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Thouless’ quantization of adiabatic particle transport permits one to associate an integer topological
charge with each atom of an electronically gapped material. If these charges are additive and independent of
atomic positions, they provide a rigorous definition of atomic oxidation states and atoms can be identified
as integer-charge carriers in ionic conductors. Whenever these conditions are met, charge transport is
necessarily convective; i.e., it cannot occur without substantial ionic flow, a transport regime that we dub
trivial. We show that the topological requirements that allow these conditions to be broken are the same that
would determine a Thouless’ pump mechanism if the system were subject to a suitably defined time-
periodic Hamiltonian. The occurrence of these requirements determines a nontrivial transport regime
whereby charge can flow without any ionic convection, even in electronic insulators. These results are first
demonstrated with a couple of simple molecular models that display a quantum-pump mechanism upon
introduction of a fictitious time dependence of the atomic positions along a closed loop in configuration
space. We finally examine the impact of our findings on the transport properties of nonstoichiometric
alkali-halide melts, where the same topological conditions that would induce a quantum-pump mechanism
along certain closed loops in configuration space also determine a nontrivial transport regime such that
most of the total charge current results to be uncorrelated from the ionic ones.
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I. INTRODUCTION

Atomic oxidation states (OSs) are ubiquitous in chem-
istry and widely used to describe redox reactions, elec-
trolysis, and many electrochemical processes. In spite of
their fundamental nature, OSs have long eluded a proper
quantum-mechanical interpretation. As a matter of fact, the
commonly accepted definition provided by IUPAC (OS of
an atom is the charge of this atom after ionic approxima-
tion of its heteronuclear bonds [1]) can hardly be given a
rigorous quantitative meaning. As one sees, this statement
stands on approximating a real number that expresses a
static property (the atomic charge, which is not even well
defined quantum mechanically) to the closest integer, a

procedure that is intrinsically ill defined and potentially
misleading in some cases [2,3]. This predicament has been
reversed by a recent paper [4], where, building on previous
work [5] based on the modern theory of polarization [6,7],
it is shown that OSs can indeed be defined as topological
quantum numbers [8] describing the charge dynamically
displaced by individual atoms along closed paths in atomic
configuration space, under periodic boundary conditions.
While such a dynamical definition may not be expedient to
describe charge-ordering effects [9], it is indeed expected to
fit transport theory, where the dipole displaced along an
atomic trajectory is actually all that is needed to define and
compute the electrical conductivity. In fact, by leveraging a
recently established gauge invariance principle of transport
coefficients [10,11], it is also shown that, whenever
topological charges are both additive and independent of
atomic positions, atoms can be identified as integer carriers
in adiabatic charge transport and the latter is purely
convective; i.e., it can occur only along with the displace-
ment of the atomic charge carriers. We call this transport
regime trivial. Of course, chemically relevant situations
occur where different atoms of a same species feature
different OSs, depending on the local chemical environ-
ment. Although the occurrence of such cases is indeed
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compatible with a comprehensive topological definition of
OSs [5], breaking the additivity and position independence
of atomic OSs has important consequences on transport
properties, the most perspicuous of which is the possibility
that charge may be displaced without any associated atomic
convection, a ionic transport regime that we dub nontrivial.
In this work, we address the topological conditions to be

met in order to break the additivity and position independ-
ence of topological charges. We show that, when these
conditions occur, it is possible to identify closed paths in
atomic configuration space such that, if the system is
adiabatically driven along one of these paths, a quan-
tum-pump mechanism determines the net displacement of
an integer charge, not corresponding to any ionic displace-
ments. These findings are illustrated with a couple of toy
molecular models dealt with in periodic boundary con-
ditions (PBCs): the positive hydrogen trimer ion Hþ

3 , which
displays a lack of topological-charge additivity, and the
K3Cl neutral complex, where different K atoms feature
different and nonadditive topological charges. We finally
consider a nonstoichiometric KxðKClÞ1−x ionic melt,
which, for small enough x, features a finite electron-energy
gap. In this case, the same topological conditions respon-
sible for the quantum-pump mechanisms in the molecular
models considered above determine a nontrivial transport
regime, whereby the total charge current mainly results
from lone pairs of electrons donated by the excess metal
atoms and whose motion is largely uncorrelated from the
ionic ones. Nonstoichiometric molten salts are paradig-
matic cases of systems featuring solvated electrons, other
notable examples including nonstoichiometric electrolytes
and metal solutions in an ionic solvent, to which we believe
that the bulk of our analysis also applies [12–14].

II. THEORY

Charge transport in ionic conductors occurs through the
rearrangement of charge inhomogeneities along with the
motion of atomic nuclei in space. Ionic conductors are
electronic insulators—a necessary condition for charge
inhomogeneities to persist unscreened—so that their
dynamics is accurately described in the adiabatic approxi-
mation, whereby electrons stay in their quantum ground
state, while classical nuclei wander around in space. In the
adiabatic approximation, the charge density depends on time
through the dependence of the electronicHamiltonian Ĥ and
its ground stateΨ0 on nuclear coordinates: Ĥ½RðtÞ%Ψ0ðtÞ ¼
E0ðtÞΨ0ðtÞ, whereR ¼ fr1;…; rNg is the set of positions of
the N atoms in the system. We call the space of all possible
atomic configurations the atomic configuration space
(ACS), and its subspace whose configurations have a finite
gap its adiabatic (sub)space. We describe macroscopic
bodies using PBCs with period L along each Cartesian
direction, as they are the only ones able to sustain a steady-
state current in finite systems [15].When PBCs are adopted,

the ACS is isomorphic to a 3N-dimensional torus, and any
path in ACS linking two periodic images of the same
configuration is isomorphic to a closed path on the torus.
Paths in the adiabatic subspace (be they closed or open) are
referred to as adiabatic paths. On a torus, a closed path C can
be classified topologically by the number of windings it
makes along each direction of the ACS (niα½C%, the winding
numbers): Any such direction is identified by an atomic
label i and by the Cartesian direction α, along which the
atom moves. In the case depicted in Fig. 1, for instance,
the horizontal green segment haswinding numbers (1,0), the
vertical one (0,1), and the blue path (1,1). A closed pathwith
all-zero winding numbers can be shrunk to a point on the
torus and is called a trivial loop.
The topological properties of the adiabatic subspace are

key in our subsequent discussions, in view of which we
introduce the concepts of adiabatic connectedness and
strong adiabaticity (SA). The adiabatic subspace is con-
nected if any pair of points belonging to it can be joined by
an (open) path entirely belonging to it; otherwise, it is the
nonconnected union of connected domains (in short,
adiabatic domains). An adiabatic domain is said to be
strongly adiabatic if any closed path belonging to it which
is trivial on the torus is also trivial on it; i.e., it can be
continuously shrunk to a point without ever closing the gap.
Equivalently, any two closed paths belonging to the same
strongly adiabatic domain and featuring the same winding
numbers can be deformed into one another without closing
the gap [16]. This is obviously not the case if the paths
belong to two disconnected strongly adiabatic domains. In
mathematical terms, SA amounts to saying that the funda-
mental group of the adiabatic domain [17] is a subgroup of
the fundamental group of the torus. Paths in the ACS can be
parametrized by a fictitious time, so that the electronic
Hamiltonian along a closed path is formally time periodic.
In a nutshell, the existence of closed paths that are trivial on

FIG. 1. (a) Two-dimensional atomic configuration space with
periodic boundary conditions. (b) Representation of the ACS on a
2-torus. Open paths in the plane whose end points are one the
periodic image of the other map onto closed paths in the torus;
closed paths in the plane map onto trivial loops in the torus (i.e.,
closed paths that can be continuously shrunk to a point). The
concatenation of the two green paths with the reversed blue one is
a trivial loop on the torus. When strong adiabaticity holds, the
total transported charge in a trivial path is zero.
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the torus, but not in the adiabatic domain, entails that the
time-dependent Hamiltonian evaluated along one these
paths may sustain a Thouless’ pump mechanism, with
far-reaching consequences on the transport properties of the
system, as we demonstrate below.
The (fictitious) time parametrization of the electronic

Hamiltonian along a closed adiabatic path, Ĥðtþ TÞ ¼
ĤðtÞ, features a finite gap at all times. In his seminal paper
on quantization of particle transport [8], Thouless showed
that, in the adiabatic approximation, the dipole displaced
during a time period (or, equivalently, along a closed
adiabatic path C), ΔμðTÞ ¼ Δμ½C%, is quantized in the
large-L limit:

Δμα½C% ¼
I

C
dμα ¼ eLQα½C%; ð1Þ

where dμα ¼ ½∂μαðRÞ=∂R% · dR is the electric dipole dis-
placed along an infinitesimal segment of the path andQα½C%
is an integer-valued functional of the path, which is,
therefore, constant for any continuous deformation of its
argument within an adiabatic domain.
The properties of the charge Qα½C% strongly depend on

the topology of the adiabatic domain to which C belongs.
Since the charges associated to any pair of adiabatic paths
that can be deformed into one another coincide, if this
domain is strongly adiabatic, we conclude that Qα can
depend only on the winding numbers of its argument:
Qα½C% ¼ Qαðn1; n2;…nNÞ, where ni ¼ ðnix; niy; nizÞ is the
integer-valued 3-vector of the winding numbers of atom i.
Furthermore, it must be additive and isotropic. Additivity
means that Qα is an integer-valued linear function of
its integer arguments: QαðfngÞ ¼

P
iβ qiαβniβ; isotropy

means that the q coefficients are integer multiples of the
identity: qiαβ ¼ qiδαβ. Additivity is illustrated in Fig. 1. The
concatenation of the two green paths with the reversed blue
one is a trivial path: If SA holds, the total charge trans-
ported along it must be zero, so that the charge transported
along the blue path must equal that transported along the
green ones. Isotropy follows from a slight generalization of
this argument. The combination of additivity and isotropy
allows one to identify the qi charge with the oxidation
number of the ith atom [4]. When NS atoms of the same
species S are present, the ACS is the union of NS! domains
that transform into each other under permutations. If these
domains are strongly adiabatic and connected among
themselves, one can swap two different atoms of the S
species without closing the electronic gap, implying that all
the atoms of that species have the same OS. When two
permutational domains are not connected but still strongly
adiabatic, an OS can still be assigned to each atom within
the same domain, but atoms of the same chemical species
belonging to different domains may feature different OSs:
Such is the case, e.g., of ferrous-ferric water solutions.
When SA does not hold, instead, charge transport can no

longer be characterized in terms of winding numbers on the
torus, and the very concept of OS loses much of its
topological meaning, thus opening the way to a transport
regime where charge can be moved without any concomi-
tant atomic displacements.
Let us conclude this theory section with a summary of the

links between transport, topology, and Thouless’ pumps.
The key concept here is that PBCs endow the ACS with the
topology of a 3N-torus. Closed paths (loops) on the torus are
classified according to their winding numbers, n ∈ Z3N :
Loops with n ¼ 0 represent nonconvective trajectories, i.e.,
trajectories where each atom returns to its original position;
loops with n ≠ 0, instead, describe trajectories where one or
more atoms move from the initial position to one of their
periodic images. Of course, genuine convective trajectories
are not loops (they are almost surely open paths), but any of
them can still be decomposed into a (possibly nontrivial)
loop concatenated with an open path whose length is
bounded by a quantity independent of n: This fact allows
one to express the large-time diffusive behavior of atomic
trajectories—and, hence, transport properties—in terms of
the topology of the system’s adiabatic subspace [4]. The next
important concept is that, along a loop, the electronic
Hamiltonian is formally cyclic. Thouless’ quantization of
particle transport [8] can then be invoked to infer that the
dipole displaced along a loop is, in general, nonvanishing
and quantized. If SA holds, atomic OSs can be rigorously
defined as topological charges [4,5]. Under this condition,
the electric dipole displaced along an open trajectory is, up to
a term that is negligible in the large-time limit, a linear
combination of the winding numbers of an aptly defined
loop, the atomic OSs being the coefficients. As the winding
numbers are a measure of the overall atomic displacements,
we conclude that charge transport is necessarily convective
in this case. Note that, even under SA, the dipole displaced
along an n ≠ 0 loop in ACS is itself induced by a trivial
Thouless’ pump: one that is simply driven by the windings
along each direction of the torus. For this reason, the
transport regime described by this mechanism is aptly
dubbed trivial. Nontrivial transport may occur whenever
in an adiabatic domain there exist loops with n ¼ 0 that
cannot be shrunk to a point without crossing a zero-gap
region, i.e., when SA is broken. Thouless’ theory can then be
leveraged again to conclude that the dipole displaced along
any such loop is quantized and possibly nonzero, whereas
the atomic displacements vanish because so do the winding
numbers. This regime is where the same topological features
of the ACS that would give rise to a nontrivial Thouless’
pump mechanism along closed paths also give rise to
nonconvective charge transport, when applied to open paths.

III. NONTRIVIAL TRANSPORT

The simplest system displaying a nontrivial Thouless’
pump mechanism is probably the (linear) trihydrogen
cation Hþ

3 : Three protons are aligned, and the ground state
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of the two electrons is a singlet and, therefore, non-
degenerate, resulting in a theoretical equilibrium inter-
atomic distance Δ ¼ 0.826 Å. We treat the molecule
using PBCs with period L ¼ 10.6 Å ≫ Δ along the three
Cartesian directions, thus amounting to enclosing the
molecule in a cubic supercell of side L. Further computa-
tional details are given in the Appendix A. We now
consider a closed path in ACS, consisting of the following
three steps (see Fig. 2):
(1) The B and C protons are first rigidly translated

toward the end of the supercell until the distance
between C and the periodic image of A (located at
x ¼ L) is Δ (red arrows, ending at configuration II).

(2) The B proton, now located at x ¼ L − 2Δ, is moved
back to its original position (green arrows, ending at
configuration III).

(3) Finally, the C proton is moved back from x ¼ L − Δ
to its original position (blue arrows, ending at
configuration I).

This path is periodic (i.e., it is isomorphic to a trivial path on
the torus), the last configuration being equal to the first. The
ionization potential of H2 is larger than that of H; therefore,
along the path, the pair of protons that is displaced or left
behind stays neutral, and the electronic gap is always larger
than that of H2. The ground state remains a singlet
throughout the entire trajectory, as we explicitly check by

computing the total energy of the system for both the singlet
and the triplet spin states. If SA holds, the charge transported
along the path must vanish trivially; otherwise, a Thouless’
pumpmechanismmay allow a nontrivial charge transport. In
order to check if the latter case occurs, we compute the total
dipole displaced along each segment of the path, Δμ,
according to the modern theory of the polarization in the
Wannier representation [7]:

ΔμIF ¼ e
Z

F

I

!XN

i¼1

Zidri − 2
XM

j¼1

dwj

"
; ð2Þ

where Zi is the positive core charge of atom i (Zi ¼ 1, in the
present case), wj the position of the Wannier center (WC)
associated to the jth occupied electronic band of the system,
M is the number of occupied states (M ¼ 1, in the present
case), and the factor 2 in front of the second sum accounts for
the double occupancy of eachmolecular orbital. Our results,
displayed in Fig. 2(c), indicate that a net chargeQ ¼ −2e is
displaced along the path, thus revealing the existence of
nonadiabatic domains in theACS that the path loops around.
Indeed, when the distance between any pair of protons is
much larger than themolecular bond length, the ground state
consists of two neutral atoms and one proton, and it is
degenerate, because it does not matter which atoms are
neutral and which one is ionized. The regions where this

FIG. 2. Linear Hþ
3 in periodic boundary conditions. (a) I: Equilibrium configuration: The black circles and continuous line indicate

atoms in the primitive supercell; gray circles and the dashed line indicate their periodic images. II and III are the two intermediate steps
of the closed path described in the text. (b) Closed path in the 2D projection of the atomic configuration space relative to the atoms that
participate in the loop; the yellowish areas indicate regions where the ground state is degenerate. (c) Dipole displaced along the closed
path. Notice that the total displaced dipole is finite and an integer multiple of eL. (d) Closed path in the 3D projection of the ACS where
also the x coordinate of atom A is shown. The metallic region encircled by the path extends for all values of xA, and the loop cannot be
shrunk to a point without crossing it: The loop is, thus, nontrivial. 3D projections onto subspaces where xA is substituted with any other
atomic coordinate have a similar appearance. An animation illustrating the trajectory of the atoms participating in the loop can be found
in the file S1.mp4 in Supplemental Material [18]. In the animation, the green dot indicates the position of the Wannier center of the two
electrons in the system.
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condition occurs are highlighted with yellowish triangles in
Fig. 2(b), revealing that it is, in fact, encircled by the closed
path.When the full nine-dimensional ACS is considered, the
plane depicted in Fig. 2(b) is the locus where all the
coordinates vanish but xB and xC, and the triangles are
the bidimensional sections over this plane of hyperprisms
that pierce the entire ACS so that the loop cannot be shrunk
to a point without closing the gap even when embedded in
the full nine-dimensional space (i.e., the loop is nontrivial in
the adiabatic subspace), as illustrated in Fig. 2(d).
Note that, while the total dipole is ill defined (both

because it is intrinsically so when computed in PBCs [19]
and because the system is charged), dipole differences are
perfectly well defined also in this case. Our previous
considerations on the relative magnitude of the ionization
potentials of atomic and molecular hydrogen imply that
WCs move (almost) rigidly with the proton pair being
displaced, as illustrated in the animation S1.mp4 to be found
in Supplemental Material [18]. This result implies that, when
displaced individually, protons carry a unit charge, and one
would be tempted to attribute an OS qH ¼ 1 to each of them.
However, when they move in pairs, they carry a zero charge,
a manifest breakdown of charge additivity, due to the
breakdown of strong adiabaticity. The overall effect of the
different charges transported by H atoms according to
whether they are displaced individually or in pairs is that
the total charge transported along the closed path of Fig. 2
does not vanish, while the net mass does.

The existence of adiabatic transport anomalies entails the
occurrence of two partially conflicting requirements: a high
degree of ionicity and the presence of loosely bound
localized electron states that can wander through the system
without ever closing the gap. Nonstoichiometric molten
salts seem, therefore, ideal candidates to display nontrivial
transport [20,21]. In order to prepare for the study of such
systems, we examine now the simplest molecular system
possibly displaying their essential electronic features: the
neutral K3Cl complex. Computational details can be found
in Appendix A. In Fig. 3, we show a planar configuration of
this system along with a closed path in ACS displaying
charge transport without any net mass displacement. As in
the previous case, the ground state of the system is a singlet
throughout the whole trajectory. The dipole displaced by
moving each of the atoms to their periodic images in the
neighboring cell along the x direction is, in units of eL,
equal to þ1 for A and C and equal to −1 for B and D.
Conversely, moving any of the atoms to its periodic image
in a direction perpendicular to the x axis would break the
bond of such atom with the rest of the system, resulting in a
degenerate ground state. Moreover, as we verify that it is
possible to swap atoms B and C without closing the gap,
there is no way to uniquely associate an integer charge to
each atom, whose OS would, thus, be topologically ill
defined. Based on our previous arguments, we conclude,
therefore, that SA is violated here again. In fact, we identify
a region in the ACS where the gap closes, as indicated by

FIG. 3. A planar configuration of the K3Cl system undergoing a loop in atomic configuration space. (a) Initial and final configurations.
K and Cl atoms are indicated by pink and blue circles, respectively. The colored curved arrows indicate the 1D trajectories of the two K
atoms participating in the loop. The color encodes the fictitious time parametrizing the loop (red → blue). (b) Closed path in the 2D
projection of the atomic configuration space relative to the atoms that participate in the loop; the yellowish areas indicate regions
where the ground state is degenerate. (c) Dipole displaced along the closed path. (d) Closed path in the 3D projection of the ACS where
also the x coordinate of atom A is shown. An animation illustrating the trajectory of the atoms participating in the loop can be found
in the file S2.mp4 in Supplemental Material [18]. The green dots indicate the positions of the Wannier centers of the electrons in
the system.
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the shaded area in Fig. 3(b), and we consider an adiabatic
closed path in the ACS which is trivial on the torus but
loops around such a region. The x component of the electric
dipole displaced along this loop is plotted in Fig. 3(c).
While the total charge displaced along the y and z
directions vanishes, we observe an integer charge equal
to −2e pumped along the x direction. Here again, we see
that an integer charge is adiabatically transported without
any net atomic displacements. This Thouless’ charge-pump
mechanism can be entirely ascribed to the loosely bound
highest-occupied molecular orbital (HOMO). In fact, we
check that the contribution of the lower-lying molecular
orbitals to the dipole displaced along the loop vanishes. By
the same token, if one computes the charges associated to
individual atomic displacements as above, but considering
only the contributions to the displaced dipole from lower-
lying molecular orbitals, we obtain þ1 for all the K atoms
and −1 for Cl. This is best illustrated by following the
motion of the various WCs displayed in the animation
quoted in the caption of Fig. 3.
We now move to a more realistic system and consider a

model for a KxðKClÞ1−x dilute liquid metal–metal-halide
solution. The equilibrium properties of nonstoichiometric
molten salts are characterized by the existence of localized
electron pairs, often referred to as bipolarons [20–22]. The
formation of bipolarons is made possible by the balance
between the increase in the quantum kinetic and electro-
static electron-electron repulsion energies resulting from
the localization of the solvated electron pair and the
attractive electron-cation energy gained by accommodating
the pair into a cationic hollow, often described as a liquid-
state analog of an F center in a crystal; charge transport can
then be assimilated to the fast diffusion of the solvated
electrons followed by their temporary stabilization in
cationic hollows, driven by thermal fluctuations [20–22].
The very existence of such an adiabatic hoppinglike
mechanism breaches the compelling topological constraints
that SA sets on ionic conduction [4] and could not be
possible without breaking the latter.
We model the melt with 33 K atoms and 31 Cl atoms,

corresponding to a concentration x ≈ 0.06. This model can
be qualitatively described as made of 31 Cl− anions and 33
Kþ cations, with the addition of two neutralizing solvated
electrons whose dynamics is only weakly correlated with
the ionic motion [20–22].
We simulate this system within density-functional theory

(DFT) using Car-Parrinello ab initio molecular dyna-
mics (AIMD) [23]. Our simulations are performed using
a cubic supercell with side L ¼ 14.07 Å, corresponding to
a density ρ ¼ 1.42 g=cm3 at a temperature of T ¼ ð1341'
93Þ K (the incertitude on the value of the temperature is a
finite-size effect, whereas the statistical incertitude on the
average is 2 orders of magnitude smaller). Further technical
details are given in Appendix A. The dynamics of the
system is restricted to the singlet energy surface, as we

explicitly verify that the triplet one consistently lies
≈0.40 eV above. This being the case, the system is closed
shell. Nonetheless, the presence of unpaired solvated
electrons would not affect our conclusions on nontrivial
transport, as long as each spin channel stays gapped and
dynamically decoupled from the other, and the system’s
electronic insulating character and adiabatic evolution are
preserved [20,24]. In Fig. 4, we display the time series of
the energy gap between the HOMO and the lowest-
unoccupied molecular orbital (LUMO), as well between
the molecular orbital just below the HOMO (HOMO–1)
and the LUMO. HOMO–1 corresponds to the highest
molecular orbital localized on Cl− anions, whereas the
HOMO is occupied by the solvated lone pair (see below).
The numerical values of these energies are affected by DFT
errors that lead to an underestimate of the electronic gaps.
Notwithstanding, the system stays electronically insulating
all along the AIMD trajectory, thus confirming the
adequacy of an adiabatic treatment of transport in these
systems for small enough concentrations. The average
HOMO–1-LUMO gap would coincide with the average
stoichiometric HOMO-LUMO gap for extremely low
concentrations (x → 0). In this limit, the energy level of
the lone pair (i.e., the HOMO of the nonstoichiometric
system) corresponds to a donor impurity level in the
HOMO-LUMO gap of the stoichiometric system, slightly
below the bottom of the empty-state band. As the concen-
tration increases, the impurity level broadens to a band,
which eventually merges into the empty-state band of the
stoichiometric system, thus turning the electrolyte into a
metal. If the states near the Fermi energy stay localized by
disorder, this transition would be delayed until the Fermi
energy crosses the mobility edge. In either case, we believe
that our conclusions hold in the electrolyte regime. The
value of the concentration appropriate to our model system,
x ≈ 0.06, is below the critical value xc ≈ 0.1, at which an
insulator-to-metal transition is expected to occur, resulting

FIG. 4. Time series of the HOMO-LUMO (blue) and HOMO–
1-LUMO (orange) energy gaps. The horizontal red line indicates
the thermal energy kBT. The horizontal green line is the average
HOMO-LUMO gap for the stoichiometric K32Cl32 system.
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from experimental [25] and numerical [26,27] evidence.
A similar behavior has been recently evinced using
photoemission spectroscopy for alkali-metal solutions in
liquid ammonia [28].

In Fig. 5, we display the overlay of several consecutive
snapshots from a short segment of our AIMD trajectory.
One sees that, by the time the lone pair covers a distance
comparable to the size of the supercell, all the atoms have
traveled only a small fraction of this length. This result
suggests that charge transport in these systems may be
strongly affected by the dynamics of the localized lone
pairs, whose very existence we see to be closely related to
the topological properties of the electronic ground state.
The animation contained in the file S3.mp4, to be found in
Supplemental Material [18], confirms that the lone pair
diffuses much faster than the atoms (the color code is the
same as in Fig. 5). Its motion, while being uniquely
determined by the atomic adiabatic dynamics, is largely
uncorrelated from it. It can thus give rise to a nontrivial
transport regime such that electric currents are mainly
carried by solvated electrons, not corresponding to any
atomic displacements, which is essentially made possible
by the breaking of SA. To show that SA is broken, we
compute the dipole displaced along two properly designed
loops in the K33Cl31 ACS, beginning and ending at the
same configuration, where one K atom is moved from its
initial position to one of its adjacent periodic images along
the x axis, as depicted in Fig. 6. The two loops have
identical winding numbers: nK ¼ ð1; 0; 0Þ for the moving

FIG. 5. Overlay of several consecutive snapshots from a 435 fs-
long sample of AIMD trajectory of our K33Cl31 model. Kþ ions
are depicted in pink and Cl− ions in blue, while the Wannier
center associated to the lone bipolaronic pair is displayed in
green.

FIG. 6. (a),(c) Different loops in the K33Cl31 atomic configuration space, whose initial and final configurations are the same. Cl atoms
are depicted in blue. All K atoms but one are depicted in pink. One selected K atom, depicted in red, is moved from its initial position to
its periodic image along the x direction, thus featuring a winding number nix ¼ þ1. All the other atoms feature zero winding numbers.
The position of the lone pair is depicted in green. (b),(d) Dipoles displaced along the closed paths depicted on their left. The charge
displaced along the two paths differ, in spite of the displacement of the same K atom and the same winding numbers. This difference
indicates that no oxidation state can be uniquely associated to the (arbitrarily) chosen K atom, and transport anomalies have to be
expected.
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K, and n ¼ ð0; 0; 0Þ for all the other atoms. Nonetheless,
the dipoles displaced along them differ, as reported in
Figs. 6(b) and 6(d), corresponding to two different topo-
logical charges (Q ¼ '1) for the same K atom. Such a state
of affairs is clear evidence that the two loops cannot be
deformed into one another without hitting a nonadiabatic
region, thus making it impossible to assign a well-defined
OS to each atom using the procedure of Refs. [4,5], in
striking contrast with chemical common sense. Even
though in a physical trajectory no such loops in the
ACS are expected to occur, nor will a lone pair stay bound
to the same ion for much longer than a fraction of the
atomic diffusion time, this thought experiment clarifies the
links between SA breaking and the establishment of a
regime where loops in ACS can be described by nontrivial
Thouless’ pumps and open trajectories may carry a charge
current not corresponding to any ionic currents.
The transport anomalies displayed in Fig. 6 are expected

to show conspicuously in the behavior of the ionic Born
effective charges, in terms of which the instantaneous
charge current can be expressed [4]. The animation con-
tained in the file S4.mp4, to be found in Supplemental
Material [18], displays a typical segment of an AIMD
trajectory. The upper panel in Fig. 7 displays the time series

of the distances from the lone pair of the five atoms
originally closest to it. The lower panel displays the
corresponding average diagonal elements of the effec-
tive-charge tensors. One sees that, when all the atoms
are stably far from the lone pair ðt≳ 500 fsÞ, the values of
the effective charges are close to what chemical intuition
would suggest (Z(

K ≈þ1 and Z(
Cl ≈ −1). When some of

them approach the lone pair, instead, weird things may
occur. For one thing, the effective charge of the K atom
closest to the lone pair may go negative, meaning that the
latter is provisionally dragged by the K ion along its
movement. For a second, the effective charge of a Cl
atom, while never quite positive, may nearly vanish when it
gets close enough to the lone pair; this result is likely due to
the screening effect of the pair’s highly polarizable wave
function. For a third, effective charges change abruptly
when passing from an anomalous to a normal regime: The
K effective charge may become relatively large and positive
just after having gone negative, and a few Cl charges may
correspondingly become relatively large, while staying
negative, so as to preserve local charge neutrality. The
duration of this transition, a few dozen femtoseconds, is the
time it takes for the lone pair to abruptly change its local
environment, as witnessed by the steep change of the
distances from it of the atoms considered in Fig. 7.
In order to evaluate the impact of nontrivial transport on

the electrical conductivity of our system, we compute it
using the Helfand-Einstein relation [4,29]:

σ ¼ 1

3L3kBT
lim
t→∞

hjΔμðtÞj2i
2t

; ð3Þ

where ΔμðtÞ is the electric dipole displaced along the
AIMD trajectory in a time t. ΔμðtÞ is alternatively
computed from Eq. (2) and from

Δμ(IF ¼ e
Z

F

I

!X

i

qidri − 2dwlp

"
; ð4Þ

wherewlp is the position of the lone-pair WC, qi ¼ þ1 for K
atoms, −1 for Cl atoms, and the factor qlp ¼ −2 reflects the
occupancy of the loosely bound HOMO. The definition of
Δμ(IF differs from that of ΔμIF [Eq. (2)], in that in Eq. (4)
a fixed oxidation state is associated with all the atoms of a
same species in the spirit of Ref. [4]—and as it would be in a
stoichiometric mixture—while the lone pair occupying
the localized and loosely bound HOMO is treated as an
independent charge carrier. Our results, illustrated in Fig. 8,
yield the values 16.2' 0.8 and 15.9' 0.8 S=cm for the
conductivities computed from definitions (2) and (4),
respectively [30]. All the numerical values of the transport
coefficients reported here are evaluated using the cepstral
analysismethod [31,32], as briefly explained in Appendix B.
We see that the two values coincide within statistical errors,
giving substance to our topological analysis of nontrivial

FIG. 7. Upper: Time series of the distances from the electron
lone pair in K33Cl31 of the five nearest atoms. The horizontal lines
are guides for the eye: dotted, distance equal to zero; dashed,
maximum distance allowed in PBCs, i.e.,

ffiffiffi
3

p
L=2. Lower:

Average diagonal elements of the Born effective-charge tensor
of the five atoms described above; the horizontal dotted line
marks the zero value.
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transport in these systems. Maybe fortuitously, these values
compare well with the experimental data at such a concen-
tration of K atoms [33]. The conductivity is much larger than
the value obtained from the ionic contribution in Eq. (4)
(3.6' 0.3 S=cm, the green line in Fig. 8): This result
indicates that the conductivity is almost entirely determined
by the diffusion of the solvated lone pair and is, in fact, much
larger than it typically is in stoichiometric molten salts (i.e.,
3.2' 0.2 S=cm [4]). Furthermore, we observe that the total
conductivity coincides with the sum of the ionic and lone-
pair contributions, implying that the cross-correlation result-
ing from the product of the first and second terms on the
right-hand side of Eq. (4) is negligible, as confirmed by the
vanishing slope of the red curve in Fig. 8. We compute
the diffusivity Di of each species i ¼ K, Cl, lp according to
the Einstein formula:

Di ¼ lim
t→∞

hjΔriðtÞj2i
6t

: ð5Þ

The mobilities μi ≡ qieDi=ðkBTÞ are then estimated to be
1.23' 0.02, 1.14' 0.07, and 102' 5 ð10−3Þ cm2V−1 s−1
for K, Cl, and the lone solvated pair, respectively. The lone-
pair mobility is 2 orders of magnitude larger than the ionic
ones, in agreement with experimental evidence [36] and with
the observed predominance of the lone-pair contribution to
the total conductivity.

IV. CONCLUSIONS

Conducting materials are usually classified into two
broad families: metals and ionic conductors. The charge
carriers of metals are electrons, whose equilibrium and
dynamical properties are strictly quantum mechanical and
whose excitation spectrum is distinctively gapless. As a

consequence, the charge current is largely uncorrelated
from ionic currents and charge transport occurs without any
significant mass displacement. The electronic spectrum of
ionic conductors, instead, features an energy gap that
constrains the electrons to remain in their instantaneous
ground state at all times and their charge density and
current to follow adiabatically the classical atomic motion.
As a consequence, charge and mass currents are intrinsi-
cally entangled, and charge transport cannot occur without
mass convection.
Nonstoichiometric ionic conductors are somewhat inter-

mediate between these two extrema. As the concentration
of one of the chemical species that make the ionic
components of the material is increased, it may happen
that, not being compensated by ions of opposite charge, the
chemical species in excess dissociates into an ionic moiety
plus an unbound solvated electron. As the concentration of
the excess species increases, the solvated electrons form an
energy band that eventually merges into the unoccupied
states of the stoichiometric system, thus turning the ionic
conductor into a metal. Such a transition has been recently
evinced by photoelectron spectroscopic measurements on
alkali-metal solutions in liquid ammonia [28]. Before this
critical concentration is reached, the excess electrons may
coalesce into localized pairs that diffuse through the ionic
matrix largely uncorrelated from the atomic motion, thus
determining a transport regime where most of the charge is
transported without appreciable mass displacement, while
the system remains nonmetallic. This transport regime is
often described in terms of the Marcus-Hush theory [37] of
adiabatic electron transfer, as resulting from an avoided
crossing between potential energy surfaces. In this paper,
we have identified electron-transfer processes as a dynami-
cal diagnostics of a topological anomaly in ACS, a
manifestation of what we have called a breakdown of
SA.While this anomaly is a fingerprint of massless electron
transfer, it does not provide any circumstantial description
of the specific mechanisms by which the adiabatic transfer
reaction takes place in realistic physical conditions. On
the other hand, SA breaking is a necessary condition for
adiabatic electron-transfer processes to occur, thus indicat-
ing that the appearance of the latter is a dynamical
manifestation of the former. Our results open the way to
a number of interesting fundamental and applicative
perspectives. On a more fundamental side, the question
is open on how a unified theoretical framework can be
devised to describe quantum metallic and classical ionic
conduction on the same footing and encompassing the
intermediate nontrivial adiabatic regime. Of considerable
interest is likewise the extension of our analysis to non-
avoided crossings in the proximity of diabolical points in
ACS, where nonadiabatic transitions are facilitated [38] and
geometric phases are known to play an important role in the
dynamics [39,40]. The impact of nontrivial charge transport
on heat transport is also of great significance. In particular,
nontrivial charge transport may determine a high electric

FIG. 8. Adiabatic charge transport in molten K0.06=ðKClÞ0.94.
Time series of the mean-square displaced dipole from definitions
(2) (blue) and (4) (orange). The contribution due to the ionic cores
and the tightly bound electrons is shown in green. The cross-
correlation term is depicted in red. According to Eq. (3), the slope
of the straight lines is a measure of the electric conductivity,
whose actual value is estimated from cepstral analysis, as
explained in Appendix B.
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conductivity in electrolytes, not accompanied by a large
heat conductivity, which is of potential interest for thermo-
electric applications.

V. DATA AVAILABILITY

Additional numerical data—i.e., the time series of the
electric currents, displaced dipoles, and energy band
gaps—supporting the plots and relevant results within this
paper are available on the Materials Cloud Platform [41].
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APPENDIX A: COMPUTATIONAL DETAILS

Electronic structure calculations and AIMD simulations
are carried out within DFT using the plane-wave pseudo-
potential method with the pw.x and cp.x codes of the
Quantum ESPRESSO package [42,43]. The transformation to
the Wannier representation is performed, when needed,
using the Wannier90 code [44,45].
For the Hþ

3 system, the PBE0 hybrid functional [46] is
used in order to minimize self-interaction artifacts. A norm-
conserving pseudopotential for H atoms is generated to be
consistent with the hybrid functional. The plane-wave
kinetic-energy cutoff is set to 80 Ry for wave functions
and to 320 Ry for both the charge density and nonlocal
exchange operator.
For K3Cl, DFT calculations are performed at the gen-

eralized gradient approximation level in the PBE flavor
[47]. Norm-conserving pseudopotentials from the SG15
dataset [48,49] are used for K and Cl. The kinetic energy
cutoff is set to 55 and 220 Ry for wave functions and charge
densities, respectively. Brillouin-zone (BZ) sampling is
performed using a 6 × 6 × 6 Monkhorst-Pack set of k
points [50].
The computational parameters for K33Cl31 are the same

as for K3Cl but for the BZ sampling, which is restricted to
the Γ point. The dynamics is carried out according to the
Car-Parrinello Lagrangian scheme [23] using a fictitious
electronic mass μ ¼ 400me, me being the electronic physi-
cal mass, and a time step of 0.36 fs; the current is sampled
every 20 time steps.

APPENDIX B: CEPSTRAL ANALYSIS

The numerical values of the conductivities reported in
the text are obtained from the cepstral analysis of the

electric current time series [31,32], which allows one to
obtain accurate estimates of both transport coefficients and
their statistical accuracy. In a nutshell, cepstral analysis is
based on the Wiener-Khintchine theorem [51], which
allows one to express the conductivity as

σ ¼ 1

2kBTL3
Sðω ¼ 0Þ; ðB1Þ

where SðωÞ is the power spectral density (PSD) of the
electric current. The electric current JðtÞ ¼ ½dμðtÞ=dt%,
where μ is any Cartesian component of the displaced
dipole defined in Eq. (2) or (4), is an extensive quantity
whose density has correlations that are usually short
ranged. Therefore, according to the central limit theorem,
JðtÞ is a Gaussian process whose Fourier transform J̃ðωÞ is
normally distributed and such that J̃ðωÞ is uncorrelated
from J̃ðω0Þ for ω ≠ ω0 in the large-time limit.
For any discrete realization of the continuous current

process, Ĵn ¼ JðnεÞ, with n ¼ 1;…; N, we define its

discrete Fourier transform ˆ̃Jk ¼
P

n Ĵne
i2πðkn=NÞ and the

periodogram as the random variate

Ŝk ¼
ε
N
j ˆ̃Jkj

2
: ðB2Þ

Because of the Gaussian nature of Ĵn, Ŝk is proportional to a
χ2 random variate, and its expected value is the PSD in
Eq. (B1). The application of a low-pass filter to the
logarithm of this quantity, L̂k, yields a consistent estimator
of the logarithm of the conductivity; the low-pass filter
consists in the retention of a number P⋆ ≪ N=2 of (inverse)
Fourier components of L̂k, whose value is chosen according
to the Akaike information criterion (AIC) [52] of model
selection. In order to limit the analysis to an appropriate
low-frequency portion of the entire PSD, it is expedient to
resample the electric current time series with a rate corres-
ponding to an effective Nyqvist frequency f⋆. In Fig. 9, we

FIG. 9. Low-frequency portion of the PSD of the displaced
dipole computed according to Eqs. (2) (blue) and (4) (orange).
The noisy lines are the window-filtered PSDs (with a window of
0.1 THz), while the smooth lines are the cepstral estimates.
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show the filtered PSDs for the electric currents computed
with both Eqs. (2) and (4). The cepstral analysis is
performed with the SporTran code [53,54]. For both currents,
the value chosen by the AIC is P⋆ ¼ 8. The estimated
conductivities depend very little on the resampling fre-
quency, which is set to f⋆ ¼ 35 THz.
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