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Abstract

This work is concerned with the analysis and the development of efficient Reduced Or-
der Models (ROMs) for the numerical investigation of complex bifurcating phenomena
held by nonlinear parametrized Partial Differential Equations (PDEs) in many physical
contexts, from Continuum Mechanics to Quantum Mechanics passing through Fluid
Dynamics. Indeed, the reconstruction of the bifurcation diagrams, which highlight
the singularities of the equations and the possible coexisting states, requires a huge
computational effort, especially in the multi-parameter context.

To overcome this issue, we developed a reduced order branch-wise algorithm for
the efficient investigation of such complex behaviour, with a focus on the stability
properties of the solutions. We applied our approach to the Von Karman equations
for buckling plates, the Gross-Pitaevskii equations in Bose-Einstein condensates, the
Hyperelastic models for bending beams and the Navier-Stokes model for the flow in
a channel.

Several issues and questions arise when dealing with the approximation and the
reduction of bifurcating phenomena, we addressed them by considering new models
and emerging methodologies. In particular, we developed a reduced order approach
to deflated continuation method, to efficiently discover new solution branches. We
proposed and discussed different Optimal Control Problems (OCPs) to steer the bifur-
cating behaviour towards desired states.

Finally, we exploited a Neural Network approach based on the Proper Orthogonal
Decomposition (POD-NN), as an alternative to the Empirical Interpolation Method
(EIM), to develop a reduced manifold based algorithm for the efficient detection of the
bifurcation points.

Keywords: reduced order models, reduced basis methods, bifurcation theory, sta-
bility analysis, continuum mechanics, fluid dynamics, quantum mechanics, optimal
control problems, artificial neural network.
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Chapter 1

Introduction and motivations

A beam under compression, the flow in heart’s chambers and the evolution of a par-
ticle’s wave-function. We are surrounded by these phenomena in our daily life, and
a strategic task for the progress is to develop a deep understanding of their complex
behaviour. The above physical processes can be modelled by the so called Partial Dif-
ferential Equations (PDEs), that describe through differential operators the relations
between the temporal/spatial unknowns of the problem under investigation.

Thinking about how differently a rubber object responds to compression with re-
spect to a steel one, it is clear that the analysis of the models has to carry out some
information about their physical properties. This is generally achieved by employing
a parameter dependence of the PDEs.

Solving analytically such complex equations is in most cases impossible, thus ad-
vanced numerical methodologies can be implemented to approximate their solutions.
However, despite the increasing computational resources, accurate enough numerical
simulations are usually too much time-demanding, such that a complete analysis of
their behaviour with respect to the parameter considered becomes impracticable.

The aforementioned physical phenomena are characterized by their complexity,
which reflects into nonlinear relations that worsen the investigation. Indeed, such non-
linearities usually originate the so called bifurcating phenomena, i.e. sudden changes
in the behaviour of the solutions, and could represent a critical source of issues for
their numerical approximation. In fact, while from the physical point of view this
translates into the non-uniqueness of the state for a given parameter, on the other
hand the mathematical model becomes singular in such critical points where the bifur-
cation occurs.

These considerations actually constitute the backbone of this thesis. Indeed, this
work is concerned with the analysis and the development of efficient Reduced Order
Models (ROMs) for the investigation of complex bifurcating phenomena held by non-
linear parametrized PDEs in many physical contexts, from Continuum Mechanics to
Quantum Mechanics passing through Fluid Dynamics.

Let us describe more in detail the main motivations of this work. First of all, despite
the huge discrepancies among the models we treated, we provide a unique abstract



1. INTRODUCTION AND MOTIVATIONS

framework where to cast the analysis of all the different physical contexts. This way
we can develop an algorithmic procedure that can be applied to each model.

The numerical investigation of complex physical behaviour, which entails bifur-
cating phenomena, usually required fine discretization of the domain in which the
problem is posed. The presence of nonlinearities and the parameter dependence lead
to a multi-query context that could represent a bottleneck for a suitable study. In fact,
when dealing with bifurcations, one needs to compute the numerical approximation of
the solution for many instances of the parameter in order to discover the critical points
of the model and its post-bifurcating behaviour. Moreover, the analysis becomes even
more complicated if the goal is a complete reconstruction of all the possible solutions
that the model could admit. Finally, a key aspect in these contexts is the stability anal-
ysis of the discovered solutions, which can be studied by means of specific eigenvalue
problems.

The numerical approximation of such models requires a combination of different
methodologies. To obtain an high fidelity approximation of the problem, we consid-
ered as Full Order Model (FOM) the Finite Element method, which we combined
with a continuation method, to follow the solution varying the parameter, and to the
Newton method which serves to linearize the equation.

We tackled the huge computational cost that such investigation would require by
means of the ROMs. In particular, we developed a branch-wise algorithm based on
the POD technique which aims at efficiently reconstructing the bifurcating behaviour
projecting the governing equations into a low dimensional manifold spanned by global
basis functions (w.r.t. the parameter space).

The key ingredient to recover the efficiency and allow for a complete real-time
investigation of the parameter space in a multi-query context is the offline-online
paradigm. Indeed, one assumes to decouple the computation such that the high fi-
delity quantities can be precomputed offline during an expansive phase, while the ac-
tual investigation of the parameter dependence is studied online, assembling reduced
quantities with cheaper costs. Unfortunately, the nonlinear terms appearing in the
models we considered, compromise this decoupling. For this reason, affine-recovery
techniques as the Empirical Interpolation Method (EIM) are fundamental to obtain
rapid evaluations during the online phase. Despite this, sometimes they can add a
further impracticable cost, even for the offline stage: different methodologies have to
be considered.

A wide variety of models have been studied with the twofold motivation of in-
vestigating the physics of their bifurcation phenomena and show the applicability of
the ROMs strategies we have developed in the non-uniqueness context. An example
of a sudden change of the state solution with respect to a (compression) parameter
is the buckling of plates, which is modelled through the Von Kdrmén equations. Re-
maining in the context of deformation of solids, one can also study the buckling of
beams, which is governed by a class of models called Hyperelastic equations. A dif-
ferent perspective is given by the analysis of the density of particle’s wave-function
in a Bose-Einstein condensate, indeed while varying the chemical potential different



configurations can coexist due to the complex nonlinear Schrédinger equation which
describes their behaviour. Finally, interesting bifurcating phenomena can be discov-
ered in fluid dynamics applications governed by the Navier-Stokes equations.

Of course, many issues and questions arise during the analysis of these complex
models. It is possible to develop an automatic methodology that guides our algorithm
towards all the coexisting solutions for a given instance of the parameter? To answer
this question we analysed and developed a reduced deflation method which prevents
the system to converge to already known solutions, enabling the discovery of new
ones.

Can we somehow act on the system to steer the bifurcating solutions towards
states with desired properties? We deeply investigated how Optimal Control Prob-
lems (OCPs) can be designed to this goal, while studying their stability properties.

Which approaches can we consider as alternatives to the affine-recovery techniques?
Novel machine learning methodologies can be adapted to the ROMs paradigm by
means of Artificial Neural Networks (ANNSs), constituting a non-intrusive way to re-
cover the online efficiency while discovering manifold’s characteristic features.

The numerical results presented in this thesis have been performed with RBniCS
[135] library, developed at SISSA mathLab, which is an implementation in FEniCS
[57] of several reduced order modelling techniques; we acknowledge developers and
contributors to both libraries.

The presentation of this work is original, however it is based on results which are
ongoing works, submitted preprints or already published journal articles. In particular,
Chapter 4 is mainly based upon published work with G. Rozza [120]. Chapter 5
is mainly based upon accepted work with A. Quaini [119]. Chapter 6 is based upon
ongoing work with J. Eftang and A. T. Patera [118]. Chapters 7 and 9 are entirely based
on the preprint done in collaboration with M. Strazzullo [121]. Chapter 8 is entirely
based on the submitted paper in collaboration with M. Pintore whom I supervised for
his master thesis [122]. Chapter 10 is entirely based on the ongoing work with J. S.
Hesthaven [117].

Finally, the ongoing work with F. Ballarin on the development of a new tech-
nique called Successive Partition Method (SPM) [11] for the efficient evaluation of
parametrized stability factors, was not presented in this thesis for the sake of consis-
tency.

Thesis outline

This thesis is divided in three parts. The first part concerns a theoretical and method-
ological introduction to bifurcation theory and its numerical approximation. Subse-
quently, we discuss, analyse and (efficiently) numerically investigate four different
models, each one with its specific bifurcating behaviour. In the third part, we take a
step forward towards more advanced models and methodologies. In particular:
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o Part I - Theoretical and numerical background for bifurcation analysis

- In Chapter 2 we present the mathematical framework of parametrized non-
linear PDEs holding bifurcating phenomena and non-uniqueness of solu-
tions, with a focus on their stability properties through the eigenvalue anal-
ysis.

- In Chapter 3 we review the existing high fidelity and reduced order meth-
ods that we combined to develop our branch-wise algorithm for the efficient
reconstruction of the bifurcation diagram.

o Part II - Approximation of parametrized bifurcating PDEs models

- In Chapter 4 we discuss the Von Karman equations as a model for the
buckling of plates. We show the theoretical connection between buckling
points and eigenvalues by means of generalized eigenvalue problems. Two
different geometries are studied, leading to qualitatively different diagrams.
Moreover, we investigate the presence of secondary bifurcations, we study
a multi-parameter test case varying the type of compression and finally we
show an application of empirical interpolation strategies.

- In Chapter 5 we study the rich branching behaviour of the Gross-Pitaevskii
model in Bose-Einstein condensates. We reconstruct efficiently the multi-
ple bifurcations in the diagram, comparing the performance of the affine-
recovery techniques. A multi-parameter application is presented where we
investigate the densities of the particle varying the strength of the confine-
ment region.

- In Chapter 6 we review the class of hyperelastic models to study the buck-
ling of beams. The Kirchhoff-Saint Venant and the neo-Hookean consti-
tutive relations are presented and their buckling investigated with respect
to different type of compressions (imposed by boundary conditions). We
discussed different multi-parameter test cases involving physical quanti-
ties and geometrical parametrization for the length of the beam, for bi-
dimensional and three-dimensional geometries. Finally, we present a real
3-D test case scenario motivated by industrial application.

- In Chapter 7 we investigate the Coanda effect, a bifurcating phenomena
in fluid dynamics governed by the Navier-Stokes equations. The stability
features of the coexisting solutions are studied and discussed in detail, since
this model serves as a starting point for the last part.

o Part III - Towards more complex problems and emerging methodologies

- In Chapter 8 we briefly present the deflation method which we developed
for the automated reconstruction of bifurcation diagrams in a reduced order
context. Together with advanced continuation method we show how the re-
duced deflation algorithm properly reconstruct the full bifurcation diagram
for the Navier-Stokes test case.



- In Chapter 9 we model different optimal control problems to steer the bi-
furcating phenomena. A general framework for the reduction of nonlin-
ear OCPs is presented and investigated in connection to distributed and
boundary controls. We compare four different models, describing the way
in which they influence the state profiles and the stability of the correspond-
ing solutions.

- In Chapter 10 we apply a non-intrusive strategy based on the POD-NN
methodology to recover efficiently the bifurcation diagram, without the help
of hyper-reduction strategies. We present a geometrical parametrization
variant of the Coanda effect and a preliminary investigation of the bifur-
cating phenomena for flows inside a varying triangular domain. Finally,
we develop an efficient detection tool for the discovery of the bifurcation
points.






Part I

Theoretical and numerical
background for bifurcation analysis






Chapter 2

Nonlinear analysis of PDEs and bifurcation
problems

In this chapter, we will introduce the mathematical setting needed for the analysis
performed throughout the thesis. This will serve us later to consider a unified frame-
work where to cast all the different models that we have studied. Therefore, here we
will review the main definitions for the functional setting of Partial Differential Equa-
tions (PDEs) in a general, parametric and nonlinear context. Moreover, we will focus
on their singular points, which are the keystones of the bifurcation analysis, and on
the stability theory, that we investigated in order to understand the properties of the
physical phenomena considered.

2.1 Brief overview of Functional Analysis

In this section, we recall the basic definitions for the standard functional setting in
nonlinear analysis. We are interested in the case of parametrized PDEs, thus let P C
R? be the parameter space, a closed and bounded subset of the space R” with P > 1.
A parameter p is a point in the space P that can contain physical or geometrical
information about the system. Then, we introduce the (reference) domain () C R4,
where d = 2,3 is the spatial dimension.

Although time-dependent problems are of great interest, we will focus on steady
problems, investigating the features of their equilibrium solutions. We can thus define
the Hilbert space X :=X(Q) and its dual space X/, as the space of linear and continu-
ous functional over X. The Hilbert space is equipped with the norm || V|| = (V, V)}/?
for any V € X, induced by its inner product (-, -)x. Within this setting, we denote the
duality pairing between X’ and X by means of

<G, V> = <G, V>X/X VG e X/,V € X.

We have now all the ingredients to introduce the general framework of PDEs that
we will investigate throughout this thesis. Let us denote with G : X x P — X’ the
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parametrized mapping which represents the nonlinear PDE, and thus the model under
investigation.
The strong form of the parametric PDE problem read as: given u € P, find X(u) €
X such that
G(X(uim) =0 €X. 1)

To study the solutions of the abstract equation above, a fundamental step is the anal-
ysis of its variational formulation, which will play a key role in the numerical ap-
proximation of the problem. Thus, we introduce the parametrized variational form
gl 5p): X xX—=>Ras

(X, Y;m) =(G(X;m),Y) VX YEX, (2.2)

and the weak formulation of equation (2.1) reads as: given u € P, find X () € X such
that
g(X(n),Y;n) =0 VYeX. (23)

In order to have a complete description of the problem formulation in (2.1), we
need some suitable boundary conditions (BCs) on the domain (2. Here, we will cover
both the cases of homogeneous/inhomogeneous Dirichlet and Neumann conditions,
depending on the test case at hand. Moreover, these BCs will be automatically embed-
ded into (2.3) by an appropriate choice of the space where to seek the solution.

Having introduced the mathematical formulation of the problem, a starting point
for the analysis is the investigation of its well-posedness. A PDE is said to be a well-
posed problem if it is characterized by the existence and the uniqueness of the solution.
Indeed, these properties are fundamental also for the numerical approximation of the
model. Although these assumptions are often required, dealing with more realistic
models can complicate the setting. In fact, one has to find a trade-off between the com-
plexity of the model and its effective tractability. As we will see later on, complex non-
linear and parametric PDEs are proved to be more accurate in describing the physics,
but the lack of good mathematical properties makes them difficult to approach, both
theoretically and numerically.

Hence, in the following, we investigate when such properties are conserved and
thus the problem admits a unique solution. On the contrary, in the next section, we
will discuss the presence of critical points in which the well-posedness is lost, under-
standing how the model behaves and evolves in such cases.

Let us assume that the map G in equation (2.1) is continuously differentiable with
respect to X and p. Let (X;%) € X x P be a known solution, i.e. G(X;#) = 0. Then,
we denote by DxG(X;u) : X — X" and D,G(X; ) : P — X' the partial derivatives of
G on a generic point (X,u) € X x P. When dealing with the approximation of (2.1),
the strong assumption usually found in literature, which ensures the well-posedness
of the problem, is that DxG(X;7) : X — X is bijective. Indeed, the following result
holds.

Theorem 2.1.1. Let B,(X), Br(%) be two balls of radius r and 7 around X and @ respectively.
Let G : X x P — X' be a C! map and assume that
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(1) G(X;u) =0, for the solution (X, ) € X x P
(2) DxG(X;u) : X — X' is bijective
then, there exist r,7 > 0 and a unique solution X (u) € B,(X) N X such that
G(X(u);ip) =0 VpeBr(u)NP.

While this is a straightforward application of the Implicit Function Theorem [43,
158], it ensures the well-posedness of the problem and thus the existence of a local
branch of non-singular solutions. Furthermore, we can rewrite the Frechét partial deriva-
tives of G on (Z,u) € X x P with respect to X as

dg[Z](X,Y;u) = (DxG(Z;m)X,Y) VX, Y eX (24)

where we have introduced the parametrized variational form dg[Z](-,-;u). We now
observe that assumption (2) in the previous theorem, can be reformulated in terms of
the variational form dg[Z](-, -; u) itself, which is said to be

(2a) continuous on X x X, if there exists a continuity constant 7y > 0 such that

v(#) = sup sup dg[Z)(X, Y;p)

>7 Yuep, (2.5)
xexvex  IXIx[Yllx

(2b) inf-sup stable on X x X, if there exists an inf-sup constant 8 > 0 such that
dg[Z](X, Y;p)

= inf sup <2+ > g Yuep, 2.6
Plw) = Inf sup = ¥l =F  7* (26)

and de|Z|(X, Y
inf sup dslZ](X, Y1) >0 VupeP. (2.7)

vexxex I XIx!Yllx

Remark 2.1.1. The conditions (2.6) and (2.7) are equivalent to the injectivity and the
surjectivity of the Frechét derivative DxG(Z; u), respectively. In particular, condition
(2.6) can be reformulated as

3B(u) >0 = [[DxG(Z;pm)X][x = B(p) [ XlIx (2.8)

that is, the Frechét derivative of G is bounded below. 1t is clear that (2.8) holds if and
only if DxG(Z; u) is injective. On the other hand, condition (2.7) can be easily restated
as the injectivity of the adjoint operator of DxG(Z; u), which can be expressed in terms
of its variational form dg as

YeX, dg[Z](X,Y;u)=0 ¥vXeX = Y=0. (2.9)

Therefore, we observe that condition (2.7) is actually stating that DxG(Z; u) is surjective,
since the injectivity of the adjoint of an operator is equivalent to the surjectivity of the
operator itself.

11
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Remark 2.1.2. When dealing with linear parametrized PDEs, it is clear that (e.g. for an
unforced problem) it holds

dg[Z](X,Y;p) = g(X,Y; p) VX,Y,ZeX,VueP. (2.10)

Hence, the general assumptions in (2.5),(2.6) and (2.7) fall back on the standard ones
required by the well-known theorems of Lax-Milgram and Necas [54, 140].

In conclusion, the bijectivity assumption in Theorem 2.1.1, and equivalently the
injectivity and surjectivity conditions (2.8) and (2.9), are the key ingredients to have a
well-posed problem. In the following, we will see what happens when these hypothe-
ses are no longer valid at some point in the parameter space.

2.2 A glimpse on Bifurcation Theory

In this section, we want to provide a brief description of bifurcating behaviours and
their mathematical investigation. Before moving to the theory, let us start with a non-
mathematical introductory explanation. In the world around us, we can observe many
phenomena that involve either gradual or sudden changes, and we characterize them
as quantitative or qualitative, respectively. As an example, we can think about the
supported beam under compression depicted in Figure 2.1.

- 2.66-01

lacement

KL 0.0e+00

Displ

Figure 2.1: A beam subject to a load and its buckled configuration.

When the load applied to the beam, denoted with y, is sufficiently small, we ob-
serve a slight deformation that corresponds to a quantitative change. Of course, this
deformation depends on the magnitude of the load and on the specific material prop-
erties of the beam. Hence, we expect that a small perturbation of y leads to a configu-
ration with the same qualitative feature.

At the same time, we empirically know that it exists a critical value for the load,
that we call y*, after which the model does not conserve the original qualitative be-
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haviour. Practically speaking, if the load is big enough, the beam can not sustain the
compression and it buckles. This is a clear example of a qualitative change.

Therefore, we will denote the qualitative changes that are not stable under small
perturbations of a parameter y as bifurcation phenomena, and the points u* in which
they occur as bifurcation points [142, 89, 93]. Usually, we can distinguish between dif-
ferent qualitative states by means of their geometrical shape or pattern configuration.
Indeed, two of the most relevant features that may change in presence of a bifurcation
phenomenon are the stability and the symmetry of the resulting states.

Now, let us translate the example above in a more precise mathematical language.
The study of the solution set for complex nonlinear PDEs such as (2.1) is usually
very complicated both theoretically and numerically. The aim is to investigate the
solutions of a specific model varying a one dimensional parameter, i.e. the bifurcation
parameter, which is the responsible for the bifurcating phenomena. Correlated to the
qualitative change of the solutions is the non-uniqueness behaviour, in fact, as we will
see, in such situations the model admits different solutions for the same value of the
parameter. We will refer to the set of solutions with the same qualitative properties as
branch. As we said before, when the parameter changes slightly, we expect that a stable
solution evolves continuously in a unique manner. In fact, this is usually guaranteed
by Theorem 2.1.1 and follows as a corollary of the Implicit Function Theorem.

The situation changes drastically if the inf-sup stability of the model, ensured by
(2.6) and (2.7), is lost. This happens when the bifurcation parameter reaches a critical
value p*, for which the system admits the existence of a qualitatively different solution
that bifurcates from the previous stable one. Within this thesis we will only treat
codimension one bifurcation, which means that the difference between the dimension
of the parameter space and the dimension of the corresponding bifurcation boundary
(the manifold generated by the critical values) is one. Hence, for the sake of clarity,
during the rest of this section we will restrict our exposition to the case in which the
first component of # € P C RP is the bifurcation parameter y, while the remaining
P — 1 parameters are considered fixed. For this reason, with a little abuse of notation,
here we will consider P = 1 and the bifurcating parameter y varying in P C RR.

Following [4, 3], we consider the problem (2.1) and assume that X = 0 is a solution
for every parameter p € P, namely

GOu)=0, YueP

which will be referred to as the trivial solution. Then, we can define the set of non-trivial
solutions of (2.1) as

S={(X,u) eXxP|X#0, G(X;u)=0}. (2.11)

Remark 2.2.1. For the sake of simplicity, we chose to present here the bifurcations that
originate form the trivial solution. Indeed, many times, and in particular among the
test cases we treated, one has a non-trivial ground state solution, which loses its unique-
ness branching to another non-trivial state. It is remarkable to note that such situation
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can happen in a nested fashion. Increasing in complexity, one can find a bifurca-
tion emerging from an already bifurcated configuration. This phenomenon is usually
called secondary bifurcation, and an example of that will be shown in Section 4.2.3.

As we understood from the example reported at the beginning, there could exist
some values for the parameter u such that one or more non-trivial solutions branching
off from the trivial one. These are the critical points that we have introduced before,
and in the context of bifurcation theory we define them as in [4, 3].

Definition 2.2.1. A parameter value y* € P is a bifurcation point for (2.1) if there exists
a sequence (X,, un) € X x P, with X;, # 0 such that

o G(Xu;pn) =0
o (Xu, pn) — (0, ).

Remark 2.2.2. Equivalently, one can ask that the couple (0, #*) belongs to the closure
of § in X x P, which means that in any neighbourhood of (0, u*) there exists a point
(X,u) eS.

Bifurcation is thus a paradigm for non-uniqueness in nonlinear analysis, and a
necessary condition is the failure of the Implicit Function Theorem, as stated by the
next proposition.

Proposition 2.2.1. A necessary condition for u* to be a bifurcation point for G is that the
partial Frechét derivative DxG(0; u*) is not invertible.

Proof. By contradiction, if DxG(0; u*) is invertible, then a straightforward application
of the Implicit Function Theorem states that it exists a neighbourhood U x O of (0, u*)
such that

G(X;u) =0, with (X, ) e Ux O ifandonlyif X =0.

Therefore, ;* is not a bifurcation point for G. O

Remark 2.2.3. We highlight that the inf-sup stability property, that should guarantee
the well-posedness of the PDE, is actually no longer valid for bifurcating phenomena.
Indeed, in the bifurcation point * the inf-sup constant g becomes zero, and the Frechét
derivative DxG(X; u) fails to be invertible. Therefore, unless specified otherwise, we
will talk about well posed problem as long as u # p*.

Remark 2.2.4. Consider a differentiable F : X — X and the PDE of the form
G(X;pu) = pX — F(X),

and hence such that DxG(0; u*) = u*I — F'(0), with I the identity operator. It is clear
that the result in Proposition 2.2.1 becomes: if y* is a bifurcation point for uX — F(X),
then it belongs to the spectrum of F/(0). In general, the converse is not true. Indeed,
if u* belongs to the spectrum of F/(0), then p* is not necessarily a bifurcation point.
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Remark 2.2.5 (connected to the previous). In the particular case in which
F(X)=AX with A:X—=X

a linear and continuous map, we can obtain a more precise characterization of the
bifurcation points. Indeed, since G'(0) = A, all the eigenvalues of G are clearly bifur-
cation points. Moreover, it is straightforward to prove that u* is a bifurcation point for
G if and only if p* belongs to the closure of the eigenvalues of A.

The aim of the bifurcation theory is thus to provide a mathematical description of
the bifurcating scenario that can be observed in physical systems and experiments.
The understanding of the global behaviour, both from the theoretical and numerical
viewpoints, is usually supported by the reconstruction of some scalar characteristic
value, which we will denote by s(X(u)). Of course, this highly depends on the physics
under investigation. A simple choice can be a representative norm of the solution,
while other examples are e.g.: (1) the maximum displacement of a compressed beam,
(2) a point-wise evaluation of the velocity for a jet-flow, (3) the number of bosons in a
Bose-Einstein condensate.

Given (X(u), 1) a solution of (2.1) for each instance of the parameter, one can draw
aplot of s(X(u)) versus p which in literature is known as bifurcation diagram. Therefore,
the existence of different solutions for the same values of the parameter will result in
the presence of multiple branch depicted on the diagram. Different choices of s(-)
result in possibly different plots, thus, to avoid confusion, such a function has to be
chosen carefully and has to represent the main features while changing the qualitative
behaviour of the resulting configuration.

It is clear that there exist many different bifurcation phenomena, and usually com-
plex nonlinear problems are characterized by one (or more) of those. In fact, the lit-
erature is full of examples of physical systems with qualitatively changing behaviour.
Each one of these bifurcating phenomena has a specific peculiarity, but in the field
of bifurcation theory they are usually categorized by some common features. Among
the others, the most known ones are: turning point (or fold) bifurcations, transcritical
bifurcations, pitchfork bifurcations and Hopf bifurcations. While the latter are usually
of interest when dealing with time-dependent problems, in this work we will focus on
models that exhibit pitchfork bifurcations.

Here, a much simpler one dimensional benchmark can be used to provide a syn-
thetic and clear example. Let us consider the Ordinary Differential Equation (ODE),

du 3

i G(u;pu) with  G(u;u) =pu—u (2.12)

introduced by Landau to describe the effects of hydrodynamical instabilities. From
the standard ODEs stability theory we can impose G(u; #) = 0, and find the following

stationary solutions
up =0, =4, Uz=—/lh

It is clear that the number of the existing solutions depends on the parameter y. In-
deed, for 1 < 0 we have the existence of a unique (actually trivial) solution, while for
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Figure 2.2: Supercritical (a) and subcritical (b) pitchfork bifurcation, with stable and
unstable branches denoted by S and U respectively.

u > 0 we have three different branches, corresponding to the three non-trivial solu-

tions 1, 1y, and uz. From the previous analysis, we can thus identify the bifurcation

point as u* = 0. Indeed, we can observe that the necessary condition in Proposition
. . ) . _ 2 o

2.2.1is satisfied, being DGl g,y = (4 —3u )‘(0,14*) =0.

We sketch this scenario in Figure 2.2, that represents an example of what is called
supercritical pitchfork bifurcation. The word supercritical refers to the fact that the
branches evolve to the right of the critical point p*. A similar configuration, called
subcritical pitchfork bifurcation, can be obtained changing the sign of the cubic term
in (2.12). Conversely, the latter is characterized by the non-uniqueness behaviour for
w<p

Furthermore, it is interesting to note the symmetry of the two plots in Figure 2.2
with respect to the p-axis. This is due to the fact that the two possible bifurcated states
describe the same configuration in two different reference systems. This will be clear
considering the physical setting in Sections 4 and 7. Another key feature of pitchfork
bifurcations is that usually branching states have less symmetry than the ground one.
For this reason such phenomena are typically called symmetry-breaking bifurcations.

Last but not least, a fundamental property to be studied during the investigation of
the bifurcation diagram is the stability property of a branch. As we can see in Figure
2.2, already in this simple setting the qualitative change in the solution corresponds to
a stability change for the trivial branch. More specifically, the branch corresponding
to the solution # = 0 remains stable (solid line) until it exists as unique solution. Once
passing p*, the two symmetric branches inherit the stability feature, while the trivial
one becomes unstable (dotted line).

The stability properties of the model can be mathematically investigated through
an extensive study of its spectral features, as we will describe in the next section.
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2.3 Stability analysis and eigenvalue problems

In this section, we review the basic notions for the stability analysis of a general PDE of
the form (2.1), and its connection with the eigenvalues problem [83, 54, 93]. The word
“stability” is widely used in many mathematical contexts, here we want to investigate
the physical stability of all the possible configurations existing as solutions for a certain
value of the parameter. For this reason, we can consider for the rest of the section a
parameter independent version of the problem (2.1), i.e. once fixed the value y =y we
want to investigate the behaviour of a stationary solution X = X(7) with respect to
small perturbations. Nevertheless, it is clear that this is equivalent to the study of the
equilibrium solution of a time dependent PDE of the form

0X
Fr G(X). (2.13)

Stability theory for PDE mimics classical finite dimensional ODEs theory, with the
fundamental difference that the former inherits a state space that is infinite dimen-
sional. Therefore, one has to carefully translate the concepts from these two settings,
but since we will deal with the stability of PDEs in a discretized setting, a review of
the finite dimensional setting is enlightening.

As an example, let us set X = RY, X = u and consider the non-parametric ODE
given by

ou

5 G(u) (2.14)
where u = u(t) € R?, and let us denote with 1 its stationary solution, so that G(ug) =
0. This means that if we start from the initial condition #(0) = uo, the autonomous
system evolves always as the initial configuration ug. On the contrary, to study the
stability of u( as solution of (2.14), it is standard to introduce a perturbation v(t) on
the initial value ug, investigating the behaviour of the solution u(t) = ug + v(t) with
initial condition u(0) = u;.

We can characterize the evolution of the perturbation, and thus the stability prop-
erty of the solution 1, by means of the following linear system

2—1} = D,G(up)v, with vg:=v(0) = uy — uy, (2.15)
which solution can be expressed by the well known Duhamel’s formula [54]. Hence,
since v(t) = eP:C(1)tyy is the unique solution to (2.15), the stability of the stationary
solution 1 is completely determined by the eigenvalues of the matrix D,G(up), as
stated by the following classical theorem [83].

Theorem 2.3.1 (Stable Manifold Theorem). Assume that it holds Re(c) < —x« for every
o € C eigenvalue of DG (1) with x > 0. Then there exists 6 > 0 and C > 1 such that if
|vo| < & then the solution v of (2.15) exists for all t > 0 and satisfies the exponential decay
estimate |v(t)| < Ce %l for all t > 0. Furthermore, ug is a stable solution of (2.14).

17
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Remark 2.3.1. Conversely, it is straightforward to see from the previous theorem that,
if D,G(up) has an eigenvalue with positive real part, then uy is an unstable solution of
(2.14). More precisely, there exists an € > 0 such that for every ¢ € (0, ¢) there exists an
initial data vy with |vg| < J such that the associated solution v(t) satisfies |v(T)| > ¢
for some finite T > 0.

As in the case of ODEs theory, also the PDEs dynamic for the general nonlin-
ear problem (2.13) is mainly governed by the behaviour of the linearized system. In-
deed, as we have seen from the Proposition 2.2.1 and successive remarks, the spectral
properties of the linearized operator play a key role in this context. We can thus go
back to (2.13), and similarly to what we have done before, we consider a perturbation
V(t) of the equilibrium solution Xy. Again, if we take a small initial data X; and let
X(t) = Xo + V(t) be the associated local solution, then as ||V (t) || remains sufficiently
small we expect the dynamic of (2.13) to be well approximated by the linear evolution
equation

oV

ot
Analogously, we can give a proper definition of stable solution for the infinite dimen-
sional setting.

= Dxc(XQ)V, with V() = V(O) = X1 — Xo. (216)

Definition 2.3.1. Let X be an equilibrium of (2.13). We say that Xy is a (linearly) stable
solution for (2.13) if V = 0 is a stable solution of (2.16), i.e. if for every ¢ > 0 there
exists a 6 > 0 such that for every V) € X with ||Vp||x < ¢, the solution V (f) of (2.16)
with V(0) = Vj satisfies ||V (t)||x < € for all t > 0.

Moreover, recalling the Proposition 2.2.1, we can give the following definition

Definition 2.3.2. Let L, I be a linear and the identity operators, respectively. We denote
by p(L) the resolvent of L on X as the set of all ¢ € C such that L — o1 is invertible with
bounded inverse. Furthermore, the spectrum of L on X, denoted by X(L) is defined as
Y(L):=C\ p(L). Finally, 0 € (L) is an eigenvalue of L if Ker(L — ¢I) # 0.

Therefore, the main difference passing from the finite to the infinite dimensional
space is that the concept of stability does not depend only on the eigenvalues, but
rather on the entire spectrum. In fact, in view of the Remark 2.2.5, it is now clear that,
even considering G(X; i) = uX — AX with A linear and continuous, there might be
points y in the spectrum of A that are not bifurcation points for G. On the other hand,
u* can be a bifurcation point for G without being an eigenvalue of A.

We can thus conclude this section by remarking a necessary condition, based on
the above considerations, for the stability of an equilibrium solution of (2.13).

Proposition 2.3.1. An equilibrium solution Xy of (2.13) is said to be stable if ¥.(L) N {c €
C :Re(0) > 0} = @. Else, X is said to be unstable.

Therefore, the stability properties of the models considered in this thesis will be anal-
ysed through the eigenvalues problems presented.

It is clear that in the context of nonlinear parametrized PDEs, such investigation,
together with the analysis of the bifurcation diagrams, can only be achieved by means



2.3. Stability analysis and eigenvalue problems

of numerical approximation methods. Therefore, after having presented in this chapter
the mathematical background for the analysis of bifurcating parametrized problems
and the existing relation between the stability analysis and the investigation of the
spectral properties of the models, now we can finally move to the presentation of the
numerical methodology we have developed.

In the next chapter, we will describe the different techniques, with a focus on the
computational complexity, that will allow us to discover numerically the singularities
of the physical phenomena under investigation.
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Chapter 3

Numerical approximation of bifurcating
phenomena

As we said in the previous chapter, we are interested in nonlinear and parametric
PDEs where the solution for a given parameter u exist, but may not be unique [24, 27].
Indeed, the local (w.r.t. the parameter) well-posedness of the problem (2.1) relies on
the local spectral property of its Frechét derivative DxG(+;-), and if it fails to fulfill
certain assumptions, the behaviour of the model has to be investigated more carefully.

In the bifurcating context, we can mimic the definition of the set of non-trivial
solutions in (2.11), introducing the terminology of solution branch as the set of the
solutions with the same qualitative features for different values of the parameter p.
Hence, we will denote a solution branch as

M ={X(p) € X | G(X(n);n) =0, p € P}. (G.1)

Since we deal with the non-uniqueness of the solution at fixed u, we expect the system
to be characterized by the existence of multiple solution branches. We can thus define
the set of all the existing solutions to (2.1) as the set of the solution branches

k k
X =JMi = UJ{Xi(m) € X | G(Xi(wsm) =0, p € P}, (32)
i=1 i=1

We remark that when u ¢ P, the case k = 1 can be seen as the well-posed problem
and X is often referred to as the solution manifold [74].

Remark 3.0.1. Although we are considering in (3.1) only the set of a single qualitative
state, we highlight that since we are interested in the bifurcating behaviour, the set
A& usually contains the singularity u*. Hence, contrarily to what is usually found
in literature, we are not restricting ourselves to the case of a non-singular branch of
solution. For this reason, we will extend the definition of each solution branch to the
pre-bifurcation range of the parameter, where the solution is unique.
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In this chapter, we want to describe the numerical approximation of a general non-
linear bifurcating equation. In the first part, we will review the branch-wise approach
we developed in order to recover the bifurcation diagram. The stability properties of
the solutions are investigated as well, with the help of different strategies involving
generalized eigenvalue problems. We will refer to these steps as the high fidelity ap-
proximation, since we deal with high dimensional and time consuming procedures. In
order to avoid this computational complexity, in the second part, we will present the
Reduced Order Models that we applied to reduce the dimensionality of the system,
while allowing for an efficient approximation of the bifurcating phenomena through
the reduced branch-wise algorithm we developed.

3.1 High fidelity approximation

The standard techniques we will review in this section are associated to the context
of “high fidelity” methods, in the sense that they are representing the first level of
discretization, where a lot of degrees of freedom have to be involved, possibly causing
a too costly computation.

The strategy we have developed for the reconstruction and the analysis of the
whole bifurcation diagram is based on the combination of three well-studied method-
ologies: the Galerkin Finite Element (FE) method, the Newton-Kantorovich method
and a Continuation method. These will serve us to discretize, linearize and continue
each branch. A discretization method is certainly needed for the numerical analysis of
a PDEs, therefore in the next subsections we will review the Galerkin Finite Element
method in the context of the general nonlinear PDE in (2.1).

Through the rest of this section we will always be interested in recovering the full
bifurcation diagram for the model under consideration, thus the numerical approxi-
mation will involve the computation of the discretized counterpart of (3.2). To this
end, we pursued an high fidelity branch-wise approach. In other words: we aimed at
reconstructing one fixed branch M C X, corresponding to some i € {1,...,k}, at time.
The global behaviour is thus obtained approximating its solutions for all the values in
P and then moving to the next solution branch in X

3.1.1 Galerkin Finite Element method

We introduce the standard notion for the discretization of a generic problem of the
form (2.1) with the Galerkin FE method [133, 129].

Let X, be a family of finite dimensional spaces, dependent from the discretization
parameter #, such that X; C X, with inherited inner product (X,Y)x, = (X,Y)x and
norm [|X||x, = [[X[|x for X,Y € Xj. Furthermore, we will assume that once fixed
the discretization parameter /, the computational domain Q, = int (Ugc7, K), i.e. the
interior of the union of the elements K of the triangulation 7}, coincides exactly with
the real domain (), an open and bounded regular domain in R4, with d = 2,3. Then,
let us consider the discretized spatial space Xy = X; N K, of dimension dim(Xy/) =
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N < oo, which denotes the high fidelity degrees of freedom, where
K, ={vec’Q): VlkeP, YKET,},

and P, is the space of all the polynomials of degree at most equal to r on the single
element of the triangulation 7j,.

Then, we can go back to the weak form (2.3) of the equation (2.1), and project it
into the finite dimensional vector space X /. The Galerkin FE method reads as: given
p € P, we seek Xy := Xy (u) € Xy that satisfies

(G(Xnsm), Yn) = 8(Xn, Yasu) =0, VY € Xy (33)

The well-posedness of the discrete problem (3.3) is not inherited from the contin-
uum one, also assuming the inclusion property X C X. Indeed, while it is clear
that the continuity hypothesis (2.5) is still satisfied also at the finite dimensional level,
the same is not true for the inf-sup stability. Indeed, the discrete counterpart of the
continuity assumption (2.5) can be reformulated as the existence of a constant 7, > 0

such that Ag1Zn] (Xur, Y. )
N N7 YN

Ynv(p) = sup  sup ﬁx I Yl £

XnveXy YareXy N TENTIX

S 7'/\/' 7 (3'4)

while the inclusion property is only a necessary but not sufficient condition for (2.6)
and (2.7) to hold at the discrete level. Hence, an additional assumption has to be
required for the inf-sup discrete stability of the variational form dg. Relying on the
Babuska theorem [6], we will also assume that at the discrete level dg[Zy/|(-, ;) is
inf-sup stable at y, i.e. there exists a constant 3, > 0 such that

. de|Zan (X, Y
By(u) = inf  sup ﬁg}[{ ~( /\/Y N 1)
Xy eXpy Y eXys NHXNH NHXN

> By - (3.5)

Once again, we highlight that also at the discrete level the well-posedness is lost at
the bifurcation points. This means that S (y) reaches the value zero as y approaches
p*, causing the non invertibility of the Frechét derivative.

From the algebraic point of view, we denote with {E/ }]Ai ; a Lagrangian basis for

X, such that we can write every element X (u) € Xy as
Xx(w) = Y X WE, (3.6)

and denote the solution vector as Xy (¢) = {X/(\]/) (y)};i 1

We remark that usually the solution X,  contains multiple variable/components,
in which case A has to be considered as the sum of the degrees of freedom of each
variable/component. Moreover, unless otherwise specified, we will assume that all the
components are discretized on the same portion of the computational domain, with
the same degrees of freedom. Despite this, we will still denote the dimension of the
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FE space as N, keeping in mind that this actually is representing the dimension of
each component.
We then lead back to the study of the solution X-() € RV of the nonlinear system

N . o
g(EXf(}(y)EhE’;y) =0, Vi=1,...,N 3.7)
j=1

which corresponds to the solution of the algebraic form of (3.3) given by
Gy (Xn(m);p) =0 in RV (3.8)
where the high fidelity residual vector G is defined as

(G (X ()i )i = 8K (w), E5sp) Vi=1,..., .
In the next subsection, we will describe how to handle the nonlinearity appearing in

equation (3.8).

3.1.2 Newton-Kantorovich method

Since the discretized weak problem (3.3) still involves a nonlinear structure, we have
to deal with a method that linearizes it, in order to be effectively treated and solved by
means of the Galerkin FE method. The nonlinear solver chosen to linearize the weak
formulation in (3.3) is the well-known Newton-Kantorovich method [43, 130], which
reads as follows: given # € P and chosen an initial guess X (u) € Xy, for every
k=0,1,... we seek the variation § X\ € X such that

dg XA ()] (6Xn Yovi ) = §(Xie (), Yaiw) . VY € Xy, (39)
then we update the solution at the iteration k 4-1 as
X{ () = Xhe () = 0X
and repeat these steps until an appropriate stopping criterion is verified.
Remark 3.1.1. Among the others, the most relevant stopping criteria are:

o the increment control on the relative norm of the variation 6 X, which checks for
small steps of the method;

o the residual control on the absolute/relative norm of the high fidelity residual
Gy

Regarding the convergence of the Newton-Kantorovich method, we can rely on the
following theorem [158, 43].
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Theorem 3.1.1. Let X (p) a solution of the equation (3.3), such that the continuity (3.4) and
inf-sup (3.5) properties are satisfied. Let dg[Xa (u)] (-, -; ) be locally Lipschitz continuous at
Xn (). Then, if the initial condition X3 (p) is sufficiently near the solution, the sequence
{ XX (u) }x generated by the Newton method converges quadratically to X ().

Recalling the unique decomposition of the solution Xy (p) in terms of the basis
functions {Ef}]/i 1, we can proceed with the algebraic form of the linearised system
in (3.9). Hence, the k-th step of the Newton method combined with the Galerkin FE
method and applied to (3.8) reads: fixed u € P, find 6Xy € R such that

In (X5 (1) ) 6X = Gar (X ()i 1) (3.10)

where the Jacobian matrix in RV *V is defined as

U O (s )i = dg X5 () (B E ), forall ij=1,...,N. (3.11)

It is clear that as long as u # p* the invertibility of the Jacobian matrix is guaran-
teed under the discrete inf-sup assumptions required before.

Remark 3.1.2. In view of the Remark 2.1.1, we can observe that, for the discrete inf-sup
stability (3.5), the condition on the surjectivity of the form dg[Zy](:,-; u) is no longer
needed. Indeed, while the assumption (3.5) corresponds to the non-singularity of the
jacobian matrix Jys, a discrete counterpart of the assumption (2.7) would require its
surjectivity, or equivalently the injectivity of the transpose matrix J§,, which being
square would be the same as requiring (3.5).

At this point we can approximate a solution X () to (2.1) for a fixed value of the
parameter p. In the following, we aim at investigate its stability properties through
the spectral analysis.

3.1.3 Eigenvalue problem

Dealing with the existence of many possible configurations for the system, a natural
question is to understand which one inherits the stability of the unique solution, when
it exists. As we remarked in Section 2.3, to perform the stability analysis of the model
under investigation, we can rely on its spectral analysis, which consists in the study of
the eigenvalues of the linearized PDE. Indeed, this connection allows us to understand
the stability property of a specific configuration, by looking at the sign of the spectrum
of the linearised operator. Of course, this kind of analysis is not always feasible at the
continuous level, hence the investigation has to be performed at the discrete one. In
particular, for a general nonlinear problem, one linearizes the equation (3.3) around
the solution X = X(7) to be examined, and then solve the eigenvalue problem given
by

DxG(X; ) X, = ozXe, (3.12)

where (07, X.) is the eigenpair formed by the u-dependent eigenvalues o3 and the
eigenvectors X,.
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From the considerations in Section 2.3, we aim at observing that the eigenvalues
0, vary continuously w.r.t. the parameter y, and all have negative real parts when the
corresponding unique solution X(u) exists and is stable. On the other hand, when
approaching to the bifurcation point x*, the model shows different stability properties
and thus it exhibits a change of the sign for the rightmost eigenvalue. Looking at the
complex plane and following the path traced by the eigenvalues, we will discover at
the same time the crossing of the imaginary axis for the biggest eigenvalue and the
presence of a new solution, that will inherits the stability of the former one. Hence,
the old stable solution will be now characterized by an eigenvalue with positive real
part, denoting its instability.

Studying the behaviour of the eigenvalues can provide useful informations, but it
usually results in a complex and computationally expansive analysis. For this reason
another possibility is to consider a different way to study the spectral properties. This
involves the construction of a non-parametrized generalized eigenproblem, where the
parameter is an unknown which plays the role of the eigenvalue. This allows to
find the actual values of the bifurcation points, overcoming the need for a complete
investigation of the eigenvalues detecting the crossing of the imaginary axis. We will
present an application of this strategy in Section 4.2.1. With the application of this
strategy we will also be able to detect more precisely the phenomenon of multiple
bifurcation, that occurs in connection to eigenvalue with algebraic multiplicity strictly
greater than one.

Therefore, once fixed u € P, we are able to approximate a solution X,/ (p) and dis-
cover its stability properties, but our aim is to investigate the evolution of the solutions
varying such a parameter. For this reason we will introduce in the next subsection a
class of methods to follow the branches.

3.1.4 Continuation methods

To understand how the stability features of a solution change with respect to the vari-
ation of the parameter p, it is fundamental to be able to follow the branch which it
belongs. Moreover, the detection of the solution path is the key to recover the bifurca-
tion diagram. In fact, as we said, it provides a global picture of the model behaviour,
which can also be enriched with its stability analysis. In view of this need, we in-
troduce the continuation methods [2, 52, 51, 86], that serve us to follow the branching
behaviour of the model.

A continuation method allows to generate a sequence of solutions, corresponding
to the selected values of the parameter, in order to construct branches of possible
configurations. For this reason, they are usually called branch tracing or path following
methods.

The main ingredients for a continuation method are:

o the selection of a good initial guess;

o a (possibly adaptive) rule to select the step size Ay;
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o a detection tool for the bifurcation point;
o a stability check for the approximated solution.

While the last two items are already embedded in the eigenvalue analysis we pre-
sented before, the first one is strongly related to the choice of the methodology. In
particular, we are interested in predictor-corrector methods, which represent a wide
class of techniques that helps the branch tracing by splitting the approximation in two
steps, as follows. Let us start from a solution X N(y]-) to (3.8) for the parameter value p ir
we want to approximate the solution Xy, (y]- 1) for the corresponding next value B
Instead of computing directly the pair (X (#;.1),#;,1), a predictor-corrector method

acts as follows: in the first step the pair ()N(N(ﬁj),ﬁ].) is constructed from (X/\/(y]-), yj),
and then the former, without being a solution for p;, ;, merely serves as initial guess
in the second step.

As concerns the second item of the previous list, it is connected to the choice of the
parameter values at which compute a solution to (3.8). Usually this represents a bottle-
neck for these methodologies, indeed there is plenty of literature that investigate com-
plex techniques, which performances highly depend on the bifurcation phenomenon
and the resulting bifurcation diagram [35, 138, 128].

Following a branch is not an easy task, in fact, during the investigation of the
parameter space, frequent issues dealing with the continuation step are:

o Ap is too large, such that we can possibly skip the bifurcation point, without
noticing the branching behaviour;

o Ap is too small, causing a waste of computational resources, mostly when ap-
proximating regions far from the critical point.

The identification of such locations is thus related to the kind of parameterization
strategy chosen to trace the branch. Moreover, we highlight that when Apu is chosen to
be too large, the previously computed solution will be far from the one that we want
to approximate, possibly causing the non-convergence of the Newton method.

In the following, unless specified otherwise, since we always deal with pitchfork
bifurcations we will restrict ourselves to the simplest continuation method available.
This is called simple continuation method and can be seen as a basic predictor—corrector
scheme where the pair (XN(;:]) #;) is actually given by (Xu(p;), p; + Ap;). In fact,
within this range of applications, we will never encounter fold b1tj rcat1ons, which
usually cause the non-convergence of the simple continuation method.

When dealing with more complex phenomena, one has to change the continuation
method in order to help the Newton iterations to converge. For this reason, one
can change the parametrization strategy, considering e.g. an arc-length like procedure.
This exploits the Taylor expansion of the solution as p-dependent function, in order to
add an equation to (3.8) at each step, that automatically find the step-length Au. Such
procedure is usually called pseudo arc-length technique [2, 142] and it aims at linearizing

27



3. NUMERICAL APPROXIMATION OF BIFURCATING PHENOMENA

28

the branch through the arc-lengh parametrization. An example of the application of
such technique will be analysed in Chapter 8.

We conclude this section by illustrating the algorithm for the high fidelity recon-
struction of a branch, which is the result of the combination of all the methodologies
we have presented until now.

3.1.5 A branch-wise algorithm

We can finally present the algorithm we have developed in order to deal with the
branch-wise reconstruction of the bifurcating behaviour of the models. The approach
that we have implemented in this high fidelity context, requires the combination of
all the different methodologies we presented in the previous subsections. Within the
same setting, we will analyse also the stability of the discovered solutions through the
spectral study depicted above.

The Algorithm 1 is the implementation result of the building blocks needed to
linearize, discretize and continue each solution branch. More precisely, we combine
respectively:

(i) Newton method, as the nonlinear solver,
(ii) Galerkin FE method, as the discretization phase,
(iif) simple continuation method, as the bifurcation path tracer,
(iv) eigenvalue problem, as the stability and bifurcation detection tool.

These are the main steps for the reconstruction of a bifurcation branch of a general
non-linear parametric PDE. We remark that here we are pursuing a branch-wise ap-
proach, in the sense that we are fixing the branch M C X to reconstruct, while later
we will highlight the tricks that can be helpful to discover different branching solu-
tions. Moreover, as already remarked in Section 2.2, in the following we will consider
the parameter u as a one dimensional object. In fact, thanks to the codimension one
assumption, we can always consider that the first component of u € R is the actual
bifurcation parameter, while the other P — 1 are fixed. Finally, in the algorithm we
omitted for ease of notation the subscript N/ of the high fidelity solution vector X .

Let us now review the combination of the methodologies (i)-(iv). At the very
beginning one implicitly chooses the branch to approximate, by choosing the initial
guess to start the iteration of the Newton method. Indeed, the simplest way to “guide”
the non-linear solver to a desired branch is through the choice of the initial guess. We
remark that a more involved but less problem-specific strategy will be analysed in
Section 8.2.2.

Hence, in order to fully recover the branch behaviour, when dealing with the sim-
ple continuation method (in which the parameter step-length is fixed and already pre-
scribed) we consider a discrete version of the parameter space Px = [py,...,pug] C P
of cardinality K and loop over this ordered set. The loop serves to mimic the predictor-
corrector method, assigning the solution obtained for a given parameter p; as the
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initial guess for the non-linear solver at next iteration for p; ;. This allows us to fol-
low the bifurcating behaviour of the model. As we said, this simplest version of the
predictor-corrector methodology works well with pitchfork like bifurcation, while a
more involved methodology has to be implemented when dealing with turning points
or secondary bifurcations, as we will see later in Section 4.2.3 where a variant of the
simple continuation method will be presented.

For the actual linearization and discretization of the equation (3.8), we adopt the
Newton-Kantorovich method (3.10) in combination with the Galerkin FE method. The
former helps to linearize the system around the approximation of the solution at the
k-th iteration, while the latter projects the problem into the finite dimensional space
X

Remark 3.1.3. Performing a projection onto a space which dimension is given by the
number of degrees of freedom N of the problem can be a computational bottleneck. In-
deed, complex phenomena require a fine discretization of the discrete domain, which
cause a possibly huge linear system that has to be solved repeatedly until a conver-
gence criterion is satisfied (here we chose a threshold tolerance ¢ for the space norm of
the high fidelity residual). As a matter of fact, this means that we have to solve a linear
system with A/ degrees of freedom, for each iteration of the Newton method and for
each parameter in Pk, assembling repeatedly the Jacobian matrix and thus causing an
almost impracticable computational effort. This will be the starting point for the next
section.

Finally, having computed a solution X; of the problem for the parameter y;, we can
investigate its stability properties solving the eigenvalue problem, which involves the
Jacobian matrix J and the inner product matrix M. This will allow us to understand
the physical stability of the approximated solutions and to detect the bifurcation points
connected to the qualitative changes of the model.

Algorithm 1 A pseudo-code for the reconstruction of a branch

1: Xo = Xguess > Initial guess
2: for u; € Pk do > Continuation loop
3: X](.O) = Xj1 > Continuation guess
4 while ||G N(X](k) in)lx, >¢do > Newton method
5: JN(X](k);yj)(SX = GN(X](.k);yj) > Galerkin FE method
6: e

7: end while

8 JIn(Xjp)Xe = 0 MarXe > Eigenproblem for stability
9: end for

The algorithm we have just presented can easily reconstruct a branch while de-
picting its stability properties. Depending on the application, the investigation of the

29



3. NUMERICAL APPROXIMATION OF BIFURCATING PHENOMENA

30

bifurcation phenomenon with its peculiarities is evident already during the approxi-
mation of one single branch, discovering the qualitatively changes that the solutions
exhibit when reaching the bifurcation point. As we showed in the simpler case of
the ODE, for pitchfork like bifurcation we pass from a stable trivial configuration to
another stable but non-trivial one. This is an example of what usually happens when
the algorithm is used for the approximation of a branch, therefore with a little abuse
of terminology, as before we will call branch the unique extension of the bifurcating
behaviour to the pre-bifurcation regime.

Moreover, it is evident that the choice of the initial guess is fundamental, but it is
not sufficient to recover the full bifurcation diagram. We will explain case by case how
to properly set the continuation method in conjunction with the initial guess, since
we analysed different methodologies depending on the availability of the information
that we had or we recovered from the discrete approximation of the systems.

In particular, such tricks for the choice of the initial guess include

o the discretized version of analytic expressions, which have the main properties
of the sought solution (see Sections 4.2.2 and 5.2.1);

o the eigenvectors of the global eigenvalue problem, to obtain the direction of
the bifurcation branch in a neighbourhood of the bifurcation points (see Section
4.2.4);

o a deflation method, which requires only one initial guess, and then reconstructs
the full diagram preventing the convergence to already discovered solution, help-
ing the solver to find new branches (see Section 8.2.2).

In the next section, we will start from the consideration in Remark 3.1.3 to review
the Reduced Order Models, in connection to bifurcation problems, in order to present
an efficient version of the Algorithm 1.

3.2 Reduced Order Models

Dealing with the approximation of parametrized problems can be a critical task from
the computational viewpoint. Such difficulties even increase when nonlinearities are
taken into account. Therefore, in the following sections, we will review the basic
notions of the so called Reduced Order Models (ROMs) [115, 74, 130, 17, 15], by which
we are able reduce the computational cost of our simulations. With this aim in the
past years many authors, to mention few works [80, 127, 75, 65, 32, 154, 38, 131, 16],
developed and applied this collection of methodologies used to replace the original
high dimensional problem, called high fidelity approximation, with a reduced one that
is easy to manage. After a brief introduction to the reduced techniques we adopted,
together with the additional methodologies, to tackle the presence of nonlinear terms,
we will present the efficient counterpart of Algorithm 1 for the reconstruction of a
bifurcation diagram. We remark that despite the great interest behind these complex
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phenomena, only few works treated them by means of reduction strategies [113, 149,
71,72,124, 112].

3.2.1 The Reduced Basis method

As we have seen during the previous section, the preliminary step for the discretization
of (2.1) is the projection of the weak formulation (2.3) in a finite dimensional setting,
which results in the Galerkin problem (3.3). Despite the increasing computational
resources available, finding the solutions to this problem is very challenging because
of the potential high number of degrees of freedom N. Moreover, we recall that in
addition to the multi-query context and the nonlinearity of the models considered, the
existence of multiple solutions complicates the setting, requiring a deep investigation
of the system behaviour with respect to the parameter space.

For this reason, here we focus on a specific methodology in the class of the ROMs,
called Reduced Basis (RB) method. It consists in a projection like technique, and there-
fore it shares many features with the Galerkin FE method. Roughly speaking, this
method consists in a projection of the high fidelity problem on a subspace of smaller
dimension, constructed with some properly chosen basis functions.

In practice, the key feature of the RB method is the adoption of the offline-online
paradigm. Indeed, in order to retrieve a solution to (3.3), for a given parameter u € P,
the computation is divided in two steps:

o An offline phase: approximated solutions to (3.3) are computed with an high
fidelity method (Finite Element, Spectral Element, Finite Volume, Finite Differ-
ence), corresponding to selected representative parameters values/system con-
tigurations, and stored together with other information about the parametrized
problem. This is the computationally expensive step, and it can benefit from the
possibly available high performance computing (HPC) facilities.

o An online phase: the pre-processed information obtained during the offline phase
is assembled and used to compute the solution for each new instance of the
parameter in a short amount of time (ideally in real-time), even on a relatively
low power device such as a laptop or a smartphone.

This split in the computational procedures is built in such a way that new parameter
dependent quantities can be easily and quickly computed online, while representative
basis functions for selected parameter values and more demanding quantities are pre-
computed offline.

Thus, the main goal of the offline phase is the construction of a low dimensional
basis for a discrete manifold Xy C X, called reduced manifold, which we assume to
well approximate the high fidelity manifold X .

This entails solving Ny, times the Galerkin high fidelity problem associated to
Niyain values of p in P. The obtained solutions { X (p;) } fi”{"” are usually called snapshots.
Having recovered the information about the p-dependence of the solutions, we need to
process these snapshots in order to obtain a basis that span the reduced manifold Xy.
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Among the others, the Proper orthogonal decomposition (POD) and the Greedy techniques
[74, 115, 130] are the most known and used ones. Let us assume for a while that such
a basis is already built, and see how the reduced problem is constructed through the
projection on the subspace spanned by it.

As concerns the online phase, it is the efficient and reliable part where the solutions
are computed through the projection on Xy. The complexity reduction, which enables
the efficiency, is based on two main assumptions:

(i) the affine decomposition holds, i.e. one can rewrite the weak formulation as a lin-
ear combination of p-independent forms and u-dependent coefficients. Hence,
the contribution of the parameter is entirely encoded by the coefficients, which
usually allow to rapidly assemble the system, relying on the precomputed pa-
rameter independent quantities.

(ii) we can accurately approximate the discrete manifold X, with a much lower di-
mension space Xy, i.e. we need only a small number N < N of basis functions.

Therefore, the reduced computational cost mainly comes from avoiding to project on
the large FE manifold, while relying on the small RB one. It is clear that, in the
our context, the assumption (i) is difficult to fulfill, because of the u-dependence of
the solution around which we linearise the nonlinear weak formulation (3.8). The
assumption (ii) is instead usually linked with the concept of Kolmogorov n-width
[103, 45], which expresses the capability of a reduced manifold to approximate the
high fidelity one.

Let us now describe the details of the online phase. Since it is a projection like
method, we can follow the same steps described in Section 3.1. Hence, we consider
the discrete weak formulation (3.3) and projecting it into the reduced space Xy we
obtain the following problem: given u € P, we seek Xn(u) € Xy such that

§(Xn(m), Yn;pn) =0, VYyn € Xy. (3.13)

Also here we remark that the obtained reduced weak formulation can not be directly
solved, since it involves nonlinear terms. Therefore, following Section 3.1.2 we apply
the Newton-Kantorovich method that reads as: chosen an initial guess X% (u) € Xy,
for every k = 0,1, ..., find the variation Xy € Xy such that:

dg[XN ()] (0Xn, Y i) = g(XN(m), Yns ),V Yy € Xy, (3.14)

and then we update the solution as X’;\]H(y) = XX (u) — 86Xy, until an appropriate
stopping criterion is verified.

It is clear now that the system we constructed is based on a low dimensional
manifold, so we can finally show the counterpart of the high fidelity quantities in
(3.10).

Let {Z"}N_, be a given orthonormal basis for Xy, with respect to the inner product
defined on the space X . Then, the reduced manifold is defined as

Xy = span{Zl, .. .,ZN},
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therefore we can express every element Xy (¢) € Xy in the following way

N
Xn(p) = Y X\ (=" (3.15)
m=1

Unless specified otherwise, as for the high fidelity setting, we remark that when
XN contains more variables/components, the dimension of the reduced basis space N
has to be considered as the sum of the basis used for each variable/component. From

the algebraic standpoint, we can denote with Xy (p) = {Xl(\lm) () }N_, € RN the reduced
solution vector. Plugging (3.15) into (3.13) and choosing Yy = X" € Xy, for1 <n <N,
we obtain the following algebraic system

N
g(Z X}Vm)(y)Z’”,z";y> =0, n=1,...,N. (3.16)
m=1

We will denote by Gy the reduced counterpart of G, defined by

N
(GNOXN ()i 1)) = 8 (; X@(y)zm,zn;u) , (3.17)

which we will refer to as the reduced residual vector. Moreover, we will denote with
V € RV*N the transformation matrix whose elements

(V)jm = 2{j) (3.18)

are the nodal evaluation of the m-th basis function at the j-th node. With this notation,
we can rewrite problem (3.16) as

VTG (VX (1); ) = 0. (3.19)

Finally, the algebraic form of the Newton method, combined with the RB technique,
provides the following formulation: at every iteration k we seek 6Xy € RY such that

IN (XK (); )8XN = G (X ()i 1), (3.20)
where Jy is the RN*N reduced Jacobian matrix
IN(XK () ) = VII(VXK (); )V (3.21)

Remark 3.2.1. For a general nonlinear problem equation (3.20) still involves the degrees
of freedom of the high fidelity problem N. Because of this, the repeated assembly of
the reduced Jacobian compromises also at the low fidelity level the efficiency of the
reduced order method during the online phase. As we will see later, this issue can be
overcome by adopting a class of affine-recovery techniques, which allows consistent
speed-ups by interpolating the nonlinear part of the variational form.

Having described the online simulation, we now go back on the building process
of the reduced manifold Xy. Hence, in the next subsections, we will analyse the main
techniques to construct a basis and the strategies to recover the affinity assumption
when, due to the nonlinearity, it does not hold.
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3.2.2 The Proper Orthogonal Decomposition

The keypoint for the application of the Reduced Basis method is the construction of the
basis. Here we focus on the Proper Orthogonal Decomposition (POD) [10, 82], which is
a compression strategy, closely related to the Singular Value Decomposition (SVD) and
the Principal Component Analysis (PCA), that serves to reduce the dimensionality of
a given dataset. Indeed, starting from a sufficiently rich information about the system,
it allows to extract the main features by a lower dimensional representation given by
the first computed modes, which ideally retain most of its energy. In our applications,
we use the POD to generate the Reduced Basis space Xy. Moreover, this is proved to
be optimal in the I2(IRN) sense, in fact the choice of the basis is given by the reduced
space Xy which minimizes among all the the N-dimensional subspaces Zx C Xy,
the following quantity

1 2
inf ||X - Z , 3.22
s L sk ot~ 2l 62)
where we denoted with Pipiny = {pty, ..., tyzi,+ @ finite sampling of P of dimension
Nigin. Therefore, in order to construct Xy one considers Py, and build from the
correspondent solutions {X N(y]-)}N"“’“ the symmetric and linear correlation operator

j=1
C : Xy = Xy defined as

C(Vy) =

Y (VN, XN(P‘]')>X Xnv(u), Vv € Xy (3.23)

N, train j=1

Then, one computes the eigenvalue-eigenfunction pairs (0;, ¥;) € R x Xy, such that
|'¥illx = 1forany i =1,..., Nyun, by means of the following eigenproblem

(c). Xnm)) =0 (¥ Xnm)) , 1< < Niin- (3.24)

Sorting the eigenvalues and the associated eigenfunctions in descending order, we can
use the first N eigenfunctions to built the reduced space Xy. Moreover, it is possible
to prove that the error obtained approximating the solutions of X, with the ones in
Xy is given by

1 Nrmin 2 Ntruin
N Y I Xn(pj) = Py (X/\/(,uj)> Ix=4| X . (3.25)
=1 j=N+1
where Py : Xy — Xy is the projection operator over Xy defined as
N
Pn(Vi) =Y (Vi ¥i)x ¥i- (3.26)

i=1

The result in (3.25) is often used as a criterion to select the dimension of the POD basis.
Indeed, one chooses the minimal integer N such that the retained energy from the last
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(Niyain — N) snapshots, which is the right-hand side term in (3.25) normalized with
respect to the total energy, is less than a fixed tolerance epop. This means that we
are finding the basis which minimizes over all possible N dimensional orthonormal
bases Zy the error between the snapshots and their projection through Zy. Therefore,
from the discrete point of view, in order to obtain a reduced space with such desired
properties, one has to solve the eigenproblem (3.24) for the correlation matrix C. To
perform efficiently this task, one usually consider the SVD of the snapshots matrix

S = [Xn(py), - Xn(py, )] € RN *Nimin, (3.27)

which columns are the degrees of freedom of the Ny, snapshots. This way, the POD
basis of dimension N is given by the first N left singular vectors.

It is clear that one of the disadvantages of this technique is the huge number of
high fidelity solutions that have to be computed to obtain a fairly accurate represen-
tation of the high fidelity manifold. Indeed if we miss some information at the first
discretization level, also the reduced basis, after the compression step given by the
POD, usually will not contain them.

3.2.3 The Greedy algorithm

As an alternative to POD, one can implement a Greedy algorithm [74, 130, 25], an
iterative technique which is constructed in order to increase the precision of the basis
at each iteration. Instead of building a huge dataset, corresponding to a given param-
eter sample Pyin, the Greedy algorithm requires only one high fidelity solution per
iteration, and a total number of N solution for a basis of dimension N. Hence, the key
ingredient is the selection of the parameters for which compute the solutions. Such
choice is usually guided by an error estimator Ay () such that

[Xn (1) —Xn(m)lx, < An(p) VmeP, (3.28)

which is used at the generic n-th iteration, to find the worst approximated solution by
the reduced basis space of dimension 7 in the whole parameter space P as

Pyr = ArgIax Ay (p). (3.29)
Then, the corresponding snapshot is orthonormalized with the Gram-Schmidt algo-
rithm [80, 130], in order to preserve the orthonormality of the basis, and successively
added to it. The iterative procedure ends when a prescribed tolerance ¢, is reached
by the error estimator.

The bottleneck of this methodology is clearly the individuation of the parameter
which produces the worst approximation, since it would involve a complete descrip-
tion of the high fidelity manifold to build the error estimator. For this reason one
usually need the estimator to be efficiently treated. To obtain this property one can
again use the affine decomposition assumption, which allows for an inexpensive com-
putation of the estimator [115, 80].
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We remark that due to the lack of the affine decomposition assumption and the
general unavailability of an a priori error estimator, the Greedy method is rarely ap-
plied to nonlinear problems. For this reason, we decided to build the reduced basis
for our applications by means of the POD strategy, while the Greedy algorithm will
be only utilized as a part of the empirical interpolation strategies (as we will see in
the next subsection). Moreover, even if the POD strategy increases the computational
cost in the offline part, it gives us a reliable representation of the reduced manifold
(that we will exploit with new approaches in Section 10), keeping track of the energy
information that we are discarding.

Linked with the energy information carried by the system, we also highlight that
the POD is usually considered in connection with time dependent problem, in which
the evolution behaviour is strictly connected to the energy of the configuration ob-
served. As a consequence, in some of the applications we will present, we can consider
that the bifurcation parameter u represents a quasi-static evolution in time.

On the contrary, to build an efficient a posteriori error estimator Ay () in the
nonlinear (bifurcating) context, one should rely on the Brezzi-Rappaz-Raviart (BRR)
theory [24, 27, 136, 101, 50]. Despite the fundamental importance of the BRR theory,
such approach is usually difficult to perform and mainly problem specific.

Finally, we remark that a promising approach could be the application of the POD-
Greedy method [70, 111, 69], where one combines the two sampling procedures pre-
sented, in order to decrease the number of snapshots to be computed during the
offline phase.

As we said, the reduced quantities we have discussed are y-dependent and some
affine-recovery techniques, also called hyper-reduction strategies have to be taken in
consideration to recover the efficiency of the whole reduced approach, this will be the
topic of the next subsection.

3.2.4 Hyper-reduction strategies

As we said previously, one of the main assumption to obtain an efficient reduction
method is that the forms in (3.3) have an affine parametric dependence. This is crucial
since it serves to obtain a N -independent online phase, in which we can efficiently
compute the solution of the parametrized PDE at each new instance of the parameter
u. Despite this, when dealing with nonlinear problems, such assumption is still not
sufficient, due to the fact that the residual (3.8) depends on the parametrized solution
itself.
Indeed, even assuming that we can write

N (X 1) Z 0% (1) Gl (Xn), (3.30)
which translates at the reduced level as

N(Xn;p) = qu VTG (VXN), (3.31)
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it is clear that we can not recover an efficient offline-online decomposition, since the
assembly and the projection still involves the N degrees of freedom, compromising the
efficiency. An easy way to overcome this issue is an efficient assembly of the nonlinear
residual in a tensor form, but this is only practicable when the nonlinearity taken into
account is polynomial.

While this is true e.g. for the Navier-Stokes equation (as we will see in Chapter
8), unfortunately this is not the case for many other applications. Furthermore, even
when the tensor formulation is applicable, it requires a huge data structure that can
potentially slow further the offline phase.

Among the others, reliable alternatives to achieve an efficient online phase come
from an hyper-reduction approach. These techniques include the Empirical Interpola-
tion Method (EIM) [12, 97] and its variant the Discrete Empirical Interpolation Method
(DEIM) [36], which aim at obtaining the online computations independent from the
number of degrees of freedom of the chosen full order discretization method.

The hyper-reduction techniques serve at approximating a general parametrized
function g : O X P — R by the sum of affine terms

Q
8o n) = Zgul(x) = Zlcq(ﬂ)h"(X) (332)
=

where 7 is the interpolation operator, the set of basis functions {hq}fle are obtained

by means of a linear combination of Q snapshots { 8;44}2,2:1 and the sample points are

chosen through a Greedy approach. The coefficients ¢, () of such expansion in (3.32)
are found by solving

Zgul (%) = gu(xj)

in some particular points {x]‘}].Q:1 of the domain (), usually called magic points [97].
Therefore, the Empirical Interpolation strategies provide a discrete version of Z[g,](x),
that is the interpolation matrix H € R2*Q such that

go(u) = He(p), H={h(x;)}q)-

Despite the similarity of the two hyper-reduction techniques, the main difference
between EIM and DEIM is in the construction of H. In fact, while EIM embeds the
construction of the basis inside a Greedy procedure, DEIM exploits a POD on a set
of snapshots. Moreover, the DEIM strategy starts with discretizing the nonlinearity,
while EIM constructs the set of the magic points and the basis functions before the
discretization step.

Finally, the hyper-reduction techniques described above provide the following
affine approximation of the reduced residual vector

Qc
Gn(Xnsp) = ) ch(Xn; ) VIR
q=1
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where {hq}qQ:G1 represent a suitable basis and cg are the interpolation coefficients, which
include the contribute of the y-dependent terms. Finally, the Jacobian matrix Jy (Xn; )
can be assembled in a similar fashion.

We now have all the reduced ingredients to efficiently reconstruct a solution branch
online, thus in the next subsection we will present the reduced counterpart of the
Algorithm 1.

3.2.5 A reduced branch-wise algorithm

We want to end this chapter, concerning the numerical approximation of bifurcating
phenomena, with the reduced algorithm we developed for the efficient reconstruction
of the bifurcation diagram. Since this presents many similarities with the high fidelity
Algorithm 1, we will describe briefly the main differences between the two.

Before starting with the description of the online approximation, we clarify some
details about the offline phase. First of all, an hyper-reduction technique as EIM or
DEIM can be set up for the approximation of the parametrized nonlinear form as
linear combination of the interpolation basis functions. Then, to construct the reduced
manifold we implemented the POD approach described in Section 3.2.2.

In principle, one can choose a random training set Py, for the computation of the
snapshots. Despite the simplicity of this approach, this could lead to wasted computa-
tional time. Indeed, a smarter way to help the convergence and to prevent unnecessary
Newton iterations, is to select the snapshots location through the continuation method,
which in its simplest variant results in an equispaced sampling of P. Of course, here
one has to take care of all the possible issues depicted in subsection 3.1.4.

Until now we restricted ourselves to the case in which we deal with a one dimen-
sional bifurcating parameter, while the other P — 1 are considered fixed. Of course,
this does not create issues for the branch-wise approach, but if one wants to build a
unique reduced manifold which contains all the bifurcating modes of the model, then
the snapshots matrix should contain such information. Thus, as before, the continua-
tion loop over the bifurcation parameter space in Algorithm 1 has to be performed for
each physical/geometrical configuration in the training set chosen for the correspond-
ing last P — 1 components of p.

More remarkably, the same considerations hold also for the case P = 1, where we
select the snapshots, again through the continuation method, belonging to different
branches. In this view, we remark that the aforementioned POD-Greedy algorithm
could improve the accuracy results when P > 1.

Remark 3.2.2. A consequence of the previous observation is that a huge number of
snapshots have to be computed (as usual when dealing with POD, but here it depends
also on the number of branches to be approximated). Moreover, the POD space in
such cases will contain a much larger number of basis functions, since it has to encode
the properties of all the recovered branches. Despite these drawbacks, the main ad-
vantages are: (i) the possibility to efficiently reconstruct online the whole bifurcation
diagram; (ii) the construction of a single ROM in contrast to a reduced basis for each
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branch. Thus, within the global approach, a single POD compression can be used to
recover all the branches.

Once finished the offline phase we have computed a (global or branch specific)
basis for the reduced manifold, and we can adapt all the methodologies to the reduced
setting. Thus, we combine the projection step (this time in the reduced basis space
Xy), the Newton method (3.14) and the simple continuation method for the reduced
vector solution Xy. The reduced initial guess can be obtained as the projection of the
high fidelity one, while the continuation method proceeds as before, assigning the
new guess as the reduced vector of dimension N corresponding to the solution for
the previous value of the parameter. For the for the sake of clarity, as before, in the
Algorithm 2 we will omit the subscript N from the reduced solution Xy.

Algorithm 2 A pseudo-code for the efficient reconstruction of a branch

Offline phase
1: EIM/DEIM hyper-reduction strategies for the computation of H
2: POD applied to the snapshot matrix S to built the basis encoded in V

Online phase
3: Xo = Xguess > Initial guess
4: for p; € Py do > Continuation loop
5: X](.O) =Xj1 > Continuation guess
6:  while HGN(X](-k);y]-) ||xy > € do > Newton method
7: JN(x](");ijx = GN(X](k);yj) > Galerkin RB method

XED = X — ox
: end while
10: end for

Since the reduced cost of each evaluation B — XN(y]-), the set Pk can be chosen as
a much refined version of the one in the high fidelity context. Therefore, the reduced
approach allows to obtain a better investigation of the region near the critical points,
capturing the dynamics of the bifurcation with smaller steps.

Remark 3.2.3. As concerns the theoretical rationale behind the reduced basis method
[130, 74], it was proved that one of the main ingredients to have good approximation
properties is the regularity of the solution as a function of the parameter, rather then
its regularity in space. In fact, this can be an issue for bifurcation problems, where e.g.
for pitchfork phenomena the critical points represent a discontinuity in the parametric
sensitivity X (u)/op.

Hence, we expect that the error analysis in the parameter space P will show higher
peaks at bifurcation points. We remark that in a black-box approach, one can utilize
this statistic to forecast the location of a bifurcating phenomena.
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It is clear that, in the presented pseudo-code, one can embed the efficient compu-
tation of an output s that can represent the scalar measure used for the description of
the bifurcation diagram (an example of this will be showed in Section 4.2.4).

In this chapter we presented the approaches we have developed to investigate bifur-
cating PDEs, from the high fidelity setting to the reduced basis context. In particular,
since we have concluded the exposition of the general framework of our study, in
the next part we will start the examination of complex physical phenomena through
the methodology analysed until now. More precisely, we will begin with the study
of problems in Continuum Mechanics as the buckling of plates and beams and then
we will move to Fluid Dynamics applications as channel flows, passing also through
Quantum Mechanics investigations.



Part 11

Approximation of parametrized
bifurcating PDEs models
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Chapter 4

Von Karman equations for structural
buckling of plates

Starting from the very well known theory of continuum mechanics, Von Karman pro-
posed a mathematical model in order to describe all the possible configurations that a
plate under compression can assume [155]. The Von Kdrmédn model is often used to
describe buckling phenomena. A buckling phenomenon is indeed an example of bifurcat-
ing behaviour, where the system changes suddenly its configuration. As an example,
we can think to have a thin rectangular plate at rest between our hands, and compress
it until we reach a critical point, at which the plate takes a deformed configuration, or
it buckles. This will be exactly what we will simulate. Hence, in the following, we will
describe the mathematical formulation of this model, highlighting the difficulties that
we encounter approximating its solutions. This part is mainly based on the work done
in [120].

4.1 Von Karman model

Let us consider an elastic and rectangular plate Q = [0, L] x [0,1] in its undeformed
state, subject to a p-parametrized external load acting on its edges, depicted in Figure
41.

Then, the displacement from its flat state and the Airy stress potential, respectively u
and ¢, satisfy the Von Karman equations

{A2u = [ph+g@,ul+f inQ, 4.1

A = —[u,u] in O,

where /1 and f are some given functions, that we can set to specify the external forces
acting on our plate, while A? is the biharmonic operator in Cartesian coordinates and
0%u9? 9%u 92 0%u 0?2
9= 53505 — TRETATE
0x? dy oxdy 0xdy  Jdy* dx
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Figure 4.1: An elastic and rectangular plate compressed along the edges parallel to the
y-direction.

is the bracket of Monge-Ampére. Thus, we aim at finding the pair given by the displace-
ment and the Airy stress potential, which is physically linked to the second derivatives
of the Piola-Kirchhoff stress tensor, that solves the system (4.1). The Von Karman
model is of fourth order, due to the presence of the biharmonic operator, nonlinear
due to the product of second derivatives in the bracket, and parametric due to the
buckling coefficient y varying in a proper range of real numbers. Moreover, we are
presenting for the sake of simplicity a non-dimensional model where all the physical
quantities, except for the compression parameter y, are set to unity.

In order to have a complete description of the physics involved, we must supple-
ment to the system of partial differential equations some opportune boundary condi-
tions for both the unknowns. Although they can be imposed in many different ways
[42], in order to be coherent with the experiments of interest, we present only the most
used ones. The first option is to impose totally clamped boundary conditions of the
form

{u:anu:O in 9Q), 42)

@ =0dyp =0 inodQ),

whose meaning is that the plate is completely blocked on its sides. Note that here
we denoted with 0, the directional derivative along the normal 7 to the boundary JQ).
A second possible option is represented by the so called simply supported boundary
conditions

{u:Au:O in 30, @3)

p=Ap =0 indQ),

which are physically complex to reproduce, but also the most used ones for the sim-
ulations because of their versatility in the weak formulation. So, from now on, we
will consider the system (4.1) with simply supported boundary conditions (4.3). We
remark that, despite the simple boundary conditions chosen, the goal of this work is
understanding the bifurcation behaviour for the Von Karman plate equation, regard-
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less the numerical constraints that a conforming method for more involved boundary
conditions could impose.

A key observation, coming from such a choice of the BCs, is that we can split the
system of two fourth order nonlinear elliptic equations, into a system of four second
order nonlinear elliptic equations. In order to carry out this trick, introduced in [44],
we add two new unknowns U = Au and & = Ag, so that we can rewrite the system
(4.1) as

AU = [ph+@,ul+f inQ,

Au = in ()

u=u mey (4.4)
AP = — [u, u] in Q,
Ap = in ),

to which we assign the homogeneous Dirichlet boundary conditions, derived from the
simply supported ones

u=0 inoQ,
Uu=0 %n 20}, 45)
=0 indQ),
® =0 inaQ.

We know that (4.1) and (4.4) are equivalent [159] when the boundary is sufficiently
regular and the solution is smooth enough, so from now on we just consider the latter.

Finally, since we are interested in the behaviour of the plate at rest under compres-
sion, we can set the external body force f = 0 restricting ourselves to the study of the
homogeneous system. Moreover, through the function /1, we can model different kind
of stresses at the boundaries. Indeed, if we choose h(x,y) = —%yz, the linear part of
the Monge-Ampére bracket becomes [ph, u] = —pu, and the system reads as

AU+ puyx = [@,u] inQ,

Au=U in (),
. o (46)

AP = — [u, u] in Q,

Ap =P in ),
where we are assuming that the compression is acting on the edges parallel to the y
direction (see Figure 4.1). We also remark that if instead we chose h(x,y) = —%(XZ +
y?), we would have the stress component given by [uh, u] = —uAu, in which case the

compression have to be considered to act on the whole boundary.

4.1.1 Weak formulation

Starting from the PDE setting described in the previous chapters, we are now able to
set the model in the variational mathematical framework, which we will consider for
the numerical investigation. So let us consider y € P C IR, where P here is the one
dimensional bifurcation parameter space, () C IR? is the rectangular domain, that we
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identify with the plate, whereas X = X(Q) = (H; (Q))4 is the Hilbert space in which
we will seek the solution and X' its dual space.

Hence, we can represent the nonlinear PDE given by the Von Kadrmén system (4.4)
as the parametrized mapping G : X x P — X’ we have defined in Section 2.1. Thus,
its weak formulation reads: given pu € P, find X(u) := (u(u), U(p), p(u), ®(n)) € X
such that (omitting the p-dependence)

(Vi, Vw) 12y + (U, w) 20y = 0 Yw € H{(Q),
(VU, V0)12(0) + ([l + @, u] ,0)120) =0 Vv € Hy(Q), (4.7)
(Vo,V0)12(q) + (P,0)12(0) =0 V6 € H}(Q),
(VO, V) 12y — ([, u], ) 12(q) = 0 Vi € Hy(Q),

in which we embed the simply supported boundary conditions in the choice of the
space H&(Q), where each component of the test function Y := (w, v, 0, {) resides. We
have denoted with (-, -);2() the usual inner product in the Hilbert space L*(Q)). More-
over, we note that all the boundary terms vanish due to the choice of simply supported
boundary conditions (4.3).

In this case, the parametrized variational form g(-,-; ) introduced in (2.2) is de-
fined as follows

§(X(p), Y;p) = a(u(p),w) +

+V0(h u(p ),v) ( (), up) ,
+b(P(p),0) +ale(p), ) — c(u(p), u(p), ¢)

VYeX, VuePp,

where the following bilinear and trilinear forms have been introduced

a(n,w):/QVn-Vw aQ, b(;y,w):/oqw aQ, c(q,w,@):/ﬂ[iy,w]gdﬂ.

The numerical treatment of the variational form including the bracket of Monge-
Ampére obviously needs a nonlinear solver as depicted in Section 3.1.2. To this end,
we compute the partial Fréchet derivative of g(Z, -; ) at Z € X that can be expressed
as

dg(Z](X(u),Y; ) = a(u(p), w) +b(U(p),w) +a(U(p),v)
+w(h u(p),v) +c(@(p), Z1,v) + c(Zs, u(p),v) +a((u),6)
+b(®(u),0) +a(P(u), ¢) — c(u(p), Z1,9) — c(Z1, u(p), §)
VZ,YeX, Vuemp,
(4.9)

where we denoted with Z = (Z;, Z,, Z3, Z4) the components of the point in which we
are computing the derivative.
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4.1.2 Bifurcation analysis of the buckling problem

The focus of this application is the detection of the multiple solutions of the equations
(4.4). In order to better explain the lack of uniqueness in this setting, let us go back to
the physics behind the Von Karman model.

We notice that, due to the symmetry of the problem, when the plate starts buckling
we can expect at least two different configurations. In fact, for a given value of the
compression parameter p, if a given displacement is a solution of the system, then
of course the displacement which can be obtained reflecting this configuration with
respect to the plane where the plate lies, is again a solution of the system. Moreover,
for each value of u € P, the equation (4.1) with zero external force (namely f = 0)
always admits the trivial solution (u,¢) = (0,0), which corresponds to the original
undeformed configuration.

From these considerations, we understand that also for a fixed value of the com-
pression, the problem can be ill-posed. Which solution should we expect from our
numerical solver? How can we know that the solution we found is unique in the
interval considered?

We understood from Section 2.2 that an answer to these questions is strictly linked
with the location of the bifurcation points. We can numerically investigate the equa-
tions for each value of the parameter u € P observing when the buckling phenomena
occur, despite in principle we have no a priori information about the parameter space
P. Unfortunately, this is a computationally very expensive task and thus we can apply
the detection tool based on the eigenvalue analysis that we presented in Section 3.1.3.

From the mathematical standpoint, we have analysed the path pursued in [19, 4,
14], where they highlighted the link between the bifurcation points and the behaviour
of the eigenvalues of the linearized problem. Therefore, if we linearize the equations
in (4.4) around the trivial solution X = 0, the system we obtain is simply given by

A = i = i
U= pulh,ul %n 0, with u=20 Tn 20, (4.10)
Au=U in Q), U=0 inoQ.

This connection is not surprising, in fact, as said before, from ODE’s theory we know
that the stability of the solutions is linked to eigenvalues that change sign, i.e. cross the
imaginary axis varying u. In particular, in connection to Proposition 2.2.1, we present
the results from [19, 14] which apply directly to the Von Karman model.

Theorem 4.1.1. Bifurcation points of Von Kdrmdn equations (4.4) with respect to the trivial
solution X = 0 can occur only at the eigenvalues of the linearized problem (4.10).

Thus, for Von Karman equations we know that every bifurcation point is an eigenvalue
of the linearized problem, but this assertion can also be inverted. Indeed, if we assume
that all the eigenvalues are real, positive and ordered in such a way that 0 < p; < pp <
us < ..., from [19] we can also reverse the statement of Theorem 4.1.1 as follows.

Theorem 4.1.2. From each eigenvalue of the system (4.10) at least one branch of non-trivial
solution of (4.1) bifurcates. In particular, one branch bifurcates from a simple eigenvalue and
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at least two branches bifurcate from a multiple eigenvalue. Furthermore, if yy is the smallest
eigenvalue then for every value y < py the unforced system has no non-trivial solutions.

Now we have all the definitions needed to set the Von Kdrman model in finite
dimension, that is finding the numerical solution which efficiently approximates the
real one, investigating the bifurcation diagram and of course exploring the eigenvalue
properties of the system.

4.2 Numerical approximation

Here we want to recast the weak formulation (4.8) in the finite dimensional space X/
of dimension N, as we did in general in (3.3). Moreover, in order to embed the simply
supported boundary conditions also at the discrete level, we set Xy = X}, N K? where
we have denoted with

K? = {V €K, :V|yq =0} (4.11)

the space of globally continuous functions that are polynomials of degree r on the
single element of the triangulation 7;, of the domain, which vanish on the boundary.

To provide a clear matrix representation of the application of the Galerkin FE
method, we present the projected weak formulation. In this case the Newton method
(3.10) reads: given y € P and an initial guess X3, = (15, U, 9%, DY) € Xy for
k=0,1,... until convergence we seek 6 X = (duy, U, 0@, 0Ppr) € Xy such that

a(Sup, wy) + b(8Uy, wy) = a(ul, wy) + b(U, wy) Ywy € Xy,
a(SUn, vn ) + (0, iy, o) + c(@liy, Suns, o)
+puc(h, bup,vp) = a(Uky, o) + c(@h, 1k, o)
+uc(h, uﬂ‘\/, 7% Von € Xy, (4.12)
a(8nr, 0n) + (0@, 0x) = a(ghy, On) + (P, 0x)  VOx € Xy,
a(6@p, Yar) — c(un, uly, i)
\ —c(uly, Oup, pr) = (P, ¥r) — c(ul ule, vn) YV € Xy,

and then set Xf\?l = Xj‘v — 60X

We can finally present the correspondent matrix formulation, that follows directly
from (4.12). Denoting the solution vector with Xy = (up;, Uy, @, pr) we can write
the algebraic form (3.10) of the system as

A By 0 0 Sup Apuk, + By UK,
G +ucl Av Cy 0 SUn | _ [ AwUR + Culy + pCleufy (4.13)
0 0 Ay By | |don Ay ek + By ok '
—Ciy—Cy 0 0 Ay/ \ddy Ay @k, — Choul,
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with the high fidelity Jacobian J,r and residual G are given by

An By O 0
Ci +uCl Ay CL 0
IOy = | AT g | and

1 3

Anul + By UK,
ANUﬁ/ + le\/uﬁ(\/ + ]JC?VUIJ‘\/
Aol + By dh,
Ak, — Clouly,

G (X ()i ) =

7

where we introduced the matrices as follows
(Av)ij =a(ELE),  (By)ij=0b(E,E), (C{)ij=c(hE,E),
(Chv)ij = c(ELul BN, (CRo)ij = c(@hv, ELET), (CRo)ij = cluly, BV, EY) .

Note that because of the symmetry of the bracket of Monge-Ampére, we easily obtain
that it holds C}, = C3.

As we said previously, the reduced basis method shares the projection properties
of the Galerkin method. Indeed, the weak formulation that we obtain from the ap-
plication of the Newton method at the reduced level, presented in (3.14), reads as:

given p € P and an initial guess X?\, € Xy for k = 0,1, ... until convergence we seek
XN = ((SMN, oUp, (SQ)N, (SCDN) € Xy such that

a(6un, wy) + b(SUy, wy) = a(uk, wy) + (UK, wy) Yoy € Xy,
a(6Un,oN) + c(Son, uk, o) + (@, dun, o)
+uc(h, sun,on) = a(UK, on) + c(@k;, uk,, on)
+pc(h,uy, on) Yon € Xy, (4.14)
a(6pn,On) + b(6PN, On) = a(¢k;, 0n) + b(DK;, On) Von € Xy,
a(6®n, Yn) — c(6un, uk;, pn)
—c(u, dun, Yn) = a(Py, ) — c(uy, uy, on) VN € Xy,

and then set X;‘\,H = X’I‘\, — 0Xp. Also in this case, the matrix formulation follows
directly from the expressions above. Indeed, we can obtain the compact version (3.20),
with the reduced Jacobian

Ay By O 0
C2 +uCl, Ay CL 0
k N N T HLN N N

—cL,—-C 0 0 Ay

having the same structure of the finite element one. If we introduce the transforma-
tion matrices with respect to the different components of the solution, V, and Vo,
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respectively for u and ¢, we can define the reduced matrices in the following way:

N N
Q=VIQV, Ch=Y ufVICkEIVe, G =Y ol VI (EZh)V,,

n=1 n=1

N
=Y oWVICH (), Av=VTAWY, By=V'ByV.
n=1
Moreover, we highlight that also the reduced residual vector has the same form of the
finite element one, indeed it is given by

Anuk; + ByUK
ANUIE, + C}\,u’f\, + ]JC?\,UIZ‘\]
Ang; + BNk,
ANk, — Chuk,

Gn (XN ()i ) = (4.16)

We have now illustrated the main ingredients of the online phase, that allows an
efficient evaluation of the solution and possibly related outputs for each choice of
the parameter u € P. Despite this, as we already specified, one of the key point of
this time savings is the affine decomposition assumption. While the model shows an
affine dependence on the parameter y, the reduced matrices we have just presented
are clearly y-dependent due to the presence of the solution which we used to linearize
the system. Thus, since the nonlinearity complicates the setting, the affine-recovery
techniques already presented in Section 3.2.4 are needed to recover efficiency. We will
present an application of these in Section 4.2.5.

4.2.1 Spectral analysis

In the previous sections we discussed about the issue of the computational complexity
of the problem itself, that we try to avoid using the ROM. It is clear that drawing
the bifurcation diagram is still a difficult task. Indeed how can we investigate the
parameter space P without having any information on the position of these points?

Taking some inspiration from [125, 124] and supported by the theoretical results
given in Section 4.1.2, we tried to locate more precisely the buckling points. Our goal
in this section is thus to investigate the stability properties with the help of the spectral
problems built upon the Von Karman system.

Let us consider the case of the plate compressed along the edges parallel to the
y-direction (see Figure 4.1), and thus assuming the compression term to be of the
form h(x,y) = —1y?. Hence, we construct the eigenvalue problem for the linearized
(around the trivial solution) parametrized operator

(4.17)

AU+ puyy = oy in Q =[0,L] x [0,1],
u = Au = O ln BQ,

where we want to find, varying the buckling parameter y, the pair (u,0;,) € H}(Q) x
R, whose components are respectively the eigenfunction and eigenvalue. We will
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Figure 4.2: Behaviour of the first four eigenvalues o, for u € [30,40].

restrict our investigations to the square plate with L = 1 and the rectangular one with
L=2.

We are interested in the behaviour of ¢;, with respect to p, in fact since the sign of
the eigenvalues is strictly linked with the stability property of the solution, we aim at
observing that the first eigenvalue crosses the y-axis when the plate is buckling. This
is exactly what we found, indeed in Figure 4.2 for L = 1 we can see the behaviour of
the first four eigenvalues o, for u € [30,40] and if we use a y-step equals to Ay = 0.5
the crossing happens for the value y* ~ 39.5.

This should tell us that after this value we have a change of the stability properties
in connection to the presence of a new solution branch. Indeed, as we will see, because
of the symmetry, there will be at least two new branches for each simple eigenvalue
crossing the origin. Investigating greater values of the compression parameter y in the
space P, we also observed the crossing of the successive eigenvalues.

Moreover, if we solve the eigenvalue problem (4.17) for the case with L = 2, we
note that instead of having a single eigenvalue crossing the origin at u* ~ 62 (as for
the square plate) we found a double crossing (see Figure 4.3). This fact has a relevant
consequence from the physical point of view, and its consequence will be clear in the
bifurcation diagram for the rectangular plate.

What we just showed is computationally heavy to perform, so to keep in mind
the efficiency as keyword of the whole analysis, we tried two other ways that helps to
validate the results and at the same time reduce the computational time. In the first
approach, we consider the linear problem (4.10) but in its original form

AU+ pig =0 %n O =[0,L] x[0,1], (4.18)
u=Au=20 in 0Q),
that has non-trivial solutions for m,n = 1,2,... given by
_ o mMITXN . . . 7T\ 2 21272
Uy = Sin <T> sin (nmy) if and only if  ppy, = (f) [m + - } , (4.19)

where u,,, and yy,,, with a little abuse of notation, can be considered as the eigen-
functions and eigenvalues for this new generalized eigenvalue problem. Now we have
a much simpler problem, indeed since u plays the role of the eigenvalue, the system is

51



4. VoN KARMAN EQUATIONS FOR STRUCTURAL BUCKLING OF PLATES

52

w10
02 ......................................................................................
S(0y) 0 e
0.2
2] 4 3 2 1 ] 1
%(Uy)
w 10"
D2 ........... s ............ ............ \ ............ _
%(aﬂ) 0 Iiilﬁiii.#..lii}ii?m;i
5} ] -4 -3 -2 -1 0 1
%(Uy)

Figure 4.3: Double eigenvalue for the rectangular plate crossing for p € [50,62].

no longer parametrized. This provides us also an explicit expression for the spectrum,
that we can use to validate the results.

Using the formula (4.19) we find the analytical values of the eigenvalues of the prob-
lem (4.18), which turn out to be the buckling parameters, i.e. the bifurcation points. For
the square and rectangular plate case we obtain respectively

25 100 289
Hi1 T°, U2 4 T°, U3 9 T, Haa 16 e,
169 25
L=2: joy =47, a1 = 30 o =y = 40

Indeed, we found the value p* ~ p;, ~ 39.47 predicted in Figure 4.2 for the square
plate, but we also notice the presence of the double eigenvalue y11 = 41 ~ 61.68 that
confirms what we saw in Figure 4.3 for the rectangular one.

Furthermore, we can investigate analytically the multiplicity of the eigenvalues
while varying the length of the plate. We just have to impose the condition py,, =

Um-+tkn for some k € IN, from which we can deduce the relation L = 7Vm(nm+k) If we
plug in the values m = n = 1 and k = 3, which characterize the rectangular plate, we
find the value L = 2 as we expected.

Finally, using the techniques in [7], is an easy task to prove the following theorem
[106] that provides us a tool to better understand how good is our approximation.

Theorem 4.2.1. There exists a strictly positive constant C such that
|1 — | < CH2,

where py, is an approximation, dependent on the sparsity of the grid, of the true eigenvalue y.
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L=1 h=1lel h=6e2 h=1e2 h=6.e3 Order Exact

Hi1 39.91 39.59 39.48 39.47 1.98  39.47841
M2, 63.70 62.20 61.70 61.69 1.99  61.68502
usn  116.63 111.54 109.73 109.68 1.97  109.66227

Table 4.1: Buckling coefficients for the square plate (L = 1) with the average order of
convergence.

L=2 h=1lel h=6e2 h=1e2 h=6.e3 Order Exact

H2a 40.74 39.76 39.48 39.48 2.05 3947841
U3 49.15 46.97 46.35 46.33 234  46.33230
M1 62.08 61.79 61.68 61.68 1.98  61.68502
Ha 67.44 63.02 61.73 61.69 2.05 61.68502

Table 4.2: Buckling coefficients for the rectangular plate (L = 2) with the average order
of convergence.

The theorem above is crucial when we are dealing with problems for which we
do not know an explicit expression of the eigenvalues. For the sake of completeness
we provide in Tables 4.1 and 4.2 the order of convergence results respectively for the
square and rectangular plate, which agree with the theoretical ones.

To conclude this section we briefly discuss also the second straightforward way to
reduce the computational complexity of solving multiple times a full order eigenvalue
problem. Coming back to the parametrized eigenproblem (4.17), we can apply also
to this system the Reduced Basis method [96, 99, 59, 78], and thanks to the affine
decomposition, we easily obtain in a more efficient way the same behaviour of the
results discussed before, as we can see from Figures 4.4 and 4.5. Of course, the question
on how to built the ROM for this problem can have multiple answers. We projected
the eigenvalue problem on the solution of the Von Kdrmén system, but as we can see
form the plots we are only able to detect the crossing instead of a good approximation
of the first eigenvalue. A more precise and accurate way is to project over the space
spanned by a basis built upon some selected eigenvectors. Since for this test case the
characterization given in (4.18) completely remove the parameter dependence, we do
not discuss further this last approach. In fact we can easily embed the computation
for the eigenproblem (4.18) in the offline phase and have all the informations to build
the ROM.
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Figure 4.4: Full order first eigenvalue 0y, , for L = 1 crossing at p* = 39.5.
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Figure 4.5: Reduced order first eigenvalue 0y, , for L = 1 crossing at pu* = 39.5.

4.2.2 Results and test problems

In this section, we will show how the buckling phenomena, i.e. the loss of uniqueness
of the solution,can be analysed through the bifurcation diagram, both in the square
and rectangular plate cases.

Thus, in order to recap, let us consider the Von Kdrmdn plate equations, with
simply supported BCs, in the bi-dimensional domain ) = [0, L] x [0, 1] given by

AN*u+ puyy = [@,u] inQ,

A =— in )

¢=—luul e (4.20)
u=~Au=20 in 00},
p=Ap=0 in 00},

and we are interested in the study of the solution while varying the buckling parameter
i, which describes the compression along the edges parallel to the y-axis.

This model was previously numerically investigated by many authors [23, 39, 138],
but as we already said the biggest issue was the computational complexity, that we
overcome by means of the Reduced Basis method.

The investigation done with the eigenproblem give us the necessary information
that the parameters responsible of the buckling are in the interval P = [35, 65], which
we chose as our parameter domain. The main goal is the reconstruction of the bifurca-
tion diagram, which represents for every value of u € Pk on the x-axis, the correspon-
dent value of the displacement u in its point of maximum modulo. Thus, in this case,
the scalar measure output which allows to draw the diagram, will be the infinite norm
of the displacement with its sign, namely s(#) = (sgnu) maxyeql|#|/,. As concerns
the continuation technique, for these test cases we utilized the simple one described in
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the Algorithm 1. Instead, for the initial guess, we implemented here the most straight-
forward strategy, where analytical sinusoidal functions, derived from considerations
involving the eigenproblem (4.18), are used. Indeed, the modes of the plate will be
easily characterized, together with the branch they belongs, by the number/type of
cells that are showed by the contour plot of the displacement. Thus, we expected that
properly selecting the initial guess, by the wavelength of the sinusoidal functions, we
could recover the whole branching behaviour. As we will see, this approach worked
well for both geometries.

4.2.2.1 Square plate test case

Here we present the results for the square plate case with L = 1. The FE space Xy,
defined on the domain Q) = [0,1] x [0,1] and discretized with quadratic elements P,
has dimension N' = 9840. We solved Ny, = 40 high fidelity problems, obtaining
information by the snapshots of both (e.g. upper) branches, for the offline phase,
while the online approximation is constructed employing N = 8 basis. Moreover,
for the branch reconstruction we chose K = 60 equispaced points (with continuation
step Ay = 0.5), repeating the continuation loop in Algorithm 1 for each prescribed
guess, that for this test case is chosen as Xgyess = sin(%5) sin(7ry) with the wavelength
O € {1,0.5} depending on the different Von Karman branch to recover. We can finally
present the bifurcation diagram in Figure 4.6. As we previously predicted, we can
observe the buckling phenomena from the trivial solution. Moreover, we note that the
first bifurcation happens for values of y near 11,1 ~ 39.47. This confirms the eigenvalue
analysis that we considered in the previous section.

We did not stop at the first bifurcation, in fact choosing properly the initial guess
we have been able to detect also the second bifurcation for the square plate. Again,
this result is confirming what we predicted, since for values of y near u;; ~ 61.68 we
obtain two other branches.

The physical symmetry issue is evident in both buckling points and the same will
hold for the rectangular plate. Indeed, once we chose a bifurcation point, a solution
from the upper branch is identical to the corresponding solution belonging to the
lower one, but it is reflected with respect to the plane of the plate. Thus, for the first
bifurcation emerging near y1,, looking at the contour plot, we observe the one cell like
displacement depicted in Figure 4.7. While if we look at the second branch, so the one
near jip1, we find the two cells like displacement as in Figure 4.8. So for the square
plate case we obtained four different solutions for each y > s .

As concerns the RB method, we can now present the good results we have obtained.
Indeed, as we can see in Figure 4.9, the reduced basis solution approximates perfectly
not only the behaviour but also the order of magnitude. The remarkable point is that
in order to obtain the solution on the right in Figure 4.9 we just solved a linear system
of order 10 instead of the one given by the Galerkin FE method of order 10%.

To be more precise we present in Table 4.3 a convergence result: the error be-
tween the truth approximation and the reduced one as a function of N. The error
reported, exy = maxyep [[un (1) —un(p)l| Hi(q) is the maximum of the approximation
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Figure 4.6: High fidelity bifurcation diagram for the square plate with L = 1.
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Figure 4.9: Comparison between the full order solution (on the left) and the reduced
order one (on the right) for the displacement u at y = 46, belonging to the green
branch. Below the RB contour error plot on the displacement u.

error for the displacement over a uniformly chosen test sample. Here we selected
only the displacement, since the other variables are performing similarly and because
the displacement is the physical variable we are interested in to draw the bifurcation
diagram.

We highlight that we present here just the full order bifurcation diagram, in fact
also in view of Table 4.3 and Figure 4.9, its reduced order version looks exactly the
same. Furthermore, as we can see in Figure 4.10, the RB error for the reconstruction of
the first and second branches shows good approximation results, having the maximum
peaks at their bifurcation points 1,1 and 1.

We remark that we did not implemented the Greedy algorithm here, because it
would be needed a suitable application of the BRR theory for the a posteriori error
estimate [24, 154, 65, 32]. However, as we said, applying BRR theory at reduced level
is not straightforward and we leave it for further future investigation.

Finally, as regards computational times, a RB evaluation y — un(¢) requires al-
most tgp = 0.51(s) for N = 8; while a FE solution p — ux(u) requires trg = 1.21(s):
thus our RB online speed-up is only 2.37. This is of course not completely satisfactory,
but it is obviously due to the lack of hyper-reduction techniques.
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Table 4.3: The Reduced Basis convergence with respect to the number of the basis N
for the square plate case.
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Figure 4.10: Reduced Basis error for the green and blue solution branches, emerging
from py11 and po 1, left and right respectively, with L = 1.

4.2.2.2 Rectangular plate test case

Now we can analyse the case of the rectangular plate with L = 2. The FE space Xy,
defined on the domain Q) = [0,2] x [0,1] is discretized again with P, quadratic ele-
ments and has similar dimension. We computed N4, = 20 snapshots for each branch
during the offline phase, while for the reduced manifold we chose N = 8 basis. As
concerns the branch reconstruction, we design the continuation method with K = 60
equispaced points as before. Regardless the similar situation, from the eigenvalue
problem analysis performed in Section 4.2.1, we understood that the guesses for the
continuation loop had to be chosen as Xgess = sin(57) sin(7ry) with O € {2,1, %,0.5}
in order to capture both the newly appeared bifurcating phenomenon and the multi-
ple branching behaviour. Therefore, it is clear that in this case a greater number of
computations had to be performed to recover the bifurcation diagram in Figure 4.11.
We have a different situation, in fact, varying the length of the domain (), we
obtained a new bifurcation point within the same parameter space P, but also the
third branch changed its properties. Note that this sensitivity with respect to the
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Figure 4.11: High fidelity bifurcation diagram for the rectangular plate with L = 2.

dimension of the plate is a big challenge from the computational point of view. We
did not treat here L as a second geometrical parameter along with p, but we will see an
application of this for the models we will investigate later on.

In this case, the solution starts branching as before from the smallest eigenvalue
H21 =~ 39.47. Obviously the number of cells that are formed in the contour plot strictly
depends on the length of the domain, for example here the first bifurcation is linked
with the two cells configuration as shown in Figure 4.12.

We observed also a new bifurcation for values of y near y* ~ 46.5, as depicted in
Figure 4.13, which is characterized by three cells and corresponds to the eigenvalue
us1 =~ 46.33. Finally, we comment the last buckling point, which appears to be qualita-
tively different from the previous ones. As we noticed from Figure 4.11, we have again
a buckling for values of u near pu* ~ 61.68, but this time the bifurcation is reflected
by a pair of emerging branches. In fact, for the rectangular plate we have a multiple
eigenvalue y11 = pa1 with multiplicity equals to two, which is the responsible of this
double bifurcation. In practice what we obtained is a point from which start branching
two sets of different solutions with one and four cells, respectively in Figure 4.14 and
Figure 4.15. The same conclusions regarding the convergence error ¢y and computa-
tional savings can be established also in this case, with very similar results. Finally
we show in Figure 4.16 that, also for the rectangular plate, the RB method works well
approximating efficiently the solution. In fact, as before, we can see in Figure 4.17, the
RB error for the reconstruction of the first two branches, having again the maximum
peaks at their bifurcation points yp1 and p31.
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Figure 4.14: Full order one cell solu-
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Figure 4.13: Full order three cells
solution for the displacement u at
i = 65 (cyan branch).

165&01

—0

lééem

o 0s 1 15 2

Figure 4.15: Full order four cells
solution for the displacement u at
y = 65 (red branch).

0 05

"

Figure 4.16: Comparison between the full order solution (on the left) and the reduced
order one (on the right) for the displacement u at u = 65, belonging to the red branch.
Below the RB contour error plot on the displacement .

60



4.2. Numerical approximation

0.00016
° m  |Jux=un|ls; error L] m  |Jux=un|ls; error
0.035 4
0.00014 ®  ||Xx—Xn||nz error ® || Xy —Xn||n; error

0.030 {
0.00012 {

0.025 4
0.00010 {

0.020 4
0.00008 4

0.00006 00159 Py
0.00004 0.010 1 o
()
()
0.00002 . 0.005 L
o o
soo00s | mmmemm) @ 0070 %aysss0essstesmmeetittonsmsentionss” 0.000 | SeSSSSSSSSSSSSSSSSSSSSS

35 40 45 50 55 60 65 35 40 45 50 55 60 65

Figure 4.17: Reduced Basis error for the blue and cyan solution branches, emerging
from o1 and p3 1, left and right respectively, with L = 2.

4.2.3 An investigation of secondary bifurcations

An interesting property of the Von Karman model, that we did not investigate until
now, is the so called mode jumping [40, 141]. As we observed in the previous bifurcation
diagrams, each solution branch can be described by the number of cells which are
visible from the contour plots of the displacement u. Thus, while we are reconstructing
a bifurcating branch, increasing slowly the compression parameter, the wave number
(or equivalently the number of cells) remains constant.

Actually, both experiments and theory [144, 102, 13] have shown that the wave
number does not always remain constant increasing gradually the loading parameter
after the buckling point. In fact, there exist some values of y at which the buckling
behaviour suddenly change.

From the description of this phenomenon it is evident that, mathematically speak-
ing, this corresponds to secondary bifurcation. Indeed, a sudden change in the be-
haviour of the solution is a clear evidence of a bifurcation, but the key difference is
that here it occurs for an already buckled state.

Therefore, the aim of this section is to numerically investigate the mode jumping
for the Von Kdrman model. The detection of the values at which such phenomenon
happens is a complex task, since we can not use the parameter independent eigenvalue
problem. Indeed, here we should linearize the system around the buckled non-trivial
solution, which of course depends on .

Regardless this difficulty, a guess on their location can be obtained through the
theoretical analysis performed in [102, 13], where the connection between multiple
eigenvalues and secondary bifurcations was studied. In particular, they showed that
a multiple bifurcation point may cause a splitting between primary bifurcation points
and several secondary bifurcation points at different locations. Furthermore, these
secondary critical points move along one or more of the primary branches.

For this reason we decided to analyse the rectangular plate with L = 2, where
we observed the multiple eigenvalue given by y11 = ps1. We highlight that in the
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previous analysis we did not find any evidence of this mode jumping phenomena thus,
recalling the observation in Section 3.1.4, we adjusted the choice of the continuation
method, which has guided our nonlinear solver in the bifurcation reconstruction. Due
to the very complex behaviour, we restrict the approximation of this phenomenon only
at the high fidelity level, but we would expect the same reduced error behaviour of
the other branches, once that the secondary bifurcation is actually recovered during
the offline phase.

We fixed the parameter space Pk, with K = 100 equispaced point in P. Here we
did not consider a more difficult approach such as the pseudo arc-length algorithm,
instead we pursued a much simpler route [142] based on a variant of the simple con-
tinuation method employing the Implicit Function Theorem. Indeed, in the following
we will take advantage of the well-known formula that expresses the sensitivity of the
solution to the parameter: given y; € Px we can obtain

0X ()
o

= —DxG(Xj; uj) / DuG(Xji tj).- (4.21)

This results in a predictor-corrector algorithm where the pair ()?(ﬁj),ﬁj), which rep-
resents the guess, is actually given by (X(y;) + Ap;jdX;, pj + Ap;) where we indicated
with dX; the discrete version of the expression (4.21).

With the previous approach we were only able to find primary bifurcations, while
the modification we adopted allowed us to recover also the secondary bifurcation. In
particular, the new branching behaviour emerge from the configuration with three
cells, for a value of the compression parameter p* ~ 52.25. As it is clearly visible in
Figure 4.18 on the right, the secondary branch has lost any kind of symmetry with
respect to the midline {x = 1}. In fact, the first two cells form the left changed their
shape elongating towards the third one, which corresponding points lost displacement
magnitude (see the contour plot on the left in Figure 4.18). We remark that it is
straightforward to expect that also the displacements obtained through reflection with
respect to the axis {x = 1} and to the plane of the plate, are admissible solution coming
from the secondary branches. Finally, we can present the full bifurcation diagram for
the rectangular plate in Figure 4.19, with the secondary bifurcation represented by the
cyan branch (and its reflected counterpart w.r.t. the plane of the plate).

Therefore, here we avoided to use the previous solution as a guess for the next
iteration, while instead we solved the linear problem involving the Frechét derivatives
to compute a better guess.

In the next section we will generalize the whole Von Karman model adding a new
parameter which is able to change the bifurcation points.
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Figure 4.18: High fidelity displacement u for secondary bifurcation and comparison
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Figure 4.19: High fidelity bifurcation diagram with secondary bifurcation for the rect-
angular plate with L = 2.
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4.2.4 Multi-parameter analysis with non-uniform compression

In this section, with motivations coming from some practical applications of buck-
ling plates in naval engineering [62], we want to extend the previous analysis to the
multi-parameter case [106] . In particular, we want to consider the same physical
phenomenon, while adding a new parameter which leads to a more complicated be-
haviour, that have to be studied through a 3-D bifurcation diagram. Here, we aim
at modelling a compression along the shorter sides of the plate which is no longer
uniform on the boundaries. Thus, we parametrized the action of the compression in-
troducing a new parameter . In fact, as we said before, the shape of the compression
is determined by the function h appearing in (4.1), thus we can characterize the in-
plane load along 0() generalizing the corresponding term p,, in (4.18) obtaining the
following system

(4.22)

A*u+ pudiv(SVu) =0 inQ,
u=Au=20 on dQ),

where S : Q) — R?*2, S # 0 is the plane stress tensor field, which is assumed to satisfy
the equilibrium equation:

T _ .
{S =S in Q, (423)

div(S) =0 in Q.

It is easy to observe, that we can recover the standard compression problem considered
before with the following choice of the stress tensor

10
5= [O 0] |
Furthermore, the compression on the whole boundary, linked to the laplacian opera-
tor, is obtained imposing S = I, where I is the 2-dimensional identity. Here we are

interested in the more general case, in which the uni-axial non-uniform compression
is given by the parametrized stress tensor

C[(1=92) o
wor-[0-38) ]

where ¢ € [0,2] is the parameter that takes care of the linearly varying in-plane load.
Finally, the choice ¢ = 0 falls back to the aforementioned case.

Therefore, we want to test the strategy developed in the previous sections for a
multi-parameter application with u = (p, ¢), in which two parameters act in the bifur-
cation phenomenon. As explained in Section 2.2, we are assuming a codimension one
bifurcating phenomena, thus the model does not show any other bifurcations while
varying the slope ¢, once fixed the compression parameter y. Therefore, we restrict
ourselves to the study of the most physically relevant behaviour, i.e. the evolution
with respect to ¢ of the first buckling for the generalized system
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ANu+ pdiv(S(p)Vu) = [p,u] inQ,

2 _ .

A~ = — [u,u] ?n Q, (4.24)
u=Au=20 in 0Q),

p=A0Ap=0 in 0Q).

We expect that a change in the slope of the compression could affect the location
of the bifurcation points, since the compressive action is no longer uniform along the
y-axis. Another consequence of this asymmetry is that the choice of the guesses has
to be changed. In fact, the (symmetric) sinusoidal ones can be far from the (asym-
metric) buckling states. Moreover, in this case we have no clues about the position
of the first buckling for ¢ # 0. For these reasons, following the analysis in Section
4.2.1, we exploited the generalized eigenvalue problem based on (4.24) in which the
parameter y is considered as the eigenvalue. Hence, given ¢ € [0,2] we want to find
the pair (uy, uy), (again with a little abuse of notation) representing the eigenvector
and eigenvalue respectively, which solves

Nuy = iy div(S(1p) Viuy) in Q, (4.25)
Uy = Aty =0 in 0Q).

We remark that the main difference with the analysis in Section 4.2.1 is that now
we deal with a parametrized eigenvalue problem, but its computation for different
instances of 1 can be embedded in the offline phase. This way we overcome to the
first issue about the location of the buckling points for each slope ¥, but we still need
to adjust the choice of the guesses. As discussed before, the previous selection of
sinusoidal functions was motivated by the analytical expression of the eigenvectors
(4.19). Thus, an automatic way to proceed is to utilize the information about the
discretized eigenvector associated to the first (smallest) eigenvalue for each fixed .
Indeed such eigenvector, opportunely normalized to have ||-||x, -norm equal to one,
is only needed in a neighbourhood of the first bifurcation point. In fact, unlike the
previous section with secondary bifurcation, after the buckling we can always proceed
using the previous iteration as a guess for the successive one.

We focused here on the behaviour of the first buckling for the system (4.24), once
fixed the length of the plate as L = 1. Some of the representative one cell solutions
are presented in Figures 4.20-4.23, from which is evident the progressively lack of
symmetry along the horizontal midline with {y = 0.5}. Moreover, we notice also the
completely different behaviour of the displacement configuration with i = 2, where
a two cells like configuration appears. This was indeed an unexpected side effect, that
confirms again the complexity of the model. We guess that the compression parameter
is too large for the small plate geometry, causing the system to not converge to the one
cell configuration.

We can now describe the high fidelity and the reduced approximation of the bifur-
cation diagram with respect to u for different choice of the parameter 1. Within this
application to the multi-parameter setting, the Reduced Basis method shows all its
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potentiality when applied to bifurcating phenomena. Let us review the construction
of the reduced manifold in this case. We remark that as before we are considering
a global approach, in which we construct a unique ROM for all the buckling modes.
The difference here is that instead of compressing the snapshots coming from all the
primary branches in e.g. Figure 4.6, we built the ROM from the high fidelity solutions
belonging only to the first buckling branches at different values of . In practice, for
the FE offline phase, we applied the Algorithm 1 for each fixed ¢ € [0,2] in the param-
eter set Pk defined as the interval centred in the smallest eigenvalue iy of (4.25), with
amplitude equals to 10, using the fundamental information obtained from the eigen-
value problem in (4.25), for both the locations of the buckling and the initial guesses.
This choice was taken in order to not consider a too high value of the compression
for small values of 1. Thus, we computed Ny, = 15 snapshots for each of the 5
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Figure 4.24: 3-D reduced basis bifurcation diagram for the square plate.

equispaced value of the parameter ¥ € [0,2], and we compress them with a unique
POD. The resulting basis of dimension N = 11, was obtained imposing a tolerance for
the POD equals to epop = 1078,

As concerns the online reduced reconstruction of the bifurcation diagram, we chose
Pk with K = 41, computing the solution branches for 9 equispaced values of .
Thus, we can finally show in the Figure 4.24 the 3-D reduced basis bifurcation plot
for the square plate, in which we are describing the first bifurcation point and the
post-buckling behaviour, for each one of the nine uniformly sampled ¢ € [0,2]. For
the sake of clarity, we also show in Figure 4.25 the 2-D projected version of the 3-D
plot just presented.

Moreover, as we can see in Figure 4.26 the approximation yields good results from
the reduction standpoint. A crucial observation is that we were able to reconstruct the
complete branching behaviour at the reduced level, also for values of ¢ about which
we did not collect any information during the offline phase. This is clearly visible in
the right plot of Figure 4.26 for ¢ = 1.75, where the maximum relative error (always
near the buckling point) is of order 1.e — 2.

For this reason, the Algorithm 2 that we implemented for the RB approximation,
can be also used in connection to multi-parameter bifurcation phenomena. In fact,
collecting information about the buckling for some fixed parameter i, we are able to
follow efficiently the buckling behaviour for any other i in the same range.

As concerns the efficiency, since we are still not using any hyper-reduction tech-
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Figure 4.25: 2-D projected bifurcation diagram for the square plate varying ¢ € [0,2].

0.0175 §
. B [luy—ully error . ® [lug—ull; error

0.0012 1 ®  ||Xx—Xullw emor ®  [|Xw—Xulln: emor

0.0150 4
L]
{ ]
{]
1 [ ] o®
0.0010 0.0125 4 o*®
"

0.0008 1 0.0100

0.0006 4 . 0.0075 4

0.0004 - 0.0050 4

.

0.0002 4 . 0.0025 4 "mag

[ ] . '..-.'. * LT T
°

[] )
0.0000 4 L 0.0000 { SSSSSSSSSSS NS SREE RS

122.5 125.0 127.5 130.0 1325 1350 1375 140.0 1425 1775 180.0 182.5 185.0 187.5 190.0 192.5 195.0 1975
H H

Figure 4.26: Reduced basis errors of the first buckling branch for i = 1.5 and ¢ = 1.75,
left and right respectively, for L = 1.

nique, the speed-up is only 1.58 with tgp = 320(s) needed for the RB reconstruction
of the full 3-D diagram in contrast to the trg = 510(s) of the FE method. Moreover,
despite the chosen output s(u) well reflects the physical event, being linked with the
maximum displacement, it involves the high fidelity degrees of freedom N for the
computation of the ||-||,-norm. In a realistic and practical setting one should always
choose the output s to be affinely decomposable, in such a way that the projection on
the high fidelity space is not needed. As an example in Figure 4.27 we measured the
energy of the plate selecting the output as

E(X) = /Q (Au)* — <1 - ‘?)uz + (Ap)?dQy (4.26)

This implementation can be thus used in a real time context, e.g. in a webserver, as
we did for the tutorial in ARGOS [126] the Advanced Reduced Groupware Online Sim-
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Figure 4.27: 2-D projected bifurcation diagram for the square plate with energy output
varying ¥ € [0,2].

ulation Platform developed by our group. As we can see, the methodology presented
in the previous section allowed us to detect in the reduced phase the first bifurcation
points with respect to the new parameter ¢ that we have introduced. Moreover, we
were able to capture correctly the post buckling behaviour, with results validated by
the former analysis with ¢ = 0.

Finally, we highlight that the same computations can be performed also for the
rectangular plate with L = 2. We can see from the plot in Figure 4.28 the 3-D RB
bifurcation diagram with output s(u), and the 2-D projected one with outputs s(u)
and £(X), in Figures 4.29 and 4.30 respectively.

Also here the reduced approximation yields good results, as we can see from Fig-
ure 4.31. Furthermore, from the plot on the right we obtain another evidence that
through the POD we are able to built a RB basis capable of approximating branches
correspondent to values of i that we did not collect in the sampling stage.

Finally, we want to remark that here the need for ROMs is even more evident. In
fact, considering only the full order problem, we had to solve a huge linear system
as many times as the following nested iteration: for each step of the Newton method,
for each y in the parameter domain, for each ¥ and finally for each initial guess, if
one is interested on multiple branches. For this reason, we conclude the analysis of
the Von Karman model with the results concerning an hyper-reduction approach to
recover the efficiency.
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Figure 4.28: 3-D bifurcation reduced basis diagram for the rectangular plate.
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Figure 4.29: 2-D projected bifurcation diagram for the rectangular plate varying ¢ €
[0,2].
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Figure 4.30: 2-D projected bifurcation diagram for the rectangular plate with energy
output varying ¢ € [0,2].
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Figure 4.31: Reduced basis errors of the first buckling branch for = 0.25 and ¢ = 0.5,
left and right respectively, for L = 2.

4.2.5 An empirical interpolation approach

In this last section, we want to present the application of the Empirical Interpolation
strategies analysed in Section 3.2.4 to the Von Kd&rmén model with two parameters
described in Section 4.2.4. Indeed, we already remarked that the RB methodology
performs well in approximating the branching behaviour also for non-sampled values
of the parameter ¢, but the computational speed-ups are still low, because of the
nonlinearity which does not allow for a N-independent online phase.

Thus, we first consider the square plate with L = 1, trying to efficiently recover the
3-D bifurcation diagram in Figure 4.24. We recall that the POD with tolerance eppop =
108 produces a basis for the reduced manifold of dimension N = 11. Within the same
setting as before, we consider the EIM with Greedy tolerance ¢, = 10~7 which splits
the form into an affine decomposition made up by 8 terms, each one approximated

71



4. VoN KARMAN EQUATIONS FOR STRUCTURAL BUCKLING OF PLATES

72

by almost 15 interpolation basis functions. Conversely, the DEIM approach with the
same Greedy tolerance ¢, produces 3 affine terms each one approximated by almost
25 interpolation basis functions.

We can now show in Figure 4.32 the reduced basis errors, between FE and RB
solutions, computed with EIM (left) and DEIM (right). We observe slightly larger
error peaks w.r.t. the case of RB with no affine-recovery technique, especially for the
DEIM technique, as we can see comparing the plot on the left in Figure 4.26 with the
plots in Figure 4.32. These errors are caused by the interpolation error during the
hyper-reduction approach in the offline phase. Therefore, EIM is performing better in
terms of accuracy, but we also remark that the higher number of terms in the affine
decomposition slows down the speed-up with respect to the DEIM, in fact we have
trB,DEIM = 46(s) with a speed-up of almost 11, while tgp p;pm = 135(s) with a speed-up
of almost 4.
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Figure 4.32: Reduced basis errors of the first bifurcating branch computed with EIM
(left) and DEIM (right), for y = 1.5and L = 1.

We can draw similar conclusions when considering the rectangular plate with L =
2. We recall that here the POD with tolerance epop = 1078 produces a basis for
the reduced manifold of dimension N = 10. As expected, the two affine-recovery
techniques provide similar affine decompositions with respect to the square plate case.
Indeed, keeping the same reduced setting, we chose the EIM (DEIM) with Greedy
tolerance as eg, = 1077 which splits the form into an affine decomposition made up
by 8 (3) terms, each one approximated by ~ 15 (~ 25) interpolation basis functions.

We can thus end this chapter showing in Figure 4.33 the reduced basis errors,
computed with EIM (left) and DEIM (right). Once again, slightly larger error peaks
occur, especially for the DEIM technique, as we can see comparing the plot on the right
in Figure 4.31 with the plots in Figure 4.33. Finally, the same computational savings
were observed also for the rectangular plate.

We have now completely characterized the bifurcation phenomenon occurring
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Figure 4.33: Reduced basis errors of the first bifurcating branch computed with EIM
(left) and DEIM (right), for y = 0.5 and L = 2.

when dealing with the structural investigation of buckling plates. Remarkably, the
reduced order algorithm we have developed was able to recover the bifurcation dia-
grams in all the physical settings we have considered. Supported by these results, we
have taken a step towards more complex models. In particular, in the next chapter,
we will discuss the bifurcating behaviour of the Gross-Pitaevskii model in Quantum
Mechanics.
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Chapter 5

Gross-Pitaevskii equations in Bose-Einstein
condensates

In this chapter, we consider the Gross-Pitaevskii equation in Quantum Mechanics [123].
Often referred to as a nonlinear Schrodinger equation, the Gross-Pitaevskii equation
models certain classes of Bose-Einstein condensates (BECs), a special state of mat-
ter formed by identical bosons at ultra-low temperatures. It is well known that the
solutions of the Gross-Pitaevskii equation with a parabolic trap in two dimensions
exhibits a rich bifurcating behavior [104, 105, 35], which includes symmetry-breaking
bifurcations and vortex-bearing states when a (sufficiently strong) rotational angular
momentum term is added [60]. The bifurcating behavior becomes even richer for the
two-dimensional coupled Gross-Pitaevskii equations [34]. However, for simplicity we
stick to the simple Gross-Pitaevskii equation and present a one parameter study (the
chemical potential being the only varying parameter) and a two parameter case (vary-
ing chemical potential and the normalized trap strength). For both cases, we will
describe how our approach leads to an efficient reconstruction of the bifurcation dia-
gram, while providing good approximation accuracy. This part is mainly based on the
work done in collaboration with A. Quaini [119].

5.1 Gross-Pitaevskii model

A BEC is a special state of matter formed by an unlimited number of bosons that
“condense” into the same energy state at low temperatures. It is formed by cooling
a gas of extremely low density, about one-hundred-thousandth the density of normal
air, to ultra-low temperatures (close to absolute zero).

A quantum system is the environment to be studied in terms of wave-particle
duality (i.e., all particles exhibit a wave nature and viceversa) and it involves the wave-
function and its constituents, such as the momentum and wavelength. The Gross-
Pitaevskii equation describes the ground state of a quantum system of identical bosons
using two simplifications: the Hartree-Fock approximation and the pseudo-potential
interaction model. In the Hartree-Fock approximation, the total wave-function ®;, of
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a system of Np bosons is taken as a product of single-particle functions ®

Np
q)tot(rlerI cee /rNB) - ch(ri)/
i=1

where r; is the coordinate of the i-th boson. If the single-particle wave-function satis-
fies the Gross-Pitaevskii equation, the total wave-function minimizes the expectation
value (i.e., the probabilistic expected value of the result of an experiment) of the pseu-
dopotential model Hamiltonian under normalization condition

Np= [ pdr, p=|of, (5.1)
@)

where QO C R? is the domain under consideration and p is interpreted as the particle
density. The Gross-Pitaevskii equation reads: Find the single-particle wave-function
d(r,t) : O x R* — C such that

1
0P = — AP+ P2+ W(r)® inQ, (5.2)

where i is the imaginary unit, r = [r| = /x2+y? is the radial coordinate, and
W(r) = 17212 is the external potential, with T being the normalized trap strength, i.e.
the ratio of trappings along and transverse to the plane. For the analysis of the model
we will restrict ourselves to a fixed trap strength equals to T = 0.2. Notice that we con-
sider a single well potential of parabolic type. Equation (5.2) is similar in form to the
Ginzburg-Landau equation and is sometimes referred to as a nonlinear Schrodinger
equation. Obviously, equation (5.2) needs to be supplemented with suitable boundary
conditions.

The construction of the steady solution is based on the ansatz:
O(r,t) = ¢(r) exp(—iut), ¢(r): Q—C, (5.3)

where y is the so called chemical potential, which can be seen as a measure of the density
at the center of the trap and has to satisfy y > 7. By plugging (5.3) into (5.2), we obtain
nonlinear problem

1
Glgsu)i= = SAp+ 99+ W(r)¢ — ug = 0. (54)

It is well known that the solutions of the one-dimensional version of problem (5.4)
exhibit a bifurcating behavior [91, 88, 1, 46], which is not particularly rich though. The
bifurcations occurring in the two-dimensional problem (5.4) are far more interesting
[104, 105, 35]. Indeed, several secondary bifurcations appear, which include symmetry-
breaking bifurcations and vortex-bearing states [60]. As before, we are interested in
the complex behaviour which originates from the Gross-Pitaevskii model. We will
analyse it through its bifurcation diagram, which plots some characteristic quantities
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of the solution, such as the number of bosons Np in the BEC (5.1) or a different norm
of the particle density p defined in (5.1), as a function of the chemical potential .

When Np — 0, the nonlinearity of the problem becomes irrelevant and the states
bifurcate from the respective linear limit. Starting from this low-density context, we
are interested in exploring the solution modes for larger values of 1, which make the
problem strongly nonlinear. Since an arbitrary potential can be approximated as a
harmonic potential at the vicinity of a stable equilibrium point, when Nz — 0 we can
decompose the linear eigenfunction ¢y, in Cartesian form as being proportional to

1) = Gu ~ Hun(VT2) Ha(VTy)e 27, (5.5)

where H; is the Hermite polynomial with j being the associated quantum number of
the harmonic oscillator. The critical value of the eigenvalue corresponding to linear
eigenfunction ¢, is u* = pmy = (m+n+1)7. Notice that, thanks to the chosen
notation, we are highlighting again the connection between the state equation and its
spectral properties, since it has important consequences on the bifurcation behaviour
of the model itself. Indeed here, as we will see, the characteristic eigenvalue parameter,
i.e. the eigenvalue responsible for the bifurcation, is exactly the chemical potential.
Thus, given an initial energy u at the linear limit, we increase the chemical potential
(and therefore the number of atoms Np) in order to approach to the strongly nonlinear
regime, that can lead to the discovery of new states originating also from secondary
bifurcations.

For the numerical characterization of the stability (and possible classification of the
instability) for each state, we refer to [35].

5.1.1 Weak formulation

Given the Gross-Pitaevskii model, expressed through the PDE (5.4), we prepare now
the setting to numerically study its branching behaviour. For this reason, here we
consider the variational framework to obtain its weak formulation, which is the first
step to apply the Algorithm 1 developed in Chapter 3 for its numerical investigation.
So let us consider # € P C R the chemical parameter and ) C R? the domain in
which we will approximate the solution.

We recall that the solution ¢ to equation (5.4) is a complex function, thus we will
denoting its real and imaginary parts respectively as ¢ and ¢, which we will treat as the
two components of the solution. Having represented the model with the parametrized
mapping G : X x P — X' with X = (H(l)(Q))Z, its weak formulation reads: given
e P, find X(u):=(¢(), P(u)) € X such that (omitting the y-dependency)

X, Y;u)=a(X,Y)+n(X,Y)+b(X,Y)—d(X,Y;u) =0, VYeX, (5.6)

77



5. GROSS-PITAEVSKII EQUATIONS IN BOSE-EINSTEIN CONDENSATES

78

where we have introduced the following variational forms

a(X,Y)zl/ VX - VYdQ, b(x,y)le/ r2X - YdQ,
2 Ja 2 Ja
d(X,Y;y):y/ X - YdO, n(X,Y):/ IX12X - YdQ.
(@) Q

To deal with the nonlinear terms in (5.6), we compute the Frechét derivative of the
parametrized variational form g, which can be expressed as

dg[Z)(X,Y;p) = a(X,Y) + b(X,Y) —d(X,Y; 1) + (X, Z,Y) VYEX, (57

where the term
o(X,7,Y) = / 2(X-2)Z + |Z|?X] - YdQ (5.8)
(9]

represents the linearization of the nonlinear term n at a point Z € X.

5.2 Numerical approximation

The projection of the weak formulation (5.6) in the finite dimensional space X C X
of dimension N is needed for the numerical investigation of the branching behaviour.
Thus, we defined the FE space Xy = X; NKY as in (4.11), consisting of polynomials
of degree r on the triangulation 7;, of (), which vanish on the boundary.

Then, generic k-th iteration of the Galerkin FE method combined with the Newton
method reads as: given y € P and an initial guess X3, = (¢}, 9%,) € Xy for k =
0,1,..., until convergence we seek 6X = (6@, 6¢Pn) € Xy, such that

a(8Xn, Yr) + b(8X, ) — d(8Xn, Y 1) + (86X, Xy, V) =
a(XN, Yor) + b(XN, Yor) —d(X5e, Yo ) +n(Xw, Yv) VYv €Xy,  (5.9)
where again for ease of notation, we have not specified that the solution X, depends
on parameter .

As concerns the corresponding matrix formulation, we start by introducing the
finite element discretization matrices

(An)ij = a(EE'),  (By)ij = b(E/E'),

P . (5.10)
(Cw)ij = c(E/, Xjr EY) . (Dun(p))ij = c(E/,E )

Therefore, the Jacobian matrix Jy (XX, (31); 4) of dimension RV >V can be written as

In (X (1) 1) = Ax + By — Dy (i) + Coyr.

Once again, we remark that the high fidelity Jacobian matrix has to be assembled at
each iteration of the Newton method and for each new instance of the parameter that
controls the chemical potential. Moreover, also in this case, the very rich bifurcating
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phenomenon, which characterizes the model, makes the computational complexity
heavier and a reduction strategy is needed. Indeed, we relied on the ROM technique
presented in Algorithm 2, which is used for the online approximation of each branch
of the Gross-Pitaevskii equation.

Given y € P and an initial guess X%, € Xy for k = 0,1,... until convergence we
seek 60Xy = (6N, oPN) € Xy such that

a(6Xn, YN)+b(6Xn, YN) — d(6Xn, Yn; 1) + c(0Xn, X, Yn) =
a(XK, Yn) +b(XE, Yn) — d(XK, Y 1) + n(XK, Yy) VYn € Xy, (5.11)

and then we set X’I‘\f’] = X’f\, —0XN.
Finally, the reduced Jacobian Jy (XX (1); ) € RN*N can be written as

In(X (1) 1) = A + By — Dy () + Cn (5.12)
where
Ay =VTAVV, By =VIByV,

N
Dn(i) = VIDN (), Cy= Y XUVTCu(E")V

n=1

are the reduced matrices written in terms of finite element matrices (5.10) and trans-
formation matrix (3.18).

The time saving promised by the online-offline strategy, usually enabled by the
affine decomposition, can not be obtained due to the nonlinearity, that as we will see
later on, it will force us to adopt the Empirical Interpolation techniques described in
Section 3.2.4 in order to obtain substantial savings of the computational time during
the online phase. Indeed, the reduced matrix Cy introduced above depends on u
through the solution computed at each step of Newton method. Let us now present
the high fidelity benchmark, validating our algorithm with the results in literature.

5.2.1 \Validation of the high fidelity approximation

In order to validate the Full Order Method for the approximation of the Gross-Pitaevskii
equation, by means of the Finite Element method, as described in Section 5.1.1, we

consider a setting proposed in [35]. We approximate the solution to equation (5.4)

in domain Q) = (—12,12)2, with homogeneous Dirichlet boundary conditions on the

entire boundary of (). The choice of a square domain with homogeneous BCs serves

to guarantee that the solution is not influenced by the boundary of the domain itself,
since the support of the solutions is focused at the center.

We recall that we set T = 0.2, while the chemical potential varies in P = [0,1.2].
For the space discretization, we use IP; finite elements and a refined mesh in the ball
of radius 5 centred in the origin, with 6889 elements, which produces a finite element
space dimension equals to A/ = 27908.
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We could investigate the model through its spectral properties, as we did before,
since the existing connection with the eigenproblem (5.5). While this gives us in-
formation about the location of the bifurcation points, a more extensive use of the
eigenproblem to also provide the initial guesses is not possible here. Indeed, the nu-
merical eigenvalue analysis of such problems is a difficult task [53, 28, 29], preventing
a straightforward application of the methodology utilized before. The main reason is
that, as studied in [21, 34], the Gross-Pitaevskii equation (5.4) has an infinite symmetry
group that acts on the space of solutions. Therefore, any rotation of the solution is still
an admissible solution, i.e. for any 6 € R

if G(¢;u) =0  then G(e;u) =0. (5.13)

We remark that a similar situation occurred for the Von Karmén plate equation in the
previous chapter, where the symmetry taken into account was the simple reflection
through the plane of the plate. This of course is a computational issue, but can be tack-
led with the implementation of properly chosen continuation methods in conjunction
to the deflation method [56, 35, 122]. We will present an application of this in Chapter
8.

Thus, having utilized the eigenvalues information to fix the parameter space P
where to perform the investigation, we choose its discretization Pk for the reconstruc-
tion of the bifurcation diagram. As we anticipated, the output scalar measures s will
be in this case the number of boson Np and the ||-||,-norm of the density p.

The simple continuation method was applied within the framework described
in the Algorithm 1. We chose K = 960 equispaced points with continuation step
Ap = 1.25-1073, in fact to properly follow the branches with the simple continua-
tion technique a huge number of solutions have to be computed. As concerns the
initial guess, here we took advantage of analytical expressions for the linear limit in
(5.5). In particular, we assign an initial guess proportional to the product of Hermite
polynomials H,, and H,,, where m and n chosen according to the value of the critical
point y* = (m + n + 1)T. We thus used different Hermite functions to follow different
branches, always keeping in mind the location of their occurrence by looking at the
corresponding eigenvalues, i.e. the bifurcation points. This approach worked well due
to the approximation near the linear limit for low value of the chemical potential p.

We start by showing in Figures 5.1 and 5.2 the high fidelity bifurcation diagrams
in the u-Npy plane and in the y-||pyr||, plane, respectively. These diagrams show
the first three bifurcation points and the corresponding six branches, showing the non-
uniqueness of the solution with respect to the chemical parameter y.

As p is increased, the sequence of events is as follows. The ground state |0,0) is
the system simplest state. Its linear eigenfunction ¢ has corresponding eigenvalue
u = T. The ground state is generically stable [87], thus no further bifurcations occur
from this state [87]. As expected, a unique solution branch departs from p = 7 in
Figures 5.1 and 5.2. A representative density function for this branch is shown in
Figure 5.3a. We can easily see that no further bifurcation originates for 7 < u < 27.
The first interesting events in terms of bifurcation analysis occur for y = 27, with
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Figure 5.1: High fidelity bifurcation diagram with the number of bosons Np s plotted
against the chemical potential . The labels (a)-(f) are referred to solutions in Figure
5.3.

n+m = 1: two branches, associated to |0,1) and |1,0), bifurcate from point (27,0)
in the u-Npr and p-||pn ||« planes [104, 47]. Indeed, from point (27,0) in Figures 5.1
and 5.2 we observe the two expected branches. Representative density functions for
these two branches are reported in Figures 5.3b and 5.3c. The next, more complicated,
case of bifurcations emanates from point (37,0), with n +m = 2. In Figures 5.1 and
5.2, we see that three branches depart from this point, associated to |1,1), |0,2), and
|2,0). The corresponding representative densities are shown in Figures 5.3f, 5.3¢, and
5.3d. Finally, all the points without marker in Figures 5.1 and 5.2 correspond to the
non-physical solution ¢ = 0 that exists since there are no external forces in equation
(5.4).

Figure 5.3 displays the density functions associated to y = 1.2 and all the six
solution branches in Figures 5.1 and 5.2. We observe the richness of density patterns
in order of decreasing Np. In particular, we see the ground state |0,0) in Figure 5.3a,
the single charge vortex |0,1) in Figure 5.3b, the 1-dark soliton stripe |1,0) in Figure
5.3¢, the dark soliton cross |1, 1) in Figure 5.3f, the ring dark soliton |0, 2) in Figure 5.3e,
the 2-dark soliton stripe |2,0) in Figure 5.3d. Notice that the six branches in Figures 5.1
and 5.2 are related to the first three eigenvalues. For example, the second bifurcation
stems from a double eigenvalue and thus we have two branches. This is again an
example of multiple bifurcation. The stability property of these branches are different
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Figure 5.2: High fidelity bifurcation diagram with the infinity norm of density pys
plotted against the chemical potential . The labels (a)-(f) are referred to solutions in
Figure 5.3.

for each case, i.e the single charge vortex is always stable while the 1-dark soliton stripe
is subject to multiple secondary bifurcations. These properties can be easily studied
using the standard techniques presented in Section 3.1.3, as did in [35], but also due
to the complexity mentioned before, this analysis is beyond our scope. The results in
Figures 5.1, 5.2 and 5.3 are in excellent agreement with the results reported in [35],
indicating that the FE methodology together with the choice of the mesh that we used
provide a good starting point for the implementation of the reduction strategies.

The overall simulation time required to complete the diagrams in Figures 5.1 and
5.2 is roughly tyr = 96(min).

We can finally move to the reduced order approximation in which we aim at reduc-
ing the computational time to built the bifurcation diagrams.
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Figure 5.3: Density functions computed with the high fidelity method at # = 1.2. Each
plot is associated to one of the six solution branches in Figures 5.1 and 5.2. From (a)
to (f) the number of bosons Njp is decreasing.

5.2.2 ROM approach to multiple bifurcations

In this section, we present the results obtained with the Reduced Order Method em-
bedded in Algorithm 2, as described in Section 3.2.5, and compare them with the FOM
results reported in the previous section. For this first test case, the only parameter that
varies is the chemical potential y in interval P = [0,1.2].

Concerning the construction of the reduced manifold, we employed a training set
for the POD with cardinality N, = 160 for each one of the six branches. Setting
the POD tolerance to epop = 107, we obtain a global basis of dimension N = 51.
During the online phase, we reconstruct the reduced bifurcation diagram for all the
961 equally spaced points in P = [0, 1.2] used in the high-fidelity bifurcation diagram
shown in Figures 5.1 and 5.2. Such points correspond to continuation step Ay =
1.25-1073.
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Figure 5.4 shows reduced order errors

Eny = INpy— Npn| and  Ep = |[lon]le — loNleols (5.14)

i.e. the difference in absolute value between the branches of the bifurcation diagram
computed with FOM (Npr and ||oxr||o) and ROM (Npy and ||pn||) in the p-Np plane
(top) and in the y-||p|/,, plane (bottom). In Figure 5.4, we see that the largest peaks
are associated to the |1,1) branch at u = 0.6. As before, it is expected to have larger
errors at the bifurcation points where differentiability with respect to the parameter p
is lost. We also infer that the errors are largest at 4 = 0.6 due to the more complicated
solution structure (compare Figure 5.3f to the other panels in Figure 5.3). From Figure
5.4 (bottom), we see the largest error is of the order of 10~* also for the infinity norm of
the density. However, we observe larger errors over interval [0.2,1.2] for u, as opposed
to localized at y = 0.6 as in Figure 5.4 (top).

As further evidence of the accuracy of our ROM approach, we plot in Figure 5.5
the difference between X, (FOM solution) and Xy (ROM solution) in the L? and
H} norms. Recall that X and Xy consists of both real and imaginary part of the
computed solution of the Gross-Pitaevskii equation. As expected, for all the branches
the largest errors in both norms occur at the point where each branch departs from
the horizontal axis, i.e. 4 = 0.2 for branch |0,0), u = 0.4 for branches |1,0) and |0, 1),
and u = 0.6 for branches |1,1), |0,2), and |2,0). In addition, just like in Figure 5.4 the
largest errors are associated with branch |1,1).

Figure 5.6 reports the difference between the density function p computed with
FOM and ROM in the L? and H} norms. In the case of the density, the largest errors
for each branch occur for u larger than the critical value where the branch departs from
the horizontal axis. For a better understanding of how the ROM density compares with
the FOM density, Figure 5.7 displays the difference pps — pn at ¢ = 1.2. We observe
larger errors for the 1- and 2-dark soliton stripe and the dark soliton cross, i.e. for the
solutions that do not have central symmetry.

Figures 5.4-5.7 show the ability of our ROM approach to accurately reconstruct
bifurcation diagrams as parameter u varies. Clearly, it makes sense to set up the ROM
machinery if there is a substantial gain in terms of computational time. Because of the
nonlinearity in the Gross-Pitaevskii equation, which makes the computations in the
online phase dependent on the number of FEM degrees of freedom, the computational
speed-up enabled by our ROM approach is only 1.1: it took tgp = 86(min) to generate
the data needed for the bifurcation diagrams, using continuation step Ay = 1.25-1073,
accounting only for the online phase computations. Recall that it takes 96 minutes
with FOM. These computational savings are not satisfactory, especially if we were to
include the cost for the offline phase. Before introducing the affine-recovery techniques
to drastically improve computational efficiency, we present a two-parameter study.
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Figure 5.4: Difference in absolute value between the branches of the bifurcation dia-
gram computed with FOM and ROM in the y-Np plane (top) and in the u-||p||, plane
(bottom), i.e. reduced order errors Ey, (top) and E, (bottom) defined in (5.14). The
labels (a)-(f) refer to the solutions reported in Figure 5.3.
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and Hé norms for each one of the six solution branches.
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Figure 5.6: Difference between p, (density computed with FOM) and pn (density
computed with ROM) in the L? and H} norms for each one of the six solution branches.
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Figure 5.7: Difference between the density computed with FOM and ROM for the first
six branches at y = 1.2.
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5.2.3 Multi-parameter analysis with trap strength

In this section, we want to investigate the Gross-Pitaevskii model in the multi-parameter
case, in which the chemical potential y varies in interval [0,0.8] and the trap strength

T varies in interval [0.1,0.3]. We are thus acting on the concavity of the parabolic trap,
considering a varying strength depending on the value T.

First, we focus on the first bifurcation, i.e. branch |0,0). As concerns the reduced
manifold, we applied the Algorithm 1 for 3 equispaced points in [0.1,0.3], in order
to recover the branching state from p* = 7 for K = 160 equispaced points in [0,0.8].
The resulting basis in this case consists of only N = 12 modes, with a POD tolerance
equals to epop = 1078,

Figure 5.8 shows such branch in a two-parameter bifurcation diagram obtained
with the Reduced Order Model as y and T are varied. As expected from the theory
(5.5), we see that as T increases the critical value of y for the first bifurcation increases
linearly. Recall that p* = 7, for m = n = 0, and Figure 5.8 clearly shows it (see
the black dotted line in the highlighted red rectangle). For Figure 5.8, we used 21
equispaced points in [0.1,0.3] with an increment AT = 0.01 and continuation step
Ap=1.25-1073,

As concerns the efficiency, due to the lack of an hyper-reduction strategy, the speed-
up is only 1.52 with almost tgp = 2.73(h) needed for the RB reconstruction of the full
3-D diagram in Figure 5.8, in contrast to the trg = 4.15(h) of the FE method. This
represents an improvement over the 1.1 speed-up for the one parameter test case, but
it is still not enough to justify the computational costs of the offline phase.

From these considerations, since we used a small number of basis functions, we
can highlight that the still high computational time for the reduced approach is mainly
caused by the assembly of the Jacobian matrix, which involves the projection on the
high fidelity space of dimension .

Despite this, it is clear that in general through the multi-parameter approach one
can really gain a lot of information about the model in an efficient way (once that
one has an N-independent online phase, as we will see in the next section). Indeed,
also for this rich and complex bifurcating model, through the POD of three branches
(namely for T = 0.1,0.2,0.3) we were able to built a unique ROM which allows to
approximate with good accuracy all the first branches emerging from 21 equispaced
values of T € [0.1,0.3]. In fact as we can see from Figure 5.10 the reduced errors for
the density show a maximum error of the order 1.e — 3, with peaks located at the
current value of 7. The corresponding representative solutions at u = 0.8 are depicted
in Figure 5.9, where it is clear that the more one increases the trap strength the more
the solutions remain confined in a smaller region around the center of the domain.

Next, we focus on the first two bifurcations but we also restrict the study to only
5 equispaced value in [0.1,0.3]. In Figure 5.11 we show the reduced order bifurcation
plot for the first three branches, i.e. branches |0,0), |0,1), and |1,0). The reduced
manifold was obtained again by sampling 3 equispaced trap values in [0.1,0.3], for
K = 160 equispaced points i € [0,0.8], but also for each one of first the three emerging
branch (one for y* = 7 and two for pu* = 27). Of course, the resulting basis in this case
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Figure 5.8: First bifurcation in a two-parameter bifurcation diagram obtained with
the Reduced Order Model: infinity norm of the density as chemical potential y and
trap strength T vary. The black dotted line in the highlighted red rectangle shows the
critical value of y for the first bifurcation: u* = 1.

has a much greater dimension, in order to capture all the possible states. As a matter
of fact, we obtained N = 41 modes with a POD tolerance equals to epop = 1078,

We see that our ROM approach successfully captures also the critical y for the
second bifurcation: branches |0,1) and |1,0) depart from p* = 27. Just like for Figure
5.8, we used continuation step Ay = 1.25-1073.

As concerns the efficiency, due to the lack of an hyper-reduction strategy, the speed-
up is only 1.12 with almost tgp = 2.55(h) needed for the RB reconstruction of the full
3-D diagram in Figure 5.11, in contrast to the trp = 2.86(h) of the FE method.

Here, we highlight that the computational speed-up is worse than the previous
case since we are using a much bigger number of basis functions (11 vs 41). Once
again, we highlight the remarkable fact that the ROM we built by compressing the
branches for three equispaced values of 7, is able to detect and properly follow the
bifurcating states emerging for different and not sampled values of the trap strength.
Thus, also introducing qualitatively different solutions in the POD stage, the ROM is
able to capture the energy coming from all the branches and to provide basis functions
which well approximate the high fidelity manifold of solutions.

As we can see from Figure 5.12 the reduced errors for the density show again a
maximum error of the order 1.e — 3, with peaks near the corresponding value of 7.
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Figure 5.9: Density functions computed with the reduced basis method at y = 0.8
varying the trap strength v € [0.1,0.3]. From (a) to (f) the trapping parameter is
confining the solutions in a smaller region.

Some representative solutions at y = 0.8 are shown in Figure 5.13, where we can
observe the same effect that we noted before, with the density solutions that shrinks
towards the center of the domain.

Finally, we can now present the application of the hyper-reduction strategies, that
will allow us to fully decouple the online phase from the degrees of freedom N of the
high fidelity problem.
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Figure 5.11: First two bifurcations in a two-parameter bifurcation diagram obtained
with the Reduced Order Model: infinity norm of the density as chemical potential u
varies for trap strength T = 0.1,0.2,0.3.
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Figure 5.12: Difference between p, and py in the L2 and H} norms for T = 0.15 and
T = 0.25, left and right respectively, in the multi-parameter case.
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Figure 5.13: Reduced basis density functions for the branches |1,0) and |0, 1), left and
right column, at 4 = 0.8 varying the trap strength T € [0.1,0.3]. From top to bottom
the trapping parameter is confining the solutions in a smaller region.
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5.2.4 Hyper-reduction with EIM/DEIM techniques

In this section, we apply the affine-recovery techniques described in Section 3.2.4, EIM
and DEIM, in order to efficiently reconstruct the branching behaviour of the model,
for the one and two parameter test cases. The purpose of this section is two-fold:
show that the branch is reconstructed accurately with a report on the substantial com-
putational time savings enabled by the hyper-reduction strategies and compare the
approximation properties of the two techniques.

Let us start with the one parameter test case in Section 5.2.2. We focus here on the
reconstruction of a single branch, say |0,1) emerging from y* = 27. Within the same
setting as before, we consider the EIM with Greedy tolerance ¢, = 1077 together with
a basis for the reduced manifold of dimension N = 6. The EIM involves an affine
decomposition made up by 6 terms, each one approximated by almost 10 suitable
interpolation basis functions.

On the contrary, the DEIM approach with the same Greedy tolerance ¢¢, produces
2 affine terms approximated again by 10 interpolation basis functions. Also in this
case the basis for the reduced manifold has dimension N = 6.

Thus, we show in Figure 5.14 the reduced order errors Ey, (left) and E, (right) for
branch |0,1). We see that the values of Ey, for EIM and DEIM are actually comparable
over the entire interval [0,1.2], with a peak at # = 1.2 of the order of 10~°. Error E, is
slightly larger for EIM, with a peak of the order of 107%.
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Figure 5.14: Difference in absolute value between the branches of the bifurcation dia-
gram computed with FOM and ROM with EIM/DEIM in the u-Ng plane (left) and in
the p-||p||, plane (right), i.e. reduced order errors Ey, (left) and E, (right) for branch
0,1).

0.0000000

Finally, Figure 5.15 shows the difference between FOM solution and ROM solution
computed with EIM (left) and DEIM (right) in the L? and H} norms, again for branch
|0,1). We observe slightly larger error peaks than in the case of ROM without affine-
recovery technique, as we can see comparing Figure 5.15 with Figure 5.5b. These
increased errors are the small price to pay for a considerable computational speed-up.
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Indeed, with EIM, it takes only trprrm = 55(s) to construct branch |0, 1) while it takes
trr = 246(s) with FOM. So, our ROM approach coupled with EIM is almost five times
faster than the FOM. As for DEIM, the computational time savings are even better:
it takes only trpprim = 7(s) for the construction of branch |0,1), with corresponds
to a speed-up factor of almost 32. This drastic reduction of the computational time is
mainly due to the different number of affine terms that we have previously mentioned,
but as we can see the order of accuracy is almost the same.
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Figure 5.15: Difference between X, (FOM solution) and Xy (ROM solution) computed
with EIM (left) and DEIM (right) in the L? and H} norms for branch |0,1).

The hyper-reduction techniques are especially effective in reducing the computa-
tional time needed for the two-parameter studies presented in Section 5.2.3. Before
presenting the results for the hyper-reduction approach to the multi-parameter case,
we remark that one has to pay attention on the application of the affine-recovery tech-
niques when many different configurations are taken into consideration.

Indeed, let us consider e.g. the DEIM approach for the reconstruction of the bifur-
cation diagram in Figure 5.1. In order to keep low the number of training points Ny.4iy,
we chose for each branch a parameter space centred in each corresponding bifurcation
point with amplitude equals to 0.1. Choosing a tolerance eg, = 107 for the DEIM
strategy, the two affine terms were approximated by means of 50 interpolation basis
functions each. As concerns the dimension of reduced manifold, due to the smaller
parameter space considered here, we need N = 18 basis functions to reach the POD
tolerance 10~7.

As we can see from Figure 5.16 strange issues can occur, where for example some
branches are properly and efficiently recovered online, while others are completely
missed. Of course, this can happen due to the non-convergence of the Newton iter-
ations, but more frequently the Algorithm 2 converges to the “wrong” branch or to
the “right” one, but rotated of a certain angle 6. This is actually the case reported
in Figure 5.17, where we show the high fidelity real part ¢ of the solution X and its
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reduced approximation belonging to the branch |1,0). It is evident that, in connection
to what previously stated in (5.13), the reduced configuration on the right correspond
to a rotation of the high fidelity approximation, which is still a solution for the system.
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Figure 5.16: Reduced basis errors for the solution X and its real part ¢ with DEIM
approach for |0,1) branch (left) and |1,0) branch (right) in the L? and H} norms.
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— —-—
Figure 5.17: High fidelity and reduced basis real part ¢ of the solution X for the |1,0)
branch, left and right respectively, at = 0.5.

For these reasons, we avoided to consider here the reconstruction of the graph in
Figure 5.11, while instead we focused on a DEIM application to recover efficiently the
bifurcation diagram in Figure 5.8. This choice is motivated by the fact that now we are
considering the evolution of a fixed branch with respect to the trapping parameter 7,
instead of mixing different branches associated to all the existing states.

Within the same setting as before, we considered a tolerance g, = 107, which
produces 15 interpolation basis functions for each one of the two terms. The N = 13
reduced basis functions with POD tolerance epop = 102 allowed us to efficiently
reconstruct the 3-D bifurcation diagram in Figure 5.8.
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Our ROM approach with DEIM took only tgg prim = 6.1(min) to reconstruct the
reduced diagram in Figure 5.11, obtaining a speed-up factor of 30 with respect to our
ROM approach without DEIM and a factor 40 with respect to the FOM.

The reduced algorithm we have developed proved to work well also in connection
to richer and more difficult bifurcating phenomena. In particular, we also tested more
deeply the application of hyper-reduction strategies to recover the efficiency, remark-
ing how much powerful and fundamental these techniques could be, but also pointing
out some critical issues that could be analysed further.

Before moving to Fluid Dynamics applications, we take a step back to Continuum
Mechanics problems. Indeed, in the next chapter we will deal with the buckling of
beams. Despite the similar context, we will study a different class of models which
exhibit a bifurcating behaviour. In particular, we will also consider more complex test
cases, including: different physical settings, multi-parameter applications, geometrical
parametrization and three-dimensional geometries. All these benchmarks will led us
to the investigation of a real test case scenario motivated by industry application.



Chapter 6

Hyperelastic models for bending beams

In this chapter, we deal again with physical phenomena in the context of Continuum
Mechanics. Indeed, as the Von Karman equations describes the buckling of a plate,
many different models can be investigated in the study of the deflection of beams. As
for the plates, also the beams are subjected to a sudden variation of their equilibrium
state when a compression acting on their boundaries exceeds a critical value. The
aim here is to provide a brief description of the bifurcating (buckling) phenomena for
2-D and 3-D beams with different constitutive relations, in particular we will focus
on the class of the so called hyperelastic models. Moreover, we will analyse a multi-
parametric setting in which the bifurcation point is studied also in conjunction to a
geometrically parametrized domain. Finally, we will use the information obtained
with these toy problems in a real case scenario coming from the Norwegian petroleum
industry [114]. This is an ongoing work with J. Eftang, G. Rozza and A. T. Patera [118]
in the framework of the MIT-FVG “ROM2S” project (Regione Friuli Venezia Giulia).

6.1 A Continuum Mechanics framework

Let us given () C R9, with d = 2,3, a bounded domain as the reference configuration
of a body B that undergoes deformation. We can capture the displacement u of a ma-
terial point P, from the reference position X to the new deformed location x, through
the deformation function ¢ : RY — R defined as x = ¢(X). In fact, to capture the
motion of a point, we can write u(X) = x — X, and from this it is immediate to define
the deformation gradient as

F = aqg(;) =Vu-+ L
Moreover, we can also define the determinant of the deformation gradient, which
encodes the volume changes, as | = det(F).
Once defined these basic quantities, we can present the standard and well-known
equilibrium equation derived from the equation of motion [150, 41, 42, 81, 153]

—div(P) =B inQ, (6.1)
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where B is an external force acting on the whole domain Q) and P = P(F) is the
first Piola-Kirchhoff stress tensor, related to the Cauchy stress tensor ¢ by the formula
P=JoF T

Of course, the computation of the displacement field u of the considered body as
a function of the external loads requires to complement equation (6.1) by a suitable
law. In particular, if we want to to study the equation (6.1) in the context of elasticity
problems, we have to characterize it through a relation between the stresses (forces)
and the strains (displacements).

These relationships, known as constitutive equations, highly depend on the type of
material under consideration. In this context, we relied on the so called hyperelastic
material (or Green elastic material) [68], which are characterized by the existence of a
function which defines the Piola-Kirchhoff stress tensor.

More precisely, we can define a strain energy function ¢ = ¢(F) such that

oY(F)

P(F) = “SF (6.2)
which is used to define an hyperelastic material by assuming that the stress can be
obtained by taking the derivative of the energy i with respect to the strain F.

Of course, many simplifications can be adopted when dealing with specific type of
materials. As an example, for an hyperelastic material which is also isotropic (its prop-
erties are independent from the direction of examination), the strain energy function
can be expressed only by means of the principal stretches. Indeed, from these one can
obtain the principal invariants of the (left) Cauchy-Green deformation tensor C = F'F,
which are defined as

11 = tr(C),
I = %[tr(C)z —w(C?)], 63)
I; = det(C).

Moreover, we remark that these materials are characterized by the fact that the
work done by stresses does not depend on the path of deformation, thus they conserve
the total energy, and in contrast with linear elasticity, we do not have to require any
infinitesimal assumption on the strains.

We can now proceed with the description of the models considered for the study
of compressed beams. In particular, we will analyse two different choices for the
strain energy function ¢, investigating numerically their properties with respect to the
buckling problems.

The simplest constitutive relation is the so called Saint Venant-Kirchhoff (SVK) model,
which is an extension of the linear elastic material model to the geometrically nonlin-
ear regime. This model is defined through the strain energy function defined as

W(F) = ME: €+ A (tr(€))?/2, (6.4)
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where

_1 T
€=3(F'F-1)

is the Green-Lagrange strain tensor (a measure for varying lengths between points), A
and A, are the Lamé constants, which are related to the material properties through
the Young modulus E and the Poisson ratio v as follows

E A — Ev
20+v) " (A+v)(1—2v)

Ay =

Moreover, from the definition of the hyperelastic material in (6.2), we obtain that the
first Piola-Kirchhoff stress tensor for the SVK model is given by

P(F) = F(2M€ + A tr(E)]).

We remark that, as we said before, such model is analogous to the linear elasticity
one. Indeed, one can characterize the linear elasticity model by means of the strain
energy function

P(F) = Mgz e+ Ao(tr(e))?, (6.5)
where

1
ezi(P—l—PT—I)

is the infinitesimal strain tensor.

The second hyperelastic constitutive relation we will consider is the so called neo-
Hookean (NH) model, which can be expressed through the the strain energy function
defined as

_M

9(F) = "1 (1~ 3) ~ MIn] + () (6.6)

where I is the first principal invariants in (6.3) and A4, A, are the Lamé constants as
before. The first Piola-Kirchhoff stress tensor in this case is given by

P(F) = F[(AM(I=C™) + A2(In])C ).

We remark that the words buckling and bifurcation will be used here indistinctly,
but we will be interested only in the approximation of the first buckling mode, prop-
erly following the post-buckling behaviour as the target branch.

In the next section, we will present the mathematical formulation of the problem,
focusing on its weak formulation that will allow us to apply our methodology.

6.1.1 Weak formulation

Having presented the constitutive relations that we will use in the rest of the chapter,
we can now state the mathematical formulation of the problem. Starting from equation
(6.1) we can consider the boundary value problem, in the reference domain (), given
by
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—div(P(u)) =B inQ),
u=1up in FD, (67)
Puyn=T in Ty,

where u : QO — RY is the in-plane displacement, B is the body force per unit reference
area, and T is the traction force per unit reference length. Thus, our aim is to study
the deformation of the domain (), subjected to a prescribed displacement up on the
Dirichlet boundary I'p together with body and traction forces. We remark that, due to
the Dirichlet non-homogeneous BCs, the function space in which we set the problem is
the space H5(Q)) = {v € H(Q) | v = up € I'p}, where in this case we are assuming
that each component of u is in H}(Q).

To derive the weak formulation of the problem, we proceed as usual by taking the
dot product with a test function v € X = H}(Q) and integrating over the reference
domain (), this way we obtain

/diV(P(u))-de+/ B-odQ=0 YoeX 6.8)
Q Q

Applying the divergence theorem and embedding the traction and displacement bound-
ary conditions (the test function v € X satisfies homogeneous BCs on I'p), the weak
formulation reads as: find u € H}(Q) such that

/P(u):Vde—/B-de— T-0dl =0 VYoeX. 6.9)
Q Q Ty

In practice, a standard technique to set the problem in the same space is to consider
a lifting function Rp € H'(Q) such that Rp|r, = up. Then, one sets ©i = u — Rp
and, from the immediate consideration that ii € X, the symmetry in spaces between
solution and test functions is restored.

Furthermore, the boundary value problem in (6.7) for hyperelastic media can be
also expressed as a minimization problem by means of the the Theorem of Virtual Work
[68]. In fact, we can define the potential energy of the beam in term of the strain energy
function ¥ as

H(u):/ﬂt,b(u)dﬂ—/QB-udQ—.r T-udl. 6.10)

At minimum point of IT1(u), the directional derivative of I'T with respect to the change
in u is given by

I1
g(u,v):=D,Il(u) = dII(u +dv) , (6.11)
dé 50
is equal to zero for all v € X, that is
gu,v)=0 VoveX (6.12)

It is easy to observe that evaluating equation (6.11) leads to the weak formulation
in (6.9). The constitutive relation we chose are characterized by the fact that equation
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(6.12) results in a nonlinear form w.r.t. u. In such cases we need to rely on the Jacobian
of g, that is defined by

dg(u+dz,v)

dglul(z,v) = B (6.13)

5=0

Before moving to the numerical approximation of the problem, we want to high-
light that the variational forms above were presented without any dependency from a
generic (multi-)parameter u. The reason behind this choice is that we will consider dif-
ferent geometrical/physical parameter for each toy problem, specifying case by case
the parametrized quantities.

6.2 Numerical approximation

Here, we will present different toy problems, in which we will study the buckling be-
haviour of a beam with different constitutive relations, boundary conditions, geometry
settings and external forces. Moreover, the parametric investigation by means of the
the reduced order strategy developed in Section 3.2 will allow an efficient computation
of the bifurcation diagrams.

Since the only variable involved will be the displacement u & R?, withd = 2,3, and
the forms highly depend on the constitutive equations we will present the high fidelity
projection only in an abstract version. Therefore, as we did in (3.3) the projection of
the weak formulation (6.9) in the finite dimensional space X of dimension N/, reads
as: given u € P, seek uy :=uy(p) € Xy that satisfies

glun,on;m) =0 Yoy € Xy, (6.14)

where we introduced in the weak formulation the geometrical and/or physical multi-
parameter u € P. The application of the Newton method leads us to solve, at the
generic k-th step, the algebraic equation

In (ufy (1); w)dun = G (ul ()i 1), (6.15)
updating the solution as u’j\Jfr = uk, — éu, until convergence.

In order to efficiently recover the solution for repeated instances of the parameter
p during the online stage, we will rely on the projection in the reduced basis space Xy.
Thus, given u € P, we seek uy :=un(p) € Xy that satisfies

g(uN, ?JN;‘u) =0 VoyeXy, (616)
which form the algebraic standpoint translates into

In(ul () ) dun = G (ui ()i 1), (6.17)

with the reduced residual and the reduced Jacobian matrix defined as in (3.19) and
(3.21), respectively.

Now we can finally present the different test cases analysed to investigate the
phenomenon of buckling for elastic beams.
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6.2.1 2-D toy problem

In this first application, we consider a two-dimensional beam which corresponds to
the domain Q) = [0,1] x [0,0.1]. We built the Finite Element space with IP; linear
elements, resulting in an high fidelity dimension N = 4328. It is well-known that, e.g.
for B = (0,0) and T = 0, the bifurcation diagram enjoys a Z? reflective symmetry
and it undergoes a series of pitchfork bifurcations as y is increased. Despite this, here
we focused only on the first branch, being usually the most common cause of failure.
In this simple 2-D context, we will analyse different test cases in which the buckling
properties will be studied in connection to different compression conditions, materials
characteristics and geometries.

6.2.1.1 Dirichlet compression

Here, we consider a beam subjected to a parametrized uniform compression imposed
by means of Dirichlet boundary conditions. In particular, we will analyse the Saint
Venant-Kirchhoff and the neo-Hookean models, choosing: a null traction force T = 0,
a Young modulus E = 10° and a Poisson ratio v = 0.3, while for the body force we
will study either B = (0,0) or B = (0, —1000). In particular, we want to study the
buckling of the beam subjected to a compression of magnitude y on its right. To do
so, we rewrite the Dirichlet conditions in (6.7) as

B 1
- (o,g) on I'p = {0} x [0,0.1], (6.18)

u
u=(—pu0) onTpH={1}x]0,0.1],

which correspond to a clamped condition on the left end of the beam, and an increas-
ing uniform uni-axial compression on the other end. Thus, for a fixed compression ,
we will consider the functional space

X ={uc (H(Q)*:u=(0,0)onTh, u=(—u,0)onTh}.

Despite the simplicity of the models, the buckling phenomenon makes the analysis
of the behaviour of the solution with respect to the compression y not straightforward,
especially as concerns the reduction strategies. Indeed, for the high fidelity setting
we had to choose Ny, = 1000 points in the parameter space P = [0,0.2], in order
to properly detect the critical point and follow the post-buckling branch. We applied
for all the test cases a POD tolerance epop = 10~® and an online continuation method
based on K = 2000 equispaced points in P, which corresponds to a continuation step
Ap =10"*

Let us now consider the reduced order strategy for the SVK model with null body
force B = (0,0). We obtained a reduced basis space of dimension N = 5, that we used
for the online projection in order to reconstruct the bifurcation diagram in Figure 6.1a.
The functional considered in this case is the infinite norm of the second component of
the displacement, namely s(u) = [|u,||,,. We can clearly observe that the buckling of
the beam occurs for the value p* ~ 0.03. In fact, in such point the vertical component
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of the displacement u changes suddenly from being trivial to causing the buckling.
Furthermore, we want to highlight the sharp discontinuity in the sensitivity a”é—(:) at
the buckling point.

0.25 A 0.25 1
[[uy|loo —0— |luylloo

0.20 1 0.20 4
0.15 0.15

0.10 1 0.10 1
0.05 1 0.05 -
0.00 1 0.00 -

0.000 0.025 0.050 0.075 0.00 0.125 0.150 0.175 0.200 0.000 0.025 0050 0.075 0100 0.125 0.50 0.175 0.200
(a) B = (0,0) (b) B = (0, —1000)

Figure 6.1: Reduced basis bifurcation diagrams for the SVK beam with different body
forces.

A representative solution of the post-buckling branch is depicted in Figure 6.2 for
u = 0.2 with respect to the original undeformed configuration (mesh wireframe). We
remark that here the beam buckles upwards.

Displacement u
0.0e+00 0.1 2.6e-01

— —

Figure 6.2: High fidelity displacement u for the SVK beam with B = (0,0) at u = 0.2.

As we can see from Figure 6.3a, the POD with only N = 5 basis functions is able
to recover a good approximation of the bifurcation diagram, with an average error on
P of order 107°. Despite this, we can observe also here, even more clearly, that the RB
error has its maximum at the buckling point. Moreover, here the difference between
the maximum and average RB error is of almost 4 orders of magnitude, denoting the
great difficulty of the reduced manifold at reproducing the bifurcation. We also want
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to remark that, when Dirichlet BCs are considered in the PDE, a lifting function has to
be added to the POD basis, in order to encode the value at the boundary.

The speed-up, equals to 1.26, is quite low, in fact to plot the high fidelity version of
the bifurcation diagram in Figure 6.1 we spent tyr = 454(s) while the reduced order
one required tgp = 358(s). This is due to the fact that: (1) the number of degrees of
freedom is kept low by the linear elements, (2) empirical interpolation strategies were
not applied, (3) a N-independent output functional could have been chosen.

L4 0.0040 A
B ||uy—uy||z error 0.003 n W ||uy—upl|z2 error
0.08 1 ® ||uy—uy||s error 0035 ® ||uy—up||y error
°
0.0030 -
0-061 0.0025 -
0.0020 A
0.04 1
u 0.0015 A
[
° 100104
0.02 1 0.0010
2 0.0005 1
0.00 1 _ 0.0000 A
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
(@) B = (0,0) (b) B = (0, —1000)

Figure 6.3: Reduced basis errors for the SVK beam with respect to different body
forces.

Now we want to study how a perpendicular body force acting on the beam change
the solution properties. For this reason we consider a non-trivial B = (0, —1000) and
within the same reduced setting we obtained N = 4 reduced basis dimension upon
which we built the buckling diagram in Figure 6.1b. Is it immediate to observe that
the sharp discontinuity in the sensitivity was a bit smoothed by the force B which
therefore produces a more gradually buckling behaviour. Moreover, as it is possible
to observe from Figure 6.4, the action of a “gravity”-like force causes the branching be-
haviour to be characterized by a downwards buckling. Hence, the reflective symmetry
has been broken by imposing a gravitational body force and the bifurcation diagram
behaves more smoothly near the buckling point. Furthermore, due to the elastic prop-
erties chosen, the body force is only able to qualitatively change the buckling without
consistently affecting the quantitative displacement.

The reduced error plot in Figure 6.3b shows an effect of this smoothness, in fact
now the maximum and average error are of the same order. We also notice that here
the error is maximum in the region of the unbuckled states. Moreover, we remark that
the speed-up is the same as the unforced case. Finally, we highlight that in general
a regularization action for the bifurcation diagram could be the key for a good RB
strategy, when only a qualitative understanding on the system is required.
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Displacement u
0.0e+00 0.1 2.6e-01

— -

Figure 6.4: High fidelity displacement u for the SVK beam with B = (0, —1000) at
u=02

We can now move to the investigation of the neo-Hookean constitutive relation in
(6.6). Using the same offline setting, we obtained a reduced basis space of dimension
N = 4 for both body forces test cases. We can show the reduced basis bifurcation
diagrams in Figure 6.5, from which it can be observed the same smoothing effect of
the body force near the buckling. Despite it is well-known from the literature that the
neo-Hookean model is more accurate far from the small displacement regime, we can
notice that the detection of buckling point is consistent with the one predicted by the
Saint Venant-Kirchhoff model. The results do not differ too much form the previous
ones, only a small increment of the maximum displacement can be observed in Figure
6.5.
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H I
(a) B = (0,0) (b) B = (0, —1000)

Figure 6.5: Reduced basis bifurcation diagrams for the NH beam with different body
forces.

Representative reduced error plots on the displacement of the post-buckling branch
for both B = (0,0) and B = (0, —1000) case are depicted in Figures 6.6 and 6.7 for
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u = 0.2, showing the good approximation accuracy reached by the POD basis for the
post-buckling branch.

1T aAF T

1.30-21 64007
- -
Figure 6.6: Reduced basis error of the displacement u for the NH beam with B = (0,0)

at p = 0.2

26e21 2eb 49e-06

o

Figure 6.7: Reduced basis error of the displacement u for the NH beam with B =
(0,—1000) at u = 0.2.

As before, we present the plots of the reduced basis error with respect to each y in
the parameter domain P in Figure 6.8. We can draw the same conclusions about the
accuracy of the reduction strategy when both body forces were applied.

0.07 .
B ||uy—uyllez2 error 0.004 7 B ||uy—upyl|.z error
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[ ]
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- 0.001
]
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.
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0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
(a) B=1(0,0) (b) B = (0, —1000)

Figure 6.8: Reduced basis errors for the NH beam with respect to different body forces.

The speed-ups are similar in both forced and unforced cases, of order 1.22, due
to the same reasons. The complexity of the model makes the computation of the
bifurcation diagrams more expansive, in fact we spent almost tgr = 763(s) for the
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high fidelity version and frp = 624(s) for the reduced order one.

Before ending the analysis of this test case, we remark that although we were only
interested in the first buckling, as we said previously many configurations can coexist
for the same values of the compression parameter y. As an example, in Figures 6.9
and 6.10 we plot the high fidelity displacements u at y = 0.2, corresponding to the
0-th and 2-th buckling modes.

Displacement u
0.0e+00 0.1 2.0e-01

— —

Figure 6.9: High fidelity 0-th mode displacement u for the SVK beam with B = (0, 0)
at u =0.2.

i

Displacement u
0.0e+00 0.1 2.0e-01

— —

Figure 6.10: High fidelity 2-th mode displacement u for the SVK beam with B = (0, 0)
at u =0.2.

6.2.1.2 Neumann compression

In this section, we will consider a different type of compression, in which we are no
longer fixing the displacement at the boundary, rather we parametrize a traction force
T. In literature this is usually called the cantilever beam test case.

In particular, we want to investigate the Saint Venant-Kirchhoff model with a
Young modulus E = 10° and a Poisson ratio v = 0.3, with the trivial body force
B = (0,0). Hence, the compression is modelled through the traction T = (—p,0)
on I'y; = {1} x [0,0.1], while the beam is clamped, homogeneous Dirichlet condition
u = (0,0), at the opposite edge '}, = {0} x [0,0.1].

Of course, given the changed boundary conditions, we expect to obtain a differ-
ent buckled configuration, since now the beam, thanks to the Neumann condition,
has more freedom to move. As concerns the high fidelity setting, here we were able
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to reconstruct the post-buckling branch with much fewer points, indeed we chose
Niain = 50 equispaced points in the parameter space P = [2200,2400] which repre-
sent the magnitude of the traction force T. For this model we experimented also the
POD approximation accuracy with respect to the number of basis functions involved.
Hence, we considered two reduced models, the first with tolerance epop = 1078 cor-
responding to a reduced basis space dimension N; = 4, and the second one with
tolerance epop = 1071° corresponding to a reduced basis space dimension N, = 5.
For the online phase we built the branch over K = 400 equispaced points in P, which
corresponds to a continuation step Ay = 5-10"".

We considered again the functional s(u) = ||uy||,, to plot the reduced basis bifur-
cation diagram in Figure 6.11. Since the body force is trivial, consistently with the
previous analysis we have a sharp sensitivity near the buckling point u* ~ 2267.
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0.0 1

2200 2225 2250 2275 2300 2325 2350 2375 2400

K
Figure 6.11: Reduced basis bifurcation diagrams for the SVK beam with Neumann
compression and B = (0,0).

As we expected, the displacement solution shows an upwards buckling with a qual-
itative different behaviour with respect to the Dirichlet compression test case. We plot
in Figure 6.12 a representative solution of the post-buckling branch for the Neumann
compression at y = 0.2.

Now we come back to the comparison between the two ROMs, employing respec-
tively Ny = 4 and N, = 5 basis. As we can see from Figure 6.13, the POD of dimension
Ni = 4 (left) produces a not completely satisfactory reduced error at the buckling point
u* of order 2.e — 1, although it corresponds to a quite low tolerance epop = 1078, Due
to the expected exponential convergence of the RB method, adding a single basis func-
tion, selected by the tolerance epop = 1019, the maximum error diminishes of almost
three orders. Of course, in both cases, the average errors of order below 10=7 on P
confirm the good approximation property of the POD. Once again, the peaks of the



6.2. Numerical approximation

' 4

Displacement u
0.0e+00 0.2 4.4e-01
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Figure 6.12: High fidelity displacement u for the SVK beam with Neumann compres-
sion and B = (0,0) at u = 0.2.

error are reached where the sensitivity loses its differentiability.

The speed-up is still very low, almost 1.2, but also the computation of high fidelity
version of the bifurcation diagram in Figure 6.11 was less costly, indeed to build it we
spent tgr = 180(s), while the reduced order one required tgrp = 150(s).
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Figure 6.13: Reduced basis errors for the SVK beam with a different number of basis
functions.

6.2.1.3 Multi-parameter test case

Here, we want to extend the investigation done in Section 6.2.1.1 by modelling dif-
ferent materials through the parametrization of the elasticity constants. In particular,
staying within the physical parametrization (we will see in the next section an example
of the geometrical one), we want to understand how different materials behave with
respect to an increasing compression imposed by means of Dirichlet boundary condi-
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tion. Hence, we can define the multi-parameter p € P C RR® as the triplet u = (u, E,v),
where y is the bifurcating parameter which controls the Dirichlet compression and E,
v are respectively the Young modulus and the Poisson ratio.

Once again, we considered the SVK model with gravitational body force B =
(0,—1000), and s(u) = ||uy||, as the output functional for the buckling detection.

For the analysis, we chose a parameter space given by P = [0.0,0.2] x [10°,107] x
[0.25,0.42]. As concerns the offline phase, we sampled Ny, = 1000 snapshots for
equispaced values of y, for each one of the 4 vertexes of the bidimensional parameter
space of the elasticity constants, i.e. [10%,107] x [0.25,0.42].

Hence, as in the multi-parameter test cases in the previous chapters, also here
we have sampled the bifurcation diagrams for different physical configuration and
then we have used the POD compression to extract the modes needed to recover the
buckling of beams made by different materials.

Since the 3-D parameter space, we expected that a much greater number of ba-
sis functions are needed, indeed using a POD tolerance epop = 10~8 we obtained
a reduced basis space of dimension N = 43. The online continuation method was
based on K = 201 equispaced p values in P, which corresponds to a continuation
step Ay = 1073, and the bifurcation diagram was depicted for 5 random pairs of the
elasticity constants (E,v) € [10°,107] x [0.25,0.42]. Therefore, let us show in Figure
6.14 the reduced basis bifurcation diagrams with respect to the Young modulus.
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Figure 6.14: 3D reduced bifurcation plot for SVK beam with B = (0, —1000) for five
random pairs (E,v) € [10°,107] x [0.25,0.42].

As we can see the reduced model was able to reconstruct the post-buckling be-
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haviour for all the pairs. As an example we show in Figure 6.15 the reduced errors for
two other pairs (E;,v1) = (5.2-10°,0.352) and (E,, v2) = (2.6 - 10%,0.272). We remark
that the choice of the non-trivial body force was takes in order to avoid sharp gradients

in the bifurcation diagrams and thus larger errors in the reduced approximation.
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Figure 6.15: Reduced basis errors for the SVK beam with B = (0, —1000) for fixed
pairs (E,v).

Despite the displacement solution for the materials considered during the online
phase shows similar properties in the considered parameter range, we can observe
from Figure 6.16 that a slight modification of the buckling point can occur. Moreover,
we remark that for some choices of the elasticity constants, the body force can become
irrelevant leading again to sharp discontinuity in the sensitivity.

As regard the computational speed-up, given the increased dimension of the re-
duced space, the plot of the reduced diagram costs exactly as it high fidelity version
tur ~ trp = 900(s). Hence, the need for an empirical interpolation approach capable
of decoupling the online phase from the high fidelity degrees of freedom is still more
evident. Despite this, the interesting point here is that, even through a naive approach
for the sampling of the elasticity parameters, we were able to detect the buckling and
the related post-buckling behaviour for a wide range of a 3-D parameter space, by
means of N = 43 basis functions.

6.2.1.4 Geometrical parametrization

In this test case, we will consider for the first time a parametrized geometry, trying to
understand how this influences the buckling property of the beam. Thus, let us gives
brief introduction to the geometrical parametrization test case [130], which we will use
also in subsequent sections.

Given a parameter p € P, we can distinguish between the physical quantities y,, €
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Figure 6.16: Reduced bifurcation diagram for SVK beam with B = (0,—1000) for
(E1,11) = (5.2~ 10°, 0.352) and (Ep, v5) = (2.6 109, 0.272).

Pp (compression, forces, viscosity, trap strength) and geometrical quantities p, € P

(lengths, angles). Hence, we now consider the parameter dependent domain (N)(yg)
and its reference configuration (), related by the transformation map

®:0xPy— R suchthat Op,) = d(p,), Vp, € Py (6.19)

The aim of such map is allow us to write a generic weak formulation posed on the
parameter dependent domain ﬁ(,ug), in the reference configuration (), in order to
guarantee the assembly of the high fidelity u-independent quantities during the offline
phase.

The key point is the formula for the change of variables, which for any integrable
functions j?: QO — R%is given by

- Fd0 = /Q Fdet(Jo) dOQ, (6.20)

where f = fo ® and Jo is the Jacobian of the transformation map ®. When the
forms involve spatial derivatives, one relies on the chain rule to obtain a formula that
encodes the parametrization dependence. As an example we can consider the standard
H' seminorm, which can be transformed as

f:VhdQ = K: .
/f2 oy VT ¢ Vil a0 /Q (Vif)K : Vyih dQ, 621)
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where the parametrized tensor K : R x P — R?* is defined as

K(x;m) = Jo' (1) Jg" (x; ) det(Jo (x; p)).

Having presented the basic notions on geometrical parametrization, we can go back
to the our 2-D toy problem to investigate how the length of the beam is related to the
buckling point. For this reason we now consider the geometrically parametrized beam,
where its semi-length ji, is added as new parameter. Therefore, the domain depicted
in Figure 6.17 can be expressed as Q(ig) = (O U M (j1g), where O = [0,0.5] x [0,0.1]
and ﬁz(yg) = [0.5,0.5 + pg| x [0,0.1]. In this case the transformation map is simply
given by the affine function

2p(x —0.5)+0.5

y :| forx e O, = 62(05>

D(x; pg) = [

(0,0.1) (0.5,0.1) (0.5 +p4,,0.1)

(0,0) (0.5,0) (0.5 +1,.,0)

Figure 6.17: 2-D beam with parametrized geometry and y, € [0.5,1].

As a consequence of the geometrical parametrization, a consistent number of terms
are involved in the affine (w.r.t. the parameter) decomposition of the weak formulation.
As an example, for the SVK model one obtains the split of (6.14) in 3 linear and 5
nonlinear terms, already for this simple geometry change.

As regard the physical setting, we consider the SVK model compressed through
Dirichlet boundary conditions with null traction force T = 0, Young modulus E =
10°, Poisson ratio v = 0.3 and gravitational body force B = (0, —1000). During the
offline phase we sampled Ny, = 1000 points in the parameter space P, = [0,0.2],
for each one of the 3 equispaced points in P, = [0.5,1]. Using, as always, a POD
global compression with tolerance epop = 10~® we obtained a reduced basis space of
dimension N = 12. On the contrary, the online continuation method to reconstruct the
3-D bifurcation diagram in Figure 6.18 we chose K = 201 equispaced points in P}, for
5 equispaced values of the semi-length y, € Ps.

Two representative solutions of the post-buckling branches for p, = 0.625 and
g = 0.875 are depicted in Figure 6.19, respectively left and right, at 4 = 0.2.

As we can see from Figure 6.20 the reduced manifold was able to approximate the
buckling also for not sampled geometries with good approximation accuracy. This
way, we can effectively study the evolution of the buckling varying the length of the
beam.
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Figure 6.18: 3D bifurcation plot for SVK beam with B = (0, —1000) with y, € P.
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Figure 6.19: High fidelity displacement u for the SVK beam with B = (0, —1000) at
u = 0.2 for different geometries.

As we expected when the length of the beam varies, also the buckling point
changes its position. Indeed, as we can observe from Figure 6.21 the longer is the
beam the sooner it buckles. This is still more evident in the 2-D projected diagram
where the branches correspondent to y¢ = 0.625 and y, = 0.875 are plotted. Indeed,
the buckling point for the beam with corresponding semi-length y, = 0.875 buckles
for a value of y* = 0.016, while for the configuration with yu, = 0.625 it occurs at
u* = 0.022.

Also here the speed-up is essentially null with tyr ~ tgp = 3000(s), in fact the
lower number of basis function is balanced by the increased number of terms involved
in the weak formulation, which due to the lack of empirical interpolation strategies
require a costly projection on the high fidelity dimension space.
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Figure 6.20: Reduced basis errors for the SVK beam with B = (0, —1000) for fixed
geometries.
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Figure 6.21: Reduced bifurcation diagram for the SVK beam with B = (0, —1000) for
e = 0.625 and p, = 0.875.

6.2.2 3-D toy problem

Having analysed in the previous section a variety of settings for the buckling of a
two-dimensional beam, the main step towards real applications is to consider a 3-
D geometry, as an extension of the one studied previously. Following the test case
investigated in [157], we fix the domain as Q) = [0,1] x [0,0.2] x [0,0.079], we choose
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the body forces as either B = (0,0,0) or B = (0,0, —1000) with trivial traction T = 0,
and fixed material properties E = 10° and v = 0.3.

Hence, we go back to the one parameter case, in which the compression parame-
ter is imposed through Dirichlet boundary conditions. For this reason, we seek the
solution displacement u in the functional space

X ={uec (HY(Q)®*:u=(0,0,0)onTh, u=(—u0,0)onThH},

where Th = {0} x [0,0.2] x [0,0.079] and I';, = {1} x [0,0.2] x [0,0.079].

We built the Finite Element space with IP; linear elements on a tetrahedral mesh,
resulting in an high fidelity dimension N = 1734.

As before the parameter space is given by P = [0.0,0.2], and its exploration is per-
formed through the simple continuation method with fixed step Ay = 2107, result-
ing in Ny, = 1000 snapshots. The reduced manifold was built choosing a tolerance
epop = 107® and the bifurcation diagram is recovered with an online continuation
method based on K = 2000 equispaced points in P.

We remark that since here we added a space dimension, the buckling for the rect-
angular cross-section beam can happen in both the directions individuated by the
cross-section of the beam perpendicular to the compression axis. Despite this, the first
buckling usually occurs in the direction of minimum length, hence in this case the z-
axis. For this reason, in order to detect the buckling behaviour, we consider as output
functional the infinite norm of the z-component of the displacement |u|| ..

For the three dimensional beam, both constitutive relations, SVK and NH, have
been investigated. As concerns the SVK model, we obtained a reduced basis space of
dimension N = 9, for both the choices of the body force B.

In Figure 6.22 we can see the bifurcation plot for trivial B = (0,0,0) and gravita-
tional B = (0,0, —1000) body forces. As we can see, also in this case the sharp gradient
in the sensitivity was smoothed by the external force, but in Figure 6.22a we can clearly
observe that the buckling of the beam occurs for the value p* ~ 0.053.

As predicted before the buckling occurs along the z-direction and a representative
solution of the post-buckling branch is depicted in Figure 6.23 for y = 0.2 with respect
to the original undeformed configuration (mesh wireframe).

As we can see from Figure 6.24, the reduced order model has overall good approx-
imation properties, since it is capable to reconstruct the post-buckling behaviour with
a maximum error of order 1072, We remark that while the peaks in correspondence
to the bifurcation point agree with the previous analysis considering different body
forces, in this case the maximum errors were obtained for a bigger value of the com-
pression. We did not investigate further the buckling, but from the considerations
about the performances of the RB at bifurcation points, we guess that other buckling
points are located near ¢ = 0.122 and p = 0.166.

Once again, we observe the consistent difference between the maximum error and
the average one of order 108, remarking that this is caused by the lack of regularity
of the solution with respect to the parameter, due to the bifurcation phenomena. Same
results as before hold for the speed-up.
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Figure 6.22: Reduced basis bifurcation diagrams for the 3D SVK beam with respect to
different body forces.
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Figure 6.23: High fidelity displacement u for the 3D SVK beam with B = (0,0,0) at
u=0.2.

For the sake of comparison let us consider also the NH model within the same
setting as before. The same POD tolerance was reached by a fewer number of basis
function, namely N = 5. In Figure 6.25 we can see the bifurcation plot for trivial
B = (0,0,0) and gravitational B = (0,0, —1000) body forces. For the three dimensional
beam we can observe that the NH constitutive relation actually predict the buckling
in a slightly different location, indeed from Figure 6.25a we can detect the buckling
occurring for the value y* ~ 0.059 (compare with Figure 6.22a).

Furthermore, as we can see from Figure 6.26, the NH model did not encounter
the same accuracy issues as for the SVK model in Figure 6.24, thus showing a better
approximation over P. As an example we show in Figure 6.27 the reduced error for
the post-buckling displacement solution at u = 0.2 with gravitational body force.
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Figure 6.24: Reduced basis errors for the 3D SVK beam with respect to different body
forces.
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Figure 6.25: Reduced basis bifurcation diagrams for the 3D NH beam with respect to
different body forces.

Before ending this section we want to remark that as we have seen previously, also
in this case the way in which we impose the compression and the boundary conditions
chosen had a great influence on the buckling location. In fact, if we allow the right
end of the beam to move in the two perpendicular direction to the compression (y and
z axis), the resulting buckling mode and its corresponding branching point change
consistently. In practice we fixed the functional space as

and

X={uec (H(Q)®:u=(0,00) onTh, u, = —ponTh},

the parameter space as P = [0,0.03].
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Figure 6.26: Reduced basis errors for the 3D NH beam with respect to different body
forces.
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Figure 6.27: Reduced basis error plot of the displacement u for the 3D NH beam with
B = (0,0,—1000) at u = 0.2.

In the same setting as before, choosing the SVK constitutive relation with the trivial
body force we obtained the reduced bifurcation diagram in Figure 6.28, where we can
see the buckling occurring at p* = 0.014.

The new buckled state solution is depicted in Figure 6.29 for y = 0.2. As we
can see from Figure 6.30, the reduced approximation follows the same behaviour of
the previous case, with N = 4 basis functions, maximum error of order 1072 and a
difference of 4 orders of magnitude with the average one.
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Figure 6.28: Reduced basis bifurcation diagram for the 3D SVK beam with B = (0,0,0).
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Figure 6.29: High fidelity displacement u for the 3D SVK beam with B = (0,0,0) at
u=0.03.
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Figure 6.30: Reduced basis errors for the 3D SVK beam with B = (0,0, 0).
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6.2.3 Industrial test case application to tubular element

Finally, we can introduce a real test case scenario which comes from the Norwegian
petroleum industry [114]. The results obtained in the previous sections allowed us to
investigate the following more complex problem. We want to investigate the deforma-
tion of a 3-D tubular geometry with annular section. It is clear that when dealing with
real geometries the situation complicates, since many factors have to be taken into
consideration. Here, for practical interest the domain is defined as a tubular member
characterized by an annular cross section with inner and outer radii » = 0.28(m) and
R = 0.30(m). Thus, the thickness corresponds to t = 0.02(m) and the outer diameter
is D = 0.6(m). This is important since the condition on the ratio D/t < 120 has to be
satisfied for the correct reconstruction of the physics at hand.

As before, different settings will be analysed in order to understand its buckling
properties. Despite the great difficulties and some unexpected behaviour that such
model exhibits, in the following we present a successful application of our reduced
methodology.

6.2.3.1 A comparison of constitutive relations

In this section we fix the length of the tube as L = 2(m) and our focus will be on the
behaviour of the displacement in the case of Neumann compression. Hence, we fix
the domain as QO = AR x [0,2] where we denoted the annular section as

Af ={(xy) e R} < x* +y* <R*,
we choose a trivial body force B = (0,0,0) and a compression given by the traction
term T = (0,0, —p). We remark that now the compression is acting along the z-axis.
As concerns the material properties we fixed E = 2.1 - 10°(MPa) and v = 0.3.

We start with the one parameter test case, where homogeneous Dirichlet boundary
condition is imposed at I'p = AR x {0} and I'y = AR x {2}.

We built the FE space by means of IP; linear elements on the tetrahedral mesh
in Figure 6.31 with 22521 cells, while the resulting number of degrees of freedom is
N = 23442,

Given the complexity of the geometry and since our main interest is to find the first
failure mode, here we will focus the investigation only up to the buckling, disregarding
the post-buckling behaviour. Both constitutive relations, SVK and NH, have been
analysed, producing qualitatively different results also concerning the position of the
critical value. For these reasons we considered different parameter spaces for the two
hyperelastic models.

For the SVK model the parameter space is given by P = [0,4500] and Ny, = 200
snapshots were computed through the continuation method. The reduced manifold
was built choosing a tolerance epop = 10~ and this led to a reduced basis space of
dimension N = 5. The bifurcation diagram was recovered with an online continuation
method based on K = 451 equispaced points in P.
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Figure 6.31: Mesh for the Norsok test case.

As concerns the NH material, we computed again N4, = 200 snapshots, but
the parameter space now is defined as P = [0,5000]. The same reduced setting was
applied, providing a reduced basis space of the same dimension.

Similarly to the previous 3-D case, we remark that given the symmetry w.r.t. the
tube axis, here the buckling can occur in any direction perpendicular to axis itself. To
detect the buckling behaviour, we consider as output functional the sum of the infinite
norms of the x and y components of the displacement, namely s(u) = ||ux ||y, + ||ty | -

In Figures 6.32a and 6.32b we can see the bifurcation plot for the SVK and NH con-
stitutive relations, respectively. We can clearly observe that the buckling of the beam
with different models occurs at different values for the compression y, in particular
the buckling of the SVK beam is slightly anticipated.

As expected, the buckling is qualitatively similar to the one observed in Figure
6.12, with Neumann compression in the 2-D geometry. A representative solution of
the buckling mode for the SVK model is depicted in Figure 6.33 for u = 4500.

As we can see from Figure 6.34, in both cases we were able to reach a good accuracy
of the RB solution with respect to y. Once again the error increases near the buckling
point, here the right end of the parameter domains, where the solution changes more
rapidly its behaviour. Regarding the computational time, we obtained a low speed-up
of order 1.25, in fact to plot the high fidelity versions of the bifurcation diagrams in Fig-
ure 6.32b we spent tyr = 1335(s) while the reduced order one required tgp = 1076(s).
Of course this is not satisfactory, for this reason, we now present an application of the
hyper-reduction strategies to recover the efficiency.

In fact, especially when dealing with real test cases, a real time evaluation of the
solution is a key feature. Thus, we consider the geometry () with Neumann compres-
sion and we try to efficiently recover the bifurcation diagrams in Figure 6.32 by means
of the DEIM.

Within the same setting as before, we consider the DEIM with Greedy tolerance
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Figure 6.32: Reduced basis bifurcation diagrams for the 3D tubular geometry with
B = (0,0,0) and different constitutive relations.
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Figure 6.33: High fidelity displacement u for the 3D SVK tubular geometry with B =
(0,0,0) at = 4500.

ecr = 1071% which splits the form into an affine decomposition made up by 2 terms,
each one approximated by 15 interpolation basis functions. The reason for such low
tolerance is that the complexity of the model, together with its buckling behaviour,
makes the approximation of the variational forms a difficult task. Indeed, we observed
a non-convergence issue when during the online phase when higher tolerances were
chosen.

Hence, let us show in Figure 6.35 the reduced basis error, computed with DEIM
for the SVK and NH constitutive relations. It is evident that a significant increment of
both maximum errors, w.r.t. the straightforward application of Algorithm 2 without
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Figure 6.34: Reduced basis errors for the 3D tubular geometry with B = (0,0,0) and
different constitutive relations.

interpolation strategies, occurs. Thus, the hyper-reduction approach seems to have
some difficulties in approximating the forms near critical points. Despite this, the good
news is that while the reduced basis error is still acceptable, the speed-up consistently
increased. For the e.g. NH material we pass from a speed-up of order 1.25 with
trp = 1076(s) to a speed-up of order 38 corresponding to trp prrm = 35(s).
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Figure 6.35: Reduced basis errors with DEIM for the 3D tubular geometry with B =
(0,0,0) and different constitutive relations.

As we understood, usually one is not interested in the approximation of the bifur-
cating phenomenon for a fixed setting, rather the aim is the detection and reconstruc-
tion of the buckling modes varying physical or geometrical parameter. Since this is
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true especially for real test cases, the latter will be analysed in the next section.

6.2.3.2 Multi-parametric study with varying geometries

Now we want to extend the previous analysis to the multi-parameter context, in which
the additional parameter controls the length of the domain (). To do so, we recall the in-
vestigation done in Section 6.2.1.4. For this reason, we now consider the geometrically
parametrized tube, where again its semi-length y, € P, = [1,2] is taken into considera-
tion. Therefore, we can express the 3-D parametrized domain as (N)( yg) = (Nll U (N)z( yg),
where O = AR x [0,1] and ﬁz(yg) = AR x [1, ug]. Therefore, the transformation map
is simply given by the affine function

x
D(x;pg) = y for x € Oy = ((1).
pe(z—1)+1

The physical setting with Neumann BCs is the same as before, while for the offline
phase we computed N4, = 500 snapshots. Performing a global POD compression
with tolerance eppop = 10~® we obtained a reduced basis space of dimension N = 9.
The online continuation method to reconstruct the 3-D bifurcation diagram in Figure
6.36 is based on K = 350 equispaced points in P, = [0,4500], for 3 equispaced val-
ues of the semi-length 11, € P,. We remark again that due to the large strains and
the complexity of the phenomena, we focus on the solution behaviours only up to
their buckling point. For these reasons, the actual parameter space varies for different
branches, in fact we truncated it after having detected the buckling. The top-view of
three representative solutions of the buckling modes for y, = {1,1.5,2} are depicted
in Figure 6.37 for the last computed value of 1 = {4530, 3150,2300}, respectively.

We present in Figure 6.38 the reduced basis error. We highlight that, as we can see
from Figure 6.38a, also in this case the reduced manifold was able to approximate the
buckling for unsampled geometries.

The study of the evolution of the buckling, varying the length of the beam, confirm
as expected that longer beams need smaller forces to buckle. We highlight that since
the importance of the buckling location, already during the offline stage, one can not
perform an extensive analysis on the parametrized geometries. Moreover, to prevent
non-convergence issues due to bigger strains one should consider a much refined
mesh, increasing the high fidelity dimension.

Once again the speed-up equals to 1.4 is not that much relevant, with tyr = 2363(s)
and tgrp = 1677(s). Despite this, we remark that given the high dimensionality of the
finite element space, especially for 3-D geometry with refined mesh and polynomial
of order P > 1, the naive RB approach without empirical interpolation strategies can
still provide consistent speed-up.

Up to now, we have highlighted the difficulties while modelling the buckling
through the Neumann compression, in the next section the aim will be the investi-
gation of the Dirichlet compression.
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Figure 6.36: 3D bifurcation plot for SVK beam with B = (0,0,0) and y, € P,.

Displacement u Displacement u Displacement u
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(@) pg = 1. (®) pg =15 (c) pg = 2.

Figure 6.37: Top-view of the high fidelity displacement u for the SVK beam with
B = (0,0,0) for different geometries.

6.2.3.3 Dirichlet compression

Here, we want to extend the study of the Dirichlet compression for the tubular 3-D
geometry in Figure 6.31. So far, we have understood that the choice of compression
which has to be modelled is a complex task. Another confirmation of this comes from
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Figure 6.38: Reduced Basis errors with respect to 4 € P for the SVK beam with
B = (0,0,0) for different geometries.

the following scenario. In fact, when we tried to apply a Dirichlet compression over
I'p = AR x {2}, we encountered many difficulties.

In particular, the cavity inside the member and the need for huge refinement of
the mesh (connected to the remark done previously), made the reconstruction of the
bifurcation diagram a too much difficult task. For these reasons, we were not able
to fully recover the buckling within this compression context, but we only found the
three different modes depicted in Figure 6.39.

Displacement u Displacement u Displacement u
0.0e+00 1.3e-01 0.0e+00 1.6e-01 0.0e+00 0.1 2.0e-01
- - w - -

Figure 6.39: Representative solutions of the 3D SVK model for the tubular geometry
with Dirichlet compression.

From the analysis of the parametrized geometries we understood that the length of
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the tube plays a fundamental role in the buckling detection, thus we decided to inves-
tigate the tubular geometry with the same ratio, while considering a much increased
length.

Therefore, let us consider the tube represented by the domain Q) = AR x [0,20]. We
chose SVK material, trivial body and traction forces and we fixed the material proper-
ties E = 2.1-10° and v = 0.3. We first consider the one parameter test case, in which
the parameter controls the compression through Dirichlet BC on T'p = AR x {20}. We
remark that in this case the tetrahedral mesh consists in 147133 cells, resulting in an
high fidelity dimension A/ = 147852 when IP; linear elements are used.

Here we fixed the parameter space as P = [0,0.13], and its exploration is per-
formed through the simple continuation method with step Apy = 1073, resulting
in Npgin = 130 snapshots. The reduced manifold was built choosing a tolerance
epop = 1078, which provides a reduced basis space of dimension N = 5.

In Figure 6.40 we can see the bifurcation plot for the SVK tube with trivial body
force B = (0,0,0). This is recognizable since also here the bifurcation phenomenon
is characterized by a sharp gradient in the sensitivity. This has the effect of compro-
mising the RB accuracy in the buckling point, as we can observe from Figure 6.41.
Moreover, we can clearly observe that the buckling of the tube occurs for the value
pu* = 0.082. Despite this, the reduced order model is able to reconstruct the post-
buckling behaviour with a maximum error of order 103 and an average one of order
107°. As we remarked earlier the huge number of cells produces a slightly better
speed-up of order 2, which is far from being a good result but highlights how much
the empirical interpolation strategies could be useful.
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—0— luylloo
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0.11
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0.00 0.02 0.04 0.06 0.08 0.10 0.12
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Figure 6.40: Reduced bifurcation diagram for the 3D SVK tubular geometry with B =
(0,0,0).

A representative solution of the post-buckling behaviour is depicted in Figure 6.42
for yu = 0.13 with respect to the original undeformed configuration (mesh wireframe).
Moreover, we plot in Figure 6.43 the top-view sliced with respect to its axis at z =
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Figure 6.41: Reduced basis error for the 3D SVK tubular geometry with B = (0,0,0).

10, where we can observe that the displacement of the cross section for p = 0.13
completely exit from its (wireframe) original configuration.

Displacement u
0.0e+00 0.1 0.2 0.3 04
| | |

0.5 6.2e-01
|

Figure 6.42: High fidelity displacement u for the 3D SVK tubular geometry with B =
(0,0,0) at u = 0.13.

Now that we have a complete overview of the model, we can finally present the
a multi-parameter test case with geometrical parametrization of the Dirichlet com-
pressed tubular beam. The aim here is to investigate the buckling behaviour of longer
geometries.

The domain is defined, consistently with Section 6.2.3.2, as ()(yg) =0 U (N)Z(yg),
where O = AR x [0,20] and ﬁz(yg) = AR x [20,20 + 4] where the geometrical
parameter j, varies in Py = [10,20].

Keeping fixed the setting as before, we computed a global number of Ny, = 800
snapshots, divided as equispaced points in P, for each one of the three equispaced
values in P, and we obtained a reduced basis space of dimension N = 12 with POD
tolerance epop = 10710, We present the 3-D bifurcation diagram in Figure 6.44, in
which we reconstructed the buckling behaviour for 5 equispaced values of the semi-
length p, € P,. From the figure it is evident the effect of the length on the buckling
location, indeed we pass from p* = 0.048 at ¢ = 10 to p* = 0.056 for pg = 20.

The top-view of five representative solutions of the buckling modes for pu, =
{10,12.5,15,17.5,20} (colored by their magnitude) are depicted in Figure 6.45 for the
same value of the Dirichlet compression y = 0.06.
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Figure 6.43: Top view of the high fidelity displacement u at z = 10 for the 3D SVK
tubular geometry with B = (0,0,0) at » = 0.13.
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Figure 6.44: 3D bifurcation plot for 3D SVK tubular geometries with B = (0,0,0) and
He € Ps.

We present in Figure 6.46 the reduced basis error for two values of y,, remarking
that, also in this more complex context, the reduced manifold was able to approximate
with good accuracy the buckling for unsampled values of the geometrical parameter
space Py.

The study of the evolution of the buckling, varying the length of the beam, confirms
as expected that longer beams need smaller forces to buckle. We highlight that since
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Figure 6.45: Top-view of the high fidelity displacement u for the SVK beam with
B = (0,0,0) for different geometries at = 0.06.
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Figure 6.46: Reduced Basis errors with respect to u € P for the SVK beam with
B = (0,0,0) for different geometries.

the importance of the buckling location, already during the offline stage, one can not
perform an extensive analysis on the parametrized geometries. Moreover, to prevent
non convergence issues due to bigger strains one should consider a much refined mesh,
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increasing the high fidelity dimension.

Same conclusions on the speed-up hold here, where it increases up to 2.5, mainly
due to the computational time fgr = 51102(s) required to recover the high fidelity
version of Figure 6.44.

Finally we remark that, due to the very high number of degrees of freedom within
this test case we did not apply any empirical interpolation strategies. Indeed, it would
cause an impracticable and too costly offline phase. In Chapter 10 we will present an
approach that could help when facing with this kind of demanding tasks.

Within this setting we analysed many different test cases for the investigation of
buckling beams. These allowed us to study how the critical points of the models vary
in multi-parameter settings. Moreover, we understood that despite the simpler bifur-
cating behaviour, if interested only in the first buckling mode, unexpected phenomena
can occur and a deep investigation is needed.

In the next chapter we will pss to a fluid dynamics application, analysing the
stability properties of the coexisting flow profiles.



Chapter 7

Navier-Stokes flow in a channel: the
Coanda effect

In this chapter, we are interested in a Fluid Dynamics application, analysing a bifurcat-
ing phenomenon deriving from Navier-Stokes (NS) equations in a sudden-expansion
channel flow problem.

Among all the possible physical applications we mention combustion chambers,
mixing vessel and heat exchangers; here we consider a simplified version for a model
of a cardiac disease, called mitral valve regurgitation. The latter phenomenon, which
can be clinically detected through echocardiography, is called the Coanda effect [151],
and expresses the tendency of a fluid jet to be attracted to a nearby surface. This
represents an issue from the medical point of view, because a wall-hugging jet might
lead to inaccurate echocardiography measurements.

For this reason, we consider the channel geometry depicted in Figure 7.1 and
consider the following physical context. A fluid, characterized by an high viscosity,
presents a jet which is symmetric w.r.t. the horizontal axis. Furthermore, a pair of
vortices, called Moffatt eddies [108], form downstream of the expansion. Lowering the
viscosity, the inertial effects of fluid become more important and the two symmetric
recirculation regions break the symmetry. Indeed, as the length of the recirculation
zones increases, one can observe a non-uniform decrease of the pressure along the
vertical axis. Thus, when we reach the aforementioned critical value, one recircula-
tion zone expands whereas the other shrinks, giving rise to an asymmetric jet, which
represents the wall hugging behaviour.

In the next section, we introduce the mathematical formulation of Navier-Stokes
equations describing the flow in a channel. This will serve us to investigate the bi-
furcated behaviour of the system and its stability properties. Moreover, it will be
fundamental for the analysis that we will present in next chapters, where the NS sys-
tem will be the starting point for the application and development of different models
and numerical methodologies.
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7.1 Navier-Stokes viscous model

From the mathematical point of view, the problem described above translates to a
generic parametrized PDE of the form (2.1) which, decreasing the viscosity y below a
certain critical value p*, admits the existence of more solutions for the same value of
i € P. During the study of the solution for different viscosity values, we expect the
system to show two qualitatively different configurations:

o a physically unstable configuration with a symmetric jet flow, which we will
refer to as the symmetric solution,

o a physically stable configuration with a wall-hugging jet, which we will refer to
as the asymmetric solution.

These solutions, that coexist for parameter values below the critical one u*, belong to
different branches that intersect in the bifurcation point, forming a pitchfork bifurca-
tion.

Here we consider a simplified setting with a two-dimensional planar straight chan-
nel with a narrow inlet and a sudden expansion, depicted in Figure 7.1, which repre-
sent a simplification of the left atrium and the mitral valve, respectively. We define
I'in = {0} x [2.5,5] and T'oyt = {50} x [0,7.5], where inflow and outflow boundary con-
ditions are imposed, respectively. We indicate with I'y,;, the boundaries representing
the walls, in this case T'y.y = I'p U T, where I'p = {{0} x [0,2.5]} U {{0} x [5,7.5]}
and r() =00 \ {l"in U FD U Fout}.

40

2.5] Tin |rCh T obs Tout | 7-5

)

Figure 7.1: Domain () which represents a straight channel with a narrow inlet.

The steady and incompressible Navier-Stokes equations for a viscous flow in ()
read as:

—pAv+v-Vo+Vp=0 in(),

V-o=0 in Q),

U = Uin on Iy, (7.1)
v=20 on I'yan,

—pn+ (uVo)n =0 on Iout,

where v = (vy,,vy,) is the velocity of the fluid, p is its pressure normalized over a
constant density and u represents the kinematic viscosity. We supplement the system
(7.1) with proper boundary conditions: a stress free boundary condition on the velocity
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at the outlet, I'yy+ with outer normal 7, a no-slip (homogeneous) Dirichlet boundary
condition on I'y,; and a non-homogeneous Dirichlet boundary conditions vi, at the
inlet I'y, given by

om(x2) = |00~ xzé(xz ~25)]

For later convenience, we introduce the dimensionless Reynolds number as Re = Uw/ i,
which represents the ratio between inertial and viscous forces, where U and w are
characteristic velocity (i.e., maximum inlet velocity, U = 31.25) and the characteristic
length of the domain (i.e., length of the inlet section, w = 2.5), respectively. In the
following we will consider y as the parameter. However, especially while commenting
the results, we will often refer to the associated Reynolds number.

Fixed the domain (), the flow regime varies as we consider different values for the
viscosity # in P C R. We remark that this model exhibits a bifurcating behaviour.
Indeed, we have the existence and uniqueness of the solution only above a certain
critical value for the viscosity, that for this test case corresponds to yu* ~ 0.96. Thus
the problem for higher values of the corresponding Reynolds number loses the well-
posedness and we have to refer to solution branches of a pitchfork bifurcation. Since
our aim is to investigate the loss of uniqueness of the solution in a neighbourhood of
this pitchfork bifurcation, we set the parameter space as P = [0.5,2.0], such that the
first critical point p* is included. These values for the viscosity correspond to Re in
the interval [39.0, 156.0].

7.1.1 Weak formulation

Let V = (H(Q))?, Vin = {0 € V | v =10jp on Tin,v = 0 on Tyay}, Vo = {0 €V | 0 =
0 on T, U Ty} be the function spaces for velocity. Furthermore, let Q = L2(Q) be
the function space for pressure. The weak formulation of (7.1) reads as: given u € P,
find v € V;, and p € Q such that

y/QVU-VlI)dQ—i—/Q(v-Vv)gbdﬂ—/gpv-l[)dﬂ:0 Y € Vo,

(7.2)
/nV-vdﬂzo VmeQ.
o)

We can rewrite the formulation of (7.2) in an equivalent way as: given u € P, find
v € Vi, and p € Q such that

a(v, ;) +3(0,0,9) +b(p,p) =0 V¢ €V, 73)
b(v, ) =0 VreQ, '
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having introduced the following bilinear and trilinear forms

a(v, P; u) :]/t/QVv-ledQ Vo, p eV,
b(v,p):—/Q(V-v)de VoeV, Vpeq, (7.4)
s(v,z?,l/)):/Q(v-Vﬁ)l/JdQ V0,5, € V.

In particular, if we define as X = Vj, x Q the space of solution X = (v, p), then
we can rewrite the weak formulation in terms of the parametrized variational form
g: XxX—=>Ras

(X, Y;u):=a(v,y;u) +s(v,0,¢) +b(yp,p) + b(v,7) =0, VYE€EX, (7.5)

where we denoted with Y = (¢, ) € X the test function. Furthermore, we can com-
pute the Frechét derivative with respect to v at Z = (z,,zs) € X of the parametrized
variational form g, which can be expressed as

dg[Z)(X, Y; 1) = (0, 93 1) + (0,20, ) +5(z0,0,) + b, p) + b0, 1) VY € X.
(7.6)
As we already specified in Section 6.1.1, we remark that when a lifting function is
taken into account to preserve the symmetry between the test and trial function spaces,
one has also to incorporate the linear terms coming from nonlinear ones evaluated at
the lifting. In the following we will present the numerical approximation of the model.

7.2 Numerical approximation

The first step to understand numerically the bifurcating behaviour of the model by
means of the FE method, is the projection of its weak formulation in (7.3) into the
finite dimensional space X = V ;, x Qy;, of dimension N = N, + N,

Thus, the combination of the Galerkin FE and the generic k-th step of Newton
method reads as: given y € P and an initial guess X3, = (v}, p},) € Xy for k =
0,1,... until convergence we seek 6X = (6vpr, dpar) € Xy such that

(8o, Y ) + s(0hy, 6o, ) 4 (6o, Ok, Yar) + b(wr, Spar) =

+a (o, s ) + s(hy, iy, ) + b, Py Vin € Vo,
b(&vN,NN):b(v.]j\/’/nN) VTCNEQN/
7.7)

and then set Xﬁl = Xj‘v —0X .
Thus, we can present the corresponding algebraic form of the system (7.7) as in
(3.10). In fact, denoting the solution vector with X = (v, pyr) we can write

An (1) + S (Vi) +Son (Vi) BR) (Ovar) _ (Awviy + Sia (Vi Vi, + Birpw
By 0 ) \épn Barvar ’
(7.8)
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where we denoted the high fidelity matrices as follows

(An(1))ij = a(E\, Evi i), (Ba)ij = b(EL, Ely)
(Sin)ij = s(VA ENL E) , (Sow)ij = s(ERe Vi, El) -

The same structure is inherited by the reduced order model, obtained through the
projection on the space Xy = Vy, X Qy, of dimension N = Ny + Nj.

Indeed, the k-th reduced step of the Newton method reads as: given y € P and an
initial guess X?\, € Xy for k =0,1,... until convergence we seek 6Xy = (dvn,dpN) €
Xy that satisfies (3.20), with the reduced Jacobian and the reduced residual are given
respectively by

k k T
INO ()5 ) = (AN(P{HSLNE(;VNHSZ'N(VN) BON>’ and
N

A vE 4+ Sy v (VE VK + BT
G (XN (); 1) =< nlEy EZE/NN) : NpN) ‘

Once again, in the expression above we have introduced the transformation matrices
with respect to the different components of the solution, V, and \ respectively for
velocity and pressure, defining the reduced matrices in the following way:

An (1) = VoAx (Vo , BN =VBA Vs,

N, Ny
Sin=), 0%)V351,N(23)Vv , Son=), U%)VESZ,N(Zg)Vv .

n=1 n=1

As concerns the well-posedness analysis, we postpone the discussion to Section
9.1.3, where it will be treated in much more generality.

We remark that the these matrices prevent the offline-online decomposition needed
for an efficient investigation of the bifurcation diagram. Of course, we could rely on
the empirical interpolation strategies adopted in the previous sections, but in the next
section we will focus on a different perspective. The numerical (reduced) study of
the physical phenomenon will serve as the starting point for the modelling and the
methodological development which we will presented in the next part.

7.2.1 Bifurcating approach to the Coanda effect

We can now discuss the numerical approximation of the branching behaviour for the
Navier-Stokes equations. We consider a mesh on the domain () with 2785 cells, cor-
responding to A = 24301 degrees of freedom associated to a Taylor-Hood IP?-IP!
discretization of V x Q. This choice is motivated by the well-known stability results
of the Taylor-Hood Finite Element pair [133].

For the high fidelity setting we chose Ny, = 51 viscosity points in the parameter
space P = [0.5,2]. Within this setting we slightly changed the reduced approach.
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In fact, we considered also at the reduced setting a branch-wise reconstruction, by
considering the snapshots coming only from a single branch. Thus we build a ROM
for each dynamics, the symmetric and the asymmetric one.

A POD compression is applied to each branch, extracting a different bases of the
same dimension N, = N, = 20. As regard the online continuation method, it is
based on K = 151 equispaced points in P, which corresponds to a continuation step
Ap =1072.

In order to plot the bifurcation diagram, we choose an output value that results
in a symmetry indicator of the approximated solution. This function is given by the
value of the vertical component of the velocity, in a point lying on the middle axis
of the channel, namely vy, evaluated at (x1,xp) = (14,4). In Figure 7.2 we plot the
bifurcation diagram with all the solution branches of the system (7.3) in the viscosity
range chosen.

The numerical approximation clearly shows that a supercritical pitchfork bifurca-
tion occurs around the critical viscosity value p* ~ 0.96. It is evident that we have a
unique solution for all y > p*, thus when the fluid behaves like a Stokes one, while
we find three qualitatively different solutions increasing the Reynolds number. The
bifurcation point y* is also the one responsible for the change in stability properties of
the model. Indeed, the unique symmetric solution remains stable until it encounters
the critical value u*, where it becomes unstable. Moreover, this feature is inherited
by the bifurcating solutions, which evolve as a physically stable branch. Finally, we
remark that the diagram evolves in “opposite” direction with respect to the previous
cases because interesting phenomena occur at higher Reynolds numbers, i.e. lower
viscosities.

Bifurcation diagram

3 =B~ Unstable middle branch

—l— Stable lower branch
———
Stable upper branch

Y (14,4)

u

Figure 7.2: Bifurcation diagram for the Navier-Stokes system.
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Figure 7.3: Representative solutions for the Navier-Stokes system at y = 0.5, velocity
and pressure fields, lower and middle branch, top and bottom respectively.

Some representative solutions for the lower and middle branch are presented in Fig-
ure 7.3. Velocity and pressure fields belonging to different branches, for the same vis-
cosity value u = 0.5, present qualitatively dissimilar behaviour. Indeed, the pressure
for the lower branch decreases near the bottom-left corner of the expansion, causing
the velocity to deflect, hugging the lower wall. Finally, thanks to the no-slip boundary
condition the flux goes back to mid line, ending with a non-axis-symmetric outflow.

As we can see from Figure 7.4, both ROMs were able to recover online a good
approximation of the bifurcating branches for both velocity and pressure fields. We
can observe that in both cases the RB error has its maximum at the critical value y*.
Actually, the higher error for the symmetric branch is caused by the convergence of the
FE solution to the bifurcated asymmetric configuration that coexist at the bifurcation
point. Moreover, we remark that the average error on P for the symmetric branch of
order 10~Y is two order lower than the one for the asymmetric branch, which corre-
sponds to 10~7. This is obviously due to the fact that the latter contains both profiles:
the symmetric one in the pre-bifurcation range and the asymmetric one in the bifur-
cating regime.

The stability analysis is performed through the eigenvalue analysis depicted in Sec-
tion 3.1.3, where Algorithm 1 has been applied to the NS equation in (7.1). In particu-
lar, we analysed the behaviour of the first N,;, = 100 eigenvalues of (3.12), by means
of the Krylov-Schur algorithm, varying the viscosity of the fluid. Such eigenvalues
are plotted in Figure 7.5 for the stable lower branch (left panel) and unstable middle
branch (right panel). Note that since the Navier-Stokes operator is not symmetric, we
have the presence of both real and complex eigenvalues. Here we are just interested
in pitchfork bifurcation, thus in the zoom we follow the behaviour of the biggest real
eigenvalue and its sign. When investigating the stability of the lower branch, all the
eigenvalues of the Navier-Stokes system, linearized around this stable solution, have
negative real part. From the consideration of Section 3.1.3, we can assert the stability
of the wall-hugging branch. Indeed, the zoom in the left plot of Figure 7.5 shows no
crossing of negative-real part eigenvalues. On the contrary, the close up in the right
plot, which corresponds to the symmetric flow, shows the sign change of the biggest
eigenvalue, thus characterizing a physically unstable solution.

The analysis of the Coanda effect we performed in this chapter, provided a com-
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Figure 7.4: Reduced basis errors with respect to u € P for velocity and pressure,
symmetric (top row) and asymmetric (bottom row) branches.

plete description of the bifurcating phenomena shown by the Navier-Stokes equations.
Here, we discussed the stability of the wall-hugging profile an the instability of the

straight flow by means of the eigenvalue analysis.

Moreover, with this chapter we concluded the second part of the thesis, where we
presented different models and their corresponding branching behaviour. In the fol-
lowing, the Navier-Stokes test case investigated here, will be the starting point for the
development and analysis of more complex models, by means of new methodologies
which aim at overcoming some of the issues we encountered so far.
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Figure 7.5: Eigenvalues of the state eigenproblem in the complex plane for the Navier-
Stokes equation: stable and unstable solutions, top and bottom panels respectively.
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Chapter 8

A reduced order approach to deflated
continuation method

As we understood from the previous investigation, the numerical computation of a
bifurcation diagram requires the combination of different strategies. Moreover, these
have to be adapted case by case, in particular as concerns the choice of the continuation
method and its corresponding guesses.

When complex bifurcating phenomena occur, some of the presented techniques are
not always sufficiently stable to discover new branches. Therefore, if the main goal is
the complete reconstruction of the bifurcation diagram, a different and more general
approach is needed.

Furthermore, we recall that our main interest is an efficient investigation. Despite
we addressed this issue with the reduction strategies, it still remains the bottleneck of
the initialization of the continuation method. In fact, providing a tailored guess for
each sought branch, especially when no physical or analytical considerations can be
taken into account, could be an almost impracticable task.

For this reason, we embedded in our continuation strategy the deflation method [56,
55], which aims at automatically discovering new branches. In particular, as we will
describe later, the deflation prevents the iterative solver from converging to already
known solutions and this way;, if it converges, it will converge to yet unknown fields.

This methodology have been proved to work well when applied to many different
contexts [34, 55], but still it can involve an infeasible computational cost. Hence, we
investigated a reduced approach in which an efficient reconstruction of the bifurcation
diagram is enabled by the low dimensionality of the RB space.

This part is entirely based on the work done with M. Pintore in collaboration with
M. Hess and C. Canuto [122].

8.1 A CFD toy problem with Spectral Element Method

The test case chosen for the development and the analysis of the reduced deflated
continuation method is a slight modification of the one studied in Chapter 7. Indeed,
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we consider here the Navier-Stokes equations in a straight channel with similar geom-
etry as in Figure 7.1, where only the after inlet length is increased in order to capture
different wall-hugging behaviours.

Thus we are interested in the steady and incompressible Navier-Stokes equations
for a viscous flow in (), given by:

—uAv+v-Vo+Vp=0 in(),

V-v=0 in Q),

U = Uin on Iy, (8.1)
v=0 on 'y,

—pn+ (uVo)n =0 on Tout,

where v = (vy,,vy,) is the velocity of the fluid, p is its pressure normalized over a
constant density and y represents the kinematic viscosity.

We chose for the system in (8.1) the same BCs setting as before: a stress free bound-
ary condition on the velocity at the outlet, I'y;; with outer normal 1, a no-slip (ho-
mogeneous) Dirichlet boundary condition on I'y,;, and non-homogeneous Dirichlet
boundary conditions vi, at the inlet I'i, given by

() = |00 TN 2 23]

We remark that within this physical setting, we selected the parameter range as y €
P = [0.3,1] since it will contain two bifurcating phenomena. Note that small changes
in the geometry can modify the critical points locations, as observed for instance in
[73] (we will analyse an example of this behaviour in Section 10.2.2.2).

Contrarily to all the analysis performed throughout this thesis, here we imple-
mented as Full Order Method the Spectral Element Method (SEM) [31, 30]. Thus,

starting from the weak formulation in (7.3), we consider the spectral basis {l[)zs }Zj\i”l and

{ni }ﬁ”l associated to velocity and pressure, respectively. Therefore, the high fidelity
fields can be expressed as follows:

&0 ALy
on =Y UN s, PN =) PN,
i=1 i=1

where vy = {US\Z/) }f\ivl and py = { pj\lf) }ﬁ’”l are scalar coefficients that characterize the
velocity and pressure fields. The main difference with FE method is that in the SEM
the basis functions are high-order polynomials inside the associated elements. In par-
ticular, in this work we decided to use the stable pair IP"/ P2 (see [98, 100] for a more
detailed explanation of the methodology).

The high order of the polynomials implies two main consequences. Firstly, since
several degrees of freedom are associated with each element, it is possible to obtain
accurate solutions even with very coarse meshes. If one is able to reconstruct the
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solution field employing only low order polynomials this approach is convenient due
to the less degrees of freedom considered. Secondly, even if to compute bifurcation
diagrams the mesh generation cost is negligible, generating fine meshes as the ones
required by the FE method is an expensive operation. More remarkably, this way it
is possible to ensure the exponential convergence of the method comparing with the
algebraic one that characterizes the FE method when the solution is smooth enough.

8.2 The reduced deflated continuation method
Let us consider the following nonlinear parametric equation:
L(X;u) =0, (8.2)

where the unknown X belongs to the functional space X, the parameter u belongs to
R? and L is a nonlinear operator. As usual, we are interested in the computation of
the several solutions that can coexist for the same value of the parameter. Until now
we presented different bifurcating phenomena, and we summarized their information
by means of bifurcation diagrams. We had to implement different strategies in order
to tackle the difficulties arising from each specific test case. Therefore, we decided to
investigate the properties of a much more general approach based on the computation
of the bifurcation diagram through the combination of the continuation method and
the deflation method. The main idea behind the coupling of this two techniques is
that, while the former allows to properly reconstruct a branch following its behaviour,
the latter exploits the continued solution to discover new branches. Such an approach,
where the two techniques are alternated in order to discover and follow each branch
of the diagram, is called deflated continuation [55, 56]. In order to address the huge
computational cost required by this technique, we built a reduced version of it, which
aims at providing an automatic procedure for the online recovery of the bifurcation
diagram.

8.2.1 Pseudo-arclength continuation method

In this section we restrict ourselves, without loss of generalization, to the one param-
eter case ¢ € R. Indeed, as we have done in the previous chapters we can always
vary the bifurcation parameter while keeping fixed the physical/geometrical config-
uration. We have understood that, in order to ensure its convergence, the nonlinear
solver needs an initial guess close enough to the sought solution. Until now, our
approach was based on a simple continuation algorithm which exploits the last com-
puted solution and uses it as a guess for the next iteration. Of course this approach is
inexpensive and requires a single solution, however as we remarked in Section 3.1.4,
properly setting the continuation step Ay can be a difficult task.

When a waste of the computational time occurs or convergence issues arise, one
can choose to rely on the pseudo-arclength continuation method [86, 2]. This technique
treats the next value of the parameter y;;1, at which compute the solution, as an
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unknown and allows for an alternative parametrization of the branch, characterized
by its arclength o. To derive the system that has to be solved let us consider the
following normalization equation

N(X, u; Aoy) = XlT(X —Xi)+pi(p—pi) — Aoy =0, (8.3)

where (X, ;) is a point on a regular portion of the branch M and (X;, ;) is the unit
tangent to the curve in such a point [86]. Equation (8.3) characterizes the plane orthog-
onal to the vector (X;, ;) such that the distance between (X;, ;) and its projection on
the plane is Ag;. Moreover, if the line described by (X;, ;) is a good approximation of
M, the orthogonal projection of (X;, it;) on the plane is a good approximation of the
sought solution (Xj1, pi+1)-

Consequently, this projection can be used as a close enough initial guess. In order
to compute it, one linearizes the following system obtained by the combination of
equations (8.2) and (8.3)

L(X;y) =0, (8.4)
X (X = Xi) + ri(p — ui) — Aoy =0, '

where the quantities X; and ji; are approximated as

X, ~ Xi — Xi—l/ iy~ P ML
Ao;_q Ao;_q

The main advantage of the pseudo-arclength technique is that the subsequent value of

the parameter is automatically chosen. This way, the steps are wider in very smooth

regions, while they can be much shorter near the singularities. Finally, we remark

that the key ingredient of the accuracy of the pseudo-arclength continuation is that it

actually relies on a branch linearization.

8.2.2 Deflating to discover new solutions

Here, we want to discuss the deflation method used for the exploration of the existing
solutions for a generic nonlinear parametric PDE. Such a technique has been initially
developed to compute multiple roots of a polynomial [56]. Before moving to its de-
scription, it is convenient to introduce the concept of deflation operator.

Definition 8.2.1. Let us denote by W and Z two Banach spaces and by O an open
subset of the Banach space U. Moreover, let L : O C U — W be a Fréchet differen-
tiable operator and DxL be its Fréchet derivative. Then, let M(X; W) : W — Z be an
invertible linear operator for each W € O and for each X € O\{W}. If the following
holds:

L(W) =0, DxL(W) is nonsingular,

and for any arbitrary sequence {X;}ieny € O\{W} such that X; — W, the following
inequality holds
lim inf|| M(X;; W)L(X;)|l > 0, (8.5)

i—00
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then M is a deflation operator.
The deflation operators M(X; W) that are usually considered are of the form

I
MXW)=14+——,
1X=Wlo
where | is the identity operator, and p determines the region of attraction for W.
Finally, the new system that one is interested in solving is the following deflated
version of (8.2)

G(X; ) :==M(X;W)L(X; ) =0, (8.6)

that has the key property of being characterized by the same solutions of L(X; ) = 0
except for W.

The main advantage of the deflation method consists in the ability to discover
unknown branches without any prior knowledge. However, if other branches exist,
one cannot be sure that they will be found with this technique. In fact, if a branch X
is too far from any known solution, the solver may diverge before reaching the region
of attraction of any of its solutions. Therefore, it is advisable to fix a meaningful
maximum number of iterations for the iterative solver when the deflated system is
solved. Such a threshold should be high enough in order to leave enough time to the
iterative solver, however, if too many iterations are available, a lot of computational
resources will be wasted when new branches cannot be found.

It is clear that the deflation method is the bottleneck of the deflated continuation,
in fact the system has to be assembled and solved many times. However, as described
in [55], it is possible to increase the efficiency of the deflation step by means of the
Sherman-Morrison formula [63]. In fact, it allows to express the solution of a generic
step of the Newton method for the deflated equation (8.6), in terms of the one for
the original problem in (8.2), only exploiting an inexpensive scalar quantity 7. The
latter controls somehow the convergence of the deflated problem and one can develop
heuristic strategies in order to improve the convergence properties [122].

8.3 Numerical approximation

In this section, we will discuss how the deflation method, applied both to the high
fidelity and reduced order discretizations, is able to find new solutions for the Coanda
effect. Of course we remark that even if we are considering a different full order
method, the only difference lies in the choice of the basis functions. For this reason
both discretization phases are defined through the forms already presented in Section
7.2.

Here, we consider the Navier-Stokes equation in (8.1) on the domain () depicted
in Figure 7.1, discretized with only 19 quadrilateral elements, where I'oy is located at
x1 = 100. We remark that despite the longer geometry, the SEM approximation with
r = 12 only consists in N' = 7372 degrees of freedom, in contrast to the N' = 24301
of the FE one presented before. While the choice of r influences the accuracy and
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the efficiency, we highlight that high order polynomials help to find the bifurcating
(asymmetric) configuration and together with the mesh discretization plays a key role
for the exact location of critical points, as expected. Contrarily to what we have done
in Section 7.2.1, here we considered again a unique global ROM, upon which we based
the online phase.

Thus, as explained in [122, 56], for the reconstruction of the bifurcation diagram
we performed the following steps. At the beginning, we compute the snapshots with
SEM for values of u selected by the pseudo-arclength algorithm, while the deflation
method allows us to find different solutions at each new instance. Then, a unique POD
is performed and the continuation and deflation strategies are applied in the manifold
spanned by the resulting basis.

To detect the qualitative different solutions which coexist for this model, we con-
sidered in Section 7.2.1 a naive output functional, given by the vertical component of
the velocity field. Following [56] in this application we chose the symmetry indicator
functional given by

s(v) = J_r/OHv—R(v)HZdQ,

where R(-) is an operator that reflects a solution over the horizontal symmetry axis,
taken with its sign if the jet hugs the upper or lower wall. Therefore, s(v) will be equal
to zero if a solution is perfectly symmetrical, while its absolute value will increase
with the asymmetry of the velocity field, showing clearly the pitchfork bifurcation.

8.3.1 A deflated bifurcation diagram

Let us consider the one-dimensional parameter range for the viscosity y € P = [0.3,1].
For the sake of completeness, we present in Figure 8.1 a comparison about the property
of the POD technique, between different approaches. The plots represent the decay of
the eigenvalues of the correlation matrix (3.23), when Ny, = 24 snapshots are com-
puted in a neighbourhood of the critical point p* ~ 0.96. In particular, we compare the
result obtained sampling a single (asymmetric) branch with the one coming from the
complete sampling of the existing branches. It can be observed that in both cases the
decay is exponential [69, 115], even if there is a singular point in the range considered.
Moreover, while it can be shown that taking snapshots closer to u* has no effect on
the decay [122], we can clearly observe that choosing snapshots from a single branch
allows for a faster decay, confirming the considerations of the previous sections about
global and branch-wise POD. In fact, as expressed in (3.25) the faster is the decay, the
better are the RB performances.

In Figure 8.2 we plot the bifurcation diagram with all the solution branches of the
system (8.1) found in the viscosity range chosen. In particular, Figure 8.2, shows the
bifurcation diagram obtained by the computation of Nj.,;, = 224 snapshots. It can
be observed that it includes two bifurcation points and five different branches. Thus,
using the deflation, a longer domain and a wider range for the viscosity we found a
second pitchfork bifurcation, which occurs at y* ~ 0.4.
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Figure 8.1: Decays of the eigenvalues of the POD correlation matrix with Ny, = 24.

800r Branch (1)
¢ Branch (2)
* Branch (3)
200 Branch (4)
v Branch (5)
00‘.
‘0"“
100 F %
0"’
*
%
s(v) ot ]
v &
o
t‘*‘
-100 “:*
¥
ar**
i
200 | /
_300 1 Il 1 Il 1 Il 1 ]
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
M

Figure 8.2: High fidelity bifurcation diagram for the Navier-Stokes system.

Let us show in Figure 8.3 some representative solutions for each corresponding
branch in Figure 8.2. The symmetric branch is always characterized by the symmetric
profile in Figures 8.3a, 8.3b and 8.3e. The first pitchfork bifurcation is represented by
the upper/lower wall-hugging profiles in Figures 8.3d, 8.3f and 8.3c, 8.3g respectively.
Finally, the second pitchfork bifurcation is represented by the asymmetric profiles,
characterized by a delayed wall-hugging phenomenon, in Figures 8.3h and 8.3i.

Obtaining such a diagram in the high fidelity setting is very expensive, also having
chosen the spectral element method as FOM. Thus, we applied our reduced strategy
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(@) y =1 - branch (1)

(b) # = 0.6 - branch (1)

(c) = 0.6 - branch (2)

(d) 4 = 0.6 - branch (3)

(e) » = 0.3 - branch (1)

(f) p = 0.3 - branch (2)

(g) # = 0.3 - branch (3)

(h) 4 = 0.3 - branch (4)

(i) » = 0.3 - branch (5)
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Figure 8.3: Representative high fidelity horizontal velocities for the five branches vary-
ing the viscosity y € P.
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with N, = 37 basis function, in order to efficiently obtain its approximated version.
The latter is shown in Figure 8.4, where we have been able to reconstruct both pitchfork
bifurcations with all corresponding branches.
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Figure 8.4: Reduced basis bifurcation diagram for the Navier-Stokes system.

Moreover, we highlight that in this case we do not need any empirical interpolation
strategies, in fact an efficient assembly of the nonlinear term in a third order tensor
was performed. For this reason, we pass from the high fidelity computational time
required to build the diagram tyr = 1292(s) to trp = 293.85(s) for its reduced version.
But we remark that the online bifurcation diagram is approximated by means of K =
1492 solutions (vs. K = 224 for the offline one), thus the speed-up obtained is almost
290.

To end this analysis, we show in Figure 8.5 the exponential decay of the average
and maximum errors with respect to the dimension of the reduced space. Such errors
were computed over 300 reduced solution, by means of a ROM built upon 30 snapshots
in P = [0.825,1]. It is also important to observe that the error stops decreasing when
it is close to 1019, indeed this is the tolerance for both the offline and online solver.

Finally, we remark that an extension towards multi-parameter test cases is present
in [122], where an additional parameter controls the maximum velocity at the inlet or
its width. The latter case will be also investigated through a geometric parametrization
by means of new methodologies in Chapter 10.
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Figure 8.5: Exponential decay of the relative average and maximum errors over the
dimension of the reduced basis space.
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Chapter 9

An optimal control problem to steer
bifurcating systems

Parametrized optimal control problems (OCPs) governed by PDEs are a very powerful
tool which aim at driving the solution behaviour towards a convenient desired profile.
To this end, OCPs can be interpreted as an input-output system which achieves an
observable configuration [20, 66, 77, 152]. They have been exploited in several applica-
tions in different scientific fields, see e.g. [95] for an overview.

In this chapter, we thus aim at describing how optimal control theory allows to
change the solution profile and stability of state solution branches. In particular, we
considered the Navier-Stokes benchmark we have deeply investigated in the previous
chapters and we treated it as the state equation of a general control problem. The
main goal is to study the effect of several optimal control settings, describing the qual-
itative and quantitative effect of the control over the pitchfork bifurcation. Moreover,
a detailed investigation of the stability eigenvalue analysis of the controlled state is
performed. Therefore, optimal control is employed to drive bifurcating state profiles
towards a different desired state, which might possibly belong to another state solution
branch, playing as an attractor towards a desired configuration.

This part is entirely based on the work done with M. Strazzullo [121].

9.1 Optimal control problem for bifurcating PDEs

In this section, we introduce a generic nonlinear parametrized OCP. We will focus on
the minimization of quadratic cost functional under nonlinear parametrized PDE con-
straint for Hilbert spaces, following the Lagrangian approach [66, 77]. However, the
proposed analysis also holds in the more general Banach spaces setting. In the follow-
ing sections we will provide existence results and optimality conditions for nonlinear
parametrized OCPs in their continuous and discretized version, respectively.
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9.1.1 Abstract formulation of the model

Optimal control is a mathematical tool which aims at modifying the natural behaviour
of a system. Let us suppose to have a state PDE

G(y;p) = f, 9.1)

with state variable y:=y(u) € Y,ie. G: Y x P — Y* where Y is a Hilbert space, f €
Y* is a forcing term, P C R is a parameter space of dimension P > 1, while G(y; u) =
E.e(y; 1) + E¢(y; p) is the state operator, with E; € L(Y,Y*) and E,;; representing the
linear and nonlinear contributions, respectively. Here, we call L(-, -) the space of linear
continuous functions between two spaces. We now want y to be the most similar to
a known solution profile yq:=yq4(#) € Yos 2 Y. To this end, a new variable is
introduced in the equation, namely the control variable u:=u(p) € U, with U another
possibly different Hilbert space. Let us define the controlled equation & (y, u; u), where
€:Y xU x P — Y*. Then, the controlled equation will be of the following form:

E(y,w;m):= G(y;m) — C(u) — f =0,

where C € L£(U,Y¥) is the control operator describing the action of the variable 1 on

the system. In other words, we are trying to change the behaviour of the state PDE

through C(u). The OCP reads: given a p € P, find the pair (y,u) € Y x U which
solves

i ; bject t Ju;p) =0, 9.2

yJ\?LIéU](y’” ya) subject to E(y, u;pu) =0 9.2)

where [ : Y X U x Yps — R is the objective functional defined by

1 x
1w ya) =51y = yally,,, + 5l 9.3)

and « € (0,1] is a penalization parameter. The role of w is of great interest: indeed, a
large value of & translates in a poor capability of the system to be controlled, while
a < 1 allows the functional to be minimized with larger values of the variable u.
Problem (9.2) admits a solution if [77, Section 1.5.2]:

(i) U is convex, bounded and closed;
(i1) Y is convex and closed;

(iii) for every u € P, the controlled system £(y,u;u) = 0 has a bounded solution
mapu € U y(u) €Y;

(iv) for a given u € P, the map (y,u,u) € Y xU x P — E(y,u;p) € Y* is weakly
continuous with respect to the first two arguments;

(v) for a given y4 € Yps, the objective functional J(y, u;y4) is weakly lower semicon-
tinous w.r.t. the first two arguments.
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We now discuss the Lagrangian structure and the necessary first order optimality
conditions. First of all, let z:=z(u) € Y** =Y be an arbitrary variable called adjoint
variable. Let us call X = (y,u,z) € X:=Y x U x Y and let us build the Lagrangian
functional £ : X X Ygps X P — R as

L(Xya,m) =]y, u;ya) + (2, EWY, u; 1)) vy, (9.4)

where (-, -)yy- is the duality pairing of Y and Y*. The introduction of the adjoint vari-
able allows to treat problem (9.2) in an unconstrained fashion finding the stationary
point of (9.4). We remark that we consider z in the same space of the state variable
for a proper definition of the discretized problem: we will clarify the reason in Section
9.1.2. Moreover, the variable X will inherit the parameter dependence by definition,
i.e. X:= X(u). Furthermore, let us assume that the following holds:

(vi) U is nonempty;

(vi)) ] : Y XU XY - Rand € : Y x U x P — Y* are continuously Fréchet
differentiable w.r.t. the first two arguments;

(viii) given p € P, the controlled system E(y,u;u) = 0 has a unique solution y =
y(u) € Y forall u € U;

(ix) given u € P, D,E(y,u;u) € L(Y,Y*) has a bounded inverse for all control
variables u.

Assuming (y,u) € Y x U to be a solution to (9.2) for a given u € P, thanks to
hypotheses (vi) - (ix), there exists an adjoint variable z € Y such that the following
variational system is satisfied [77]:

D,Z(X;yq,p)lw] =0 VweY,
D,Z2(X;yq,p)lk] =0 VkeU, (9.5)
D:Z(X;ya,m)[f] =0 VI€Y,

or equivalently, in strong form

y+ DyE(y, u;1)"(2) = ya,
au —C*(z) =0, (9.6)

E(y,u;p) =0,

where D, E(y,u;u)* € L(Y,Y*) is the adjoint operator of the Fréchet linearization of
E(y,u; p) wrt. the state variable, while C* € L(Y,U"*) is the adjoint of the control
operator. We will equivalently refer to problem (9.5) or (9.6) as optimality system. More-
over, writing the latter in compact form, it reads: given y € P, find X € X such
that

G(Xom) =F, 9.7)
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with
y+DyE(y, u;p)"(2) Yd
G(X;m):= au — C*(z) and F:= |0
Gy, #) — C(u) f

In the next section, we will discuss the FE approximation of a solution for a fixed
value of the parameter to the nonlinear OCP , restricting ourselves to the well-posed
setting presented.

9.1.2 Galerkin FE approximation

Here, we are interested in the numerical approximation of the solution branches M;
in (3.1) of the nonlinear OCP in (9.7), defined over an open and bounded regular
domain QO € R%. Our aim is to discretize the problem at hand, in order to investi-
gate its qualitative changes w.r.t. the values of the parameter. As we said, an overall
viewpoint can be obtained through the bifurcation diagram, thus, in this section, we
will review the building blocks to approximate a specific solution X () for a chosen
branch. We also remark that, even considering a single branch, the fulfillment of the
well-posedness conditions can fail at some critical point u*. Hence, in the following,
we assume p # p* and X(u) € M; for some i € {1,...,k}, thus we call M; a non-
singular branch. Furthermore, we assume the nonlinearity to be at most quadratic in
the state variable.

To approximate the system in (9.7), let us consider the FE function space Xy =
Yy, x Uy, % Yy, C X, of dimension V' = 2N, + N,,. The FE approximation of the
parametrized problem (9.7) reads: given u € P, find Xy := Xy (¢) € Xy such that

G(Xn;m) = F. (9.8)

We now want to make the algebraic structure of the system (9.8) explicit. After the FE
discretization, we can define y, u and z as the column vectors which entries are given
by the FE coefficients of the state, control and adjoint variables in their approximated
spaces, respectively. In the same fashion, we call y4 the column vector of the FE co-
efficients representing the desired state profile. Let us focus on the structure of the
optimality problem. At the FE level, applying our controlled state to FE basis, we can
derive the matrices E,; + E; — C and the forcing term vector f. Moreover, we define
the mass matrices M, and M, for state/adjoint variables and control, respectively. We
still need to understand the algebraic structure of D,&(y, u; ). Assuming the opera-
tor G to be quadratic in the variable y, the Fréchet derivative of the controlled state
equation w.r.t. the state y will be E/ ,[y] + E;. In other words, the linear state structure
is preserved, the nonlinear operator is linearized in E],[y] and the control contribution
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disappears. Then, the global matrix formulation of the optimization system (9.8) is

G(Xn) F
T | gT ™
My 0 E b FE] Y] [Myva

0 aM,, —CT ul =1 0 |, 9.9)

En+E —C 0 z f

~~
X
which in compact form reads:

R(X;m) :=G(X;p) —F =0, (9.10)

where R(X;u) represents the global residual of the optimality system. To solve system
(9.10), we rely on Netwon method and we solve

Xit1 =X+ Jac(X;; ) "1 (F — G(Xj; ), jEN, (9.11)

until a residual based convergence criterion is satisfied. We remark that, since in the
controlled context | represents the objective functional, here and in what follows we
will denote the Jacobian matrix by Jac

Since the matrix E/,[y]” still depends on y, the Jacobian matrix will be of the fol-
lowing nature:

My +Dy(E ly])[Z] 0 Eyly]" +Ef
0 aM, —cT
Elyjl + Ee —C 0

Jac(X]-;y) = , (9.12)

where the matrix Dy (E],[y;]")[z;] does not depend anymore on the state, but only on
the j—th value of the adjoint variable. This effort is useful to understand the saddle
point structure of the Jacobian matrix. Indeed, one can write

A BT
where
M, +Dy(E'[y]")[z] O
A~ [My y(Ong[y]] )[z] - } and B=[E,ly]+E —C|]. (9.14)

We remark that the assumption of at most quadratic nonlinearity in the state variable
allows A to be symmetric and, thus, we will always refer to (9.13) as a saddle point
structure. To guarantee the solvability of the system we consider A an invertible matrix.
Furthermore, we need the following Brezzi inf-sup condition to be verified:

. zTBx —
Barn () := inf sup > lBBr,N >0, (9.15)

042 0 [IXllwxullzlly
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where x = [ﬂ . In the FE context, the inequality (9.15) holds when the function spaces

for state and adjoint coincide [109, 110]. The assumption z € Y, will guarantee the
fulfillment of the inf-sup stability condition in the FE approximation. For general
nonlinear problems, A may possibly be different form AT, however the well-posedness
results can be extended, the interested reader may refer to [18, 22].

9.1.3 ROMs for a generic nonlinear OCP

In this section we introduce the general setting for a ROM approximation of OCP
problem in (9.8). The reduced strategy proposed is independent from the governing
state equation. Indeed, we refer to [146, 147, 148, 156] for previous contributions to
ROM for nonlinear OCPs, extending them to standard techniques proposed in [72, 120,
119, 122], for bifurcating systems.

As always we relied on POD-Galerkin basis construction [10, 26, 33, 74], combined
with aggregated spaces techniques, following the linear OCPs fashion, as already pre-
sented in [8, 9, 49, 61, 84, 85, 109, 110, 132].

As in Chapter 7, here we exploited a branch-wise reduction, thus, for every bifur-
cating solution branch M;, we build a different ROM. For the moment, we suppose
to have already constructed the reduced spaces Yy C Yy, C Yand Uy C Uy, C U,
the former for state and adjoint variables, the latter for control, respectively. After this
reduced spaces building process, one can solve the following low-dimensional prob-
lem during the online phase: given u € P, find Xn(u) = (yn(p), un(p), zn(p)) €
Xy : =Yy x Uy x Yy such that it holds

Dy.Z(Xn;ya, #)lw] =0 Vo € Yy,
DyZ(Xn;ya,m)[k] =0 Vx € Uy, (9.16)
D.Z(Xn;ya,#)[C] =0 VI € Yn.

As usual, exploiting the ROM is convenient only if one does not have to build
from scratch the reduced model for any instance of the parameter. For this reason, the
system (9.16) is assumed to be affinely decomposed, that translates in the following
finite sums:

DyZ (XN, ya m)[w] = ), OF(#) DyLY(XN; ya) ],
DyZ (Xn;ya, #)[x], = Z O} (1) DuL Y (Xn; ya) [x], (9.17)

D-Z(Xn;ya,m)[¢] = ) ©F () D-2%(Xn;ya) (2],
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where O} (u), ©f(u) and ©F(u) are p-dependent smooth functions, while the terms
D,.Z%XN,Ya)|w], DuZ9(Xn;yq)[«] and D,.Z9(Xn; yq)[{] represent the p-independent
bilinear forms describing the optimality system.

When the affine dependence assumption is verified, the online phase does not de-
pend on N and usually is performed in a small amount of time. Conversely, the
offline process is performed only once and can take advantage of high performance
computing resources. Since in this chapter we will deal with Navier-Stokes govern-
ing equations (7.1), then, it has at most quadratically nonlinear terms and the affine
decomposition is not fulfilled. Thus, one can employ hyper-reduction techniques to
recover it.

Now we focus on the ROM setting for the offline and online phase, showing the
strategy employed to build the reduced function spaces. Exploiting the POD, Ny,
snapshots are sampled and then compressed in order to generate function spaces of
dimension N < Ny,

It is well known that optimization governed by PDEs constraints leads to the so-
lution of a saddle point system [18, 20, 77, 145], as already specified in Section 9.1.2.
In order to guarantee the well-posedness of such a structure, the matrix B of system
(9.13) must verify the inf-sup stability condition (9.15) for every # € P. In the FE
approximation, the aforementioned relation holds since state and adjoint spaces are
equally discretized. However, the inf-sup stability must hold at the reduced level too,
since the relation is provable if the reduced spaces for state and adjoint variables co-
incide. The standard POD construction process leads to the reduced function spaces
for state and adjoint which may be different even under the assumption of the same
starting FE spaces. To overcome this issue, the basis are usually manipulated in order
to stabilize the system. Indeed, we applied aggregated spaces technique, as already did
in several papers about ROM for OCPs, see [8, 9, 49, 61, 84, 85, 109, 110, 132] as refer-
ences. The strategy aims at building a common space for state and adjoint which is
able to describe both state and adjoint variables.

Let us suppose to have applied a standard POD for all the involved variables and
to have defined the following spaces

Yy = span {XZ,)(Z, n=1,...,N}, (9.18)
Uy =span{y4, n=1,...,N}, (9.19)

and with

_ |4 _ |4y
/= |:Zz:|’ and 7y = [ }

where Z, = Z, = |-+ x4 Ixi] - - X&) € RM2N and Z, = [xf]--- [x§] € RNV
are the reduced basis matrices for each variable and Z spans the global space Xy. We
want to solve the optimality system in a low dimensional framework at each paramet-
ric instance. To this end, we employ a Galerkin projection into the reduced spaces and
the system (9.7) becomes

GN(Xn; u)XN = Fn, (9.20)

163



9. AN OPTIMAL CONTROL PROBLEM TO STEER BIFURCATING SYSTEMS

164

where
Gn(Xn; 1) :=ZTG(ZXw; ), and Fn:=ZTF.

The system (9.20) is nonlinear: thus we can apply Newton method and we iteratively
obtain

X = XE, + Jacy (X 1) ™ (Fy — GOX; ) XL), j € N. (9-21)

from the FE approximation, the Frechét derivative inherits the saddle point structure,
ie.

Ay BT
Jacn (Xn; ) Xn = [Bg (y][jz], (9.22)

with Jacy (Xn; ) = ZTJac(ZXn; )Z, ANy = ZLAZ, and By = ZIBZ,
We now have all the ingredients to define a reduced Brezzi inf-sup condition as follows

z}\}BNxN

Ber,N(p) := inf sup > B,y > 0. (9.23)

0#£zxn 0#xy vy xwllznlly

If u # p*, relation (9.23) is verified thanks to the aggregated space definition. We
remark that this technique is increasing the dimension of the global reduced system
from 3N to 5N. However, it is usually much smaller then N. For the sake of simplicity
and for a consistent construction of state and adjoint space, here we always chose Ny,
and N equal for all the involved variables.

Remark 9.1.1 (Supremizer Stabilization). Dealing with Navier-Stokes governing equations,
one has to take care not only of the global inf-sup condition (9.23), but also with the
state equation inf-sup condition. Indeed, Navier-Stokes problem can be recast as sad-
dle point itself and in an optimization system it creates a nested framework. The
aggregated space techniques has to be accompanied by supremizer stabilization for the
reduced velocity space. This approach [139] consists in defining a supremizer operator
T# : QN — VMo as follows:

(T's, @)y =blp,s;n), Vo eV, (9.24)

where b(-,-) is the bilinear form representing the continuity equation defined in Sec-
tion 7.1. Then, we enrich the reduced velocity space through the pressure supremizers
as follows:

T T,
VN = span{le anlx;zf[u/ an, n = ].,...,N},

where XZP and X:? are the basis supremizers obtained by state and adjoint pressure
snapshots, respectively. Enlarging in this way the reduced space for velocity will guar-
antee inf-sup stability for the Navier-Stokes equation. This approach, i.e. supremizer
stabilization combined with aggregated spaces, is the key for the well-posedness of the
whole optimization problem (9.2). This will lead to a reduced system of dimension
13N, which is still convenient compared to the global FE approximation dimension.
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Figure 9.1: Desired velocity profiles: (a) symmetric profile obtained as Stokes solution
for u = 1; (b) asymmetric profile given by the physically stable Navier-Stokes solution
for p = 0.49.

9.2 Driving Navier-Stokes solutions towards desired branches

In this section we focus on several OCP governed by Navier-Stokes equations (7.1) in
the geometrical configuration of a contraction-expansion channel. We aim at under-
standing how different control problems can affect the solution behaviour discussed
in Chapter 7 for the uncontrolled case, especially when bifurcation phenomena are
taken into account. Indeed, we know that in such case the Coanda effect occurs and
three different solutions coexist for values of y below p*. This leads us to analyse the
controlled systems, trying to reach state profiles which are different from the expected
uncontrolled solution.

We thus follow the general procedure described in Section 9.1.1, and discuss the
specific case of optimal control of Coanda effect as a relevant example of bifurcating
state PDE. Nonetheless, the procedure adopted here is general and can be used in
wide variety of other different applications.

For all the applications, we will simulate the physical phenomenon over the do-
main () shown in Figure 7.1. Moreover, for the OCPs structure, we will require the ve-
locity solution v € V to be the most similar to a desired profile vg € Vs := (L?(Tgps) )%
The observation domain T ops = {47} % [0,7.5] is a line near the end of the channel. This
structure allows the control to change the solution at the outflow following a pre-
scribed convenient configuration. During the rest of this study, we will employ two
velocity solution profiles, which are showed in Figure 9.1: we will denote them as the
symmetric desired profile (or target) for 9.1a and the asymmetric desired profile (or target)
for 9.1b. The first is the result of a Stokes system over () for y = 1 with the same
boundary conditions of the Navier-Stokes uncontrolled equations (7.1). On the con-
trary, the latter is the physically stable solution of (7.1) for y = 0.49. While the former
choice aims at controlling the system towards a globally symmetric configuration with
a weaker outgoing flux, we introduced the latter for completeness, in order to achieve
the opposite goal.

The purpose of steering the bifurcating behaviour is summarized in the minimiza-
tion of the functional

1 x
Ins(0,10;04) = 5o = vally,,, + 5 llull, (9.25)

where U := (L?(Q),))? with Q, C O: indeed, the control action can be performed even
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over a portion of the boundary 0Q). We will refer to (), as the control domain. Within
this study we will analyse how the choice of (2,, combined with different values of
the penalization parameter «, affects the solution behaviour of the system, compared
to the uncontrolled Navier-Stokes state equation.

Now, we aim at recasting the OCP constrained to Navier-Stokes equations in the
algebraic formulation presented in Section 9.1.1. The steady and incompressible con-
trolled Navier-Stokes equations in a given domain () are:

{;yAv +0v-Vo+Vp=C(u) inQ, (9.26)

co0=0 in Q),

accompanied by some boundary conditions. The control operator C : U — V* can
represent an external forcing term or a boundary term. If C is defined in the whole
domain we will say that the control is distributed, while if it is defined in a portion
of the internal domain, we will deal with localized control. Furthermore, we will refer
to Neumann control and Dirichlet control, if the control acts as Neumann or Dirichlet
boundary conditions, respectively. Despite the variety of ways in which the control
can act, the optimization system preserves a common structure that we are going to
describe in the following.
The weak formulation of (9.26) reads: given y € P, findv e V,pc Qandu €¢ U
such that
a0, 3 10) +5(0,0,9) + b(p,p) = c(wy) VP EV, 027
b(v, 1) =0 VmeqQ, '

where a(-,-; ), b(+,-) and s(-, -, -) have been already defined in (7.4) whilec : U x Y —
R is a bilinear form associated to the operator C. First of all, to derive the optimality
conditions, we need the adjoint variables w € V and g € Q for velocity and pressure,
respectively. Let X = ((v,p),u, (w,q)) € X:=Y x U x Y be an optimal solution,
where Y :=V x Q. The Lagrangian functional for this specific problem is

ANs(Xvg, 1) = Ins(v, u;0q) + ]«I/QVU-deQ + /Q(U-Vv)wdﬂ

(9.28)
- / pV - wdQ) + / gV -0vdQ) — c(u,w).
Q O
The optimality system built through Frechét differentiation is given by:
DUXNS<X;Ud/ )[ ] 0 V(P ev,
DpZs(X;oq,m)[G] =0 VEe€Q
Dust(X; 04, )[T] =0 Vtell, (929)
Dy s(X;vq,m)[) =0 VY ev,
quNS(X 04, )[7‘[] =0 Ve Q,

where the first two equations form the adjoint equation, while differentiating w.r.t. the
variable u leads to the optimality equation. Finally, the latter two relations coincide with
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the equation (9.27). In particular, the adjoint equation has the following form:

m(©,¢) +a(w, o) + (g, 0,w) +5(0,¢,0) +b(g,q) = mva,9) YVOEV, 44,
b(w,) =0 vieq,
while the optimality equation is given by
ar(u,7) =c(t,w) Vtel, (9.31)

where m : VXV — Rand 7 : U x U — R terms come from the Frechét deriva-
tive of (9.25) w.r.t. the velocity and control, respectively. They represent the L? scalar
product in T'gps and Q. Furthermore, we remark that s(¢, v, w) + s(v, ¢, w) is the lin-
earization around v of the trilinear form s(v, v, ¢), by definition. Therefore, the strong
formulation for (9.30) and (9.31) reads:

vlq,,, — pAw —v-Vw+ (Vo) w+ Vg =v4ln,, inQ,
V.w=0 in Q, (9.32)
aullg, = C*'w in (),

where I, and I,  are the indicator functions of the control and observation do-
mains, respectively. The global optimization problem reads: given u € P, find
X = ((v,p),u, (w,q)) € X such that (9.26) and (9.32) are verified.

We remark that, if we call y := (v, p) and z := (w, q), we recover the global algebraic
formulation presented in Section 9.1.1 and the saddle point structure is preserved.
Indeed, let us suppose to apply the Taylor-Hood approximation IP2-IP! for state y
and adjoint variable z. Furthermore, we discretize the space U with FE using IP?
polynomials. Recalling the notation of Section 9.1.2, we define the quantities

R O IR

where v, p, w, q are the column vectors of FE coefficients for state and adjoint, velocities
and pressures respectively, while M;, is the mass velocity matrix and C, derives by the
bilinear form c(-,-). Furthermore, the linearized state equation structure can be now
expressed as

S[v] 0] [K DT}:[KJrS[V"] DT}, (9.34)

/ ] —

where K is the stiffness matrix associated to the bilinear form a(-,-;u), D is the con-
tinuity equation matrix coming from b(-,-) and S[v/] is the algebraic formulation of
s(v,+,-) +s(-,v,-) evaluated at the FE velocity basis functions. It remains to under-
stand the specific structure of Dy(E/,[y]T)[2/] defined in (9.12). To this end, we define
Sad(v, w, @) as the adjoint operator of the linearized trilinear form s(v, v, -) around the
state velocity v. Applying s,4(v, -,-) to the basis functions of VN> will result in S[v/]”.
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In the Jacobian matrix evaluation, a linearization of s,q(w, v, ¢) is performed not only
in w, but also w.r.t. the variable v. This process will lead to

o, By ) = [P B, 9.35)

where D, (S[V/]T)([w/]) is given by the form s,q(w,-,-) applied to the velocity basis
functions. In other words, the whole linearized optimality system reads

My +Dy(SV]T)wW/] 0 0 KT+S[|T DT

' 0 0o 0 D 0 A BT
Jacns (X p) = 0 0 aM, —CI 0| = [B 0 }

K + S[v/] DT -G, 0 0

D 0o 0 0 0
(9.36)

where X is the FE coefficient vector of the optimal solution and
My + Dy (SV]T)([w]) 0 0 1 pT
A= 0 0 0| and B= [K +DS v/ % _OC”] . (9.37)
0 0 aM,

As already specified in Section 9.1.2, we assume that for p # p* the saddle point (9.36)
is well-posed. Moreover, we highlight that we are dealing with a nested saddle point
structure: indeed, for the state equation (9.34) we require that, for a given y # p* and
fixed v/, the matrix K + S[v/] is invertible and that Brezzi inf-sup condition holds, i.e.

T
N p’' Dv
BB Ns i = inf sup

N
e 2 Prons > 0. (9.38)
020 v20 IVIlvllpllg

This is indeed the case for the Taylor-Hood discretization.

In the next subsections we will analyse how the controlled problem behaves, com-
paring its properties with the ones of the uncontrolled system presented in Chapter 7.
For the sake of notation, we will reserve the words symmetric/asymmetric to describe
the profile of the desired velocity target or during the description of a visual repre-
sentation of the obtained optimal solution. In contrast, we will use the word natural
optimal branch to describe the branch that is obtained by running Algorithm 1 with a
trivial initial guess. This branch may consist of either symmetric or asymmetric con-
figurations, depending on the test case. Numerical experience shows that the natural
optimal branch is the simplest branch to achieve by the optimal control system using
the Algorithm 1, even for a wider range of initial guesses (obtained e.g. by random
perturbation of the trivial guess). Further branches may exist, but are much harder to
compute in practice and require very tailored initial guesses in a neighborhood of u*,
and will be named non-natural optimal branches. For OCPs it makes no sense to talk
about the physical stability of the global optimal solution. Indeed, the system itself is
“artificially” built by adding non-physical adjoint variables, with the aim of changing
the system behaviour.
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In the next sections, we will provide the analysis of different optimal control sys-
tems, as follows.

Sec. 9.2.1. A weak control is built by controlling a Neumann boundary and the optimal-
ity system slightly affects the usual bifurcating nature of the uncontrolled
Navier-Stokes equations.

Sec. 9.2.2. A strong control effect can be observed over the classical bifurcating be-
haviour of the uncontrolled solution by acting on the forcing term.

Sec. 9.2.3. The penalization parameter « is analysed while acting at the end of the in-
let channel, and we discuss how changing a results in different orders of
magnitude for the optimal control.

Sec. 9.2.4. We show how imposing different boundary flux conditions completely changes
the known behaviour of the starting system.

Finally, in Section 9.2.5, final remarks and comparisons concerning the spectral analy-
sis of the four test cases are presented.
9.2.1 Neumann control: weak steering

The first test case we present is a Neumann control over the boundary 'y, where
homogeneous Dirichlet conditions are applied to I'y,y :=I'o U I'n. More specifically, in
this case, the optimality conditions read: given y € P find X € X such that

olr,, — pAw —v-Vw+ (Vo) Tw + Vg = o4y, inQ,

V-w=0 in Q,

w=20 on Fin U Fwallr

—qn+ (uWVw)n =0 on Iout,

aully,,, = wir,_, in (), (9.39)
—uAv+v-Vo+Vp =0 in ),

V-v=0 in ),

U = Uin on I'i,,

v=0 on 'y,

—pn+ (uVo)n =u on I'oyt.

The desired velocity vy will always be of the symmetric type for this specific exam-
ple. In other words, we are studying which is the best choice for Neumann boundary
condition, to reach the exiting symmetric profile shown in Figure 9.1a. We study the
behaviour of the controlled solution varying « = 1,0.1,0.001, 0.0001, where the greater
is the value of a the lower is the strength of the control. In Figure 9.2 we show some
representative solutions for « = 0.01 and ¢ = 0.5, for state velocity and pressure
variables. In this case, the natural optimal branch is composed by asymmetric solu-
tions (Figure 9.2, top), while there is a further non-natural optimal branch made up
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by symmetric solutions (Figure 9.2, bottom). Results obtained following the natural
optimal and non-natural optimal branches are shown in Figures 9.3 and 9.4, respec-
tively. Therefore, we conclude that the Neumann control affects weakly the system, as
it is not able to steer it towards the desired symmetric configuration after the bifurca-
tion has occured, thus not changing drastically the features already observed for the
uncontrolled state equations (see Figure 7.2).

The left plot of Figure 9.3 depicts the velocity profile magnitude over I'yps for the
highest value of the Reynolds number when following the natural optimal branch.
Even though the obtained velocity (marked by an orange line) is indeed different
from the desired profile (denoted by a blue line), especially for what concerns peak
values, we observe that the Neumann control straightens the flux near the end of the
channel (compare the orange line to the green line, which represents the uncontrolled
asymmetric profile), even when high Reynolds numbers are considered. The resulting
profile is similar to the uncontrolled symmetric velocity (red line), even though full
symmetry is not achieved. The action of the control variable is shown in the right plot
of Figure 9.3 when changing the parameter u following the natural optimal branch:
the control is stronger for u < p* (i.e., when the wall-hugging phenomenon occurs
and straightening in necessary), while it remains low in magnitude for y > u*.

Similarly, the left plot of Figure 9.4 shows the velocity profile magnitude over I'gps
for the highest value of the Reynolds number when following the non-natural optimal
branch. In this case, the controlled symmetric profile (orange line) coincides with the
uncontrolled symmetric profile (red line). Furthermore, the right plot of Figure 9.4
shows that the control variable around the critical p* (e.g.,, ¥ = 1 and y = 0.95) is
asymmetric to counteract the stable wall-hugging physically driven behaviour of the
uncontrolled system. We further remark that, compared to the natural optimal branch,
the control variable of the non-natural optimal branch is much lower in magnitude.

Table 9.1 shows the value of the cost functional (9.25) for several values of y (rows)
and « (columns), following either the natural optimal or non-natural optimal branches.
The first column also shows the value of the uncontrolled functional, i.e. (9.25) evaluated
for the uncontrolled velocity v of the equation (7.1) and zero control.

The main observation is that decreasing the value of a results in lower cost func-
tional values, since a lower value of a allows stronger control to take place and drive
the velocity to the desired configuration. In all cases, the non-natural branch presents
lower values of the functional compared to the natural branch; this has to be expected,
as the cost functional measures deviation from a symmetric target, and the non-natural
branch is clearly closer to the target being made of symmetric solution (compare e.g.
for y = 0.05 and & = 0.001 the left panels of Figures 9.3-9.4). However, the natural
branch is the one for which the control procedure is influencing the most the cost func-
tional values: for instance, for 4 = 0.05 and a = 0.001, the cost functional is decreased
by 6% on the non-natural branch and by 55% on the natural one w.r.t. the correspond-
ing uncontrolled configuration. Again, this has to be expected from the previous
discussion of Figures 9.3-9.4, which shows larger impact of the control procedure to
straighten the solution on the natural branch. Finally, large values of y have negligible
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Figure 9.3: Left: comparison of velocity profiles in the controlled and uncontrolled
cases for « = 0.01, y = 0.5 on I'ps W.r.t. the desired profile when following the natural
optimal branch. Right: representation of control variable evolution for « = 0.01, y =
2,1,0.95,0.5 over I'pyt when following the natural optimal branch.

cost functionals, as the target velocity almost coincides with the uncontrolled velocity.
From such an analysis we deduce that, when bifurcating phenomena occur, a configu-
ration can perform better than another one, and finding all the solution branches can
be of great importance to understand the solution that best recover the desired profile.

Concerning the stability of the solution, we performed the eigenvalues analysis
described in Algorithm 1. We can derive several informations from the Figure 9.5,
which represents the global eigenvalue problem for the natural branch, against the
parameter y such that $(c;,) = [—0.01,0.01].

We plot the first N,;; = 100 eigenvalues of the linearised system (3.12) around the
global optimal solution, using a Krylov-Schur algorithm. From the plot, we observe
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Figure 9.4: Left: comparison of velocity profiles in the controlled and uncontrolled
cases for « = 0.01, u = 0.5 on I';,s w.r.t. the desired profile when following the non-
natural optimal branch. The lines marked by “Controlled Symmetric Velocity” and
“Uncontrolled Symmetric Velocity” overlap. Right: representation of control variable
evolution for « = 0.01, p = 2,1,0.95,0.5 over I'oyt when following the non-natural
optimal branch.

two eigenvalues (highlighted with blue markers) approaching (¢} ) = 0: we will refer
to this behaviour as shears phenomenon. Moreover, the number of positive eigenvalues
grows inversely with the value of the penalization parameter, and the negative eigen-
values are lowering except for the negative shear eigenvalue. Furthermore, the positive
real eigenvalues accumulate in the value of a: this is very clear in subplots 9.5¢ and
9.5d. From the plot, a single eigenvalue (denoted by red markers) approaching zero is
clearly visible.

One of the conclusion we can obtain from the global eigenvalue analysis is how the
concentration of negative eigenvalues is affected by the greater action of the control
variable obtained by decreasing a: for a fixed range of %(Uy), decreasing « (i.e., a more
controlled system) results in larger number of positive eigenvalues in #(c},).

Unfortunately, we can not derive information about the physical stability of the
global solution from the performed global eigenvalue analysis, since similar eigen-
value structures are observed for both the natural and non-natural branches (only
the former being shown here for the sake of brevity). Therefore, our considerations
throughout the study are limited to the numerical stability represented by natural
optimality, as discussed above.

Regardless, we thus conclude that the Neumann control is not able to fully steer
uncontrolled solutions towards the desired symmetric configuration. However, this
will be achieved in the next section, where a stronger control action will be presented.
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Table 9.1: Comparison of the functional value for Neumann control w.r.t. stable and
unstable uncontrolled solutions. (Nat.) Natural optimal branch. (n-Nat.) Non-natural
optimal branch.

Stable ‘ Unstable Nat. ‘ n-Nat. Nat. ‘ n-Nat. Nat. ‘ n-Nat. Nat. ‘ n-Nat.
Uncontrolled a=1 a=0.1 a =0.01 a = 0.001
2 5.14e-9 | 5.14e-9 5.13e-9 | 5.13e-9 || 5.13e-9 | 5.13e-9 || 5.13e-9 | 5.13e-9 || 5.07e-9 | 5.07e-9
1.5 || 4.38e-6 | 4.38e-6 4.38e-6 | 4.38e—6 || 4.38e—6 | 4.38¢-6 || 4.37e-6 | 4.37e—6 || 4.28¢-6 | 4.28e-6
1 4.10e-3 | 4.10e-3 4.10e-3 | 4.10e-3 || 4.10e-3 | 4.10e-3 || 4.08e-3 | 4.10e-3 || 3.92e-3 | 3.92e-3
09 || 3.33e2 | 1.63e-2 3.33e-2 | 1.63e-2 || 3.30e-2 | 1.63e-2 || 3.15e-2 | 1.63e-2 || 2.93e-2 | 1.55e-2
0.8 || 2.08e-1 6.52e-2 2.07e-1 | 6.52e-2 || 2.04e-1 | 6.51e-2 || 1.88e-1 | 6.51e-2 || 1.70e-1 | 6.15e-2
0.7 || 1.01e+0 | 2.59e-1 1.01e+0 | 2.59e-1 || 9.80e-1 | 2.59e-1 || 8.63e-1 | 2.59e-1 || 7.67e-1 | 2.43e-1
0.6 || 448e+0 | 1.70e+0 4.44e+0 | 1.02e+0 || 4.15e+0 | 1.02e+0 || 3.33e+0 | 1.02e+0 || 2.91e+0 | 9.57e-1
0.5 || 1.88e+1 | 3.92e+0 1.83e+1 | 3.92e+0 || 1.50e+1 | 3.92e+0 || 9.61e+0 | 3.92e+0 || 8.54e+0 | 3.68e+0
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Figure 9.5: Spectral analysis of Neumann control with « = 1,0.1,0.01,0.001
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9.2.2 Distributed control: strong steering

This section deals with a distributed control in ), = (), thus the control variable
u acts as an external forcing term on the whole domain. Here we consider again
I'wan = ToUTIp. Given u € P, the optimal solution X € X satisfies the following
system:

(0l — pdw —v- Vw + (Vo) Tw+ Vg = o4l in Q,
V.-w=0 in Q,
w=20 on I'in U T'wan,
—qn+ (uVw)n =0 on I'out,
au = w ?n Q, (9.40)
—uAv+v-Vo+Vp=u in (),
V-v=0 in ),
U = Ujn on I'yan,
v=20 on Iy,
—pn+ (uVo)n =0 on Tout,

First of all, we underline that in distributed OCPs the action of the control is usually
stronger and it affects deeply the original system.

To show this, we will steer the system towards either symmetric or asymmetric
desired profiles vg4:

o Symmetric target: the aim of this setting is to steer the solution of (9.40) to a
symmetric profile. We plot two representative control solutions in Figures 9.6a
and 9.6b, obtained for y = 2 and y = 0.5 when following the natural optimal
branch, which is composed of symmetric solutions. The stronger action of the
control allows the controlled velocity profile to be more diffusive compared to
the uncontrolled symmetric profile, as represented in the left plot of Figure 9.7,
corresponding to the observed slice of the velocity solution for y = 0.5: in this
case the controlled velocity (orange line) and the symmetric target (blue line)
almost coincide. The right plot of Figure 9.7 shows that a slightly asymmetric
control is required only near the critical value y* (also compare to Figures 9.6a
and 9.6b for the cases y = 2 and y = 0.5). Furthermore, the control action
is clearly higher when the Re value increases. Indeed, for y = 2 the control
exclusively acts in the proximity of I'y,s with a maximum magnitude of 1.8:1074,
while for y = 0.5 it reaches a value of 1.6 of magnitude.

A further non-natural optimal branch exists, and is made of symmetric solu-
tions, but is hardly reachable by numerical continuation methods unless tailored
guesses are provided to Algorithm 1.

o Asymmetric target: in this case, we desire to recover the asymmetric target for all
u € P. We plot two representative control solutions in Figures 9.6c and 9.6d,
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Figure 9.6: Optimal control profiles for & = 0.01. Left: » = 2 in (a) and (c); right:
i = 0.51n (b) and (d). Top: symmetric target in (a) and (b); bottom: asymmetric target
in (c) and (d).

obtained for y = 2 and u = 0.5 when following the natural optimal branch,
which is made of asymmetric solutions. The action of the control is also visible
in the left plot of Figure 9.8, obtained for y = 2: indeed, we see how the flux
over I'gs is pushed towards the domain wall (orange line), in contrast to the
symmetric profile of the uncontrolled velocity (green line). Namely, also in this
case, the distributed control is able to drive the solution towards the desired state.
In order to do so, the control variable has to be large when p > u*, i.e. when the
uncontrolled configuration on I'gps would lead to a symmetric profile. Indeed,
in Figure 9.6¢c the maximum control value reaches 7 for y = 2 in the upper part
of the domain. In contrast Figure 9.6d it lowers to 10~ for # = 0.5 when the
stable asymmetric velocity solution does not need to be controlled by an external
forcing term. This is confirmed in the right plot of Figure 9.8 for several values of
. Also in this case a non-natural optimal branch (featuring symmetric solutions)
continues to exist, but it is numerically difficult to reach.

We show the comparison of the values of the cost functional (9.25) in Table 9.2 for
the reached natural branch for both symmetric and asymmetric targets. Several values
of p (rows) and a (columns) have been analysed and compared to the uncontrolled
functional, computed as in the Neumann test case. As expected, we notice that the
functional is lower for smaller a. For the symmetric target, the action of the distributed
control is indeed able to steer the solution towards the desired symmetric profile. In-
deed, for p = 0.05, the choice a# = 0.01 shows that the functional is decreased by a 90%
w.r.t. its uncontrolled counterpart, while for « = 0.001, the cost functional is almost
decreased by 99%. Similarly, for the asymmetric target, the maximum action of the
control variable is given for low Reynolds and, for = 2 we can observe a decrease of
the functional of the 77.5% for « = 0.01, up to a 97% for « = 0.001. We remark that
no control action is needed for y = 0.5 ~ 0.49, which is the parameter value for which
the asymmetric vy was computed: this was underlined by very low values of (9.25),
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Table 9.2: Comparison of the functional value for distributed control. (Sym.) Natural
optimal branch for symmetric target. (Asym.) Natural optimal branch for asymmetric
target. (Sym.-U.) Unstable uncontrolled solution with symmetric target. (Asym.-S.)

Stable uncontrolled solution with asymmetric target. (B.M.E.) Below machine epsilon.

Sym.-U.[Asym.-S.[| Sym. [ Asym. [[ Sym. [ Asym. [[ Sym. [ Asym. [ Sym. [ Asym.
Uncontrolled a=1 a=0.1 a =0.01 a = 0.001
2 || 5.14e-9 | 1.88e+1 || 5.06e-9 | 1.81e+1 || 4.51e-9 | 1.36e+1 || 2.22e-9 | 4.23e+0 || 4.04e-10 | 5.66e-1
1.5 4.38e—6 | 1.88e+1 || 4.29e—6 | 1.77e+1 || 3.61e—6 | 1.20e+1 || 1.46e—6 | 3.09e+0 || 2.28e-7 |3.87e-1
1 || 410e-3 | 1.86e+1 || 3.95e-3 | 1.67e+1 || 2.99e-3 | 9.15e+0 || 9.14e—4 | 1.86e+0 || 1.23e—4 |2.17e-1
0.9 | 1.63e-2 | 1.84e+1 || 1.56e-2 | 1.54e+1 || 1.14e-2 | 7.88e+0 || 3.26e-3 | 1.50e+0 || 4.26e—4 | 1.73e-1
0.8 | 6.52e-2 | 1.54e+1 || 6.21e-2 | 1.31e+1 || 4.36e-2 | 6.06e+0 || 1.14e-2 | 1.08e+0 || 1.45e-3 | 1.22e-1
0.7 ]| 2.59e-1 | 1.15e+1 || 2.45e-1 | 9.28e+0 || 1.63e—1 | 3.68e+0 || 3.93e-2 | 6.16e-1 || 4.81e-3 | 6.90e-2
0.6 || 1.70e+0 | 5.34e+0 || 9.54e-1 | 3.76e+0 || 5.94e-1 | 1.24e+0 || 1.28e-1 | 2.00e-1 || 1.70e-2 | 2.22e-2
0.5 392e+0 | BM.E. ||3.59e+0| B.M.E. || 2.04e+0| B.M.E. || 3.92e-1 | BM.E. || 4.47e-2 | BM.E.
Controlled vs Uncontrolled Velocity Control Magnitude
12 a —:: ﬁzéss /'l‘\\\
. 1 0.012 - ’,’ V"\
EE g8 [
g '_zrw’vh . ’» .
26 N SN v ;
k] ! oo ’ A
E a AR e N
—e— Stokes Velocity \ 1004 /,’, v \\‘ ’,,’ 'l,’ ‘.\\
S o o AU \ A N
1.“" -4+ Uncontrolled Symmetric Velocity ‘v\\g - “\
o = 000 x

X2

Figure 9.7: Left: comparison of velocity profiles in the controlled and uncontrolled
cases for « = 0.01, u = 0.5 on I'gps W.r.t. the symmetric desired profile when following

the natural optimal branch. Right: representation of control variable evolution for

a=0.01, p =2,1,0.95,0.5 for x; = 45 when following the natural optimal branch.
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Figure 9.8: Left: comparison of velocity profiles in the controlled and uncontrolled
cases for & = 0.01, u = 2. on I';ps w.r.t. the asymmetric desired profile when following
the natural optimal branch. Right: representation of control variable evolution for
a=0.01, p =2,1,0.95,0.5 for x; = 45 when following the natural optimal branch.

which were below the machine precision.

The plots of Figure 9.9 represent the spectral analysis for this optimal control prob-
lem: in particular, Figures 9.9a (¢« = 1) and 9.9b (« = 0.1) are associated with the
symmetric target when following the corresponding natural optimal branch, while
Figures 9.9c (x = 1) and 9.9d (« = 0.1) consider the asymmetric target when follow-
ing its natural optimal branch. As the behavior between the top and bottom panels
of Figure 9.9 is comparable, we will only comment in the following on the role of a.
Furthermore, as we discussed in the previous test case, we cannot recover stability
information about the configuration obtained by the optimal solution by means of the
global eigenvalue problem, because the remaining (i.e., non-natural optimal) branches
show very similar patterns to the ones in Figure 9.9.

We plot the eigenvalues for « = 1 in $(c,) = [-0.01,0.01] and for « = 0.1 in
R (0y) = [—0.005,0.005]. For this test case, the predominance of positive eigenvalues
is visible also for large values of the penalization parameter. The smaller is «, the
more negative eigenvalues are lowered. For all the a taken into account, the shears
phenomenon does not appear: for « = 1 a small trace of the shears structure is still
visible (highlighted in blue) in Figures 9.9a and 9.9c where the bottom part of the shear
is pushed away from $(c;,) = 0. Instead, for « = 0.1 the shears structure is completely
lost: Figure 9.9c and 9.9d shows that only one eigenvalue (representing the top of the
shears, and marked in blue) approaches ¥(¢;) = 0 without crossing it.

We finally notice that the point p** where the upper shears curve is the closest
to the axis $(cy,) = 0 allows to obtain further information on the bifurcating phe-
nomenon. From Figure 9.9, u** ~ 0.96 for the symmetric target, regardless of a, while
requiring an asymmetric target leads to u** € [1.0,1.2] with a mild dependence on
«. Thanks to the aid of Figure 9.10, which shows the bifurcation diagram for the
controlled solution with asymmetric target (a similar plot can be obtained for the
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Figure 9.9: Spectral analysis with « = 1, 0.1 (left to right) for the natural optimal branch
with symmetric (top) and asymmetric (bottom) targets.

symmetric target as well, but is here omitted because the lines almost overlap), we can
state that y** provides an indication on the location where bifurcation of the controlled
system occurs.

We further note that for the symmetric target u** ~ u*, being u* the bifurcation
point of the uncontrolled case, while y** # u* for the asymmetric target, with a mild
dependence on a. Thus, optimal control is not only able to steer the state solution
towards a desired branch, but may also affect the location of the bifurcation point.

The role of the penalization parameter a will be clarified in the next section and it
will result into a completely new optimal solution behaviour in section 9.2.4.
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Figure 9.10: Bifurcation diagram (upper branch only) for controlled state velocity ob-
tained with « = 1,0.1,0.01,0.001 and asymmetric target, compared to the uncontrolled
velocity.

9.2.3 Channel control: the « effect

This section aims at describing how the value of the penalization parameter a can
affect the natural convergence towards a symmetric target over I',ps. Towards this
goal, we analysed the action of a control variable defined at the end of inlet channel,
ie. O, = I'y, as depicted in Figure 7.1. The boundary I'y,y is, once again, I'o U I'p.
Within this setting, the problem reads: given p € P find the optimal solution X € X
such that the following holds:

olr,, — pAw —v-Vw+ (Vo) Tw + Vg = o4y, inQ,

V-w=0 in Q),

w=20 on Fin U Fwallr

—gqn+ (uVw)n =0 on Lout,

aully,, = wir,, in ), (9.41)
—uAv+v-Vo+ Vp = ulr, in ),

V-v=0 in ),

U = Uin on l'ip,

v=0 on 'y,

—pn+ (uVo)n =0 on I'oyt.

The optimal control acts as a forcing term capable to change the way the flow enters
in the expansion channel. In Figure 9.11 we show the adjoint velocity and pressure
profiles obtained for p = 0.5 and two different penalization values, namely a = 1
and a« = 0.01. In the first case, following Algorithm 1, the natural optimal branch
presents a wall-hugging behaviour, while for smaller values of « the control variable
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Figure 9.11: Two optimal solutions for adjoint velocity and pressure for y = 0.5: a =1
in (a) and (b), and &« = 0.01 in (c) and (d), respectively.
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natural optimal branch. Right: representation of control variable evolution for « = 1,
u=2,1,0950.5 at x; = 10 when following the natural optimal branch.

is able to drive the velocity towards a straight flux (see the left panels of Figures 9.12
and 9.13). Therefore, for large values of « the natural optimal branch is composed by

natural optimal branch is made of symmetric solutions.

asymmetric solutions (i.e., far away from the target), while for smaller values of « the

From the right plots of Figures 9.12 and 9.13, the control is very sensitive close
to p* and this is shown by its asymmetric configuration both for the wall-hugging
solution and the straight one. For « = 1,0.1,0.01, we were able to detect two solutions
using different initial guesses in the continuation method, showing symmetric and
asymmetric features coexisting for some values of y < p*. The smaller was «, the
more difficult was to recover the non-natural branch. For example, when a = 0.001, the
action of the control variable drives the wall-hugging phenomenon towards a straight
flux so strongly that we were not able to really reconstruct the whole optimal non-
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Figure 9.13: Left: comparison of velocity profiles in the controlled and uncontrolled
cases for &« = 0.01, u = 0.5 on I'yps w.r.t. the symmetric desired profile when following
the natural optimal branch. Right: representation of control variable evolution for
x«=1,u=2,1,0.9505 for x; = 10 when following the natural optimal branch.

natural branch. Indeed, either the Newton solver did not converge (this happens
also for « = 0.1 and y = 0.5, compare Table 9.3) or converged to the natural branch
consisting in symmetric features.

As usual, the role of « is highlighted in reducing objective functional, as Table 9.3
shows. As already specified in Sections 9.2.1 and 9.2.2, the straight configuration is
lowering much more the functional than the asymmetric solution, due to its similarity
with the symmetric v4, which is the fixed target for this test case. In this case, the
role of a is crucial in order to reach a solution which represents better the desired
state. Indeed, the control was able to steer the solution to the symmetric profile for
« = 0.1,0.01,0.001. From the functional point of view, we do not have a notable
decrease, as can be observed in Table 9.3, where the value of (9.25) is presented for
different values of u and a w.r.t. the uncontrolled problem solution. Yet, acting at the
end of the inlet channel still allows to drive the optimal solution towards a natural
convergence to the symmetric vg4, but the parabolic profile on I'y,s is not reached (see
e.g. that the functional decreases only of a 10% for y = 0.5 and « = 0.001 w.r.t. the
uncontrolled symmetric solution).

Figure 9.14 shows the eigenvalues of the global eigenproblem in the range R(c;,) =
[—0.01,0.01] when following the natural optimal branch. We remark that the eigenval-
ues behaviour is preserved also for the other non-natural optimal branch. For a = 1,
we can observe the shears phenomenon, which disappears for other values of the
penalization parameter. Lowering the value of &, leads to a positive-dominated eigen-
values ensemble. Furthermore, a clustering around the value of « can be observed in
plots 9.14c and 9.14d. In the next section, very peculiar features have been observed as
well, while changing the value of the penalization parameter « in a Dirichlet control.
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Table 9.3: Comparison of the functional value for channel control w.r.t. stable and
unstable uncontrolled solutions. Headers: (Nat.) Natural optimal branch. (n-Nat.)
Non-natural optimal branch. Trailing cell characters: (s) the solution has symmetric
profile. (a) The solution has asymmetric profile. (nat-C.) Converging to natural branch
despite tailored guess. (non-C.) Non-converging Newton’s solver for tailored guess.

Stable \Unstable Nat. \ n-Nat. Nat. \ n-Nat. Nat. \ n-Nat. Nat. \ n-Nat.
Uncontrolled a=1 a=0.1 a = 0.01 a = 0.001

5.14e-9 | 5.14e-9 || 5.14e-9s | 5.14e-9s || 5.14e-9s | 5.14e-9s || 5.14e-9s | 5.14e-9s || 5.07e-9s | 5.14e-9s
1.5/ 4.38e—6 | 4.38e—6 || 4.38e—6s | 4.38e—6s || 4.38e—6s | 4.38e—6s || 4.38e—6s | 4.38e—6s || 4.28e—6s | 4.38e—6s
1 ||4.10e-3 | 4.10e-3 || 4.10e-3s | 4.10e-3s || 4.10e—-3s | 4.10e-3s || 4.08e—3s | 4.10e-3s || 3.92e-3s | 4.10e-3s
0.9 3.33e-2 | 1.63e-2 || 3.33e-2a | 1.63e-2s || 1.63e-1s | 3.33e-2a || 1.63e-1s | nat-C. || 2.93e-2s | non-C.
0.8 2.08e-1| 6.52e-2 || 2.08e-1a | 6.52e-2s || 6.52e-2s | 2.07e-1a || 6.52e-2s | 2.04e—1a || 6.51e-2s | nat-C.
0.7/ 1.01e+0| 2.59e-1 || 1.01e+0a | 2.59e-1s || 2.59e-1s | 1.01e+0a || 2.59e-1s | 9.76e—1a || 2.24e-1s | nat-C.
0.6||4.48¢+0| 1.70e+0 || 4.48e+0a |1.02e+0s || 1.02e+0s | 4.43e+0a || 1.02e+0s |4.03e+0a || 9.90e-1s | nat-C.
0.5/ 1.88e+1| 3.92e+0 || 1.87e+1a|3.92e+0s||3.92e+1s| non-C. ||3.87e+0s| non-C. || 3.50e+0s| nat-C.
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9.2.4 Dirichlet control: flux action

In this final example, we propose a Dirichlet control over the boundary (0, = I'n. We
fix the symmetric configuration as desired state vq over the line I'g,s, while we set
I'wan = T'o. In other words, we are trying to control a Dirichlet boundary condition in
order to lead the controlled solution towards the symmetric profile. The problem to
be solved reads: given p € P find X € X such that

olr,, — pAw —v-Vw+ (Vo)Tw + Vg = v4llr,,  inQ,

V-w=0 in Q,

w=0 on Tin UTD U Tyan,
—qn+ (uVw)n =0 on T'out,

aully, = wir, in O,
—uAv+v-Vo+Vp =0 in Q, (9.42)
V-o=0 in Q,

0= Uin on Ly,

v=1u on I'p,

v=0 on Ly,

—pn+ (uVo)n =0 on Toyt.

Allowing the flux to freely enter or exit from the boundary I'p drastically changes
the optimal solution behaviour. Since we are asking for a symmetric desired profile,
the main action of the control is to straighten the flow: this behaviour can be observed
from Figure 9.15a and the left plot of Figure 9.16. Indeed, even for large values of «,
the velocity profile reaches the symmetric configuration, while for lower values of the
penalization parameter, the velocity in I'yps is parabolic.

This feature is highlighted also from the functional values in Table 9.4, where the
functional (9.25) is shown for several p (rows) and a (columns) w.r.t. uncontrolled
stable and unstable solutions. The cost functional largely decreases for smaller values
of «, e.g. « = 0.001: for example, focusing on y = 0.5, the functional only lowers of
18% for « = 0.01, in contrast to almost 82% for & = 0.001.

Within the setting of & = 0.001, the system manifests an interesting and unexpected
profile, shown in Figure 9.15b. The flux presents an asymmetric configuration for low
value of u. Namely, for low values of a a bifurcating solution appears as depicted in
Figure 9.15b. The asymmetric behaviour is due to the control variable which not only
allows the flow to exit from I'p (in order to avoid the asymmetric recirculation of the
wall-hugging solution), but it is adding flux near the channel in order to achieve the
straight configuration and the parabolic velocity profile given by the symmetric target
velocity over the observation domain, as it is represented in the right plot of Figure
9.16.

The eigenvalue analysis is provided in Figure 9.17, where we show some close-ups
starting with R(c;,) = [—-0.001,0.001] for « = 1 in the top-right image, and restricting
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Figure 9.15: Two optimal velocity solutions for y = 0.5, with « = 1 and & = 0.001, left
and right respectively.
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ing the natural optimal branch. Right: representation of control variable evolution for
« = 0.1,0.01,0.001,0.001, at x; = 10 when following the natural optimal branch.

Table 9.4: Comparison of the functional value for Dirichlet control w.r.t. the stable and
unstable uncontrolled solutions.

Stable [ Unstable Controlled Solution
Uncontrolled a=1 a=0.1 a = 0.01 a = 0.001
2 5.14e-9 5.14e-9 4.98¢-9 || 4.83e-9 4.79¢-9 4.79¢-9
1.5 4.38¢e—6 4.38e-6 4.24e-6 || 4.10e-6 4.07e-6 4.06e-6
1 4.10e-3 4.10e-3 3.94e-3 || 3.78e-3 3.74e-3 3.72e-3
0.9 3.33e-2 1.63e-2 1.56e-2 1.49e-2 1.47e-2 1.45e-2
0.8 2.08e-1 6.52e-2 6.20e-2 || 5.88e-2 5.78e-2 5.46e-2
0.7 1.01e+0 2.69¢e-1 2.44e-1 2.29¢-1 2.21e-1 1.82e-1
0.6 4.48e+0 1.70e+0 9.49¢-1 8.73e-1 8.09¢e-1 3.57e-1
0.5 1.88e+1 3.92e+0 3.58¢e+0 || 3.21e+0 2.41e+0 4.73e-1
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Figure 9.18: Eigenvalues of the state eigenproblem in the complex plane for the Dirich-
let optimal control: asymmetric and symmetric solutions, left and right respectively.
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the vertical interval due to the order of the lowered a in the remaining images. As
already noticed in Section 9.2.2, the strongest is the control, the more the eigenvalues
are positive. Furthermore, as it already happened in the distributed control case with
asymmetric target in Section 9.2.2, the value y* seems to be not relevant anymore as
an indication of the bifurcation point. Recalling the definition of y** in Section 9.2.2
as the value of the parameter for which the top curve of the shears (marked in blue)
is approaching R(c;,) = 0 from above, Figure 9.17 shows that such a curve is moving
away from (0, ) = 0 as « decreases, and thus no such point p** exists.

The results of the previous sections have shown that the top shear structure is typi-
cally associated to the wall-hugging bifurcation, and that p** provides an indication of
the bifurcation: we are thus lead to believe that the standard bifurcating configuration
observed in the uncontrolled case, consisting of a branch of symmetric solutions and a
branch of wall-hugging ones, is not present here, with the latter branch disappearing.
However, the system seems to be featuring a different bifurcation, presented in Figure
9.15b. Indeed, we can see an eigenvalue crossing the line #(¢;) = 0 for the global
eigenproblem in Figure 9.17d for a = 0.001.

Furthermore, it is the first time that we can see an eigenvalue crossing the line
R(0u) = 0 for the global eigenproblem, as depicted in Figure 9.17d for « = 0.001. We
believe that this structure is strictly connected to the bifurcating solution presented
in Figure 9.15b. Therefore, if we plot the eigenvalues of the state eigenproblem of
Algorithm 1 (Figure 9.18), we see how the symmetric profile does never cross the
origin, while the asymmetric solution in Figure 9.15b for & = 0.001 does. In the setting
with the modified BCs, the physical stable solution behaviour is a feature of straight
profile.

Moreover, from Figure 9.18, we can clearly observe a couple of complex and conju-
gate eigenvalue crossing the imaginary axis. This is, in fact, a paradigm for Hopf bifur-
cation [128, 142] and represents another evidence of how deeply the system changed
its inner features.

Remark 9.2.1 (Lagrange multipliers). From a numerical point of view, we employed La-

grange multipliers to solve the optimality system (9.42). The condition v = u on I'p
has been weakly imposed in integral form

/ oA ds = / ulds VA EV. (9.43)
o o
This equation reflects in system (9.27), since the term
/ e(V-vn+pn)ds VeV, (9.44)
I'p

appears. The two equations will result in extra terms in the adjoint equations. Fur-
thermore, we weakly impose also the boundary condition w = 0 on I'p with another
multiplier.
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9.2.5 A comparative eigenvalue analysis

In this section, we sum up all the observations and results derived from the global
eigenvalue analysis over the four test cases. Therefore, we now list the similarities
between these, especially for what concerns the variation against different values of
the penalization parameter «a:

o the eigenvalues cluster around the value of «. This behaviour is well represented
in Figures 9.5¢, 9.5d, 9.14c and 9.14d. These eigenvalues come from the optimal-
ity equation;

o the predominance of positive eigenvalues over the negative ones. In all the performed
spectral analysis we have observed that the control action lowers the negative
eigenvalues. The stronger is the control, the greater is the number of positive
eigenvalues, as it is represented in Figures 9.9b and 9.17;

o the shears effect for low controlled system. The shears configuration is character-
istic of control problems which do not highly change the uncontrolled system
solution. It is the case of Neumann control in Figure 9.5a and of the channel
control for & = 1 as shown in Figure 9.14a. For the other cases, the smaller is
« the least visible are these shearing eigenvalues: in some cases, the structure is
completely broken;

o the u* identification. For the shears, it is clear that they approach to the real line
in the point for which the bifurcating phenomenon occurs. This is the same situa-
tion we found for the uncontrolled problem, in which the path of the eigenvalue
identifies the value of bifurcation parameter. Moreover, regardless the power
of the control imposed this situation is preserved. Indeed, the positive shears
eigenvalue is still present in Figures 9.9b, 9.14b, 9.14c and even in the Dirichlet
optimal control, as shown in Figure 9.17. In some cases, a shift of the #* has been
observed.

Since the structure of the spectral analysis is highly influenced by the control strength,
we tried to perform an eigenvalue analysis dealing with only state and adjoint equa-
tions. For all the test cases, shears occurs. The shears structure is symmetric when
the solution shows the wall-hugging property, while it is slightly asymmetric when
the state flow is straight. We guess that this behaviour is due to the different reaction
of state and adjoint blocks to the bifurcating phenomena. Indeed, for the symmetric
flux, the behaviour of the state equation has to be preserved for all i, while the adjoint
problem, which is strictly linked to the control variable, puts more effort in rebalancing
the flux, resulting in an asymmetric contribution that causes the shears to be slightly
asymmetric.

The spectral analysis of a nonlinear system is a indispensable tool to understand
bifurcation phenomena, eventually. Under the point of view of computational costs, it
is a very tough task, most of all for nonlinear OCP. Indeed, as always FE discretization
leads to huge systems to be solved for a wide sample of parameter y € P. Thus, in
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Figure 9.19: Left: asymmetric velocity with Neumann control for « = 1. Right: sym-
metric velocity with distributed control for « = 1.

the next section, we investigate the ROM approach as a suitable way to overcome this
issue.

9.2.6 A ROM approach

In this section, we are presenting the numerical results deriving from the reduction of
the four controlled test cases described previously. For each numerical test case, the
offline setting is given by Ny, = 51 snapshots evaluated for equidistant parameters
in the range of P = [0.5,2] and the POD algorithm is chosen for the ROM construction.
Let us define the basis number N as the maximum dimension of the reduced spaces,
which is the same for each variable. For Dirichlet test case we chose N = 12 basis
functions, while for the other test cases the basis number is N = 20. The choice was
taken due to the presence of the two multipliers variables in the Dirichlet test case,
which increases the global dimension of the system from 13N to 15N.

Then, we perform an online phase solving (9.16) for K = 151 equidistant value of
p in the same parameter space P. The performance has been tested through separate
error analysis for each variable. The effectiveness of the ROM approach have been
evaluated through

o an average error over the parameter space against an increasing value of the
reduced spaces dimension N up to N;

o a p-dependent error computed for the value N.

The two error analysis specify different features of the system that we are going to
highlight in the following. Indeed, the average error gives us information about how
the performance changes as the behaviour of the solution changes. The straight profile
appears to be always the best approximated, due to its Stokes-like (symmetric) nature
for all the value u € P. This is the case of Neumann and Channel control, which
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average error is depicted in Figures 9.20a and 9.22a. Their asymmetric counterparts,
Figures 9.20b and 9.22b, show how representing the two different features of the solu-
tion, a Stokes-like one for y > u* and a wall-hugging for the lower values of y, using
the same value of N is more difficult than the symmetric one. Nonetheless, the pro-
vided accuracy for basis size N is satisfactory for many practical applications in both
target cases.

This argument applies to the control and adjoint variables, yet the state ones are the
best described by ROM for all the test cases. Because of the optimality equation, the
adjoint variables feel the direct influence of the control, which is the most challenging
one to be approximated by the reduced model due to its high variability in y. Indeed,
the control variable presents a sort of on-off behaviour which drastically affects the
efficiency of reduced representation. For example, if we deal with Stokes target vq,
the control is off for high values of viscosity, but, when y ~ p*, it starts to grow in
magnitude and to change drastically its features. This is represented in Figures 9.20d
and 9.23d, where the higher values for the control error and, thus, for the adjoint
variable, is for higher values of .

Since the control magnitude is essentially zero, for Channel and Dirichlet test cases
with low Reynold number (high viscosity), we chose to plot the absolute errors instead
of the relative ones, in order to prevent division by zero. This is not the case of
Distributed control, see for example Figure 9.21b, which presents good errors decay
for all the variables, since its strong action causes the control magnitude to be always
meaningful.

The most challenging case to be approximated is the Dirichlet for « = 0.001. It
is the most complex dynamic, where a new bifurcation appears. Indeed, it can reach
an error of almost 1072 for the controlled state. Even though this result is worse than
the ones obtained for the other test cases, where average error are ranging between
107° and 1078, the accuracy provided by the ROM is still acceptable for many practical
purposes.

We remark that this performance is strictly correlated to the more complex features
of the Dirichlet problem. This is evident also from the yu-dependent errors in Figure
9.23c and 9.23d. In both the pictures, we see a great increment of the error for high
Re. Although the phenomenon appears also for the other test cases, see Figures 9.21d,
9.22c and 9.22d, it is not as strong as the Dirichlet case.

Furthermore, the y-dependent error gives an a posteriori information about the bi-
furcation point. Indeed, we remark that in order to have good accuracy property, ROM
approach requires regularity on the parametric dependence of the solution instead of
the spatial one. This means that reduced errors will generally exhibits a peak at p*.

In fact, an increasing value of the error can be seen around p* ~ 0.96 for Neumann,
Distributed and Channel controls. This feature can be very useful when there is no
previous knowledge about bifurcating behaviours. In this sense, ROM is not only an
useful approach to fast solve very complicated time consuming systems, but also to
detect parameters which can be related to the bifurcating nature of the problem at
hand, since their instances will be the worst approximated.
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We conclude this analysis by noticing that the same considerations hold for the
Dirichlet control, but this time at the left end of the parametric domain P where such
evidence is clearly influenced by the new configuration observed in Figure 9.15b.

relative log-error

Relative Error

Neumann control: asymmetric profile

___.,‘-—l-..‘_.
N,

—e— State velocity
State pressure

—m- Control

—&- Adjoint velocity

—#— Adjoint pressure

le-5

(b)

Symmetric case: FE vs ROM

® Adjoint velocity I
Adjoint pressure
= Control

(d)

Figure 9.20: Error Analysis of Neumann control for N = 20 and « = 0.01. Average
error over y for symmetric and asymmetric profile in (a) and (b), respectively. The u-
dependent error for symmetric profile for state variable in (c) and adjoint and control
variables in (d).
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Figure 9.21: Error Analysis of Distributed control for N = 20 and a = 0.01. Average
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Figure 9.22: Error Analysis of Channel control for N = 20. Average error over j for
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Figure 9.23: Error Analysis of Dirichlet control for N = 12. Average error over u for
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Chapter 10

An artificial neural network investigation of
bifurcations

In this last chapter, we want to address the issue of the efficiency, that we have en-
countered many times throughout this thesis, by means of a non-intrusive technique.
Dealing with the reduction of nonlinear parametrized PDEs led us to the implemen-
tation of the (intrusive) hyper-reduction strategies, in the sense that a further level of
approximation have to be introduced, with derived quantities entering in the online
phase, to recover the efficiency.

In order to obtain the full decoupling between offline and online phase, we applied
here a regression-based approach in the context of Machine Learning (ML). In particular,
among all the different regression methods in the supervised learning context, we
chose the POD-NN approach presented in [76], where the Artificial Neural Networks
(ANNSs) are coupled with the POD technique.

Here, we present the results concerning its application to bifurcating phenomena
in CFD, showing that the network is able to learn the location of the critical points for
the model, and the corresponding branching behaviour. Moreover, we used this as a
starting point to develop a buckling detector tool which can represent an inexpensive
way to obtain preliminary information about the system.

This part is entirely based on the work in preparation with J. S. Hesthaven [117].

10.1 The POD-NN approach

Nowadays, many authors are deeply investigating the benefits that a machine learn-
ing approach could bring to different topics in numerical analysis [134, 67, 116, 92, 94].
From one side, the higher computational resources and the increasing data available
makes the application of these methodologies easier and faster, but it is clear that not
relying on a solid mathematical analysis they could led to inaccurate or not reliable
results. An example of this is given by the duality between e.g. projection-based and
data-driven methods. While the former are built upon the mathematical formulation
of the problems (the weak formulation in our nonlinear parametrized PDE context),
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the latter exploit the relation between input data and teaching outputs (in the super-
vised learning paradigm) to learn the dynamics.

The scientific community is making a great effort focusing the attention on a better
mathematical characterization of the approximation properties of these techniques [48,
143, 107]. Despite this, practicable results are still limited.

Moreover, as we have seen in the previous sections, the reduction of nonlinear
parametrized PDEs involving bifurcating phenomena usually still suffer from the
course of dimensionality, since hyper-reduction techniques as EIM/DEIM are in these
cases too much costly and of difficult application.

For these reasons, we chose the POD-NN method presented in [76] for a non-
intrusive investigation of the models, in particular in connection to bifurcating phe-
nomena.

This approach is the combination between the POD technique based on the Galerkin
FE as full order model and the feedforward neural networks, also called (multilayer)
perceptrons. It enables a complete offline-online decoupling recovering the efficiency
by means of a non-intrusive methodology, while relying on reliable high fidelity ap-
proximation.

In the following, we want to describe briefly how the neural network can be used
for the reduced approximation of a generic nonlinear parameter dependent PDE. For
a much detailed presentation we recommend [76, 137, 58]. Thus, let us consider the
nonlinear function f : RMi — RMo, where M; and Mg are the input and output
dimensions. We aim at approximating such function starting from a training set given
by the pairs (u;, f(#;))1<i<N,,,, respectively the input pattern in RM’ and teaching
inputs in RMo.

Therefore, we consider a feedforward neural networks with an input and output
layer, respectively of M; and Mo neurons, and Lg — 2 inner layers each one with
Hg computing neurons, this way we will obtain a network with Lk layers and LxHxk
neurons.

Coming back to the notation in Section 3.2.1, we remark that we have denoted
with {Ef}V, a basis for Xy and with {X N | the reduced basis for Xy. Finally, we
recall that the || - ||x, - closest element of Xy to the high fidelity solution X can be
expressed as

N , N .
X\(p) = Z;(VVTXN(ﬂ))jE] = E(VTXN(V))Z-ZZ.
j= =

In this context, the aim of the neural network is to approximate the function 7 :
P Cc R — RV, which maps each input parameter u € P to the coefficient VI X (u)
for the expansion of XY/ () in the reduced basis {Z} ;.

As we said, the learning step is performed through a supervised learning approach,
based on the training set given by the pairs {(#®, VT Xy (1)) }1<icn,,.. - Actually, in
order to be consistent, instead of computing the training output as V' X (u)) we
project the snapshots through the normal equations, solving the linear system given by
VIMVXy(u) = VIMX (i), where M is the inner product matrix of the discretization.



10.1. The POD-NN approach

The main advantage of this training process is that it does not affect the offline phase
for the reduction strategies. Indeed, one only have to rely on the computed snapshots
to perform the POD compression step.

Moreover, once computed the dataset given by the parameters and the correspond-
ing target outputs, for cross-validation purposes we split it as follows: a training set
By = {y(l),...,y(N“‘)} with Ny = 4Ny, /6, a validation set &,, = {y(l),...,y(Nw)}
with Ny; = Nipain /6 and a testing set i, = {uV),..., uNe)} with Ny = Niyain /6.

Here, we remark the fact that, while testing the ability of the network to learn with
different size of Ny, the dimension of the testing set &y, increases proportionally.
Thus we cannot expect a monotone decrease of the error improving the training set,
also in a non-overfitting regime.

Despite the huge variety of neural network structures that can be implemented,
we chose here a very standard setting, i.e. a learning rate 1, the weighted sum as a
propagation function, the hyperbolic tangent tanh(x) or the rectified linear unit ReLU
max(0, x) as activation functions and finally the identity as output function.

As concerns the training procedure, we took into account both mini-batches and
learning through epochs paradigms. Within this setting we adjust the weights of the
network by means of the ADAM optimizer [90], guided by the mean squared error
(MSE) function as an indicator of the performance. The ADAM method is a first order
technique that consider only the gradient of the cost function, while for example the
optimizer used in [76] is the Levenberg-Marquardt algorithm, which is of the second
order and thus requires the computation of the hessian. This makes out approach
faster but less accurate.

In particular, starting from the consideration that a network has to be trained with a
sufficiently large enough number of sample to obtain good accuracy properties, which
is in contrast with the ROM philosophy, we implemented some basic tools to speed up
the learning process and to avoid the overfitting issue [64]. Thus, we will both consider
an increase of the number of training points and specific procedure for epochs. We
initialize the weights with a uniform distribution (without using a multiple restarts
approach), while for the learning rate decay we tested both following hyperbolic rela-

tions
o

T 1+6- epoch ans

] (10.1)

o

1 1+ /epoch’
weighted respectively by the hyper-parameter 6 € [0, 1] and the square root function.

In this way we could reach a better accuracy, since the learning parameter gives
a weighted importance to the informations at any instance of the training loop on
epochs. As we said, the latter is controlled by an early-stop procedure, which checks
whether or not the training validation accuracy has decreased within the last N;”
iterations, or the loop has reached a maximum of instances NyF. A smarter way
to break the learning phase could be implemented, for example allowing only to the
most significant improvements to keep the loop running, but we remark that here we
want to focus on bifurcating applications rather then ad-hoc settings for the network.
Moreover, we remark that a critical task dealing with neural networks is the setting
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of the so called hyper-parameters, some of them we have already introduced (number
of layers, number of neurons, learning rate, activation function). Nonetheless, a more
robust investigation of the hyper-parameter space can be done through automated
machine learning (AutoML) and Bayesian optimization [79].

At the end of the procedure, we consider the network identified by the weights
configuration associated to the best validation accuracy and we use it for the non-
intrusive step.

Moreover, we introduced a normalization on the dataset in order rescale it in the
range [0, 1]. This was a necessary step to let the network learn from the different order
of magnitudes of the training dataset and to improve the results.

Furthermore, we want to remark that although many different sampling proce-
dures can be adopted, we chose an equispaced or log-equispaced distribution, since
they better guarantee that after the splitting of the dataset, each portion of the param-
eter domain is well represented for training, testing and validating phases also when
Niin is small. Another observation is that we used an initialization seed in order to be
sure of the reproducibility of these results, indeed a different initial random splitting,
weights” setting and order of the batches would bring to different results. As we said
before, we fixed a priori this the random seed without considering a multiple restarts
approach.

Of course, all the ad-hoc settings for the network that one can implement, increase
its dimensionality and this way the computational time for the learning procedure
could become too costly.

As concerns the errors, for the analysis of the POD-NN methodology we will con-
sider for a given parameter u € P the quantities

- Xl X () — X ()l
ers () = Rl 4 enlp) X

respectively the POD-Galerkin error and the neural network one, being Xnn(p) =
Vrt(p).

We evaluated these errors on the test parameter set s, C P of dimension Ny, and
as statistics of the performance we consider the average of these quantities, which we
denoted by

= & = &
Zyeute RB(,u) and ENN = Zyeafe NN(.u)

€RB =
Nte Nte

and their maximum values

erp. = maxerp(p) and &R} = maxenn(p),
HEELe HEELe

over the test data set .
Finally, we remark that we we will use the same notation also when the unknown
X will contain multiple variables, thus specifying the corresponding field.
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10.2 Numerical approximation

Here, we want to analyse the approximation properties of the POD-NN strategy in
connection to bifurcating models held by Navier-Stokes equations. We will start with
a benchmark multi-parameter problem based on a simple thermal block application
based on the Poisson equation. Then, we will consider how the network is able to
learn the bifurcating phenomena in a varying geometry setting in the following cases:
the channel flow model investigated in Chapter 8 and a cavity flow inside a triangular
geometry.

10.2.1 Thermal block toy problem

As a first benchmark, we now consider a steady heat conduction problem [74] in a
two-dimensional domain. In particular, we define QO = O, UQ, = [-1,1] x [-1,1]
divided in two sub-domains ()7 and (), such that the former is a disk centred at the
origin with radius ro = 0.5 and the latter is defined as (), :=Q)/ Q. The conductivity
x of this phenomena is given by

in Q)
k() = {‘llll in Qi

where we imposed through the parameter y; the diffusion on the sub-domain ();.
Moreover, we took into account a second parameter which acts as a constant heat flux
of magnitude pp over I'ppee = [—1,1] x {—1}.

Thus, we have a parameter u = (1, j12) in the space P = [0.1,10] x [0.1,1] and we
model the heat transfer process due to the heat flux over the bottom boundary I',ys.
The remaining boundary conditions prescribed for this problem are homogeneous

Neumann for I'y4. = {—1,1} x [~1,1] and homogeneous Dirichlet on I',p = [—1,1] X
Tiop
Qs
o /
Tside ° Fside
by = (1AL

Thase

Figure 10.1: Domain Q) for the thermal block test case, with the two sub-domains ();
and ).
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{1}. From point of view of the physics, we are imposing insulated side edges while
fixing a reference temperature on the top one.

Let u(u) be the temperature unknown in the domain ), the strong formulation of
the parametrized problem is given by:

(k(p1)Vu(pu)) =0 inQ
u(u) =0 in T'op
K(u)Vu(p)-n=0  inTgge
K(yl)vu(”) =Yz in Tpase

(10.2)

where 7 is the outer normal to the boundaries I'yj4e and I'page. Finally, if we define the
function space as X = {v € H'(Q) : |r,,, = 0} the weak formulation of the problem
reads: given u € P, find u(p) € X such that

a(u(p),v;p)) = f(o;p) YoeX

where we introduced the following linear and bilinear forms as

a(u,v;y):/ﬂx(yl)Vu-Vvdx,

f(v;y):m/ vds .

Thase

Even if this is just a simple linear problem, which serves us to test the POD-NN
strategy, it will already provide good results for the multi-parameter context.

Let us now review the network structure. The input dimension corresponds to the
dimension of the parameter space P = 2 while the following choices for the hyper-
parameters were made. In order to study the learning properties of the network w.r.t.
the size of the dataset, we considered Ny, = n% equispaced points in the parameter
set P, where n, = 6(i + 1) withi =1,2,3.

For the mini-batch technique we selected n;, pairs depending on the size Niin
of the dataset. An example of a split dataset for i = 2 is given in Figure 10.2. We
start from an initial learning parameter 79 = 5.e-2 and we update it by means of the
hyperbolic decay (10.1) with 8 = 0.01, considering N;/ = 5.e+2 and Nphx = l.e+4.

As concerns the reduction strategy, after processing the N4, snapshots we se-
lected the first N = 4 basis functions from the POD technique (thus the output layer
will have 4 neurons). The obtained dataset is then divided as explained before between
training, validation and testing sets. This will serve us to learn/validate and test the
network during the offline and online phase, respectively.

Figure 10.3 represents the decay of the loss function for the training set. Together
with the validation one, this exhibits a clear sign that the network is learning from the
training data & already for the first 100 epochs and it is able to generalize for Z,,
which means that the network can actually predict with good accuracy unseen values
during the learning procedure. We can observe that the validation curve is under
the training one, this implies a possible underfitting of the model. In such situation
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Figure 10.2: Dataset for ANN: (1) red squares are the training points in & (2) blue
circles are the validation points in Z,, (3) black crosses are the testing points in Z,.
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Figure 10.3: Training and validation loss function with respect to epoch.

one can either work with a more complex network adding layers or increasing its
dimension adjusting H.

For this reason, we tested the network with different number of data inputs.

Now we report some experiments on the network properties, in order to find the
best configuration for its weights. As we already said, the following hyper-parameters
tuning is usually time consuming and automated procedure should be implemented
in realistic cases.

We have changed the number N, of points sampled from P, so that after the
splitting we have a training set & of dimension 96, 216 and 384, respectively for
i = 1,2,3. We have also considered an increasing number of hidden layers, from
one to three, together with a different dimension of the layers. Indeed, we let vary
Hg from 5 to 50. Finally, we have also changed the activation function, comparing
the hyperbolic tangent with the ReLU nonlinearity for different configurations of the
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Figure 10.4: Mean NN errors gyy for different number of layers: Lx = 1 (top-left),
Lk = 2 (top-right) and Lx = 3 (bottom).

network.

In Figure 10.4, for each plot which refers to the number of layers Lx, we show a
comparison of the mean NN errors €xy with respect to the number of neurons Hg, for
different sizes of the dataset (and corresponding mini-batches) n;, = 12,18,24, fixing
the hyperbolic tangent as activation function.

For the sake of clarity, we show in Figure 10.5 the same comparison as before,
but fixing in each plot the number of training points through n;, and letting vary the
number of layers Lk. This way, we can clearly see the overfitting issue which appears
when the dimension of the network is too big with respect to the features to be learned.

Moreover, in Figure 10.6 we show a comparison between the activation functions
of the mean NN errors €y with respect to the number Hg of neurons in each hidden
layer Lx = 1,2 for n, = 12,18. Since from these plots we can observe a general better
behaviour of the tanh activation function, from now on we will only consider networks
with this kind of nonlinearity. We could expect such result, in fact the potentiality of
the ReLU activation function usually assume a greater importance when considering
deep neural networks, i.e. one deals with very complex and huge structures.

In Figures 10.7, 10.8 we show the errors egp(u) and exn(p) computed for the
parameters u belonging to Z;, with respect to the best case scenario for the POD-NN.
In such case, we obtained £33} = 0.00473 as the maximum error (near the origin where
the solution changes more its properties) and ey = 0.000706 as the mean error over
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Figure 10.9: High fidelity, reduced basis and neural network solutions for the thermal
block problem with u = (8.6,0.6).

the testing dataset Z,.
Moreover, we show in Figure 10.9 a representative solution obtained with the FE

method, RB method and POD-NN technique. The corresponding errors with respect to
the FE solution are shown in Figure 10.10 for both the RB and the POD-NN strategies.

Finally, the speed-up of the evaluation of the network on E; is almost 800 with
respect to the FE approximation. Moreover, since the problem is linear and involves
only two parameters, the corresponding RB speed-up remains quite low, almost 3.
Thus, within the POD-NN setting we obtained a good accuracy while reaching a speed-
up that is two order greater than the RB one.
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Figure 10.10: Relative errors HF-RB and HF-NN on the solution for the thermal block
problem with u = (5.9,0.2).

10.2.2 Navier-Stokes system in a channel

Let us now move to the more complex nonlinear Navier-Stokes equations. Here we
consider again the viscous, steady and incompressible flow in the long planar straight
channel with a narrow inlet, analysed in Chapter 8.

We recall that in this first preliminary study, we consider the Navier-Stokes equa-
tions

{u-Vu—yALH—Vp:O in (), (10.3)

V-u=0 in O,

where u is the velocity and p the pressure normalized over a constant density, in the
non-bifurcating regime. This means that for the moment we let vary the viscosity u in
the range P = [2,30], where no bifurcations occur. In fact, as studied before, the first
critical value appears at p* ~ 0.96. The same boundary conditions as in Section 8.1
have been supplemented to the system (10.3).

We remark that instead of considering a network that aims at approximating all
the coefficients monolithically, i.e. trying to recover simultaneously the reduced coeffi-
cients for velocity and pressure with the same network, we constructed two different
artificial neural networks with their own weights each field. This is crucial to obtain
good approximation results, indeed even if the networks share the same inputs, the
corresponding outputs can in principle have very different behaviours.

In practice, for this test case we have a one dimensional parameter space for the
viscosity, namely u € P corresponding to P = 1 and we chose a maximum number of
basis functions for both fields u and p corresponding to N, = N, = 10. We remark
that actually the dimension of the reduced basis space for the velocity is increased by
one, due to the lifting coming from the inhomogeneous Dirichlet BC.

As concerns the learning procedure through epochs, we started from 1y = 3.e-1 for
both networks and we updated it by means of the hyperbolic decay weighted by the
square root in (10.1), considering Nl.etp = 5.e+2 and Niby = l.e+4.
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Figure 10.11: Training and validation loss function for the velocity field with respect
to each epoch.
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Figure 10.12: Mean NN errors eéyy for velocity and pressure fields, left and right
respectively.

Once again, the offline phase is initialized with Ny, = n% (and corresponding
size ny, for the mini-batches) equispaced points in the parameter set P, using the same
ratio as before to split the dataset in train, test and validation sets.

We present the decay of the velocity loss function for training and validating sets
in Figure 10.11. We can see that the nonlinearity clearly complicates the setting, with
an initial high value for both the loss functions. Despite this, we can see that already at
the first 50 epochs the network learned the map from parameter to reduced coefficients
and it is able to generalize for different values of the input.

Once again, we tested the network accuracy properties with respect to the dimen-
sion of the dataset (96, 216 and 384 training points in =) while increasing the number
of hidden layers from Lx = 1 to Lx = 2. Thus, in Figure 10.12 we show a comparison
of the mean NN errors gyy for the velocity and pressure fields with respect to the
number Hyk of neurons in each hidden layer.

In Figures 10.13, 10.14 we show the error enn(¢#) computed for the parameters u
belonging to &, for the velocity and the pressure. Also for this nonlinear problem, in
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the best case scenario, we were able to gain good approximation properties. In fact,
we obtained for the velocity field e3 = 0.000369 as the maximum error (near the
left extrema of the parameter set 7P, where we approach to the bifurcation point), and
eéyn = 0.00012 as the mean error over the testing dataset. Similar considerations hold
for the pressure field, where an increased error is observed mostly while approaching
to lower values of the viscosity. We remark that such region is characterized by flow
with increasing flux and of course it has to be properly represented inside the training
set 5y after the splitting.

We show in Figures 10.15a, 10.15b and 10.15 a representative solution obtained
with the FE method, RB method and POD-NN technique. Moreover, we show the
corresponding errors with respect to the FE solution in Figures 10.16 and 10.17, respec-
tively for velocity and pressure fields, using both the RB and the POD-NN strategies.

Finally, the speed-up for the evaluation of the network on =, with respect to the
FE method is almost 1.2e+6, while the RB one is equal to 1.25. This is consistent with
the results obtained in the previous section, but we notice also that the gap between
the two speed-ups increased. Indeed, the nonlinearity of the problem together with
the lack of an efficient hyper-reduction/tensor assembly for the weak form, causes the
standard RB approach to be characterized by a N-dependent online phase.

In particular, the (actually unfair regarding what we just said) comparison between
intrusive and non-intrusive strategy, show a difference of five orders of magnitude.

10.2.2.1 The bifurcating regime

In the previous section, we have discussed the POD-NN approximation of the nonlin-
ear Navier-Stokes test case when critical points are not taken into consideration. Now,
we can finally discuss the approximation of the bifurcating regime.

We remark that in this case, following the analysis done in Section 7 we are only
interested in the approximation of the asymmetric (e.g. downwards wall-hugging
behaviour) branch. Indeed, the reconstruction of the full bifurcation diagram as in
Chapter 8 would require the network to assign different outputs to the same input pa-
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Figure 10.15: Comparison between velocity field for the Navier-Stokes system with
W =2.66
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Figure 10.16: Relative errors HF-RB (top) and HF-NN (bottom) on the velocity field
for the Navier-Stokes problem with y = 4.09.
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Figure 10.17: Relative errors HF-RB (top) and HF-NN (bottom) on the pressure field
for the Navier-Stokes problem with y = 4.09.

rameter. To solve this issue, one can exploit a branch-wise strategy, building a specific
network for each branch or consider more involved machine learning strategies. There-
fore, it is clear that a key aspect for the reconstruction of bifurcating behaviour, within
an artificial neural network context, is a complete identification of the singularities of
the model. On this point we will come back in Section 10.3.

Here we consider the range for the viscosity as P = [0.5,2] in such a way that it
includes the critical value y* ~ 0.96.

We remark that in order to be consistent with the analysis performed before, we
still want to apply the simple continuation method to recover the solution at the high
tidelity and reduced basis levels. Of course, this is not required by the network that
simply evaluates the input parameters returning the value of the reduced coefficients.
Therefore, in order to ensure the convergence of the FE and RB solutions, we applied a
simple continuation method with K = 151 equispaced points in P. Finally, as concerns
the reduction strategies, we chose N, = N), = 10 basis functions for the reduced basis
approximation.

Moreover, we highlight that we are fixing a priori the testing set Z, through the
continuation method, thus the usual splitting of the Nj,;;,, snapshots is adapted incor-
porating the its previously assigned points to the training set &,

Since we are now dealing with a more complex phenomenon, we expect the train-
ing process to be more difficult.

As concerns the accuracy, we tested again the properties of the network changing
its hyper-parameters. Thus, in Figure 10.18, we show a comparison of the mean NN
errors ey for the velocity and pressure fields for the bifurcation test case, with respect
to the number Hk of neurons in each hidden layer, Lx = 1,2, for n;, = 12,18.

We show in Figure 10.19 the error exn(p) for both velocity and pressure fields
in the best case scenario which corresponds to the case with Lx = 2 layers, n;, = 18
and Hkx = 7. In this case the maximum and mean errors over the testing dataset are
respectively ey = 0.02104 and eyn = 0.00506. Similar result holds for the pressure
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Figure 10.18: Mean NN errors €yy for velocity and pressure fields in the bifurcating
regime, left and right respectively.
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Figure 10.19: Error exn(u) for velocity and pressure fields in the bifurcating regime
computed on Zy, left and right respectively.

field, where we have 3} = 0.03805 and &yy = 0.00751.

As a comparison, we can show in Figure 10.20 the reduced basis error, on the same
testing set 5, when employing the same number of basis functions. Employing the
RB method (without hyper-reduction) we obtained the maximum and mean errors
over Hy as e = 0.02579 and grp = 0.00115. As concerns the pressure field, we have
exp’ = 0.01726 and egp = 0.00086.

As we can see from the errors, in the proposed setting, the POD-NN approach was
able to properly recover the bifurcating behaviour of the model. Moreover, it reached
an impressive order of accuracy also in comparison with the RB strategy. In fact, as we
understood from the whole analysis of bifurcating problems, when the solution does
not depend smoothly from the parameter, we can not expect the classic reduced basis
error behaviour.

In Figure 10.21 we show a representative solution of the bifurcated state for u = 0.5,
in which the velocity flow attaches to the bottom of the channel. In Figure 10.22
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Figure 10.20: Error egp(p) for velocity and pressure fields in the bifurcating regime
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Figure 10.21: High fidelity bifurcated solution for the Navier-Stokes system for u = 0.5,
velocity and pressure fields.

we show the bifurcation diagram obtained through the POD-NN approach for the
Navier-Stokes test case, where for each value of the viscosity p € E; we consider the
horizontal velocity in the point s(u) = 1,(20,2.5) as output.

Of course, the results for the reduced approximation of the bifurcation test case are
always worse with respect to the ones where the critical point is not in the parameter
range. In general it could be a limitation, but we remark that, on the contrary, since
the network is only built from the snapshots, it does not see the singularities of the
model and it is only slightly affected by it. This results in the similar order of accuracy
between mean and max errors for the POD-ANN, while as we have seen the same
quantities for the RB are of different orders of magnitude.

Finally, we conclude noticing that the computational speed-up provides qualita-
tively similar results as the one in the non-bifurcating regime, since the convergence
cost is dominated by the intrusive strategy.
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Figure 10.22: Bifurcation diagram for the Navier-Stokes system reconstructed through
POD-NN.

10.2.2.2 Multi-parameter case with varying geometry

As we said many times, the recovery of a single bifurcating branch is interesting, but
the more complex multi-parameter case is worth to be studied. Indeed, in such case,
one can investigate how the bifurcating properties of the system change. Thus, we
generalize the model we discussed above with a geometrical parametrization setting.
In fact, we consider the usual channel geometry and we introduce a parametrization
on the semi-height of the narrow inlet w € P, = [0.5,2.0].

The physics context is clear, by reducing or increasing the height of the inlet chan-
nel, we are actually changing the intrinsic value of the Reynolds number, balancing dif-
ferently the inertial and viscous forces. This means that we expect the critical point of
the model to vary accordingly to the different geometry considered. More specifically,
we aim at observing that the smaller is the parameter w, and thus the corresponding
inlet, the sooner the bifurcation can occur.

As an example we show in Figure 10.23 four solutions at # = 0.5 for different
values of the parameter w.

Therefore, as we can see already from these velocity profiles, varying the geometry
we obtained different bifurcation points, one for each fixed value of w, since we restrict
ourselves to the first critical point. So, if we correctly explore the parameter space of-
fline, then we will be able to efficiently reconstruct and investigate the 3-D bifurcation
diagram during the online phase, with both RB and POD-NN strategies.

As we observed empirically from the velocity profiles in Figure 10.23, the bifurca-
tion phenomena happen for values of w in [0.5,1.5], thus, we restricted the study to
this range for the geometrical parameter.

We present the bifurcation diagrams in Figures 10.24 and 10.25, respectively a 3-D
version with respect to the viscosity y and the 2-D one with respect to the Reynolds
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Figure 10.23: High fidelity velocity profiles for the Navier-Stokes system with w =
0.5,1.0,1.5,2.0 and u = 0.5, from top to bottom.

number linked to the geometry chosen. For the output, in this case we chose a mea-
sure of the symmetry of the flow w.r.t. the mid-line of the channel. From the afore-
mentioned figures, it is evident the effect of the geometrical parametrization on the
location of the critical point.

We remark that we are still considering an output which depends on the N degrees
of freedom of the high fidelity solution. Again, this is only for visual purposes, in fact
different affine decomposable functionals can be considered. But, in this context, we
will develop a strategy in order to fully exploit the artificial neural network capabil-
ity, efficiently recovering the bifurcation diagram during the online phase, without
involving any N -dependent quantity.

For the offline sampling, we chose 6 equispaced points on P, = [0.5,1.5] and then
we proceeded as always, with Ny, = 216 equispaced values of y for each branch.

Since this generalized problem is much more difficult then the previous one, we
selected as a basis for the reduced manifold N, = 50 velocity basis functions and N, =
24 pressure basis functions corresponding to a POD tolerance equal to epop = 1078.

In Figure 10.26 we show the error eny(p) for velocity and pressure fields. For
both networks, velocity and pressure, we chose the hyper-parameters in the following
way: Lg = 2 layers, n, = 18 and Hx = 15. This way, we were able to reconstruct
11 equispaced branches for w € [0.5,1.5] where the maximum and the mean errors
for the velocity field, over the testing dataset represented again by the continuation
sample, are respectively ey = 0.06250 and gyy = 0.01181. Similar result holds for
the pressure field, where we have e}j}} = 0.11417 and exy = 0.01150.

Instead, as concerns the RB approximation results, we have egg* = 0.75538 and
grp = 0.01297 for the velocity field and e}5* = 0.69706 and grp = 0.00984 for the pres-
sure field. Thus, we can see that in some cases the RB technique fails the convergence
to the solution, giving a bad approximation results with an unacceptable maximum

error e3*. On the contrary, since the POD-NN strategy is not based on the explicit for-
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Figure 10.24: 3D bifurcation diagram for the Navier-Stokes system with geometrical
parametrization of the narrow inlet, with respect to the viscosity.
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Figure 10.25: 2-D bifurcation diagram for the Navier-Stokes system with geometrical
parametrization of the narrow inlet with respect to the Reynolds number.
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Figure 10.26: Error exn () for velocity and pressure fields, left and right respectively

mulation of the model, it does not involve any convergence issue but only a network
evaluation.

As regard the computational time, since we are now considering a greater number
of basis functions (in order to compress the bifurcating phenomena linked with differ-
ent critical points in the parametric space) all the efficiency of the reduced model is
lost (here we have not implemented any hyper-reduction technique or efficient tensor
assembly). In fact, each RB or HF solution requires almost 10(s). This means that if we
want a complete bifurcation diagram with e.g. n = 151 values for y and m = 51 points
for w, we would need 7701 solution, thus almost 1 day of computational time using
either RB or HF solver. Contrarily, a single evaluation of the network, which provides
the coefficients for the reduced basis approximation, takes only tyy = 1.2-107°(s),
enabling for a speed-up of almost 8 - 10°.

10.2.3 A flow inside a triangular cavity

In this section, we present the preliminary results for the triangular cavity benchmark.
This test case is again modelled by the Navier-Stokes equations. In order to have a
coherent structure, we chose here to remain within the velocity-pressure variables pair,
instead of modelling the flow by means of the streamfunction-vorticity formulation
that usually appears in this context.

We consider the triangular domain () in Figure 10.27 identified by the vertexes
A = lay,ay], B = [by,b)] and C = [cy,cy]. The Navier-Stokes system in (10.3) is
supplemented here with the following boundary conditions: u = 0 on I'y,; and u =
[1,0]T on Ty,q. Moreover, since there are no Neumann conditions, we have to impose
e.g. on the bottom vertex C a zero value for the pressure field. In particular, the

geometry represented in Figure 10.27 is the equilateral reference configuration, where
A=[-3,1],B=[V3,1]and C = [0, -2].
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Figure 10.27: Domain () which represents a triangular cavity.

10.2.3.1 Equilateral geometry toy problem

As a first benchmark, we investigated the one dimensional parameter space, in which
we study the behaviour of both the RB methodology and the POD-NN method for the
approximation of the solution varying the viscosity parameter y.. Here we present only
the best case scenario for the POD-NN, corresponding to the following setting of the
hyper-parameters. The viscosity range is chosen as P = [0.001, 1], thus corresponding
to a maximum value of the Reynolds number equal to 1000.

Having a one dimensional parameter space, corresponds to an input dimension
for the network P = 1, while the output layer has dimension equal to the number of
reduced basis considered, thus N, = N,, = 14 basis functions which were selected by
the POD with tolerance epop = 10~°. We remark that for the velocity field we have to
add again the lifting basis function, to keep track of the non-homogeneous Dirichlet
condition on the moving wall I'j;g.

The network is constructed using Hx = 15 hidden neurons per layer, the initial
learning parameter is fixed to 179 = 5.e-2 with square root learning decay in (10.1).
We train and validate the network with a batch size n, = 24, which corresponds to
i = 3 and N = 432 training points. Such points are selected through a logarithmi-
cally equispaced distribution on P and then divided using the 75% of the snapshots
as the training points, while the remaining ones for the cross-validation. This choice
is motivated by the fact that slight changes for y have a greater importance when the
viscosity is small. For the online simulation Z, is chosen as a logarithmically equis-
paced sample of 250 points in [0.001,1]. Here we remark that a much lower number
of training points, e.g. Ny, = 36, is indeed sufficient to reach a good accuracy of the
neural network approximation.

In the best case scenario, reported in Figure 10.28, the maximum error and the
mean error over the testing dataset for the velocity field are respectively e3; = 0.00265
and eéyy = 0.00037. Similar result holds for the pressure field in Figure 10.29, where
we have ej}f = 0.06637 and gyyn = 0.01091. As comparison we show the reduced basis
error behaviour for the velocity and pressure field in Figure 10.30, 10.31.

As we can seg, in this case the neural network approximation of the velocity field
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outperforms the reduced basis approximation. The same is not true for the recovery
of the pressure field that seems more sensitive for small values of the viscosity.

Moreover, we show in Figures 10.32, 10.33 some representative high fidelity ve-
locity and pressure fields solutions obtained for different values of the viscosity y =
{1,0.1,0.01,0.001}.

In Figure 10.34 we show the relative errors between the high fidelity approximation
and the neural network one for y = 0.001 for the velocity and pressure fields.

We remark that the streamfunction ¢ and the vorticity w fields can be easily recov-
ered from the velocity field by solving linear Poisson equations. The speed-up of the
evaluation of the network on Z;, with respect to the high fidelity analysis is of order
6.5-10%

Moreover, we tried to understand the behaviour of the system for a much higher
value of the Reynolds number, choosing a value for the viscosity up to the order 1074
Unfortunately, if the mesh is not sufficiently refined at a certain point the high fidelity
solver starts an oscillating behaviour that prevents the convergence. This happens for
a Reynolds number Re ~ 2702. The last computed high fidelity solution is depicted
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Figure 10.32: High fidelity velocity field for the Navier-Stokes system in the triangular
cavity for u = {1,0.1,0.01,0.001}, from left to right, top to bottom.

in Figure 10.35. What we have understood from the previous chapters is that this
non-convergence behaviour could have been caused by a bifurcating phenomenon.
Indeed, in a recent paper the authors found another configuration for Re ~ 5000 [5].
For this reason in the next section will show some preliminary results of the critical
points investigation for the cavity flow when a geometrical parametrization is taken
into consideration.

Finally, when attempting to recover an higher value of Reynolds number within
the reduced context, also the nonlinear iteration at the reduced level fails to converge.
Indeed when &y, is chosen as a logarithmically equispaced sample of K = 250 points in
[0.00037, 1], the maximum and the mean neural network error for the velocity field are
respectively given by e3f = 0.01449 and gyn = 0.00271. The corresponding quantities
for the reduced basis approximation, which confirm what we have already seen for the
channel flow, are egf* = 0.98907 and grp = 0.05078.

10.2.3.2 Bifurcating regime with parametrized geometry

In this section, we consider the same benchmark analysed previously, but in a multi-
parameter context. During the previous analysis we observed that increasing the Re
number, a vortex originates inside the cavity, thus our aim is to investigate if this phys-
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Figure 10.33: High fidelity pressure field for the Navier-Stokes system in the triangular
cavity for y = {1,0.1,0.01,0.001}, from left to right, top to bottom.
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Figure 10.34: Relative errors HF-NN on the velocity and pressure fields for the Navier-
Stokes system in the triangular cavity with y = 0.001.
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Figure 10.35: Velocity and pressure fields for the Navier-Stokes system in the triangu-
lar cavity for pu = 0.00037.

ical structure looses its stability also in connection to different geometries. Indeed,
we added a geometrical parametrization of the triangular cavity, where the bottom
vertex C has now coordinate [cy,c,] = [p1, p2] that we let vary in parameter domain
Py, = [-1.5,1.5] x [-3, —1]. Of course, since we are changing a lot the characteristic
of the triangular domain we expect that this will deeply influence the flow behaviour.
As a preliminary test case, we considered an offline phase with Ny, = 64 logarithmi-
cally equispaced points, for each of the 5 x 5 geometrical configurations of the cavity
obtained by an equispaced sampling in P;. As concerns the online simulation, &y, is
chosen as a logarithmically equispaced sample of K = 120 points in [0.005,1], for a
random pair in P,.

Moreover, we show in Figure 10.36 some representative high fidelity velocity field
solutions obtained for y = 0.005 and different geometry configurations. It is clear
that, even if we have considered a lower value for the largest Re number, varying the
geometry already produced a change in the behaviour of the velocity field. Indeed
from the top row in Figure 10.36 we can observe that if the angle corresponding to the
vertex B is small enough, there exists a value for the viscosity y such that the vortex
starts moving towards the top-right vertex.

For this benchmark, we have u = (p, p1, y2) thus P = 3, while we need a much
larger set of basis functions for the reduced model, which translates in N, = 100 and
N, = 44. The network is constructed using Hx = 20 hidden neurons for each layer
Lk = 3, the initial learning parameter is fixed to 779 = 5.e-2 with square root learning
decay in (10.1). We train and validate the network with a batch size n, = 8. We
divide again the dataset, depicted in Figure 10.37 using the 75% of the snapshots as
the training points.

For this test case, we did not investigate the property of the network varying its
hyper-parameters, indeed this could entail a too heavy computational cost also for the
offline step. Therefore, we show in Figure 10.38 a representative high fidelity velocity
and pressure fields solution obtained for the pair [p1, #2] = [1.19, —1.48] and viscosity
u = 0.005.

The maximum error and the mean error over the testing dataset for the velocity
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Figure 10.36: High fidelity velocity fields for the Navier-Stokes system in the triangular
cavity for pu = 0.005
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Figure 10.38: Velocity and pressure fields for the Navier-Stokes system in the triangu-
lar cavity with [p1, pp] = [1.19, —1.48] for u = 0.005.
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field are respectively ej3; = 0.03661 and eyny = 0.01267. For the pressure field we

have a not satisfactory e}3; = 0.16154 and exy = 0.04086. We report in Figure 10.39

and 10.40 the neural network errors for the velocity and pressure fields. As comparison
we show the reduced basis error behaviour for the velocity and pressure field in Figure
10.41, 10.42. Finally, the speed-up of the POD-NN technique with respect to the HF
method is again of order 1.2 - 10°.

Motivated by the investigation of the flow properties when dealing with high
Reynolds number, we considered an isosceles triangular reference configuration with
A = [-05,0], B = [05,0] and C = [u1, —0.5], varying y; € Py = [-0.5,0.5]. Re-
fining properly the mesh and the continuation method, we were able to overcome
the non-converging issue, reaching the viscosity value y = 0.0002 corresponding to Re
= 5000. From this setting, as we can see in Figure 10.43, is still more evident the vertex-
attaching behaviour that we observed previously. We remark that, as can be seen from
Figure 10.43, it seems that it exists a critical value for the angle on the vertex B, in this
case equal to 7r/4, after that such phenomena does no longer occur. This will serve
as a starting point for an eigenvalue analysis, as the one performed in the previous
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Figure 10.43: High fidelity velocity fields for the Navier-Stokes system in the triangular
cavity for y = 0.0002

chapter, to discover exactly how the bifurcation point is affected by the geometry.

10.3 A reduced manifold based bifurcation diagram

In this section, we aim at developing a non-intrusive strategy, based on theoretical con-
siderations, in order to reproduce the bifurcation diagram of a potentially unknown
bifurcating phenomenon. As we have seen in the previous section, the investigation
of the critical points, e.g. for parametrized models, can be too expansive considering
the full order models. Thus, with these motivations, we want to find an efficient way
to predict the critical points of a parametrized model. The starting point will be the
POD-NN technique, which allows us to recover information on the dynamics with a
non-intrusive approach.

This can be crucial in the design of a nonlinear solver when a parametrized prob-
lem shows non-uniqueness behaviour. In fact in order to catch the bifurcating phe-
nomena we usually have an information on the position of the critical point and we
refine the parameter grid until it is able to reproduce the symmetry breaking.
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We thus aim at efficiently reconstruct a bifurcation diagram where the output is
entirely based on the reduced coefficients that appears in the reduced basis expansion.
We remark that the approach we are describing can be equivalently be pursued with
the reduced coefficients obtained by POD-NN or RB, i.e. from the output of the neural
network or the solution of the RB projection. As we will see the main issue with
the pure RB approach is that we need a reasonable rich set of reduced vector, that in
absence of hyper-reduction technique is infeasible. For this reason, from now on, all
the simulations we are showing are obtained from the evaluation of the network.

The paradigm of the reduced order models is the approximation of the truth mani-
fold of the solution for a parametrized PDE, by means of a reduced manifold spanned
by some suitable basis functions. In this context, from the POD technique, we already
have the basis and the reduced coefficients that express the solution in this basis.

As we understood, dealing with bifurcating models is a difficult task since the solu-
tions near to a critical point change suddenly their behaviour. Thus, the truth manifold,
represented by some chosen output, exhibits a C! discontinuity, as we observed also
in this chapter in Figures 10.24 and 10.25.

The idea is to take advantage of the non-smoothness of the manifold, constructing
a detection tool that is able to track the critical points. Indeed, if we are able to
reconstruct at the reduced level the bifurcation diagram with good accuracy (as proved
by the many different applications considered), while using the same basis for the
reduced manifold, then it means that also the reduced coefficients will show a sudden
variation, since they encode the parametrized information.

Motivated by this consideration we decided to choose as detection tool, an approx-
imation of the curvature of the reduced coefficients manifold. Indeed, if we assume that
the basis we have constructed for the reduced space contains enough information, the
reduced coefficients have to reflect the bifurcation phenomenon, showing the maxi-
mum curvature w.r.t. the parameter space near the critical points.

Moreover, we remark now the connection between the curvature and the Laplace
operator. The latter being the divergence of the gradient, measures how much the
value of the field differs from its average value taken over the surrounding points.

Let us describe more in detail the approach we developed. We will apply this
methodology to the channel flow test case with geometrical parametrization we have
analysed in Section 10.2.2.2. As before, we consider the parametrization y = (y, w) €
P = [0.5,2] x [0.5,2] and we sample n = 301 points for the viscosity u and m = 151
points for the semi-height w of the narrow inlet. In the following, we will only discuss
the approach based on the velocity field. From the POD strategy we obtain N velocity
basis functions {ZX}N | such that we can write

N
k
M) = Y ull (w)Zk,
k=1

where unn(p) = {uz(\lj?\,(y)}i\]:l is the vector of the reduced coefficients, obtained
through the POD-NN technique, for each u € P.
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Figure 10.44: Reduced manifold based 3D bifurcation diagram for the Navier-Stokes
system with geometrical parametrization.

Thus, we can efficiently and non-intrusively compute uny(#) for each pair of the

grid G = {(y;, wj)}gf}')@(m) we defined above. In this way, we obtain a 3D tensor given

by Ui-{’]- foreachi=1,...,n,j=1,...,mand k=1,...,N.

The algorithm reported in Algorithm 3, illustrates the procedure to find the critical
points. For each value of the inlet’s semi-height w, we define the curvature by means
of the Matlab function del2 of the sum over all the N coefficients vector Uf-‘. Now, we
have for each point in the grid G the value of the corresponding curvature, thus we
can simply compute the maximum value of this quantity for each fixed w, to obtain a
curve in G that describe the critical points location.

Algorithm 3 Reduced manifold based bifurcation diagram

1: forj=1:mdo > Loop on each fixed geometry
2: uj g = Uﬁ-‘/ s R™<N > Extract the coefficients for the basis for all u
3: Ci= 2,1{\[:1 Au;r € R" > Compute the global curvature
4: end for

5. M = argmax; AC;; € R > Find indexes of local maxima for the curvature
6: Xe = {pitiem > Extract the vector of critical points for each w

We can see a preliminary result in Figure 10.44, where the black dots are the exact
(high fidelity) critical points for seven equispaced values of w in P,, and the blue line
is the approximation for each value w; in G.

We remark that in this setting the L? relative error for the vector of the critical
points is of the order 102. Finally, we remark that none of the reconstructed branches,
to which correspond the black dots, have been sampled during the offline strategy.
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In this thesis we have developed and analysed a reduced order methodology to inves-
tigate complex bifurcating behaviours held by nonlinear parametrized PDEs. In par-
ticular, a branch-wise algorithm for the reconstruction of the bifurcation diagram was
developed both at the high fidelity and the reduced order level. This was implemented
by combining Newton method, Galerkin FE method and a continuation method, in or-
der to linearize, solve and follow the solution branch. Such approach allowed us to
depict the multiple coexisting solutions for many different models, investigating their
stability properties together with the singularities of the equations which define them.
Buckling phenomena, bifurcations from linear limit and wall-hugging effect were stud-
ied in an efficient framework, by means of the application of empirical interpolation
strategies. Many different test cases were discussed, taking into consideration both
geometrical and physical parametrization, understanding how the critical points of
the model behave with respect to multi-parameter settings. A great effort was spent
to analyse the stability of the solutions, linking both theoretically and numerically this
property to the study of the eigenvalues. Let us recap some conclusions.

o The plate buckling phenomenon was studied by means of the Von Karméan equa-
tions finding the different modes which correspond to the successive bifurca-
tion of the model. We observed that changing sign eigenvalues are linked to
the bifurcation points of the model and we confirmed this by means of a non-
parametrized generalized eigenvalue problem. Moreover, we showed that com-
pressing non-uniformly the plate one obtains different critical points, and we
developed an ad-hoc strategy based on the eigenvectors to investigate the post
buckling behaviour. We were able to detect multiple bifurcations, which occur in
connection to multiple eigenvalue, and secondary bifurcations, utilizing a more
complicated continuation method. Finally, we apply the Empirical Interpolation
Method to recover the efficiency, obtaining a good speed-up.

o The Gross-Pitaevskii model and its rich bifurcating behaviour was investigated,
for an efficient recovery of its first six bifurcating branches. A multi-parameter
analysis were performed varying the trap strength to confine the solution in
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a smaller region, and at the same time the expected evolution of the critical
points was observed. We studied the comparison between the two empirical
interpolation technique presented, remarking the issues that such methodologies
could exhibit within the bifurcating context.

We performed an extensive study of the buckling problem for beams. In par-
ticular, the Saint Venant-Kirchhoff and neo-Hookean constitutive relations were
analysed and discussed in connection to different test cases. We studied the
forced and the unforced, two-dimensional and three-dimensional rectangular
beam subjected to a compression imposed by means of Neumann and Dirichlet
boundary conditions. Two multi-parameter cases were studied, varying the phys-
ical properties of the beam, such as the Young modulus and the Poisson ratio,
and its length through a geometrical parameter. As expected we found that also
in these cases the second parameter change the position of the bifurcation point,
as an example we observed that longer beams buckles at lower compression.
These investigations allowed us to deal with a more complex benchmark com-
ing from industrial application. A three-dimensional element with annular cross
section was studied, finding unexpected behaviours, investigating the buckling
with respect to its length and to the type of compression imposed.

We studied a CFD application governed by the Navier-Stokes equations in a
channel, which exhibits a bifurcating phenomena of relevant interest also from
the medical viewpoint. The Coanda effect, which translates into a wall hugging
behaviour of the velocity profile, was discussed and its stability analysed. Indeed,
we observed that the straight unstable profile is characterized by the change of
sign of the rightmost eigenvalue. On the contrary, the coexisting wall-hugging
profile originates as the stable configuration and all its corresponding eigenval-
ues have negative real parts.

We exploited the latter application to investigate more complex models employ-
ing emerging methodologies. We developed a reduced order approach to de-
flated continuation method, which allowed us to discover automatically and
efficiently the full bifurcation diagram, which present in this case two kind of
wall-hugging behaviour.

We modelled and investigated an optimal control approach to bifurcating sys-
tems. We showed that we were able to act on the state system, steering the
solution towards desired profiles. In particular, we analyzed a weak Neumann
boundary control on the outlet, which was only capable of changing quantita-
tively the solutions. We discussed a strong action obtained by imposing a dis-
tributed control, which allowed us to define the concept of natural solution. We
investigated the effect of the control parameter, and we found that the smaller
it was the more difficult was to recover the non-natural branch. Finally, we im-
posed the control by means of Dirichlet boundary conditions and we discovered
a change in the stability properties of the studied profiles.



o To overcome the issues and the computational complexity deriving from the
implementation of hyper-reduction strategies, we investigated a POD-NN non-
intrusive approach to bifurcating phenomena. We were able to recover efficiently
the bifurcation diagram for a multi-parameter geometrical variant of the channel
flow. We also showed preliminary results for the bifurcating behaviour of a cavity
flow in a triangular domain, for which we discussed the existence of critical
quantities which can determine the vortex structure. Finally, we developed a
reduced manifold based approach for the detection of bifurcation points which
allowed us to discover non-intrusively the singularities of the model for each
geometrical configuration.

Perspectives

During the investigation of the different methodologies and models we have presented
in this thesis, we have identified several connected research topics that should be fur-
ther studied and developed. As concerns the methodological approach one could
investigate the Greedy sampling procedure, by theoretically develop a posteriori error
estimates based upon the Brezzi-Rappaz-Raviart theory [24]. Such analysis could also
be fundamental for multi-parameter applications in view of a POD-Greedy approach.
The properties of the Empirical Interpolation Method could be theoretically investi-
gated, in particular when a global approach for the snapshot sampling is taken into
consideration.

From the viewpoint of the applications, many different bifurcating models can
be considered within the same context we developed. Indeed, it could be used to
discover efficiently the critical points of a physical phenomenon which depends on
multiple parameters. As an example, one could apply this methodology to structural
stability problems in a real-time setting. Indeed, the efficiency enabled by the ROMs
allows us to perform such complex, parameter dependent, computations even on a
webserver, as we did for the buckling plate benchmark in ARGOS [126].

The reduced order approach to deflated continuation method could be investigated
further, understanding how it behaves when a branch is not sampled during the offline
procedure. Moreover, this could be applied to recover information for time-dependent
problems, which are usually characterized by Hopf bifurcations.

Optimal control problems proved to be a fundamental tool to drive the behaviour
of bifurcating models. We studied different settings, but the complex action of the
control can be discovered for many different applications, depending on the goal one
wants to achieve. Indeed, as we showed for the Dirichlet control, such models could
lead to unexpected solutions.

Many different paths could be pursued by applying machine learning techniques
to the bifurcating context. We restricted ourselves to the POD-NN technique, but
more advanced strategies can be investigated, as the physics informed neural networks
(PINNSs) [134]. Indeed, these could be used to obtain better accuracy while reducing
the amount of offline data required [37]. Moreover, in this context, one could search
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for the best configuration for the network by means of Bayesian optimization. Finally,
a deeper analysis of the POD-NN based bifurcation detection tool can be made, since
it provided several promising results already at this stage.
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