Fat and Tiny executors approach for a workload of 16000 images.
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FIGURE 4.8: Elapsed time and strong scalability of C3HPC cluster with Fat and Tiny executor
approaches. Left panel shows total elapsed time as a function of number of nodes. Right panel
shows strong scalability of C3HPC cluster with both Spark executor approaches. Maximum attain-
able speedup gain approaches 3, with both Fat and tiny executor approaches. The measurements of

elapsed time and speedup are averaged over four iterations for a workload of 16000 SEM images.

The large SEM dataset total elapsed time and speedup on C3HPC cluster is introduced in

Fig. 4.9 in terms of the two Spark executor approaches used in the above analysis.
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FIGURE 4.9: Elapsed time and strong scalability of C3HPC cluster with Fat and Tiny executor ap-
proaches. Left panel shows total elapsed time as a function of number of nodes. Right panel shows
strong scalability of C3HPC cluster with both Spark executor approaches. Both Spark executor ap-
proaches show same performance with speedup gain below 4. The measurements of elapsed time and

speedup are averaged over four iterations for a workload of 118000 SEM images.

Due to the above speed up analyses implemented on the IRON node (Ceph FS) and C3HPC

cluster (Lustre FS) over different workload volumes, we can conclude that Spark shows

same performances with employing Fat and Tiny executor approaches, in particular, with
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increasing the workload (large SEM dataset). For better understanding the code bottlenecks,

we profile in § 4.2.1 the four main parts of the SEM Spark code on both architectures of

IRON and C3HPC cluster.

4.2.1 Profiling the code’s four parts

We present in Figs. 4.10, 4.11, 4.12, 4.13, 4.14, and 4.15 the elapsed time taken by the

four parts (Metadata, OpenCV+OCR, Inference, Database) of the SEM Spark code and

corresponding speedup as a function of number of cores (IRON node) and/or number of

nodes/Pods (C3HPC cluster). The two Spark executor approaches (Fat and tiny) are utilized

in this profiling study, which is essential in specifying the part that negatively affects the

code’s performance.

On the IRON node: We processed only the SEM dataset of a size of 16000. It is obvious

that the Database part drops the performance with low speedup of 3, while the Metadata

along with OpenCV+OCR and Inference achieved speed up around 5 and 7, respectively.

Figures 4.10 and 4.11 shows IRON node profiling study.
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FIGURE 4.10: Elapsed time per executor core and strong scalability of IRON node for the code’s four
parts with Spark Fat executors approach. Top panel: Elapsed time of the code’s four parts (left plot)
on IRON node as a function of number of cores. Additionally, a zoom of the two parts of Metadata
and Database (right plot) is presented. The two parts of Database and Metadata are faster than the
OpenCV+OCR and Inference ones. Bottom panel: Strong scalability of IRON node with maximum
speedup gain around 7 for OpenCV+OCR and Inference parts, while it is 5 for the part of Metadata.
The last part of Database gains speedup below 4. The measurements of elapsed time and speedup are

averaged over two iterations for a workload of 16000 SEM images.

Similar performance is obtained using the Spark Tiny executors approach over same work-

load, see Fig. 4.11.
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FIGURE 4.11: Elapsed time per executor core and strong scalability of IRON node for the code’s four
parts with Spark Tiny executors approach. Top panel: Elapsed time of the code’s four parts (left plot)
on IRON node as a function of number of cores. Additionally, a zoom of the two parts of Metadata
and Database (right plot) is presented. The two parts of Database and Metadata are faster than the
OpenCV+OCR and Inference ones. Bottom panel: Similar to Spark Fat executor approach, strong
scalability of the IRON node shows speedup gain approaches 7 for OpenCV+OCR and Inference
parts, while it is around 5 for the part of Metadata. The last part of Database gains speedup below 4.
The measurements of elapsed time and speedup are averaged over two iterations for a workload of

16000 SEM images.

On the C3HPC cluster: Both SEM datasets have been analyzed. The results of elapsed

time per executor core and corresponding speedup for the four parts of SEM Spark code are

shown in Figs. 4.12, 4.13 (workload of 16000 SEM images) and Figs.4.14, 4.15 (workload

of 118000 SEM images) via employing Spark Fat and Tiny executor approaches.
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FIGURE 4.12: Elapsed time per executor core and strong scalability of C3HPC cluster for the code’s
four parts with Spark Fat executors approach. Top panel: Elapsed time per executor core of the
code’s four parts (left plot) on C3HPC cluster as a function of number of nodes/Pods. Moreover, a
zoom of the two parts of Metadata and Database (right plot) is presented. The two parts of Metadata
and Database are faster than the OpenCV+OCR and Inference ones. Bottom panel: Strong scala-
bility of C3HPC cluster with perfectly linear speedup gain approaching the ideal theoretical limit
for Metadata, OpenCV+OCR, and Inference parts, while it reaches 3 for the part of Database. The
measurements of elapsed time and speedup are averaged over four iterations for a workload of 16000

SEM images.

Figure 4.13 presents performance of the code’s four parts over same workload, of 16000

SEM images, with Spark Tiny executors approach.
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FIGURE 4.13: Elapsed time per executor core and strong scalability of C3HPC cluster for the code’s
four parts with Spark Tiny executors approach. Top panel: Elapsed time per executor core of the
code’s four parts (left plot) on C3HPC cluster as a function of number of nodes/Pods. Moreover, a
zoom of the two parts of Metadata and Database (right plot) is presented. The two parts of Metadata
and Database are faster than the OpenCV+OCR and Inference ones. Bottom panel: Strong scalabil-
ity of C3HPC cluster with perfectly linear speedup gain approaching the ideal theoretical limit for
Metadata, OpenCV+OCR, and Inference parts, while it is below 4 for the part of Database. The
measurements of elapsed time and speedup are averaged over four iterations for a workload of 16000

SEM images.

Profiling the SEM code’s four parts has been implemented for the large SEM dataset of

118000 SEM images for four iterations. The elapsed time per executor core besides corre-

sponding scalability are introduced in Figs 4.14 and 4.15.
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FIGURE 4.14: Elapsed time per executor core and strong scalability of C3HPC cluster for the code’s
four parts with Spark Fat executors approach. Top panel: Elapsed time per executor core of the code’s
four parts (left plot) on C3HPC cluster as a function of number of nodes/Pods. Additionally, a zoom
of the two parts of Metadata and Database (right plot) is presented. The two parts of Metadata and
Database are faster than the OpenCV+OCR and Inference ones. Bottom panel: Strong scalability of
the C3HPC cluster with perfectly linear speedup gain approaching the ideal theoretical limit for the
parts of Metadata, OpenCV+OCR, and Inference. The Database part shows less performance with
maximum speedup gain around 4. The measurements of elapsed time and speedup are averaged over

four iterations for a workload of 118000 SEM images.

The profiling study has been performed over the large SEM workload of 118000 images via

using the Spark Tiny executors approach and presented in Fig. 4.15.
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FIGURE 4.15: Elapsed time per executor core and strong scalability of C3HPC cluster for the code’s
four parts with Spark Tiny executors approach. Top panel: Elapsed time per executor core of the
code’s four parts (left plot) on C3HPC cluster as a function of number of nodes/Pods. Additionally, a
zoom of the two parts of Metadata and Database (right plot) is presented. The two parts of Metadata
and Database are faster than the OpenCV+OCR and Inference ones. Bottom panel: Strong scalability
of the C3HPC cluster with perfectly linear speedup gain approaching the ideal theoretical limit for
the parts of Metadata, OpenCV+OCR, and Inference. The Database part shows less performance
with maximum speedup gain of 4. The measurements of elapsed time and speedup are averaged over

four iterations for a workload of 118000 SEM images.

These profiling results from C3HPC cluster over the two SEM datasets of 16000 and 118000

SEM images show a perfectly linear speedup with the parts of Metadata, OpenCV+OCR,

and Inference, while the Database part shows less performance with Spark Fat and Tiny ex-

ecutor approaches. This behavior of the Database part is observed in all profiling analyses

performed on different architectures of a single (IRON) and multiple nodes (C3HPC clus-

ter), filesystems, and SEM workloads. The low performance of the Database part is expected

since, the database has been installed on a remote server belongs to OpenStack of CNR-

IOM computing system. Possible optimization for this part is to have the SEM database in-

stalled locally, so that the time spent in transferring all metadata buffers to MySQL database

will be smaller and better scalability can be attainable. Based on this profiling study, a

plateau speedup feature is not observed on a multiple-node architecture (C3HPC cluster).

Particularly, overall the parts of Metadata, OpenCV+OCR, and Inference. Therefore, higher

speedup can be achieved with increasing resources – number of nodes/Pods in computation.
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4.3 Measuring Ceph and Lustre filesystem performances

In this section, we present and discuss performances of the two different filesystems used

in our SEM analyses: (a) Ceph FS on the IRON node; (b) Lustre FS on the C3HPC clus-

ter. In these measurements, we execute the SEM Spark code, with the two Spark executor

approaches (Fat and Tiny), on a single node of two different infrastructures (IRON – Intel

Broadwell and C3HPC – Intel Ivybridge) over the same workload of 16000 SEM images. As

already stated in the introduction of this Chapter and Chapter 3, the IRON node has in total

20 cores, while a single node of C3HPC has 24 cores. In order to establish a comparative

study between the two different filesystems over equivalent number of cores and workload,

the measurements on C3HPC cluster were performed on only one single node via employing

in total 20 cores out of 24. The elapsed time and corresponding strong scalability of both

Ceph and Lustre filesystems, as a function of number of cores, is shown in Fig. 4.16.
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FIGURE 4.16: Elapsed time and strong scalability of IRON node (Ceph FS) versus a single node of
C3HPC cluster (Lustre FS) via employing Fat and Tiny Spark executor approaches over a workload
of 16000 SEM images. On Ceph FS – IRON node, a speedup gain of 5 is achieved, while on C3HPC
node – Lustre FS, maximum speedup gain is above 8 (double Ceph speedup). The measurements of
elapsed time and speedup, of every Spark executors approach on both Lustre and Ceph filesystems,

are averaged over two iterations for a workload of 16000 SEM images.

According to these performance measurements of both Ceph and Lustre filesystems, we gain

higher speedup with the Luster filesystem, with both Spark executor approaches (Fat and

Tiny), than the Ceph one by a factor of 2. The Lustre parallel FS performs better and is

optimal for the implementation of SEM analyses. This result is in agreement with the results

obtained by Aversa in [10].
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Conclusions and Prospects

This thesis contributed to the research on scientific data management within the NFFA-

EUROPE project. In the work presented, we have been able to achieve the goal of collecting

and defining the standard metadata for a massive volume of Scanning Electron Microscope

(SEM) images produced by multiple source within the project. In particular, we achieved the

following goals:

• creation of python application to collect and enrich metadata for SEM images coming

from different research groups within the NFFA-EUROPE project,

• developing a massive parallel processing approach in collecting metadata on a large

amount of images,

• planning and setting up a fully distributed, scalable, and portable infrastructure on

the CNR-IOM computing facilities and C3HPC cluster, in order to process massive

amounts of SEM images,

• developing a python Spark code able to accomplish the above goal based on Kuber-

netes and Apache Spark,

• installing a database, on the OpenStack of CNR-IOM computing system, by means of

Structured Query Language (SQL) to be populated by many sources,

• organizing all collected metadata from the SEM scientific images on the database,

which servers large community of nanoscience within the NFFA-EUROPE project and
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• measuring performance on different computational infrastructure of the massive data

processing.

Our Kubernetes-Apache Spark software infrastructure (Spark cluster in short), has been de-

ployed within containerized distributed environment on the CNR-IOM computing facilities:

OpenStack and IRON node, besides the C3HPC cluster. In such deployment, we benefit

from a loosely isolated environment provided by Docker technology besides the automation

given by Kubernetes container-orchestration engine that enables us to set the optimal Spark

configuration parameters, on all available nodes, in an automatic way. The SEM analyses

include:

1. extracting standard metadata from the SEM images of TIFF format,

2. measuring the scale of SEM images with performing an OCR for the purpose of cal-

culating the image pixel size [8],

3. performing image classification by means of the SEM pre-trained model [10, 14] and

4. committing all the resultant metadata, from the above problems, to a dedicated MySQL

database that serves large community of nano-scientists within the NFFA-EUROPE

project.

The above analyses are mainly performed over two separate SEM datasets from CNR-IOM

(datashare.iom.cnr.it of 16000 images) and NFFA-EUROPE project (datashare.nffa.eu of

118000 images). The images there from all researchers are stored in the cloud platform

provided by NFFA-EUROPE Datashare service and spanned over a nested structure.

It is worth studying the role of different Spark executors and how it can influence the per-

formance. We therefore employed two Spark executor approaches in performing these SEM

analyses: (a) Fat executors approach; (b) Tiny executors approach. We conclude that both

Spark executor approaches (Fat and Tiny) show same performances in executing the SEM

analyses.

A detailed benchmark study has been performed on a single (IRON) and multiple (C3HPC

cluster) nodes, for the two different SEM datasets, taking into account the measurements

yielded by the sparkMeasure library. At higher level parallelism, the overall performance is

affected by deserialization and JVM garbage collector processes. However, it is difficult to
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establish a correlation between JVM garbage collector and corresponding performance. In

particular, at a large SEM dataset of 118000 SEM images, whereas the time taken by JVM

garbage collector is minimal with hiring large number of nodes. This behavior is reversed

with the small dataset of a workload of 16000 images.

The speedup analysis has been discussed for both small and large SEM datasets on CNR-

IOM infrastructure (IRON node - small SEM dataset) and HPC cluster (C3HPC - small and

large SEM datasets).

On the IRON node, we have achieved speedup gain of 5 in processing datashare.iom.cnr.it

SEM dataset via employing Fat executors approach, while speedup around 4 is obtained

using the Tiny approach.

On the C3HPC cluster, processing the small and large SEM datasets was performed uti-

lizing both Spark executors approach (Fat and Tiny). The maximum obtainable speedup

gain is below 4 in processing the two SEM datasets with the Spark Fat and Tiny executor

approaches.

Profiling study of the SEM Spark code’s four parts is provided for:

• Metadata,

• OpenCV+OCR,

• Inference and finally

• Database on different software infrastructure.

Due to this study, we conclude that Spark benchmark analysis is not an easy task and it essen-

tially requires a highly loosely isolated environment. Additionally, the overall performance

of the SEM Spark code over the two SEM datasets involved in these analyses is negatively

affected by the Database part. This behavior is anticipated, since we are committing the

resultant metadata buffers to a remote database outside the range of the local network.

On the IRON node, the small SEM dataset of a workload of 16000 images was processed.

The parts of OpenCV+OCR and Inference achieved speedup gain around 7, while the Meta-

data and Database parts gain speedup above and below 4, respectively.

On the C3HPC cluster, both datasets of workload of 16000 and 118000 images were

processed. The parts of Metadata, OpenCV+OCR, and Inference show a perfectly linear
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speedup close to the ideal theoretical limit in processing both SEM datasets, with increasing

number of nodes. A plateau speedup feature is not observed on C3HPC cluster, in particular,

overall the parts of Metadata, OpenCV+OCR, and Inference of both SEM datasets. There-

fore, better scalability can be achieved with increasing resources – number of nodes/Pods in

computation – and SEM images workload.

Measuring the performances of Ceph and Lustre filesystems is performed via employing

Fat and Tiny Spark executor approaches on a single node. Both Spark executor approaches

show good performance on the Lustre filesystem, with speedup higher than the Ceph one by

a factor of 2.

Future prospects

The SEM datasets from different research groups within the NFFA-EUROPE project are

stored in the cloud platform provided by NFFA-EUROPE Datashare service. Therefore, we

propose the following item for future activities:

• test the portability of Kubernetes solution on public cloud infrastructure.
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