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Chapter 1

Introduction

One of the communities that is most actively driving and demanding research and devel-
opment of both software and hardware is composed by scientists working in Academia.
Datasets coming from observations and experiments are constantly growing in number
and size. At the same time, the complexity of the scientific models to be computed is
growing too, leading to a consequent increase of their computational cost.

Yet, all of this is not accompanied by a growth in awareness of the high performance
computing (HPC) methods and best-practices. Certainly courses dedicated to HPC in
scientific degree curricula are rare, but this issue is not only due to a lack of education in
the community. Very often, it is the way researchers are forced to work that discourages
spending more than the strictly necessary effort for the development of scientific software.

In the publish-or-perish environment that Academia offers to its researchers, survival
is subdue to the submission of results. And the production of good software is still
rarely considered a result worth the submission. As a consequence, scientists are often
unmotivated in taking care of their implementations. When the aim is to produce results
worth to be published, it is acceptable to have an application that works only for the
specific purpose it has to accomplish and that runs only with the specific setup of the
machine it has been developed on. Since both the accessibility and the portability of the
codes are limited, this unavoidably leads to the continuous development of applications
serving the very same purpose. Furthermore, scientific codes are often not designed for
extracting the best from the performances offered by the computational facilities they
are running in.

In this work we have addressed what is so often overlooked in a scientific effort with
similar objectives. We have performed a HPC-driven development of the instrument we
were needing to get scientifically meaningful results.

Part of the implementation was already in place when we started, developed without
HPC-awareness by the same authors of this work. Our intent was not only to boost the
performances of our code, but also to make it more accessible, to ease cross platform
installation and to generally set-up a flexible tool. Since the API we present has been
designed to be easily extensible, in the future we will also be able to evolve our current
research towards novel directions. Furthermore, this effort would hopefully also encourage
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6 CHAPTER 1. INTRODUCTION

new users to adopt our tool.
Under this perspective, HPC methods and advanced programming techniques become

an enabling technology for doing science. As much as experiments are accurately designed
to have the longest life-span possible, we have taken care of designing our software for a
long term use.

In this manuscript we describe in detail the several aspects of our API, starting, in
the remaining part of this Chapter, from the definition of the scientific problem and
the computational bottlenecks that motivated this effort. In Chapter 2 we describe the
structure of the library along with the algorithm that it implements. We will give insights
on the most critical sections of the computation by providing a detailed description of
their c++ implementation in Section 2.2. In Chapter 3 we provide the complete list and
description of all the improvements we added to the original implementation. We have
validated the final result under both the scientific and the performances perspective, we
show this evaluations in Chapter 4. Finally, in Chapter 5, we summarize our main results
and we outline the plan for the future applications of the instrument presented in this
work.

1.1 Scientific problem

Cosmological N-body simulations are a fundamental tool for assessing the non-linear
evolution of the large scale structure (LSS). With the increasing power of computational
facilities, cosmological N-body simulations have grown in size and resolution, allowing to
study extensively the formation and evolution of dark matter (DM) haloes. Our confi-
dence on the reliability of these simulations stands on the argument that the evolution
of the non-collisional matter component only depends on the effect of gravity and on the
initial conditions. While for the first we can rely on a strong theoretical background,
with analytical solutions for both the classical gravitation theory and for a wide range of
its modifications, for the latter we have measures with high accuracy [1] of the primordial
power spectrum of density fluctuations.

The formation and evolution of the luminous component (i.e. galaxies and intergalac-
tic baryonic matter) though, is far from being as much well understood. Several possible
approaches have been tried so far to asses this modeling issue which can be divided into
two main categories. On one side, ab initio models, such as N-body simulations with a
full hydrodynamical treatment and semi-analytical models, are capable of tracing back
the evolution in time of galaxies within their DM host haloes. On the other side, em-
pirical (or phenomenological) models are designed to reproduce observable properties of
a target population of objects in a given moment of their evolution. These latter class
of methods is typically cheaper in terms of computational power and time required for
running.

The former class of approaches is tuned to reproduce the LSS of the Universe at
present time, and therefore its reliability at the highest redshifts tends to decrease. On
the other hand empirical models are by design particularly suitable for addressing the
modelling of the high redshift Universe, but they rely on the availability of high redshift
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observations of the population to be modelled.
Our motivation for the original development of the API we present in this work was,

indeed, to study a particular period in the high redshift Universe. Specifically, our aim
was to model the distribution of the first sources that started to shed light on the neutral
medium in the early Universe, triggering the process called Reionization.

The history of the Universe is a history of cooling: when electrons and protons start
to form the energy of the medium is too high and radiation is coupled with matter. This
prevents negatively and positively charged particles to combine and form atoms but,
as the medium cools down while the Universe volume increases, radiation and matter
decouple. This happens at around redshift z ≈ 1100 when temperatures reach approx-
imately 3000 K. From this moment on, the mean free path of photons becomes infinite
and recombination makes the Universe completely neutral.

The period that follows is called the Dark Ages. Since today we observe the Uni-
verse being completely ionized, we know that the Dark Ages have an ending. From the
observation of the absorbed spectra of distant quasars [2, 3] and as results from the
Cosmic Microwave Background measure of the optical depth of Thomson scattering at
reionization [1], we also know that by redshift z = 6 reionization of hydrogen has been
completed.

Nevertheless, our knowledge of the reionization history and of the main players in-
volved is still uncertain. The redshift at which hydrogen is though to start reionizing
is included in a wide window between z ≈ 30 and z ≈ 15. But, most importantly, we
do not know much of how it happened. It is not sure whether the process started from
the lower density regions then expanded towards the higher density ones or the other
way round. We do not have access yet to a tomographic picture of neutral and ionized
matter at that epoch and, even when these measures will be available by the observation
of 21 cm intensity mapping, we will need physical models to interpret them.

Most of these uncertainties are the consequence of the limited knowledge we have
about the sources producing the ionizing radiation needed to complete reionization. Our
aim is to study the history of reionization, focusing on the role played by the observed
sources of high energy radiation. Active Galactic Nuclei (AGN), in spite of the high
flux of ionizing photons they produce, might have played a secondary role. The most
accepted hypothesis is that the highly star forming galaxies, which were present in the
early Universe, have been the main responsible for the production of ionizing photons.

Most of the studies in this sense have been focused on exploiting the statistical prop-
erties of observed populations. To perform a systematic three-dimensional study of the
structure and evolution of the ionized bubbles developing around said sources, it is in-
evitable to use simulations.

The most suitable approach then would be to use empirical modeling, for its capability
of reproducing the observed statistics of a target population by construction at any
redshift. This requires to define the hosted-object/hosting-halo connection for associating
to the underlying DM distribution its baryonic counterpart. In the next Section we will
describe the Sub-halo Clustering and Abundance Matching technique, an extension of the
classical Halo Occupation Distribution (HOD) method. This class of methods is widely



8 CHAPTER 1. INTRODUCTION

used in the community but, in spite of their popularity, at the best of our knowledge
there is no reference library available specifically developed for this task.

1.2 Sub-halo Clustering & Abundance Matching

Our approach for the definition of the hosted-object/hosting-halo connection is based on
the Sub-halo Clustering and Abundance Matching (SCAM) technique [4]. With the stan-
dard HOD approach, hosted objects are associated to each halo employing a prescription
which is based on the total halo mass, or on some other proxy of this information (e.g.
halo peak velocity, velocity dispersion). On the other side, Sub-halo abundance matching
(SHAM) assumes a monotonic relation between some observed object property (e.g. lu-
minosity or stellar mass of a galaxies) and a given halo property (e.g. halo mass). While
the first approach is capable of, and extensively used for, reproducing the spatial distribu-
tion properties of some target population, the second is the standard for providing plain
DM haloes and sub-haloes with observational properties that would otherwise require a
full-hydrodynamical treatment of the simulation from which these are extracted.

The SCAM prescription aims to assemble both approaches, providing a parameterised
model to fit both some observable abundance and the clustering properties of the target
population. The approach is nothing more than applying HOD and SHAM in sequence:

1. the occupation functions for central, Ncen(Mh), and satellite galaxies, Nsat(Mh),
depend on a set of defining parameters which can vary in number depending on the
shape used. These functions depend on a proxy of the total mass of the host halo.
We sample the space of the defining parameters using a Markov-Chain Monte-Carlo
(MCMC) to maximize a likelihood built as the sum of the χ2 of the two measures we
want to fit, namely the two-point angular correlation function at a given redshift,
ω(θ, z), and the average number of sources at a given redshift, ng(z):

logL ≡ −1

2

(
χ2
ω(θ,z) + χ2

ng(z)

)
, (1.1)

The analytic form of both ω(θ, z) and ng(z), depending on the same occupation
functions Ncen(Mh) and Nsat(Mh), can be obtained with the standard halo model
[see e.g. 5], which we describe in detail in Section 1.2.1. How these occupation
functions are used to select which sub-haloes will host our mock objects is reported
in Section 2.1.1.

2. Once we get the host halo/subhalo hierarchy with the abundance and clustering
properties we want, as guaranteed by Eq. (1.1), we can apply our SHAM algo-
rithm to link each mass (or, equivalently, mass-proxy) bin with the corresponding
luminosity (or observable property) bin.

When these two steps have been performed, the mock-catalogue is built.
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1.2.1 The halo model

It provides a halo-based description of nonlinear gravitational clustering and is used at
both low and high redshift [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. The key assumption
of this model is that the number of galaxies, Ng, in a given dark matter halo depends
only on the halo mass, Mh. Specifically, if we assume that Ng(Mh) follows a Poisson
distribution with mean proportional to the mass of the halo Mh, we can write

〈Ng〉(Mh) ∝Mh (1.2)

〈Ng(Ng − 1)〉(Mh) ∝M2
h (1.3)

From these assumptions it is possible to derive correlations of any order as a sum of
the contributions of each possible combination of objects identified in single or in multiple
haloes. To get the models required by Eq. (1.1) we only need the 1-point and the 2-point
statistics. We derive the first as the mean abundance of objects at a given redshift. The
average mass density in haloes at redshift z is given by

ρ(z) =

∫
dMhMh n(Mh, z) (1.4)

where n(Mh, z) is the halo mass function. With Eq. (1.2) we can then define the average
number of objects at redshift z, hosted in haloes with mass Mmin ≤Mh ≤Mmax, as

ng(z) ≡
∫ Mmax

Mmin

〈Ng〉(Mh)n(Mh, z) dMh . (1.5)

The 2-point correlation function, ξ(r, z) derivation would require to treat with con-
volutions, therefore we prefer to obtain it by inverse Fourier-transforming the non-linear
power spectrum P (k, z), whose derivation can instead be treated with simple multiplica-
tions:

ξ(r, z) =
1

2π2

∫ kmax

kmin

dkk2P (k, z)
sin(kr)

kr
. (1.6)

P (k, z) can be expressed as the sum of the contribution of two terms:

P (k, z) = P1h(k, z) + P2h(k, z) , (1.7)

where the first, dubbed 1-halo term, results from the correlation among objects belonging
to the same halo, while the second, dubbed 2-halo term, gives the correlation between
objects belonging to two different haloes.

The 1-halo term in real space is the convolution of two similar profiles of shape
ũ(k, z|Mh)

ũ(k, z|Mh) =
4πρsr

3
s

Mh

{
sin(krs)

[
Si((1 + c)krs)− Si(krs)

]
− sin(ckrs)

(1 + c)krs

− cos(krs)
[
Ci((1 + c)krs)− Ci(krs)

]}
,

(1.8)
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where c is the halo concentration, ρs and rs are the scale density and radius, respectively,
of the NFW profile and the sine and cosine integrals are

Ci(x) = .

∫ ∞
t

cos t

t
dt and Si(x) =

∫ x

0

sin t

t
dt . (1.9)

Eq. (1.8) provides the Fourier transform of the dark matter distribution within a halo of
mass Mh at redshift z. By weighting this profile by the total number density of pairs,
n(Mh)(Mh/ρ)2, contributed by haloes of mass we obtain:

P1h(k, z) ≡
∫

dMh n(Mh, z)

(
Mh

ρ

)2∣∣ũ(k, z|Mh)
∣∣2 =

=
1

n2
g(z)

∫ Mmax

Mmin

dMh〈Ng(Ng − 1)〉(Mh)n(Mh, z)
∣∣ũ(k, z|Mh)

∣∣2, (1.10)

with n(Mh, z) the halo mass function for host haloes of mass Mh at redshift z and where
in the second equivalence we used Eqs. (1.3) and (1.5) to substitute the ratio

(
Mh/ρ

)2.
The 2-halo term is more complicated and for a complete discussion the reader should

refer to [5]. Let us just say that, for most of the applications, it is enough to express
the power spectrum in its linear form, corrections to this approximation are mostly
affecting the small-scales which are almost entirely dominated by the 1-halo component.
This is mostly because the 2-halo term depends on the biasing factor which on large
scales is deterministic. We therefore have that, in real-space, the power coming from
correlations between objects belonging to two separate haloes is expressed by the product
between the convolution of two terms and the biased linear correlation function (i.e.
b′h(M ′h)bh(M ′′h )ξlin(r, z)). The two terms in the convolution provide the product between
the Fourier-space density profile ũ(k, z|Mh), weighted by the total number density of
objects within that particular halo (i.e. n(Mh)(Mh/ρ)). In Fourier space, we therefore
have

P2h(k, z) ≡
∫

dM ′h n(M ′h)
M ′h
ρ
ũ(k, z|M ′h) b(M ′h)∫

dM ′′h n(M ′′h )
M ′′h
ρ

ũ(k, z|M ′′h ) b(M ′′h )Plin(k, z) =

=
Plin(k, z)

n2
g(z)

[∫ Mmax

Mmin

dMh 〈Ng〉(Mh)n(Mh) b(Mh, z) ũh(k, z|Mh)

]2

(1.11)

with b(Mh) the halo bias and Plin(k, z) the linear matter power spectrum evolved up
to redshift z. For going from the first to the second equivalence we have to make two
assumptions. First we assume self-similarity between haloes. This means that the two
nested integrals in dM ′h and dM ′′h are equivalent to the square of the integral in the
rightmost expression. Secondly, we make use of Eqs. (1.2) and (1.5) to substitute the
ratio Mh/ρ.

The average number of galaxies within a single halo can be decomposed into the
contributions of the probability to have a central galaxy, Ncen(Mh) and of the average
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number of satellite galaxies, Nsat(Mh),

〈Ng〉(Mh) ≡ Ncen(Mh) +Nsat(Mh) (1.12)

which are precisely the occupation functions we already mentioned in Section 1.2. There
is no physically motivated shape for these two functions, which tipically have param-
eterised shapes. By tuning this parameterisation we can obtain the prescription for
defining the hosted-object/hosting-halo connection.

Eq. (1.3) can also be approximated to

〈Ng(Ng − 1)〉(Mh) ≈ 〈NcenNsat〉(Mh) + 2 〈Nsat(Nsat − 1)〉(Mh) ≈
≈ Ncen(Mh)Nsat(Mh) +N2

sat(Mh)
(1.13)

Thus we can further decompose the 1-halo term of the power spectrum as the combination
of power given by central-satellite couples (cs) and satellite-satellite couples (ss):

P1h(k, z) ≈ Pcs(k, z) + Pss(k, z) , (1.14)

When dealing with observations, it is often more useful to derive an expression to get
the projected correlation function, ω(rp, z), where rp is the projected distance between
two objects, assuming flat-sky. From the Limber approximation [18] we have

ω(rp, z) = A
[
ξ(r, z)

]
= A

{
F
[
P (k, z)

]}
= H0

[
P (k, z)

]
=

=
1

2π

∫
dk k P (k, z) J0(rpk)

(1.15)

where J0(x) is the 0th-order Bessel function of the first kind. Reading the expression
above from left to right, we can get the projected correlation function by Abel-projecting
the 3D correlation function ξ(r, z). The definition in Eq. (1.6), therefore is obtained by
Abel-transforming the Fourier transform of the power spectrum. This is equivalent to
perform the zeroth-order Hankel transform of the power spectrum, which leads to the
last equivalance in Eq. (1.15).

Eq. (1.15) though, is valid as long as we are able to measure distances directly in an
infinitesimal redshift bin, which is not realistic for real data. Our projected distance de-
pends on the angular separation, θ, and the cosmological distance, dC(z), of the observed
object

rp(θ, z) = θ · dC(z) . (1.16)

By projecting the objects in our lightcone on a flat surface at the target redshift, we are
summing up the contribution of all the objects along the line of sight. Therefore the
two-point angular correlation function can be expressed as

ω(θ, z) =

∫
dz

dV (z)

dz
N 2(z)ω[rp(θ, z), z] (1.17)
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where dV (z)
dz is the comoving volume unit and N (z) is the normalized redshift distribution

of the target population. If we assume that, in the redshift interval [z1, z2], ω(θ, z) is
approximately constant, we can then write

ω(θ, z) ≈
[∫ z2

z1

dz
dV (z)

dz
N 2(z)

]
· ω[rp(θ), z)] (1.18)

where z is the mean redshift of the objects.

1.3 HPC Motivation

As we were starting with this project, a first basic implementation of the main algorithm
was already in-place. We will describe the details of the algorithm in Chapter 2, as for
now let us just say that we had a rudimentary c++ version of the routines computing the
halo-model functions (Section 1.2.1). Even though we were able to obtain measures of
the angular two-point correlation function, ω(θ, z) and of the average number of objects,
ng(z), at given redshift, we encountered a bottle-neck in our development.

To sample the parameter space using a MCMC sampler, the halo model estimates
have to be computed tens of thousands of times. Unfortunately, with our old halo model
implementation, every single estimate was taking tens of seconds to compute, even though
we were already exploiting multi-threading of for loops, fostered by OpenMP [19], where
this was possible. This would have meant more then a day of computation for a single
chain of our sampler to run. At this stage of the development, for each walker of the
MCMC sampler the computation of a single step of the chain used to take times of
the order of ten seconds. By running a walker per socket of a NUMA machine we
were able to have two walkers running at a time. To make matters worse, with the
external sampler we were using, it was not possible to parallelize the chains on distributed
memory. Since it is recommended to have a number of walkers at least twice the number of
parameters of the model, and given that in the best case scenario we have to sample a four-
dimensional parameter space, it was clear that a serious optimization of the application
was necessary.1

To understand how to optimize our implementation, we started by obtaining a basic
profiling of the main executable that was computing the halo model estimates. For this
purpose we used perf, a performance analyzing tool, available from Linux kernel version
2.6.31, which has access to the internal counters present in the hardware of any machine.
In Fig. 1.1 we show the output of an event-based profiling in which we have measured the
instructions per cycle and the percentage of branch-misses. Roughly, in a well performing
application, the number of instructions per cycle should be in the range 1÷ 4, while the
number of branch-misses should be the smallest possible. Given the reasonably good

1E.g. if we consider 24 hours of computation per walker, 2 walkers running on parallel per run for a
minimum of 8 walkers in total, this would have meant 4 days on the Ulysses cluster. Since the queue
that allows to reserve the longest time on Ulysses provides 48 hours of computation, this also means
having to implement a framework that allows for check-points in the computation and for the production
of restart files, thus complicating substantially the code.
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Figure 1.1: Output of a simple event based profiling using perf in which we have mea-
sured the outputs of the instruction counter and of the branch counters. Time of com-
putation is also shown.

values we measured, one could say that the implementation was performing discreetly
well. Yet, the time of execution was unacceptably large.

We therefore performed a sample-based profiling to get in dept on the function calls
that mostly affect computation. In Fig. 1.2 we show the complete call-tree of the ex-
ecutable. Each block represents a called function and provides the percentage of the
whole calls to lower level functions with respect to the total; the percentage of the total
execution time spent in each block is also provided. Yellow/red blocks are the ones that
consume the most of the resources.

In Fig. 1.3 we show two close-up views of the call-tree. On the left panel we have
spotted the function that performs the largest number of calls to lower level functions.
It is an integration routine imported from the gsl_integration external library [part of
the GNU Scientific Library, 20]. If we look at the analytical form of a typical function
derived by the halo model (see e.g. Eq. (1.5) and Eq. (1.17)) integrals are unavoidable.

The right panel of Fig. 1.3 though, gives us another crucial information. Almost all
the calls to the two functions pow() and exp() that appear to consume the vast majority
of the resources, are coming from the integration routine. We can therefore conclude
that the integration is not efficient because the way the integrands are computed is not.

If we inspect the analytical expressions of Section 1.2.1 we can see a huge number
of ratios and calls to complex cosmological functions such as the mass-function of DM
haloes or the density profile of haloes in Fourier Space (FS). Both these two functions
involve power laws, exponentials, ratios and, in the case of the density profile in FS, also
the sine and cosine integrals.

Prompted by these results, we outlined a radical optimisation strategy for our appli-
cation:

• Rebuild the code with advanced programming techniques & HPC best practices.

– Implement the core functions avoiding heavy to compute function-calls (min-
imize the number of operations and calls to computationally expensive func-
tions, such as pow()).

– Development of a manageable tool for interpolation.

– Employ multi-threading where needed.
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Figure 1.3: Close up view of the function performing the largest number of calls (left
panel) and of the functions in which the application spends the most of its time (right
panel).

• Modularization and testing.

– By keeping the implementation design strictly object-oriented we favour the
modularization of its components; the collection of all the modular compo-
nents should be organised in a Git repository. This allows for a rational
development of the required feature while keeping track of the modifications.

– Each unitary component of the source code should be tested at its limits; the
development of an integrated testing environment for this purpose is desirable.

– In order to guarantee consistency during code extension, the implementation
updates uploaded to the remote GitHub repository should be checked with a
Continuous Integration platform.

– Integration of a build system to detach from native compilation and, therefore,
to boost portability and simplify cross-compiler testing is also desirable.

• Detachment from CosmoBolognaLib to allow for more flexibility and extensibility
while unburdening the build.

• Implementation of a python user interface to both simplify the access to the API
functionalities and to allow usage with the support of popular novel libraries.

• Integration of an external sampler for MCMC parameter inference.
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Chapter 2

The ScamPy library

In this section we introduce ScamPy, our highly-optimized and flexible library for “paint-
ing” an observed population on top of the DM-halo/subhalo hierarchy obtained from
DM-only N-body simulations. We will give here a general overview of the algorithm on
which our API is based. We will then describe the key aspects of our c++ implemen-
tation, pointing out how it is intended for future expansion and further optimization. A
detailed description of all the components of the API itself will be presented in Chap-
ter 3. The full documentation of ScamPy, with a set of examples and tutorials, will be
available with the publication of the scientific paper extracted from this work.

2.1 Algorithm overview
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Figure 2.1: Flowchart describing the main components of the algorithm. In red the two
main kernel modules. Green rectangles dub models from which the workflow depends.
Round gray circles are for engines that operate on some inputs. Cyan is for inputs, yellow
and parallelograms for outputs.

In Figure 2.1 we give a schematic of the main components of the ScamPy API.
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18 CHAPTER 2. THE SCAMPY LIBRARY

All the framework is centred around the occupation probabilities, namely Ncen(Mh) and
Nsat(Mh), which define the average numbers of central and satellite galaxies hosted within
the sub-halo hierarchy. Several parameterisations of these two functional forms exist. One
of the most widely used is the standard 5-parameters HOD model, with the probability of
having a central given by an activation function and the number distribution of satellites
given by a power-law:

Ncen(Mh) =
1

2

[
1 + erf

(
logM − logMmin

σlogMh

)]
(2.1)

Nsat(Mh) =

(
Mh −Mcut

M1

)αsat

(2.2)

whereMmin is the characteristic minimum mass of halos that host central galaxies, σlogMh

is the width of this transition,Mcut is the characteristic cut-off scale for hosting satellites,
M1 is a normalization factor, and αsat is the power-law slope. Our API provides users
with both an implementation of the Eqs. (2.1) and (2.2), and the possibility to use their
own parameterisation by inheriting from a base occupation_p class.1 Given that both
the modeling of the observable statistics (Section 1.2.1) and the HOD method used for
populating DM haloes depend on these functions, we implemented an object that can
be shared by both these sections of the API. As shown in Fig. 2.1, the parameters of
the occupation probabilities can be tuned by running an MCMC sampling. By using a
likelihood as the one exposed in Section 1.2, the halo-model parameterisation that best
fits the observed 1- and 2-point statistics of a target population can be inferred.2

The chosen cosmological model acts on top of our working pipeline. Besides providing
the user with a set of cosmographic functions for modifying and analysing results on the
fly, it plays two major roles in the API. On the one hand it defines the cosmological func-
tions that are used by the halo model, such as the halo-mass function or the DM density
profile in Fourier space. On the other hand it provides a set of luminosity functions that
the user can associate to the populated catalogue through the SHAM procedure. This
approach is not the only one possible, as users are free to define their own observable
property distribution and provide it to the function that is responsible for applying the
abundance matching algorithm.

When the HOD parameterisation and the observable-property distribution have been
set, it is possible to populate the halo/sub-halo hierarchy of a DM-only catalogue. In
Alg. 1 we outline the steps required to populate a halo catalogue with mock observ-
ables. We start from a halo/subhalo hierarchy obtained by means of some algorithm
(e.g. subfind) that have been run on top of a DM-only simulation. This is loaded into
a catalogue structure that manages the hierarchy dividing the haloes in central and
satellite subhaloes.3

1The documentation of the library will comprehend a tutorial on how to achieve this.
2In the documentation website we will provide a step-by-step tutorial using Emcee [21].
3For the case of subfind run on top of a gadget snapshot this can be done automatically using the

catalogue.read_from_gadget() function. We plan to add similar functions for different halo-finders
(e.g. rockstar and sparta) in future extensions of the library.
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Algorithm 1 Schematic outline of the steps required to obtain a mock galaxy catalogue
with ScamPy.

// Load Halo/Subhalo hierarchy
// (e.g. from Subfind algorithm)
halo_cat = catalogue( chosen from file )

// Choose occupation probability function
OPF = OPF( HOD parameters )

// Populate haloes
gxy_array = halo_cat.populate( model = OPF )

// Associate luminosities
gxy_array = SHAM( gxy_array, SHAM parameters )

Our catalogue class comes with a populate() member function that takes an object
of type occupation probability as argument and returns a trimmed version of the original
catalogue in which only the central and satellite haloes hosting an object of the target
population are left. We give a detailed description of this algorithm in Section 2.1.1.
When this catalogue is ready the SHAM algorithm can be run on top of it to associate
at each mass a mock-observable property. Cumulative distributions are monotonic by
construction, therefore it is quite easy to define a bijective relation between the cumula-
tive mass distribution of haloes and the cumulative observable property distribution of
the target population. This algorithm is described in Section 2.1.2.

2.1.1 Populating algorithm

Input subhalo catalogues are trimmed into hosting subhalo catalogues by passing to the
populate() member function of the class catalogue an object of type occupation_p.

In Algorithm 2 we describe this halo occupation routine. For each halo i in the
catalogue, we compute the values of 〈Ncen〉(Mi) and 〈Nsat〉(Mi). To account for the
assumptions made in our derivation of the halo model, we select the number of objects
each halo will host by extracting a random number from a Poisson distribution. For
the occupation of the central halo this reduces to extracting a random variable from a
Binomial distribution: Ncen = B(1, 〈Ncen〉i). While, in the case of satellite subhaloes,
we extract a random Poisson variable Nsat = P(〈Nsat〉i), then we randomly select Nsat
satellite subhaloes from those residing in the ith halo.

In Fig. 2.2 we show a 4 Mpc/h thick slice of a simulation with box side lenght of
64 Mpc/h, the background colour code represents the density field traced by all the
subhaloes found by the subfind algorithm, smoothed with a Gaussian filter, while the
markers show the positions of the subhaloes selected by the populating algorithm. We will
show in Section 4.1 that this distribution of objects reproduces the observed statistics.
It is possible to notice how the markers trace the spatial distribution of the underlying
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Figure 2.2: A 4 Mpc/h thick slice of a populated catalogue obtained from a DM-only
simulation with 64 Mpc/h box side lenght. The colour code on the background shows
the smoothed DM density field (with density increasing going from darker to brighter
regions) while the markers show our mock galaxies (with color representing lower to
higher luminosity going from brighter to darker). Circles are for centrals and crosses for
satellites.
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Algorithm 2 Description of the populate (model = OPF) function. This is an im-
plementation of the HOD prescription, where the assumptions made to define the halo
model (i.e. the average number of objects within a halo follows a Poisson distribution
with mean 〈Ng〉(Mh)) are accounted for.

// Iterate over all the haloes in catalogue
for halo in catalogue do

// Compute probability of central
pcen ← model.Ncen( halo.mass )

// Define a binomial random variable
select ← random.Binomial(1, pcen)
if select then

halo ← central

// Compute average number of satellites
N sat ← model.Nsat( halo.mass )

// Define a Poisson random variable
Nsat = random.Poisson( N sat )
halo ← select randomly Nsat objects among satellites

DM density field.

2.1.2 Abundance matching algorithm

When the host subhaloes have been selected we can run the last step of our algorithm.
The abundance_matching() function implements the SHAM prescription to associate
to each subhalo an observable property (e.g. a luminosity or the star formation rate
of a galaxy). This is achieved by defining a bijective relation between the cumulative
distribution of subhaloes as a function of their mass and the cumulative distribution of
the property we want to associate them.

An example of this procedure is shown in Fig. 2.3. We want to set, for each subhalo,
the UV luminosity of the galaxy it hosts. In the left panel we show the cumulative mass-
distribution of subhaloes, dN(Msubhalo), with the dashed green region being the mass
resolution limit of the DM subhaloes in our simulation after the populating algorithm
has been applied. On the right panel we show the cumulative UV luminosity function,
which is given by the integral

Φ(MUV < MUV
lim ) =

∫ MUV
lim

−∞

dΦ

dMUV dMUV (2.3)

where MUV
lim is the limiting magnitude of the survey data we want to reproduce (marked

by a dashed red region in Fig 2.3). We find the abundance corresponding to each mass
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Figure 2.3: Abundance matching scheme. Left panel: cumulative number density of
host subhaloes divided into regular logarithmic bins (solid blue step-line). The green
dashed band shows the limit imposed by the resolution in mass of the simulation, which
is inherited by the host catalogue obtained with the populator algorithm. Right panel:
cumulative luminosity function (solid blue line). The dashed red band shows the limit
imposed by the magnitude limit of the observed target population. Orange crosses mark
the positions, bin-per-bin, of the abundances measured in each bin of the left panel. In
both the left and the right panel we reported with a dashed line of corresponding colour
the limit imposed by the resolution of the catalogue (dashed green line in right panel)
and by the magnitude limit of the survey (dashed red line in the left panel).

bin (blue step curve in the left panel) and we compute the corresponding luminosity by
inverting the cumulative luminosity function obtained with Eq. (2.3):

MUV(Msubhalo) = Φ−1[ dN(Msubhalo)] . (2.4)

The result of this matching is shown by the orange crosses in the right panel of Fig. 2.3.
At the time we are writing, the scatter around the distribution of luminosities can be
controlled by tuning the bin-width used to measure dN(Msubhalo). We plan to extend
this functionality of the API by adding a parameter for tuning this scatter to the value
chosen by the user.

2.2 C++ implementation details

“Polymorphism — providing a single interface to entities of different types. Virtual
functions provide dynamic (run-time) polymorphism through an interface provided by a
base class. Overloaded functions and templates provide static (compile-time) polymor-
phism.”

(Bjarne Stroustrup, father of the c++ language)

We give here some details on the c++ implementation of the algorithm described
above. We report on the advanced Object-Oriented Programming (OOP) strategies we
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adopted to boost performances and allow flexibility of the code. With an extensive use
of both static and dynamic polymorphism we reduce code replication to a minimum and
keep the code general without using conditional-statements, while preserving flexibility
(Sections 2.2.1 and 2.2.2).

Based on these strategies we have also developed a powerful utility module for inter-
polation (Section 2.2.3) which allowed us to boost dramatically the computation perfor-
mances while keeping control on the precision of the computation (as we will show in
Section 4.3).

2.2.1 The cosmology class

We have implemented a templated class for cosmological computations. Since this class
embeds all the kernel functions that are necessary for the scientific goal of the API, we
extensively tested all its output results, both by comparing them with values found in
literature and by collecting equivalent measures from another library developed for the
same purpose [22].4

There are indeed several public implementations of the cosmological functions needed
in our work. We have implemented our version, for two main reasons

• performances: all the operations required are implemented in the most computa-
tionally efficient way, minimizing the ratios and calls to costly functions. Further
accelaration is achieved by using our interpolator type.

• for installation simplicity: having our own implementation provides an easy-to-
install API which requires the minimum system setup possible for working.

Nevertheless, being aware of the wide range of public libraries serving the same pur-
pose, we decided to keep our cosmology interface open for working with other implemen-
tations. The cosmology class is indeed derived from a base cosmo_model type, which
constitutes a c++ interface to our implementation or third-party libraries providing the
same functionalities.

In Fig. 2.4 we show the call graph of our default implementation of the cosmology
class. It inherits (solid blue arrow) from our cosmo_model structure which has access
(dashed purple arrow) to the interpolator class through the private variables Ez_-
f, P0_f and zE_f. The dashed yellow arrow marks the relation between the template
instance interpolator< gsl_log_interp > and the template class interpolator< T
> from which it was instantiated.

2.2.2 The halo_model class

This class provides the user with the full implementation of all the functions presented
in Section 1.2.1. Since it provides methods and functions that have to be called tens
of thousands of times, most of the c++ section of the library has been developed in
order to make this class work with the best possible performances. Fig. 2.5 shows the

4CosmoBolognaLib website

http://federicomarulli.github.io/CosmoBolognaLib/Doc/html/index.html
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scam::cosmology

scam::cosmo_model

scam::utl::interpolator
< scam::utl::gsl_log_interp >

 zE_f
P0_f
Ez_f

scam::utl::interpolator< T >

 < scam::utl::gsl_log
_interp >

Figure 2.4: Call-graph of the cosmology class in our default implementation. The solid
blue arrow is used to visualize a public inheritance relation between two classes. A
purple dashed arrow is used if a class is contained or used by another class. The arrow
is labeled with the variables through which the pointed class or struct is accessible. A
yellow dashed arrow denotes a relation between a template instance and the template
class it was instantiated from. The arrow is labeled with the template parameters of the
instance. (Obtained with Doxygen)

/home/tomi/phd/repos
/scampy/halo_model/include

/halo_model.h

gsl/gsl_sf_erf.h

memory

utilities.h

cosmology.h

interpolation.h

fftlog_handler.h abel_transform.h

occupation_p.h

cosmology_interface.h

gsl/gsl_interp.hgsl/gsl_spline.hinterpolation_interface.h

gsl_interpolation_interface.h

Figure 2.5: Dependency graph of the halo_model.h header. The arrows mark calls to
internal or external headers. (Obtained with Doxygen)
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scam::occupation_p

scam::harikane16_p scam::tinker10_p

Figure 2.6: Inheritance graph of the classes providing the occupation probability func-
tions which are already defined in the default implementation of ScamPy. (Obtained with
Doxygen)

dependency tree of the halo_model header. It can be noticed that it is directly connected
with almost all the other headers provided by our c++ implementation. Furthermore, the
only two external headers included that are not part of the c++ standard are actually
required by the interpolator class which is defined in the interpolation.h header.
We describe this core functionality of our API in Section 2.2.3.

The constructor of our halo_model class takes two mandatory arguments:

• an object of type cosmology which provides the cosmological functions required by
the halo model;

• an object of type occupation_p, which provides the shape of the occupation prob-
abilities of central, Ncen, and satellite, Nsat, objects.

The latter is again a polymorphic custom type, an occupation_p base class provides a set
of pure virtual functions which have to be overloaded in the derived classes. In ScamPy’s
default implementation there are two different derived classes, which define slightly dif-
ferent parameterisations for the HOD algorithm [17, 23]. We show the inheritance graph
of these custom types in Fig 2.6.

Member functions of the halo_model type provide the models needed by the likelihood
defined in Eq. (1.1). To infer the best-fitting parameterisation we have to run a MCMC
algorithm in order to sample the parameter space. This means to compute the models
tens of thousands of times. In order to speed these calculations we define at the time
of construction of the halo_model object a large number of interpolated functions. This
operation makes construction computationally expensive: the constructor time scales
with the thinness required for the interpolation grid. It takes approximately 2 seconds
on a Intel i7 laptop with four physical processor and hyper-threading disabled to compute
on a grid with 200 cells. The advantage of this setup though, is that we have to call
the constructor only one time per run. Anyways, to speed up the constructor, we are
computing the values of the functions in the interpolation grid by spawning multiple
threads using the OpenMP API.

On the other hand, the computation of the models needed by the likelihood of Eq. 1.1
becomes extremely fast: a full-model computation runs in approximately 3 milliseconds.
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This makes it also possible to run a full MCMC parameter space sampling on a regular
laptop in a reasonable amount of time. Sampling a 4-dimensional parameter space with
8 walkers for 105 chain-steps, takes around 5 minutes. We have widely benchmarked the
performances of this class, results are shown in Section 4.3.

2.2.3 The interpolator class

The c++ interpolation module we have developed is probably the most complex piece of
code in all the API. It is deeply soaked in c++ OOP and mixes a variety of techniques to
work. This complexity though allowed us to reach outstanding optimization and speed-
up. The effort spent in designing and implementing this functionality definitely paid
off.

The basic idea driving our implementation is to have a tool for making computations
faster while maintaining the instrument manageable. To achieve the speed-up necessary
for running MCMC samplers we needed fast computations of complex functions and,
possibly, a fast integration scheme. Using a polynomial interpolation algorithm, such as
a cubic spline, offers the following advantages:

• functions are defined by couples of arrays storing the x- and y-axis values of the
function within some interval and with thinness, therefore precision, defined by the
user;

• by using a polynomial interpolation, all the integrals reduce to an analytical form,
thus not requiring any particular algorithm to be solved: the time to integrate a
function inside a given interval becomes virtually zero;

• inversion of a continuous function also becomes trivial, since it only requires to
switch the arrays storing the x- and y-axis and rebuild the interpolator. As a
consequence, also zero finding becomes trivial since it requires to first invert the
function and then evaluate it at zero.

The user interface to the functionalities of the module is provided by a class inter-
polator, defined in the header

scampy/interpolation/include/interpolation.h

which is listed in Appendix A.2.1. This templated class provides, by using static-
polymorphism, a set of functions and overloaded operators to make all the operations
extremely manageable. The crucial member functions are

• overload of the function call operator (operator());

• overload of the algebraic operators (operator+, operator* and the equivalent in-
place operators);

• function integrate( min, max ) for interpolated integration in the interval [ min,
max ].
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scam::utl::interpolator< T >
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< scam::utl::gsl_log_interp >
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Figure 2.7: Left panel: relation between the default template instance of the interpola-
tor class and the template class it is instantiated from. Right panel: Inheritance graph
of the classes derived from the interpolator_interface custom type. Color codes are
the same of Fig. 2.4. (Obtained with Doxygen)

With this interface the possibilities are huge, consider for example an integrand such
as one of those defined in Section 1.2.1. If we have interpolators defined for each of
the functions composing the integrand, we can obtain the interpolator for the integrand
by calling only algebraic operators and then compute the integral by simply calling the
dedicated member function.

The only disadvantage of this custom type is that it requires to compute in advance
functions on a grid of given thinness. Even though in certain cases this might not be
efficient, this operation has to be performed only once. Therefore this method easily
provides a huge speed-up when said functions have to be called over and over again, for
example when infering the values of some function parameters in a MCMC scheme.

The interpolator class is templated on the interpolation_interface type (Fig. 2.7,
left panel). The latter is a pure virtual polymorphic type and is defined in the header

scampy/interpolation/include/interpolation_interface.h

which is listed in Appendix A.2.2. This makes inheritance from interpolator_inter-
face mandatory, defining a precise framework for the usage of our interpolator object.
Yet, since the template instance of the interpolator type is resolved at compile time,
we avoid the runtime overhead due to dynamic polymorphism.

Having a pure virtual base class introduces an additional pointer to the memory
load. Nevertheless, even in the application that most severely relies on the instantiation
of interpolator objects (i.e. the halo_model object) the number of instances is tipically
in the order of 102. Considered these numbers and the gain in performance we obtain,
using this set-up is worth the additional burden we introduce in memory. Furthermore,
having a polymorphic template type makes the implementation extremely clear and easy
to handle.
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Types derived from interpolation_interface have to overload a set of mandatory
functions to perform the construction of the interpolation scheme, the evaluation in a
sub-grid position and integration. We provide our API with two different classes of this
type:

• gsl_lin_interp: to perform interpolation on a linearly equispaced grid;

• gsl_log_interp: to perform interpolation on a logarithmically equispaced grid.

Both of these classes inherit from a bridging pure-virtual class called gsl_interpola-
tor_interface whose role is to wrap methods from the gsl_interpolation library,
defined in the headers:

gsl/gsl_interp.h
gsl/gsl_spline.h

This is one of the few external libraries used in this work and comes with accelerators and
several possible interpolation schemes. Given its wide diffusion both among users from
the Cosmology and Astrophysics community and among HPC facilities, the inclusion of
this external dependency should not affect the interoperability of our API.



Chapter 3

Renewal & Optimization

In the context of software development for scientific usage and in general whenever the
development is intended to the use in Academia, way too often the developer overlooks
some crucial aspects that would make the usage flexible and that would favour the public
to adopt it for their needs. It is a well known problem that most of the time a code that
was intended for a usage limited to a small group becomes wide spread in the community.
The lack in the diffusion of good practices in software development like cross-platform
testing or the production of a reasonable documentation for the components of the API
is also an issue, both for a public usage and for internal maintainability or extension.

In the development of our API for mock galaxy catalogue building we have considered
all of these issues and outlined a strategy for keeping the software ordered and easy to
read, while maintaining the computation efficient. The usage of advanced programming
techniques along with the design of a handy class dedicated to interpolation also allowed
to boost dramatically the performances of our code.

In this chapter we give an extensive overview of what we have done in this sense.
Firstly, in Section 3.1 we describe our framework’s structure and describe how future
extensions should be managed. In Section 3.2 we describe the functionalities intended
for the API accessibility and that would most impact in its diffusion to the community.

3.1 API structure & bushido

In this Section we give an overview of the framework we have developed, by describing its
modularization and the main components that build up both the API and the repository
where it is hosted.

The overall structure can be divided broadly into 4 main components:

• c++ part of the implementation - it mainly deals with the most computationally
expensive sections of the algorithm (partially exposed in Section 2.2).

• Python part of the implementation - it provides the user interface and implements
sections of the algorithm that do not need to be severely optimised (described
through Section 2.1 and in Section 3.1).

29
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• Tests, divided into unit tests and integration tests, are used for validation and
consistency during code development. We address their description in Section 3.2.2.

• Documentation, provides the user with accessible information on the library’s
functionalities. It is described in Section 3.2.3.

In the spirit of modularization, both the test section and the documentation section are
treated internally as modules of the library, and their development is, by some extent, in-
dependent to the rest of the API. Furthermore, being not essential for the API operation,
their build is optional.

Let us discuss here about the source code structure. The c++ and Python imple-
mentations are treated separately and have different modularization strategies. As we
already anticipated, the main role of a c++ section is in the first place to boost perfor-
mances. Nevertheless, these core functionalities are also functioning independently and
documented for this purpose.

Each logical piece of the algorithm (see Section 2.1 and Figure 2.1) has been im-
plemented in a different module. Part of this division is available in both c++ and
Python. This has been obtained through the implementation of source c++ code with
a C-style interface enclosed in an extern "C" scope to produce shared-libraries with
C-style mangling. All the source and header files whose names end with the _c_inter-
face.∗ appendix are serving these purpose. They contain a set of function declarations
and definitions to call the corresponding c++ functions and constructors/destructors.
Their build produces a set of _c_wrap.so shared libraries that are then imported in
Python by using the ctypes module.

In Table 3.1 we list all the c++ modules composing our API. In the second column
we mark whether the given module comes with a C interface, note that in the last column
all the modules marked with “yes” also produce a corresponding c_wrap shared library.
All of these modules are hosted in different sub-directories with similar structure:

• src sub-directory, containing all the source files (.cpp extension);

• include sub-directory, containing all the header files (.h extension);

• a meson.build script for building.

Conversely, all the Python implementation is hosted by the same repository sub-
directory. While keeping the two sets of sources physically separated, this separation
contributes to both outline the structure of the Python interface that will be produced
once the library has been installed. This structure also helps the auto-documentation
of the docstrings written in the definition of all the functions and custom-types of the
python section.

In Table 3.2 we provide a complete list of all the Python-modules provided to the
user. They are divided between the c++ wrapped and the Python only ones. All of
them are part of the scampy package that users can import by adding a

/path/to/install_directory/python
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Table 3.1: c++ modules of the API. The first column lists the module names, the second
marks whether the module is provided with a C-interface, the third column provides a
short description of the library purpose and the last one shows the flag to be passed to
the linker for including the libraries produced.

Module C-wrap Purpose Libraries

utilities no Provides a set of internal utility
functions for vector management,
integration, root finding, bit manip-
ulation

lutilities

interpolator yes Templated classes and functions for
cubic-spline interpolation in linear
and logarithmic space

linterpolation, lin-
terpolation_c_wrap

fftlog_wrap no Wraps in C++ a Fortran external li-
brary for 1D Fast Fourier Transform
in logarithmic space.

lfftlog_wrap

cosmology yes Provides the interface and an im-
plementation for cosmological com-
putations that span from cosmo-
graphic to Power-Spectrum depen-
dent functions, computations are
boosted with interpolation

lcosmo, lcosmo_c_wrap

halo_model yes Provides classes for computing the
halo-model derivation of non-linear
cosmological statistics. It also
provides the occupation probability
functions.

lhalo_model, lhm_c_-
wrap, locp_c_wrap
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Table 3.2: Python modules of the API. The first column lists the module names and the
second provides a short description of the module purpose. We divided the table in two
blocks, separating the modules of the package that depend on the c++ implementation
from those that have a pure Python implementation.

Module Purpose

Wrapped from C-interface

interpolator See Table 3.1
cosmology See Table 3.1
halo_model Provides classes for computing the halo-model derivation of

non-linear cosmological statistics.
occupation_p Provides the occupation probability functions implementa-

tion.

Python-only

objects Defines the objects that can be stored in the class catalogue
of the scampy package, namely host_halo, halo and galaxy.

gadget_file Contains a class for reading the halo/sub-halo hierarchy from
the outputs of the SUBFIND algorithm of GaDGET.

catalogue It provides a class for organizing a collection of host-haloes
into an hierarchy of central and satellite haloes. It also pro-
vides functionalities for authomatic reading of input files and
to populate the Dark Matter haloes with objects of type
galaxy.

abundance_matching Contains routines used for running the SHAM algorithm.
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to their PYTHONPATH.
A sub-package dubbed cwrap is also present inside the scampy package. In its sub-

directory the cwrap.py file is installed at build-time. This is only importable locally by
the modules listed in Table 3.2. It contains all the function calls, made through ctypes,
to the C-interface shared libraries. It also provides the corresponding configurations of
function argument types and returned type.

3.1.1 External dependencies

Very often scientific codes depend severely on external libraries. Even though a golden
rule when programming, especially with a HPC intent, is to not reinvent the wheel,
external dependencies have to be treated carefully. If the purpose of the programmers
is to provide their software with a wide range of functionalities, while adopting external
software where possible, the implementation can easily become a dependency hell.1

For this reason we decided to keep the dependence on external libraries to a reasonable
minimum. The leitmotiv being, trying not to be stuck on bottlenecks requiring us to
import external software, while maintaining the implementation open to the usage along
with the most common scientific softwares used in our field.

The c++ section of the API depends on the following external libraries:

• GNU Scientific Library [20, version 2 or greater]: this library is widely used in
the community and compiled binary packages are almost always available in HPC
platforms.

• FFTLog [24]: also this library is a must in the cosmology community. In our API
we provide a c++ wrap of the functions that were originally written in Fortran90.
We have developed a patch for the original implementation that allows to compile
the project with Meson (see Appendix B for details).

• OpenMP: one of the most common APIs for multi-threading in shared memory
architectures.

We are aware that a large collection of libraries for cosmological calculations is already
available to the community. The intent of our cosmology module is not to substitute
any of these (as explained in Section 2.2.1). By using polymorphism (both static and
dynamic) we tried to keep our API as much flexible as possible. We explicitly decided
to not force the dependence to any specific Boltzmann-solver to obtain the linear power
spectrum of matter perturbations (see Section 1.2.1), the choice is left to the user.

Furthermore, the choice of Python to build the user interface, allowed to easily im-
plement functions that do not require any other specific library to work. An example
is the abundance_matching module, which is almost completely independent to the rest

1Thou shall beware of the dependency hell,
for it makes portability unfeasible
and your day will turn miserable.
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of the API: the only other internal module needed is the scampy.object but all its
functionalities can be obtained by using python lambdas and numpy arrays.

The only other python libraries used in ScamPy are:

• CTypes which is part of the python standard and is used for connecting the C-style
binaries to the Python interface.

• Numpy which, despite not being part of the standard, is possibly the most common
python library on Earth and provides a large number of highly optimized functions
and classes for array manipulation and numerical calculations.

3.1.2 Extensibility

Simplifying the addition of new features has been one of our objectives from the first
phases of development. We wanted to be able to expand the functionalities of the API,
both on the c++ side, in order to boost the performances, and on the Python side, in
order to use the API for a wide range of cosmological applications.

This is easily achieved with the modular structure we have built up. Adding a new
c++ module reduces to including a new set of headers and source files in a dedicated
sub-directory. In Listing 3.1 we show the suggested structure said directory should have.
$ tree module_name
module_name/
|---- include
| |---- header_1.h
| |---- ...
| +---- header_N.h
|---- meson.build
+---- src

|---- src_1.cpp
|---- ...
+---- src_M.cpp

2 directories , (N + M + 1) files

Listing 3.1: Example tree-structure of c++ module directory. It hosts two sub-directories
for organizing header and source files separately and a build script.

Note that, in order to integrate the new feature in the build system, adding a me-
son.build script is necessary. In Section 3.2.1 we describe the chosen build system in
detail. The last step of the integration would then be to add the directive

subdir( ’module_name’ )

to the root meson.build script.
Adding new modules to the Python interface is even simpler, as it only requires to

add a new dedicated file in the python/scampy sub-directory. Eventually, it can be also
appended to the __all__ list in the python/scampy/__init__.py file of the package.
In this case, it is not necessary to intervene on the build system as it will automatically
install the new module along with the already existing ones.
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3.2 Best practices

Outlining a precise definition of all the recommendations and directives that are included
in the wide name of best practices is not easy. They are indeed a set of practices that a
software developer is recommended to follow when designing a piece of code. However,
since they span from indications on how the code itself should be written to the metadata
that have to be provided to the user, what has to be considered and what is not crucial
changes case by case. An intelligent design of the API structure (which we discussed in
Sec. 3.1) and the usage of a distributed control system, such as Git, can be considered
best practices as well. Here we will outline all the features we have provided our library
with, that did not find place in any other Section of this manuscript.

3.2.1 Build system

Automation of the build process involves the development of scripts and the usage of
software to compile source code into binary code and/or to install it in the chosen position
of the filesystem.

When we first started working on our API, the build system was based on a set
of Makefiles dedicated to the compilation of each different module of the source code.
While the software was growing larger though, we realised that it would be far more
maintainable and user-friendly porting everything in a build-script generator.

For the automation of the build process we choose the Meson build system [25].
Meson is free and open-source software written in Python, under the Apache License 2.0.
It is intended for performance and for boosting the programmer productivity.

Much like CMake [26], it does not build directly, but it rather generates files to be
used by a native build tool. Meson has been first developed for Linux but, being written
in Python, it works on most of the Unix-like operative systems (OS), including macOS,
as well as Microsoft Windows and others. This interoperability is also achieved by using
different native build tools for different OS: it uses ninja [27] in Linux, MSbuild [28] on
Windows and xcode [29] on macOS. It supports a wide range of compilers, including the
GNU Compiler Collection, Intel compilers and Clang.

The build is controlled by a master meson.build script located in the root directory
of the repository. In this file we first specify the basic setup of the build, setting

• the project type, cpp in our case;

• some default options to be used at compile time:

– the c++ standard, i.e. c++14;

– the build type, i.e. plain, debug, debugoptimized or release;

– the directory structure of the compiled library, i.e. the installation prefix and
all its eventual subdirectories (lib, include, share).

• the release version and license for the source code;
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• the optional compile time flags.

We then list the external dependencies required to build the API, these will be either
searched by meson using pkgconfig or downloaded from the specified mirrors and installed
in the specified position.

Lastly, we go through each subdirectory hosting the different modules composing the
API. As described in Section 3.1, each module composing our API is stored in a dedicated
dirictory which comes with a meson.build file that provides the build directives proper
to the module. All these build scripts have the very same structure, making them easily
reproducible in case of extension of the API with new modules and functionalities.

########################################################################
# Internal includes

inc_dir = ’include ’
inc_utl = include_directories( inc_dir )

########################################################################
# Utilities Lib

utl_lib = library( ’utilities ’,
[ ’src/utilities.cpp’,

’src/bit_manipulator.cpp’ ],
include_directories : inc_utl ,
dependencies : [ gsl_dep ],
install : true )

utl_dep = declare_dependency( link_with : utl_lib ,
include_directories : inc_utl )

lib_headers += [ root + ’/utilities/’ + inc_dir + ’/utilities.h’,
root + ’/utilities/’ + inc_dir + ’/error_handling.h’,
root + ’/utilities/’ + inc_dir + ’/bit_manipulator.h’ ]

########################################################################

Listing 3.2: Example meson.build script file for the module utilities of ScamPy.

In List. 3.2 we show the meson.build script file that builds the utilities module of
our API. It is divided in two sections, the first one specifies the location of the header
files and stores it in an object of type include_directories. The second one deals with
building and installation directives. Firstly, it defines the library object, assigning a
name, listing all the source files that have to be compiled, and specifing the internal and
external dependencies.

It then declares the compiled module as an internal dependency and adds all the
header files to the list of files that will be copied in the

/path/to/install_prefix/include_dir

sub-directory of the compiled library.
Installation using meson and the native build tool is trivial and as simple as calling

the following commands from the repository’s root directory:
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• Linux and Unix-like systems:

$ meson /path/to/build_dir -Dprefix=/path/to/install_prefix
$ ninja -C /path/to/build_dir install

• Microsoft Visual Studio:

$ py meson /path/to/build_dir --backend vs2015/ninja

Note that we have added two configuration options to decide whether to build the
API with testing and documentation enabled:

-DENABLE_TEST=true/false
-DENABLE_DOC=true/false

The default values are set to false to speed-up the build and to avoid the necessity of
additional external dependencies.

3.2.2 Testing

We have developed a testing environment to guarantee consistency and validity of the
API modules. Tests are treated as a module and are hosted in a dedicated subdirectory
of the repository. The environments are different for unit tests and integration tests,
we will here give a brief description of the organisation of these two sub-modules and
the structure for potential expansions. The master branch of the official API’s repository
already contains some tests to check that its core functionalities are behaving as expected.
Further tests will be added by the time the scientific paper we are extracting from this
work is accepted for publication.

Unit tests

We use google’s gtest for the unitary testing of the API in all its c++ components.
gtest offers a handy testing environment with a wide range of macros. It provides
assertions for binary comparison and for checking the success of commands.

The environment requires a dependency to the gtest library which, in our build
system, we treat as a subproject.

Integration of the google testing facility in the Meson build system is straightforward.
By compiling the project with the flag

-DENABLE_TEST=true

we have to simply run the command

$ ninja -C /path/to/build_dir test

Ninja will take care of running all the defined tests and inform the user about which have
been passed and which not.
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Continuous integration

Continuous Integration (CI) is the practice of merging small code changes frequently
rather than merging a large change at the end of a development cycle. The goal is
to build healthier software by developing and testing smaller increments. We are using
Travis CI [30] for continous integration testing. It is a platform that automatically builds
and tests code changes, providing immediate feedback on the success of the modification.
This is achieved by linking the Travis CI platform to the remote GitHub repository of
the project. It then automatically clones the repository into a remote docker machine
with the specifications provided by the programmer.

The development of specific integration tests is still a work in progress. At the current
state we are letting the CI tool to check that the build is successful and that the unit
tests are passing. Everything is being built successfully, makeing us confident on the
interoperability and on the cross-platform compilation capability of the API we have
developed.

3.2.3 Documentation

Users of scientific software are well aware of how crucial it is to have at disposal an
extensive and accessible documentation. In the development of ScamPy, we adopted
these prescriptions by writing down both the unitary components documentation and a
set of in-code comments to help understanding the source. We have also exploited several
automation tools for the production of the manual in HTML, latex and/or man format.

We are using an hybrid system to have automatic documentation of both the c++
and the Python functions and classes. The build of the documentation proceeds as
follows:

• we run Doxygen [31] to produce the c++ documentation in XML format;

• by running Sphinx [32] we have a user-friendly environment based on, but not
limited to, reStructuredText directives to produce clear HTML pages. Sphinx also
supports extensions, we use:

– breathe to convert the XML code generated by Doxygen into HTML under-
standable by Sphinx;

– autodoc for automatic interpretation and conversion in HTML format of
Python docstrings.

Finally, with this setup, it is straightforward to upload automatically the produced doc-
umentation online through Read the Docs [33]. This online platform provides continuous
integration of documentation by linking it to the remote GitHub repository.
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Verification & Validation

We have extensively tested all the functions building up our API in all their unitary
components. As we have already shown, we developed a testing machinery, included in
the official repository of the project, to run these tests in a continuous integration envi-
ronment. This will both guarantee consistency during future expansions of the library as
long as provide users with a quick check that the build have been completed successfully.

In this section we show that our machinery is satisfying the requirements, both in
terms of scientific results and performances. Specifically, in Section 4.1 we will show that
the mock-catalogues obtained with ScamPy reproduce the observables we want.

We have also tested our API for the accuracy in reproducing cross-correlations in
Section 4.2. Even though there is no instruction in the algorithm that guarantees this
behaviour, using the halo model it is trivial to obtain predictions for the cross-correlation
of two different populations of objects.

All the validation tests have been obtained by assuming a set of reasonable values
for the HOD parameters. The resulting occupation probabilities have been then used
to populate a set of halo/subhalo catalogues. These catalogues have been obtained by
running on the fly the FoF and subfind algorithms on top of a GaDGET-3 simulation.
The cosmological parameters used for this simulation are summarised in Table 4.1. The

Table 4.1: Fiducial cosmological parameters of the N-body simulation used in this Sec-
tion.

h ΩCDM Ωb ΩΛ As ns

0.67 0.27 0.05 0.68 2.1e− 9 0.96

simulation we run has 64 Mpc/h boxside lenght and 5123 DM particles. Even though this
is far from having a mass and a spatial resolution high enough for getting scientifically
significant results, especially at high redshift, it is enough for testing. The speed of the
populating algorithm depends on the number of objects contained in the input catalogue,
thus we have preferred to run tests on a smaller catalogue.

From the plan we outlined in Section 1.3, one of the requirements of this effort was to

39
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Figure 4.1: Occupation probability functions for central subhaloes (left panel) and satel-
lite subhaloes (right panel). The orange solid line marks the model we want to reproduce.
The green step-wise dashed line and the blue step-wise solid line mark the distributions
measured on the subhalo catalogue before and after having applied our populating algo-
rithm.

boost the performances of the algorithm. In Section 4.3, we will present some measures
of the API performances to show the improvements we have obtained.

4.1 Observables

Here we present measurements obtained after both the populating algorithm of Sec-
tion 2.1.1 and the abundance matching algorithm of Section 2.1.2 have been applied to
the DM-only input catalogue. Applying the abundance matching algorithm does not
modify the content of the populated catalogue, besides associating to each mass an ad-
ditional observable-property.

In the two panels of Fig. 4.1 we show the abundances of central and satellite subhaloes
as a function of the halo mass. The dashed green step-lines show the distribution in the
DM-only input catalogue, while the orange solid line marks the distribution defined by the
occupation probability functions. By applying the populating algorithm (Section 2.1.1)
to the input catalogue we obtain the distributions marked by the solid blue step-lines,
which are in perfect agreement with the expected distribution.

We then draw a random Gaussian sample around the halo model estimates of the
abundance and clustering, respectively Eqs. (1.5) and (1.6), of objects with the above
selection of occupation probabilities. This will be our mock dataset. We then run an
MCMC sampling of the parameter space, with the likelihood of Eq. (1.1), to infer the set
of parameters that best fit the mock dataset. For sampling the parameter space we used
the Emcee [21] Affine Invariant MCMC Ensemble sample, along with ScamPy python
interface.

After we obtain the best-fit parameters, we produce 10 runs of the full pipeline
described in Alg. 1. In doing this, we are producing 10 different realisations of the
resulting mock catalogue. Since the selection of the host-subhaloes is not deterministic,
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this procedure allows to obtain an estimate of the errors resulting from the assumptions of
the halo model. Finally, we use the Landy-Szalay [34] estimator in each of the populated
catalogues to measure the 2-point correlation function:

ξ(r) =
DD(r)− 2DR(r) +RR(r)

RR(r)
(4.1)

where DD(r) is the normalised number of unique pairs of subhaloes with separation r,
DR(r) is the normalised number of unique pairs between the populated catalogue and
a mock sample of objects with random positions, and RR(r) is the normalised number
of unique pairs in the random objects catalogue. We then measure with Eq. (4.1) the
clustering in each of the 10 realisations and we compute the mean and standard deviation
of these measures in each radii bin.

The results are shown in Fig. 4.2 for redshift z = 0 and 4.3 for redshifts z = 2, 4, 6, 8.
In the upper panel of Fig. 4.2 we show the mock dataset with triangle markers and
errors, the lines show the halo model estimate of the 2 point correlation function (with
the different contributes of the 1- and 2-halo terms). The circle markers show the average
measure obtained from our set of mock-catalogues.

In the lower panel of Fig. 4.2 and in the four panels of Fig. 4.3 we show the distance
of both the mock-dataset and of the average measure with respect to the inferred model.
First of all, let us notice that the models inferred are in good agreement with the mock
dataset. The accuracy of the measure with respect to the model, instead, decreases as
redshift increases. At the largest scales we have a decrease in power of the measured 2-
point correlation function. This is a known weakness of the HOD method. In literature
there have been a lot of effort in quantifying and correcting this effect [see e.g. 35, 36,
for two recent works], which is thought to result from a concurrence of box-size effects,
cosmic-variance and assembly bias.

On the other hand, the limited spatial resolution of our simulation box is responsible
for the discrepancies at the smaller scales. Since at redshift greater than 2÷3 the number
of sub-structures within haloes found by the subfind algorithm becomes substantially
smaller, the discrepancy becomes larger.

The discrepancies at small scales might be partially due to the transition between 1-
and 2-halo term, as the bump in the measures seams to suggest especially at redshift
z = 4. These discrepancies could be corrected by applying the same pipeline to an
N-body simulation with higher resolution.

The requirement of reproducing the 1-point statistics of the original catalogue is
necessary to have the expected observational property distribution in the output mock-
catalogue. This requirement guarantees that the abundance matching scheme will start
associating the observational property from the right position in the cumulative distri-
bution, i.e. from the abundance corresponding to the limiting value that said property
has in the survey.

In Fig. 4.4, we show the example case of the UV luminosity function. The halo-model
prediction for the total abundance of sources is nhm

g (z) = 3.49 · 10−2 [h3Mpc−3], while
we measure npop

g (z) = (3.06± 0.04) · 10−2 [h3Mpc−3] in the populated catalogue.
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Figure 4.2: Validation of the two point correlation function at redshift z = 0. Upper panel:
Comparison between the mock clustering dataset (triangles), the best-fit halo-model
prediction (solid line) and the mean and standard deviation of the clustering measured
with the Landy-Szalay estimator on the 10 realisations (cicles and errors). Lower panel:
distance ratio between the best-fit halo-model prediction and the mock-dataset/averaged-
measure.
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Figure 4.3: Same as lower panel of Fig. 4.3 for redshift z = 2, 4, 6, 8. Here we also
show the modeled 1-halo (orange dotted line) and 2-halo (green dashed line) terms for
reference.
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Figure 4.4: Cumulative luminosity function at redshift z = 0. Upper panel: the blue
solid line marks the model prediction while the orange circles with errors the distribu-
tion measured on the populated catalogue. The hatched red region marks the limiting
magnitude MUV

lim . Lower panel: distance ratio between the luminosity function measured
on the populated catalogue and the model.

In Fig. 4.4, we mark with orange cicles the cumulative luminosity function measured
on the mock-catalogue after the application of our API. For comparison we also show
the luminosity function model we are matching (blue line) and the observation limit of
the target population (red dashed region).

As it is shown in the lower panel of Fig. 4.4, the distance ratio between the ex-
pected distribution and the mock distribution is lower than ≈ 10% over all the range of
magnitudes.

4.2 Multiple populations cross-correlation

Even though in our API there is no prescription for this purpose, it is interesting to
test how the framework performs in predicting the cross-correlation between two differ-
ent populations. This quantity measures the fractional excess probability, relative to
a random distribution, of finding a mock-source of population 1 and a mock-source of
population 2, respectively, within infinitesimal volumes separated by a given distance.
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It is simple to modify Eqs. (1.10) and (1.11) to get the expected power spectrum
of the cross-correlation. For the 1-halo term this is achieved by splitting the (Mh/ρ)2

of Eq. (1.10) in the contribution of the two different populations, which leads to the
following equation:

P
(1,2)
1h (k, z) =

1

n
(1)
g (z)n

(2)
g (z)

∫ Mmax

Mmin

N (1)
g (Mh)N (2)

g (Mh)nh(Mh)|ũh(k,Mh, z)|2dMh

(4.2)
where quantities referring to the two different populations are marked with the super-
scripts (1) and (2).

In the case of the 2-halo term, obtaining an expression for the cross-correlation re-
quires to divide the two integrals of Eq. (1.11) in the contributions of the the two different
populations, leading to

P
(1,2)
2h (k, z) =

Pm(k, z)

n
(1)
g (z)n

(2)
g (z)

·[∫ Mmax

Mmin

N (1)
g (Mh)nh(Mh)bh(Mh, z)ũh(k,Mh, z)dMh

]
·[∫ Mmax

Mmin

N (2)
g (Mh)nh(Mh)bh(Mh, z)ũh(k,Mh, z)dMh

] (4.3)

We get the cross-correlation of the two mock-populations using a modification [37] of
the Landy-Szalay estimator

ξ(1,2)(r) =
D1D2(r)−D1R2(r)−D2R1(r) +R1R2(r)

R1R2(r)
(4.4)

where D1D2(r), D1R2(r), D2R1(r) and R1R2(r) are the normalized data1-data2, data1-
random2, data2-random1 and random1-random2 pair counts for a given distance r.

In Fig. 4.5 the red circles show the cross-correlation measured with Eq. (4.4) for
two different mock-populations with a dummy choice of the occupation probabilities’
parameters. Errors are measured using a bootstrap scheme with 10 sub-samples. For
comparison, in the upper panel we also show the halo-model prediction of the two-point
correlation function, obtained with Eqs. 4.2 and 4.3, separated in 1- and 2-halo term
contribution. The lower panel of Fig. 4.5 shows the distance ratio between the measure
and the model prediction, which is lower than 40% over almost all the scales inspected.

4.3 Performances & Benchmarking

We have measured the performances of our API’s main components and benchmarked
the scaling and efficiencies of the computation at varying precision and work-load. The
code from which we started the development was written only in c++ and it was al-
most completely serial. We were using extensively an external cosmological library not
intended for high performance computing to get most of the cosmological functions we
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Figure 4.5: Same comparison as in Fig. 4.2 for the cross-correlation function, measured
with the modified Landy-Szalay estimator of Eq. (4.4), between two dummy mock-
populations at redshift z = 0.
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were using and this, besides making compilation difficult for the big amount of external
dependencies required, was affecting severely the overall performances.

In our work we have developed a hybrid API in which the heaviest function are
computed in c++ and then wrapped in python using c as bridging language. This
allows to keep computation fast, while providing a user-friendly interface which can
exploit easily a wide range of external libraries available in python.

We will show here a set of time measures performed on the two main components of
the library: the cosmology class and the halo_model class. These are the two classes
that will be mostly used in real-life applications of our API. In the original c++-only
implementation, the functions now provided by the cosmology class were imported from
the external cosmological library, while the halo_model class was already implemented.

We re-implemented from scratch most of the functions that were already present in
our heritage collection of codes while adding new functionalities and wrapping everything
in python.

First of all, in Tab. 4.2, we show the execution time of the same function called
from different languages. Since our hybrid implementation requires to bridge through
c to wrap in python the optimisations obtained in c++, it is interesting to compare
their respective execution time. Along with the execution time in c and python, we also
provide the ratio with respect to the reference c++ time, tc++, for the same function.
All the times are expressed in nanoseconds.

Table 4.2: Execution time in nanoseconds of the same function in different languages.
For the c and python case, we also show the ratio with respect to the c++ execution
time. The timings reported are the average of 10 runs on the 4 physical cores with
hyper-threading disabled of a laptop with Intelr CoreTMi7-7700HQ 2.80GHz CPU.

Function C++ C tC/tC++ Python tpy/tC++

cosmology class

c.tor 2.520e+05 2.780e+05 1.103 8.892e+05 3.528
dC(z) 2.083e+03 3.200e+03 1.536 5.984e+03 2.873
n(M, z) 1.186e+08 1.187e+08 1.001 1.197e+08 1.009

halo_model class

c.tor 3.011e+09 3.024e+09 1.004 2.961e+09 0.983
ng(z) 1.917e+04 2.280e+04 1.190 2.851e+04 1.488
ξ(r, z) 3.396e+06 8.729e+06 2.570 1.784e+06 0.525

We are showing 3 typical member calls that are representative of the functionalities
provided by the two classes. For both of them we measured the constructor time (c.tor),
the time for executing a function that returns a scalar (dC(z) and ng(z)) and the execution
time for a function returning an array (n(M, z) and ξ(r, z)). It can be noticed that,
especially for the cosmology class, by calling the same function in c and python, the
execution time increases. The worst case is the cosmology class constructor time that
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looses a factor ∼ 3.5 in python. It has to be noticed though, that the execution time is
lower than a millisecond and, since the constructor is the member function that is called
the less, this is not severely affecting the overall performance of the python interface.

Nonetheless, because of the larger number of function calls required by moving from
one language to another, loosing some performance is expected. What we did not expect
is the gain in performance we are getting when moving to python, as it is shown in
the last column of the halo_model class box of Tab. 4.2. This behaviour might be due
to the different way memory is allocated, accessed and copied in python with respect
to c++/c. Moreover, the timers used for measuring the execution in the different
languages are different. Even by comparing measures taken with the same precision, it is
not guaranteed to have the same accuracy. We will further investigate on this behaviour
in the future.

We have then tested the execution time of the halo_model constructor and member func-
tions at varying work-load. In our implementation (see Sec. 2.2.2), the halo_model class
requires to define a set of interpolator objects at construction time. The interpolation
accuracy, as explained in Sec. 2.2.3, depends on the resolution of the interpolation grid.
In the halo_model class, at fixed limits of the interpolation interval, this is controlled by
the thinness input parameter, which takes typical values 50÷200 in real-life applications.

In Fig. 4.6 we show how the constructor-time varies with varying thinness in the
range 10 < thin < 103. The plot is obtained by calling 10 times the constructor per
each thinness value and then averaging (solid lines). The shaded region marks the best
and worst execution time among the 10 runs. Instead of the actual execution time we
show the percent distance with respect to perfect linear scaling (dashed line) for both
the c++ case (blue) and the python case (orange). We define the percent distance at
given thinness as

% distance(thin) ≡ 100 · t(thin)− tlin(thin)

tlin(thin)
(4.5)

where tlin(thin) is the execution time for given thinness in the linear scaling case, com-
puted with respect to the c++ case. In the white text box of Fig. 4.6 we also show the
c++ constructor time for thin = 8, as a reference. As the picture shows, the scaling is
almost perfectly linear, with a maximum distance of the 0.06% in the c++ case.

Possibly the most crucial aspect of the whole API is the time taken by the compu-
tation of a full-model. With the term “full-model” we mean the execution of the two
functions for computing the halo-model estimate of the 1- and 2-point statistics, namely
ng(z) and ξ(r, z). In an MCMC framework, while the constructor is called only once,
these two functions are called tens of thousands of times. In our heritage implementa-
tion, as also pointed out in Sec. 1.3, this computation was taking times of the order of
10 seconds, making the parameter-space sampling virtually unfeasible in a reasonable
amount of time.

As also shown in Tab. 4.2, the execution of the two single functions now takes an
amount of time which is in the order of the millisecond in the c++ case. We can also
notice that the execution time of a full-model is dominated by the computation of the
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Figure 4.6: Percent distance between the constructor time scaling at varying thinness and
the linear scaling case. For the python case, the percentage is computed with respect to
the c++ time to ease the comparison. For reference, we also show in the white text-box
the measured constructor time with thinness = 8.

two point correlation function, ξ(r, z). Since this function is operating on a vector and
returning a vector, it is reasonable to expect that its execution time varies with the
work-load, i.e. with the vector size.

In Fig. 4.7 we show the percent distance, defined as in Eq. (4.5), of the average full-
model execution time at varying work-load (solid lines) with respect to the perfect linear
scaling case (dashed line), in the range 23 ≤ load ≤ 214. The measures are obtained by
averaging the results of 10 runs in both c++ (blue) and python (orange). The shaded
regions mark the best and worst performance among all the runs at varying workload.
It can be noticed that, by increasing the work-load, the average execution time gets up
to 15% worse than perfect linear scaling. This is due to some latency introduced by the
necessity of Fourier transforming the power spectrum to get the clustering measure. We
have to point out though, that the typical work-load is in the range 5 ÷ 15 for real-life
applications and that the execution time in this cases is of the order of the millisecond.

In Tab. 4.3 we quantify the gain in performances obtained with our optimisation of
the halo model functions. We have compared the time spent by the old and the new
implementation to perform the same task. In terms of performances, as Tab. 4.3 clearly
shows, the impact of our renewal is dramatic. We gained almost a factor of 10 for the
constructor time and up to a factor 104 (ten thousand!) for the full-model time.

Finally, we have measured how the constructor time scales with increasing number of
multi-threading processors. We did not perform this measure for the full-model com-
putation because, in the perspective of using it in a MCMC framework with parallel
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Figure 4.7: Percent distance between the full-model time scaling at varying work-load and
the linear scaling case. For the python case, the percentage is computed with respect to
the c++ time to ease the comparison. For reference, we also show in the white text-box
the measured constructor time with work-load = 8.

Table 4.3: Performance comparison between the old and the new implementation. We
have both tested the constructor time and the full-model time. Measures have been
performed at fixed work-load and varying thinness and vice-versa. All the times are
expressed in nanoseconds.

thinness work-load c.tor full-model
old new old new

Varying thinness

64 16 4.549e+9 0.585e+9 16.601e+9 ∼2.0e+6
128 16 9.071e+9 1.212e+9 19.467e+9 ∼2.0e+6
256 16 18.107e+9 2.643e+9 21.182e+9 ∼2.0e+6

Varying work-load

64 16 4.549e+9 ∼0.6e+9 16.689e+9 1.997e+6
64 128 4.548e+9 ∼0.6e+9 16.510e+9 1.566e+6
64 1024 4.545e+9 ∼0.6e+9 16.574e+9 1.934e+6
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walkers, the full-model will be computed always serially.
We present measures of both the constructor time strong scaling and weak-scaling.

While the first measures the scaling with processor number at fixed thinness, the latter
measures the scaling at thinness increasing proportionally with the processor number.

First of all, let us define the speed-up

S(p) =
t(1)

t(p)
(4.6)

where p is the number of processors and t(p) is the time elapsed running the code on
p processors. This quantity measures the gain in performances one should expect when
having access to larger parallel systems.

We also define the efficiency for the strong and the weak scaling case:

Estrong(p) =
S(p)

p

Eweak(p) = S(p)

(4.7)

This quantity roughly measures the percentage of exploitment of the parallel system
used. Thus, providing a hint of how much the serial part of the code is affecting the gain
we can expect from spawning multiple threads.

We run these measures on a node from the regular partition of the SISSA Ulysses
cluster.1 Each of these nodes provide two shared memory sockets with 10 processors
each. We measured the constructor time by averaging the results of 100 runs where the
threads number has been controlled by setting

export OMP_NUM_THREADS=$ii
export OMP_PLACES=cores
export OMP_PROC_BIND=close

where ii varies in the set {1, 2, 4, 8, 16, 20} and where the last two commands control
the affinity of the processes spawned.

In Fig. 4.8 we show the speed-up (upper panel) and efficiency (lower panel) of the
strong scaling. The dashed line marks perfect linear speed-up in the upper panel, and
100% efficiency in the lower panel. Even though it is far from being perfect, the speed-up
shows a constantly increasing trend. The efficiency seams to get constant around the 60%
for p ≥ 16, but a larger parallel system would be necessary for getting a more precise
measure.

To conclude, in Fig. 4.9, we show the the weak scaling efficiency case. The thinness,
at given processors number p, is set to thin = 50 · p. As the picture shows, the efficiency
seams to become almost constant at p & 8 for both the c++ and python case, with a
value between 70% and 80%.

1Please refer to the website for detailed informations.

https://www.itcs.sissa.it/services/computing/hpc
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Figure 4.8: Strong-scaling speed-up (upper panel) and efficiency (lower-panel) of the
constructor time at fixed thinness and varying number of multi-threading processors.
The solid line marks the average of 100 runs while the shaded region marks the best
and worst result area. We run the tests on a full computing-node of the SISSA Ulysses
cluster.
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Figure 4.9: Weak-scaling efficiency of the constructor time at thinness growing propor-
tionally to the number of multi-threading processors. The solid line marks the average
of 100 runs while the shaded region marks the best and worst result area. We run the
tests on a full computing-node of the SISSA Ulysses cluster.
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Chapter 5

Summary and future developments

One of the most compelling open problems in cosmology is the study of reionization.
In this epoch the radiation, produced by the sparse sources that were starting to form,
ionized the intergalactic medium, making the Universe transparent. Even though we
have proofs that this process took place, we do not know precisely either its physics nor
the exact time it should have started. We have some hypothesis though on the nature of
the sources that have produced the ionizing radiation. By modelling this populations of
astrophysical objects, we could get insights on the process of reionization, study its time
evolution and propose hypothesis which could be tested with future experiments.

In this work we have performed an HPC-driven renewal of a scientific application
we developed for painting observed populations of objects on top of DM-only N-body
cosmological simulations. In the context of reionization, this could help in studying the
spatial distribution properties and evolution in time of the ionized bubbles that might
have developed around sources of ionizing radiation.

Cosmology is an incremental science: the investigation can always be refined and
drive to novel directions. Therefore, while the development of the API was prompted
by a specific problem, our design of the restructured code was intended for extensibility.
This has been achieved by providing the API with a modular structure and by exploiting
Object-Oriented programming, both in c++ and in python. With an extensive usage of
polymorphism we obtained a flexible application that can be both used by itself as well
as along with other libraries.

The main results of our work are listed below.

• We performed a radical renewal of the original application. We have rewritten most
of the functions composing the cosmology and the halo_model classes. In doing
this we have taken care of minimizing both the number of operations and of com-
putationally expensive function calls. Using the CTypes python standard library,
we wrapped all the relevant c++ functionalities in python. We have detached
from all the external dependencies that were burdening on the build process. while
maintaining the possibility to include those functionalities after having built the
library. The latter is the combined result of the application of polymorphism on the
c++ side and of the implementation of a flexible python interface. The internal

55
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computations have been boosted also by implementing a module for interpolation,
which is available in either c++, c and python. Finally, we have completed the
integration of all the library functionalities that were missing for completing the
algorithm.

• All the development of the API repository has been done with awareness of the best-
practices in HPC and, generally, in programming. We have documented the source
code and made the documentation accessible by using automated tools designed
for this purpose (doxygen and sphinx for translating source code docstrings into
html, readthedocs for uploading the html online). The code has been tested during
development and the integration of these tests to the API repository is almost
complete. We backed-up our GitHub repository with a Continuous Integration
tool for getting immediate feedback on the consistency of the library while changes
are added. Building the API has been delegated to the Meson build system, which
guarantees portability and allows to detach the API from the native environment
it has been developed on.

• We have validated all the results returned by the several functions and classes of our
library from the scientific perspective. The functions reach the expected accuracy
on the cosmological simulations we have tested them. Further investigations with
high resolution simulations are still required, and will be completed by the time the
scientific paper describing this effort is submitted for publication. Furthermore, we
tested the Emcee MCMC sampler [21] for finding the best-fit parameters of the
occupation probabilities Ncen and Nsat.

• We have benchmarked the principal components of the API, measuring their per-
formances in different situations. We have tested the scaling at varying work-load
of the functions called the most, obtaining satisfying results.

• All these upgrades and additions lead to an outstanding boost in the performances
of the application. The computation of a full model, necessary for sampling the
parameter space of the occupation probabilities, earned a factor of 104 in execu-
tion. From the ∼ 10 seconds it was spending in our first naive implementation, it
now computes in a matter of milliseconds. This also meant not having anymore
the necessity of running MCMC chains on distributed memory systems. For reg-
ular usage, computations can be easily performed in few minutes from a personal
computer.

We will add to the API further miscellaneous functionalities, such as the possibility
to download and install it with both pip and conda, in the next months. We will also
complete the online documentation by adding examples and tutorials and extending the
explanation of the functionalities provided by ScamPy. When this will be completed we
will submit a scientific paper presenting the ScamPy API to the community which will
also contain a couple of dummy example applications.

By the time we are writing, we are completing the first scientific application of
ScamPy. We are performing a preliminary study on the ionization properties of the
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high redshift Universe which result from the injection of ionizing photons from Lyman
Break Galaxies (LBG). The dataset we are mocking [17] reaches redshift z = 7, which
is enough for our preliminary study. We are now able to measure locally on simulations
the ionized hydrogen filling factor at different redshifts. This also allows to produce
tomographic measures of the ionization state of the medium at varying cosmic time.
Furthermore, we can also directly measure the ionized bubble size distribution, which is
a quantity that, up to now, has been only modeled indirectly [38].

To conclude, we are planning to extend our work both on the scientific side, by
exploring new directions, and on the computational side, by implementing an efficient
N-tree algorithm for the optimisation of the neighbor search in both DM-halo catalogues
and mock-galaxy catalogues. An incomplete list of the directions we are planning to
pursue follows.

• Extensive application to the reionization problem - Up to now we have mainly ap-
plied ScamPy functionalities to a proof-of-concept framework. Nonetheless, with
the dataset at our disposal, an extensive study of the role played by LBG in reion-
ization is possible, provided that larger N-body simulations with high resolution
are available.

• Application of the algorithm to multiple populations - An application of the same
pipeline to the other major players that are known to be involved on the reionization
of hydrogen, e.g. AGNs, would be trivial, provided that suitable datasets are
available.

• Extension to different cosmologies - By now all our investigations have been per-
formed assuming a ΛCDM cosmology. To extend these results to other cosmological
models would only require modest modifications of the source code and to obtain
the corresponding DM-only N-body simulations.

• Machine learning extension of the halo occupation model - Using the halo occu-
pation distribution (HOD) is straightforward and a lot of literature is available on
the topic. This approach, though, comes with the limit that all the properties of
the observed population have to be inferred from the mass of the host halo. This is
known to be a rough approximation. To overcome this limit we plan to use instead
a neural network (NN) model of the host halo occupation properties where the
inputs of the NN are a set of known features of the halo/sub-halo hierarchy, such
as the local environment around the halo and the dispersion velocity within the
halo.
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Appendix A

Source code

We provide here some significant sections of our implementation and refer the user to the
GitHub repository (https://github.com/TommasoRonconi/scampy) for deeper source
code mining.

A.1 Generic cosmo_model header

The following listing contains the generic header for the definition of a structure of
type cosmo_model which allows for customization of the kernel cosmological model, as
explained in Sec. 2.2.1. It provides the declaration of all the mandatory member functions
necessary for ScamPy.

/**
* @file some_cosmo_model.h
* @brief Provides the framework for cosmological computations
* @author Tommaso Ronconi
* @author tronconi@sissa.it
*/

#ifndef __COSMOLOGY_INTERFACE__
#define __COSMOLOGY_INTERFACE__

/// General namespace of the library
namespace scam {

struct cosmo_model {

// Here internal variables of the structure:
// [ ... ]

/// function to set internal variables
void set_internal ( /* list of internal variables that can be set */ );

/**
* @name Constructors/Destructors
* @{
*/

/// default constructor

59

https://github.com/TommasoRonconi/scampy


60 APPENDIX A. SOURCE CODE

cosmo_model ();

/// custom constructor
cosmo_model ( /* list of variables */ );

/// default destructor
virtual ∼cosmo_model () = default;

/// @} End of Ctor/Dtor

/**
* @name Cosmographic functions
* @{
*/

/// Hubble parameter at given redshift
double H_z ( const double zz );

/// Hubble -distance at given redshift
double d_H ( const double zz );

/// Comoving distance at given redshift
double d_C ( const double zz );

/// Angular diameter distance at given redshift
double d_A ( const double zz );

/// comoving volume unit in [ Mpc^3 h^{-3} rad^{-1} ]
double comoving_volume_unit ( const double zz );

/// comoving volume in [ Mpc^3 h^{-3} ]
double comoving_volume ( const double zz );

/// the age of the Universe at the time the photons were emitted in [ Gyr ]
double cosmic_time ( const double zz );

/// @} End of cosmographic functions

/**
* @name Matter density related functions
* @{
*/

/// critical density in [ Msol Mpc^{-3} h^2 ]
double rho_crit ( const double zz );

/// matter density parameter at given redshift
double OmegaM ( const double zz );

/// Computes the amplitude of the growing mode D(z) as a function of redshift
double DD ( const double & zz );

/// @} End of matter density related functions

/**
* @name Power spectrum dependent functions
* @{
*/

/// linear matter power spectrum at given redshift
double Pk ( const double & kk, const double & zz = 1.e-7 );
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// Mass function
double dndM ( const double & mm, const double & zz = 1.e-7 );

// Halo -bias
double hbias ( const double & mm , const double & zz = 1.e-7 );

/// @} End of power spectrum dependent functions

}; // endstruct cosmo_model

} // endnamespace scam

#endif // __COSMOLOGY_INTERFACE__

A.2 Implementation of the interpolation functionalities

We will here show the two most significant header files that allow versatility and flexibility
of the interpolation. An object of type interpolator can be defined as follows:

// for scam::utl:: lin_vector ()
#include <utilities.h>
// for scam::utl:: interpolator <T>
#include <interpolator.h>
// for std::cout
#include <iostream >

using namespace scam::utl;

int main () {

std::vector < double > xv = lin_vector( 10, 0., 100. );
std::vector < double > fv = xv;

interpolator < gsl_lin_interp > interp_func ( xv, fv );

std::cout << "Value at x = 25:\t" << interp_func( 25. ) << "\n";

return 0;

}

which prints

> Value at x = 25: 25.

on standard output.

A.2.1 interpolation.h header

This header contains the declaration of the type interpolator.

/**
* @file interpolation.h
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* @brief Defines the interpolator < T > type
* @author Tommaso Ronconi
* @author tronconi@sissa.it
*/

#ifndef __INTERPOLATOR__
#define __INTERPOLATOR__

/// internal includes
#include <utilities.h>
#include <interpolation_interface.h>
#include <gsl_interpolation_interface.h>

/// General namespace of the library
namespace scam {

/// Utilities namespace
namespace utl {

/// Declaration of the interpolator type ,
/// templated on the interpolation_interface type
/// defaulted to gsl_log_interp
template < class T = gsl_log_interp >
class interpolator {

private:

/// internal copy of the object of type interpolation_interface
T _interface;

public:

/**
* @name Constructors/Destructors
* @{
*/

/// default constructor
interpolator () = default;

/// copy constructor
interpolator ( const T & interface ) : _interface{ interface } {}

/// custom constructor for building from function pointer
interpolator ( std::function < double ( double ) > func ,

const double x_min , const double x_max ,
const size_t thinness ) noexcept

: _interface{ func , x_min , x_max , thinness } {}

/// custom constructor for building from gridded values
interpolator ( const std::vector < double > & xv,

const std::vector < double > & fv )
: _interface{ xv, fv } {}

/// default destructor
∼interpolator () = default;

/// @} End of Ctor/Dtor

/**
* @name Operator overloads
* @{
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*/

/// function -call operator overload
double operator () ( const double xx ) { return _interface.eval( xx ); }

/// function for integration
double integrate ( const double aa, const double bb ) {

return _interface.integrate( aa, bb );
}

/// in -place sum operator overload
interpolator & operator += ( const interpolator & rhs ) {

_interface += rhs._interface;
return * this;

}

/// sum operator overload
friend interpolator operator+ ( interpolator lhs ,

const interpolator & rhs ) {
lhs += rhs;
return lhs;

}

/// in -place multiplication operator overload
interpolator & operator *= ( const interpolator & rhs ) {

_interface *= rhs._interface;
return * this;

}

/// multiplication operator overload
friend interpolator operator* ( interpolator lhs ,

const interpolator & rhs ) {
lhs *= rhs;
return lhs;

}

/// @} End of operator overloads

/// Here functions to get private and protected variables
/// [ ... ]

}; // endclass interpolator

} // endnamespace utl

} // endnamespace scam

#endif // __INTERPOLATOR__

A.2.2 interpolation_interface.h header

This header provides the base type for interfacing with an interpolation method. The
declaration of pure-virtual functions makes the implementation of derived classes manda-
tory. We have implemented two derived classes based on the gsl/gsl_interpolation
library in the header

scampy/interpolation/include/gsl_interpolation_interface.h
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we refer the reader to the GitHub repository (https://github.com/TommasoRonconi/
scampy) for further details.

/**
* @file interpolator_interface.h
* @brief Provides the base pure -virtual class for interpolation functionalities
* @author Tommaso Ronconi
* @author tronconi@sissa.it
*/

#ifndef __INTERPOLATOR_INTERFACE__
#define __INTERPOLATOR_INTERFACE__

#include <utilities.h>

/// General namespace of the library
namespace scam {

/// Utilities namespace
namespace utl {

/// declaration of the interpolator_interface type
class interpolator_interface {

private:

/// lower limit of the domain
double _x_min;

/// upper limit of the domain
double _x_max;

protected:

/// size of the interpolation grid
size_t _thinness;

/// x-axis values
std::vector < double > _xv;

/// y-axis values
std::vector < double > _fv;

public:

/**
* @name Constructors/Destructors
* @{
*/

/// default constructor
interpolator_interface () = default;

/// custom constructor
interpolator_interface ( const double x_min , const double x_max ,

const size_t thinness )
: _x_min{ x_min }, _x_max{ x_max }, _thinness{ thinness } {

_xv.reserve( _thinness );
_fv.reserve( _thinness );

https://github.com/TommasoRonconi/scampy
https://github.com/TommasoRonconi/scampy
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}

/// move constructor
interpolator_interface ( interpolator_interface && ii )

: _x_min{ std::move( ii._x_min ) }, _x_max{ std::move( ii._x_max ) },
_thinness{ std::move( ii._thinness ) },
_xv{ std::move( ii._xv ) }, _fv{ std::move( ii._fv ) } {}

/// copy constructor
interpolator_interface ( const interpolator_interface & ii )

: _x_min{ ii._x_min }, _x_max{ ii._x_max }, _thinness{ ii._thinness } {

_xv = ii._xv;
_fv = ii._fv;

}

/// overload of the swap function for move -semantics
void swap ( interpolator_interface & ii ) noexcept {

using std::swap;

swap( this ->_x_min , ii._x_min );
swap( this ->_x_max , ii._x_max );
swap( this ->_thinness , ii._thinness );
swap( this ->_xv , ii._xv );
swap( this ->_fv , ii._fv );

return;

}

/// default destructor
virtual ∼interpolator_interface () = default;

/// @} End of Ctor/Dtor

/// pure virtual function , computes y-value at position xx
virtual double eval ( const double xx ) const = 0;

/// pure virtual function , computes integral in interval [ aa, bb ]
virtual double integrate ( const double aa, const double bb ) const = 0;

/// Here functions to get private and protected variables
/// [ ... ]

}; // endclass interpolator_interface

} // endnamespace utl

} // endnamespace scam

#endif // __INTERPOLATOR_INTERFACE__
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Appendix B

FFTLog patch

In Cosmology, FFTLog [24] is the reference library for 1-dimensional fast-fourier-transform
of an array where the values have a logarithmic regular binning. It was written 20 years
ago and is based on the algorithm by [39].

It is widely used by the community, and often it is already present on a cosmologist
machine. We produced a patch for allowing an easy integration with the Meson build
system. The patch has been uploaded on GitHub at the address

https://github.com/TommasoRonconi/fftlog_patch

The repository contains a readme.rst and a fftlog directory with the meson.build
script that, if copied in the source code original package, allows to compile it while
generating metadata recognizable by pkgconfig.

Furthermore, we added a compressed version of the fftlog directory. This allows
us to treat the external dependency to FFTLog as a subproject of our API. In the
subprojects directory of our API we have inclueded a fftlog.wrap script which contains
the following directives:

[wrap -file]
lead_directory_missing = fftlog

source_url = https :// jila.colorado.edu/~ajsh/FFTLog/fftlog.tgz
source_filename = fftlog.tgz
source_hash = [ ... ]

patch_url = https :// github.com/TommasoRonconi/fftlog_patch/
raw/master/fftlog_patch.zip

patch_filename = fftlog_patch.zip
patch_hash = [ ... ]

If the FFTLog shared object is not found on the system, the Meson build system will
automatically download the original source code and copy it in the

scampy/subprojects/fftlog
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directory. Then it will download and copy within the same directory our patch, making it
possible to compile and install the shared object along with the other binaries produced
by the build system.

This not only simplifies the build on local machines, but also allows for the usage on
remote servers with automated build functionalities, such as Travis CI.
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