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Chapter 1

Introduction

The question of the long time behaviour for solutions of evolutionary linear and nonlinear partial

di�erential equations (PDEs) is a major problem in the analysis of dispersive equations arising in

physical models, as in quantum mechanics and �uid dynamics, for instance. When the motions

take place on compact domains, like the periodic torus Td :� Rd{p2πZqd, and if the equations

have an Hamiltonian structrure, deeper insights have been obtained in the last decades by re-

garding such equations as in�nite dimensional dynamical systems and combining PDEs tools

with the classical dynamical system theory, as KAM (Kolmogorov-Arnold-Moser) theory and

Birkho� normal form, and with analytical techniques, as pseudo-/paradi�erential calculus and

the Newton-Nash-Moser implicit function theory.

This thesis addresses some questions concerning the stability of the dynamics for three dis-

persive partial di�erential equations evolving in one dimensional space periodic variable. Assume

to deal with the Cauchy problem associated to a general dispersive PDE,$&%ut � Nu� Ppuq , u � upt, xq , pt, xq P r0, T s � T

up0, xq � u0pxq P HspTq
,

where N is an unbounded linear operator with purely imaginary discrete spectrum, Ppuq is a
nonlinear function in u, eventually depending also on its derivatives, and HspTq is the Sobolev
space of regularity s ¥ 0 on the torus T :� R{2πZ. We consider the following questions:

• Growth in time for Sobolev norms of the solutions: for a global solution u P Cpr0,8q, HspTqq,
provide time dependent, or eventually uniform in time, upper or lower bounds for the evo-

lution of the Sobolev norm }upt, � q}HspTq;

• Existence of time quasi-periodic solutions: determine a rationally independent frequency

vector ω P Rνzt0u, ν ¥ 1, namely ω � ` � 0 for any ` P Zνzt0u, and a time quasi-periodic

solution upt, xq � Upϕ, xq|ϕ�ωt, ϕ P Tν , with a proper selection of the initial data;

11



12 CHAPTER 1. INTRODUCTION

• Long time existence of local well-posed solutions: for any initial datum u0pxq satisfying
}u0}HspTq ¤ ε, determine lower bounds for time of existence Tε ¡ 0 such that the solution

upt, xq stays small with the same size of u0, that is suptPr0,Tεs }upt, � q}HspTq ¤ Cε.

In particular, we provide positive answers for the following problems:

1. Reducibility for the fast driven linear Klein Gordon equation ([93], Chapter

3): existence of a bounded invertible map that reduces the quasi-periodically forced linear

Klein-Gordon equation on the interval x P r0, πs

utt � uxx � m2u� V pωt, xqu � 0 , upt, 0q � upt, πq � 0 , (1.0.1)

to a constant-coe�cient, diagonal in Fourier system in the regime of fast oscillations |ω| " 1

and almost conservation of the Sobolev norms (Theorem 1.1 and Corollary 1.2);

2. Traveling quasi-periodic water waves with constant vorticity ([41], Chapter 4):

existence of Cantor families of small amplitude, traveling quasi-periodic solutions for the

2-dimensional space periodic gravity capillary water waves system with constant scalar

vorticity γ P R$'&'%
ηt � Gpηqψ � γηηx

ψt � �gη � ψ2
x

2
� pηxψx �Gpηqψq2

2p1� η2
xq

� κ
� ηxa

1� η2
x

	
x
� γηψx � γB�1

x Gpηqψ (1.0.2)

and their linear stability (Theorem 1.8, see Appendix B for the derivation of (1.0.2));

3. Long time existence of periodic gravity-capillary water waves ([38], Chapter

5): time of existence of magnitude ε�2 for solutions with initial data of size ε of the

2-dimensional space periodic irrotational gravity capillary water waves equations$'&'%
ηt � Gpηqψ
ψt � �gη � ψ2

x

2
� pηxψx �Gpηqψq2

2p1� η2
xq

� κ
� ηxa

1� η2
x

	
x

(1.0.3)

for any value of the parameters pκ, g, hq, even in presence of �nitely many 3-waves reso-

nances (Theorem (1.9) and Theorem (1.10)).

1.1 Main results

In this section we describe the detailed statements of the results brie�y listed before, each one

followed by some comments about the novelties of the theorems.
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1.1.1 Reducibility for the fast driven linear Klein Gordon equation

We consider a linear Klein-Gordon equation with quasi-periodic driving

utt � uxx � m2u� V pωt, xqu � 0 , x P r0, πs , t P R , (1.1.1)

with spatial Dirichlet boundary conditions upt, 0q � upt, πq � 0.

The potential V : Tν � r0, πs Ñ R, is quasi-periodic in time with a frequency vector ω P Rνzt0u.
The main feature of this driving is that it is not perturbative in size, but we require it to be fast

oscillating, namely |ω| " 1.

The goal is to provide, for any frequency ω belonging to a Cantor set of large measure, a

reducibility result for the system (1.1.1). That is, we construct a change of coordinates which

conjugates equation (1.1.1) into a diagonal, time independent one. Up to our knowledge, this is

the �rst result of reducibility in an in�nite dimensional setting in which the perturbation is not

assumed to be small in size, but only fast oscillating.

The potential driving V pωt, xq is treated as a smooth function V : Tν � r0, πs Q pϕ, xq ÞÑ
V pϕ, xq P R, ν ¥ 1, which satis�es two assumptions:

(V1) The even extension in x of V pϕ, xq on the torus T � r�π, πs, which we still denote by V , is

smooth in both variables and it extends analytically in ϕ in a proper complex neighbour-

hood of Tν of width ρ ¡ 0. In particular, for any β P N0 :� N Y t0u, there is a constant

Cβ,ρ ¡ 0 such that

|BβxV pϕ, xq| ¤ Cβ,ρ @x P T , |Imϕ| ¤ ρ ;

(V2)
³
Tν V pϕ, xq dϕ � 0 for any x P r0, πs.

To state precisely our main result, equation (1.1.1) has to be rewritten as a Hamiltonian

system. We introduce the new variables

ψ :� B1{2u� iB�1{2Btu , ψ :� B1{2u� iB�1{2Btu ,

where

B :�
a
�∆� m2 ; (1.1.2)

note that the operator B is invertible also when m � 0, since we consider Dirichlet boundary

conditions. In the new variables equation (1.1.1) is equivalent to

iBtψptq � Bψptq � 1

2
B�1{2V pωtqB�1{2pψptq � ψptqq . (1.1.3)
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Taking (1.1.3) coupled with its complex conjugate, we obtain the following system

iBtψptq � Hptqψptq , Hptq :�
�
B 0

0 �B

�
� 1

2
B�1{2V pωt, xqB�1{2

�
1 1

�1 �1

�
, (1.1.4)

where, abusing notation, we denote ψptq � � ψptq
ψptq

�
the vector with the components ψ,ψ. The

phase space for (1.1.4) is Hr �Hr, where, for r ¥ 0,

Hr :�
!
ψpxq �

¸
mPN

ψm sinpmxq, x P r0, πs : }ψ}2Hr :�
¸
mPN

xmy2r |ψm|2   8
)
. (1.1.5)

Here we have used the notation xmy :� p1 � |m|2q 1
2 , which will be kept throughout Chapter 3.

We de�ne the ν-dimensional annulus of size M ¡ 0 by

RM :� B2Mp0qzBMp0q � Rν ,

where BM p0q denotes the ball of center zero and radius M in the Euclidean topology of Rν .

Theorem 1.1. (Reducibility for the fast driven Klein-Gordon equation) Consider the

system (1.1.4) and assume (V1) and (V2). Fix arbitrary r, m ¥ 0 and α P p0, 1q. Fix also an

arbitrary γ� ¡ 0 su�ciently small.

Then there exist M� ¡ 1, C ¡ 0 and, for any M ¥ M�, a subset Ωα8 � Ωα8pM, γ�q in RM, ful�lling

measpRMzΩα8q
measpRMq ¤ Cγ�,

such that the following holds true. For any frequency vector ω P Ωα8, there exists an operator

T pωt;ωq, bounded in LpHr�Hrq, quasi-periodic in time and analytic in a shrunk neighbourhood

of Tν of width ρ{8, such that the change of coordinates ψ � T pωt;ωqw conjugates (1.1.4) to the

diagonal time-independent system

i 9wptq � H8,αwptq , H8,α :�
�
D8,α 0

0 �D8,α

�
, D8,α � diag

 
λ8j pωq : j P N

(
. (1.1.6)

The transformation T pωt;ωq is close to the identity, in the sense that there exists Cr ¡ 0 inde-

pendent of M such that

}T pωt;ωq � 1}LpHr�Hrq ¤
Cr

M
1�α

2

. (1.1.7)

The new eigenvalues pλ8j pωqqjPN are real, Lipschitz in ω, and admit the asymptotics, for j P N,

λ8j pωq :� λ8j pω, αq :� λj � ε8j pω, αq , ε8j pω, αq � O

�
1

Mjα



, (1.1.8)



1.1. MAIN RESULTS 15

where λj �
a
j2 � m2 are the eigenvalues of the operator B.

The proof of Theorem 1.1 is the content of Chapter 3. Let us make some comments:

1) Back to the original coordinates, the equation (1.1.1) is reduced to

Bttu� pD8,αq2 u � 0 ;

2) The parameter α, which one chooses and �xes in the real interval p0, 1q, in�uences the
asymptotic expansion of the �nal eigenvalues, as one can read from (1.1.8). Also the construction

of the set of the admissible frequency vectors heavily depends on this parameter;

3) In Theorem 1.1 we can take also m � 0; indeed, with Dirichlet boundary conditions, the

unperturbed eigenvalues λj are simple, integers and their corrections are small (see (1.1.8)). This

means that it is enough to move the frequency vector ω for avoiding resonances;

4) The assumptions of Theorem 1.1 can be weakened, for example asking only Sobolev regu-

larity for V pϕ, xq, dropping (V2) or using periodic boundary conditions instead of the Dirichlet

ones. The result still holds and it is addresses in a forthcoming paper [92].

Let us denote by Uωpt, τq the propagator generated by (1.1.4) such that Uωpτ, τq � 1 for any

τ P R. An immediate consequence of Theorem 1.1 is that we have a Floquet decomposition:

Uωpt, τq � T pωt;ωq� � e�ipt�τqH8,α � T pωτ ;ωq . (1.1.9)

Another consequence of (1.1.9) is that, for any r ¥ 0, the norm }Uωpt, 0qϕ0}Hr�Hr is bounded

uniformly in time:

Corollary 1.2. (Almost conservation of the Sobolev norms) Let M ¥ M� and ω P Ωα8. For
any r ¥ 0 one has

cr }ψ0}Hr�Hr ¤ }Uωpt, 0qψ0}Hr�Hr ¤ Cr }ψ0}Hr�Hr , @ t P R ,@ψ0 P Hr �Hr, (1.1.10)

for some cr ¡ 0, Cr ¡ 0.

More precisely, there exists a constant c1r ¡ 0 such that, if the initial data ψ0 P Hr �Hr, then�
1� c1r

M
1�α

2



}ψ0}Hr�Hr ¤ }Uωpt, 0qψ0}Hr�Hr ¤

�
1� c1r

M
1�α

2



}ψ0}Hr�Hr , @ t P R .

Remark 1.3. Corollary 1.2 shows that, if the frequency ω is chosen in the Cantor set Ωα8, no
phenomenon of growth of Sobolev norms can happen. On the contrary, if ω is chosen resonant,

one can construct drivings which provoke norm explosion with exponential rate. For an overview

of the literature, we remind to the discussion in Section 1.2.2.

The main ideas for the proof of Theorem 1.1 will be presented in Section 2.1.
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1.1.2 Traveling quasi-periodic water waves with constant vorticity

We consider the Euler equations of hydrodynamics for a 2-dimensional perfect, incompressible,

inviscid �uid with constant vorticity γ, under the action of gravity and capillary forces at the free

surface. The �uid �lls an ocean with depth h ¡ 0 (eventually in�nite) and with space periodic

boundary conditions, namely it occupies the region

Dη,h :�  px, yq P T� R : �h ¤ y   ηpt, xq( , T :� Tx :� R{p2πZq . (1.1.11)

In case of a �uid with constant vorticity vx � uy �: γ P R, the velocity �eld is the sum of

the Couette �ow
��γy

0

�
, which carries all the vorticity γ of the �uid, and an irrotational �eld,

expressed as the gradient of a harmonic function Φ, called the generalized velocity potential.

Denoting by ψpt, xq the evaluation of the generalized velocity potential at the free interface

ψpt, xq :� Φpt, x, ηpt, xqq, one recovers Φ by solving the elliptic problem

∆Φ � 0 in Dη,h , Φ � ψ at y � ηpt, xq , Φy Ñ 0 as y Ñ �h . (1.1.12)

The third condition in (1.1.12) means the impermeability property of the bottom

Φypt, x,�hq � 0 , if h   8 , lim
yÑ�8Φypt, x, yq � 0 , if h � �8 .

Imposing that the �uid particles at the free surface remain on it along the evolution (kinematic

boundary condition), and that the pressure of the �uid plus the capillary forces at the free surface

is equal to the constant atmospheric pressure (dynamic boundary condition), the time evolution

of the �uid is determined by the following system of equations$'&'%
ηt � Gpηqψ � γηηx

ψt � �gη � ψ2
x

2
� pηxψx �Gpηqψq2

2p1� η2
xq

� κ
� ηxa

1� η2
x

	
x
� γηψx � γB�1

x Gpηqψ . (1.1.13)

Here g ¡ 0 is the gravity, κ ¡ 0 is the surface tension coe�cient and Gpηq is the Dirichlet-

Neumann operator

Gpηqψ :� Gpη, hqψ :�
a

1� η2
x pB~nΦq|y�ηpxq � p�Φxηx � Φyq|y�ηpxq . (1.1.14)

It is well known since Calderon that the Dirichlet-Neumann operator is a pseudo-di�erential

operator with principal operator given by the Fourier multiplier

Gp0q :� Gp0, hq �
$&%D tanhphDq if h   8
|D| if h � �8 ,

where D :� 1

i
Bx , (1.1.15)
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with symbol

Gjp0q :� Gjp0, hq �
$&%j tanhphjq if h   8
|j| if h � �8 .

(1.1.16)

Actually, we have Gpηq �Gp0q P OPS�8, see for instance [44, 13].

The irrotational model γ � 0 was formulated by Zakharov[174] and Craig, Sulem [68] , while

Constantin, Ivanov, Prodanov [58] and Wahlén [163] provided the system (1.1.13) for any γ P R.
The derivation of the equations (1.1.13) is available in Appendix B.

The water waves equations (1.1.13) are a Hamiltonian system. Indeed, as observed in the

irrotational case γ � 0 by Zakharov [174] and later in presence of any γ P R by Wahlén [163],

they are equivalent to write

ηt � ∇ψHpη, ψq , ψt � p�∇η � γB�1
x ∇ψqHpη, ψq , (1.1.17)

where ∇ denotes the L2-gradient, with Hamiltonian

Hpη, ψq � 1

2

»
T

�
ψGpηqψ � gη2

	
dx� κ

»
T

a
1� η2

x dx� γ

2

»
T

�
� ψxη

2 � γ

3
η3
	

dx . (1.1.18)

For any nontrivial value of the vorticity γ � 0, the system (1.1.17) is endowed with a non

canonical Poisson structure: it will be discussed with more details in Section 4.1.1.

The equations (1.1.13) enjoy two important symmetries. First, they are time reversible: we

say that a solution of (1.1.13) is reversible if

ηp�t,�xq � ηpt, xq , ψp�t,�xq � �ψpt, xq . (1.1.19)

Second, since the bottom of the �uid domain is �at, the equations (1.1.13) are invariant by space

translations and, by Noether Theorem, it implies that the momentum
³
T ηxpxqψpxq dx is a prime

integral of (1.1.13).

The variables pη, ψq of system (1.1.13) belong to some Sobolev space Hs
0pTq� 9HspTq for some

s large. Here Hs
0pTq, s P R, denotes the Sobolev space of functions with zero average

Hs
0pTq :�

!
u P HspTq :

»
T
upxqdx � 0

)
and 9HspTq, s P R, the corresponding homogeneous Sobolev space, namely the quotient space

obtained by identifying all the HspTq functions which di�er only by a constant. For simplicity

of notation, we shall denote the equivalent class rψs � tψ � c : c P Ru just by ψ. This choice

of the phase space is allowed because
³
T ηpt, xqdx is a prime integral and the right hand side of

(1.1.13) depends only on η and ψ � 1
2π

³
T ψ dx.
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A fundamental role is played by the system obtained linearizing (1.1.13) at the equilibrium

pη, ψq � p0, 0q, namely $&%Btη � Gp0qψ
Btψ � �pg � κB2

xqη � γB�1
x Gp0qψ .

(1.1.20)

The Dirichlet-Neumann operator at the �at surface η � 0 is the Fourier multiplier de�ned in

(1.1.15), (1.1.16). The linear frequencies are given by

Ωj :� Ωjpκq � Ωjpκ, h, g, γq :�
d�

κj2 � g � γ2

4

Gjp0q
j2

	
Gjp0q � γ

2

Gjp0q
j

, j P Zzt0u . (1.1.21)

Note that the map j ÞÑ Ωjpκq is not even due to the vorticity term γ
2Gjp0q{j, which is odd in j.

In the Euclidean case x P R, all the solutions of (1.1.20) disperse to 0 as t Ñ 8. On the

contrary, on the compact periodic domain x P T, all the solutions of the linear system (1.1.20)

are either periodic, quasi-periodic or almost periodic in time, with linear frequencies Ωjpκq.
As we will show in Section 4.1.2, all reversible solutions (see (1.1.19)) of (1.1.20) are�

ηpt, xq
ψpt, xq

�
�

¸
nPN

�
Mnρn cospnx� Ωnpκqtq
Pnρn sinpnx� Ωnpκqtq

�

�
¸
nPN

�
Mnρ�n cospnx� Ω�npκqtq
P�nρ�n sinpnx� Ω�npκqtq

�
,

(1.1.22)

where ρn ¥ 0 are arbitrary amplitudes and Mn, P�n are the real coe�cients

Mj :�
�� Gjp0q
κj2 � g � γ2

4
Gjp0q
j2

�
1
4

, j P Zzt0u , P�n :� γ

2

Mn

n
�M�1

n , n P N .

Note that the map j ÞÑ Mj is even. Furthermore, note that the functions in (1.1.22) are linear

superposition of plane waves traveling either to the right or to the left.

Remark 1.4. Actually, (1.1.22) contains also standing waves, for example when the vorticity

γ � 0 (which implies Ω�npκq � Ωnpκq, P�n � �Pn) and ρ�n � ρn, giving solutions even in x.

This is the well known superposition e�ect of waves with the same amplitude, frequency and

wavelength traveling in opposite directions.

We �rst provide the notion of quasi-periodic traveling wave.

De�nition 1.5. (Quasi-periodic traveling wave) We say that pηpt, xq, ψpt, xqq is a time

quasi-periodic traveling wave with irrational frequency vector ω � pω1, . . . , ωνq P Rν , ν P N,
i.e. ω � ` � 0 for any ` P Zνzt0u, and �wave vectors� pj1, . . . , jνq P Zν , if there exist functions
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pη̆, ψ̆q : Tν Ñ R2 such that�
ηpt, xq
ψpt, xq

�
�

�
η̆pω1t� j1x, . . . , ωνt� jνxq
ψ̆pω1t� j1x, . . . , ωνt� jνxq

�
. (1.1.23)

Remark 1.6. If ν � 1, such functions are time periodic and indeed stationary in a moving frame

with speed ω1{j1. On the other hand, if the number of frequencies ν is ¥ 2, the waves (1.1.23)

cannot be reduced to steady waves by any appropriate choice of the moving frame.

We shall construct traveling quasi-periodic solutions of (1.1.13) with a diophantine frequency

vector ω belonging to an open bounded subset Ω in Rν , namely, for some υ P p0, 1q, τ ¡ ν � 1,

DCpυ, τq :�
!
ω P Ω � Rν : |ω � `| ¥ υ x`y�τ , @ ` P Zνzt0u

)
, x`y :� maxt1, |`|u . (1.1.24)

Regarding regularity, we will prove the existence of quasi-periodic traveling waves pη̆, ψ̆q belonging
to some Sobolev space

HspTν ,R2q �
!
f̆pϕq �

¸
`PZν

f` e
i`�ϕ , f` P R2 : }f̆}2s :�

¸
`PZν

|f`|2x`y2s   8
)
. (1.1.25)

Fixed �nitely many arbitrary distinct natural numbers

S� :� tn1, . . . , nνu � N , 1 ¤ n1   . . .   nν , (1.1.26)

and signs

Σ :� tσ1, . . . , σνu, σa P t�1, 1u , a � 1, . . . , ν , (1.1.27)

consider the reversible quasi-periodic traveling wave solutions of the linear system (1.1.20) given

by �
ηpt, xq
ψpt, xq

�
�

¸
aPt1,...,ν : σa��1u

�
Mna

a
ξna cospnax� Ωnapκqtq

Pna
a
ξna sinpnax� Ωnapκqtq

�

�
¸

aPt1,...,ν : σa��1u

�
Mna

a
ξ�na cospnax� Ω�napκqtq

P�na
a
ξ�na sinpnax� Ω�napκqtq

� (1.1.28)

where ξ�na ¡ 0, a � 1, . . . , ν. The frequency vector of (4.0.6) is ~Ωpκq :� pΩσanapκqqa�1,...,ν P Rν .

Remark 1.7. If σa � �1, we select in (4.0.6) a right traveling wave, whereas, if σa � �1, a left

traveling one. By (4.0.4), the linear solutions (4.0.6) are genuinely traveling waves: superposition

of identical waves traveling in opposite direction, generating standing waves, does not happen.

The result in Theorem 1.8 shows that the linear solutions (4.0.6) can be continued to quasi-

periodic traveling wave solutions of the nonlinear water waves equations (1.1.13), for most values

of the surface tension κ P rκ1, κ2s, with a frequency vector rΩ :� prΩσanaqa�1,...,ν , close to ~Ωpκq :�
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pΩσanapκqqa�1,...,ν . Here is the precise statement.

Theorem 1.8. (KAM for traveling gravity-capillary water waves with constant vor-

ticity) Consider �nitely many tangential sites S� � N as in (4.0.4) and signs Σ as in (4.0.5).

Then there exist s ¡ 0, ε0 P p0, 1q such that, for every |ξ| ¤ ε2
0, ξ :� pξσanaqa�1,...,ν P Rν�, the

following hold:

1. there exists a Cantor-like set Gξ � rκ1, κ2s with asymptotically full measure as ξ Ñ 0, i.e.

limξÑ0 |Gξ| � κ2 � κ1;

2. for any κ P Gξ, the gravity-capillary water waves equations (1.1.13) have a reversible quasi-

periodic traveling wave solution (according to De�nition 1.5) of the form�
ηpt, xq
ψpt, xq

�
�

¸
aPt1,...,νu : σa��1

�
Mna

a
ξna cospnax� rΩnapκqtq

Pna
a
ξna sinpnax� rΩnapκqtq

�

�
¸

aPt1,...,νu : σa��1

�
Mna

a
ξ�na cospnax� rΩ�napκqtq

P�na
a
ξ�na sinpnax� rΩ�napκqtq

�
� rpt, xq

(1.1.29)

where

rpt, xq � r̆prΩσ1n1pκqt�σ1n1x, . . . , rΩσνnν pκqt�σνnνxq , r̆ P HspTν ,R2q , lim
ξÑ0

}r̆}sa
|ξ| � 0 ,

with a Diophantine frequency vector rΩ :� prΩσanaqa�1,...,ν P Rν , depending on κ, ξ, and

satisfying limξÑ0
rΩ � ~Ωpκq. In addition these quasi-periodic solutions are linearly stable.

The proof of Theorem 1.8 is the content of Chapter 4. Let us make some comments.

1) Theorem 1.8 holds for any value of the vorticity γ, so in particular it guarantees existence

of quasi-periodic traveling waves also for irrotational �uids, i.e. γ � 0. In this case the solutions

(4.0.9) do not reduce to those in [44], which are standing, i.e. even in x. If the vorticity γ � 0,

one does not expect the existence of standing wave solutions since the water waves vector �eld

(1.1.13) does not leave invariant the subspace of functions even in x.

2) Theorem 1.8 produces time quasi-periodic solutions of the Euler equation with a ve-

locity �eld which is a small perturbation of the Couette �ow
��γy

0

�
. Indeed, from the solution

pηpt, xq, ψpt, xqq in (4.0.9), one recovers the generalized velocity potential Φpt, x, yq by solving the
elliptic problem (1.1.12) and �nally constructs the velocity �eld

� upt,x,yq
vpt,x,yq

� � ��γy
0

��∇Φpt, x, yq.
The time quasi-periodic potential Φpt, x, yq has size Op

a
|ξ|q, as ηpt, xq and ψpt, xq. Our pertur-

bation of the Couette �ow, however, is not a shear �ow anymore. For the nonlinear 2D Euler

equations, it was proved by Bedrossian-Masmoudi [28] the asymptotic stability of shear �ow

solutions near the Couette �ow on T � R in the classes of Gevrey regularity s P p1{2, 1s, while
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Deng-Masmoudi [79] showed the instability of the same solutions when the Gevrey regularity is

strictly less than 1{2.
3) In the case ν � 1 the solutions constructed in Theorem 1.8 reduce to steady periodic

traveling waves, which can be obtained by an application of the Crandall-Rabinowitz theorem,

see e.g. [139, 162, 164].

4) Theorem 1.8 selects initial data giving raise to global in time solutions (4.0.9) of the water

waves equations (1.1.13). So far, no results about global existence for (1.1.13) with periodic

boundary conditions are known. The available results concern local well posedness with a gen-

eral vorticity, see e.g. the work of Coutand and Shkoller [63], and a ε�2 existence for initial data

of size ε in the case of constant vorticity by Ifrim and Tataru [113].

5) With the choice (4.0.4)-(4.0.5) the unperturbed frequency vector ~Ωpκq � pΩσanapκqqa�1,...,ν

is diophantine for most values of the surface tension κ and for all values of vorticity, gravity and

depth. It follows by the more general results of Sections 4.3 and 4.4.2. This may not be true for

an arbitrary choice of the linear frequencies Ωjpκq, j P Zzt0u. For example, in the case h � �8,

the vector

~Ωpκq � �
Ω�n3pκq,Ω�n2pκq,Ω�n1pκq,Ωn1pκq,Ωn2pκq,Ωn3pκq

�
is resonant, for all the values of κ, also taking into account the restrictions on the indexes for

the search of traveling waves, see Section 4.2.5. Indeed, recalling (4.0.3) and that, for h � �8,

Gjp0, hq � |j|, we have, for ` � �� `n3 ,�`n2 ,�`n1 , `n1 , `n2 , `n3

�
that the system

~Ωpκq � ~̀� γp`n1 � `n2 � `n3q � 0 , n1`n1 � n2`n2 � n3`n3 � 0 ,

has integer solutions. In this case the possible existence of quasi-periodic solutions of the water

waves system (1.1.13) depends on the frequency modulation induced by the nonlinear terms.

6) Comparison with [44]. There are signi�cant di�erences with respect to [44], which

proves the existence of quasi-periodic standing waves for irrotational �uids, not only in the result

�the solutions of Theorem 1.8 are traveling waves of �uids with constant vorticity� but also in

the techniques.

(i) The �rst di�erence �which is a novelty of this result� is a new formulation of degener-

ate KAM theory exploiting the �momentum conservation�, namely the invariance under space

translations of the Hamilton equations. The degenerate KAM theory approach for PDEs has

been developed by Bambusi, Berti, and Magistrelli [21], and then in [44], [13], in order to prove

the non-trivial dependence of the linear frequencies with respect to a parameter �in our case the

surface tension κ�, see the �Transversality" Proposition 4.53. A key assumption used in [21],

[44], [13] is that the linear frequencies are simple (because of Dirichlet boundary conditions in

[21] and Neumann boundary conditions in [44], [13]). This is not true for traveling waves. In
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order to overcome this di�culty we strongly exploit the invariance of the equations (1.1.13) under

space translations, which ultimately implies the restrictions to the indexes (4.3.8)-(4.3.10). In

this way, assuming that the moduli of the tangential sites are all di�erent as in (4.0.4), cfr. with

item 5), we can remove some otherwise possibly degenerate case. This requires to keep trace

along all the proof of the �momentum conservation property� that we characterize in di�erent

ways in Section 4.2.5. The momentum conservation law has been used in several KAM results

for semilinear PDEs since the works Geng and You [95, 96], who provided Birkho� normal forms

and quasi-periodic solutions for the nonlinear Schrödinger equation on tori of dimension one and

higher, see also [124, 153, 142, 107, 89] and references therein. The present result gives a new

application in the context of degenerate KAM theory (with additional di�culties arising by the

quasi-linear nature of the water waves equations).

(ii) Other signi�cant di�erences with respect to [44] arise in the reduction in pseudodi�er-

ential orders (Section 4.6) of the quasi-periodic linear operators obtained along the Nash-Moser

iteration. In particular we mention that we have to preserve the Hamiltonian nature of these

operators (at least until Section 4.6.4). Otherwise it would appear a time dependent operator

at the order |D|1{2, of the form iapϕqH|D| 12 , with apϕq P R independent of x, compatible with

the reversible structure, which can not be eliminated. Note that the operator iapϕqH|D| 12 is not

Hamiltonian (unless apϕq � 0). Note also that the above di�culty was not present in [44] dealing

with standing waves, because an operator of the form iapϕqH|D| 12 does not map even functions

into even functions. In order to overcome this di�culty we have to perform symplectic changes

of variables (at least until Section 4.6.4), and not just reversible as in [44, 13]. We �nally mention

that we perform as a �rst step in Section 4.6.1 a quasi-periodic time reparametrization to avoid

otherwise a technical di�culty in the conjugation of the remainders obtained by the Egorov

theorem in Section 4.6.3. This di�culty was not present in [44], since it arises conjugating the

additional pseudodi�erential term due to vorticity, see Remark 4.70.

7) Another novelty of our result is to exploit the momentum conservation also to prove that

the obtained quasi-periodic solutions are indeed quasi-periodic traveling waves, according to

De�nition 1.5. This requires to check that the approximate solutions constructed along the

Nash-Moser iteration of Section 4.8 (and Section 4.5) are indeed traveling waves. Actually this

approach shows that the preservation of the momentum condition along the Nash-Moser-KAM it-

eration is equivalent to the construction of embedded invariant tori which support quasi-periodic

traveling waves, namely of the form upϕ, xq � Upϕ � ~xq (see De�nition 4.12), or equivalently,

in action-angle-normal variables, which satisfy (4.2.60). We expect this method can be used to

obtain quasi-periodic traveling waves for other PDE's which are translation invariant.

In Section 2.2 we further describe the main details for the proof of Theorem 1.8.
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1.1.3 Long time existence of periodic gravity-capillary water waves

We consider the Euler equations of hydrodynamics for a 2-dimensional perfect, incompressible,

inviscid and irrotational �uid under the action of gravity and capillary forces at the free surface.

The �uid �lls an ocean with depth h ¡ 0 (eventually in�nite) and with space periodic boundary

conditions, namely it occupies the region Dη,h de�ned in (1.1.11). Since the �uid is irrotational

and incompressible, the velocity �eld is the gradient of an harmonic function Φ, called velocity

potential, which solves the same problem (1.1.12) as in Section 1.1.2.

Imposing that the �uid particles at the free surface remain on it along the evolution (kinematic

boundary condition), and that the pressure of the �uid plus the capillary forces at the free surface

is equal to the constant atmospheric pressure (dynamic boundary condition), in the variable

ηpt, xq and ψpt, xq :� Φpt, x, ηpt, xqq, the time evolution of the �uid is determined, according to

Zahkarov [174] and Craig, Sulem [68], by the following system of equations$'&'%
ηt � Gpηqψ
ψt � �gη � ψ2

x

2
� pηxψx �Gpηqψq2

2p1� η2
xq

� κ
� ηxa

1� η2
x

	
x
.

(1.1.30)

Here g ¡ 0 is the gravity, κ ¡ 0 is the surface tension coe�cient and Gpηq is the Dirichlet-

Neumann operator Gpηqψ � p�Φxηx � Φyq|y�ηpxq.
As for the equations (1.1.13), the system (1.1.30) is Hamiltonian. Indeed, setting γ � 0 in

(1.1.17)-(1.1.18), we have that pη, ψq are canonical variables and

ηt � ∇ψHpη, ψq , ψt � �∇ηHpη, ψq , (1.1.31)

where ∇ denotes the L2-gradient, with Hamiltonian

Hpη, ψq � 1

2

»
T

�
ψGpηqψ � gη2

	
dx� κ

»
T

a
1� η2

x dx . (1.1.32)

The system obtained linearizing (1.1.30) at the equilibrium pη, ψq � p0, 0q, namely$&%Btη � Gp0qψ
Btψ � �pg � κB2

xqη .
(1.1.33)

The Dirichlet-Neumann operator at the �at surface η � 0 is the Fourier multiplier de�ned in

(1.1.15), (1.1.16). The linear frequencies are given by

Ωj :� Ωjpκq � Ωjpκ, h, gq :�
b
pκj2 � gqGjp0q , j P Zzt0u . (1.1.34)

The main goal is to prove that, for any value of pκ, g, hq, κ ¡ 0, the gravity-capillary water
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waves system (1.1.30) is conjugated to its Birkho� normal form, up to cubic remainders that

satisfy energy estimates (Theorem 1.9), and that all the solutions of (1.1.30), with initial data of

size ε in a su�ciently smooth Sobolev space, exist and remain in an ε-ball of the same Sobolev

space up times of order ε�2, see Theorem 1.10. Let us state precisely these results.

Assume that, for s large enough and some T ¡ 0, we have a classical solution

pη, ψq P C0pr�T, T s;Hs� 1
4

0 � 9Hs� 1
4 q (1.1.35)

of the Cauchy problem for (1.1.30). The existence of such a solution, at least for small enough

T , is guaranteed by local well-posedness theory, see the literature at the end of this chapter.

Theorem 1.9. (Cubic Birkho� normal form) Let κ ¡ 0, g ¥ 0 and h P p0,�8s. There

exist s " 1 and 0   ε ! 1, such that, if pη, ψq is a solution of (1.1.30) satisfying (5.0.4) with

sup
tPr�T,T s

�}η}
H
s� 1

4
0

� }ψ}
9Hs� 1

4

� ¤ ε , (1.1.36)

then there exists a bounded and invertible linear operator Bpη, ψq : H
s� 1

4
0 � 9Hs� 1

4 Ñ 9Hs, which

depends (nonlinearly) on pη, ψq, such that

}Bpη, ψq}
LpHs� 1

4
0 � 9Hs� 1

4 , 9Hsq
� }pBpη, ψqq�1}

Lp 9Hs,H
s� 1

4
0 � 9Hs� 1

4 q
¤

1� Cpsqp}η}
H
s� 1

4
0

� }ψ}
9Hs� 1

4
q ,

(1.1.37)

and the variable z :� Bpη, ψqrη, ψs satis�es the equation

Btz � iΩpDqz � iBzHp3q
BNFpz, zq � X�

¥3 (1.1.38)

where:

1. ΩpDq is the Fourier multiplier upxq � °
j�0 uje

i jx ÞÑ ΩpDqupxq :� °
j�0 Ωjuje

i jx, where

the symbol Ωj is de�ned in (1.1.34), and Bz is de�ned in (5.4.3);

2. the Hamiltonian H
p3q
BNFpz, zq has the form

H
p3q
BNFpz, zq �

¸
σ1j1�σ2j2�σ2j3�0, σi�� ,

σ1Ωj1�σ2Ωj2�σ3Ωj3�0,jiPZzt0u

Hσ1,σ2,σ3
j1,j2,j3

zσ1
j1
zσ2
j2
zσ3
j3 (1.1.39)

where z�j :� zj, z
�
j :� zj and zj denotes the j-th Fourier coe�cient of the function z (see
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(5.1.2)), and the coe�cients

Hσ1,σ2,σ3
j1,j2,j3

:� iσ2

8
?
π

�
σ1σ3j1j3 �Gj1p0qGj3p0q

� Λpj2q
Λpj1qΛpj3q (1.1.40)

with Λpjq de�ned in (5.2.2) and Gjp0q :� j tanhphjq;

3. X�
¥3 :� X�

¥3pη, ψ, z, zq satis�es }X�
¥3} 9Hs� 3

2
¤ Cpsq}z}3

9Hs
and the �energy estimate�

Re

»
T
|D|sX�

¥3 � |D|sz dx ¤ Cpsq}z}49Hs . (1.1.41)

The main point of Theorem 1.9 is the construction of the bounded and invertible transfor-

mation Bpη, ψq in (1.1.37) which recasts the irrotational water waves system (1.1.30) in the

Birkho� normal form (1.1.38), where the cubic vector �eld satis�es the energy estimate (1.1.41).

We remark that Craig and Sulem [69] constructed a bounded and symplectic transformation that

conjugates (1.1.30) to its cubic Birkho� normal form, but the cubic terms of the transformed

vector �eld do not satisfy energy estimates.

We underline that, for general values of gravity, surface tension and depth pg, κ, hq, the
�resonant" Birkho� normal form Hamiltonian H

p3q
BNF in (1.1.39) is non zero, because the system

σ1Ωj1 � σ2Ωj2 � σ3Ωj3 � 0 , σ1j1 � σ2j2 � σ3j3 � 0 , (1.1.42)

for σj � � , may possess integer solutions j1, j2, j3 � 0, known as 3-waves resonances In absence

of these resonances, existence results have been obtained for times of size ε�2 by Totz and Wu

[161] for 1D pure gravity waves, by Ifrim and Tataru [112] for pure capillarity waves, while an

ε�
5
3
� result on T2 has been provided by Ionescu and Pusateri [116]. The resonant Hamiltonian

H
p3q
BNF gives rise to a complicated dynamics, which, in �uid mechanics, is responsible for the

phenomenon of the Wilton ripples. Nevertheless we are able to prove the following long time

stability result.

Theorem 1.10. (Quadratic life span) For any value of pκ, g, hq, κ ¡ 0, g ¥ 0, h P p0,�8s,
there exists s0 ¡ 0 and, for all s ¥ s0, there are ε0 ¡ 0, c ¡ 0, C ¡ 0, such that, for any

0   ε ¤ ε0, any initial data

pη0, ψ0q P Hs� 1
4

0 pT,Rq � 9Hs� 1
4 pT,Rq with }η0}

H
s� 1

4
0

� }ψ0} 9Hs� 1
4
¤ ε , (1.1.43)

there exists a unique classical solution pη, ψq of (1.1.30) belonging to

C0
�
r�Tε, Tεs, Hs� 1

4
0 pT,Rq � 9Hs� 1

4 pT,Rq
	

with Tε ¥ cε�2 ,
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satisfying pη, ψq|t�0
� pη0, ψ0q. Moreover

sup
tPr�Tε,Tεs

�}η}
H
s� 1

4
0

� }ψ}
9Hs� 1

4

� ¤ Cε . (1.1.44)

The proofs of Theorem 1.9 and Theorem 1.10 are provided in Chapter 5. We describe some

key points concerning the proof of these results:

1) The long time existence Theorem 1.10 is deduced by the complete conjugation of the water

waves vector �eld (1.1.30) to its Birkho� normal form up to degree 3, Theorem 1.9, and not just

on the construction of modi�ed energies.

2) Since the gravity-capillary dispersion relation � |ξ| 32 is superlinear, the equations (1.1.30)

can be reduced, as in the work of Berti and Delort [37], to a paradi�erential system with constant

coe�cient symbols, up to smoothing remainders (see Proposition 5.11). At the beginning of

Section 5.3 we remark that, thanks to the x-translation invariance of the equations, the symbols

in (5.2.10) of the quadratic paradi�erential vector �elds are actually zero. For this reason,

in Section 5.3, it just remains to perform a Poincaré- Birkho� normal form on the quadratic

smoothing vector �elds, see Proposition 5.14.

3) Despite the fact that our transformations are non-symplectic (as in [37] and in the result

of Berti, Feola, Pusateri [39]), we prove, in Section 5.4.1, using a normal form identi�cation

argument (simpler than in [39]), that the quadratic Poincaré-Birkho� normal form term in (5.3.9)

coincides with the Hamiltonian vector �eld iBzHp3q
BNF with Hamiltonian (5.0.8).

4) The Hamiltonian H
p2q
C pzq :� ³

T ΩpDqz � z dx is a prime integral of the resonant Birkho�

normal form Btz � iΩpDqz � iBzHp3q
BNF pz, zq. Moreover, since (5.0.11) admits at most �nitely

many integer solutions (Lemma 5.15) the Hamiltonian H
p3q
BNF pz, zq � H

p3q
BNF pzL, zLq where zL :�°

0 |j|¤C zje
ijx, for some �nite C ¡ 0. Therefore, any solution zptq of the Birkho� normal form

satis�es, for any s ¥ 0,

}zLptq}29Hs Às }zLptq}2L2 À H
p2q
C pzLptqq � H

p2q
C pzLp0qq , @t P R ,

and }zptq}2
9Hs

remains bounded for all times. Finally we deduce the energy estimate (5.4.27) for

the solution of the whole system (5.0.7), where we take into account the e�ect of X�
¥3, which

implies stability for all |t| ¤ cε�2.

Further details for the proofs of Theorems 1.9, 1.10 will be illustrated in Section 2.3.

1.2 Historical background

In the rest of this introductory chapter we outline the main mathematical ideas behind these

problems and their historical developments. In particular we present the main works and recent
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contributions about the KAM for PDEs theory, the growth of Sobolev norms and some literature

about the water waves equations.

1.2.1 KAM for PDEs

The classical KAM theory, named after the works of Kolmogorov [128], Arnold [10, 11] and

Moser [146, 147], concerns the persistence of invariant tori, Lagrangian or lower dimensional,

that support time quasi-periodic solutions for �nite dimensional nearly-integrable Hamiltonian

and reversible systems. The generalization of such results to a PDE goes under the name of

"KAM for PDEs" theory.

When looking for quasi-periodic motions, already for �nite dimensional systems, the main

di�culty arises from the presence of small divisors in an iterative scheme. These small divisors

enter as denominators in the coe�cients of the Fourier expansion for the solution of the homo-

logical equation at each step of the KAM iteration and a�ect the convergence of the iterative

scheme. For instance, denoting by ω P Rνzt0u the frequency of oscillation on the invariant torus,

the set

tω � ` : ` P Zνzt0uu

accumulates to 0. This issue can be solved by imposing non-resonance Diophantine conditions

of the form

|ω � `| ¥ υ|`|�τ , @ ` P Zνzt0u ,

for some υ P p0, 1q and τ ¡ ν� 1. Such conditions control the way the small divisors accumulate

to zero and are su�cient for the convergence of the scheme.

The investigation of periodic and quasi-periodic solution for PDEs, seen as lower dimensional

invariant tori for in�nite dimensional dynamical systems, started in the 90's. The two main

approaches for overcoming the small divisors di�culties are:

• normal form KAM methods;

• Newton Nash-Moser implicit function iterative scheme.

The �rst strategy was proposed initially by Kuksin [129] and Wayne [166] for bounded pertur-

bations of parameter dependent, one dimensional Schrödinger and wave equations with Dirichlet

boundary conditions, extended by Kuksin-Pöschel [132] and Pöschel [151] to parameter inde-

pendent nonlinear Schödinger and nonlinear wave equations. In this method the Hamiltonian is

moved into a normal form with an invariant torus at the origin by using canonical transforma-

tions that reduce step by step the size of the perturbation, extracting the e�ective contribution

to the perturbed frequencies of the motion. Here the small divisors arise in the solutions of the

so-called homological equations of each step of the iteration. Such equations are constant coe�-

cients linear PDEs and to solve them one needs to impose second order non-resonance Melnikov
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conditions, for instance of the form

|ω � `� Ωpjq � Ωpj1q| ¥ υ x`y�τ ,

where Ωpjq denotes the normal frequency of the motion with respect to the tangential frequencies

on the aimed invariant torus. The �nal KAM invariant torus will be reducible, in the sense that

the linearized equation at it will be diagonal and constant coe�cients. Geng, Xu and You [94]

proved a KAM theorem for quasi-periodic solutions of the cubic Schrödinger equation on the two

dimensional periodic domain T2. In higher dimensions, Eliasson and Kuksin [84] introduced a

modi�ed KAM scheme for the existence of quasi-periodic solutions of the nonlinear Schrödinger

equation on Td with an external convolution potential, while Procesi and Procesi [153] extended

the result for the completely resonant cubic Schrödinger equation.

The second method was introduced �rst by Craig and Wayne [70] for the search of peri-

odic solutions of a nonlinear wave equation with periodic boundary conditions, extended then

by Bourgain for the existence of quasi-periodic solutions of the nonlinear Schrödinger and wave

equations in one dimension [47]. In these cases, the presence of clusters of normal frequencies

seems incompatible with the KAM methods as in [129], since the second order Melnikov con-

ditions are violated. After a Lyapunov-Schmidt decomposition, the search of invariant tori is

reduced to solve some nonlinear functional equations for the embedded torus. By means of

a quadratic Newton-type scheme, the solutions are obtained as the limit of a sequence of ap-

proximate solutions. This scheme requires to invert the linearized operator at any approximate

solution and in order to achieve this, a priori, only �rst order non-resonance Melnikov conditions

are needed, which are roughly of the form

|ω � `� Ωpjq| ¥ υ x`y�τ .

As a drawback of having imposed only these conditions, the PDEs to solve at any step have

variable coe�cients and, therefore, this method alone does not provide information for the linear

stability for the solutions. In one dimension, the Nash-Moser approach was extended, still for

periodic solutions, by Berti and Bolle in [30, 31] for completely resonant nonlinear wave equations

with Dirichlet boundary conditions, both with analytic and di�erentiable nonlinearities, see also

Gentile, Mastropietro and Procesi [97]. The higher dimensional case was �rst treated by Bourgain

in [50] in the search of time quasi-periodic solutions for the nonlinear Schrödinger equation on

T2, followed by the results on the nonlinear wave equations on Td, d ¥ 2, for time periodic [48]

and quasi-periodic solutions [52]. The solutions provided by Bourgain are all extremely regular,

at least analytic. The extension of the Nash-Moser scheme to �nite Sobolev regularity in higher

dimensions was considered by Berti and Bolle for quasi-periodic solutions on Td of the wave

equation [32] and of the nonlinear Schrödinger equation [33] with an external potential. We also
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mention the work of Berti and Procesi [45] and Berti, Corsi, Procesi [36], where an abstract

Nash-Moser theorem for nonlinear Schrödinger and nonlinear wave equations on compact Lie

groups was provided, and the recent result by Berti and Bolle [35], with an updated literature

for the "KAM for PDEs" theory in the references therein.

In another work by Berti and Bolle [34], the two approaches were uni�ed in the framework

of autonomous Hamiltonian PDEs. The main idea is to search the invariant tori as zeroes of

the nonlinear functional with a Nash-Moser iterative scheme and to provide a symplectic change

of coordinates such that, at each approximate solution of the iteration, the tangential and the

normal directions are approximately decoupled. This reduces the problem to the study of the

quasi-periodically forced linearized equation in the normal directions. This approximate splitting

is actually sharper than the classical Lyapunov-Schmidt reduction in range and bifurcation equa-

tions, since the dynamics on the tangential and normal modes is preserved by the Hamiltonian

structure. Therefore, the search of an invariant torus is equivalent to prove the existence of a

KAM normal form around the torus itself.

All the result mentioned so far concern PDEs with bounded nonlinearities, namely that

do not contain any derivative of the unknown. When the nonlinearity is unbounded, a priori,

the symplectic transformation at each step of the KAM iteration may loses derivatives and the

convergence is in general out of reach. The �rst KAM results for PDEs with unbounded per-

turbations were provided by Kuksin [131] and Kappeler, Pöschel [125] for Hamiltonian, analytic

perturbations of the KdV equation on the torus. The goal was to prove the existence of solu-

tions bifurcating from Cantor families of �nite gap solutions of KdV. The main issue is that the

Hamiltonian vector �eld generated by the perturbation is unbounded of order 1. At the same

time, the frequencies of KdV grow as � j3, hence the di�erence |j3 � j13| ¥ 1
2pj2 � j12q for

any j � j1, so that KdV gains two derivatives. This smoothing e�ect on the small divisors is

su�cient to produce a bounded transformation at each step of the KAM iteration. The diagonal

terms related to j � j1 are not removed by the transformation and therefore are inserted into

the normal form. As a consequence, the scalar homological equations have variable coe�cients

and they can be solved via the Kuksin Lemma, introduced in [130].

An improved version of the Kuksin Lemma was introduced by Liu and Yuan in [137] (see

also [136]) for proving the existence of quasi-periodic KAM tori for the derivative nonlinear

Schrödinger equation (see also the work of Zhang, Gao and Yuan [178]) and the perturbed

Benjamin-Ono equation with periodic boundary conditions.

The problem of �nding periodic and quasi-periodic solutions further increases in di�culty

when the PDEs is not just semilinear, that is, when a nonlinearity contains strictly less derivatives

than the linear part, but it is quasi-linear or even fully nonlinear. The �rst results in this

direction are the works of Plotnikov and Toland [150] and Iooss, Plotnikov and Toland [121], for

the existence of 2D periodic standing waves with �nite and in�nite depth, respectively, and Iooss-



30 CHAPTER 1. INTRODUCTION

Plotnikov [119, 120] for 3D periodic traveling waves for the pure gravity water waves equations.

The main di�culty of these results comes from the fully nonlinear nature of the equations, since

the linear dispersion relations grow as � |j| 12 and the nonlinearity arises from the convective

transport term of the Euler equations. The periodic solutions are constructed with a Nash-

Moser theorem and the descent method for regularizing the linearized vector �eld. For a forced

quasi-linear Kirchho� equation, whose nonlinearity is space-independent, time periodic solutions

were obtained by Baldi [12] on a bounded domain in Rd with Dirichlet boundary condition and

on the periodic domain Td. The methods involved in his analysis are tailored to the peculiarity

of the nonlinearity and are hardly generalizable to other systems.

The �rst breakthrough result for time quasi-periodic solutions for quasi-linear and fully non-

linear PDEs are due to Baldi, Berti and Montalto for some quasi-linear and fully nonlinear per-

turbations of the forced Airy equation [14], of the autonomous KdV [15] and of the autonomous

modi�ed KdV [16]. These results are obtained with a Nash-Moser iteration as stated in [34],

where the analysis of the linearized operator is inspired by the descent regularization procedure

introduced by Plotnikov and Toland [150] via pseudodi�erential calculus and combined with the

KAM reducibility scheme. About the water waves problem, Berti and Montalto [44], for the

gravity-capillary case, and Baldi, Berti, Haus, Montalto [13], for the pure gravity case, proved

the existence of one dimensional, quasi-periodic standing waves. Within this context, in our re-

sult in Theorem 1.8 a further obstacle arises in this analysis: indeed, the search of quasi-periodic

traveling waves forces to work with periodic boundary conditions with no parity restrictions,

which induce possibly double eigenvalues at the unperturbed stage. This is solved by a proper

choice of the tangential modes and by exploiting the conservation of the x-translation invariance.

The regularization method was applied also by Feola and Procesi [91], who considered a

class of fully nonlinear forced and reversible Schrödinger equations on the torus T and proved

existence and stability of quasi-periodic solutions. We refer also the work of Giuliani [101] for

quasi-linear perturbations of generalized KdV equations, the result by Feola, Giuliani and Procesi

[89] for Hamiltonian perturbations of the Degasperis-Procesi equation and a recent work of Berti,

Kappeler and Montalto [42, 43], who provided the existence of �nite dimensional invariant tori of

any size for perturbations of the defocusing NLS and of KdV, respectively. We mention also the

work of Corsi and Montalto [62] for the forced Kirchho� equation on Td, which, however, does
not make any use of the regularization in decreasing orders and, instead, applies a multiscale

approach as in [50, 32, 33, 36] for bounded semilinear PDEs.

Other results of the KAM theory applied to PDEs are presented in Section 1.2.2, where the

problem of the reducibility for linear PDEs and the related literature is discussed, and in Section

1.2.3 with the discussion about the traveling and standing quasi-periodic water waves.
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1.2.2 Floquet theory and growth of Sobolev norms

The classical Floquet theory concerns the problem of conjugating a time periodic, linear di�er-

ential equation to a, possibly diagonal, linear system with constant coe�cient:#
9x � Xptqx :� pA� F ptqqx

F ptq � F pt� T q P Rn�n
x�Φ1ptqyÞÑ

#
9y � A�y

A� � Φ1ptq
�1XptqΦ1ptq �

³1

0
Φτ ptq

�1
9XptqΦτ ptq dτ .

The eigenvalues of the constant coe�cients vector �eld A� are called Floquet exponents and they

give information about the stability of the dynamics of the original system. From a mathematical

point of view, Theorem 1.1 is part of the attempts to extend the previous classical Floquet theory,

together with the generalizations to time quasi-periodic systems, to evolutionary PDEs. In this

latter case the only available results nowadays deal with systems which are small perturbations

of a diagonal operator, i.e. of the form D � εV pωtq, where D is diagonal, ε small and ω in some

Cantor set. Here the literature splits essentially in two parts:


 Perturbations with bounded operators. A preliminary result in this direction is the

work of Combescure [56], where she showed that the spectrum of the one dimensional harmonic

oscillator perturbed with a time periodic bounded operator is still pure point. The matrix el-

ements of the perturbation have high power law decay with respect to the Hermite basis and

a KAM diagonalization procedure is implemented for non-resonant values of the periodic fre-

quency. Then, Duclos and Stovicek [81] proved that the Floquet operator for a pure point

Hamiltonian with the gap between the eigenvalues growing as nα, with α ¡ 0, perturbed with a

non-resonant small potential has still pure point spectrum. This result is obtained by improving

the o�-diagonal decay of the perturbation with �nitely many adiabatic transformations and then

concluding with a KAM reduction as in [56].

The KAM theorems of Kuksin and Pöschel [132, 151, 152] for the Schrödinger and wave

equations in one dimension with Dirichlet boundary conditions discussed in Section 1.2.1 are

actually the �rst KAM reducibility results for nonlinear PDEs, as the KAM invariant tori are

reducible. We refer also to the work Chierchia and You [54] for the nonlinear wave equation

in one dimension with periodic boundary conditions. The reducibility in higher dimensions has

been �rst established in the works of Eliasson and Kuksin on the d-dimensional torus Td for a

linear Schrödinger equation perturbed with a time quasi-periodic potential [83] and for quasi-

periodic solutions of the nonlinear Schrödinger equation [84]. Similar results were provided for

other models, from the harmonic oscillator by Grébert and Thomann [106], Grébert and Paturel

[105] and Liang, Wang [165], to the Klein-Gordon equation on the torus by Fang, Han and Wang

[85] and on higher dimensional spheres by Grébert and Paturel [104]. A KAM reducibility with

bounded perturbation was provided also by Corsi, Haus and Procesi [61] for quasi-periodic solu-

tions of Hamiltonian PDEs on compact Lie groups.


 Perturbations with unbounded operators. When the perturbation is not a bounded
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operator between Sobolev spaces, the question of the reducibility becomes more delicate. The

�rst who tackled this problem were Bambusi and Gra� [23]: they provided a KAM reducibility

for a one-dimensional anharmonic oscillator perturbed by a time quasi-periodic potential with

unbounded growth in the space variable. The variable coe�cients homological equations in the

scheme can be solved with the help of the Kuksin Lemma. When the Kuksin Lemma is not

available, the problem gets much harder. Nevertheless, Berti, Biasco and Procesi [29] were able

to prove the existence of KAM tori and the related reducibility for the reversible derivative Klein-

Gordon equation on the torus T, which has asymptotically linear frequencies. In the work of

Montalto [145] a KAM reducibility is provided for the linearized Kirchho� equation on Td: here
the perturbation has the same linear order of the leading operator, but it is space-independent.

For other results with unbounded perturbations, we refer to Bambusi [20] for the one dimen-

sional harmonic and anharmonic oscillator and to Bambusi, Grébert, Maspero, Robert [26] for

the d-dimensional harmonic oscillator.

When it is not possible to obtain reducibility for systems with Hamiltonian of the form

H0 � V ptq, in some cases one could deduce dynamical properties via an "almost reducibility";

that is, the original Hamiltonian is conjugated to one of the form H0 � Zptq �Rptq, where Zptq
commutes with H0, whereas Rptq is an arbitrary smoothing operator, see Bambusi, Grébert,

Maspero, Robert [25]. This normal form ensures upper bounds on the speed of transfer of energy

from low to high frequencies; e.g. it implies that the Sobolev norms of each solution grows at

most as tε when tÑ 8, for any arbitrary small ε ¡ 0. This procedure (or a close variant of it),

was applied for Schrödinger-type systems also by Delort [72, 73], Maspero and Robert [141] and

Montalto [144].

There are also examples in which the authors engineered periodic drivings aimed to transfer

energy from low to high frequencies and leading to unbounded growth of Sobolev norms. For

instance, Bourgain constructed bounded, smooth, time periodic potentials on the torus T forcing

the linear wave equation [49] and the linear Schrödinger equation [51] in such a way that, for a

choice of the initial datum, the trajectory is not relatively compact in any Sobolev space HspTq,
with s ¡ 0, so that in particular the solution is neither almost periodic in time. Recently, Haus

and Maspero [109] considered the semiclassical Schrödinger equation on Rd with an anharmonic

trapping potential and a time dependent pertubartion. They showed the existence of a solution

with Sobolev norm growing in time, up to the validity of the semiclassical time scales, starting

from an unbounded trajectory of the associated classical system and using the semiclassical

approximation on coherent states. Other examples of the mechanism for the growth of the

Sobolev norms of linear PDEs were provided by Delort [74] for the one-dimensional harmonic

oscillator and, in an abstract setting, by Maspero [140]. Very recently, other solutions for the two

dimensional harmonic oscillator exhibiting the actual logarithmic growth in the Sobolev norms
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of [141] were found by Thomann [159], based on the analysis of the linear Lowest Landau Level

equation with a time dependent potential, and by Faou, Raphaël [87], modulating the resonant

bubbles solutions.

When the magnitude of the perturbation becomes relevant, ideally unstable trajectories are

predominant and the analysis of the dynamics gets much harder. Nevertheless, a time peri-

odic (or quasi-periodic) perturbation oscillating with a su�ciently large frequency may avoid

resonance e�ects and create stable motions. Such periodically driven systems have a great in-

terest in physics, both theoretically and experimentally. Indeed, these systems often exhibit a

rich and surprising behaviour, like the Kapitza pendulum [123], where the fast periodic driv-

ing stabilizes the otherwise unstable equilibrium point in which the pendulum is upside-down.

More recently, a lot of attention was dedicated to fast periodically driven many-body systems

[82, 102, 127, 122]; here the interest is the possibility of engineering periodic drivings for realizing

novel quantum states of matter; this procedure, commonly called �Floquet engineering� [53], has

been implemented in several physical systems, including cold atoms, graphenes and crystals.

In order to mathematically deal with perturbations that are periodic in time and fast oscil-

lating, in a series of works [1, 2, 3] Abanin, De Roeck, Ho and Huveneers developed an adapted

normal form that generalizes the classical Magnus expansion [138]. Such a normal form, which

from now on we call Magnus normal form, allows to extract a time independent Hamiltonian

(usually called the e�ective Hamiltonian), which approximates well the dynamics up to some �-

nite but very long times. In [3], the authors apply the Magnus normal form to the study of some

quantum many-body systems (for instance, spin chains on �nite subsets of the lattice Zd) with a

fast periodic driving and extract an e�ective Hamiltonian which approximate well the dynamics

for exponentially long (in |ω|) times. The principal operator in [3] may be of dimension very

large, depending on the number of the interacting particles and on the subset of the lattice), but

still �nite, so that all the involved operators are bounded. We point out that, on the contrary,

Theorem 1.1 is an in�nite dimensional analysis and already the principal operator is unbounded,

therefore we have to take care of controlling an eventual loss of derivatives which are not present

in [3]. We quote here also the work of Corsi and Genovese [60] about the long time dynamics of

quantum spin chains in the thermodynamics limit, perturbed by a small, time periodic potential

with a large frequency of oscillation.

1.2.3 The water waves problem

The analysis of the water waves problem is dated back to the works of Laplace (1776) and La-

grange (1781, 1786), just some years after the derivation of the equations for hydrodynamics by

Euler in 1757. These early works concerned mostly the linearized dynamics in some di�erent

regimes and the deduction of the respective dispersion relations for various kind of waves. Start-

ing from the 19th century, new improvements were provided by Grestner (1802), with the very
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�rst nonlinear exact solution and the contributions by Cauchy (1827) and Poisson (1818) on the

initial value problem. The most groundbreaking and in�uential papers for the early theory of

water waves are the works of Green, Kelland, Airy and Earnshaw (1838-1844). For a detailed

summary of the early history and related bibliography, we refer to the article by Craik [64]. We

now present an overview of some results both contemporary and from the last century.

Local well-posedness. Local existence results for the initial value problem of the pure gravity

water waves equations within a Sobolev class go back to the pioneering works of Nalimov [148],

Yosihara [173], Craig [65] in one space dimension and with smallness assumptions on the initial

data. Beale, Hou and Lowengrub [27] proved that the linearization of the 2D water-wave prob-

lem is well-posed if a Taylor sign condition is added to the problem formulation, thus preventing

Rayleigh-Taylor instabilities. The full nonlinear well-posedness, that is, without any smallness

assumption, is due to Wu in dimension one [169] and in dimension two [170] in the case of in�nite

depth.

In presence of surface tension, Ambrose [8] and Ambrose, Masmoudi [9] proved local well-

posedness of the 2D water waves problem replacing the Taylor sign condition. We quote also

the previous work of Beyer-Günther [46] for the motion of a liquid drop in presence of capillary

forces on the boundary. For some recent results about gravity-capillary and pure gravity waves

we refer to the monograph of Lannes [134] and the works of Coutand and Shkoller [63] for

rotational �uids, Shatah and Zeng [156] on non-simply connected domains, Christianson, Hur

and Sta�lani [55] for the Strichartz estimates and Alazard, Burq and Zuily [5] with the use of

paradi�erential calculus. Clearly, specializing these results for initial data of size ε, the solutions

exist and stay regular for times of order ε�1.

Global well-posedness on Euclidean domains. In the case x P Rd and the initial data

su�ciently fast decaying at in�nity, global in time solutions have been constructed exploiting

the dispersive e�ects of the system. The �rst global in time solutions were proved in d � 2

by Germain, Masmoudi and Shatah [98] and Wu [172] for gravity water waves, by Germain,

Masmoudi and Shatah [99] for the pure capillary problem and by Deng, Ionescu, Pausader,

Pusateri [78] for gravity-capillary water waves. In d � 1 an almost global existence result for

gravity waves was proved by Wu [171], improved to global regularity by Ionescu and Pusateri

[114], Alazard and Delort [6], Hunter and Ifrim,Tataru [110, 111]. For capillary waves, global

regularity was proved by Ionescu and Pusateri [115] and Ifrim, Tataru [112].

Normal forms. For space periodic water waves, there are no dispersive e�ects that can lead

directly to a control of the solutions for all times using the decay in time. Indeed, considering

also the quasi-linear nature of the equations that prevent the use of semilinear techniques, no

global regularity results for water waves in periodic settings are known. A major obstacle to

this end is the presence of resonances. We consider, for instance, a monomial nonlinearity of

degree N ¥ 2 of the form uσ1 ...uσN � °
σ1j1�...�σN jN�j u

σ1
j1
...uσNjN e

ijx, where σ1, ..., σN � �1,
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u�pxq :� upxq, u�pxq :� upxq. Then, the monomial terms that are resonant with the linear

dynamics correspond to those j, j1, ..., jN P Z such that

Ωpjq � σ1Ωpj1q � ...� σNΩpjN q ,

where Ωpjq denotes the linear frequency. When there is no equality, but the di�erence of the two

sides is close to zero, we talk about quasi-resonances, which give rise to a small divisors issue.

A partial substitute for global regularity is to prove extended life span results and the ex-

istence of solutions with initial data of magnitude ε for longer times can be proved via normal

form theories. In absence of resonances, existence results were obtained for times of size ε�2 by

Totz and Wu [161] for 1d pure gravity waves, by Ifrim and Tataru [112] for pure capillarity waves

and by Harrop-Gri�ths, Ifrim, Tataru [108] for 1D gravity waves over a �at bottom. If x P T2,

we refer to the work of Ionescu and Pusateri [116] for an ε�
5
3
� result. The extended life span of

these results is proved with energy estimates and integration by parts.

For nonlinear dispersive PDEs on a periodic domain, the long time existence problem can

be tackled also with a Birkho� normal form procedure. The basic idea of this approach is to

reduce the size of the nonlinearity near the origin. One looks for a change of coordinates that

removes all the monomials up to a certain degree of the nonlinearity that are non-resonant with

respect to the linear dynamics. The transformation is well de�ned if one imposes non-resonance

conditions on the small divisors to ensure the boundedness of the map. Then the extension

of the life span is achievable once the resonant contribution and the remaining terms in the

nonlinearity are analyzed. In the semilinear setting, for Hamiltonian PDEs the �rst results of

this kind were provided by Bambusi [19], Bambusi and Grebért [24], Delort and Szeftel [76, 77]

and Bambusi, Delort, Grebért, Szeftel [22], while for reversible PDEs we refer to the work of

Faou and Grebért [86]. The extension to quasi-linear PDEs was �rst provided by Delort for

quasi-linear perturbations of the Klein-Gordon equation on the one dimensional torus [73] and

on the d-dimensional sphere [75].

Back to the water waves problem, the �rst application of the Birkho� normal form is due

to Berti and Delort. In [37], the authors proved an almost global existence result for periodic

gravity-capillary water waves, even in x P T, for times Opε�N q for almost all values of pg, κq. The
restriction on the parameters pg, κq arises to verify the absence of N -waves interactions at any N .

The restriction to even in x solutions arises because the transformations in [37] are reversibility

preserving but not symplectic.

The only ε�3 existence result for parameter independent water waves on the torus was proved

by Berti, Feola and Pusateri in [39] and it is based on the complete integrability of the fourth

order Birkho� normal form for 1d pure gravity water waves in in�nite depth, proving a conjecture

of Zakharov and Dyachenko [175]. For another long time existence result via Birkho� normal

form, see [17, 90].
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Time and space periodic traveling waves which are steady in a moving frame. The

literature concerning steady traveling wave solutions is huge, and we refer to [57] for an extended

presentation. Here we only mention that, after the pioneering work of Stokes [157], the �rst

rigorous construction of small amplitude space periodic steady traveling waves goes back to the

1920's with the papers of Nekrasov [149], Levi-Civita [135] and Struik [158], in case of irrotational

bi-dimensional �ows under the action of pure gravity. Later Zeidler [176] considered the e�ect of

capillarity. In the presence of vorticity, the �rst result is due to Gerstner [100] in 1802, who gave

an explicit example of periodic traveling wave, in in�nite depth, and with a particular non-zero

vorticity. One has to wait the work of Dubreil-Jacotin [80] in 1934 for the �rst existence results

of small amplitude, periodic traveling waves with general (Hölder continuous, small) vorticity,

and, later, the works of Goyon [103] and Zeidler [177] in the case of large vorticity. More recently

we point out the works of Wahlén [162] for capillary-gravity waves and non-constant vorticity,

and of Martin [139] and Wahlén [163] for constant vorticity.

All these results deal with two dimensional water waves, and can ultimately be deduced

by the Crandall-Rabinowitz bifurcation theorem from a simple eigenvalue. We also mention

that these local bifurcation results can be extended to global branches of steady traveling waves

by applying the methods of global bifurcation theory. We refer to Keady and Norbury [126],

Toland [160], McLeod [143] for irrotational �ows and Constantin, Strauss [59] for �uids with

non-constant vorticity.

In the case of three dimensional irrotational �uids, bifurcations of small amplitude traveling

waves periodic in space were proved by Reeder and Shinbrot [154], Craig and Nicholls [66, 67] ,

for both gravity-capillary waves (with a variational bifurcation arguments ªa Weinstein-Moser)

and by Iooss and Plotnikov [119, 120] for gravity waves (this is a small divisor problem). In a

moving frame, these solutions look as steady bi-periodic waves.

Time periodic standing waves. Bifurcations of time periodic standing water waves were

obtained in a series of pioneering paper by Plotnikov and Toland [150] and by the works of Iooss,

Plotnikov and Toland [121, 117, 118, 119] for pure gravity waves, and by Alazard, Baldi [4] for

gravity-capillary �uids (see the previous discussion in Section 1.2.1). Standing waves are even in

the space variable and so they do not travel in space. There is a huge di�erence with the results

of the previous group: the construction of time periodic standing waves involves small divisors.

Thus, the proofs are based on Nash-Moser implicit function techniques, with the descent method

on the linearized operators, and not only on the classical implicit function theorem.

Time quasi-periodic standing waves. The �rst results in this direction were obtained recently

by Berti and Montalto [44] for the gravity-capillary system and by Baldi, Berti, Haus, Montalto

[13] for the gravity water waves. Both papers deal with irrotational �uids and the proofs require

the Nash-Moser iteration as in the time periodic case coupled with KAM techniques in the

reduction of the linearized water waves vector �eld at any approximate solution. Moreover,
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[13] has to face another problem coming from the sublinearity of the linear dispersion relation,

which leads to second order non-resonance Melnikov conditions that lose space derivatives: this

di�culty is overcome by reducing in pseudodi�erential order the linearized vector �eld up to a

su�ciently smoothing order.

Quasi-periodic solutions in �uid dynamics. The �rst work on time quasi-periodic solutions

for Euler equation is due to Crouseilles and Faou [71], who constructed, for a �uid on T2 with

a piece-wise linear shear �ow, scalar vorticity solutions that consist of localized waves traveling

in the orthogonal direction with respect to the propagation of the �ow. The solutions are very

explicit and, in particular, the result is not of KAM-type, since no small divisors arise.

Very recently, Baldi and Montalto [18] proved the existence of quasi-periodic solutions for

the Euler equation with a small reversible quasi-periodic in time forcing term on the three-

dimensional torus T3. The solutions that they provide are small perturbations of the constant

vector �elds satisfying Diophantine conditions.

Feola and Giuliani [88] showed in a recent result the existence of small amplitude quasi-

periodic traveling waves for the 2-dimensional, irrotational pure gravity water waves with in�nite

depth. In the construction of these traveling solution, they use the same choice of the tangential

sites as in our Theorem (1.8) and they have to preserve the x-translation as well. The lack of

parameter to move in order to avoid the resonances is overcome by a weak Birkho� normal form.

We conclude by quoting also two numerical works by Wilkening and Zhao [167, 168] about

spatially quasi-periodic gravity-capillary water waves in in�nite depth. In particular, they studied

numerical traveling-type solutions on a one dimensional domain with multiple space frequencies

and investigate the presence of resonances when parameters vary.
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Chapter 2

Ideas of the proofs

In this chapter we outline the strategies for the proofs of the results presented in Sections 1.1.1,

1.1.2, 1.1.3, discussing the mathematical key ideas step by step for each result.

2.1 Ideas of the proof of Theorem 1.1

The result in Theorem 1.1 is proved in two steps. First, we need to transform the system (1.1.4)

into a perturbative framework. Then, we perform a KAM reducibility scheme once proper non-

resonance conditions are imposed.

The Magnus normal form. The very �rst transformation that we perform, adapted to fast

oscillating systems, moves the non-perturbative equation (1.1.4) into a perturbative one where

the size of the transformed quasi-periodic potential is as small as the module of the frequency

vector is large. Sketchily, we perform a change of coordinates which conjugates#
Hptq � H0 �Wpωtq

”sizepWq � 1”
ù

#rHptq � H0 �Vpω;ωtq
”sizepVq � |ω|�1”

. (2.1.1)

This change of coordinates, called below Magnus normal form, is an extension to quasi-periodic

systems of the one performed by Abanin, De Roeck, Ho and Huveneers in [3]. Note that H0 is the

same on both sides of (2.1.1) provided
³
Tν Wpθqdθ � 0, which is ful�lled in our case thanks to

Assumption (V2). The price to pay is that, in principle, it is not clear that the new perturbation

is su�ciently regularizing to �t in a standard KAM scheme, as the new perturbation Vpω;ωtq
could increase in order. Here it is essential to employ pseudodi�erential calculus, thanks to which

we control the order (as a pseudodi�erential operator) of the new perturbation, and prove that it

is actually enough regular for the KAM iteration. For presenting better this point, assume that

we have a one-dimensional vector �eld of the form Hptq � H0�W pωtq, with H0 P OPSµ, µ ¥ 1,

39
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and W pωtq P OPS0 for any t P R (for the de�nition of the classes of pseudodi�erential operators

OPSµ, see De�nition 3.4). The Magnus transform is generated by an operator Xpω;ωtq solving
the homological equation

�ω � BϕXpω;ωtq �W pωtq � 0 ñ Xpω;ωtq � pω � Bϕq�1W pωtq ,

which is well de�ned, assuming xW p0q :� p2πq�ν ³Tν W pϕqei `�ϕ dϕ � 0. This implies that the new

perturbation is given by

V pω;ωtq � irXpω;ωtq, H0s � ... P OPSµ�1 ,

where the dots stand for lower order terms. When µ � 1, as for our Klein-Gordon model, we

therefore obtain a bounded operator in OPS0 that will be as small in size as the generator X is.

For µ ¡ 1, instead, the perturbation V increases in order and the problem of the reducibility is

still open. All the details for our computation are provided in Section 3.2.

A remark on the classes of pseudodi�erential operators. We add here a brief observation

about the pseudodi�erential calculus presented in Chapter 3 and Chapter 4. Indeed, the classes

of ϕ-independent symbols Sm of order m P R are de�ned in the same way, see De�nition 3.2 and

De�nition 4.14. In particular, we say that a function apx, jq is a symbol of order m if it is the

restriction to R � Z of a function apx, ξq which is C8-smooth on R � R, 2π-periodic in x, and

satis�es

|BαxBβξ apx, ξq| ¤ Cα,βxξym�β , @α, β P N0 .

Also the corresponding pseudodi�erential operators are de�ned by the same quantization:

upxq �
¸
jPZ

uje
ijx ÞÑ papx,Dxquq pxq :�

¸
jPZ

apx, jqujeijx .

When the dependence on the angle ϕ P Tν is considered, for the KAM reducibility of Section

3.4 we want the regularity with respect to ϕ to be analytic. Therefore, in Chapter 3 we shall

control a symbol apϕ, x, ξq with respect to the following seminorm (see Def. 3.3):

℘m,ρ% paq :� sup
|Imϕ|¤ρ

¸
α�β¤%

sup
px,ξqPR�R

xξy�m�β |Bαx Bβξ apϕ, x, ξq| , % P N0 ,

assuming that the function a : Tν �T�R admits an analytic extension with respect to ϕ on the

torus Tνρ :� tϕ � ϑ� iφ P Cν : ϑ P Tν , |ψ| ¤ ρu for some ρ ¡ 0.

On the other hand, it is more desired in all the analysis of Chapter 4 to control together

the regularity of the variables pϕ, xq P Tν�1 in Sobolev classes. In particular, we shall check the
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boundedness of the operator with respect to the following norm on the symbols (see Def. 4.15):

}a}m,s,α :� max
0¤β¤α

sup
ξPR

}Bβξ ap�, �, ξq}s xξy�m�β .

In Chapter 4 we keep the same notation of the classes Sm and OPSm also for ϕ-dependent

symbols and operators, see De�nition 4.15 (where also the di�erentiable dependence on param-

eters is included). In Chapter 3, instead, since the radius of analyticity varies in the reduction,

we denote the analytic classes of symbols and operators by Smρ and OPSmρ , respectively, see

De�nitions 3.3., 3.4.

Balanced Melnikov conditions and KAM reducibility. After the Magnus normal form,

we perform a KAM reducibility scheme in order to remove the time dependence from the coe�-

cients of the equation. For brie�y presenting the KAM reduction scheme, consider the system

i 9ψptq � Hpωtqψptq , Hpωtq :� Apωq � P pω;ωtq ,

where the frequency vector ω varies in some set Ω � Rνzt0u, with M ¤ |ω| ¤ 2M, the time

independent operator Apωq is diagonal with respect to the Fourier basis and Ppω;ωtq is the

time quasi-periodic perturbation. The goal is to square the size of the latter by conjugating the

Hamiltonian Hpωtq via a transformation generated by i Xpωtq. The transformed Hamiltonian is

given by

H�pωtq :� A�P� i rX,As � ω � BϕX�R ,

where R is the remainder resulting from the commutator expansion. The generator is required

to solve the homological equation

�ω � BϕX� irX,As �P � Z ,

where Z is the new time independent contribution to the normal form. By solving this equation

with respect to the Fourier basis representation of the linear operators, we face the presence of

small divisors of the form

ω � `� λj � λj1 ,

where λj are the eigenvalues of A. One needs to impose second order non-resonance Melnikov

conditions and, for instance, might ask for lower bounds on the denominators ω � `� λj � λj1 of

the form, for some γ, τ ¡ 0,

|ω � `� λj � λj1 | ¥ γ

x`yτ
xj � j1y
|ω| , @ p`, j, j1q P Zν � N� N, p`, j, j1q � p0, j, jq . (2.1.2)
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Such conditions are violated for a set of frequencies of relative measure bounded by Cγ, where

C is a constant independent of |ω| (we remark that the conditions in (2.1.2) are violated on a

set of relative measure � γ|ω|, which is as large as the size of the frequency vector).

This classical version of the Melnikov conditions is useless in our context: indeed, after the

Magnus normal form, the new perturbation has size � |ω|�1, whereas the small denominators in

(2.1.2) have size � |ω|; so the two of them compensate each others, and the KAM step cannot

reduce in size. To overcome the problem, rather than (2.1.2), we impose new balanced Melnikov

conditions, in which we balance a partial loss in size (in the denominator) with a gain in regularity

(in the numerator) in (2.1.2). More precisely, we show that for any α P r0, 1s one can impose

��ω � `� λj � λj1
�� ¥ γ

x`yτ
xj � j1yα
|ω|α , @ p`, j, j1q P Zν � N� N, p`, j, j1q � p0, j, jq (2.1.3)

for a set of ω's in RM of large relative measure. By choosing 0   α   1, the left hand side of

(2.1.3) is larger than the corresponding one in (2.1.2), and the KAM transformation reduces in

size. However, note that the choice of α in�uences the regularizing e�ect given by xj � j1yα in

the right hand side of (2.1.3); ultimately, this modi�es the asymptotic expansion of the �nal

eigenvalues, as one can see in (1.1.8).

2.2 Ideas of the proof for Theorem 1.8

The proof of Theorem 1.8 for the existence of the small amplitude quasi-periodic traveling wave

solutions of (1.1.13) is inspired by the approach used in [44, 13]. However, there are some major

novelties and di�culties in our analysis that di�er from the previous works:

• As we look for traveling wave solutions, we need to take care that at each step of the

procedure we end up with maps that send traveling waves into themselves and that the

invariance by space translations is preserved;

• Unlike [44, 13], which prove the existence of standing waves, the solutions that we construct

are not even in x. This implies the presence of nearly double eigenvalues (when γ � 0,

purely double) already at the linear level. Hence, the non-resonance conditions hold on a

set of parameter of large measure only when coupled with the restrictions on the Fourier

sites due to the conservation of the momentum (related, by Noether Theorem, to the

x-translation invariance aforementioned) and with a proper choice of the tangential sites;

• The Hamiltonian structure of the system (1.1.13) is needed in the regularization of the

linearized vector �eld in order to avoid the presence of terms which are non-Hamiltonian

and that cannot be eliminated otherwise. Without exploiting this property, some transfor-

mations may be not close to the identity and the reduction would not be possible.
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We list and discuss in the following the main points of the scheme. Throughout this presentation,

instead with the coordinates pη, ψq which we have used for stating Theorem 1.8, we work with

the Wahlén variable pη, ζq, where
ζ :� ψ � γ

2
B�1
x η .

This variables are the Darboux coordinates in which the symplectic form becomes the canonical

one, see Section 4.1.1, and they are the one that we use in the rest of the analysis.

Nash-Moser Theorem of hypothetical conjugation Rescaling the variables pη, ζq ÞÑ
pεη, εζq and introducing action-angle variables on the tangential sites (see Section 4.1.3), the

system (1.1.13) becomes the Hamiltonian system generated by

Hε � ~Ωpκq � I � 1
2pΩWw,wqL2 � εP , (2.2.1)

where ~Ωpκq P Rν is de�ned in (4.0.8), ΩW is the quadratic form of the linearized vector �eld

around the equilibrium pη, ζq � p0, 0q, w P H=

S�,Σ is the coordinate in the normal subspace and

P is the nonlinear perturbation (see Section 4.4).

The expected quasi-periodic solutions of the autonomous Hamiltonian system generated by

Hε will have shifted frequencies rΩjpκq -to be determined- close to the linear frequencies Ωjpκq
in (4.0.3). It is convenient to introduce the family of Hamiltonians

Hα � α � I � 1
2pΩWw,wqL2 � εP

parametrized by the "counter terms" α P Rν : this allows to use the frequencies ω P Rν as

parameters to move for proving the non-resonance conditions. In this spirit, a quasi-periodic

traveling solution is searched as a ν-dimensional embedded torus of the form

i : Tν Ñ Tν � Rν � H=

S�,Σ , ϕ ÞÑ pθpϕq, Ipϕq, wpϕqq ,

close to the trivial embedding pϕ, 0, 0q, which is a zero for the nonlinear operator

Fpi, α, ω, κ, εq :� ω � Bϕipϕq �XHαpipϕqq

�

���ω � Bϕθpϕq �α� εBIP pipϕqq
ω � BϕIpϕq �εBθP pipϕqq
ω � Bϕwpϕq �Π=

S�,ΣJpΩWwpϕq � ε∇wP pipϕqqq

��

satisfying the traveling condition

θpϕ� ~ςq � θpϕq � ~ϕ , Ipϕ� ~ϕq � Ipϕq , wpϕ� ~ςq � τςwpϕq , @ ς P R ,
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where ~ � pσanaqa�1,...,ν P Zνzt0u and τςwpϕ, xq :� wpϕ, x� ςq. The embedding are search for all

the parameters pω, κq P Rν�rκ1, κ2s in the Cantor set Cυ8 (de�ned explicitly in (4.4.15)-(4.4.18))

which requires the parameters pω, κq, in addition to the Diophantine condition

|ω � `| ¥ 8υ x`y�τ @ ` P Zνzt0u , x`y :� maxt1, |`|u ,

the �rst and second non-resonance Melnikov conditions, each one coupled with the corresponding

momentum condition on the Fourier sites. For instance,$&%|ω � `� µ8j pω, κq � µ8j1 pω, κq| ¥ 4υ x|j| 32 � |j1| 32 y x`y�τ ,
@ ` P Zν , j, j1 P Sc0, p`, j, j1q � p0, j, jq with ~ � `� j � j1 � 0 .

where µ8j pω, κq are the "�nal eigenvalues" in (4.4.13), which are de�ned for all pω, κq P Rν �
rκ1, κ2s by means of the abstract Whitney extension theorem (see Appendix B in [13] for details),

and Sc0 :� ZzpSY t0uq, where

S :� ta :� σana : a � 1, ..., νu � Zzt0u , σa P Σ , na P S�

and S�, Σ are de�ned in (1.1.26),(1.1.27), respectively. In particular, the set of the tangential

sites S is characterized by

, 1 P S ñ || � |1| (2.2.2)

This choice of the tangential sites, together with the momentum condition, is not just technical,

but prevents the rising of resonances already at the unperturbed level of the linear frequencies.

For instance, for ν � 6, the vector

~Ωpκq � �
Ω�5pκq,Ω�4pκq,Ω�3pκq,Ω3pκq,Ω4pκq,Ω5pκq

� P R6

is resonant or quasi-resonant for any value of κ. Indeed, when h � �8, it is fully resonant, since,

for ` � p�`5,�`4,�`3, `3, `4, `5q, the system

~Ωpκq � ` � γp`3 � `4 � `5q � 0 , 3`3 � 4`4 � 5`5 � 0 ,

has the integer solution `3 � `5 � 1, `4 � �2, whereas, for h   8, the system

~Ωpκq � ` � γp`3 tanhp3hq � `4 tanhp4hq � `5 tanhp5hqq � 0 , 3`3 � 4`4 � 5`5 � 0 ,

may have integer solutions for some values of h and, for any other �xed value of h, there exist

integer combinations such that ~Ωpκq � ` is arbitrarily close to zero.

The �nal traveling embedding i8pϕq � i8pϕ, ω, κ, εq and "�nal counter term" α8 of Theorem
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4.55 will be produced by the Nash-Moser iteration of Theorem 4.95, which relies on the analysis

of the linearized operator di,αF at any approximate solution performed in Sections 4.5-4.7 (see

also discussion below). The traveling torus i8, as well as the counter term α8 and the �nal

eigenvalues µ8j are Ck0 di�erentiable with respect to the parameters pω, κq, where the value of k0

is determined by the transversality of the unperturbed linear frequencies (see Proposition 4.53).

Concerning the proofs of Theorems 4.55, 4.95, as well as the construction of the approximate

inverse in Section 4.5 (modulo the reduction on the normal directions of the linearized operator),

the arguments that we use are modelled on the ones in [44, 13]. A very important di�erence,

which is one of the novelties of our result, is that we need to check at each step of the procedure

that we are dealing with quasi-periodic traveling embeddings and that the operators in the

construction of the approximate inverse are momentum preserving. This is essential not only

for ending up with a quasi-periodic traveling wave solution, but also for applying the degenerate

KAM theory, which needs the conservation of the momentum, as we discuss right below.

Transversality and degenerate KAM theory In order to prove the existence of quasi-

periodic solutions of the system with Hamiltonian Hε in (2.2.1) and not only of the system

generated by the modi�ed Hamiltonian Hα, with α � α8pω, κ, εq, we have to show that the

curve of the unperturbed linear tangential frequencies

rκ1, κ2s Q κ ÞÑ ~Ωpκq P Rν

intersects the image α8pCυ8q for "most" values of κ P rκ1, κ2s. Setting

~Ωεpκq :� α�1
8 p~Ωpκq, κq ,

where α�18 p � , κq is the inverse of α8p � , κq at a �xed κ P rκ1, κ2s, if the vector p~Ωεpκq, κq belongs
to Cυ8, then Theorem 4.55 implies the existence of a quasi-periodic solution of the system with

Hamiltonian Hε with Diophantine frequency ~Ωεpκq.
In Theorem 4.56 we state that the set of values of κ P rκ1, κ2s for which the vector p~Ωεpκq, κq

belongs to Cυ8 is of large measure. Using that the linear frequencies as maps κ ÞÑ Ωjpκq are
analytic in rκ1, κ2s, we are able to implement the degenerate KAM theory. Formulated by

Bambusi, Berti and Magistrelli [21] and used in [44, 13] in the case of simple eigenvalues, our

analysis di�ers from these previous works since we deal with periodic boundary conditions and

we add the conservation of the momentum. In particular, we show that the linear frequencies

are non-degenerate, in the sense that no curves of linear combinations of Ωjpκq with distinct

modules

rκ1, κ2s Q κ ÞÑ c1Ωj1pκq � ...� cNΩjN pκq , pc1, .., cN q P Rzt0u , |ja| � |jb| for a � b ,
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are contained in any hyperplane of RN . This is proved in Lemma 4.50 using a Vandermorde

determinant argument. In Proposition 4.53, this qualitative property is translated into quantita-

tive estimates for the non-degeneracy. For instance, for a second order Melnikov non-resonance

condition we prove that$&% max
0¤n¤m0

|Bnκ p~Ωpκq � `� Ωjpκq � Ωj1pκqq| ¥ ρ0 x`y
~ � `� j � j1 � 0 , ` P Zν , j, j1 P Sc0 , p`, j, j1q � p0, j, jq ,

(2.2.3)

where ρ0 is the "amount of non-degeneracy" and m0 is the "index of non-degeneracy". The main

di�erence with respect to [44] is that we need to impose the momentum condition ~ �`�j�j1 � 0

for proving the transversality. In particular, it turns out to be essential during the proof when

we have to show that the system

~Ωpκq � `� Ωjpκq � Ωj1pκq � 0 , @κ P rκ1, κ2s , ~ � `� j � j1 � 0 . (2.2.4)

has no nontrivial solutions. Without the momentum restriction ~ � ` � j � j1 � 0, this is false.

Indeed, by picking j � �1 and j1 � �2, assuming 1 � 2 (the case j � j1 is treated in

the Diophantine condition), the non-degeneracy of the frequencies Ωjpκq on the interval rκ1, κ2s
implies that, for ` � p`1, .., `νq P Zν ,

~Ωpκq � `� Ωjpκq � Ωj1pκq � 0 , @κ P rκ1, κ2s ñ `1 � 1 � 0 , `2 � 1 � 0 , `3 � ...`ν � 0 .

The vector ` � p�1, 1, 0, .., 0q P Zν would be an acceptable solution for system (2.2.4) if the

momentum condition is not taken into account. Instead, we have

~ � `� j � j1 � p`1 � 1q1 � p`2 � 1q2 � �2p1 � 2q � 0 ,

which leads to 1 � 2, contradicting the assumption 1 � 2.

The transversality conditions in Proposition 4.53 are stable under perturbations that are small

in Ck0-norm, where k0 � m0�2, still coupled with the momentum conditions. In particular, this

holds when the perturbation is given by the correction to the linear frequencies obtained at the

end on the Nash-Moser iteration on the Floquet exponents µ8j pκq in (4.4.13), see Lemma 4.58.

Then, provided proper estimates on the resonant sets in Lemmata 4.57, 4.59, it is possible to

prove the measure estimates of Theorem 4.56. The momentum condition is fundamental also in

the proof of Lemmata 4.57, 4.59. This is essentially due to the expansion of the �nal eigenvalues.

Indeed, recalling (4.4.13)

µ8j pω, κq � m83
2

pω, κqΩjpκq � m81 pω, κqj � m81
2

pω, κq |j| 12 � r8j pω, κq , (2.2.5)
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we note that the contribution at the �rst order is not trivial. In [44] they obtain the same

expansion with the exception of m81 � 0, which is due to the parity conditions that they impose

for obtaining standing waves. The nontrivial term at order one that is present in our analysis

could lead to troubles in the measure estimates if the momentum conditions are not imposed.

Reduction of the linearized operators. The construction of the solutions via the Nash-

Moser Theorem mostly relies on showing that the linearized operator di,αF obtained at each

step of the iterative scheme admits an almost approximate inverse satisfying tame estimates in

Sobolev spaces with loss of derivatives, see Theorem 4.65. By approximate inverse we mean an

operator which is an exact inverse at any traveling wave solution of Fpi, αq � 0. The adjective

almost refers to the fact that at the n-th step of the Nash-Moser we shall require only �nitely

many non-resonance conditions, therefore the remaining operator supported on high Fourier

frequencies of magnitude OpNnq and thus can be estimated as OpN�a
n q for some a ¡ 0 (in

suitable norms).

In Section 4.5 the almost approximate inverse is constructed under the ansatz that the lin-

earized operator restricted on the normal directions Lω, de�ned in (4.5.33), is almost invertible

on traveling wave functions. By Lemma 4.66, the operator Lω is a �nite rank perturbation of

the restriction to the normal subspace H=

S�,Σ of

L � ω � Bϕ �
�

Bx rV �GpηqB �Gpηq
g � κBxcBx �B rVx �BGpηqB rV Bx �BGpηq

�

� γ

2

�
�GpηqB�1

x 0

B�1
x GpηqB �BGpηqB�1

x � γ
2B�1
x GpηqB�1

x �B�1
x Gpηq

�
,

(2.2.6)

where the functions B, rV , c are given in (4.6.11), (4.6.13), which is obtained linearizing the

water waves equations (1.1.13) in the Wahlén coordinates at a quasi-periodic traveling wave

approximate solution pη, ζq and changing Bt with the directional derivative ω � Bϕ. The goal of

Sections 4.6, 4.7 is to reduce the operator Lω to a constant coe�cient, Fourier diagonal one

so that it can be inverted on traveling wave functions once �rst order Melnikov conditions are

satis�ed. The reduction consists of two main blocks:

1. Symmetrization and diagonalization of the operator L up to smoothing operators;

2. Restriction of the normal subspace and KAM reducibility.

All the transformations performed in Sections 4.6.1-4.6.6, 4.7 are time quasi-periodic change of

variables acting in phase spaces of functions in x that are momentum preserving. Therefore,

they preserve dynamical system structure of the conjugated linear operators, which in particular

will maps quasi-periodic traveling wave functions into themselves.
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All these changes of variables are bounded and satisfy tame estimates between Sobolev spaces.

As a consequence, the estimates that we shall obtain on the inverse of the �nal constant coe�cient

diagonal operator directly provide good tame estimates for the inverse of the operator Lω in

(4.5.33).

Another di�erence with respect to the reduction in [44] is that we need to preserve the

Hamiltonian nature of L at least until the symmetrization of the highest order (Section 4.6.3)

in order to avoid operators of the form iapϕqH|Dx| 12 , where apϕq P R and H denotes the Hilbert

transform, see (4.2.19). The latter operator is not present in [44] because it does not map even

functions into themselves and therefore it is incompatible with this symmetry. For overcoming

this issue, we require all the transformations in 4.6.1-4.6.3 to be symplectic, so that the conjugated

operators are Hamiltonian. From Section 4.6.4 on, this property will be not preserved anymore.

We also note that the original system L is reversible and that all the transformations that

we perform are reversibility preserving. The preservation of this property ensures that in the

�nal system the Floquet exponents are real valued. Under this respect, the linear stability of

the quasi-periodic traveling wave solutions in Theorem 1.8 is obtained as a consequence of the

reversible nature of the water waves equations.

In the following we summarize step by step each part of the reduction. The main tool in

Sections 4.6.3-4.6.6 is the pseudodi�erential calculus: in order to employ it, it is convenient to

ignore the projection on the normal subspace H=

S�,Σ and to perform a regularization procedure on

the whole space before the KAM reducibility of Section 4.7, see Remark 4.67. Then, in Section

4.6.7, we project back on the subspace H=

S�,Σ.

1. Quasi-periodic reparametrization of time. The very �rst transformation that we

perform in Section 4.6.1 is a quasi-periodic reparametrization of the time variable of the form

ϑ :� ϕ� ωppϕq ô ϕ � ϑ� ωp̆pϑq , (2.2.7)

where ppϕq is the real Tν-periodic traveling function, in the sense that ppϕ� ~ςq � ppϕq for any
ς P R. In this way the operator L is transformed into the Hamiltonian, momentum preserving

operator

L0 � ω � Bϑ � 1

ρ

�
Bx rV �GpηqB �Gpηq

g � κBxcBx �B rVx �BGpηqB rV Bx �BGpηq

�

� 1

ρ

γ

2

�
�GpηqB�1

x 0

B�1
x GpηqB �BGpηqB�1

x � γ
2B�1
x GpηqB�1

x �B�1
x Gpηq

�
,

(2.2.8)

where ρpϑq depends on ppϕq and all the functions rV ,B, c are meant to be reparametrized ac-

cording to (2.2.7). The function p will be chosen at the end of Section 4.6.3 to set the coe�cient

at the highest order to be constant also in the angle variable. In this way we avoid technical
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di�culties arising in the application of the Egorov Proposition 4.20 in Section 4.6.3.

2. Linearized good unknown of Alinhac. In Section 4.6.2 we introduce the linearized

good unknown of Alinhac, as in [4, 44, 13]. This is indeed the same change of variables intro-

duced by Lannes [133, 134] for proving energy estimates for the local existence theory. In these

new variables, relabeling ϑ ù ϕ, the linearized operator (2.2.8) becomes the more symmetric

operator

L1 � ω � Bϕ � 1

ρ

�
Bx rV �Gpηq

g � a� κBxcBx rV Bx
�
� 1

ρ

γ

2

�
GpηqB�1

x 0
γ
2B�1
x GpηqB�1

x B�1
x Gpηq

�
, (2.2.9)

where the Dirichlet-Neumann operator admits the expansion

Gpηq � Gp0q �RG ,

with Gp0q de�ned in (1.1.15) and RG an OPS�8 smoothing operator, see for instance [44, 13].

The operator in (2.2.9) is Hamiltonian and momentum preserving.

3. Symmetrization and reduction of the highest order. The goal of Section 4.6.3 is to

symmetrize and reduce to constant coe�cient the leading order of (2.2.9), so that it is conjugate

to the momentum preserving linear operator of the form

L4 � ω � Bϕ � 1

ρ

�
�γ

2Gp0qB�1
x �m 3

2
pϕqωpκ,Dq

m 3
2
pϕqωpκ,Dq �γ

2Gp0qB�1
x

�
� ... , (2.2.10)

where ωpκ,Dq :�
b
κD2Gp0q � g Gp0q � pγ2B�1

x Gp0qq2, m 3
2
pϕq is a function close to 1 depending

only on ϕ P Tν and the dots stand for lower order operators, smaller in size (see (4.6.82) for the

complete expression). In particular, in the complex unknowns ph, hq via the map in (4.1.24), the

�rst component of the operator in (2.2.10) reads

ph, hq ÞÑ ω � Bϕh� im 3
2
Ωpκ,Dqh� a

pdq
1 Bxh�R

pdq
5 h�R

poq
5 h (2.2.11)

(which corresponds to (4.6.90) neglecting the projector iΠ0), where m 3
2

:� m 3
2
pϕq{ρpϕq P R is

now purely constant, choosing properly the function ppϕq of the reparametrization (2.2.7), and

R
pdq
5 , R

poq
5 are ϕ-dependent families of pseudodi�erential operators of order 0. We shall the former

operator "diagonal" and the latter "o�-diagonal", we respect to the variables ph, hq.
In order to transform (2.2.8) into the linear operator (2.2.10), we �rst introduce a change of

variable induced by a di�eomorphism of Tx of the form y � x� βpϕ, xq. Conjugating L1 by the

symplectic change of variables

upϕ, xq ÞÑ pEuqpϕ, xq :�
a

1� βxpϕ, xqpBuqpϕ, xq , pBuqpϕ, xq :� upϕ, x� βpϕ, xqq , (2.2.12)
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we obtain the operator of the form

L2 � ω � Bϕ � 1

ρ

�
�γ

2Gp0qB�1
y �a2Gp0qa2

�κa2Bya3Bya2 � g � �
γ
2

�2 B�1
y Gp0qB�1

y �γ
2B�1
y Gp0q

�
� ... (2.2.13)

where a2, a3 are quasi-periodic traveling wave functions de�ned by

a2 � B�1p
a

1� βxq , a3 � B�1
�
cp1� βxq

�
and the dots stand for lower order terms, smaller in size. In particular, L2 is momentum preserv-

ing, because βpϕ, xq is a quasi-periodic traveling function, and Hamiltonian, since E is symplectic.

Then, conjugating (2.2.13) with the symplectic maps

Q �
�
q 0

0 q�1

�
, M �

�
MpDq 0

0 M�1pDq

�
, (2.2.14)

where qpϕ, xq is a quasi-periodic traveling function close to 1 and the symbol of the Fourier

multiplier MpDq is de�ned in (4.0.7) (we are still neglecting in this exposition the action on the

zeroth mode, see the correct de�nition of the map �M in (4.6.79)), we obtain the operator in

(2.2.10). Proper choices of the functions βpϕ, xq and qpϕ, xq allow to end up with the function

m 3
2
pϕq independent of x P T.

As already mentioned, we require the transformations in (2.2.12), (2.2.14) to be symplectic

in order to avoid the rising of an operator of the form ph, hq ÞÑ i bpϕqH|D| 12h in (2.2.11), which

cannot be deleted by any transformation.

Furthermore, comparing with the reduction in [44], the conjugation with the map in (2.2.12)

leads to purely pseudodi�erential remainders. Indeed, when we deal with the operator B1
xGp0qB�1

x ,

which is due to the vorticity γ and so is not present in [44], we require to expand the conjugated

operator E�1 � B�1
x � E in homogeneity up to a pseudodi�erential remainder of arbitrary lower

order �N provided by Proposition 4.20, which is a slight modi�cation of Proposition 2.28 in [43].

The choice of the order �N is �xed at the end of Section 4.6.4.

4. Symmetrization up to smoothing remainders. In Section 4.6.4 we reduce the o�-

diagonal term R
poq
5 to a pseudodi�erential operator with very negative order, i.e. we conjugate

the above operator to another one of the form (see Lemma 4.75)

ph, hq ÞÑ ω � Bϕh� i m 3
2
Ωpκ,Dqh� a

pdq
1 Bxh�R

pdq
6 h�R

poq
6 h , (2.2.15)

where R
pdq
6 P OPS0 and R

poq
6 P OPS�M for a constant M large enough �xed in Section 4.7, in

view of the KAM reducibility scheme. The operator in (2.2.15) is still momentum preserving,

whereas the Hamiltonianity is not preserved anymore.
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5. Reduction of the order 1. In Section 4.6.5 we reduce to constant coe�cients the

operator a
pdq
1 pϕ, xqBx. First, we conjugate the operator (2.2.15) by the time-1 �ow of the pseu-

dodi�erential PDE

Bτu � iBpϕ, xq|D| 12 ,

where bpϕ, xq is a small function to be determine. This kind of transformation � which are "semi-

Fourier integral operator", namely pseudodi�erential operators of type p1
2 ,

1
2q in Hörmander's

notation � was introduced in [4] and studied as �ows in [44]. Choosing appropriately the function

bpϕ, xq � b1pϕ, xq � b2pϕq and translating the x-variable with respect to a ϕ-dependent function

%pϕq, see (4.6.136), (4.6.142), (4.6.146), the �nal outcome is a momentum preserving linear

operator of the form (see (4.6.147))

ph, hq ÞÑ ω � Bϕh� i m 3
2
Ωpκ,Dqh� m1Bxh� i a

pdq
3 |D| 12h�R

pdq
8 h� T8ph, hq , (2.2.16)

where m1 P R is a small constant, a
pdq
3 pϕ, xq is a small traveling wave function, R

pdq
8 P OPS0 and

the linear operator T8 is small, smoothing and satis�es tame estimates in Sobolev spaces, see

(4.6.151). Moreover, the ϕ-dependent function b2pϕq is determined so that the x-average of the

function a
pdq
3 is independent of ϕ P Tν .

6. Reduction of the order 1/2. In Section 4.6.6 we reduce to constant coe�cient the

operator i a3pϕ, xq|D| 12 . We conjugate the operator (2.2.16) by the time-1 bounded �ow of the

PDE

Bτu � i b3pϕ, xqH ,

where b3pϕ, xq is a small function de�ned in (4.6.166) and H is the Hilbert transform. The �nal

outcome is the momentum preserving operator, see (4.6.169)

ph, hq ÞÑ ω � Bϕh� i m 3
2
Ωpκ,Dqh� m1Bxh� i m 1

2
|D| 12h�R

pdq
9 h� T9ph, hq , (2.2.17)

where m 1
2
P R is a small constant, R

pdq
9 P OPS0 and the linear operator T9 is small, smoothing

and satis�es tame estimates in Sobolev spaces, see (4.6.171).

7. KAM reducibility. In Section 4.6.7 it is showed the conjugation of Lω to a quasi-periodic
momentum preserving operator of the form

ph, hq ÞÑ ω � Bϕh� i m 3
2
Ωpκ,Dqh� m1Bxh� i m 1

2
|D| 12h�R

pdq
K h�R

poq
K h . (2.2.18)

where the linear operators

R
pdq
K , rRpdq

K , Bxs , Bs0ϕmR
pdq
K , Bs0ϕmrR

pdq
K , Bxs ,

Bs0�b
ϕm R

pdq
K , Bs0�b

ϕm rRpdq
K , Bxs , m � 1, ..., ν ,
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and similarly R
poq
K , satisfy tame estimates in Sobolev spaces for some b � bpτ, k0q P N large

enough, �xed in (4.7.6), see Lemma 4.84. Such conditions hold under the assumption that M

(the order of regularization in Section 4.6.4) is chosen large enough as in (4.7.5) (essentially

M � Opbq). This is the property that compensates, along the KAM iteration, the loss of

derivatives in ϕ and x produced by the small divisors in the second order non-resonance Melnikov

conditions.

We follow the same KAM reducibility scheme in [44], which reduces essentially to prove

that the solution of the homological equation produced at each step of the KAM iteration is

closed in the class of Dk0-modulo-tame operators (see De�nition 4.2.39), which is the content of

Lemma 4.88. In addition to the scheme in [44], we show that the generator of each iteration is

a momentum preserving operator so that the conjugated operator is momentum preserving, as

well.

2.3 Ideas of the proof of Theorem 1.10

Paradi�erential reduction up to smoothing remainders. The �rst step in order to prove

Theorems 1.9 and 1.10 is to write (1.1.30) (with γ � 0) in paradi�erential form, to symmetrize

it, and reduce to paradi�erential symbols which are constant in x, see Proposition 5.11. These

results are proved in Berti-Delort [37] (up to minor details).

We de�ne the Fourier multiplier Λ of order �1{4 as Λ :� ΛpDq :� �
Gp0qq 1

4

�
g � κD2

�� 1
4 ,

which is equivalent to the Fourier multiplier MpDq with symbol given by (4.0.7) in the case

γ � 0, and we consider the complex function

u :� 1?
2

Λω � i?
2

Λ�1η , η � 1

i
?

2
Λpu� uq , ω � 1?

2
Λ�1pu� uq (2.3.1)

where Λ�1 acts on functions modulo constants in itself. Then Proposition 5.10 shows that, in

the variable U :� �
u
u

�
de�ned in (2.3.1), the equations (1.1.30) assumes the form (5.2.6), which

in particular can be read as

BtU � i ΩpDqEU � iMpU ; tqU

where ΩpDq � OpBWpΩpξqq, Ωpξq P rΓ 3
2
0 is the dispersion relation symbol de�ned in (4.0.3)

(see also De�nition 5.3, where the classes rΓm0 are de�ned), and MpU ; tq is a real-to-real map

in ΣMm1
K,1,1rr,N s bM2pCq for some m1 ¥ 3{2 (see De�nition 5.8), using that paradi�erential

operators and smoothing remainders are maps, see (4.2.6) in [37]

Since the linear dispersion relation in (4.0.3) is superlinear, the complex system of Proposition

5.10 can be transformed into a paradi�erential diagonal system with a symbol constant in x, up

to smoothing terms, which is the content of Proposition 5.11. In particular, we end up with the
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system in the variable Z � �
z
z

�
of the form

BtZ � i OpBW
�p1� ζpU ; tqqΩpξqE �HpU ; t, ξq�Z � iRpU ; tqrZs (2.3.2)

where the real function ζpU ; tq and the diagonal matrix of symbols HpU ; t, ξq of order 1 are

independent of x P T, whereas RpU ; tq is a matrix of smoothing operators.

Quadratic Poincaré-Birkho� normal form and 3-waves interaction. In Section 5.3

we transform the paralinearized reduced system (2.3.2) into its quadratic Poincaré-Birkho�

normal form. Moreover, noting that the contribution at the quadratic order of the operator

z ÞÑ OpBWpζpUqΩpξqqZ is zero due to the conservation of momentum (see Lemma 5.12), we

have only to transform the quadratic term of the smoothing operator RpUq � �iR1pUq�iR¥2pUq,
where R1pUq is homogeneous of degree 1 in U . The goal is therefore to provide a bounded in-

vertible map that transforms (2.3.2) into the system in the new variable Y � � y
y

�
of the form

BtY � iΩpDqEY � Rres
1 pY qrY s � X¥3pU, Y q (2.3.3)

where Rres
1 pY q is Poincaré-Birkho� resonant, according to De�nition (5.13), and X¥3pU, Y q is a

cubic remainder that contributes to the energy estimates (5.0.10) of Theorem 1.9.

The non-resonant term are removed in the process by solving the homological equation

G1piΩpDqEUq �
�
G1pUq, iΩpDqE

�� R1pUq � Rres
1 pUq , (2.3.4)

where G1pUq is a smoothing generator of the transformation. The equation (2.3.4) is solved in

Lemma 5.18, which requires a lower bound on the non-resonant three waves interaction of the

linear frequencies, that is, on those Fourier sites n1, n2, n3 P Zzt0u such that

n1 � σn2 � σ1n3 � 0 , Ωpn1q � σΩpn2q � σ1Ωpn3q � 0 .

The restriction n1�σn2�σ1n3 � 0 on the Fourier sites is due to the invariance of the equations

(1.1.30) with respect to space translations, which we also call, as in Section 2.2, the "momentum

condition". In Lemma 5.15 we show that, on such non-resonant sites, an uniform lower bound

holds and that there are only �nitely many triplets of Fourier sites that are resonant:$&%σ1j1 � σ2j2 � σ3j3 � 0

σ1Ωj1 � σ2Ωj2 � σ3Ωj3 � 0
ùñ maxp|j1|, |j2|, |j3|q   C . (2.3.5)

This key fact that the resonant contribution to the dynamics is con�ned only on �nitely many

interactions is fundamental for proving the energy estimates that lead to Theorem 1.10. A more
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complicated and chaotic dynamics takes place when the system is restricted to these resonant

sites, which is responsible in �uid dynamics for the phenomenon of the Wilton ripples. For

instance, we refer to the work of Craig and Sulem [69], where they study some cases of resonant

triads that give rise to quasi-periodic solutions, either stable or unstable.

Normal form identi�cation and energy estimates. In Section 5.4.1 we perform a normal

form uniqueness argument that allows to identify the quadratic resonant vector �eld Rres
1 pY qrY s

in (2.3.3) as the cubic resonant Hamiltonian vector �eld obtained by the formal Birkho� normal

form construction in [69]. Our identi�cation argument is the easier version of the one used by

Berti, Feola and Pusateri in [39, 40] for the pure gravity case. A related strategy was �rst

implemented by Feola, Giuliani and Procesi in [89] for proving the existence of small amplitude,

quasi-periodic solution for small quasi-linear Hamiltonian perturbations of the Degasperis-Procesi

equation on the torus T.
The �rst step is to expand in homogeneity the invertible maps provided in Propositions 5.10,

5.11, 5.14 see Lemma 5.20. With such expansion, we compute how the Hamiltonian vector �eld

(1.1.30) (with γ � 0), up to cubic and higher degrees of homogeneity, are transformed by the

previous maps truncated are the quadratic degree with a Lie commutator expansion, obtaining

the vector �eld

X
H
p2q
C
�X

H
p3q
C
� rrSC2 � T2, XH

p2q
C
ss � � � � , (2.3.6)

where X
H
p2q
C
, X

H
p3q
C

are the Hamiltonian vector �eld generated by the the quadratic and the

cubic contribution of the Hamiltonian (1.1.18) (with γ � 0) in complex coordinates, see (5.4.6),

whereas SC2 and T2 are the quadratic vector �eld of the transformations of Proposition (5.10),

5.14, respectively, and rr � , � ss is the nonlinear commutator de�ned in (5.4.14). By construction,

if we project on the cubic resonant Fourier modes the vector �eld in (2.3.6), we conclude that

Rres
1 pY qrY s � ΠkerpXH

p3q
C
q (5.4.6)� X

H
p3q
BNF

,

where H
p3q
BFN is the cubic resonant Hamiltonian in (1.1.39), 1.1.40, as claimed in Theorem 1.9.

The quadratic life span of Theorem 1.10 is proved by the energy estimate argument in Section

5.4.2. By (2.3.5), we consider for any function z P 9HspTq the splitting between low and high

modes

z � zL � zH , zL :� ΠLz �
¸

0 |j|¤C

zje
i jx , zH :� ΠHz :�

¸
|j|¥C

zje
i jx .

The system (1.1.38) reads in z � zL � zH as$&% 9zL � iΩpDqzL � iBzHp3q
BNFpzL, zLq �ΠL

�
X�
¥3pU,Zq

�
9zH � iΩpDqzH �ΠH

�
X�
¥3pU,Zq

�
,
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having that H
p3q
BNFpz, zq � H

p3q
BNFpzL, zLq. If we ignore the cubic remainders, we have that the

dynamics of zH is linear and preserves the Sobolev norm Hs. For the low modes, using that,

by construction of the Birkho� normal form, the Hamiltonian H
p3q
BNF Poisson commutes with the

quadratic Hamiltonian H
p2q
C , that is

tHp3q
BNF, H

p2q
C u � 0 ,

we have that the evolution of zL is constant forH
p2q
C , which controls the L2-norm and any Sobolev

norm Hs on the �nitely many modes. Therefore, it is possible to show the energy estimates in

the Hs-norm of Lemma 5.21 with respect to the equivalent norm

}z}2s :� H
p2q
C pzLq � }zH}2HspTq , where H

p2q
C pzLq :�

¸
0 |j|¤C

Ωjzjzj .

Theorem (1.10), �nally, follows by a standard bootstrap argument.
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Chapter 3

Reducibility for a linear Klein-Gordon

equation with a fast driven potential

We consider a linear Klein-Gordon equation with quasi-periodic driving

utt � uxx � m2u� V pωt, xqu � 0 , x P r0, πs , t P R , (3.0.1)

with spatial Dirichlet boundary conditions upt, 0q � upt, πq � 0.

The potential V : Tν � r0, πs Ñ R, is quasi-periodic in time with a fast oscillating frequency

vector ω P Rνzt0u, namely |ω| " 1.

The goal is to provide, for any frequency ω belonging to a Cantor set of large measure, a

reducibility result for the system (3.0.1). That is, we construct a change of coordinates which

conjugates equation (3.0.1) into a diagonal, time independent one.

We recall the assumptions on the potential driving V pωt, xq:

(V1) The even extension in x of V pϕ, xq : Tν � r0, πs Ñ R on the torus T � r�π, πs, which we

still denote by V , is smooth in both variables and it extends analytically in ϕ in a proper

complex neighbourhood of Tν of width ρ ¡ 0. In particular, for any β P N0 :� N Y t0u,
there is a constant Cβ,ρ ¡ 0 such that

|BβxV pϕ, xq| ¤ Cβ,ρ @x P T , |Imϕ| ¤ ρ ;

(V2)
³
Tν V pϕ, xq dϕ � 0 for any x P r0, πs.

We introduce the new variables ψ :� B1{2u� iB�1{2Btu and ψ :� B1{2u� iB�1{2Btu, where
B :� ?�∆� m2 as in (1.1.2). In the new variables equation (3.0.1) is equivalent to the following

57
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system

iBtψptq � Hptqψptq , Hptq :�
�
B 0

0 �B

�
� 1

2
B�1{2V pωt, xqB�1{2

�
1 1

�1 �1

�
, (3.0.2)

where, abusing notation, we denoted ψptq � � ψptq
ψptq

�
the vector with the components ψ,ψ. The

phase space for (1.1.4) is Hr � Hr, where Hr, r ¥ 0, is de�ned in (1.1.5). Here we have used

the notation xmy :� p1 � |m|2q 1
2 , which will be kept throughout this chapter. We de�ne the

ν-dimensional annulus of size M ¡ 0 by

RM :� B2Mp0qzBMp0q � Rν ;

here we denoted by BM p0q the ball of center zero and radiusM in the Euclidean topology of Rν .

Theorem 3.1. Consider the system (1.1.4) and assume (V1) and (V2). Fix arbitrary r, m ¥ 0

and α P p0, 1q. Fix also an arbitrary γ� ¡ 0 su�ciently small.

Then there exist M� ¡ 1, C ¡ 0 and, for any M ¥ M�, a subset Ωα8 � Ωα8pM, γ�q in RM, ful�lling

measpRMzΩα8q
measpRMq ¤ Cγ�,

such that the following holds true. For any frequency vector ω P Ωα8, there exists an operator

T pωt;ωq, bounded in LpHr�Hrq, quasi-periodic in time and analytic in a shrunk neighbourhood

of Tν of width ρ{8, such that the change of coordinates ψ � T pωt;ωqw conjugates (1.1.4) to the

diagonal time-independent system

i 9wptq � H8,αwptq , H8,α :�
�
D8,α 0

0 �D8,α

�
, D8,α � diag

 
λ8j pωq

�� j P N
(
. (3.0.3)

The transformation T pωt;ωq is close to the identity, in the sense that there exists Cr ¡ 0 inde-

pendent of M such that

}T pωt;ωq � 1}LpHr�Hrq ¤
Cr

M
1�α

2

. (3.0.4)

The new eigenvalues pλ8j pωqqjPN are real, Lipschitz in ω, and admit the asymptotics, for j P N,

λ8j pωq :� λ8j pω, αq :� λj � ε8j pω, αq , ε8j pω, αq � O

�
1

Mjα



, (3.0.5)

where λj �
a
j2 � m2 are the eigenvalues of the operator B.

The rest of the chapter concerns the proof of Theorem 3.1. The relative functional setting

is presented in Section 3.1. In particular, we de�ne the family of pseudodi�erential operators
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analytically depending on the variable ϕ P Tν and the classes of linear operator with �nite s-

decay. In Section 3.2 we show how the system is transformed into a perturbative setting via the

Magnus normal form. In Section 3.3 we prove the balance second order non-resonance Melnikov

conditions that are needed for the KAM reducibility scheme of Section 3.4.

3.1 Functional setting

Given a set Ω � Rν and a Fréchet space F , the latter endowed with a system of seminorms

t} � }n : n P Nu, we de�ne for a function f : Ω Q ω ÞÑ fpωq P F the quantities

|f |8n,Ω :� sup
ωPΩ

}fpωq}n , |f |Lip
n,Ω :� sup

ω1,ω2PΩ
ω1�ω2

}fpω1q � fpω2q}n
|ω1 � ω2| . (3.1.1)

Given w P R�, we denote by LipwpΩ,Fq the space of functions from Ω into F such that

}f}Lippwq
n,Ω :� |f |8n,Ω � w|f |Lip

n,Ω   8 . (3.1.2)

3.1.1 Pseudodi�erential operators

The main tool for the construction of the Magnus transform in Section 3.2 is the calculus with

pseudodi�erential operators acting on the scale of the standard Sobolev spaces on the torus

T :� R{2πZ, which is de�ned for any r P R as

HrpTq :�
!
ψpxq �

¸
jPZ

ψje
ijx, x P T : }ψ}2HrpTq :�

¸
jPZ

xjy2r |ψj |2   8
)
. (3.1.3)

De�nition 3.2. We say that a function f : R � Z Ñ R, px, jq ÞÑ fpx, jq is a pseudodi�erential

symbol of order m P R if it is the restriction of a function fpx, ξq, which is C8 on R � R,
2π-periodic in x, so that, for any α, β P N0, there exists Cα,β ¥ 0 such that

|BαxBβξ fpx, ξq| ¤ Cα,β xξym�β , @x P R .

In this case, we write f P Sm.

We endow Sm with the family of seminorms

℘m% pfq :�
¸

α�β¤%
sup

px,ξqPR�R
xξy�m�β |Bαx Bβξ fpx, ξq| , % P N0 .

Analytic families of pseudodi�erential operators. We will consider in our discussion also

symbols depending real analytically on the variable θ P Tν . To de�ne them, we need to introduce
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the complex neighbourhood of the torus

Tνρ :� ta� ib P Cν : a P Tν , |b| ¤ ρu .

De�nition 3.3. Given m P R and ρ ¡ 0, a function f : Tν � T� ZÑ R, pϕ, x, jq ÞÑ fpϕ, x, jq,
is called a symbol of class Smρ if it is the restriction of a function fpϕ, x, ξq, which is C8 on

Tν � R� R , that extends analytically in ϕ on Tνρ and such that

|BαxBβξ fpϕ, x, ξq| ¤ Cα,β xξym�β , @x P R , @ϕ P Cν , |Imϕ| ¤ ρ , @α, β P N0 .

We endow the class Smρ with the family of seminorms

℘m,ρ% pfq :� sup
|Imϕ|¤ρ

¸
α�β¤%

sup
px,ξqPR�R

xξy�m�β |Bαx Bβξ fpϕ, x, ξq| , % P N0 .

We associate to a symbol f P Smρ the operator fpϕ, x,Dxq acting on 2π-periodic functions by

standard quantization

ψpxq �
¸
jPZ

ψje
ijx ÞÑ pfpϕ, x,Dxqψq pxq :�

¸
jPZ

fpϕ, x, jqψjeijx ; (3.1.4)

here Dx � D :� i�1Bx is the Hörmander derivative.

De�nition 3.4. We say that F P OPSmρ if it is a pseudodi�erential operator with symbol of

class Smρ , i.e. if there exists a symbol f P Smρ such that F � fpϕ, x,Dxq.
If F does not depend on ϕ, we simply write F P OPSm.

Remark 3.5. For any σ P R, the operator xDyσ � p1� Bxxq
σ
2 is in OPSσ.

As usual we give to OPSmρ a Fréchet structure by endowing it with the seminorms of the

symbols. Finally we de�ne the class of pseudodi�erential operators depending on a Lipschitz

way on an external parameter.

De�nition 3.6. We denote by LipwpΩ,OPSmρ q the space of pseudodi�erential operators whose

symbols belong to LipwpΩ, Smρ q and by
�
℘n,ρj p�qLippwq

Ω

	
jPN

the corresponding seminorms.

Remark 3.7. Let F P LipwpΩ,OPSmρ q and G P LipwpΩ,OPSnρ q. Then the symbolic calculus implies

that FG P LipwpΩ,OPSm�nρ q and rF,Gs P LipwpΩ,OPSm�n�1
ρ q, with the quantitative bounds

@j DN s.t. ℘m�n,ρj pFGqLippwq
Ω ¤ C1℘

m,ρ
N pF qLippwq

Ω ℘n,ρN pGqLippwq
Ω ,

@j DN s.t. ℘m�n�1,ρ
j prF,GsqLippwq

Ω ¤ C2℘
m,ρ
N pF qLippwq

Ω ℘n,ρN pGqLippwq
Ω .
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Parity preserving operators. The space H0 of (1.1.5) is naturally identi�ed with the sub-

space of H0pTq :� L2pTq of odd functions. Therefore it makes sense to work with pseudod-

i�erential operators preserving the parity. Before describing them, we recall the orthogonal

decomposition of the periodic L2-functions on T:

L2pTq � L2
evenpTq ` L2

oddpTq

where, for upxq � °
jPZ uje

ijx P L2pTq, we have for any j P Z,

u P L2
evenpTq ô u�j � uj and u P L2

oddpTq ô u�j � �uj . (3.1.5)

De�nition 3.8. We denote by PSmρ the class of symbols f P Smρ satisfying the property

fpϕ, x, jq � fpϕ,�x,�jq @ϕ P Tν , x P T , j P Z . (3.1.6)

We denote by POPSmρ the subset of OPSmρ of parity preserving operators, that is, those operators

A P OPSmρ such that ApL2
evenq � L2

even and ApL2
oddq � L2

odd.

Lemma 3.9. Let F P OPSmρ with symbol f P Smρ . Then F P POPSmρ if and only if f P PSmρ .

Proof. It is easy to check that F pL2
oddpTqq � L2

oddpTq if and only if the symbol fpx, jq of F ful�lls

Imrpfpx, jq � fp�x,�jqqeijxs � 0. Similarly F pL2
evenpTqq � L2

evenpTq if and only if Rerpfpx, jq �
fp�x,�jqqeijxs � 0.

Remark 3.10. For all σ P R, the operator xDyσ P POPSσ, whereas, by the assumption (V1), we

have V P POPS0
ρ .

Remark 3.11. Parity preserving operators are closed under composition and commutators.

Remark 3.12. For m � 0 and σ ¡ 0, we de�ne B�σψ :� °
j�0

1
|j|σψje

ijx for any ψ P L2pTq;
clearly B�σ P POPS�σ. Note that BB�1ψ � B�1Bψ � ψ � ψ0. However, the restriction B|H0

of B to the phase space (1.1.5) is invertible (since the phase space contains only functions with

zero average) and B�1 is its inverse.

3.1.2 Matrix representation and operator matrices

For the KAM reducibility, a second and wider class of operators without a pseudodi�erential

structure is needed on the scale of Hilbert spaces pHrqrPR, as de�ned as in (1.1.5). Moreover,

let H8 :� XrPRHr and H�8 :� YrPRHr. If A is a linear operator, we denote by A� the adjoint

of A with respect to the scalar product of H0, while we denote by A the conjugate operator:

Aψ :� Aψ @ψ P DpAq.
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Matrix representation of operators. To any linear operator A : H8 Ñ H�8 we associate

its matrix of coe�cients pAm1

m qm,m1PN on the basis ppem :� sinpmxqqmPN, de�ned for m,m1 P N as

Am
1

m :� xApem1 ,pemyH0 .

Remark 3.13. If A is a bounded operator, the following implications hold:

A � A� ðñ Am
1

m � Amm1 @m,m1 P N ;

A � A� ðñ Am
1

m � Amm1 @m,m1 P N .

A useful norm we can put on the space of such operators is in the following:

De�nition 3.14. Given a linear operator A : H8 Ñ H�8 and s P R, we say that A has �nite

s-decay norm provided

|A|s :�
� ¸
hPN0

xhy2s sup
|m�m1|�h

|Am1

m |2
	1{2

  8 . (3.1.7)

One has the following:

Lemma 3.15 (Algebra of the s-decay). For any s ¡ 1
2 there is a constant Cs ¡ 0 such that

|AB|s ¤ Cs |A|s |B|s . (3.1.8)

The proof of the Lemma is an easy variant of the one in [33] we sketch it in Appendix A.3.

Remark 3.16. If A : H8 Ñ H�8 has �nite s-decay norm with s ¡ 1
2 , then for any r P r0, ss, A

extends to a bounded operator Hr Ñ Hr. Moreover, by tame estimates, one has the quantitative

bound }A}LpHrq ¤ Cr,s|A|s.
Next, we consider operators depending analytically on angles ϕ P Tν .

De�nition 3.17. Let A be a ϕ-depending operator, A : Tν Ñ LpH8,H�8q. Given s ¥ 0 and

ρ ¡ 0, we say that A PMρ,s if one has

|A|ρ,s :�
¸
`PZν

eρ|`|| pAp`q|s   8 , where pAp`q :� 1

p2πqν
»
Tν
Apϕq e�i`�ϕ dϕ . (3.1.9)

Remark 3.18. If A is a ϕ-depending bounded operator, the following implications hold:

A � A� ðñ r pAp`qs� � pAp�`q @ ` P Zν ðñ pAm1

m p`q � pAmm1p�`q @ ` P Zν , @m,m1 P N

A � A� ðñ r pAp`qs� � pAp`q @ ` P Zν ðñ pAm1

m p`q � pAmm1p`q @ ` P Zν , @m,m1 P N
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If Ω Q ω ÞÑ Apωq PMρ,s is a Lipschitz map, we write A P LipwpΩ,Mρ,sq, provided

|A|Lippwq
ρ,s,Ω :� sup

ωPΩ
|Apωq|ρ,s � w sup

ω1�ω2PΩ

|Apω1q �Apω2q|ρ,s
|ω1 � ω2|   8 . (3.1.10)

Remark 3.19. For any s ¡ 1
2 and ρ ¡ 0, the spaces Mρ,s and LipwpΩ,Mρ,sq are closed with

respect to composition, with

|AB|ρ,s ¤ Cs |A|ρ,s |B|ρ,s , |AB|Lippwq
ρ,s,Ω ¤ Cs |A|Lippwq

ρ,s,Ω |B|Lippwq
ρ,s,Ω .

This follows from Lemma 3.15 and the algebra properties for analytic functions.

Operator matrices. We are going to meet matrices of operators of the form

A �
�
Ad Ao

�Ao �Ad

�
, (3.1.11)

where Ad and Ao are linear operators belonging to the class Mρ,s. Actually, the operator Ad

on the diagonal will have di�erent decay properties than the element on the anti-diagonal Ao.

Therefore, we introduce classes of operator matrices in which we keep track of these di�erences.

De�nition 3.20. Given an operator matrix A of the form (3.1.11), α, β P R, ρ ¡ 0,s ¥ 0, we

say that A belongs toMρ,spα, βq if

rAds� � Ad , rAos� � Ao (3.1.12)

and one also has

xDyα Ad , Ad xDyα PMρ,s , (3.1.13)

xDyβ Ao , Ao xDyβ PMρ,s , (3.1.14)

xDyσ Aδ xDy�σ PMρ,s , @σ P t�α,�β, 0u , @δ P td, ou . (3.1.15)

We endowMρ,spα, βq with the norm

|A|α,βρ,s :�| xDyαAd|ρ,s � |Ad xDyα |ρ,s � | xDyβ Ao|ρ,s � |Ao xDyβ |ρ,s
�

¸
σPt�α,�β,0u

δPtd,ou

| xDyσ Aδ xDy�σ |ρ,s , (3.1.16)

with the convention that, in case of repetition (when α � β, α � 0 or β � 0), the same terms

are not summed twice. When A is independent of ϕ P Tν , we use the norm |A|α,βs , de�ned as

(3.1.16), but replacing | � |ρ,s with the s-decay norm | � |s de�ned in (3.1.7).
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Let us motivate the properties describing the classMρ,spα, βq:
• Condition (3.1.12) is equivalent to ask that A is the Hamiltonian vector �eld of a real

valued quadratic Hamiltonian, see e.g. [145] for a discussion;

• Conditions (3.1.13) and (3.1.14) control the decay properties for the coe�cient of the

coe�cients of the matrices associated to Ad and Ao: indeed the matrix coe�cients of

xDyαA xDyβ are given by

� {xDyαA xDyβ�m1

m
pkq � xmyα pAm1

m pkq xm1yβ ,

therefore decay (or growth) properties for the matrix coe�cients of the operator A are

implied by the boundedness of the norms | � |ρ,s;

• Condition (3.1.15) is just for simplifying some computations below.

Remark 3.21. Let 0   ρ1 ¤ ρ, 0 ¤ s1 ¤ s α ¥ α1, β ¥ β1. ThenMρ,spα, βq �Mρ1,s1pα1, β1q with
the quantitative bound |A|α1,β1ρ1,s1 ¤ |A|α,βρ,s .

Finally, if Adpωq and Aopωq depend in a Lipschitz way on a parameter ω, we introduce the

Lipschitz norm

|A|Lippwq
ρ,s,α,β,Ω :� sup

ωPΩ
|Apωq|α,βρ,s � w sup

ω1�ω2PΩ

|Apω1q �Apω2q|α,βρ,s
|ω1 � ω2| . (3.1.17)

If such a norm is �nite, we write A P LipwpΩ,Mρ,spα, βqq.

Embedding of parity preserving pseudodi�erential operators. The introduction of the

classes Mρ,spα, βq is due to the fact that they are closed with respect the KAM reducibility

scheme, for a proper choice of α and β. In the next lemma we show how parity preserving

pseudodi�erential operators embed in such classes.

Lemma 3.22 (Embedding). Given α, β, ρ ¡ 0, consider F P POPS�αρ and G P POPS�βρ .

Assume that

F � � F , G� � G ,

(where the adjoint is with respect to the scalar product of H0). De�ne the operator matrix

A :�
�
F G

�G �F

�
. (3.1.18)

Then, for any s ¥ 0 and 0   ρ1   ρ, one has A PMρ1,spα, βq. Moreover, there exist C, c ¡ 0

such that

|A|α,βρ1,s ¤
C

pρ� ρ1qν
�
℘�α,ρs�c pF q � ℘�β,ρs�c pGq

	
. (3.1.19)
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Finally, if F P LipwpΩ,POPS�αρ q, G P LipwpΩ,POPS�βρ q, one has A P LipwpΩ,Mρ1,spα, βqq and
(3.1.19) holds with the corresponding weighted Lipschitz norms.

The proof is available in Appendix A.

Commutators and �ows. These classes of matrices enjoy also closure properties under com-

mutators and �ow generation. We de�ne the adjoint operator

adXpVq :� irX,Vs ; (3.1.20)

note the multiplication by the imaginary unit in the de�nition of the adjoint map.

Lemma 3.23 (Commutator). Let α, ρ ¡ 0 and s ¡ 1
2 . Assume V P Mρ,spα, 0q and X P

Mρ,spα, αq. Then adXpVq belongs toMρ,spα, αq with the quantitative bound��� adXpVq
���α,α
ρ,s

¤ 2Cs |X|α,αρ,s |V|α,0ρ,s ; (3.1.21)

here Cs is the algebra constant of (3.1.7). Moreover, if V P LipwpΩ,Mρ,spα, 0qq and X P
LipwpΩ,Mρ,spα, αqq, then adXpVq P LipwpΩ,Mρ,spα, αqq, with

|adXpVq|Lippwq
ρ,s,α,α,Ω ¤ 2Cs |X|Lippwq

ρ,s,α,α,Ω |V|Lippwq
ρ,s,α,0,Ω . (3.1.22)

Also the proof of this lemma is postponed to Appendix A.

Lemma 3.24 (Flow). Let α, ρ ¡ 0, s ¡ 1
2 . Assume V PMρ,spα, 0q, X PMρ,spα, αq. Then the

followings hold true:

(i) For any r P r0, ss and any ϕ P Tν , the operator eiXpϕq P LpHrq, with the standard operator

norm uniformly bounded in ϕ;

(ii) The operator eiX V e�iX belongs toMρ,spα, 0q, while eiX V e�iX�V belongs toMρ,spα, αq
with the quantitative bounds:��eiX V e�iX

��α,0
ρ,s

¤ e2Cs|X|α,αρ,s |V|α,0ρ,s ;��eiX V e�iX �V
��α,α
ρ,s

¤ 2Cse
2Cs|X|α,αρ,s |X|α,αρ,s |V|α,0ρ,s .

(3.1.23)

Analogous assertions hold for V P LipwpΩ,Mρ,spα, 0qq and X P LipwpΩ,Mρ,spα, αqq.

The proof of this lemma is a standard application of (3.1.21) and the remark that the operator

norm is controlled by the |�|α,αρ,s -norm (see also Remark 3.16).
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3.2 The Magnus normal form

To begin with, we recall the Pauli matrices notation. Let us introduce

σ1 �
�

0 1

1 0

�
, σ2 �

�
0 �i

i 0

�
, σ3 �

�
1 0

0 �1

�
, (3.2.1)

and, moreover, de�ne

σ4 :�
�

1 1

�1 �1

�
, 1 :�

�
1 0

0 1

�
, 0 :�

�
0 0

0 0

�
.

Using Pauli matrix notation, equation (1.1.4) reads as

i 9ψptq �Hptqψptq :� pH0 �Wpωtqqψptq ,
H0 :� Bσ3, Wpωtq :� 1

2
B�1{2V pωtqB�1{2σ4 .

(3.2.2)

Note that, by assumption (V1), one has V P POPS0
ρ (see Remark 3.10); therefore the properties

of the pseudodi�erential calculus and of the associated symbols (see Remarks 3.7 and 3.11) imply

that

B P POPS1 and B�1{2V B�1{2 P POPS�1
ρ (3.2.3)

(in case m � 0, we use Remark 3.12 to de�ne B�1{2). The di�culty in treating equation (3.2.2)

is that it is not perturbative in the size of the potential, so standard KAM techniques do not

apply directly.

To deal with this problem, we perform a change of coordinates, adapted to fast oscillating

systems, which puts (3.2.2) in a perturbative setting. We refer to this procedure as Magnus nor-

mal form. The Magnus normal form is achieved in the following way: the change of coordinates

ψptq � e�iXpω;ωtqwptq conjugates (3.2.2) to iBtwptq � rHptqwptq, where the Hamiltonian rHptq is
given by (see [20, Lemma 3.2])

rHptq � e�Xpω;ωtqHptqeXpω;ωtq �
» 1

0
e�sXpω;ωtq 9Xpω;ωtqesXpω;ωtq ds (3.2.4)

� H0 � irX,H0s �W � 9X� irX, . . .s . (3.2.5)

In (3.2.5) we wrote, informally, rX, . . .s to remark that all the non written terms are commutators

with X. Then one chooses X to solve W � 9X � 0; if the frequency ω is large and nonresonant,

then X has size |ω|�1, and the new equation (3.2.5) is now perturbative in size. The price to pay

is the appearance of irX,H0s, which is small in size but possibly unbounded as operator. We
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control this term by employing pseudodi�erential calculus and the properties of the commutators.

With this informal introduction, the main result of the section is the following:

Theorem 3.25 (Magnus normal form). For any 0   γ0   1, there exist a set Ω0 � RM � Rν

and a constant c0 ¡ 0 (independent of M), with

measpRMzΩ0q
measpRMq ¤ c0γ0, (3.2.6)

such that the following holds true. For any ω P Ω0 and any weight w ¡ 0, there exists a time

dependent change of coordinates ψptq � e�iXpω;ωtqwptq, where

Xpω;ωtq � Xpω;ωtqσ4 , X P LipwpΩ0,POPS�1
ρ{2q ,

that conjugates equation (3.2.2) to

i 9wptq � rHptqwptq, rHptq :� H0 �Vpω;ωtq , (3.2.7)

where

Vpω;ϕq �
�
V dpω;ϕq V opω;ϕq
�V opω;ϕq �V dpω;ϕq

�
, with rV ds� � V d , rV os� � V o (3.2.8)

and

V d P LipwpΩ0,POPS�1
ρ{2q , V o P LipwpΩ0,POPS0

ρ{2q . (3.2.9)

Furthermore, for any % P N0, there exists C% ¡ 0 such that

℘�1,ρ{2
% pV dqLippwq

Ω0
� ℘0,ρ{2

% pV oqLippwq
Ω0

¤ C%
M
. (3.2.10)

Proof. The proof is splitted into two parts, one for the formal algebraic construction, the other

for checking that the operators that we have found possess the right pseudodi�erential properties

we are looking for.

Step I). Expanding (3.2.4) in commutators we have

rHptq � H0 � irX,H0s � 1
2 rX, rX,H0ss �W � 9X�R , (3.2.11)

where the remainder R of the expansion is given in integral form by

R :�
» 1

0

p1� sq2
2

e�sXad3
XpH0qesX ds

� i

» 1

0
e�sXrX,WsesX ds� i

» 1

0
p1� sqe�sXrX, 9XsesX ds.

(3.2.12)
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From the properties of the Pauli matrices, we note that σ2
4 � 0. This means that the terms in

(3.2.12) involving W and 9X are null, and the remainder is given only by

R �
» 1

0

p1� sq2
2

e�sXad3
XpH0qesX ds. (3.2.13)

We ask X to solve the homological equation

0 � W � 9X �
�

1

2
B�1{2V pωtqB�1{2 � 9Xpω;ωtq



σ4. (3.2.14)

Expanding in Fourier coe�cients with respect to the angles, its solution is actually given by

pXpω; `q � 1

2iω � `B
�1{2 pV p`qB�1{2, for ` P Zνzt0u,pXpω; 0q � 0

(3.2.15)

where the second of (3.2.15) is a consequence of (V2). It remains to compute the terms in (3.2.4)

and (3.2.13) involving H0. Using again the structure of the Pauli matrices, we get:

adXpH0q :� irXσ4, Bσ3s � iXBp1� σ1q � iBXp1� σ1q � irX,Bs1� irX,Bsaσ1 , (3.2.16)

where we have denoted by rX,Bsa :� XB �BX the anticommutator. Similarly one has

ad2
XpH0q :� �rXσ4, rXσ4, Bσ3ss

(3.2.16)� �prXσ4, rX,Bs1s � rXσ4, rX,Bsaσ1sq
� �prX, rX,Bss � rX, rX,Bsasaqσ4

� 4XBXσ4 ;

(3.2.17)

thus

ad3
XpH0q (3.2.17)� 4irXσ4, XBXσ4s � 0 . (3.2.18)

This shows that R � 0 and, imposing (3.2.15) in (3.2.4), we obtain

rHptq � H0 �Vpωt;ωq , (3.2.19)

with

V dpθ;ωq :� irXpθ;ωq, Bs � 2Xpθ;ωqBXpθ;ωq ,
V opθ;ωq :� �irXpθ;ωq, Bsa � 2Xpθ;ωqBXpθ;ωq .

(3.2.20)
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Step II). We show now that X,V d and V o, de�ned in (3.2.15) and (3.2.20) respectively, are

pseudodi�erential operators in the proper classes, provided ω is su�ciently nonresonant. First

consider X. For γ0 ¡ 0 and τ0 ¡ ν � 1, de�ne the set of Diophantine frequency vectors

Ω0 :� Ω0pγ0, τ0q :�
!
ω P RM : |ω � `| ¥ γ0

x`yτ0 M @ ` P Zνzt0u
)
. (3.2.21)

We will prove in Proposition 3.28 below that

measpRMzΩ0q
measpRMq ¤ c0γ0 (3.2.22)

for some constant c0 ¡ 0 independent of M and γ0. This �xes the set Ω0 and proves (3.2.6).

We show now that X P LipwpΩ0,POPS�1
ρ{2q. First note that, by Lemma A.1(i) (in Appendix A)

and Remark 3.11, one has B�1{2 pV p`qB�1{2 P POPS�1 (both B and V are independent from ω)

with

℘�1
% pB�1{2 pV p`qB�1{2q ¤ 4e�ρ|`| ℘�1,ρ

% pB�1{2V B�1{2q ¤ 4e�ρ|`|C%.

Provided ω P Ω0, it follows that

℘�1
% p pXp�; `qq8Ω0

¤ 1

2

�
sup
ωPΩ0

1

|ω � `|
�
℘�1
% pB�1{2 pV p`qB�1{2q ¤ 4 x`yτ0

γ0 M
e�ρ|`|C%.

To compute the Lipschitz norm, it is convenient to use the notation

∆ωfpωq � fpω �∆ωq � fpωq , (3.2.23)

with ω, ω �∆ω P Ω0, ∆ω � 0. In this way one gets

|∆ω
pXpω; `q| ¤ |∆ω|

2 |ω � `| |pω �∆ωq � `| |B
�1{2 pV p`qB�1{2| ñ ℘�1

% p pXp�; `qqLip
Ω0

¤ 4 x`y2τ0
pγ0Mq2 e

�ρ|`|C% .

As a consequence,Xpω;ϕq � °
`
pXpω; `qei`�ϕ is a pseudodi�erential operator in the class LipwpΩ0,POPS�1

ρ{2q
(see Lemma A.1(ii) in Appendix A for details) ful�lling

℘�1,ρ{2
% pXqLippwq

Ω0
¤

� 1

γ0M
� w

γ2
0M

2

	 C%
ρ2τ0�ν ¤

maxp1, wq
M

rC%
ρ2τ0�ν . (3.2.24)

It follows by Remark 3.11 that V d P LipwpΩ0,POPS�1
ρ{2q and V o P LipwpΩ0,POPS0

ρ{2q with the

claimed estimates (3.2.10).

Finally, V is a real selfadjoint operator, simply because it is a real bounded potential, and

therefore V � � V � V . It follows by Remark 3.18 and the explicit expression (3.2.15) that

X� � X � X. Using these properties one veri�es by a direct computation that rV ds� � V d and
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rV os� � V o. Estimate (3.2.24) and the symbolic calculus of Remark 3.11 give (3.2.10).

Remark 3.26. Everything works with the more general assumptions V P POPS0
ρ .

Remark 3.27. Pseudodi�erential calculus is used to guarantee that V d has order -1 while V o has

order 0 (see (3.2.9)). Without this information it would be problematic to apply the standard

KAM iteration of Kuksin [129], which requires the eigenvalues to have an asymptotic of the form

j�Opjδq with δ   0. In principle one might circumvent this problem by using the ideas of [14, 91]

to regularize the order of the perturbation. However, in our context this smoothing procedure

is tricky, since it produces terms of size |ω|, which are very large and therefore unacceptable for

our purposes.

Proposition 3.28. For γ0 ¡ 0 and τ0 ¡ ν � 1, the set Ω0 de�ned in (3.2.21) ful�lls (3.2.22).

Proof. For any k P Zνzt0u, de�ne the sets G` :� tω P RM : |ω � `|   γ0

x`yτ0 Mu. By Lemma 3.30��G`�� À γ0

|`|τ0�1M
ν . Therefore the set G :� �

`�0 G` has measure bounded by |G| ¤ Cγ0M
ν , which

proves the claim.

3.3 Balanced unperturbed Melnikov conditions

As we shall see, in order to perform a converging KAM scheme, we must be able to impose

second order Melnikov conditions, namely bounds from below of quantities like ω � k � λi � λj1 ,

where the λj 's are the eigenvalues of the operator B de�ned in (1.1.2). Explicitly,

λj :�
a
j2 � m2 � j � cjpmq

j
, cjpmq :� jp

a
j2 � m2 � jq. (3.3.1)

One can check that 0 ¤ cjpmq ¤ m2 for any j P N. We introduce the notation of the indexes sets:

I� :� Zν � N� N , I� :� tp`, j, j1q P I� : p`, j, j1q � p0, j, jqu . (3.3.2)

Furthermore, we de�ne the relative measure of a measurable set Ω as

mrpΩq :� |Ω|
|RM| �

|Ω|
Mν p2ν � 1qcν (3.3.3)

where |C| is the Lebesgue measure of the set C and cν is the volume of the unitary ball in Rν .
The main result of this section is the following theorem.

Theorem 3.29 (Balanced Melnikov conditions). Fix 0 ¤ α ¤ 1 and assume that M ¥ M0 :�
mintm2, xmy1{αu if α P r0, 1s. Then, for 0   rγ ¤ mintγ3{2

0 , 1{8u and rτ ¥ 2ν � 3, the set

Uα :�
!
ω P Ω0 : |ω � `� λj � λj1 | ¥ rγ

x`yrτ
xj � j1yα

Mα
@ p`, j, j1q P I�

)
(3.3.4)
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is of large relative measure, that is

mrpΩ0zUαq ¤ C rγ1{3, (3.3.5)

where C ¡ 0 is independent of M and rγ.
We will use several times the following standard estimate.

Lemma 3.30. Fix ` P Zνzt0u and let RM Q ω ÞÑ ςpωq P R be a Lipschitz function ful�lling

|ς|Lip
RM

¤ c0   |`|. De�ne fpωq � ω � ` � ςpωq. Then, for any δ ¥ 0, the measure of the set

A :� tω P RM : |fpωq| ¤ δu satis�es the upper bound

|A| ¤ 2δ

|k| � c0
p4Mqν�1 . (3.3.6)

Proof. Take ω1 � ω � ε`, with ε su�ciently small so that ω1 P RM.

Then
|fpω1q � fpωq|

|ω1 � ω| ¥ |`| � |ς|Lip
RM

¥ |`| � c0 and the estimate follows by Fubini theorem.

In the rest of the section we write a À b, meaning that a ¤ Cb for some numerical constant

C ¡ 0 independent of the relevant parameters.

The result of Theorem 3.29 is carried out in two steps. The �rst one is the following lemma.

Lemma 3.31. Fix 0 ¤ α ¤ 1. There exist rγ1 ¡ 0 and τ1 ¡ ν � α such that the set

T1 :�
!
ω P Ω0 : |ω � `� j| ¥ rγ1

x`yτ1
xjyα
Mα

@ p`, jq P Zν�1zt0u
)

(3.3.7)

has relative measure mrpΩ0zT1q ¤ C1 rγ1, where C1 ¡ 0 is independent of M and rγ1.

Proof. If ` � 0 and j � 0, the estimate in (3.3.7) holds. The same is true if ` � 0 and j � 0.

Therefore, let both ` and j be di�erent from zero. For |j| ¡ 4M |`|, the inequality in (3.3.7) holds

true taking rγ1 ¤ 1
2 . Indeed:

|ω � `� j| ¥ |j| � |ω| |`| ¥ |j| � 2M |`| ¥ |j|
2
¥ 1

2
|j|α ¥ rγ1

x`yτ1 Mα |j|
α .

Then, consider the case 1 ¤ |j| ¤ 4M |`| (so, only a �nite number of ` P Zzt0u). For �xed ` and
j, de�ne the set

G`j :�
!
ω P RM : |ω � `� j| ¤ rγ1

x`yτ1
|j|α
Mα

)
. (3.3.8)

By Lemma 3.30, the measure of each set can be estimated by

|G`j | À Mν�1 rγ1

x`yτ1
|j|α
Mα

1

|`| À rγ1M
ν�1�α |j|α

x`yτ1�1 . (3.3.9)
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Let G1 :� Ω0 X
�tG`j : p`, jq P Zν�1zt0u, |j| ¤ 4M |`|u. Then

|G1| ¤
¸

`PZνzt0u

¸
jPZzt0u
|j|¤4M|`|

���G`j ��� (3.3.9)À rγ1M
ν�1�α ¸

`�0

¸
|j|¤4M|`|

|j|α
x`yτ1�1

À rγ1M
ν�1�α ¸

`�0

1

x`yτ1�1 p4M |`|qα�1 À rγ1M
ν
¸
`�0

1

x`yτ1�α À rγ1M
ν

(3.3.10)

provided τ1 ¡ ν � α. It follows that the relative measure of G1 is given by

mrpG1q ¤ C1rγ1 , (3.3.11)

where C1 ¡ 0 is independent of M and rγ1. The thesis follows, since T1 � Ω0zG1.

Remark 3.32. In case m � 0, Lemma 3.31 implies Theorem 3.29.

From now on assume that m ¡ 0. The second step is the next lemma.

Lemma 3.33. There exist 0   rγ2 ¤ mintγ0, rγ1{2u and τ2 ¥ τ1 � ν � 1 such that the set

T2 :�
!
ω P T1 : |ω � `� λj � λj1 | ¥ rγ2

x`yτ2
xj � j1yα

Mα
@ p`, j, j1q P I�

)
(3.3.12)

ful�lls mrpT1zT2q ¤ C2
rγ2rγ1
, where C2 ¡ 0 is independent of M, rγ1, rγ2.

Proof. Let p`, j, j1q P I�. We can rule out some cases for which the inequality in (3.3.12) is

already satis�ed when ω P T1 � Ω0:

• For � � � and ` � 0, we have

λj � λj1 � j � j1 � cjpmq
j

� cj1pmq
j1

¥ j � j1 ¥ rγ2

Mα
xj � j1yα ;

• For � � � and ` � 0, j � j1, we have |ω � `| ¥ γ0

x`yτ0 M;

• For � � � and ` � 0, j � j1, α P p0, 1s, it holds that

��λj � λj1
�� � ����» j

j1

x?
x2 � m2

dx

���� ¥ 1

xmy
��j1 � j

�� ¥ rγ2

Mα
xj � j1yα .

When α � 0, the estimate is trivially veri�ed.

Therefore, for the rest of this argument, let ` � 0 and j � j1. Assume �rst that |j � j1| ¥ 8M |`|.
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In this case, one has:

��ω � `� λj � λj1
�� ¥ ��j � j1

��� ��cjpmq
j

� cj1pmq
j1

��� |ω � `| ¥ ��j � j1
��� 4M |`| ¥ 1

2

��j � j1
�� .

Let now |j � j1|   8M |`|. In the region j   j1 assume

j xj � j1yα ¥ Rp`q :� 4m2Mα x`yτ1rγ1
, (3.3.13)

where rγ1 and τ1 are the ones of Lemma 3.31. So, for ω P T1, we get

��ω � `� λj � λj1
�� ¥ ��ω � `� j � j1

��� ��cjpmq
j

� cj1pmq
j1

��
¥ rγ1

x`yτ1
xj � j1yα

Mα
� 2m2

j

p3.3.13q
¥ rγ1

2 x`yτ1
xj � j1yα

Mα
.

(3.3.14)

Thus, we consider just those j and j1 with j xj � j1yα   Rp`q. The symmetric argument shows

that we can take those j1   j for which j1 xj � j1yα   Rp`q.
Like in the proof of Lemma 3.31, consider the set

G`,�j,j1 :�
!
ω P RM : |ω � `� λj � λj1 |   rγ2

x`yτ2
xj � j1yα

Mα

)
(3.3.15)

de�ned for those ` � 0 and j � j1 in the regions

P� :� t��j � j1
��   8M |`|uX

�
tj xj � j1yα   Rp`q, j   j1uYtj1 xj � j1yα   Rp`q, j1   ju

	
. (3.3.16)

Using Lemma 3.30, the estimate for its Lebesgue measure is

|G`,�j,j1 | À rγ2M
ν�1�α xj � j1yα

|`|τ2�1 . (3.3.17)
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De�ne G�2 :� T1 X
�tG`,�j,j1 : p`, j, j1q P P�u. By symmetry of the summand, we estimate

|G�2 | ¤
¸

p`,j,j1qPP�

|G`,�j,j1 |
(3.3.17)
À rγ2M

ν�1�α ¸
p`,j,j1qPP�

xj � j1yα
|`|τ2�1

À rγ2M
ν�1�α ¸

`�0

¸
j j1

jxj�j1yα Rp`q

¸
|j�j1| 8M|`|

xj � j1yα
|`|τ2�1

À rγ2M
ν�1�α ¸

`�0

¸
j1�j�:h¡0
h 8M|`|

¸
j Rp`qxhy�α

xhyα
|`|τ2�1

(3.3.13)
À rγ2rγ1

Mν�1
¸
`�0

¸
h 8M|`|

1

|`|τ2�1�τ1 À
rγ2rγ1

Mν
¸
`�0

1

|`|τ2�τ1 ¤
rγ2rγ1

Mν

(3.3.18)

provided τ2 ¡ τ1 � ν. The same computation holds for G�2 . We conclude that

mrpT1zT2q ¤ mrpG�2 X G�2 q ¤ C2
rγ2rγ1
, (3.3.19)

where C2 ¡ 0 is independent of M, rγ1, rγ2.

Proof of Theorem 3.29. Take rγ1 � rγ1{3, rγ2 � rγ2{3 with some rγ ¡ 0 su�ciently small so thatrγ1 and rγ2 ful�ll the assumptions of the previous lemmas. Similarly, choose τ1 � ν � 2 and

τ2 � 2ν � 3 . By de�nition, Uα � T2 � Ω0. Since Ω0zUα � pΩ0zT1q Y pT1zT2q, we get by Lemma

3.31 and Lemma 3.33 that

mrpΩ0zUαq ¤ C1rγ1 � C2
rγ2rγ1

¤ Crγ1{3 , C � 2 pC1 � C2q .

3.4 The KAM reducibility transformation

The new potential Vpω;ωtq that we have found in Theorem 3.25 is perturbative, in the sense

that the smallness of its norm is controlled by the size M of the frequency vector ω. Thus, we are

now ready to attack with a KAM reduction scheme in analytical regularity, presenting �rst the

algebraic construction of the single iteration, then quantifying it via the norms and seminorms

that we have introduced in Section 3.1. The complete result for this reduction transformation,

together with its iterative lemma, is proved at the end of this section.
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3.4.1 Preparation for the KAM iteration

For the KAM scheme it is more convenient to work with operators of typeMρ,s. Of course, as

we have seen in Section 3.1, pseudodi�erential operators analytic in ϕ belong to such a class.

Lemma 3.34. Fix an arbitrary s0 ¡ 1{2 and put ρ0 :� ρ{4. Then the operator Vpωq de�ned in

(3.2.8) belongs to LipwpΩ0,Mρ0,s0p1, 0qq with the quantitative bound

|V|Lippwq
ρ0,s0,1,0,Ω0

¤ C

M
; (3.4.1)

here C ¡ 0 is independent of M.

Proof. It is su�cient to apply the embedding Lemma 3.22 and (3.2.10).

3.4.2 General step of the reduction

Consider the system

i 9wptq � Hptqwptq, Hptq :� Apωq �Ppω;ωtq, (3.4.2)

where the frequency vector ω varies in some set Ω � Rν , M ¤ |ω| ¤ 2M; the time-independent

operator Apωq is diagonal, with

Apωq �
�
Apωq 0

0 �Apωq

�
, Apωq :� diagtλ�j pωq : j P Nu � p0,8qN ; (3.4.3)

and the quasi-periodic perturbation Ppω;ωtq has the form

Ppω;ωtq �
�
P dpω;ωtq P opω;ωtq
�P opω;ωtq �P dpω;ωtq

�
, P d � rP ds� , P o � rP os� . (3.4.4)

The goal is to square the size of the perturbation (see Lemma 3.37) and we do it by conjugating

the Hamiltonian Hptq through a transformation w :� e�iX�pω;ωtqz of the form

X�pω;ωtq �
�
Xdpω;ωtq Xopω;ωtq
�Xopω;ωtq �Xdpω;ωtq

�
, Xd � rXds�, Xo � rXos� , (3.4.5)

so that the transformed Hamiltonian, as in (3.2.4), is

H�ptq :� e�X�pω;ωtqHptqeX�pω;ωtq �
» 1

0
e�sX

�pω;ωtq 9X�pω;ωtqesX�pω;ωtq ds . (3.4.6)
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Its expansion in commutators is given by

H�ptq � A�P� irX�,As � 9X� �R,

R :� e�X�
AeX

� � pA� irX�,Asq � e�X�
PeX

� �P�
�» 1

0
e�sX

� 9X�esX
�

ds� 9X�


.

(3.4.7)

We ask now X� to solve the "quantum" homological equation:

irX�pϕq,As � ω � BvfX�pϕq �ΠNPpϕq � Z (3.4.8)

where ΠNPpω;ϕq :� °
|`|¤N pP pω; `qei`�ϕ is the projector on the frequencies smaller than N , while

Z is the diagonal, time independent part of P d:

Z � Zpωq :�
�
Zpωq 0

0 �Zpωq

�
, Z � diagt{pP dqjjpω; 0q : j P Nu . (3.4.9)

With this choice, the new Hamiltonian becomes Hptq� � A� �Ppωtq� with

A� � A� Z, P� :� ΠK
NP�R , ΠK

NP :� p1�ΠN qP. (3.4.10)

In order to solve equation (3.4.8), note that it reads block-wise as#
irXd, As � ω � BθXd � P d � Z

�irXo, Asa � ω � BθXo � P o � 0
. (3.4.11)

Expanding both with respect to the exponential basis of B (for the space) and in Fourier in

angles (for the time), we get the solutions

{pXdqj1j pω; `q :�

$'&'%
1

ipω � `� λ�j pωq � λ�j1pωqq
{pP dqj1j pω; `q p`, j, j1q P I�N

0 otherwise

, (3.4.12)

{pXoqj1j pω; `q :�

$'&'%
1

ipω � `� λ�j pωq � λ�j1pωqq
{pP oqj1j pω; `q p`, j, j1q P I�N

0 otherwise

, (3.4.13)

where, following the notation in (3.3.2), we have de�ned

I�N :� tp`, j, j1q P I� : |`| ¤ Nu . (3.4.14)

Remark that A�pωq � diagtλ�j pωq : j P Nu with λ�j pωq :� λ�j pωq �{pP dqjjpω; 0q.
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3.4.3 Estimates for the general step

Both for well-posing the solutions (3.4.12) and (3.4.13) and ensuring convergence of the norms,

second order Melnikov conditions are required to be imposed. In particular, we choose the

frequency vector from the following set

Ω� :�
!
ω P Ω : |ω � `� λ�j pωq � λ�j1pωq| ¥

γ

2 xNyτ
xj � j1yα

Mα
, @ p`, j, j1q P I�N

)
(3.4.15)

with γ, τ ¡ 0 to be �xed later on. Here I�N has been de�ned in (3.4.14).

The fact that Ω� is actually a set of large measure, that is mrpΩzΩ�q � Opγq, will be clear as a
direct consequence of Lemma 3.42 of Section 3.4.4.

From now on, we choose as Lipschitz weight w :� γ{Mα and, abusing notation, we denote

LipγpΩ,Fq :� Lipγ{MαpΩ,Fq .

Furthermore, we �x once for all s0 ¡ 1{2 and α P p0, 1q.
For V P LipγpΩ,Mρ,s0pα, 0qq, we write

|V| :� |V|α,0s0
, |V|ρ :� |V|α,0ρ,s0

, |V|Lippγq
ρ,Ω :� |V|Lippγ{Mαq

ρ,s0,α,0,Ω
� |V|8ρ,Ω �

γ

Mα
|V|Lip

ρ,Ω ,

whereas, for V P LipγpΩ,Mρ,s0pα, αqq, we denote

|||V|||ρ :� |V|α,αρ,s0 , |||V|||Lippγq
ρ,Ω :� |V|Lippγ{Mαq

ρ,s0,α,α,Ω :� |||V|||8ρ,Ω �
γ

Mα
|||V|||Lip

ρ,Ω .

Remark 3.35. Note that |V|Lippγq
ρ0,Ω0

¤ |||V|||Lippγq
ρ0,Ω0

.

Now, we provide the estimate on the generator X� of the previous transformation. For sake

of simplicity during the forthcoming proof, as short notation we de�ne

g
`,�
j,j1pωq :� ω � `� λ�j pωq � λ�j1pωq , p`, j, j1q P I�N . (3.4.16)

Lemma 3.36. Assume that:

(a) P P LipγpΩ,Mρ,s0pα, 0qq, with an arbitrary ρ ¡ 0;

(b) There exists 0   C ¤ 1 such that for any j P N, ω,∆ω P Ω� one has

|∆ωλ
�
j pωq| ¤ C |∆ω| . (3.4.17)

Let X� � X�pω;ωtq be de�ned by (3.4.12) and (3.4.13). Then X� P LipγpΩ�,Mρ,s0pα, αqq with
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the quantitative bound

|||X�|||Lippγq
ρ,Ω� ¤ 16 xNy2τ�1 M

α

γ
|P|Lippγq

ρ,Ω . (3.4.18)

Proof. We start with the seminorm |||X�|||8ρ,Ω� . Fix ω P Ω� and |`| ¤ N . Then, when j � j1, we
have

|{pXdqj1j pω; `q| ¤ 1

|g`,�j,j1pωq|
|{pP dqj1j pω; `q| ¤ 2 xNyτ Mα

γ

|{pP dqj1j pω; `q|
xj � j1yα (3.4.19)

and similarly, for any j, l P N

|{pXoqj1j pω; `q| ¤ 2 xNyτ Mα
γ

|{pP oqj1j pω; `q|
xj � j1yα . (3.4.20)

From assumption paq, all the terms | xDyα xP dpω; `q|s0 , |xP dpω; `q xDyα |s0 , | xDyσ xP δpω; `q xDy�σ |s0
(with σ � �α, 0, δ � d, o) are bounded. In order to bound |||yX�pω; `q|||, what we have to prove

is that we can control also the terms

| xDyα xXδpω; `q|s0 , |xXδpω; `q xDyα |s0 , | xDyσ xXδpω; `q xDy�σ |s0 .

The seminorms involving the diagonal term Xd can be easily handled, since, by (3.4.19), they are

essentially bounded by the same seminorms for P d. The similar bound in (3.4.20) is enough also

when we consider the terms | xDyσ xXopω; `q xDy�σ |s0 . Consider now the term xDyα xXopω; `q.
Applying again (3.4.20), we get

|pxDyα xXopω; `qqj1j | � | xj1yα {pXoqj1j pω; `q| ¤ 2 xNyτ Mα
γ

xj1yα
xj � j1yα |

{pP oqj1j pω; `q|

¤ 2 xNyτ Mα
γ

|{pP oqj1j pω; `q| .
(3.4.21)

The same bound holds for |pxXopω; `q xDyαqj1j |. We obtain that

|||X�|||8ρ,Ω� ¤
2 xNyτ Mα

γ
|P|8ρ,Ω .

We deal now with the estimates on the Lipschitz seminorm |||X�|||Lip
ρ,Ω� . Using the notation

(3.2.23) we have, for δ � d, o:

∆ω
{pXδqj1j pω; `q � �

i ∆ωpg`,�j,j1pωqq
g
`,�
j,j1pω �∆ωqg`,�j,j1pωq

{pP δqj1j pω; `q � i

g
`,�
j,j1pω �∆ωq

∆ω
{pP δqj1j pω; `q .

(3.4.22)
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By the assumption in (3.4.17), we have that

|∆ωpg`,�j,j1pωqq| � |∆ω � `�∆ωpλ�j � λ�j1q|
(3.4.17)
¤ |`| |∆ω| � 2C |∆ω| ¤ xNy |∆ω| (3.4.23)

uniformly for every j, j1 P N and ` P Zν , |`| ¤ N . Therefore, we can estimate (3.4.22) by

|∆ω
{pXδqj1j pω; `q| ¤ 8 xNy2τ�1 M2α |∆ω|

γ2

|{pP δqj1j pω; `q|
xj � j1y2α � 2 xNyτ Mα

γ

|∆ω
{pP δqj1j pω; `q|
xj � j1yα , (3.4.24)

from which one deduces the claimed estimate (3.4.18).

Lemma 3.37. Let P P LipγpΩ,Mρ,s0pα, 0qq. Assume (3.4.17) and, for some �xed Cs0 ¡ 0,

Cs0 16 xNy2τ�1 M
α

γ
|P|Lippγq

ρ,Ω   1 . (3.4.25)

Then P� � ΠK
NP � R, de�ned as in (3.4.10), belongs to LipγpΩ�,Mρ�,s0pα, 0qq for any ρ� P

p0, ρq, with bounds

��ΠK
NP

��Lippγq
ρ�,Ω

¤ e�pρ�ρ
�qN |P|Lippγq

ρ,Ω , |||R|||Lippγq
ρ,Ω�

¤ Cs0 29M
α

γ
xNy2τ�1 p|P|Lippγq

ρ,Ω q2 . (3.4.26)

Proof. The estimate on ΠK
NP follows by using that it contains only high frequencies. To estimate

the remainder R, use (3.4.7),(3.4.8) to write it as

R �
» 1

0
p1� sqe�sX�

adX�pZ�PqesX�
ds�

» 1

0
e�sX

�
adX�pPqesX�

ds . (3.4.27)

Then, apply Lemma 3.24 and Lemma 3.36.

Remark 3.38. De�ning the quantities

η :� Mα

γ
|P|Lippγq

ρ,Ω , η� :� Mα

γ

��P���Lippγq
ρ�,Ω�

and choosing N � �pρ� ρ�q�1 ln η, Lemma 3.37 implies that

η� ¤ pe�pρ�ρ�qN � xNy2τ�1 ηqη ¤
�

1� 1

pρ� ρ�q2τ�1

�
ln

1

η

�2τ�1
	
η2 . (3.4.28)

3.4.4 Iterative Lemma and KAM reduction

Once that the general step has been illustrated, we are ready for setting our iterative scheme.

The Hamiltonian the iteration starts with is the one that we have found after the Magnus normal
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form in Section 3.2:

Hp0qptq � H
p0q
0 �Vp0qpω;ωtq , |Vp0q|Lippγq

ρ0,Ω0
¤C
M
, (3.4.29)

where H
p0q
0 :� H0 and Vp0q :� V as in Theorem 3.25. All the iterated objects are constructed

from the transformation in Sections 3.4.2, 3.4.3 by setting for n ¥ 0

Hpnqptq :� Apωq �Ppω;ωtq , A :� H
pnq
0 , P :� Vpnq

Zpnq :� Z , Xpnq :� X , Rpnq :� R.

Given reals γ, ρ0, η0 ¡ 0 and a sequence of nested sets tΩnun¥1, we �x the parameters

δn :� 3

π2p1� n2qρ0, ρn�1 :� ρn � δn, ηn :� Mα

γ
|Vpnq|Lippγq

ρn,Ωn , Nn :� � 1

δn
ln ηn

Proposition 3.39 (Iterative Lemma). Fix τ ¡ 0. There exists k0 � k0pτ, δ0q ¡ 0 such that for

any 0   γ   rγ, any M ¡ 0 for which

η0 :� Mα

γ
|Vp0q|Lippγq

ρ0,Ω0
¤ k0e

�1 , (3.4.30)

the following items hold true for any n P N:

(i) Setting Ω0 as in (3.2.21), we have recursively for n ¥ 0

Ωn�1 :�
!
ω P Ωn : |ω � `� λ

pnq
j pωq � λ

pnq
j1 pωq| ¥

γ

2N τ
n

xj � j1yα
Mα

, @ p`, j, j1q P I�Nn
)

;

(ii) For every ω P Ωn, the operator Xpnqpω; � q P LipγpΩn,Mρn�1,s0pα, αqq and

|||Xpnq|||Lippγq
ρn�1,Ωn

¤ ?
η0 e

1
2
p1�p 3

2qn�1q . (3.4.31)

The change of coordinates eiXpnq
conjugates Hpn�1q to Hpnq � H

pnq
0 �Vpnq such that:

(iii) The Hamiltonian H
pnq
0 pωq is diagonal and time independent, H

pnq
0 pωq � diagtλpnqj pωqujPNσ3,

and the functions λ
pnq
j pωq � λ

pnq
j pω, M, αq are de�ned over all Ω0, ful�lling

|λpnqj � λ
pn�1q
j |Lip

Ω0
¤ η0 e

1�p 3
2qn�1

; (3.4.32)

(iv) The new perturbation Vpnq P LipγpΩn,Mρn,s0pα, 0qq and

ηn :� Mα

γ
|Vpnq|Lippγq

ρn,Ωn ¤ η0 e
1�p 3

2qn . (3.4.33)
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Proof. We argue by induction. For n � 0, one requires (3.4.30). Now, assume that the statements

hold true up to a �xed n P N. De�ne Ωn�1 as in item piq. In order to apply Lemma 3.36

and Lemma 3.37, we need to check that the assumptions in (3.4.17) and (3.4.25) are veri�ed,

respectively. First, note that, by item piiiq,

|λpnqj |Lip
Ω0

¤
ņ

m�1

|λpmqj � λ
pm�1q
j |Lip

Ω0
� |λj |Lip

Ω0
¤ η0 e

8̧

m�1

e�p 3
2qm�1

¤ η0 e, (3.4.34)

so that (3.4.17) is satis�ed, provided simply η0 e ¤ 1.

We prove now that (3.4.25) is ful�lled. We have

xNny2τ�1 ηn ¤
�1� n2

δ0

	2τ�1
η

1
2
n

(3.4.33)
¤ pη0 eq

1
2 e�

1
2p 3

2qn
�1� n2

δ0

	2τ�1
¤ 1

2 � 16 � Cs0
as long as η0 e is su�ciently small (depending only on δ0, τq. Therefore we can apply Lemma

3.36 and Lemma 3.37 with P � Vpnq and de�ne Xpn�1q P LipγpΩn�1,Mρn,s0pα, αqq, the new

eigenvalues

λ
pn�1q
j pωq :� λ

pnq
j pωq � {pV d,pnqqjjpω; 0q @ j P N (3.4.35)

and the new perturbation Vpn�1q. We are left only with the quantitative estimates.

We start with item pivq. By Remark 3.38, one has

ηn�1 ¤
�

1� 1

δ2τ�1
n

�
ln

1

ηn

�2τ�1
	
η2
n ¤ 2

�1� n2

δ0

	2τ�1
pη0 eq

7
4 e�

7
4p 3

2qn . (3.4.36)

Thus, (3.4.33) is satis�ed at the iteration n � 1 provided again that η0 e is su�ciently small

(depending only on δ0, τq. For item piiiq, it is su�cient to note that

|λpn�1q
j � λ

pnq
j |Lip

Ωn
� | {pV d,pnqqjjp�; 0q|Lip

Ωn
¤ |Vpnq|Lip

ρn,Ωn ¤
Mα

γ
|Vpnq|Lippγq

ρn,Ωn

(3.4.33)
¤ η0 e

1�p 3
2qn . (3.4.37)

Now, by Kirszbraun theorem, we can extend the functions λ
pnq
j pω, Mq to all Ω0 preserving their

Lipschitz constant; this proves piiiq. Item piiq is proved in the same lines, using (3.4.18) and the

inductive assumption; we skip the details.

A consequence of the iterative lemma is the following result.

Corollary 3.40 (Final eigenvalues). Fix τ ¡ rτ (of Theorem 3.29). Assume (3.4.30). Then for

every ω P Ω0 and for every j P N, the sequence tλpnqj p � , M, αqun¥1 is a Cauchy sequence. We

denote by λ8j pω, M, αq its limit, which is given by λ8j pωq � λj � ε8j pωq and one has the estimate

sup
jPN

|jαε8j |Lippγq
Ω0

¤ γ

Mα
η0 e . (3.4.38)
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Proof. By (3.4.35) we have ε8j pωq :� °8
n�0

{pV pnq,dqjjpω; 0q. The thesis follows using

|jα {pV pnq,dqjjpω; 0q| ¤ | xDyα {V pnq,dpω; 0q|s0 ¤ |Vpnq|Lippγq
ρn,Ωn

(3.4.33)
¤ γ

Mα
η0 e

1�p 3
2qn . (3.4.39)

Corollary 3.41 (Iterated �ow). Fix an arbitrary r P r0, s0s; under the same assumptions of

Corollary 3.40, for any ω P XnΩn and ϕ P Tn, the sequence of transformations

Wnpω;ϕq :� e�iXp1qpω;ϕq � � � � � e�iXpnqpω;ϕq (3.4.40)

is a Cauchy sequence in LpHr �Hrq ful�lling

}Wnpω;ϕq � 1}LpHr�Hrq ¤
?
η0 eΣ e

?
η0 eΣ (3.4.41)

where Σ :� °8
q�0 e

� 1
2p 3

2qq . We denote by W8pω;ϕq its limit in LpHr �Hrq.

Proof. The convergence of the transformations is a standard argument, whereas the control of

the operator norm LpHr �Hrq follows from Remark 3.16; we skip the details.

Since for any j P N the sequence tλpnqj un¥1 converges to a well de�ned Lipschitz function λ8j
de�ned on Ω0, we can now impose second order Melnikov conditions only on the �nal frequencies.

Lemma 3.42 (Measure estimates). Consider the set

Ω8,α :�
!
ω P Uα : |ω � k � λ8j pωq � λ8j1 pωq| ¥

γ

x`yτ
xj � j1yα

Mα
, @ p`, j, j1q P I�

)
. (3.4.42)

Then Ω8,α � XnΩn. Furthermore, taking τ ¡ ν � α � rτ
α , γ P r0, rγ{2s and M ¥ M0 (de�ned in

Theorem 3.29), there exists a constant C8 ¡ 0, independent of M and γ, such that

mrpUαzΩ8,αq ¤ C8γ . (3.4.43)

Proof. The proof that Ω8,α � XnΩn is standard, see e.g. Lemma 7.6 of [142].

To prove the measure estimate, let ω P Uα and p`, j, j1q P I�. We can rule out the cases as at

the beginning of Lemma 3.33 with essentially the same arguments. Thus, we restrict to consider

all p`, j, j1q P I� for which ` � 0 and j � j1. Furthermore, if |j � j1| ¥ 16M |`|, we get again that

|ω �`�λ8j pωq�λ8j1 pωq| ¥ 1
2 |j�j1| (recall M ¡ m2). So, we can work in the regions |j�j1|   16M |`|.

Now, for j   j1 satisfying

j xj � j1y ¥
�2η0 e x`yrτ
cpγ, rγq 	 1

α �: rRp`q, (3.4.44)
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where cpγ, rγq :� rγ
γ � 1 ¡ 1 (recall that rγ{2 ¡ γ), we have (using also (3.4.38))

|ω � `� λ8j pωq � λ8j1 pωq| ¥ |ω � `� λj � λj1 | � |ε8j pωq| � |ε8j1 pωq|

¥ rγ
x`yrτ

xj � j1yα
Mα

� 2
γ

Mα
η0e

jα
¥ γ

Mα
xj � j1yα
x`yrτ .

Therefore, we can further restrict to consider just those j   j1 satisfying j xj � j1y   rRp`q. The
symmetric argument leads to work in the sector j1   l under the condition j1 xj1 � jy   rRp`q.
Now, de�ne the set

G`,�j,j1 :�
!
ω P RM : |ω � `� λ8j pωq � λ8j1 pωq|  

γ

xkyτ
xj � lyα

Mα

)
(3.4.45)

for those ` � 0 and j � j1 in the region

R� :� t|j � j1|   16M |`|u X ptj xj � j1y   rRp`q, j   j1u Y tj1 xj � j1y   rRp`q, j1   juq ; (3.4.46)

Recall that f�`,j,j1pωq :� ω � ` � λ8j pωq � λ8j1 pωq are Lipschitz functions on RM. For ` � 0, since

|λ8j1 |Lip
RM

  |`|{4, by Lemma 3.30 we get

|G`,�j,j1 | À Mν�αγ
xj � j1yα
|`|τ�1 .

De�ne G�8 :� �tG`,�j,j1 : p`, j, j1q P R�u X Uα. We have

|G�8| À 2γ Mν�α
¸
`�0

¸
j j1

jxj�j1y rRp`q

¸
|j�j1| 16M|`|

xj � j1yα
|`|τ�1 À γ Mν�α

¸
`�0

¸
j1�j�:h¡0
|h| 16M|`|

¸
j rRp`qxhy�1

xhyα
|`|τ�1

À γ

cpγ, rγq 1
α

Mν
¸
`�0

1

|`|τ�1�α� rτ
α

À γ

cpγ, rγq 1
α

Mν À γ Mν ,

taking τ � 1� α� rτ
α ¡ ν. The same computation holds for G�8, and proves (3.4.43).

Theorem 3.43 (KAM reducibility). Fix α P p0, 1q, s0 ¡ 1{2, and τ ¡ ν � 1� α � rτ
α . For any

0   γ   rγ, there exists M� � M�pm, α, γ, ρ0q ¡ 0 such that for any M ¥ M� the following holds true.

There exist functions tλ8j pω, M, αqujPN, de�ned and Lipschitz in ω in the set RM such that:

(i) The set Ω8,α � Ω8,αpγ, τ, Mq � RM de�ned in (3.4.42) ful�lls mrpRMzΩ8q ¤ Cpγ�rγ1{3�γ0q,
where γ0 is de�ned in Theorem 3.25 and rγ in Theorem 3.29.

(ii) For each ω P Ω8,α there exists a change of coordinates w � W8pω;ωtqφ which conjugates
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equation (3.2.7) to a constant-coe�cient diagonal one:

i 9φ � H8φ , H8 � H8pω, αq � diagtλ8j pω, αq : j P Nuσ3 . (3.4.47)

Furthermore for any r P r0, s0s one has

}W8 � 1}LpHr�Hrq ¤
?
η0 eΣ e

?
η0 eΣ . (3.4.48)

Proof. Having �xed α, s0 and τ , we can produce the constant k0pδ0, τq of the iterative Lemma

3.39. Having �xed also 0   γ   rγ, we produce M� ¡ 0 in such a way that for every M ¥ M�, the
estimate (3.4.30) is ful�lled. We can now apply the iterative Lemma 3.39, Corollary 3.40 and

Lemma 3.42 to get the result.

3.4.5 A �nal remark

The KAM reducibility scheme that we have presented has transformed Equation (3.2.7) into

(3.4.47), where the asymptotic for the �nal eigenvalues are given, using Equation (3.4.38), by

λ8j pω, αq � λj � O

�
η0

Mαjα



(3.4.29)� O

�
1

Mjα



. (3.4.49)

One can argue that the asymptotic λ8j pαq � λj � OpM�1j�αq is not that satisfying, since the

pertubation Vp0q at the beginning of the KAM scheme belongs to the classMρ0,s0p1, 0q and so

its diagonal elements have a smoothing e�ect of order 1 which could be expected to be preserved

in the e�ective Hamiltonian.

Actually, it is possible to modify our reducibility scheme for achieving this result: we explain

now brie�y how to do it. After the Magnus normal form, we conjugate system (3.2.7) through

e�iYpωtq, where

Ypωtq :�
�

0 Y opωtq
�Y opωtq 0

�
(3.4.50)

so that Y o solves the homological equation

� irY opθq, Bsa�V opθq�ω � BθY opθq � 0 ñ {pY oqj1j p`q :�
{pV oqj1j p`q

ipω � `� λj � λj1q @ `, j, j1 . (3.4.51)

We ask now the frequency vector ω to belong to U1XU0 (see (3.3.4)). In this way one gets (in the

same lines of the proof of Lemma 3.36) that Y P Lipγ{MpU1,Mrρ0,s0p1, 1qq, since we have chosen
ω P U1, with the bound

|Y|Lippγ{Mqrρ0,s0,1,1
¤ C

M

γ
|Vp0q|Lippγ{Mq

ρ0,s0,1,1
¤ C

M

γ
|Vp0q|Lippγ{Mq

ρ0,s0,1,0

(3.4.1)
¤ rC . (3.4.52)
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The new perturbation

�Vp0qpωtq :�
�
V dpωtq 0

0 �V dpωtq

�
�
» 1

0
p1� sqe�sYpωtqadYpωtqrVp0qpωtqsesYpωtq ds (3.4.53)

belongs to the class Lipγ{MpU1,Mrρ0,s0p1, 1qq ful�lling estimate (3.4.1).

Thus, one can perform a KAM reducibility scheme as in Section 3.4.3�3.4.4, with α � 0 in

(3.4.15), the perturbations appearing in the iterations in the class Lipγ{M0p�Ωn,Mrρn,s0p1, 1qq and
the new �nal eigenvalues �λ8j satisfying the non-resonance conditions

|ω � `� �λ8j � �λ8j | ¥ γ

x`yτ , @ p`, j, j1q P I� . (3.4.54)

In particular, we obtain better asymptotics on the �nal eigenvalues, that is �λ8j �λj � OpM�1j�1q.
The price that we pay for this result is that the preliminary change of coordinate e�iYpωtq is not
a transformation close to identity, as the generator Ypωtq is just a bounded operator and not

small in size, see (3.4.52). The main consequence is that the e�ective dynamics of the original

system, as Corollary 1.2 is no more valid. In this case, it is possible to conclude just that the

Sobolev norms stay uniformly bounded in time and do not grow, but in general their (almost-

)conservation is lost.
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Chapter 4

Traveling quasi-periodic gravity

capillary water waves with constant

vorticity

We consider the space periodic gravity-capillary water waves equations with constant vorticity$'&'%
ηt � Gpηqψ � γηηx

ψt � �gη � ψ2
x

2
� pηxψx �Gpηqψq2

2p1� η2
xq

� κ
� ηxa

1� η2
x

	
x
� γηψx � γB�1

x Gpηqψ . (4.0.1)

The variable ηpt, xq denotes the free boundary of the two dimensional �uid domain Dη,h de�ned in
(1.1.11), whereas ψpt, xq is the trace at the free boundary y � ηpt, xq of the generalized velocity

potential Φpt, x, yq solving (1.1.12). Here g ¡ 0 is the gravity, κ ¡ 0 is the surface tension

coe�cient and Gpηq is the Dirichlet-Neumann operator de�ned in (1.1.14), with linear principal

part Gp0q de�ned in (1.1.15), (1.1.16). The derivation of the equations (1.1.13) is available in

Appendix B.

The water waves equations (1.1.13) are a Hamiltonian system on the phase space Hs
0pTq �

9HspTq, endowed with a non canonical Poisson structure: it will be discussed with more details

in Section 4.1.1.

The system obtained linearizing (1.1.13) at the equilibrium pη, ψq � p0, 0q is given by$&%Btη � Gp0qψ
Btψ � �pg � κB2

xqη � γB�1
x Gp0qψ .

(4.0.2)

87
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The linear frequencies are given by

Ωj :� Ωjpκq � Ωjpκ, h, g, γq :�
d�

κj2 � g � γ2

4

Gjp0q
j2

	
Gjp0q � γ

2

Gjp0q
j

, j P Zzt0u . (4.0.3)

Note that the map j ÞÑ Ωjpκq is not even due to the vorticity term γ
2Gjp0q{j, which is odd in j.

Fixed �nitely many arbitrary distinct natural numbers

S� :� tn1, . . . , nνu � N , 1 ¤ n1   . . .   nν , (4.0.4)

and signs

Σ :� tσ1, . . . , σνu, σa P t�1, 1u , a � 1, . . . , ν , (4.0.5)

we consider the reversible quasi-periodic traveling wave solutions of the linear system (1.1.20)

given by �
ηpt, xq
ψpt, xq

�
�

¸
aPt1,...,ν : σa��1u

�
Mna

a
ξna cospnax� Ωnapκqtq

Pna
a
ξna sinpnax� Ωnapκqtq

�

�
¸

aPt1,...,ν : σa��1u

�
Mna

a
ξ�na cospnax� Ω�napκqtq

P�na
a
ξ�na sinpnax� Ω�napκqtq

� (4.0.6)

where ξ�na ¡ 0, a � 1, . . . , ν, and Mn and P�n are the real coe�cients

Mj :�
�� Gjp0q
κj2 � g � γ2

4
Gjp0q
j2

�
1
4

, j P Zzt0u , P�n :� γ

2

Mn

n
�M�1

n , n P N . (4.0.7)

. The frequency vector of (4.0.6) is

~Ωpκq :� pΩσanapκqqa�1,...,ν P Rν . (4.0.8)

A more general de�nition of quasi-periodic traveling wave is given in De�nition 1.5.

We shall construct traveling quasi-periodic solutions of (1.1.13) with a Diophantine frequency

vector ω P DCpυ, τq belonging to an open bounded subset Ω in Rν for some υ P p0, 1q, τ ¡ ν � 1,

as in (1.1.24)

Regarding regularity, we will prove the existence of quasi-periodic traveling waves pη̆, ψ̆q
belonging to some Sobolev space HspTν ,R2q de�ned in (1.1.25).

The result in Theorem (4.1) shows that the linear solutions (4.0.6) can be continued to

quasi-periodic traveling wave solutions of the nonlinear water waves equations (4.0.1), for most

values of the surface tension κ P rκ1, κ2s, with a frequency vector rΩ :� prΩσanaqa�1,...,ν , close to

~Ωpκq :� pΩσanapκqqa�1,...,ν . Here is the precise statement.
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Theorem 4.1. (KAM for traveling gravity-capillary water waves with constant vor-

ticity) Consider �nitely many tangential sites S� � N as in (4.0.4) and signs Σ as in (4.0.5).

Then there exist s ¡ 0, ε0 P p0, 1q such that, for every |ξ| ¤ ε2
0, ξ :� pξσanaqa�1,...,ν P Rν�, the

following hold:

1. there exists a Cantor-like set Gξ � rκ1, κ2s with asymptotically full measure as ξ Ñ 0, i.e.

limξÑ0 |Gξ| � κ2 � κ1;

2. for any κ P Gξ, the gravity-capillary water waves equations (1.1.13) have a reversible quasi-

periodic traveling wave solution (according to De�nition 1.5) of the form�
ηpt, xq
ψpt, xq

�
�

¸
aPt1,...,νu : σa��1

�
Mna

a
ξna cospnax� rΩnapκqtq

Pna
a
ξna sinpnax� rΩnapκqtq

�

�
¸

aPt1,...,νu : σa��1

�
Mna

a
ξ�na cospnax� rΩ�napκqtq

P�na
a
ξ�na sinpnax� rΩ�napκqtq

�
� rpt, xq

(4.0.9)

where

rpt, xq � r̆prΩσ1n1pκqt�σ1n1x, . . . , rΩσνnν pκqt�σνnνxq , r̆ P HspTν ,R2q , lim
ξÑ0

}r̆}sa
|ξ| � 0 ,

with a Diophantine frequency vector rΩ :� prΩσanaqa�1,...,ν P Rν , depending on κ, ξ, and

satisfying limξÑ0
rΩ � ~Ωpκq. In addition these quasi-periodic solutions are linearly stable.

The rest of this chapter concerns the proof of Theorem 4.1.

In Section 4.1 we start by describing the Hamiltonian structure of equations (4.0.1) together

with the choice of the Wahlén coordinates and the solution of the linearized system around the

trivial equilibrium. Then we provide a splitting of the phase space that allows to introduce

the normal subspace and the action-angle coordinates on the tangential one. Section 4.2 is

devoted to the functional setting required for the proof of Theorem 3.1. In particular, we de�ne

the quasi-periodic traveling wave functions the ϕ-dependent families of momentum preserving

linear operators, together with their properties. The rest of the functional setting, in particular

the pseudodi�erential norms and the class of Dk0-tame operators, are quoted almost verbatim

from [44, 13]. In Section 4.3 we prove the non-degeneracy of the unperturbed linear frequencies

and the transversality of the non-resonance conditions coupled with corresponding momentum

conditions. In Section 4.4 we state the Nash-Moser theorem and we prove that the non-resonance

conditions on the �nal eigenvalues hold on a set of parameter of large measure. In Section 4.5 we

construct the approximate inverse at each approximate quasi-periodic traveling wave embedding,

under the ansatz of the almost invertibility of the linearized vector �eld restricted on the normal

directions. Sections 4.6 and 4.7 are devoted to the reduction to constant coe�cients up to
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bounded remainders and to the KAM reducibility scheme of the linearized vector �eld projected

on the normal direction, in order to provide estimates for its almost inverted operator. In Section

4.8 the Nash-Moser Theorem 4.55 and the convergence of the Nash-Moser iteration are proved.

In particular, we check that each approximate torus is reversible and traveling.

4.1 Hamiltonian structure and linearization at the origin

In this section we describe the Hamiltonian structure of the water waves equations (4.0.1), their

symmetries and the solutions of the linearized system (1.1.20) at the equilibrium.

4.1.1 Hamiltonian structure

The Hamiltonian formulation of the water waves equations (4.0.1) with non-zero constant vor-

ticity was obtained by Constantin-Ivanov-Prodanov [58] and Wahlén [163] in the case of �nite

depth. For irrotational �ows it reduces to the classical Craig-Sulem-Zakharov formulation in

[174], [68].

On the phase space H1
0 pTq � 9H1pTq, endowed with the non canonical Poisson tensor

JM pγq :�
�

0 Id

�Id γB�1
x

�
, (4.1.1)

we consider the Hamiltonian

Hpη, ψq � 1

2

»
T

�
ψGpηqψ � gη2

�
dx� κ

»
T

a
1� η2

x dx� γ

2

»
T

�
�ψxη2 � γ

3
η3
	

dx . (4.1.2)

Such Hamiltonian is well de�ned on H1
0 pTq � 9H1pTq since Gpηqr1s � 0 and

³
TGpηqψ dx � 0.

It turns out [58, 163] that equations (4.0.1) are the Hamiltonian system generated by Hpη, ψq
with respect to the Poisson tensor JM pγq, namely

Bt
�
η

ψ

�
� JM pγq

�
∇ηH
∇ψH

�
(4.1.3)

where p∇ηH,∇ψHq P 9L2pTq � L2
0pTq denote the L2-gradients.

Remark 4.2. The non canonical Poisson tensor JM pγq in (4.1.1) has to be regarded as an operator
from (subspaces of) pL2

0 � 9L2q� � 9L2 � L2
0 to L2

0 � 9L2, that is

JM pγq �
�

0 IdL2
0ÑL2

0

�Id 9L2Ñ 9L2 γB�1
x

�
.
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The operator B�1
x maps a dense subspace of L2

0 in 9L2. For sake of simplicity, throughout the

chapter we may omit this detail. Above the dual space pL2
0 � 9L2q� with respect to the scalar

product in L2 is identi�ed with 9L2 � L2
0.

The Hamiltonian (4.1.2) enjoys several symmetries that we now describe.

Reversible structure. De�ning on the phase space H1
0 pTq � 9H1pTq the involution

S

�
η

ψ

�
:�

�
η_

�ψ_

�
, η_pxq :� ηp�xq , (4.1.4)

the Hamiltonian (4.1.2) is invariant under S, that is H �S � H, or, equivalently, the water waves

vector �eld X de�ned in the right hand side on (4.0.1) satis�es

X � S � �S �X . (4.1.5)

This property follows noting that the Dirichlet-Neumann operator satis�es

Gpη_qrψ_s � pGpηqrψsq_ . (4.1.6)

Translation invariance. Since the bottom of the �uid domain (1.1.11) is �at (or in case of

in�nite depth there is no bottom), the water waves equations (4.0.1) are invariant under space

translations. Speci�cally, de�ning the translation operator

τς : upxq ÞÑ upx� ςq , ς P R , (4.1.7)

the Hamiltonian (4.1.2) satis�es H � τς � H for any ς P R, or, equivalently, the water waves

vector �eld X de�ned in the right hand side on (4.0.1) satis�es

X � τς � τς �X , @ ς P R . (4.1.8)

In order to verify this property, note that the Dirichlet-Neumann operator satis�es

τς �Gpηq � Gpτςηq � τς , @ ς P R . (4.1.9)

Wahlén coordinates. The variables pη, ψq are not Darboux coordinates, in the sense that the

Poisson tensor (4.1.1) is not the canonical one for values of the vorticity γ � 0. Wahlén [163]

noted that in the variables pη, ζq, where ζ is de�ned by

ζ :� ψ � γ

2
B�1
x η , (4.1.10)
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the symplectic form induced by JM pγq becomes the canonical one. Indeed, under the linear

transformation of the phase space H1
0 � 9H1 into itself de�ned by�

η

ψ

�
�W

�
η

ζ

�
, W :�

�
Id 0

γ
2B�1
x Id

�
, W�1 :�

�
Id 0

�γ
2B�1
x Id

�
, (4.1.11)

the Poisson tensor JM pγq is transformed into the canonical one,

W�1JM pγqpW�1q� � J , J :�
�

0 Id

�Id 0

�
. (4.1.12)

Here W � and pW�1q� are the adjoints maps from (a dense subspace of) 9L2 � L2
0 into itself, and

the Poisson tensor J acts from (subspaces of) 9L2�L2
0 to L2

0� 9L2. Then the Hamiltonian (4.1.2)

becomes

H :� H �W , i.e. Hpη, ζq :� H
�
η, ζ � γ

2
B�1
x η

	
, (4.1.13)

and the Hamiltonian equations (4.1.3) (i.e. (4.0.1)) are transformed into

Bt
�
η

ζ

�
� XHpη, ζq , XHpη, ζq :� J

�
∇ηH
∇ζH

�
pη, ζq . (4.1.14)

By (4.1.12), the symplectic form of (4.1.14) is the standard one,

W

��
η1

ζ1

�
,

�
η2

ζ2

��
�

�
J�1

�
η1

ζ1

�
,

�
η2

ζ2

��
L2

� p�ζ1, η2qL2 � pη1, ζ2qL2 , (4.1.15)

where J�1 is the symplectic operator

J�1 �
�

0 �Id

Id 0

�
(4.1.16)

regarded as a map from L2
0 � 9L2 into 9L2 �L2

0. Note that JJ
�1 � IdL2

0� 9L2 and J�1J � Id 9L2�L2
0
.

The Hamiltonian vector �eld XHpη, ζq in (4.1.14) is characterized by the identity

dHpη, ζqrpus �W�
XHpη, ζq, pu� , @pu :�

�pηpζ
�
.

The transformationW de�ned in (4.1.11) is reversibility preserving, namely it commutes with the

involution S in (4.1.4) (see De�nition 4.31 below), and thus also the Hamiltonian H in (4.1.13)

is invariant under the involution S, as well as H in (4.1.2). For this reason we look for solutions
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pηpt, xq, ζpt, xqq of (4.1.14) which are reversible, i.e. see (1.1.19),�
η

ζ

�
p�tq � S

�
η

ζ

�
ptq . (4.1.17)

The corresponding solutions pηpt, xq, ψpt, xqq of (4.0.1) induced by (4.1.11) are reversible as well.

We �nally note that the transformation W de�ned in (4.1.11) commutes with the translation

operator τς , therefore the Hamiltonian H in (4.1.13) is invariant under τς , as well as H in (4.1.2).

By Noether theorem, the horizontal momentum
³
T ζηx dx is a prime integral of (4.1.14).

4.1.2 Linearization at the equilibrium

In this section we study the linear system (1.1.20) and prove that its reversible solutions have

the form (1.1.22).

In view of the Hamiltonian (4.1.2) of the water waves equations (4.0.1), also the linear system

(1.1.20) is Hamiltonian and it is generated by the quadratic Hamiltonian

HLpη, ψq :� 1

2

»
T

�
ψGp0qψ � gη2 � κη2

x

�
dx � 1

2

�
ΩL

�
η

ψ

�
,

�
η

ψ

��
L2

.

Thus, recalling (4.1.3), the linear system (1.1.20) is

Bt
�
η

ψ

�
� JM pγqΩL

�
η

ψ

�
, ΩL :�

�
�κB2

x � g 0

0 Gp0q

�
. (4.1.18)

The linear operator ΩL acts from (a dense subspace) of L2
0 � 9L2 to 9L2 � L2

0. In the Wahlén

coordinates (4.1.11), the linear Hamiltonian system (1.1.20), i.e. (4.1.18), transforms into the

linear Hamiltonian system

Bt
�
η

ζ

�
� JΩW

�
η

ζ

�
,

ΩW :�W �ΩLW �
�
�κB2

x � g � �
γ
2

�2 B�1
x Gp0qB�1

x �γ
2B�1
x Gp0q

γ
2Gp0qB�1

x Gp0q

� (4.1.19)

generated by the quadratic Hamiltonian

HLpη, ζq :� pHL �W qpη, ζq � 1

2

�
ΩW

�
η

ζ

�
,

�
η

ζ

��
L2

. (4.1.20)

The linear operator ΩW acts from (a dense subspace) of L2
0 � 9L2 to 9L2 � L2

0. The linear
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system (4.1.19) is the Hamiltonian system obtained by linearizing (4.1.14) at the equilibrium

pη, ζq � p0, 0q. We want to transform (4.1.19) in diagonal form by using a symmetrizer and then

introducing complex coordinates. We �rst conjugate (4.1.19) under the symplectic transforma-

tion (with respect to the standard symplectic form W in (4.1.15)) of the phase space�
η

ζ

�
�M

�
u

v

�

whereM is the diagonal matrix of self-adjoint Fourier multipliers

M :�
�
MpDq 0

0 MpDq�1

�
, MpDq :�

�
Gp0q

κD2 � g � γ2

4 B�1
x Gp0qB�1

x

�1{4
, (4.1.21)

with the real valued symbol Mj de�ned in (4.0.7). The mapM is reversibility preserving.

Remark 4.3. In (4.1.21) the Fourier multiplier MpDq acts in H1
0 . On the other hand, with a

slight abuse of notation, MpDq�1 denotes the Fourier multiplier operator in 9H1 de�ned as

MpDq�1rζs :� � ¸
j�0

M�1
j ζje

ijx
�
, ζpxq �

¸
jPZ

ζje
ijx .

where rζs is the element in 9H1 with representant ζpxq.
By a direct computation, the Hamiltonian system (4.1.19) assumes the symmetric form

Bt
�
u

v

�
� JΩS

�
u

v

�
, ΩS :�M�ΩWM �

�
ωpκ,Dq �γ

2B�1
x Gp0q

γ
2Gp0qB�1

x ωpκ,Dq

�
, (4.1.22)

where

ωpκ,Dq :�
c
κD2Gp0q � g Gp0q �

�γ
2
B�1
x Gp0q

	2
. (4.1.23)

Remark 4.4. To be precise, the Fourier multiplier operator ωpκ,Dq in the top left position in

(4.1.22) maps H1
0 into 9H1 and the one in the bottom right position maps 9H1 into H1

0 . The

operator B�1
x Gp0q acts on 9H1 and Gp0qB�1

x on H1
0 .

Now we introduce complex coordinates by the transformation�
u

v

�
� C

�
z

z

�
, C :� 1?

2

�
Id Id

�i i

�
, C�1 :� 1?

2

�
Id i

Id �i

�
. (4.1.24)

In these variables, the Hamiltonian system (4.1.22) becomes the diagonal system

Bt
�
z

z

�
�

�
�i 0

0 i

�
ΩD

�
z

z

�
, ΩD :� C�ΩSC �

�
Ωpκ,Dq 0

0 Ωpκ,Dq

�
, (4.1.25)
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where

Ωpκ,Dq :� ωpκ,Dq � i
γ

2
B�1
x Gp0q (4.1.26)

is the Fourier multiplier with symbol Ωjpκq de�ned in (4.0.3) and Ωpκ,Dq is de�ned by

Ωpκ,Dqz :� Ωpκ,Dqz , Ωpκ,Dq � ωpκ,Dq � i
γ

2
B�1
x Gp0q .

Note that Ωpκ,Dq is the Fourier multiplier with symbol tΩ�jpκqujPZzt0u.

Remark 4.5. We regard the system (4.1.25) in 9H1 � 9H1.

The diagonal system (4.1.25) amounts to the scalar equation

Btz � �iΩpκ,Dqz , zpxq �
¸

jPZzt0u
zje

ijx , (4.1.27)

and, writing (4.1.27) in the exponential Fourier basis, to the in�nitely many decoupled harmonic

oscillators

9zj � �iΩjpκqzj , j P Zzt0u . (4.1.28)

Note that, in these complex coordinates, the involution S de�ned in (4.1.4) reads as the map�
zpxq
zpxq

�
ÞÑ

�
zp�xq
zp�xq

�
(4.1.29)

that we may read just as the scalar map zpxq ÞÑ zp�xq. Moreover, in the Fourier coordinates

introduced in (4.1.27), it amounts to

zj ÞÑ zj , @j P Zzt0u . (4.1.30)

In view of (4.1.28) and (4.1.30) every reversible solution (which is characterized as in (4.1.17))

of (4.1.27) has the form

zpt, xq :� 1?
2

¸
jPZzt0u

ρj e
�i pΩjpκqt�j xq with ρj P R . (4.1.31)

Let us see the form of these solutions back in the original variables pη, ψq. First, by (4.1.21),

(4.1.24),�
η

ζ

�
�MC

�
z

z

�
� 1?

2

�
MpDq MpDq

�iMpDq�1 iMpDq�1

��
z

z

�
� 1?

2

�
MpDqpz � zq

�iMpDq�1pz � zq

�
,

(4.1.32)
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and the solutions (4.1.31) assume the form�
ηpt, xq
ζpt, xq

�
�

¸
nPN

�
Mnρn cospnx� Ωnpκqtq
M�1
n ρn sinpnx� Ωnpκqtq

�
�

¸
nPN

�
Mnρ�n cospnx� Ω�npκqtq
�M�1

n ρ�n sinpnx� Ω�npκqtq

�
.

Back to the variables pη, ψq with the change of coordinates (4.1.11) one obtains formula (1.1.22).

Decomposition of the phase space in Lagrangian subspaces invariant under (4.1.19).

We express the Fourier coe�cients zj P C in (4.1.27) as

zj � αj � iβj?
2

, pαj , βjq P R2 , j P Zzt0u .

In the new coordinates pαj , βjqjPZzt0u, we write (4.1.32) as (recall that Mj �M�j)�
ηpxq
ζpxq

�
�

¸
jPZzt0u

�
Mjpαj cospjxq � βj sinpjxqq
M�1
j pβj cospjxq � αj sinpjxqq

�
(4.1.33)

with

αj � 1

2π

�
M�1
j pη, cospjxqqL2 �Mjpζ, sinpjxqqL2

	
,

βj � 1

2π

�
Mjpζ, cospjxqqL2 �M�1

j pη, sinpjxqqL2

	
.

(4.1.34)

The symplectic form (4.1.15) then becomes

2π
¸

jPZzt0u
dαj ^ dβj .

Each 2-dimensional subspace in the sum (4.1.33), spanned by pαj , βjq P R2 is therefore a sym-

plectic subspace. The quadratic Hamiltonian HL in (4.1.20) reads

2π
¸

jPZzt0u

Ωjpκq
2

pα2
j � β2

j q . (4.1.35)

In view of (4.1.33), the involution S de�ned in (4.1.4) reads

pαj , βjq ÞÑ pαj ,�βjq , @j P Zzt0u , (4.1.36)

and the translation operator τς de�ned in (4.1.7) as�
αj

βj

�
ÞÑ

�
cospjςq � sinpjςq
sinpjςq cospjςq

��
αj

βj

�
, @j P Zzt0u . (4.1.37)
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We may also enumerate the independent variables pαj , βjqjPZzt0u as
�
α�n, β�n, αn, βn

�
, n P N.

Thus the phase space H :� L2
0 � 9L2 of (4.1.14) decomposes as the direct sum

H �
¸
nPN

Vn,� ` Vn,�

of 2-dimensional Lagrangian symplectic subspaces

Vn,� :�
#�

η

ζ

�
�

�
Mnpαn cospnxq � βn sinpnxqq
M�1
n pβn cospnxq � αn sinpnxqq

�
, pαn, βnq P R2

+
, (4.1.38)

Vn,� :�
#�

η

ζ

�
�

�
Mnpα�n cospnxq � β�n sinpnxqq
M�1
n pβ�n cospnxq � α�n sinpnxqq

�
, pα�n, β�nq P R2

+
, (4.1.39)

which are invariant for the linear Hamiltonian system (4.1.19), namely JΩW : Vn,σ ÞÑ Vn,σ (for

a proof see e.g. remark 4.11). The symplectic projectors ΠVn,σ , σ P t�u, on the symplectic

subspaces Vn,σ are explicitly provided by (4.1.33) and (4.1.34) with j � nσ.

Note that the involution S de�ned in (4.1.4) and the translation operator τς in (4.1.7) leave

the subspaces Vn,σ, σ P t�u, invariant.

4.1.3 Tangential and normal subspaces of the phase space

We decompose the phase space H of (4.1.14) into a direct sum of tangential and normal La-

grangian subspaces Hᵀ
S�,Σ and H=

S�,Σ. Note that the main part of the solutions (4.0.9) that we

shall obtain in Theorem 1.8 is the component in the tangential subspace Hᵀ
S�,Σ, whereas the

component in the normal subspace H=

S�,Σ is much smaller.

Recalling the de�nition of the sets S� and Σ de�ned in (4.0.4) respectively (4.0.5), we split

H � Hᵀ
S�,Σ ` H=

S�,Σ (4.1.40)

where Hᵀ
S�,Σ is the �nite dimensional tangential subspace

Hᵀ
S�,Σ :�

ν̧

a�1

Vna,σa (4.1.41)

and H=

S�,Σ is the normal subspace de�ned as its symplectic orthogonal

H=

S�,Σ :�
ν̧

a�1

Vna,�σa `
¸

nPNzS�

�
Vn,� ` Vn,�

�
. (4.1.42)

Both the subspaces Hᵀ
S�,Σ and H=

S�,Σ are Lagrangian. We denote by Πᵀ
S�,Σ and Π=

S�,Σ the
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symplectic projections on the subspaces Hᵀ
S�,Σ and H=

S�,Σ, respectively. Since Hᵀ
S�,Σ and H=

S�,Σ
are symplectic orthogonal, the symplectic form W in (4.1.15) decomposes as

Wpv1 � w1, v2 � w2q �Wpv1, v2q �Wpw1, w2q , @v1, v2 P Hᵀ
S�,Σ , w1, w2 P H=

S�,Σ .

The symplectic projections Πᵀ
S�,Σ and Π=

S�,Σ satisfy the following properties:

Lemma 4.6. We have that

Πᵀ
S�,Σ J � J

�
Πᵀ

S�,Σ
��
,

�
Πᵀ

S�,Σ
��
J�1 � J�1 Πᵀ

S�,Σ , (4.1.43)

Π=

S�,Σ J � J
�
Π=

S�,Σ
��
,

�
Π=

S�,Σ
��
J�1 � J�1Π=

S�,Σ . (4.1.44)

Proof. Since the subspaces Hᵀ :� Hᵀ
S�,Σ and H= :� H=

S�,Σ are symplectic orthogonal, we have,

recalling (4.1.15), that

pJ�1v, wqL2 � pJ�1w, vqL2 � 0, @v P Hᵀ , @w P H= .

Thus, using the projectors Πᵀ :� Πᵀ
S�,Σ, Π= :� Π=

S�,Σ, we have that

pJ�1Πᵀv,Π=wqL2 � pJ�1Π=w,ΠᵀvqL2 � 0 , @v, w P H ,

and, taking adjoints, ppΠ=q�J�1Πᵀv, wqL2 � ppΠᵀq�J�1Π=w, vqL2 � 0 for any v, w P H, so that

pΠ=q�J�1Πᵀ � 0 � pΠᵀq�J�1Π= . (4.1.45)

Now inserting the identity Π= � Id�Πᵀ in (4.1.45), we get

J�1Πᵀ � pΠᵀq�J�1Πᵀ � pΠᵀq�J�1

proving the second identity of (4.1.43). The �rst identity of (4.1.43) follows applying J to the

left and to the right of the second identity. The identity (4.1.44) follows in the same way.

Note that the restricted symplectic form W|H=
S�,Σ

is represented by the symplectic structure

J�1
=

: H=

S�,Σ Ñ H=

S�,Σ , J�1
=

:� ΠL2

= J�1
|H=

S�,Σ
, (4.1.46)

where ΠL2

=
is the L2-projector on the subspace H=

S�,Σ. Indeed

W|H=
S�,Σ

pw, ŵq � pJ�1
=
w, pwqL2 � pJ�1w, pwqL2 , @w, ŵ P H=

S�,Σ .
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We also denote the associated (restricted) Poisson tensor

J= : H=

S�,Σ Ñ H=

S�,Σ , J= :� Π=

S�,Σ J|H=S�,Σ
. (4.1.47)

In the next lemma we prove that J�1
=

and J= are each other inverses.

Lemma 4.7. J�1
=
J= � J= J

�1
=

� IdH=
S�,Σ

.

Proof. Let v P H=

S�,Σ. By (4.1.46) and (4.1.47), for any h P H=

S�,Σ one has

pJ�1
=
J= v, hqL2 � pJ�1Π=

S�,Σ Jv,ΠL2

= hqL2 � �pΠ=

S�,Σ Jv, J
�1hqL2

� �pJv, pΠ=

S�,Σq�J�1hqL2
(4.1.44)� �pJv, J�1 Π=

S�,ΣhqL2 � pv, hqL2 .

The proof that J=J
�1
=

� IdH=
S�,Σ

is similar.

Lemma 4.8. Π=

S�,ΣJΠL2

=
� Π=

S�,ΣJ .

Proof. For any u, h P H we have, using Lemma 4.6,

pΠ=

S�,ΣJΠL2

= u, hqL2 � �pΠL2

= u, JpΠ=

S�,Σq�hqL2 � �pΠL2

= u,Π=

S�,ΣJhqL2

� �pu,Π=

S�,ΣJhqL2 � pJpΠ=

S�,Σq�u, hqL2 � pΠ=

S�,ΣJu, hqL2

implying the lemma.

Action-angle coordinates. We introduce action-angle coordinates on the tangential subspace

Hᵀ
S�,Σ de�ned in (4.1.41). Given the sets S� and Σ de�ned in (4.0.4) and (4.0.5), we de�ne the

set

S :� t1, . . . , νu � Z zt0u , a :� σana , a � 1, . . . , ν , (4.1.48)

and the action-angle coordinates pθj , IjqjPS, by the relations

αj �
c

1

π
pIj � ξjq cospθjq , βj � �

c
1

π
pIj � ξjq sinpθjq , ξj ¡ 0 , |Ij |   ξj , @ j P S . (4.1.49)

In view of (4.1.40)-(4.1.42), we represent any function of the phase space H as

Apθ, I, wq :� vᵀpθ, Iq � w ,

:� 1?
π

¸
jPS

��
Mj

a
Ij � ξj cospθjq

�M�1
j

a
Ij � ξj sinpθjq

�
cospjxq �

�
Mj

a
Ij � ξj sinpθjq

M�1
j

a
Ij � ξj cospθjq

�
sinpjxq

�
� w

� 1?
π

¸
jPS

��
Mj

a
Ij � ξj cospθj � jxq

�M�1
j

a
Ij � ξj sinpθj � jxq

��
� w (4.1.50)
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where θ :� pθjqjPS P Tν , I :� pIjqjPS P Rν and w P H=

S�,Σ.

Remark 4.9. In these coordinates the solutions (4.0.6) of the linear system (1.1.20) simply read

as Wvᵀp~Ωpκqt, 0q, where ~Ωpκq :� pΩjpκqqjPS is given in (4.0.8).

In view of (4.1.50), the involution S in (4.1.4) reads

~S : pθ, I, wq ÞÑ p�θ, I,Swq , (4.1.51)

the translation operator τς in (4.1.7) reads

~τς : pθ, I, wq ÞÑ pθ � ~ς, I, τςwq, @ς P R , (4.1.52)

where

~ :� pjqjPS � p1, . . . , νq P Zνzt0u , (4.1.53)

and the symplectic 2-form (4.1.15) becomes

W �
¸
jPS
pdθj ^ dIjq ` W|H=

S�,Σ
. (4.1.54)

We also note that W is exact, namely

W � dΛ , where Λpθ,I,wqrpθ, pI, pws :� �
¸
jPS

Ijpθj � 1
2

�
J�1
=
w, pw�

L2 (4.1.55)

is the associated Liouville 1-form (the operator J�1
=

is de�ned in (4.1.46)).

Given a Hamiltonian K : Tν�Rν�H=

S�,Σ Ñ R, the associated Hamiltonian vector �eld (with

respect to the symplectic form (4.1.54)) is

XK :� �BIK,�BθK,J=∇wK� � �BIK,�BθK,Π=

S�,ΣJ∇wK
�
, (4.1.56)

where ∇wK denotes the L2 gradient of K with respect to w P H=

S�,Σ. Indeed, the only nontrivial

component of the vector �eld XK is the last one, which we denote by rXKsw P H=

S�,Σ. It ful�lls

pJ�1
=
rXKsw, pwqL2 � dwKr pws � p∇wK, pwqL2 , @ pw P H=

S�,Σ , (4.1.57)

and (4.1.56) follows by Lemma 4.7. We remark that along the paper we only consider Hamilto-

nians such that the L2-gradient ∇wK de�ned by (4.1.57), as well as the Hamiltonian vector �eld

Π=

S�,ΣJ∇wK, maps spaces of Sobolev functions into Sobolev functions (not just distributions),

with possible loss of derivatives.
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Tangential and normal subspaces in complex variables. Each 2-dimensional symplectic

subspace Vn,σ, n P N, σ � �1, de�ned in (4.1.38)-(4.1.39) is isomorphic, through the linear map

MC de�ned in (4.1.32), to the complex subspace

Hj :�
!� zje

ijx

zje
�ijx

�
, zj P C

)
, with j � nσ P Z .

Denoting by Πj the L
2-projection on Hj , we have that ΠVn,σ �MC Πj pMCq�1. Thus MC is

an isomorphism between the tangential subspace Hᵀ
S�,Σ de�ned in (4.1.41) and

HS :�
!�z

z

�
: zpxq �

¸
jPS

zje
ijx
)

and between the normal subspace H=

S�,Σ de�ned in (4.1.42) and

HK
S0

:�
!�z

z

�
: zpxq �

¸
jPSc0

zje
ijx P L2

)
, Sc0 :� ZzpSY t0uq . (4.1.58)

Denoting by Πᵀ
S, ΠK

S0
, the L2-orthogonal projections on the subspaces HS and HK

S0
, we have that

Πᵀ
S�,Σ �MC Πᵀ

S pMCq�1 , Π=

S�,Σ �MC ΠK
S0
pMCq�1 . (4.1.59)

The following lemma, used in Section 4.4, is an easy corollary of the previous analysis.

Lemma 4.10. We have that pvᵀ,ΩWwqL2 � 0, for any vᵀ P Hᵀ
S�,Σ and w P H=

S�,Σ.

Proof. Write vᵀ �MCzᵀ andMCzK with zᵀ P HS and z
K P HK

S0
. Then, by (4.1.22) and (4.1.25),

pvᵀ,ΩWwqL2 �
�
MCzᵀ,ΩWMCzK

�
L2 �

�
zᵀ,ΩDz

K�
L2 � 0 ,

since ΩD preserves the subspace HK
S0
.

Remark 4.11. The same proof of Lemma 4.10 actually shows that pvn,�σ,ΩW vn,σqL2 � 0 for any

vn,�σ P Vn,�σ, for any n P N, σ � �1. Thus Wpvn,�σ, JΩW vn,σq � pvn,�σ, J�1JΩW vn,σqL2 � 0

which shows that JΩW maps Vn,σ in itself.

Notation. For a Às b means that a ¤ Cpsqb for some positive constant Cpsq. We denote

N :� t1, 2, . . .u and N0 :� t0u Y N.
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4.2 Functional setting

Along this chapter we consider functions upϕ, xq P L2
�
Tν�1,C

�
depending on the space variable

x P T � Tx and the angles ϕ P Tν � Tνϕ (so that Tν�1 � Tνϕ � Tx) which we expand in Fourier

series as

upϕ, xq �
¸
jPZ

ujpϕqei jx �
¸

`PZν ,jPZ
u`,je

ip`�ϕ�jxq . (4.2.1)

We also consider real valued functions upϕ, xq P R, as well as vector valued functions upϕ, xq P C2

(or upϕ, xq P R2). When no confusion appears, we denote simply by L2, L2pTν�1q, L2
x :� L2pTxq,

L2
ϕ :� L2pTνq either the spaces of real/complex valued, scalar/vector valued, L2-functions.

A crucial role is played by the following subspace of functions of pϕ, xq.

De�nition 4.12. (Quasi-periodic traveling waves) Let ~ :� p1, . . . , νq P Zν be the vector

de�ned in (4.1.53). A function upϕ, xq is called a quasi-periodic traveling wave if it has the form

upϕ, xq � Upϕ� ~xq where U : Tν Ñ CK , K P N, is a p2πqν-periodic function.

Comparing with De�nition 1.5, we �nd convenient to call quasi-periodic traveling wave both

the function upϕ, xq � Upϕ� ~xq and the function of time upωt, xq � Upωt� ~xq.
Quasi-periodic traveling waves are characterized by the relation

upϕ� ~ς, �q � τςu @ ς P R , (4.2.2)

where τς is the translation operator in (4.1.7). Product and composition of quasi-periodic trav-

eling waves is a quasi-periodic traveling wave. Expanded in Fourier series as in (4.2.1), a quasi-

periodic traveling wave has the form

upϕ, xq �
¸

`PZν ,jPZ,j�~�`�0

u`,je
ip`�ϕ�jxq , (4.2.3)

namely, comparing with De�nition 4.12,

upϕ, xq � Upϕ� ~xq , Upψq �
¸
`PZν

U`e
i`�ψ , U` � u`,�~�` . (4.2.4)

The traveling waves upϕ, xq � Upϕ � ~xq where Up�q belongs to the Sobolev space HspTν ,CKq
in (1.1.25) (with values in CK , K P N), form a subspace of the Sobolev space

HspTν�1q �
!
u �

¸
p`,jqPZν�1

u`,j e
ip`�ϕ�jxq : }u}2s :�

¸
p`,jqPZν�1

|u`,j |2x`, jy2s   8
)

(4.2.5)
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where x`, jy :� maxt1, |`|, |j|u. Note the equivalence of the norms (use (4.2.4))

}u}HspTνϕ�Txq �s }U}HspTνq .

For s ¥ s0 :� �
ν�1

2

�� 1 P N one has HspTν�1q � CpTν�1q, and HspTν�1q is an algebra. Along

the chapter we denote by } }s both the Sobolev norms in (1.1.25) and (4.2.5).

For K ¥ 1 we de�ne the smoothing operator ΠK on the traveling waves

ΠK : u �
¸

`PZν , jPSc0, j�~�`�0

u`,je
ip`�ϕ�jxq ÞÑ ΠKu �

¸
x`y¤K, jPSc0, j�~�`�0

u`,je
ip`�ϕ�jxq , (4.2.6)

and ΠK
K :� Id�ΠK . Note that, writing a traveling wave as in (4.2.4), the projector ΠK in (4.2.6)

is equal to

pΠKuqpϕ, xq � UKpϕ� ~xq , UKpψq :�
¸

`PZν , x`y¤K
U`e

i`�ψ .

Whitney-Sobolev functions. We consider families of Sobolev functions λ ÞÑ upλq P HspTν�1q
and λ ÞÑ Upλq P HspTνq which are k0-times di�erentiable in the sense of Whitney with respect to

the parameter λ :� pω, κq P F � Rν � rκ1, κ2s where F � Rν�1 is a closed set. The case that we

encounter is when ω belongs to the closed set of Diophantine vectors DCpυ, τq de�ned in (1.1.24).

We refer to De�nition 2.1 in [13], for the de�nition of a Whitney-Sobolev function u : F Ñ Hs

where Hs may be either the Hilbert space HspTν � Tq or HspTνq. Here we mention that, given

υ P p0, 1q, we can identify a Whitney-Sobolev function u : F Ñ Hs with k0 derivatives with the

equivalence class of functions f PW k0,8,υpRν�1, Hsq{ � with respect to the equivalence relation

f � g when Bjλfpλq � Bjλgpλq for all λ P F , |j| ¤ k0 � 1, with equivalence of the norms

}u}k0,υ
s,F �ν,k0 }u}Wk0,8,υpRν�1,Hsq :�

¸
|α|¤k0

υ|α|}Bαλu}L8pRν�1,Hsq .

The key result is the Whitney extension theorem, which associates to a Whitney-Sobolev function

u : F Ñ Hs with k0-derivatives a function ru : Rν�1 Ñ Hs, ru inW k0,8pRν�1, Hsq (independently
of the target Sobolev space Hs) with an equivalent norm. For sake of simplicity in the notation

we often denote } }k0,υ
s,F � } }k0,υ

s .

Thanks to this equivalence, all the tame estimates which hold for Sobolev spaces carry over

for Whitney-Sobolev functions. For example the following classical tame estimate for the product

holds: (see e.g. Lemma 2.4 in [13]): for all s ¥ s0 ¡ pν � 1q{2,

}uv}k0,υ
s ¤ Cps, k0q}u}k0,υ

s }v}k0,υ
s0 � Cps0, k0q}u}k0,υ

s0 }v}k0,υ
s . (4.2.7)

Moreover the following estimates hold for the smoothing operators de�ned in (4.2.6): for any
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traveling wave u

}ΠKu}k0,υ
s ¤ Kα}u}k0,υ

s�α , 0 ¤ α ¤ s , }ΠK
Ku}k0,υ

s ¤ K�α}u}k0,υ
s�α , α ¥ 0 . (4.2.8)

We also state a standard Moser tame estimate for the nonlinear composition operator, see e.g.

Lemma 2.6 in [13],

upϕ, xq ÞÑ fpuqpϕ, xq :� fpϕ, x, upϕ, xqq .

Since the variables pϕ, xq �: y have the same role, we state it for a generic Sobolev space HspTdq.

Lemma 4.13. (Composition operator) Let f P C8pTd �R,Rq. If upλq P HspTdq is a family

of Sobolev functions satisfying }u}k0,υ
s0 ¤ 1, then, for all s ¥ s0 :� pd� 1q{2,

}fpuq}k0,υ
s ¤ Cps, k0, fq

�
1� }u}k0,υ

s

�
.

If fpϕ, x, 0q � 0 then }fpuq}k0,υ
s ¤ Cps, k0, fq}u}k0,υ

s .

Diophantine equation. If ω is a Diophantine vector in DCpυ, τq, see (1.1.24), then the equation
ω � Bϕv � u, where upϕ, xq has zero average with respect to ϕ, has the periodic solution

pω � Bϕq�1u :�
¸

`PZνzt0u,jPZ

u`,j
iω � `e

ip`�ϕ�jxq .

For all ω P Rν , we de�ne its extension

pω � Bϕq�1
extupϕ, xq :�

¸
p`,jqPZν�1

χpω � `υ�1 x`yτ q
iω � ` u`,je

ip`�ϕ�jxq , (4.2.9)

where χ P C8pR,Rq is an even positive C8 cut-o� function such that

χpξq �
$&%0 if |ξ| ¤ 1

3

1 if |ξ| ¥ 2
3

, Bξχpξq ¡ 0 @ ξ P p1
3 ,

2
3q . (4.2.10)

Note that pω � Bϕq�1
extu � pω � Bϕq�1u for all ω P DCpυ, τq. Moreover, if upϕ, xq is a quasi-periodic

traveling wave with zero average with respect to ϕ, then, by (4.2.3), we see that pω � Bϕq�1
extupϕ, xq

is a quasi-periodic traveling wave. The following estimate holds

}pω � Bϕq�1
extu}k0,υ

s,Rν�1 ¤ Cpk0qυ�1}u}k0,υ
s�µ,Rν�1 , µ :� k0 � τpk0 � 1q . (4.2.11)

and, for F � DCpυ, τq � R�, one has }pω � Bϕq�1u}k0,υ
s,F ¤ Cpk0qυ�1}u}k0,υ

s�µ,F .
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Linear operators. We consider ϕ-dependent families of linear operators A : Tν ÞÑ LpL2pTxqq,
ϕ ÞÑ Apϕq, acting on subspaces of L2pTxq, either real or complex valued. We also regard A as

an operator (which for simplicity we denote by A as well) that acts on functions upϕ, xq of space
and time, that is

pAuqpϕ, xq :� pApϕqupϕ, � qq pxq . (4.2.12)

The action of an operator A as in (4.2.12) on a scalar function upϕ, xq P L2 expanded as in

(4.2.1) is

Aupϕ, xq �
¸
j,j1PZ

Aj
1

j pϕquj1pϕqei jx �
¸
j,j1PZ

¸
`,`1PZν

Aj
1

j p`� `1qu`1,j1eip`�ϕ�jxq . (4.2.13)

We identify an operator A with its matrix
�
Aj

1

j p`� `1q
�
j,j1PZ,`,`1PZν , which is Töplitz with respect

to the index `. We always consider Töplitz operators as in (4.2.12), (4.2.13).

Real operators. A linear operator A is real if A � A, where A is de�ned by Apuq :� Apuq.
Equivalently A is real if it maps real valued functions into real valued functions. We represent a

real operator acting on pη, ζq belonging to (a subspace of) L2pTx,R2q by a matrix

R �
�
A B

C D

�
(4.2.14)

where A,B,C,D are real operators acting on the scalar valued components η, ζ P L2pTx,Rq.
The change of coordinates (4.1.24) transforms the real operator R into a complex one acting

on the variables pz, zq, given by the matrix

R :� C�1RC �
�
R1 R2

R2 R1

�
,

R1 :� 1

2
tpA�Dq � ipB � Cqu , R2 :� 1

2
tpA�Dq � ipB � Cqu .

(4.2.15)

A matrix operator acting on the complex variables pz, zq of the form (4.2.15), we call it real. We

shall also consider real operators R of the form (4.2.15) acting on subspaces of L2.

Lie expansion. Let Xpϕq be a linear operator with associated �ow Φτ pϕq de�ned by$&%BτΦτ pϕq � XpϕqΦτ pϕq
Φ0pϕq � Id ,

τ P r0, 1s .
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Let Φpϕq :� Φτ pϕq|τ�1 denote the time-1 �ow. Given a linear operator Apϕq, the conjugated

operator

A�pϕq :� Φpϕq�1ApϕqΦpϕq

admits the Lie expansion, for any M P N0,

A�pϕq �
M̧

m�0

p�1qm
m!

admXpϕqpApϕqq �RM pϕq ,

RM pϕq � p�1qM�1

M !

» 1

0
p1� τqM pΦτ pϕqq�1adM�1

XpϕqpApϕqqΦτ pϕq dτ ,

(4.2.16)

where adXpϕqpApϕqq :� rXpϕq, Apϕqs � XpϕqApϕq �ApϕqXpϕq and ad0
Xpϕq :� Id.

In particular, for A � ω � Bϕ, since rXpϕq, ω � Bϕs � �pω � BϕXqpϕq, we obtain

Φpϕq�1 � ω � Bϕ � Φpϕq �ω � Bϕ �
M̧

m�1

p�1qm�1

m!
adm�1

Xpϕqpω � BϕXpϕqq

� p�1qM
M !

» 1

0
p1� τqM pΦτ pϕqq�1adMXpϕqpω � BϕXpϕqqΦτ pϕqdτ .

(4.2.17)

For matrices of operators Xpϕq and Apϕq as in (4.2.15), the same formula (4.2.16) holds.

4.2.1 Pseudodi�erential calculus

In this section we report fundamental notions of pseudodi�erential calculus, following [44].

De�nition 4.14. (ΨDO) A pseudodi�erential symbol apx, jq of order m is the restriction to

R� Z of a function apx, ξq which is C8-smooth on R� R, 2π-periodic in x, and satis�es

|BαxBβξ apx, ξq| ¤ Cα,βxξym�β , @α, β P N0 .

We denote by Sm the class of symbols of order m and S�8 :� Xm¥0S
m. To a symbol apx, ξq in

Sm we associate its quantization acting on a 2π-periodic function upxq � °
jPZ uj e

ijx as

rOppaquspxq :�
¸
jPZ

apx, jquj eijx .

We denote by OPSm the set of pseudodi�erential operators of orderm and OPS�8 :� �
mPR OPSm.

For a matrix of pseudodi�erential operators

A �
�
A1 A2

A3 A4

�
, Ai P OPSm, i � 1, . . . , 4 (4.2.18)
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we say that A P OPSm.

When the symbol apxq is independent of ξ, the operator Oppaq is the multiplication operator

by the function apxq, i.e. Oppaq : upxq ÞÑ apxqupxq. In such a case we also denote Oppaq � apxq.
We shall use the following notation, used also in [4, 44, 13]. For any m P Rzt0u, we set

|D|m :� Op
�
χpξq|ξ|m� ,

where χ is an even, positive C8 cut-o� satisfying (4.2.10). We also identify the Hilbert transform

H, acting on the 2π-periodic functions, de�ned by

Hpeijxq :� �i sign pjqeijx @j � 0 , Hp1q :� 0 , (4.2.19)

with the Fourier multiplier Opp�i sign pξqχpξqq. Similarly we regard the operator

B�1
x

�
eijx

�
:� � i j�1 eijx @ j � 0 , B�1

x r1s :� 0 , (4.2.20)

as the Fourier multiplier B�1
x � Op

��iχpξqξ�1
�
and the projector π0, de�ned on the 2π-periodic

functions as

π0u :� 1

2π

»
T
upxq dx , (4.2.21)

with the Fourier multiplier Op
�
1� χpξq�. Finally we de�ne, for any m P Rzt0u,

xDym :� π0 � |D|m :� Op
�p1� χpξqq � χpξq|ξ|m� .

We shall consider families of pseudodi�erential operators with a symbol apλ;ϕ, x, ξq which is k0-

times di�erentiable with respect to a parameter λ :� pω, κq in an open subset Λ0 � Rν�rκ1, κ2s.
Note that BkλA � Op

�Bkλa� for any k P Nν�1
0 .

We recall the pseudodi�erential norm introduced in De�nition 2.11 in [44].

De�nition 4.15. (Weighted ΨDO norm) Let Apλq :� apλ;ϕ, x,Dq P OPSm be a family of

pseudodi�erential operators with symbol apλ;ϕ, x, ξq P Sm, m P R, which are k0-times di�eren-

tiable with respect to λ P Λ0 � Rν�1. For υ P p0, 1q, α P N0, s ¥ 0, we de�ne

}A}k0,υ
m,s,α :�

¸
|k|¤k0

υ|k| sup
λPΛ0

}BkλApλq}m,s,α

where }Apλq}m,s,α :� max0¤β¤α supξPR }Bβξ apλ; �, �, ξq}s xξy�m�β . For a matrix of pseudodi�er-

ential operators A P OPSm as in (4.2.18), we de�ne }A}k0,υ
m,s,α :� maxi�1,...,4 }Ai}k0,υ

m,s,α .

Given a function apλ;ϕ, xq P C8 which is k0-times di�erentiable with respect to λ, the
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weighted norm of the corresponding multiplication operator is

}Oppaq}k0,υ
0,s,α � }a}k0,υ

s , @α P N0 . (4.2.22)

Composition of pseudodi�erential operators. If Oppaq, Oppbq are pseudodi�erential op-
erators with symbols a P Sm, b P Sm1

, m,m1 P R, then the composition operator OppaqOppbq
is a pseudodi�erential operator Oppa#bq with symbol a#b P Sm�m1

. It admits the asymptotic

expansion: for any N ¥ 1

pa#bqpλ;ϕ, x, ξq �
N�1̧

β�0

1

iββ!
Bβξ apλ;ϕ, x, ξqBβxbpλ;ϕ, x, ξq � prN pa, bqqpλ;ϕ, x, ξq (4.2.23)

where rN pa, bq P Sm�m1�N . The following result is proved in Lemma 2.13 in [44].

Lemma 4.16. (Composition) Let A � apλ;ϕ, x,Dq, B � bpλ;ϕ, x,Dq be pseudodi�erential

operators with symbols apλ;ϕ, x, ξq P Sm, bpλ;ϕ, x, ξq P Sm1
, m,m1 P R. Then A�B P OPSm�m1

satis�es, for any α P N0, s ¥ s0,

}AB}k0,υ
m�m1,s,α Àm,α,k0 Cpsq }A}k0,υ

m,s,α }B}k0,υ
m1,s0�|m|�α,α

� Cps0q }A}k0,υ
m,s0,α

}B}k0,υ
m1,s�|m|�α,α .

(4.2.24)

Moreover, for any integer N ¥ 1, the remainder RN :� OpprN q in (4.2.23) satis�es

}OpprN pa, bqq}k0,υ
m�m1�N,s,α Àm,N,α,k0 Cpsq }A}k0,υ

m,s,N�α }B}k0,υ
m1,s0�|m|�2N�α,N�α

� Cps0q }A}k0,υ
m,s0,N�α }B}

k0,υ
m1,s�|m|�2N�α,N�α .

(4.2.25)

Both (4.2.24)-(4.2.25) hold with the constant Cps0q interchanged with Cpsq.
Analogous estimates hold if A and B are matrix operators of the form (4.2.18).

The commutator between two pseudodi�erential operators Oppaq P OPSm and Oppbq P
OPSm

1
is a pseudodi�erential operator in OPSm�m1�1 with symbol a � b P Sm�m1�1, namely

rOppaq,Oppbqs � Op pa � bq, that admits, by (4.2.23), the expansion

a � b � �i ta, bu � rr2pa, bq , rr2pa, bq :� r2pa, bq � r2pb, aq P Sm�m1�2 ,

where ta, bu :� BξaBxb� BxaBξb ,
(4.2.26)

is the Poisson bracket between apx, ξq and bpx, ξq. As a corollary of Lemma 4.16 we have:

Lemma 4.17. (Commutator) Let A � Oppaq and B � Oppbq be pseudodi�erential operators

with symbols apλ;ϕ, x, ξq P Sm, bpλ;ϕ, x, ξq P Sm1
, m,m1 P R. Then the commutator rA,Bs :�
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AB �BA P OPSm�m1�1 satis�es

}rA,Bs}k0,υ
m�m1�1,s,α Àm,m1,α,k0 Cpsq }A}k0,υ

m,s�|m1|�α�2,α�1 }B}k0,υ
m1,s0�|m|�α�2,α�1

� Cps0q }A}k0,υ
m,s0�|m1|�α�2,α�1 }B}k0,υ

m1,s�|m|�α�2,α�1 .
(4.2.27)

Finally we consider the exponential of a pseudodi�erential operator of order 0. The following

lemma follows as in Lemma 2.12 of [43] (or Lemma 2.17 in [44]).

Lemma 4.18. (Exponential map) If A :� Oppapλ;ϕ, x, ξqq is in OPS0, then eA is in OPS0

and for any s ¥ s0, α P N0, there is a constant Cps, αq ¡ 0 so that

}eA � Id}k0,υ
0,s,α ¤ }A}k0,υ

0,s�α,α exp
�
Cps, αq}A}k0,υ

0,s0�α,α
�
.

The same holds for a matrix A of the form (4.2.18) in OPS0.

Egorov Theorem. Consider the family of ϕ-dependent di�eomorphisms of Tx de�ned by

y � x� βpϕ, xq ðñ x � y � β̆pϕ, yq , (4.2.28)

where βpϕ, xq is a small smooth function, and the induced operators

pBuqpϕ, xq :� upϕ, x� βpϕ, xqq , pB�1uqpϕ, yq :� upϕ, y � β̆pϕ, yqq . (4.2.29)

Lemma 4.19. (Composition) Let }β}k0,υ
2s0�k0�2 ¤ δps0, k0q small enough. Then the composition

operator B satis�es the tame estimates, for any s ¥ s0,

}Bu}k0,υ
s Às,k0 }u}k0,υ

s�k0
� }β}k0,υ

s }u}k0,υ
s0�k0�1 ,

and the function β̆ de�ned in (4.2.28) by the inverse di�eomorphism satis�es }β̆}k0,υ
s Às,k0

}β}k0,υ
s�k0

.

The following result is a small variation of Proposition 2.28 of [43].

Proposition 4.20. (Egorov) Let N P N, q0 P N0, S ¡ s0 and assume that Bkλβpλ; �, �q are C8
for all |k| ¤ k0. There exist constants σN , σN pq0q ¡ 0, δ � δpS,N, q0, k0q P p0, 1q such that,

if }β}k0,υ
s0�σN pq0q ¤ δ, then the conjugated operator B�1 � Bmx � B, m P Z, is a pseudodi�erential

operator of order m with an expansion of the form

B�1 � Bmx � B �
Ņ

i�0

pm�ipλ;ϕ, yqBm�iy �RN pϕq

with the following properties:
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1. The principal symbol of pm is

pmpλ;ϕ, yq �
�
r1� βxpλ;ϕ, xqsm

	
|x�y�β̆pλ;ϕ,yq

where β̆pλ;ϕ, yq has been introduced in (4.2.28). For any s ¥ s0 and i � 1, . . . , N ,

}pm � 1}k0,υ
s , }pm�i}k0,υ

s Às,N }β}k0,υ
s�σN . (4.2.30)

2. For any q P Nν0 with |q| ¤ q0, n1, n2 P N0 with n1 � n2 � q0 ¤ N � 1� k0 �m, the operator

xDyn1BqϕRN pϕqxDyn2 is Dk0-tame with a tame constant satisfying, for any s0 ¤ s ¤ S,

MxDyn1BqϕRN pϕqxDyn2 psq ÀS,N,q0 }β}k0,υ
s�σN pq0q . (4.2.31)

3. Let s0   s1 and assume that }βj}s1�σN pq0q ¤ δ, j � 1, 2. Then }∆12pm�i}s1 Às1,N
}∆12β}s1�σN , i � 0, . . . , N , and, for any |q| ¤ q0, n1, n2 P N0 with n1 � n2 � q0 ¤ N �m,

}xDyn1Bqϕ∆12RN pϕqxDyn2}BpHs1 q Às1,N,n1,n2 }∆12β}s1�σN pq0q .

Finally, if βpϕ, xq is a quasi-periodic traveling wave, then B is momentum preserving (we refer

to De�nition 4.38 and Lemma 4.44), as well as the conjugated operator B�1 � Bmx � B, and each

function pm�i, i � 0, . . . , N , is a quasi-periodic traveling wave.

Dirichlet-Neumann operator. We remind the following decomposition of the Dirichlet-

Neumann operator proved in Proposition 2.37 of [44], in the case of in�nite depth, and in

Appendix A of [13], for �nite depth.

Proposition 4.21. (Dirichlet-Neumann operator) Assume that Bkληpλ, �, �q is C8pTν � Txq
for all |k| ¤ k0. There exists δps0, k0q ¡ 0 such that, if }η}k0,υ

2s0�2k0�1 ¤ δps0, k0q, then the

Dirichlet-Neumann operator Gpηq � Gpη, hq may be written as

Gpη, hq � Gp0, hq �RGpηq (4.2.32)

where RGpηq :� RGpη, hq P OPS�8 is an integral operator with C8 Kernel KG which satis�es,

for all m, s, α P N, the estimate

}RGpηq}k0,υ
�m,s,α ¤ Cps,m, α, k0q}KG}k0,υ

s�m�α ¤ Cps,m, α, k0q}η}k0,υ
s�s0�2k0�m�α�3 . (4.2.33)

Let s1 ¡ 2s0�1. There exists δps1q ¡ 0 such that the map t}η}s1�6   δps1qu Ñ Hs1pTν�T�Tq,
η ÞÑ KGpηq is C1 with bounded derivative.

We conclude by recalling the estimate for the Dirichlet-Neumann operator and for its �rst
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and second variation in η, see Lemma 2.41 in [44].

Lemma 4.22 (Tame estimates for Gpηq). There it δps0, k0q ¡ 0 such that, if }η}k0,υ
3s0�2k0�5 ¤

δps0, k0q, then, for any s ¥ s0,

}pGpηq �Gp0qqζ}k0,υ
s Às,k0 }η}k0,υ

s�2s0�2k0�3}ζ}k0,υ
s0 � }η}k0,υ

3s0�2k0�3}ζ}k0,υ
s ,

}G1pηqrpηsζ}k0,υ
s Às,k0 }ψ}k0,υ

s�2 }pη}k0,υ
s0�1 � }ψ}k0,υ

s0�2}pη}k0,υ
s�1

� }η}k0,υ
s�2s0�2k0�4}ψ}k0,υ

s0�2}pη}k0,υ
s0�1 ,

}G2pηqrpη, pηsζ}k0,υ
s Às,k0 }ψ}k0,υ

s�3 p}pη}k0,υ
s0�2q2 � }ψ}k0,υ

s0�3}pη}k0,υ
s0�2}pη}k0,υ

s�2

� }η}k0,υ
s�2s0�2k0�4}ψ}k0,υ

s0�3p}pη}k0,υ
s0�2q2 .

(4.2.34)

4.2.2 Dk0-tame and modulo-tame operators

We present the notion of tame and modulo tame operators introduced in [44]. Let A :� Apλq
be a linear operator as in (4.2.12), k0-times di�erentiable with respect to the parameter λ in the

open set Λ0 � Rν�1.

De�nition 4.23. (Dk0-σ-tame) Let σ ¥ 0. A linear operator A :� Apλq is Dk0-σ-tame if there

exists a non-decreasing function rs0, Ss Ñ r0,�8q, s ÞÑ MApsq, with possibly S � �8, such

that, for all s0 ¤ s ¤ S and u P Hs�σ,

sup
|k|¤k0

sup
λPΛ0

υ|k|}pBkλApλqqu}s ¤MAps0q }u}s�σ �MApsq }u}s0�σ . (4.2.35)

We say that MApsq is a tame constant of the operator A. The constant MApsq � MApk0, σ, sq
may also depend on k0, σ but we shall often omit to write them. When the "loss of derivatives"

σ is zero, we simply write Dk0-tame instead of Dk0-0-tame. For a matrix operator as in (4.2.15),

we denote the tame constant MRpsq :� max tMR1psq,MR2psqu.

Note that the tame constantsMApsq are not uniquely determined. An immediate consequence

of (4.2.35) is that }A}LpHs0�σ ,Hs0q ¤ 2MAps0q. Also note that, representing the operator A by

its matrix elements pAj1j p`� `1qq`,`1PZν ,j,j1PZ as in (4.2.13), we have for all |k| ¤ k0, j
1 P Z, `1 P Zν ,

υ2|k|¸
`,j

x`, jy2s ��BkλAj1j p`� `1q��2 ¤ 2
�
MAps0q

�2 x`1, j1y2ps�σq � 2pMApsqq2 x`1, j1y2ps0�σq . (4.2.36)

The class of Dk0-σ-tame operators is closed under composition.

Lemma 4.24. (Composition, Lemma 2.20 in [44]) Let A,B be respectively Dk0-σA-tame and

Dk0-σB-tame operators with tame constants respectively MApsq and MBpsq. Then the composed
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operator A �B is Dk0-pσA � σBq-tame with tame constant

MABpsq ¤ Cpk0q pMApsqMBps0 � σAq �MAps0qMBps� σAqq .

It is proved in Lemma 2.22 in [44] that the action of a Dk0-σ-tame operator Apλq on a Sobolev

function u � upλq P Hs�σ is bounded by

}Au}k0,υ
s Àk0 MAps0q}u}k0,υ

s�σ �MApsq}u}k0,υ
s0�σ . (4.2.37)

Pseudodi�erential operators are tame operators. We use in particular the following lemma:

Lemma 4.25. (Lemma 2.21 in [44]) Let A � apλ;ϕ, x,Dq P OPS0 be a family of pseudodif-

ferential operators satisfying }A}k0,υ
0,s,0   8 for s ¥ s0. Then A is Dk0-tame with a tame constant

MApsq satisfying, for any s ¥ s0,

MApsq ¤ Cpsq}A}k0,υ
0,s,0 . (4.2.38)

The same statement holds for a matrix operator R as in (4.2.15).

In view of the KAM reducibility scheme of Section 4.7 we also consider the stronger notion

of Dk0-modulo-tame operator, that we need only for operators with loss of derivative σ � 0. We

�rst recall the notion of majorant operator : given a linear operator A acting as in (4.2.13), we

de�ne the majorant operator |A| by its matrix elements p|Aj1j p`� `1q|q`,`1PZν ,j,j1PZ.

De�nition 4.26. (Dk0-modulo-tame) A linear operator A � Apλq is Dk0-modulo-tame if

there exists a non-decreasing function rs0, Ss Ñ r0,�8s, s ÞÑM7
Apsq, such that for all k P Nν�1

0 ,

|k| ¤ k0, the majorant operator |BkλA| satis�es, for all s0 ¤ s ¤ S and u P Hs,

sup
|k|¤k0

sup
λPΛ0

υ|k|}|BkλA|u}s ¤M7
Aps0q }u}s �M7

Apsq }u}s0 . (4.2.39)

The constant M7
Apsq is called a modulo-tame constant for the operator A. For a matrix of

operators as in (4.2.15), we denote the modulo-tame constant M7
Rpsq :� maxtM7

R1
psq,M7

R2
psqu.

If A, B are Dk0-modulo-tame operators with |Aj1j p`q| ¤ |Bj1

j p`q|, then M7
Apsq ¤ M7

Bpsq. A

Dk0-modulo-tame operator is also Dk0-tame and MApsq ¤M7
Apsq.

In view of the next lemma, given a linear operator A acting as in (4.2.13), we de�ne the

operator xBϕybA, b P R, whose matrix elements are x`� `1ybAj1j p`� `1q.

Lemma 4.27. (Sum and composition, Lemma 2.25 in [44]) Let A, B, xBϕybA, xBϕybB
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be Dk0-modulo-tame operators. Then A�B, A �B and xBϕyb pABq are Dk0-modulo-tame with

M7
A�Bpsq ¤M7

Apsq �M7
Bpsq

M7
ABpsq ¤ Cpk0q

�
M7

ApsqM7
Bps0q �M7

Aps0qM7
Bpsq

�
M7

xBϕybpABqpsq ¤ CpbqCpk0q
�
M7

xBϕybApsqM
7
Bps0q �M7

xBϕybAps0qM7
Bpsq

�M7
ApsqM7

xBϕybBps0q �M7
Aps0qM7

xBϕybBpsq
�
.

The same statement holds for matrix operators A, B as in (4.2.15).

By Lemma 4.27 we deduce the following result, cfr. Lemma 2.20 in [43].

Lemma 4.28. (Exponential) Let A and xBϕybA be Dk0-modulo-tame and assume thatM7
Aps0q ¤

1. Then the operators e�A� Id and xBϕyb e�A� Id are Dk0-modulo-tame with modulo-tame con-

stants satisfying

M7
e�A�Id

psq Àk0 M7
Apsq , M7

xBϕybe�A�Id
psq Àk0,b M

7
xBϕybApsq �M7

ApsqM7
xBϕybAps0q .

Given a linear operator A acting as in (4.2.13), we de�ne the smoothed operator ΠNA, N P N
whose matrix elements are

pΠNAqj
1

j p`� `1q :�
$&%A

j1

j p`� `1q if x`� `1y ¤ N

0 otherwise .
(4.2.40)

We also denote ΠK
N :� Id�ΠN . It is proved in Lemma 2.27 in [44] that

M7
ΠK
NA
psq ¤ N�bM7

xBϕybApsq , M7
ΠK
NA
psq ¤M7

Apsq . (4.2.41)

The same estimate holds with a matrix operator R as in (4.2.15).

4.2.3 Tame estimates for the �ow of pseudo-PDEs

We report in this section some results concerning tame estimates for the �ow Φpτq of the pseudo-
PDE Cauchy problem $&%Bτu � i Op

�
apϕ, xq |ξ| 12 �u

up0, ϕ, xq � u0pϕ, xq
, ϕ P Tν x P T , (4.2.42)

where apϕ, xq � apλ;ϕ, xq is a real valued function that is C8 with respect to the variables pϕ, xq
and k0-times di�erentiable with respect to the parameters λ � pω, κq. The function a � apiq
may also depend on the "approximate" torus ipϕq. The �ow operator Φpτq � Φpλ;ϕ, τq satis�es
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the equation $&%BτΦpτq � i Op
�
apϕ, xq |ξ| 12 �Φpτq

Φp0q � Id .
(4.2.43)

Since the function apϕ, xq is real valued, usual energy estimates imply that the �ow Φpτq is a
bounded operator mapping Hs

x to Hs
x. Moreover, since (4.2.43) is an autonomous equation, the

�ow Φpϕ, τq satis�es the group property

Φpϕ, τ1 � τ2q � Φpϕ, τ1q � Φpϕ, τ2q , Φpϕ, τq�1 � Φpϕ,�τq . (4.2.44)

Since apλ � q is k0-times di�erentiable with respect to the parameter λ, then Φpλ;ϕ, τq is k0-

times di�erentiable with respect to λ as well. Note also that Φ�1pτq � Φp�τq � Φpτq because
there operators solve the same Cauchy problem. Moreover, if apϕ, xq is oddpϕ, xq, then the real

operator

Φpϕ, xq :�
�

Φpϕ, xq 0

0 Φpϕ, xq

�
is reversibility preserving by Lemma 4.32.

The operator BkλBβϕΦ loses |Dx|
|β|�|k|

2 derivatives, which in (4.2.46) are compensated by xDy�m1

on the left hand side and xDy�m2 on the right hand side, with m1,m2 P R satisfying m1�m2 �
1
2 p|β| � |k|q. The following proposition provides tame estimates in the Sobolev spaces Hs

ϕ,x.

Proposition 4.29. Let β0, k0 P N0. For any β, k P Nν0 with |β| ¤ β0, |k| ¤ k0, for any

m1,m2 P R with m1 �m2 � 1
2p|β| � |k|q and for any s ¥ s0 :� pν � 1q{2, there exist constants

σp|β| , |k| ,m1,m2q ¡ 0, δps,m1q ¡ 0 such that, if

}a}2s0�|m1|�2 ¤ δps,m1q , }a}k0,υ
s0�σpβ0,k0,m1,m2q ¤ 1 , (4.2.45)

then the �ow Φpτq � Φpλ;ϕ, τq of (4.2.42) satis�es

sup
τPr0,1s

} xDy�m1 BkλBβϕΦpτq xDy�m2 h}s

Às,β0,k0,m1,m2 υ
�|k|� }h}s � }a}k0,υ

s�σp|β|,|k|,m1,m2q }h}s0
�
, (4.2.46)

sup
τPr0,1s

}Bkλ pΦpτq � Idqh}s

Às υ�|k|
�}a}k0,υ

s0 }h}
s�|k|�1

2

� }a}k0,υ

s�s0�k0�3
2

}h}
s0�|k|�1

2

�
. (4.2.47)

Proof. See Proposition 2.37 in [13] and Appendix A in [44].

We consider also the dependence of the �ow Φ with respect to the torus i � ipϕq and the

estimates for the adjoint operator Φ�.
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Proposition 4.30. Let s1 ¡ s0 and β0 P N0. For any β P Nν0, |β| ¤ β0, and for any m1,m2 P R
satisfying m1 �m2 � 1

2 p|β| � 1q, there exists a constant σp|β|q � σ p|β| ,m1,m2q ¡ 0 such that,

if }a}s1�σpβ0q ¤ δpsq with δpsq ¡ 0 small enough, then the following estimate holds:

sup
τPr0,1s

} xDy�m1 Bβϕ∆12Φpτq xDy�m2 }s1 Às1 }∆12a}s1�σp|β|q }h}s1 , (4.2.48)

where ∆12Φ :� Φpi2q � Φpi1q and ∆12a :� api2q � api1q. Moreover, for any k P Nν�1
0 , |k| ¤ k0

and for all s ¥ s0,

}pBkλΦ�qh}s Às υ�|k|
� }h}

s�|k|
2

� }a}k0,υ

s�s0�|k|�3
2

}h}
s0�|k|

2

�
,

}Bkλ pΦ� � Idqh}s Às υ�|k|
�}a}k0,υ

s0 }h}
s�|k|�1

2

� }a}k0,υ
s�s0�|k|�2 }h}s0�|k|�1

2

�
.

Finally, for all s P rs0, s1s, one has }∆12Φ�h}s Às }∆12a}
s�s0�1

2
}h}

s�1
2
.

Proof. See Lemma 2.38 in [13] and Appendix A in [44].

4.2.4 Hamiltonian and Reversible operators

Along the reduction of the linearized operators we shall exploit both the Hamiltonian and re-

versible structure, that we now present.

Hamiltonian operators. A matrix operator R as in (4.2.14) is Hamiltonian if the matrix

J�1R �
�

0 �Id

Id 0

��
A B

C D

�
�

�
�C �D
A B

�

is self-adjoint, namely B� � B, C� � C, A� � �D and A,B,C,D are real.

Correspondingly, a matrix operator as in (4.2.15) is Hamiltonian if

R�
1 � �R1 , R�

2 � R2 . (4.2.49)

Symplectic operators. A ϕ-dependent family of linear operators Rpϕq, ϕ P Tν , as in (4.2.14)

is symplectic if

WpRpϕqu,Rpϕqvq �Wpu, vq @u, v P L2pTx,R2q , (4.2.50)

where the symplectic 2-form W is de�ned in (4.1.15).

Reversible and reversibility preserving operators. Let S be an involution as in (4.1.4)

acting on the real variables pη, ζq P R2, or as in (4.1.51) acting on the action-angle-normal

variables pθ, I, wq, or as in (4.1.29) acting in the pz, zq complex variables introduced in (4.1.24).
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De�nition 4.31. (Reversibility) A ϕ-dependent family of operators Rpϕq, ϕ P Tν , is

• reversible if Rp�ϕq � S � �S �Rpϕq for all ϕ P Tν ;

• reversibility preserving if Rp�ϕq � S � S �Rpϕq for all ϕ P Tν .

Since in the complex coordinates pz, zq the involution S de�ned in (4.1.4) reads as in (4.1.29),

an operator Rpϕq as in (4.2.15) is reversible, respectively anti-reversible, if, for any i � 1, 2,

Rip�ϕq � S � �S �Ripϕq , resp. Rip�ϕq � S � S �Ripϕq , (4.2.51)

where, with a small abuse of notation, we still denote pSuqpxq � up�xq. Moreover, recalling that

in the Fourier coordinates such involution reads as in (4.1.30), we obtain the following lemma.

Lemma 4.32. A ϕ-dependent family of operators Rpϕq, ϕ P Tν , as in (4.2.15) is

• reversible if, for any i � 1, 2,

pRiqj
1

j p�ϕq � �pRiqj1j pϕq @ϕ P Tν , i.e. pRiqj
1

j p`q � �pRiqj1j p`q @ ` P Zν ; (4.2.52)

• reversibility preserving if, for any i � 1, 2,

pRiqj
1

j p�ϕq � pRiqj1j pϕq @ϕ P Tν , i.e. pRiqj
1

j p`q � pRiqj1j p`q @ ` P Zν . (4.2.53)

Note that the composition of a reversible operator with a reversibility preserving operator is

reversible. The �ow generated by a reversibility preserving operator is reversibility preserving.

If Rpϕq is reversibility preserving, then pω � BϕRqpϕq is reversible.
We shall say that a linear operator of the form ω � Bϕ�Apϕq is reversible if Apϕq is reversible.

Conjugating the linear operator ω � Bϕ�Apϕq by a family of invertible linear maps Φpϕq, we get
the transformed operator

Φ�1pϕq � �ω � Bϕ �Apϕq� � Φpϕq � ω � Bϕ �A�pϕq ,
A�pϕq :� Φ�1pϕq pω � BϕΦpϕqq � Φ�1pϕqApϕqΦpϕq .

(4.2.54)

The conjugation of a reversible operator with a reversibility preserving operator is reversible.

Lemma 4.33. A pseudodi�erential operator Oppapϕ, x, ξqq is reversible, respectively reversibility
preserving, if and only if its symbol satis�es

ap�ϕ,�x, ξq � �apϕ, x, ξq , resp. ap�ϕ,�x, ξq � apϕ, x, ξq . (4.2.55)
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Proof. If the symbols a satis�es (4.2.55), then, recalling the complex form of the involution S
in (4.1.29)-(4.1.30), we deduce that Oppapϕ, x, ξqq is reversible, respectively anti-reversible. The

vice versa follows using that apϕ, x, jq � e�ijxOppapϕ, x, ξqqreijxs.

Remark 4.34. Let Apϕq � Rpϕq � T pϕq be a reversible operator. Then Apϕq � R�pϕq � T�pϕq
where both operators

R�pϕq :� 1
2pRpϕq � SRp�ϕqSq , T�pϕq :� 1

2pT pϕq � ST p�ϕqSq ,

are reversible. If Rpϕq � Opprpϕ, x, ξqq is pseudodi�erential, then

R�pϕq � Oppr�pϕ, x, ξqq , r�pϕ, x, ξq :� 1
2prpϕ, x, ξq � rp�ϕ,�x, ξqq

and the pseudodi�erential norms of Opprq and Oppr�q are equivalent. If T pϕq is a tame operator

with a tame constant MT psq, then T�pϕq is a tame operator as well with an equivalent tame

constant.

De�nition 4.35. (Reversible and anti-reversible function) A function upϕ, �q is called

Reversible if Supϕ, �q � up�ϕ, �q pcfr.(4.1.17)q; Anti � reversible if � Supϕ, �q � up�ϕ, �q .

The same de�nition holds in the action-angle-normal variables pθ, I, wq with the involution ~S
de�ned in (4.1.51) and in the pz, zq complex variables with the involution in (4.1.29).

A reversibility preserving operator maps reversible, respectively anti-reversible, functions into

reversible, respectively anti-reversible, functions.

Lemma 4.36. Let X be a reversible vector �eld, according to (4.1.5), and upϕ, xq be a reversible

quasi-periodic function. Then the linearized operator duXpupϕ, �qq is reversible, according to

De�nition 4.31.

Proof. Di�erentiating (4.1.5) we get pduXqpSuq � S � �SpduXqpuq and use Supϕ, �q � up�ϕ, �q.

We also note the following lemma.

Lemma 4.37. The projections Πᵀ
S�,Σ, Π=

S�,Σ de�ned in Section 4.1.3 commute with the involution

S de�ned in (4.1.4), i.e. are reversibility preserving. The orthogonal projectors ΠS and ΠK
S0

commute with the involution in (4.1.29), i.e. are reversibility preserving.

Proof. The involution S de�ned in (4.1.4) maps Vn,� into itself, acting as in (4.1.36). Then, by

the decomposition (4.1.33), each projector ΠVn,σ commutes with S.
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4.2.5 Momentum preserving operators

The following de�nition is crucial in the construction of the traveling waves.

De�nition 4.38. (Momentum preserving) A ϕ-dependent family of linear operators Apϕq,
ϕ P Tν , is momentum preserving if

Apϕ� ~ςq � τς � τς �Apϕq , @ϕ P Tν , ς P R , (4.2.56)

where the translation operator τς is de�ned in (4.1.7). A linear matrix operator Apϕq of the form
(4.2.14) or (4.2.15) is momentum preserving if each of its components is momentum preserving.

Momentum preserving operators are closed under several operations.

Lemma 4.39. Let Apϕq, Bpϕq be momentum preserving operators. Then:

(i) (Composition): Apϕq �Bpϕq is a momentum preserving operator.

(ii) (Adjoint): the adjoint pApϕqq� is momentum preserving.

(iii) (Inversion): If Apϕq is invertible then Apϕq�1 is momentum preserving.

(iv) (Flow): Assume that

BtΦtpϕq � ApϕqΦtpϕq , Φ0pϕq � Id , (4.2.57)

has a unique propagator Φtpϕq for any t P r0, 1s. Then Φtpϕq is momentum preserving.

Proof. Item piq follows directly by (4.2.56). Item piiq, respectively piiiq, follows by taking the

adjoint, respectively the inverse, of (4.2.56) and using that τ�ς � τ�ς � τ�1
ς . Finally, item pivq

holds because τ�1
ς Φtpϕ� ~ςqτς solves the same Cauchy in (4.2.57).

We shall say that a linear operator of the form ω � Bϕ � Apϕq is momentum preserving if

Apϕq is momentum preserving. In particular, conjugating a momentum preserving operator

ω � Bϕ � Apϕq by a family of invertible linear momentum preserving maps Φpϕq, we obtain the

transformed operator ω � Bϕ �A�pϕq in (4.2.54) which is momentum preserving.

Lemma 4.40. Let Apϕq be a momentum preserving linear operator and u a quasi-periodic trav-

eling wave, according to De�nition 4.12. Then Apϕqu is a quasi-periodic traveling wave.

Proof. It follows by De�nition 4.38 and by the characterization of traveling waves in (4.2.2).

Lemma 4.41. Let X be a vector �eld translation invariant, according to (4.1.8). Let u be a quasi-

periodic traveling wave. Then the linearized operator duXpupϕ, �qq is momentum preserving.

Proof. Di�erentiating (4.1.8) we get pduXqpτςuq � τς � τςpduXqpuq, ς P R. Then, apply (4.2.2).
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We now provide a characterization of the momentum preserving property in Fourier space.

Lemma 4.42. Let ϕ-dependent family of operators Apϕq, ϕ P Tν , is momentum preserving if

and only if the matrix elements of Apϕq, de�ned by (4.2.13), ful�ll

Aj
1

j p`q � 0 ñ ~ � `� j � j1 � 0 , @ ` P Zν , j, j1 P Z . (4.2.58)

Proof. By (4.2.13) we have, for any function upxq,

τςpApϕquq �
¸
j,j1PZ

¸
`PZν

Aj
1

j p`qeijςuj1e
ip`�ϕ�jxq

and

Apϕ� ~ςqrτςus �
¸
j,j1PZ

¸
`PZν

Aj
1

j p`qe�i`�~ςeij1ςuj1e
ip`�ϕ�jxq .

Therefore (4.2.56) is equivalent to (4.2.58).

We characterize the symbol of a pseudodi�erential operator which is momentum preserving:

Lemma 4.43. A pseudodi�erential operator Apϕ, x,Dq � Oppapϕ, x, ξqq is momentum preserv-

ing if and only if its symbol satis�es

apϕ� ~ς, x, ξq � apϕ, x� ς, ξq , @ ς P R . (4.2.59)

Proof. If the symbol a satis�es (4.2.59), then, for all ς P R,

τς �Oppapϕ, x, ξqq � Oppapϕ, x� ς, ξqq � τς � Oppapϕ� ~ς, x, ξqq � τς ,

proving that τς �Apϕ, x,Dq � Apϕ�~ς, x,Dq � τς . The vice versa follows using that apϕ, x, ξq �
e�iξxApϕ, x,Dqreiξxs.

If a symbol apϕ, x, ξq satis�es (4.2.59), then pω � Bϕaqpϕ, x, ξq satis�es (4.2.59) as well.

Lemma 4.44. If βpϕ, xq is a quasi-periodic traveling wave, then the operator Bpϕq de�ned in

(4.2.29) is momentum preserving.

Proof. We have Bpϕ�~ςqrτςus � upx�βpϕ�~ς, xq�ςq � upx�ς�βpϕ, x�ςqq � τς
�
Bpϕqu�.

We also note the following lemma.

Lemma 4.45. The symplectic projections Πᵀ
S�,Σ, Π=

S�,Σ, the L
2-projections ΠL2

=
and ΠS, ΠK

S0

de�ned in Section 4.1.3 commute with the translation operators τς de�ned in (4.1.7), i.e. are

momentum preserving.
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Proof. Recall that the translation τς maps Vn,� into itself, acting as in (4.1.37). Consider the

L2-orthogonal decomposition H � H= ` HK
=
, setting H= :� H=

S�,Σ for brevity:

u � ΠL2

H=
u�ΠL2

HK
=

u , ΠL2

H=
u P H= , ΠL2

HK
=

u P HK
= .

Applying τς we get τςu � τςΠ
L2

H=
u � τςΠ

L2

HK
=

u. As shown above, τς maps H= into itself for all ς.

Thus also the L2-orthogonal subspace HK
=
is invariant under the action of τς and we conclude, by

the uniqueness of the orthogonal decomposition, that τςΠ
L2

H=
u � ΠL2

H=
τςu, τςΠ

L2

HK
=

u � ΠL2

HK
=

τςu.

The next lemma concerns the Dirichlet-Neumann operator.

Lemma 4.46. The Dirichlet-Neumann operator Gpη, hq, evaluated at a quasi-periodic traveling

wave ηpϕ, xq, is momentum preserving.

Proof. It follows by (4.1.9) and the characterization in (4.2.2) of the quasi-periodic traveling

wave ηpϕ, xq.

Quasi-periodic traveling waves in action-angle-normal coordinates. We now discuss

how the momentum preserving condition reads in the coordinates pθ, I, wq introduced in (4.1.50).

Recalling (4.1.52), if upϕ, xq is a quasi-periodic traveling wave with action-angle-normal compo-

nents pθpϕq, Ipϕq, wpϕ, xqq, the condition τςu � upϕ� ~ς, �q becomes���θpϕq � ~ςIpϕq
τςwpϕ, �q

��
�
��� θpϕ� ~ςq

Ipϕ� ~ςq
wpϕ� ~ς, �q

��
 , @ ς P R . (4.2.60)

As we look for θpϕq of the form θpϕq � ϕ�Θpϕq, with a p2πqν-periodic function Θ : Rν ÞÑ Rν ,
ϕ ÞÑ Θpϕq, the traveling wave condition becomes��� Θpϕq

Ipϕq
τςwpϕ, �q

��
�
��� Θpϕ� ~ςq

Ipϕ� ~ςq
wpϕ� ~ς, �q

��
 , @ ς P R . (4.2.61)

De�nition 4.47. (Traveling wave variation) We call a traveling wave variation gpϕq �
pg1pϕq, g2pϕq, g3pϕ, �qq P Rν � Rν � H=

S�,Σ a function satisfying (4.2.61), i.e.

g1pϕq � g1pϕ� ~ςq, g2pϕq � g2pϕ� ~ςq, τςg3pϕq � g3pϕ� ~ςq, @ ς P R ,
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or equivalently D~τςgpϕq � gpϕ� ~ςq for any ς P R, where D~τς is the di�erential of ~τς , namely

D~τς

���Θ

I

w

��
�
��� Θ

I

τςw

��
 , @ ς P R .

According to De�nition 4.38, a linear operator acting in Rν�Rν�H=

S�,Σ momentum preserving

if

Apϕ� ~ςq �D~τς � D~τς �Apϕq , @ ς P R . (4.2.62)

Similarly to Lemma 4.40, one proves the following result:

Lemma 4.48. Let Apϕq be a momentum preserving linear operator acting on Rν � Rν � H=

S�,Σ
and g P Rν � Rν � H=

S�,Σ be a traveling wave variation. Then Apϕqgpϕq is a traveling wave

variation.

4.3 Transversality of linear frequencies

In this section we extend the KAM theory approach of [44], [21] in order to deal with the linear

frequencies Ωjpκq de�ned in (4.0.3). The main novelty is the use of the momentum condition in

the proof of Proposition 4.53. We shall also exploit that the tangential sites S :� t 1, . . . , ν u �
Zzt0u de�ned in (4.1.48), have all distinct modulus |a| � na, see assumption (4.0.4).

We �rst introduce the following de�nition.

De�nition 4.49. A function f � pf1, . . . , fN q : rκ1, κ2s Ñ RN is non-degenerate if, for any

c P RNzt0u, the scalar function f � c is not identically zero on the whole interval rκ1, κ2s.

From a geometric point of view, if f is non-degenerate it means that the image of the curve

fprκ1, κ2sq � RN is not contained in any hyperplane of RN .

We shall use in the sequel that the maps κ ÞÑ Ωjpκq are analytic in rκ1, κ2s. We decompose

Ωjpκq � ωjpκq � γ

2

Gjp0q
j

, ωjpκq :�
d
κGjp0qj2 � g Gjp0q �

�
γ

2

Gjp0q
j


2

. (4.3.1)

Note that the dependence on κ of Ωjpκq enters only through ωjpκq, because Gjp0q
j is independent

of κ. Note also that j ÞÑ ωjpκq is even in j, whereas the component due to the vorticity

j ÞÑ γ
2
Gjp0q
j is odd. Moreover this term is, in view of (1.1.16), uniformly bounded in j.

Lemma 4.50. (Non-degeneracy-I) The following frequency vectors are non-degenerate:

1. ~Ωpκq :� pΩjpκqqjPS P Rν ;



122 CHAPTER 4. TRAVELING QUASI-PERIODIC WATER WAVES

2.
�
~Ωpκq,?κ� P Rν�1;

3.
�
~Ωpκq,Ωjpκq

� P Rν�1, for any j P Zz pt0u Y SY p�Sqq;

4.
�
~Ωpκq,Ωjpκq,Ωj1pκq

� P Rν�2, for any j, j1 P Zz pt0u Y SY p�Sqq and |j| � |j1|.

Proof. Let

rΩjpκq :�
$&%Ωjpκq for j � 0
?
κ for j � 0 ,

rωjpκq :�
$&%ωjpκq for j � 0
?
κ for j � 0 .

(4.3.2)

Recalling (4.3.1), we have that, for any j P Z,

Bκrωjpκq � λjpκqrωjpκq , λjpκq :�

$''&''%
Gjp0qj2

2

�
κGjp0qj2�g Gjp0q�

�
γ
2

Gjp0q

j


2
� for j � 0

1
2κ for j � 0 .

(4.3.3)

Moreover Bκλjpκq � �2λjpκq2, for any j P Z, and therefore, for any n P N,

Bnκrωjpκq � rcnλjpκqnrωjpκq , rcn :� c1 � . . . � cn , cn :� 3� 2n . (4.3.4)

We now prove items 2 and 3, i.e. the non-degeneracy of the vector
�
~Ωpκq, rΩjpκq

� P Rν�1 for

any j P ZzpSY p�Sqq, where rΩjpκq is de�ned in (4.3.2). Items 1 and 4 follow similarly. For this

purpose, by analyticity, it is su�cient to �nd one value of κ P rκ1, κ2s so that the determinant

of the pν � 1q � pν � 1q matrix

Apκq :�

����
BκΩ1pκq � � � BκΩν pκq BκrΩjpκq

...
. . .

...
...

Bν�1
κ Ω1pκq � � � Bν�1

κ Ων pκq Bν�1
κ

rΩjpκq

���

is not zero. We actually show that detApκq � 0 for any κ P rκ1, κ2s. By (4.3.2)-(4.3.4) and the

multilinearity of the determinant function, we get

detApκq � Cpκqdet

������
1 � 1 1

λ1pκq � λν pκq λjpκq
...

. . .
...

...

λ1pκqν � λν pκqν λjpκqν

�����
�: Cpκq detBpκq

where

Cpκq :�
ν�1¹
q�1

rcq � ¹
pPt1,...,ν ,ju

λppκqrωppκq � 0 , @κ P rκ1, κ2s .



4.3. TRANSVERSALITY OF LINEAR FREQUENCIES 123

Since Bpκq is a Vandermorde matrix, we conclude that

detApκq � Cpκq
¹

p,p1Pt1,...,ν ,ju,p p1

�
λppκq � λp1pκq

�
.

Now, the fact that detApκq � 0 for any κ P rκ1, κ2s is a consequence from the following

Claim: For any p, p1 P t1, . . . , ν , ju, p � p1, one has λppκq � λp1pκq for any κ P rκ1, κ2s.
Proof of the Claim: If p1 � 0 and p � 0, the claim follows because, by (4.3.3),

λppκq � 1

2
�
κ� g

p2 � γ2

4
Gpp0q
p4

	   1

2κ
� λ0pκq .

Consider now the case p, p1 � 0. We now prove that the map p ÞÑ λppκq is strictly monotone on

p0,�8q. In case of �nite depth, Gpp0q � p tanhphpq, and

Bpλppκq � 1

2
�
κ� g

p2 � γ2

4
tanhphpq

p3

	2

"
2g

p3
� γ2

4

3 tanhphpq � p1� tanh2phpqqhp
p4

*
.

The function fpyq :� 3 tanhpyq�p1�tanh2pyqqy is positive for any y ¡ 0. Indeed fpyq Ñ 0 as y Ñ
0, and it is strictly monotone increasing for y ¡ 0, since f 1pyq � 2p1�tanh2pyqqp1�y tanhpyqq ¡ 0.

We deduce that Bpλppκq ¡ 0, also if the depth h � �8. Since the function p ÞÑ λppκq is even we

have proved that that it is strictly monotone decreasing on p�8, 0q and increasing in p0,�8q.
Thus, if λppκq � λp1pκq then p � �p1. But this case is excluded by the assumption (4.0.4) and

the condition j R SY p�Sq, which together imply |p| � |p1|.

Note that in items 3 and 4 of Lemma 4.50 we require that j and j1 do not belong to t0u Y
SY p�Sq. In order to deal in Proposition 4.53 when j and j1 are in SY p�Sq, we need also the

following lemma. It is actually a direct consequence of the proof of Lemma 4.50, noting that

Ωjpκq � ωjpκq is independent of κ.
Lemma 4.51. (Non-degeneracy-II) Let ~ωpκq :� �

ω1pκq, . . . , ων pκq
�
. The following vectors

are non-degenerate:

1. p~ωpκq, 1q P Rν�1;

2. p~ωpκq, ωjpκq, 1q P Rν�2, for any j P Zz pt0u Y SY p�Sqq.
For later use, we provide the following asymptotic estimate of the linear frequencies.

Lemma 4.52. (Asymptotics) For any j P Zzt0u, we have

ωjpκq �
?
κ |j| 32 � cjpκq?

κ |j| 12
, (4.3.5)
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where, for any n P N0, there exists a constant Cn,h ¡ 0 such that

sup
jPZzt0u
κPrκ1,κ2s

���Bnκ cjpκq?
κ

��� ¤ Cn,h . (4.3.6)

Proof. By (4.3.1) we deduce (4.3.5) with

cjpκq :�
κ|j|pGjp0q�|j|q� g Gjp0q

|j|

�
1�p γ2 q2Gjp0qg|j|2



1�
d

1�Gjp0q�|j|

|j|
� g Gjp0q

κ|j|3

�
1�p γ2 q2Gjp0qg|j|2


 .

Then (4.3.6) follows exploiting that (both for �nite and in�nite depth) the quantities |j|pGjp0q�
|j|q and Gjp0q{|j| are uniformly bounded in j, see (1.1.16).

The next proposition is the key of the argument. We remind that ~ � p1, . . . , νq denotes
the vector in Zν of tangential sites introduced in (4.1.53).

Proposition 4.53. (Transversality) There exist m0 P N and ρ0 ¡ 0 such that, for any κ P
rκ1, κ2s, the following hold:

max
0¤n¤m0

|Bnκ~Ωpκq � `| ¥ ρ0 x`y , @ ` P Zνzt0u ; (4.3.7)$&% max
0¤n¤m0

|Bnκ p~Ωpκq � `� Ωjpκqq| ¥ ρ0 x`y
~ � `� j � 0 , ` P Zν , j P Sc0 ;

(4.3.8)

$&% max
0¤n¤m0

|Bnκ p~Ωpκq � `� Ωjpκq � Ωj1pκqq| ¥ ρ0 x`y
~ � `� j � j1 � 0 , ` P Zν , j, j1 P Sc0 , p`, j, j1q � p0, j, jq ;

(4.3.9)

$&% max
0¤n¤m0

|Bnκ p~Ωpκq � `� Ωjpκq � Ωj1pκqq| ¥ ρ0 x`y
~ � `� j � j1 � 0 , ` P Zν , j, j1 P Sc0 .

(4.3.10)

We call ρ0 the amount of non-degeneracy and m0 the index of non-degeneracy.

Proof. We prove separately (4.3.7)-(4.3.10). In this proof we set for brevity K :� rκ1, κ2s.
Proof of (4.3.7). By contradiction, assume that for any m P N there exist κm P K and `m P
Zνzt0u such that ���Bnκ~Ωpκmq � `m

x`my
���   1

xmy , @ 0 ¤ n ¤ m. (4.3.11)

The sequences pκmqmPN � K and p`m{ x`myqmPN � Rνzt0u are both bounded. By compactness,

up to subsequences κm Ñ κ P K and `m{ x`my Ñ c � 0. Therefore, in the limit for mÑ �8, by

(4.3.11) we get Bnκ~Ωpκq � c � 0 for any n P N0. By the analyticity of ~Ωpκq, we deduce that the
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function κ ÞÑ ~Ωpκq � c is identically zero on K, which contradicts Lemma 4.50-1.

Proof of (4.3.8). We divide the proof in 4 steps.

Step 1. Recalling (4.3.1) and Lemma 4.52, we have that, for any κ P K,

|~Ωpκq � `� Ωjpκq| ¥ |Ωjpκq| � |~Ωpκq � `| ¥ ?
κ1 |j|

3
2 � Cx`y ¥ x`y

whenever |j| 32 ¥ C0x`y, for some C0 ¡ 0. In this cases (4.3.8) is already ful�lled with n � 0.

Hence we restrict in the sequel to indexes ` P Zν and j P Sc0 satisfying

|j| 32   C0x`y . (4.3.12)

Step 2. By contradiction, we assume that, for any m P N, there exist κm P K, `m P Zν and

jm P Sc0, with |jm|
3
2   C0x`my, such that, for any n P N0 with n ¤ m,$&%

��Bnκ�~Ωpκq � `m
x`my � 1

x`myΩjmpκq
�
|κ�κm

��   1
xmy

~ � `m � jm � 0 .
(4.3.13)

Up to subsequences κm Ñ κ P K and `m{ x`my Ñ c P Rν .
Step 3. We consider �rst the case when the sequence p`mqmPN � Zν is bounded. Up to subse-

quences, we have de�nitively that `m � ` P Zν . Moreover, since jm and `m satisfy (4.3.12), also

the sequence pjmqmPN is bounded and, up to subsequences, de�nitively jm �  P Sc0. Therefore,
in the limit mÑ8, from (4.3.13) we obtain

Bnκ
�
~Ωpκq � `� Ωpκq

�
|κ�κ � 0 , @n P N0 , ~ � `�  � 0 .

By analyticity this implies

~Ωpκq � `� Ωpκq � 0 , @κ P K , ~ � `�  � 0 . (4.3.14)

We distinguish two cases:

• Let  R �S. By (4.3.14) the vector
�
~Ωpκq,Ωpκq

�
is degenerate according to De�nition 4.49

with c :� p`, 1q � 0. This contradicts Lemma 4.50-3.

• Let  P �S. With no loss of generality suppose  � �1. Then, denoting ` � p`1, . . . , `νq,
system (4.3.14) reads, for any κ P K,$&%p`1 � 1qω1pκq �

°ν
a�2 `aωapκq � γ

2

�
p`1 � 1qG1 p0q1

�°ν
a�2 `a

Ga p0q
a

	
� 0

p`1 � 1q1 �
°ν
a�2 `a a � 0 .

(4.3.15)
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By Lemma 4.51 the vector p~ωpκq, 1q is non-degenerate, which is a contradiction for γ � 0.

If γ � 0 we only deduce `1 � �1 and `2 � . . . � `ν � 0. Inserting these values in the

momentum condition in (4.3.15), we get 21 � 0. This is a contradiction with 1 � 0.

Step 4. We consider now the case when the sequence p`mqmPN is unbounded. Up to subsequences

|`m| Ñ 8 as mÑ8 and limmÑ8 `m{ x`my �: c � 0. By (4.3.1) and (4.3.5), for any n P N0,

Bnκ
1

x`myΩjmpκmq � Bnκ
� 1

x`my
?
κ |jm|

3
2 � cjmpκq

x`my
?
κ |jm|

1
2

� γ

2 x`my
Gjmp0q
jm

	
|κ�κm

(4.3.6)Ñ dpBnκ
?
κq|κ�κ , for mÑ8 ,

with d :� limmÑ8 |jm|
3
2 { x`my P R. Note that d is �nite because jm and `m satisfy (4.3.12).

Therefore (4.3.13) becomes, in the limit mÑ8,

Bnκ
�
~Ωpκq � c� d

?
κ
�
|κ�κ � 0 , @n P N0 .

By analyticity, this implies that ~Ωpκq � c � d
?
κ � 0 for any κ P K. This contradicts the non-

degeneracy of the vector p~Ωpκq,?κq in Lemma 4.50-2, since pc, dq � 0.

Proof of (4.3.9). We split again the proof into 4 steps.

Step 1. By Lemma 4.52, for any κ P K,

|~Ωpκq � `� Ωjpκq � Ωj1pκq| ¥ |Ωjpκq � Ωj1pκq| � |~Ωpκq � `| ¥ ?
κ1

�� |j| 32 � |j1| 32 ��� Cx`y ¥ x`y

whenever | |j| 32 � |j1| 32 | ¥ C1x`y for some C1 ¡ 0. In this case (4.3.9) is already ful�lled with

n � 0. Thus we restrict to indexes ` P Zν and j, j1 P Sc0, such that��|j| 32 � |j1| 32 ��   C1x`y . (4.3.16)

Furthermore we may assume jm � j1m because the case jm � j1m is included in (4.3.7).

Step 2. By contradiction, we assume that, for any m P N, there exist κm P K, `m P Zν and

jm, j
1
m P Sc0, satisfying (4.3.16), such that, for any 0 ¤ n ¤ m,$&%

��Bnκ�~Ωpκq � `m
x`my � 1

x`my
�
Ωjmpκq � Ωj1mpκq

��
|κ�κm

��   1
xmy

~ � `m � jm � j1m � 0 .
(4.3.17)

Up to subsequences κm Ñ κ P K and `m{ x`my Ñ c P Rν .
Step 3. We start with the case when p`mqmPN � Zν is bounded. Up to subsequences, we have
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de�nitively that `m � ` P Zν . Moreover, if |jm| � |j1m|, there is c ¡ 0 such that

c
�|jm| 12 � |j1m|

1
2

� ¤ ��|jm| 32 � |j1m|
3
2

��   C1x`my ¤ C , @m P N ,

If jm � �j1m we deduce by the momentum relation that |jm| � |j1m| ¤ Cx`my ¤ C, and we

conclude that in any case the sequences pjmqmPN and pj1mqmPN are bounded. Up to subsequences,

we have de�nitively that jm �  and j1m � 1, with , 1 P Sc0 and such that

 � 1 . (4.3.18)

Therefore (4.3.17) becomes, in the limit mÑ8,

Bnκ
�
~Ωpκq � `� Ωpκq � Ω1pκq

�
|κ�κ � 0 , @n P N0 , ~ � `� � 1 � 0 .

By analyticity, we obtain that

~Ωpκq � `� Ωpκq � Ω1pκq � 0 , @κ P K , ~ � `� � 1 � 0 . (4.3.19)

We distinguish several cases:

• Let , 1 R �S and || � |1|. By (4.3.19) the vector p~Ωpκq,Ωpκq,Ω1pκqq is degenerate with
c :� p`, 1,�1q � 0, contradicting Lemma 4.50-4.

• Let , 1 R �S and 1 � �. In view of (4.3.1), system (4.3.19) becomes$&%~ωpκq � `�
γ
2

�°ν
a�1 `a

Ga p0q
a

� 2
Gp0q


	
� 0 , @κ P K ,

~ � `� 2 � 0 .
(4.3.20)

By Lemma 4.51 the vector p~ωpκq, 1q is non-degenerate, which is a contradiction for γ � 0.

If γ � 0 the �rst equation in (4.3.20) implies ` � 0. Then the momentum condition implies

2 � 0, which is a contradiction with  � 0.

• Let 1 R �S and  P �S. With no loss of generality suppose  � �1. In view of (4.3.1), the

�rst equation in (4.3.19) implies that, for any κ P K

p`1 � 1qω1pκq �
ν̧

a�2

`aωapκq � ω1pκq �
γ

2

�
p`1 � 1qG1p0q

1
�

ν̧

a�2

`a
Gap0q
a

� G1p0q
1

	
� 0 .

By Lemma 4.51 the vector
�
~ωpκq, ω1pκq, 1

�
is non-degenerate, which is a contradiction.

• Last, let , 1 P �S and  � 1, by (4.3.18). With no loss of generality suppose  � �1 and
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1 � �2. Then (4.3.19) reads$'''&'''%
p`1 � 1qω1pκq �

�
`2 � 1

�
ω2 �

°ν
a�3 `aωapκq

�γ
2

�
p`1 � 1qG1 p0q1

� p`2 � 1qG2 p0q2
�°ν

a�3 `a
Ga p0q
a

q
	
� 0 , @κ P K ,

p`1 � 1q1 � p`2 � 1q2 �
°ν
a�3 `a a � 0 .

(4.3.21)

By Lemma 4.51 the vector p~ωpκq, 1q is non-degenerate, which is a contradiction for γ � 0.

If γ � 0 the �rst equation in (4.3.21) implies that `1 � �1, `2 � 1, `3 � . . . � `ν �
0. Inserting these values in the momentum condition we obtain �21 � 22 � 0. This

contradicts  � 1.

Step 4. We �nally consider the case when p`mqmPN is unbounded. Up to subsequences |`m| Ñ 8
as mÑ8 and limmÑ8 `m{ x`my �: c � 0. In addition, by (4.3.16), up to subsequences

lim
mÑ8

|jm| 32 � |j1m|
3
2

x`my � d1 P R . (4.3.22)

By (4.3.1) and (4.3.5) we have, for any n,

Bnκ
1

x`my
�

Ωjmpκq � Ωj1mpκq
	
|κ�κm

� Bnκ
� ?

κ

x`my
�|jm| 32 � |j1m|

3
2

�
� 1

x`my
?
κ

�cjmpκq
|jm| 12

� cj1mpκq
|j1m|

1
2

	
� γ

2 x`my
�Gjmp0q

jm
� Gj1mp0q

j1m

	
|κ�κm

	
Ñ d1Bnκp

?
κq|κ�κ

using (4.3.22) and x`my Ñ 8. Therefore (4.3.17) becomes, in the limit mÑ8,

Bnκ
�
~Ωpκq � c� d1

?
κ
�
|κ�κ � 0 , @n P N0 .

By analyticity this implies ~Ωpκq � c � d1
?
κ � 0, for all κ P K. Thus p~Ωpκq,?κq is degenerate

with c � pc, d1q � 0, contradicting Lemma 4.50-2.

Proof of (4.3.10). The proof is similar to that for (4.3.9) and we omit it.

4.4 Nash-Moser theorem and measure estimates

Under the rescaling pη, ζq ÞÑ pεη, εζq, the Hamiltonian system (4.1.14) transforms into the Hamil-

tonian system generated by

Hεpη, ζq :� ε�2Hpεη, εζq � HLpη, ζq � εPεpη, ζq , (4.4.1)
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where H is the water waves Hamiltonian (4.1.13) expressed in the Wahlén coordinates (4.1.11),

HL is de�ned in (4.1.20) and

Pεpη, ζq :� 1

2ε

»
T

�
ζ � γ

2B�1
x η

�pGpεηq �Gp0qq�ζ � γ
2B�1
x η

�
dx

� κ

ε3

»
T

�a
1� ε2η2

x � 1� ε2

2 η
2
x

�
dx� γ

2

»
T

�
� �

ζ � γ
2B�1
x η

�
x
η2 � γ

3η
3
	

dx .

(4.4.2)

We now study the Hamiltonian system generated by the Hamiltonian Hεpη, ζq, in the action-

angle and normal coordinates pθ, I, wq de�ned in Section 4.1.3. Thus we consider the Hamiltonian

Hεpθ, I, wq de�ned by

Hε :� Hε �A � ε�2H � εA (4.4.3)

where A is the map de�ned in (4.1.50). The associated symplectic form is given in (4.1.54).

By Lemma 4.10 (see also (4.1.35), (4.1.49)), in the variables pθ, I, wq the quadratic Hamilto-

nian HL de�ned in (4.1.20) simply reads, up to a constant,

N :� HL �A � ~Ωpκq � I � 1
2 pΩWw,wqL2

where ~Ωpκq P Rν is de�ned in (4.0.8) and ΩW in (4.1.19). Thus the Hamiltonian Hε in (4.4.3) is

Hε � N � εP with P :� Pε �A . (4.4.4)

We look for an embedded invariant torus

i : Tν Ñ Rν � Rν � H=

S�,Σ , ϕ ÞÑ ipϕq :� pθpϕq, Ipϕq, wpϕqq ,

of the Hamiltonian vector �eld XHε :� pBIHε,�BθHε,Π
=

S�,ΣJ∇wHεq �lled by quasi-periodic

solutions with Diophantine frequency vector ω P Rν (which satis�es also �rst and second order

Melnikov non-resonance conditions, see (4.4.15)-(4.4.17)).

4.4.1 Nash-Moser theorem of hypothetical conjugation

The quasi-periodic solutions for the Hamiltonian system generated by the Hamiltonian in (4.4.3)

are expected to have a shifted frequency vector close the unperturbed linear frequency vector

~Ωpκq de�ned in (4.0.8). It is therefore convenient to introduce a "counterterm" α P Rν and

consider the family of modi�ed Hamiltonians

Hα :� Nα � εP , Nα :� α � I � 1
2 pw,ΩWwqL2 . (4.4.5)

In particular, when α � ~Ωpκq, we have Hα � Hε.
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Then we look for a zero pi, αq of the nonlinear operator

Fpi, αq :� Fpω, κ, ε; i, αq :� ω � Bϕipϕq �XHαpipϕqq

�

���ω � Bϕθpϕq �α� εBIP pipϕqq
ω � BϕIpϕq �εBθP pipϕqq
ω � Bϕwpϕq �Π=

S�,ΣJpΩWwpϕq � ε∇wP pipϕqqq

��
 . (4.4.6)

If Fpi, αq � 0, then the embedding ϕ ÞÑ ipϕq is an invariant torus for the Hamiltonian vector

�eld XHα , �lled with quasi-periodic solutions with frequency ω.

Each Hamiltonian Hα in (4.4.5) is invariant under the involution ~S and the translations ~τς ,

ς P R, de�ned respectively in (4.1.51) and in (4.1.52):

Hα � ~S � Hα , Hα � ~τς � Hα , @ ς P R . (4.4.7)

We look for a reversible traveling torus embedding ϕ ÞÑ ipϕq � pθpϕq, Ipϕq, wpϕqq, namely

satisfying

~Sipϕq � ip�ϕq , ~τςipϕq � ipϕ� ~ςq , @ ς P R . (4.4.8)

Lemma 4.54. The operator Fp�, αq maps a reversible, respectively traveling, wave into an anti-

reversible, respectively traveling, wave variation, according to De�nition 4.47.

Proof. It follows directly by (4.4.6) and (4.4.7).

The norm of the periodic components of the embedded torus

Ipϕq :� ipϕq � pϕ, 0, 0q :� pΘpϕq, Ipϕq, wpϕqq , Θpϕq :� θpϕq � ϕ , (4.4.9)

is }I}k0,υ
s :� }Θ}k0,υ

Hs
ϕ
� }I}k0,υ

Hs
ϕ
� }w}k0,υ

s , where

k0 :� m0 � 2 (4.4.10)

and m0 P N is the index of non-degeneracy provided by Proposition 4.53, which only depends

on the linear unperturbed frequencies. Thus, k0 is considered as an absolute constant and we

will often omit to write the dependence of the various constants with respect to k0. We look for

quasi-periodic solutions of frequency ω belonging to a δ-neighbourhood (independent of ε)

Ω :�  
ω P Rν : dist

�
ω, ~Ωrκ1, κ2s

�   δ
(
, δ ¡ 0 ,

of the curve ~Ωrκ1, κ2s de�ned by (4.0.8).

Theorem 4.55. (Nash-Moser) There exist positive constants a0, ε0, C depending on S, k0 and

τ ¥ 1 such that, for all υ � εa, a P p0, a0q and for all ε P p0, ε0q, there exist
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1. a k0-times di�erentiable function

α8 : Ω� rκ1, κ2s ÞÑ Rν ,

α8pω, κq :� ω � rεpω, κq with |rε|k0,υ ¤ Cευ�1 ; (4.4.11)

2. a family of embedded reversible traveling tori i8pϕq (cfr. (4.4.8)), de�ned for all pω, κq P
Ω� rκ1, κ2s, satisfying

}i8pϕq � pϕ, 0, 0q}k0,υ
s0 ¤ Cευ�1 ; (4.4.12)

3. a sequence of k0-times di�erentiable functions µ8j : Rν�rκ1, κ2s Ñ R, j P Sc0 � Z z pSYt0uq,
of the form

µ8j pω, κq � m83
2

pω, κqΩjpκq � m81 pω, κqj � m81
2

pω, κq |j| 12 � r8j pω, κq , (4.4.13)

with Ωjpκq de�ned in (4.0.3), satisfying

|m83
2

� 1|k0,υ, |m81 |k0,υ, |m81
2

|k0,υ ¤ Cε , sup
jPSc0

|r8j |k0,υ ¤ Cευ�1 , (4.4.14)

such that, for all pω, κq in the Cantor-like set

Cυ8 :�
!
pω, κq P Ω� rκ1, κ2s : |ω � `| ¥ 8υ x`y�τ , @ ` P Zνzt0u ; (4.4.15)��ω � `� µ8j pω, κq

�� ¥ 4υ |j| 32 x`y�τ ,@ ` P Zν , j P Sc0 with ~ � `� j � 0 ; (4.4.16)��ω � `� µ8j pω, κq � µ8j1 pω, κq
�� ¥ 4υ x|j| 32 � |j1| 32 y x`y�τ , (4.4.17)

@` P Zν , j, j1 P Sc0, p`, j, j1q � p0, j, jq with ~ � `� j � j1 � 0 ,��ω � `� µ8j pω, κq � µ8j1 pω, κq
�� ¥ 4υ

� |j| 32 � |j1| 32 � x`y�τ , (4.4.18)

@ ` P Zν , j, j1 P Sc0 , with ~ � `� j � j1 � 0
)
,

the function i8pϕq :� i8pω, κ, ε;ϕq is a solution of Fpω, κ, ε; i8, α8pω, κqq � 0. As a conse-

quence, the embedded torus ϕ ÞÑ i8pϕq is invariant for the Hamiltonian vector �eld XHα8pω,κq
as

it is �lled by quasi-periodic reversible traveling wave solutions with frequency ω.

We remind that the conditions on the indexes in (4.4.16)-(4.4.17) (where ~ P Zν is the vector
in (4.1.53)) are due to the fact that we look for traveling wave solutions. These restrictions are

essential to prove the measure estimates of the next section.
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4.4.2 Measure estimates

By (4.4.11), the function α8p � , κq from Ω into its image α8pΩ, κq is invertible and

β � α8pω, κq � ω � rεpω, κq ô
ω � α�1

8 pβ, κq � β � r̆εpβ, κq, |r̆ε|k0,υ ¤ Cευ�1 .
(4.4.19)

Then, for any β P α8pCυ8q, Theorem 4.55 proves the existence of an embedded invariant torus

�lled by quasi-periodic solutions with Diophantine frequency ω � α�18 pβ, κq for the Hamiltonian

Hβ � β � I � 1
2pw,ΩWwqL2 � εP .

Consider the curve of the unperturbed tangential frequency vector ~Ωpκq in (4.0.8). In Theorem

4.56 below we prove that for "most" values of κ P rκ1, κ2s the vector pα�18 p~Ωpκq, κq, κq is in

Cυ8, obtaining an embedded torus for the Hamiltonian Hε in (4.4.3), �lled by quasi-periodic

solutions with Diophantine frequency vector ω � α�18 p~Ωpκq, κq, denoted rΩ in Theorem 1.8. Thus

εApi8prΩtqq, where A is de�ned in (4.1.50), is a quasi-periodic traveling wave solution of the

water waves equations (4.1.14) written in the Wahlén variables. Finally, going back to the

original Zakharov variables via (4.1.10) we obtain solutions of (4.0.1). This proves Theorem 1.8

together with the following measure estimate.

Theorem 4.56. (Measure estimates) Let

υ � εa , 0   a   minta0, 1{p1� k0qu , τ ¡ m0pν � 4q , (4.4.20)

where m0 is the index of non-degeneracy given in Proposition 4.53 and k0 :� m0 � 2. Then, for

ε P p0, ε0q small enough, the measure of the set

Gε :�  
κ P rκ1, κ2s :

�
α�1
8 p~Ωpκq, κq, κ� P Cυ8( (4.4.21)

satis�es |Gε| Ñ κ2 � κ1 as εÑ 0.

The rest of this section is devoted to prove Theorem 4.56. By (4.4.19) we have

~Ωεpκq :� α�1
8 p~Ωpκq, κq � ~Ωpκq � ~rε , (4.4.22)

where ~rεpκq :� r̆εp~Ωpκq, κq satis�es

|Bkκ~rεpκq| ¤ Cευ�p1�kq , @ |k| ¤ k0 , uniformly on rκ1, κ2s . (4.4.23)
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We also denote, with a small abuse of notation, for all j P Sc0,

µ8j pκq :� µ8j
�
~Ωεpκq, κ

�
:� m83

2

pκqΩjpκq � m81 pκqj � m81
2

pκq |j| 12 � r8j pκq , (4.4.24)

where m83
2

pκq :� m83
2

p~Ωεpκq, κq, m81 pκq :� m81 p~Ωεpκq, κq, m81
2

pκq :� m81
2

p~Ωεpκq, κq and r8j pκq :�
r8j p~Ωεpκq, κq.

By (4.4.14) and (4.4.23) we have��Bkκ�m83
2

pκq � 1
���, |Bkκm81 pκq|, |Bkκm81

2

pκq| ¤ Cευ�k, (4.4.25)

sup
jPSc0

|Bkκr8j pκq| ¤ Cευ�1�k , @ 0 ¤ k ¤ k0 . (4.4.26)

Recalling (4.4.15)-(4.4.17), the Cantor set in (4.4.21) becomes

Gε :�
!
κ P rκ1, κ2s : |~Ωεpκq � `| ¥ 8υ x`y�τ , @ ` P Zνzt0u ;

|~Ωεpκq � `� µ8j pκq| ¥ 4υ|j| 32 x`y�τ , @ ` P Zν , j P Sc0 , with ~ � `� j � 0 ;

|~Ωεpκq � `� µ8j pκq � µ8j1 pκq| ¥ 4υ x|j| 32 � |j1| 32 y x`y�τ ,
@` P Zν , j, j1 P Sc0, p`, j, j1q � p0, j, jq with ~ � `� j � j1 � 0 ;

|~Ωεpκq � `� µ8j pκq � µ8j1 pκq| ¥ 4υ
�|j| 32 � |j1| 32 � x`y�τ ,

@ ` P Zν , j, j1 P Sc0 with ~ � `� j � j1 � 0
)
.

We estimate the measure of the complementary set

Gcε :� rκ1, κ2szGε

�
�¤
`�0

R
p0q
`

�
Y

��� ¤
`PZν , jPSc0
~�`�j�0

R
pIq
`,j

��
Y
��� ¤

p`,j,j1q�p0,j,jq,j�j1

~�`�j�j1�0

R
pIIq
`,j,j1

��
Y
���� ¤

`PZν ,j,j1PSc0 ,
~�`�j�j1�0

Q
pIIq
`,j,j1

���
 , (4.4.27)

where the �nearly-resonant sets"

R
p0q
` :� κ P rκ1, κ2s : |~Ωεpκq � `|   8υ x`y�τ ( , (4.4.28)

R
pIq
`,j :� κ P rκ1, κ2s : |~Ωεpκq � `� µ8j pκq|   4υ|j| 32 x`y�τ ( , (4.4.29)

R
pIIq
`,j,j1 :� κ P rκ1, κ2s : |~Ωεpκq � `� µ8j pκq � µ8j1 pκq|   4υ x|j| 32 � |j1| 32 y x`y�τ ( , (4.4.30)

Q
pIIq
`,j,j1 :� κ P rκ1, κ2s : |~Ωεpκq � `� µ8j pκq � µ8j1 pκq|   4υ

�|j| 32 � |j1| 32 � x`y�τ ( . (4.4.31)

Note that in the third union in (4.4.27) we may require j � j1 because RpIIq
`,j,j � R

p0q
` . In the sequel

we shall always suppose the momentum conditions on the indexes `, j, j1 written in (4.4.27). Some
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of the above sets are empty.

Lemma 4.57. Consider the sets in (4.4.27)-(4.4.31). For ε P p0, ε0q small enough, we have that

1. If R
pIq
`,j � H then |j| 32 ¤ C x`y;

2. If R
pIIq
`,j,j1 � H then

��|j| 32 � |j1| 32 �� ¤ C x`y;

3. If Q
pIIq
`,j,j1 � H then |j| 32 � |j1| 32 ¤ C x`y.

Proof. We provide the proof for R
pIIq
`,j,j1 . If R

pIIq
`,j,j1 � H then there exists κ P rκ1, κ2s such that

��µ8j pκq � µ8j1 pκq
��   4υ x|j| 32 � |j1| 32 y

x`yτ � |~Ωεpκq � `| ¤ 4υ
��|j| 32 � |j1| 32 ��� C x`y . (4.4.32)

By (4.4.24) we have

µ8j pκq � µ8j1 pκq � m83
2

pκqpΩjpκq �Ωj1pκqq � m81 pκqpj � j1q � m81
2

pκqp|j| 12 � |j1| 12 q � r8j pκq � r8j1 pκq .

Then, by (4.4.25)-(4.4.26) with k � 0, (4.3.5)-(4.3.6), the momentum condition j � j1 � �~ � `,
and the elementary inequality ||j| 32 � |j1| 32 | ¥ ||j| 12 � |j1| 12 |, we deduce the lower bound

|µ8j pκq � µ8j1 pκq| ¥ p1� Cεq?κ���|j| 32 � |j1| 32 ��� C
�� Cε|~ � `| � Cε

��|j| 12 � |j1| 12 ��� Cευ�1

¥
?
κ

2

��|j| 32 � |j1| 32 ��� Cε|`| � C 1 � Cευ�1 . (4.4.33)

Combining (4.4.32) and (4.4.33), we deduce ||j| 32 � |j1| 32 | ¤ C x`y, for ε small enough.

In order to estimate the measure of the sets (4.4.28)-(4.4.31) that are nonempty, the key

point is to prove that the perturbed frequencies satisfy estimates similar to (4.3.7)-(4.3.10).

Lemma 4.58. (Perturbed transversality) For ε P p0, ε0q small enough and for all κ P
rκ1, κ2s,

max
0¤n¤m0

|Bnκ~Ωεpκq � `| ¥ ρ0

2
x`y , @ ` P Zνzt0u ; (4.4.34)$&%max0¤n¤m0 |Bnκp~Ωεpκq � `� µ8j pκqq| ¥ ρ0

2 x`y
~ � `� j � 0 , ` P Zν , j P Sc0 ;

(4.4.35)

$&%max0¤n¤m0 |Bnκp~Ωεpκq � `� µ8j pκq � µ8j1 pκqq| ¥ ρ0

2 x`y
~ � `� j � j1 � 0 , ` P Zν , j, j1 P Sc0 , p`, j, j1q � p0, j, jq ;

(4.4.36)

$&%max0¤n¤m0 |Bnκp~Ωεpκq � `� µ8j pκq � µ8j1 pκqq| ¥ ρ0

2 x`y
~ � `� j � j1 � 0 , ` P Zν , j, j1 P Sc0 .

(4.4.37)
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We recall that ρ0 is the amount of non-degeneracy that has been de�ned in Proposition 4.53.

Proof. We prove (4.4.36). The proofs of (4.4.34), (4.4.35) and (4.4.37) are similar. By (4.4.24)

we have

~Ωεpκq � `� µ8j pκq � µ8j1 pκq � ~Ωpκq � `� ~rεpκq � `� Ωjpκq � Ωj1pκq (4.4.38)

� pm83
2

pκq � 1q �Ωjpκq � Ωj1pκq
�� m81 pκqpj � j1q � m81

2

pκq p|j| 12 � |j1| 12 q � r8j pκq � r8j1 pκq .

By Lemma 4.52 we get that, for any n P t0, . . . ,m0u,��BnκpΩjpκq � Ωj1pκqq
�� ¤ Cpκq��|j| 32 � |j1| 32 ��� C ¤ C 1pκq x`y , (4.4.39)

because, by Lemma 4.57-(2), we can restrict to indexes `, j, j1 such that ||j| 32 � |j1| 32 | ¤ C x`y.
Furthermore ��|j| 12 � |j1| 12 �� ¤ ��|j| 32 � |j1| 32 �� ¤ C x`y . (4.4.40)

Therefore, by (5.3.15), (4.4.25), (4.4.26), (4.4.23), (4.4.39), (4.4.40), and the momentum condition

j � j1 � �~ � `, we have that, for any n P t0, . . . ,m0u,

|Bnκ p~Ωεpκq � `� µ8j pκq � µ8j1 pκqq| ¥ |Bnκ p~Ωpκq � `� Ωjpκq � Ωj1pκqq| � Cευ�p1�m0q x`y .

Since ~Ωpκq � `� Ωjpκq � Ωj1pκq satis�es (4.3.9), we deduce that

max
0¤n¤m0

|Bnκ p~Ωεpκq � `� µ8j pκq � µ8j1 pκqq| ¥ ρ0 x`y � Cευ�p1�m0q x`y ¥ ρ0

2 x`y

for ε ¡ 0 small enough.

As an application of Rüssmann Theorem 17.1 in [155], we deduce the following result:

Lemma 4.59. (Estimates of the resonant sets) The measure of the sets (4.4.27)- (4.4.31)

satisfy

|Rp0q
` | À pυ x`y�pτ�1qq 1

m0 , |RpIq
`,j | À

�
υ|j| 32 x`y�pτ�1q � 1

m0 ,

|RpIIq
`,j,j1 | À

�
υ x|j| 32 � |j1| 32 y x`y�pτ�1q � 1

m0 , |QpIIq
`,j,j1 | À

�
υ
�|j| 32 � |j1| 32 � x`y�pτ�1q � 1

m0 ,

and, recalling Lemma 4.57,

|RpIq
`,j | , |RpIIq

`,j,j1 | , |Q
pIIq
`,j,j1 | À pυ x`y�τ q 1

m0 .

Proof. We estimateR
pIIq
`,j,j1 de�ned in (4.4.30). The other cases follow similarly. De�ning f`,j,j1pκq :�
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p~Ωεpκq � `� µ8j pκq � µ8j1 pκqq x`y�1, we write

R
pIIq
`,j,j1 �

 
κ P rκ1, κ2s :

��f`,j,j1pκq��   4υ x|j| 32 � |j1| 32 y x`y�τ�1 ( .
By Lemma 4.57 we restrict to indexes satisfying

��|j| 32 � |j1| 32 �� ¤ C x`y. By (4.4.36),

max
0¤n¤m0

��Bnκf`,j,j1pκq�� ¥ ρ0{2 , @κ P rκ1, κ2s .

In addition, by (4.4.22)-(4.4.26), Lemma 4.52, the momentum condition |j � j1| � |~ � `|, and
(4.4.40), we deduce that max0¤n¤k0

��Bnκf`,j,j1pκq�� ¤ C for all κ P rκ1, κ2s, provided ευ�p1�k0q is
small enough, namely, by (4.4.20) and ε small enough. In particular, f`,j,j1 is of class Ck0�1 �
Cm0�1. Thus Theorem 17.1 in [155] applies.

Proof of Theorem 4.56 completed. We estimate the measure of all the sets in (4.4.27). By Lemma

4.57 and Lemma 4.59 we have that��� ¤
`�0

R
p0q
`

��� ¤ ¸
`�0

|Rp0q
` | À

¸
`�0

� υ

x`yτ�1

	 1
m0 , (4.4.41)

��� ¤
`, jPSc0
~�`�j�0

R
pIq
`,j

��� ¤ ¸
|j|¤Cx`y

2
3

~�`�j�0

|RpIq
`,j | À

¸
|j|¤Cx`y 2

3

� υ

x`yτ
	 1
m0 À

¸
`PZν

υ
1
m0

x`y τ
m0

� 2
3

, (4.4.42)

��� ¤
`, j,j1PSc0
~�`�j�j1�0

Q
pIIq
`,j,j1

��� ¤ ¸
|j|,|j1|¤Cx`y 2

3

|QpIIq
`,j,j1 | À

¸
|j|,|j1|¤Cx`y 2

3

�
υ

x`yτ

 1
m0 À

¸
`PZν

υ
1
m0

x`y τ
m0

� 4
3

. (4.4.43)

We are left with estimating the measure of¤
p`,j,j1q�p0,j,jq,j�j1

~�`�j�j1�0

R
pIIq
`,j,j1 �

� ¤
`,jPSc0

~�`�2j�0

R
pIIq
`,j,�j

	
Y
� ¤
`,j,j1 , |j|�|j1|

~�`�j�j1�0

R
pIIq
`,j,j1

	
. (4.4.44)

By the momentum condition ~ � `� 2j � 0 we get |j| ¤ C x`y, and, by Lemma 4.59,

��� ¤
`,jPSc0,~�`�2j�0

R
pIIq
`,j,�j

��� ¤ ¸
|j|¤Cx`y

��RpIIq
`,j,�j

�� À ¸
|j|¤Cx`y

�
υ

x`yτ

 1
m0 À

¸
`PZν

υ
1
m0

x`y τ
m0

�1
. (4.4.45)

Finally we estimate the measure of the second union in (4.4.44). By Lemma 4.57 we can restrict

to indexes satisfying ||j|3{2 � |j1|3{2| ¤ C x`y . Now, for any |j| � |j1|, we have

��|j| 32 � |j1| 32 �� � ��|j| 12 � |j1| 12 �� �|j| � |j1| � |j| 12 |j1| 12 � ¥ |j| � |j1| � |j| 12 |j1| 12
|j| 12 � |j1| 12

¥ |j| 12 � |j1| 12
2

,
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implying the upper bounds |j|, |j1| ¤ C x`y2. Hence

��� ¤
`,j,j1 , |j|�|j1|

~�`�j�j1�0

R
pIIq
`,j,j1

��� ¤ ¸
|j|,|j1|¤Cx`y2

|RpIIq
`,j,j1 | À

¸
|j|,|j1|¤Cx`y2

�
υ

x`yτ

 1
m0 À

¸
`PZν

υ
1
m0

x`y τ
m0

�4
. (4.4.46)

As τ
m0

� 4 ¡ ν by (4.4.20), all the series in (4.4.41), (4.4.42), (4.4.43), (4.4.45), (4.4.46) are

convergent, and we deduce

|Gcε| ¤ Cυ
1
m0 .

For υ � εa as in (4.4.20), we get |Gε| ¥ κ2 � κ1 � Cεa{m0 . The proof of Theorem 4.56 is

concluded.

4.5 Approximate inverse

In order to implement a convergent Nash-Moser scheme that leads to a solution of Fpi, αq � 0,

where Fpi, αq is the nonlinear operator de�ned in (4.4.6), we construct an almost approximate

right inverse of the linearized operator

di,αFpi0, α0qrpı, pαs � ω � Bϕpı� diXHα pi0pϕqq rpıs � ppα, 0, 0q .
Note that di,αFpi0, α0q � di,αFpi0q is independent of α0. We assume that the torus i0pϕq �
pθ0pϕq, I0pϕq, w0pϕqq is reversible and traveling, according to (4.4.8).

In the sequel we shall assume the smallness condition, for some k :� kpτ, νq ¡ 0,

ευ�k ! 1 .

We closely follow the strategy presented in [34] and implemented for the water waves equations in

[44, 13]. The main novelty is to check that this construction preserves the momentum preserving

properties needed for the search of traveling waves. Therefore, along this section we shall focus

on this veri�cation. The estimates are very similar to those in [44, 13] and will be proved in

Appendix C.2.

First of all, we state tame estimates for the composition operator induced by the Hamiltonian

vector �eld XP � pBIP,�BθP,Π=

S�,ΣJ∇wP q in (4.4.6).

Lemma 4.60. (Estimates of the perturbation P ) Let Ipϕq in (4.4.9) satisfy }I}k0,υ
3s0�2k0�5 ¤

1. Then, for any s ¥ s0, }XP piq}k0,υ
s Às 1� }I}k0,υ

s�2s0�2k0�3, and, for all pı :� ppθ, pI, pwq,
}diXP piqrpıs}k0,υ

s Às }pı}k0,υ
s�1 � }I}k0,υ

s�2s0�2k0�4 }pı}k0,υ
s0�1 ,��d2

iXP piqrpı,pıs��k0,υ

s
Às }pı}k0,υ

s�1 }pı}k0,υ
s0�1 � }I}k0,υ

s�2s0�2k0�5 p}pı}k0,υ
s0�1q2 .
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Proof. The proof follows as in Lemma 5.1 of [44], using also the estimates of the Dirichlet-

Neumann operator in Lemmata 4.21, 4.22, see Appendix C.2.

Along this section, we assume the following hypothesis, which is veri�ed by the approximate

solutions obtained at each step of the Nash-Moser Theorem 4.95.

• ANSATZ. The map pω, κq ÞÑ I0pω, κq � i0pϕ;ω, κq � pϕ, 0, 0q is k0-times di�erentiable

with respect to the parameters pω, κq P Rν � rκ1, κ2s and, for some µ :� µpτ, νq ¡ 0,

υ P p0, 1q,
}I0}k0,υ

s0�µ � |α0 � ω|k0,υ ¤ Cευ�1 . (4.5.1)

As in [34, 44, 13], we �rst modify the approximate torus i0pϕq to obtain a nearby isotropic

torus iδpϕq, namely such that the pull-back 1-form i�δΛ is closed, where Λ is the Liouville 1-form

de�ned in (4.1.55). We �rst consider the pull-back 1-form

i�0Λ �
ν̧

k�1

akpϕqdϕk , akpϕq :� ��rBϕθ0pϕqsJI0pϕq
�
k
� 1

2

�
J�1
=
w0pϕq, Bϕkw0pϕq

�
L2 , (4.5.2)

and its exterior di�erential

i�0W � di�0Λ �
¸

1¤k j¤ν
Akjdϕk ^ dϕj , Akjpϕq :� Bϕkajpϕq � Bϕjakpϕq . (4.5.3)

By the formula given in Lemma 5 in [34], we deduce, if ω belongs to DCpυ, τq, the estimate

}Akj}k0,υ
s Às υ�1

� }Z}k0,υ
s�τpk0�1q�k0�1 � }Z}k0,υ

s0�1 }I0}k0,υ
s�τpk0�1q�k0�1

�
, (4.5.4)

where Zpϕq is the �error function�

Zpϕq :� Fpi0, α0qpϕq � ω � Bϕi0pϕq �XHα0
pi0pϕqq . (4.5.5)

Note that if Zpϕq � 0, the torus i0pϕq is invariant for XHα0
and the 1-form i�0Λ is closed, namely

the torus i0pϕq is isotropic. We denote below the Laplacian ∆ϕ :� °ν
k�1 B2

ϕk
.

Lemma 4.61. (Isotropic torus) The torus iδpϕq :� pθ0pϕq, Iδpϕq, w0pϕqq, de�ned by

Iδpϕq :� I0pϕq � rBϕθ0pϕqs�Jρpϕq , ρ � pρjqj�1,...,ν , ρjpϕq :� ∆�1
ϕ

ν̧

k�1

BϕkAkjpϕq , (4.5.6)
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is isotropic. Moreover, there is σ :� σpν, τq such that, for all s ¥ s0,

}Iδ � I0}k0,υ
s Às }I0}k0,υ

s�1 , (4.5.7)

}Iδ � I0}k0,υ
s Às υ�1

� }Z}k0,υ
s�σ � }Z}k0,υ

s0�σ }I0}k0,υ
s�σ

�
(4.5.8)

}Fpiδ, α0q}k0,υ
s Às }Z}k0,υ

s�σ � }Z}k0,υ
s0�σ }I0}k0,υ

s�σ (4.5.9)

}dipiδqrpıs}s1 Às1 }pı}s1�1 � }I0}k0,υ
s�σ}pı}k0,υ

s0 , (4.5.10)

for s1 ¤ s0 � µ (cfr. (4.5.1)). Furthermore iδpϕq is a reversible and traveling torus, cfr. (4.4.8).

Proof. Since i0pϕq is a traveling torus (see (4.2.60)), in order to prove that iδpϕq is a traveling

torus it is su�cient to prove that Iδpϕ � ~ςq � Iδpϕq, for any ς P R. In view of (4.5.6), this

follows by checking that Bϕθ0pϕ � ~ςq � Bϕθ0pϕq and ρpϕ � ~ςq � ρpϕq for any ς P R. The �rst
identity is a trivial consequence of the fact that θ0pϕ � ~ςq � θ0pϕq � ~ς for any ς P R, whereas
the second one follows once we prove that the functions akpϕq de�ned in (4.5.2) satisfy

akpϕ� ~ςq � akpϕq @ ς P R , @ k � 1, . . . , ν . (4.5.11)

Using that i0pϕq is a traveling torus, we get, for any ς P R,

�Bϕkw0pϕ� ~ςq, J�1
=
w0pϕ� ~ςq

�
L2 �

�Bϕkτςw0pϕq, J�1
=
τςw0pϕq

�
L2 �

�Bϕkw0pϕq, J�1
=
w0pϕq

�
L2

and, recalling (4.5.2), we deduce (4.5.11). Moreover, since i0pϕq is reversible, in order to prove

that iδpϕq is reversible as well, it is su�cient to show that Iδpϕq is even. This follows by (4.5.2),

Lemma 4.37 and SJ�1 � �J�1S. Finally, the estimates (4.5.7)-(4.5.10) follow e.g. as in Lemma

5.3 in [13] and will be proved in Appendix C.2.

In the sequel we denote by σ � σpν, τq constants, which may increase from lemma to lemma,

which represent "loss of derivatives".

In order to �nd an approximate inverse of the linearized operator di,αFpiδq, we introduce the
symplectic di�eomorphism Gδ : pφ, y, wq Ñ pθ, I, wq of the phase space Tν � Rν � H=

S�,Σ,���θ

I

w

��
:� Gδ

���φy
w

��
:�

��� θ0pφq
Iδpφq � rBφθ0pφqs�J y � rpBθ rw0qpθ0pφqqsJ J�1

=
w

w0pφq � w

��
 , (4.5.12)

where rw0pθq :� w0pθ�1
0 pθqq. It is proved in Lemma 2 of [34] that Gδ is symplectic, because the

torus iδ is isotropic (Lemma 4.61). In the new coordinates, iδ is the trivial embedded torus

pφ, y, wq � pφ, 0, 0q.

Lemma 4.62. The di�eomorphism Gδ in (4.5.12) is reversibility and momentum preserving, in
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the sense that

~S �Gδ � Gδ � ~S , ~τς �Gδ � Gδ � ~τς , @ ς P R , (4.5.13)

where ~S and ~τς are de�ned respectively in (4.1.51), (4.1.52).

Proof. We prove the second identity in (4.5.13), which, in view of (4.5.12), (4.1.52) amounts to

θ0pφq � ~ς � θ0pφ� ~ςq , @ς P R , (4.5.14)

Iδpφq � rBφθ0pφqs�J y � rpBθ rw0qpθ0pφqqsJ J�1
=

w (4.5.15)

� Iδpφ� ~ςq � rBφθ0pφ� ~ςqs�J y � rpBθ rw0qpθ0pφ� ~ςqqsJ J�1
=
τςw ,

τςw0pφq � τςw � w0pφ� ~ςq � τςw . (4.5.16)

Identities (4.5.14) and (4.5.16) follow because iδpϕq is a traveling torus (Lemma 4.61). For the

same reason Iδpφq � Iδpφ � ~ςq and Bφθ0pφq � Bφθ0pφ � ~ςq for any ς P R. Hence, for verifying

(4.5.15) it is su�cient to check that rpBθ rw0qpθ0pφqqsJ � rpBθ rw0qpθ0pφ � ~ςqqsJτς (we have used

that J�1
=

and τς commute by Lemma 4.45), which in turn follows by

τς � pBθ rw0qpθ0pφqq � pBθ rw0qpθ0pφ� ~ςqq , @ς P R , (4.5.17)

by taking the transpose and using that τJς � τ�ς � τ�1
ς . We claim that (4.5.17) is implied byrw0 being a traveling wave, i.e.

τς rw0pθ, �q � rw0pθ � ~ςq , @ς P R . (4.5.18)

Indeed, taking the di�erential of (4.5.18) with respect to θ, evaluating at θ � θ0pϕq, and using

that θ0pϕq�~ς � θ0pϕ�~ςq one deduces (4.5.17). It remains to prove (4.5.18). By the de�nition

of rw0, and since w0 is a traveling wave, we have

rw0pθ � ~ςq � w0pθ�1
0 pθ � ~ςqq � w0pθ�1

0 pθq � ~ςq � τςw0pθ�1
0 pθqq � τς rw0 ,

using also that θ�1
0 pθ � ~ςq � θ�1

0 pθq � ~ς, which follows by inverting (4.5.14). The proof of the

�rst identity in (4.5.13) follows by (4.5.12), (4.1.51), the fact that iδ is reversible, Lemma 4.37

and since J�1 and S anti-commute.

Under the symplectic di�eomorphism Gδ, the Hamiltonian vector �eld XHα changes into

XKα � pDGδq�1XHα �Gδ where Kα :� Hα �Gδ . (4.5.19)

By (4.5.13) and (4.4.7) we deduce that Kα is reversible and momentum preserving, in the sense
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that

Kα � ~S � Kα , Kα � ~τς � Kα , @ ς P R . (4.5.20)

The Taylor expansion of Kα at the trivial torus pφ, 0, 0q is

Kαpφ, y, wq � K00pφ, αq �K10pφ, αq � y � pK01pφ, αq, wqL2 � 1
2K20pφqy � y

� pK11pφqy, wqL2 � 1
2pK02pφqw, wqL2 �K¥3pφ, y, wq ,

(4.5.21)

where K¥3 collects all terms at least cubic in the variables py, wq. By (4.4.5) and (4.5.12), the

only Taylor coe�cients that depend on α are K00 P R, K10 P Rν and K01 P H=

S�,Σ, whereas the

ν�ν symmetric matrix K20, K11 P LpRν ,H=

S�,Σq and the linear self-adjoint operator K02, acting

on H=

S�,Σ, are independent of it.

Di�erentiating the identities in (4.5.20) at pφ, 0, 0q, we have (recalling (4.1.51))

K00p�φq � K00pφq , K10p�φq � K10pφq , K20p�φq � K20pφq ,
S �K01p�φq � K01pφq , S �K11p�φq � K11pφq , K02p�φq � S � S �K02pφq ,

(4.5.22)

and, recalling (4.1.52) and using that τJς � τ�ς � τ�1
ς , for any ς P R,

K00pφ� ~ςq � K00pφq , K10pφ� ~ςq � K10pφq , K20pφ� ~ςq � K20pφq ,
K01pφ� ~ςq � τςK01pφq , K11pφ� ~ςq � τςK11pφq , K02pφ� ~ςq � τς � τς �K02pφq .

(4.5.23)

The Hamilton equations associated to (4.5.21) are$''''''&''''''%

9φ � K10pφ, αq �K20pφqy � rK11pφqsJw� ByK¥3pφ, y, wq
9y � �BφK00pφ, αq � rBφK10pφ, αqsJy � rBφK01pφ, αqsJw

�Bφ
�

1
2K20pφqy � y � pK11pφqy, wqL2 � 1

2 pK02pφqw, wqL2 �K¥3pφ, y, wq
�

9w � J= pK01pφ, αq �K11pφqy �K02pφqw�∇wK¥3pφ, y, wqq

, (4.5.24)

where BφKJ
10 is the ν � ν transposed matrix and BφKJ

01,K
J
11 : H=

S�,Σ Ñ Rν are de�ned by the

duality relation pBφK01rpφs, wqL2 � pφ �rBφK01sJw for any pφ P Rν , w P H=

S�,Σ. The transpose K
J
11pφq

is de�ned similarly.

On an exact solution (that is Z � 0), the terms K00,K01 in the Taylor expansion (4.5.21)

vanish and K10 � ω. More precisely, arguing as in Lemma 5.4 in [13], we have
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Lemma 4.63. There is σ :� σpν, τq ¡ 0, such that, for all s ¥ s0,

}BφK00p�, α0q}k0,υ
s � }K10p�, α0q � ω}k0,υ

s � }K01p�, α0q}k0,υ
s

Às }Z}k0,υ
s�σ � }Z}k0,υ

s0�σ }I0}k0,υ
s�σ , (4.5.25)

}BαK00}k0,υ
s � }BαK10 � Id}k0,υ

s � }BαK01}k0,υ
s Às }I0}k0,υ

s�σ , (4.5.26)

}K20}k0,υ
s Às εp1� }I0}k0,υ

s�σq , (4.5.27)

}K11y}k0,υ
s Às εp}y}k0,υ

s � }y}k0,υ
s0

}I0}k0,υ
s�σq ,

��KJ
11w

��k0,υ

s
Às εp}w}k0,υ

s � }w}k0,υ
s0

}I0}k0,υ
s�σq .

(4.5.28)

A proof of the lemma is provided in Appendix C.2. Under the linear change of variables

DGδpϕ, 0, 0q

���pφpypw
��
:�

���Bφθ0pϕq 0 0

BφIδpϕq rBφθ0pϕqs�J rpBθ rw0qpθ0pϕqqsJJ�1
=

Bφw0pϕq 0 Id

��

���pφpypw

��
 , (4.5.29)

the linearized operator di,αFpiδq is approximately transformed into the one obtained when one

linearizes the Hamiltonian system (4.5.24) at pφ, y, wq � pϕ, 0, 0q, di�erentiating also in α at α0

and changing Bt ù ω � Bϕ, namely������
pφpypwpα

�����
 ÞÑ
��� ω � Bϕpφ� BφK10pϕqrpφs � BαK10pϕqrpαs �K20pϕqpy � rK11pϕqsJpw
ω � Bϕpy � BφφK00pϕqrpφs � BαBφK00pϕqrpαs � rBφK10pϕqsJpy � rBφK01pϕqsJpw

ω � Bϕpw� J=
�BφK01pϕqrpφs � BαK01pϕqrpαs �K11pϕqpy �K02pϕqpw�

��
.
(4.5.30)

By (4.5.29), (4.5.1) and Lemma 4.61, the induced composition operator satis�es, for any traveling

wave variation pı :� ppφ, py,pwq,
}DGδpϕ, 0, 0qrpıs}k0,υ

s � }DGδpϕ, 0, 0q�1rpıs}k0,υ
s Às }pı}k0,υ

s � }I0}k0,υ
s�σ}pı}k0,υ

s0 , (4.5.31)

}D2Gδpϕ, 0, 0qrpı1,pı2s}k0,υ
s Às }pı1}k0,υ

s }pı2}k0,υ
s0 � }pı1}k0,υ

s0 }pı2}k0,υ
s � }I0}k0,υ

s�σ}pı1}k0,υ
s0 }pı2}k0,υ

s0 . (4.5.32)

In order to construct an �almost approximate" inverse of (4.5.30), we need that

Lω :� Π=

S�,Σ pω � Bϕ � JK02pϕqq |H=
S�,Σ

(4.5.33)

is "almost invertible" (on traveling waves) up to remainders of size OpN�a
n�1q, where, for n P N0

Nn :� Kp
n , Kn :� Kχn

0 , χ � 3{2 . (4.5.34)

The pKnqn¥0 is the scale used in the nonlinear Nash-Moser iteration of Section 4.8 and pNnqn¥0
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is the one in the reducibility scheme of Section 4.7. Let Hs
=
pTν�1q :� HspTν�1q X H=

S�,Σ.

(AI) Almost invertibility of Lω: There exist positive real numbers σ, µpbq, a, p, K0 and

a subset Λo � DCpυ, τq � rκ1, κ2s such that, for all pω, κq P Λo, the operator Lω may be

decomposed as

Lω � L ω �Rω �RK
ω , (4.5.35)

where, for every traveling wave function g P Hs�σ
=

pTν�1,R2q and for every pω, κq P Λo, there
is a traveling wave solution h P Hs

=
pTν�1,R2q of L ωh � g satisfying, for all s0 ¤ s ¤ S,��pL ω q�1g

��k0,υ

s
ÀS υ�1

� }g}k0,υ
s�σ � }g}k0,υ

s0�σ }I0}k0,υ
s�µpbq�σ

�
. (4.5.36)

In addition, if g is anti-reversible, then h is reversible. Moreover, for any s0 ¤ s ¤ S, for

any traveling wave h P H=

S�,Σ, the operators Rω,RK
ω satisfy the estimates

}Rωh}k0,υ
s ÀS ευ�1N�a

n�1

� }h}k0,υ
s�σ � }h}k0,υ

s0�σ }I0}k0,υ
s�µpbq�σ

�
,��RK

ωh
��k0,υ

s0
ÀS K�b

n

� }h}k0,υ
s0�b�σ � }h}k0,υ

s0�σ }I0}s0�µpbq�σ�b
�
, @ b ¡ 0 ,��RK

ωh
��k0,υ

s
ÀS }h}k0,υ

s�σ � }h}k0,υ
s0�σ }I0}k0,υ

s�µpbq�σ .

This assumption shall be veri�ed by Theorem 4.93 at each n-th step of the Nash-Moser nonlinear

iteration.

In order to �nd an almost approximate inverse of the linear operator in (4.5.30) (and so of

di,αFpiδq), it is su�cient to invert the operator

D
�pφ, py,pw, pα� :�

���ω � Bϕpφ� BαK10pϕqrpαs �K20pϕqpy �KJ
11pϕqpw

ω � Bϕpy � BαBφK00pϕqrpαs
L ωpw� J= pBαK01pϕqrpαs �K11pϕqpyq

��
 (4.5.37)

obtained neglecting in (4.5.30) the terms BφK10, BφφK00, BφK00, BφK01 (they vanish at an exact

solution by Lemma 4.63) and the small remainders Rω, RK
ω appearing in (4.5.35). We look for

an inverse of D by solving the system

D
�pφ, py,pw, pα� �

���g1

g2

g3

��
 , (4.5.38)
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where pg1, g2, g3q is an anti-reversible traveling wave variation (cfr. De�nition 4.47), i.e.

g1pϕq � g1p�ϕq, g2pϕq � �g2p�ϕq, Sg3pϕq � �g3p�ϕq , (4.5.39)

g1pϕq � g1pϕ� ~ςq, g2pϕq � g2pϕ� ~ςq, τςg3pϕq � g3pϕ� ~ςq, @ς P R . (4.5.40)

We �rst consider the second equation in (4.5.37)-(4.5.38), that is ω � Bϕpy � g2 � BαBφK00pϕqrpαs.
By (4.5.39) and (4.5.22), the right hand side of this equation is odd in ϕ. In particular it has

zero average and so py :� pω � Bϕq�1pg2 � BαBφK00pϕqrpαsq . (4.5.41)

Since g2pϕq � g2pϕ�~ςq for any ς P R by (4.5.40) and BαBφK00pϕqrpαs satis�es the same property

by (4.5.23), we deduce also that

pypϕ� ~ςq � pypϕq, @ ς P R . (4.5.42)

Next we consider the third equation L ωpw � g3�J=pBαK01pϕqrpαs�K11pϕqpyq. The right hand side

of this equation is a traveling wave by (4.5.40), (4.5.23), (4.5.42) and since J= � Π=

S�,Σ J|H=S�,Σ
commutes with τς (by Lemma 4.45). Thus, by assumption (AI), there is a traveling wave solution

pw :� pL ω q�1
�
g3 � J=pBαK01pϕqrpαs �K11pϕqpyq� . (4.5.43)

Finally, we solve the �rst equation in (4.5.38), which, inserting (4.5.41) and (4.5.43), becomes

ω � Bϕpφ � g1 �M1pϕqrpαs �M2pϕqg2 �M3pϕqg3 , (4.5.44)

where

M1pϕq :� BαK10pϕq �M2pϕqBαBφK00pϕq �M3pϕqJ=BαK01pϕq ,
M2pϕq :� K20pϕqpω � Bϕq�1 �KJ

11pϕq pL ω q�1 J=K11pϕqpω � Bϕq�1 ,

M3pϕq :� KJ
11pϕq pL ω q�1 .

In order to solve (4.5.44), we choose pα such that the average in ϕ of the right hand side is zero.

By Lemma 4.63 and (4.5.1), the ϕ-average of the matrix M1 satis�es xM1yϕ � Id � Opευ�1q.
Then, for ευ�1 small enough, xM1yϕ is invertible and xM1y�1

ϕ � Id�Opευ�1q. Thus we de�ne

pα :� �xM1y�1
ϕ

� xg1yϕ � xM2g2yϕ � xM3g3yϕ
�
, (4.5.45)

and the solution of equation (4.5.44)

pφ :� pω � Bϕq�1
�
g1 �M1pϕqrpαs �M2pϕqg2 �M3pϕqg3

�
. (4.5.46)
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The property pφpϕ� ~ςq � pφpϕq for any ς P R follows by (4.5.23), (4.5.42) and the fact that pw in

(4.5.43) is a traveling wave. This proves that ppφ, py,pwq is a traveling wave variation, i.e. (4.5.40)

holds. Moreover, using (4.5.39), (4.5.22), Lemma 4.37, the fact that J and S anti-commutes and

(AI), one checks that ppφ, py,pwq is reversible, i.e.
pφpϕq � �pφp�ϕq, pypϕq � pyp�ϕq, Spwpϕq � pwp�ϕq . (4.5.47)

In conclusion, we have obtained a solution ppφ, py,pw, pαq of the linear system (4.5.38), and, denoting

the norm }pφ, y, w, αq}k0,υ
s :� max

 }pφ, y, wq}k0,υ
s , |α|k0,υ

(
, we have:

Proposition 4.64. Assume (4.5.1) (with µ � µpbq � σ) and (AI). Then, for all pω, κq P Λo,

for any anti-reversible traveling wave variation g � pg1, g2, g3q (i.e. satisfying (4.5.39)-(4.5.40)),

system (4.5.38) has a solution D�1g :� ppφ, py,pw, pαq, with ppφ, py,pw, pαq de�ned in (4.5.46), (4.5.41),

(4.5.43), (4.5.45), where ppφ, py,pwq is a reversible traveling wave variation, satisfying, for any

s0 ¤ s ¤ S

}D�1g}k0,υ
s ÀS υ�1

�}g}k0,υ
s�σ � }I0}k0,υ

s�µpbq�σ}g}k0,υ
s0�σ

�
. (4.5.48)

Proof. The estimate (4.5.48) follows by the explicit expression of the solution in (4.5.41), (4.5.43),

(4.5.45), (4.5.46), and Lemma 4.63, (4.5.36), (4.5.1).

Finally we prove that the operator

T0 :� T0pi0q :� pD rGδqpϕ, 0, 0q � D�1 � pDGδqpϕ, 0, 0q�1 (4.5.49)

is an almost approximate right inverse for di,αFpi0q, where rGδpφ, y, w, αq :� pGδpφ, y, wq, αq is
the identity on the α-component.

Theorem 4.65. (Almost approximate inverse) Assume (AI). Then there is σ :� σpτ, ν, k0q ¡
0 such that, if (4.5.1) holds with µ � µpbq�σ, then, for all pω, κq P Λo and for any anti-reversible

traveling wave variation g :� pg1, g2, g3q (i.e. satisfying (4.5.39)-(4.5.40)), the operator T0 de-

�ned in (4.5.49) satis�es, for all s0 ¤ s ¤ S,

}T0g}k0,υ
s ÀS υ�1

�}g}k0,υ
s�σ � }I0}k0,υ

s�µpbq�σ}g}k0,υ
s0�σ

�
. (4.5.50)

Moreover, the �rst three components of T0g form a reversible traveling wave variation (i.e. satisfy

(4.5.47) and (4.5.40)). Finally, T0 is an almost approximate right inverse of di,αFpi0q, namely

di,αFpi0q �T0 � Id � Ppi0q � Pωpi0q � PKω pi0q ,
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where, for any traveling wave variation g, for all s0 ¤ s ¤ S,

}Pg}k0,υ
s ÀS υ�1

�
}Fpi0, α0q}k0,υ

s0�σ}g}
k0,υ
s�σ (4.5.51)

� �}Fpi0, α0q}k0,υ
s�σ � }Fpi0, α0q}k0,υ

s0�σ}I0}k0,υ
s�µpbq�σ

�}g}k0,υ
s0�σ

	
,

}Pωg}k0,υ
s ÀS ευ�2N�a

n�1

�}g}k0,υ
s�σ � }I0}k0,υ

s�µpbq�σ}g}k0,υ
s0�σ

�
, (4.5.52)

}PKω g}k0,υ
s0 ÀS,b υ�1K�b

n

�
}g}k0,υ

s0�σ�b � }I0}k0,υ
s0�µpbq�b�σ}g}

k0,υ
s0�σ

	
, @ b ¡ 0 , (4.5.53)

}PKω g}k0,υ
s ÀS υ�1

�}g}k0,υ
s�σ � }I0}k0,υ

s�µpbq�σ}g}k0,υ
s0�σ

�
. (4.5.54)

The proof of Theorem 4.65 is available in Appendix C.2.

4.6 The linearized operator in the normal subspace

We now write an explicit expression of the linear operator Lω de�ned in (4.5.33).

Lemma 4.66. The Hamiltonian operator Lω de�ned in (4.5.33), acting on the normal subspace

H=

S�,Σ, has the form

Lω � Π=

S�,ΣpL� εJRq|H=
S�,Σ

, (4.6.1)

where :

1. L is the Hamiltonian operator

L :� ω � Bϕ � JBu∇uHpTδpϕqq , (4.6.2)

where H is the water waves Hamiltonian in the Wahlén variables de�ned in (4.1.13), eval-

uated at

Tδpφq :� εApiδpφqq � εA pθ0pφq, Iδpφq, w0pφqq � εvᵀ pθ0pφq, Iδpφqq � εw0pφq , (4.6.3)

the torus iδpϕq :� pθ0pϕq, Iδpϕq, w0pϕqq is de�ned in Lemma 4.61 and Apθ, I, wq, vᵀpθ, Iq
in (4.1.50);

2. Rpφq has the �nite rank form

Rpφqrhs �
ν̧

j�1

ph, gjqL2 χj , @h P H=

S�,Σ , (4.6.4)

for functions gj , χj P H=

S�,Σ which satisfy, for some σ :� σpτ, ν, k0q ¡ 0, for all j � 1, . . . , ν,
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for all s ¥ s0,

}gj}k0,υ
s � }χj}k0,υ

s Às 1� }Iδ}k0,υ
s�σ ,

}digjrpıs}s � }diχjrpıs}s Às }pı}s�σ � }pı}s0�σ }Iδ}s�σ . (4.6.5)

The operator Lω is reversible and momentum preserving.

Proof. In view of (4.5.21), (4.5.19) and (4.4.5) we have

K02pφq � Bw∇wKαpφ, 0, 0q � Bw∇w pHα �Gδq pφ, 0, 0q
� ΠL2

= ΩW |H=
S�,Σ

� εBw∇w pP �Gδq pφ, 0, 0q , (4.6.6)

where ΩW is de�ned in (4.1.19) and Gδ in (4.5.12). Di�erentiating with respect to w the Hamil-

tonian

pP �Gδqpφ, y, wq � P
�
θ0pφq, Iδpφq � L1pφqy � L2pφqw, w0pφq � w

�
,

where L1pφq :� rBφθ0pφqs�J and L2pφq :� rBφ rw0pθ0pφqqsJJ�1
=

(see (4.5.12)), we get

Bw∇wpP �Gδqpφ, 0, 0q � Bw∇wP piδpφqq �Rpφq , (4.6.7)

where Rpφq :� R1pφq �R2pφq �R3pφq and

R1 :� L2pφqJB2
IP piδpφqqL2pφq, R2 :� L2pφqJBwBIP piδpφqq, R3 :� BI∇wP piδpφqqL2pφq .

Each operator R1, R2, R3 has the �nite rank form (4.6.4) because it is the composition of at least

one operator with �nite rank Rν in the space variable (for more details see e.g. Lemma 6.1 in

[44]) and the estimates (4.6.5) follow by Lemma 4.60. By (4.6.6), (4.6.7), (4.4.4), (4.4.3), (4.4.1),

we obtain

K02pφq � ΠL2

= Bu∇uHpApiδpφqqq|H=
S�,Σ

� εRpφq . (4.6.8)

In conclusion, by (4.6.8), Lemma 4.8, and since Tδpφq � Apiδpφqq, we deduce that the operator
Lω in (4.5.33) has the form (4.6.1)-(4.6.2). Finally the operator Π=

S�,ΣJK02pϕq is reversible and
momentum preserving, by (4.5.22), (4.5.23), Lemmata 4.37, 4.45, and the fact that J commutes

with τς and anti-commutes with S.

We remark that L in (4.6.2) is obtained by linearizing the water waves Hamiltonian system

(4.1.13), (4.1.14) in the Wahlén variables de�ned in (4.1.11) at the torus u � pη, ζq � Tδpϕq
de�ned in (4.6.3) and changing Bt ù ω � Bϕ. This is equal to

L � ω � Bϕ �W�1pdXqpWTδpϕqqW , (4.6.9)

where X is the water waves vector �eld on the right hand side of (4.0.1). The operator L acts
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on (a dense subspace) of the phase space L2
0 � 9L2.

In order to compute dX we use the "shape derivative" formula, see e.g. [133],

G1pηqrpηsψ :� lim
εÑ0

1
ε

�
Gpη � εpηqψ �Gpηqψ� � �GpηqpBpηq � BxpV pηq , (4.6.10)

where

Bpη, ψq :� Gpηqψ � ηxψx
1� η2

x

, V pη, ψq :� ψx �Bpη, ψqηx . (4.6.11)

It turns out that pV,Bq � pΦx,Φyq is the gradient of the generalized velocity potential de�ned

in (1.1.12), evaluated at the free surface y � ηpxq.
Using (4.6.9), (4.0.1), (4.6.10), (4.6.11), the operator L is

L � ω � Bϕ �
�

Bx rV �GpηqB �Gpηq
g � κBxcBx �B rVx �BGpηqB rV Bx �BGpηq

�

� γ

2

�
�GpηqB�1

x 0

B�1
x GpηqB �BGpηqB�1

x � γ
2B�1
x GpηqB�1

x �B�1
x Gpηq

�
,

(4.6.12)

where rV :� V � γη , cpηq :� p1� η2
xq�

3
2 , (4.6.13)

and the functions B :� Bpη, ψq, V :� V pη, ψq, c :� cpηq in (4.6.12) are evaluated at the reversible
traveling wave pη, ψq :�WTδpϕq where Tδpϕq is de�ned in (4.6.3).

Remark 4.67. From now on we consider the operator L in (4.6.12) acting on (a dense subspace

of) the whole L2pTq�L2pTq. In particular we extend the operator B�1
x to act on the whole L2pTq

as in (4.2.20). In Sections 4.6.1-4.6.6 we are going to make several transformations, whose aim is

to conjugate L to a constant coe�cients Fourier multiplier, up to a pseudodi�erential operator of

order zero plus a remainder that satis�es tame estimates, both small in size, see L9 in (4.6.169).

Finally, in Section 4.6.7 we shall conjugate the restricted operator Lω in (4.6.1).

Notation. In (4.6.12) and hereafter any function a is identi�ed with the corresponding

multiplication operators h ÞÑ ah, and, where there is no parenthesis, composition of operators is

understood. For example, BxcBx means: h ÞÑ BxpcBxhq.

Lemma 4.68. The functions pη, ζq � Tδpϕq and B, rV , c de�ned in (4.6.11), (4.6.13) are quasi-

periodic traveling waves. The functions pη, ζq � Tδpϕq are pevenpϕ, xq, oddpϕ, xqq, B is oddpϕ, xq,rV is evenpϕ, xq and c is evenpϕ, xq. The Hamiltonian operator L is reversible and momentum

preserving.

Proof. The function pη, ζq � Tδpϕq is a quasi-periodic traveling wave and, using also Lemmata

4.46 and 4.40, we deduce that B, rV , c are quasi-periodic traveling waves. Since pη, ζq � Tδpϕq is
reversible, we have that pη, ζq is pevenpϕ, xq, oddpϕ, xqq. Therefore, using also (4.1.6), we deduce
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that B is oddpϕ, xq, rV is evenpϕ, xq and c is evenpϕ, xq. By Lemmata 4.36 and 4.41, the operator

L in (4.6.9) evaluated at the reversible quasi-periodic traveling wave WTδpϕq is reversible and

momentum preserving.

For the sequel we will always assume the following ansatz (satis�ed by the approximate

solutions obtained along the nonlinear Nash-Moser iteration of Section 4.8): for some constants

µ0 :� µ0pτ, νq ¡ 0, υ P p0, 1q, (cfr. Lemma 4.61)

}I0}k0,υ
s0�µ0

, }Iδ}k0,υ
s0�µ0

¤ 1 . (4.6.14)

In order to estimate the variation of the eigenvalues with respect to the approximate invariant

torus, we need also to estimate the variation with respect to the torus ipϕq in another low norm

} }s1 for all Sobolev indexes s1 such that

s1 � σ0 ¤ s0 � µ0 , for some σ0 :� σ0pτ, νq ¡ 0 . (4.6.15)

Thus, by (4.6.14), we have

}I0}k0,υ
s1�σ0

, }Iδ}k0,υ
s1�σ0

¤ 1 .

The constants µ0 and σ0 represent the loss of derivatives accumulated along the reduction pro-

cedure of the next sections. What is important is that they are independent of the Sobolev index

s. In the following sections we shall denote by σ :� σpτ, ν, k0q ¡ 0, σN pq0q :� σN pq0, τ, ν, k0q,
σM :� σM pk0, τ, νq ¡ 0, ℵM pαq constants (which possibly increase from lemma to lemma) rep-

resenting losses of derivatives along the �nitely many steps of the reduction procedure.

Remark 4.69. In the next sections µ0 :� µ0pτ, ν,M, αq ¡ 0 will depend also on indexes M,α,

whose maximal values will be �xed depending only on τ and ν (and k0 which is however considered

an absolute constant along the paper). In particular M is �xed in (4.7.5), whereas the maximal

value of α depends on M , as explained in Remark 4.79.

As a consequence of Moser composition Lemma 4.13 and (4.5.7), the Sobolev norm of the

function u � Tδpϕq de�ned in (4.6.3) satis�es for all s ¥ s0

}u}k0,υ
s � }η}k0,υ

s � }ζ}k0,υ
s ¤ εCpsq�1� }I0}k0,υ

s

�
(4.6.16)

(the map A de�ned in (4.1.50) is smooth). Similarly, using (4.5.10),

}∆12u}s1 Às1 ε }i2 � i1}s1 , where ∆12u :� upi2q � upi1q .

We �nally recall that I0 � I0pω, κq is de�ned for all pω, κq P Rν �rκ1, κ2s and that the functions

B, rV and c appearing in L in (4.6.12) are C8 in pϕ, xq, as u � pη, ζq � Tδpϕq is.
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4.6.1 Quasi-periodic reparametrization of time

We conjugate the operator L in (4.6.12) by the change of variables induced by the quasi-periodic

reparametrization of time

ϑ :� ϕ� ωppϕq ô ϕ � ϑ� ωp̆pϑq , (4.6.17)

where ppϕq is the real Tν-periodic function de�ned in (4.6.88). Since ηpϕ, xq is a quasi-periodic

traveling wave, even in pϕ, xq (cfr. Lemma 4.68), it results that

ppϕ� ~ςq � ppϕq , @ ς P R , p is oddpϕq . (4.6.18)

Moreover, by (4.6.88), (4.2.11), Lemma 4.13, (4.6.16) and (4.6.14) and Lemma 2.30 in [44], both

p and p̆ satisfy, for some σ :� σpτ, ν, k0q ¡ 0, the tame estimates, for s ¥ s0,

}p}k0,υ
s � }p̆}k0,υ

s Às ε2υ�1
�
1� }I0}k0,υ

s�σ
�
. (4.6.19)

Remark 4.70. We perform as a �rst step the time reparametrization (4.6.17) of L, with a function

ppϕq which will be �xed only later in Step 4 of Section 4.6.3, to avoid otherwise a technical

di�culty in the conjugation of the remainders obtained by the Egorov theorem in Step 1 of

Section 4.6.3. We need indeed to apply the Egorov Proposition 4.20 for conjugating the additional

pseudodi�erential term in (4.6.12) due to vorticity.

Denoting by

pPhqpϕ, xq :� hpϕ� ωppϕq, xq , pP�1hqpϑ, xq :� hpϑ� ωp̆pϑq, xq ,

the induced di�eomorphism of functions hpϕ, xq P C2, we have

P�1 � ω � Bϕ � P � ρpϑqω � Bϑ , ρpϑq :� P�1p1� ω � Bϕpq . (4.6.20)

Therefore, for any ω P DCpυ, τq, we get

L0 :� 1

ρ
P�1LP � ω � Bϑ � 1

ρ

�
Bx rV �GpηqB �Gpηq

g � κBxcBx �B rVx �BGpηqB rV Bx �BGpηq

�

� 1

ρ

γ

2

�
�GpηqB�1

x 0

B�1
x GpηqB �BGpηqB�1

x � γ
2B�1
x GpηqB�1

x �B�1
x Gpηq

�
,

(4.6.21)

where rV ,B, c, V and Gpηq are evaluated at pηp, ψpq :� P�1pη, ψq. For simplicity in the notation
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we do not report in (4.6.21) the explicit dependence on p, writing for example (cfr. (4.6.13))

c � �
1� pP�1ηq2x

�� 3
2 � P�1

�
1� η2

x

�� 3
2 . (4.6.22)

Lemma 4.71. The maps P, P�1 are Dk0-pk0 � 1q-tame, the maps P � Id and P�1 � Id are

Dk0-pk0 � 2q-tame, with tame constants satisfying, for some σ :� σpτ, ν, k0q ¡ 0 and for any

s0 ¤ s ¤ S,

MP�1psq ÀS 1� }I0}k0,υ
s�σ , MP�1�Idpsq ÀS ε2υ�1

�
1� }I0}k0,υ

s�σ
�
. (4.6.23)

The function ρ de�ned in (4.6.20) satis�es

ρ is evenpϑq and ρpϑ� ~ςq � ρpϑq , @ς P R . (4.6.24)

The operator L0 is Hamiltonian, reversible and momentum preserving.

Proof. Estimates (4.6.23) follow by (4.6.19) and Lemma 2.30 in [44], writing pP � Idqh �
p
³1
0 Pτ pω � Bϕhq dτ , where pPτhqpϕ, xq :� hpϕ � τωppϕq, xq. We deduce (4.6.24) by (4.6.18)

and (4.6.20). Denoting L � ω � Bϕ � Apϕq the operator L in (4.6.12), then the operator L0 in

(4.6.21) is L0 � ω � Bϑ � A�pϑq with A�pϑq � ρ�1pϑqApϑ � p̆pϑqωq. It follows that A�pϕq is
Hamiltonian, reversible and momentum preserving as Apϕq (Lemma 4.68).

Remark 4.72. The map P is not reversibility and momentum preserving according to De�nitions

4.31, respectively 4.38, but maps (anti)-reversible, respectively traveling, waves, into (anti)-

reversible, respectively traveling, waves. Note that the multiplication operator for the function

ρpϑq, which satis�es (4.6.24), is reversibility and momentum preserving according to De�nitions

4.31 and 4.38.

4.6.2 Linearized good unknown of Alinhac

We conjugate the linear operator L0 in (4.6.21), where we rename ϑ with ϕ, by the multiplication

matrix operator

Z :�
�

Id 0

B Id

�
, Z�1 �

�
Id 0

�B Id

�
,

obtaining (in view of (4.2.54))

L1 :� Z�1L0Z

� ω � Bϕ � 1

ρ

�
Bx rV �Gpηq

g � a� κBxcBx rV Bx
�
� 1

ρ

γ

2

�
GpηqB�1

x 0
γ
2B�1
x GpηqB�1

x B�1
x Gpηq

�
,

(4.6.25)
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where a is the function

a :� rV Bx � ρ pω � BϕBq . (4.6.26)

The matrix Z amounts to introduce, as in [133] and [44, 13], a linearized version of the �good

unknown of Alinhac".

Lemma 4.73. The maps Z�1 � Id are Dk0-tame with tame constants satisfying, for some σ :�
σpτ, ν, k0q ¡ 0, for all s ¥ s0,

MZ�1�Idpsq , MpZ�1�Idq�psq Às ε
�
1� }I0}k0,υ

s�σ
�
. (4.6.27)

The function a is a quasi-periodic traveling wave evenpϕ, xq. There is σ :� σpτ, ν, k0q ¡ 0 such

that, for all s ¥ s0,

}a}k0,υ
s � }rV }k0,υ

s � }B}k0,υ
s Às ε

�
1� }I0}k0,υ

s�σ
�
, }1� c}k0,υ

s Às ε2
�
1� }I0}k0,υ

s�σ
�
. (4.6.28)

Moreover, for any s1 as in (4.6.15),

}∆12a}s1 � }∆12
rV }s1 � }∆12B}s1 Às1 ε }i1 � i2}s1�σ , (4.6.29)

}∆12c}s1 Às1 ε2 }i1 � i2}s1�σ , (4.6.30)

}∆12pZ�1qh}s1 , }∆12pZ�1q�h}s1 Às1 ε }i1 � i2}s1�σ }h}s1 . (4.6.31)

The operator L1 is Hamiltonian, reversible and momentum preserving.

Proof. The estimates (4.6.28) follow by the expressions of a, rV ,B, c in (4.6.26), (4.6.11), (4.6.13),

(reparametrized by P�1 as in (4.6.22)), Lemmata 4.13, 4.21 and (4.6.23), (4.2.7), (4.2.38) and

(4.2.37). The estimate (4.6.27) follows by (4.2.38), (4.2.22), (4.6.28) and since the adjoint Z� ��
Id B

0 Id

�
. The estimates (4.6.29)-(4.6.31) follow similarly. Since B is a oddpϕ, xq quasi-periodic

traveling wave, then the operators Z� are reversibility and momentum preserving.

4.6.3 Symmetrization and reduction of the highest order

The aim of this long section is to conjugate the Hamiltonian operator L1 in (4.6.25) to the

Hamiltonian operator L5 in (4.6.90) whose coe�cient m 3
2
of the highest order is constant. This

is achieved in several steps. All the transformations of this section are symplectic.

Recalling the expansion (4.2.32) of the Dirichlet-Neumann operator in Lemma 4.21, we �rst

write

L1 � ω � Bϕ � 1

ρ

�
�γ

2Gp0qB�1
x �Gp0q

�κBxcBx � g � �
γ
2

�2 B�1
x Gp0qB�1

x �γ
2B�1
x Gp0q

�
� 1

ρ

�
Bx rV 0

a rV Bx
�
�R1 ,

(4.6.32)
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where

R1 :� �1

ρ

�
γ
2RGpηqB�1

x RGpηq�
γ
2

�2 B�1
x RGpηqB�1

x
γ
2B�1
x RGpηq

�
(4.6.33)

is a small remainder in OPS�8.

Step 1: We �rst conjugate L1 with the symplectic change of variable (cfr. (4.2.50))

pEuqpϕ, xq :�
a

1� βxpϕ, xq pBuqpϕ, xq , pBuqpϕ, xq :� u pϕ, x� βpϕ, xqq , (4.6.34)

induced by a family of ϕ-dependent di�eomorphisms of the torus y � x�βpϕ, xq , where βpϕ, xq
is a small function to be determined, see (4.6.68). We denote the inverse di�eomorphism by

x � y � β̆pϕ, yq. By direct computation we have that

E�1 rV BxE �  
B�1

�rV p1� βxq
�(By � 1

2

 
B�1 rV βxxp1� βxq�1

(
, (4.6.35)

E�1Bx rV E �  
B�1

�rV p1� βxq
�(By � tB�1prVx � 1

2
rV βxxp1� βxq�1qu , (4.6.36)

E�1aE � tB�1au , (4.6.37)

E�1BxcBxE � B�1p1� βxq�
1
2B B�1BxB B�1cB B�1BxB B�1p1� βxq

1
2B

�  
B�1p1� βxq

1
2

( By  B�1pcp1� βxqq
( By  B�1p1� βxq

1
2

(
, (4.6.38)

E�1ω � BϕE � ω � Bϕ �
 
B�1 pω � Bϕβq

( By � 1
2tB�1

�pω � Bϕβxqp1� βxq�1
�u . (4.6.39)

Then we write the Dirichlet-Neumann operator Gp0q in (1.1.15) as

Gp0q � Gp0, hq � BxHT phq , (4.6.40)

where H is the Hilbert transform in (4.2.19) and

T phq :�
$&%tanhph|D|q � Id�Opprhq if h   �8 , rhpξq :� � 2

1�e2h|ξ|χpξq P S�8 ,
Id if h � 8 .

(4.6.41)

We have the conjugation formula (see formula (7.42) in [13])

B�1Gp0qB �  
B�1p1� βxq

(
Gp0q �R1 , (4.6.42)

where

R1 :�  
B�1p1� βxq

( By �H �
B�1OpprhqB �Opprhq

�� �
B�1HB �H� pB�1T phqBq� . (4.6.43)
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The operator R1 is in OPS�8 because both B�1OpprhqB � Opprhq and B�1HB � H are in

OPS�8 and there is σ ¡ 0 such that, for any m P N, s ¥ s0, and α P N0,

}B�1HB �H}k0,υ
�m,s,α Àm,s,α,k0 }β}k0,υ

s�m�α�σ ,

}B�1OpprhqB �Opprhq}k0,υ
�m,s,α Àm,s,α,k0 }β}k0,υ

s�m�α�σ .
(4.6.44)

The �rst estimate is given by Lemmata C.5, C.5, whereas the second one follows by the fact that

rh P S�8 (see (4.6.41)) and Lemmata C.3, C.2, C.1. Therefore by (4.6.42) we obtain

E�1Gp0qE � tB�1p1� βxq
1
2 uGp0q tB�1p1� βxq

1
2 u � rR1 , (4.6.45)

where rR1 :� tB�1p1� βxq�
1
2 uR1 tB�1p1� βxq

1
2 u. (4.6.46)

Next we transform Gp0qB�1
x . By (4.6.40) and using the identities HBxB�1

x � H and HT phq �
Gp0qB�1

y on the periodic functions, we have that

E�1Gp0qB�1
x E � E�1BxHT phqB�1

x E � Gp0qB�1
y �R2 , (4.6.47)

where

R2 :� tB�1p1� βxq�
1
2 u�HT phq, tB�1p1� βxq

1
2 u � 1

�� tB�1p1� βxq�
1
2 u �

� �pB�1HB �HqpB�1T phqBq �H�B�1OpprhqB �Opprhq
�� tB�1p1� βxq

1
2 u .

(4.6.48)

The operator R2 is in OPS�8 by (4.6.44), (4.6.41) and because the commutator of H with any

smooth function a is in OPS�8. In particular, by Lemma C.4, there is σ ¡ 0 such that, for any

m P N, s ¥ s0, and α P N0,

}rHT phq, as}k0,υ
�m,s,α Àm,s,α,k0 }a}k0,υ

s�m�α�σ . (4.6.49)

Finally we conjugate B�1
x Gp0qB�1

x . By the Egorov Proposition 4.20, we have that, for any N P N,

E�1B�1
x E �

!
B�1

� 1

1� βx

	)
B�1
y � P

p1q
�2,N pϕ, x,Dq � RN , (4.6.50)

where P
p1q
�2,N pϕ, x,Dq P OPS�2 is

P
p1q
�2,N pϕ, x,Dq :� tB�1p1� βxq�

1
2 u
!�
p�1B�1

y ,B�1p1� βxq
1
2

�� Ņ

j�1

p�1�jB�1�j
y tB�1p1� βxq

1
2 u
)
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with functions p�1�jpλ;ϕ, yq, j � 0, . . . , N , satisfying (4.2.30) and RN is a regularizing operator

satisfying the estimate (4.2.31). So, using (4.6.50) and (4.6.47), we obtain

E�1B�1
x Gp0qB�1

x E �
�
E�1B�1

x E
� �
E�1Gp0qB�1

x E
� � B�1

y Gp0qB�1
y � P

p2q
�1,N � R2,N , (4.6.51)

where

P
p2q
�1,N :�

�
�
!
B�1

� βx
1� βx

	)
B�1
y � P

p1q
�2,N pϕ, x,Dq

	
Gp0qB�1

y P OPS�1 (4.6.52)

and R2,N is the regularizing operator

R2,N :� pE�1B�1
x EqR2 � RNGp0qB�1

y . (4.6.53)

The smoothing order N P N will be chosen in Section 4.7 during the KAM iteration (see also

Remark 4.76).

In conclusion, by (4.6.35)-(4.6.39), (4.6.45), (4.6.47) and (4.6.51) we obtain

L2 :� E�1L1E � ω � Bϕ�1

ρ

�
�γ

2Gp0qB�1
y �a2Gp0qa2

�κa2Bya3Bya2 � g � �
γ
2

�2 B�1
y Gp0qB�1

y �γ
2B�1
y Gp0q

�

� 1

ρ

�
a1By � a4 0

a5 �
�
γ
2

�2
P
p2q
�1,N a1By � a6

�
�RΨ

2 �T2,N ,

(4.6.54)

where

a1pϕ, yq :� B�1
�p1� βxqrV � �

ω � Bϕβ
��
, (4.6.55)

a2pϕ, yq :� B�1p
a

1� βxq , a3pϕ, yq :� B�1
�
cp1� βxq

�
, (4.6.56)

a4pϕ, yq :� B�1
� rV βxx � pω � Bϕβxq

2p1� βxq � rVx	 , a5pϕ, yq :� B�1a , (4.6.57)

a6pϕ, yq :� B�1
� rV βxx � pω � Bϕβxq

2p1� βxq
	
, (4.6.58)

the operator P
p2q
�1,N P OPS�1 is de�ned in (4.6.52) and

RΨ
2 :� �1

ρ

�
γ
2R2

rR1

0 γ
2R2

�
� E�1R1E , T2,N :� �1

ρ

�γ
2

	2
�

0 0

R2,N 0

�
, (4.6.59)

with rR1, R2, R2,N de�ned in (4.6.46), (4.6.48), (4.6.53) and R1 in (4.6.33).
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Step 2: We now conjugate the operator L2 in (4.6.54) with the multiplication matrix operator

Q :�
�
q 0

0 q�1

�
, Q�1 :�

�
q�1 0

0 q

�
,

where qpϕ, yq is a real function, close to 1, to be determined. The maps Q and Q�1 are symplectic

(cfr. (4.2.50)). We have that

L3 :� Q�1L2Q � ω � Bϕ � 1

ρ

�
A B

C D

�
�Q�1pRΨ

2 �T2,N qQ , (4.6.60)

where

A :� q�1
�� γ

2Gp0qB�1
y � a1By � a4

�
q � ρq�1pω � Bϕqq , (4.6.61)

B :� �q�1a2Gp0qa2q
�1 , (4.6.62)

C :� q
�� κa2Bya3Bya2 � g � �

γ
2

�2 B�1
y Gp0qB�1

y � a5 �
�
γ
2

�2
P
p2q
�1,N

�
q , (4.6.63)

D :� q
�� γ

2B�1
y Gp0q � a1By � a6

�
q�1 � ρq�1pω � Bϕqq . (4.6.64)

We choose the function q so that the coe�cients of the highest order terms of the o�-diagonal

operators B and C satisfy

q�2a2
2 � q2a2

2a3 � m 3
2
pϕq , (4.6.65)

with m 3
2
pϕq independent of x. This is achieved choosing

q :�
�

1

a3


1{4
(4.6.66)

and, recalling (4.6.56), the function β so that

p1� βxpϕ, xqq3cpϕ, xq � mpϕq , (4.6.67)

with mpϕq independent of x (the function c is de�ned in (4.6.22)). The solution of (4.6.67) is

mpϕq :�
� 1

2π

»
T
cpϕ, xq�1{3 dx

	�3
, βpϕ, xq :� B�1

x

�� mpϕq
cpϕ, xq

	1{3
� 1

	
. (4.6.68)

In such a way, by (4.6.56), we obtain (4.6.65) with m 3
2
pϕq :�

a
mpϕq. By (4.6.68) and (4.6.22)

we have

m 3
2
pϕq � P�1

� 1

2π

»
T

a
1� η2

xpϕ, xqdx
	� 3

2
. (4.6.69)
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Note that, since by (4.6.65) the function q�1a2 is independent of x, we have

B � �q�1a2Gp0qa2q
�1 � �q�2a2

2Gp0q . (4.6.70)

Moreover we have the expansion

qa2Bya3Bya2q � q2a2
2a3B2

y � pq2a2
2a3qyBy � qa2pa3pqa2qyqy (4.6.65)� m 3

2
pϕqB2

y � a7 , (4.6.71)

where

a7 :� qa2pa3pqa2qyqy . (4.6.72)

In conclusion, the operator L3 in (4.6.60) is, in view of (4.6.61)-(4.6.64) and (4.6.70), (4.6.71),

L3 � Q�1L2Q � ω � Bϕ�1

ρ

�� �γ
2Gp0qB�1

y �m 3
2
pϕqGp0q

m 3
2
pϕq

�
�κB2

y � g � �
γ
2

�2 B�1
y Gp0qB�1

y

	
�γ

2B�1
y Gp0q

�

� 1

ρ

�
a1By � a8 0

a9 � P
p3q
�1,N a1By � a10

�
�RΨ

3 �T3,N ,

(4.6.73)

where

a8 :� a1q
�1qy � ρ q�1pω � Bϕqq � a4 , a9 :� a5q

2 � gpq2 �m 3
2
q � κa7 , (4.6.74)

a10 :� �a1q
�1qy � ρ q�1pω � Bϕqq � a6 , (4.6.75)

P
p3q
�1,N :� � �

γ
2

�2
�
qP

p2q
�1,Nq � pq2 �m 3

2
qGp0qB�2

y � qrGp0qB�2
y , q � 1s

	
P OPS�1 , (4.6.76)

and RΨ
3 ,T3,N are the smoothing remainders

RΨ
3 :� 1

ρ

�
�γ

2 q
�1rHT phq, q � 1s 0

0 �γ
2 qrHT phq, q�1 � 1s

�
�Q�1RΨ

2 Q P OPS�8 , (4.6.77)

T3,N :� Q�1T2,NQ . (4.6.78)

Step 3: We now conjugate L3 in (4.6.73), where we rename the space variable y by x, by the

symplectic transformation (cfr. (4.2.50))

�M :�
�

Λ 0

0 Λ�1

�
, �M�1 :�

�
Λ�1 0

0 Λ

�
, (4.6.79)

where Λ P OPS�
1
4 is the Fourier multiplier

Λ :� 1?
gπ0 �MpDq , with inverse Λ�1 :� ?

gπ0 �MpDq�1 P OPS
1
4 , (4.6.80)
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with π0 de�ned in (4.2.21) and MpDq in (4.1.21). We have the identity

Λ
�� κB2

x � g � �
γ
2

�2B�1
x Gp0qB�1

x

�
Λ � Λ�1Gp0qΛ�1 � π0 � ωpκ,Dq � π0 , (4.6.81)

where ωpκ,Dq is de�ned in (4.1.23). In (4.6.80) and (4.6.81) we mean that the symbols of

MpDq,MpDq�1 and ωpκ,Dq are extended to 0 at j � 0, multiplying them by the cut-o� function

χ de�ned in (4.2.10). The factors in front of the projection π0 in (4.6.80) on the zeroth mode

allow the transformation in (4.6.79) to be symplectic. Thus we obtain

L4 :� �M�1L3
�M � ω � Bϕ � 1

ρ

�
�γ

2Gp0qB�1
x �m 3

2
pϕqωpκ,Dq

m 3
2
pϕqωpκ,Dq �γ

2Gp0qB�1
x

�
�
�

0 0

π0 0

�

� 1

ρ

��a1Bx � P
p41q
0 0

P
p43q
� 1

2

a1Bx � P
p44q
0

�
�RΨ
4 �T4,N ,

(4.6.82)

where

P
p41q
0 :� Λ�1ra1Bx,Λs � Λ�1a8Λ P OPS0, (4.6.83)

P
p43q
� 1

2
,N

:� Λa9Λ� ΛP
p3q
�1,NΛ P OPS�

1
2 , (4.6.84)

P
p44q
0 :� Λra1Bx,Λ�1s � Λa10Λ�1 P OPS0 , (4.6.85)

and RΨ
4 ,T4,N are the smoothing remainders

RΨ
4 :�

�
0 0

pρ�1m 3
2
� 1qπ0 0

�
� �M�1RΨ

3
�M P OPS�8 ,

T4,N :� �M�1T3,N
�M � �γ

2

4ρ

�
0 0

ΛqR2,NqΛ 0

�
.

(4.6.86)

Step 4: We �nally move in complex coordinates, conjugating the operator L4 in (4.6.82) via

the transformation C de�ned in (4.1.24). We use the transformation formula (4.2.15). We choose

the function ppϕq in (4.6.17) in order to obtain a constant coe�cient at the highest order. More

precisely we choose the periodic function ppϕq such that

m 3
2

ρ

(4.6.69),(4.6.20)� P�1
�� 1

2π

³
T
a

1� η2
xpϕ, xqdx

	� 3
2

1� ω � Bϕp
	
� m 3

2
(4.6.87)
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is a real constant independent of ϕ. Thus, recalling (4.2.9), we de�ne the periodic function

ppϕq :� pω � Bϕq�1
ext

� 1

m 3
2

� 1

2π

»
T

a
1� η2

xpϕ, xqdx
	� 3

2 � 1
	

(4.6.88)

and the real constant

m 3
2

:� 1

p2πqν
»
Tν

� 1

2π

»
T

a
1� η2

xpϕ, xqdx
	� 3

2
dϕ . (4.6.89)

Note that (4.6.87) holds for ω P DCpυ, τq. Moreover, by Lemmata 4.13, 4.68 and (4.6.16), p

satis�es (4.6.19) and it is odd in ϕ. Let

Π0 :� �i C�1

�
0 0

π0 0

�
C � 1

2

�
π0 π0

�π0 �π0

�
.

Lemma 4.74. Let N P N, q0 P N0. For all ω P DCpυ, τq, we have that

L5 :� �
EQ�MC��1L1

�
EQ�MC�

� ω � Bϕ � im 3
2
Ωpκ,Dq �A1Bx � iΠ0 �R

p0,dq
5 �R

p0,oq
5 �T5,N ,

(4.6.90)

where:

1. The operators E�1 are Dk0-pk0 � 1q-tame, the operators E�1 � Id, pE�1 � Idq� are Dk0-

pk0 � 2q-tame and the operators Q�1, Q�1 � Id, pQ�1 � Idq� are Dk0-tame with tame

constants satisfying, for some σ :� σpτ, ν, k0q ¡ 0 and for all s0 ¤ s ¤ S,

ME�1psq ÀS 1� }I0}k0,υ
s�σ , MQ�1psq ÀS 1� }I0}k0,υ

s�σ , (4.6.91)

ME�1�Idpsq �MpE�1�Idq�psq ÀS ε2p1� }I0}k0,υ
s�σq , (4.6.92)

MQ�1�Idpsq �MpQ�1�Idq�psq ÀS ε2p1� }I0}k0,υ
s�σq ; (4.6.93)

2. the constant m 3
2
P R de�ned in (4.6.89) satis�es |m 3

2
� 1|k0,υ À ε2;

3. Ωpκ,Dq is the Fourier multiplier (see (4.1.25), (4.1.26))

Ωpκ,Dq �
�

Ωpκ,Dq 0

0 �Ωpκ,Dq

�
, Ωpκ,Dq � ωpκ,Dq � i

γ

2
B�1
x Gp0q ; (4.6.94)

4. the matrix of functions A1 is

A1 :�
�
a
pdq
1 0

0 a
pdq
1

�
, (4.6.95)
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for a real function a
pdq
1 pϕ, xq which is a quasi-periodic traveling wave, evenpϕ, xq, satisfying,

for some σ :� σpk0, τ, νq ¡ 0 and for all s ¥ s0,

}apdq1 }k0,υ
s Às εp1� }I0}k0,υ

s�σq ; (4.6.96)

5. R
p0,dq
5 and R

p0,oq
5 are pseudodi�erential operators in OPS0 of the form

R
p0,dq
5 :�

�
r
pdq
5 pϕ, x,Dq 0

0 r
pdq
5 pϕ, x,Dq



, R

p0,oq
5 :�

�
0 r

poq
5 pϕ, x,Dq

r
pdq
5 pϕ, x,Dq 0



, (4.6.97)

reversibility and momentum preserving, satisfying, for some σN :� σpτ, ν,Nq ¡ 0, for all

s ¥ s0, α P N0,

}Rp0,dq
5 }k0,υ

0,s,α � }Rp0,oq
5 }k0,υ

0,s,α Às,N,α εp1� }I0}k0,υ
s�σN�2αq ; (4.6.98)

6. For any q P Nν0 with |q| ¤ q0, n1, n2 P N0 with n1 � n2 ¤ N � pk0 � q0q � 5
2 , the operator

xDyn1BqϕT5,N pϕqxDyn2 is Dk0-tame with a tame constant satisfying, for some σN pq0q :�
σN pq0, k0, τ, νq ¡ 0 and for any s0 ¤ s ¤ S,

MxDyn1BqϕT5,N pϕqxDyn2 psq ÀS,N,q0 ε
�
1� }I0}k0,υ

s�σN pq0q
�

; (4.6.99)

7. Moreover, for any s1 as in (4.6.15), α P N0, q P Nν0, with |q| ¤ q0, and n1, n2 P N0, with

n1 � n2 ¤ N � q0 � 3
2 ,

}∆12pAqh}s1 Às1 ε }i1 � i2}s1�σ }h}s1�σ , A P tE�1, pE�1q�,Q�1 � pQ�1q�u , (4.6.100)

}∆12a
pdq
1 }s1 Às1 ε }i1 � i2}s1�σ , |∆12m 3

2
| À ε2 }i1 � i2}s1�σ , (4.6.101)

}∆12R
pdq
5 }0,s1,α � }∆12R

poq
5 }0,s1,α Às1,N,α ε }i1 � i2}s1�σN�2α , (4.6.102)��xDyn1 BqϕT5,N pϕq xDyn2
��
LpHs1 q Às1,N,q0 ε }i1 � i2}s1�σN pq0q . (4.6.103)

The real operator L5 is Hamiltonian, reversible and momentum preserving.

Proof. By the expression of L4 in (4.6.82), using (4.2.15), and (4.6.87), we obtain that L5 has

the form (4.6.90). The functions β and q, de�ned respectively in (4.6.68) and (4.6.66) with a3

de�ned in (4.6.56), satisfy, by Lemmata 4.19, 4.13 and (4.6.28), for some σ :� σpk0, τ, νq ¡ 0

and for all s ¥ s0,

}β}k0,υ
s Às ε2p1� }I0}k0,υ

s�σq , }q�1 � 1}k0,υ
s Às ε2p1� }I0}k0,υ

s�σq . (4.6.104)
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The estimates (4.6.91)-(4.6.93) follow by Lemmata 4.24, 4.25, 4.19, (4.6.104) and writing

pB � Idqh � βBτ rhxs , Bτ rhspϕ, xq :�
» 1

0
hxpϕ, x� τβpϕ, xqq dτ , (4.6.105)

B�hpϕ, yq � p1 � β̆pϕ, yqqhpϕ, y � β̆pϕ, yqq, and similar expressions for B�1 � Id, pB�1q�. The

estimate for m 3
2
follows by (4.6.89), Lemma 4.13 and (4.6.16). The real function a

pdq
1 in (4.6.95)

is

a
pdq
1 pϕ, xq :� ρpϕq�1a1pϕ, xq ,

where ρ and a1 are de�ned respectively in (4.6.20) and (4.6.55). Recalling Lemmata 4.68 and

4.71, the function a
pdq
1 is a quasi-periodic traveling wave, even in pϕ, xq. Moreover, (4.6.96)

follows by Lemma 4.13 and (4.6.16), (4.6.19), (4.6.28), (4.6.104). By direct computations, we

have

r
pdq
5 pϕ, x,Dq :� 1

2ρ

�
P
p41q
0 � P

p44q
0 � iP

p43q
� 1

2
,N
� γpρ m 3

2
� 1qGp0qB�1

x



,

r
poq
5 pϕ, x,Dq :� 1

2ρ

�
P
p41q
0 � P

p44q
0 � iP

p43q
� 1

2
,N



,

(4.6.106)

where P
p41q
0 , P

p43q
� 1

2
,N
, P

p44q
0 are de�ned in (4.6.83), (4.6.84), (4.6.85) and ρ m 3

2
� m 3

2
pϕq with

m 3
2
pϕq de�ned in (4.6.69) (cfr. (4.6.87)). Therefore, the estimate (4.6.98) follows by (4.6.74),

(4.6.72), (4.6.55), (4.6.56), (4.6.57), (4.6.58), (4.6.76), (4.6.52), (4.6.80), (4.1.21), applying Lem-

mata 4.16, 4.17, 4.19, 4.13, Proposition 4.20 and estimates (4.6.16), (4.6.19), (4.6.28), (4.6.104).

The estimate (4.6.99), where

T5,N :� C�1pRΨ
4 �T4,N qC ,

follows by (4.6.86), (4.6.78), (4.6.77), (4.6.59), (4.6.53), (4.6.50), (4.6.48), (4.6.46), (4.6.43), Lem-

mata 4.24, 4.25, estimates (4.6.44), (4.6.49), Proposition 4.20 and (4.6.91), (4.6.104), Lemmata

C.2, C.1, 4.21. The estimates (4.6.100), (4.6.101), (4.6.102), (4.6.103) are proved in the same

fashion. Since the transformations E , Q, �M are symplectic, the operator L4 is Hamiltonian.

Hence the operator L5 obtained conjugating with C is Hamiltonian according to (4.2.49). By

Lemma 4.68, the functions βpϕ, xq and qpϕ, xq, de�ned in (4.6.68), (4.6.66) (with a3 de�ned in

(4.6.56)), are both quasi-periodic traveling waves, respectively oddpϕ, xq and evenpϕ, xq. There-
fore, the transformations E and Q are momentum and reversibility preserving. Moreover, also �M
and C are momentum and reversibility preserving (writing the involution in complex variables as

in (4.1.29)). Hence, since L1 is momentum preserving and reversible (Lemma 4.73), the operator

L5 is momentum preserving and reversible as well, in particular the operators R
p0,dq
5 and R

p0,oq
5

in (4.6.97) (e.g. check the de�nition in (4.6.106), see also Remark 4.34).
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4.6.4 Symmetrization up to smoothing remainders

The goal of this section is to transform the operator L5 in (4.6.90) into the operator L6 in (4.6.109)

which is block diagonal up to a regularizing remainder. From this step we do not preserve any

further the Hamiltonian structure, but only the reversible and momentum preserving one (it is

now su�cient for proving Theorem 4.55).

Lemma 4.75. Fix M,N P N, q0 P N0. There exist real, reversibility and momentum preserving

operator matrices tXmuMm�1 of the form

Xm :�
�

0 χmpϕ, x,Dq
χmpϕ, x,Dq 0

�
, χmpϕ, x, ξq P S�

1
2
�m , (4.6.107)

such that, conjugating the operator L5 in (4.6.90) via the map

ΦM :� eX1 � � � � � eXM , (4.6.108)

we obtain the real, reversible and momentum preserving operator

L6 :� LpMq
6 :� Φ�1

M L5 ΦM

� ω � Bϕ � i m 3
2
Ωpκ,Dq �A1Bx � iΠ0 �R

p0,dq
6 �R

p�M,oq
6 �T6,N ,

(4.6.109)

with a block-diagonal operator

R
p0,dq
6 :� R

p0,dq
6,M :�

�
r
pdq
6 pϕ, x,Dq 0

0 r
pdq
6 pϕ, x,Dq

�
P OPS0 ,

and a smoothing o� diagonal remainder

R
p�M,oq
6 :� R

p�M,oq
6,M :�

�
0 r

poq
6 pϕ, x,Dq

r
poq
6 pϕ, x,Dq 0

�
P OPS�M (4.6.110)

both reversibility and momentum preserving, which satisfy for all α P N0, for some σN :�
σN pk0, τ, ν,Nq ¡ 0, ℵM pαq ¡ 0, for all s ¥ s0,

}Rp0,dq
6 }k0,υ

0,s,α � }Rp�M,oq
6 }k0,υ

�M,s,α Às,M,N,α ε
�
1� }I0}k0,υ

s�σN�ℵM pαq
�
. (4.6.111)

For any q P Nν0 with |q| ¤ q0, n1, n2 P N0 with n1 � n2 ¤ N � pk0 � q0q � 5
2 , the oper-

ator xDyn1BqϕT6,N pϕqxDyn2 is Dk0-tame with a tame constant satisfying, for some σN pq0q :�
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σN pk0, τ, ν, q0q, for any s0 ¤ s ¤ S,

MxDyn1BqϕT6,N pϕqxDyn2 psq ÀS,M,N,q0 εp1� }I0}k0,υ
s�σN pq0q�ℵM p0qq . (4.6.112)

The conjugation map ΦM in (4.6.108) satis�es, for all s ¥ s0,

}Φ�1
M � Id}k0,υ

0,s,0 � } �Φ�1
M � Id

�� }k0,υ
0,s,0 Às,M,N εp1� }I0}k0,υ

s�σN�ℵM p0qq . (4.6.113)

Furthermore, for any s1 as in (4.6.15), α P N0, q P Nν0, with |q| ¤ q0, and n1, n2 P N0, with

n1 � n2 ¤ N � q0 � 3
2 , we have

}∆12R
p0,dq
6 }0,s1,α � }∆12R

p�M,oq
6 }�s1,M,α Às1,M,N,α ε }i1 � i2}s1�σN�ℵM pαq , (4.6.114)

} xDyn1 Bqϕ∆12T6,N xDyn2 }LpHs1 q Às1,M,N,q0 ε }i1 � i2}s1�σN pq0q�ℵM p0q , (4.6.115)

}∆12Φ
�1
M }0,s1,0 � }∆12pΦ�1

M q�}0,s1,0 Às1,M,N ε }i1 � i2}s1�σN�ℵM p0q . (4.6.116)

Proof. The proof is inductive on the index M . The operator Lp0q6 :� L5 satisfy (4.6.111)-

(4.6.112) with ℵ0pαq :� 2α, by Lemma 4.74. Suppose we have done already M steps obtaining

an operator LpMq
6 as in (4.6.109) with a remainder Φ�1

M T5,NΦM , instead of T6,N . We now show

how to perform the pM � 1q-th step. De�ne the symbol

χM�1pϕ, x, ξq :� ��2i m 3
2
ωpκ, ξq��1

r
poq
6,M pϕ, x, ξqχpξq P S�

3
2
�M , (4.6.117)

where χ is the cut-o� function de�ned in (4.2.10) and ωpκ, ξq is the symbol (cfr. (4.1.23))

ωpκ, ξq :�
d
Gp0; ξq

�
κξ2 � g � γ2

4

Gp0; ξq
ξ2

	
P S 3

2 , Gp0; ξq :�

$'''&'''%
χpξq|ξ| tanhph|ξ|q , h   �8
χpξq|ξ| , h � �8
, .

Note that χM�1 in (4.6.117) is well de�ned because ωpκ, ξq is positive on the support of χpξq. We

conjugate the operator LpMq
6 in (4.6.109) by the �ow generated by XM�1 of the form (4.6.107)

with χM�1pϕ, x, ξq de�ned in (4.6.117). By (4.6.111) and Lemma 4.74-2, for any s ¥ s0 and

α P N0,

}XM�1}k0,υ

� 1
2
�pM�1q,s,α Às,M,α ε

�
1� }I0}k0,υ

s�σN�ℵM pαq
�
. (4.6.118)

Therefore, by Lemmata 4.18, 4.16 and the induction assumption (4.6.113) for ΦM , the conjuga-

tion map ΦM�1 :� ΦMe
XM�1 is well de�ned and satis�es estimate (4.6.113) with M � 1. By
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the Lie expansion (4.2.16) we have

LpM�1q
6 :� e�XM�1 LpMq

6 eXM�1 � ω � Bϕ � im 3
2
Ωpκ,Dq �A1Bx � iΠ0 �R

p0,dq
6,M (4.6.119)

� �
XM�1, i m 3

2
Ωpκ,Dq��R

p�M,oq
6,M �Φ�1

M�1T5,NΦM�1

�
» 1

0
e�τXM�1

�
XM�1 , ω � Bϕ �A

pdq
1 Bx � iΠ0 �R

p0,dq
6,M

�
eτXM�1 dτ (4.6.120)

�
» 1

0
e�τXM�1

�
XM�1,R

p�M,oq
6,M

�
eτXM�1 dτ (4.6.121)

�
» 1

0
p1� τqe�τXM�1

�
XM�1,

�
XM�1, i m 3

2
Ωpκ,Dq

��
eτXM�1 dτ . (4.6.122)

In view of (4.6.107), (4.6.94) and (4.6.110), we have that

��XM�1, i m 3
2
Ωpκ,Dq��R

p�M,oq
6,M �

�
0 ZM�1

ZM�1 0

�
�: ZM�1, ,

where, denoting for brevity χM�1 :� χM�1pϕ, x, ξq, it results

ZM�1 � i m 3
2
pOppχM�1qωpκ,Dq � ωpκ,DqOppχM�1qq

� m 3
2

γ
2

�
χM�1, B�1

x Gp0q��Opprpoq6,M q . (4.6.123)

By (4.2.23), Lemma 4.16 and since χM�1pϕ, x, ξq P S� 3
2
�M by (4.6.117), we have that

OppχM�1qωpκ,Dq � ωpκ,DqOppχM�1q � Op
�
2ωpκ, ξqχM�1pϕ, x, ξq

�� rM�1, ,

where rM�1 is in OPS�M�1. By (4.6.117) and (4.6.123)

ZM�1 � im 3
2
rM�1 � m 3

2

γ
2

�
χM�1, B�1

x Gp0q��Opprpoq6,M p1� χpξqqq P OPS�M�1 .

The remaining pseudodi�erential operators in (4.6.120)-(4.6.122) have order OPS�M� 3
2 . There-

fore the operator LpM�1q
6 in (4.6.119) has the form (4.6.109) at M � 1 with

R
p0,dq
6,M�1 �R

p�pM�1q,oq
6,M�1 :� R

p0,dq
6,M � ZM�1 � (4.6.120)� (4.6.121)� (4.6.122) (4.6.124)

and a remainder Φ�1
M�1T5,NΦM�1. By Lemmata 4.16, 4.17, the induction assumption (4.6.111),

(4.6.118), (4.6.96), we conclude that R
p0,dq
6,M�1 and R

p�pM�1q,oq
6,M�1 satisfy (4.6.111) at orderM�1 for

suitable constants ℵM�1pαq ¡ ℵM pαq. Moreover the operator Φ�1
M�1T5,NΦM�1 satis�es (4.6.113)

(with M � 1) by Lemmata 4.24, 4.25 and estimates (4.6.99), (4.6.113). Estimates (4.6.114),

(4.6.115), (4.6.116) follow similarly. By (4.6.117), (4.2.51), Lemmata 4.33, 4.43, and the induction
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assumption that R
p�M,oq
6,M is reversible and momentum preserving, we conclude that XM�1 is

reversibility and momentum preserving, and so are e�XM�1 . By the induction assumption LpMq
6

is reversible and momentum preserving, and so LpM�1q
6 is reversible and momentum preserving

as well, in particular the terms R
p0,dq
6,M�1 �R

p�pM�1q,oq
6,M�1 in (4.6.124).

Remark 4.76. The number of regularizing iterations M P N will be �xed by the KAM reduction

scheme in Section 4.7, see (4.7.5). Note that it is independent of the Sobolev index s.

So far the operator L6 of Lemma 4.75 depends on two indexesM,N which provide respectively

the order of the regularizing o�-diagonal remainder R
p�M,oq
6 and of the smoothing tame operator

T6,N . From now on we �x

N �M . (4.6.125)

4.6.5 Reduction of the order 1

The goal of this section is to transform the operator L6 in (4.6.109), with N �M (cfr. (4.6.125)),

into the operator L8 in (4.6.147) whose coe�cient in front of Bx is a constant. We �rst eliminate

the x-dependence and then the ϕ-dependence.

Space reduction. First we rewrite the operator L6 in (4.6.109), with N �M , as

L6 � ω � Bϕ �
�
P6 0

0 P6

�
� iΠ0 �R

p�M,oq
6 �T6,M ,

having denoted

P6 :� P6pϕ, x,Dq :� im 3
2
Ωpκ,Dq � a

pdq
1 pϕ, xqBx � r

pdq
6 pϕ, x,Dq . (4.6.126)

We conjugate L6 through the real operator

Φpϕq :�
�

Φpϕq 0

0 Φpϕq

�
(4.6.127)

where Φpϕq :� Φτ pϕq|τ�1 is the time 1-�ow of the PDE$&%BτΦτ pϕq � iApϕqΦτ pϕq ,
Φ0pϕq � Id ,

Apϕq :� bpϕ, xq|D| 12 , (4.6.128)

and bpϕ, xq is a real, smooth, odd pϕ, xq, periodic function chosen later, see (4.6.134), (4.6.136),

(4.6.142). Usual energy estimates imply that the �ow Φτ pϕq of (4.6.128) is a bounded operator is

Hs
x. The operator BkλBβϕΦ loses |D| |β|�|k|2 derivatives, which are compensated by xDy�m1 on the left
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hand side and xDy�m2 on the right hand side, withm1,m2 P R satisfyingm1�m2 � 1
2 p|β| � |k|q,

according to the tame estimates in the Sobolev spacesHs
ϕ,x of Proposition 4.29 in Appendix 4.2.3.

Moreover, since bpϕ, xq is oddpϕ, xq, then bpϕ, xq|D| 12 is reversibility preserving as well as Φpϕq.
Finally, note that Φπ0 � π0 � Φ�1π0, which implies

Φ�1Π0Φ � Π0Φ . (4.6.129)

By the Lie expansion (4.2.16) we have

Φ�1P6Φ � P6 � irA,P6s � 1

2
rA, rA,P6ss �

2M�2¸
n�3

p�iqn
n!

adnApϕqpP6q � TM ,

TM :� p�iq2M�3

p2M � 2q!
» 1

0
p1� τq2M�2Φ�τ pϕq ad2M�3

Apϕq pP6qΦτ pϕqdτ ,
(4.6.130)

and, by (4.2.17),

Φ�1 � ω � Bϕ � Φ � ω � Bϕ � ipω � BϕAqpϕq �
2M�1¸
n�2

p�iqn
n!

adn�1
Apϕqpω � BϕApϕqq � T 1M ,

T 1M :� � p�iq2M�2

p2M � 1q!
» 1

0
p1� τq2M�1Φ�τ pϕq ad2M�1

Apϕq pω � BϕApϕqqΦτ pϕqdτ .
(4.6.131)

Note that ad2M�3
Apϕq pP6q and ad2M�1

Apϕq pω � BϕApϕqq are in OPS�M . The number M will be �xed in

(4.7.5). Note also that in the expansions (4.6.130), (4.6.131) the operators have decreasing order

and size. The terms of order 1 come from (4.6.130), in particular from P6 � irA,P6s. Recalling
(4.6.126), that Apϕq :� bpϕ, xq|D| 12 , (4.2.26) and that (cfr. (4.3.1), (4.3.5))

Ωpκ, ξq � ?
κ|ξ| 32χpξq � r0pκ, ξq , r0pκ, ξq P S0 , (4.6.132)

(the cut-o� function χ is de�ned in (4.2.10)) we deduce that

rA,P6s � i3
2

?
κ m 3

2
bxBx �

�
1
2pa

pdq
1 qxb� a

pdq
1 bx

�|D| 12 �Opprb,0q, , (4.6.133)

where rb,0 P S0 is small with b. As a consequence, the �rst order term of P6 � irA,P6s is
papdq1 � 3

2

?
κ m 3

2
bxqBx and we choose bpϕ, xq so that it is independent of x: we look for a solution

bpϕ, xq � b1pϕ, xq � b2pϕq (4.6.134)

of the equation

a
pdq
1 pϕ, xq � 3

2m 3
2

?
κ bxpϕ, xq � xapdq1 yx pϕq , xapdq1 yx pϕq :� 1

2π

»
T
a
pdq
1 pϕ, xqdx . (4.6.135)
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Therefore

b1pϕ, xq :� � 2
3 m 3

2

?
κ
B�1
x

�
a
pdq
1 pϕ, xq � xapdq1 yx pϕq

�
. (4.6.136)

We now determine b2pϕq by imposing a condition at the order 1{2. We deduce by (4.6.130),

(4.6.131), (4.6.126), (4.6.133)-(4.6.135), that

L7 :� Φ�1pϕq pω � Bϕ � P6qΦpϕq �ω � Bϕ � i m 3
2
Ωpκ,Dq � xapdq1 yx pϕq Bx

� i a
pdq
2 |D| 12 �Opprpdq7 q � TM � T 1M , ,

(4.6.137)

where a
pdq
2 pϕ, xq is the real function

a
pdq
2 :�� 1

2pa
pdq
1 qxb1 � a

pdq
1 pb1qx � 3

4

?
κ m 3

2

�pb1q2x � 1

2
pb1qxxb1

�� pω � Bϕb1q

� �
1
2pa

pdq
1 qx � 3

8

?
κ m 3

2
pb1qxx

�
b2 � pω � Bϕb2q

(4.6.138)

and

Opprpdq7 q :�Opp�irb,0 � rb,� 1
2
� r

pdq
6 q � 1

2

�
b|D| 12 , p1

2pa
pdq
1 qxb� a

pdq
1 bxq|D|

1
2 �Opprb,0q

�
�
M�1¸
n�3

p�iqn
n!

adnApϕqpP6q �
M̧

n�2

p�iqn
n!

adn�1
Apϕqpω � BϕApϕqq P OPS0 ,

(4.6.139)

where rb,� 1
2
P S� 1

2 is small in b. In view of Section 4.6.6 we now determine the function b2pϕq
so that the space average of the function a

pdq
2 in (4.6.138) is independent of ϕ, i.e.

xapdq2 yxpϕq � m 1
2
P R , @ϕ P Tν . (4.6.140)

Noting that the space average
@�

1
2pa

pdq
1 qx� 3

8m 3
2

?
κpb1qxx

�
b2pϕq

D
x
� 0 and that

@
ω � Bϕb1

D
ϕ,x

� 0,

we get

m 1
2

:� x�1
2pa

pdq
1 qxb1 � a

pdq
1 pb1qx � 3

4

?
κ m 3

2

�pb1q2x � 1

2
pb1qxxb1

�yϕ,x , (4.6.141)

b2pϕq :� �pω � Bϕq�1
ext

�@� 1
2pa

pdq
1 qxb1 � a

pdq
1 pb1qx�

� 3

4
m 3

2

?
κ
�pb1q2x � 1

2
pb1qxxb1

�� pω � Bϕb1q
D
x
� m 1

2

	
. (4.6.142)

Note that (4.6.140) holds for any ω P DCpυ, τq.
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Time reduction. In order to remove the ϕ-dependence of the coe�cient xapdq1 yx pϕq of the �rst
order term of the operator L7 in (4.6.137), we conjugate L7 with the map

pVuqpϕ, xq :� upϕ, x� %pϕqq, , (4.6.143)

where %pϕq is a real periodic function to be chosen, see (4.6.146). Note that V is a particular

case of the transformation E in (4.6.34) for a function βpϕ, xq � %pϕq, independent of x. We

have that

V�1pω � BϕqV � ω � Bϕ � pω � Bϕ%qBx ,

whereas the Fourier multipliers are left unchanged and a pseudodi�erential operator of symbol

apϕ, x, ξq transforms as

V�1Oppapϕ, x, ξqqV � Oppapϕ, x� %pϕq, ξqq . (4.6.144)

We choose %pϕq such that

ω � Bϕ%pϕq � xapdq1 yx pϕq � m1 , m1 :� xapdq1 yϕ,x P R , (4.6.145)

(where a
pdq
1 is �xed in Lemma 4.74), namely we de�ne

%pϕq :� �pω � Bϕq�1
ext

� xapdq1 yx � m1

�
. (4.6.146)

Note that (4.6.145) holds for any ω P DCpυ, τq.
We sum up these two transformations into the following lemma.

Lemma 4.77. Let M P N, q0 P N0. Let bpϕ, xq � b1pϕ, xq � b2pϕq and %pϕq be the functions

de�ned respectively in (4.6.136), (4.6.142), (4.6.146). Then, conjugating L6 in (4.6.109) via the

invertible, real, reversibility preserving and momentum preserving maps Φ, V de�ned in (4.6.127)-

(4.6.128) and (4.6.143), we obtain, for any ω P DCpυ, τq, the real, reversible and momentum

preserving operator

L8 :� V�1Φ�1L6ΦV

� ω � Bϕ � i m 3
2
Ωpκ,Dq � m1Bx � iA

pdq
3 |D| 12 � iΠ0 �R

p0,dq
8 �T8,M ,

(4.6.147)

where:

1. the real constant m1 de�ned in (4.6.145) satis�es |m1|k0,υ À ε;
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2. A
pdq
3 is a diagonal matrix of multiplication

A
pdq
3 :�

�
a
pdq
3 0

0 a
pdq
3

�
,

for a real function a
pdq
3 which is a quasi-periodic traveling wave, evenpϕ, xq, satisfying

xapdq3 yx pϕq � m 1
2
P R , @ϕ P Tν , (4.6.148)

where m 1
2
P R is the constant in (4.6.141), and for some σ � σpτ, ν, k0q ¡ 0, for all s ¥ s0,

}apdq3 }k0,υ
s Às ευ�1p1� }I0}k0,υ

s�σq ; (4.6.149)

3. R
p0,dq
8 is a block-diagonal operator

R
p0,dq
8 �

�
r
pdq
8 pϕ, x,Dq 0

0 r
pdq
8 pϕ, x,Dq

�
P OPS0 ,

that satis�es for all α P N0, for some σM pαq :� σM pk0, τ, ν, αq ¡ 0 and for all s ¥ s0,

}Rp0,dq
8 }k0,υ

0,s,α Às,M,α ευ
�1p1� }I0}k0,υ

s�σM pαqq ; (4.6.150)

4. For any q P Nν0 with |q| ¤ q0, n1, n2 P N0 with n1 � n2 ¤ M � 2pk0 � q0q � 5
2 , the

operator xDyn1BqϕT8,M pϕqxDyn2 is Dk0-tame with a tame constant satisfying, for some

σM pq0q :� σM pk0, τ, ν, q0q, for any s0 ¤ s ¤ S,

MxDyn1BqϕT8,M pϕqxDyn2 psq ÀS,M,q0 ευ
�1p1� }I0}k0,υ

s�σM pq0qq ; (4.6.151)

5. The operators Φ�1 � Id, pΦ�1 � Idq� are Dk0-1
2pk0 � 1q-tame and the operators V�1 � Id,

pV�1 � Idq� are Dk0-pk0 � 2q-tame, with tame constants satisfying, for some σ ¡ 0 and for

all s0 ¤ s ¤ S,

MΦ�1�Idpsq �MpΦ�1�Idq�psq ÀS ευ�1p1� }I0}k0,υ
s�σq , (4.6.152)

MV�1�Idpsq �MpV�1�Idq�psq ÀS ευ�1p1� }I0}k0,υ
s�σq . (4.6.153)

Furthermore, for any s1 as in (4.6.15), α P N0, q P Nν0, with |q| ¤ q0, and n1, n2 P N0, with
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n1 � n2 ¤M � 2q0 � 1
2 , we have

}∆12a
pdq
3 }s1 Às1 ευ�1 }i1 � i2}s1�σ , |∆12m1| À ε }i1 � i2}s0�σ , (4.6.154)

}∆12R
p0,dq
8 }0,s1,α Às1,M,α ευ

�1 }i1 � i2}s1�σM pαq , (4.6.155)

} xDyn1 Bqϕ∆12T8,M xDyn2 }LpHs1 q Às1,M,q0 ευ
�1 }i1 � i2}s1�σM pq0q , (4.6.156)

}∆12pAqh}s1 Às1 ευ�1 }i1 � i2}s1�σ }h}s1�σ , A P tΦ�1, pΦ�1q�,V�1, pV�1q�u . (4.6.157)

Proof. The function bpϕ, xq � b1pϕ, xq� b2pϕq, with b1 and b2, de�ned in (4.6.136) and (4.6.142)

and the function %pϕq in (4.6.146), satisfy, by Lemma 4.19 and (4.6.96),

}b1}k0,υ
s Às εp1� }I0}k0,υ

s�σq , }b}k0,υ
s , }b2}k0,υ

s , }%}k0,υ
s Às ευ�1p1� }I0}k0,υ

s�σq (4.6.158)

for some σ ¡ 0 and for all s ¥ s0. The estimate |m1|k0,υ À ε follows by (4.6.145) and (4.6.96).

The function

a
pdq
3 pϕ, xq :� V�1papdq2 q � a

pdq
2 pϕ, x� %pϕqq, ,

where a
pdq
2 is de�ned in (4.6.138), satis�es (4.6.148) by (4.6.140). Moreover, the estimate (4.6.149)

follows by Lemma 4.19 and (4.6.96), (4.6.158). The estimate (4.6.150) for (cfr. (4.6.144))

r
pdq
8 pϕ, x,Dq :� V�1r

pdq
7 pϕ, x,DqV � r

pdq
7 pϕ, x� %pϕq, Dq

with r
pdq
7 de�ned in (4.6.139), follows by Lemmata 4.16, 4.17, 4.19 and (4.6.158), (4.6.111). The

smoothing term T8,M in (4.6.147) is, using also (4.6.129),

T8,M :� V�1
�
Φ�1T6,MΦ� iΠ0pΦ� Idq �Φ�1R

p�M,oq
6 Φ

�
V � V�1

�
TM � T 1M 0

0 TM � T 1M

�
V

with TM and T 1M de�ned in (4.6.130), (4.6.131). The estimate (4.6.151) follows by (4.6.126), Lem-

mata 4.24, 4.25, the tame estimates of Φ in Proposition 4.29, and estimates (4.6.96), (4.6.158),

(4.6.152), (4.6.112), noting that operators of the form BkλBqϕV�1 lose |k|�|q| derivatives. The esti-
mate (4.6.152) follows by Proposition 4.30 and (4.6.158), whereas (4.6.153) follows by the equiv-

alent representation for V as in (4.6.105), Lemma 4.24 and (4.6.158). The estimates (4.6.154),

(4.6.155), (4.6.156), (4.6.157) are proved in the same fashion. By Lemma 4.74, the function a
pdq
1 is

an evenpϕ, xq quasi-periodic traveling wave, hence the function b1 in (4.6.136) is a oddpϕ, xq quasi-
periodic traveling wave, the function b2 in (4.6.142) is odd in ϕ and satis�es b2pϕ� ~ςq � b2pϕq
for all ς P R, whereas the function % in (4.6.146) is odd in ϕ and satis�es %pϕ � ~ςq � %pϕq
for all ς P R. By Lemmata 4.33, 4.43, and 4.39, the transformations Φ and V are reversibility

and momentum preserving. Then the operator L8 is reversible and momentum preserving. The

function a
pdq
3 is an evenpϕ, xq quasi-periodic traveling wave.
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4.6.6 Reduction of the order 1/2

The goal of this section is to transform the operator L8 in (4.6.147) into the operator L9 in

(4.6.169) whose coe�cient in front of |D|1{2 is a constant. We eliminate the x-dependence

and, in view of the property (4.6.148), we obtain that this transformation removes also the

ϕ-dependence.

We �rst write the operator L8 in (4.6.147) as

L8 � ω � Bϕ �
�
P8 0

0 P8

�
� iΠ0 �T8,M ,

where

P8 :� im 3
2
Ωpκ,Dq � m1Bx � ia

pdq
3 |D| 12 �Opprpdq8 q . (4.6.159)

We conjugate L8 through the real operator

Ψpϕq :�
�

Ψpϕq 0

0 Ψpϕq

�
, (4.6.160)

where Ψpϕq :� Ψτ pϕq|τ�1 is the time-1 �ow of$&%BτΨτ pϕq � BpϕqΨτ pϕq ,
Ψ0pϕq � Id ,

Bpϕq :� b3pϕ, xqH , (4.6.161)

the function b3pϕ, xq is a smooth, real, periodic function to be chosen later (see (4.6.166)) and

H is the Hilbert transform de�ned in (4.2.19). Note that Ψπ0 � π0 � Ψ�1π0, so that

Ψ�1Π0Ψ � Π0Ψ . (4.6.162)

By the Lie expansion in (4.2.16) we have

Ψ�1P8Ψ � P8 � rB,P8s �
M�1¸
n�2

p�1qn
n!

adnBpϕqpP8q � LM ,

LM :� p�1qM�2

pM � 1q!
» 1

0
p1� τqM�1Ψ�τ pϕq adM�2

Bpϕq pP8qΨτ pϕqdτ ,
(4.6.163)
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and, by (4.2.17),

Ψ�1 � ω � Bϕ �Ψ � ω � Bϕ � pω � BϕBpϕqq �
M̧

n�2

p�1qn
n!

adn�1
Bpϕqpω � BϕBpϕqq � L1M ,

L1M :� p�1qM
M !

» 1

0
p1� τqMΨ�τ pϕq adMBpϕqpω � BϕBpϕqqΨτ pϕqdτ .

(4.6.164)

The number M will be �xed in (4.7.5). The contributions at order 1{2 come from (4.6.163), in

particular from P8 � rB,P8s (recall (4.6.159)). Since B � b3H (see (4.6.161)), by (4.2.26) and

(4.6.132) we have

P8 � rB,P8s � i m 3
2
Ωpκ,Dq � m1Bx � i

�
a
pdq
3 � 3

2m 3
2

?
κpb3qx

� |D| 12 (4.6.165)

�Opprpdq8 � rb3,� 1
2
q � rB, m1Bx � i a

pdq
3 |D| 12 �Opprpdq8 qs, ,

where Opprb3,� 1
2
q P OPS�

1
2 is small with b3. Recalling that, by (4.6.148), the space average

xapdq3 yx pϕq � m 1
2
for all ϕ P Tν , we choose the function b3pϕ, xq such that a

pdq
3 � 3

2m 3
2

?
κpb3qx � m 1

2
,

namely

b3pϕ, xq :� 2
3m 3

2

?
κ
B�1
x papdq3 pϕ, xq � xapdq3 yx pϕqq , xapdq3 yx pϕq � m 1

2
. (4.6.166)

We deduce by (4.6.163)-(4.6.164) and (4.6.165), (4.6.166) that

L9 :� Ψ�1pϕqpω � Bϕ � P8qΨpϕq
� ω � Bϕ � i m 3

2
Ωpκ,Dq � m1Bx � i m 1

2
|D| 12 �Opprpdq9 q � LM � L1M , ,

(4.6.167)

where

Opprpdq9 q :� Opprpdq8 � rb3,� 1
2
q � rBpϕq, m1Bx � i a

pdq
3 |D| 12 �Opprpdq8 qs � pω � BϕBpϕqq

�
M�1¸
n�2

p�1qn
n!

adnBpϕqpP8q �
M̧

n�2

p�1qn
n!

adn�1
Bpϕqpω � BϕBpϕqq P OPS0 .

(4.6.168)

De�ne the matrix Σ :�
�

1 0

0 �1

�
. Summing up, we have obtained the following lemma.

Lemma 4.78. LetM P N, q0 P N0. Let b3 be the function de�ned in (4.6.166). Then, conjugating

the operator L8 in (4.6.147) via the invertible, real, reversibility and momentum preserving map Ψ

de�ned in (4.6.160), (4.6.161), we obtain, for any ω P DCpυ, τq, the real, reversible and momentum



4.6. THE LINEARIZED OPERATOR IN THE NORMAL SUBSPACE 173

preserving operator

L9 :� Ψ�1L8Ψ � ω � Bϕ � i m 3
2
Ωpκ,Dq � m1Bx � im 1

2
Σ|D| 12 � iΠ0 �R

p0,dq
9 �T9,M , ,

(4.6.169)

where

1. the constant m 1
2
de�ned in (4.6.141) satis�es |m 1

2
|k0,υ À ε2;

2. R
p0,dq
9 is a block-diagonal operator

R
p0,dq
9 �

�
r
pdq
9 pϕ, x,Dq 0

0 r
pdq
9 pϕ, x,Dq

�
P OPS0 ,

that satis�es, for some σM :� σM pk0, τ, νq ¡ 0, and for all s ¥ s0,

}Rp0,dq
9 }k0,υ

0,s,1 Às,M ευ�1p1� }I0}k0,υ
s�σM q ; (4.6.170)

3. For any q P Nν0 with |q| ¤ q0, n1, n2 P N0 with n1 � n2 ¤ M � 2pk0 � q0q � 5
2 , the

operator xDyn1BqϕT9,M pϕqxDyn2 is Dk0-tame with a tame constant satisfying, for some

σM pq0q :� σM pk0, τ, ν, q0q, for any s0 ¤ s ¤ S,

MxDyn1BqϕT9,M pϕqxDyn2 psq ÀS,M,q0 ευ
�1p1� }I0}k0,υ

s�σM pq0qq ; (4.6.171)

4. The operators Ψ�1 � Id, pΨ�1 � Idq� are Dk0-tame, with tame constants satisfying, for

some σ :� σpk0, τ, νq ¡ 0 and for all s ¥ s0,

MΨ�1�Idpsq �MpΨ�1�Idq�psq Às ευ�1p1� }I0}k0,υ
s�σq . (4.6.172)

Furthermore, for any s1 as in (4.6.15), α P N0, q P Nν0, with |q| ¤ q0, and n1, n2 P N0, with

n1 � n2 ¤M � 2q0 � 1
2 , we have

}∆12R
p0,dq
9 }0,s1,1 Às1,M ευ�1 }i1 � i2}s1�σM , |∆12m 1

2
| À ε2 }i1 � i2}s0�σ , (4.6.173)

} xDyn1 Bqϕ∆12T9,M xDyn2 }LpHs1 q Às1,M,q0 ευ
�1 }i1 � i2}s1�σM pq0q , (4.6.174)

}∆12pΨ�1qh}s1 � }∆12pΨ�1q�h}s1 Às1 ευ�1 }i1 � i2}s1�σ }h}s1�σ . (4.6.175)

Proof. The function b3pϕ, xq de�ned in (4.6.166), satis�es, by (4.6.149) and the estimate of m 3
2

given in Lemma 4.74-item-2, for some σ ¡ 0 and for all s ¥ s0,

}b3}k0,υ
s Às ευ�1p1� }I0}k0,υ

s�σq . (4.6.176)
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The estimate for m 1
2
follows by (4.6.141), (4.2.7) and (4.6.96), (4.6.158). The estimate (4.6.170)

follows by (4.6.168), (4.6.159), Lemmata 4.16, 4.17, and (4.6.149), (4.6.150), (4.6.176). By

(4.6.147), (4.6.159), (4.6.167), and (4.6.162), the smoothing term T9,M in (4.6.169) is

T9,M :� Ψ�1T8,MΨ� iΠ0pΨ� Idq �
�
LM � L1M 0

0 LM � L1M

�

with LM and L1M introduced in (4.6.163), (4.6.164). The estimate (4.6.171) follows by Lemmata

4.24, 4.25, 4.18, (4.6.159), (4.6.149), (4.6.151), (4.6.176), (4.6.172). The estimate (4.6.172) follows

by Lemma 4.25 and (4.6.176). The estimates (4.6.173), (4.6.174), (4.6.175) are proved in the

same fashion. By Lemma 4.77, the function a
pdq
3 is a evenpϕ, xq quasi-periodic traveling wave.

Hence the function b3 in (4.6.166) is a oddpϕ, xq quasi-periodic traveling wave. By Lemmata

4.33, 4.43, and 4.39, the transformation Ψ is reversibility and momentum preserving, therefore

the operator L9 is reversible and momentum preserving.

Remark 4.79. In Proposition 4.83 we shall estimate }rBx,Rp0,dq
9 s}k0,υ

0,s,0 using (4.6.170) and (4.2.27).

In order to control }Rp0,dq
9 }k0,υ

0,s,1 we used the estimates (4.6.98) for �nitely many α P N0, α ¤ αpMq,
depending on M . Furthermore in Proposition 4.83 we shall use (4.6.173)-(4.6.174) only for

s1 � s0.

4.6.7 Conclusion: partial reduction of Lω

By Sections 4.6.1-4.6.6, the linear operator L in (4.6.12) is semi-conjugated, for all ω P DCpυ, τq,
to the real, reversible and momentum preserving operator L9 de�ned in (4.6.169), namely

L9 �W�1
2 LW1 , (4.6.177)

where

W1 :� PZEQ�MCΦMΦVΨ , W2 :� PρZEQ�MCΦMΦVΨ . (4.6.178)

Moreover L9 is de�ned for all ω P Rν .
Now we deduce a similar conjugation result for the projected operator Lω in (4.5.33), i.e.

(4.6.1), which acts in the normal subspace H=

S�,Σ. We �rst introduce some notation.

We denote by Πᵀ
S�,Σ and Π=

S�,Σ the projections on the subspaces Hᵀ
S�,Σ and H=

S�,Σ de�ned

in Section 4.1.3. In view of Remark 4.67, we denote, with a small abuse of notation, Πᵀ
S�0 ,Σ

:�
Πᵀ

S�,Σ � π0, so that Πᵀ
S�0 ,Σ

� Π=

S�,Σ � Id on the whole L2 � L2. We remind that S0 � S Y t0u,
where S is the set de�ned in (4.1.48). We denote by ΠS0 :� Πᵀ

S � π0, where Πᵀ
S is de�ned below

(4.1.58) together with the de�nition of ΠK
S0
, so that we have ΠS0 �ΠK

S0
� Id.
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Lemma 4.80. Let M ¡ 0. There is σM ¡ 0 (depending also on k0, τ, ν) such that, assuming

(4.6.14) with µ0 ¥ σM , the following holds: the maps W1, W2 de�ned in (4.6.178) have the form

Wi � �MC �Ripεq , (4.6.179)

where, for any i � 1, 2, for all s0 ¤ s ¤ S,

}Ripεqh}k0,υ
s ÀS,M ευ�1

�}h}k0,υ
s�σM � }I0}k0,υ

s�σM }h}
k0,υ
s0�σM

�
. (4.6.180)

Moreover, for ευ�1 ¤ δpSq small enough, the operators

WK
1 :� Π=

S�,ΣW1ΠK
S0
, WK

2 :� Π=

S�,ΣW2ΠK
S0
, (4.6.181)

are invertible and, for all s0 ¤ s ¤ S, i � 1, 2,

}pWK
i q�1h}k0,υ

s ÀS,M }h}k0,υ
s�σM � }I0}k0,υ

s�σM }h}
k0,υ
s0�σM , (4.6.182)

}∆12pWK
i q�1h}s1 Às1,M ευ�1 }i1 � i2}s1�σM }h}s1�σM . (4.6.183)

The operatorsWK
1 ,WK

2 map (anti)-reversible, respectively traveling, waves, into (anti)-reversible,

respectively traveling, waves.

Proof. The formulae (4.6.179) and the estimates (4.6.180) follow by (4.6.178), Lemmata 4.24,

4.25, and (4.2.37), (4.6.23), (4.6.27), (4.6.92), (4.6.93), (4.6.113), (4.6.152), (4.6.153), (4.6.172).

The invertibility of each WK
i and the estimates (4.6.182) follow with a perturbative argument

as in [14, 13], noting that Π=

S�,Σ
�MC ΠK

S0
� Π=

S�,ΣMC ΠK
S0

are invertible on their ranges with

inverses pΠ=

S�,ΣMC ΠK
S0
q�1 � ΠK

S0
pMCq�1Π=

S�,Σ. Since Z, E ,Q, �M,ΦM ,Φ,V,Ψ are reversibility

and momentum preserving and using Remark 4.72 and Lemmata 4.37 and 4.45, we deduce that

WK
1 , WK

2 map (anti)-reversible, respectively traveling, waves, into (anti)-reversible, respectively

traveling, waves.

Remark 4.81. The time reparametrization P and the multiplication for the function ρ (which is

independent of the space variable), commute with the projections Π=

S�,Σ and ΠK
S0
.

The operator Lω in (4.5.33) (i.e. (4.6.1)) is semi-conjugated to

LK :� pWK
2 q�1LωWK

1 � ΠK
S0
L9 ΠK

S0
�Rf (4.6.184)

where Rf is, by (4.6.181), (4.6.177), (4.6.179) (recall that �M is de�ned in (4.6.79)-(4.6.80)), and
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(4.1.59),

Rf :� pWK
2 q�1Π=

S�,ΣR2pεqΠS0L9ΠK
S0

(4.6.185)

� pWK
2 q�1Π=

S�,ΣLΠᵀ
S�0 ,Σ
R1pεqΠK

S0
� εpWK

2 q�1Π=

S�,ΣJRW
K
1 .

Lemma 4.82. The operator Rf in (4.6.185) has the �nite rank form (4.6.4), (4.6.5). Moreover,

let q0 P N0 and M ¥ 2pk0�q0q� 3
2 . There exists ℵpM, q0q ¡ 0 (depending also on k0, τ , ν) such

that, for any n1, n2 P N0, with n1 � n2 ¤M � 2pk0 � q0q � 5
2 , and any q P Nν0, with |q| ¤ q0, the

operator xDyn1 BqϕRf xDyn2 is Dk0-tame, with a tame constant satisfying

MxDyn1BqϕRf xDyn2 psq ÀS,M,q0 ευ
�1p1� }I0}k0,υ

s�ℵpM,q0qq , @s0 ¤ s ¤ S , (4.6.186)

} xDyn1 Bqϕ∆12Rf xDyn2 }LpHs1 q Às1,M,q0 ευ
�1 }i1 � i2}s1�ℵpM,q0q , (4.6.187)

for any s1 as in (4.6.15).

Proof. The �rst two terms in (4.6.185) have the �nite rank form (4.6.4) because of the presence

of the �nite dimensional projector ΠS0 , respectively Πᵀ
S�0 ,Σ

. In the last term, the operator R has

the �nite rank form (4.6.4). The estimate (4.6.186) follows by (4.6.185), (4.6.178), (4.6.181),

(4.6.169), (4.6.4), (4.2.7) and (4.6.180), (4.6.182), (4.6.170), (4.6.171), (4.6.5). The estimate

(4.6.187) follows similarly.

Proposition 4.83. (Reduction of Lω up to smoothing operators) For all pω, κq P DCpυ, τq�
rκ1, κ2s, the operator Lω in (4.5.33) (i.e. (4.6.1)) is semi-conjugated via (4.6.184) to the real,

reversible and momentum preserving operator LK. For all pω, κq P Rν � rκ1, κ2s, the extended

operator de�ned by the right hand side in (4.6.184) has the form

LK � ω � Bϕ1K � i DK �RK, , (4.6.188)

where 1K denotes the identity map of HK
S0

(cfr. (4.1.58)) and

1. DK is the diagonal operator

DK :�
�
DK 0

0 �DK

�
, DK :� diagjPSc0 µj , Sc0 :� ZzpSY t0uq ,

with eigenvalues µj :� m 3
2
Ωjpκq � m1j � m 1

2
|j| 12 P R , where the real constants m 3

2
, m1, m 1

2
,

de�ned respectively in (4.6.89), (4.6.145), (4.6.141), satisfy

|m 3
2
� 1|k0,υ � |m1|k0,υ � |m 1

2
|k0,υ À ε ; (4.6.189)
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In addition, for some σ ¡ 0,

|∆12m 3
2
| � |∆12m1| � |∆12m 1

2
| À ε }i1 � i2}s0�σ . (4.6.190)

2. The operator RK is real, reversible and momentum preserving. Moreover, for any q0 P N0,

M ¡ 2pk0 � q0q � 3
2 , there is a constant ℵpM, q0q ¡ 0 (depending also on k0, τ , ν) such

that, assuming (4.6.14) with µ0 ¥ ℵpM, q0q, for any s0 ¤ s ¤ S, q P Nν0, with |q| ¤ q0, the

operators BqϕRK, rBqϕRK, Bxs are Dk0-tame with tame constants satisfying

MBqϕRK
psq, MrBqϕRK,Bxspsq ÀS,M,q0 ευ

�1p1� }I0}k0,υ
s�ℵpM,q0qq . (4.6.191)

Moreover, for any q P Nν0, with |q| ¤ q0,

}Bqϕ∆12RK}LpHs0 q � }Bqϕ∆12rRK, Bxs}LpHs0 q ÀM ευ�1 }i1 � i2}s0�ℵpM,q0q . (4.6.192)

Proof. By (4.6.184) and (4.6.169) we deduce (4.6.188) with

RK :� ΠK
S0
pRp0,dq

9 �T9,M qΠK
S0
�Rf .

The estimates (4.6.189)-(4.6.190) follow by Lemmata 4.74, 4.77, 4.78. The estimate (4.6.191) fol-

lows by Lemmata 4.17, 4.25, (4.6.170) and (4.6.171), (4.6.186), choosing pn1, n2q � p1, 0q, p0, 1q.
The estimate (4.6.192) follows similarly. The operator Lω in (4.5.33) is reversible and momen-

tum preserving (Lemma 4.66). By Sections 4.6.2-4.6.6, the maps Z, E ,Q, �M,ΦM ,Φ,V,Ψ are

reversibility and momentum preserving. Therefore, using also (4.6.18), (4.6.24) and Lemmata

4.37 and 4.45, we deduce that the operator LK in (4.6.184) is reversible and momentum preserv-

ing. Since i DK is reversible and momentum preserving, we deduce that RK is reversible and

momentum preserving.

4.7 Almost-diagonalization and invertibility of Lω

In Proposition 4.83 we obtained the operator LK in (4.6.188) which is diagonal and constant

coe�cient up to the bounded operator RKpϕq. In this section we complete the diagonalization

of LK implementing a KAM iterative scheme. As starting point, we consider the real, reversible

and momentum preserving operator, acting in HK
S0
,

L0 :� L0piq :� LK � ω � Bϕ1K � i D0 �R
p0q
K , (4.7.1)
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de�ned for all pω, κq P Rν � rκ1, κ2s, with diagonal part (with respect to the exponential basis)

D0 :�
�
D0 0

0 �D0

�
, D0 :� diagjPSc0 µ

p0q
j , µ

p0q
j :� m 3

2
Ωjpκq � m1j � m 1

2
|j| 12 , (4.7.2)

where Sc0 � ZzS0, S0 � SY t0u, the real constants m 3
2
, m1, m 1

2
satisfy (4.6.189)-(4.6.190) and

R
p0q
K :� RK :�

�
R
p0,dq
K R

p0,oq
K

R
p0,oq
K R

p0,dq
K

�
, R

p0,dq
K : HK

S0
Ñ HK

S0
, R

p0,oq
K : HK

�S0
Ñ HK

S0
, (4.7.3)

which is a real, reversible, momentum preserving operator satisfying (4.6.191), (4.6.192). We

denote HK
�S0

� thpxq � °
jR�S0

hje
�ijx P L2u. Note that

D0 : HK
�S0

Ñ HK
�S0

, D0 � diagjP�Sc0pµ
p0q
�j q . (4.7.4)

Proposition 4.83 implies that the operator R
p0q
K satis�es the tame estimates of Lemma 4.84 below

by �xing the constant M large enough (which means performing su�ciently many regularizing

steps in Section 4.6.4), namely

M :� �
2pk0 � s0 � bq � 3

2

�� 1 P N , (4.7.5)

where

b :� ras � 2 P N , a :� 3τ1 ¥ 1 , τ1 :� k0 � pk0 � 1qτ . (4.7.6)

These conditions imply the convergence of the iterative scheme (4.7.46)-(4.7.47), see Lemma

4.91. We also set

µpbq :� ℵpM, s0 � bq , (4.7.7)

where the constant ℵpM, q0q is given in Proposition 4.83.

Lemma 4.84. (Smallness of R
p0q
K ) Assume (4.6.14) with µ0 ¥ µpbq. Then the operators R

p0q
K ,

rRp0q
K , Bxs, and Bs0ϕmR

p0q
K , rBs0ϕmR

p0q
K , Bxs, Bs0�b

ϕm R
p0q
K , rBs0�b

ϕm R
p0q
K , Bxs, m � 1, . . . , ν, are Dk0-tame

and, de�ning

M0psq :� max
 
M

R
p0q
K

psq, MrRp0q
K ,Bxspsq, MBs0ϕmR

p0q
K

psq, MrBs0ϕmR
p0q
K ,Bxspsq , m � 1, . . . , ν

(
,

(4.7.8)

M0ps, bq :� max
 
MBs0�b

ϕm R
p0q
K

psq, MrBs0�b
ϕm R

p0q
K ,Bxspsq , m � 1, . . . , ν

(
, (4.7.9)
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we have, for all s0 ¤ s ¤ S,

M0ps, bq :� max tM0psq,M0ps, bq u ¤ CpSq ε
υ
p1� }I0}k0,υ

s�µpbqq , M0ps0, bq ¤ CpSq ε
υ
. (4.7.10)

Moreover, for all q P Nν0, with |q| ¤ s0 � b,

}Bqϕ∆12R
p0q
K }LpHs0 q , }∆12rBqϕR

p0q
K , Bxs}LpHs0 q ¤ CpSqευ�1 }i1 � i2}s0�µpbq . (4.7.11)

Proof. Recalling (4.7.8), (4.7.9), the bounds (4.7.10)-(4.7.11) follow by (4.6.191), (4.7.5), (4.7.7),

(4.6.192).

We perform the almost-reducibility of L0 along the scale

N�1 :� 1 , Nn :� Nχn

0 , @ n P N0 , χ :� 3{2 . (4.7.12)

Theorem 4.85. (Almost-diagonalization of L0: KAM iteration) There exists τ2pτ, νq ¡
τ1pτ, νq � a (with τ1, a de�ned in (4.7.6)) such that, for all S ¡ s0, there is N0 :� N0pS, bq P N
such that, if

N τ2
0 M0ps0, bqυ�1 ¤ 1 , (4.7.13)

then, for all n P N0, n � 0, 1, . . . , n:

pS1qn There exists a real, reversible and momentum preserving operator

Ln :� ω � Bϕ1K � i Dn �R
pnq
K ,

Dn :�
�
Dn 0

0 �Dn

�
, Dn :� diagjPSc0 µ

pnq
j ,

(4.7.14)

de�ned for all pω, κq in Rν � rκ1, κ2s, where µpnqj are k0-times di�erentiable real functions

µ
pnq
j pω, κq :� µ

p0q
j pω, κq � r

pnq
j pω, κq , µ

p0q
j � m 3

2
Ωjpκq � m1 j � m 1

2
|j| 12 , (4.7.15)

satisfying r
p0q
j � 0 and, for n ¥ 1,

|rpnqj |k0,υ ¤ CpS, bqευ�1 , |µpnqj � µ
pn�1q
j |k0,υ ¤ CpS, bqευ�1N�a

n�2 , @j P Sc0 . (4.7.16)

The remainder

R
pnq
K :�

�
R
pn,dq
K R

pn,oq
K

R
pn,oq
K R

pn,dq
K

�
, R

pn,dq
K : HK

S0
Ñ HK

S0
, R

pn,oq
K : HK

�S0
Ñ HK

S0
(4.7.17)
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is Dk0-modulo-tame: more precisely, the operators R
pn,dq
K , R

pn,oq
K , xBϕybRpn,dq

K , xBϕybRpn,oq
K , are

Dk0-modulo-tame with modulo-tame constants

M7
npsq :�M7

R
pnq
K

psq :� maxtM7
R
pn,dq
K

psq,M7
R
pn,oq
K

psqu ,

M7
nps, bq :�M7

xBϕybRpnq
K

psq :� maxtM7
xBϕybRpn,dqK

psq,M7
xBϕybRpn,oqK

psqu ,
(4.7.18)

which satisfy, for some constant C�ps0, bq ¡ 0, for all s0 ¤ s ¤ S,

M7
npsq ¤ C�ps0, bqM0ps, bqN�a

n�1 , M7
nps, bq ¤ C�ps0, bqM0ps, bqNn�1 . (4.7.19)

De�ne the sets Λυn � Λυnpiq by Λυ0 :� DCp2υ, τq � rκ1, κ2s and, for n ¥ 1,

Λυn :� λ � pω, κq P Λυn�1 :��ω � `� µ
pn�1q
j � µ

pn�1q
j1

�� ¥ υ x|j| 32 � |j1| 32 y x`y�τ

@ |`| ¤ Nn�1 , j, j
1 R S0 , p`, j, j1q � p0, j, jq, with ~ � `� j � j1 � 0 ,��ω � `� µ

pn�1q
j � µ

pn�1q
j1

�� ¥ υ
� |j| 32 � |j1| 32 � x`y�τ

@ |`| ¤ Nn�1 , j, j
1 R S0 with ~ � `� j � j1 � 0

(
.

(4.7.20)

For n ¥ 1 there exists a real, reversibility and momentum preserving map, de�ned for all pω, κq P
Rν � rκ1, κ2s, of the form

Φn�1 � eXn�1 , Xn�1 :�
�
X
pdq
n�1 X

poq
n�1

X
poq
n�1 X

pdq
n�1

�
, X

pdq
n�1 : HK

S0
Ñ HK

S0
, X

poq
n�1 : HK

�S0
Ñ HK

S0
,

such that, for all λ P Λυn , the following conjugation formula holds:

Ln � Φ�1
n�1Ln�1Φn�1 . (4.7.21)

The operators Xn�1, xBϕyb Xn�1, are Dk0-modulo-tame with modulo tame constants satisfying,

for all s0 ¤ s ¤ S,

M7
Xn�1

psq ¤ Cps0, bqυ�1N τ1
n�1N

�a
n�2M0ps, bq ,

M7
xBϕybXn�1

psq ¤ Cps0, bqυ�1N τ1
n�1Nn�2M0ps, bq .

(4.7.22)

pS2qn Let i1pω, κq, i2pω, κq such that R
pnq
K pi1q, R

pnq
K pi2q satisfy (4.7.10), (4.7.11). Then, for all

pω, κq P Λυ1
n pi1q X Λυ2

n pi2q with υ1, υ2 P rυ{2, 2υs,

}|∆12R
pnq
K |}LpHs0 q ÀS,b ευ�1N�a

n�1 }i1 � i2}s0�µpbq , (4.7.23)

}| xBϕyb ∆12R
pnq
K |}LpHs0 q ÀS,b ευ�1Nn�1 }i1 � i2}s0�µpbq . (4.7.24)
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Furthermore, for n ¥ 1, for all j P Sc0,

|∆12prpnqj � r
pn�1q
j q| ¤ C}|∆12R

pnq
K |}LpHs0 q , (4.7.25)

|∆12r
pnq
j | ¤ CpS, bqευ�1 }i1 � i2}s0�µpbq . (4.7.26)

pS3qn Let i1, i2 be like in pS2qn and 0   ρ   υ{2. Then

ευ�1CpSqN τ�1
n�1 }i1 � i2}s0�µpbq ¤ ρ ñ Λυnpi1q � Λυ�ρn pi2q . (4.7.27)

Theorem 4.85 implies also that the invertible operator

Un :� Φ0 � . . . �Φn�1 , n ¥ 1 , (4.7.28)

has almost diagonalized L0. We have indeed the following corollary.

Theorem 4.86. (Almost-diagonalization of L0) Assume (4.6.14) with µ0 ¥ µpbq. For all

S ¡ s0, there exist N0 � N0pS, bq ¡ 0 and δ0 � δ0pSq ¡ 0 such that, if the smallness condition

N τ2
0 ευ�2 ¤ δ0 (4.7.29)

holds, where τ2 � τ2pτ, νq is de�ned in Theorem 4.85, then, for all n P N and for all pω, κq P
Rν�rκ1, κ2s the operator Un in (4.7.28) is well-de�ned, the operators U�1

n �1K are Dk0-modulo-

tame with modulo-tame constants satisfying, for all s0 ¤ s ¤ S,

M7
U�1

n �1Kpsq ÀS ευ
�2N τ1

0 p1� }I0}k0,υ
s�µpbqq , (4.7.30)

where τ1 is given by (4.7.6). Moreover Un, U�1
n are real, reversibility and momentum preserving.

The operator Ln � ω � Bϕ1K � i Dn �R
pnq
K , de�ned in (4.7.14) with n � n is real, reversible and

momentum preserving. The operator R
pnq
K is Dk0-modulo-tame with a modulo-tame constant

satisfying, for all s0 ¤ s ¤ S,

M7
R
pnq
K

psq ÀS ευ�1N�a
n�1p1� }I0}k0,υ

s�µpbqq .

Moreover, for all pω, κq in Λυn � Λυnpiq �
�n

n�0 Λ
υ
n , where the sets Λυn are de�ned in (4.7.20), the

conjugation formula Ln :� U�1
n L0Un holds.

Proof of Theorem 4.85

The proof of Theorem 4.85 is inductive. We �rst show that pS1qn-pS3qn hold when n � 0.
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The step n � 0. Proof of pS1q0. Properties (4.7.14)-(4.7.15), (4.7.17) for n � 0 hold by

(4.7.1), (4.7.2), (4.7.3) with r
p0q
j � 0. We now prove that also (4.7.19) for n � 0 holds.

Lemma 4.87. We have M7
0psq,M7

0ps, bq Às0,b M0ps, bq.
Proof. Let R P tRp0,dq

K , R
p0,oq
K u. We prove that xBϕybR is Dk0-modulo-tame. Using the inequality

x`� `1y2q0 xj � j1y2 Àq0 1� ��`� `1
��2q0 � ��j � j1

��2 � ��`� `1
��2q0

��j � j1
��2 ,

it follows, recalling (4.2.36), (4.7.10), (the matrix elements of the commutator rBx, As are ipj �
j1qAj1j p`� `1q), that, for any j1 P Sc0, `1 P Zν ,

υ2|k|¸
`,j

x`, jy2s x`� `1y2ps0�bq xj � j1y2 ��BkλRj1j p`� `1q��2
Àb M0ps0, bq2 x`1, j1y2s �M0ps, bq2 x`1, j1y2s0 .

(4.7.31)

Let s0 ¤ s ¤ S. Then, for any |k| ¤ k0, by Cauchy-Schwartz inequality, we have

��| xBϕyb BkλR|h��2

s
¤

¸
`,j

x`, jy2s
� ¸
`1,j1

x`� `1yb ��pBkλRqj1j p`� `1q�� ��h`1,j1 �� 	2

¤
¸
`,j

x`, jy2s
� ¸
`1,j1

x`� `1ys0�b xj � j1y |pBkλRqj
1

j p`� `1q||h`1,j1 | 1

x`� `1ys0 xj � j1y
	2

Às0
¸
`,j

x`, jy2s
¸
`1,j1

x`� `1y2ps0�bq xj � j1y2 |pBλRqj
1

j p`� `1q|2|h`1,j1 |2

(4.7.31)
Às0,b υ�2|k| ¸

`1,j1

��h`1,j1 ��2 �M0ps0, bq2 x`1, j1y2s �M0ps, bq2 x`1, j1y2s0
�
.

Therefore, we obtainM7
xBϕybRpsq Às0,b M0ps, bq and thenM7

0ps, bq Às0,b M0ps, bq. The inequality
M7

0psq Às0 M0ps, bq follows similarly.

Proof of pS2q0. The proof of estimates (4.7.23), (4.7.24) at n � 0 follows by (4.7.11), arguing

similarly to Lemma 4.87.

Proof of pS3q0. It is trivial since, by de�nition, Λυ0pi1q � DCp2υ, τq � rκ1, κ2s � Λ
υ�ρ
0 pi2q.

The reducibility step. We now describe the generic inductive step, showing how to transform

Ln into Ln�1 by the conjugation with Φn. For sake of simplicity in the notation, we drop the

index n and we write � instead of n � 1, so that we write L :� Ln, L� :� Ln�1, RK :� R
pnq
K ,

R
p�q
K :� R

pn�1q
K , N :� Nn, etc. We conjugate L in (4.7.14) by a transformation of the form

Φ :� eX , X :�
�
Xpdq Xpoq

Xpoq Xpdq

�
, Xpdq : HK

S0
Ñ HK

S0
, Xpoq : HK

�S0
Ñ HK

S0
, (4.7.32)
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where X is a bounded linear operator, chosen below in (4.7.37), (4.7.38). By the Lie expansions

(4.2.16)-(4.2.17) we have

L� :� Φ�1LΦ � ω � Bϕ1K � i D� ppω � BϕXq � irX,Ds �ΠNRKq �ΠK
NRK (4.7.33)

�
» 1

0
e�τXrX,RKseτX dτ �

» 1

0
p1� τqe�τXrX, pω � BϕXq � irX,DsseτX dτ

where ΠN is de�ned in (4.2.40) and ΠK
N :� Id�ΠN . We want to solve the homological equation

ω � BϕX� irX,Ds �ΠNRK � rRKs (4.7.34)

where

rRKs :�
�
rRpdq

K s 0

0 rRpdq
K s

�
, rRpdq

K s :� diagjPSc0pR
pdq
K qjjp0q . (4.7.35)

By (4.7.14), (4.7.17) and (4.7.32), the homological equation (4.7.34) is equivalent to the two

scalar homological equations

ω � BϕXpdq � ipXpdqD �DXpdqq �ΠNR
pdq
K � rRpdq

K s
ω � BϕXpoq � ipXpoqD �DXpoqq �ΠNR

poq
K � 0 .

(4.7.36)

Recalling (4.7.14) and since D � diagjP�Sc0pµ�jq, acting in HK
�S0

(see (4.7.4)) the solutions of

(4.7.36) are, for all pω, κq P Λυn�1 (see (4.7.20) with nù n� 1)

pXpdqqj1j p`q :�

$'''&'''%
� pRpdq

K qj1j p`q
ipω � `� µj � µj1q if

$&%p`, j, j1q � p0, j, jq, j, j1 P Sc0, x`y ¤ N

` � ~� j � j1 � 0

0 otherwise ,

(4.7.37)

pXpoqqj1j p`q :�

$'''&'''%
� pRpoq

K qj1j p`q
ipω � `� µj � µ�j1q if

$&%@ ` P Zν j,�j1 P Sc0, x`y ¤ N

` � ~� j � j1 � 0

0 otherwise .

(4.7.38)

Note that, since �j1 P Sc0, we can apply the bounds (4.7.20) for pω, κq P Λυn�1.

Lemma 4.88. (Homological equations) The real operator X de�ned in (4.7.32), (4.7.37),

(4.7.38), (which for all pω, κq P Λυn�1 solves the homological equation (4.7.20))) admits an exten-

sion to the whole parameter space Rν�rκ1, κ2s. Such extended operator is Dk0-modulo-tame with

a modulo-tame constant satisfying, for all s0 ¤ s ¤ S,

M7
Xpsq Àk0 N

τ1υ�1M7psq , M7
xBϕybXpsq Àk0 N

τ1υ�1M7ps, bq , (4.7.39)
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where τ1 :� τpk0 � 1q � k0. If υ{2 ¤ υ1, υ2 ¤ 2υ, then, for all pω, κq P Λυ1
n�1pi1q X Λυ2

n�1pi2q,

} |∆12X| }LpHs0 q À N2τυ�1p} |RKpi2q| }LpHs0 q }i1 � i2}s0�µpbq � } |∆12RK| }LpHs0 qq , (4.7.40)

}| xBϕyb ∆12X|}LpHs0 q À
N2τυ�1p}| xBϕyb RKpi2q|}LpHs0 q }i1 � i2}s0�µpbq � }| xBϕyb ∆12RK|}LpHs0 qq . (4.7.41)

The operator X is reversibility and momentum preserving.

Proof. We prove that (4.7.39) holds for Xpdq. The proof for Xpoq holds analogously. First, we

extend the solution in (4.7.37) to all λ in Rν�rκ1, κ2s by setting (without any further relabeling)
pXpdqqj1j p`q � i g`,j,j1pλqpRpdq

K qj1j p`q, where

g`,j,j1pλq :� χpfpλqρ�1q
fpλq , fpλq :� ω � `� µj � µj1 , ρ :� υ x`y�τ x|j| 32 � |j1| 32 y ,

and χ is the cut-o� function (4.2.10). By (4.7.15), (4.7.16), (4.6.189), (4.7.20), Lemma 4.52,

(4.4.40), together with (4.2.10), we deduce that, for any k1 P Nν0 , |k1| ¤ k0,

sup
|k1|¤k0

��Bk1
λ g`,j,j1

�� Àk0 x`yτ1 υ�1�|k1| , τ1 � τpk0 � 1q � k0 ,

and we deduce, for all 0 ¤ |k| ¤ k0,

|BkλpXpdqqj1j p`q| Àk0

¸
k1�k2�k

|Bk1
λ g`,j,j1pλq||Bk2

λ pRpdq
K qj1j p`q|

Àk0 x`yτ1 υ�1�|k| ¸
|k2|¤|k|

υ|k2||Bk2
λ pRpdq

K qj1j p`q| . (4.7.42)

By (4.7.37) we have that pXpdqqj1j p`q � 0 for all x`y ¡ N . Therefore, for all |k| ¤ k0, we have

}| xBϕyb BkλXpdq|h}2s ¤
¸
`,j

x`, jy2s
� ¸
x`�`1y¤N,j1

| x`� `1yb BkλpXpdqqj1j p`� `1q||h`1,j1 |
	2

(4.7.42)
Àk0 N2τ1υ�2p1�|k|q ¸

|k2|¤|k|
υ2|k2|

¸
`,j

x`, jy2s
� ¸
`1,j1

| x`� `1yb Bk2
λ pRpdq

K qj1j p`� `1q||h`1,j1 |
	2

Àk0 N
2τ1υ�2p1�|k|q ¸

|k2|¤|k|
υ2|k2|}| xBϕyb Bk2

λ R
pdq
K ||h|}2s

(4.2.39),(4.7.18)
Àk0 N2τ1υ�2p1�|k|q�M7ps, bq2 }h}2s0 �M7ps0, bq2 }h}2s

�
,

and, by De�nition 4.26, we conclude that M7
xBϕybXpdqpsq Àk0 N

τ1υ�1M7ps, bq. The analogous

estimates for xBϕybXpoq, Xpdq, Xpoq and (4.7.40), (4.7.41) follow similarly. By induction, the
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operator RK is reversible and momentum preserving. Therefore, by (4.7.32), (4.7.37), (4.7.38)

and Lemmata 4.32, 4.42, it follows that X is reversibility and momentum preserving.

By (4.7.33), (4.7.34), for all λ P Λυn�1, we have

L� � Φ�1LΦ � ω � Bϕ1K � i D� �R
p�q
K , (4.7.43)

where

D� :� D� irRKs ,

R
p�q
K :� ΠK

NRK �
» 1

0
e�τXrX,RKseτX dτ �

» 1

0
p1� τqe�τXrX,ΠNRK � rRKsseτX dτ .

(4.7.44)

The right hand side of (4.7.43)-(4.7.44) de�ne an extension of L� to the whole parameter space

Rν � rκ1, κ2s, since RK and X are de�ned on Rν � rκ1, κ2s.
The new operator L� in (4.7.43) has the same form of L in (4.7.14) with the non-diagonal

remainder R
p�q
K which is the sum of a term ΠK

NRK supported on high frequencies and a quadratic

function of X and RK. The new normal form D� is diagonal:

Lemma 4.89. (New diagonal part) For all pω, κq P Rν � rκ1, κ2s, the new normal form is

i D� � i D� rRKs � i

�
D� 0

0 �D�

�
, D� :� diagjPSc0 µ

p�q
j , µ

p�q
j :� µj � rj P R ,

where each rj satis�es, on Rν � rκ1, κ2s,

|rj |k0,υ � |µp�qj � µj |k0,υ ÀM7ps0q . (4.7.45)

Moreover, given tori i1pω, κq, i2pω, κq, we have |rjpi1q � rjpi2q| À }|∆12RK|}LpHs0 q.

Proof. Recalling (4.7.35), we have that rj :� �ipRpdq
K qjjp0q, for all j P Sc0. By the reversibility

of R
pdq
K and (4.2.52) we deduce that rj P R. Recalling the de�nition of M7ps0q in (4.7.18) (with

s � s0) and De�nition 4.26, we have, for all 0 ¤ |k| ¤ k0, }|BkλRpdq
K |h}s0 ¤ 2υ�|k|M7ps0q }h}s0 , and

therefore |BkλpRpdq
K qjjp0q| À υ�|k|M7ps0q . Hence (4.7.45) follows. The last bound for |rjpi1q�rjpi2q|

follows analogously.

The iterative step. Let n P N0 and assume that the statements pS1qn-pS3qn are true. We now

prove pS1qn�1-pS3qn�1. For sake of simplicity in the notation (as in other parts of the paper) we

omit to write the dependence on k0, which is considered as a �xed constant.

Proof of pS1qn�1. The real operator Xn de�ned in Lemma 4.88 is de�ned for all pω, κq P
Rν � rκ1, κ2s and, by (4.7.39), (4.7.19), satis�es the estimates (4.7.22) at the step n � 1. The
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�ow maps Φ�1
n � e�Xn are well de�ned by Lemma 4.28. By (4.7.43), for all λ P Λυn�1, the

conjugation formula (4.7.21) holds at the step n � 1. The operator Xn is reversibility and

momentum preserving, and so are the operators Φ�1
n � e�Xn . By Lemma 4.89, the operator

Dn�1 is diagonal with eigenvalues µ
pn�1q
j : Rν � rκ1, κ2s Ñ R, µpn�1q

j � µ
p0q
j � r

pn�1q
j with

r
pn�1q
j :� r

pnq
j � r

pnq
j satisfying, using also (4.7.19), (4.7.16) at the step n � 1. The next lemma

provides the estimates of the remainder R
pn�1q
K � R

p�q
K de�ned in (4.7.44).

Lemma 4.90. The operators R
pn�1q
K and xBϕyb R

pn�1q
K are Dk0-modulo-tame with modulo-tame

constants satisfying

M7
n�1psq À N�b

n M7
nps, bq �N τ1

n υ
�1M7

npsqM7
nps0q , (4.7.46)

M7
n�1ps, bq Àb M

7
nps, bq �N τ1

n υ
�1
�
M7

nps, bqM7
nps0q �M7

nps0, bqM7
npsq

�
. (4.7.47)

Proof. The estimates (4.7.46), (4.7.47) follow by (4.7.44), Lemmata 4.27, , 4.28, (4.2.41) and

(4.7.39), (4.7.19), (4.7.6), (4.7.12), (4.7.13).

Lemma 4.91. Estimates (4.7.19) holds at the step n� 1.

Proof. It follows by (4.7.46), (4.7.47), (4.7.19) at the step n, (4.7.6), the smallness condition

(4.7.13) with N0 � N0ps0, bq ¡ 0 large enough and taking τ2 ¡ τ1 � a.

Finally R
pn�1q
K is real, reversible and momentum preserving as R

pnq
K , since Xn is real, re-

versibility and momentum preserving. This concludes the proof of pS1qn�1.

Proof of pS2qn�1. It follows by similar arguments and we omit it.

Proof of pS3qn�1. The proof follows as for pS4qν�1 of Theorem 7.3 in [44], using pS2qn and

the fact that the momentum condition in (4.7.20) implies |j � j1| À Nn.

Almost invertibility of Lω

By (4.6.184) and Theorem 4.86 (where L0 � LK) we obtain

Lω � W2,nLnW
�1
1,n , W1,n :�WK

1 Un , W2,n :�WK
2 Un , (4.7.48)

where the operator Ln is de�ned in (4.7.14) with n � n. By (4.6.182) and (4.7.30), we have, for

some σ :� σpτ, ν, k0q ¡ 0, for any s0 ¤ s ¤ S,

}W�1
1,nh}k0,υ

s , }W�1
2,nh}k0,υ

s ÀS }h}k0,υ
s�σ � }I0}k0,υ

s�µpbq�σ}h}k0,υ
s0�σ . (4.7.49)
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In order to verify the almost invertibility assumption (AI) of Lω in Section 4.5, we decompose

the operator Ln in (4.7.14) (with n instead of n) as

Ln � D 
n �Q

pnq
K �R

pnq
K (4.7.50)

where

D 
n :� ΠKn

pω � Bϕ1K � i DnqΠKn
�ΠK

Kn
, Q

pnq
K :� ΠK

Kn
pω � Bϕ1K � i DnqΠK

Kn
�ΠK

Kn
, (4.7.51)

and the smoothing operator ΠK on the traveling waves is de�ned in (4.2.6), and ΠK
K :� Id�ΠK .

The constants Kn in (4.7.51) are Kn :� Kχn

0 , χ � 3{2 (cfr. (4.5.34)), and K0 will be �xed in

(4.8.5).

Lemma 4.92. (First order Melnikov non-resonance conditions) For all λ � pω, κq in

Λ
υ,I
n�1 :�

!
λ P Rν � rκ1, κ2s : |ω � `� µ

pnq
j | ¥ 2υ

|j| 32
x`yτ , @ |`| ¤ Kn, j P Sc0 , j � ~ � ` � 0

)
, (4.7.52)

on the subspace of the traveling waves τςgpϕq � gpϕ � ~ςq, ς P R, such that gpϕ, �q P HK
S0
, the

operator D 
n in (4.7.51) is invertible and there exists an extension of the inverse operator (that

we denote in the same way) to the whole Rν � rκ1, κ2s satisfying the estimate

}pD 
n q�1g}k0,υ

s Àk0 υ
�1}g}k0,υ

s�τ1 , τ1 � k0 � τpk0 � 1q . (4.7.53)

Moreover pD 
n q�1g is a traveling wave.

Proof. The estimate (4.7.53) follows arguing as in Lemma 4.88.

Standard smoothing properties imply that the operator Q
pnq
K in (4.7.51) satis�es, for any

traveling wave h P HK
S0
, for all b ¡ 0,

}Qpnq
K h}k0,υ

s0 À K�b
n }h}k0,υ

s0�b� 3
2

, }Qpnq
K h}k0,υ

s À }h}k0,υ

s� 3
2

. (4.7.54)

By the decompositions (4.7.48), (4.7.50), Theorem 4.86 (note that (4.5.1) and Lemma 4.61 imply

(4.6.14)), Proposition 4.83, the fact that W1,n, W2,n map (anti)-reversible, respectively traveling,

waves, into (anti)-reversible, respectively traveling, waves (Lemma 4.80) and estimates (4.7.49),

(4.7.53), (4.7.54), (4.2.8) we deduce the following theorem.

Theorem 4.93. (Almost invertibility of Lω) Assume (4.5.1). Let a, b as in (4.7.6) andM as

in (4.7.5). Let S ¡ s0 and assume the smallness condition (4.7.29). Then the almost invertibility
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assumption (AI) in Section 4.5 holds with Λ0 replaced by

Λυ
n�1 :� Λυ

n�1piq :� Λυn�1 X Λ
υ,I
n�1 , (4.7.55)

(see (4.7.20), (4.7.52)) and, with µpbq de�ned in (4.7.7),

L ω :� W2,nD
 
n W�1

1,n , Rω :� W2,nR
pnq
K W�1

1,n , RK
ω :� W2,nQ

pnq
K W�1

1,n .

4.8 Proof of Theorem 4.55

Theorem 4.55 is a consequence of Theorem 4.95 below. We consider the �nite dimensional

subspaces of traveling wave variations

En :�  
Ipϕq � pΘ, I, wqpϕq such that (4.2.61) holds : Θ � ΠnΘ , I � ΠnI , w � Πnw

(
where Πnw :� ΠKnw are de�ned as in (4.2.6) with Kn in (4.5.34), and we denote with the same

symbol Πngpϕq :� °
|`|¤Kn

g`e
i`�ϕ. Note that the projector Πn maps (anti)-reversible traveling

variations into (anti)-reversible traveling variations.

In view of the Nash-Moser Theorem 4.95 we introduce the constants

a1 :� maxt6σ1 � 13, χpppτ � 1q � µpbq � 2σ1q � 1u , a2 :� χ�1a1 � µpbq � 2σ1 , (4.8.1)

µ1 :� 3pµpbq � 2σ1q � 1 , b1 :� a1 � 2µpbq � 4σ1 � 3� χ�1µ1 , χ � 3{2 (4.8.2)

σ1 :� maxtσ, 2s0 � 2k0 � 5u , S � s0 � b1 , (4.8.3)

where σ � σpτ, ν, k0q ¡ 0 is de�ned by Theorem 4.65, 2s0�2k0�5 is the largest loss of regularity

in the estimates of the Hamiltonian vector �eld XP in Lemma 4.60, µpbq is de�ned in (4.7.7),

and b � ras � 2 is de�ned in (4.7.6). The exponent p in (4.5.34) is required to satisfy

pa ¡ 1
2a1 � 3

2σ1 . (4.8.4)

By (4.7.6), and the de�nition of a1 in (4.8.1), there exists p � ppτ, ν, k0q such that (4.8.4) holds,

for example we �x

p :� 3pµpbq � 4σ1 � 1q
a

.

Remark 4.94. The constant a1 is the exponent in (4.8.9). The constant a2 is the exponent in

the second bound in (4.8.7). The constant µ1 is the exponent in pP3qn. The conditions on the

constants µ1, b1, a1 to allow the convergence of the Nash-Moser scheme in Theorem 4.95 are

a1 ¡ 6σ1 � 12 , b1 ¡ a1 � 2µpbq � 4σ1 � χ�1µ1 , pa ¡ 1
2a1 � 3

2σ1 ,
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as well as µ1 ¡ 3pµpbq � 2σ1q. In addition, we require a1 ¥ χpppτ � 1q � µpbq � 2σ1q � 1 so that

a2 ¥ ppτ � 1q � χ�1, which is used in the proof of Lemma 4.96.

Given a function W � pI, βq where I is the periodic component of a torus as in (4.4.9) and

β P Rν , we denote }W }k0,υ
s :� }I}k0,υ

s � |β|k0,υ.

Theorem 4.95. (Nash-Moser) There exist δ0, C� ¡ 0 such that, if

Kτ3
0 ευ

�2   δ0 , τ3 :� maxtpτ2, 2σ1�a1�4u , K0 :� υ�1 , υ :� εa , 0   a   p2� τ3q�1 , (4.8.5)

where τ2 � τ2pτ, νq is given by Theorem 4.85, then, for all n ¥ 0:

pP1qn There exists a k0-times di�erentiable function �Wn : Rν�rκ1, κ2s Ñ En�1�Rν , λ � pω, κq ÞÑ�Wnpλq :� prIn, rαn � ωq, for n ¥ 1, and �W0 :� 0, satisfying

}�Wn}k0,υ
s0�µpbq�σ1

¤ C�ευ�1 . (4.8.6)

Let rUn :� U0 ��Wn, where U0 :� pϕ, 0, 0, ωq. The di�erence rHn :� rUn � rUn�1, for n ¥ 1,

satis�es

} rH1}k0,υ
s0�µpbq�σ1

¤ C�ευ�1 , } rHn}k0,υ
s0�µpbq�σ1

¤ C�ευ�1K�a2
n�1 , @ n ¥ 2 . (4.8.7)

The torus embedding rın :� pϕ, 0, 0q � rIn is reversible and traveling, i.e. (4.4.8) holds.

pP2qn We de�ne

G0 :� Ω� rκ1, κ2s , Gn�1 :� Gn XΛυ
n�1prınq , @ n ¥ 0 , (4.8.8)

where Λυ
n�1prınq is de�ned in (4.7.55). Then, for all λ P Gn , setting K�1 :� 1, we have

}FprUnq}k0,υ
s0 ¤ C�εK�a1

n�1 . (4.8.9)

pP3qn (High norms) For all λ P Gn, we have

}�Wn}k0,υ
s0�b1

¤ C�ευ�1Kµ1
n�1 . (4.8.10)

Proof. We argue by induction.

STEP 1: Proof of pP1, 2, 3q0. They follow by

}FpU0q}k0,υ
s

(4.4.6), Lemma4.60� Opεq (4.8.11)

taking C� large enough and by noting that i0 :� pϕ, 0, 0q is clearly reversible and traveling,

satisfying (4.2.60).
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STEP 2: Assume that pP1, 2, 3qn hold for some n P N0 and prove pP1, 2, 3qn�1.

We are going to de�ne the successive approximation rUn�1 by a modi�ed Nash-Moser scheme and

prove by induction that the approximate torusrın�1 is a reversible and traveling wave. For that we

prove the almost-approximate invertibility of the linearized operator Ln � Lnpλq :� di,αFprınpλqq
applying Theorem 4.65 to Lnpλq. By (4.8.5), the smallness condition (4.7.29) holds for ε small

enough. Therefore Theorem 4.93 holds and we deduce that the inversion assumption (4.5.36)

holds for all λ P Λυ
n�1, see (4.7.55). Now we apply Theorem 4.65 to the linearized operator Lnpλq

with Λo :� Λυ
n�1prınq and S :� s0�b1, where b1 is de�ned in (4.8.2). It implies the existence of an

almost-approximate inverse Tn :� Tnpλ,rınq of the linearized operator di,αFprınq which satis�es

for any anti-reversible traveling wave variation g and for any s0 ¤ s ¤ s0 � b1

}Tng}k0,υ
s Às0�b1 υ

�1p}g}k0,υ
s�σ1

� }rIn}k0,υ
s�σ1�µpbq}g}

k0,υ
s0�σ1

q , (4.8.12)

}Tng}k0,υ
s0 Às0�b1 υ

�1}g}k0,υ
s0�σ1

. (4.8.13)

Moreover, the �rst three components of Tng form a reversible traveling wave variation. For all

λ P Rν � rκ1, κ2s we de�ne the successive approximation

Un�1 :� rUn �Hn�1 , Hn�1 :� ppIn�1, pαn�1q :� �ΠnTnΠnFprUnq P En � Rν , (4.8.14)

where Πn is de�ned for any pI, αq, with I a traveling wave variation, by

ΠnpI, αq :� pΠnI, αq , ΠK
n :� pΠK

n I, 0q . (4.8.15)

By Lemma 4.54 and since rın is a reversible traveling wave by induction assumption, we have that

FprUnq � Fprın, rαnq is an anti-reversible traveling wave variation, i.e (4.5.39)-(4.5.40) hold. Thus

the �rst three components of TnΠnFprUnq form a reversible traveling wave variation, as well as

ΠnTnΠnFprUnq. We now show that the iterative scheme in (4.8.14) is rapidly converging. We

write

FpUn�1q � FprUnq � LnHn�1 �Qn ,

where Ln :� di,αFprınq and
Qn :� QprUn, Hn�1q , QprUn, Hq :� FprUn �Hq � FprUnq � LnH , H P En � Rν . (4.8.16)
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Then, by the de�nition of Hn�1 in (4.8.14), we have

FpUn�1q � FprUnq � LnΠnTnΠnFprUnq �Qn

� FprUnq � LnTnΠnFprUnq � LnΠ
K
n TnΠnFprUnq �Qn

� pΠn �ΠK
n qFprUnq � pΠn �ΠK

n qLnTnΠnFprUnq � LnΠ
K
n TnΠnFprUnq �Qn

� ΠK
n FprUnq �Rn � Pn �Qn ,

(4.8.17)

where

Rn :� pLnΠ
K
n �ΠK

n LnqTnΠnFprUnq , Pn :� ΠnpId� LnTnqΠnFprUnq . (4.8.18)

We �rst note that, for all λ P Ω� rκ1, κ2s, s ¥ s0,

}FprUnq}k0,υ
s Às }FpU0q}k0,υ

s � }FprUnq � FpU0q}k0,υ
s

(4.8.11)
Às ε� }Ln

�Wn}k0,υ
s

(4.8.3)
Às ε� }�Wn}k0,υ

s�µpbq�σ1

(4.8.19)

and, by (4.8.6), (4.8.5), we have

υ�1}FprUnq}k0,υ
s0 ¤ 1 . (4.8.20)

We want to estimate the Hs0-norm of FpUn�1q, decomposed as in (4.8.17), in terms of FprUnq.
First, we need to estimate rHn�1 in } � }k0,υ

s0�b1
. By (4.8.14), we have

} rHn�1}k0,υ
s0�b1

(4.8.14)� }ΠnTnΠnFprUnq}k0,υ
s0�b1

(4.2.8)
Às0�b1 K

σ1
n }TnΠnFprUnq}k0,υ

s0�b1�σ1

(4.8.12)
Às0�b1 υ

�1Kσ1
n p}ΠnFprUnq}k0,υ

s0�b1
� }rIn}k0,υ

s0�b1�µpbq}ΠnFprUnq}k0,υ
s0�σ1

q
(4.8.19),(4.8.20)
Às0�b1 υ�1Kµpbq�2σ1

n pε� }�Wn}k0,υ
s0�b1

q , (4.8.21)

} rHn�1}k0,υ
s0

(4.8.14),(4.8.13)
Às0 υ�1Kσ1

n }FprUnq}k0,υ
s0 . (4.8.22)

Now we estimate Qn, Rn, Pn in the norm } � }k0,υ
s0 . By the de�nition of Qn in (4.8.16), we have

the quadratic estimate

}Qn}k0,υ
s0 Às0 }d2

i,αFprUnqr rHn�1, rHn�1s}k0,υ
s0

(4.4.6)� ε}d2
i,αXP prUnqr rHn�1, rHn�1s}k0,υ

s0

Lemma 4.60Às0 εp1� }rIn}k0,υ
2s0�2k0�5qp} rHn�1}k0,υ

s0�2q2
(4.8.3),(4.2.8),(4.8.13)

Às0 ευ�2K2σ1�4
n p1� }rIn}k0,υ

s0�σ1
qp}FprUnq}k0,υ

s0 q2
ευ�1¤1, (4.8.6)

Às0 υ�1K2σ1�4
n p}FprUnq}k0,υ

s0 q2 .

(4.8.23)
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According to Theorem 4.65, we write the term Pn in (4.8.18) as

Pn � �ΠnpLnTn � IdqΠnFprUnq � �P p1q
n � Pn,ω � PK

n,ω ,

P p1q
n :� ΠnPprınqΠnFprUnq , Pn,ω :� ΠnPωprınqΠnFprUnq , PK

n,ω :� ΠnPKω prınqΠnFprUnq .

Moreover, by (4.2.8), we have that

}FprUnq}k0,υ
s0�σ1

¤ }ΠnFprUnq}k0,υ
s0�σ1

� }ΠK
n FprUnq}k0,υ

s0�σ1

Kσ1
n

�}FprUnq}k0,υ
s0 �K�b1

n }FprUnq}k0,υ
s0�b1

�
,

(4.8.24)

which implies, together with (4.8.6), (4.8.5), (4.8.19), (4.8.20) and the bounds in Theorem 4.65,

the following estimates:

}P p1q
n }k0,υ

s0 Às0�b1 υ
�1p}FprUnq}k0,υ

s0�σ1
}ΠnFprUnq}k0,υ

s0�σ1
(4.8.25)

� p1� }rIn}k0,υ
s0�µpbq�σ1

q}FprUnq}k0,υ
s0�σ1

}ΠnFprUnq}k0,υ
s0�σ1

q
Às0�b1 υ

�1}pΠn �ΠK
n qFprUnq}k0,υ

s0�σ1
}ΠnFprUnq}k0,υ

s0�σ1

Às0�b1 υ
�1K2σ1

n pp}FprUnq}k0,υ
s0 q2 �K2σ1�b1

n }FprUnq}k0,υ
s0�b1

}FprUnq}k0,υ
s0 q

Às0�b1 υ
�1K2σ1

n p}FprUnq}k0,υ
s0 q2 � υ�1K3σ1�µpbq�b1

n pε� }�Wn}k0,υ
s0�b1

q}FprUnq}k0,υ
s0 ,

}Pn,ω}k0,υ
s0 Às0�b1 ευ

�2K�pa
n�1 p1� }rIn}k0,υ

s0�µpbq�σ1
q}ΠnFprUnq}k0,υ

s0�σ1

Às0�b1 ευ
�2K�pa

n�1}ΠnFprUnq}k0,υ
s0�σ1

Às0�b1 ευ
�2K�pa

n�1K
σ1
n }FprUnq}k0,υ

s0 , (4.8.26)

}PK
n,ω}k0,υ

s0 Às0�b1 υ
�1Kb1

n p}ΠnFprUnq}k0,υ
s0�σ1�b1

� }rIn}k0,υ
s0�µpbq�σ1�b1

}ΠnFprUnq}k0,υ
s0�σ1

q
Àσ0�b1 υ

�1Kσ1�b1
n }FprUnq}k0,υ

s0�b1
�Kµpbq�2σ1�b1

n }rIn}k0,υ
s0�b1

υ�1}FprUnq}k0,υ
s0

Às0�b1 υ
�1Kµpbq�2σ1�b1

n pε� }�Wn}k0,υ
s0�b1

q . (4.8.27)

Now we estimate Rn in (4.8.18). By (4.4.5), (4.4.6) and (4.8.15), we note that, for H :� ppI, pαq,
pLnΠ

K
n �ΠK

n LnqH � ε rdiXP prınq,ΠK
n spI .

Thus, by Lemma 4.60 and (4.2.8), we have the following estimate

}pLnΠ
K
n �ΠK

n LnqH}k0,υ
s0 Às0�b1 εK

σ1�b1�1
n p}pI}k0,υ

s0�b1
� }rIn}k0,υ

s0�b1
}pI}k0,υ

s0�1q . (4.8.28)

Hence, by (4.8.18), (4.8.28), (4.8.12), (4.8.5), (4.8.6), (4.8.19), (4.8.20) and ευ�1 ¤ 1, we get

}Rn}k0,υ
s0 Às0�b1 εK

σ1�b1�1
n p}TnΠnFprUnq}k0,υ

s0�b1
� }rIn}k0,υ

s0�b1
}TnΠnFprUnq}k0,υ

s0�1q
Às0�b1 K

3σ1�µpbq�2�b1
n pευ�1}FprUnq}k0,υ

s0�b1
� ε}rIn}k0,υ

s0�b1
q

Às0�b1 K
4σ1�2µpbq�2�b1
n pε� }�Wn}k0,υ

s0�b1
q .

(4.8.29)
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We obtain, by (4.8.17), (4.8.23), (4.8.25)-(4.8.27), (4.8.29), (4.8.19), (4.8.20),

}FprUn�1q}k0,υ
s0 Às0�b1 υ

�1Kµ2�b1
n pε� }�Wn}k0,υ

s0�b1
q

� υ�1K2σ1�4
n p}FprUnq}k0,υ

s0 q2 � ευ�2K�pa
n�1K

σ1
n }FprUnq}k0,υ

s0

(4.8.30)

with µ2 :� 4σ1 � 2µpbq � 2. Moreover, we have the bound

}�W1}k0,υ
s0�b1

(4.8.14)� }H1}k0,υ
s0�b1

(4.8.12)
Às0�b1 υ

�1}FpU0q}k0,υ
s0�σ1�b1

Às0�b1 ευ
�1 , (4.8.31)

whereas for �Wn�1 :� �Wn �Hn�1, n ¥ 1, we have, by (4.8.21),

}�Wn�1}k0,υ
s0�b1

Às0�b1 υ
�1K2σ1�µpbq

n pε� }�Wn}k0,υ
s0�b1

q . (4.8.32)

We extendHn�1, de�ned for λ P Gn�1, to rHn�1 de�ned for all λ P Rν�rκ1, κ2s, with an equivalent
} }k0,υ

s -norm. Set rUn�1 :� rUn� rHn�1. Therefore, by (4.8.30), (4.8.31), (4.8.32) and the induction

assumption, we conclude that (4.8.6), (4.8.6) (4.8.9), (4.8.10) hold true at the step n�1. Finally,

by (4.8.14), (4.4.6), (4.4.7), Theorem 4.65 and the induction assumption on rUn, we have that pIn�1

satis�es (4.2.61) and so rUn�1 is a quasi-periodic traveling wave. This concludes the proof.

Proof of Theorem 4.55. Let υ � εa, with 0   a   a0 :� 1{p2 � τ3q. Then, the smallness

condition in (4.8.5) holds for 0   ε   ε0 small enough and Theorem 4.95 holds. By (4.8.7),

the sequence of functions �Wn � rUn � pϕ, 0, 0, ωq � prIn, rαn � ωq converges to a function W8 :

Rν � rκ1, κ2s Ñ Hs0
ϕ �Hs0

ϕ �Hs0 � Rν , and we de�ne

U8 :� pi8, α8q :� pϕ, 0, 0, ωq �W8 .

The torus i8 is reversible and traveling, i.e. (4.4.8) holds. By (4.8.6), (4.8.7), we also deduce

}U8 � U0}k0,υ
s0�µpbq�σ1

¤ C�ευ�1 , }U8 � rUn}k0,υ
s0�µpbq�σ1

¤ Cευ�1K�a2
n , @ n ¥ 1 . (4.8.33)

In particular (4.4.11)-(4.4.12) hold. By Theorem 4.95-pP2qn, we deduce that Fpλ;U8pλqq � 0

for any

λ P
£
nPN0

Gn � G0 X
£
n¥1

Λυ
nprın�1q (4.7.55)� G0 X

� £
n¥1

Λυnprın�1q
�
X
� £
n¥1

Λυ,In prın�1q
�

where G0 :� Ω � rκ1, κ2s. To conclude the proof of Theorem 4.55 it remains only to de�ne the

µ8j in (4.4.13) and prove that the set Cυ8 in (4.4.15)-(4.4.17) is contained in Xn¥0Gn. We �rst
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de�ne

G8 :� G0 X
� £
n¥1

Λ2υ
n pi8q

�
X
� £
n¥1

Λ2υ,I
n pi8q

�
. (4.8.34)

Lemma 4.96. G8 � Xn¥0Gn, where Gn are de�ned in (4.8.8).

Proof. We shall use the inclusion property (4.7.27), with S �xed in (4.8.3). By (4.8.33) we have

εp2υq�1CpSqN τ�1
0 }i8 � i0}s0�µpbq ¤ εp2υq�1CpSqKppτ�1q

0 C�ευ�1 ¤ υ ,

εp2υq�1CpSqN τ�1
n�1 }i8 �rın�1}s0�µpbq ¤ εp2υq�1CpSqKppτ�1q

n�1 Cευ�1K�a2
n�1 ¤ υ , @ n ¥ 2 ,

since τ3 ¡ ppτ � 1q (by (4.8.5) and τ2 ¡ τ1 � τpk0 � 1q � k0) and a2 ¡ ppτ � 1q (see Remark

4.94). Therefore (4.7.27) implies Λ2υ
n pi8q � Λυnprın�1q, @ n ¥ 1. By similar arguments we deduce

that Λ2υ,I
n pi8q � Λ

υ,I
n prın�1q.

Then we de�ne the µ8j in (4.4.13), where m83
2

:� m 3
2
pi8q, m81 � m1pi8q, m81

2

� m 1
2
pi8q, with

m 3
2
, m1, m 1

2
provided in Proposition 4.83. By (4.7.16), the sequence prpnqj pi8qqnPN, with r

pnq
j given

by Theorem 4.85-pS1qn (evaluated at i � i8), is a Cauchy sequence in | � |k0,υ. Then we de�ne

r8j :� limnÑ8 r
pnq
j pi8q, for any j P Sc0, which satis�es |r8j � r

pnq
j pi8q|k0,υ ¤ Cευ�1N�a

n�1 for any

n ¥ 0. Then, recalling r
p0q
j pi8q � 0 and (4.6.189), the estimates (4.4.14) hold (here C � CpSq

with S �xed in (4.8.3)). Finally one checks (see e.g. Lemma 8.7 in [44]) that the Cantor set Cυ8
in (4.4.15)-(4.4.18) satis�es Cυ8 � G8, with G8 de�ned in (4.8.34), and Lemma 4.96 implies that

Cυ8 � Xn¥0Gn. This concludes the proof of Theorem 4.55.



Chapter 5

Quadratic life span of periodic

gravity-capillary water waves

We consider the space periodic gravity-capillary water waver equations$'&'%
ηt � Gpηqψ � γηηx

ψt � �gη � ψ2
x

2
� pηxψx �Gpηqψq2

2p1� η2
xq

� κ
� ηxa

1� η2
x

	
x
.

(5.0.1)

The variable ηpt, xq denotes the free boundary of the two dimensional �uid domain Dη,h de�ned
in (1.1.11), whereas ψpt, xq is the trace at the free boundary y � ηpt, xq of the generalized

velocity potential Φpt, x, yq solving (1.1.12). Here g ¡ 0 is the gravity, κ ¡ 0 is the surface

tension coe�cient and Gpηq is the Dirichlet-Neumann operator Gpηqψ � p�Φxηx � Φyq|y�ηpxq.
As observed by Zakharov [174], the equations (5.0.1) are the Hamiltonian system in (1.1.31),

(1.1.32)

The system obtained linearizing (5.0.1) at the equilibrium pη, ψq � p0, 0q, namely$&%Btη � Gp0qψ
Btψ � �pg � κB2

xqη .
(5.0.2)

The associated linear frequencies (see (1.1.34)) are given by

Ωpjq :� Ωκ,g,hpjq :�
b
pκj2 � gqGjp0q , j P Zzt0u . (5.0.3)

The main goal is to prove that, for any value of pκ, g, hq, κ ¡ 0, the gravity-capillary water

waves system (5.0.1) is conjugated to its Birkho� normal form, up to cubic remainders that

satisfy energy estimates (Theorem 5.1), and that all the solutions of (5.0.1), with initial data of

size ε in a su�ciently smooth Sobolev space, exist and remain in an ε-ball of the same Sobolev

195
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space up times of order ε�2, see Theorem 5.2. Let us state precisely these results.

Assume that, for s large enough and some T ¡ 0, we have a classical solution

pη, ψq P C0pr�T, T s;Hs� 1
4

0 � 9Hs� 1
4 q (5.0.4)

of the Cauchy problem for (5.0.1). The existence of such a solution, at least for small enough T ,

is guaranteed by local well-posedness theory, see the literature at the end of this chapter.

Theorem 5.1. (Cubic Birkho� normal form) Let κ ¡ 0, g ¥ 0 and h P p0,�8s. There

exist s " 1 and 0   ε ! 1, such that, if pη, ψq is a solution of (5.0.1) satisfying (5.0.4) with

sup
tPr�T,T s

�}η}
H
s� 1

4
0

� }ψ}
9Hs� 1

4

� ¤ ε , (5.0.5)

then there exists a bounded and invertible linear operator Bpη, ψq : H
s� 1

4
0 � 9Hs� 1

4 Ñ 9Hs, which

depends (nonlinearly) on pη, ψq, such that

}Bpη, ψq}
LpHs� 1

4
0 � 9Hs� 1

4 , 9Hsq
� }pBpη, ψqq�1}

Lp 9Hs,H
s� 1

4
0 � 9Hs� 1

4 q
¤

1� Cpsqp}η}
H
s� 1

4
0

� }ψ}
9Hs� 1

4
q ,

(5.0.6)

and the variable z :� Bpη, ψqrη, ψs satis�es the equation

Btz � iΩpDqz � iBzHp3q
BNFpz, zq � X�

¥3 (5.0.7)

where:

1. ΩpDq is the Fourier multiplier with symbol de�ned in (5.0.3) and Bz is de�ned in (5.4.3);

2. the Hamiltonian H
p3q
BNFpz, zq has the form

H
p3q
BNFpz, zq �

¸
σ1j1�σ2j2�σ2j3�0, σi�� ,

σ1Ωpj1q�σ2Ωpj2q�σ3Ωpj3q�0,jiPZzt0u

Hσ1,σ2,σ3
j1,j2,j3

zσ1
j1
zσ2
j2
zσ3
j3 (5.0.8)

where z�j :� zj, z
�
j :� zj and zj denotes the j-th Fourier coe�cient of the function z (see

(5.1.2)), and the coe�cients

Hσ1,σ2,σ3
j1,j2,j3

:� iσ2

8
?
π

�
σ1σ3j1j3 �Gj1p0qGj3p0q

� Λpj2q
Λpj1qΛpj3q (5.0.9)

with Λpjq de�ned in (5.2.2) and Gjp0q :� j tanhphjq;
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3. X�
¥3 :� X�

¥3pη, ψ, z, zq satis�es }X�
¥3} 9Hs� 3

2
¤ Cpsq}z}3

9Hs
and the �energy estimate�

Re

»
T
|D|sX�

¥3 � |D|sz dx ¤ Cpsq}z}49Hs . (5.0.10)

The main point of Theorem 5.1 is the construction of the bounded and invertible transforma-

tion Bpη, ψq in (5.0.6) which recasts the irrotational water waves system (5.0.1) in the Birkho�

normal form (1.1.38), where the cubic vector �eld satis�es the energy estimate (5.0.10).

For general values of gravity, surface tension and depth pg, κ, hq, the �resonant" Birkho�

normal form Hamiltonian H
p3q
BNF in (5.0.8) is non zero, because the system

σ1Ωpj1q � σ2Ωpj2q � σ3Ωpj3q � 0 , σ1j1 � σ2j2 � σ3j3 � 0 , (5.0.11)

for σj � � , may possess integer solutions j1, j2, j3 � 0, known as 3-waves resonances (cases

with absence of 3-waves resonances are discussed in remark 5.16). The resonant Hamiltonian

H
p3q
BNF gives rise to a complicated dynamics, which, in �uid mechanics, is responsible for the

phenomenon of the Wilton ripples. Nevertheless we are able to prove the following long time

stability result.

Theorem 5.2. (Quadratic life span) For any value of pκ, g, hq, κ ¡ 0, g ¥ 0, h P p0,�8s,
there exists s0 ¡ 0 and, for all s ¥ s0, there are ε0 ¡ 0, c ¡ 0, C ¡ 0, such that, for any

0   ε ¤ ε0, any initial data

pη0, ψ0q P Hs� 1
4

0 pT,Rq � 9Hs� 1
4 pT,Rq with }η0}

H
s� 1

4
0

� }ψ0} 9Hs� 1
4
¤ ε , (5.0.12)

there exists a unique classical solution pη, ψq of (1.1.30) belonging to

C0
�
r�Tε, Tεs, Hs� 1

4
0 pT,Rq � 9Hs� 1

4 pT,Rq
	

with Tε ¥ cε�2 ,

satisfying pη, ψq|t�0
� pη0, ψ0q. Moreover

sup
tPr�Tε,Tεs

�}η}
H
s� 1

4
0

� }ψ}
9Hs� 1

4

� ¤ Cε . (5.0.13)

The rest of this chapter concerns the proof of Theorem 5.1 and Theorem 5.2. In Section 5.1

the paradi�erential calculus of [37] is recalled, in particular the de�nitions and main properties

of paradi�erential symbols, smoothing operators and multilinear maps. In Section 5.2 we state

the paralinearization in complex form and the paradi�erential reduction to constant symbols up

to smoothing operators of system (5.0.1) as proved in [37]. In Section 5.3 the paralinearized

reduced system is transformed into its quadratic Poincaré-Birkho� normal form and we show

that there are only �nitely many 3-waves interactions between the Fourier modes. In Section
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5.4 we perform the normal form uniqueness argument and then we prove the energy estimates

required for Theorem 5.2.

5.1 Functional Setting and Paradi�erential calculus

In this section we recall de�nitions and results of para-di�erential calculus following Chapter 3

of [37], where we refer for more information. In the sequel we will deal with parameters

s ¥ s0 " K " ρ " 1 .

Given an interval I � R, symmetric with respect to t � 0, and s P R, we de�ne the space

CK� pI, 9HspT,C2qq :� �K
k�0C

k
�
I; 9Hs� 3

2
kpT;C2q� endowed with the norm

sup
tPI

}Upt, �q}K,s where }Upt, �q}K,s :�
Ķ

k�0

}Bkt Upt, �q} 9Hs� 3
2 k
.

With similar meaning we consider CK� pI; 9HspT;Cqq. We denote by CK�RpI, 9HspT,C2qq the sub-

space of functions U in CK� pI, 9HspT,C2qq such that U � �
u
u

�
. Given r ¡ 0 we set

BK
s pI; rq :�

!
U P CK� pI, 9HspT;C2qq : sup

tPI
}Upt, �q}K,s   r

)
. (5.1.1)

We expand a 2π-periodic function upxq, with zero average in x, (which is identi�ed with u in the

homogeneous space), in Fourier series as

upxq �
¸

nPZzt0u
ûpnq e

inx

?
2π

, ûpnq :� 1?
2π

»
T
upxqe�inx dx . (5.1.2)

We also use the notation u�n :� un :� ûpnq and u�n :� un :� ûpnq. We set u�pxq :� upxq and
u�pxq :� upxq.

For n P N� :� Nr t0u we denote by Πn the orthogonal projector from L2pT;Cq to the

subspace spanned by teinx, e�inxu, i.e. pΠnuqpxq :� ûpnq einx?
2π
� ûp�nq e�inx?

2π
, and we denote by

Πn also the corresponding projector in L2pT,C2q. If U � pU1, . . . , Upq is a p-tuple of functions,
~n � pn1, . . . , npq P pN�qp, we set Π~nU :� pΠn1U1, . . . ,ΠnpUpq.

We deal with vector �elds X which satisfy the x-translation invariance property

X � τθ � τθ �X , @ θ P R , where τθ : upxq ÞÑ pτθuqpxq :� upx� θq .

Para-di�erential operators. We �rst give the de�nition of the classes of symbols, collecting

De�nitions 3.1, 3.2 and 3.4 in [37]. Roughly speaking, the class rΓmp contains homogeneous symbols
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of order m and homogeneity p in U , while the class ΓmK,K1,p contains non-homogeneous symbols

of order m which vanish at degree at least p in U , and that are pK �K 1q-times di�erentiable in

t.

De�nition 5.3. (Classes of symbols) Let m P R, p,N P N with p ¤ N , K,K 1 in N with

K 1 ¤ K, r ¡ 0.

piq p-homogeneous symbols. We denote by rΓmp the space of symmetric p-linear maps from

p 9H8pT;C2qqp to the space of C8 functions of px, ξq P T�R, U Ñ ppx, ξq Ñ apU ;x, ξqq, satisfying
the following. There is µ ¡ 0 and, for any α, β P N, there is C ¡ 0 such that

|BαxBβξ apΠ~nU ;x, ξq| ¤ C|~n|µ�αxξym�β
p¹
j�1

}ΠnjUj}L2 (5.1.3)

for any U � pU1, . . . , Upq in p 9H8pT;C2qqp, and ~n � pn1, . . . , npq P pN�qp. Moreover we assume

that, if for some pn0, . . . , npq P N � pN�qp, Πn0apΠn1U1, . . . ,ΠnpUp; �q � 0, then there exists a

choice of signs σ0, . . . , σp P t�1, 1u such that
°p
j�0 σjnj � 0. For p � 0 we denote by rΓm0 the

space of constant coe�cients symbols ξ ÞÑ apξq which satisfy (5.1.3) with α � 0 and the right

hand side replaced by Cxξym�β . In addition we require the translation invariance property

apτθU ;x, ξq � apU ;x� θ, ξq , @θ P R . (5.1.4)

piiq Non-homogeneous symbols. Let p ¥ 1. We denote by ΓmK,K1,prrs the space of functions
pU ; t, x, ξq ÞÑapU ; t, x, ξq, de�ned for U P BK

s0pI; rq, for some large enough s0, with complex values

such that for any 0 ¤ k ¤ K � K 1, any σ ¥ s0, there are C ¡ 0, 0   rpσq   r and for any

U P BK
s0pI; rpσqq X Ck�K1

� pI, 9HσpT;C2qq and any α, β P N, with α ¤ σ � s0

|Bkt BαxBβξ apU ; t, x, ξq| ¤ Cxξym�β}U}p�1
k�K1,s0

}U}k�K1,σ . (5.1.5)

piiiq Symbols. We denote by ΣΓmK,K1,prr,N s the space of functions pU, t, x, ξq Ñ apU ; t, x, ξq
such that there are homogeneous symbols aq P rΓmq , q � p, . . . , N � 1, and a non-homogeneous

symbol aN P ΓmK,K1,N rrs such that apU ; t, x, ξq � °N�1
q�p aqpU, . . . , U ;x, ξq � aN pU ; t, x, ξq. We

denote by ΣΓmK,K1,prr,N s bM2pCq the space 2� 2 matrices with entries in ΣΓmK,K1,prr,N s.
As a consequence of the momentum condition (5.1.4) a symbol a1 in the class rΓm1 , for some

m P R, can be written as

a1pU ;x, ξq �
¸

jPZzt0u,σ��
pa1qσj pξquσj eiσjx (5.1.6)

for some coe�cients pa1qσj pξq P C, see [39].

Remark 5.4. A symbol a1 P rΓm1 of the form (5.1.6), independent of x, is actually a1 � 0.
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We also de�ne classes of functions in analogy with our classes of symbols.

De�nition 5.5. (Functions) Fix N, p P N with p ¤ N , K,K 1 P N with K 1 ¤ K, r ¡ 0. We

denote by rFp, resp. FK,K1,prrs, ΣFprr,N s, the subspace of rΓ0
p, resp. Γ0

prrs, resp. ΣΓ0
prr,N s,

made of those symbols which are independent of ξ. We write rFR
p , resp. FR

K,K1,prrs, ΣFR
p rr,N s,

to denote functions in rFp, resp. FK,K1,prrs, ΣFprr,N s, which are real valued.

Paradi�erential quantization. Given p P N we consider functions χp P C8pRp � R;Rq and
χ P C8pR� R;Rq, even with respect to each of their arguments, satisfying, for 0   δ ! 1,

suppχp � tpξ1, ξq P Rp � R; |ξ1| ¤ δxξyu , χppξ1, ξq � 1 for |ξ1| ¤ δxξy{2 ,
suppχ � tpξ1, ξq P R� R; |ξ1| ¤ δxξyu , χpξ1, ξq � 1 for |ξ1| ¤ δxξy{2 .

For p � 0 we set χ0 � 1. We assume moreover that |Bαξ Bβξ1χppξ1, ξq| ¤ Cα,βxξy�α�|β|, @α P N, β P
Np, and |Bαξ Bβξ1χpξ1, ξq| ¤ Cα,βxξy�α�β , @α, β P N.

If apx, ξq is a smooth symbol we de�ne its Weyl quantization as the operator acting on a

2π-periodic function upxq (written as in (5.1.2)) as

OpW paqu � 1?
2π

¸
kPZ

�¸
jPZ

â
�
k � j,

k � j

2

�
ûpjq

	 eikx

?
2π

(5.1.7)

where âpk, ξq is the kth�Fourier coe�cient of the 2π�periodic function x ÞÑ apx, ξq.
De�nition 5.6. (Bony-Weyl quantization) If a is a symbol in rΓmp , respectively in ΓmK,K1,prrs,
we set

aχppU ;x, ξq :�
¸
~nPNp

χp p~n, ξq apΠ~nU ;x, ξq ,

aχpU ; t, x, ξq :� 1

2π

»
R
χ
�
ξ1, ξ

�
âpU ; t, ξ1, ξqeiξ1xdξ1 ,

where in the last equality â stands for the Fourier transform with respect to the x variable, and

we de�ne the Bony-Weyl quantization of a as

OpBWpapU ; �qq � OpW paχppU ; �qq, OpBWpapU ; t, �qq � OpW paχpU ; t, �qq .

If a is a symbol in ΣΓmK,K1,prr,N s, we de�ne its Bony-Weyl quantization OpBWpapU ; t, �qq �°N�1
q�p OpBWpaqpU, . . . , U ; �qq �OpBWpaN pU ; t, �qq .
Paradi�erential operators act on homogeneous spaces. If a is in ΣΓmK,K1,prr,N s, the corre-

sponding para-di�erential operator is bounded from 9Hs to 9Hs�m, for all s P R, see Proposition
3.8 in [37].

De�nition 5.6 is independent of the cut-o� functions χp, χ, up to smoothing operators that

we de�ne below (see De�nition 3.7 in [37]). Roughly speaking, the class rR�ρ
p contains smoothing
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operators which gain ρ derivatives and are homogeneous of degree p in U , while the class R�ρ
K,K1,p

contains non-homogeneous ρ-smoothing operators which vanish at degree at least p in U , and

are pK �K 1q-times di�erentiable in t.

Given pn1, . . . , np�1q P Np�1 we denote by max2pn1, . . . , np�1q the second largest among the

integers n1, . . . , np�1.

De�nition 5.7. (Classes of smoothing operators) Let N P N�, K,K 1 P N with K 1 ¤ K P N,
ρ ¥ 0 and r ¡ 0.

(i) p-homogeneous smoothing operators. We denote by rR�ρ
p the space of pp� 1q-linear

maps R from p 9H8pT;C2qqp � 9H8pT;Cq to 9H8pT;Cq, symmetric in pU1, . . . , Upq, of the form

pU1, . . . , Up�1q Ñ RpU1, . . . , UpqUp�1 that satisfy the following. There are µ ¥ 0, C ¡ 0 such

that

}Πn0RpΠ~nUqΠnp�1Up�1}L2 ¤ C
max2pn1, . . . , np�1qρ�µ

maxpn1, . . . , np�1qρ
p�1¹
j�1

}ΠnjUj}L2

for any U � pU1, . . . , Upq P p 9H8pT;C2qqp, Up�1 P 9H8pT;Cq, ~n � pn1, . . . , npq P pN�qp, any
n0, np�1 P N�. Moreover, if

Πn0RpΠn1U1, . . . ,ΠnpUpqΠnp�1Up�1 � 0 , (5.1.8)

then there is a choice of signs σ0, . . . , σp�1 P t�1u such that
°p�1
j�0 σjnj � 0. In addition we

require the translation invariance property

RpτθUqrτθUp�1s � τθ
�
RpUqUp�1

�
, @θ P R . (5.1.9)

(ii) Non-homogeneous smoothing operators. We denote by R�ρ
K,K1,N rrs the space of maps

pV,Uq ÞÑ RpV qU de�ned on BK
s0pI; rq�CK� pI, 9Hs0pT,Cqq which are linear in the variable U and

such that the following holds true. For any s ¥ s0 there are C ¡ 0 and rpsq Ps0, rr such that, for

any V P BK
s0pI; rq X CK� pI, 9HspT,C2qq, any U P CK� pI, 9HspT,Cqq, any 0 ¤ k ¤ K �K 1 and any

t P I, we have

}Bkt pRpV qUq pt, �q} 9Hs� 3
2 k�ρ

¤
¸

k1�k2�k
C
�
}U}k2,s}V }Nk1�K1,s0

� }U}k2,s0}V }N�1
k1�K1,s0

}V }k1�K1,s

	
.

(5.1.10)

(iii) Smoothing operators. We denote by ΣR�ρ
K,K1,prr,N s the space of maps pV, t, Uq Ñ

RpV ; tqU that may be written as RpV ; tqU � °N�1
q�p RqpV, . . . , V qU �RN pV ; tqU for some Rq inrR�ρ

q , q � p, . . . , N � 1 and RN in R�ρ
K,K1,N rrs.

We denote by ΣR�ρ
K,K1,prr,N s bM2pCq the space of 2� 2 matrices with entries in the class

ΣR�ρ
K,K1,prr,N s.
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Below we introduce classes of operators without keeping track of the number of lost derivatives

in a precise way (see De�nition 3.9 in [37]). The class �Mm
p denotes multilinear maps that lose m

derivatives and are p-homogeneous in U , while the classMm
K,K1,p contains non-homogeneous maps

which lose m derivatives, vanish at degree at least p in U , and are pK �K 1q-times di�erentiable

in t.

De�nition 5.8. (Classes of maps) Let p,N P N, with p ¤ N , N ¥ 1, K,K 1 P N with K 1 ¤ K

and m ¥ 0.

(i) p-homogeneous maps. We denote by �Mm
p the space of pp � 1q-linear maps M from

p 9H8pT;C2qqp� 9H8pT;Cq to 9H8pT;Cq which are symmetric in pU1, . . . , Upq, of the form pU1, . . . , Up�1q Ñ
MpU1, . . . , UpqUp�1 and that satisfy the following. There is C ¡ 0 such that

}Πn0MpΠ~nUqΠnp�1Up�1}L2 ¤ Cpn0 � n1 � � � � � np�1qm
p�1¹
j�1

}ΠnjUj}L2

for any U � pU1, . . . , Upq P p 9H8pT;C2qqp, any Up�1 P 9H8pT;Cq, ~n � pn1, . . . , npq in pN�qp, any
n0, np�1 P N�. Moreover the properties (5.1.8)-(5.1.9) hold.

(ii) Non-homogeneous maps. We denote by Mm
K,K1,N rrs the space of maps pV, uq ÞÑ

MpV qU de�ned on BK
s0pI; rq � CK� pI, 9Hs0pT,Cqq which are linear in the variable U and such

that the following holds true. For any s ¥ s0 there are C ¡ 0 and rpsq Ps0, rr such that for any

V P BK
s0pI; rq X CK� pI, 9HspT,C2qq, any U P CK� pI, 9HspT,Cqq, any 0 ¤ k ¤ K � K 1, t P I, we

have that }Bkt pMpV qUq pt, �q}
9Hs� 3

2 k�m
is bounded by the right hand side of (5.1.10).

(iii) Maps. We denote by ΣMm
K,K1,prr,N s the space of maps pV, t, Uq Ñ MpV ; tqU that

may be written as MpV ; tqU � °N�1
q�p MqpV, . . . , V qU � MN pV ; tqU for some Mq in �Mm

q ,

q � p, . . . , N � 1 and MN in Mm
K,K1,N rrs. Finally we set �Mp :� Ym¥0

�Mm
p , MK,K1,prrs :�

Ym¥0Mm
K,K1,prrs, ΣMK,K1,prr,N s :� Ym¥0ΣMm

K,K1,prrs.
We denote by ΣMm

K,K1,prr,N s bM2pCq the space of 2� 2 matrices whose entries are maps

in ΣMm
K,K1,prr,N s. We set ΣMK,K1,prr,N s bM2pCq :� YmPRΣMm

K,K1,prr,N s bM2pCq.

Given an operator R1 in rR�ρ
1 (or in �Mm

1 ), and zσ2 , σ2 � �, the momentum condition (5.1.9)

implies that

R1pUqrzσ2s �
¸

j1,j2PZzt0u,σ1��
pR1qσ1,σ2

j1,j2
uσ1
j1
zσ2
j2
eipσ1j1�σ2j2qx (5.1.11)

for some pR1qσ1,σ2
j1,j2

P C, see [39].

Proposition 5.9. (Compositions) Let m,m1 P R, N,K,K 1 P N with K 1 ¤ K, p1, p2, p3 P N,
ρ ¥ 0 and r ¡ 0. Let a P ΣΓmK,K1,p1

rr,N s, R P ΣR�ρ
K,K1,p2

rr,N s and M P ΣMm1

K,K1,p3
rr,N s.

Then:

piq RpU ; tq �OpBWpapU ; t, x, ξqq, OpBWpapU ; t, x, ξqq �RpU ; tq are in ΣR�ρ�m
K,K1,p1�p2

rr,N s;
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piiq RpU ; tq �MpU ; tq and MpU ; tq �RpU ; tq are smoothing operators in ΣR�ρ�m1

K,K1,p2�p3
rr,N s;

piiiq If R1 P rR�ρ
p1 , p1 ¥ 1, then R1pU, . . . , Ulooomooon

p1�1

,MpU ; tqUq belongs to ΣR�ρ�m1

K,K1,p1�p3
rr,N s.

Proof. See Propositions 3.16, 3.17 in [37]. The translation invariance properties for the composed

operators and symbols in items (i)-(ii) follow as in [39].

Real-to-real operators. Given a linear operator RpUqr�s acting on C (it may be a smoothing

operator in ΣR�ρ
K,K1,1 or a map in ΣMK,K1,1) we associate the linear operator de�ned by

RpUqrvs :� RpUqrvs , @ v P C .

We say that a matrix of operators acting on C2 is real-to-real, if it has the form

RpUq �
�
R1pUq R2pUq
R2pUq R1pUq

�
. (5.1.12)

If RpUq is a real-to-real matrix of operators then, given V � �
v
v

�
, the vector Z :� RpUqrV s has

the form Z � �
z
z

�
, i.e. the second component is the complex conjugated of the �rst one.

Given two linear operators A,B (either two operator-valued matrices acting on C2 as in

(5.1.12)), we denote their commutator by rA,Bs � AB �BA.


 The notation A Às B means that A ¤ CpsqB for some positive constant Cpsq ¡ 0.

5.2 Paradi�erential reduction to constant symbols up to smooth-

ing operators

The �rst step in order to prove Theorem 1.9 is to write (5.0.1) in paradi�erential form, to

symmetrize it, and reduce to paradi�erential symbols which are constant in x, see Proposition

5.11. These results are proved in [37] (up to minor details). We denote the horizontal and vertical

components of the velocity �eld at the free interface by

V � V pη, ψq :� pBxΦqpx, ηpxqq � ψx � ηxB ,

B � Bpη, ψq :� pByΦqpx, ηpxqq � Gpηqψ � ηxψx
1� η2

x

,

and the �good unknown� of Alinhac

ω :� ψ �OpBWpBpη, ψqqη , (5.2.1)
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as introduced in Alazard-Metivier [7]. The function Bpη, ψq belongs to ΣFR
K,0,1rr,N s, for any

N ¡ 0 (see Proposition 7.4 in [37]). Then, by the action of a paraproduct, if η P Hs� 1
4

0 and

ψ P 9Hs� 1
4 then the good unknown ω is in 9Hs� 1

4 .

De�ne the Fourier multiplier Λ of order �1{4 as

Λ :� ΛpDq :� �
D tanhphDq� 1

4
�
g � κD2

�� 1
4 (5.2.2)

and consider the complex function

u :� 1?
2

Λω � i?
2

Λ�1η , η � 1

i
?

2
Λpu� uq , ω � 1?

2
Λ�1pu� uq (5.2.3)

where Λ�1 acts on functions modulo constants in itself.

Let K P N. We �rst remark that, if pη, ψq solves the gravity-capillary system (5.0.1), then

the function u de�ned in (5.2.3) satis�es, by Proposition 7.9 in [37], for s " K, as long as u stays

in the unit ball of 9HspT,Cq,

}Bkt u} 9Hs� 3
2 k
Às,K }u} 9Hs , @ 0 ¤ k ¤ K . (5.2.4)

As a consequence, if (5.0.5) holds then

sup
tPr�T,T s

}Bkt u} 9Hs� 3
2 k
¤ Cs,Kε , @ 0 ¤ k ¤ K . (5.2.5)

Proposition 5.10. (Paradi�erential complex form of the water waves equations) Let

N,K P N�, ρ ¡ 0. Assume that pη, ψq solves the gravity-capillary system (5.0.1) and satisfy

(5.0.5) for some T ¡ 0 and s " K. Then the function U :� �
u
u

�
, with u de�ned in (5.2.3), solves

DtU � ΩpDqEU �OpBWpApU ; t, x, ξqqU �RpU ; tqU , E :� �
1 0
0 �1

�
, (5.2.6)

where Dt :� 1
i Bt and:

• ΩpDq � OpBWpΩpξqq where Ωpξq P rΓ 3
2
0 is the dispersion relation symbol

Ωpξq :� Ωκ,g,hpξq :� pκ|ξ|3 � g|ξ|q 1
2

�
tanhph|ξ|q� 1

2 ; (5.2.7)

• the matrix of symbols ApU ; t, x, ξq P ΣΓ1
K,1,1rr,N s bM2pCq has the form

ApU ; t, x, ξq � �
ζpU ; t, xqΩpξq � λ 1

2
pU ; t, x, ξq�� 1 0

0 �1

�
� �

ζpU ; t, xqΩpξq � λ� 1
2
pU ; t, x, ξq�� 0 �1

1 0

�
� λ1pU ; t, x, ξq� 1 0

0 1

�� λ0pU ; t, x, ξq� 0 1
1 0

� (5.2.8)
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where:

� the function ζpU ; t, xq is in ΣFR
K,0,1rr,N s;

� the symbols λjpU ; t, x, ξq are in ΣΓjK,1,1rr,N s, j � 1, 0, 1{2,�1{2, and =λjpU ; t, x, ξq
are in ΣΓj�1

K,1,1rr,N s for j � 1, 1{2;
� the matrix of smoothing operators RpU ; tq is in ΣR�ρ

K,1,1rr,N s bM2pCq;
� the operators iOpBWpApU ; t, x, ξqq and iRpU ; tq are real-to-real, according to (5.1.12).

Proof. It is Corollary 7.7 and Proposition 7.8 in [37]. The only di�erence is that Upxq is not even
in x. The property that the homogeneous components AppU ; t, x, ξq, RppU ; tq, p � 1, . . . ,N , of

the matrices ApU ; t, x, ξq, RpU ; tq satisfy (5.1.4) and (5.1.9) is checked as in [39].

System (5.2.6) has the form

DtU � ΩpDqEU �MpU ; tqU (5.2.9)

where MpU ; tq is a real-to-real map in ΣMm1
K,1,1rr,N s bM2pCq for some m1 ¥ 3{2 (using that

paradi�erential operators and smoothing remainders are maps, see (4.2.6) in [37]).

As in [37], since the dispersion law (5.2.7) is super-linear, system (5.2.6) can be transformed

into a paradi�erential diagonal system with a symbol constant in x, up to smoothing terms.

Proposition 5.11. (Reduction to constant coe�cients up to smoothing operators) Fix

ρ ¡ 0 arbitrary. There exist s0 ¡ 0, K 1 :� K 1pρq such that, for any s ¥ s0, for all 0   r ¤ r0psq
small enough, for all K ¥ K 1 and any solution U P BK

s pI; rq of (5.2.6), there is a family of

real-to-real, bounded, invertible linear maps FθpUq, θ P r0, 1s, such that the function

Z :� �
z
z

� � pFθpUqq|θ�1rU s

solves the system

DtZ � OpBW
�p1� ζpU ; tqqΩpξqE �HpU ; t, ξq�Z �RpU ; tqrZs (5.2.10)

where:

• the function ζpU ; tq P ΣFR
K,K1,1rr,N s and the diagonal matrix of symbols HpU ; t, ξq P

ΣΓ1
K,K1,1rr,N s bM2pCq are independent of x;

• the symbol =HpU ; t, ξq belongs to ΣΓ0
K,K1,1rr,N s bM2pCq;

• the operators iOpBWpHpU ; t, ξqq and iRpU ; tq are real-to-real, according to (5.1.12);
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• the map FθpUq satis�es, for all 0 ¤ k ¤ K �K 1, for any V P CK�K1

�R pI; 9HspT;C2qq,

}Bkt FθpUqrV s} 9Hs� 3
2 k
� }Bkt pFθpUqq�1rV s}

9Hs� 3
2 k
¤ }V }k,s

�
1� Cs,r,K}U}K,s0

�
(5.2.11)

uniformly in θ P r0, 1s. Moreover the map FθpUq � U � θM1pUqrU s �M¥2pθ;UqrU s where
M1pUq is in �M1 bM2pCq and M¥2pθ;Uq PMK,K1,2rrs bM2pCq with estimates uniform

in θ P r0, 1s.

Proof. This statement collects the results of Propositions 4.9, 5.1 and 5.5 in [37]. The remainder

in (5.2.9) in [37] has the form (5.2.10) expressing U � pFθpUqq�1
|θ�1Z and using the estimates

(5.2.11), which follow by Lemma 3.22 in [37]. Another di�erence is that Zpxq is not even in x.

The x-invariance properties (5.1.4) for the symbols and (5.1.9) for the smoothing operators are

checked as in [39]. The last statement follows using Lemma A.2 in [39].

5.3 Poincaré - Birkho� normal form at quadratic degree

From this section the analysis strongly di�ers from [37].

• Notation: for simplicity in the sequel we omit to write the dependence on the time t in

the symbols, smoothing remainders and maps, writing apU ;x, ξq, RpUq, MpUq instead of

apU ; t, x, ξq, RpU ; tq, MpU ; tq.

The aim of this section is to transform system (5.2.10) into its quadratic Poincaré-Birkho�

normal form, see system (5.3.9). We �rst observe that the paradi�erential vector �eld in (5.2.10)

of quadratic homogeneity is actually zero.

Lemma 5.12. (Quadratic Poincaré-Birkho� normal form up to smoothing vector

�elds) The system (5.2.10) with N � 2 has the form

BtZ � iΩpDqEZ � R1pUqrZs � rX¥3pU,Zq (5.3.1)

where R1pUq P rR�ρ
1 bM2pCq and

rX¥3pU,Zq � iOpBW
�
H¥2pU ; ξq�Z � R¥2pUqrZs (5.3.2)

where H¥2pU ; ξq P Γ
3{2
K,K1,2rrs bM2pCq is a diagonal matrix of symbols independent of x, such

that

=H¥2pU ; ξq P Γ0
K,K1,2rrs bM2pCq , (5.3.3)

and R¥2pUq P R�ρ
K,K1,2rrs bM2pCq. The operators R1pUq and rX¥3pU,Zq are real-to-real.
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Proof. We expand in homogeneity the function ζpUq � ζ1pUq � ζ¥2pUq, ζ1 P rFR
1 , the diagonal

matrix of symbols HpU ; ξq � H1pU ; ξq �H¥2pU ; ξq, H1pU ; ξq P rΓ1
1 bM2pCq, and the smoothing

remainder RpUq � �iR1pUq � iR¥2pUq, R1pUq P rR�ρ
1 bM2pCq. Since the function ζ1pUq and

H1pU ; ξq admit an expansion as (5.1.6) and are independent of x (see Proposition 5.11), Remark

5.4 implies that ζ1pUq � 0, H1pU ; ξq � 0. This proves (5.3.1)-(5.3.3).

System (5.3.1) is yet in Poincaré-Birkho� normal form at degree 2 up to smoothing remainders

and the cubic term rX¥3 in (5.3.2) admits an energy estimate as (5.0.10), since H¥2pU ; ξq is

independent of x and purely imaginary up to symbols of order 0, see (5.3.3).

The goal is now to transform the quadratic smoothing term R1pUqrZs in (5.3.1) to Poincaré-

Birkho� normal form at degree 2, see De�nition 5.13. The remainder R1pUq in (5.3.1) is real-to-

real (i.e. has the form (5.1.12)), satis�es the momentum condition (5.1.9), thus it has the form

(5.1.11), and so we write it as

R1pUq �
�
pR1pUqq�� pR1pUqq��
pR1pUqq�� pR1pUqq��

�
, pR1pUqqσ1σ P rR�ρ

1 , pR1pUqqσ1σ � pR1pUqq�σ1�σ , (5.3.4)

for σ, σ1 � �. For any σ, σ1 � � we expand

pR1pUqqσ1σ �
¸
ε��

pR1,εpUqqσ1σ , (5.3.5)

where, for ε � �, and pR1,εpUqqσ1σ P rR�ρ
1 is the homogeneous smoothing operator

pR1,εpUqqσ1σ zσ
1 � 1?

2π

¸
jPZzt0u

� ¸
kPZzt0u

pR1,εpUqqσ
1,k
σ,j z

σ1

k

	
eiσjx (5.3.6)

with entries

pR1,εpUqqσ
1,k
σ,j :� 1?

2π

¸
nPZzt0u

εn�σ1k�σj

pr1,εqσ,σ
1

n,k u
ε
n , j, k P Zzt0u , (5.3.7)

for suitable scalar coe�cients pr1,εqσ,σ
1

n,k P C. The restriction εn�σ1k � σj is due to the momentum

condition.

De�nition 5.13. (Poincaré-Birkho� Resonant smoothing operator) Given a real-to-

real, smoothing operator R1pUq P rR�ρ
1 bM2pCq as in (5.3.4)-(5.3.7), we de�ne the Poincaré-

Birkho� resonant, real-to-real, smoothing operator Rres
1 pUq P rR�ρ

1 bM2pCq with matrix entries
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pRres
1,εpUqqσ

1,k
σ,j de�ned as in (5.3.7) such that, for any ε, σ, σ1 � �, j, k P Zzt0u,

pRres
1,εpUqqσ

1,k
σ,j � 1?

2π

¸
nPZzt0u ,εn�σ1k�σj

σΩpjq�σ1Ωpkq�εΩpnq�0

pr1,εqσ,σ
1

n,k u
ε
n . (5.3.8)

In the next Proposition we conjugate (5.3.1) into its complete quadratic Poincaré-Birkho�

normal form.

Proposition 5.14. (Quadratic Poincaré-Birkho� normal form) There exists ρ0 ¡ 0 such

that, for all ρ ¥ ρ0, K ¥ K 1 with K 1 :� K 1pρq given by Proposition 5.11, there exists s0 ¡ 0

such that, for any s ¥ s0, for all 0   r ¤ r0psq small enough, and any solution U P BK
s pI; rq of

the water waves system (5.2.6), there is a family of real-to-real, bounded, invertible linear maps

CθpUq, θ P r0, 1s, such that, if Z solves (5.3.1), then the function

Y :� � y
y

� � pCθpUqrZsq|θ�1

solves

BtY � iΩpDqEY � Rres
1 pY qrY s � X¥3pU, Y q (5.3.9)

where:

• E is the matrix in (5.2.6) and ΩpDq has symbol (5.2.7);

• Rres
1 pY q P rR�pρ�ρ0q

1 bM2pCq is the real-to-real Poincaré-Birkho� resonant smoothing oper-

ator introduced in De�nition 5.13;

• X¥3pU, Y q has the form

X¥3pU, Y q �
� X�

¥3pU,Y q
X�
¥3pU,Y q

�
:� iOpBWpH¥2pU ; ξqqrY s �R¥2pUqrY s (5.3.10)

where H¥2pU ; ξq is de�ned in (5.3.2) and satis�es (5.3.3), while R¥2pUq is a matrix of

real-to-real smoothing operators in R�pρ�ρ0q
K,K1,2 rrs bM2pCq;

• the map CθpUq satis�es, for any 0 ¤ k ¤ K �K 1, V P CK�K1

�R pI; 9HspT;C2qq,

}Bkt CθpUqrV s} 9Hs� 3
2 k
� }Bkt pCθpUqq�1rV s}

9Hs� 3
2 k

¤ }V }k,sp1� Cs,r,K}U}K,s0q � Cs,r,K}V }k,s0}U}K,s ,
(5.3.11)

uniformly in θ P r0, 1s. Moreover the map CθpUqrV s � V � θM1pUqrV s �M¥2pθ;UqrV s
where M1pUq is in �M1 bM2pCq and M¥2pθ;Uq P MK,K1,2rrs bM2pCq with estimates

uniform in θ P r0, 1s.
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In order to prove Proposition 5.14 we �rst provide lower bounds on the �small divisors� which

appear in the Poincaré-Birkho� reduction procedure.

5.3.1 Three waves interactions

We analyze the possible three waves interactions among the linear frequencies (5.2.7). We �rst

notice that they admit an expansion as

Ωpnq �
a
|n| tanhph|n|qpg � κn2q � ?

κ|n| 32 � rpnq , |rpnq| ¤ C|n|� 1
2 (5.3.12)

for some constant C :� Cpκ, g, hq ¡ 0.

Lemma 5.15. (3-waves interactions) There exist c, C ¡ 0 such that for any n1, n2, n3 P Zzt0u,
σ, σ1 � �, such that

n1 � σn2 � σ1n3 � 0 , (5.3.13)

and maxp|n1|, |n2|, |n3|q ¥ C, we have

|Ωpn1q � σΩpn2q � σ1Ωpn3q| ¥ c . (5.3.14)

If maxp|n1|, |n2|, |n3|q   C, then, either the phase Ωpn1q � σΩpn2q � σ1Ωpn3q is zero, or (5.3.14)

holds.

Proof. If σ � σ1 � � then the bound (5.3.14) is trivial for all n1, n2, n3 P Zzt0u. Assume σ � �
and σ1 � � (the cases pσ, σ1q � p�,�q and pσ, σ1q � p�,�q are the same, up to reordering the

indexes). Then, by (5.3.13), we have n1 � n2 � n3 and we may suppose that |n1| ¥ |n2|, |n3|,
otherwise the bound (5.3.14) is trivial. Without loss of generality we assume n1 ¡ 0, thus, also

n2 and n3 are positive. In conclusion we assume that n1 ¥ n2 ¥ n3 ¥ 1. By (5.3.12),

|Ωpn1q � Ωpn2q � Ωpn3q| � |Ωpn2 � n3q � Ωpn2q � Ωpn3q|

¥ ?
κ
�pn2 � n3q

3
2 � n

3
2
2 � n

3
2
3

�� 3C?
n3

. (5.3.15)
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Now

pn2 � n3q
3
2 � n

3
2
2 � n

3
2
3 �

pn2 � n3q3 � pn
3
2
2 � n

3
2
3 q2

pn2 � n3q 3
2 � n

3
2
2 � n

3
2
3

� 3pn2
2n3 � n2n

2
3q � 2n

3
2
2 n

3
2
3

pn2 � n3q 3
2 � n

3
2
2 � n

3
2
3

� 9pn2
2n3 � n2n

2
3q2 � 4n3

2n
3
3

pn2 � n3q 3
2 � n

3
2
2 � n

3
2
3

1

3pn2
2n3 � n2n2

3q � 2n
3
2
2 n

3
2
3

� 9pn4
2n

2
3 � n2

2n
4
3q � 14n3

2n
3
3�pn2 � n3q 3

2 � n
3
2
2 � n

3
2
3

��
3pn2

2n3 � n2n2
3q � 2n

3
2
2 n

3
2
3

�
¥ 9

16p1�?
2q
?
n2 ¥

?
n2

5
(5.3.16)

using that n2 ¥ n3 ¥ 1. By (5.3.15) and (5.3.16) we deduce that the phase

|Ωpn1q � Ωpn2q � Ωpn3q| ¥ ?
n2

�?κ
5
� 3C?

n2 n3

� ¥ ?
n2

?
κ

10
(5.3.17)

if n2n3 ¥ p30Cq2{κ, in particular, since n3 ¥ 1, if

n2 ¥ C1 :� p30Cq2{κ .

Recall that n1 � n2 � n3 ¤ 2n2. Therefore n2 ¥ n1{2 and we conclude that

n1 � maxpn1, n2, n3q ¥ 2C1 ùñ n2 ¥ C1 ùñ |Ωpn1q � Ωpn2q � Ωpn3q| ¥ ?
n2

?
κ

10
.

For the �nitely many integers n1, n2, n3 satisfying maxp|n1|, |n2|, |n3|q ¤ C :� 2C1 such that the

phase Ωpn1q � Ωpn2q � Ωpn3q � 0, the lower bound (5.3.14) is trivial.

Remark 5.16. The constant Cpκ, g, hq in (5.3.12) is bounded by cp?κ h�2 � gκ�1{2q, for some

constant c ¡ 0 independent of κ, g, h. Then, there are h0, κ0 such that, if h ¥ h0, κ ¡ κ0g, then

(5.3.17) holds, for all n1, n2, n3 P Zzt0u. As a consequence there are no 3-waves interactions, i.e.

(5.3.14) holds for all n1, n2, n3 P Zzt0u.

Note that, for some values of the parameters pκ, g, hq, there could be 3-waves interactions.

5.3.2 Poincaré-Birkho� normal form of the smoothing quadratic terms

In order to prove Proposition 5.14, we conjugate (5.3.1) with the �ow

BθCθpUq � G1pUqCθpUq , C0pUq � Id , (5.3.18)
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with an operator G1pUq in rR�ρ
1 bM2pCq, of the same form of R1pUq in (5.3.4)-(5.3.7), to be

determined. We introduce the new variable Y :� � y
y

� � �
CθpUqrZs�|θ�1

.

Lemma 5.17. If G1pUq P rR�ρ
1 bM2pCq solves the homological equation

G1piΩpDqEUq �
�
G1pUq, iΩpDqE

�� R1pUq � Rres
1 pUq , (5.3.19)

where Rres
1 pUq is the Poincaré-Birkho� resonant operator in De�nition 5.13, then

BtY � iΩpDqEY � Rres1 pUqrY s � iOpBW
�
H¥2pU ; ξq�Y � R¥2pUqrY s (5.3.20)

where H¥2pU ; ξq is the same diagonal matrix of symbols in (5.3.2) and R¥2pUq is a real-to-real

smoothing operator in R�ρ�m1

K,K1,2 rrs bM2pCq with m1 ¥ 3{2 (�xed below (5.2.9)).

The �ow map CθpUq in (5.3.18) satis�es (5.3.11) and CθpUq � U�θM1pUqrU s�M¥2pθ;UqrU s
where M1pUq is in �M1 bM2pCq and M¥2pθ;Uq PMK,K1,2rrs bM2pCq with estimates uniform

in θ P r0, 1s.

Proof. Since G1pUq is a smoothing operator then the �ow in (5.3.18) is well-posed in Sobolev

spaces and satis�es the estimates (5.3.11), as well as the last statement, by e.g. Lemma A.3 in

[39]. To conjugate (5.3.1) we apply the usual Lie expansion up to the �rst order (see for instance

Lemma A.1 in [39]). Denoting AdG1 :� rG1, s, we have

C1pUqΩpDqEpC1pUqq�1 � ΩpDqE � �
G1pUq,ΩpDqE

�
�
» 1

0
p1� θqCθpUqAd2

G1pUqrΩpDqEspCθpUqq�1dθ . (5.3.21)

Using that G1pUq belongs to rR�ρ
1 bM2pCq, Proposition 5.9 and (5.3.11), the integral term in

(5.3.21) is a smoothing operator in R�ρ� 3
2

K,K1,2rrs bM2pCq. Similarly, we obtain

C1pUqOpBWpH¥2pU ; ξqqpC1pUqq�1 � OpBWpH¥2pU ; ξqq

up to a matrix of smoothing operators in R�ρ� 3
2

K,K1,2rrs bM2pCq. Finally

C1pUq�R1pUq � R¥2pUq
�pC1pUqq�1 � R1pUq

plus a smoothing operator in R�ρ
K,K1,2rrs bM2pCq.

Next we consider the contribution coming from the conjugation of Bt. Applying again a Lie
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expansion formula (see Lemma A.1 in [39]) we get

BtC1pUqpC1pUqq�1 � BtG1pUq�
1

2

�
G1pUq, BtG1pUq

�� 1

2

» 1

0
p1� θq2CθpUqAd2

G1pUq rBtG1pUqs pCθpUqq�1dθ . (5.3.22)

Recalling (5.2.9) we have

BtG1pUq � G1piΩpDqEU � iMpUqrU sq � G1piΩpDqEUq (5.3.23)

up to a term in R�ρ�m1

K,K1,2 rrs bM2pCq, where we used Proposition 5.9. By (5.3.23), the fact that

G1piΩpDqEUq is in rR�ρ�p3{2q
1 bM2pCq and (5.3.11), we deduce that the term in (5.3.22) belongs

to ΣR�ρ�m1

K,K1,2 rr,N sbM2pCq. Collecting all the previous expansions, and using that G1pUq solves
(5.3.19), we deduce (5.3.20).

We now solve the homological equation (5.3.19).

Lemma 5.18. (Homological equation) Consider R1pUq appearing in Lemma 5.12 and recall

its expansion (5.3.4)-(5.3.7). Let G1pUq be an operator of the form (5.3.4)-(5.3.7) with coe�cients

pg1,εqσ,σ
1

n,k :� pr1,εqσ,σ
1

n,k

i
�
σΩpjq � σ1Ωpkq � εΩpnq� , (5.3.24)

for any σ, σ1, ε � �, j, n, k P Zzt0u, satisfying

σj � σ1k � εn � 0 , σΩpjq � σ1Ωpkq � εΩpnq � 0 , (5.3.25)

and pg1,εqσ,σ
1

n,k :� 0 otherwise. Then G1pUq is in rR�ρ
1 bM2pCq and solves the homological equation

(5.3.19).

Proof. The coe�cients in (5.3.24) are well de�ned by (5.3.25) and, by Lemma 5.15, they satisfy

the uniform lower bound |σΩpjq � σ1Ωpkq � εΩpnq| ¥ c. Then the operator G1pUq is in rR�ρ
1 b

M2pCq, see e.g. Lemma 6.5 of [39].

Next, recalling (5.3.4), the homological equation (5.3.19) amounts to the equations

pG1piΩpDqEUqqσ1σ � pG1pUqqσ1σ σ1iΩpDq � σiΩpDqpG1pUqqσ1σ � pR1pUqqσ1σ � �
Rres

1 pUq�σ1
σ

for σ, σ1 � �, and, setting F1pUq :� G1piΩpDqEUq to the equations, for any j, k P Zzt0u, ε � �,

pF1,εpUqqσ
1,k
σ,j � pG1,εpUqqσ

1,k
σ,j

�� σiΩpjq � σ1iΩpkq�� pR1,εpUqqσ
1,k
σ,j

� �
Rres

1,εpUq
�σ1,k
σ,j

.
(5.3.26)
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Expanding pG1pUqqσ1σ as in (5.3.5)-(5.3.7) with entries

pG1,εpUqqσ
1,k
σ,j � 1?

2π

¸
nPZzt0u

εn�σ1k�σj

pg1,εqσ,σ
1

n,k u
ε
n , j, k P Zzt0u ,

we have that F1pUq satis�es

pF1,εpUqqσ
1,k
σ,j � 1?

2π

¸
nPZzt0u,εn�σ1k�σj

pg1,εqσ,σ
1

n,k piΩpnqεquεn .

Hence the left hand side in (5.3.26) has coe�cients

�pg1,εqσ,σ
1

n,k i
�
σΩpjq � σ1Ωpkq � εΩpnq�� pr1,εqσ,σ

1

n,k

for j, k, n P Zzt0u and σ, σ1, ε � � with εn� σ1k � σj. Recalling De�nition 5.13 we deduce that

G1pUq with coe�cients in (5.3.24) solves the homological equation (5.3.19).

Proof of Proposition 5.14. We apply Lemmata 5.17 and 5.18. The change of variables that

transforms (5.3.1) into (5.3.20) is Y � CθpUqZ where CθpUq is the �ow map in (5.3.18) that

satis�es (5.3.11) and the last statement in Lemma 5.17. Moreover, using also the last item of

Proposition 5.11 we may express

Y � pCθpUq � FθpUqq|θ�1
rU s � U � rMpUqrU s ,rMpUq P ΣMm2

K,K1,1rr, 2s bM2pCq , m2 ¥ 3{2 .
(5.3.27)

Then system (5.3.20) can be written as system (5.3.9) with X¥3pU, Y q given in (5.3.10) and

R¥2pUq :� Rres
1 pUq � Rres

1 pU � rMpUqrU sq � R¥2pUq .

By (5.3.27) and Proposition 5.9-piiiq we have that R¥2pUq P ΣR�pρ�ρ0q
K,K1,2 bM2pCq where ρ0 :�

maxtm1,m2u.

5.4 Birkho� normal form and quadratic life-span of solutions

In this section we prove Theorems 1.9 and 1.10. Let B, B�1 the linear maps de�ned by the

matrices

B :� 1?
2

�
iΛ�1 Λ

�iΛ�1 Λ

�
, B�1 :� 1?

2

�
�iΛ iΛ

Λ�1 Λ�1

�
, (5.4.1)

where Λ is the Fourier multiplier de�ned in (5.2.2). We now describe the Hamiltonian formalism

in the complex symplectic variables pw,wq � Bpη, ψq induced by B. A vector �eld Xpη, ψq and a
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function Hpη, ψq assume the form

XC :� B�X :� BXB�1 , HC :� H � B�1 . (5.4.2)

We remind that the Poisson bracket between two real functions Hpη, ψq, F pη, ψq is

tH,F u �
»
T
p∇ηH∇ψF �∇ψH∇ηF q dx .

while in the complex variables pw,wq reads

tFC, HCu :� i
¸

jPZzt0u
BwjHCBwjFC � BwjHCBwjFC .

Given a Hamiltonian FC, expressed in the complex variables pw,wq, the associated Hamilto-

nian vector �eld XFC is

XFC �
�

iBwFC

�iBwFC

�
� 1?

2π

¸
kPZzt0u

�
iBwkFC e

ikx

�iBwkFC e
�ikx

�
, (5.4.3)

that we also identify, using the standard vector �eld notation, with

XFC �
¸

kPZzt0u,σ��
iσBw�σk FC Bwσk .

If XF is the Hamiltonian vector �eld of the Hamiltonian F :� FC � B, we have

XC
F :� B�XF � XFC . (5.4.4)

The push-forward acts naturally on the commutator of nonlinear vector �elds, de�ned in (5.4.14),

namely

B�rrX,Y ss � rrB�X, B�Y ss � rrXC, Y Css . (5.4.5)

Recalling the Taylor expansion of the Hamiltonian (1.1.18) (with γ � 0),

H � Hp2q �Hp3q � ... ,

where (up to a constant)

Hp2q :� 1

2

»
T
ψGp0qψ dx� g

2

»
T
η2 dx� κ

2

»
T
η2
x dx , Hp3q :� 1

2

»
T
ψ
�
DηD �Gp0qηGp0q

	
ψ dx ,

and the dots collects all the terms of homogeneity in pη, ψq greater or equal than 4, in complex
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coordinates this expansion reads

HC :� H � B�1 � H
p2q
C �H

p3q
C � . . .

where, recalling (5.4.1), (5.2.7), (5.1.2),

H
p2q
C �

¸
jPZzt0u

Ωpjqwjwj , H
p3q
C �

¸
σ1j1�σ2j2�σ3j3�0

Hσ1,σ2,σ3
j1,j2,j3

wσ1
j1
wσ2
j2
wσ3
j3 (5.4.6)

and Hσ1,σ2,σ3
j1,j2,j3

are computed in (5.0.9), for j1, j2, j3 P Zzt0u.

5.4.1 Normal form identi�cation and proof of Theorem 1.9

A normal form uniqueness argument allows to identify the quadratic Poincaré-Birkho� resonant

vector �eld Rres1 pY qrY s in (5.3.9) as the cubic resonant Hamiltonian vector �eld obtained by the

formal Birkho� normal form construction in [69].

Proposition 5.19. (Identi�cation of the quadratic resonant Birkho� normal form)

The Birkho� resonant vector �eld Rres
1 pY qrY s de�ned in (5.3.9) is equal to

Rres
1 pY qrY s � X

H
p3q
BNF

(5.4.7)

where H
p3q
BNF is the cubic Birkho� normal form Hamiltonian in (5.0.8).

The proof follows the ideas developed in Section 7 in [39]. Recalling (5.4), we �rst expand

the water waves Hamiltonian vector �eld in (5.0.1)-(1.1.32) in degrees of homogeneity

XH � X1 �X2 �X¥3 where X1 :� XHp2q , X2 :� XHp3q , (5.4.8)

and X¥3 collects the higher order terms. System (5.3.9) has been obtained conjugating (5.0.1)

under the map

Y � F1pUq � B � G� ηψ � , (5.4.9)

where G is the good-unknown transformation (see (5.2.1))

�
η
ω

� � G� ηψ � :� � η

ψ�OpBWpBpη,ψqqη
�
, (5.4.10)

the map B is de�ned in (5.4.1) and

FθpUq :� CθpUq � FθpUq , θ P r0, 1s , (5.4.11)

where FθpUq, CθpUq are de�ned respectively in Propositions 5.11 and 5.14. Note that the variables
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U � �
u
u

�
de�ned by (5.2.3) are equal to B � G� ηψ �. In order to identify the quadratic vector �eld

in system (5.3.9), we perform a Lie commutator expansion, up to terms of homogeneity at least

3. Notice that the quadratic term in (5.3.9) may arise by only the conjugation of X1�X2 under

the homogeneous components of the paradi�erential transformations G and F1pUq, neglecting
cubic terms.

We use the following Lemma 5.20 that collects Lemmata A.8, A.9 and A.10 in [39]. The

variable U may denote both the couple of complex variables pu, uq in (5.2.3) or the real variables

pη, ψq.

Lemma 5.20 ( [39]). (Lie expansion) Consider a map θ ÞÑ Fθ
¤2pUq, θ P r0, 1s, of the form

Fθ
¤2pUq � U � θM1pUqrU s , M1pUq P �M1 bM2pCq . (5.4.12)

Then:

(i) the family of maps Gθ
¤2pV q :� V � θM1pV qrV s is such that

Gθ
¤2 � Fθ

¤2pUq � U �M¥2pθ;UqrU s , Fθ
¤2 �Gθ

¤2pV q � V �M¥2pθ;UqrU s ,

where M¥2pθ;Uq is a polynomial in θ and �nitely many monomials MppUqrU s for MppUq P�Mp bM2pCq, p ¥ 2;

(ii) the family of maps Gθ
¤2pV q satis�es

BθGθ
¤2pV q � SpGθ

¤2pV qq �M¥2pθ;UqrU s , G0
¤2pV q � V ,

where SpUq � S1pUqrU s with S1pUq P �M1 bM2pCq and M¥2pθ;Uq is a polynomial in θ

and �nitely many monomials MppUqrU s for maps MppUq P �Mp bM2pCq, p ¥ 2;

(iii) Let XpUq � MpUqU for some map MpUq � M0 �M1pUq where M0 is in �M0 bM2pCq
and M1pUq in �M1 bM2pCq. If U solves BtU � XpUq, then the function V :� F1

¤2pUq
solves

BtV � XpV q � rrS,XsspV q � � � � , (5.4.13)

up to terms of degree of homogeneity greater or equal to 3, where we de�ne the nonlinear

commutator

rrS,XsspUq :� dUXpUqrSpUqs � dUSpUqrXpUqs . (5.4.14)

• Notation. Given a homogeneous vector �eld X, we denote by Φ�
SX the induced (formal)

push forward (see (5.4.13))

Φ�
SX � X � rrS,Xss � � � � (5.4.15)
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where the dots � � � denote cubic terms.

Proof of Proposition 5.19.

Step 1. The good unknown change of variable G in (5.4.10). First of all we note that

Gpη, ψq � pΦθpη, ψqqθ�1 where

Φθ
� η
ψ

� � � η

ψ�θOpBWpBpη,ψqqη
�
, θ P r0, 1s .

Since Bpη, ψq is a function in ΣFR
K,0,1rr, 2s we have that Φθpη, ψq has an expansion as in (5.4.12)

up to cubic terms. Hence, by Lemma 5.20-piq-piiq, we regard the inverse of the map G¤2, obtained

truncating G up to cubic remainders, as the (formal) time one �ow of a quadratic vector �eld

S2 :� S1pη, ψq
� η
ψ

�
, S1pη, ψq P �M1 bM2pCq . (5.4.16)

By (5.4.8), (5.4.15) and (5.4.16), we get

Φ�
S2
pX1 �X2q � X1 �X2 � rrS2, X1ss � � � � . (5.4.17)

Step 2. Complex coordinates. Conjugating (5.4.17) with the linear map B de�ned in (5.4.1),

we obtain, recalling (5.4.2) and (5.4.5),

B�Φ�
S2
pX1 �X2q � XC

1 �XC
2 � rrSC2 , XC

1 ss � � � � (5.4.18)

where, by (5.4.4), (5.4.8), (5.4.6),

XC
1 � X

H
p2q
C
� i

¸
j,σ

σΩpjquσj Buσj , XC
2 � X

H
p3q
C
. (5.4.19)

Step 3. The transformation F1 in (5.4.11). By the last items of Proposition 5.11 and

Proposition 5.14, the map FθpUq has the form (5.4.12) up to cubic terms. Thus, by Lemma

5.20-piq-piiq, the approximate inverse of the truncated map F1
¤2 can be regarded as the (formal)

time-one �ow of a vector �eld

T2 :� T1pUqrU s , T1pUq P �M1 bM2pCq . (5.4.20)

By (5.4.18), (5.4.19), (5.4.15), we get

Φ�
T2
B�Φ�

S2
pX1 �X2q � X

H
p2q
C
�X

H
p3q
C
� rrSC2 � T2, XH

p2q
C
ss � � � � . (5.4.21)
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Comparing (5.3.9) and (5.4.21) we deduce that

Rres
1 pY qrY s � X

H
p3q
C
� rrSC2 � T2, XH

p2q
C
ss . (5.4.22)

The vector �eld Rres
1 pY qrY s is in Poincaré-Birkho� normal form, recall De�nition 5.13. Therefore,

de�ning the linear operator Πker acting on a quadratic monomial vector �eld uσ1
j1
uσ2
j2
Buσj as

Πker

�
uσ1
j1
uσ2
j2
Buσj

	
:�

$&%u
σ1
j1
uσ2
j2
Buσj if � σΩpjq � σ1Ωpj1q � σ2Ωpj2q � 0

0 otherwise ,
(5.4.23)

we have that

Rres
1 pY qrY s � ΠkerpRres

1 pY qrY sq . (5.4.24)

In addition, since

rruσ1
j1
uσ2
j2
Buσj , XH

p2q
C
ss � i

�
σΩpjq � σ1Ωpj1q � σ2Ωpj2q

�
uσ1
j1
uσ2
j2
Buσj ,

we deduce

ΠkerrrSC2 � T2, XH
p2q
C
ss � 0 . (5.4.25)

In conclusion, (5.4.24), (5.4.22) and (5.4.25) imply that

Rres
1 pY qrY s � ΠkerpXH

p3q
C
q (5.4.6)� X

H
p3q
BNF

where H
p3q
BNF is the Hamiltonian in (5.0.8). This proves (5.4.7).

Proof of Theorem 1.9. Hypothesis (5.0.5) implies that the variable u de�ned in (5.2.3)

satis�es (5.2.5) and therefore the function U � �
u
u

�
belongs to the ball BK

s pI; rq (recall (5.1.1))
with r � Cs,Kε ! 1 and I � r�T, T s. By Proposition 5.10 the function U solves system (5.2.6).

Then we apply Proposition 5.11 and the Poincaré-Birkho� Proposition 5.14 with s " K ¥
K 1pρq and K 1pρq given by Proposition 5.11, taking ε small enough. The map F1pUq in (5.4.11)

transforms the water waves system (5.2.6) into (5.3.9), which, thanks to Proposition 5.19, is

expressed in terms of the Hamiltonian H
p3q
BNF in (5.0.8) as

Bty � iΩpDqy � iByHp3q
BNFpy, yq � X�

¥3

where X�
¥3 is the �rst component of X¥3pU, Y q in (5.3.10). Renaming yù z, the above equation

is (5.0.7). We de�ne z � Bpη, ψqrη, ψs as the �rst component of the change of variable (5.4.9),

namely of F1pUq � B � Grη, ψs, with U written in terms of pη, ψq by (5.2.3), (5.2.1). By (5.3.11)
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and (5.2.11) with k � 0, and using that U P BK
s pI; rq, we get

}zptq} 9Hs �s }uptq} 9Hs , (5.4.26)

and (5.0.6) follows, using also (5.2.3), (5.2.1). The cubic vector �eld X�
¥3 in (5.3.10) satis�es the

estimate }X�
¥3} 9Hs� 3

2
Às }z}39Hs

by Proposition 3.8 in [37] (recall that H¥2pU ; ξq P Γ
3{2
K,K1,2rrs b

M2pCq), by (5.1.10) with k � 0, and (5.2.4), (5.4.26). Moreover, the vector �eld X�
¥3 satis�es the

energy estimate (5.0.10) since the symbol H¥2pU ; ξq is independent of x and purely imaginary

up to symbols of order 0, see (5.3.3) (for the detailed argument we refer to Lemma 7.5 in [39]).

5.4.2 Energy estimate and proof of Theorem 1.10

We now deduce Theorem 1.10 by Theorem 1.9 and the following energy estimate for the solution

z of the Birkho� resonant system (5.0.7). By time reversibility, without loss of generality, we

may only look at positive times t ¡ 0.

Lemma 5.21. (Energy estimate) Fix s, ε ¡ 0 as in Theorem 1.9 and assume that the solution

pη, ψq of (5.0.1) sati�es (5.0.5). Then the solution zptq of (5.0.7) satis�es

}zptq}29Hs ¤ Cpsq}zp0q}29Hs � Cpsq
» t

0
}zpτq}49Hs dτ , @t P r0, T s . (5.4.27)

Proof. By Lemma 5.15, the Birkho� resonant Hamiltonian H
p3q
BNF in (5.0.8) depends on �nitely

many variables z�j1 , z
�
j2
, z�j3 , j1, j2, j3 P Zzt0u, because$&%σ1j1 � σ2j2 � σ3j3 � 0

σ1Ωpj1q � σ2Ωpj2q � σ3Ωpj3q � 0
ùñ maxp|j1|, |j2|, |j3|q   C . (5.4.28)

For any function w P 9HspTq we de�ne the projector ΠL on low modes, respectively the projector

ΠH on high modes, as

wL :� ΠLw :� 1?
2π

¸
0 |j|¤C

wje
ijx , wH :� ΠHw :� 1?

2π

¸
|j|¡C

wje
ijx .

We write w � wL � wH and we de�ne the norm

}w}2s :� H
p2q
C pwLq � }wH}29Hs

where (see (5.4.6))

H
p2q
C pwq �

»
T

ΩpDqw � w dx �
¸

jPZzt0u
Ωpjqwjwj . (5.4.29)
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Since Ωpjq ¡ 0, @j � 0, and wL is supported on �nitely many Fourier modes 0   |j| ¤ C, we

have that, for some constant Cs ¡ 0,

C�1
s }w}s ¤ }w} 9Hs ¤ Cs}w}s , (5.4.30)

i.e. the norms } � }s and } � } 9Hs are equivalent. We now prove the estimate (5.4.27) for the

equivalent norm } � }s.
We �rst note that, by (5.4.28), H

p3q
BNFpz, zq � H

p3q
BNFpzL, zLq. Therefore ΠHBzHp3q

BNFpz, zq � 0

and the equation (5.0.7) amounts to the system$&% 9zL � iΩpDqzL � iBzHp3q
BNFpzL, zLq �ΠL

�
X�
¥3pU,Zq

�
9zH � iΩpDqzH �ΠH

�
X�
¥3pU,Zq

�
.

(5.4.31)

Moreover since the Hamiltonian H
p3q
BNF in (5.0.8) is in Birkho� normal form, it Poisson commutes

with the quadratic Hamiltonian H
p2q
C in (5.4.29), i.e.

tHp3q
BNF, H

p2q
C u � 0 . (5.4.32)

We have

BtHp2q
C pzLq (5.4.31)� tHp3q

BNF, H
p2q
C u � 2Re

»
T

ΩpDqΠL

�
X�
¥3pU,Zq

� � zLdx
(5.4.32)� 2Re

»
T

ΠLΩpDq�X�
¥3pU,Zq

� �ΠLz dx Às }z}49Hs (5.4.33)

using that }ΠLΩpDqX�
¥3} 9H0 Às }z}39Hs

by item p2q of Theorem 1.9. Moreover, since ΠH and ΠL

project on L2-orthogonal subspaces,

Bt}zH}29Hs � Btp|D|szH , |D|szHqL2
(5.4.31)� 2Re

»
T
|D|sΠH

�
X�
¥3pU,Zq

� � |D|sΠHz dx

� 2Re

»
T
|D|sX�

¥3pU,Zq � |D|sz dx� 2Re

»
T
|D|sΠL

�
X�
¥3pU,Zq

� � |D|sΠLz dx

(5.0.10)
Às }z}49Hs � }ΠLX�

¥3} 9Hs}ΠLz} 9Hs Às }z}49Hs (5.4.34)

by item p2q of Theorem 1.9. Integrating in t the inequalities (5.4.33), (5.4.34), we deduce

}zptq}2s Às }zp0q}2s �
» t

0
}zpτq}49Hsdτ

which, together with the equivalence (5.4.30), implies (5.4.27).

Conclusion of the Proof of Theorem 1.10. Consider initial data pη0, ψ0q satisfying (5.0.12)
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with s " 1 given by Theorem 1.9. Classical local existence results imply that

pη, ψq P C0
�r0, Tlocs, Hs� 1

4
0 pT,Rq � 9Hs� 1

4 pT,Rq�
for some Tloc ¡ 0 and thus (5.0.5) holds with ε � 2ε and T � Tloc. A standard bootstrap

argument based on the energy estimate (5.4.27) (see for instance Proposition 7.6 in [39]) implies

that the solution zptq of (5.0.7) can be extended up to a time Tε :� c0ε
�2 for some c0 ¡ 0, and

satis�es

sup
tPr0,Tεs

}zptq} 9Hs Às ε . (5.4.35)

We deduce (5.0.13) by (5.4.35), the equivalence (5.4.26), and going back to the original variables

pη, ψq by (5.2.3) and (5.2.1).
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Appendix A

Technical results from Chapter 3

A.1 Properties of pseudodi�erential operators

Recall that if F is an operator, we denote by pF p`q its `-th Fourier coe�cient de�ned as in (3.1.9).

If F is a pseudodi�erential operator with symbol f , so pF p`q is, with symbol given by

pfp`, x, jq :� 1

p2πqν
»
Tν
fpϕ, x, jq e�iϕ�` dϕ .

Lemma A.1. Let ρ ¡ 0 and µ P R. The following holds true:

(i) If F P OPSµρ , then the operator pF p`q belongs to OPSµ for any ` P Zν and

℘µ%p pF p`qq ¤ e�ρ|`| ℘µ,ρ% pF q @ % P N0 .

(ii) Assume to have for any ` P Zν an operator pF p`q P OPSµ ful�lling

℘µ%p pF p`qq ¤ x`yτ e�ρ|`|C% @ ` P Zν , @ % P N0 , (A.1.1)

for some τ ¥ 0, ρ ¡ 0 and C% ¡ 0 independent of `. De�ne the operator F pϕq :�°
`PZν pF p`qeiϕ�`. Then, F belongs to OPSµρ1 for any 0   ρ1   ρ and one has

℘µ,ρ
1

% pF q ¤ C%
pρ� ρ1qτ�ν @ % P N0 .

On the classes LipwpΩ,POPSµρ q, these assertions extend naturally without any further loss of

analyticity.

Proof. (i) By Cauchy estimates, it is well-known the analytic decay for the Fourier coe�cients

223
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of the symbol fpϕ;x, jq: ��� pfp`, x, jq��� ¤ e�ρ|`| sup
|Imϕ|¤ρ

|fpϕ, x, jq| . (A.1.2)

Plugging it into De�nition 3.2 of ℘µ%p pF p`qq, we get the claim;

(ii) It is possible to control the seminorm ℘µ,ρ
1

% pF q in terms of the ones for the Fourier coe�cients:

℘µ,ρ
1

% pF q ¤
¸
`PZν

eρ
1|`|℘µ%p pF p`qq (A.1.1)¤

¸
`PZν

epρ
1�ρq|`| x`yτ C% ¤ C%

pρ� ρ1qτ�ν . (A.1.3)

In the next Proposition we essentially prove that pseudodi�erential operators as in De�nition

3.6 have matrices which belong to the classes LipwpΩ,Mρ,sq extended from De�nition 3.17.

Proposition A.2. Let F P LipwpΩ,POPSµρ q, with ρ ¡ 0. For any 0   ρ1   ρ and s ¡ 1
2 , the

matrix of the operator

xDyα F xDyβ , α� β � µ ¤ 0 ,

belongs to LipwpΩ,Mρ1,sq. Moreover for any s ¡ 1
2 , @α� β ¤ �µ, there exists σ ¡ 0 such that

| xDyα F xDyβ |Lippwq
ρ1,s,Ω ¤ C

pρ� ρ1qν ℘
µ,ρ
s�σpF qLippwq

Ω . (A.1.4)

Proof. Since xDy P POPS1 is clearly independent of parameters, without loss of generality let F

belong to POPSµρ . We start by proving the result in the case µ � α � β � 0. Let an arbitrary

s ¡ 1
2 be �xed. Then

pFnmp`q :� 1

p2πqν
»
Tν�r0,πs

fpϕ, x,Dxqrsinpmxqs sinpnxqe�i`�ϕ dϕdx

� 1

2p2πqν
»
Tν�r�π,πs

fpϕ, x,Dxqrsinpmxqs sinpnxqe�i`�ϕ dϕdx

� 1

4p2πqν
»
Tν�1

fpϕ, x,mqpeipm�nqx � eipm�nqxqe�i`�ϕ dϕdx ,

(A.1.5)

where f P PSµρ is the symbol of F . Consider �rst the case m � n. Then, integrating by partsrs-times in x, with rs :� ts� 2u� 1, and shifting the contour of integration in ϕ to Tν � iρ sgnp`q
(here sgnp`q :� psgnp`1q, ..., sgnp`νqq P t�1, 1uν), one gets that for any n,m P N, n � m, ` P Zν ,

| pFnmp`q| ¤ e�ρ|`|
� 1

|m� n|rs �
1

|m� n|rs
	

sup
|Imϕ| ρ
px,mqPT�N

���Brsxfpϕ;x,mq
��� ¤ 2e�ρ|`|

|m� n|rs ℘0,ρrs pfq .
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If m � n, in a similar way one proves the bound supmPN
��� pFmm p`q��� ¤ e�ρ|`| ℘0,ρ

0 pfq. It follows that
for any 0   ρ1   ρ, one has |F |ρ1,s ¤ Cpρ � ρ1q�ν℘0,ρrs pfq   8, which proves (A.1.4) in the case

α � β � µ � 0. To treat the general case, it is su�cient to note that, by Remarks 3.7, 3.10 and

3.11, the operator xDyα F xDyβ P POPS0
ρ , so we have

| xDyα F xDyβ |ρ1,s ¤ C

pρ� ρ1qν ℘
0,ρ
s�σpxDyα F xDyβq ¤ Cα,β

pρ� ρ1qν ℘
µ,ρ
s�σpF q. (A.1.6)

A.2 Proof of Lemma 3.22 (Embedding)

The result of Lemma 3.22 follows by a straightforward application of Proposition A.2 to the

operators F P LipwpΩ,POPS�αρ q and G P LipwpΩ,POPS�βρ q. Indeed, we obtain

| xDyσ F xDy�σ |Lippwq
ρ1,s,Ω , | xDyα F |Lippwq

ρ1,s,Ω , |F xDyα |Lippwq
ρ1,s,Ω ¤ C

pρ� ρ1qν ℘
�α,ρ
s�σ pF qLippwq

Ω .

The estimates for G are analogous.

A.3 Proof of Lemma 3.15 (Algebra of the s-decay)

Denote by Ae the extension of the operator A on L2pTq which coincides with A on L2
oddpTq � H0

and is identically zero on L2
evenpTq. Since Ae is parity preserving, one veri�es that

xAe eimx, eim1xyL2pTq � xA sinpmxq, sinpm1xqy

for any m,m1 P Z. We want to give a proof of the algebra property for the s-decay norm on

linear operators, as in De�nition 3.14 and Lemma 3.15. For our purposes it is useful to introduce

the notation

SAphq :� sup
|m�m1|�h

|Am1

m |

for any linear operator A : H8 Ñ H�8, so that (3.1.7) reads as |A|s :� �°
hPN0

| xhys SAphq|2
� 1

2 .

Let A,B : H8 Ñ H�8. We compute:

SABphq � sup
|j�j1|�h

|pABqj1j | ¤ sup
|j�j1|�h

¸
kPN

|Aj1k ||Bk
j | ¤ sup

|j�j1|�h

¸
kPN
SAp|k � j1|qSBp|j � k|q .
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It follows that

xhys SABphq ¤ sup
|j�j1|�h

xj � j1ys
¸
kPN
SAp|k � j1|qSBp|j � k|q

� sup
|j�j1|�h

¸
kPN

xk � j1ys SAp|k � j1|q xj � kys SBp|j � k|q xj � j1ys
xk � j1ys xj � kys .

By Cauchy-Schwartz, we get

|xhys SABphq|2 ¤ sup
|j�j1|�h

¸
kPN

xk � j1y2s SAp|k�j1|q2 xj � ky2s SBp|j � k|q2 �
¸
kPN

xj � j1y2s
xk � j1y2s xj � ky2s

(A.3.1)

It is easy to see that, for any a ¡ 1, one has
¸
kPN

xj � j1ya
xk � j1ya xj � j1ya ¤ Ca , thus, we obtain in

(A.3.1)

|xhys SABphq|2 ¤ C2s sup
|j�j1|�h

¸
kPN

xk � j1y2s SAp|k � j1|q2 xj � ky2s SBp|j � k|q2

�: C2s sup
|j�j1|�h

RABphq

� C2s max
!

sup
j1¥j

j1�j�h

RABphq , sup
j¥j1

j�j1�h

RABphq
)
.

(A.3.2)

Without loss of generality, assume that the maximum is attained in the �rst region, that is when

j1 ¥ j. We are now ready to compute:

|AB|2s �
¸
h¥0

|xhys SABphq|2 À
¸
h¥0

sup
j1¥j

j1�j�h

RABphq

�
¸
h¥0

sup
j1¥j

j1�j�h

¸
1¤k¤j

xj1 � ky2s SApj1 � kq2 xj � ky2s SBpj � kq2

�
¸
h¥0

sup
j1¥j

j1�j�h

¸
j�1¤k¤j1

xj1 � ky2s SApj1 � kq2 xk � jy2s SBpk � jq2

�
¸
h¥0

sup
j1¥j

j1�j�h

¸
k¥j1�1

xk � j1y2s SApk � j1q2 xk � jy2s SBpk � jq2 .

(A.3.3)
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For these three sums we can perform change of indexes, so that we get

|AB|2s À
¸
h¥0

¸
h¤a 8

xay2s SApaq2 xa� hy2s SBpa� hq2

�
¸
h¥0

¸
0¤a¤h�1

xay2s SApaq2 xh� ay2s SBph� aq2

�
¸
h¥0

¸
a¥1

xay2s SApaq2 xa� hy2s SBpa� hq2

�: Σ1 � Σ2 � Σ3 .

(A.3.4)

We estimate Σ1 as follows:

Σ1 �
¸
h¥0

¸
h¤a 8

xay2s SApaq2 xa� hy2s SBpa� hq2

�
¸
h¥0

¸
h1¥0

xh� h1y2s SAph� h1q2 xh1y2s SBph1q2

�
¸
h1¥0

� ¸
h¥0

xh� h1y2s SAph� h1q2
	
xh1y2s SBph1q2

¤ |A|2s
¸
h1¥0

xh1y2s SBph1q2 � |A|2s |B|2s .

(A.3.5)

The same estimate holds for Σ2 and Σ3, so that we can conclude

|AB|2s ¤ Cs |A|2s |B|2s , (A.3.6)

as claimed.

A.4 Proof of Lemma 3.23 (Commutator)

In this section we show the proof of Lemma 3.23. We start with operators independent of ϕ P Tν .
Let

X �
�
Xd Xo

�Xo �Xd

�
, V �

�
V d V o

�V o �V d

�
.

One has

irX,Vs � i pXV �VXq �
�

iZd iZo

�piZoq �piZdq

�
,

where

Zd :� XdV d �XoV o � V dXd � V oXo, Zo :� XdV o �XoV d � V dXo � V oXd .
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Omitting for sake of simplicity conjugate operators and labels for diagonal and anti-diagonal

elements, by Remark 3.19, the following inequalities hold (here σ � �α, 0):��xDyσXV xDy�σ��
s
¤ Cs

��xDyσX xDy�σ��
s

��xDyσ V xDy�σ��
s

;

|xDyαXV |s ¤ Cs |xDyαX|s |V |s ;

|XV xDyα|s ¤ Cs |X xDyα|s
��xDy�α V xDyα��

s
;

(A.4.1)

the same for those terms involving V X. All these norms extend easily to the analytic case.

Therefore, by the assumption and from the de�nition in (3.1.16), properties 3.1.13, 3.1.14 and

3.1.15 are satis�ed. It remains to show the symmetries conditions in (3.1.12). Note that piZdq� �
iZd and piZoq� � iZo if and only if pZdq� � �Zd, pZoq� � Zo. We check the condition for Zd.

We have

pZdq� � pV dq�pXdq� � pV oq�pXoq� � pXdq�pV dq� � pXoq�pV oq�

� V dXd � V oXo �XdV d �XoV o� � �Zd .
(A.4.2)

In the same way one checks that pZoq� � Zo. The Lipschitz dependence is easily checked.



Appendix B

Derivation of water waves equations

with constant vorticity

The dynamics of the water waves in the two dimensional �uid domain Dη,h de�ned in (1.1.11)

is described by the two components velocity �eld upt, x, yq and vpt, x, yq, which prescribe the

dynamics of the �uid particles inside Dη,h, and by the pro�le of the free surface ηpt, xq. The

equation of motions are the mass conservation and Euler equations in two dimensions:$&%div ~u � 0

Bt~u� ~u �∇~u � �∇P � gey
, (B.0.1)

where P pt, x, yq denotes the pressure and g the gravity. Denoting ~u :� �
u
v

�
, they read in

components as $'''&'''%
ux � vy � 0

ut � uux � vuy � �Px
vt � uvx � vvy � �Py � g .

in Dη,h (B.0.2)

The boundary conditions that we impose are$''''&''''%
v � ηt � uηx at y � ηpt, xq
v Ñ 0 for y Ñ �h
P � P0 � κ

� ηxa
1� η2

x

	
x

at y � ηpt, xq .
(B.0.3)

The �rst equation in (B.0.3), called kinematic boundary condition, expresses the fact the �uid

particles at the free surface remain on it along the evolution. The second condition in (B.0.3) is

229
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equivalent to the impermeability condition of the bottom of the ocean:$&%vpt, x,�hq � 0 , if h is finite ,

limyÑ�8 vpt, x, yq � 0 if h � �8 ;

The third equation in (B.0.3), called the dynamic boundary condition, describes the presence of

capillarity forces at the interface between the water and the air above. The di�erence between

the outer and the inner pressure at the interface is proportional to the mean curvature of the

free surface, where κ ¡ 0 denotes the surface tension coe�cient.

By taking the rotor of the Euler equation (B.0.1), we obtain that the scalar vorticity

rot ~u :� ω :� vx � uy

evolves according to the Helmholtz equation

Btω � puBx � vByqω � 0 . (B.0.4)

In our model we assume that the scalar vorticity of the vector �eld ~u is constant:

ω :� vx � uy � γ . (B.0.5)

Note that by (B.0.4), if the initial vorticity ω|t�0 � γ is constant, then ω � γ remains

constant at any time t of existence of the solution.

B.1 Helmholtz decomposition of a vector �eld on Dη,h

Inside the �uid, su�ciently away from the small waves of the free surface, for instance when

}ηpt, � q}L8pTxq   1, the average in the horizontal direction of the vertical component of the

velocity �eld is null.

Lemma B.1. We have
³2π
0 vpt, x, yq dx � 0 for all times t and y   �1.

Proof. Note that, by the divergence free condition ux � vy � 0 in (B.0.2) and the 2π-periodicity

of u, we have

By
» 2π

0
vpt, x, yq dx �

» 2π

0
�uxpt, x, yqdx � 0 .

Hence, for any y P p�h,�1q, we obtain
³2π
0 vpt, x, yq dx � limyÑ�h

³2π
0 vpt, x, yq dx � 0 by the

impermeability condition in (B.0.3).

We analyze now the structure of vector �eld with constant scalar vorticity and its decompo-

sition as a sum of an irrotational vector �eld and divergence-free one. We denote the interior of
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the �uid domain by IntDη,h :� Dη,hzBDη,h.

Lemma B.2. Let ~apx, yq :� � apx,yq
bpx,yq

�
be a vector �eld of class C1pIntDη,hq X C0pDη,hq with

constant scalar vorticity, namely

rot~a :� bx � ay � γ . (B.1.1)

Then , for any y P p�h,�1q, the function

c :� 1

2π

» 2π

0
apx, yq dx� γy (B.1.2)

is independent of y and there exists a C2 function Φpx, yq de�ned for any px, yq P IntDη,h such

that �
apx, yq
bpx, yq

�
�
�
c

0

�
�∇Φpx, yq �

�
�γy

0

�
. (B.1.3)

The function Φ is uniquely de�ned up to a constant. Moreover, Φ admits an extension to the

whole domain Dη,h and

ByΦpx,�hq � bpx,�hq , d

dx
Φpx, ηpxqq � papx, ηpxqq � c� γηpxqq � bpx, ηpxqqηxpxq . (B.1.4)

Proof. First, we assume the �uid to be irrotational, namely γ � 0. By the 2π-periodicity of ~a,

we have

By
» 2π

0
apx, yqdx �

» 2π

0
aypx, yqdx �

» 2π

0
bxpx, yqdx � bp2π, yq � bp0, yq � 0 ,

which implies that c is independent of y P p�1,�hq. We now �x an arbitrary h P p1, hq and we

de�ne the function Φpx, yq as the potential

Φpx, yq :�
» px,yq

p0,�hq
papx, yq � cq dx� bpx, yqdy ,

integrated along any path joining p0,�hq and px, yq P T � p�h,�1q, which is the same by the

Gauss-Green theorem since in this region it holds that papx, yq � cqy � bx. Choosing a path of

integration which is �rst horizontal from p0,�hq to px, hq and then vertical from px,�hq to px, yq
we get

Φpx, yq �
» x

0

�
aps,�hq � c

�
ds�

» y
�h

bpx, sqds , (B.1.5)

which is 2π-periodic in x because, exploiting the periodicity of the vector �eld papx, yq, bpx, yqq
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and the de�nition of c in (B.1.2), one has

Φp2π � x, yq � Φpx, yq �
» 2π

0

�
aps,�hq � c

�
ds � 0 .

Moreover, the function Φpx, yq in (B.1.5) is allowed to be de�ned also for every px, yq P IntDη,h,
without losing any di�erentiability and the periodicity in x. By (B.1.5), we have

BxΦpx, yq � apx,�hq � c�
» y
�h

bxpx, sqds � apx,�hq � c�
» y
�h

aypx, sqds � apx, yq � c

for any px, yq P IntDη,h and similarly ByΦpx, yq � bpx, yq, proving the representation (B.1.3) for

γ � 0. The formula (B.1.5) de�nes also an extension to the closed domain Dη,h. Therefore, in

the case γ � 0, the relations in (B.1.4) follow.

Let pc̃, Φ̃q be another solution of�
apx, yq
bpx, yq

�
�

�
c̃

0

�
�∇Φ̃px, yq .

Then, by integrating in x P T, we obtain that c̃ � c and ∇pΦ� Φ̃q � 0.

Finally, for any value of the vorticity γ P R, we note that the vector �eld

�
apx, yq � γy

bpx, yq

�
is irrotational and we deduce straightforward the representation in (B.1.3) and the relations in

(B.1.4).

Lemma B.3. Let ~apx, yq � � apx,yq
bpx,yq

�
be a divergence free vector �eld of class C1pIntDη,hq X

C0pDη,hq such that

lim
yÑ�h

» 2π

0
bpx, yq dx � 0 . (B.1.6)

Then there exists a potential Ψpx, yq de�ned on IntDη,h such that�
apx, yq
bpx, yq

�
�

�
�ByΨpx, yq
BxΨpx, yq

�
. (B.1.7)

Moreover, Ψpx, yq admits an extension to Dη,h, with

ByΨpx,�hq � �apx,�hq , d

dx
Ψpx, ηpxqq � bpx, ηpxqq � apx, ηpxqqηxpxq . (B.1.8)

Proof. Since div~a � 0 the vector �eld �
bpx, yq
�apx, yq

�
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is irrotational. It follows from Lemma B.2 with γ � 0 that there exists c P R and a potential Ψ

such that �
bpx, yq
�apx, yq

�
�

�
c

0

�
�∇Ψpx, yq .

By taking the average in x and the limit as y Ñ �h of the relation bpx, yq � c � BxΦpx, yq, we
get

c � lim
yÑ�h

1

2π

» 2π

0
bpx, yq dx

(B.1.6)� 0 .

This proves (B.1.7).

By Lemma B.2 above we conclude that there exists a function cptq and a potential Φpt, x, yq,
2π-periodic in x, called the generalized velocity potential, such that the velocity �eld of (B.0.1)-

(B.0.3) admits the decomposition

upt, x, yq � c� γy � Φxpt, x, yq
vpt, x, yq � Φypt, x, yq

(B.1.9)

where

cptq :� 1

2π

» 2π

0
upt, x, yqdx� γy , (B.1.10)

is independent of y. Actually c is constant also for any time of existence t. Indeed, by choosing

an arbitrary y P p�h,�1q, we compute that

Btcptq :� 1

2π

» 2π

0
Btupt, x, yqdx

(B.0.2)� � 1

2π

» 2π

0
p1

2Bxpu2q � vByu� BxP qdx

(B.0.5)� � 1

2π

» 2π

0
vpBxv � γqdx � γ

2π

» 2π

0
v dx � 0 ,

by Lemma B.1.

B.2 The Zahkarov-Wahlén-Constantin formulation

The equations (B.0.1)-(B.0.3) can be regairded in a space-time frame moving horizontally with

an arbitrary constant speed c P R. A direct computation shows that the new variables

rupt, x, yq :� upt, x� ct, yq � c , rηpt, xq :� ηpt, x� ctq ,rvpt, x, yq :� vpt, x� ct, yq , rP pt, x, yq :� P pt, x� ct, yq ,
(B.2.1)

satisfy the same equations (B.0.1)-(B.0.3). This means that we can always add an arbitrary

constant c to the horizontal component of the velocity �eld.
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In view of the change of variable (B.2.1) induced by the moving frame, i.e. substituting

u, v, η, P with ru, rv, rη, rP and setting c � c, where c is de�ned in (B.1.10), we can always assume

the following decomposition of the velocity �eld:$&%upt, x, yq � �γy � BxΦpt, x, yq
vpt, x, yq � ByΦpt, x, yq .

(B.2.2)

We want to use such decomposition of the velocity �eld in order to obtain the formulation of the

water waves problem with constant vorticity in (4.0.1).

By (B.2.2) and since ~u is divergence free, it follows that

∆Φpt, x, yq � 0 . (B.2.3)

We also express the boundary conditions (B.0.3) in terms of Φ, obtaining$&%ηt � Φy � Φxηx � γη ηx at y � ηpt, xq
Φy Ñ 0 for y Ñ �h .

(B.2.4)

We de�ne the trace of the generalized velocity potential at the free boundary

ψpt, xq � Φpt;x, yq|y�η � Φpt;x, ηpt, xqq . (B.2.5)

In such a way, given η, ψ, the generalized velocity potential Φ is recovered by solving the elliptic

problem $'''&'''%
∆Φ � 0 in Dη
Φ � ψ at y � ηpt, xq
Φy � 0 at y � �h .

(B.2.6)

De�ning the Dirichlet-Neumann operator Gpη, hqψ as

Gpη, hqψ :�
a

1� η2
x pB~nΦq|y�ηpt,xq � p�Φxηx � Φyq|y�ηpt,xq , (B.2.7)

we deduce from (B.2.4) that

ηt � Gpη, hqψ � γη ηx (B.2.8)

which is the �rst equation in (4.0.1).

Remark B.4. We have that

Gpη, hqr1s � 0 ,

»
T
Gpη, hqrψsdx � 0 .
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Associated to the generalized velocity potential Φpt, x, yq, we have the so called stream func-

tion, which is the potential obtained in Lemma B.3.

Lemma B.5. (Stream function) There exists a function Ψpt, x, yq on Dη,h such that

u � Ψy , v � �Ψx . (B.2.9)

In particular, the function rΨ � Ψ� γy2

2 solves

Φx � rΨy � u� γy , Φy � �rΨx � v . (B.2.10)

Remark B.6. Note that the �uid particles evolve according to the time-dependent Hamiltonian

system $&% 9x � u � Ψy � ByprΨ� γ
2y

2q
9y � v � �Ψx � �BxprΨ� γ

2y
2q .

To deduce the second equation of water waves, we start again with the Euler equation and

use the vectorial identity

~u �∇~u � ∇
� |u|2

2

	
� ~u^ rot~u

to write the second equation of (B.0.1) as

Bt~u�∇
� |u|2

2

	
� ~u^ rot~u � �∇pP � gyq . (B.2.11)

In particular, (B.2.11) is equivalent to

Bt
�
∇Φ�

�
�γy

0

�	
�∇

� |∇Ψ|2
2

	
� γ∇Ψ�∇pP � gyq � 0 .

where we have used that ~u � ��γy
0

��∇Φ, |~u|2 � |∇Ψ|2 and

~u^ rot~u � γ

�
v

�u

�
� �γ∇Ψ ,

which follows by (B.0.5) and (B.2.9), Therefore, in the time dependent �uid domain we have

that

BtΦ� |∇Ψ|2
2

� γΨ� P � gy � Cptq (B.2.12)

for some Cptq, which determines the pressure in the �uid. The equation (B.2.12) is a generaliza-

tion of the Bernoulli theorem for ideal �uid with constant scalar vorticity

Evaluating (B.2.12) at the free surface, and imposing the last dynamic condition in (B.0.3)
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we obtain that

Φt � |∇Ψ|2
2

� γΨ� κ
� ηxa

1� η2
x

	
x
� gη � cptq at y � ηpt, xq , (B.2.13)

where cptq � Cptq � P0.

We want to write now the equation in (B.2.13) in terms of η, ψ only. We use the following

preliminary lemma. Given a 2π-periodic function fpxq with zero average we de�ne g :� B�1
x f

the unique 2π-periodic function with zero average such that Bxg � f .

Lemma B.7. There is c0ptq such that

Ψpt, x, ηpt, xqq � �γ
2η

2 � B�1
x Gpη, hqψ � c0ptq . (B.2.14)

Proof. By Lemma B.5, we have that

d

dx

�
Ψpt, x, ηpt, xqq � γ

2η
2
� � Ψxpt, x, ηpt, xqq �Ψypt, x, ηpt, xqqηx � γηηx

� �Φypt, x, ηpt, xqq � pΦxpt, x, ηpt, xqq � γηpt, xqq ηx � γηηx

(B.2.7)� �Gpη, hqψ .

By integrating on r0, xs, we obtain (B.2.14).

Remark B.8. The previous computation gives another proof that
³
TGpη, hqψ dx � 0.

Inverting with respect to Φx and Φy the following system, see (B.2.5) and (B.2.7),

ψx � Φx � Φyηx , Gpη, hqψ � Φy � Φxηx , at y � ηpt, xq , (B.2.15)

we get $''&''%
Φxpx, ηpxqq � ψx � ηxGpη, hqψ

1� η2
x

Φypx, ηpxqq � ψxηx �Gpη, hqψ
1� η2

x

.
(B.2.16)

By Lemma B.5 we have that, at y � η,

|∇Ψ|2
2

� pΦx � γηq2 � Φ2
y

2
� γ2 η

2

2
� Φ2

x � 2γΦxη � Φ2
y

2
. (B.2.17)

Moreover, by di�erentiating (B.2.5) with respect to t, we have, at y � ηpt, xq,

ψt � Φt � Φyηt

(B.2.13),(B.2.8)� �|∇Ψ|2
2

� γΨ� κ
� ηxa

1� η2
x

	
x
� gη � cptq � ΦypGpη, hqψ � γη ηxq .

(B.2.18)
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Now, by inserting (B.2.17), (B.2.18) and (B.2.16) into (B.2.13), we obtain, for some function

c̃ptq,

ψt � �gη � ψ2
x

2
� pηxψx �Gpη, hqψq2

2p1� η2
xq

� κ

�
ηxa

1� η2
x

�
x

� γηψx � γB�1
x Gpη, hqψ � c̃ptq ,

which is the second equation in (4.0.1).
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Appendix C

Technical results from Chapter 4

C.1 Integral operators

The results that we present in this section come from Section 2.3 of [44].

Integral operators with C8 kernels are operators in OPS�8, see De�nition 4.14. The respec-

tive norms are given in De�nition 4.15.

Lemma C.1 (Lemma 2.32, [44]). Let K � Kpλ; � q P C8 pTν � T� Tq. Then the integral

operator

pRuqpϕ, xq :�
»
T
Kpλ;ϕ, x, yqupϕ, yqdy (C.1.1)

is in OPS�8 and, for all m, s, α P N0, it holds that

}R}k0,υ
�m,s,α ¤ Cpm, s, α, k0q}K}k0,υ

Cs�m�α . (C.1.2)

Proof. The symbol associated to the integral operator (C.1.1) acting on periodic functions is

given, for any j P Z,
apλ;ϕ, x, jq :�

»
T
Kpλ;ϕ, x, yqeipy�xqj dy . (C.1.3)

In particular, we consider its extension on R

rapλ;ϕ, x, ξq :�
»
R
Kpλ;ϕ, x, yqθpyqei yξ dy , (C.1.4)

where the function θ P DpRq satis�es

sptpθq � r�4
3π,

4
3πs , θpxq � θpx� 2πq � 1 @x P r0, 2πs ,

¸
jPZ

θpx� 2jπq � 1 @x P R .

In particular, the Fourier transform pθpξq P SpRq satis�es pθp0q � 1 and pθpjq � 0 for any j P Zzt0u.

239
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Indeed, pθpjq :� 1

2π

»
R
e�i jxθpxq dx � 1

2π

� » 0

�2π
e�i jxθpxq dx�

» 2π

0
e�i jxθpxq dx

	
� 1

2π

» 2π

0
e�i jxpθpxq � θpx� 2πqq dx � 1

2π

» 2π

0
e�i jx dx � δ0,j .

The function in (C.1.4) is C8 in pϕ, x, ξq and k0-times di�erentiable with respect to λ. Therefore,

by the Poisson summation formula, we have that

rapλ;ϕ, x, ξq �
¸
jPZ

apλ;ϕ, x, jqpθpξ � jq , (C.1.5)

so that rap�; �, �, jq � ap�; �, �, jq for any j P Z. We show now that Oppraq P OPS�8 with the

required estimate.

Let ξ P pj � 1
3 , j � 1

3q for some j P Z. By (C.1.5), (C.1.3) and (4.2.10), for any m, q, β P N0,

n P Nν0 and k P Nν�1
0 , with |k| ¤ k0, we have

pi ξqm�β BkλBnϕBqxBβξ rapλ;ϕ, x, ξq �
¸
j1PZ

BkλBnϕBqxapλ;ϕ, x, j1qpi ξqm�βBξpθpξ � j1q

¤ Cβ BkλBnϕBqxapλ;ϕ, x, jqpijqm�β

� Cβ
¸

q1�q2�q
Cq1,q2

»
T
pBkλBnϕBq1x Kqpλ;ϕ, x, yqBq2�m�βy peipy�xqjqdy

�
¸

q1�q2�q
Cq1,q2,m,β

»
T
pBkλBnϕBq1x Bq2�m�βy Kqpλ;ϕ, x, yq eipy�xqj dy .

It follows that, for any m, q, β P N0, n P Nν0 and k P Nν�1
0 , with |k| ¤ k0, there exists a constant

Cpm, q, βq ¡ 0 such that

|BkλBnϕBqxBβξ rapλ;ϕ, x, ξq| ¤ Cpm, q, βqυ�|k|}K}k0,υ

Cm�q�β�|n| xξy�m�β ,

from which we obtain, for any m, s, β P N0 and k P Nν�1
0 , |k| ¤ k0, using that }u}s � }u}Hs

ϕL
2
x
�

}u}L2
ϕH

s
x
,

}Bβξ Bkλrapλ; �, �, ξq}s xξy�m�β �
�
}Bβξ Bkλrapλ : �, �, ξq}L2

ϕL
2
x
� }BsxBβξ Bkλrapλ : �, �, ξq}L2

ϕL
2
x

� sup
|n|�s

}BnϕBβξ Bkλrapλ : �, �, ξq}L2
ϕL

2
x

	
xξy�m�β

Às,m,β υ�|k|}K}k0,υ
Cs�m�β .

Then, the estimate (C.1.2) follows by De�nition 4.15.
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An integral operator transforms into another integral operator under a change of variables

Pupϕ, xq :� upϕ, x� ppϕ, xqq . (C.1.6)

Lemma C.2 (Lemma 2.34, [44]). Let K � Kpλ; � q P C8pTν�T�Tq and ppλ; � q P C8pTν�T,Rq.
There exists δps0, k0q ¡ 0 such that, if }p}k0,υ

2s0�k0�1 ¤ δps0, k0q, then the integral operator R in

(C.1.1) transforms into the integral operator pP�1RP qupϕ, xq � ³
T K̆pλ;ϕ, x, yqupϕ, yq dy with

C8 kernel

K̆pλ;ϕ, x, zq :� �
1� Bzqpλ;ϕ, zq�Kpλ;ϕ, x� qpλ;ϕ, xq, z � qpλ, ϕ, zqq , (C.1.7)

where z ÞÑ z � qpλ;ϕ, zq is the inverse di�eomorphism of x ÞÑ x � ppλ;ϕ, xq. The function K̆

satis�es, for all s ¥ s0,

}K̆}k0,υ
s ¤ Cps, k0q

�}K}k0,υ
s�k0

� }p}k0,υ
s�k0�1}K}k0,υ

s0�k0�1

�
. (C.1.8)

Proof. We have that

pRP qpϕ, xq �
»
T
Kpλ;ϕ, x, yqupϕ, y � ppλ;ϕ, yqq dy .

By making the change of coordinates z � y � ppλ;ϕ, yq, we get the operator pP�1RP qupϕ, xq �³
T K̆pλ;ϕ, x, yqupϕ, yq dy with K̆ as in (C.1.7).

The function qpλ;ϕ, zq satis�es qpλ;ϕ, zq � ppλ;ϕ, z� qpλ;ϕ, zqq � 0. By a standard implicit

function argument, we have that qpλ; � q P C8pTν � T,Rq, k0-times di�erentiable with respect

to λ, and satis�es the estimates in Lemma 4.19. Therefore, we get K̆pλ; � q P C8pTν � T,Rq,
k0-times di�erentiable with respect to λ, and it satis�es the estimate (C.1.8) by Lemma 4.19 and

estimate (4.2.7).

We provide this estimate for the integral kernel of a family of Fourier multipliers in OPS�8.

Lemma C.3 (Lemma 2.28, [44]). Let gpλ;ϕ, ξq be a family of Fourier multipliers with Bkλgpλ; g, � q P
S�8 for all k P Nν�1

0 , |k| ¤ k0. Then the operator Oppgq is an integral operator with a C8 kernel

Kg � Kgpλ; � q satisfying }Kg}k0,υ
Cs À }Oppgq}k0,υ

�1,s�s0,0 � }Oppgq}k0,υ
�s�s0�1,0,0, for all s P N0.

Proof. The operator Oppgq acting on periodic functions admits the integral representation

rOppgquspϕ, xq �
»
T
Kgpλ;ϕ, x, yqUpϕ, yq dy ,

Kgpλ;ϕ, x, yq :� 1

2π

¸
jPZ

gpλ;ϕ, jqeipx�yqj .
(C.1.9)

Then the estimate on Kg follows directly from its de�nition in (C.1.9).
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On 2π-periodic functions the Hilbert transform H, de�ned as a Fourier multiplier in (4.2.19),

acts as

Hupxq � 1

2π
p.v.

»
T

upyq
tanp1

2px� yqq dy

:� lim
εÑ0

1

2π

! » x�ε
x�π

�
» x�π
x�ε

) »
T

upyq
tanp1

2px� yqq dy .

(C.1.10)

The commutator between the Hilbert transform and the multiplication operator by a smooth

function a is a regularizing operator in OPS�8.

Lemma C.4 (Lemma 2.35, [44]). Let apλ; � q P C8 pTν � Tx,Rq. Then the commutator ra,Hs
is in OPS�8 and satis�es, for all m, s, α P N0,

}ra,Hs}k0,υ
�m,s,α ¤ Cpm, s, α, k0q}a}k0,υ

s�s0�1�m�α . (C.1.11)

Proof. By (C.1.10), the commutator

pHa� aHqupxq � 1

2π
p.v.

»
T

papyq � apxqqupyq
tanp1

2px� yqq dy �
»
T
Kpx, yqupyqdy

is an integral operator with C8 kernel given by

Kpλ;ϕ, x, yq :� apyq � apxq
tanp1

2px� yqq �
� » 1

0
axpλ;ϕ, x� tpy � xqq dt

	 y � x

tanp1
2px� yqq .

Then we obtain the estimate (C.1.11) by Lemma C.1 and the bound }K}k0,υ
Cs Às }K}k0,υ

s�s0 Às
}a}k0,υ

s�s0�1 for any s ¥ 0.

Lemma C.5 (Lemma 2.36, [44]). Let p � ppλ; � q P C8pTν�1q and P � P pλ; � q be the associated
change of variable in (C.1.6). There exists δps0, k0q ¡ 0 such that, if }p}k0,υ

2s0�k0�1 ¤ δps0, k0q,
then the operator P�1HP �H is an integral operator with a C8 kernel K � Kpλ; � q satisfying
for all s ¥ s0,

}K}k0,υ
s ¤ Cps, k0q}p}k0,υ

s�k0�1 . (C.1.12)

Proof. Changing the variable z � y � ppλ;ϕ, yq in (C.1.10), we get

pP�1HP qupϕ, xq � 1

2π
p.v.

»
T

upϕ, zqp1� Bzqpλ;ϕ, zqq
tan

�
1
2px� z � qpλ;ϕ, xq � qpλ;ϕ, zqq� dz .
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It follow that the operator P�1HP �H is an integral operator with C8 kernel

Kpλ;ϕ, x, zq � 1

2π

� 1� Bzqpλ;ϕ, zq
tan

�
1
2px� z � qpλ;ϕ, xq � qpλ;ϕ, zqq� � 1

tanp1
2px� zqq

	
� � 1

π
Bz ln

�sin
�

1
2px� z � qpλ;ϕ, xq � qpλ;ϕ, zqq�

sinp1
2px� zqq

	
� � 1

π
Bz lnp1� gpλ;ϕ, x, zqq ,

where the family of C8 functions

gpλ;ϕ, x, zq � cos
�qpλ;ϕ, xq � qpλ;ϕ, zq

2

	
� 1

� cos
�x� z

2

	sin
�

1
2pqpλ;ϕ, xq � qpλ;ϕ, zqq�

sinp1
2px� zqq

satis�es the estimate }g}k0,υ
s Às }q}k0,υ

s�1 Às }p}k0,υ
s�k0�1 by Lemma 4.19. Then the estimate (C.1.12)

follows by Lemma 4.13.

C.2 Estimates for the approximate inverse

The proofs of this section are a readaptation of the results in Section 5 of [44].

Proof of the estimates in Lemma 4.60 We prove tame estimates for the composition

operator induced by the Hamiltonian vector �eld XP � pBIP,�BθP,Π=

S�,ΣqJ∇wP in (4.4.6). By

de�nition (4.4.4), P � Pε �A, where A is de�ned in (4.1.50) and Pε in (4.4.2). Hence

XP �

��� rBIvᵀpθ, IqsT∇PεpApθ, I, wqq
�rBθvᵀpθ, IqsT∇PεpApθ, I, wqq

Π=

S�,ΣJ∇PεpAp, θ, I, wqq

��
 , (C.2.1)

where Π=

S�,Σ is the symplectic projection on the normal subspace H=

S�,Σ de�ned in (4.1.42). Now,

∇Pε � �JXPε , where

XPε �

����
ε�1pGpεηq �Gp0qqpζ � γ

2B�1
x ηq � η ηx

�1
2ppζ � γ

2B�1
x ηqxq2 � pεηxpζ�γ2 B

�1
x ηqx�Gpεηqpζ�γ2 B

�1
x ηqq2

2p1�ε2η2
xq � ε�1κηxxpp1� ε2η2

xq�
3
2 � 1q

�γηpζ � γ
2B�1
x ηqx � ε�1 γ

2B�1
x pGpεηq �Gp0qqpζ � γ

2B�1
x ηq � γ

2B�1
x pη ηxq

���
 .

The smallness condition of Lemma 4.22 is ful�lled because

}η}k0,υ
3s0�2k0�5 ¤ ε}Apθp�q, Ip�q, wp�qq}k0,υ

3s0�2k0�5 Às0 εp1� }I}k0,υ
3s0�2k0�5q ¤ δps0, k0q
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for ε ¡ 0 small enough. Moreover, by Lemma 4.13 and the analyticity of the functions in (4.1.50),

we have, for any α, β P Nν0 , with |α| � |β| ¤ 3, and any s ¥ s0,

}Bαθ BβI vᵀpθp�q, Ip�qq}k0,υ
s Às 1� }I}k0,υ

s . (C.2.2)

Thus, by Lemma 4.22, the interpolation inequality (4.2.7) and (C.2.2), we get

}∇PεpApθp�q, Ip�q, wp�qqq}k0,υ
s Às }Apθp�q, Ip�q, wp�qq}k0,υ

s�2s0�2k0�3 Às 1� }I}k0,υ
s�2s0�2k0�3 . (C.2.3)

Hence, by (C.2.1), (4.2.7), (C.2.2) and (C.2.3), we conclude that, for any s ¥ s0,

}XP piq}k0,υ
s Às 1� }I}k0,υ

s�2s0�2k0�3 .

The other estimates in Lemma 4.60 for diXp and d2
iXP follow by di�erentiating the expression

of XP in (C.2.1), applying Lemma 4.22 and estimates (4.2.7), (C.2.2), (C.2.3).

Proof of the estimates in Lemma 4.61 We �rst prove the estimate (4.5.4) for the coe�cients

Akjpϕq de�ned in (4.5.3). By Lemma 5 in [34], the coe�cients satisfy the identity

ω � BϕAkj �WpBϕZpϕqek, Bϕi0pϕqejq �WpBϕi0pϕqek, BϕZpϕqejq ,

where W is the symplectic form in (4.1.15), (4.1.54), ek denotes the k-th versor of Rν and Zpϕq
is the error function de�ned in (4.5.5). Then, by (4.2.7) and (4.5.1), we get

}ω � BϕAkj}k0,υ
s Às }Z}k0,υ

s�1 � }Z}k0,υ
s0�1}I0}k0,υ

s�1

and (4.5.4) follows by applying pω � Bϕq�1
ext de�ned in (4.2.9) and the estimate (4.2.11).

Now, the estimate (4.5.7) follows by (4.5.6), (4.5.2), (4.5.3), (4.2.7), and (4.5.1). The estimate

(4.5.8) follows by (4.5.6) and (4.5.4). The estimate (4.5.10) follows by (4.5.6), (4.5.2), (4.5.3)

and (4.5.1). It remains to show the bound in (4.5.9). We have

Fpiδ, α0q � Fpi0, α0q �

��� 0

ω � BϕpIδ � I0q
0

��
� εpXP piδq �XP pi0qq

� Fpi0, α0q �

��� 0

ω � BϕpIδ � I0q
0

��
� ε

» 1

0
BIXP pλiδ � p1� λqi0q � pIδ � I0q dλ .

(C.2.4)
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By di�erentiating (4.5.6) and arguing as in [34], we get

ω � BϕpIδ � I0q � rBϕθ0pϕqs�Jω � Bϕρpϕq
� �rBϕθ0pϕqs�Jpω � BϕrBϕθ0pϕqsJqrBϕθ0pϕqs�J

�
ρpϕq ,

ω � BϕrBϕθ0pϕqs � εBϕpBIP qpi0pϕqq � BϕZ1pϕq .
(C.2.5)

Then the estimate (4.5.9) follows by (C.2.4), (C.2.5), (4.4.6), Lemma (4.60) and estimates (4.2.7),

(4.5.8), (4.5.1), (4.5.4).

Proof of the estimates in Lemma 4.63 By (4.5.19) and using that iδpφq � Gδpφ, 0, 0q, we
have that

XKα0
pφ, 0, 0q � pDGδpφ, 0, 0qq�1XHα0

pφ, 0, 0q � pDGδpφ, 0, 0qq�1pω � Bφiδpφq �Zδpφqq , (C.2.6)

where Zδ � pZ1,δ, Z2,δ, Z3,δq :� Fpiδ, α0q. Moreover, from (4.5.24) we get

XKα0
�

��� K10pφ, α0q
�BϕK00pφ, α0q
J=K01pφ, α0q

��
 (C.2.7)

with J= de�ned in (4.1.47). By combining (C.2.6), (C.2.7) together with the inverse of the linear

operator in (4.5.29) and

pDGδpφ, 0, 0qq�1Diδpφqrωs � pω, 0, 0q ,

we deduce that

BφK00pφ, α0q � rBφθ0pφqsJ
�� rBφIδpφqsrBφθ0pφqs�1Z1,δ � Z2,δ

� rBθ rw0pθ0pφqqsJJ�1
=
Bφw0pφqrBφθ0pφqs�1Z1,δ � rBθ rw0pθ0pφqqsJJ�1

=
Z3,δ

�
,

K10pφ, α0q � ω � rBφθ0pφqs�1Z1,δ ,

K01pφ, α0q � J�1
=

�Bφw0pφqrBφθ0pφqs�1Z1,δ � Z3,δ

�
.

Then the estimates in (4.5.25) follow by (4.5.7), (4.5.8), (4.2.7), (4.5.1). As in [34, 14], by (4.5.19),

(4.5.12), (4.4.5), (4.5.29), it is possible to compute

BαK00pφq � Iδpφq BαK10pφq � rBφθ0pφqs�1 , BαK01pφq � �J�1
=
Bθ rw0pθ0pφqq ,

K20pφq � εrBϕθ0pϕqs�1BIIP piδpϕqqrBϕθ0pϕqs�J ,
K11pϕq � ε

�BI∇wP piδpϕqqrBϕθ0pϕqs�J � J�1
=
Bθ rw0pθ0pϕqqBIIP piδpϕqqrBϕθ0pϕqs�J

�
.

Then the estimates (4.5.26)-(4.5.28) follow by Lemmata 4.60, 4.61 and (4.5.1).
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Proof of Theorem 4.65 We claim that the �rst three components of T0g, with T0 de�ned

in (4.5.49), form a reversible traveling wave variation when g is an anti-reversible traveling wave

variation. Indeed, di�erentiating (4.5.13) it follows that DGδpϕ, 0, 0q, thus pDGδpϕ, 0, 0qq�1, is

reversibility and momentum preserving (cfr. (4.2.62)). In particular these operators map an

(anti)-reversible, respectively traveling, waves variation into a (anti)-reversible traveling waves

variation (cfr. Lemma 4.48). Moreover, by Proposition 4.64, the operator D�1 maps an anti-

reversible traveling wave into a vector whose �rst three components form a reversible traveling

wave. This proves the claim.

We now compute the operators P,Pω and PKω and prove that they are de�ned on traveling

waves. By (4.4.6), since XN is independent of the action I and iδ di�ers from i0 only in the

I-component, see Lemma 4.61, we have

di,αFpi0q � di,αFpiδq � ε

» 1

0
BIdiXP pθ0, Iδ � λpI0 � Iδq, w0qrI0 � Iδ,Πr � ss dλ �: E0 , (C.2.8)

where Π throughout this proof denotes the projection ppı, pαq ÞÑ pı. Denote by u :� pφ, y, wq the
symplectic coordinates induced by Gδ in (4.5.12). Under the symplectic map Gδ, the nonlinear

operator F in (4.4.6) is transformed into

FpGδpupϕqq, αq � DGδpupϕqqpω � Bϕupϕq �XKαpupϕq, αqq , (C.2.9)

where Kα � Hα � Gδ as in (4.5.19). By di�erentiating (C.2.9) at the trivial torus uδpϕq :�
G�1
δ piδqpϕq � pϕ, 0, 0q and at α � α0, we get

di,αFpiδq � DGδpuδqpω � Bϕ � du,αXKαpuδ, α0qqD rGδpuδq�1 � E1 , (C.2.10)

where

E1 :� D2GδpuδqrDGδUpuδq�1Fpiδ, α0q, DGδpuδq�1Πr � ss . (C.2.11)

In expanded form, ω � Bϕ � du,αXKαpuδ, α0q is provided in (4.5.30). By (4.5.37), (4.5.33) and

(4.5.35), we split

ω � Bϕ � du,αXKαpuδ, α0q � D�RZ � Rω � RK
ω , (C.2.12)

where

RZrpφ, py,pw, pαs :�

��� �BφK10pϕ, α0qrpφs
BφφK00pϕ, α0qrpφs � rBφK10pϕ, α0qsJpy � rBφK01pϕ, α0qsJpw

� J=BφK01pϕ, α0qrpφs
��
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and

Rωrpφ, py,pw, pαs :�

��� 0

0

Rωrpws
��
 , RK

ω rpφ, py,pw, pαs :�

��� 0

0

RK
ω rpws

��
 . (C.2.13)

By (C.2.8), (C.2.10), (C.2.11), (C.2.12), we get the decomposition

di,αFpi0q � DGδpuδq � D �D rGδpuδq�1 � E � Eω � EKω , (C.2.14)

where

E :� E0 � E1 �DGδpuδqRZD rGδpuδq�1 ,

Eω :� DGδpuδqRωD rGδpuδq�1 , EKω :� DGδpuδqRK
ωD

rGδpuδq�1 . (C.2.15)

Applying T0 de�ned in (4.5.49) to the right of (C.2.14), since D �D�1 � Id by Proposition 4.64,

we get

di,αFpi0q �T0 � Id � P � Pω � PKω ,

where

P � E �T0 , Pω � Eω �T0 , PKω � EKω �T0 .

A direct inspection of these formulas shows that P,Pω and PKω are de�ned on traveling wave

variations. In particular, note that the operators Rω, RK
ω in (C.2.13) are de�ned only if pw is

a traveling wave, because the operators Rω,RK
ω de�ned in (AI) act only on a traveling wave.

However, note that, if g is a traveling wave variation, the third component of D rGδpuδq�1T0g is

a traveling wave and therefore the operators Eω, EKω in (C.2.15) are well de�ned.

By Lemmata 4.60, 4.63, 4.61 and (4.5.1), (4.5.31), (4.5.32), we obtain the estimate

}Erpı, pαs}k0,υ
s Às }Z}k0,υ

s0�σ}pı}k0,υ
s�σ � }Z}k0,υ

s�σ}pı}k0,υ
s0�σ � }Z}k0,υ

s0�σ}pı}k0,υ
s0�σ}I0}k0,υ

s�σ , (C.2.16)

where Z � Fpi0, α0q, recall (4.5.5). The estimate (4.5.50) follows by (4.5.49), Proposition 4.64

and (4.5.31). The estimate (4.5.51) follows by (4.5.50), (C.2.16), (4.5.1). The estimates (4.5.52),

(4.5.54), (4.5.53) follow by the almost invertibility assumption (AI) on Lω, see (4.5.35), Lemmata

4.61, 4.63, (4.64) and estimates (4.5.50), (4.5.1), (4.5.31).
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