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Introduction

Many-body quantum systems exhibit a variety of fascinating phenomena that marked the last
half-century research activity in condensed matter physics. At zero temperature, phase tran-
sitions are driven entirely by quantum fluctuations [1|. The latter can lead to completely
novel phases of matter that go beyond the classical Landau spontaneous symmetry breaking
paradigm [2| and stand out for their non-local order and sensitivity to the topology of the man-
ifold on which the system is set [3]. When a temperature is switched on, quantum statistical
mechanics is commonly used to describe the combined effect of thermal and quantum fluctua-
tions. The eigenstates thermalization hypothesis (ETH) [4, 5] legitimizes our use of statistical
ensembles, explaining how they arise from a unitary time evolution, with exceptions to such a
generic scenario - manifested as lack of equilibration - attracting interest on their own [6, 7].

Over the last decades, concepts and tools originally conceived and developed within the con-
text of quantum information have profoundly improved our understanding of strongly correlated
quantum matter [8]. A pivotal role in this endeavor had been played by entanglement: given a
bipartition A, B of a quantum state |¢), all the information about its entanglement properties
is carried by the reduced density matrix (RDM) pa = Trp|t)(¢|. Various measures have been
defined to quantify the amount of entanglement contained in a pure quantum state. One of the
most popular is the von Neumann entanglement entropy, which is the Shannon entropy of the
eigenvalues of p4, namely the entanglement spectrum (ES). Ground states of local Hamiltonians
have very low entanglement entropy, generally scaling with the area of the boundary separating
the two subsystems. Exceptions to this “area law” are tied to the nature of the fundamental exci-
tations, a paradigmatic example being the logarithmic scaling in one-dimensional conformal field
theories [9]. The entanglement entropy time dependence when the system is out-of-equilibrium
can even be used to identify ETH violations [10]. Moreover, entanglement measures are crucial to
quantify the complexity of quantum states and our capability of representing them efficiently [11].
The area law of entanglement is the ultimate reason for the success, in one-dimensional systems,
of entanglement-based approximation schemes such as the density-matrix renormalization group
algorithm [12], that led to the development of the theory of tensor networks [13]. Most impor-
tantly, entanglement properties are now experimentally accessible in systems with few qubits.
For instance, full state tomography has been successfully applied to directly obtain all the matrix
elements of the RDM [14] and quadratic functions of the RDM have been measured from inter-
fering two identical copies of a many-body state [15] or by performing random measurements on
a single copy of the state [16].

Until now, entanglement has been investigated based on a few entanglement measures ex-
tracted from the entanglement spectrum, such as the above-mentioned entanglement entropy.
However, only the knowledge of the full ES distribution and the RDM eigenvectors can give
complete information on the quantum correlations encoded in the state. It is the purpose of
Chapter 1 to address a full characterization of the functional form of the RDM by shifting the
focus from wavefunctions to entanglement Hamiltonians. The entanglement Hamiltonian (EH)
of a subsystem A is defined from the RDM as py = e 4 and captures all the entanglement
properties of the quantum state.
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The ground state EH of a many-body system is a well-known object in quantum field theory
(QFT). The path integral representation of the RDM enables to prove that the EH admits a
strikingly simple expression in terms of the Hamiltonian density [17], known as the Bisognano-
Wichmann theorem [18, 19]:

ﬁA:Ar(x)h(x)dx, (1)

where r(z) is the distance of the point = from the boundary between the two subsystems, while
h(z) is the Hamiltonian density. As we will show, the reliability of this QFT prediction turns
out to be extraordinarily far-reaching on microscopic lattice models when a proper discretization
of the continuum EH is performed. Its locality, which follows from this QFT result, has two
remarkable advantages. First, it provides a viable route to measure entanglement properties in
experiments, by means of quantum simulation and spectroscopy of the EH. Second, it paves the
way to the application of statistical mechanics tools to compute entanglement witnesses, via the
use of numerical algorithms that are scalable in any dimension.

The knowledge of the EH remarkably provides direct access to the entanglement properties
of the ground state without the need for the ground state wavefunction. Yet, in some situations,
the wavefunction is the only thing at disposal, while its parent Hamiltonian, i.e. a Hamiltonian
whose ground state is the wavefunction at hand, is unknown. Examples include topologically
non-trivial states such as resonating valence bond [20] and Laughlin wavefunctions [21]. Given
the relation between the EH and the Hamiltonian of the system in Eq. (1), the problem of finding
a parent Hamiltonian for a target state represents a complementary approach to shed light on
the entanglement structure of the state. In fact, although the correspondence between many-
body quantum states and parent Hamiltonians is not one-to-one, the relationship between a
wavefunction and its EH can be inverted utilizing Eq. (1) to yield a valid parent Hamiltonian. In
Chapter 2 we will demonstrate this by devising an entanglement-guided search built on Eq. (1).
We will prove its effectiveness on various wavefunctions carrying a large correlation length with
respect to the lattice spacing, a condition that is necessary to justify the applicability of QFT. A
somewhat opposite scenario comes out when the target wavefunction is an exact tensor network
state. Tensor network states exhibit a very simple, yet non-trivial, entanglement pattern, which
cannot be fully captured by Eq. (1). This fact is easy to understand in one dimension, where their
entanglement spectrum is made of only a few non-vanishing eigenvalues. Although their simple
entanglement structure guarantees the locality of their parent Hamiltonian, the latter can be a
fairly complicated object in more than one dimension [22|. The second part of Chapter 2 will be
devoted to the study and simplification of tensor network parent Hamiltonians, with particular
attention to two-dimensional, topologically ordered states.

While in the first two chapters we will be mainly concerned with equilibrium features of ide-
alized many-body systems bearing theoretical, more than experimental, relevance, in Chapter 3
we will turn to realistic experimental setups, where quantum dynamics serves as a probe for both
equilibrium and out-of-equilibrium properties [23|. As a matter of fact, quantum simulators have
already been proven capable of outperforming classical tensor network algorithms for computing
the dynamics of one dimensional many-body systems at long times [24], and they represent one
of the most promising routes towards the understanding of strong quantum correlations in more
than one dimension. The main focus will be on a quantum simulator built out of Rydberg atom
arrays [25]. By coherently coupling the ground state of neutral Rubidium atoms to a highly
excited Rydberg state, it is possible to obtain an effective multi-qubit system whose dynamics
is governed by a Hamiltonian with tunable couplings. The dipole-dipole interactions between
Rydberg states naturally induce a constraint which forbids the simultaneous occupation of the
excited state for atoms that are nearby on the lattice, realizing the so-called Rydberg blockade.
The resulting quantum dynamics unveils novel out-of-equilibrium phenomena calling for a theo-



retical explanation: local observables do not thermalize when prepared in specific initial states.
This evidence points at a new kind of ETH violation, dubbed “weak” since it only affects a small
fraction of energy eigenstates, now called many-body quantum scars [26].

After fully characterizing the phase diagram of the constraint Rydberg atom chain, we will
uncover a profound connection between this system and a U(1) lattice gauge theory (LGT) [27].
Achieving experimental control on synthetic gauge fields is one of the pillars of quantum simu-
lations, and a crucial step to deepen our understanding of fundamental interactions. However,
there is presently no experimental evidence that atomic systems can be used to simulate lattice
gauge theories at large scales. This limitation stems from the very characteristic aspect that
distinguishes lattice gauge theories from other statistical mechanics models, i.e, the presence of
local constraints on the possible configurations, in the form of a Gauss law, which cannot be
easily implemented in actual experimental realizations. These local constraints turn out to be
naturally mapped into the Rydberg blockade, and the experimental setup of Ref. [25] represents
the first large-scale quantum simulation of a lattice gauge theory. Motivated by the connection
between LGTs and weak ETH violations, in the last part of Chapter 3, we will move to study the
interplay between the Gauss constraint and strong ETH violations in disordered systems. This
will be done through an extensive analysis of the spectral properties of a disordered version of
one-dimensional quantum electrodynamics |28].
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Chapter 1

Entanglement Hamiltonians: from
Quantum Field Theory to the lattice

This chapter is based on the following publications:

[1] G. Giudici, T. Mendes-Santos, P. Calabrese, M. Dalmonte
Entanglement Hamiltonians of lattice models via the Bisognano-Wichmann theorem
Physical Review B 98, 134403 (2018)

[2] T. Mendes-Santos, G. Giudici, R. Fazio, M. Dalmonte
Measuring von Neumann entanglement entropies without wave functions
New Journal of Physics 22, 013044 (2020)

[3] T. Mendes-Santos, G. Giudici, M. Dalmonte, M. A. Rajabpour
Entanglement Hamiltonian of quantum critical chains and conformal field theories
Physical Review B 100, 155122 (2019)

Over the last two decades, entanglement has emerged as a key tool to characterize many-body
quantum systems. From a low-energy perspective, entanglement measures serve as a powerful
tool to extract universal information about the collective behavior of quantum phases of matter [4,
5, 6, 7, 8]. From a quantum information point of view, they are fundamental to quantify the
complexity of quantum states and our capability of representing them efficiently [9, 10, 11].
In particular, bipartite entanglement is typically described by considering the reduced density
matrix p4 correspondent to a region A, that is obtained by tracing a state ¥ over the complement
of A (which is denoted as B in the following):

—Ha

= (1.1)

pa = Trp|V)(¥| =

The r.h.s. of this equation defines the so called entanglement (or modular) Hamiltonian (EH) [12],
H 4. The latter shares the eigenvectors |po) With pa, and its spectrum is bounded from below.
More importantly, the spectral properties of the EH uniquely determine the entanglement prop-
erties of the partition A of W: for instance, its spectrum - the entanglement spectrum - determines
the von Neumann entanglement entropy (VNE).

A direct knowledge of the functional form of H 4 is of tremendous utility for two main reasons.
From the experimental side, it allows to measure entanglement properties of a given state via


https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.134403
https://iopscience.iop.org/article/10.1088/1367-2630/ab6875/meta
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.155122
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Figure 1.1: Quantum field theory entanglement Hamiltonian for a half-bipartition of a (supposed to be)
infinite system. In this case, the function I'(z) in Eq. 1.2 is 27 times the distance from the boundary
between the two subsystems A and B.

direct engineering of the EH [13], in particular, in cases where direct access to the wave function
is not scalable (such as in experiments requiring full state tomography) or not possible at all.
Hence it provides a feasible route for the measurements of, e.g., entanglement spectra, which
are experimentally challenging to access in a scalable manner [14|. From the theoretical side,
it immediately opens up a new toolbox to investigate entanglement properties of lattice models
using conventional statistical mechanics techniques, both numerical and analytical. However, in
the context of many-body lattice models, it has proven very difficult to determine Hy analytically
even for free theories - the only results being the EH of the Ising [15, 16] and XYZ chain [17]
away from criticality, of some one-dimensional free fermion systems [18, 19], and of few other less
generic examples [15, 20].

In this chapter, we will argue, following Ref. [13] and basing on field theoretical results dating
back to the 70’s [21, 22|, that the EH of the ground state of a wide variety of physical systems
takes the following, remarkably simple, functional form

fIA:/qf(m)h(x)dm. (1.2)

Here h(x) is the Hamiltonian density, and the function I'(z) is a c-number that depends on the
geometry of the bipartition. An example is depicted in Fig. 1.1, for a half-bipartition of an infinite
system. Note that the EH of an interacting many-body ground state it is a priori a complicated,
non-local object. Eq. 1.2 asserts that this is not the case: the EH can be expressed locally as an
integral over the Hamiltonian density, modulated by a space-dependent factor.

We will show that the reliability of this continuum result is not spoiled by the introduction of a
proper discretization, and that its discretized version allows to access with high accuracy ground-
state entanglement properties in numerous lattice models. Eq. (1.2) holds under the assumption
of Lorentz invariance of the quantum field theory, whose lattice implications will be discussed
in great detail in what follows. After an extensive study of the validity of this equation, we will
conclude that Eq. (1.2) provides an approximate identity that holds at the level of operators.
Namely, its exponentiation produces an operator which is very close to the true ground state
reduced density matrix in operator norm. For reasons that will become clear at the beginning of
the next section, we will refer to the density matrix defined in Eq. (1.1) with the EH in Eq. 1.2,
as ppw-

In section 1.1, after recasting on the lattice Eq. (1.2), we provide a throughout investigation
of the entanglement Hamiltonian correspondent to the ground state of lattice models. We verify
their predictive power by systematically comparing several properties of the corresponding EHs
to the original lattice model results. The main conclusion of our analysis is that this approach
returns a closed-form expression for the lattice EH which accurately reproduces not only the



entanglement spectrum, but also properties directly tied to the eigenvectors of the reduced density
matrix, such as correlation functions and order parameters. We concentrate our analysis on
interacting one- (1D) and two-dimensional (2D) lattice models, spanning both quantum critical
phases and points, and ordered, disordered, and symmetry-protected topological phases whose
low-energy physics is captured by a quantum field theory with emergent Lorentz invariance (in
the critical cases, this requires dynamical critical exponent z = 1). Overall, our results support
the fact that the applicability of this approach solely relies on universal properties, in particular,
on how accurately the low-energy properties of a lattice model are captured by a Lorentz-invariant
quantum field theory.

In section 1.2 we will focus on the VNE. The latter remarkably provides a systematic way to
connect wave function properties to all operational definitions of entanglement, and is of pivotal
importance to both quantum information purposes and as a diagnostic tool in quantum many-
body theory. Examples of its relevance include the existence of area laws bounding entanglement
in ground state of local Hamiltonians 23], the sharp characterization of conformal field theories
(CFTs) in one-dimension (1D) |24, 25, 26], topological order |27, 28| and spontaneous symmetry
breaking [29]. We will exploit the knowledge of the ground state EH to compute the von Neumann
entanglement entropy of ground states without relying on probing wave functions. As we will
show, our approach enables accurate entanglement-based measurements of universal quantitites,
such as the number of Nambu-Goldstone modes [29] and central charges [24, 25|, at the percent
level, even for modest system sizes. Most remarkably, it allows the calculation of the entanglement
of many-body systems in a scalable manner, thanks to its thermodynamic analogy: this allows
us to verify the onset of area law in two-dimensional quantum magnets, up to system sizes
including O(103) spins. Such scalability is a key point when interested in universal quantities,
as those that are captured by subleading corrections to the entropy in dimensions D > 1. In
terms of techniques, our work complements the already successful QMC toolbox to lower-bound
many-body entanglement via Renyi entropies [30, 31, 32, 33, 34, §|.

In section 1.3 we provide a systematic investigation of the accuracy of the Rényi entropy
obtained from ppw in the context of quantum critical chains. The low-energy degrees of freedom
of these models are described by a CFT that is characterized by a central charge c. The main
issues we address here are the following: we investigate whether the Rényi entropy obtained
from ppy is able to describe universal, leading contributions related to the central charge, non-
universal terms of S, e.g., additive constants, and lattice-finite-size contributions of S, that
are related to universal properties [35, 36, 37|. The main conclusions drawn from our numerical
analysis are the same for all the models studied: the Rényi entropies obtained from pgyy, which
we call SBW converges to the exact ones in the thermodynamic limit; SZW properly describes
not just the logarithmically-divergent CF'T term, but also corrections to the CFT scaling related
to universal quantities (e.g., operator content of the theory). Overall, these results point to the
fact that the predictive power of the BW-EH goes well beyond what is naively expected for
typical field theory predictions, thus considerably extending its applicability window.

Throughout this chapter we will employ various numerical techniques, suchs as exact diago-
nalization, the Density Matrix Renormalization Group (DMRG) algorithm for ground states [9]
and at finite temperature [38], and quantum Monte Carlo based on the Stochastic Series Expan-
sion [39]. More details about the algorithms will be provided in the coming sections.
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1.1 Entanglement Hamiltonians for many-body quantum systems
on the lattice

Despite the first appearance of Eq. (1.2) dates back to 1975, in the context of axiomatic Quantum
Field Theory, its relevance for condensed matter physics has been appreciated only recently. The
specific form of the modular Hamiltonian, for a certain class of quantum field theories, is given
for the first time in a series of papers by Bisognano and Wichmann, which can be recast in a
single, general result that we refer to as Bisognano-Wichmann (BW) theorem [21, 22].

In Sec. 1.1.1, we review the BW theorem original formulation, its extensions in the context of
conformal field theories, and present in detail its adaption to lattice problems. We present a
qualitative discussion of the applicability regimes of this adaption, and then discuss the specific
diagnostics we employ to compare the original EH result with the BW EH on the lattice, and our
numerical approaches. In Sec. 1.1.5, we discuss our results in the context of 1D systems, starting
with models endowed with discrete symmetries (Ising, Potts), and then moving to spin chains
with continuous symmetries (XXZ and J; — J2 models). In Sec. 1.1.6, we focus on 2D systems,
discussing in detail the Heisenberg and XY models on both cylinder and torus geometries.

1.1.1 The Bisognano-Wichmann theorem and its conformal extensions

In an arbitrary relativistic quantum field theory !, the general structure of the reduced density
matrix of the ground state can be obtained for the special case of a bipartition between two
half-spaces of an infinite system (i.e. Z = (x1,29,...74) € R? and A = {Z|z; > 0}). The BW
theorem states that, for a given a Hamiltonian density H(Z) and for the half-bipartition above,
the modular Hamiltonian of the ground state reads

fa =2 / 47 (21 H(7)) + ¢, (1.3)
TEA

where ¢ is a constant to guarantee unit trace of the density matrix, and the speed of sound
has been set to unity. A first key feature of this result is that its applicability does not rely on
any knowledge of the ground state, and thus can be applied in both gapped and gapless phases,
and quantum critical points. Noteworthy is the fact that it is applicable in any dimensionality:
this will turn particularly important below, as very little is known about entanglement Hamil-
tonians of lattice models beyond one-dimension. Moreover, Eq. (1.3) has a clear-cut physical
interpretation in terms of entanglement temperature [40, 41, 42]: if we interpret p4 as thermal
state, this corresponds to a state of the original Hamiltonian H with respect to a locally varying
temperature, very large close to the boundary of A, and decreasing as 1/z; far from it.

In the presence of conformal invariance, it is possible to further extend the BW result to
other geometries [43, 44, 45, 46, 47|. In any dimension, it is possible to derive the modular
Hamiltonian of a hyper-sphere of radius R [45]. Here, we will be interested in three specific cases
in one spatial dimension, whose EHs were obtained in Ref. [46]. The first one concerns a finite
partition of size £ embedded in the infinite line when H 4 read [45, 46]

A2 = o /OK dz [:c (g ; x) h(a:)} +c. (1.4)

This formula can be generalized to the case of a finite partition of length ¢ in a ring of circum-

"We consider field theories whose Hilbert space is in tensor product form with respect to spatial partitions.
The case of gauge theories with non-trivial centre will be studied elsewhere.
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In addition, for a finite open system of length L and for a finite partition of length L/2 at its
edge (i.e. A=10,L/2] and B = [—-L/2,0]) we have [46]

. L2
HI(L‘CFT:)’) = 2L/0 dx sin <%) h(z)+c. (1.6)

We mention that, in the vicinity of a conformal invariant critical point, an alternative description
of the EH with respect to the original BW EH has been suggested [48].

Before turning to lattice models, it is worth to stress two properties of these results. The first is
that, even if the modular operator is defined only from the ground state wave-function, it contains
information about the entire operator spectrum of the theory. This suggests that universal
properties of lattice models might be encoded in the deviations (including finite size ones) of the
entanglement spectra evaluated from the Lattice Bisognano-Wichmann (LBW) entanglement
Hamiltonian (which we describe in the next subsection) from the exact one. The second is that
the BW result implies that the EH is local, and contains only few-body terms which are already
present in the original model. This fact has some immediate consequences: i) it makes a direct
experimental realization of the LBW EH feasible in synthetic quantum matter setups [13], and
i1) it makes its direct study amenable to the same tools of statistical mechanics applicable to the
original problem.

1.1.2 Discretization of the continuum entanglement Hamiltonian

Differently from the field theory case, much less is known about the entanglement Hamiltonian
of ground states of lattice models. In some specific cases, direct insights can be gathered by the
explicit structure of the ground state wave function. Examples include the determination of the
ES and EH structure in strongly gapped phases [49, 50, 51, 52|, where perturbative arguments are
applicable, the EH obtained via variational wave-functions [53], or the Li and Haldane argument
on the structure of the ES of topological phases |54, 55| - which can also be understood using
the BW theorem [56]. Similar arguments can be applied to wave functions with very short
correlation length £, as in those cases, the EH becomes essentially a projector for distances
beyond £. Other fundamental insights could come from the related concepts of entanglement
contour [57, 58, 59, 60, 61|, probability distribution of the entanglement spectrum [62, 63, 64],
and relative entropy [65, 66, 67, 68, 69].

Exact results without assuming any structure of the ground state wave-function have been
derived only in few 1D free theories [15, 16, 18, 19]|(for recent results in the presence of pairing
terms, see Ref. [70]) and for the massive regime of the XYZ model [17]. As we discuss below,
these results are very suggestive about the correctness (and, at the same time, indicate potential
limitations) of the LBW EH that we will discuss in the next subsections.

Our goal here is to provide a generic recipe to derive an approximate but very accurate (in
particular, able to capture all universal features) EH of a lattice model without specific knowledge
of the ground state wave-function. As the starting point, following Ref. [13], we recast the BW
theorem and its conformal extension on the lattice, formulating simple candidate EHs. Explicitly,
let us consider a lattice model in one or two dimensions with on-site and nearest-neighbour



Figure 1.2: Sketch of the lattice configuration for two-dimensional systems: we consider systems with
periodic boundary conditions along the y (vertical) direction, and either open or periodic boundary
conditions along the x (horizontal) direction, of length L. The system bipartitions we consider are
defined by A = {(z,y)|lz € [1,L/2]}. The distance from the boundary (Eq. (1.9)) corresponding to
different Hamiltonian terms (indicated by encircled pairs) is portrayed schematically as the geometric
distance of the center of the bond from the boundary.

couplings:

H=T > [hay)etsy) + bew.@uro) +O D lay: (1.7)
,y,zS +1 x,y

where I is a homogeneous coupling (e.g., exchange term) and © is an on-site term (e.g., transverse
or longitudinal field). The spatial coordinates are defined as z,y € {—L/2 +1,...L/2}, where
L is the linear size of the system, which we fix to be even. In one dimension (read just the
x coordinate in the aforementioned expression) we study systems with both open (OBC) and
periodic boundary conditions (PBC), while for in two dimensions we consider finite cylinder and
torus geometries, see Fig. 1.2.

Let us now split the system into two equal halves; the corresponding lattice Bisognano-
Wichmann EH (LBW-EH) is then given by

E’A,BW = BEH Z (F h(a: y),(xz+6,y) + FH h(x,y (z y+5)) Z @ l(x y)» (1'8)
z,y,0=%1

where the inhomogeneous couplings and on-site terms depend on the distance from the boundary
separating subsystem A and B (see Fig. 1.2) according to the geometry of the original system.
In the case of a 1D chain with OBC or for the cylinder geometry in 2D, the BW theorem in
Eq. (1.3) suggests

Tl = 2T, It = <x — ;) T, O, = (x — ;) e. (1.9)

This putative EH is expected to provide extremely accurate results being just the lattice dis-
cretization of Eq. (1.3), at least in the limit L/2 > ¢ when finite size effects are negligible.
However, in the following, we will use this EH also for some critical cases in order to check how
this copes with finite volume effects: this is a fundamental test in view of the application of our
ideas to those systems that are not known a priori to be critical.

Contrary to plane and cylinder geometries, for the torus geometry we do not have any field
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theoretical results to guide our ansatz. We just know that close to the two entangling surfaces,
the EH must be a linear function of the separation. A possible smooth interpolation between the
two linear regimes is suggested by Eq. (1.4) which has a suitable generalization for a sphere in
arbitrary dimension [45]. Following this line of thoughts, we propose the ansatz

For the 1D critical case, exact EH profiles can be obtained by discretizing Eqgs. (1.5) and (1.6).
For the half-bipartition of length L/2 of the ring one has

L 2
I'n = —sin (M> I,

L . 2 1
0, = 5, Sin <L <x— 2)) o, (1.11)

while for the open chain

0, = %sin <Z (3; - ;)) e. (1.12)

Finally, the overall energy scale in (1.8), Bppy, is related to the “speed of sound”, v, in the

corresponding low-energy field theory
27
Pen = -~ (1.13)

The reason to use the name Spp is that as for the thermodynamic inverse temperature § = 1/T,
the BW overall energy scale plays the role of an effective temperature, as will be discussed in
next section.

The velocity v may be fixed by matching the small momentum (p;) expansion of the lattice
dispersion relation E(k) with the relativistic one E(p) = /m2v* + v2p2. Such a velocity is
generically different from the quasiparticle one V (k) = dE(k)/dpi. The two coincide only for
gapless theories where E (k) = vk

1.1.3 Regimes of applicability of the approach

A natural question to ask is, to which extend field theory results on the functional form of the
EH are applicable to lattice models and in which sense. The LBW EH is not generically an
exact form, even in the thermodynamic limit. This is, e.g., explicitly manifest in free fermion
results [18, 19] showing that the exact EH of a Fermi sea not only has tiny deviations compared
to the field theoretical BW EH, but also presents very small longer range terms completely absent
in (1.3) (and the same happens also for the interacting XXZ spin chain [20]). Conversely, for the
gapped regimes of the XYZ and Ising chains, the LBW EH is exact [17, 16] independently on the
value of the correlation length - even when one would expect lattice effects to become dominant.

Before discussing in the next subsection a series of quantitative criteria to determine the
applicability regimes of the LBW EH using numerical simulations (whose results are discussed
in the next sections), we provide here a qualitative discussion.

When transposing the field theory predictions above on finite lattice models, three ingredients
shall be considered: i) the loss of Lorentz invariance due to the lattice, even when it is recovered



as a low-energy symmetry; 7i) for massive theories, the presence of a finite £/a ratio, leading to
potentially harmful UV effects at the lattice spacing level; #4i) finite volume effects (which can
be partially taken into account in 1D CFTs).

In quantum field theory language and close to a quantum phase transition, the loss of Lorentz
invariance is typically attributed to the fact that the lattice turns on several irrelevant operators
which directly affect the Hamiltonian spectrum. At the level of the EH, to the best of our
knowledge, this has not been discussed so far. Since there is abundant evidence that universal
properties of lattice models (such as the entanglement entropy of models described at low energies
by CFTs [26, 8]) are in excellent agreement with field theory expectations, it is natural to argue
that the microscopic EH is governed by the LBW EH, plus terms that depend on irrelevant
operators. We note that, in the specific case of spin models, a set of recent ansétze proposed in
Ref. [51] falls into this category. Under this assumption, it is possible to argue that low-lying
entanglement properties should be well captured by the lattice BW EH at least in the critical
case. Similar arguments are at the basis of the use of the ES in topological models [56], in
particular for quantum Hall wave-functions.

From a complementary viewpoint, it is possible to argue that, at least for the critical case,
deviations are directly tied to curvature effects in the lattice dispersion relation. This sets an
energy scale upon which excitations cease to be well described by a Lorentz invariant field theory.
In the context of correlated fermions, we thus expect that the accuracy of the LBW EH degrades
when the speed-of-sound-to-band-width ratio becomes small - down to the flat band case, which
is not expected to be captured at all. This expectation is confirmed by free fermions exact
calculations [18].

The effects of a finite £/a ratio have already been qualitatively discussed in Ref. [13]: in brief,
as long as the correlation length is not of the same order of the lattice spacing (thus making
a field theory description not immediately applicable), these deviations are negligible. We note
that, for what concerns the ES, it has been observed that in the massive regime of the Ising
model [16], in the close vicinity of the Affleck-Kennedy-Lieb-Tasaki point of bilinear-biquadratic
spin-1 chains, and in gapped XXZ spin-chains the lattice BW EH is extremely accurate [13], so
the validity of the approach even at £ ~ a cannot be ruled out a priori (whilst has anyway to be
justified a posteriori).

Finally, we discuss finite volume effects. Their estimate is non-trivial (except for those en-
coded in (1.11) and (1.12) for 1D CFTs): for this reason, we present below a finite-size scaling
analysis of several quantities of interest. We anticipate that, at least for what concerns the
low-lying entanglement spectrum, we observe universal scaling.

1.1.4 Numerical benchmark on microscopic lattice models

The reduced density matrix of subsystem A is written in terms of the BW-EH as

e—Ha Bw

PA = PEH = (1.14)

where the constant Z = Tr(e~H4.8W) written in analogy to thermodynamics, ensures the nor-
malization of pgy. For now on, we call the exact reduced density matrix, p4, and the one
obtained with via the lattice BW, pgr. The comparison of the thermal density matrix ppr and
the exact one is addressed at both the eigenvalues and eigenvectors level.

Entanglement spectrum. The first comparison between p4 and ppp is at the level of the
eigenvalues ¢, of the corresponding entanglement Hamiltonian. These eigenvalues are however
affected by the values of both the non-universal constant ¢’ in (1.3) and of the entanglement



temperature fgg in (1.8). These non-universal constants must be fixed either by an exact
calculation or by an independent numerical study. In some cases in the following we will perform
this direct analysis. There is however an even better way to perform such a comparison which
does not require an a priori knowledge of these non-universal constants. Indeed, let us consider
the ratios . .
a — €0
Kasag Py (1.15)
where € is the lowest entanglement energy on the system (corresponding to the largest eigenvalue
of pa), and €,, is a reference state suitably chosen to accomodate degeneracies of the lowest
eigenvalue in the EH spectrum. It is clear that the ¢’ dependence of the eigenvalues cancels out
in the differences taken in the numerator and in the denominator in (1.15). Taking the ratio in
(1.15) cancels also the dependence on Sgg. For this reason we call the quantities (1.15) universal
ratios.

We use the Density Matrix Renormalization Group (DMRG) to obtain these quantities for
quantum spin chains of length up to 100 sites. The entanglement spectrum of the original system
is computed keeping 100 — 150 states and using the ground state as the target state in the proper
symmetry sector. The lowest part of the BW-EH spectrum instead is obtained by targeting
5 — 10 states in all the symmetry sectors. The magnitude of the discarded weight in the DMRG
algorithm depends on the boundary conditions and on the system being homogeneous (exact
ES computation) or not (BW-EH spectrum computation). When the homogeneous system has
OBC/PBC we were able to keep the truncation error always below 107!2/10~% for the largest
systems sizes considered. This is achieved in few DMRG sweeps, typically 2 or 3. All mea-
surements were performed after a minimum of 5 sweeps to ensure convergence of the algorithm.
Oppositely, in the inhomogeneous case, more sweeps were required for DMRG to converge, and
a minimum of 6 sweeps was always performed before collecting the eigenvalues of the BW-EH.
However, since the BW system is open, we were always able to keep the truncation error below
10719 for all the chains considered in what follows?.

Entanglement eigenvectors. In order to understand the accuracy of the BW EH at the
eigenvector level, we consider the overlaps

(ST [0 = Ma,a, (1.16)

for different levels of the spectrum. These eigenvectors are computed via Exact Diagonalization
(ED) of both p4 and the BW-EH.

Correlation functions. Operators (observables) defined exclusively on subsystem A are di-
rectly related to pa (pem)

Tr(e_gAOA)

(Oa) = Tr(Oapa) — 7

(1.17)
Similarly the ground state properties of the subsystem A are directly related to the thermal
properties of the EH-BW. Hence, as another check of the BW construction we use the finite-
temperature QMC method Stochastic Series Expansion (SSE) and finite-temperature DMRG to
obtain local and two-body correlation functions of the BW-EH system. We then compare these
quantities with the exact ground state expectation values computed via DMRG and QMC |39,

2This reflects the fact that entanglement eigenstates have always an entanglement content which is typically
equal or smaller than that of the ground state wave function.
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71].

The SSE method samples terms in a power series of e in the partition function using local
and loop (directed loop) updates [71]|. For the BW-EH system, as the local effective temperature
decreases (Hamiltonian couplings increases) away from the boundary, the use of loop updates
is important to prevent the slowing down of autocorrelation times. In fact, the asymptotic
autocorrelation times of local observables obtained with the directed-loop SSE algorithm is much
smaller then the typical number of QMC measurements that we use, Nyeqs ~ 108. Thus, at least
for the systems sizes that we consider (L up to 100) the slowing down of autocorrelation times
is not an issue for the SSE simulations of BW-EH.

Finite-temperature DMRG accuracy was checked by varying both the number of states kept
during the imaginary time evolution and the Trotter step employed. Since the imaginary time
evolution is applied on a state in which the system is maximally entangled with an ancilla, if
the Hamiltonian conserves some quantum number one can exploit it by preparing the maximally
entangled initial state within a given symmetry sector of the Hilbert space and restricting the
evolution to that sector [72|. Using this technique we were able to reach convergence of the results
by keeping a maximum of 150 states per block. We used first order Trotter decomposition, which
means one Trotter step per half sweep, with a Trotter step of 1073.

In the next two subsections, we report our results on the three criteria above for a set of lattice
models in one and two-dimensions. It is worth stressing how the three diagnostics employed are
sensitive to different features of the reduced density matrix. Universal entanglement gap ratios
are insensitive to possible errors in the prefactors of the entanglement Hamiltonian (i.e., to
Bem), and are not informative about eigenstates. Oppositely, overlaps between entanglement
eigenvectors are not informative about the spectrum, but rather describe the accuracy in having
the same eigenvectors. Finally, correlation functions are sensitive to all details of the EH - both
spectra, correct speed of sound, and eigenvectors. However, they are also a somewhat less direct
as a diagnostic - for instance, very close correspondence in correlation functions can be obtained
by considering density matrices with very different eigenvectors.

1.1.5 One dimension

One-dimensional quantum systems represent an ideal framework to test the applicability of LBW
EH predictions. The main advantage here is that wave-function based methods such as DMRG
and ED can be pushed to considerably large system sizes. In addition, the CFT results of Ref. [46]
allow us to employ formulas which do consider a finite size of the subsystem (Eq. (1.4)) and of
the system (Eq. (1.5),(1.6)), which implies that finite size effects can be controlled in a more
efficient manner.

Transverse Field Ising Model. The quantum Hamiltonian of this model reads [7]:
H==Y it 93 of, (1.18)
i i

where g > 0 and ¢7 are the Pauli matrices. The model can be solved exactly and it is diagonalized
in terms of spinless fermions (with mode operators b};, by) as

H=>Y"E(k) (bLbk - ;) : (1.19)
k
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Figure 1.3: Left. Ratio k,s for the transverse field Ising chain. The black solid line and red circles stand
for ratios computed from the exact ES and the EH spectrum respectively. The blue dashed line marks
pa eigenvalues with a magnitude indicated in the legend. PBC data slightly deviate from the field theory
prediction in the ferromagnetic gapped phase g = 0.6, the maximum relative error being larger that 3%
after the 13th eigenvalue. Right. Overlaps as defined in Eq. (1.16) for the transverse field Ising chain in
the ferromagnetic phase g = 0.6 and at the critical point g = 1.0. Deviations from unity on the diagonal
are of order 1073 in all the cases considered up to the first 13 eigenstates. The few points close to the
diagonal correspond to exact degeneracies in spectrum (not all degeneracies are off-set).

where E(k) V(1= 9)2+ g(pr)?, with pr = 2sinp/2 being the lattice momentum 3. By
matching this dispersion relation with the relativistic one, we get the sound velocity v = 2,/g as
a function of the lattice parameter g. The gap closes in the thermodynamic limit when g = 1. A
quantum phase transition occurs at this point, separating a ferromagnetic phase for g < 1 from
a paramagnetic phase for g > 1. In the former the Zo symmetry of the model is broken by the
ground state of the system, which is degenerate in the thermodynamic limit. The low energy
physics of the quantum critical point is described by a ¢ = 1/2 CFT.

For this model we expect the lattice discretization of Eq. (1.3) (i.e. Eq. (1.9)) to work well
for a chain with OBC as long as the correlation length in the system is large w.r.t. the lattice
spacing and small compared to the system size. In fact, the EH for a half-partition of an infinite
chain can be computed exactly in the coordinate basis away from the critical point [16]. The
result perfectly matches our lattice version of BW-theorem, although it does not predict the
prefactor Spp. In the PBC case instead we expect conformal BW-theorem Eq. (1.5) to fail as
soon as a gap opens in the energy spectrum.

Fig. 1.3 (left) shows the universal ratios Eq. (1.15) computed from the ES both assuming
OBC and PBC (black solid line). For the OBC case, we consider the EH in its original BW form,
which allows to treat on the same footing gapped and gapless regimes.

These ratios are compared to the ones computed from the LBW-EH Eq. (1.9) in the former
case and to the ones computed from Eq. (1.11) in the latter case (red circles). At the critical
point the agreement is almost perfect in both cases: relative errors of the ratios are always smaller
than 2%. Instead, in the ferromagnetic gapped phase, slight discrepancies are observed when the
system is subjected to PBC: the ratios agree within 3% only as long as A, < 1074

Moving to the eigenvectors, the overlaps in Eq. (1.16), computed via ED, are plotted in
Fig. 1.3 (right). Both in the OBC and PBC cases the magnitude of the overlaps is 1 with 1073
accuracy, independently of the system being critical or gapped. Note however that overlaps of
order 10~! are observed also away from the diagonal at the critical point in the OBC case and

*For PBC p = 2% (n+1/2) and p = 27" in the sectors with even and odd number of fermions respectively,
where n =0,1,..., L — 1. For OBC p is the solution of the equation gsin[(L + 1)p]/sin (Lp) =1
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when the system is gapped in the PBC case. The latter fact is expected since Eq. (1.5) should
provide the EH of a gapless system. We did also check the finite size scaling of the matrix norm
of the difference between p4 and pgp i.e. ||pa—prnl|, where ||A|| = \/Tr(AAT). The magnitude
of the matrix norm is of order 10~2 for the system sizes accessible with ED and it decreases with
system size in all the cases considered.

(a) g = 06 0’003 B H’é i gé’ ..—;.—;14—;7I*J**r{*7447t{\- T
=8 [ =72-exact |1 == L =50 (a) 1
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) T
— 0,001 R 1 R 1 L 1 . 1 . 1
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Figure 1.4: Left. (a-b): Local correlation function as defined in Eq. (1.20) for the transverse field Ising
chain in the ferromagnetic phase g = 0.6 and at the critical point g = 1.0. The square (black) and circle
(red) points are results for the original and the half-bipartion EH-BW systems, respectively. (c): local
transverse magnetization in the paramagnetic phase. Right. Finite size scaling of the difference between
BW thermal- and ground state- expectation values at the critical point of the Ising model, with OBCs.
In (a), deviations are plotted for all the sites in the subsystem and they are largest close to the boundary
away from the cut. In (b), deviations are plotted for a site in the middle of the subsystem and they
clearly scale to zero as a power-law.

Expectation values of local observables are the only quantities considered here which are
sensitive to the entanglement temperature. They thus probe more in depth this specific aspect
of the BW theorem, which states that Sgy = 27/v. Thanks to the exact solution of the model
we know that v = 2,/g. The local observable we consider for this model is

C**(i) = (07071) - (1.20)
Note that, since the two points are nearest-neighbours, this observable is expected to be the most
sensitive to finite-lattice-spacing effects. The result of the comparison is depicted in Fig. 1.4
(left) (a-b) for the OBC case. The EH-BW results (red circles) are obtained as thermal averages
computed via finite-temperature DMRG. Ground state averages (black square) are obtained using
DMRG with the ground state of the system as a target state. The agreement is excellent (below
percent level) in the gapped paramagnetic phase even close to the cut, where the choice of the
proper Spp almost completely cancels boundary effects. Relative errors in the bulk (including
the open (right) boundary) are uniformly of order 10~%, while they reach a magnitude of 1073
close to the cut (see inset). At the critical point instead we observe uniform deviations of 0.5%
over the whole half-chain. These are caused by finite size effects. Fig. 1.4 (right) shows the
difference between the thermal LBW expectation value and the ground-state one for different
system sizes. Discrepancies exhibit power-law scaling to zero.

In addition, we have also considered the expectation value of the transverse magnetization
(i.e. along the z-axis)
(1.21)
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In Fig. 1.4 (left) (c), we show the corresponding spatial profile under OBCs: the behavior is very
similar to that of the C** correlator, with the maximum deviations of order 10™* close to the
boundary, which was expected if one considers the self-duality transformation of the model.

Three-states Potts Model. The quantum Hamiltonian of the three-state Potts Model is

given by (73, 74]:
H=- Z (Uigjﬂ + UJUHl) - QZ (Ti + 7'3) ; (1.22)

where g > 0. The ¢ and 7 matrices are defined as o|y) = WY~ y), 7|7) = |7+ 1), w = €27/3 and

v =0,1,2. The phase diagram of this quantum chain is analogous to the Ising chain’s one. The
symmetry of the model is Zs which is broken in the ferromagnetic phase with three degenerate
ground states. In contrast to the Ising chain, the Hamiltonian Eq. (1.22) is non-integrable away
from the critical point at g = 1. Here the spectrum can be computed [75] in terms of massless
excitations whose dispersion relation reads

E(k) = 3\2/31%, (1.23)

which matches the massless relativistic one with a sound velocity v = 31/3/2. This critical point
is described by a CFT with central charge ¢ = 4/5. |76, 77|

Lorentz invariance is expected for the continuum limit of the lattice theory also away from
the gapless conformally invariant point and thus the discrete BW theorem Eq. (1.9) is expected
to hold also when g # 1.

Fig. 1.5 (left) shows the comparison between the universal ratios Eq. (1.15) obtained from
the ES and from the BW-EH for the system at the critical point (¢ = 1) and in the paramagnetic
phase (g = 1.4). We see good agreement for both OBC and PBC also away from the critical
point. In particular relative errors for the first 26 eigenvalues are smaller than 2% at the critical
point, in both the OBC and PBC case. In the gapped paramagnetic phase instead their maximum
magnitude is 0.5% and 4% in the OBC and PBC case respectively.

For this model we performed also a direct comparison of the spectra of ps and pgppy at the
critical point for which we need the sound velocity in Eq. (1.23). For OBC, Fig. 1.5 (right) shows
the ES obtained by using both the infinite system EH (1.9) and the finite size CFT (1.12). The
discrepancies between the ES of a finite system and the ES obtained from the infinite system EHs
completely disappear when the CFT finite system EHs are used. For PBC instead the lattice
discretization of the conformal EH BW in Eq. (1.11) is used which matches the direct results
perfectly. For the sake of comparison, we have also computed the ES using with Eq. (1.10): the
results, while approximately matching the density of states of the original model, are not able
to reproduce the ES quantitatively. This comparison boosts the predictive power of the correct
CFT EH, which, even on the lattice, almost completely suppressed finite size effects.

Overlaps, computed via ED, between p4 and LBW-EH eigenvectors are shown in Fig. 1.6
(left). Large (> 1 — 1073) overlaps involve all the first states in the two spectra both in the
OBC and PBC cases. Non vanishing overlaps away from the diagonal are observed only in the
gapped phase when the CFT EH Eq. (1.5) is employed, as expected. In Fig. 1.6 (right) we
report also the finite size scaling of the lowest overlap Mg o, which decreases/increases when the
system is gapless/gapped. The apparent decreasing behaviour of the overlap at the critical point
might be an artifact of the small system sizes accessible with ED for this model. A trustworthy
extrapolation to the thermodynamic limit is not possible: however, it is very indicative that
changes over a large window of L are at most of order 10™%, strongly suggesting that the overlap
will remain finite in the thermodynamic limit - a remarkable fact given that we are looking at
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Figure 1.5: Left. Ratio ks for the 3-state Potts chain. The black solid line and red circles stand for
ratios computed from the exact ES and the EH spectrum respectively. The blue dashed line marks p4
eigenvalues with a magnitude indicated in the legend. Right. Spectra comparison for the 3-state Potts
chain at the critical point. The black solid line is the exact ES. Red and turquoise circles are the pppy
eigenvalues computed via the infinite system EH (Eq.(1.3) for OBC and Eq. (1.4) for PBC) and via the
CFT finite system EH (Eq.(1.6) for OBC and Eq. (1.5) for PBC) respectively. On the left A,s with
a =0,...25 and on the right with o = 70,...,95.

eigenvector properties. We have obtained similar results for all the 1D models discussed in this
paper, but we did not report them because they are qualitatively equivalent to those in Fig. 1.6
(right).

We finally consider the two-point function of the order parameter at neighbour sites:

Ci) = <2 Re aiag+l> . (1.24)

We compute this correlation function only for ¢ = 1 in the OBC case because the sound velocity
is known exactly only at the critical point. In order to use an unbiased approach here, which does
not rely on the CFT know-how of finite volume effects embodied in Eq. (1.6), we have utilized
the original BW formulation.

We used finite-temperature DMRG for the BW thermal average and ground state DMRG
for the pure average over the ground state of the system. The result is reported in Fig. 1.7. As
in the Ising case 0.5% discrepancies are observed uniformly on the whole subsystem length. As
they reduce considerably when increasing system size, we attribute their origin to finite volume
effects.

Spin-1/2 XXZ Model. The Hamiltonian of the XXZ spin-1/2 chain is [7]:

H = Z (S7 S+ SYSi + ASESH) - (1.25)

This model is exactly soluble via Bethe ansatz, and its phase diagram supports three distinct
phases. It is ferromagnetic for A < —1, gapless critical (Luttinger liquid) for —1 < A < 1
and antiferromagnetic for A > 1. In the ferromagnetic phase, the Zy spin reversal symmetry is
spontaneously broken. The critical phase is described by a ¢ = 1 CFT with varying Luttinger
parameter K = 7/2arccos(—A). The antiferromagnetic phase exhibits non-zero staggered mag-
netization, thus the spin reversal symmetry is broken by the 2-degenerate (quantum dressed)
Néel states which live in the St = 0 sector.

For A < —1 the low-lying excitations above the two magnetized ground states are transla-
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Figure 1.6: Left. Overlaps as defined in Eq. (1.16) for the three-state Potts chain at the critical point
g = 1.0 and in the paramagnetic phase g = 1.4. Deviations from unity on the diagonal are smaller than
1073, The few points close to the diagonal correspond to exact degeneracies in spectrum. Largest non-
vanishing overlaps away from the diagonal are observed in the PBC case when the gap spoils conformal
invariance and thus the validity of Eq. (1.5). Right. Finite size scaling of the ground state overlaps
Mo, as defined in Eq. (1.16) for the three-state Potts chain at the critical point ¢ = 1.0 and in the
paramagnetic phase g = 1.4.
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Figure 1.7: Nearest-neighbor correlation function Eq. (1.24) for the three-state Potts chain at the critical
point g = 1. The square (black) and circle (red) points are results for the exact and the half-bipartition
LBW EH systems, respectively. The inset magnifies the region close to the boundary.

tional invariant combinations of single-spin-flip states (magnons). Their exact dispersion relation

reads ok
E(py) =2 <1 — cos (%) —(A+ 1)) , (1.26)
which does not become relativistic in the continuum limit. At A = —1 the gap closes but

the magnon dispersion remains quadratic. Thus there is no underlying Lorentz invariance for
A< —1.

In the critical phase instead CFT predictions are in perfect agreement with lattice results for
what concerns spectral [78] as well as correlation function properties [74, 79, 80]. Therefore, we
expect the LBW theorem to be accurate in this phase. The point A = 1 hosts a BKT phase
transition which links the AFM phase to the critical line. Close to this point the fundamental
excitations are usually called spinons and their dispersion relation is

2
E(k) = sin <7er> = gﬁk, (1.27)
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OBC) and turquoise circles are computed via the CFT finite system EH (Eq.(1.6) for OBC and Eq. (1.5)
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Sound velocity exctracted via Eq. (1.29) from the first two eigevalues in the exact ES of a finite chain and
in the EH spectrum, by using both the infinite system EHs (red circles) (Eq.(1.3) for OBC) and the finite
system EHs (turquoise circles) (Eq.(1.6) for OBC and Eq. (1.5) for PBC). The result is plotted against
the exact expression Eq. (1.28) for the sound velocity as a function of the anisotropy parameter A.

from which we read the sound velocity v = 7/2 by comparison with the massless relativistic
dispersion relation. Indeed, the sound velocity is exactly known in the entire critical line [79]:

/1 — A2
U Sarccos A (1.28)

In the Néel phase the quasi-particles acquire a mass, but in the scaling region close to A — 1T
they do not to spoil relativistic invariance of the continuum theory. We point out that some of
the results discussed here for OBC are connected with Refs. [50, 81, 82], which investigate the
comparison between ES and the corner transfer matrix.

We report a direct comparison of the spectra of ps and ppy at the BKT point A = 1,
exploiting the knowledge of the sound velocity (1.28). Again for OBC we use both the infinite
size formula (1.9) and the CFT finite size one (1.12). The latter perfectly reproduces the exact
data. For PBC we only employ the lattice discretization of the CFT formula (1.11) finding a
perfect match with the data from pg4.

As a by-product of BW theorem we can use the exact ES and the EH spectrum to compute
the sound velocity of the model. Indeed the relation between the two sets of eigenvalues reads
Aa = exp (—27/v €4)/Z. We can take the ratio of two As to eliminate the normalization constant
and we can invert this relation to get

27 (€0 — €0)
= — 1.29
Ve log Ao/ Aa (1.29)
The result should be independent of a and this is indeed the case within negligible relative error.
In Fig. 1.8 (right) we plot the sound velocity for a = 1 as a function of A against the exact result
(1.28). For OBC, we also use the infinite system EH (1.3) finding deviations only of few percent,
as evident from the figure.
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The two-point function we analyze for this model is the spin-spin correlation function
Cspin(iar) = <Sf iz+7~>, (130)

that we compute using QMC. In this section we want to probe the thermodynamic values of
this correlation. For this reason we do not exploit the finite size formulas for BW EH, but the
infinite size ones (1.3) and (1.4) which we apply to OBC and PBC respectively. The results for
r = 1 are reported in Fig. 1.9 (left) for the two OBC case. The two point of the phase diagram
considered are the XX free fermions point A = 0 and the BKT point A = 1. The velocity in the
entanglement temperature is provided by Eq. (1.28). In the OBC case the agreement is perfect
also close to the boundary where the system has been cut. The BW EH reproduces very well
also the amplitude and the frequency of the Friedel oscillations caused by the free ends of the
chain, with a relative error always smaller than 1%.
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Figure 1.9: Left. Nearest-neighbour spin correlation function (1.30) as function of position ¢ for chains
with OBC for (a) A =1 and (b) A = 0. The square (black) and circle (red) points are respectively the
exact results and those from EH-BW. The Friedel oscillations are perfectly described by the EH approach.
Right. L — oo extrapolation of the average, Cypin(r = 1) = 1/L )", C(i,r = 1) for chains with OBC
and different values of A. The horizontal lines represents the exact values of Cipin(r = 1) for L — co. In
all the cases the EH-BW results converge to the exact ones in the thermodynamic limit.

In the PBC case the ground state average is homogeneous. In fact the parabolic inhomoge-
neous coupling in Eq. (1.4) suppresses the boundary effects which affect the non-translational
invariant BW-EH. This is strongly reminiscent of sine-square deformation Hamiltonians, which
are actually close in functional form to the LBW EH in the PBC case [83]. The result from the
thermal average of LBW EH is indeed almost homogeneous and deviations from the expected
ground state value are less than 0.1% (see Fig. 1.10 (left)).

Fig. 1.9 (right) shows the finite size scaling of the LBW-EH Cjp;y, (i, 1) with OBC, averaged
over the whole chain, against the exact thermodynamic limit value (dashed line) for three values
of the anisotropy parameter A = —0.5,0.9,1.0. The result strongly indicates that the field
theory prediction of BW theorem Eq. (1.3) is exact when L — oo. In Fig. 1.10 (right) we analyze
the separation dependence of the 2-point function (1.30) at the isotropic point A = 1. Small
deviations (of order 1% on average with respect to r) are observed when r becomes of the order
of the system size. These deviations, however, decrease as one increases L, see inset of Fig. 1.10.

Spin-1 Heisenberg Model.  The isotropic spin-1 chain is the archetypical model of a sym-
metry protected topological phase (SPTP) [84, 55, 7]. This state of matter is characterized by
a gap in the bulk, an even-degenerate ES, zero-modes living at the ends of an open chain and
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Figure 1.10: Left. Nearest-neighbour spin correlation function (1.30) as function of position ¢ for chains
with PBC for (a) A =1 and (b) A = 0. The dashed line is the homogeneous exact result. The results
obtained from the BW EH are approximately independent from the site ¢ in the subsystem and they
display small oscillation around the ground state value. Right. Decay of spin-spin correlations for the
isotropic case, A = 1. We compare the exact data (black squares) with the EH results (red circles). The
inset shows the scaling with system size of correlations between different distances r* for both BW and
exact systems. The exact and BW results tend to the same value in the limit L — co.

carrying fractionalized quantum numbers [54, 55|. The Hamiltonian of the model is the same
as Eq. (1.25), but with the S matrices being the spin-1 representation of the rotation group.
Long-range order associated with a hidden Zo ® Zo symmetry is captured by the non-local order

parameters
i+r—1

Ca i) = —(5% [T exp (ims5) S21,), (131)
j=i+1

which is non-vanishing for r — oo for @ = x,y, z (we focus in the following on the z component
and drop the index «). The Haldane SPT phase extends in the parameter region 0 < A < 1.17
and it is separated from a gapless XY phase (on the left) by a BKT phase transition at A =0
and from a Néel phase (on the right) by a second order ¢ = 1/2 phase transition at A ~ 1.17 [85].
In order to show the applicability of BW theorem for the computation of non-local operators, we
compare the thermal expectation value obtained via finite-temperature DMRG using the BW EH
Eq. (1.3) with the ground state average computed with DMRG. Although the system is gapped
at the isotropic point, the correlation length of the system £ = v/m is quite large. In fact, the
gap is known to be m ~ 0.40 [9], while the sound velocity is estimated in the following to be
v =~ 2.5. Thus ¢ is larger than 6 lattice spacings, making field theory prediction truthful on the
lattice. The sound velocity necessary to compute the entanglement temperature is not known.
We thus estimate it using the relation between p4 and EH eigenvalues, Eq. (1.29), as discussed
previously. The result we get is independent of o within few percent relative error, both in the
OBC and PBC cases and for all the lowest 30 eigenvalues computed. We then tuned § in order
to remove completely boundary effects close to the cut. In this way we get a speed of sound
v =27/ = 2.475. The results for the string order parameter are reported in Fig. 1.11. The data
correspond to a string starting in the middle of the right half-subsystem (i = L/4) and ending
in the middle of the left half (i = —L/4). Relative deviations of the ground state average from
the thermal expectation value are uniformly of order 10~ for L > 50.

J1 — J2 Model. As a final test for the 1-dimensional case, we discuss the J; — Jo quantum
model, which includes next-to-nearest-neighbour interactions. The Hamiltonian of this spin-1/2
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Figure 1.11: Left. Non-local order parameter as defined in Eq. (1.31) for the spin-1 XXZ chain at
A = 1.0. The square (black) and circle (red) points are results for the original and the half-bipartion
EH-BW systems, respectively. Right. (a) Deviations between BW theorem thermal- and ground state-
averages as a function of the r, for different system sizes. Relative errors are uniform and of order 10~*
for L > 50. (b) Finite size scaling of the deviations for » = L/4. Both plots indicate a discrepancy which
is exponentially small in the system size.

quantum chain reads:

H=J Z 5’; . §i+1 + Jo Z S_'; . §i+2, (1.32)

where Jq1, Jo > 0 will be considered in what follows. When Jy = 0 this model coincides with the
XXZ chain at the BKT critical point. When J; is switched on, the model remains critical for a
finite interval in Jy/Jp and it is described by a ¢ = 1 CFT with the same Luttinger parameter
K = 1/2 throughout the whole interval [86]. When J2/.J; reaches the approximate value Ja/J; ~
0.2411 [87], a gap opens and the system enters a dimerized phase characterized by a non vanishing
dimer-order parameter d; = <§2i_1 . §g,> — <§2Z . §2i+1>. This phase contains an exactly solvable
point for Jo = J;/2 [88], where the ground state factorizes into a product of spin-1 singlets on
adjacent sites: |1) oc (| 1) — | 1 1))®E/2 | At this fine-tuned point the entanglement spectrum
of the system is trivial, with either one or two equal non-vanishing eigenvalues (depending on
the cut and with OBC). The same is not true for the BW-EH spectrum. Moreover the gap in
the dimerized phase is maximum when Jy ~ 0.6.J; [89] and it slowly decreases with increasing
Jo. We thus expect the worst results to be observed after the Majumdar-Ghosh factorization
point with finite Jy. Note that the same behavior is expected close to any factorizable point,
as discussed in the context of the Affleck-Kennedy-Lieb-Tasaki spin-1 chain in Ref. [13]. When
Jo — o0 the system reduces to two independent critical Heisenberg chains. Fig. 1.12 (left)
shows the universal ratios Eq. (1.15) comparison between entanglement spectrum and LBW-EH
spectrum for the OBC case where the system is in the middle of the critical phase (Jo = 0.1.J7),
at the critical point (Jo = 0.2411J;) and in the dimerized phase (J, = 0.3J; and Jo = J7). In the
first two cases the largest relative deviations are 2% and 8% respectively. When J; = 0.3J; the
gap is small and large discrepancies affect only eigenvalues in the ES smaller than 1073, where
they reach 10% relative error. When Jy = J; the gap is much larger and BW theorem does not
reproduce the correct ratios for eigenvalues of the p4 of magnitude 1072 and their degeneracies.
Relative deviations are larger than 20% also for the first 10 ratios.

In Fig. 1.12 (right) we also show the finite size scaling of the overlaps Eq. (1.16) for the ground
state. The overlap always increases for large system sizes in the PBC case, while it is decreasing
in the OBC case for the lengths accessible via ED. We attribute the non-monotonic behaviour
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Figure 1.12: Right. Ratio k,s for the J; — J; chain with OBC. The black solid line and red circles
stands for ratios computed from the exact ES and the EH spectrum respectively. The blue dashed line
marks pa eigenvalues with a magnitude indicated in the legend. Agreement with BW theorem is good in
the middle of the critical phase and close to it (relative deviations smaller than 10%), while it gets worse
as Jo/Jy is increased away from the critical line (relative deviations larger than 20%). Right. Finite
size scaling of the ground state overlap M o as defined in eq. Eq. (1.16) for the J; — Ja chain for both
OBC and PBC and for the three distinct values of the coupling constant g = 0.1 (gapless critical phase),
g = 0.3 (gapped phase close to the critical point), g = 1.0 (gapped phase with large gap). In the OBC
case the overlap decreases with the systems size, while it increases towards unity in the PBC case.

at g = 1 as a signal of the dimer order in the gapped phase.

1.1.6 Two dimensions

Differently from the one-dimensional case discussed so far, direct studies of entanglement Hamil-
tonians in interacting 2D and 3D models are lacking apart from few aforementioned cases dis-
cussed treated within perturbation theory. As such, the potential of applying the BW theorem
reliably to lattice models can be of even stronger impact than in 1D systems. A closely related
subject concerns topological matter, where Li and Haldane conjectured that the low-lying part
of the ES is capturing the edge mode energetics [54].

In this section, we check the applicability of the LBW EH for the two-dimensional XXZ model
on a square lattice, defined as:

H=JY" (Sr8y+ 505!+ AS;S;), (1.33)
(i)

for both the cylinder and the torus geometries, for which we employ Eq. (1.9) and (1.10)
respectively. We focus on two cases: (i) the isotropic, A =1, and (ii) the XX, A = 0 points. For
these two values of A, the ground state of the system spontaneously breaks the continuous SU(2)
and U(1) symmetries, respectively [90, 91]. In the first case, the low-lying field theory is a CP(1)
model. In both cases, the low energy degrees of freedom of the system are characterized by a
linear dispersion relation, and Lorentz-invariance emerges as an effective low-energy symmetry.
Differently from the one-dimensional cases considered in the last section, exact diagonalization
approaches are of little use here, as the LBW-EH approach cannot exploit lattice symmetries, as is
limited to very small lattices where universality is most probably spoiled by finite volume effects.
As such, we do not attempt comparisons based on entanglement spectrum and eigenvectors
of BW-EH, but rather focus directly on the expectation values of first-neighbour correlation
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Figure 1.13: Left.Nearest-neighbor spin correlation function as function of bond index ¢ for the 2D square
lattice in the cylinder (BW) geometry for (a) A =1 and (b) A = 0. The different points are the results
of Cspin(f, r = 1) in different paths of the 2D system: red squares, blue triangles and green diamonds are
along (i, = i,iy = 1), (i = L,i, = 4) and (iy = 1,4, = ©), respectively; see cartoon. In addition, the
black curves are the exact ground state results for the system 20 x 10. Right. C’Spm( r = 1) as function of
bond index 7 = (i, = i,i, = 1) for different system sizes, L, in the 2D torus (CFT1) geometry. (a) A = 1
and (b) A = 0. The dashed horizontal line for A = 1 is the exact result of Cypin (i, = 1) extrapolated
to the L — oo limit [90].

functions

Copin(0,7) = (S28%,.) (1.34)

and the AFM order parameter. The sound velocities v = 1.657J (A = 1) and v = 1.134J
(A = 0) obtained in Refs. [92] and [91], respectively, are used to calculate Spg = 27 /v.

First, we discus the comparison of the BW-EH C’Spm(g, r = 1) in the cylinder geometry with
exact results, see Fig. 1.13 (left). Even for the relatively small system considered (L = 10), the
agreement of Cspm( r = 1) with the exact results is very good. The LBW-EH qualitatively
reproduces the behaviour of Cspm(z r = 1), and the relative errors are < 1%. Larger deviations
are observed for correlations along the boundary between the two subsystems (green curve) and
A = 1 (these deviations are much milder in the anisotropic case). In the toroidal geometry,
the exact formula of the modular Hamiltonian is not known even in the continuum. Here, we
heuristically employ Eq. (1.10). In Fig. 1.13 (right), we plot the Cspm(f,r = 1) for different
system sizes in the torus geometry. In this case, Cspm(z,r = 1) is almost homogeneous, with
deviations smaller than < 1%. Furthermore, as L increases the BW-EH results approaches the
exact results obtained in the thermodynamic limit L. — oco. This strongly suggests that the
employed ansatz, whilst not necessarily exact, provides a very accurate description of 2D EH on
tori. Finally, we discuss if the BW-EH describes the AFM long-range order in the A = 1 case.
The AFM phase is characterized by the order parameter

m? = <J\1[2 Z(—l)i+ﬂ’sisj> , (1.35)

where ¢ and j run on all the sites of the system and N is the total number of spins. If AFM
long-range order is present, m? is finite in the thermodynamic limit, since AFM correlations
remain nonzero at large distances. For a finite system, 2L x L, split in two equal halves of sizes
L x L, one can write m? = mi + m2B + mi’ gt m2B’ 4> Where mQA and sz are the contributions
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of subsystem A and B, respectively, and ma g and sz, 4 are contributions of crossing terms. In
the limit N — oo, all these four terms are equal, and m? = 4m?4. Fig. 1.14 shows the finite-size
scaling of m? obtained with the BW-EH. As already observed for the first-neighbour correlation
functions, m? is in good agreement with the exact result.
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Figure 1.14: Finite-size scaling of m? for the EH-BW system (L x L) in both the cylinder (black-square)
and torus (red-circle) geometries. The horizontal line is the exact QMC value of m? obtained in Ref. [92].

We obtain m?(L — 00) = 0.0925(4) and m?(L — oo) = 0.0934(1) for the the cylinder and
the torus geometries, respectively. The relative errors with QMC exact results, m?(L — oo) =
0.0948 [92], are €,,2 &~ 2.4% and €,,2 ~ 1.5%.

1.1.7 Conclusions

We have discussed an approach to systematically build approximate entanglement Hamiltonians
of statistical mechanics models by applying the Bisognano-Wichmann theorem on the lattice.
Starting from a recasting of the latter theorem on discrete space, we have presented a series of
diagnostics based on the entanglement spectrum, the eigenvectors of the reduced density matrix,
and expectation values of correlation functions. Based on these quantities, we have carried out
numerical simulations for both 1D and 2D models whose low-energy physics is captured by a
Lorentz invariant quantum field theory.

In critical cases, such as conformally invariant points and phases in 1D, and spontaneous-
symmetry-breaking phases in 2D, our results strongly support that the lattice Bisognano-Wichmann
entanglement Hamiltonian captures very accurately all properties of the original system. What
is particularly striking is that even the eigenvectors of the reduced density matrix have very large
overlaps, which seem not to vanish with increasing system size. This last fact is particularly sur-
prising, as overlaps are quantities that typically vanish in the thermodynamic limit, suggesting
that there might be deeper connections between the structure of the EH and the BW theorem
directly at the lattice level. Let us also remark that our results show that the modified CFT
formulas obtained by Cardy and Tonni [46] cope extremely well with finite-lattice spacing and,
in fact, considerably reduce finite size effects when compared to the infinite-size BW EH.

In gapped systems, we typically find good agreement for both topologically trivial and non-
trivial phases, with the exception of the J; — Js model: in this last case, the effects of strong
dimerization considerably spoil the applicability of field theory results, as the phase itself does not
support a description in terms of smoothly varying fields. Somehow surprisingly, degeneracies of
the ES are well captured, and even the overlap of the entanglement ground state is anomalously
large. In all cases investigated here, the CF'T EH obtained with PBCs seems to apply equally
well to both critical and off-critical cases. In analogy to the OBC case, we attribute this behavior
to the fact that, sufficiently away from the boundary, the exact functional form of the EH is not
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relevant as its ground state is locally the same as the original system.

At the methodological level, our study shows that well-established statistical mechanics tools
such as DMRG and quantum Monte Carlo can be applied without major effort to the investiga-
tion of entanglement Hamiltonians. A first potential application along this route is the potential
to carry systematic entanglement spectroscopy with QMC, not relying on reconstructing the ES
from Rényi entropies [93], but rather on monitoring correlation functions in the entanglement
ground state, and extract the corresponding entanglement gaps from the decay of correlation
functions. A second application concerns the possibility of further severely reducing finite-size
effects when measuring correlation functions by directly accessing a finite bipartition of an in-
finite system 4. A third application is related to boosting procedures employed to extract the
entanglement Hamiltonians given a ground state of interest, as discussed in two recent works [94,
95]. Our general analysis supports from the theoretical side the results obtained for the models
considered in these works. Furthermore, from the experimental side, our results immediately
extend the regime of applicability of the approach proposed in Ref. [13] to perform quantum sim-
ulation and spectroscopy of the EH, especially in two-dimensional interacting models, including
connections to Unruh-type effects [96].

The discussion we have presented here only concerns statistical mechanics models whose
Hilbert space can be written in tensor product form. An open question is to extend this approach
to lattice gauge theories: in this context, a lattice version of BW can be constructed using
established methods to properly build reduced density matrices that consider the effect of Gauss
law at the boundary between two partitions [97, 98]. Another important feature of our approach
is that, for critical systems, it is limited to quantum field theories with z = 1. While this
encompasses a very broad class of quantum critical points, it would be interesting to extend the
Bisognano-Wichmann theorem beyond its original applicability regime, thus providing a direct
link between the dispersion relation of equilibrium systems and their ground state entanglement
properties. Extending this correspondence could shed further light into the origin of area law
(and violations thereof) of entanglement in the ground state of lattice models [6].

4This approach could also be employed in t-DMRG simulations.
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1.2 Measuring entanglement entropy without wave-function

Despite its pivotal importance, the current understanding of entanglement measures in many-
body systems is essentially limited to non-interacting theories or to lower bounds provided by
Renyi entropies, due to the lack of methods to calculate the VNE in any dimension D > 1. This
represents a key obstacle in determining both the capabilities of many-body systems in terms of
quantum information processing (e.g., how much entanglement can be distilled by a given parti-
tion), and the generic relation between universal field theoretical descriptions and entanglement.
In this section we overcome this obstacle by exploiting the knowledge of the functional form
of the ground state EH to compute zero-temperature VNEs as thermal entropies of a system
whose Hamiltonian is the Entanglement Hamiltonian Eq. (1.2). This simple observation allows
to access entanglement entropies with any thermal algorithm. Most remarkably, QMC methods
allow to push forward this idea to arbitrary dimension, providing a method which is scalable and
applicable to a wide variety of lattice models.

In Sec. 1.2.1 we introduce our approach with particular attention to the QMC technique
employed in D > 1, namely the Wang Landau (WL) algorithm [99]. In Sec. 1.2.2 we benchmark
our method on 1D examples. In Sec. 1.2.3, we carry out QMC simulations on a series of 2D
lattice models. For the 2D Heisenberg and XY models, we provide direct evidence that (i) the
VNE is constrained by the area law (in agreement with lower bounds based on Renyi entropies),
and (7i) the number of Goldstone modes can be determined with percent accuracy solely from
entanglement properties. For the bilayer Heisenberg model, we study the geometric contribution
to the entanglement entropy at its strongly coupled critical point, and verify a recent conjecture
on O(N) models [100]. Finally, in Sec. 1.2.4 we discuss the stability of the BW prescription for
computing the VNE against imperfection in the EH.

1.2.1 Entanglement entropy as a thermal entropy

In what follows, we illustrate how to measure VNE in numerical simulations which do not have
access to the system wave function. The strategy relies on any numerical method that is able
to compute the thermodynamic entropy of the BW-EH at the entanglement temperature, Spp.
This can be achieved using QMC algorithms based on Wang Landau (WL) sampling [99].

Below, we illustrate this by applying the quantum version of the WL method performed in
the stochastic series expansion (SSE) QMC framework [101, 102]. The key idea of the WL-SSE
approach is to compute the density of states of the EH by considering a non-Markovian sampling
based on the power expansion of the partition function [39, 71|, Compared with the convetional
quantum Monte Carlo (QMC) simulations, that is performed at a fixed temperature, the WL
method features two main advantages for the study of the thermodynamic properties of the EH:
(i) it allows to directly compute the thermal entropy at the “entanglement temperature” Sgm,
and (1) the thermodynamic properties of the EH are obtained for a broad range of temperature
with a single run of the simulation.

The WL method was originally proposed for classical systems. For a quantum Hamiltonian,
such as the BW-EH, one must map the system to a classical one. This is done, for instance,
using the SSE framework, which considers the following form for the partition function

Z = Tre PH = Z %Tr(—H)” = Zﬂ"g(n), (1.36)
n=0 n=0

where the nth order series coefficient g(n) plays the role of the density of states in the classical
algorithm. We refer to Ref. [101, 102] for the general details of the computation of g(n). Below
we mention the technical aspects of the simulation that are relevant to reproduce our results.
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The series expansion Eq.1.36 can be truncated at an order A, i.e., n = 0,1,..., A, without
introducing systematic errors in the simulation. The choice of A is performed as in the conven-
tional SSE simulations, see Refs. [39, 71|, which gives as a result A(3) ~ B|E(B)|; where E()
is the expectation value of the total energy at inverse temperature 3. The effect of the cutoff
A(p) is that the range of temperature that can be accessed is restricted to 8 < A(B)/E(B). We
simulate the BW-EH using A(35gx) as the cutoff. Instead, the computation of the BW VNE at
Bem are obtained utilizing a cutoff A(aBpy), with a = 1.3. We checked that these results don’t
change upon increasing «.

In the WL-SSE algorithm, the sampling of the SSE configurations with different n is per-
formed with a probability function that is proportional to the inverse of the density of states,
1/g(n). The WL sampling generates a histogram for the distribution of n that is flat, i.e.,
H(n) ~ const; the histogram H(n) is obtained counting the number of times a configuration
with n is observed. The key point of the algorithm is that g(n) can be computed by iteratively
flattening H (n). More specifically, one start with the guess g(n) = 1. Each time the configura-
tion n is accepted g(n) is multiplied by a factor f, i.e., g(n) — goia(n)f. This process is repeated
until H(n) is flat. In practice, we consider as a condition for the flatness of H(n) a maximum
deviation of 20% from the mean value. Once H(n) is flat, it is reset to zero, and f is decreased
by In(f) — In(fo1q)/2 [103]. This process is repeated until convergence is achieved. Here we use
the convergence condition proposed in Refs. [103, 104].

In addition to the aforementioned algorithm, we consider the optimized-broad-histogram
algorithm proposed in Ref. [102] for the 2D Heisenberg model, see Fig. 1.16 (a). These results
were obtained with the ALPS code [105, 106]. In this case, we confirm that the two methods
give the same results (within error bars).

Finally, it is important to mention that the results for the BW entropy are obtained by doing
an average of N, independent WL simulations, i.e.,

1 X
S(ﬁ) = N. Zsi(ﬁ)- (137)
Ti=1

The error bars are the standard deviation of the distribution {S;}, and for all the results pre-
sented, we consider at least N, > 200.

The use of local and loop updates in the WL-SSE sampling allows us to compute Spy for
systems with O(10%) spins and D > 1. One point that is worth to emphasize is that the method
is straightforward to implement on a working WL code, since it only requires to implement an
inhomogeneous version of the system Hamiltonian, as in Eq. (1.2) [106].

1.2.2 One-dimensional critical systems

We now benchmark our strategy on one-dimensional critical systems, where the calculation of
the VNE is amenable to both exact and tensor network simulations. In this case, the VNE of a
subsystem of size L diverges logarithmically, S(L) o c¢ln L, where ¢ is the central charge of the
underlying CFT.

In Fig. 1.15, we plot the BW VNE of the one-dimensional Heisenberg model (HM) and the
quantum Ising model (QIM) at its quantum critical point, and under both PBCs and OBCs.
Throughout this work, we employ dimensionless energy units for the sake of convenience. For
the two models, the exact value of the entropy (empty circles) is evaluated using density-matrix-
renormalization-group [9] (HM) and exact diagonalization methods (QIM) for a biparition of size
L embedded in systems of size 2L. The calculations of the BW-EH thermal entropy are carried
out with QMC with both local and SSE directed-loop updates [39, 71| for the HM, and exact
diagonalization for the QIM. In addition to the finite-size EH (red triangles), for the sake of
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Figure 1.15: (a) Partitions of the one-dimensional systems: (al) partition of length L embedded in an
infinite system (infinite PBC); (a2) half-partition of a ring (finite PBC), (a3) half-partition of an open
system (finite OBC). In panels (b) and (c¢) are shown results for the Heisenberg model and quantum Ising
model, respectively, with PBC and OBC. The central charge obtained from the PBC VNE is in agreement
with the exact results (¢ = 1 and ¢ = 0.5). Error bars are smaller than the size of the symbols.

comparison, we also compute the entropy obtained utilizing the EH of a finite partition in an
infinite system (black circles) [1]: the two are separated only by a constant shift that depends
solely on the central charge.

For the PBC case the VNE increases logarithmically as expected: the corresponding central
charge considering systems up to L = 80 (100) is in within 1% (0.05%) level with the exact
results for the HM (QIM) - see Figs. 1.15 (b1l) and (cl). For the OBC case, we observe an
alternating term in the BW-EH entropy for the HM, but not for the QIM, see Figs. 1.15 (b2)
and (c2). These result is in agreement with the exact VNE. As discussed in Ref. [107, 35|,
those oscillations are universal and due to the antiferromagnetic nature of the interactions, not
appearing in the QIM [108] (in the latter, the effective Fermi momentum is either 0 or 7). From
the CFT perspective, the oscillations can be viewed as lattice corrections to the scaling dimension
Ap: their decay as a function of the bipartition size is a power law whose exponent is related to
A, (35, 109].

The fact that the BW-EH faithfully reproduces not only the leading, but also the dominant
subleading correction testifies its predictive power on generic universal quantities captured by
the VNE. While, for instance, non-universal contributions such as additive constants in 1D shall
not be immediately reproduced due to the field theoretical origin of the relation we employ, in
all examples where a comparison to exact results is possible (essentially, 1D systems), we observe
that even non-universal contributions are accurately captured: for instance, AS(L) goes to zero
in the limit L — oo both in the OBC and PBC cases. We attribute this to the fact that the
BW-EH is actually able to reproduce a “partition function” whose corresponding Hamiltonian has
the correct density of states, and whose generic correlation functions are correct [1]. In case only
the first element was true, and, for instance, the overall scaling correction was wrong, one would
have generically expected incorrect correlation functions. From a methodological viewpoint, this
implies that our method may be used to check convergence of tensor network states in conformal
phases, especially for large values of the central charge.
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Figure 1.16: (a) Results for the HM and XY model. The z-axis of represents the linear size of the
boundary, L, = L, and the subsystem aspect ratio for the HM (torus) is a.r. = L, /L, = 1, while for the
XY (torus) and the HM (cylinder), a.r. = 2. (b) Subleading term in S as function of In L. The number
of Goldstone modes, n, = 2b, is extracted with a linear fit, and agrees with the expected result.

1.2.3 Two dimensional systems

Quantum magnets. The VNE can describe universal properties of two-dimensional systems.
For instance, the VNE of 2D ground states that break a continuous symmetry scales as S(L) =
AL + Bln(L) + D, where L is the linear size of the boundary. The A is the non-universal area
law term [23], while, for a smooth boundary, the prefactor of the logarithmic term is a universal
quantity related to the number of Nambu-Goldstone modes n,, B = np/2, of the associated
spontaneuosly-symmetry-broken (SSB) phase |30, 29, 110, 111]. As examples of SSB, we consider
the 2D XY model and the Heisenberg model. In both cases, we perform QMC simulations of
the EH and extract the corresponding VNE as a function of the subsystem linear size, L. The
entropy is evaluated at Spg = 27 /v, with vgeis = 1.658J [112] and vxy = 1.134.J [91], using
the WL-SSE algorithm.

In order to cast the BW-EH on two dimensional lattices we employ the same prescription
adopted in Sec. 1.1. We also consider the CFT expression Eq. (1.4), which corresponds to the
generalization of the BW to a subsytem that is embbeded in a infinite system; we call this
subsystem-geometry of toroid.

We remind the reader that, as discussed in Ref. [1], for finite values of L,, formula Eq. (1.4)
is in principle only applicable to conformal field theories. Let us illustrate here a simple, non-
rigorous argument that partly justifies the applicability of this approach to generic (i.e., non
conformal) 2D models. Typically, the low energy theory will be made of gapless and gapped
sectors. The description of the former will be scale invariant and relativistic invariant: while
this does not guarantee emergent conformal invariance, exceptions are rare. The gapped part
of the theory will (at most) contribute to the entanglement properties only in the very vicinity
of the edge of the partition, where it would actually behave like a gapless theory. Far from
the boundary, the reduced density matrix with respect to these degrees of freedom will be an
identity operator (up to degeneracies). This indicates that the CFT formulas used above shall
be applicable also to more general cases where some low-energy degrees of freedom are actually
gapped. In the context of the 2D HM, the role of gapless degrees of freedom is played by the
CP(1) model describing the emergent Nambu-Goldstone modes, and the gapped part of the
theory is described by the massive Goldstone mode.

In Fig. 1.16 (b1), we show the scaling of the BW VNE for both cylinder and torus geometries.
The scaling is clearly linear. In the case of the HM on a torus, we extracted the coefficient
A by fitting these results to S(L) = AL + Bln(L) + D, and obtain A = 0.372(6), which is
in agreement with a prediction based on spin-wave approximation [113] (discrepancy < 3%).
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Figure 1.17: The plot shows the result for the bilayer HM entropy at the QCP, g. = 2.522, and different
a.r. = Ly, /L,, where L, = L. The outcome is well described by a linear fit, and the y-intercept is v ~ 0,
see the inset.

In Fig. 1.16 (b2), we extract the subleading logarithmic correction by considering the entropy
difference 2S(L) — S(2L) ~ %g(m in toroidal geometries of circumference 2L. The number of
Nambu-Goldstone modes obtained from the prefactor of this term is in perfect agreement with
field theoretical expectations |29, 113, 32, 114|, with accuracy at the percent level or lower. The
fact that the VNE returns a value which is considerably closer to the field theoretical prediction
when compared to the one extracted from Renyi entropies [30, 32| may signal the fact that the
latter are more affected by irrelevant operators, as observed in 1D [107, 35, 109], or may be due
to the smoother continuity properties of the VNE.

Strongly coupled Quantum criticality. As a second example of a 2D system, we consider
the bilayer Heisenberg model [115, 116]. This model describes a quantum phase transition
induced by the inter-coupling g that belongs to the O(3) universality class. We compute the
BW-EH entropy at the QCP, g. = 2.522, considering Sgpy = 27 /v, with v = 1.9001(2) [112].
For this universal class, it has been argued that there is a universal constant correction to the
entanglement entropy that depends solely on the aspect ratio [100, 117]: for a cylinder geometry
with PBC in the y direction, this constant has been conjectured to vanish, in sharp contrast to
anti-PBC. Verifying this conjecture requires accurate values of the entropy at large system sizes
of several hundred sites.

Our results up to partition of size L = 18 are depicted in Fig. 1.17. Within error bars,
they show that S(L) is independent of the aspect ratio of the subsystem, see Fig. 1.17, and
have no detectable logarithmic subleading term (the S(L) = AL + Bln(L) + D fitting, gives
B = —0.05(8)). The y-intercept of S(L) is 0.010(7), which confirms the conjecture for the
universal constant contribution for the O(/N) model [100].

1.2.4 Stability of the Bisognano-Wichmann entropy

We now discuss the stability of the approach to measure the BW-EH utilizing QMC simulations.
The most critical step are uncertainty due to errors in determining Spp. Since the density of
states of the EH has qualitatively distinct properties from conventional density of states, it is of
key importance to understand the sensitivity of the approach proposed here to such errors.

In Fig.1.18 (al,bl), we show the value of the extracted entropy obtained via Wang-Landau
sampling as a function of £, for both 1D and 2D HM. The insets magnify the region in the
vicinity of the exact value of Sgp, signaled by a dashed vertical line: in this regime, the entropy
is linearly sensitive to 5. This implies that the accuracy in estimating S is ultimately limited
by the accuracy on the sound velocity: this strengthen the applicability of our method to QMC
simulations, where v can be measured very accurately via a variety of techniques [118, 112].
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Figure 1.18: Panels (al) and (b1l) show the 8-dependence of the BW-EH entropy for the 1D (infinitePBC)
and 2D (torus) HM, respectively; the insets magnify the regions close to the numerical exact value of
Ben (dashed vertical line). Panels (a2) and (b2) show the BW-EH entropy as a function of the disorder
magnitude § for the (a2) 1D HM with L = 16 (infinite PBC) and (b2) 2D HM (torus) with L = 8 (see
text). The circles (black points) are the value of S for a single realization of disorder, while the triangles
(red points) are the averaged S (N, = [100 - 200] realizations of disorder are used). The horizontal dashed
line represents the value of S in the clean case.

Finally, we address the effects of random perturbations in the EH couplings I';,, which ac-
counts for possible imperfect experimental realizations of the EH. We consider disordered cou-
plings, I'; — 'y (149,), where d, € [—0, J], in the BW-EH of the HM (in 1D and 2D). Specifically,
we are interested in understanding how the BW VNE is affected by a small amount of disorder.

In Fig. 1.18 (a2,b2) we show that the BW VNE is not appreciably affected by disorder up to
strength of the order of 10%. For larger values of §, we observe a considerable dependence on the
disorder realization, as signalled by the visually large spreading of the values of S. Surprisingly,
the mean value of the entropy is not dramatically affected. This remarkable stability is in contrast
to what is typically found when studying the effects of disorder in the Hamiltonian couplings,
which have a quantitatively larger effect on entropies. A possible element in support of this
unexpected resilience is the fact that the VNE is endowed with particularly robust continuity
properties with respect to changes in the entanglement spectrum (which is instead expected to
be directly affected by the random couplings).

The generic approach described above can be extended to formulate protocols to measure
the von Neumann entropy in experiments, complementing previous approaches based on Renyi
entropies [119, 120, 121, 122, 123, 124, 125] and entanglement spectra [126, 13]. The key ingre-
dient here is to obtain the density of states of the EH, whose microscopic implementation has
been discussed in Ref. [13].

1.2.5 Conclusions

We have presented a method to measure the ground state von Neumann entropy of a broad class
of lattice models via direct thermodynamic probe of the correspondent entanglement Hamilto-
nian. The method is straightforward to implement in quantum Monte Carlo simulations, and is
of immediate applicability to experiments capable of measuring the density of states. It enables
accurate predictions of universal quantities solely based on entanglement, thanks in particular to
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its immediate scalability in numerical simulations. Future perspectives include the application
of the method to other entanglement related quantities, such as the negativity, its extension to
lattice gauge theories, and its integration with methods to determine the EH at finite tempera-
ture 94, 127].
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1.3 Finite size corrections to the Bisognano-Wichmann theorem

In Secs. 1.1 and 1.2 we showed that the EH corresponding to the ground state of the lattice models
whose low-energy physics is captured by a Lorentz invariant field theory can be approximated
by a lattice adaptation of the Bisognano-Wichmann (BW) theorem, the corresponding reduced
density matrix, ppw, although not generically exact, accurately reproduces not just the low-lying
entanglement spectrum, but also properties directly related to its eigenvectors, such as correlation
functions and order parameters. Furthermore, the von Neumann entropy obtained from pgyy, i.e.
SlBW, accurately describes universal properties, such as, the central charge of one-dimensional
critical models. Since the BW-EH is based on a quantum field theory result, one expects that,
while universal properties should be well captured, non-universal ones and contributions due to
lattice and finite-size effects are not necessarily captured by ppy . Here we focus on 1-dimensional
critical systems, and we demonstrate that the capability of the EH in Eq. (1.2) to approximate
ground state reduced density matrices on the lattice goes well beyond the universal low-energy
regime. By analyzing the Rényi entropies obtained from the CF'T generalizations of BW theorem,
we prove that rhopy encodes non-universal subleading corrections in the higher moments of the
entanglement spectrum distribution.

In Sec. 1.3.1 we review the general behavior of the Rényi entropy in quantum critical chains
and we describe the quantities analyzed in the subsequent sections. In Sec. 1.3.2 we present our
comparison between the BW and the exact results of the Rényi entropy. Finally, in Sec. 1.3.3 we
draw our main conclusions and connect them with other related works.

1.3.1 Rényi entropy via the Entanglement Hamiltonian

Over the last years, bipartite Rényi entropies (REs) have become a paradigmatic quantity in the
characterization of quantum many-body lattice models [128, 23, 8]. In quantum critical chains,
for instance, the scaling of the bipartite Rényi entropy of the ground state is associated with the
underlying conformal field theory (CFT) describing its low energy properties [129, 130, 25]. When
the subsystem consists of a single, simply connected interval, the leading and the subleading
scaling of the Rényi entropy with the subsystem size give access to the corresponding central
charge {129, 130, 25| and the operator content [131, 35, 36, 132, 37| of the theory, respectively.
In more than one-dimension, REs also determine universal properties of the system, such as
the number of Goldstone modes in spontaneously-symmetry-broken phases [29], and serve as a
diagnostic tool to characterize topologically ordered phases [28, 27, 133].

From a quantum information perspective, REs characterize the entanglement between a sub-
system A of a pure state (here we focus on the ground states and simply connected subsystems),
|YaB), and its complement B. In the following we consider the a—Rényi entropies, defined as:

1
So = In Trp9, (1.38)

l—«

where pg = Trp|Yap) (¥ap|; with Trp being the trace over the complement of A. For the limiting
case a = 1, one obtains the von Neumann entropy, that is, the bipartite entanglement measure
for pure states. REs with o > 1 provide strict lower bounds on the entanglement between A and
B.

In this work, we focus on partitions with the geometries shown in the Fig. 1.15 (a). As
outlined in Sec. 1.1, the corresponding BW-EH can be obtained for CFT systems from the
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following expression

L—1 L
Hpw = Baw [T Y _A) b1 + 0> An—1/2) 1|, (1.39)
n=1 n=1

with the appropriate choice of the couplings A(n). Here Bn7n+1 and [,, are two-sites and single-
site terms present in the Hamiltonian density. For a subsystem that is embedded in an infinite
system (Fig. 1.15 (al)), one has [45]

(1.40)

For finite systems with half-bipartition, i.e. L = Lg/2, in the case of open and periodic boundary
conditions (Fig. 1.15 (a3) and (a2)) one has [46]

A(n) = %sin (%) , (1.41)
and
A(n) = %sin (%) . (1.42)

We call these partitions finite OBC and finite PBC, respectively.
Finally, we define the BW reduced density matrix as

e—BewHpw

pPBW = : (1.43)

ZBW

where the constant Zpy = Tre=#BWHBW guarantees the proper normalization of the BW reduced
density matrix, Tr(ppw) = 1. For later convenience we define Hpy = Hpw /BBw -

Let us now discuss how to obtain the Rényi entropy with the aid of the BW-EH. If we
substitute the definition of the BW reduced matrix, Eq. (1.43), in Eq. (1.38), we obtain

af
SOV = TN [F(Bsw) — FlaBpw)], (1.44)
where F(Bpw) = —ﬁ In Zpw is equal to the free energy of the BW-EH at the inverse entan-

glement temperature Spw. In the limit o — 1, S, reduces to the the von Neumann entropy,
and SBW reads

SlBW = Bew <HBW> + In Zgw, (1.45)

which is nothing else but the definition of the thermodynamic entropy of the BW-EH system at
Bem. Both the BW Rényi entropy with o > 1 and the von Neumann entropy can be obtained by
computing the thermodynamic properties of the BW-EH. For instance, for a quadratic fermionic
EH, we can write

Hy =" e(k)cter, (1.46)
k
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where €(k) is the single-particle spectrum of H,. One then can simply employ the conventional
definition of the free-energy for non-interacting fermions

P(B) = —; Sin e 1] (1.47)
k

and use Eq. (1.44) to compute SZW. We use this expression to compute SZW for both the XX
and the transverse field Ising models, which are known to be mappable to free fermionic theories.

For models whose Hamiltonians cannot be cast in a quadratic form, one can use quantum
Monte Carlo methods to compute SZW. It is important to mention that the BW-EH of sign-
problem-free models, as the ones considered here, is also sign-free. For models with the sign-
problem, one can use tensor network methods to compute SZY. We consider the quantum
version of the Wang-Landau method [99] performed in the stochastic series expansion (SSE)
framework [101, 102|. This method allows a direct calculation of the free-energy and the entropy
of the BW-EH at 8 = Bgr. Here we use both local and SSE directed-loop updates to simulate
the XXZ model [39, 71]. Using WL-QMC we can compute SZW for system sizes comparable
with the ones achievable with DMRG, L ~ 102. For interacting systems, we also employ exact
diagonalization (ED) methods to compute SZW. We compare SV with the Rényi entropy
obtained with the exact reduced density matrix ps. From now on we call the exact Rényi
entropy S,. For the non-interacting systems (XX and transverse field Ising models), we obtain
S, with the aid of the correlation matrix [134], and for interacting systems we use both ED and
DMRG methods.

The Rényi entropy of the ground state of one-dimensional models whose low-energy physics
is captured by a gapless relativistic field theory has been extensively studied by both analytical
and numerical methods, see Refs. [128, 135, 23, 8] for reviews. There are numerous analytical
and numerical results indicating that the leading asymptotic behavior of S, for & — 17 coincides
with the entropy of the vacuum in the CFTs [135], i.e. for L/a > 1 (a is the lattice spacing)
So = Sg FT " For example, when the subsystem is a single interval of length L embedded in an
infinite system (see Fig.1.15 (al)), one has [129]

1\. L
SCFT (L) = g (1 + a) In =+ c, (1.48)

where c is the central charge of the corresponding CFT and ¢, is a non-universal constant. The
CFT formula is also generalized to a finite system with the length Ly where we have [129, 25]

c c 1 nLr . wL
Sa FT(L, LT) = % (1 -+ a) hl |:7m Sin L7T + C/OI” <149)
where n = 1,2 for PBC/OBC, and ¢/ is a non-universal constant.

Away from the asymptotic limit L > a (from now on we set a = 1) it is known that S, includes
corrections to the CFT expressions, i.e.

Ca(L) = Sa(L) — SSFT(L) £ 0, (1.50)
As first noticed in the Ref. [107], for systems with OBC, the CFT formula cannot explain the

oscillations observed in the von Neumann entropy. In Ref. [35], it was observed that parity
oscillations in the S, of the XXZ model can also occur in a system with PBC for « > 1. There
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it was proposed that the asymptotic leading term of C, (L) is given by
do(L) = focos (2kpL)|2L sin(kp)| P, (1.51)

where f, is a nonuniversal constant, p, is a universal critical exponent equal to p, = 2K/« and
K is the Luttinger liquid parameter. For the XXZ model kx*Z = 7/2 and d,(L) oscillates with
L. In this case the presence of d, (L) is confirmed by both exact numerical calculations based on
DMRG [107] and the exact analytical expression for the Rényi entropy of the XX model [136].
The oscillatory behavior of these corrections is attributed to the tendency to antiferromagnetic
order in the ground state of the XXZ model. Oppositely, for the transverse field Ising model, as
kllfmg = 2k%XZ the leading term of C,(L) is given by a nonoscillatory du (L) [35].

The fact that the asymptotic leading term of C, (L) is equivalent to d, (L) has been confirmed
with DMRG calculations for models belonging to different universality classes in finite systems
with both PBC and OBC [107, 36, 132, 37, 137]. These results support the following scenario
for the models considered here: while the XXZ model exhibits oscillatory corrections to the CFT
formula, the discrete-symmetric Z5 transverse field Ising and Z3 three-state Potts models exhibit
no oscillations. Furthermore, the power law decay exponent of the leading term of C,, (L) is given

by

X,
DPa = 1 5 (1.52)
(6%

where 77 = 1,2 for OBC/PBC, and X, is the scaling dimension of the energy operator. An
exception is the von Neumann entropy of systems with PBC. In this case, the leading term of
C,, does not oscillates with L, and the power law decay is given by 1/L", where v = 2, as shown
by numerical results based on DMRG [37].

The accuracy of ppy relies on the underlying field theory being Lorentz invariant®. This
is always the case for the quantum critical chains considered here, where conformal symmetry
emerges as a feature of the low-energy degrees of freedom of the system. Even in this case,
however, one shall expect that lattice effects are not completely suppressed, and the exact EH
is not exactly given by Eq. (1.39). As an example, we mention the exact results for the EH of
a free fermionic chain at half-filling, that are very close to the BW-EH, but presents tiny longer
range terms that survives even in the L — oo limit [16, 138]. These terms, completely absent in
the BW-EH, are caused by the curvature arising in the dispersion relation of hopping fermions
on the lattice away from Fermi points and they can be systematically computed [139]. In the
context of lattice models the exact EH for a half chain is known for the transverse field Ising
chain away from the criticality and the XXZ model in the massive phase [17, 140].

Since even when L — oo the BW-EH is not exact in general (e.g., as for the free-fermion
chain), one may wonder that the BW Rényi entropy: i) does not reproduce the non-universal
contributions such as the additive constants ¢/, (or ¢/1), despite the fact that the low energy part
of the spectrum of the BW-EH is in almost perfect agreement with the exact ones, as discussed
in Ref. [1]; i) does not capture the corrections to the CFT scaling associated to relevant (or
irrelevant) operators, as discussed in the last section.

In order to investigate these issues, we consider the size scaling of the Rényi entropy obtained
from ppw. More specifically, we discuss the behavior of the leading terms of SZ" and the BW
corrections to the CF'T formula

Ca" (L) = SV (L) = 8§ (L) + ¢, (1.53)

SFor the BW-EH obtained from Eq.(1.40),(1.41),(1.42), the accuracy of ppw relies on the underlying field
theory being conformal invariant
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Figure 1.19: Left. BW Rényi entropy for the XXZ model with (a) A =0 and (b) A = 0.5. Results for
both even and odd values of L are shown. In panel (a) we obtain SZW by diagonalizing the corresponding
free-fermion BW-EH of the XX model, while in panel (b) we use both QMC (empty points) and ED (filled
points). QMC error bars are smaller than the marker sizes. The values of the central charge extracted
from SPW is presented in panel (b). Right. C, is presented in panel (a) for even and odd values of L; the
blue points (stars) correspond to the exact results obtained with the correlation matrix technique [134].
In panel (b) we show pZ"W calculated using the fitting procedure described in the main text; the dashed
line represents the exact value of ap,.

Note that for convenience, we add the constant ¢, (¢ for a finite system). The asymptotic
leading term of CBW (L) is investigated by fitting it with the following function

Fo(L) = Ao + f2V 17", (1.54)
where A,, fBW and pB"W are free parameters. As can be noted, apart from the constant A, the
function F,, (L), neglecting the oscillating factor, has the same form of d,(L) (Eq. (1.51)). We
also consider the discrepancy between the BW and the exact Rényi entropy

dSe = |SBW — 5,|. (1.55)

We stress that, unlike previous studies that were mostly concerned with the low-lying part
of the entanglement spectrum (ES), eigenvectors, and correlators [141, 138, 70, 1], we focus here
on properties of the full reduced density matrix, such as momenta of the ES distribution (i.e.
the REs). The analysis of the finite-size scaling of the REs allows us to check if ppy captures
universal properties of the system.

1.3.2 Rényi entropies on the lattice from the Bisognano-Wichmann theorem

In this section, we analyze the accuracy of SEW and CEW by directly comparing it with the
results obtained from the exact pa, and the general theoretical behavior of S, known from
CFT. We consider the partitions shown in Fig. 1.15 (a) (i.e. for finite systems we always con-
sider half-partition). In particular, we discuss results for the XXZ chain, transverse field Ising
(TFIM), three-state Potts (3SPM) and bilinear-biquadratic spin-1 (BBM) models. The exact
Rényi entropy exhibits an oscillatory behavior with respect to L for the XXZ chain, whilst these
oscillations are absent for both TFIM and 3SPM. We conclude this section by showing SZW for
the critical non-integrable BBM.
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Figure 1.20: Left. Panels (al) and (bl) present C, for OBC and PBC, respectively, in the XX model; the
blue points (stars) correspond to exact results obtained with the correlation matrix technique [134]. In
panels (a2) and (b2) we show the results of the calculated pZ" for OBC and PBC, respectively, using the
fitting procedure described in the main text; the dashed line represents the exact value of ap,. Right.
Panels (al) and (b1) present the corrections to the scaling of the BW Rényi entropy, SE"W, for the infinite
and finite PBC partitions, respectively, in the XX model. The blue points correspond to exact results.
In panels (a2) and (b2) we show the discrepancy between the BW and the exact REs for the infinite and
the finite PBC partitions, respectively, with different values of «

XXZ model. The XXZ model has been introduced in Sec. 1.1. The Hamiltonian is defined
in Eq . (1.25). Here we focus on the parameter region —1 < A < 1, where the ground state of
the XXZ is gapless and can be described by a CFT with ¢ = 1. We remind that, in this regime,
the exact sound velocity is given by v = mv/1 — A2 /2arccos A. It is worth mentioning that the
exact EH in the massive phase (i.e., A < —1 or A > 1) is equal to the BW-EH (with coupling
A(n) =n) for L — oo [17, 140|. However, the corner transfer matrix method used to obtain this
result is not applicable to the gapless regime discussed here.

The resulting BW-EH for A = 0, that corresponds to the XX model, can be mapped to a free-
fermion Hamiltonian with the aid of the Jordan-Wigner transformation. The SEW (Eq. (1.44))
is then obtained by diagonalizing the L x L matrix. This method allows us to achieve very large
subsystem sizes (L ~ 10%), which is fundamental to determine the corrections to the leading
term in SBW. For A # 0, the calculation of SBW is limited to L < 100, and is performed using
QMC and ED methods (see below).

For the PBC case, the size-scaling of the BW von Neumann entropy follows the expected
behavior predicted by CFT, as discussed in Refs. [16, 138, 2|, and illustrated in Fig. 1.19 (left)
a for the A = 0 case. We confirm this result for the XXZ model with A = 0.5 using the Wang-
Landau SSE method [101, 102]. We consider the following cutoff for the SSE series expansion:
A = 258gu|E(BEn)|, where E(Srm) is the expectation value of the total energy at inverse
temperature Bgp. This choice of A allows us to obtain SEZW for a < 2; for comparison, we
also compute SEW with ED. As shown in Fig. 1.19 (left) (b), we obtain ¢ = 0.996(5) by fitting
the QMC data, SPW (L), for L < 30 with the CFT formula (Eq. (1.48)). More interestingly,
we note that while SPW is a smooth function, SEW (for a > 1) exhibits oscillations with L, as
expected from the exact results when « > 1. Furthermore, the decrease of these oscillations with
L suggests that SBW gives back the CFT formula in the asymptotic regime. Similar corrections
to the CFT formula are observed in the OBC case [2]. We now investigate in more detail these
corrections by presenting the results for CZW (L) for different partitions.

We first consider CZW (L) for the XX model in the infinite PBC case. The oscillatory behavior
of SBW is manifest when we plot CBW (L) for even and odd values of L. As an example we show
the a = 3 case in Fig. 1.19 (right) (a). The asymptotic behavior of CBW (L) is analyzed by
fitting our results with Eq. (1.54) (in the fit, we just consider the values of CZW (L) for odd L).
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BW | 0.11422(5) | 0.1614(5) | 0.1743(5)
exact | 0.11423... | 0.1609... | 0.1726...

Table 1.1: The table shows the comparison between the calculated fZ"W (using the infinite PBC
BW-EH) for the XX model and the exact coefficients f, (Eq.(1.51)) taken from Ref. [136].

Although not shown here, we also considered other values of «, with similar conclusions. The fits
are performed with respect to L in the interval [L;y,, Lyqz]; where the maximum value considered
for Lip is Lip = Lmaz — 103. As we improve the quality of the fit (i.e., increasing the value of
L;y,), the parameter pgw converges to the expected scaling exponent, p, = 2/«, see Fig. 1.19
(right) (b).

It is worth mentioning that the coefficient fZ" obtained from the fit is also in a quantitative
agreement with the exact result for f, obtained in Refs. [35, 136], see Table 1.1. In the Table
we considered o = 2,3 and 4; the agreement of 5" worsens for larger o because sub-leading
terms of CBW (in addition to the leading one described by Eq. (1.51)) become more relevant
as we increase o. The same thing occurs with the exact Renyi entropy [35]. Note that for
« = 1 the exact calculations predict f; = 0. The coefficient f#" will be discussed below. These
results strongly indicate that, in the asymptotic regime, CBW (L) is not just qualitatively, but
also quantitatively in agreement with the leading asymptotic behavior of the exact corrections.

We now consider the finite-system partitions with both OBC and PBC; see Fig. 1.15 (a2)
and (a3). The correction CBW (L) exhibits the expected oscillatory behavior with L. For OBC,
this behavior occurs even for the o = 1 case, see Fig. 1.20 (left) (al). Furthermore, by fitting
these results with Eq. (1.54), we observe that the values of pB" are also in agreement with the
exact results p, = 1/a and p, = 2/« for the OBC and PBC, respectively, see Fig. 1.20 (left)
(a2) and (b2). These results indicate that the leading asymptotic term of CBW is given by d,
(Eq. (1.51)).

Despite the agreement between CPW and the exact results in the asymptotic limit, a com-
parison between C2W (L) and the exact results still shows some tiny discrepancies, see Fig. 1.20.
Although not visible in Fig. 1.19 (right) (a) these tiny discrepancies also exist for the infinite
PBC case. The question then is what is the nature of these discrepancies. The results discussed
so far indicate the following: while the leading term of CEW (L) coincides with d, (Eq.(1.51)),
subleading corrections, that are most likely present in both the exact and the BW C, (L), are
different (at least, at the scale accessible to our numerical calculations).

In order to better analyze the point raised in the last paragraph, we discuss now the behavior

of the von Neumann entropy for systems with PBC. In this case, the exact S; does not exhibit
any oscillating term, and the leading term of Cy is not given by d, [35, 136]. It is interesting to
note that SPW also does not oscillate with L, as can be seen in Fig. 1.20 (right). Nevertheless,
unlike the o > 1 cases, the trends of the size scaling of the BW and the exact C, are completely
different. This fact explains the tiny discrepancy dS,/So < 1073. In this case, already the
leading term of CPW (L) differs from the exact corrections.
We note that the scaling exponent that determines the asymptotic behavior of dS, ~ 1/L7
does not depend on «, and is 7, ~ 1.9, see Fig. 1.20 (right) (a2) and (b2). The fact that v,
is independent of « is in line with the previous statement that the correction d, is present in
both the BW and the exact S, i.e., this factor cancels out when we consider the difference dS,.
Finally, we observe that the discrepancy of the BW REs is almost independent of «, as expected
from the discussion above.

We now discuss the results for A % 0. In this case, the investigation of the asymptotic
behavior of CBW is hindered by the small system sizes that one can achieve with ED. In addition,
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the tiny discrepancies between the BW and the exact results, dS,/S, < 0.1%, are difficult to
access with QMC due to the statistical errors in the MC estimates. Despite these technical issues,
the results obtained with both ED and QMC show that the behavior of CBW is in line with the
exact results. The exact Rényi entropy (and Cl,) is obtained with ED for subsystem sizes L < 12
and DMRG for L > 12. In the DMRG calculation we obtain the entanglement spectrum of the
original system by keeping 100 - 150 states and using the ground state as the target state in the
proper symmetry sector.

In Fig. 1.21 (a) and (b), we show some examples of the scaling of CBW obtained with QMC
for L < 30, and two different values of A. For PBC, CBW oscillates with L for a = 2, but
not for a = 1, as it is expected for the exact C,. By fitting CPW with Eq. (1.54), we obtain
the following values for the scaling exponent p&"W for two case values of the anisotropy A:
pEW (A = 0.5) = 0.78(3) and pF" (A = 0.9) = 0.61(7). These results have a discrepancy of
almost 4% with respect to the the exact results: pa = 0.75 (A = 0.5) and p2 ~ 0.583 (A =0.9),
for the XXZ model with PBC, po = K, where K = 7/ (2arccos(—A)) is the Luttinger liquid
parameter. This discrepancy seems to be unaffected by potential logarithmic corrections that
are present at the isotropic point.

The results of CBW obtained with ED for L < 15 are also in agreement with the exact
ones, as can be seen in Fig. 1.21 (¢) and (d). The discrepancy dS, goes to zero as a power
law, dS, ~ 1/L7 see Fig. 1.21 (¢2) and (d2). Furthermore, the scaling exponent 7, is almost
independent of «a, as observed for the XX model with larger subsystem sizes. This feature can
be explained if we assume that the correction d, is present in both the BW and the exact S,
i.e., this factor cancels out when we consider the difference dS,,.

Transverse field Ising and quantum three-states Potts models. In this section, we
discuss the behavior of SBW for models that are characterized by discrete global symmetries.

First, we consider the transverse field Ising model(TFIM), whose Hamiltonian and phase diagram
has been reviewed in Sec. 1.1.5. It is worth to point out that for this model the EH of a half-
partition in an infinite chain was computed exactly away from the critical point [16]. The
result perfectly matches our lattice version of the BW theorem; however, it does not predict
the prefactor Sgg. Here, instead, we focus on the quantum critical point, where the TFIM is
characterized by a CFT with ¢ = 1/2 and the exact sound velocity is equal to v = 2. As it occurs
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Figure 1.21: In panels (a) A = 0.5 and (b) A = 0.9 we present the correction to the scaling of SZW
obtained with QMC for the infinite PBC partition. In panels (¢) A = 0.5 and (d) A = 0.9 we obtain the
results with ED and DMRG (see text) for the finite PBC partition: (c1) and (d1) show the corrections
to the scaling of SZW while in (c2) and (d2) we present the discrepancy between the BW and the exact
REs for different values of a.
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Figure 1.22: Left. BW Rényi entropy for the (a) transverse field Ising and the (b) three-state Potts
model for different values of «. Results for both even and odd values of L are shown. In panel (a) we
obtain SBW by diagonalizing the corresponding free-fermion BW-EH of the TFIM, while in panel (b)
we use ED (see text). The values of the central charge extracted from SEW are presented. Right. C,
is presented in panel (a), while in panel (b) we show the results of the calculated pZ" using the fitting
procedure described in the main text; the dashed line represents the exact value of ap,.

for the XX model, the BW-EH of the TFIM can be mapped to a quadratic Hamiltonian with
the aid of the Jordan-Wigner transformation. For this model we are able to consider systems up
to size L = 103,

We further consider the three-state Potts Model (3SPM) (see Sec. 1.1.5). As in the TFIM case,
we focus on the quantum critical point, ¢ = 1. In this case the system is described by a CFT
with the central charge ¢ = 4/5 [76, 77|, and the exact sound velocity is v = 3v/3/2 [75]. We use
ED to obtain the SBW (L) for systems with sizes up to L = 12.

Before discussing the scaling properties of the deviations with respect to the exact result,
we briefly illustrate the overall scaling of SBW (L) as a function of L. The latter is depicted in
Fig. 1.22, for both the TFIM and the 3SPM. No oscillations with L are present, as expected
for these models [37]. Here we just show results for the infinite PBC case, however, we also
confirmed similar results for the other EHs described in the Sec. 1.3.1. Furthermore, we calculated
the central charge by fitting SZW to the CFT formula, Eq. (1.48). The outcome is in perfect
agreement with the exact results, as can be seen in Fig. 1.22 (a) and (b). In particular, for the
3SPM we obtain ¢ &~ 0.798, from SPW which has a discrepancy of just 0.3% with respect to the
exact result, ¢ = 4/5. It is worth emphasizing that this result is obtained for subsystem sizes
up to just L < 12, which signals the fact that SBW is barely affected by corrections to the CFT
formula, contrarily to what is observed for the Rényi entropy of the XXZ model.

We now discuss the behavior of the corrections to the CFT formula, Cy(L). We start by
considering an infinite system, and fit CPW (L) for L within the interval [L;,, 10%] for different
values of o to Eq.(1.54), see Fig. 1.22 (right) (a). As we increase L;,, the parameter pZ"
converges to the exact result po, = 2/a [35] (see Fig. 1.22 (right) (b)).

For the finite-system partitions, we explicitly compare CEW with the exact results. In this
case, we focus on the PBC case. As we see in Fig. 1.23 (a), for a« = 3, the discrepancy between
the exact and the BW results is almost negligible (e.g., dS3/S3 < 1072 even for L ~ 10). The
exact and the BW corrections have the same behavior as L increases, i.e., CBW (L) increases and
then saturates to a constant value, which also strongly indicates that the leading term of the
exact and the BW C, (L) are the same. Consequently one can conclude that the discrepancy dS,
is due to subleading terms present in both the BW and the exact Co(L). Although not shown
here, we have also observed similar behavior for all the o > 1 cases that we considered.

For the case of the von Neumann entropy, the size scaling of C5"W has a different trend compared
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Figure 1.23: Results for the transverse field Ising model are presented in panels (a)-(c). Panels (a) and (b)
show the correction to the scaling of the BW Reényi entropy for the finite PBC partition with o = 3 and
a = 1, respectively, while in panel (¢) we consider the discrepancy, dS,, as a function of the subsystem
size, L. We obtain these results by diagonalizing the corresponding free-fermion BW-EH. In panels (d)-(f)
are presented results for the three-states Potts model with the same set of parameters of panels (a)-(c),
respectively, and using ED (see text).

to the exact results, see Fig. 1.23 (b). As discussed for the XXZ model, since the exact C; differs
from d, (Eq. (1.51)) [35, 136, 37|, already the leading term of C£"W is different from the exact
corrections.

Finally, we observe that dS, goes to zero as a power law, dS, ~ 1/L7 see Fig. 1.23 (c). The
scaling exponent v, does not depend on « (7, = 1.8), as can be seen in Fig. 1.23 (c¢). Similarly
to the conclusions that we drew for the XXZ model, this result can be explained by the fact that
the a-dependent correction d, (see Eq. (1.51)) is present in both the BW and the exact S, with
comparable numerical coefficients.

For the 3SPM, due to size limitation, we were not able to compute the exponent pZ". Never-
theless, in Fig. 1.23 (d)-(f), we show how the behavior of CZW is qualitatively in agreement with
exact results. In particular, we note that the scaling exponent ~, associated to the power law,
dSy ~ 1/L7 (see Fig. 1.23 (f)) is almost independent of «.

To summarize our investigation of the accuracy of the BW REs, we observed that for all the
models considered here the almost negligible discrepancies (dS, /S, < 1073 even for subsystems
with L =~ 10) vanish as L — oco. For a finite partition, the corresponding value of dS, can be
understood as follows: both the logarithmically-divergent CFT term, Eq. (1.48), and the leading
corrections to the CFT scaling (see Eq. (1.51)) are properly described by SBW (with the exception
of a =1 for PBC). Finally dS,, is related to subleading corrections, that are associated to both
the BW and the exact results. The investigation of the nature of the subleading corrections to
CBW is beyond the scope of this work.

Bilinear-biquadratic model. All the models under investigation so far can be either mapped
into free-fermion chain or solved by Bethe ansatz, and thus are considered integrable models.
In fact, integrability is a key ingredient to carry out the analysis presented in the previous
sections, because it gives the exact value of the sound velocity v = 27/, which allows the
computation of SBW (see Eqs. (1.44) and (1.45)). However, v can be computed numerically in
non-integrable models, allowing to compute SZ" in these cases. We thus consider as an example
of non-integrable model the bilinear-biquadratic model (BBM)

L
H=> 8y Sps1+9(Sh-Sni1). (1.56)

n=1
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Figure 1.24: (a) Sound velocity as defined in Eq. (1.58) for Ly = 6,12,18. Dashed lines indicate the
power-law fit with fixed power 2. Blue horizontal lines are the fitted asymptotic values of v, while the
green line is the exact known value v = 27/3 for the integrable point g = 1. The fitted value for these
points deviates from the exact one with a relative error < 107°. Panels (b),(d) show the exact S, for
a = 1,2 (blue squares) and the BW SEW (orange circles) for ¢ = 1.5 (non-integrable point) obtained
with ED. The dashed line is a fit of the last 5 points from the BW von Neumann entropy. The resulted
central charge is in perfect agreement with the expected value, ¢ = 2 (c),(e) Discrepancy between SZW
and the exact S,, as defined in Eq. (1.55), for g = 1,1.2,1.5.

The phase diagram of this model hosts a gapped Haldane phase for —1 < g < 1. The two
boundaries of this phase are gapless Bethe-integrable points whose underlying CFTs have central
charges ¢ = 3/2 for g = —1 and ¢ = 2 for g = 1 [142, 143]. For g < —1 the system is gapped,
while for g > 1, although the integrability is lost, the low-energy degrees of freedom are described
by a CFT with ¢ = 2. Here we consider the region g > 1, and investigate the applicability of
the BW-EH ansatz in the absence of integrability. We use periodic boundary conditions in order
to exploit translation symmetry in the computation of the exact S,. The system is frustrated
when L7 is not a multiple of 3. As we need even system sizes in order to compute half-system
entanglement, we use ED to compute S, for Ly = 6,12, 18.

We employ the BW-EH for finite systems with PBC (Eq. (1.42)). SBW is obtained for
L7 < 22 using ED. The sound velocity v can be extracted from the finite size scaling of the
ground state energy, assuming the knowledge of the central charge [144, 145]. However, here we
follow another route. Based on the very precise relation between the spectrum of the BW-EH,
{eBW1 and the eigenvalues of pa, {\,}, namely

6—27rsfw/v

D P — 1.57
Zom (1.57)

we can compute v from the first two eigenvalues of the BW-EH and p4 via the relation

_2n(efY - f7)
log(Ao/A1)

(1.58)

We verify that Eq. (1.57) holds for g > 1. First, we compute v for g = 1, where the exact sound
velocity v = 27/3 is known from the Bethe ansatz solution. Despite we have only 3 points at
disposal, the extrapolation of the inifinite-size value of v by fitting |v(Lz) — 27/3| with a power
law A/LY (v = 2) gives a value for v that is within 0.5 % level of the exact result. Given the
apparent absence of sub-leading corrections, this procedure gives results which are more accurate
than the values extracted from the finite size scaling of the ground state energy (see Fig. 1.24
(a)). In fact the latter is known to be affected by logarithmic corrections [146]. Assuming the
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aforementioned power-law scaling, we then extract the value of v for ¢ > 1 by considering a
two-parameter fit on 3 points; see Fig. 1.24 (a).

Given the small system sizes that we can reach with ED, we do not discuss the accuracy of
CBW for the BBM, instead, we focus our analysis on the comparison between SZ" and the exact
S,. In Fig. 1.24, we consider S5V for g = 1,1.2,1.5. As can be seen from Figs. 1.24 (c) and (e),
the discrepancy, dS,, decreases with system size and even for L = 9, we observe a discrepancy
dS, ~ 1072, This result is observed not only at the integrable point, g = 1, but also away from
it, i.e., g = 1.2 and 1.5. Furthermore, the central charge extracted from the size scaling of SlB w
for ¢ = 1.5 is in perfect agreement with the exact result, ¢ = 2, see Fig. 1.24 (b). Note that
there is not sign of frustration felt by exact ground state in the von Neumann entropy computed
from the BW-EH. These results demonstrate that the applicability of the BW-EH ansatz is not
restricted to integrable models.

1.3.3 Conclusions

We presented an extensive numerical investigation of the accuracy of the BW Rényi entropy
for one-dimensional critical models. We observed that they converge to the exact results in the
thermodynamic limit, and capture not only the CFT logarithmically-divergent term, but also
some universal finite-size corrections to the CFT formula. We showed that the power-law decay
of the leading term of CBW is related to the scaling dimension of the energy density operator p,
(with the exception of a = 1 for PBC).

In Ref. [139] it was recently shown that the exact lattice EH of free-fermion chains at half-
filling (XX model) is equal to the conformal expression (Eq. (1.3) with the appropriate A(n)) if
one includes the hopping at finite distance in the continuum limit of the entanglement lattice
Hamiltonian. This result shows that the tiny long-range terms present in the exact EH, but
absent in the BW-EH, are irrelevant terms in the asymptotic limit, and explains why the BW
REs are remarkably close to the exact results in the thermodynamic limit. Our observation that
dS, — 0 for the XXZ and 3SPM models indicates that possible long-range terms present in the
exact EH of these critical interacting lattice models are also irrelevant in the thermodynamic
limit.

On the other hand, the observation that SZW properly describes universal lattice-finite-size
effects associated to the scaling exponent p, = nX¢/a, can be understood if one considers the
conformal mapping used to obtain the EH of the partitions considered here [46]. Remarkably, we
observe that even the coefficient of these corrections are almost equal to the exact ones. We thus
conclude that the almost negligible discrepancy dS,, is related to subleading corrections affecting
both the exact and the BW C,. From a methodological point of view, this demonstrate that
our approach may be used to check convergence of tensor network states in conformal phases,
especially for large values of the central charge (since the complexity of the Wang-Landau method
is not affected by the entanglement of the ground state wave function).
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Figure 1.25: Schematic representation of the local quench protocol. The initial state is the product of
the ground state of the two decoupled subsytems A and B. For simplicity we can assume Hy = Hg =
dica /B h;. At time ¢ = 0 an interaction between A and B is switched on, and the systems is let evolving
with the Hamiltonian H =}, , 5 hi-

1.4 Outlook

In this chapter, we gave a comprehensive characterization of ground state entanglement Hamil-
tonians in a wide variety of lattice models, in one and two dimensions. Our results demonstrate
the applicability of quantum field theory to reproduce, with high accuracy, zero-temperature
equilibrium properties of many-body quantum systems in a strikingly simple fashion. Moreover,
we showed that the implications of our findings can give guidance to overcome the computational
complexity of many-body ground states in more than one dimension.

The predicting power of conformal field theory extends well beyond equilibrium physics.
Conformal field theory can be applied to describe the dynamics of one-dimensional many-body
systems after a quantum quench [147], and to provide an analytical expression for time-dependent
entanglement Hamiltonians [46]. This fact might be key to climb over the so-called entanglement
barrier: quantum dynamics generates an increasing amount of entanglement over the initial state,
precluding the possibility of efficiently representing the state at all times. Having parametrical
control over the entanglement Hamiltonian of the state at time t enables the use of Quantum
Monte Carlo algorithms to compute time-dependent quantities for arbitrarily large times.

One example is provided by the entanglement Hamiltonian after a local quantum quench.
The quench protocol is depicted in Fig. 1.25. We take an initial state which is the product of
two identical ground states of an Hamiltonian H4 = Hp, where A and B are two equal-length
partition of an open chain. We can think about this state as the ground state of an Hamiltonian
H = Hy + Hp, in which A and B are decoupled, namely the Hamiltonian density h on the link
between A and B is zero. When the Hamiltonian H is critical and A and B are semi-infinite
lines, conformal field theory provides an expression for the entanglement Hamiltonian at time
t [46]:

_m@:%/wwtﬂmmw/mﬂﬁﬂﬂmy (1.59)
A A

where the T and T are the two chiral components of the stress-energy tensor in the CFT. They
can be expressed as

h(z,t) —2i—p(x,t)’ T(a.t) h(z,t) ;p(x,t)’

T(z,t) = (1.60)
where h and p are the Hamiltonian and momentum density, respectively.Since a local quench
injects a non-extensive amount of energy in the system, the resulting dynamics is governed by
the low energy states of the full systems. In this regime we can expect that CFT gives a reasonable
description of the time-evolved state.

In order to put Eq. (1.59) on the lattice we need to find the lattice counterpart of the momentum
density p. However, the momentum operator is highly non-local on the lattice, meaning that
it cannot be expressed as the sum over all lattice sites of a local density. This issue can be
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circumvented by observing that the stress-energy tensor is a 2 x 2 matrix that reads

.
T, =" "), (1.61)
P Jp

where jj, and j, are the currents associated to the densities h and p. Assuming Lorentz invariance,
which is only approximate (at low energy) on the lattice, the stress-energy tensor is symmetric:
Jn = p. Moreover, energy and momentum conservation imply:

Oih + ax]h =0, 815]9 + 8m]p =0, (1'62)

The first equation can be put on the lattice by rewriting the temporal derivative using Schréedinger
equation

athn =1 [Ha hn] = ZZ [hka hn] =1 ([hn*17 hn] + [hn+17 hn]) (1-63)
k

and discretizing the spatial derivative to yield the following lattice expression for the momentum
density
Pn = { [hn—la hn] (164)

Combining the last equation with Eq. (1.59), we can obtain a lattice version of the time-dependent
entanglement Hamiltonian:

a0 =" M ) )+ T e, (6)
neA neA

where the model-dependent sound velocity v has been restored. Notice that the presence of the
momentum density p, implies that the H A(t) is complex, signaling the breaking of time-reversal
invariance. From a numerical perspective Eq. (1.65) would require to compute the time evolution
of h,(t) and p,(t), which is impractical for large systems. There are two ways to escape this
problem. Either we shift the integration variable in Eq. (1.59) to express H4(t) in terms of
T and T computed at ¢ = 0 (making the integration domain changing with time), or we use
the CFT time-evolution T'(x,t) = T(z — vt) and T(x,t) = T(x + vt) (properly discretized). In
both cases we get a discontinuous function of time, which becomes smoother as the system size
increases. Understanding its predictive power and its regimes of applicability shall be object of
future investigation.
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Chapter 2

Parent Hamiltonians for
low-entanglement quantum states

This chapter is based on unpublished work and on the following publication:

[1] X. Turkeshi, T. Mendes-Santos, G. Giudici, M. Dalmonte
Entanglement-Guided Search for Parent Hamiltonians
Physical Review Letters 122, 150606 (2019)

Variational wave functions have played a pivotal role in boosting the understanding of strongly
correlated systems [2, 3, 4, 5, 6, 7]. The success of ansatz wave functions has naturally moti-
vated the search for the corresponding parent Hamiltonians, with considerable success in several
contexts, including the study of topological matter [8, 9, 10|, one-dimensional systems [11, 12|,
and tensor networks [13, 14]. Recent experimental progresses in quantum engineering of syn-
thetic systems [15, 16, 17, 18, 19] have opened an additional perspective in the search for parent
Hamiltonians: thanks to the high degree of interactions tunability, these experiments provide a
clean route toward the realization of tailored quantum dynamics. This has stimulated a renewed
theoretical interest as of late. In Refs. [20, 21, 22, 23, 24, 25, 26|, a series of approaches has
been proposed for determining, given an initial quantum state |¥), a Hamiltonian operator H
which has |¥) has an eigenvector, very remarkably, even utilizing limited information such as
low-order correlation functions [22, 23, 24, 26]. However, as discussed in depth in Ref. |23, 27|,
it remains unclear if a generic procedure exists to determine an (approximate) Hamiltonian op-
erator that has |U) as its ground state, mostly due to the fact that controlling the dimension of
the target Hamiltonian space is not possible under generic assumptions. A crucial obstacle in
devising a generic algorithm to achieve this goal is the non-uniqueness of the solution, even upon
imposing translation invariance and locality requirements on the target parent Hamiltonian. In
this chapter we will take two completely different, and complementary, approaches to tackle this
problem.

In Sec. 2.1, we will assume a parametrization for the candidate ground state, guided by field
theoretical constraints between the parent Hamiltonian itself and the entanglement structure of
|¥). The basic idea behind our strategy is to connect the reduced density matrix p of the half-
partition of |¥) to an ansatz given by the Bisognano-Wichmann theorem [28, 29, 30, 31] adapted
to the lattice [32]. The method provides an immediate connection between the input vector |¥)
and its translational invariant parent Hamiltonian H through p. The entire procedure can be
carried out using different numerical methods that rely on evaluating expectation values at finite
(entanglement) temperature, including finite-temperature density-matrix-renormalization-group
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(TDMRG) [33, 34| and quantum Monte Carlo simulations [35], as we explicitly demonstrate.
We successfully apply our method to reconstruct approximate parent Hamiltonians for a broad
range of wave functions encompassing physical phenomena as diverse as quantum criticality with
dynamical critical exponent z = 1, topological matter, and quantum antiferromagnets, to name
a few.

In Sec. 2.2, we will investigate parent Hamiltonians of tensor network states. In this context,
a robust theory exists which provides rigorous bounds on the locality of the parent Hamiltonian,
together with sufficient conditions for the uniqueness of their ground state [36, 37, 38]. The bond
dimension of the state yields an upper bound on the locality of the Hamiltonian. In one-dimension
this implies that for a matrix product state with bond dimension D, defined on a Hilbert space
with local dimension d, the range of the parent Hamiltonian is k¥ ~ log D?/logd. In two-
dimensions the situation is more complicated, since for a fixed number of sites, various patches
can be chosen to construct the parent Hamiltonian, depending on the geometry of the lattice. As
a matter of fact, even for tensor networks with small bond dimension (D < 3), a straightforward
construction results in Hamiltonians that are not as local their one-dimensional counterparts.
However, a given tensor network state possesses a whole family of parent Hamiltonians, and an
optimization over this (non-linear) space of operators can be performed to obtain the most local
parent Hamiltonian. After developing a simple method to achieve this goal, we will focus on
the SU(2)-invariant resonating valence bond (RVB) state on the kagome lattice, which can be
written as a tensor network with bond dimension D = 3 [14|. The physical relevance of this
state stems from the symmetries it shares with real materials. Furthermore, it constitutes one of
the simplest examples of topologically ordered state [14]. We will show that the freedom in the
construction of the parent Hamiltonian can be exploited to reduce its range. We demonstrate
that the optimization does not spoil the topological properties of the Hamiltonian, and that the
RVB state is the exact ground state of the optimized Hamiltonian.
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2.1 Entanglement guided search for parent Hamiltonians

The key element of our approach is to combine an ansatz for the reduced density matrix of
the candidate ground state to a minimization procedure based on relative entropy [39]: this
guarantees that the target space of potential parent Hamiltonians is convex (even if no statement
can be made a priori on the convergence rate to the right solution), and its volume is system size
independent.

In Sec. 2.1.1 we introduce the theoretical background required to motivate our ansatz, and
we describe in great detail our approach. In Sec. 2.1.2 we illustrate the effectiveness of the
procedure and discuss its scaling to the right solution by considering three examples, which
encompass qualitatively different phenomena: conformal phases in the one-dimensional (1D)
XXZ chain [4]; the Haldane chain as an epitome of a symmetry-protected topological phase [40];
and eventually, an example of strongly coupled quantum critical point in the two-dimensional
(2D) bilayer Heisenberg antiferromagnet [41, 42, 43]. In Sec. 2.1.3 we discuss the stability of our
method when the target Hamiltonian space is enlarged, and one the candidate ground state is an
excited state of some operator in the target space. Finally, in Sec. 2.1.4 we draw our conclusions.

2.1.1 Parent Hamiltonian search algorithm

The parent Hamiltonian search we propose is guided by a set of field theory results, which
go under the name of Bisognano-Wichmann (BW) theorem [28, 29, 30, 31|, which we briefly
review. While it is well known that for local Hamiltonians the ground state contains (potentially
complete) information about the Hamiltonian spectrum, this theorem allows to quantitatively
establish this correspondence at the field theoretic level.

Given a pure state |¥) and a bipartition AU B, one can re-express the reduced density matrix

as:
7HA

Za '
The operator H, is called entanglement (or modular) Hamiltonian [44, 31| and, its spectrum is
known as entanglement spectrum [45]. The BW theorem states that if |¥) is the vacuum state of

a relativistic quantum field theory defined by an Hamiltonian density h(x), and the bipartition
is over half-space (e.g. in D + 1 dimensions A = {Z|x1 > 0}), then:

p = Trp|U) (¥ = & Zp = Trpe 14, (2.1)

Hy=p z1h(Z)dPx (2.2)

x1>0

The parameter (3 is a prefactor related to the sound velocity of the theory; it is referred to as the
inverse entanglement temperature. Recently, based both on exact analytical results and growing
numerical evidence [46, 47, 48, 49, 50, 32, 51, 52, 53|, it has been argued that these results are
applicable to obtain very accurate (if not exact) approximations of entanglement Hamiltonians
of lattice models, as long as their low-energy physics is effectively described by a relativistic
quantum field theory. We stress that in lattice models, the field-theory limit is intended as the
regime where the correlation length is much larger than the lattice spacing. While not generic,
this common structure encompasses a plethora of phenomena in the field of strong correlations,
including quantum critical points and phases with emergent relativistic description. As a case
sample, in 1D, the theorem reads Ha = 8, o7 hy, which is the discretized version of the field
theory result, where h,, are the local (i.e., defined on sites and on bonds) terms of the lattice
Hamiltonian. The result is trivially extended to D>1.

Equipped with the direct relation between |¥) and the system Hamiltonian provided by the
discretized version of Eq. (2.2) [32], we formulate now our search algorithm.
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Figure 2.1: Left. Algorithm for the parent Hamiltonian search. Right. Schematics of the parent
Hamiltonian search. The starting point is the wave-function of interest |¥) (with a half-partition reduced
density matrix p), a set of local operators {O, ,}, and an initial guess for their coefficients wl. The

o
relative entropy S between p and an ansatz Bisognano-Wichmann reduced density matrix o({Oq,, wi})
is evaluated at each step of the minimization procedure. The procedure is then stopped once the desired
accuracy (e) is reached: the final outcome are the couplings w? of the parent Hamiltonian, and the
entanglement inverse temperature 8. The inset shows a sample of our results for the bilayer Heisenberg
model at the critical point (see text). Different lines correspond to minimization from different initial
sets wy. Convergence within 0.1% of the correct value of g (interlayer coupling; blue and green) and 3
(red lines) is typically reached after 30 (grey area) and ~200 steps, respectively.

1) Input: Given a lattice input state |¥) and a local basis of hermitian operators {Oq,,}
labeled by a lattice index r and an internal index «, our goal is to find the coefficients w* of the
linear combination:

H(u_j) = Z wa,roa,fr’ (2.3)

such that the input state is its ground state. We call this local operator the reconstructed
Hamiltonian H,e. = H(w*). Here, we focus on translationally invariant Hamiltonians, and thus
set Wq,r = Wq.

2) Minimization: In order to construct Hyec, we propose an optimization procedure based on
minimizing the relative entropy [54, 55| utilizing as trial reduced density matrix the BW one.
The relative entropy between two density matrices p and o is defined as [39, 56]:

S(plo) = Tr(plog p) — Tr(plog o). (2.4)

For our purpose here, this function has two key features: it is non-negative, i.e. S(plo) > 0, with
the equality holding if p = o; and it is joint-convex. This latter property ensures the uniqueness
of a global minimum for the function S(p|o) with fixed p.

In the context of our problem, the left argument p encodes the input data, that is, p =
Trp|W)(¥|. The right argument o is the reduced density matrix of the GS of H(w), which
returns the parent Hamiltonian at the end of the procedure. We thus express o by using the
Bisognano-Wichmann density matrix in eq. (2.1):

o~ Haw (@)

——— Z4(1F) = Trpe Mew(@) 2.5
Za(0) A(W) A (2.5)

opw (W) =
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with H4 of the form:

Hew (@) =Y > war Oayp-. (2.6)

a r>0

Minimization is pursued by adaptive gradient descent (GD). For practical purposes, we use the
notation 0, = 9/0w, and:

<O>dat = TI‘(Op), <O>BW,1B = Tr(OO’Bw(ZD')). (27)
Now, given a configuration of parameters @™, we compute the gradient of the relative entropy:

aaS(pdat‘UBW(u_j)) = aa ((H(U_j))dat - 1Og ZA(QB)) ’w(n)
= <Ba>dat - <iloc>BW,u‘j(n)- (28)

To compute the relative entropy gradient at some value @™ we thus just need the averages of
the correlation functions correspodent to the terms allowed in the EH, evaluated over the ansatz
state and over the BW density matrix evaluated with @(™ of the operators Oq,r. Thus, rewriting
the previous equation in a more explicit form, we need to compute:

9aS(plopw (W) = ZT(<Oa,r>dat - <Oa,r>BW,w<"))- (2.9)

r>0

3) Outcome: Under the assumptions above, the parent Hamiltonian is given by the set of
parameters that uniquely minimize the relative entropy; that is, the coefficients:

W* = arg min S(p|opw (0)). (2.10)

in combination with Eq. (2.3), determine the parent Hamiltonian. Thus, if minimization is
achieved and the relative entropy at the minimum is close to zero, we claim that the input state
is the ground state of the reconstructed Hamiltonian:

Hyee =Y w}h,Oars (2.11)
(6%

HyeeW = Egg¥. (2.12)

The minimization procedure of S(p|o) can be carried out in several ways: below, we utilize
adaptive gradient descent methods. Given an initial configuration, we carry out the minimization
of S(p|o) by evaluating the error:

e = [[nVS(plosw (@))[l; (2.13)

where 7 is a control parameter, until convergence to the given accuracy in the coupling param-
eters of Hpyy is reached. For the sake of convenience, we consider here a 102 error threshold,
that already returns a very accurate parent Hamiltonian. This passage does not require access
to the wave function, but is rather carried out evaluating the expectation value of local cor-
relators at finite (entanglement) temperature: as such, it is immediately amenable to a series
of methods, including Monte Carlo - as we show below!. Since the minimization space has a

We note that this minimization can be in principle carried out using GS methods as well; however, this does
not give access to the relative entropy, rendering a final check more challenging, as it requires the full knowledge
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constant dimension with system size, and since it is convex, we expect a mild - if any - scaling
with system size of the time to solution. In Fig. 2.1 we report the pseudocode (left) and the
schematics of the algorithm (right), together with a sample of our results for the two-dimensional
bilayer Heisenberg antiferromagnet.

Before proceeding, it is worth pointing out that the method is not immediately suited to
simple wave functions, where correlations vary at the lattice spacing level (like a product state).
This is due to the field theoretical input we employ, which might fail in these regimes. Another
potential limitation is that it is not possible to capture parent Hamiltonians with quadratic
spectra, such as ferromagnets. Failure is straightforward to diagnose - the relative entropy
minimum will attain a large value, indicating the result is not correct.

2.1.2 Benchmark of the method

Below, we purposely benchmark our strategy focusing purposely on non-trivial wave functions
which lack simple tensor network representations. As discussed above, this choice is motivated by
the fact that tensor-network wave-function posses typically very small correlation length. Thus,
they do not satisfy the assumption of our ansatz for the ground state reduce density matrix.

Parent Hamiltonian of conformal phases. We consider the ground states of the XXZ
spin-1/2 chain, defined as:

H=%" (Sfo +SYSY + Ast;) : (2.14)
(@)

where (-) is the restriction to nearest neighbor terms, and S{* are spin-1/2 operators at the site
i. The model hosts a gapless phase for —1 < A < 1, described at low-energies by a ¢ = 1
CFT (Luttinger liquid); in addition, it displays a ferromagnetic (antiferromagnetic) phase for
A < —1(A > 1). Both the gapless and the antiferromagnetic phase (in the vicinity of A = 1)
shall be captured by our approach.

To test our method, we choose as ansatz wavefunctions the ground state of Eq. (2.14) for
various values of A, and as the basis of operators {Oq,,} = {S*S?, |, 5%} with a,b = z,y, 2 and
r the lattice-site label. This implies that, given a half-partition of the system AU B, we compute
the reduced density matrix over A of the candidate ground state ¥ (in our examples the ground

state of eq. (2.14)) and we fit this with a model entanglement Hamiltonian (EH) of the BW type:

Hgw = > warOay (2.15)
a,r>0
= Z Z r (wabSa,er,r+1 + waSa,r) . (2.16)
a7b:x’y72 >0

As a first illustration, we show in Fig. 2.2 (right) the relative entropy landscape between
the BW EH correspondent to the GS of the Heisenberg model, with free parameters A and f.
The plot shows a unique minimum at the expected value A = 1 and § = 4 [53]. We define the
convergence parameters as w, = (3J,, and consider open boundary conditions (as in the examples
below).

We employed exact diagonalization (ED) for small system sizes (up to L = 12) when consid-
ering all the 12 coefficients {wgp, w,} in our model. While in the case in which we utilized the
U(1)-symmetric version of the algorithm (wg; = wyy # w.. # 0 and the other couplings set to

of the wave-function.
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Figure 2.2: Left. Parent Hamiltonian search for the XXZ chain. (a) Ratios J, = w,/3 (blue lines) and g8
(red lines) as functions of the minimization steps. We compare with the exact coupling and entaglement
temperature. Here, L = 12 and A = 1. We consider the full basis of operators {w,} (see text). (b) Error,
Eq. (2.13), as function of the minimization steps; the value A label the different input state used, ground
state of the respective XXZ Hamiltonian. (c) System size scaling of the ratios of the average converged
wiNY and w,, = whN at A = 0.5 (see text). (d) Average convergence steps over initial realizations of the
coupling as a function of system size. The convergence rate typically improves with system size. Right.
Landscape of the relative entropy landscape between p (obtained from the ground state at A = 1) and
opw (A, B) for L = 12: the minimum is at (1,4). Panel (a) shows a planar cut (A = 1) for different
system sizes.

zero) we were able to perform computations up to L = 24 with ED and finite temperature den-
sity matrix renormalization group (TDMRG). In the former case we can exploit magnetization
conservation by computing the full eigensystem of oy upon restriction to all symmetry sectors.
In the latter case we can still exploit U(1) symmetry by preparing the purified state (system -+
ancilla) in an eigenstate of the total magnetization (see [34] for details). The number of states
kept during the imaginary-time-evolution, which provides the desired thermal state, was chosen
to increase during the evolution, starting from 20 up to 100 states per block.

We considered uniform random instances of @(®) over the interval I = [2,6] (in order to keep
computational costs cheap, the neat results are unchanged by this choice) and averaged over a
hundred of initial conditions; we kept track of these by fixing the seeds of the pseudo-random
number generators implemented.

Fig. 2.2 (left) shows the outcomes of the algorithm using ED up to a total system size L = 12
(panel (a,b)), ED with symmetry restrictions up to L = 18 (panel (c)), and TDMRG up to
L = 24 (panel (d)). In panel (a), we plot the w, as a function of the steps for different initial
guesses wy: the symmetries of the systems are rapidly identified (unwanted terms vanishing),
and the couplings of the parent Hamiltonian converge to the correct ratios after few steps; the
entanglement temperature converges slower. The relative entropy indicating vicinity to the exact
solution (Fig. 2.2 (b)) displays few plateaus, and eventually converges (exponentially fast) to the
correct solution. In Fig. 2.2(c), we plot the results when we include the next nearest neighbor
terms (couplings) SIS, , (wiNN) with @ = z,y, 2 in the symmetry sector of the local basis; we
considered the ansatz ground state with A = 0.5. The coefficients of these additional terms are
scaling to zero; this is expected because BW ansatz works better at larger correlation length
(see Sec. 2.1.3 for a detailed discussion). We remark that scaling with system size is not trivial
for critical systems, due to the structure of reduced density matrices [57, 58| (right). Finally, in
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Fig. 2.2(d) we plot the number of convergence steps needed to reach ¢ = 10~3 threshold using
only two free parameters (i.e. w,, and wg, = wy,) for simplicity: remarkably, the procedure
becomes simpler when increasing system size. The case A = 1.5 shows an abrupt increase at
L = 24: this is an artifact of the minimization and it is easily removed. These results are fully
consistent with the relative entropy landscape depicted in Fig. 2.2 (right).

Parent Hamiltonian of a symmetry-protected topological phase. As a model with
non-trivial topological behavior, we discuss here the Haldane chain [40, 4|, described by the
Hamiltonian Eq. (2.14) with spin-1 operators. For 0 < A < 1.2, the model supports a symmetry
protected topological phase [40, 59]. We used ED with adaptive gradient descent to determine
the parent Hamiltonian for different values of A. In this case, we have chosen a subset of the
full basis of local hermitian operators up to two body terms {Oa,} = {S25% ,, 5%} (ie., we
do not include spin-1 local operators as (S)2). The results of the minimization procedure are
illustrated in Fig. 2.3 (left): in full analogy with the s 1/2 case, the couplings quickly converge
to the correct results, while 5 convergence is slower. In all instances we studied, the relative
entropy converged faster to 0 in the gapped, topological regime (Fig. 2.3 (left) (b)).

Parent Hamiltonian of a two-dimensional quantum critical point. In our third exam-
ple, we consider 2D antiferromagnets described by Eq. (2.14). In order to check the feasibility
of the approach in 2D, we investigated convergence to the correct entanglement temperature in
the Heisenberg model (without changing the Hamiltonian parameters). We put the system on a
cylinder and we choose the partition depicted in Fig. 2.3 (right) (a).

To do so, first, we use the quantum Monte Carlo (QMC) method Stochastic Series expansion
to obtain Y 7(Oar)w,; where (Oq,) is obtained for temperatures low enough to guarantee
that the system already converged to the ground state (e.g., § = 4L). Second, during the
gradient descent minimization part, we consider the BW ansatz for the EH of the ground state
half-bipartition

Hew = B> xS0,y (otdiy) T 8D (e = 1/2) S(i, i)S(i0iy46)- (2.17)

K3 K3

where i, > 0, and f, is the entanglement inverse temperature (see Fig. 2.3 (right) (b)). Con-
vergence was achieved typically after a few tens steps. We plot in Fig. 2.4 (left) (a) the error €
at fixed (: this correctly features a minimum at the right value 8 = 27 /v = 3.792 [60], weakly
dependent on system size, as expected [53]. The landscape is sharper at larger L, leading to a
faster convergence of the algorithm.

1 t
0 50
steps

Figure 2.3: Left. Parent Hamiltonian search for the Haldane chain with L = 8. (a) J, = w,/8 and 3
as functions of the minimization steps; the initial state is at A = 1. The inset shows a magnification up
to 14 steps of |1 — w,/B|: convergence to the correct solution at 10~* level is typically achieved after 6
steps. (b) Error as function of minimization steps for different values of A. Right. (a) Partition used
for the 2D model: L/2 x L/2. (b) Direction i1 is perpendicular to the cut (and starts from the open
boundary); 4o is parallel to the cut and wraps around the cilinder.
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Figure 2.4: Left. (a-b) Error between the exact and the BW reduced density matrix, Eq. (2.13), as a
function of temperature for the 2D Heisenberg model (a), and as a function of g for the bilayer Heisenberg
model at 8 = 3.3 (b). (c)Error as a function of the minimization step for L = 8; the error decreases
quickly, without any plateau as in the 1D case. (d) Converged inter-to-intra layer coupling versus linear
system size. Right. (Top) Convergence of the parameters at L = 8 in the bilayer Heisenberg model.
We see that the coupling constant converges faster that the entanglement temperature. (Bottom) Error
trajectories as a function of steps.

Finally, we consider the bilayer Heisenberg model (HM)

Hbilayer = Z Z Sf,lsf,l +g Z S{:lsf’ga (218)
i

=125

where 7 and j label the sites within the planes (square lattice), and [ are the label of the planes.
For g = 0, the ground state of the two uncoupled planes has antiferromagnetic (AFM) long-range
order; while an AFM-Singlet quantum phase transition, whose low-energy physics is described by
a non-linear sigma model, takes place at g = g. [42]. We then tested our approach to reconstruct
the correct parent Hamiltonian for the bilayer Heisenberg model, characterized by the ratio
of inter-to-intra layer coupling ¢ [42, 43]. In particular, we focused on its critical point, which
separates a disordered and an antiferromagnetic phase, and is located at g. = 2.52210(5) [43, 61].
At this point, the system dynamics is described by a o-model [41, 43, 35]. Before applying our
procedure, we performed a check on the relative entropy manifold as a function of the coupling
g at fixed 8 (Fig. 2.4 (left) (b)): the minimum of the error signals the correct coupling.

We then adopt two different protocols: in the first one, we fixed the entanglement temperature
to the expected one (8. = 3.307), and let the coupling g free (red lines in Fig. 2.4 (left) (c)), while
in the second, we let both g and 3 vary (blue lines). In both cases, the error € quickly diminishes
(slower in the second case due to more parameters to be optimized, see Fig. 2.4 (right) for the
latter case). Most importantly, at the end of the minimization, the value of g is extremely close
to the correct one, which seems to be correctly reproduced in the thermodynamic limit (Fig. 2.4
(left) (d)). Given the complexity of the system wave function, this serves as a strong benchmark
for our strategy: reconstructing the parent Hamiltonian, in this case, takes only a few tens of
steps, each one corresponding to a MC simulation of the BW entanglement Hamiltonian.
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Figure 2.5: Left. Trajectories for various initial couplings when the target state is the ground state of
the XXZ chain at A = 1.0 and L = 16. Here SYM NN and SYM NNN refer to the nearest neighbor
and next-nearest neighbor couplings associated to symmetry-preserving couplings, respectively; while NO
SYM refers to the non-symmetric sectors. In both cases, one can clearly identify two regimes: first, all
couplings which are not U(1) invariant are reduced to zero. Second, the NNN couplings vanish, typically
after oc 102 steps. Right. Relative entropy landscape for the XXZ chain at A = 1 for the ground state
and the first excited state. The minimum value of the relative entropy between the first excited state and
the BW ansatz, as a function of the entanglement temperature 3, is much larger than the ground state
minimum.

2.1.3 Stability of the method

So far we analyzed test cases in which the parent Hamiltonian of the input state was known
a priori to be extremely local (only nearest-neighbor interactions). This leads to a choice of
operators O, that dramatically reduces the number of parameters to be optimized. Here, we
discuss in more details the performance of our method when longer range operator are included
in the basis. For simplicity, we focus on the spin-1/2 XXZ chain, employing as a target state the
ground state of the nearest-neighbor Hamiltonian, and we consider up to next nearest hopping
terms:

Hpw = Z WaTOq,r Z Z r(w(lijSa,erWH + W NS, Shrt2 + WaSay)- (2.19)

a,r>0 a,b=x,y,z >0

We run simulations with ED up to L = 16 fixing the error threshold for the algorithm at 10~*
and 1075, The results in Fig. 2.5 (left) show that non-symmetric terms are again get rid of
quickly, while it takes longer to converge for all the U(1)-symmetry preserving terms. The next-
nearest neighbor coefficients w™ VN
is suggested from Fig. 2.2 (left) (c), this is a finite-size effect.

We now briefly discuss how the algorithm copes with excited states. Fig. 2.5 (right) shows
the landscape of the relative entropy between the BW ansatz for the ground state of the isotropic
XXZ chain and the first excited state, as a function of 8. The first excited state attains minimum
relative entropy for a value of g different from the ground state, and the height of the minimum is
of order one. This does not imply that the algorithm would fail in finding a parent Hamiltonian
for excited states, it simply implies that an operator basis containing only the (ground state-
)parent Hamiltonian density would produce a negative answer from our procedure, apparent by
the not-small value of the minimum relative entropy. This is in sharp contrast with the result
produced by other methods, based on the minimization of the variance of the input state (e.g.
Ref. [23]). They would simply fail, finding the same Hamiltonian they would find with the
ground state as an input state. Although not part of this work, it would be interesting to study
the efficiency of the algorithm when fed with low energy excited states, upon including more

reach a very small, non-vanishing value of order 1072. As it
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parameters in the optimization.

2.1.4 Conclusions

We proposed a method to guide the search of parent Hamiltonians utilizing insights on the entan-
glement structure of ground state wave functions based on the Bisognano-Wichmann theorem
adapted to the lattice. We benchmarked the feasibility of our strategy utilizing several input
wave functions, finding convergence to the correct solution in a number of steps that typically
decreases with system size. As our results show, the strategy is suited to identify parent Hamil-
tonians in both massive and critical scenarios: the latter is particularly challenging, as in these
cases, simple analytical intuition on the structure of the parent Hamiltonian is oftentimes not
available due to the absence of a finite length scale. It will be interesting to extend the method
to gauge theories, which play a pivotal role in the understanding of spin liquids [62, 10], and
whose Hilbert space structure requires a more refined approach [63, 64].
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2.2 Tensor network parent Hamiltonians: locality optimization

Tensor network (TN) states have proven to be the most simple representatives of a wide variety of
quantum phases of matter. Although in one dimension matrix product states (MPS) are known
to be powerful ansatze to approximate ground states of local Hamiltonians, in two dimensions
the situation is more controversial. In the last decades, numerous numerical approaches based
on projected entangled pair states (PEPS) have been developed [65, 66, 67, 68, 69, 70], aimed at
probing their capability of capturing the essential physical properties of two-dimensional many-
body systems. However, their computational complexity [71] and the lack of rigorous bounds on
the accuracy of finite-bond dimensional PEPS to reproduce ground states of local Hamiltonians
did not allow them so far to outperform other existing numerical approaches.

In this work, we take a different perspective: we investigate the family of exact parent
Hamiltonians associated with a given TN state. The theory of TN states offers a well-established
framework for the study of their parent Hamiltonians. It provides a standard procedure to write
down parent Hamiltonians in a straightforward manner, and it gives criteria to infer a priori
about the degeneracy of their ground space. The parent Hamiltonian construction is carried
out locally, thus making unnecessary a computationally expensive (or intractable) finite-size
scaling. This fact remarkably allows to tackle two-dimensional problems with modest effort.
While in one dimension MPSs with small bond dimension generally lead to extremely local
parent Hamiltonians, in two dimensions PEPS parent Hamiltonians can be rather complex, yet
they are not unique. We can thus exploit this freedom to search for the optimal Hamiltonian
given certain locality constraints.

In Sec. 2.2.1 we describe in detail the procedure to construct a parent Hamiltonian for a
TN states, together with the sufficient conditions for the state to be the unique (or finitely-
degenerate) ground state. In Sec. 2.2.2 we introduce an algorithm to exploit the freedom in the
standard construction, to find the most local operator in the family of the parent Hamiltonians
associated with a given state. In Sec. 2.2.3 we benchmark the method on sample cases in which
the most local parent Hamiltonian is well known, and we apply it to investigate the parent
Hamiltonian of the SU(2) invariant RVB state on the kagome lattice. In Sec. 2.2.4 we draw our
conclusions.

2.2.1 Injectivity and ground state degeneracy

Assuming to have a translation-invariant TN representation of a quantum state, with bond
dimension D and physical dimension d, the construction of its parent Hamiltonian is illustrated
in Fig. 2.6 (left). The first step consists in contracting a certain number of tensors to form a
patch of sites on the physical lattice (see Fig. 2.6 (left) (a), in which the patch is a cross on
a square lattice). The parent Hamiltonian construction is carried out locally on this patch of
sites, to yield the Hamiltonian density on the patch. The parent Hamiltonian is obtained by
covering periodically the whole lattice with the chosen patch. Contracting the tensors on the
selected group of sites produces a linear map P which maps the virtual space (CP)®™ into the
local physical Hilbert space (C%)®Vs where Nj is the number of virtual bonds and Ny is the
number of physical sites, which are nearest neighbor on the lattice (Fig. 2.6 (left) (b)). If Nj is
large enough and the map P has a trivial kernel, KerP? = {0}, its image ImP does not cover the
entire local Hilbert space. In this case any operator which is non-trivial only on the orthogonal
complement (ImP)! automatically annihilates the state locally (Fig. 2.6 (left) (c)). If such an
operator is strictly positive, the periodic TN turns out to be the unique zero-energy ground state
of the parent Hamiltonian on a periodic cluster. This fact implies that the parent Hamiltonian is
not unique: any hermitian strictly positive operator on (ImP)* yields a good parent Hamiltonian
for the TN state.
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Figure 2.6: Left. Schematics of the parent Hamiltonian construction. (a) The elementary tensors are
blocked on a large enough (see the text) number of sites N. (b) A map P from the virtual to the physical
space is defined, and the orthogonal complement (ImP)* # {0} is computed. (c) A parent Hamiltonian
for the state is obtained by taking an arbitrary (hermitian) operator which is strictly positive on (ImP)+.
If the TN is injective, it will be the unique ground state of the constructed parent Hamiltonian, and
Ng > Nylog D. Right. Pictorial representation of a Zs-injective TN. The operators g provide a virtual
representation of the virtual Zy symmetry group (g2 = 1). The tensor is Zo-injective if it is injective its
restriction to the Zs-invariant virtual subspace. In such cases the parent Hamiltonian will be two-fold
generate on a ring (a) (with ground states |¢(1)), |¥(g))) and four-fold degenerate on a torus (b) (with

ground states |¢(171>>’ |'¢}(179)>a |'(/}(g7 1)>7 |¢(9»9)>)

If KerP = {0} for a large enough patch of sites the TN state is said to be injective. This
condition is sufficient to guarantee the non-degeneracy of the ground state manifold of the parent
Hamiltonian, meaning that the state will be its unique ground state. Notice that the locality of
the parent Hamiltonian is ensured by the fact that the parent Hamiltonian density cannot have
a support larger than N;. We refer to Refs. [37, 38| for rigorous proofs of the statements made
above.

Translation-invariant TNs generically satisfy the injectivity condition [37]|, however, if the
tensor is left invariant by the application of some operators on the virtual legs, the map P can
have a non-trivial kernel on any, arbitrarily large, patch of physical sites. We focus here on the
case in which the virtual operators form a representation of the Zg symmetry group {1, g}, with
g> = 1, but the discussion can be extended to more general groups [38]. The state is called
Zs-injective if (there is a patch of sites on which) the map P is injective when restricted to the
Zo-invariant subspace of the virtual space. When Zsy-injectivity is met, the ground space of the
parent Hamiltonian will be two-fold degenerate on a ring (1D) and four-fold degenerate on a
torus (2D) [38]. The degenerate ground states are obtained from the periodic TN by virtual
insertions of the symmetry operators (see Fig. 2.6 (right)).

The simplest example of Zy-injective MPS is the GHZ state: [¢) = (| 1)®L + | 1)®F) /2, where
L is the length of the chain. A translation invariant MPS representation is provided by the

following matrices:
10 00
AT = At = ) (2.20)
00 01

The Zy virtual symmetry generator is given by g = diag(1, —1), and the two states in Fig. 2.6
(right) (a) (ie. |+) = (| )L £ | 1)®F)/V2 ) are degenerate ground states of the Hamiltonian
H=— Zi[’:O ZiZir1, where Z is the Pauli matrix o%.

Another one-dimensional example is the translation-invariant Majumdar-Ghosh (MG) state [72]:
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1) o |11) + |1ha), where [1h1) = (| 1) — | 11))®L/2 and |1) the one-site translation of |;). An

MPS representation is

0 10 00 1
At=10 00 At=1[1 0 0 (2.21)
-1.0 0 000

The Zo generator is g = diag(l,—1,—1), and the two states obtained after inserting either
the identity or g on one virtual link are the two degenerate ground states of the Hamiltonian
H = ZiL:O (51 . S_';-H + %5’2 . 5_';-4_2), where § = (S*,SY,S%) are the spin-1/2 representation
matrices of SU(2). Note that the ground state degeneracy in these two examples originates from
the spontaneous symmetry breaking of (global) spin flip symmetry for the GHZ state, and one-
site translation symmetry for the MG state. Note also that the parent Hamiltonian provided
for the MPSs above are not positive definite, since a constant additive term has been omitted.
The corresponding positive definite Hamiltonian would come from blocking the MPS tensors on
Ng = 2 and N; = 3 sites for GHZ and MG states, respectively, and taking the projector on
(ImP)+ as Hamiltonian density. We will consider two-dimensional examples in what follows.

We conclude this section by mentioning that it is possible to prove that parent Hamiltonians
of injective TNs in one dimension are gapped. This fact does not hold in two dimensions,
where PEPS parent Hamiltonians can be gapless, and their ground state can produce power-law
correlations for local observables [37].

2.2.2 Locality optimization algorithm

In the previous section, we stressed that the parent Hamiltonian of a TN state is not unique.
Different choices for the positive operator on (ImP)+ produce different Hamiltonian densities.
These densities can be as local as the patch of N sites used to construct them, or they can be more
local, meaning that they don’t have to include interactions that span the whole patch. This is
particularly relevant when the group of sites is very large, as it often happens when constructing
PEPS parent Hamiltonians on two-dimensional lattices. Below, we devise an algorithm that
attempts an optimization to make the Hamiltonian density as local as possible on the chosen
patch.

The starting point in what follows is to expand the target Hamiltonian on a basis of (local)
operators O,

H=> ¢4  Oq=(0,). (2.22)

It is crucial to keep the dimension of the basis as small as possible. This can be done by assuming
that the parent Hamiltonian shares all the symmetries with the TN state.

The key idea of the algorithm is to ensure that the target Hamiltonian vanishes on ImP and it
is strictly positive on its orthogonal complement. One possible way to achieve this is to write

HImP)=0 &  H=Y_ Paslea)(psl (2.23)
a,B

Since we want this operator to be a superposition of the local operators in the basis, as in
Eq. (2.22), we require that

2

F (Ca,Paﬁ) = ‘ = XaMapXp =0, (2.24)

Z ¢aOa — Z Paglea)(esl
a a,f3
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where the vector X4 = (—cq, Pag) contains both the information on the coefficients ¢, of the
parent Hamiltonian written in a local operator basis, and on the positive matrix F, g representing
the parent Hamiltonian as a strictly positive operator on (ImP)*.

Due to orthonormality of the basis (¢a|pg) = dag, the matrix M is extremely sparse and it reads

Mab ‘ Ra,aﬁ

Map = ) Map = Tr(0,O0y), Roap = <3004‘Oa‘906>- (2.25)

Rysp . 00035

So far we have obtained an eigenvalue problem whose solution are Hamiltonians that annihilate
the PEPS’s image. An equivalent (and much simpler) eigenvalue problem would result by only
imposing that the H = )" ¢,O, annhilates ImP. However, this would not enforce the positivity
of the final results, which is fundamental to ensure that the TN state is the ground state. Hence,
instead of solving directly Eq. (2.24) to get the null space of Eq. (2.25), we minimize the quadratic
form in Eq (2.24) on the non-linear space of positive definite matrices P,3. Namely the target
Hamiltonian will be given by the coefficients ¢, such that

(ca, Pag) = ArgMin F' (cq, Pog) P>1, (2.26)

where the eigenvalues of P will be assumed larger than one without loss of generality.

A possible route to solve the optimization problem of above is to apply a gradient descent
algorithm to the cost function F', and project onto the desired space at each step. The initial
point is chosen to have a vanishing local Hamiltonian, i.e. ¢, = 0 for all a, and the identity as the
initial P,3. Since the cost function is a quadratic form, the gradient can be efficiently computed
by simple matrix multiplication. The algorithm is thus as follows:

1. X =(0,1)

2. X'=X-nVF(X)=X-29M-X, n<l1
3. X" =Proj(X’)

4. Repeat from 2. until convergence.

The projection in 3. has to enforce the condition P > 1. This can be achieved by taking the
P,s components of the vector X, and setting to one all the diagonal elements of the triangular
part of its Schur decomposition which dropped below one at step 2., namely:

Proj(X) = <Proj(P)> - (ZT Proj(T) Z) N (ZTTZ> (2.27)

where the triangular matrix T is the same as T', but all the diagonal entries that were smaller
than one in T" are set to one in 7.

Symmetries. The dimension of the parameter space of the optimization algorithm is Do +
(DImL)2, where Dg is the dimension of the operator basis. The number of parameters can be
reduced if the target Hamiltonian is invariant under some symmetry. In this case the matrix P,z
breaks into blocks labelled by the eigenvalues of the symmetry generator:

r=gr (2.28)
A
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Upon proper choice of the basis of local operators, the same is true for all the O,. The dimension
of the parameter space is thus reduced to Do + Z/\(DA)Q, where D) is the dimension of the
intersection of (ImP)+ with each eigenspace of the symmetry generator. The cost function in
Eq. (2.24) becomes

2

an z ,3’9%

a

(o) -3

= ¢, Tr(O,0p) cp — 2¢, Z(g@a]O)‘kpﬁ w + Z = XaMap Xp =0,
A

(2.29)

where O? is the restriction of O to the symmetry sector labeled by A, and the fact that Oy is
block diagonal for all a has been used. The vector X4 = (—ca, P;‘é, PO’[\E, .. ) and the matrix
M reads

M Ry, 0 0

R, 1, Ry, 0

MAB = i . 5 Mab = Tr(OaOb)7 Ra,aﬁ = <4pa‘0a‘906>' (2‘30)
0 Rl 1,

0 0

An example which we will utilize in the following is SU(2) symmetry. In that case we take
A\ = 5,57, where s is the quantum number of the total square angular momentum S? = (5%)% +
(8Y)% + (S%)? (with eigenvalue s(s + 1)) and S* is the total z-component on the chosen patch
of physical sites: S* = ). 57. Note that, thanks to rotational invariance, the P, g blocks are
independent from the eigenvalue S?, and the cost function in Eq. (2.29) becomes

F (car P3) = eaTr(0u0p) e = 260 Y (25 + 13105 1) Pas + D225+ 1)(Ps)?, (231)

S

where the factor (2s + 1) takes into account the multiplicity of the eigenvalue S* for a given s,
and the generators |4p3’5 ) need to be computed only in the S* = 0 sector. This further reduces
the number of variational parameters down to Do + >_,(D;)?, where Dy is the dimension of the
simultaneous eigenspace of S2 and S%, which does not depend on the eigenvalue of SZ.

To monitor the status of the convergence during the minimization we directly compute the cost
function at each step. To speed up the convergence we employ an adaptive step size 7, =
(0Xn,0Xn)/(0Xn,0G,), where 0X,, = X,, — X,,_1 and 0G,, = G,, — G,,—1 are the point and
gradient displacements at the n-th step of the optimization |73].

2.2.3 Applications

We now benchmark our method on one- and two-dimensional TN states whose most local parent
Hamiltonian is known, although it is not trivially obtained as projector onto (ImP)*. We then
apply it to the SU(2) RVB state on the kagome lattice, whose minimal patch of sites is a star of
Ng = 12 sites.
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The AKLT state on a chain. The AKLT state is the unique ground state of the Hamiltonian

. 1 - -
H=> 8-S+ g(Si -Si1)?, (2.32)
=1

where § = (5%, 8Y,5%) are the spin-1 representation matrices of SU(2). This model was first
proposed in Ref. [74] as an example of spin system with SU(2) symmetry, and with a gapped
ground state which does not break any discrete? symmetry. In particular, the AKLT model
was introduced as an instance of system satisfying the Haldane conjecture [76], and it was then
understood that it realizes what is now known as symmetry-protected topological order [77, 78,
79]. The MPS representation of the AKLT state is depicted in Fig. 2.7 (left) (a).

This MPS is injective, and a parent Hamiltonian can be constructed upon blocking at least 2
sites (Ns = 2). In this case the physical Hilbert space is the product of two spin-1 representation:
11 =001®2, ImP =01, and (ImP)+ = 2. Here the integers s = 0, 1,2 denote the spin-s
representation of SU(2). Taking as Hamiltonian density the projector onto (ImP)~ results in the
parent Hamiltonian in Eq. (2.32) (modulo an additive constant to ensure positivity). However,
if Ny > 2 is taken, longer range terms appear in the projector parent Hamiltonian. Hence, we
test the algorithm to find the matrix P, (see Sec. 2.2.2) necessary to reproduce the two-sites
Hamiltonian in Eq. (2.32). We include only Heisenberg interactions on nearest-neighbor sites in
the operator basis. For instance, with N, = 3 the operator basis is {Id, S, - S, (§1 : 52)2, S, -
Ss, (S, - S3)?}. Fig. 2.7 (right) shows the results of the minimization procedure: the (projected)
gradient descent with adaptive step converges in ~ 200 and ~ 1500 steps for Ny = 3 and Ng; = 4,
respectively. The final result for the matrix P, s is not a projector, and (although not shown) the
Hamiltonian density obtained is equal to Eq. (2.32) within numerical precision. Notice that in
one dimension this fact is very simple to understand. We know that the most local Hamiltonian
density is a projector onto the Ny, = 2 local Hilbert space. However, since densities on two
overlapping Ns; = 2 patches are not orthogonal, their sum is not a projector.

The toric code on the square lattice. The toric code Hamiltonian reads [80]

H=->1]2z->_1I*: (2.33)

v i€w P i€p

where v and p stand for vertices and plaquettes on a tilted square lattice (see Fig. 2.8 (left) (a)).
This Hamiltonian has a four-fold degenerate ground space on a torus and provides the simplest
example of topological order: despite the ground state degeneracy, no spontaneous symmetry
breaking occurs. One of the four ground states can be written as

11 (1 +ZXi>|O> => [[xilo). (2.34)

p 1EP £ i€l

where |0) is the product state with all the sites in the eigenstate of Z with eigenvalue —1, and
the r.h.s. is a sum over all the loop configurations ¢ made of adjacent plaquettes. This state
admits a translation invariant PEPS representation depicted in Fig. 2.8 (left) (b) [81].

The PEPS is Zs-injective, where the Zy virtual symmetry operator is ¢ = Z. The four de-

2Spontaneous breaking of continuous symmetry is prohibited, in one-dimension, by the Mermin-Wagner theo-
rem [75]. Nevertheless, SU(2) invariant spin chains can break discrete symmetries (see for instance the MG state
introduced in Sec. 2.2.2.
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Figure 2.7: Left. (a) TN representation of the AKLT state. (b) 3-sites blocking of the MPS tensors
to yield the map P, starting point of the parent Hamiltonian construction. In this case the number of
blocked sites Ny is larger than the minimum Ny required to build the most local parent Hamiltonian,
Eq. (2.32). Right. (a),(b) Cost function F' Eq. (2.24) during the minimization. The adaptive step-
gradient descent procedure converges much faster (~ 200 and 1500 steps to reach F ~ 10712 for N, = 3
and N, = 4, respectively) than the constant step one (n = 0.5). (c¢),(d) Eigenvalues of the matrix P,z at
convergence (F < 10712). The result shows that the maximally local Hamiltonian when N > 2 is not a
projector onto (ImP)*.

generate ground states of the Hamiltonian Eq. (2.33) are obtained from the PEPS by virtual
insertions of this operator as illustrated in Fig. 2.6 (right) (b).

In order to construct the parent Hamiltonian from the PEPS representation of the state in
Eq. (2.34), we need to block two tensors to get a local Hilbert space with Ny = 8 sites, as shown
in Fig. 2.8 (left) (c). The dimension of (ImP)" is 224 and the projector on this subspace is
a Hamiltonian density that contains operators with support on all the 8 sites. Fig. 2.8 (right)
(a) shows the component? of the density Hiq on an orthonormal operator basis made of all the
possible products of Pauli matrices on the 8 sites. We apply the algorithm of Sec. 2.2.2 starting
from an operator basis with 4-sites operators on crosses and plaquettes, each one made out of a
single Pauli matrix : X®* Y®4 74 Therefore, the basis contains 10 operators (including the
identity), and the total number of variational parameters is 10 + 2242 ~ 5-10%. Since the PEPS
posses a Zo global physical symmetry, we can apply the symmetric version of the algorithm to
reduce the number of parameters down to 10+2-(112)% ~ 2.5-10%. The cost function during the
minimization is plotted in Fig. 2.8 (right) (b). Both versions of the algorithm converge to the
minimum in ~ 200 steps. However, it is computationally much cheaper for the symmetric version
to perform a single step. Although in this case exploiting symmetries is not indispensable, it will
be crucial in the next example, where a single optimization would be prohibitive without their use.
Also in this case the algorithm succeeds in finding the expected parent Hamiltonian, i.e. Eq. (2.33).
In Fig. 2.8 (right) (c),(d) we show the coefficients of the Hamiltonian density, on the 8 sites, at
convergence, and its eigenvalues. The latter demonstrate that the most local density is not a
projector on the 8-sites local Hilbert space.

The SU(2) RVB state on the kagome lattice. Resonating valence bond states are defined
as equal-weight superpositions of all nearest-neighbor dimer coverings of a given two-dimensional

3The scalar product in the operator space is: (O1|02) = Tr(010s).
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Figure 2.8: Left. (a) Tilted lattice for the toric code Hamiltonian. Plaquette terms are product of X's on
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state. Each tensor maps the virtual space to a physical space of 4 sites a on a tilted square lattice. (c)
Most local parent Hamiltonian for the toric code. The cross and the plaquette terms appear, respectively,
once and twice in the minimal patch to obtain the parent Hamiltonian (Ns = 8). Right. (a) Square
overlaps of the (projector) parent Hamiltonian of the toric state, when an 8-sites patch is considered for
the construction. The Hamiltonian contains 4, 6 and 8-sites operators. Overlaps are normalized to have
total sum equal to one (|{Hyq|Id)|? is not shown). (b) Cost function during the minimization, using the
adaptive step. Symmetric and non-symmetric versions of the algorithm achieve convergence in the same
number of steps, but the symmetric version reduces significantly the computation cost. (¢) Operators
coefficients at convergence. When only cross and plaquette terms (made of XY or Z) are included in
the basis, the algorithm produces the expected result within numerical accuracy. (d) Eigenvalues of the
matrix P, g at convergence, divided in the two physical Z, symmetry sectors. The most local Hamiltonian
is not a projector on (ImP)=.

lattice. In quantum dimer models, on frustrated lattices, they have been known for decades to
be simple representatives of topologically ordered phases [82]. When orthogonal dimer coverings
are replaced by SU(2) singlets coverings, the RVB state becomes a good candidate for describing
the physics of frustrated magnets. On the kagome lattice, it was shown to be in the same
Zs spin liquid phase of the dimer RVB [14], and demonstrated to be even more stable against
perturbation [83|. Despite simple ansatze for the ground state wave functions of physically
relevant models, as simple as the nearest-neighbor Heisenberg model, have been devised starting
from the SU(2) singlets RVB state [84], its exact parent Hamiltonian is known to be quite
complicated. It was first proven that the Hamiltonian density can be written on two overlapping
stars [14], and then on a single star of the kagome lattice [85].

We attempt here to reduce the degree of locality of the Hamiltonian density by applying the
method described in Sec. 2.2.2 to a star-shaped patch made of Ny = 12 sites.

The TN representation of the SU(2) RVB state was introduced in Ref. [14], and it is illustrated
in Fig. 2.9 (left) (a). Notice that SU(2) singlets come with an orientation: downward (upward)
triangles are oriented clockwise (anti-clockwise)?. Fig. 2.9 (left) (b) shows the patch of 12 sites
that we consider in what follows: the virtual space consists of 6 bonds with dimension D = 3.
The PEPS is Zs-injective, with Zy virtual symmetry operator g = diag(1,—1,—1). Since the
dimension of (ImP)~ is 3731, the number of variational parameters would be > 107. By exploiting
SU(2) symmetry as explained in Sec. 2.1.2, together with the spatial symmetries of the star-

4A non-equivalent state is obtained by taking upward and downward triangles oriented in the same way.
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Figure 2.9: Left. (a) TN representation for the RVB state made of SU(2) singlets. The turquoise triangle
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virtual states 0,2 (1) or 0,1 (}) is met. (b) 12-sites patch of tensors taken for the parent Hamiltonian
construction. Right. Operator basis dimension for the two cases considered here. The basis contains all
the SU(2) invariant operators on the hexagon plus Na adjacent triangles attached (a), or on the whole
star and with support on at most r sites (b). In both cases operator are symmetrized w.r.t. the six-fold
rotations and reflection (w.r.t. to a vertical axis trhough the center) of the star.

shaped patch (we used the six-fold rotation around the center and the reflection w.r.t. the
vertical axis), we are able to break the P, variational matrix in blocks, for a total of 20931
parameters. We can exploit the same symmetries to select the operators to be included in the
basis. SU(2) symmetry implies that the latter are written as O, = T¥1k2--kr Sfll Sf; ..SZ’“, where the
index k = x,y, z runs on the adjoint representation of SU(2), the index i = 1,2,..12 runs on the 12
sites of the star patch, and the tensor T is SU(2) invariant, i.e. Tz ’I‘WU]"’1 Uk; UJkT Ty
for all SU(2) matrices U in the s = 1 (adjoint) representation. Operators with odd rank (r)
are not necessary, since they have purely imaginary entries, while the RVB state is real. All the
even rank tensors can be written in terms of product of the Kronecker delta d;; and an even
number of completely anti-symmetric tensors ;. However, since a product of two € can be
expressed in terms of Kronecker delta®, only the latter are needed to write down all the SU(2)
invariant tensors with even rank. This means that all even-rank SU(2) invariant operators can
be written as products of Heisenberg interactions. These are the operators that we include in the
basis, upon taking their (star-)rotation and reflection invariant combinations. We observe that
all products of r/2 Heisenberg interactions form an overcomplete set of operators for r > 8 [86].
This is not an issue for the algorithm, as long as a strictly positive parent Hamiltonian can be
written as a linear combination of the available operators.

We run the algorithm with two different basis choices. In the first case, we take operators
with support on the central hexagon of the star plus Na adjacent triangles attached to it (with
operator up to rank r = 8), in the second case we take operator with arbitrary range on the start
with at most rank r. We then enlarge the basis by varying independently Na and r. In Fig. 2.9
(right) we plot the dimension of the basis (the maximum size we considered is < 6000).
Depending on the basis size the algorithm may take several thousands of steps to converge,
and it does not always find an exact parent Hamiltonian. This is signaled by the fact that at
convergenceS the cost function is not vanishing within numerical precision. The final result is
plotted in Fig. 2.10 (left). A good parent Hamiltonian density is found when Nao = 4 (~ 3000
operators in the basis) or r = 8 (~ 6000 operators in the basis).

In order to check the validity of the Hamiltonian found by the algorithm, we performed exact
diagonalization on small tori, employing periodic clusters depicted in Fig. 2.11, including up to

3 Eijk€lmn = 0s1 (5jm5kn - 5jn5km) — Oim (5jl5kn - 5jn5kl) ~+ din (5jz5km - 5jm5kz)
5We monitor the status of convergence by computing the norm displacement vector at consecutive steps
€ =||Xn — Xn—1||. We stop the algorithm when ¢ < 1071°.
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Figure 2.10: Left. (a),(c) Minimum for the cost function Eq. (2.29) at convergence. When Na < 4 or
r < 8 the algorithm does not find a minimum at zero norm, indicating the failure in writing a parent
Hamiltonian on the chosen basis. (b),(d) Eigenvalues of matrix P, g in the S* = 0 sector, for each S?
sector, for No = 4 and » = 8. In both cases the algorithm succeed in finding an exact parent Hamiltonian,
and the latter is not a projector. Right. Comparison between the low energy spectra of the RVB parent
Hamitlonian obtained as a projector on (ImP)* (blue empty diamonds) and the optimized Hamiltonian
(orange filled diamonds) obtained on a basis of operators with up to 4 triangles around the hexagon
(a),(b), and up to rank 8 (c),(d). Periodic clusters with N = 12 (a),(c) and N = 18 (b),(d) are considered
(see Fig. 2.11 (left)).

8 unit cells of the kagome lattice (N = 24 sites). In Fig. 2.10 (right) we plot the comparison
between the spectrum of the projector parent Hamiltonian and the optimized one on clusters of
12 and 18 sites. The expected topological four-fold degeneracy of the ground space is accurate
within 107?. Note however that the two spectra are not identical already at very low energy. We
verified that the overlap of the RVB state with the ground-space of the optimized Hamiltonian
is equal to 1 within numerical accuracy, for clusters up to N = 24 sites. In Fig. 2.11 (right)
(a) we show the expectation value of the optimized parent Hamiltonian (Na = 4) on the RVB
state on a torus. The energy of the RVB state is almost vanishing, but it is not compatible
with zero (within numerical accuracy). We attribute this issue to small numerical imprecisions
in the minimization procedure, which is carried out on a fairly large parameter space. Finally,
the lowest gap of the optimized Hamiltonian is plotted in Fig. 2.11 (right) (b), as a function of
the linear size of the cluster (L,). The result mildly scales with L,, and clearly shows a gap of
order one between the four degenerate ground states and the rest of the spectrum.

To sum up: the locality optimization algorithm is able to find a parent Hamiltonian density
which is more local than the whole star-shaped patch we started from, and it includes products
of up to 4 Heisenberg interactions. The parent Hamiltonian does not only have the RVB state
as a ground state, but it also shares the four-fold topological degeneracy expected from an exact
parent Hamiltonian for this state. In principle, it should be possible to gain physical intuition on
the operators that are essential to obtain a good parent Hamiltonian for the RVB state. However,
we found it hard in practice, due to the large number of operators in the basis (~ 3000 at least).
Although certain operators contribute more than others to the final result (e.g. the number of
operators O, such that |c,/co| > 0.5, where ¢ is the largest coefficient of the identity operator,
are only 10), all the operators appear to be necessary to give high overlap with the RVB state,
and to reproduce the correct ground state degeneracy.
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the minimization. The clusters covers L,L, unit cells, for a total number of sites N = 3L,L,. We
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Right. RVB state expectation value on (a) and lowest gap of (b) the optimized parent Hamiltonian, for
increasing system size.

2.2.4 Conclusions

We exploited the freedom in the construction of parent Hamiltonians for TN states to optimize
their locality. We formulated an algorithm that locally searches for a parent Hamiltonian by
taking as inputs a patch of lattice sites and a basis of local operators. We benchmarked the
algorithm on simple one- and two-dimensional examples, and we applied it to tackle the tougher
problem of finding a local parent Hamiltonian for the RVB state made of SU(2) singlets, on the
kagome lattice. We found that the previously-believed-to-be minimal degree of locality of the
parent Hamiltonian density (a star on the kagome lattice) can be reduced to 10 sites (one hexagon
plus four adjacent triangles) and that only operators supported on up to 8 sites (product of four
Heisenberg interactions) have to be included. In face of the partial success of this optimization,
the RVB state parent Hamiltonian appears to be extremely fine-tuned, in that a very large number
of operators with small coefficients are necessary to reproduce the expected features. Likely, a
more efficient parametrization of the operator basis might significantly reduce its dimension and
clarify the nature of each interaction term that is necessary to include.

We remark that the conditions at the basis of our algorithm are sufficient but not necessary. In
fact, the construction outlined in Sec. 2.2.1 inevitably yields a frustration-free parent Hamiltonian
for the input TN state. We cannot exclude that other approaches might lead to more local exact
(or approximate) parent Hamiltonians for the RVB state, however they would hinder the local
nature of our method, which is key to deal with the problem in more than one dimension.
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2.3 Outlook

In this chapter, we approached the problem of finding a parent Hamiltonian starting from an
a priori-given wavefunction from two different perspectives. In Sec. 2.1, we based the parent
Hamiltonian search on a QFT representation of the target state RDM, developing an algorithm
suitable for states with large £/a, where £ and a are the correlation length and lattice spac-
ing respectively. In Sec. 2.2, we dealt with parent Hamiltonians of tensor network states with
small bond dimension, employing an optimization method to find the most local exact parent
Hamiltonian for the input state.

These two classes of states —large correlation length and exact tensor network— do not intersect
in one dimension. In fact, while 1D critical states generally exhibit a bipartite entanglement
spectrum with fat tails, that leads to an entanglement entropy diverging with sytems size, MPSs
have an ES distribution with no tails and a bipartite entanglement entropy that stays finite in
the thermodynamic limit. Furthermore, QFT arguments provide a direct relation between the
entanglement entropy and the correlation length: S ~ log¢ [87]. This relation is not satisfied
by MPSs, that can display correlations that do not decay with the distance, despite having a
finite entanglement entropy [88]. In two dimensions, power-law correlations can arise from low-
bond dimensional PEPS [81], however the parent Hamiltonians of these states seem to generate
a non Lorentz invariant dynamics [89], signaling a non-linear dispersion relation of the gapless
low energy excitations of PEPS parent Hamiltonians. In fact, a general understanding of these
excitations and of their possible continuum description with QFT tools is still an open problem.
Analyzing how well the method of Sec. 2.1 copes with PEPS is a promising route to achieve this
goal.

The work discussed in Sec. 2.1 consisted in benchmarking the method on sample cases in
which the parent Hamiltonian was known a priori. The most natural extension is to apply the
search algorithm to problems where the parent Hamiltonian is completely unknown. In Ref. [90]
the algorithm has been tested on Jastrow-Gutzwiller wavefunctions in one dimension. The next
step would be to tackle two-dimensional problems where relativistic invariance is expected at low
energy, by taking appropriate input states. In fact, as we demonstrated, the method is amenable
to quantum Monte Carlo techniques, that make it scalable in any dimension, as long as the search
is limited to sing-problem free Hamiltonians.

The algorithm presented in Sec. 2.2, other than optimizing on the family of parent Hamil-
tonians associated to a tensor network state, gives access to an explicit representation of the
Hamiltonian density in terms of physical operators, e.g. Heisenberg interactions for SU(2) in-
variant Hamiltonians. To further simplify the result it might be possible to devise appropriate
truncation schemes for the optimized parent Hamiltonian, in the same spirit of Ref. [91]. Af-
ter the truncation, the parent Hamiltonian would stop being exact for the input state, which,
however, could maintain a large overlap with the true ground state. Arguably, this fact would
imply that the truncated parent Hamiltonian yield the same low energy physical properties of
the target state.
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Chapter 3

Constrained models: from ground state
to non-equilibrium properties

This chapter is based on the following publications:

[1] G. Giudici, A. Angelone, G. Magnifico, Z. Zeng, G. Giudice, T. Mendes-Santos, M. Dalmonte
Diagnosing Potts criticality and two-stage melting in one-dimensional hard-core boson models
Physical Review B 99, 094434 (2019)

[2] F. M. Surace, P. P. Mazza, G. Giudici, A. Lerose, A. Gambassi, M. Dalmonte
Lattice gauge theories and string dynamics in Rydberg atom quantum simulators
Physical Review X 10, 021041 (2020)

[3] G. Giudici, F. M. Surace, J. E. Ebot, A. Scardicchio, M. Dalmonte
Breakdown of ergodicity in disordered U(1) lattice gauge theories
Physical Review Research 2, 032034(R) (2020)

Recent years have witnessed growing theoretical interest in constrained many-body quantum
systems, driven by the success in the realization of experimental platforms in which the coherent
quantum dynamics of such systems can be reliably simulated [4]. A constraint on the Hilbert
space is enforced in quantum simulators as a large energy penalty, induced by the engineered
interactions, on some class of not-allowed states. For instance, in the experiment of Ref. [4]
the effective dipole-dipole interactions between excited states in Rydberg atom arrays [5] forbids
two nearby atoms to be simultaneously excited. The resulting model will be the main focus of
this chapter. First introduced in Ref. [6] by Fendley, Sengupta, and Sachdev (FSS), the model
describes an array of one-dimensional strongly interacting hard-core bosons in the presence of
occupation constraints on nearest-neighbor (NN), and with additional interactions on next-to-
nearest-neighbor (NNN), sites. Initially discussed due to its connections with integrable models,
its successful implementation in Rydberg atom arrays led to further theoretical investigation of
its peculiar equilibrium |7, 8, 9, 10, 11] and out-of-equilibrium properties [12, 13, 14, 15, 16].

The experimental setup is schematically illustrated in Fig. 3.1. It consists of a one-dimensional
array of L optical traps, each of them hosting a single atom. The atoms are trapped in their
electronic ground state (black circle), denoted by | |);, where j numbers the trap. These ground
states are quasi-resonantly coupled to a single Rydberg state, i.e., a highly excited electronic
level, denoted by | 1);. The dynamics of this chain of qubits {| 1),| |);};=1,...r is governed by
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Figure 3.1: Schematics of a Rydberg atom chain. Each potential well of the optical lattice hosts a single
atom, which can be either in the ground (black) or excited Rydberg (yellow) state. The two levels are
coupled by a laser field. The Rydberg blockade prevents the simultaneous excitations of neighboring
atoms.

the following Ising-type Hamiltonian [17, 18]:

L L
Hpyq = Z(Q of +d07)+ Z Viemnjng, (3.1)
j=1 j<t=1
where o7 are Pauli matrices at site j, the operator n; = (crj + 1)/2 signals the presence of

a Rydberg excitation at site j, 22 and 20 are the Rabi frequency and the detuning of the
laser excitation scheme, respectively, and V;, describes the interactions between atoms in their
Rydberg states at sites (j,¢). This interaction is strong at short distances and decays as 1/[j —£|°
at large distances. By introducing the Rydberg blockade parameter R defined from

V(Rp) = 9, (3.2)

the interaction can be tuned to produce the so-called Rybderg blockade. When R, = 1 the
simultaneous occupancy of the excited Rydberg state for nearby atoms is prohibited. This gives
an effective constraint n;n;;1 = 0. Increasing R;, from 1 to 2 is equivalent to introduce a NNN
interaction between the spins, where NNN occupancy is prohibited when R = 2. The dynamics
described by Hgyq has already been realized in several experiments utilizing either optical lattices
or optical tweezers [19, 20, 4|. This particular scenario has been investigated in Ref. [4] for the
first time.
In the various regimes described above, the resulting effective Hamiltonian reads

L L
HEﬁ‘(d) = Z (Q U;C + 20 nj) + Vy Z njn;yd, (3.3)
p =1

with Hgg acting on the constrained Hilbert space without double occupancies on nearest-neighbor
sites when Ry, € [1,2], on next-to-nearest neighbor sites when Ry € [2,3], and so on. Note that
when Ry, ranges in [d — 1, d], with d an integer, the parameter Vj takes value in [0, 00]. In what
follows we will concentrate on the Hamiltonian Eq. (3.3) when R} € [1,2], and we will allow the
parameter V5 to take all real values. We will refer to this model as the FSS model [6].

The FSS model displays a variety of phases and phase transitions at zero temperature. In
particular, there are two ordered phases with Zs and Zs order 6] and a disordered phase in which
long-range correlations can be incommensurate with the lattice spacing [9]. The phase diagram
hosts two integrable lines, and continuous phase transitions belonging to various conformal in-
variant universality classes, such as the Ising, tricritical Ising and 3-states Potts [21]. Moreover,
it exhibits gapless phases described by Luttinger liquid theory [22], as well as second order phase
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transitions which do not fit in the conformal field theory framework [23, 24, 25|. Although sig-
nificant theoretical and numerical effort has been devoted to comprehensively understand these
diverse universal phenomena [6, 8, 9], their character in specific regions of the phase diagram is
still debated.

In Sec. 3.1 we aim at clarifying the nature of the Zs-order-to-disorder transition in the limiting
case of infinite NNN repulsion, which we refer to as the doubly blockaded regime, in analogy
with the more common NN blockade. We show that the melting of the ordered phase, in this
regime, takes place via an intermediate gapless phase. This critical phase is enclosed between two
continuous phase transitions. From the disordered side, the transition is of the BKT type, while
from the ordered side the universality class is not captured by conformal field theory (CFT).

We compute many of the critical exponents of these transitions with different methods. As
we discuss below, our findings are only able to provide a rough estimate for the size of the
incommensurate (IC) phase, due to the presence of anomalously large finite-size effects. In
parallel, we test some of the methods employed on the exactly located 3-states Potts critical
point; this helps us to emphasize differences and similarities between the two melting phase
transitions. We also give a full characterization of the Potts critical point by computing its critical
exponents, and by matching the low-lying energy spectrum on the lattice with the universal
predictions provided by conformal field theory. This characterization provides a quantitative and
unambiguous testbed to verify Potts quantum criticality in experiments based on spectroscopic
probes.

We employ various methods to tackle the problem numerically, focusing on periodic geome-
tries in order to avoid boundary effects, which are particularly detrimental for constrained models
in the vicinity of ordered phases. We exploit at best the small quantum dimension of the Hilbert
space to compute the ground state and the lowest excited states exactly up to 54 sites. We per-
form studies of up to 120 sites via quantum Monte Carlo (QMC), using an imaginary-time path
integral method sharing many similarities with the worm algorithm [26], adapted to simulate
Hamiltonians with off-diagonal terms such as those of the F'SS model and with updates designed
to automatically respect its occupation constraints. We use the density matrix renormalization
group (DMRG) algorithm [27] to compute the ground state of periodic chains up to 108 sites.
In this case, we implement the constraint by giving a large penalty to the states which are not
allowed in the Hilbert space. We also present results for the experimentally realized open chain
scenario by simulating open chains up to 718 sites with a 1-site DMRG algorithm formulated in
the matrix product state (MPS) language, which allows us to realize the constraint exactly by
representing efficiently the global projector on the constrained Hilbert space as a matrix product
operator (MPO).

Besides the very rich ground state physics, constrained quantum systems have recently at-
tracted considerable attention due to their peculiar dynamical properties. As first observed
in the Rydberg atom experiment realized in Ref. [4], the Hamiltonian Eq. (3.1) generates an
anomalously slow dynamics starting from specific initial states. The initial state chosen in the
experiment was a simple product state in which the hard-bosons occupy every other site. Al-
though this state has very high expectation value on the Rydberg Hamiltonian (w.r.t. to the
ground state energy), the time-evolution of local observables did not show signature of thermal-
ization within the experimentally accessible time-scales. This fact is at odds with the general
expectation provided by the eigenstate thermalization hypotesis (ETH) [28, 29, 30]: the dynam-
ics of initial states with finite energy density should rapidly thermalize to the microcanonical
ensemble at energy E = (Yo|H|¢p). This is ensured by assuming the following form for the
matrix elements of local observables between nearby energy eigenstates |E,)

<Ea‘O|E5> = O(E) 5&,3 + e 5F) f(va)Raﬁ' (3.4)



84

Here O(E) and e3() are the expectation value of the observable O and the density of states at
energy E = (E, + E)/2, which are both expected to be smooth function of E for large systems.
f(E,w) is an unknown function of E and of the energy difference w = E, — Eg and R, is a ran-
dom variable with zero mean and unit variance. Subsequent theoretical work [13] demonstrated
that the essential ingredients inducing an ETH violation in the Rydberg Hamiltonian are already
present in the simplified, hard-constrained Hamiltonian Eq. (3.3). In particular, the source of
this violation was identified in a small (~ L) subset of atypical eigenstates dubbed quantum
many-body scars.

In Sec. 3.2, starting from a different perspective, we show that the dynamics of Rydberg
excitations in these chains is exactly mapped onto a spin-1/2 quantum link model (QLM), a
U(1) lattice gauge theory (LGT) where the gauge fields span a finite-dimensional Hilbert space,
equivalent to a lattice Schwinger model in the presence of a topological term [31]. Gauge theories
are key for our understanding of fundamental interactions. An intense theoretical activity aimed
at quantum simulating LGTs via atomic quantum systems [32, 33, 34| has already led to the
first door-opener experimental realization in a system of four trapped ions [35]. However, there
is presently no experimental evidence that atomic systems can be used to simulate LGTs at large
scales. In this respect, our work serves as a remarkably straight route towards this goal, pro-
viding an immediate interpretation of the experiment of Ref. [4] as the first large-scale quantum
simulation of a LGT at the edge of classical computational methods [36].

The key element of our mapping is that gauge invariance has a natural counterpart in the
Rydberg blockade mechanism, which constrains the Hilbert space in the same way as Gauss law
does in gauge theories. From a theoretical viewpoint, the mapping offers a hitherto unexplored
perspective on the anomalously slow relaxation observed in experiments: the long-lived oscilla-
tions in the population of excited Rydberg atoms correspond to a string inversion, a phenomenon
which is directly tied to string breaking [37, 38, 39] prototypical of gauge theories including dy-
namical matter. The mapping indicates that this phenomenon has a natural interpretation in
the LGT framework, and suggests the occurrence of slow dynamics in other U(1) gauge theories,
such as higher-spin QLMs [40], Higgs theories [41, 42|, and the Schwinger model [43, 44]. These
theories have been widely discussed in the context of Schwinger pair production taking place at
high-intensity laser facilities, thus providing a highly unexpected, direct link between apparently
unrelated experimental platforms [45, 39, 46, 47, 48|.

We discuss the generality of this type of quantum evolution by extending our analysis to
other relevant instances of "slow dynamics", characterized by the absence of relaxation on all
time scales corresponding to any microscopic coupling present in the system. As initial states, we
focus on those consisting of particle-antiparticle pairs, corresponding to regular configurations
of the Rydberg-atom arrays with localized defects, which are accessible within the setup of
Ref. [4]. We show that these defects propagate ballistically with long-lived coherent interference
patterns. This behavior is found to be governed by special bands of highly excited eigenstates
characterized by a regularity in the energy-momentum dispersion relation. These findings open
up a novel perspective which complements and extends towards gauge theories recent approaches
to slow relaxation in Rydberg-blockaded atomic chains [13, 12, 49, 14, 16, 15].

So far the discussion was focused on the slow dynamics emerging from a specific initial state,
in a lattice gauge theory. The final section of this chapter is devoted to study the role of gauge
symmetry in disordered systems that exhibit ergodicity violations in a strong sense, i.e. that do
not depend on the choice of the initial state. In the quantum realm the notion of ergodicity is
strictly tied to the eigenstate thermalization hypothesis Eq. (3.4). The latter provides a sensi-
ble justification for the use of microcanonical ensembles in place of their Hamiltonian dynamics
to compute long term averages of observables. An established mechanism to circumvent ther-
malization is provided by Anderson localization [50]. The latter describes how non-interacting
systems can feature a dynamical phase in which diffusion (and hence transport) and ergodicity
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are suppressed without any need to fine-tune the Hamiltonian to an integrable one. Remarkably,
this mechanism has been shown to survive the introduction of interactions at the perturbative
level [51, 52|, a phenomenon dubbed many-body localization (MBL) [53, 54, 55, 56|. However,
owing to the fundamentally more complex nature of many-body theories, establishing the break-
down of ergodicity and characterizing the ergodic/non-ergodic transition in generic, interacting
microscopic models has proven challenging. At the practical level, this is due to the fact that
quantum chaos (which underlies ETH) is ultimately linked to the full spectral content of a theory
[57], where the applicability of analytical techniques is less established with respect to low-energy
studies [58, 59, 51, 52, 60, 61, 62, 63, 64, 65].

An archetypal example in this field has been the one-dimensional (1D) Heisenberg model
with random fields [66], where, in the absence of SU(2) symmetry |67, 68, 69, 70|, first signatures
of the breakdown of ergodicity were established at finite volume. Despite a follow-up impressive
numerical effort |71, 72, 73, 74, 75, 76|, the precise location of the localization transition in
this and similar microscopic models is still actively debated. A systematic drift of the would-be
critical disorder strength was noticed already as early as in Ref. [66]. The finite-size scaling
theory close to the phase transition is also still far from being satisfactory, with the numerically
extracted critical exponents [73, 74, 77] at odds with strong disorder renormalization group
predictions [78, 79|, and not compatible with the Harris criterion [80, 81]. A recent analysis
based on a different finite-size scaling ansatz was proposed where the transition point drifts
linearly with system sizes [82], which however seems to apply, at small sizes, also to models
where localization is demonstrated on solid grounds [83, 84]. On top of this, a recent analysis
discussed how large a system size one should analyze to go beyond the transient behavior in
numerical or experimental studies [85]. The challenge is thus to identify generic mechanisms
where, oppositely to the case of spin chains, interactions and disorder can cooperate (rather than
compete) in establishing ergodicity breaking, potentially leading to completely novel scenarios
in terms of finite-size scaling relavant to exact simulations and experiments [86, 87].

In Sec. 3.3, we show how lattice gauge theories (LGTs) [88, 89] provide a framework within
which the transition between ergodic and non-ergodic behavior can be studied using conventional,
well controlled numerical methods. The key element of this observation is the cooperative effect
of disorder and Coulomb law, which leads to a localization phenomenon that - as we show below
- is parametrically different from what observed in other models. In concrete, we illustrate this
mechanism in the context of the 1D lattice Schwinger model - quantum electrodynamics in 1D. By
analyzing spectral correlations in the presence of a random charge background, we demonstrate
how U(1) lattice gauge theories display key signatures of ergodicity breaking, allowing to draw
a sharp boundary for the ergodic regime for sufficiently strong gauge couplings, at the system
sizes accessible via exact diagonalization.
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3.1 Quantum phase transitions in a Rydberg atom chain

In this section we consider the hard-constrained Hamiltonian in the family of operators in
Eq. (3.3) with d = 2. We interpret the many-qubit systems arising from the Rydberg atom
setup as a chain of hard-core bosons where each site can either empty or occupied. We study the
ground state and the low energy spectrum in the vicinity of two different melting transition. The
first transition is a single point, located on an integrable line, which is known to be well described
by the 3-states Potts model universality class. The second occurs in the regime Vo — oo, and
understanding its nature is the main purpose of this work. The reason for the choice of this
regime is threefold: it is the farthest regime from the Potts critical point, it may allow for a com-
paratively larger incommensurate phase (if any) thanks to the fact that the role of perturbations
moving away from the exactly solvable line is typically larger; it is of easy experimental access;
it is amenable to exact simulations up to comparatively larger sizes with respect to the rest of
the phase diagram.

The structure of this section is the following. In Sec. 3.1.1, we present the Hamiltonian of
the model, reviewing in detail previous theoretical results. In Sec. 3.1.2, we discuss the methods
we employ, and investigate the vicinity of the Potts transition point, in particular, performing
an analysis based on level spectroscopy. In Sec. 3.1.3, we study in detail the doubly blockaded
regime. In Sec. 3.1.4, we draw our conclusions and discuss some future perspectives.

3.1.1 Model Hamiltonian and review of previous results

The Hamiltonian of the FSS model is given by

L L

L
H=Y (d;+d)+U> n+ VY ningy (3.5)

=1 =1 i=1

where dZT (d;) is the creation (destruction) operator for a hard-core boson on site i and n; = d}di.
In terms of the experimentally realizable Hamiltonian in Eq. 3.1 the U = 2§/Q and V can
be tuned by varying the parameter R, defined in Eq. (3.2). The Hilbert space we consider is
subjected to the constraint n;n;+; = 0; namely, two particles cannot occupy NN sites. When
this restriction is imposed, the number of states dim?, in the Hilbert space for a chain of length
L satisfies, in the case of open boundary conditions (OBC), the recursive equation

dimHy = dimHy 1 +dimHy o (3.6)

whose solution is the Fibonacci sequence, which behaves asymptotically for large L as dimH, ~
¢r, where ¢ = 1.6180... is the golden ratio. The dimension of H becomes even smaller in the
limit V' — oo, which is equivalent to saying that there have to be at least two empty lattice sites
between two particles, i.e., n;n;41 = 0 and n;n;42 = 0. It is easy to see that in this case dim#H,
satisfies the equation

dimH;, = dimH;_1 + dimH_3 (37)

which asymptotically means dim#;, ~ (¥, with ¢ = 1.4655... Notice that when V ranges in
[0,4+00) the experimental parameter R}, ranges between 1 and 2.

The model was first proposed as the quantum version of the 2-dimensional classical hard-
square model [6], which is known to host two integrable lines [90]. One of the two lines crosses
the period-three-to-disorder line exactly at the Potts critical point, whose location is thus known
analytically. The classical-to-quantum mapping results in a constrained quantum Hilbert space
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Figure 3.2: Phase diagram of the model Hamiltonian Eq. (3.5). Ordered phases are colored in light blue.
Red (blue) lines indicate second (first) order phase transitions. On the green dotted lines the model is
integrable. The integrable line in the lower half plane is on top of the transition line when the transition
is of the first order. The two lines separate at the tricritical point My, where the transition becomes
continuous. After this point, the second-order phase transition belongs to the Ising universality class.
The integrable line in the upper half plane crosses the second-order transition line exactly at the M3
critical point, belonging to the Potts model universality class. Below this point, on the transition line,
a gapless phase (lower yellow region, not in scale) opens, enclosed within a Pokrovsky-Talapov (PT)
and Berezinskii-Kosterlitz-Thouless (BKT) transition. Above this point, the opening of a gapless phase
(upper yellow region, not in scale) is under debate. Purple dashed lines are studied in this work.

which is not in product form. As already noted in Ref. [9] and further discussed below, the
peculiar way order is realized in the system causes extremely strong finite-size effects, especially
when OBC are applied. This poses challenges for tensor-network based techniques, which usually
rely on these boundary conditions, since the computational effort must be increased in order to
access larger system sizes. Oppositely, the milder scaling of the Hilbert space dimension allows us
to exactly diagonalize the system up to lengths which roughly double the usual lengths accessible
in spin chains. Since periodic boundary conditions (PBC) eliminate boundary effects, in addition
to providing momentum symmetry for a direct diagonalization of the quantum Hamiltonian, they
will be employed throughout this work, with the exception of the tensor network simulations
presented in Sec. 3.1.3.

The phase diagram of the model is depicted in Fig. 3.2. The two integrable lines are
parametrized by

VU+V)=1. (3.8)

One of the two lines is defined on the upper half plane (U, V), and crosses the order-disorder
transition line exactly at the Potts critical point mentioned above, for V =V, = [(v/5 +1)/2]>/%;
it is thus described at low energies by the third conformal field theory in the minimal series,
M3 [21]. The gapped ordered phase extends to a region in the quadrant V' > 0, U < 0, where
the order-disorder transition is not always a sharp transition. In particular, it was shown in
Ref. [6] that in the limit case U — —oo and V' = —U/3 the separation line is in fact a thin gapless
phase (yellow region in Fig. 3.2) characterized by the Luttinger liquid (LL) universality class. The
transition from the ordered phase to the gapless phase belongs to the Pokrovsky-Talapov (JNPT)
universality class [23, 24|, and has dynamical critical exponent z = 2. Conformal invariance is
then restored in the continuum description and the transition from the gapless phase to the
disordered phase is of the Berezinskii-Kosterlitz-Thouless type [22]. Moreover, a recent detailed
analysis [9] exhibited strong numerical evidence that the very same picture persists on the order-
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disorder transition line, up to a Lifshitz point located below the integrable line, beyond which
the transition is sharp and of the chiral Huse-Fisher type [25]. However, the precise location of
the Lifshitz point could not be estimated. The authors also confirmed the position and nature
of the Potts critical point by computing the correlation length critical exponent v coming from
both phases.

What happens above the integrable line is more controversial. A DMRG-OBC study [9] is in
favor of a chiral transition up to another Lifshitz point after which a LL phase opens again, with
a PT transition on the ordered side and a BKT transition on the disordered side. The width of
the intervening LL phase was estimated at the order of 0.001. It was also noted that, above the
Potts point, boundary effects are sizable at system sizes on the order of several hundred sites, as
testified by an anomalous scaling of the von Neumann entropy. Instead, an exact diagonalization
(ED) study [8], using PBC, indicated that there is no Lifshitz point, and the transition remains
chiral up to V = oo, with a dynamical critical exponent 1 < z < 1.33.

In what follows we will focus on two lines at constant V' (purple dashed lines in Fig. 3.2).
The phase diagram on the first line is very well understood and we will use it as a benchmark to
test field theory predictions in this exotic quantum chain. The second line is located at V' = oo
and, as discussed above, its phase structure is still under debate.

3.1.2 Potts critical point

In this section, we study the finite-size properties of the Potts critical point. This is important
not only to test some of the methods we are going to employ in the following sections, but also to
understand which universal properties can be experimentally measured with the available setups
of ~50 spins. Moreover, it is of theoretical interest, as there are very few lattice realizations of
Potts criticality that can be studied in such a systematic fashion [91, 92, 93|.

The CFT behind the Potts model universality class is one of the modular invariant realizations
of the third model in the minimal series: M3 [94]. Its central charge is 4/5 and the most relevant
primary fields, namely the energy density and the order parameter, carry anomalous dimensions
ne = 4/5 and 1, = 4/15. These two numbers imply that the correlation length and order
parameter critical exponents are v = (2 —n.)"! =5/6 and B = vn, /2 = 1/9.

The position of the Potts critical point in the phase diagram of the quantum Hamiltonian in
Eq. (3.5) is known exactly by integrability arguments [6] and its location has been checked nu-
merically both via gap scaling analysis [8] as well as from vanishing inverse correlation length [9].
Its critical exponents have been computed on the lattice, and a clear signature of the underlying
CFT has been observed [6, 8, 9]. However, the low-energy spectrum of the lattice Hamiltonian
has never been matched with the CFT one and a full characterization of the phase transition
has never been given. Furthermore, contrary to the lattice Potts model, the Zs symmetry is not
an exact global symmetry of the FSS model. It is thus non-trivial to identify the whole operator
content from the energy eigenvalues on the lattice.

Before performing level spectroscopy, we test some of the methods we will employ in the
next section to witness second-order phase transitions without any assumption on the spacetime
symmetry of the underlying field theory, namely non-analyticity in the quantum concurrence [95,
96] (which is a measure of single spin entanglement) as well as in the fidelity susceptibility [97,
98]. The latter also allows us to extract the critical exponent v of the ordered phase [99, 100, 101].
We then compute the central charge of the CF'T from the logarithmic scaling of the entanglement
entropy [102] and we show that the CFT regime is reached with system sizes accessible to present
experiments. We proceed by matching momentum symmetry sectors on the lattice with Z3 sectors
in the CFT. We match several low-lying eigenvalues with the corresponding primary fields and
we discuss the finite-size scaling corrections with respect to CFT predictions. Finally, we extract
the anomalous dimension 7, of the order parameter by comparing its lattice two-point function
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Figure 3.3: (a) Power-law fit of the peak position U*(L) of the first derivative of the concurrence Eq. (3.9),
for L from 24 to 36 sites. The scaling exponent extracted from this range of system sizes is v = 4.0£0.1,
but it is not stable including smaller sizes. The critical position we get from the fit is U, = —3.03 + 0.04.
(b) Power-law fit of the peak position U*(L) in the fidelity susceptibility Eq. (3.10), for L from 30 to 42
sites. The result is stable when smaller system sizes are included. Taking into account small variations
with respect to the range of lengths employed in the fit, the scaling exponent and the critical point
position we get are v = 2.4+ 0.1 and U. = —3.03 £ 0.01. (c) Scaling of the maximum of yp according
to Eq. (3.11) for L from 30 to 42 sites. The correlation length critical exponent slightly increases when
smaller system sizes are included in the fit. By taking into account variations with respect to the range
of lengths fitted we get v = 0.84 + 0.01, in good agreement with the exact value v = 5/6 = 0.8333...

with the one of a CFT on a ring [21].

Critical point location. As we will see below, in order to locate the critical point, it is
useful to utilize a procedure which is not biased by any assumption on the nature of the phase
transition, such as conformal invariance and a consequent scaling of the gap with a dynamical
critical exponent z = 1. Here we use two methods based on the nonanalytic behavior displayed by
generic functions in the presence of continuous phase transitions. The concurrence is a measure
of entanglement for spin systems [96, 103], and is defined as

C = max((), )\1 - )\2 - )\3 - )\4) (39)

where the A; are the square roots of the eigenvalues in decreasing order of the matrix ,/p;; (e ®
a¥)p; j(0? @ a¥),/pij, where p; ; is the reduced density matrix of two sites located at positions i
and j (here we show results for j =i + 2) !. The function C(U) is expected to have an infinite
derivative at a gapless critical point in the thermodynamic limit [95, 96]. At finite size, the
derivative OyC has a peak which sharpens with increasing system size at a value U*(L) which
converges to the critical point when L — oo.

In Fig. 3.3(a), we plot the value of the position of the peak of 9yC, U*(L), at the Potts
critical point as a function of 1/L. The position of the critical point at L — oo, U, is obtained
by fitting U* (L) with the power-law function, U*(L) = U.+ A/L". The best-fitting exponent for
system sizes from 24 to 36 sites is v = 4.0 + 0.1 and the extracted position of the critical point
is U, = —3.03 £ 0.04, in good agreement with the exact value U, = —3.0299.... Note however,
that the result is not stable when smaller system sizes are included in the fit. We attribute this
instability to the limited number of sizes we can reliably simulate in the scaling regime, due to
the challenging nature of the calculation of concurrence.

Another quantity that is used to locate and characterize the critical point is the fidelity
susceptibility

_ 20 |(o(U) (U +8U))|
oU?

where |¢o(U)) is the ground-state wave function for a fixed value of U. As the derivative of the

XF (3.10)

'Since the Hilbert space is not a product of single-site Hilbert spaces, in order to compute the reduced density
matrix we simply plunge back the ground state of the system into the full Hilbert (C?)®~.
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concurrence, x r exhibits a peak at the position U*(L), when plotted as a function of U. The size
scaling of U*(L) provides an alternative approach to establish the position of the critical point,
U.; see Fig. 3.3(b). In contrast to the concurrence, the numerical calculation of the fidelity is
less expensive and allows us to reach system sizes up to L = 42. This yields a best-fitting result
which is stable against the range of system sizes included in the fit for L > 24. The best-fitting
parameters we get considering lengths from 27 up to 42 sites gives U. = —3.03(1), where the
error takes into account variations against the system sizes included in the fit. Furthermore, a
scaling theory for the height of the peak of xr does exist [100, 101] and allows us to obtain the
correlation length critical exponent via

xr(U*) ~ L*7. (3.11)

Note that this power-law scaling is independent of the value of the dynamical critical exponent
z. In this way we get a value of v in perfect agreement with the expected value for the Potts
model universality class; see Fig. 3.3(c).

Finally, we wish to mention a very peculiar fact which allows us to locate the critical point
with arbitrary precision and arbitrary small system sizes: exactly at the critical point, the on-
site boson density has vanishing finite-size corrections. The position of U, can thus be obtained
by measuring the boson density for different system sizes and tuning the couplings until size
independence is observed. We believe that this fact is due to the integrable structure beyond
the critical spin chain. In Fig. 3.4 (left), we report the finite-size scaling of the density at
the critical point and for two values of U very close to it, together with the curve crossing of
densities computed for different system sizes as a function of U for V' = V, which allows a precise
determination of the position of the critical U.

Entanglement entropy. Continuous, relativistic phase transitions in a 1D system display a
logarithmic divergence of the entanglement entropy. Once conformal invariance is ensured, an
inexpensive way to identify the universality class is by computing the coefficient of the logarithmic
growth of the entanglement as a function of the subsystem size. This coefficient is known to be
proportional to the central charge of the CFT [102], and for the case of half partition in PBC
reads c

S = glnL+A. (3.12)

In Fig. 3.4 (right) (a), we plot the entanglement entropy for the critical values (U, V) analytically
known. This result shows how moderate sizes are already yielding a very precise value for the
central charge. In Fig. 3.4 (right) (b), the effective central charge, defined as [104]

S(2L) — S(L)

¢=3 In2 ’

(3.13)
is plotted for fixed V' = V., and varying U across the transition. The central charge exhibits a bell-
shape dependence on U, observed in other cases as well [105], with a peak which is approaching
the expected position marked with a green dashed line. Note that different bells touch only
at the critical point, which is the only value of U at which the effective central charge is not
decreasing with increasing system size. This is in agreement with Zamolodchikov’s theorem [106]
in the presence of a single critical point.

CFT level spectroscopy. Computing the entanglement entropy is a convenient way of ex-
tracting universal information from a quantum spin chain, since it does not involve non-universal
parameters like the sound velocity. However, the central charge alone does not uniquely identify
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Figure 3.4: Left. (a) Finite-size scaling of the boson density at the transition point and close to it.
Exactly at the transition point, the density does not scale. (b) Boson density as a function of U for
V =V, and different chain lengths. The lines sharply cross at the transition point (dashed red line) for
any system size, since finite-size corrections vanish exactly at the critical point. Right. (a) Finite-size
scaling of the entanglement entropy of a half partition, for L from 12 to 36 sites. The slope is the one
expected from CFT already for system sizes L < 24, indicating negligible finite-size corrections to the CF'T
predictions Eq. (3.12). (b) Effective central charge as defined in Eq. (3.13). The peak is sharpening as
the system size is increased and the peak position is moving towards the expected value U, = —3.0299....
Curves for different lengths cross almost exactly at this value of U, indicating the presence of a single
critical point in which the effective central charge is nondecreasing.

the CFT. The full operator content for a CFT on a ring of length L can be determined from the
energy levels, which are spaced according to the formula [21]

2mv

En—EGS:T(AerJrZM) m,¢ €N (3.14)

where n is a label for the nth excited state, (A, A) are the weights of the two chiral representations
of the Virasoro algebra in the CFT, and v is the non-universal sound velocity, which depends on
the microscopic realization of the CFT. The ground-state energy itself is affected by universal
finite-size corrections proportional to the central charge,

TUvC

—_— 3.15
e, (315)

EG’S = EOL -

where ¢y is the ground-state energy density in the thermodynamic limit. Below, we analyze
the spectrum obtained by exact diagonalization of the lattice Hamiltonian, for systems with
L < 42, in each momentum sector 2. After extracting the central charge from the entropy
scaling, Eq. (3.15) allows us to compute the sound velocity. The result we obtain by fitting

2Note that, in the k = 0 sector, we did not split the spectra according to their reflection symmetry, since the
latter seems not to correspond to charge conjugation symmetry of the two charged sectors
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the ground-state energy for L up to 42 is v = 2.49(7). Another possibility is to fit directly the
dispersion relation of the low-energy states, which should be linear and proportional to v. A
sample of the low-lying spectrum is shown in Fig. 3.5 (left) (a) for a system of L = 39. To obtain
the velocity, we perform a linear fit of the smallest available momentum at each system size. The
value of v obtained in this way is different for right and left moving particles, and in both cases
deviates from the velocity extracted from the ground state energy by a few percent (see Fig. 3.5
(left) (b)). This is caused by large finite-size corrections affecting these eigenvalues. This chiral
symmetry breaking at finite size might be caused by the chiral perturbation driving the system on
the second-order transition line. Interestingly, by taking the average of the corresponding right
and left energy levels, the dominant terms of these corrections cancel out, and full agreement
with the value extracted from the ground-state energy scaling is recovered.

Once the sound velocity is known, Eq. (3.14) can be used to extract all the conformal dimen-
sions from the gaps in the low-energy spectrum of the lattice Hamiltonian. The operators in the
CFT are labeled by a Z3 quantum number 3 @ = 0,41 [92, 93]. Since the model does not have
an exact Zs symmetry, we have to find an alternative way of labeling the low-lying states.

The @@ = +1 sectors have to be degenerate and this degeneracy is exact at finite size in the
spectrum of the lattice Hamiltonian Eq. (3.5) with PBC. This fact is ensured by the presence
of the non-commuting momentum and reflection symmetries, which implies that eigenstates of
H with momenta K and —K have the same energy. In the Zs-ordered phase and close to it
the states with momentum K = +27/3 happen to be the lowest-energy excitations above the
ground state and the Brillouin zone appears to be split in three, as shown in Fig. 3.5 (left) (a).
It is thus clear how to identify the Z3 symmetry sectors: the neutral sector and the two charged
sectors consist of the energy levels close to K = 0 and K = +27/3, respectively. This labeling
naturally connects to the symmetry-breaking structure of the ground-state manifold within the
ordered phase.

The operator content of the two non-degenerate symmetry sectors in the CFT with PBC is
the following [92] :

Q=0: (0,0, <§ ;) , <; i) , @ ;) , (; ;) 1(0,3),(3,0),(3,3). (3.16)

1 1 2 2
ces (BA)(22) or

The eigenvalues of the lattice Hamiltonian are then spaced according to Eq. (3.14) and they
correspond to the CFT operators above, with all their descendants (A,Z)(,M). However, not
all the descendants are allowed and their degeneracy can be computed starting from the Rocha-
Caridi formula [93]. The momentum of these states in the CFT is instead given by

P=p_2"Atm-B—0) mleN (3.18)
L L
Note that the CFT momentum is not the lattice momentum for this Hamiltonian. The CFT
momentum on the lattice is measured starting from the ground states of each Zj3 sector, which
we label by P = 0 (see Fig. 3.5 (left) (a) ).
We now proceed with the matching of the low-energy gaps on the lattice with the CFT

3The full symmetry group of the Potts model is the permutation group Ss = Z3 x Zs. However, the Z
symmetry generator leaves invariant only Zs neutral states, namely the ones labeled by @@ = 0. Thus the Q =0
sector splits into two subsectors labeled by a Zs quantum number. Since this will not be necessary to identify
gaps with operator, it will not be used in the text.
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Figure 3.5: Left. (a) Lowest-lying eigenvalues of lattice momentum sectors for a chain of length L = 39.
Eigenvalues close to K = 0 and K = £27/3 correspond to the Zs sectors @ = 0 and @ = £1 in the CFT.
Conformal towers are already distinguishable and primary operators corresponding to each energy level
can be easily guessed by comparing the lowest gaps with Eq. (3.18) together with Egs. (3.16) and (3.17).
(b) Linear fitting of the lowest eigenvalue close to the ground state of the @ = 1 sector for different system
sizes from L = 12 to L = 42. The zero reference energy is taken as the ground-state energy of the sector
for the given system size. Chiral symmetry is broken on the lattice, most likely because of an irrelevant
perturbation which scales away in the thermodynamic limit. Right. Finite-size scaling of the universal
function F in Eq. (3.19) with respect to the CFT expected value. (a) First and second gaps in the Q =1
sector (orange and green) and first gap in the Q = 0 sector (blue). Finite-size corrections scale as L2
with a coefficient of magnitude 10~ for the first two gaps. (b) Third gap in Q = 1 sector (orange), first
gap in the @ = 1 sector with momentum P = +1 (blue), average of the second of fifth gap (green) and
third gap (red) in the @ = 0 sector. The finite-size corrections are always quadratic in the inverse length
of the chain upon appropriate average between CFT states not invariant under (A, k) < (A, £).

prediction Eq. (3.14). Following Ref. [93], we define the universal function

L _
F(Q,P):—(E%—EGS> ~ A+Ek+A+ (3.19)

2mv L—oo

where Q and P are the CFT Z3 quantum number and momentum.

The results of the field correspondence are presented in Fig. 3.5 (right). Upon taking proper
combinations of degenerate gaps, the finite-size corrections are of order L~2 for all the gaps,
with a prefactor smaller than 1073 for the lowest ones. We extrapolate the value of F by a
two-parameter fit for system sizes up to L = 42. The agreement of the extrapolation with the
CFT expected values is perfect once the sound velocity is tuned to v = 2.49225. In this respect,
this method is the best way to estimate the sound velocity with the available system sizes.

The finite-size corrections to the universal function in Eq. (3.19) have been studied for this
universality class in the 3-states Potts chain [92]. It was observed that their power-law exponent
was 2 for most of the nondegenerate gaps and a number between 0.5 and 1 for other degenerate
gaps. Here we argue that the latter corrections appear only in CFT states (A,Z)(M) for which
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(A, k) # (A, £). Upon taking the average of the eigenvalues in which A, k and A, £ are exchanged
these dominant corrections vanish. Formally

O - v
FADNKO=A+ B4kl 2t =2t
AA AA
A,(M ) — _Agﬁk ) (3.20)

To support this statement we give two examples where this is manifest. We take the lowest-lying
pair of states in the @ = 1 sector of H with momentum P = =+1, i.e., (1/15,1/15)( o) and
(1/15,1/15)(0,1). We then take the pair of states in the @ = 0 sector with momentum P = 0,
ie., (2/5,7/5)1,0) and (7/5,2/5)(1,0)- On the spin chain these two states correspond to the
second and fifth excited state in the K = 0 sector. Their finite-size scaling is plotted in Fig. 3.5
(right) (b), where these two gaps are denoted by blue and green circles, respectively. The same
agreement is observed with many other levels not reported here. We are able to match irrelevant
CFT operators with large conformal weights as (0,3), (3,0), and (3,3) and the rule for which
the dominant finite-size corrections cancel still applies.

Density and order parameter two-point functions. It is, in general, a difficult task to
associate matrices on the lattice to primary fields in the CFT. The operator for which this
procedure is trivial is the order parameter, namely the most relevant operator in the CF'T which is
not invariant under a symmetry transformation, i.e., the primary field (1/15,1/15). Its anomalous
dimension is thus 7, = 4/15 and its two-point function is expected to behave as a power law
with this exponent. Zj3 order is realized on the lattice through a period-3 boson-density wave;
thus the (complex) order parameter takes the form [6]

i27‘(‘/3 —i27|'/3n7;+2. (321)

Oi=n;+e"niy1 +e
Exploiting translational invariance, we can write its two-point function in terms of the density

two-point function as

<OIOO) = 3(non,) 4 €23 (2(nonr41) + (nonr—2)) + e i2m/3 (2(nony—1) + (nony42)).
(3.22)

Although this quantity is expected to be purely real, a small imaginary part is obtained when
determining <OiOO> from numerical data, which we neglect. In order to take into account finite-
size effects, we compare our results to the two-point function of the order parameter for a CFT
on a ring of length L. For a primary field with conformal weights A = A = 1/4, it reads [21]

(O(x)0(y)) = [Lsin (nA(xL_y))]" = %G (z;y) . (3.23)

We obtain an estimate of n by fitting the lattice two-point function with the expression above
and free parameters A and 7. In Fig. 3.6(b) we plot the lattice expectation value for different
system sizes, rescaled by multiplication by L" (where the value resulting from the fit mentioned
above is taken for the latter), obtaining perfect data collapse on the universal scaling function
G(z) in Eq. 3.23. In Fig. 3.6(a) we plot the connected density-density expectation value, which
also fits perfectly the CF'T expression, with the same scaling dimension as the order parameter.
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Figure 3.6: (a) Two-point function of the lattice order parameter Eq. 3.22 for different lengths L multiplied
by L7, with n fitted with the CFT expression Eq. 3.23. Estimate and error of the amplitude A and the
exponent 7 are obtained upon taking the average of the results for different system sizes. (b) Same scaling
as in (a) for the order parameter, which has the same scaling dimension as the density.

3.1.3 Doubly-blockaded regime

In this section, we study the phase diagram of the model Hamiltonian in Eq. (3.5) in the limit
V — +00. When U — —oo the system is Zg-ordered and the order parameter in Eq. (3.21) is non
vanishing. For finite and large negative U, the finite-size spectrum of the Hamiltonian behaves
as in the usual Zs spontaneously symmetry broken scenario: the ground state is nondegenerate
and the first two low-lying excited states are exponentially close to it with a gap A o exp(—L/§),
where £ is the correlation length. In the limit U — 400 the ground state is the nondegenerate
state with no bosons and Zs symmetry is not broken. A transition between these two regimes is
expected in the middle.

In what follows, we provide evidence that there are two continuous phase transitions located
at Ugg S —1.96 and Uy ~ —1.915. At the first transition, the ground state of the system switches
from a period-3 ordered state to a quasi-long-range-ordered, critical phase with incommensurate
density-density correlations, known as the floating phase. At the second transition point, the
system passes from the gapless critical phase to a disordered phase. For the first transition we
compute, with different methods, the location of the critical point, the correlation length critical
exponent v, the dynamical critical exponent z, and the order parameter critical exponent 5. We
then show that the second transition is consistent with the BKT scaling ansatz, according to
which the correlation length vanishes exponentially and the gap finite-size scaling at the transition
point is affected by logarithmic corrections [107].

We finally show that for values of U inside the floating phase U,y < U < Uy the scaling of
the entanglement entropy is in agreement with the Luttinger liquid universality class, where the
central charge ¢ equals 1.

Quantum concurrence and fidelity susceptibility. By means of the same methods tested
in Sec. 3.1.2, we now proceed to investigate the transition points by studying the behavior of
the quantum concurrence and the fidelity susceptibility. These observables are not known to be
generically sensitive to BKT transitions [108]; for this reason, we expect them to only diagnose the
presence of the first of the two transitions mentioned above. We carry out exact diagonalization
calculations up to L = 54 sites for ground-state properties, and consider sizes L = 3n,n € N to
avoid incommensurability effects.

The derivative of the concurrence exhibits the same behavior discussed in Sec. 3.1.2, namely a
peak which is sharpening and moving towards the critical point, U,, with increasing system size.
In order to extrapolate the position of the maximum U*(L) for L — oo we fit it with a power law
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Figure 3.7: (a) Linear fit of the peak position U*(L) of the first derivative of the quantum concurrence
Eq. (3.9) vs 1/L, for L from 33 to 45 sites. The result of the fit is stable against the system sizes included
in the fit and the critical position we obtain U,y = —1.969 + 0.005, where the error takes into account
variations with respect to the system sizes included in the fit. (b) Linear extrapolation of the peak position
U*(L) vs 1/L in the fidelity susceptibility Eq. (3.10), for L from 39 to 54 sites. The result is stable when
smaller system sizes are included and the critical point position we get is U,y = —1.973 &+ 0.005. Error
considerations are the same as in panel (a). (c) Correlation length critical exponent obtained from the
scaling of the maximum of xr according to Eq. (3.11) for L = L;p, Lin + 3, ...,54 as a function of L,.
The critical exponent decreases when smaller system sizes are excluded from the fit and saturation is not
reached with the maximum lengths we can access. We note that a strong sensitivity of critical exponents
with respect to system sizes was already observed in Ref. [9].

with scaling exponent v = 1. In this way, we obtain a value U,; = —1.969+0.005, which is stable
against the range of system sizes included in the fit. By performing the same analysis for the
peak of the fidelity susceptibility, Eq. 3.10, we get instead a critical value U,y = —1.973 £ 0.005.
The results are plotted in Fig. 3.7(a)-(b). Both of these results illustrate the fact that finite-size
effects in this regime are comparatively larger than close to the Potts critical point. In particular,
employing sizes on the order of L ~ 30 would lead to wrong estimates in both cases: the scaling
regime for what concerns entanglement and wave-function properties seems to be only reached
above L = 33.

Exploiting the known finite-size critical scaling of the peak of xyr described by Eq. 3.11, we
obtain a critical exponent v = 0.70 4 0.05. We stress that the latter estimate is very sensitive to
the system sizes employed in the analysis. In particular, the larger the system sizes included in
the fit, the smaller the v obtained (see Fig. 3.7(c)). In Ref. [8], the value v ~ 5/7 was extracted
from data collapse of the gaps, assuming the value z ~ 4/3 for the dynamical critical exponent.
This evidence was used to conclude that the transition does not belong to the PT universality
class, for which v = 1/2 and z = 2. Although the variation of the exponent with the system sizes
considered seems very slow, we cannot exclude, based on our data, that it eventually reaches the
value expected for a phase transition of the PT type, as found in Ref. [9] for the critical regime
below the Potts point.

Critical point location through data collapse. We now exploit the finite-size scaling theory
which applies in the proximity of a second-order phase transition [109] to extract the values of
U.1, z, and v from the lowest spectral gap A. With this aim, we adopt an approach very similar
to the one taken in Refs. [110, 111].

First we compute a universal scaling function F' from ED data for A for different system sizes.
This scaling function will depend on some unknown critical exponent v and on the dimensionless
ratio L/&, L being the system size and & the correlation length: F' = F(vy, L/£). We then assume
a functional form for £ in terms of the critical point position U, and, if finite, of its critical
exponent v: £ = {(U,U.,v). We use this functional form to express the scaling function F' in
terms of the variable © = In(L/¢) = x(L,U, U., 7, v). Finally, we combine data for F' for different
system sizes and we look for the values of U., v, which produce the best data collapse. This
is achieved by fitting f(z) = F(e®) with an arbitrary high-degree polynomial and minimizing
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Figure 3.8: (a) Deunsity plot of the square root of the sum of the squared residuals in the (v,U.;) and
(2,U.1) planes for the best-fitting values of z and v, respectively. (b) Crossing of the gaps, upon multi-
plication by L? for the best fitting z. The crossing indicates the position of the critical point. (c) Data
collapse of ED numerical data, with U € [U,; — 0.03, U1] with the parameters U,j, z, v which minimize
the polynomial fit of the universal scaling function in Eq. (3.24). (d) Same as in (c), but with parameters
Uei, z, v taken from Ref. [8]. (e)-(g) Critical exponents and critical point location obtained by applying
the procedure described in Sec. 3.1.3 for sets of 5 system sizes L = Ly, ..., Li, + 12 with increasing L, .
The average is obtained by varying the size of the interval [U, — 06U, U] with 0.01 < §U < 0.03, the
degree of the polynomial being fixed to 10. The errorbar is the standard deviation of the obtained results.

the sum of the squared residuals. By considering a full functional collapse instead of extracting
the thermodynamic limit gap from single parameter data, this method copes relatively well with
finite-size effects, even in the most critical BKT scenario. Indeed, in the latter case it allows
us to locate transition points with a precision similar to (if not better than) approaches based
on matching conformal dimensions [110, 111], which are based on assuming a specific functional
dependence between lattice and field theory operators.

Since at a quantum phase transition all low-lying eigenvalues of the Hamiltonian are expected
to be separated from the ground state by a power-law decaying gap A ~ 1/L?, where z is the
dynamical critical exponent, we can obtain a scaling function by multiplying the lowest gap by

L*:
L
F () = I*A. (3.24)
3
Assuming that the phase transition has a finite v exponent, we have
E~(Ua—-U)". (3.25)

We can then find the best-fitting values of v,z, and U, via the procedure described above. It is
fundamental to check the stability of the result with respect to the degree of the polynomial, the
size of the interval from which the value of U < U, is taken, and most importantly, the system
sizes which are included in the fit. We find that, in our case, the result is very stable with respect
to the first two, but we get stability with respect to the system sizes we have at our disposal only
if we include the largest ones (up to Lmax = 54). In particular, by including sizes of increasing
magnitude we observe a decrease in our estimates for U, and v, and an increase in the one of
z. In Fig. 3.8(c) we show the result obtained by including all systems sizes 45 < L < 54. The
data collapse shows deviations of order 1072, and is considerably more accurate than the one
performed with the values reported [8] with Lnax = 36 (see Fig. 3.8(d)).
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Figure 3.9: (a) Order parameter computed by averaging the one-point function O; = ei?mi/ 3nj on L/2
sites in the bulk. Z3 symmetry is spontaneously broken by the choice of the number of sites on the open
chain, i.e., a multiple of 3 plus 1 site. The obtained order parameter does not scale with the system size for
U < —1.975. (b) Infinite-size limit value of the order parameter, extrapolated in 1/L and power-law fit of
the resulting curve. The obtained critical exponent and critical point position are § = 0.031 £ 0.005 and
Ueg = —1.969+0.002. (c) S(27/3) as a function of the parameter U. Symbols represent QMC (triangles)
and DMRG (circles) for the ground state of model Eq. (3.5), extrapolated in the thermodynamic limit
(see text). The dashed and solid line are a power-law fitting function (see text) used to interpolate QMC
and DMRG results, respectively.

However, as shown in Figs. 3.8(e)-(f), the z and v exponents are still varying with the system
size. Although the trend exhibited by this data does not allow any extrapolation, we clearly see
that the true scaling regime has not yet been reached. This leaves open the possibility that z
and v will eventually approach the values expected from a JNPT transition, namely 2 and 1/2,
respectively [24]. The best estimates we can give from our data of critical exponents and critical
point position are: z =1.48+0.1, v =0.7£0.1, U,y = —1.960 = 0.005.

Since the methods employed over the next subsection will rely on assumptions, we find it
useful to summarize the analysis performed so far. All diagnostics are compatible with the
presence of a second order phase transition. The location and nature of the transition are
extremely sensitive to the system sizes investigated. Regarding the location of the transition
point, sizes up to L ~ 30 are not sufficient to determine it, while the estimates using all three
methods are rather stable after L ~ 45. Entanglement-based methods return U,y = —1.973 &+
0.005 and U, = —1.969 +£ 0.005, respectively. The method based on gap collapse returns U, =
—1.960; for this last method, it is challenging to include a rigorous error bar. However, it is worth
noting that the best data collapse obtained up to L = 36 returns U, = —1.949, in agreement
with Ref. [8]; this clearly signals that the critical point is drifting to considerably smaller values
of U as size increases (see Fig. 3.8(g)), in agreement with the entanglement-based diagnostics.

A similar conclusion holds for the critical exponents: as clearly observed in the fidelity sus-
ceptibility scaling, even at sizes of order L = 54, the critical exponent has not yet reached its
thermodynamic value. The data collapse of the finite-size gaps fully confirms this picture. This
motivates the study in the next subsection, where we will employ different — but assumption-
dependent — methods to determine some of the properties of this second-order transition. From
the analysis performed here, we can anticipate that, even if larger system sizes are studied, de-
pending on the observable, a systematic underestimation of the modulus of the critical point
location |U,1| is expected. As we will see, this is particularly critical for the methods discussed
in the next section.

Order parameter. In this section, we investigate the disappearance of the Zj3 order across
the second-order phase transition. We do so by utilizing three methods: a QMC and DMRG
study with PBC, and a 1-site DMRG study with OBC. Our focus in the following will be on
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correlation functions and the order parameter of the Zs order. As such, we will be assuming
that there is an exact mapping between the lattice operators describing the latter, and its field
theory counterpart. While this condition is typically satisfyingly fulfilled for most lattice models
displaying quantum critical behavior, we opted for a more conservative approach in the context
of the FSS model in the doubly blockaded regime. The reason is that the constraint acts at the
lattice spacing level irrespectively of how close one is to the critical point. This suggests that
defining field operators that do not change at the lattice spacing level are nontrivial, making the
connection between lattice and continuum not immediate. While this feature has no consequence
on spectral and wave-function properties, it is highly likely that it affects the finite-size behavior
of correlation functions.

We perform quantum Monte Carlo (QMC) simulations using a modified version of the worm
algorithm [26], adapted to simulate Hamiltonians with off-diagonal terms such as those of the
FSS model and with updates designed to automatically respect its occupation constraints. The
method allows us to directly measure quantities such as energy, particle density, and the static
structure factor:

L
S(k) = % S e nn) (3.26)
i,j=1

where k is one of the allowed lattice momenta, and r;; is the distance between sites ¢ and j.
In the Zs—ordered phase the structure factor will feature a peak at a wave vector k = 27/3,
corresponding to the periodicity of the Zs-periodic charge density waves. The value of the peak
is equal to the squared Zg order parameter in Eq. (3.21), and therefore follows a power-law
behavior [112] S(27/3) ~ |U — U.|?® when approaching the critical point U, from the ordered
phase.

We obtained an estimation of the position of the critical point, as well as the critical exponent
B, by interpolating the QMC results with the expected power-law behavior. We studied system
sizes up to L = 120 sites and temperatures down to 7' = 1/128 (where the magnitude of the
off-diagonal part of the Hamiltonian is taken as a unit of energy). Extrapolation in the inverse
temperature has been employed to determine ground-state results where direct convergence in
T (i.e., results identical within their uncertainty for one or more pairs of temperatures (7',7/2))
was not observed. Below U = —1.96, no further extrapolation in the system size was necessary,
since direct convergence in size was always observed. Above this value, however, our extrapolated
values were not fully converged in size and inverse temperature (also due to considerably slower
MC dynamics). We therefore restricted our investigation to the U < —1.96 region. Figure 3.9
(c) shows the QMC data (triangles) as well as the power-law interpolation (purple line). The
resulting values are U, = —1.951(5), 8 = 0.059(7) 2.

An independent estimate of the critical point and critical exponent 8 has been obtained by
computing S(27/3) via DMRG (circles in Fig. 3.9 (c)) and performing the same extrapolation as
above (solid green line in Fig. 3.9 (c)). We approximated the exact Hilbert space in the DMRG
by giving a large penalty to not-allowed states. This is achieved by adding to the Hamiltonian
a term A ZZ NiNi+1 + NN, with A = 103. Unfortunately, performing a rigorous extrapolation
in A — oo is extremely difficult: the main reason is that, for increasingly larger values of A,
the diagonalization at each DMRG step becomes extremely sensitive to numerical errors due
to the large difference in the matrix elements of the Hamiltonian matrix. However, for a fixed
value of A\, we expect a difference on the order of 1/A when comparing local observables, such
as energies, with ED data. The absence of any other unforeseen source of systematic error
due to the finite value of A can be confirmed by direct verification. Indeed, with our choice of
A\ = 103, if we calculate the energy gap between the ground state and the first excited level for

4These confidence intervals only indicate the error in the fit; the same applies to the DMRG estimate of the
same quantities.



100

L =54 and U = —1.950, the discrepancy between DMRG and ED is of the (expected) order
of en ~ 1073, This check is very important because it allows us to understand that the limit
A — oo is approached perturbatively. Despite this violation of the constraint which directly
affects local observables, we obtain a good agreement with ED when we study other quantities
such as entanglement entropy and central charge. For instance, using the same values of L and
U, we obtain a difference in the central charge on the order of €, ~ 10~* with respect to ED
results. In our DMRG implementation, we take an elementary cell made of 3 sites in order to
have a local representation of the Zg order. This also allows us to discard 4 of the 8 states in the
blocked DMRG-site. Simulations were performed by keeping the truncation error below 1077
using up to 1000 DMRG states and ensuring that the energy variance of the ground state is of
the same order of the truncation error.

We observe that DMRG results (after an extrapolation in 1/L of the squared Zs order pa-
rameter for 84 < L < 120) yields a larger value for S(27/3) than QMC, possibly due to the
approximations required to impose the occupation constraint. The results of the extrapolation
are U, = —1.948 4+ 0.007 and S = 0.036 £ 0.005.

As a final test bed for the results above, we compute directly the order parameter in Eq. (3.21)
by variationally optimizing the ground state with MPS methods on an open chain in which
the constraint is implemented exactly. The method we use exploits the exact relation between
MPOs and finite-state automata [113], and is described in detail in the Appendix. We are able
to variationally optimize the MPS for chains of up to 718 sites. The computational resources
required to accurately approximate the ground state are relatively small: a bond dimension of
200 — 300 is sufficient to keep the variance of the Hamiltonian below 1072, We explicitly break Zs
symmetry by choosing system sizes which are multiples of 3 plus 1 site. This makes energetically
favored states in which there are two bosons at the edges, thus breaking the symmetry without
adding any term in the Hamiltonian. Extrapolation to the thermodynamic limit is then performed
vs 1/L. The result is plotted in Fig. 3.9. We compute the order parameter by averaging the
one-point function on L/2 sites in the bulk. The fit of the averaged order parameter as a
function of U returns a critical exponent 8 = 0.031 4+ 0.005 and a critical point location U, =
—1.969 4+ 0.002. The error attributed takes into account variations of the fitting parameters
obtained by considering different sets of values of U and computing the order parameter by
performing the average over a different number of sites in the bulk of the chain.

Summarizing, the direct study of the order parameter provides similar information to that of
the quantities analyzed in the previous subsection: upon increasing system sizes, the position of
the second-order transition systematically drifts toward larger values of |U.1|. It is informative to
note that this shift is compatible with a “finite-size” location of the transition point based on the
wave-function variation captured by the fidelity susceptibility: as can be seen from Fig. 3.7(b),
a finite-size estimate at around L ~ 120/800 would return a critical coupling of order U, =~
—1.95/1.97, respectively. The incompatibility with the extrapolated values of the structure
factor between DMRG and QMC indicates that approaching an exactly blockaded regime in
experiments is challenging (see, e.g., the relatively large deviations in estimating (), even if, in
terms of transition point location, the difference is of order 0.003.

BKT transition and the floating phase. The presence of a systematic drift towards smaller
values of U, as a function of the system size may signal the presence of an intermediate phase
between the ordered and disordered ones. A first check on this hypothesis can be obtained via
investigation of the entanglement entropy. To this end, we perform DMRG simulations up to
L = 108 sites. In Fig. (3.10) we plot the entanglement entropy for fixed U = —1.95 as a function
of the cord distance on the ring x(¢) = L/msin(¢w/L), ¢ being the length of the subsystem on
the lattice, for different system sizes. By directly fitting the scaling of the entropy for this value
of U, which belongs to the region between U, and U according to all our estimates, we are able
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Figure 3.10: Entanglement entropy for fixed U inside the floating phase as a function of the logarithm
of the cord length in the CFT ring. The fit produces a central charge in a perfect agreement with the
Luttinger liquid CFT.

to obtain a central charge in a good agreement with a ¢ = 1 CFT. This is a strong indication of
the presence of a critical phase for U > U,j, compatible with the Luttinger liquid universality
class. We note that for nonrelativistic critical points or phases, the entanglement entropy is not
bound by a logarithmic growth, and even if so, the coefficient could be arbitrary. This implies
that, assuming there is no fine-tuning, a ¢ = 1 point or phase is present here.

As discussed above, all entanglement-related quantities signal a single second-order phase
transition. This implies that the transition between the IC and disordered phase shall belong to
the BKT universality class, in agreement with field theoretical insights [9, 6].

By carrying out the same analysis of Sec. 3.1.3 on the lowest gap in the energy spectrum, we
can estimate the location of the BKT transition, which is expected to occur for U > —1.95. The
scaling ansatz differs from the one in the previous section for two reasons: the dynamical critical
exponent is z = 1, and the exponential divergence of the correlation length is

€ ~ exp (\/UﬁiUJ , (3.27)

where b is a nonuniversal constant, independent of U. Moreover, logarithmic corrections are
known to intervene at the end of RG lines of fixed points. In the case of a BKT point the
functional form of these corrections is known to be [107] A ~ L7l + 1/(2InL + C)]7}, for
some model-dependent constant C'. On the basis of this field theory result we take as the scaling
function for the gap [110, 111]

. _ 1 _ (L
A_L<1+M>A_F<§>. (3.28)

This scaling ansatz, in combination with the procedure previously discussed, has been tested in
various spin chains where the location of the BKT transition point was analytically known [111].
In these cases, the method was found to slightly underestimate the width of the gapless region; in
our case here, one thus expects that this method will overestimate the value of |Ugz|. In terms of
accuracy, the estimate obtained with this method is compatible with state-of-the-art diagnostics
based on targeting operator dimensions via correlation functions.

In our case, we observe the same shifting of the critical point towards negative U as we take
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Figure 3.11: (a) Density plot of the square root of the sum of the squared residuals in the (b,U.;) and
(C,U.) planes for the best-fitting values of C and b, respectively. (b) Crossing of the logarithmically
corrected gaps, upon multiplication by L? (where z = 1) and taking the best-fit value for C. The
crossing indicates the position of the critical point. (c) Data collapse of ED numerical data, with U €
[Uea, Uee +0.03] with the parameters Uga, b, C which correspond to the best polynomial fit of the universal
scaling function in Eq. (3.28).

increasingly large system sizes. A sample result of the largest system sizes we have investigated
is plotted in Fig. 3.11; the quality of the data collapse is excellent, as testified by the small
value of the sum of the discarded weights. By taking into account variations of the optimal
parameters with respect to the set of system sizes and amplitude of the intervals considered, we
get b = 0.27 £ 0.05, C' = 10.0 £ 0.5, Uy = —1.915 £ 0.008 as the best estimate of the scaling

function and transition point location.

3.1.4 Conclusions

In this work, we have investigated the physics of the hard-core boson constrained model of
Eq. (3.5) in the region of the phase diagram surrounding the Zs-ordered phase. In the first part
of the study, we considered the vicinity of the Potts critical point. Since the position of the latter
is analytically known, we have used this regime to benchmark entanglement-based techniques to
detect quantum criticality in constrained models. In particular, we have shown how concurrence
and fidelity susceptibility are able to accurately determine the exact location of the critical point
with accuracy of order 0.1% in units of the coupling U. At the critical point, we have carried
out an extensive investigation of the low-lying energy spectrum, matching such spectrum with
the one expected from the Ms minimal model. Our data suggest that it is possible, within
experimentally achievable system sizes, to unambiguously diagnose Potts quantum criticality by
just measuring spectral properties. We have also observed systematic suppression of finite-size
corrections in local observables, a feature which we believe is due to integrability at the critical
point.

In the second part of the work, we have investigated the melting of the ordered phase in the so
called doubly blockaded regime, that is, in the presence of infinite next-to-nearest-neighbor repul-
sion. We have observed the presence of a gapless regime, i.e., an incommensurate phase, already
found in the same model below the Potts transition point. Our results show how this phase is sur-
rounded by a second-order phase transition from one side, and a Berezinskii-Kosterlitz-Thouless
transition on the other. The position of the latter has been determined using an advanced gap
scaling technique at Uz, = —1.915 4 0.008.

Regarding the second-order phase transition, we have found that reaching a scaling regime for
entanglement (concurrence and fidelity susceptibility) properties requires sizes L > 30. Reaching
this regime is also required to determine the location of the transition point utilizing spectral
properties. Due to the difficulty in performing calculations for these sizes, entanglement and
spectral methods only allow us to provide a lower bound to the position of this critical point,
Ua < —1.96. Similarly, we can only provide bounds for the critical exponents; in particular, we
find a systematic drift of the value of v toward smaller values, and of z toward higher values.
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These findings are not compatible with previous results [8] based on sizes up to L = 36, while
they are compatible with a potential emergence of Pokrovsky-Talapov critical behavior observed
below the Potts point [9] and with a series of different non-relativistic critical scenarios proposed
in related field theories [10]. Following the analogy between the FSS and the chiral clock model
suggested in Ref. [8], our findings indicate that, in the FSS model, the critical line separating the
ordered and disordered regimes ultimately reaches the regime corresponding to large chiral angles
in the clock model, where an incommensurate phase intervenes between the two phases [114].

We have complemented our analysis with numerical simulations monitoring the behavior of
solid order across the transition, using both quantum Monte Carlo and tensor network methods.
These methods predict a position of the phase transition that strongly depends on the considered
boundary conditions. In all cases, the position of Ug is quite distinct from U, with respect to
the numerical uncertainty of our results.

Our results suggest that the strong-coupling regime is relatively convenient to observe phases
with incommensurate order, as the size of the floating phase is considerably larger than at smaller
couplings. Moreover, spectral properties should be favored as probes over correlation functions,
which seem to be more sensitive to finite-size effects. In addition, the presence of a relatively
extended transient scaling regime in terms of system sizes partly supports the observation made
in Ref. [7] regarding Kibble-Zurek scaling: while the combined effects of a second-order and
nearby BKT transition have not been discussed in detail to the best of our knowledge, it is
likely that the presence of the latter affects rather dramatically the dynamics over parameter
space, due to exponentially vanishing gaps. We leave the investigation of such a scenario (which
has been shown to be experimentally achievable [115]) to a future study. Finally, it would be
interesting to systematically consider the effect of additional interaction terms that are present
in experiments: despite their modest magnitude (as they decay very similarly to van der Waals
interactions), those terms may sensibly affect the size of the incommensurate phase.
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3.2 Lattice gauge theories and string dynamics in Rydberg atom
quantum simulators

We present here an exact mapping of the Hamiltonian in Eq. (3.3) with d = 2 and V3 = 0 into
a U(1) LGT with truncated gauge field. The mapping provides a system in which the matter
degrees of freedom is integrated out via Gauss law. As we will show, the detuning frequency
is responsible for giving a mass to the matter particles. This result, other than demonstrating
that the Rydberg experimental setup of Ref. [4] constitutes a (potentially large-scale) quantum
simulator of a LGT, will be used to interpret the slow dynamics generated by the Rydberg
Hamiltonian, outlined in the introduction to this chapter, in terms of known phenomena in
LGT.

After describing the mapping in Sec. 3.2.1, we give a gauge-theory interpretation of the
dynamics of this system in Sec. 3.2.2. More specifically, we explain the density oscillations
observed in the Rydberg chain as a time evolution alternating between the two vacua of the LGT.
We discuss the effect of the truncation on the gauge field by comparing the same dynamics in a
discretized version of quantum electrodynamics, namely the Schwinger model [43]. In Sec. 3.2.3
we analyze the propagation of defects onto the vacuum state, highlighting the connection of these
defect-states to the atypical eigenstates investigated in Ref. [13]. Finally, in Sec. 3.2.4 we give
our conclusion and outlook.

3.2.1 Rydberg blockade as a gauge symmetry constraint

We establish here the exact mapping between the FSS Hamiltonian in Eq. (3.3) governing the
dynamics of the Rydberg atom quantum simulator in Ref. [4] and a U(1) LGT. The latter
describes the interaction between fermionic particles, denoted by ®; and residing on the lattice
site j, mediated by a U(1) gauge field, i.e., the electric field F; 11, defined on lattice bonds, as
depicted in Fig. 3.12. We use here Kogut-Susskind (staggered) fermions [44|, with the conventions
that holes on odd sites represent antiquarks ¢, while particles on even sites represent quarks q.
Their dynamics is described by:

— L
H:—wz (PIU, ;1@ +he) +m Y (1) 0], +JZ D (3.29)
s ~

where the first term provides the minimal coupling between gauge and matter fields through the
parallel transporter Uj ;1 with [Ejj1,Ujj+1] = Ujj4+1, the second term is the fermion mass,
and the last one is the electric field energy. The generators of the U(1) gauge symmetry are
defined as .
1—(=1)
B
and satisfy [H,G;] = 0, so that gauge invariant states |¥) satisfy Gauss law G;|¥) = 0 for all
values of j. Restricting the dynamics to their subspace is by far the most challenging task for
quantum simulators. Different formulations of U(1) LGTs are obtained for different represen-
tations of gauge degrees of freedom Ej ;1. While in the standard Wilsonian formulation —
i.e., the lattice Schwinger model — they span infinite-dimensional Hilbert spaces, here we first
focus on the U(1) QLM formulation [40, 116|, where they are represented by spin variables, i.e.,
Ej,j—i—l = S;7j+1 and Uj,j—i—l = S]J-fj+1, so that [E [ 7,5+15 S;rj_’_l] = S;Tj+1' As noted in Ref. [117], this
formulation is particularly suited for quantum simulation purposes.

In the following, we consider the QLM with spin S = 1/2, in which all the possible config-
urations of the electric field have the same electrostatic energy, rendering the value of J incon-

Gj=Ejjn —Ej1;— oo, + (3.30)
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Figure 3.12: Degrees of freedom of a U(1) LGT in the spin-1/2 quantum link model (QLM) formulation.
Gauge fields are represented by spin variables residing on links. Matter fields are represented by Kogut-
Susskind fermions: an occupied site corresponds to the vacuum on odd sites, and to a quark ¢ on even
sites. An empty site, instead, to the vacuum on even sites and to an anti-quark g on odd sites.

sequential; in Sec. 3.2.2 we show that this model is equivalent to the lattice Schwinger model
in the presence of a #-angle with # = 7 °. The Hilbert space structure following Gauss law is
particularly simple in this case [117]: as depicted in Fig. 3.13, for each block along the chain
consisting of two electric fields neighbouring a matter field at site j, there are only three possible
states, depending on the parity of j. In fact, in a general (1-+1)-dimensional U(1) LGT, the
configuration of the electric field along the chain determines the configuration of the charges via
the Gauss law. Accordingly, H in Eq. (3.29) can be recast into a form in which the matter fields
®; are integrated out.

We now provide a transformation which maps exactly the latter form into the FSS Hamil-
tonian (3.3). The correspondence between the two Hilbert spaces is realized by identifying,
alternately on odd and even lattice sites, the computational basis configurations of the atomic
qubits allowed by the Rydberg blockade with the classical configurations of the electric field
allowed by the Gauss law (see Fig. 3.13). In terms of the two Hamiltonians Eqgs. (3.3) and
(3.29), this unitary transformation consists in identifying the operators o7 < (—1)jZSj

J _17j7
of < (@;{71$f71,j¢)j + h.c.), J? “— —.2‘(—1)](@}715’}&17]4(1)3- — hc) .and the paramete.r's 0= —w,
6 = —m. This mapping can be applied both for open and periodic boundary conditions and it

overcomes the most challenging task in quantum simulating gauge theories, by restricting the
dynamics directly within the gauge-invariant Hilbert space.

Compared to the opposite strategy of integrating out the gauge fields, our procedure based
on integrating out matter degrees of freedom has major experimental implications. With the
first approach one would obtain linearly raising potentials which do not appear easily in the
synthetic quantum systems, and lead to very large energy scales (of the order of the system size).
Since the overall timescale of most experiments is limited by noise, having couplings with relative
ratios of order L is a severe limitation for analogue experiments, and partially affects also digital
efforts. The only states that would violate Gauss law are nearest-neighbor occupied sites which
are strongly suppressed by the Rydberg blockade. Additional terms in the Hamiltonian, such as
next-nearest neighbour interactions of Rydberg excitations, are mapped to gauge invariant terms
(e.g., next-nearest neighbour interactions between electric fields). From a theoretical viewpoint,
the line of thought of our scheme is similar to the one used in hybrid Monte Carlo schemes, where
one first integrates out the matter fields, and then deals with a purely bosonic action.

Beyond providing a direct link between Gauss law and the Rydberg blockade mechanism, the
most important feature of the mapping is that it provides an immediate connections between
Rydberg experiments and particle physics phenomena, as we describe below.

5The similarity between the phenomenology of the two models was pointed out in Ref. [117]. Here, we are
instead interested in establishing an exact relation.



106

odd-even bonds even-odd bonds
Rydberg QLM Rydberg QLM
o e e e © «
e o - q e o » 4
® O o e -

§ R Anti-
_ _ _ string

COW2 © @ O @ O @ O

Empy ® @ © @ @ @ @

“Pairs”

Figure 3.13: Mapping between Rydberg-blockaded states and configurations of the electric field con-
strained by the Gauss law in the QLM. Due to the staggered electric charge, the allowed configurations of
the electric field depend on the link, as illustrated. The two so-called charge-density wave configurations
“CDW1” and “CDWZ2” of the Rydberg-atom arrays are mapped onto the “string” and “anti-string” states,
respectively, characterized by uniform rightward or leftward electric fluxes. The empty configuration
with all Rydberg atoms in their ground state is mapped to a state filled by adjacent particle-antiparticle
pairs. (a) Time evolution of the Rydberg array governed by the effective Hamiltonian Hpgg in Eq. (3.3),
starting from the CDW1 state. The plot shows the space and time resolved population (n;) of the excited
Rydberg atoms. (b) Evolution of the expectation value of the electric field operator Ej ;11 in the QLM.
This dynamics maps exactly onto the ones shown in panel (d) via the mapping illustrated in panel (c).
The thin lines highlight the oscillation between CDW1, CDW2 (left,bottom of panel (¢)) or string and
anti-string (right) states. In these simulations, L = 24 and § = m = 0.

3.2.2 Gauge-theory interpretation of the real-time dynamics

The exact description of Rydberg-blockaded chains in terms of a U(1) LGT allows us to shed a
new light on the slow dynamics reported in Ref. [4], by interpreting them in terms of well-studied
phenomena in high-energy physics, related to the production of particle-antiparticle pairs after
a quench akin to the Schwinger mechanism.

In the experiment, the system was initialized in a charge density wave state (CDW1 in
Fig. 3.13), and subsequently, the Hamiltonian was quenched, inducing slowly-decaying oscilla-
tions between CDW1 and CDW2. As shown in Fig. 3.13, CDW1 and CDW2 are mapped onto
the two states of the S = 1/2-QLM with uniform electric field %, ; = +1/2. The experimental
results in Ref. [4] may thus be interpreted as the evolution starting from one of the two degener-
ate bare particle vacua |04) (i.e, the vacua in the absence of quantum fluctuations, w = 0) of the
gauge theory. In Fig. 3.13 (a) and in the first column of Fig. 3.14, we illustrate this dynamics as
it would be observed in the excitation density (n;) along the Rydberg-atom quantum simulators
(“Rydberg”) and compare it with that of the electric field (E; j41) within its gauge-theory descrip-
tion (“Quantum link model”) in Fig. 3.13 (b) and in the second column of Fig. 3.14, respectively,
utilizing exact diagonalization®.

The qualitative features of this evolution are strongly affected by quantum fluctuations, whose
impact is quantified by the ratio between the coupling constant w and the particles mass m. For
small values of m/w (first two lines in Fig. 3.14), production of particle-antiparticle pairs occurs
at a finite rate. We remark that this effect is reminiscent of the Schwinger mechanism [37],
which however concerns pair creation from the true (and not the bare) vacuum. These particles
get accelerated by the electric field and progressively screen it, until coherent pair annihilation
takes place and eventually brings the system to a state with opposite electric flux. This process,
referred to as string inversion, occurs several times in a coherent fashion; similarly to what is
observed in string breaking scenarios (e.g., in other LGTs [47, 118|), this causes a dramatic
slowdown of thermalization and of quantum information propagation. As a further evidence, we

SExact diagonalization is performed on the gauge invariant subspace: for large L, its dimension grows as ¢,
where ¢ is the golden ratio, thus allowing to access rather large system sizes.
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Figure 3.14: Slow dynamics in Rydberg atoms, U(l) quantum link model (QLM), and the lattice
Schwinger model. Coherent quantum evolution of (first column) the local Rydberg excitation density
profile n;(t) = (n;(t)) in the FSS model, starting from a charge-density wave, of the local electric field
profile (second column) Ej ji1(t) = (57 ,,4(t)) in the QLM, and (third column) (L; ;11(t) — 6/(27)) in
the lattice Schwinger model (see Eq. (3.29)) with J/w = 1.5 and § = w. The four rows correspond to
increasing values of the detuning § (Rydberg) or, equivalently, of the particles mass m = —§ (QLM and
Schwinger model). Figures 3.13 (a) and 3.13 (b) correspond to the first two plots in panel (a) here. Data
in the first and second columns are connected by a unitary transformation, while a remarkable similarity
is manifest between the second and third column despite the larger Hilbert space of the gauge degrees of
freedom in the Schwinger model. The persistent string inversions observed within the symmetric phase
with m < m. = 0.655|w| (first two lines) are suppressed as the quantum critical point is approached. The
dynamics in the third column features edge effects due to the imposed open boundary conditions.

compute both the total electric flux and the vacuum persistence amplitude (or Loschmidt echo),
defined as Gy (t) = |[(04|e”™*0,[|)2, whose large value ~ 1 was already noted in Ref. [119].
The anomalous long-lived oscillations of these quantities experimentally detected with Rydberg
atom arrays in Ref. [4] show a clear analogy with several previous numerical studies of the real-
time dynamics of higher-spin QLMs [47]| as well as of the Schwinger model [45, 120, 46| and
Higgs theories [42]. In addition, as noted in Ref. [117], the dynamics discussed here describes
the coherent oscillations of the parity-symmetric order parameter (in our case, (£ 11)) as a
function of time, reminiscent of the decay of a chiral condensate in QCD [48]. We thus provide
here a bridge among all these observations.

However, if fermionic particles are sufficiently heavy, with m/w exceeding a critical threshold,
pair production is a virtual process and string inversion cannot be triggered, as shown in the third
and fourth line of Fig. 3.14. We find that this behavior is related to the quantum phase transition
occurring in the FSS model at §, = —0.655/€2| [6]. This transition corresponds to the spontaneous
breaking of the chiral symmetry in the LGT (3.30) at m. = 0.655|w| [121]. The four rows in
Fig. 3.14 show the temporal evolution of the same initial uniform flux configuration (CDW or
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Figure 3.15: Left. Characterization of slow dynamics in the FSS model. (a) Hilbert space characterization
of the persistent string inversions (m = 0, L = 28): alternating strong revivals of the overlaps G4 (t) =
|{(0£|e=|0, ||)? with the two bare vacuum states |0+), corresponding to the two charge-density wave
configurations of Rydberg-atom arrays. Both the total density p = (p;) of particle-antiparticle pairs,

with p; = (—1)j<I>j-<I>j + [1 — (=1)7]/2 and the half-chain entanglement entropy (see the supplementary
information) have regularly-spaced maxima between the peaks. (b) Persistent oscillations of electric field
for two values of the mass and of the system size. Right. Oscillation of the electric field in the Schwinger
model with § = 7. (a) Time evolution of the average electric field. The initial state is the bare vacuum
with E; j41 = 1/2 and the chain has periodic boundary conditions. The solid and dashed lines correspond
to L = 14 and L = 12 respectively. Exact simulations are performed via truncation of the local Hilbert
space to dimension 16, i.e. |Ej; 41| < 15/2, and the constrained Hamiltonian for the electric field is
obtained by eliminating matter degrees of freedom. (b) Period of the oscillations as a function of J and
w. Data points correspond to values of the half-period obtained for L = 14. The solid line is the function
blog(J/w) + ¢, where b = —0.526 and ¢ = 4.2 are obtained through a fit in the region J/w < 0.1.

“string” in Fig. 3.13) upon increasing values of the mass m/w = 0,0.25,0.655, 1.5 corresponding
to the dynamics ((a), (b)) at m < me, ((c)) at the quantum critical point m = m., and ((d)) at
m > m.

Fig. 3.15 (left) further illustrates the appearance of string inversions for m < m, and the
corresponding slow dynamics. Panel (a) shows the long-lived revivals of the many-body wave-
function in terms of the evolution of the probability G4 (¢) of finding the system at time ¢ in the
initial bare vacuum state |04) or in the opposite one |0_), corresponding to G4 or G_, respec-
tively, as well as in terms of the time-dependent density p of particle-antiparticle pairs. Although
not shown here, the entanglement entropy of half system also displays an oscillatory behavior.
Panel (b) shows the scaling of the collective oscillations of the electric field with respect to the
system size L, as well as their persistence with a small but non-vanishing fermion mass m < m..

Slow dynamics in the Schwinger model. The above phenomenology is not restricted to
QLMs, but is expected to be a generic feature of LGTs including dynamical matter. We show this
in the context of a Wilsonian LGT, i.e., the lattice version of the Schwinger model in Eq. (3.29).
As discussed below, the model dynamics is, at the lattice level, remarkably different from the PXP
model (no constraints when written in spin language, different Hilbert space scaling, different
interactions, etc.). The key aspect is, instead, the common field-theoretical framework.

In this case, Ujj11 = eii+1 are U(1) parallel transporters with vector potential D5 j+1s
the corresponding electric field operator is Ej j41 = Ljj+1 — 0/(27m), where Lj ;11 have integer
spectrum and €/(27) represents a uniform classical background field parameterized by the 6-
angle. Canonical commutation relations for the gauge degrees of freedom read [9; j41, Lpp+1] =
id;p. In our numerical simulations, we utilize the spin formulation of the model obtained upon
integration of the gauge fields under open boundary conditions [122, 123].

We consider the case of a §-angle with 6 = , such that the electric field E; ;41 has half-integer
spectrum. Then, in the limit J/w — oo the term J E 41 in the Hamiltonian suppresses all the
values of the electric field that are different from +1 / 2 This implies that the electric field can
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be represented by a spin-1/2 S* operator and that the lattice Schwinger model is equivalent to
the spin-1/2 QLM discussed above. We find evidence that the corresponding behaviour persists
qualitatively down to J =~ w, when the electrostatic energy competes with the matter-field
interaction, as shown in the third column of Fig. 3.14. Despite the strong quantum fluctuations
allowed in principle by the exploration of a locally infinite-dimensional Hilbert space, a qualitative
similarity with the case of the locally finite-dimensional Hilbert space of the QLM is manifest
in the second column of Fig. 3.14, related to the observed dynamics in Ref. [4]. At a more
quantitative level, we see that the periods of the oscillations in the lattice Schwinger model and
in the QLM (for the same couplings) are in good agreement.

Even more drastically, we observe persistent oscillations also down to J < w (see Fig. 3.15
(right)), a regime in which the period becomes longer upon decreasing J. As we will discuss
below, the reasons for such oscillations persisting at the very opposite regime with respect to
the constrained one is related to the field theoretical origin of such behavior, which can be even
captured at a quantitative level via simple analytical approximations.

We remark that the lattice Schwinger model with unbounded levels of the gauge fields is sub-
stantially different from the QLM: not only the Hilbert space is much larger, but also the effective
spin-1/2 model describing it features long-range Coulomb interactions. Therefore, the generality
of the occurrence of oscillations which do not decay on time scales immediately related to the
microscopic couplings points to a rather robust underlying mechanism. In fact, we suggest here
that this behavior may arise from a universal field-theoretical description of the non-equilibrium
dynamics of states possessing a well-defined continuum limit.

Concerning the U(1) LGTs discussed in this work, the reference continuum field-theory de-
scription is provided by the Schwinger model, representing quantum electrodynamics in one
spatial dimension [43]. In the massless limit m = 0, this model can be exactly mapped by
bosonization to a free scalar bosonic field theory [37]. For a non-zero mass, the model is de-
scribed in terms of the canonically conjugate fields II and ¢ by the Hamiltonian

Hg = /dx [;HQ + %(@@)2 —i—;fqﬁz — cmwg cos(2v/Td — )| . (3.31)

Within this bosonized description, the field ¢(z,t) represents the electric field, and for m = 0 all
of its Fourier modes QNS(k;) correspond to decoupled harmonic oscillators. In this case, the evolution
starting from a false vacuum with a uniform string of non-vanishing electric field (¢(z,t = 0)) =
const # 0 represents an excitation of the single uniform mode with k = 0, and hence the electric
field will show uniform periodic string inversions around zero, with a frequency wy = e/+/m, where
e is the charge of the fermion. A non-vanishing value of m leads to the additional anharmonic
term in Eq. (3.31). The resulting total potential shows a transition from a shape with a single
minimum for m < m. to two symmetric minima for m > m,, analogous to the spontaneous
breaking of chiral symmetry on the lattice. This weak local non-linearity introduced by a small
m couples the various Fourier modes and hence induces a weak integrability breaking. In this
case, the uniform string inversions of the electric field evolving from a false vacuum configuration
with (¢(k = 0)) # 0 are expected to be superseded by slow thermalization processes at long
times (see, e.g., Ref. [124]). In the context of cold gases, a reminiscent slow relaxation has
been observed in interfering bosonic Luttinger liquids, whose Hamiltonian dynamics has some
similarities to the one discussed here [125].

We suggest that a remnant of this slow dynamics induced by the underlying integrable field
theory may persist in lattice versions of this gauge theory as long as initial states with a well-
defined continuum limit are considered. With the latter, we mean states whose field configuration
is smooth at the level of the lattice spacing: for our case here, the two Neel states represent the
smoother ones, as they correspond to the bare vacuum of the fermionic fields, and no electric field
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Figure 3.16: Slow dynamics of particle-antiparticle pairs. (a) Cartoon states representing the propagation
of particle-antiparticle pairs g-g. The notation is the same as in Fig. 3.13, while the yellow stripes denote
regions of space with largest particle density and therefore (E; ;j11) ~ 0. (b) Evolution of the particle
density in the QLM starting from a bare vacuum or “string” state, see Fig. 3.12, with initial particle-
antiparticle pairs. (c) Same as in panel (b), but in the Rydberg excitation density representation. Left
column: the oscillations observed in the light-cone shaped region originating from the particles is expected
to be out of phase with respect to those of the bare vacuum. Right column: In the presence of two ¢-¢
pairs, an additional change of periodicity is expected in correspondence of elastic scattering. In these
simulations, m = 6 = 0.

excitations. At a qualitative level, the effect of integrability-breaking induced by lattice effects is
expected to be much weaker in the small Hilbert space sector involving uniform excitations with
k = 0 only, where the long-lived string inversion dynamics takes place. The number of states in
this sector grows linearly with the lattice size L and their energy spans an extensive range, in
agreement with the characteristics of “many-body quantum scars”, see Ref. [13] and Sec. 3.2.3
below.

At a quantitative level, we test our prediction on the lattice Schwinger model with 6 = 7,
whose continuum limit is obtained by scaling the parameters with the lattice spacing a in such a
way that J = e%a/2, w = 1/(2a), and a — 0 [126]. In order to address this regime, we perform a
scaling analysis as a function of J/w. According to the field theory, in this limit the period of the
oscillations scales as T' o< 1/v/Jw: as shown in Fig. 3.15 (right), this scaling is indeed satisfied
for J < w, where we obtain a fitting dependence of T o< (Jw) %526 within a few percent from
the expected exponent.

3.2.3 Propagation of particle-antiparticle pairs

States of the QLM corresponding to particle-antiparticle pairs in the bare vacuum can be con-
structed in Rydberg-atom quantum simulators by preparing two or more defects in a charge-
density wave configuration, each corresponding to pairs of adjacent non-excited Rydberg atoms.

As an illustration, we discuss how the time-evolution of one or two particle-antiparticle pairs
for m < m, features the emergence of slow dynamics. In Fig. 3.16, we show the time evolution
of both the particle density in the QLM and the corresponding density of excitations in the
Rydberg chain, fixing for simplicity m = 0. The pairs in the initial state break and ballistic
spreading of quark and antiquark takes place. The string inversion dynamics induced by this
propagation shows coherent interference patterns with long-lived oscillations. Due to retardation
effects induced by the constrained dynamics, these oscillations are shifted by half a period with
respect to the vacuum oscillation, as captured by second-order perturbation theory.
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Figure 3.17: Propagation of a particle-antiparticle pair g-g with realistic Rydberg interactions. Left
panel: density of Rydberg excitations. Right panel: density of particles/antiparticles (p in the QLM
language). Results are obtained for a chain of L = 51 sites governed by the realistic Hamiltonian (3.1)
with Vj; = Vlri_j6 and no constraints in the Hilbert space. Parameters: 6 = 0, V1 /Q = 25.6 (R ~ 1.5).
We checked explicitly that the violation of Rydberg blockade is always small, (n;n;q1) < 1072,

This unusual dynamics turns out to be robust under experimentally realistic conditions. In
Fig. 3.17 we consider the evolution of a particle-antiparticle pair, the simulated dynamics of which
is not constrained to the subspace satisfying n;n;11 = 0 and includes the effect of the long-range
Rydberg interactions between atoms. The evolution is performed via tensor network techniques
based on the time-dependent variational principle [127], in the unconstrained Hilbert space with
the Hamiltonian in Eq. (3.1), with 6 = 0 and V;; = Vi|j — k|~®. The value of V;/Q = 25.6 is
the same as considered in Ref. [4], corresponding to a Rydberg blockade radius R, ~ 1.5. The
dynamics displayed in Fig. 3.17 is similar to the constrained one in Fig. 3.16 (b),(c) at short
times, after which the effects of having realistic interactions gradually kick in.

Spectral properties and bands of non-thermal states. We now characterize the anoma-
lous ballistic spreading of particle-antiparticle pairs discussed above in terms of the emergence of
corresponding anomalous spectral properties of the FSS model, which generalize those recently
observed [13] in the special case m = 0, involving families of special energy eigenstates referred to
as “many-body quantum scars”. The latter are constituted by towers of regularly-spaced states
in the many-body spectrum with alternating momentum £ = 0 and k = m, characterized by
non-thermal expectation values of local observables as well as by anomalously large overlaps
with the charge-density wave initial states. The long-lived coherent oscillating behavior has been
attributed in Ref. [13] to the existence of these “scarred” eigenstates.

Fig. 3.18 (a) shows that the modulus of the overlap between the energy eigenstate |¢)) with
energy E and the above described inhomogeneous states |¢,g) with momentum k clearly identifies
a number of special bands of highly-excited energy eigenstates characterized each by an emerging
functional relationship F(k). As shown in Fig. 3.18 (d) some of the states in these bands strongly
deviate from the thermal value (n;)y, ~ 0.276. This fact has already been observed in the
previously studied quantum-scarred eigenstates, which coincide with the extremal points of these
bands at momenta k = 0 and k = 7. A closer inspection of these energy-momentum relations,
presented in Fig. 3.18 (b), shows that they are close to cosine-shaped bands, suggesting the
emergence of single-particle excitations in the middle of the many-body energy spectrum.

We further characterize this spectral structure by constructing a quasi-particle variational
ansatz |xx) on top of the exact matrix-product-state zero-energy eigenstate of the Hamiltonian
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Figure 3.18: Emergent quasi-particle description of highly-excited states. (a) Largest overlaps of the initial
state |@qg) with a localized defect in a charge-density wave configuration of the Rydberg-atom chain with
the energy eigenstates |¢) of the F'SS Hamiltonian (6 = 0,L = 20) in Eq. (3.3), as a function of their
corresponding momentum and energy. Within the gauge-theory description, the initial state corresponds
to having a localized particle-antiparticle pair ¢-g. (b) The eigenstates with the largest overlaps display
a regular functional dependence of energy on momentum that is remarkably close to a simple cosine
band. (c¢) The largest overlaps of the optimal matrix-product state quasi-particle ansatz |yy) built on an
exact eigenstate with zero energy (see the main text) accurately reproduce the corresponding emergent
quasi-particle band of panel (a). (d) Anomalous (non-thermal) expectation values of a local observable
in energy eigenstates. The red boxes highlight the correspondence between the most relevant eigenstates
building up |¢45) (panel (a)) and the most non-thermal eigenstates (panel (d)). The emergent spectral
structure illustrated in this picture underlies the clean ballistic spreading of particle-antiparticle pairs
displayed in Fig. 3.16.

in Eq. (3.3) with § = 0, recently put forward in Ref. [49]. We employ the following wavefunction

L

IXk) = Ze_iijjq,j,jﬂ\‘I’k:o), (3.32)
j=1

where |®r_) is the exact eigenstate found in Ref. [49] with momentum k& = 0 and energy 0, and
Oj_1,,j+1 is a three-site operator depending on a number of variational parameters. Due to the
constraints, the space where this operator acts is reduced from dimension 23 to 5. The inversion
symmetry with respect to site j reduces the number of free variational parameters in O;_1 ; j+1
to 11. We choose a basis of operators {M;)‘_Ljdﬂ}él:l for parameterizing O;_1 j j+1 and define

L

%) = Z e MMy ;1| Pr=o)- (3.33)
j=1

For each k, we minimize the energy variance in the space spanned by the states |¢f). To
this aim, we compute the three matrices Ngfﬂ = <¢g]q§£), Polfﬁ = (qﬁ%\H\qﬁ@, ’éﬁ = <¢g]H2\¢£>
Since the number of linearly independent states in the set {|¢})} varies with k, we diagonalize
the matrix of the norms N, and we compute the (rectangular) matrix U* whose columns are the
eigenvectors of N* having non-zero eigenvalues. We then find the vector ¢ = (C}C, cees C}?) that
minimizes

(3.34)

2
”2 UM Qe <cLUkTPkUkck> |

chUFINEURey,  \ e UF NEUR e,
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By introducing the matrix U* we restrict the minimization to states with non-zero norms, thus
further reducing the number of variational parameters to m(k) < 11. The optimal wavefunction

is then obtained as
m
xk) = Z > Ubslop). (3.35)
a=1 =1

As shown in Fig. 3.18 (c), the optimal quasi-particle ansatz has the largest overlap with
the states on the energy-momentum bands of special eigenstates closest to zero energy, thus
reinforcing the above emergent quasi-particle picture.

Tuning the topological f-angle in Rydberg experiments. So far, our discussion has
focused exclusively on the relation between Rydberg experiments and the Schwinger model with
topological angle # = w. A natural question to ask is whether, within the present setting, it is
possible to realize genuinely confining theories, i.e., generic values of the topological angle 6 # 7.

This is possible within the strong coupling limit upon introducing a linear term in the electric
field. With reference to the lattice Schwinger model introduced in Sec. 3.2.2 and notations
therein, we see that the two lowest degenerate energy states of the local electric field for 8 = &
(i.e. Ljjt1 = 0,41) are split when 6 deviates from 7, with an energy gap A = J|#/7 —1|. In
order to keep the structure of the Hilbert space compatible with the FSS model, one requires
this A to be much smaller than the gaps with the other states, which are of the order of J. This
implies that, within the QLM formulation, we can only access very small deviations from 6 = 7:
this is not a limiting factor, and we will show how this simple setting already allows to witness the
effects of confinement in the dynamics. The confining nature of the potential can be intuitively
understood as follows: starting form the bare vacuum (the “string” state in Fig. 3.13), creating
and separating a particle-antiparticle pair at a distance £ entails the creation, between the two,
of a string of length ¢ with opposite electric field. The corresponding energy cost is proportional
to LA, signalling the confining nature of the potential. Accordingly, the lattice Schwinger model
with strong J > Q, m, A and with a topological angle § = 7(1£A/J) is efficiently approximated
by the QLM with an additional term linear in the electric field and proportional to A.

In turn, within the exact mapping outlined in Sec. 3.2.1 and illustrated in Fig. 3.13, this
f—angle term corresponds to an additional staggered field in the FSS model, leading to the

Hamiltonian:
L

L
Hrya =Y (Qof +605)+> (-1) Zo7. (3.36)
j=1 j=1

N

The new term can be experimentally realized, e.g., by utilizing a position dependent AC Stark
shift or, alternatively, a space-dependent detuning on the transition between ground and Rydberg
states (it was realized, for example, in a recent work reported in Ref. [128]).

In Fig. 3.19 (left), we show the effect of the #—angle on the evolution of the total electric
field in the QLM starting from a uniform string state. Also in this case, the dynamics observed
can be understood using the bosonized field theory in Eq. (3.31). As explained in Sec. 3.2.2, the
integrability breaking term which appears for m > 0 has the effect of damping the oscillations.
Moreover, from the same equation we can predict that the impact of a variation of the #-term on
the dynamics is enhanced when we increase the mass, as data clearly show. This enhancement
of the 6-dependence becomes more evident when we cross the transition point: while in the
symmetric phase with m < my,, the explicit symmetry breaking caused by the electric field energy
imbalance leads to damping of the string inversions, in the broken-symmetry (chiral) phase with
m > m, the effect of confinement is dramatic, causing the persistence of the initial electric string,
with small long-lived oscillations. Focusing on the latter phase, in Fig. 3.19 (right) we show
the dynamical evolution of a finite electric string generated by a particle-antiparticle pair (left
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Figure 3.19: Left. Effect of the #—angle on the dynamics of the electric field from uniform string states
of the QLM. Data are shown for a chain of L = 28 sites, for increasing values of the particle mass m/w
and of the parameter A, quantifying the deviation of the §—angle from 7 (see the main text). Dynamics
for A = 0 corresponds to the second column of Fig. 3.14. Right. 6—angle and string-breaking dynamics.
Evolution of a bare particle-antiparticle pair state is displayed in terms of space- and time-dependent
electric field in the QLM (left panels) and of the density of excited atoms in the Rydberg array (right
panels), with m = —§ = 1.5Q and L = 28. Simulations in the top row have A = 0, corresponding
to the deconfined field theory with 6 = 7w. Effects of confinement emerge in the second row, where a
non-vanishing A = 0.3(Q2 stabilizes the electric string.

panels), at the deconfined point # = 7 (top) and in the confined phase with 6 # 7 (bottom). The
right panels show the same evolution as it would appear in terms of measurements of Rydberg
atom excitations. While for A = 0 nothing prevents the initially localized bare particles to
propagate along the chain (top panels), the presence of a linear confining potential proportional
to A between them stabilizes the electric string, leading to effective Bloch oscillations of the edges
and to a surprisingly long lifetime [129] (bottom panels). This effect signals that confinement
can dramatically affect the non-equilibrium dynamics, potentially slowing it down as observed
in both gauge theories [130] and statistical mechanics models [131, 129, 132]. In this regime,
the model shows the same qualitative signatures of confinement as the quantum Ising chain
in transverse and longitudinal field: the long-lived coherent oscillations, the suppression of the
light-cone spreading [131] and the presence of anomalous eigenstates [132].

3.2.4 Conclusions

We proved that the large-scale quantum simulation of lattice gauge theories has already been
achieved in state-of-the-art experiments with Rydberg atoms, as it can be realized by establishing
a mapping between a U(1) gauge theory and Rydberg atom arrays. At the theoretical level, we
showed that this novel interpretation provides additional insights into the exotic dynamics ob-
served in experiments, linking it to archetypal phenomena in particle physics. Our field-theoretic
description immediately implies the generality and applicability to a wide variety of model Hamil-
tonians within experimental reach, and among them we extensively discuss the example of the
lattice Schwinger model in the Wilson formulation. We expect that future studies can further
deepen the connection between the statistical mechanics description of such behaviour and its
gauge-theoretic interpretation, for instance, elucidating the effects of non-thermal states [13, 12,
49, 14] and emergent integrability [16, 15|, and the role of confinement in slowing down the
dynamics [131, 130, 129, 132, 133|. At the experimental level, our findings immediately motivate
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further experiments along this direction, that can probe different aspects of gauge theories, such
as the decay of unstable particle-antiparticle states after a quench, and might be combined with
other quantum information protocols [134]. We show how by tuning the 6-angle — a possibility
that is already available with current technologies — the different dynamical regimes expected
from the field theory can be accessed. A particularly interesting perspective in this direction is
the possibility of dynamically probing confinement via quantum quenches starting from a string
embedded in the (bare) vacuum, a prototypical gedanken experiment in particle physics [45].

The quantum-simulation strategy we propose is based on the elimination of the matter degrees
of freedom by exploiting Gauss law: This method does not rely on the specific formulation
of the model and is in principle applicable to other lattice gauge theories (for a recent work
along these lines see for example Ref. [135]). An intriguing future extension is represented by
theories with non-Abelian gauge symmetries, an example of which can be found in Ref. [136],
where links with finite-dimensional Hilbert spaces are utilized. The integration of matter degrees
of freedom is equally well suited for higher dimensions, and Rydberg atoms are a promising
platform for pursuing this direction [137, 138|, with the additional advantage that the major
complication in realizing non-Abelian theories (i.e., engineering complicated and fine-tuned Gauss
laws) is replaced by considerably simpler dynamical constraints. After the present analysis, the
experiments performed in Ref. [4] represent a step-stone toward the ambitious realization of
non-Abelian gauge theories in three spatial dimension, which remains an outstanding quest |36,
34].
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3.3 Breakdown of ergodicity in disordered U(1) lattice gauge the-
ories

In this section we investigate a prototypical one-dimensional gauge theory, i.e. the Schwinger
model [43] on a lattice, in the presence of a disordered background. We provide numerical
evidence that 1D gauge theories may be an ideal candidate to display a smoother behavior
in terms of finite volume effects, enabling the detection of a clear, system-size independent,
deviation from ergodic behavior. Before entering into the details of our treatment, we find
useful to illustrate a qualitative reasoning why this is the case. Contrary to typical inter-spin
interactions, gauge-field mediated interactions typically slow down the system dynamics [139, 140,
141], and thus do not necessarily compete with disorder. In the typical Basko-Aleiner-Altshuler
(BAA) scenario [51], interactions open up channels for delocalization by allowing a series of local
rearrangements to create a resonance between two quantum states. This leads to a competition
between disorder (increasing energy differences and denominators in perturbation theory) and
interactions (increasing matrix elements and therefore the numerator). In the presence of one-
dimensional Coulomb law, interactions cannot be introduced perturbatively and therefore a BAA-
like analysis does not work. This is because a local rearrangement of the degrees of freedom (spins
or particle occupation numbers) leads to a large (even extensive) change in energy, therefore
suppressing the amplitude of having a resonant process. This behavior is reflected in finite-
volume properties observed in previous numerical studies [142, 141, 143|, that focused on quench
dynamics and local observables.

The structure of the section is the following. In Sec. 3.3.1 we introduce the clean Schwinger
model and its disordered version, motivating our choice for the source of disorder. In Sec. 3.3.2 we
present the numerical results obtained from the analysis of diagnostics aimed at probing spectral
correlations, namely the level statistics of nearby gaps and the spectral form factor. In Sec. 3.3.3
we interpret the results and we strengthen our interpretation by comparing them to what we
obtain in other lattice gauge theories in a different regime.

3.3.1 The Schwinger model with disordered background charge

We focus here on the 1D version of quantum electrodynamics, namely the Schwinger model [144],
in its Kogut-Susskind lattice regularized version [145|. The two components of a Dirac spinor
(electron and positron) sit on even and odd sites. The corresponding Hamiltonian on an open
chain of N sites reads:

N—-1 N N
H=—iw ) (Yhe? 1 —he) + T (Lnpir +0/27)> +m > (1), (3.37)
n=1 n=0 n=1

The matter degrees of freedom are N spinless fermions ¢, living on the sites and the gauge
degrees of freedom are N +1 unbounded bosons Ly, 41 living the on the links. L and ¢ stand for
electric field and vector potential, and they are conjugate variables: [L, p] = —i; 6 is a the lattice
version of a topological angle, that we use below to tune between confined (6 # ) and deconfined
(0 = 7) regimes [146]. The first term represents the coupling between matter and gauge fields,
the second is the electrostatic energy, and the third term gives a mass to the fermions. The
Hamiltonian commutes with the generator of gauge transformations:

1
G = Lngin = Lnpt = ¥h¢, + 51— (=1)"). (3:38)

The local symmetry generated by G,, breaks the Hilbert space in superselection sectors. States
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Figure 3.20: (a) Schematics of U(1) lattice gauge theories. The U(1) gauge field lives on link between
the sites of the chain. Dynamical matter (dark green) is a fermionic variable living on the sites, while
static charges (light green) are random integers which take values 0, +1. (b) Average level spacing (see
Eq. (3.43)) as a function of the gauge coupling J for different N (see text). The shaded region represents
the estimated ergodic phase.

| W) g1.42,...qn 1D €ach of those sectors are labeled by the distribution of background static charges
(q1,92, ---qn), defined as:
GulW)q1.q2,an = @0l ¥)g1.q2,.qn (3.39)

which is a discretized version of Gauss law. We set m = 0 and w = 1 in what follows. The mass
term is not essential for the phenomenon we describe.

Disorder-free many-body localization dynamics in this system has been reported in Ref. [141].
There, the idea was to use superselection sectors in a clean system as an effective source of
correlated disorder econded in the initial state. Other signatures of MBL in the presence of
disordered on-site potentials were reported in Ref. [143|. Here, instead, we study the system
properties to the presence of random, static background charges, that we randomly choose in the
set ¢; = {0, %1} with equal probability.

A computationally convenient representation is obtained via explicit integration of the gauge
fields. This is a consequence of the well-known fact that Gauss law can be integrated exactly in
one dimension. The mapping consists in a Jordan-Wigner transformation to cast the theory in
spin language, and a gauge transformation on the spins to eliminate the vector potential ¢ from
the resulting Hamiltonian. This procedure is reviewed in great detail in Ref. [147], and yields a
spin-1/2 Hamiltonian. We define 0 as the standard Pauli matrices. The resulting Hamiltonian
is

Hy = HHop + JHt + JHDiS, (340)
where Hyop, is just the hopping term Hyop = — 252—11 (JTJ{ Opgq T h.c.), while the second and
third terms read

(N2 Nt
Hu =75 >, (N-t)on0f, (3.41)
n=1 {=n+1
N—-1 n n
1 . (=H)»—=1 0
=3 3 (o) |30 s 142, 842
= = J=

and describe the Coulomb interaction between dynamical charges (both terms), and the inter-
action between dynamical and static ones (the last term). Note that the parameter J measures
at the same time disorder and interaction strength. The intimate relation between these two
quantities is a natural consequence of the existence of Coulomb law: in any local theory in 1D,
local background charges will inevitably generate a sink (or source) of the electric field, and thus
their effect on the system is tied to the gauge coupling.

Below, we consider only static charge distributions such that ) ¢, =0 and ¢, = 0,4+1. We
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Figure 3.21: Left. Spectral density (a) and entropy per site (b) of the Hamiltonian Eq. (3.40) for different
N and J =1 as a function of the rescaled energy ¢ = (E — Ewin)/(Emax — Emin). The blue dashed lines
cut the spectrum keeping only the eigenvalues E s.t. $(E)/Smax > A. We employed A = 0.5 for the
computation of the level statistics r (blue) and A = 0.9 for the computation of the spectral form factor
(red). Right. Energy-resolved r as a function of the rescaled energy e, and gauge coupling J in the
lattice gauge theory (a) and disorder strength W in the Heisenberg model (b). The green dashed line
indicates the position of the maximum of the spectral density.

set the left boundary electric field Lo = 0 and restrict to charge neutrality, > ¢L¢n =0. In
order to avoid spurious effects close to J = 0 due to the system becoming non-interacting, we
N—2

add a next-to-nearest-neighbor interaction of the form H, = ¢} ' ~"0}o7 ,, and set € = 0.5.

3.3.2 Ergodicity breakdown from spectral diagnostics

To capture the breakdown of ergodicity, we focus on spectral properties. In this section, we study
the Hamiltonian in Eq. (3.40) by full diagonalization in the Hilbert space sector with zero total
spin along the z axis. In the gauge theory picture, this means zero dynamical total charge. We
will compute the level statistics as extracted from the ratio of nearby gaps (see Eq. (3.43)) and
the spectral form factor (see Eq. (3.44)). While the former represents a very popular witness in
the MBL community, the latter has gained attention only recently in this context. As we will
discuss in what follows, it encodes information on spectral correlations which goes beyond nearby
eigenvalues, thus allowing a more in-depth characterization of the spectral bulk properties.

Average level spacing ratio. We define the ratio between nearby gaps as

_ Min{AE,, AEq41}
- Max{AFE,,AE,1}

(3.43)

T

Here a labels the eigenvalues of H for a given disorder realization. We average r over a spectral
window centered on the most-likely eigenvalue, and over 1000 and 100 disorder realizations for
N < 18 and N = 18 respectively.

As illustrated in Fig. 3.21 (left) (a), the Coulomb interaction makes the eigenvalue distribution
p strongly asymmetric, due to the super-linear scaling of the largest eigenvalues in the spectrum.
We thus cut the tails of the spectral density p by monitoring the thermodynamic entropy per
site: s = logp/L. This quantity has a well defined thermodynamic limit (see Fig. 3.21 (left)
(b)) and can be used to select the most relevant part of the spectrum ensuring a smooth scaling
with the system size. To compute the level statistics r we keep only the eigenvalues E for
which s(F)/smax > 0.9 (blue dashed line in Fig. 3.21 (left) (b)). This corresponds to a fraction
of eigenstates larger than 0.4, at N = 14, and it increases with N. For gauge theories, this
procedure overestimates (r) at finite size: the reason is that, differently from spin chains, states
at lower energy densities are typically less affected by Coulomb law, and thus less localized, at
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small system sizes. This is illustrated in Fig. 3.21 (right) (a), where the energy resolved r-value
is plotted as a function of gauge coupling and energy density *. Considering the full spectrum
does not lead to quantitative changes in the transition region.

The resulting scaling of r versus J is plotted in Fig. 3.20 (b). The results illustrate how
compatibility with a Wigner-Dyson distribution of the energy levels breaks down at around
J ~ 0.5; contrary to the Heisenberg model case (where the critical disorder strength increases by
50% when comparing N = 12 and N = 18), there is no appreciable finite-volume drift. We note
that this behavior is fully compatible with the energy-resolved pattern of r plotted in Fig. 3.21
(right) (a): indeed, only states very close to the ground state are not localized, and as such,
the global value of r is dominated by the vast majority of states that is localized (note that the
vertical axis in Fig. 3.21 (right) (a) is limited to € € [0.05,0.55] for the sake of clarity). The
ergodic region (shaded) is followed by a regime where (r) takes intermediate values: while it is
not possible to reliably distinguish between emergent integrability (denoted by Poisson statistics)
and an intermediate value of r, there is a clear finite-size trend toward the former for J > 1.
Within statistical errors, we do not observe a clear crossing: longer chains routinely have smaller
r values with respect to shorter chains. Finally, let us note that our diagnostics may actually
underestimate the extent of the non-ergodic regime, as there exist random-matrix models where
ergodicity is broken even in regimes where r is compatible with GOE [149].

Spectral form factor. As a further evidence of breakdown of ergodicity, we analyze spectral
correlations which go beyond nearby eigenvalues via the spectral form factor (SFF), defined as

2

K(r) = % , (3.44)

Z g(Ea)ei2WTEa
@

where E,, are the unfolded eigenvalues. In order to smooth the effects due to boundaries of the
_(x*u)z
spectrum, we apply a gaussian filter g(z) = e 209°  with p and o the average and variance of

the disorder realization of the unfolded spectrum. 1 quantifies the strength of the filter, and we
take n = 0.3 in what follows. Z = 3 [g(E4)|? is a normalization s.t. K(7) =~ 1 for large 7.
Before applying the filter, we cut the edges of the spectrum according to s(E)/sSmax > 0.5, which
means we take a fraction of eigenvalues larger than 0.9. Upon unfolding, the Heisenberg time ty,
corresponding to the timescale beyond which the discrete nature of the spectrum manifest itself
and thus non-universal features kick in, is set to unity. The SFF in Eq. (3.44) is computed for
each disorder realization for 7 € [0,1] and an average over disorder is performed for each value
of 7.

The analysis of K(7) allows to probe if the system is ergodic [150, 82, 83]. This can be
done by comparing the averaged SFF with the SFF expected from an ensemble of orthogonal
random matrices with gaussian entries (GOE), Kgog = 27 — 7log(1 + 27). We call 7gog the
time, in Heisenberg units, at which departures of the SFF from Kgog occur. We extract this
quantity from the data as the first value of 7 for which [log K(7)/Kgog| < 0.05. We can then
restore physical units tcog = Tcor ty, by computing the Heisenberg time ¢y as the inverse
averaged bulk gap. If the system is ergodic one expects tgogr/tu — 0 in the thermodynamic
limit (specifically, the Thouless time shall increase algebraically with N).

In Fig. 3.22 (left) (a) and (b), we plot the spectral form factor in the Schwinger model and
Heisenberg model in their ergodic regions. The results in Fig. 3.22 (left) (c) correspond to a
regime of gauge couplings whose r value departs from GOE: such departure is indeed confirmed
by the fact that tgog/ta is not decreasing with system size, and oppositely, the SFF seems to

"Similar behavior occurs in the Bose-Hubbard model [148]
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Figure 3.22: Left. Comparison between the SFF of the Hamiltonian Eq. (3.40) (a),(c) and of the Heisen-
berg model with on-site disorder (b),(d). In the deep ergodic region (a),(b) the SFF approaches the
GOE prediction at times (in Heisenberg units) which decrease exponentially with the size of the system.
For J = 3/4 in the LGT (c) the bulk of the spectrum is non-ergodic and the SFF deviates from the
GOE prediction at intermediate times. For W = 3 in the Heisenberg chain (d) the level statistics is
still flowing to WD, however the small effective localization length prevents accessing ergodic properties
of the thermodynamic limit. Right. Comparison of tgogr obtained from the spectral form factor vs
disorder strength in the Schwinger model and in the Heisenberg model. Panels (a)-(b) show the ratio
GOE time over Heisenberg time, which is directly extracted from the spectral form factor computed from
the unfolded spectrum. Panels (c)-(d) show that at small disorder the Thouless time scales as N?2.

collapse on a finite linear region, which implies Intcog ~ N; this timescale directly indicates
that the system is not ergodic, and it is suggestive of an emergent localization even at this value
of the coupling. We note that, in this parameter regime, we do not observe saturation of the
Thouless time, which is instead evident in spin models (see Fig. 3.22 (left) (d) and Ref. [82]).

Finally, we comment on the consequences of our numerical observations on transport proper-
ties. The relation between tgog and transport has been clarified in Ref. [83] for non-interacting
systems: tgog scales with the system size as the time tp;, a particle takes to spread through
the entire system. Moreover, this scaling was used to precisely locate the Anderson localization
transition on a D-dimensional cubic lattice: the critical disorder strength was determined by
requiring tqog ~ tg ~ L7, i.e. the time to reach scales as the Heisenberg time. In many-body
quantum systems, instead, the equivalence of t7;, and tgog is more controversial, even in the
deep ergodic region. The large-scale study of transport of Ref. [75] in the Heisenberg model with
on-site disorder, based on the analysis of the spin current in the stationary state reached by the
system when it is coupled to a bath at the boundaries, indicates that a transition from diffusive
(trn, ~ L?) to sub-diffusive regime (t7, ~ L® with a < 2) occurs at W ~ 0.5. However the
scaling of tqor in the same model, reported in Ref. [82] and depicted in Fig. 3.22 (right) (d),
would suggest diffusive transport for disorder W > 1.

With this caveat in mind, we plot in Fig. 3.22 (right) the scaling of the tgog in the Schwinger
model Eq. (3.40). The top panels (a) and (b) show the GOE time in Heisenberg units, as ob-
tained from the spectral form factor computed from the unfolded spectrum. The bottom panels
(c) and (d) show the GOE time in physical units rescaled by L2. The data indicate a very similar
scaling in the two models in the deep ergodic region. Transport properties in this regime are
thus expected to be qualitatively similar in the both models.

We observe a striking difference between the two models by comparing panels (a) and (b) in
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Figure 3.23: Left. Average level spacing ratio for the constrained spin model Hgr s, corresponding
to the Schwinger model with truncated gauge fields. The finite-size scaling of (r) exhibits the same
phenomenology as in the Heisenberg chain: (r) vs W (a) shows a crossing point drifting on the right for
increasing N, (r) vs W/N (b) gives a good data collapse for W/N < 0.1. Right. Average level spacing
ratio for the Schwinger model with non-zero topological angle § = 7/2 (a) and § = 7 (b). A non-zero 6
does not change the outcome w.r.t. § =0 (see Fig. 3.20 (b)), not even in the deconfined regime 6 = 7.

Fig. 3.22 (right) for larger values of the disorder: while in the Schwinger model deviations from
the GOE spectral form factor appear at a fraction of the Heisenberg time which is well below
unity and independent from the system length, in the Heisenberg model these deviations occur
at a time which is very close to the Heisenberg time. As argued in Ref. [82], the double scaling of
tcor with system size and disorder strength (Fig. 3.22 (right) (b)) seems to suggest that a clear
breakout from ergodic regime cannot be deduced from these data. This is in sharp contrast to
the results we obtained in our model.

The fact that the ratio tgog/th is size independent suggests that the suppression of transport is
related to a size-independent scale, a very different scenario with respect to what is observed in
Heisenberg models, characterized instead by anomalous transport properties [151, 152, 153, 154]:
while it is not possible to immediately connect this mechanism to confinement, we naturally ex-
pect this emergent scale to be connected with the string tension, as the latter is size-independent
and is the only parameter needed to characterize Coulomb interactions at large scales.

3.3.3 Discussion and conclusions

We conjecture that the origin of ergodicity breaking in lattice gauge theories stems from the fact
that Coulomb law - which is acting at all energy scales - further constrains the system dynamics,
and thus acts as an amplifier of any background disorder. In fact, for increasing system sizes,
a larger fraction of the states of the spectrum will feature regions with a large accumulation
of charge: as a consequence, the electrostatic energy (which is locally unbounded) becomes
dominant and the effect of Coulomb interactions is enhanced. The presence of an unbounded
energy density, which contrasts with the usual behaviour of spin models, does not affect low-
energy states, but has important consequences on the rest of the spectrum: for instance, it
systematically reduces the number of available resonances when size is increased. In order to
substantiate this statement, we studied (1) the Schwinger model in its deconfining regime, § = m,
and (2) a quantum link version of the model with truncated gauge fields, where Coulomb law is
washed out by the truncation.

In Fig. 3.23 (left). we show r versus J for § = w/2 and 6 = 7, the latter being the deconfining
regime in the clean Schwinger model. Within error bars, we do not observe any difference between
confining and deconfining regimes: in both cases, ergodicity breaks down in the same coupling
window. We note that the fact that (de)confinement is not crucial here is not unexpected, as the
latter is a phenomenon that only dictates the dynamics in the vicinity of the vacuum state.

As anticipated, we now consider a quantum link model in the presence of a background
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disorder [155], with Hamiltonian

Horv = —wz i “+11[)]+1+hc —|—JZE]+1+’ITLZ wT ], (3.45)
J=1 Jj=1 j=1

where the first term is the matter-gauge coupling, the second is the electrostatic energy, and
the third is the mass term. The gauge field operators are here represented by spin matrices
Ejjp1 =57, and Uj 1 = S;-fjﬂ, such that the commutation relation [Ej j11,Uj 1] = Uj 1
is satisfied. The Hamiltonian commutes with the local generators defined as

-1y

Gj = Ejjp1 — Ej1j — v, . (3.46)

This model resembles the lattice Schwinger model in Eq. (3.40), but its Hilbert space is smaller:
on each site the gauge field is truncated to a maximal value given by the dimension of the spin
representation. Since the electrostatic term suppresses the large values of EJ2 1o the truncation
has minor effects on the ground state properties. The properties of the full spectrum, on the other
hand, are expected to change drastically. The model in Eq. 3.45 in the gauge invariant sector
(i.e. the one with no static charges, where Gj = 0 for every j) can be mapped to a constrained
spin 1/2 model (the PXP model), as discussed in Sec. 3.2.1.

The Hamiltonian Eq. (3.45) is mapped to Hory = Y ;(—2m n; —wo?), with n = (1—07%)/2,
and it is restricted to the Hilbert space with n;n;+1 = 0. In order to have a model where larger
system sizes are accessible, we further constrain the Hilbert space to the sector with n;n;1o = 0:
this constraint emerges when we include a strong next-to-nearest-neighbour interactions between
electric fields in Eq. (3.45). The disorder is introduced by making the coefficient W = —2m
site-dependent. We obtain the Hamiltonian

Horv = Z(Wml —0f)  nini+1 =0, ninje =0 (3.47)

where we have fixed w = 1, and the W; are drawn from a uniform distribution in the interval
[-W,W]. In Fig. 3.23 (right), we show r versus the disorder strength W. We attempted a
collapse scaling following [73|, and assuming finite transition point W, and correlation length
critical exponent v. The best fitting W, and v seem to increase linearly with size. The scaling
of r follows rather closely the functional form proposed in Ref. [82]. These two observations
indicate that, even in this model, the available system sizes are not sufficient to determine
whether ergodicity is broken in the thermodynamic limit [85]. Overall, the findings on these two
models support our conjecture above.

We have provided numerical evidence for the breakdown of ergodicity in disorderd U(1)
lattice gauge theories. Our results do not immediately indicate if localization kicks in right after
such a breakdown, or if an intermediate non-ergodic, delocalized regime occurs. Further studies
based on localization-specific diagnostics and transport properties may elucidate this aspect. The
dynamical consequences of our results are immediately testable on quantum simulation platforms,
where many-body dynamics of U(1) lattice gauge theories has been recently realized [156, 4, 157],
and, based on the nature of the interactions, might be extended to Yang-Mills theories.
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3.4 Outlook

This chapter dealt with diverse equilibrium and non-equilibrium properties of the Rydberg atom
quantum simulator governed by the Hamiltonian Eq. (3.1). Although we entirely focused on the
one-dimensional case, experimental setups for simulating various higher-dimensional geometries
are already available [19]. For this reason, an extension of the work discussed here to two
dimensional systems is of uttermost importance.

In Sec. 3.1, we showed that the ground state phase diagram of the effective Rydberg Hamilto-

nian Eq. (3.3) accommodates narrow phases lying at the boundary of the broad ordered phases.
Our work demonstrated that only an extremely careful analysis of finite size scaling can un-
ambiguously resolve these tiny regions in parameter space. The ground state properties of the
two-dimensional generalization of the experimentally realizable Hamiltonian Eq. (3.1) on a square
lattice have been studied in Ref. [158] via tensor network methods. The resulting phase diagram
as a function of detuning frequency § and blockade radius Ry is depicted on the left in Fig. 3.24.
The two-dimensional geometry enables a variety of ordered phases that seem to be directly
connected by first or second order phase transitions. This fact is in sharp contrast with the
one-dimensional scenario, where ordered phases are surrounded by narrow disordered regions,
possibly resulting into gapless floating phases [159].
A deeper understanding of the interplay between different orders and of the phase transitions
intervening between them can be achieved by studying the two-dimensional analogue of the ex-
actly constrained model in Eq. (3.3). As Ry is increased, the effective Hamiltonian is acting on
a Hilbert space with a constraint involving an increasing number of neighboring sites. For in-
stance, when Ry, € [1,1/2] states with two occupied nearest-neighbor sites are discarded and the
density-density interaction occurs between spins on the diagonal of the square lattice, yielding
the Hamiltonian

H=Y 0l;4+U> nij+ V> (nignijj1+nignipien),  Mighij = nijnip =0,
ij ij ij

(3.48)
where the indices ¢ and j label rows and columns of the square lattice. When V' is varied from 0 to
400 the blockade radius R} ranges from 1 to V/2. This exact constraint is more severe than in one
dimension, leading to a milder scaling of the Hilbert space dimension with the number of sites
and allowing for an exact diagonalization analysis up to modest system sizes. The schematic
phase diagram depicted on the right in Fig. 3.24 is deduced from the exact ground state of
the constraint Hamiltonian on a 6 x 8 lattice with periodic boundary conditions, by analyzing
various quantities, such as the fidelity susceptibility and the density-density structure factor.
Two ordered phases —already identified in Ref. [158]- appear. In the checkerboard phase one
of the two sublattices is fully occupied, the other being empty. In the striated phase the two
sublattices exhibit antiferromagnetic order. In fact, from the exact diagonalization study it is
easy to understand that these two phases are both characterized by an almost exact decoupling
(at the ground state level) of the two sublattices of the square lattice. To understand the phase
transition between these two ordered phases (green line in Fig. 3.24) it is thus enough to study
the Hamiltonian in Eq. (3.48) restricted to one of the two sublattices. The restricted Hamiltonian
gives a quantum Ising model with longitudinal and transverse field, which is ferromagnetic and
antiferromagnetic when V' < 0 or V' > 0 respectively. The transition line between checkerboard
and striated phases turns out to be exactly mapped on the continuous phase transition line
between the paramagnetic and antiferromagnetic phases of the sublattice antiferromagnetic Ising
model [160]. The coupling of the two sublattices occurs in correspondence of the grey line in
Fig. 3.24 (right) and drives the two order-disorder transitions. The nature of checkerboard-to-
disorder transition is most likely changing along the line. By analogy with the 1D case, we expect
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Figure 3.24: Comparison between the phase diagram of the experimentally realizable Rydberg Hamilto-
nian on a square lattice drawn in Ref. [158] by analyzing the ground state entanglement entropy computed
with DMRG on a cylinder and the phase diagram of the effective constrained Hamiltonian Eq. (3.48)
extracted from exact diagonalization study of a 6 x 8 square lattice with PBC. Chemical potential and
laser frequencies are related by U = —§/€Q, while increasing the blockade radius R; from 1 to /2 is
equivalent to vary V between 0 and +oco. The dashed white lines enclose the corresponding regions in the
two phase diagrams. The green line in both plots indicate a second order phase transition between the
two ordered phases. The grey line on the plot on the right divides the phase diagram into two regions: in
the disordered region the two sublattices are strongly coupled, while they are almost exactly decoupled,
at the ground state level, in the two ordered regions.

a first order phase transition for large positive U and an Ising second order phase transition for
small U, separated by a tricritical point. The character of the striated-to-disorder transition is,
instead, completely unknown, and it is reasonable to expect interesting physics emerging there.
We leave a more careful characterization of these critical phenomena for future work.

In Sec. 3.2, we proved that the Rydberg atom quantum simulator of the Hamiltonian in
Eq. (3.1) reproduces the dynamics of a one-dimensional U(1) lattice gauge theory, and thus
represents the largest scale LGT quantum simulator realized so far. The mapping we employed
to achieve this result is based on the integration of the matter fields in a spin-1/2 quantum link
model. Gauss law yields a local constraint on the gauge fields which is equivalent to the Rydberg
blockade with radius one. The same strategy can be pursued in two dimensions: starting from a
LGT with truncated gauge field, the matter degrees of freedom can be integrated out, resulting in
a spin model for the gauge degrees of freedom. However, the two-dimensional Gauss law produces
an highly non-local constraint on the spins, which does not map to the Rydberg blockade. This
fact prevents to directly employ this approach for simulating synthetic gauge fields and it is still
an open problem to translate this strategy into concrete implementation schemes. We leave this
task for future investigation.

Finally, in Sec. 3.3, we studied the effect of a disordered background charge distribution on the
lattice Schwinger model and we explored how the confining one-dimensional Coulomb interaction
can lead to ergodicity breakdowns. The analysis performed there was entirely restricted to
spectral properties. As such, its outcome is not informative on the properties of the eigenvectors.
Extending the study to probes involving the eigenvectors, such as the inverse participation ratio
or the entanglement entropy, is the next step to understand the relationship between the non-
ergodic region and the typical scenario of many-body localization.
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