SISSA

Scuola
Internazionale
Superiore di
Studi Avanzati

Mathematics Area - PhD course in

Mathematical Analysis, Modelling, and Applications

Long time dynamics of Hamiltonian PDEs:

linear Klein-Gordon and water waves equations

Candidate: . A];jgs?;
Luca FRANZOI ror. Massimiliano R
Co-advisor:

Dott. Alberto MASPERO

Academic Year 2019-20

Q~\|\RTUT5






To my family

and my friends






I like to keep my issues strong,
It’s always darkest before the dawn...
Florence + the Machine - "Shake It Out"






Contents

1__Introduction| 11
L1 Mainresultsl . . . . . . . . . 12
[1.1.1  Reducibility for the tast driven linear Klein Gordon equation| . . . . . .. 13

[1.1.2  Traveling quasi-periodic water waves with constant vorticity| . . . . . . . . 16

[1.1.3  Long time existence of periodic gravity-capillary water waves| . . . . . .. 23

[1.2  Historical background| . . . .. . .. . ... L o 26
121 KAMfor PDES . . . . . . . . oo 27

[1.2.2  Floquet theory and growth of Sobolev norms| . . . . . . .. ... .. ... 31

[1.2.3  The water waves problem| . . . . . . ... ... .. ... .. ........ 33

|2 Ideas of the proofs| 39
2.1 Ideas of the proof of Theorem 1.1\ . . . . . . .. . ... ... ... ... ...... 39
2.2 Ideas of the proof for Theorem 1.8 . . . . . .. . ... ... ... ... .. .... 42
[2.3  ldeas of the proof of Theorem 1.10[ . . . . . . . . ... .. ... ... ... .... 52

I3 Reducibility for a linear Klein-Gordon equation with a tast driven potentiall 57

3.1 Functional setting|. . . . . . . . . . . 59
[3.1.1  Pseudodifterential operators| . . . . . . . .. . ... L. 59
[3.1.2  Matrix representation and operator matrices|. . . . . . . .. . ... ... 61

3.2  The Magnus normal form| . . . . . . . ... ... ... o 66

3.3 Balanced unperturbed Melnikov conditions| . . . .. ... ... .. ... ... .. 70

3.4 The KAM reducibility transtormation| . . . . . . ... ... ... ... .. .... 74
[3.4.1  Preparation tor the KAM iteration| . . . . . . . .. ... ... ... .... 75
[3.4.2  General step of the reduction| . . . . . . ... ... ... ... ... 75
[3.4.3  Estimates for the general step| . . . . . . . ... .. ... ... ... 77
3.4.4 Iterative Lemma and KAM reductionl . . ... ... ... ... ... ... 79
45 A finalremarkl . .. ... 84



8 CONTENTS
4 Traveling quasi-periodic water waves with constant vorticity| 87
4.1 Hamiltonian structure and linearization at the origin|. . . . . . .. . ... .. .. 90
4.1.1  Hamiltonian structurel . . . . . . . . . . ... Lo 90
[4.1.2  Linearization at the equilibrium|. . . . . . ... .. ... ... ... .. .. 93
[4.1.3  Tangential and normal subspaces of the phase space] . . . . . ... .. .. 97

4.2 Functional setting|. . . . . . . . . . . 102
4.2.1 Pseudodifferential calculus . . . . . ... ... o o000 106
4.2.2 DFo_tame and modulo-tame operators| . . . . . . .. ... 111
[4.2.3  Tame estimates tor the flow of pseudo-PDEs|. . . . . . . ... .. ... .. 113
[4.2.4  Hamiltonian and Reversible operators| . . . . . .. .. ... ... ... .. 115
[4.2.5  Momentum preserving operators| . . . . . . .. .. ... L. 118

4.3 Transversality of linear frequencies| . . . . . . . . ... ... ... 121
4.4 Nash-Moser theorem and measure estimates . . . . . . . . . .. ... ... .... 128
[4.4.1  Nash-Moser theorem of hypothetical conjugation| . . . . . . . .. ... .. 129
442 Measure estimatesl . . . . .. ... 132

4.5 Approximate INVErse| . . . . . . . . v v i i e e e e e e e e e e 137
4.6 The linearized operator in the normal subspace] . . . . . . . . ... ... ... .. 146
[4.6.1 Quasi-periodic reparametrization of time|. . . . . . ... ..o 150
[4.6.2  Linearized good unknown of Alinhac| . . . . . . .. ... ... ... ... . 151
[4.6.3 Symmetrization and reduction of the highest order| . . . . . . . .. .. .. 152
[4.6.4 Symmetrization up to smoothing remainders| . . . . . . .. ... ... .. 162
4.6.5 Reduction of theorder 1. . . . . . . . . . . .. ... ... ... 165
4.6.6 Reduction of the order 1/2[ . . . . . ... ... ... ... ... ... 171
[4.6.7 Conclusion: partial reduction of L. . . . . . . .. ... ... ... .. .. 174

|.7  Almost-diagonalization and invertibility of £ . . . . . . . . . ... ... 177
4.8  Proot of the Nash-Moser Theorem| . . . . ... ... ... .. ... ... .... 188
|5 Quadratic life span of periodic gravity-capillary water waves| 195
b.1  Functional Setting and Paradifferential calculus| . . . . . . . . ... ... ... .. 198
5.2  Paradifferential reduction to constant symbols up to smoothing operators| 203
5.3 Poincaré - Birkhoft normal form at quadratic degree| . . . . . . . .. ... .. .. 206
[h.3.1  Three waves interactionsl . . . . . . . . . . ... oo 209
[5.3.2  Poincaré-Birkhoff normal form of the smoothing quadratic terms| . . . . . 210

5.4 Birkhoft normal form and quadratic life-span of solutions|. . . . . . . ... .. .. 213
[>.4.1 Normal form identification and proof of Theorem|1.9} . . . . . . .. .. .. 215
[>.4.2  Energy estimate and proot of Theorem [1.10] . . . . . . .. ... ... ... 219




CONTENTS

[A Technical results from Chapter [3]

IA.1 Properties of pseudoditterential operat

OTS| v v v v e e e

[A.2 Proof of Lemma 3.22 (Embedding)| .

[A.3 Proof of Lemma 3.15 (Algebra of the s-decay)| . . . ... ... ... ... .....

[A.4 Proof of Lemma 3.23 (Commutator)|

IB Derivation of water waves equations with constant vorticity|

[B.1 Helmholtz decomposition of a vector field on Dpp| . . . . . . . .. ... ... ...

|C Technical results from Chapter |4]

|C.1 Integral operators|. . . . . ... ...

|C.2  Estimates for the approximate inverse|

223
223
225
225
227

229
230
233

239
239
243

250



10

CONTENTS



Chapter 1

Introduction

The question of the long time behaviour for solutions of evolutionary linear and nonlinear partial
differential equations (PDEs) is a major problem in the analysis of dispersive equations arising in
physical models, as in quantum mechanics and fluid dynamics, for instance. When the motions
take place on compact domains, like the periodic torus T¢ := R%/(27Z)¢, and if the equations
have an Hamiltonian structrure, deeper insights have been obtained in the last decades by re-
garding such equations as infinite dimensional dynamical systems and combining PDEs tools
with the classical dynamical system theory, as KAM (Kolmogorov-Arnold-Moser) theory and
Birkhoff normal form, and with analytical techniques, as pseudo-/paradifferential calculus and
the Newton-Nash-Moser implicit function theory.

This thesis addresses some questions concerning the stability of the dynamics for three dis-
persive partial differential equations evolving in one dimensional space periodic variable. Assume

to deal with the Cauchy problem associated to a general dispersive PDE;,

u =Nu+P), w=u(tz), (t,z)€]0,T] xT
u(0,x) = up(z) € H*(T)

where N is an unbounded linear operator with purely imaginary discrete spectrum, P(u) is a
nonlinear function in u, eventually depending also on its derivatives, and H*(T) is the Sobolev

space of regularity s > 0 on the torus T := R/277Z. We consider the following questions:

e Growth in time for Sobolev norms of the solutions: for a global solution u € C([0, ), H*(T)),
provide time dependent, or eventually uniform in time, upper or lower bounds for the evo-

lution of the Sobolev norm [[u(t, )| gs(t);

o FExistence of time quasi-periodic solutions: determine a rationally independent frequency
vector w € R"\{0}, v > 1, namely w - £ # 0 for any ¢ € Z"\{0}, and a time quasi-periodic
solution u(t, z) = U(yp, )|p=wt, ¢ € TY, with a proper selection of the initial data;

11



12 CHAPTER 1. INTRODUCTION

e Long time existence of local well-posed solutions: for any initial datum wug(z) satisfying
|uol sy < €, determine lower bounds for time of existence T¢ > 0 such that the solution

u(t, z) stays small with the same size of ug, that is supsepo 7,7 |u(t, - )| ms(r) < Ce.
In particular, we provide positive answers for the following problems:

1. Reducibility for the fast driven linear Klein Gordon equation ([93], Chapter
3)): existence of a bounded invertible map that reduces the quasi-periodically forced linear

Klein-Gordon equation on the interval = € [0, 7]
Ugt — Ugy + MU + Vwt,z)u=0, wu(t,0)=u(t,m) =0, (1.0.1)

to a constant-coefficient, diagonal in Fourier system in the regime of fast oscillations |w| > 1
and almost conservation of the Sobolev norms (Theorem and Corollary [1.2));

2. Traveling quasi-periodic water waves with constant vorticity ([41], Chapter [4)):
existence of Cantor families of small amplitude, traveling quasi-periodic solutions for the
2-dimensional space periodic gravity capillary water waves system with constant scalar

vorticity vy e R

ne = Gy + e
V2 (ethr + G(n))? N ( e

bi=—gn— 2+ o
V1+n:

2 2(1+n2)
and their linear stability (Theorem [1.8] see Appendix [B]for the derivation of (1.0.2));

(1.0.2)

)x + by + 705 G ()Y

3. Long time existence of periodic gravity-capillary water waves ([38], Chapter
5)): time of existence of magnitude ¢~2 for solutions with initial data of size € of the

2-dimensional space periodic irrotational gravity capillary water waves equations

ne = G(n)y s,
_ V2 (e + G()1)? - 1.0.3
S ST ) +“(M>x

for any value of the parameters (k,g,h), even in presence of finitely many 3-waves reso-

nances (Theorem (1.9) and Theorem ([1.10)).

1.1 Main results

In this section we describe the detailed statements of the results briefly listed before, each one

followed by some comments about the novelties of the theorems.
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1.1.1 Reducibility for the fast driven linear Klein Gordon equation
We consider a linear Klein-Gordon equation with quasi-periodic driving

Ut — U + 020 + V(wt, z)u =0, zel0,m], teR, (1.1.1)

with spatial Dirichlet boundary conditions u(t,0) = u(t,7) = 0.
The potential V' : T x [0, 7] — R, is quasi-periodic in time with a frequency vector w € R”\{0}.
The main feature of this driving is that it is not perturbative in size, but we require it to be fast

oscillating, namely |w| > 1.

The goal is to provide, for any frequency w bhelonging to a Cantor set of large measure, a
reducibility result for the system (1.1.1)). That is, we construct a change of coordinates which
conjugates equation into a diagonal, time independent one. Up to our knowledge, this is
the first result of reducibility in an infinite dimensional setting in which the perturbation is not

assumed to be small in size, but only fast oscillating.

The potential driving V(wt, z) is treated as a smooth function V' : T x [0,7] 3 (p,z) —
V(p,z) € R, v > 1, which satisfies two assumptions:

(V1) The even extension in = of V (g, z) on the torus T ~ [—m, 7], which we still denote by V, is
smooth in both variables and it extends analytically in ¢ in a proper complex neighbour-
hood of T" of width p > 0. In particular, for any 8 € Ny := N u {0}, there is a constant
Cg,p > 0 such that

|07V (p.2)| < Cpp VaeT, [Ime <p;

(V2) {5 V(p,z)dp = 0 for any x € [0, 7].

To state precisely our main result, equation (1.1.1) has to be rewritten as a Hamiltonian
system. We introduce the new variables

V= By +iB 20, ¢ :=Bu—iB Y ?ou,

where

B:=+—-A+mn?; (1.1.2)

note that the operator B is invertible also when m = 0, since we consider Dirichlet boundary
conditions. In the new variables equation (1.1.1]) is equivalent to

i0p)(t) = BY(t) + % B2V (wt) B2 (4(t) + P(1)) (1.1.3)
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Taking (1.1.3) coupled with its complex conjugate, we obtain the following system

i0w(t) = H(t)y(t) , H(t) := (? _OB> +%B_1/2V(wt,x)B_1/2 (_11 _11> ;o (1.1.4)

where, abusing notation, we denote ¥(t) = (%gg) the vector with the components 1,1). The
phase space for (1.1.4) is H" x H", where, for r > 0,

H o= {e() = 3 wmsin(ma), v e [0,7] : [0l3e i= D ) [oml <0} . (115)

meN meN

Here we have used the notation (m) := (1 + |m|2)%7 which will be kept throughout Chapter

We define the v-dimensional annulus of size M > 0 by

RM = BQM(O)\BM(O) c Ry,
where Bj(0) denotes the ball of center zero and radius M in the Euclidean topology of R”.

Theorem 1.1. (Reducibility for the fast driven Klein-Gordon equation) Consider the
system (1.1.4) and assume (V1) and (V2). Fiz arbitrary r,m = 0 and o € (0,1). Fiz also an
arbitrary v« > 0 sufficiently small.

Then there exist My > 1, C' > 0 and, for any M = M, a subset Q% = Q5 (M, v4) in Ry, fulfilling

meas(Ry\Q%)

< Cryy,y
meas(Ry) e

such that the following holds true. For any frequency vector w € QY , there exists an operator
T (wt;w), bounded in L(H" x H"), quasi-periodic in time and analytic in a shrunk neighbourhood
of TV of width p/8, such that the change of coordinates ¥ = T (wt;w)w conjugates (1.1.4)) to the

diagonal time-independent system

DPe 0

i (t) = H®®w(t) , H™® ::( o pe

) , D% = diag {\F(w) : jeN}.  (1.1.6)

The transformation T (wt;w) is close to the identity, in the sense that there exists C, > 0 inde-

pendent of M such that
Cr
1T (wt;w) = L poggrwpry S =2 - (1.1.7)

M2

The new eigenvalues ()\;’»O (w))jen are real, Lipschitz in w, and admit the asymptotics, for j € N,

AP (W) = A (w, ) := \j + e (w, ), ] (w,a) ~O (Mjla> , (1.1.8)
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where \j = 4/j? +m? are the eigenvalues of the operator B.

The proof of Theorem is the content of Chapter [3] Let us make some comments:
1) Back to the original coordinates, the equation (1.1.1) is reduced to

Opu + (Doo,a)2 u=0;

2) The parameter «, which one chooses and fixes in the real interval (0, 1), influences the
asymptotic expansion of the final eigenvalues, as one can read from . Also the construction
of the set of the admissible frequency vectors heavily depends on this parameter;

3) In Theorem we can take also m = 0; indeed, with Dirichlet boundary conditions, the
unperturbed eigenvalues \; are simple, integers and their corrections are small (see ) This
means that it is enough to move the frequency vector w for avoiding resonances;

4) The assumptions of Theorem can be weakened, for example asking only Sobolev regu-
larity for V{(p, ), dropping (V2) or using periodic boundary conditions instead of the Dirichlet
ones. The result still holds and it is addresses in a forthcoming paper [92].

Let us denote by U, (t, 7) the propagator generated by such that U, (7,7) = 1 for any
7€ R. An immediate consequence of Theorem is that we have a Floquet decomposition:

Uy (t,7) = T(wt;w)* o e ETHY 6 T (7 w) (1.1.9)

Another consequence of (1.1.9)) is that, for any > 0, the norm |[U,,(t, 0)¢o||1r 2 is bounded

uniformly in time:

Corollary 1.2. (Almost conservation of the Sobolev norms) Let M > M, and w € Q%,. For

any r = 0 one has
Cr WOHerHr < |‘uw(t70)1/}0‘|’}-[”‘><7-[’" <G WOHH'r'xHr , VteR ViypgeH xH", (1.1.10)

for some ¢, > 0,C, > 0.
More precisely, there exists a constant ¢ > 0 such that, if the initial data g € H" x H", then

/

c c
(1 - M/@) %037 %2 < U (t 0)0llggr wqyr < (1 + era) Yol 3rxprs VEER.
2

Remark 1.3. Corollary shows that, if the frequency w is chosen in the Cantor set %, no
phenomenon of growth of Sobolev norms can happen. On the contrary, if w is chosen resonant,

one can construct drivings which provoke norm explosion with exponential rate. For an overview
of the literature, we remind to the discussion in Section [[.2.2]

The main ideas for the proof of Theorem will be presented in Section
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1.1.2 Traveling quasi-periodic water waves with constant vorticity

We consider the Euler equations of hydrodynamics for a 2-dimensional perfect, incompressible,
inviscid fluid with constant vorticity v, under the action of gravity and capillary forces at the free
surface. The fluid fills an ocean with depth h > 0 (eventually infinite) and with space periodic

boundary conditions, namely it occupies the region
Dyn:={(z,y) e TxR : —h<y<n(tz)}, T:=T,:=R/(2rZ). (1.1.11)

In case of a fluid with constant vorticity v, — u, =: v € R, the velocity field is the sum of

the Couette flow (_g y), which carries all the vorticity + of the fluid, and an irrotational field,

expressed as the gradient of a harmonic function ®, called the generalized velocity potential.
Denoting by (¢, z) the evaluation of the generalized velocity potential at the free interface

W(t,x) ;== ®(t,z,n(t, z)), one recovers ¢ by solving the elliptic problem
AP =0 inDyn, ®=v aty=n(tz), &, —0 asy— —h. (1.1.12)
The third condition in (1.1.12)) means the impermeability property of the bottom

¢, (t,z,~h) =0, if h < 00, lim ®,(t,z,y) =0, if h = 400.
y——00
Imposing that the fluid particles at the free surface remain on it along the evolution (kinematic
boundary condition), and that the pressure of the fluid plus the capillary forces at the free surface
is equal to the constant atmospheric pressure (dynamic boundary condition), the time evolution

of the fluid is determined by the following system of equations

ne = Gy + ye

by = ‘9’7‘%+w;(1++n(§7>)w) +K( n

(1.1.13)

) + by + 70, G(n)Y .

V1+nil

Here g > 0 is the gravity, x > 0 is the surface tension coefficient and G(n) is the Dirichlet-

Neumann operator

( )w G 777 V 1+ 77:1: |y n(z) = (_(I)z"?x + q)y)|y=n(x)' (1114)

It is well known since Calderon that the Dirichlet-Neumann operator is a pseudo-differential

operator with principal operator given by the Fourier multiplier

D tanh(hD) ifh <o 1
G(0) := G(0,h) = where D:==0,, (1.1.15)
|D| if h =+, 1
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with symbol
jtanh(hj) ifh < o0
G;(0) :== G;(0,h) = (1.1.16)
7] ifh=+400.

Actually, we have G(n) — G(0) € OPS™®, see for instance [44, [13].

The irrotational model v = 0 was formulated by Zakharov[I74] and Craig, Sulem [68] , while
Constantin, Ivanov, Prodanov [58] and Wahlén [163] provided the system (1.1.13]) for any v € R.
The derivation of the equations (|1.1.13)) is available in Appendix

The water waves equations ([1.1.13]) are a Hamiltonian system. Indeed, as observed in the
irrotational case v = 0 by Zakharov [I74] and later in presence of any v € R by Wahlén [163],

they are equivalent to write

where V denotes the L?-gradient, with Hamiltonian

H(Uﬂﬁ):;JT<¢G(n)w+gn2)dx+mﬁr«/l+77%dx+;JT( ban® + n)d:z: (1.1.18)

For any nontrivial value of the vorticity v # 0, the system (1.1.17) is endowed with a non

canonical Poisson structure: it will be discussed with more details in Section [4.1.11

The equations ([1.1.13)) enjoy two important symmetries. First, they are time reversible: we
say that a solution of (|1.1.13]) is reversible if

n(—t,—x) =n(t,x), P(—t,—x)=—Y(t, x). (1.1.19)

Second, since the bottom of the fluid domain is flat, the equations (1.1.13)) are invariant by space

translations and, by Noether Theorem, it implies that the momentum §. 7, (z)y(z) dz is a prime

integral of (1.1.13).
The variables (7, 1) of system (1.1.13]) belong to some Sobolev space H(T) x H*(T) for some

s large. Here H§(T), s € R, denotes the Sobolev space of functions with zero average
HE(T) = {u e H*(T) : f u(z)dz = o}
T

and H* (T), s € R, the corresponding homogeneous Sobolev space, namely the quotient space
obtained by identifying all the H*(T) functions which differ only by a constant. For simplicity
of notation, we shall denote the equivalent class [)] = {0 + ¢ : ¢ € R} just by 9. This choice

of the phase space is allowed because ST n(t,z)dx is a prime integral and the right hand side of
(T.1:13) depends only on 1 and ¢ — 5= {1 dz.
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A fundamental role is played by the system obtained linearizing at the equilibrium
(n,v) = (0,0), namely
om =G0y
oy =—(g— K7+~ G(0)Y.

The Dirichlet-Neumann operator at the flat surface n = 0 is the Fourier multiplier defined in

(1.1.20)

(1.1.15)), (1.1.16). The linear frequencies are given by

v G :
Q; := Q(k) = (K, B, g,7) = \/(m +g+ TN GH0) + 2T jeT\{o}. (1.121)
Note that the map j — Q;(k) is not even due to the vorticity term 3G;(0)/j, which is odd in j.
In the Euclidean case x € R, all the solutions of (|1.1.20)) disperse to 0 as t — oo. On the
contrary, on the compact periodic domain x € T, all the solutions of the linear system (1.1.20))

are either periodic, quasi—periodic or almost periodic in time, with linear frequencies Qj(k).

As we will show in Section 2| all reversible solutions (see (1.1.19)) of (1.1.20)) are
n(t,z)\ Z M, py, cos(nx — )t
vt z)) 0\ Pappsin(nx — K)t)

np—n cos(nx + Q_,(k)t
2 ( w))

S \Lnpn sin(nx + Q_

(1.1.22)

where p, > 0 are arbitrary amplitudes and M,,, Py, are the real coefficients

FNT

7 M
2 n

M; := rooy | 0 JEMOY, Pan = + M, ', neN.

G;(0)
Kj2+ g+ 15

Note that the map j — M is even. Furthermore, note that the functions in (1.1.22) are linear

superposition of plane waves traveling either to the right or to the left.

Remark 1.4. Actually, (1.1.22) contains also standing waves, for example when the vorticity
~ = 0 (which implies Q_,, (k) = Q,(k), P_, = —P,) and p_,, = p,, giving solutions even in z.
This is the well known superposition effect of waves with the same amplitude, frequency and

wavelength traveling in opposite directions.
We first provide the notion of quasi-periodic traveling wave.
Definition 1.5. (Quasi-periodic traveling wave) We say that (n(t,z),¢(t,x)) is a time

quasi-periodic traveling wave with irrational frequency vector w = (w1,...,w,) € R, v € N,

ie. w-l # 0 for any ¢ € Z"\{0}, and “wave vectors” (ji,...,J,) € Z¥, if there exist functions
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)

(17,7)) : TV — R? such that

n(t7x) — ﬁ(wlt_j1x7"‘7wyt_jl/x) (1 1 23)
Y(t,x) Y(wit — 1z, ..., wyt — Jux)
Remark 1.6. If v = 1, such functions are time periodic and indeed stationary in a moving frame

with speed w1/j1. On the other hand, if the number of frequencies v is > 2, the waves (1.1.23)

cannot be reduced to steady waves by any appropriate choice of the moving frame.

We shall construct traveling quasi-periodic solutions of {|1.1.13]) with a diophantine frequency

vector w belonging to an open bounded subset Q in R”, namely, for some v e (0,1), 7 > v — 1,
DC(v,7) i= {we R R & fw-f| 2077, VeeZ\{0}}, (0 =max{l|g}. (1.1.24)

Regarding regularity, we will prove the existence of quasi-periodic traveling waves (1, @Zv)) belonging

to some Sobolev space

H (TR = {f(p) = Y, foc™ . freR2  |f|2i= Y IAKO® <o}, (11.25)

LeZv ez

Fixed finitely many arbitrary distinct natural numbers
Sti={n,....n}cN, 1<n<...<m,, (1.1.26)

and signs
Y:={o1,...,00}, o.€{-1,1}, a=1,...,v, (1.1.27)

consider the reversible quasi-periodic traveling wave solutions of the linear system (|1.1.20)) given

by
(mum>: 5 (MMVEw%mﬂ— mmm)
P(t, x) 11 Py /&n, sin(fgx (K)t)

ae{l,...,v: oq=

2 Mnaw/f—na cos(Tigz + Q_p, (K)t)
1 A &, sin(Mgx + Q_57, (K)t)
where {45, > 0, a =1,...,v. The frequency vector of (4.0.6) is ﬁ(/@) = (Qoomg (K))a=1,.. € R”.

Remark 1.7. If 0, = +1, we select in (4.0.6) a right traveling wave, whereas, if 0, = —1, a left
traveling one. By (4.0.4), the linear solutions (4.0.6)) are genuinely traveling waves: superposition

(1.1.28)
+

ae{l,...,v: oq=

of identical waves traveling in opposite direction, generating standing waves, does not happen.

The result in Theorem |1.8] m shows that the linear solutions can be continued to quasi-
periodic traveling wave solutions of the nonlinear water waves equatlons , for most values

of the surface tension & € [k1, k2], with a frequency vector € := (anna)a 1w close to (k) :=

-----
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(.7, (K))a=1,..,. Here is the precise statement.

Theorem 1.8. (KAM for traveling gravity-capillary water waves with constant vor-

ticity) Consider finitely many tangential sites ST < N as in (4.0.4) and signs ¥ as in (4.0.5)).
Then there exist 5 > 0, g9 € (0,1) such that, for every |£| < €2, € := ((puna)a=t,.» € RY, the
following hold:

1. there exists a Cantor-like set G¢ C [K1, k2] with asymptotically full measure as & — 0, i.e.

lime_0 |Ge| = ko — k1

2. for any K € Ge, the gravity-capillary water waves equations (1.1.13) have a reversible quasi-
periodic traveling wave solution (according to Definition[1.5) of the form

(n(t, w)) _ ¥y <Mna &, cO8(a g”znaw)t))
Y(t,x) acil P /&, sin(ngz — Qg, (K)t)

..... v og=+1

My, /€ n, cos(Tax + Oz, (K)t)
Y (pw J€ m sin(Raz + 0, (m)t)) it

(1.1.29)

ae{l,...,v}: oq=—1

where

r(t,x) = %(ﬁalﬁl(m)t—alﬁlx, ol ﬁgﬁu (k)t—o,myx), T€ Hg(T”,Rz) ,  lim 7=

=0,
0 4/[¢]

with a Diophantine frequency vector Q= (ﬁgaﬁa)azlw,W e RY, depending on k,&, and

satisfying lime_,o 0= Q(Ii) In addition these quasi-periodic solutions are linearly stable.

The proof of Theorem [I.§]is the content of Chapter ]l Let us make some comments.
1) Theorem holds for any value of the vorticity v, so in particular it guarantees existence

of quasi-periodic traveling waves also for irrotational fluids, i.e. v = 0. In this case the solutions
do not reduce to those in [44], which are standing, i.e. even in x. If the vorticity v # 0,
one does not expect the existence of standing wave solutions since the water waves vector field
does not leave invariant the subspace of functions even in x.

2) Theorem produces time quasi-periodic solutions of the Euler equation with a ve-
locity field which is a small perturbation of the Couette flow (*g y). Indeed, from the solution
(n(t,z),¥(t, z)) in ([4.0.9), one recovers the generalized velocity potential ®(¢,z,y) by solving the
elliptic problem (|1.1.12]) and finally constructs the velocity field (Zg;g?ﬁ )= ("JY) +Ve(t,z,y).
The time quasi-periodic potential ®(¢,x,y) has size O(4/|€]|), as n(t, x) and ¥ (¢, ). Our pertur-
bation of the Couette flow, however, is not a shear flow anymore. For the nonlinear 2D Fuler
equations, it was proved by Bedrossian-Masmoudi [28] the asymptotic stability of shear flow

solutions near the Couette flow on T x R in the classes of Gevrey regularity s € (1/2,1], while
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Deng-Masmoudi [79] showed the instability of the same solutions when the Gevrey regularity is
strictly less than 1/2.

3) In the case v = 1 the solutions constructed in Theorem reduce to steady periodic
traveling waves, which can be obtained by an application of the Crandall-Rabinowitz theorem,
see e.g. [139] 162 [164].

4) Theorem selects initial data giving raise to global in time solutions of the water
waves equations . So far, no results about global existence for with periodic
boundary conditions are known. The available results concern local well posedness with a gen-
eral vorticity, see e.g. the work of Coutand and Shkoller [63], and a ¢~2 existence for initial data

of size € in the case of constant vorticity by Ifrim and Tataru [I13].

5) With the choice (#.0.4)-(#.0.5) the unperturbed frequency vector 3(k) = (., (k))a1.....
is diophantine for most values of the surface tension s and for all values of vorticity, gravity and

depth. It follows by the more general results of Sections and This may not be true for
an arbitrary choice of the linear frequencies Q;(x), j € Z\{0}. For example, in the case h = +o0,

the vector
Q(”) = (ans("@)aanz(“)vgfm(’i)vgm (K); Qny (K), Qng (H))

is resonant, for all the values of k, also taking into account the restrictions on the indexes for

the search of traveling waves, see Section Indeed, recalling (4.0.3) and that, for h = 400,
G,(0,h) = |j|, we have, for £ = (— lngy—ln,y, —Enl,fm,ﬁm,fna) that the system

—

Q(’i) : Z: ’Y(€n1 + an + fn3) =0, nl€n1 + n2£n2 + n3£n3 =0,

has integer solutions. In this case the possible existence of quasi-periodic solutions of the water
waves system ([1.1.13)) depends on the frequency modulation induced by the nonlinear terms.

6) COMPARISON WITH [44]. There are significant differences with respect to [44], which
proves the existence of quasi-periodic standing waves for irrotational fluids, not only in the result
—the solutions of Theorem are {raveling waves of fluids with constant vorticity— but also in

the techniques.

(i) The first difference —which is a novelty of this result— is a new formulation of degener-
ate KAM theory exploiting the “momentum conservation”, namely the invariance under space
translations of the Hamilton equations. The degenerate KAM theory approach for PDEs has
been developed by Bambusi, Berti, and Magistrelli [21], and then in [44], [13], in order to prove
the non-trivial dependence of the linear frequencies with respect to a parameter —in our case the
surface tension k—, see the “Transversality" Proposition A key assumption used in [21],
[44], [I3] is that the linear frequencies are simple (because of Dirichlet boundary conditions in

[21] and Neumann boundary conditions in [44], [13]). This is not true for traveling waves. In
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order to overcome this difficulty we strongly exploit the invariance of the equations under
space translations, which ultimately implies the restrictions to the indexes —. In
this way, assuming that the moduli of the tangential sites are all different as in , cfr. with
item 5), we can remove some otherwise possibly degenerate case. This requires to keep trace
along all the proof of the “momentum conservation property” that we characterize in different
ways in Section [.2.5] The momentum conservation law has been used in several KAM results
for semilinear PDEs since the works Geng and You [95] 96], who provided Birkhoff normal forms
and quasi-periodic solutions for the nonlinear Schréodinger equation on tori of dimension one and
higher, see also [124, 153, 142, 107, [89] and references therein. The present result gives a new
application in the context of degenerate KAM theory (with additional difficulties arising by the

quasi-linear nature of the water waves equations).

(7)) Other significant differences with respect to [44] arise in the reduction in pseudodiffer-
ential orders (Section of the quasi-periodic linear operators obtained along the Nash-Moser
iteration. In particular we mention that we have to preserve the Hamiltonian nature of these
operators (at least until Section . Otherwise it would appear a time dependent operator
at the order |D|/2, of the form ia(tp)H|D|é, with a(¢) € R independent of z, compatible with
the reversible structure, which can not be eliminated. Note that the operator ia(gp)’l—[|D|% is not
Hamiltonian (unless a(p) = 0). Note also that the above difficulty was not present in [44] dealing
with standing waves, because an operator of the form ia(ap)H|D|% does not map even functions
into even functions. In order to overcome this difficulty we have to perform symplectic changes
of variables (at least until Section[4.6.4), and not just reversible as in [44} [I3]. We finally mention
that we perform as a first step in Section f.6.1] a quasi-periodic time reparametrization to avoid
otherwise a technical difficulty in the conjugation of the remainders obtained by the Egorov
theorem in Section This difficulty was not present in [44], since it arises conjugating the
additional pseudodifferential term due to vorticity, see Remark [4.70]

7) Another novelty of our result is to exploit the momentum conservation also to prove that
the obtained quasi-periodic solutions are indeed quasi-periodic traveling waves, according to
Definition This requires to check that the approximate solutions constructed along the
Nash-Moser iteration of Section (and Section are indeed traveling waves. Actually this
approach shows that the preservation of the momentum condition along the Nash-Moser-KAM it-
eration is equivalent to the construction of embedded invariant tori which support quasi-periodic
traveling waves, namely of the form u(p,z) = U(p — Jz) (see Definition §.12), or equivalently,
in action-angle-normal variables, which satisfy . We expect this method can be used to

obtain quasi-periodic traveling waves for other PDE’s which are translation invariant.

In Section we further describe the main details for the proof of Theorem [I.§]
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1.1.3 Long time existence of periodic gravity-capillary water waves

We consider the Euler equations of hydrodynamics for a 2-dimensional perfect, incompressible,
inviscid and irrotational fluid under the action of gravity and capillary forces at the free surface.
The fluid fills an ocean with depth h > 0 (eventually infinite) and with space periodic boundary
conditions, namely it occupies the region D,y defined in . Since the fluid is irrotational
and incompressible, the velocity field is the gradient of an harmonic function ®, called velocity
potential, which solves the same problem (1.1.12) as in Section [1.1.2]

Imposing that the fluid particles at the free surface remain on it along the evolution (kinematic
boundary condition), and that the pressure of the fluid plus the capillary forces at the free surface
is equal to the constant atmospheric pressure (dynamic boundary condition), in the variable
n(t,z) and (t, z) := ®(t, z,n(t, x)), the time evolution of the fluid is determined, according to
Zahkarov [174] and Craig, Sulem [68], by the following system of equations

ne = G(n)y ( |
_ V2 (e + G()1)? T 1.1.30
S R (E B e

Here g > 0 is the gravity, x > 0 is the surface tension coefficient and G(n) is the Dirichlet-
Neumann operator G(n)¢) = (=®unz + Py)|y—r(a)-

As for the equations (1.1.13)), the system is Hamiltonian. Indeed, setting v = 0 in
(L.1.17)-(1.1.18), we have that (1, ) are canonical variables and

m=VyHn,¥), ¢=-VyH(n 1), (1.1.31)
where V denotes the L?-gradient, with Hamiltonian
Hp, ) — % qu (@G + g ) do + s qu Vi+nide. (1.1.32)
The system obtained linearizing at the equilibrium (n, ) = (0,0), namely

om = G(OW

(1.1.33)
o =—(9— "353)77-

The Dirichlet-Neumann operator at the flat surface n = 0 is the Fourier multiplier defined in

(1.1.15), (1.1.16). The linear frequencies are given by

Q= (k) = Q(s,h, g) := 4/ (1552 + 9)G;(0), 5 € Z\{0}. (1.1.34)

The main goal is to prove that, for any value of (k,g,h), K > 0, the gravity-capillary water
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waves system (|1.1.30)) is conjugated to its Birkhoff normal form, up to cubic remainders that
satisfy energy estimates (Theorem , and that all the solutions of {{1.1.30)), with initial data of
size € in a sufficiently smooth Sobolev space, exist and remain in an e-ball of the same Sobolev

space up times of order €2, see Theorem Let us state precisely these results.

Assume that, for s large enough and some 7" > 0, we have a classical solution
S
(n,0) € COU~T,T}; Hy ' # x H*~7) (1.1.35)

of the Cauchy problem for ({1.1.30). The existence of such a solution, at least for small enough

T, is guaranteed by local well-posedness theory, see the literature at the end of this chapter.

Theorem 1.9. (Cubic Birkhoff normal form) Let k > 0, g = 0 and h € (0,+o]. There
exist s » 1 and 0 < € < 1, such that, if (n,v) is a solution of (1.1.30) satisfying (5.0.4)) with

wp (Inleoy +1V1.-3) <7 (1.1.36)

te[-T.T]

. .
then there exists a bounded and invertible linear operator B(n, ) : H3+4 x H"1 — H?, which

depends (nonlinearly) on (n,1), such that

D3] , B(n,v))~" <
B0t g g F 1By -
1+ C(S)(HTIHHS% ol 1),
and the variable z := B(n,¥)[n, Y] satisfies the equation
0z = QD)2 +10:HD 1 (2,7) + X, (1.1.38)

where:

1. Q(D) is the Fourier multiplier u(z) = 3, ., ujeti® — Q(D)ufz) == 2040 Qjujeli®, where

the symbol Q; is defined in (1.1.34), and 0z is defined in (5.4.3);

2. the Hamiltonian HS\)IF(Z,E) has the form

(3) —— Z 01,02,03 01,02 03
Hgp(z,2) = Hj s %ir g2 %
o1j1+02j2+02j3=0,0;=1,
018, +028j, +038,=0,5,€Z\{0}

(1.1.39)

where z = Zj, 25

: ; =7; and z; denotes the j-th Fourier coefficient of the function z (see
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(5.1.2) ), and the coefficients

01,02,03 | _

iO‘Q
J1.J2.Js ﬁ(

with A(j) defined in (5.2.2) and G;(0) := j tanh(hyj);

o103j1j3 + G4,(0)G5,(0)) (1.1.40)

8. XIy = XZ3(n, v, 2, %) satisfies |\X;3HHS_% < C(S)HZHBHS and the “energy estimate”

Ref DA%, - Dz dz < C(s)|| 2], - (1.1.41)
T

The main point of Theorem is the construction of the bounded and invertible transfor-
mation B(n, ) in (1.1.37) which recasts the irrotational water waves system in the
Birkhoff normal form ([1.1.38)), where the cubic vector field satisfies the energy estimate .
We remark that Craig and Sulem [69] constructed a bounded and symplectic transformation that
conjugates (|1.1.30) to its cubic Birkhoff normal form, but the cubic terms of the transformed
vector field do not satisfy energy estimates.

We underline that, for general values of gravity, surface tension and depth (g, k,h), the
“resonant" Birkhoff normal form Hamiltonian HS\)IF in is non zero, because the system

Ulﬁjl +JQQj2 +U3Qj3 =0, 01j1 + 0292 + 0333 =0, (1.1.42)

for o; = £+, may possess integer solutions ji, j2, j3 # 0, known as 3-waves resonances In absence
of these resonances, existence results have been obtained for times of size ¢=2 by Totz and Wu
[161] for 1D pure gravity waves, by Ifrim and Tataru [I12] for pure capillarity waves, while an

* result on T? has been provided by Ionescu and Pusateri [I16]. The resonant Hamiltonian

672
H](s?i\)IF gives rise to a complicated dynamics, which, in fluid mechanics, is responsible for the
phenomenon of the Wilton ripples. Nevertheless we are able to prove the following long time

stability result.

Theorem 1.10. (Quadratic life span) For any value of (k,g,h), kK >0, g = 0, h € (0, +0],
there exists sog > 0 and, for all s = sg, there are ¢ > 0, ¢ > 0, C > 0, such that, for any
0 < e < €g, any nitial data

+4 s 1 )
(10, ¥0) € Hy (T, R) x H*H(T,R) with ol oy + [0l oy <, (1.1.43)
0

there ezists a unique classical solution (n,v) of (1.1.30) belonging to

1
s+

CO([—TS,TS],HO (T, R) x Hs*i(']I‘,]R)> with T, > ce 2,



26 CHAPTER 1. INTRODUCTION

satisfying (n,%)|,_, = (10, %0). Moreover

sup ([0l o1 + ] 0m1) < Ce. (1.1.44)
te[_T€7T€] ( I{O-'—4 H 4)
The proofs of Theorem and Theorem [I.10] are provided in Chapter 5] We describe some

key points concerning the proof of these results:

1) The long time existence Theorem is deduced by the complete conjugation of the water
waves vector field ([1.1.30)) to its Birkhoff normal form up to degree 3, Theorem and not just
on the construction of modified energies.

2) Since the gravity-capillary dispersion relation ~ |§ |% is superlinear, the equations
can be reduced, as in the work of Berti and Delort [37], to a paradifferential system with constant
coefficient symbols, up to smoothing remainders (see Proposition . At the beginning of
Section we remark that, thanks to the z-translation invariance of the equations, the symbols
in (5.2.10) of the quadratic paradifferential vector fields are actually zero. For this reason,
in Section it just remains to perform a Poincaré- Birkhoff normal form on the quadratic
smoothing vector fields, see Proposition [5.14]

3) Despite the fact that our transformations are non-symplectic (as in [37] and in the result
of Berti, Feola, Pusateri [39]), we prove, in Section [5.4.1} using a normal form identification
argument (simpler than in [39]), that the quadratic Poincaré-Birkhoff normal form term in (5.3.9)
coincides with the Hamiltonian vector field i&’gHg’])V p with Hamiltonian (5.0.8).

4) The Hamiltonian Hg) (2) == §; D)z - Z dz is a prime integral of the resonant Birkhoff
normal form d;z = iQ(D)z + i@gHg’])\,F(z,é). Moreover, since admits at most finitely
many integer solutions (Lemma@ the Hamiltonian Hg])\,F(z,Z) = HSJ)VF(Z'L,ZL) where 2z, :=

20<|j|<c zjeli% for some finite C > 0. Therefore, any solution z(t) of the Birkhoff normal form

satisfies, for any s > 0,
Iz, s |22 S HO (21(8) = HE (21.(0)), VieR,

and Hz(t)HiIS remains bounded for all times. Finally we deduce the energy estimate (5.4.27) for
the solution of the whole system (5.0.7), where we take into account the effect of XJ;, which
implies stability for all |t| < ce 2.

Further details for the proofs of Theorems[I.9] will be illustrated in Section [2.3]

1.2 Historical background

In the rest of this introductory chapter we outline the main mathematical ideas behind these

problems and their historical developments. In particular we present the main works and recent
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contributions about the KAM for PDEs theory, the growth of Sobolev norms and some literature

about the water waves equations.

1.2.1 KAM for PDEs

The classical KAM theory, named after the works of Kolmogorov [128], Arnold [10, 11] and
Moser [146] 147], concerns the persistence of invariant tori, Lagrangian or lower dimensional,
that support time quasi-periodic solutions for finite dimensional nearly-integrable Hamiltonian
and reversible systems. The generalization of such results to a PDE goes under the name of
"KAM for PDEs" theory.

When looking for quasi-periodic motions, already for finite dimensional systems, the main
difficulty arises from the presence of small divisors in an iterative scheme. These small divisors
enter as denominators in the coefficients of the Fourier expansion for the solution of the homo-
logical equation at each step of the KAM iteration and affect the convergence of the iterative
scheme. For instance, denoting by w € R”\{0} the frequency of oscillation on the invariant torus,
the set

{w-0: eZ"\{0}}

accumulates to 0. This issue can be solved by imposing non-resonance Diophantine conditions
of the form
lw- € =Zvll|”", YLeZ'\{0},

for some v € (0,1) and 7 > v — 1. Such conditions control the way the small divisors accumulate
to zero and are sufficient for the convergence of the scheme.

The investigation of periodic and quasi-periodic solution for PDEs, seen as lower dimensional
invariant tori for infinite dimensional dynamical systems, started in the 90’s. The two main

approaches for overcoming the small divisors difficulties are:
e normal form KAM methods;
e Newton Nash-Moser implicit function iterative scheme.

The first strategy was proposed initially by Kuksin [129] and Wayne [166] for bounded pertur-
bations of parameter dependent, one dimensional Schrédinger and wave equations with Dirichlet
boundary conditions, extended by Kuksin-Poschel [I132] and Péschel [I51] to parameter inde-
pendent nonlinear Schédinger and nonlinear wave equations. In this method the Hamiltonian is
moved into a normal form with an invariant torus at the origin by using canonical transforma-
tions that reduce step by step the size of the perturbation, extracting the effective contribution
to the perturbed frequencies of the motion. Here the small divisors arise in the solutions of the
so-called homological equations of each step of the iteration. Such equations are constant coeffi-

cients linear PDEs and to solve them one needs to impose second order non-resonance Melnikov
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conditions, for instance of the form
w - £+ Q) + Q@) = v,

where Q(j) denotes the normal frequency of the motion with respect to the tangential frequencies
on the aimed invariant torus. The final KAM invariant torus will be reducible, in the sense that
the linearized equation at it will be diagonal and constant coefficients. Geng, Xu and You [94]
proved a IKAM theorem for quasi-periodic solutions of the cubic Schrédinger equation on the two
dimensional periodic domain T?. In higher dimensions, Eliasson and Kuksin [84] introduced a
modified KAM scheme for the existence of quasi-periodic solutions of the nonlinear Schrédinger
equation on T¢ with an external convolution potential, while Procesi and Procesi [I53] extended

the result for the completely resonant cubic Schridinger equation.

The second method was introduced first by Craig and Wayne [70] for the search of peri-
odic solutions of a nonlinear wave equation with periodic boundary conditions, extended then
by Bourgain for the existence of quasi-periodic solutions of the nonlinear Schrédinger and wave
equations in one dimension [47]. In these cases, the presence of clusters of normal frequencies
seems incompatible with the KAM methods as in [I129], since the second order Melnikov con-
ditions are violated. After a Lyapunov-Schmidt decomposition, the search of invariant tori is
reduced to solve some nonlinear functional equations for the embedded torus. By means of
a quadratic Newton-type scheme, the solutions are obtained as the limit of a sequence of ap-
proximate solutions. This scheme requires to invert the linearized operator at any approximate
solution and in order to achieve this, a priori, only first order non-resonance Melnikov conditions

are needed, which are roughly of the form
w- £+ Q(5)] = v<HTT

As a drawback of having imposed only these conditions, the PDEs to solve at any step have
variable coefficients and, therefore, this method alone does not provide information for the linear
stability for the solutions. In one dimension, the Nash-Moser approach was extended, still for
periodic solutions, by Berti and Bolle in [30} B1] for completely resonant nonlinear wave equations
with Dirichlet boundary conditions, both with analytic and differentiable nonlinearities, see also
Gentile, Mastropietro and Procesi [97|. The higher dimensional case was first treated by Bourgain
in [50] in the search of time quasi-periodic solutions for the nonlinear Schrédinger equation on
T?, followed by the results on the nonlinear wave equations on T¢, d > 2, for time periodic [4S]
and quasi-periodic solutions [52]. The solutions provided by Bourgain are all extremely regular,
at least analytic. The extension of the Nash-Moser scheme to finite Sobolev regularity in higher
dimensions was considered by Berti and Bolle for quasi-periodic solutions on T? of the wave

equation [32] and of the nonlinear Schrédinger equation [33] with an external potential. We also
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mention the work of Berti and Procesi [45] and Berti, Corsi, Procesi [36], where an abstract
Nash-Moser theorem for nonlinear Schrodinger and nonlinear wave equations on compact Lie
groups was provided, and the recent result by Berti and Bolle [35], with an updated literature
for the "KAM for PDEs" theory in the references therein.

In another work by Berti and Bolle [34], the two approaches were unified in the framework
of autonomous Hamiltonian PDEs. The main idea is to search the invariant tori as zeroes of
the nonlinear functional with a Nash-Moser iterative scheme and to provide a symplectic change
of coordinates such that, at each approximate solution of the iteration, the tangential and the
normal directions are approximately decoupled. This reduces the problem to the study of the
quasi-periodically forced linearized equation in the normal directions. This approximate splitting
is actually sharper than the classical Lyapunov-Schmidt reduction in range and bifurcation equa-
tions, since the dynamics on the tangential and normal modes is preserved by the Hamiltonian
structure. Therefore, the search of an invariant torus is equivalent to prove the existence of a

KAM normal form around the torus itself.

All the result mentioned so far concern PDEs with bounded nonlinearities, namely that
do not contain any derivative of the unknown. When the nonlinearity is unbounded, a priori,
the symplectic transformation at each step of the KAM iteration may loses derivatives and the
convergence is in general out of reach. The first KAM results for PDEs with unbounded per-
turbations were provided by Kuksin [I31] and Kappeler, Poschel [125] for Hamiltonian, analytic
perturbations of the KdV equation on the torus. The goal was to prove the existence of solu-
tions bifurcating from Cantor families of finite gap solutions of KdV. The main issue is that the
Hamiltonian vector field generated by the perturbation is unbounded of order 1. At the same
time, the frequencies of KAV grow as ~ j3, hence the difference |j* — ;3| > 1(j* + j”) for
any 7 # j', so that KAV gains two derivatives. This smoothing effect on the small divisors is
sufficient to produce a bounded transformation at each step of the KAM iteration. The diagonal
terms related to 7 = j' are not removed by the transformation and therefore are inserted into
the normal form. As a consequence, the scalar homological equations have variable coefficients

and they can be solved via the Kuksin Lemma, introduced in [130].

An improved version of the Kuksin Lemma was introduced by Liu and Yuan in [I37] (see
also [136]) for proving the existence of quasi-periodic KAM tori for the derivative nonlinear
Schrédinger equation (see also the work of Zhang, Gao and Yuan [I78]) and the perturbed

Benjamin-Ono equation with periodic boundary conditions.

The problem of finding periodic and quasi-periodic solutions further increases in difficulty
when the PDEs is not just semilinear, that is, when a nonlinearity contains strictly less derivatives
than the linear part, but it is quasi-linear or even fully nmonlinear. The first results in this
direction are the works of Plotnikov and Toland [I50] and Iooss, Plotnikov and Toland [121]], for

the existence of 2D periodic standing waves with finite and infinite depth, respectively, and Tooss-
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Plotnikov [119, 120] for 3D periodic traveling waves for the pure gravity water waves equations.
The main difficulty of these results comes from the fully nonlinear nature of the equations, since
the linear dispersion relations grow as ~ | ]|é and the nonlinearity arises from the convective
transport term of the Euler equations. The periodic solutions are constructed with a Nash-
Moser theorem and the descent method for regularizing the linearized vector field. For a forced
quasi-linear Kirchhoff equation, whose nonlinearity is space-independent, time periodic solutions
were obtained by Baldi [I2] on a bounded domain in R? with Dirichlet boundary condition and
on the periodic domain T¢. The methods involved in his analysis are tailored to the peculiarity

of the nonlinearity and are hardly generalizable to other systems.

The first breakthrough result for time quasi-periodic solutions for quasi-linear and fully non-
linear PDEs are due to Baldi, Berti and Montalto for some quasi-linear and fully nonlinear per-
turbations of the forced Airy equation [14], of the autonomous KdV [15] and of the autonomous
modified KdV [16]. These results are obtained with a Nash-Moser iteration as stated in [34],
where the analysis of the linearized operator is inspired by the descent regularization procedure
introduced by Plotnikov and Toland [I50] via pseudodifferential calculus and combined with the
KAM reducibility scheme. About the water waves problem, Berti and Montalto [44], for the
gravity-capillary case, and Baldi, Berti, Haus, Montalto [13], for the pure gravity case, proved
the existence of one dimensional, quasi-periodic standing waves. Within this context, in our re-
sult in Theorem a further obstacle arises in this analysis: indeed, the search of quasi-periodic
traveling waves forces to work with periodic boundary conditions with no parity restrictions,
which induce possibly double eigenvalues at the unperturbed stage. This is solved by a proper

choice of the tangential modes and by exploiting the conservation of the z-translation invariance.

The regularization method was applied also by Feola and Procesi [91], who considered a
class of fully nonlinear forced and reversible Schrédinger equations on the torus T and proved
existence and stability of quasi-periodic solutions. We refer also the work of Giuliani [L0T] for
quasi-linear perturbations of generalized KdV equations, the result by Feola, Giuliani and Procesi
[89] for Hamiltonian perturbations of the Degasperis-Procesi equation and a recent work of Berti,
Kappeler and Montalto [42] 43|, who provided the existence of finite dimensional invariant tori of
any size for perturbations of the defocusing NLS and of KdV, respectively. We mention also the
work of Corsi and Montalto [62] for the forced Kirchhoff equation on T¢, which, however, does
not make any use of the regularization in decreasing orders and, instead, applies a multiscale
approach as in [50], B2, 33|, B6] for bounded semilinear PDEs.

Other results of the KAM theory applied to PDEs are presented in Section [[.2.2] where the
problem of the reducibility for linear PDEs and the related literature is discussed, and in Section

with the discussion about the traveling and standing quasi-periodic water waves.
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1.2.2 Floquet theory and growth of Sobolev norms

The classical Floquet theory concerns the problem of conjugating a time periodic, linear differ-

ential equation to a, possibly diagonal, linear system with constant coefficient:

=Xtz = (A+ F()x w=®1(t)y y=A'y
Ft)=F({t+T)eR™" AT =01 () X () D1 (L) — §y D (t) X (1) D, (t) dr

The eigenvalues of the constant coefficients vector field A™ are called Flogquet exponents and they
give information about the stability of the dynamics of the original system. From a mathematical
point of view, Theorem [I.1]is part of the attempts to extend the previous classical Floquet theory,
together with the generalizations to time quasi-periodic systems, to evolutionary PDEs. In this
latter case the only available results nowadays deal with systems which are small perturbations
of a diagonal operator, i.e. of the form D + eV (wt), where D is diagonal, € small and w in some

Cantor set. Here the literature splits essentially in two parts:

e Perturbations with bounded operators. A preliminary result in this direction is the
work of Combescure [56], where she showed that the spectrum of the one dimensional harmonic
oscillator perturbed with a time periodic bounded operator is still pure point. The matrix el-
ements of the perturbation have high power law decay with respect to the Hermite basis and
a KAM diagonalization procedure is implemented for non-resonant values of the periodic fre-
quency. Then, Duclos and Stovicek [81] proved that the Floquet operator for a pure point
Hamiltonian with the gap between the eigenvalues growing as n®, with a > 0, perturbed with a
non-resonant small potential has still pure point spectrum. This result is obtained by improving
the off-diagonal decay of the perturbation with finitely many adiabatic transformations and then
concluding with a KAM reduction as in [56].

The KAM theorems of Kuksin and Poschel [132], [I51] 152] for the Schrodinger and wave
equations in one dimension with Dirichlet boundary conditions discussed in Section are
actually the first KAM reducibility results for nonlinear PDEs, as the KAM invariant tori are
reducible. We refer also to the work Chierchia and You [54] for the nonlinear wave equation
in one dimension with periodic boundary conditions. The reducibility in higher dimensions has
been first established in the works of Eliasson and Kuksin on the d-dimensional torus T¢ for a
linear Schrédinger equation perturbed with a time quasi-periodic potential [83] and for quasi-
periodic solutions of the nonlinear Schrodinger equation [84]. Similar results were provided for
other models, from the harmonic oscillator by Grébert and Thomann [106], Grébert and Paturel
[105] and Liang, Wang [165], to the Klein-Gordon equation on the torus by Fang, Han and Wang
[85] and on higher dimensional spheres by Grébert and Paturel [I04]. A KAM reducibility with
bounded perturbation was provided also by Corsi, Haus and Procesi [61] for quasi-periodic solu-

tions of Hamiltonian PDEs on compact Lie groups.

e Perturbations with unbounded operators. When the perturbation is not a bounded
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operator between Sobolev spaces, the question of the reducibility becomes more delicate. The
first who tackled this problem were Bambusi and Graffi [23]: they provided a KAM reducibility
for a one-dimensional anharmonic oscillator perturbed by a time quasi-periodic potential with
unbounded growth in the space variable. The variable coefficients homological equations in the
scheme can be solved with the help of the Kuksin Lemma. When the Kuksin Lemma is not
available, the problem gets much harder. Nevertheless, Berti, Biasco and Procesi [29] were able
to prove the existence of KAM tori and the related reducibility for the reversible derivative Klein-
Gordon equation on the torus T, which has asymptotically linear frequencies. In the work of
Montalto [145] a KAM reducibility is provided for the linearized Kirchhoff equation on T¢: here
the perturbation has the same linear order of the leading operator, but it is space-independent.
For other results with unbounded perturbations, we refer to Bambusi [20] for the one dimen-
sional harmonic and anharmonic oscillator and to Bambusi, Grébert, Maspero, Robert [26] for

the d-dimensional harmonic oscillator.

When it is not possible to obtain reducibility for systems with Hamiltonian of the form
Hy + V(t), in some cases one could deduce dynamical properties via an "almost reducibility";
that is, the original Hamiltonian is conjugated to one of the form Hy + Z(t) + R(t), where Z(t)
commutes with Hj, whereas R(t) is an arbitrary smoothing operator, see Bambusi, Grébert,
Maspero, Robert [25]. This normal form ensures upper bounds on the speed of transfer of energy
from low to high frequencies; e.g. it implies that the Sobolev norms of each solution grows at
most as t© when t — oo, for any arbitrary small € > 0. This procedure (or a close variant of it),
was applied for Schrédinger-type systems also by Delort [72] [73], Maspero and Robert [141] and
Montalto [144].

There are also examples in which the authors engineered periodic drivings aimed to transfer
energy from low to high frequencies and leading to unbounded growth of Sobolev norms. For
instance, Bourgain constructed bounded, smooth, time periodic potentials on the torus T forcing
the linear wave equation [49] and the linear Schrédinger equation [51] in such a way that, for a
choice of the initial datum, the trajectory is not relatively compact in any Sobolev space H*(T),
with s > 0, so that in particular the solution is neither almost periodic in time. Recently, Haus
and Maspero [109] considered the semiclassical Schrodinger equation on R? with an anharmonic
trapping potential and a time dependent pertubartion. They showed the existence of a solution
with Sobolev norm growing in time, up to the validity of the semiclassical time scales, starting
from an unbounded trajectory of the associated classical system and using the semiclassical
approximation on coherent states. Other examples of the mechanism for the growth of the
Sobolev norms of linear PDEs were provided by Delort [74] for the one-dimensional harmonic
oscillator and, in an abstract setting, by Maspero [140]. Very recently, other solutions for the two

dimensional harmonic oscillator exhibiting the actual logarithmic growth in the Sobolev norms



1.2. HISTORICAL BACKGROUND 33

of [141] were found by Thomann [I59], based on the analysis of the linear Lowest Landau Level
equation with a time dependent potential, and by Faou, Raphaél [87], modulating the resonant
bubbles solutions.

When the magnitude of the perturbation becomes relevant, ideally unstable trajectories are
predominant and the analysis of the dynamics gets much harder. Nevertheless, a time peri-
odic (or quasi-periodic) perturbation oscillating with a sufficiently large frequency may avoid
resonance effects and create stable motions. Such periodically driven systems have a great in-
terest in physics, both theoretically and experimentally. Indeed, these systems often exhibit a
rich and surprising behaviour, like the Kapitza pendulum [123|, where the fast periodic driv-
ing stabilizes the otherwise unstable equilibrium point in which the pendulum is upside-down.
More recently, a lot of attention was dedicated to fast periodically driven many-body systems
[82] 102}, [127] [122]; here the interest is the possibility of engineering periodic drivings for realizing
novel quantum states of matter; this procedure, commonly called “Floquet engineering” [53], has
been implemented in several physical systems, including cold atoms, graphenes and crystals.

In order to mathematically deal with perturbations that are periodic in time and fast oscil-
lating, in a series of works |1}, 2, B] Abanin, De Roeck, Ho and Huveneers developed an adapted
normal form that generalizes the classical Magnus expansion [I38]. Such a normal form, which
from now on we call Magnus normal form, allows to extract a time independent Hamiltonian
(usually called the effective Hamiltonian), which approximates well the dynamics up to some fi-
nite but very long times. In [3], the authors apply the Magnus normal form to the study of some
quantum many-body systems (for instance, spin chains on finite subsets of the lattice Z¢) with a
fast periodic driving and extract an effective Hamiltonian which approximate well the dynamics
for exponentially long (in |w|) times. The principal operator in [3] may be of dimension very
large, depending on the number of the interacting particles and on the subset of the lattice), but
still finite, so that all the involved operators are bounded. We point out that, on the contrary,
Theorem is an infinite dimensional analysis and already the principal operator is unbounded,
therefore we have to take care of controlling an eventual loss of derivatives which are not present
in [3]. We quote here also the work of Corsi and Genovese [60] about the long time dynamics of
quantum spin chains in the thermodynamics limit, perturbed by a small, time periodic potential

with a large frequency of oscillation.

1.2.3 The water waves problem

The analysis of the water waves problem is dated back to the works of Laplace (1776) and La-
grange (1781, 1786), just some years after the derivation of the equations for hydrodynamics by
Euler in 1757. These early works concerned mostly the linearized dynamics in some different
regimes and the deduction of the respective dispersion relations for various kind of waves. Start-

ing from the 19th century, new improvements were provided by Grestner (1802), with the very



34 CHAPTER 1. INTRODUCTION

first nonlinear exact solution and the contributions by Cauchy (1827) and Poisson (1818) on the
initial value problem. The most groundbreaking and influential papers for the early theory of
water waves are the works of Green, Kelland, Airy and Earnshaw (1838-1844). For a detailed
summary of the early history and related bibliography, we refer to the article by Craik [64]. We

now present an overview of some results both contemporary and from the last century.

Local well-posedness. Local existence results for the initial value problem of the pure gravity
water waves equations within a Sobolev class go back to the pioneering works of Nalimov [14§],
Yosihara [173], Craig [65] in one space dimension and with smallness assumptions on the initial
data. Beale, Hou and Lowengrub [27] proved that the linearization of the 2D water-wave prob-
lem is well-posed if a Taylor sign condition is added to the problem formulation, thus preventing
Rayleigh-Taylor instabilities. The full nonlinear well-posedness, that is, without any smallness
assumption, is due to Wu in dimension one [169] and in dimension two [I70] in the case of infinite
depth.

In presence of surface tension, Ambrose [8] and Ambrose, Masmoudi [9] proved local well-
posedness of the 2D water waves problem replacing the Taylor sign condition. We quote also
the previous work of Beyer-Giinther [46] for the motion of a liquid drop in presence of capillary
forces on the boundary. For some recent results about gravity-capillary and pure gravity waves
we refer to the monograph of Lannes [I134] and the works of Coutand and Shkoller [63] for
rotational fluids, Shatah and Zeng [I56] on non-simply connected domains, Christianson, Hur
and Staffilani [55] for the Strichartz estimates and Alazard, Burq and Zuily [5] with the use of
paradifferential calculus. Clearly, specializing these results for initial data of size €, the solutions

exist and stay regular for times of order !,

Global well-posedness on Euclidean domains. In the case z € R? and the initial data
sufficiently fast decaying at infinity, global in time solutions have been constructed exploiting
the dispersive effects of the system. The first global in time solutions were proved in d = 2
by Germain, Masmoudi and Shatah [98] and Wu [172] for gravity water waves, by Germain,
Masmoudi and Shatah [99] for the pure capillary problem and by Deng, Ionescu, Pausader,
Pusateri [78] for gravity-capillary water waves. In d = 1 an almost global existence result for
gravity waves was proved by Wu [I71], improved to global regularity by lonescu and Pusateri
[114], Alazard and Delort [6], Hunter and Ifrim,Tataru [I10} 111]. For capillary waves, global
regularity was proved by lonescu and Pusateri [115] and Ifrim, Tataru [112].

Normal forms. For space periodic water waves, there are no dispersive effects that can lead
directly to a control of the solutions for all times using the decay in time. Indeed, considering
also the quasi-linear nature of the equations that prevent the use of semilinear techniques, no
global regularity results for water waves in periodic settings are known. A major obstacle to
this end is the presence of resonances. We consider, for instance, a monomial nonlinearity of

o1 ON — g1 ON ijz —
degree N > 2 of the form u%l..u°N = Zolj1+...+aNjN:j ugl..ugYel", where o1,...,on = *£1,
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ut(z) := u(x), u () := u(x). Then, the monomial terms that are resonant with the linear

dynamics correspond to those 7, ji, ..., jn € Z such that
Q@) = 1Q01) + ... + onQ(jn)

where Q(j) denotes the linear frequency. When there is no equality, but the difference of the two
sides is close to zero, we talk about quasi-resonances, which give rise to a small divisors issue.

A partial substitute for global regularity is to prove extended life span results and the ex-
istence of solutions with initial data of magnitude e for longer times can be proved via normal
form theories. In absence of resonances, existence results were obtained for times of size €2 by
Totz and Wu [161] for 1d pure gravity waves, by Ifrim and Tataru [112] for pure capillarity waves
and by Harrop-Griffiths, Ifrim, Tataru [I08] for 1D gravity waves over a flat bottom. If z € T2,
we refer to the work of Ionescu and Pusateri [116] for an ¢=3% result. The extended life span of
these results is proved with energy estimates and integration by parts.

For nonlinear dispersive PDEs on a periodic domain, the long time existence problem can
be tackled also with a Birkhoff normal form procedure. The basic idea of this approach is to
reduce the size of the nonlinearity near the origin. One looks for a change of coordinates that
removes all the monomials up to a certain degree of the nonlinearity that are non-resonant with
respect to the linear dynamics. The transformation is well defined if one imposes non-resonance
conditions on the small divisors to ensure the boundedness of the map. Then the extension
of the life span is achievable once the resonant contribution and the remaining terms in the
nonlinearity are analyzed. In the semilinear setting, for Hamiltonian PDEs the first results of
this kind were provided by Bambusi [19], Bambusi and Grebért [24], Delort and Szeftel [76] [77]
and Bambusi, Delort, Grebért, Szeftel [22], while for reversible PDEs we refer to the work of
Faou and Grebért [86]. The extension to quasi-linear PDEs was first provided by Delort for
quasi-linear perturbations of the Klein-Gordon equation on the one dimensional torus [73] and
on the d-dimensional sphere [75].

Back to the water waves problem, the first application of the Birkhoff normal form is due
to Berti and Delort. In [37], the authors proved an almost global existence result for periodic
gravity-capillary water waves, even in € T, for times O(e ) for almost all values of (g, x). The
restriction on the parameters (g, k) arises to verify the absence of N-waves interactions at any N.
The restriction to even in z solutions arises because the transformations in [37] are reversibility
preserving but not symplectic.

The only 3

existence result for parameter independent water waves on the torus was proved
by Berti, Feola and Pusateri in [39] and it is based on the complete integrability of the fourth
order Birkhoff normal form for 1d pure gravity water waves in infinite depth, proving a conjecture
of Zakharov and Dyachenko [I75]. For another long time existence result via Birkhoff normal

form, see [17), 90].
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Time and space periodic traveling waves which are steady in a moving frame. The
literature concerning steady traveling wave solutions is huge, and we refer to [57] for an extended
presentation. Here we only mention that, after the pioneering work of Stokes [I57], the first
rigorous construction of small amplitude space periodic steady traveling waves goes back to the
1920’s with the papers of Nekrasov [149], Levi-Civita [I135] and Struik [I58], in case of irrotational
bi-dimensional flows under the action of pure gravity. Later Zeidler [I76] considered the effect of
capillarity. In the presence of vorticity, the first result is due to Gerstner [I00] in 1802, who gave
an explicit example of periodic traveling wave, in infinite depth, and with a particular non-zero
vorticity. One has to wait the work of Dubreil-Jacotin [80] in 1934 for the first existence results
of small amplitude, periodic traveling waves with general (Holder continuous, small) vorticity,
and, later, the works of Goyon [103] and Zeidler [I77] in the case of large vorticity. More recently
we point out the works of Wahlén [162] for capillary-gravity waves and non-constant vorticity,
and of Martin [I39] and Wahlén [163] for constant vorticity.

All these results deal with two dimensional water waves, and can ultimately be deduced
by the Crandall-Rabinowitz bifurcation theorem from a simple eigenvalue. We also mention
that these local bifurcation results can be extended to global branches of steady traveling waves
by applying the methods of global bifurcation theory. We refer to Keady and Norbury [126],
Toland [I60], McLeod [143] for irrotational flows and Constantin, Strauss [59] for fluids with
non-constant vorticity.

In the case of three dimensional irrotational fluids, bifurcations of small amplitude traveling
waves periodic in space were proved by Reeder and Shinbrot [154], Craig and Nicholls [66, 67] ,
for both gravity-capillary waves (with a variational bifurcation arguments ta Weinstein-Moser)
and by looss and Plotnikov [119] 120] for gravity waves (this is a small divisor problem). In a

moving frame, these solutions look as steady bi-periodic waves.

Time periodic standing waves. Bifurcations of time periodic standing water waves were
obtained in a series of pioneering paper by Plotnikov and Toland [I50] and by the works of Iooss,
Plotnikov and Toland [121] 117, 118, [119] for pure gravity waves, and by Alazard, Baldi [4] for
gravity-capillary fluids (see the previous discussion in Section . Standing waves are even in
the space variable and so they do not travel in space. There is a huge difference with the results
of the previous group: the construction of time periodic standing waves involves small divisors.
Thus, the proofs are based on Nash-Moser implicit function techniques, with the descent method

on the linearized operators, and not only on the classical implicit function theorem.

Time quasi-periodic standing waves. The first results in this direction were obtained recently
by Berti and Montalto [44] for the gravity-capillary system and by Baldi, Berti, Haus, Montalto
[13] for the gravity water waves. Both papers deal with irrotational fluids and the proofs require
the Nash-Moser iteration as in the time periodic case coupled with KAM techniques in the

reduction of the linearized water waves vector field at any approximate solution. Moreover,
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[13] has to face another problem coming from the sublinearity of the linear dispersion relation,
which leads to second order non-resonance Melnikov conditions that lose space derivatives: this
difficulty is overcome by reducing in pseudodifferential order the linearized vector field up to a

sufficiently smoothing order.

Quasi-periodic solutions in fluid dynamics. The first work on time quasi-periodic solutions
for Euler equation is due to Crouseilles and Faou [71], who constructed, for a fluid on T? with
a piece-wise linear shear flow, scalar vorticity solutions that consist of localized waves traveling
in the orthogonal direction with respect to the propagation of the flow. The solutions are very
explicit and, in particular, the result is not of KAM-type, since no small divisors arise.

Very recently, Baldi and Montalto [I8] proved the existence of quasi-periodic solutions for
the Euler equation with a small reversible quasi-periodic in time forcing term on the three-
dimensional torus T3. The solutions that they provide are small perturbations of the constant
vector fields satisfying Diophantine conditions.

Feola and Giuliani [88] showed in a recent result the existence of small amplitude quasi-
periodic traveling waves for the 2-dimensional, irrotational pure gravity water waves with infinite
depth. In the construction of these traveling solution, they use the same choice of the tangential
sites as in our Theorem and they have to preserve the x-translation as well. The lack of
parameter to move in order to avoid the resonances is overcome by a weak Birkhoff normal form.

We conclude by quoting also two numerical works by Wilkening and Zhao [167) [168] about
spatially quasi-periodic gravity-capillary water waves in infinite depth. In particular, they studied
numerical traveling-type solutions on a one dimensional domain with multiple space frequencies

and investigate the presence of resonances when parameters vary.
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Chapter 2
Ideas of the proofs

In this chapter we outline the strategies for the proofs of the results presented in Sections [I.1.1],
1.1.3] discussing the mathematical key ideas step by step for each result.

2.1 Ideas of the proof of Theorem 1.1

The result in Theorem is proved in two steps. First, we need to transform the system (|1.1.4))
into a perturbative framework. Then, we perform a KAM reducibility scheme once proper non-

resonance conditions are imposed.

The Magnus normal form. The very first transformation that we perform, adapted to fast
oscillating systems, moves the non-perturbative equation (1.1.4)) into a perturbative one where
the size of the transformed quasi-periodic potential is as small as the module of the frequency

vector is large. Sketchily, we perform a change of coordinates which conjugates

{H(t) =Ho+ W(wt) {ﬁ(t) = Hy + V(w; wt) (2.1.1)

"size(W) ~ 17 "size(V) ~ |w| 1

This change of coordinates, called below Magnus normal form, is an extension to quasi-periodic
systems of the one performed by Abanin, De Roeck, Ho and Huveneers in [3]. Note that Hy is the
samie on both sides of provided §, W(#)df = 0, which is fulfilled in our case thanks to
Assumption (V2). The price to pay is that, in principle, it is not clear that the new perturbation
is sufficiently regularizing to fit in a standard KAM scheme, as the new perturbation V(w;wt)
could increase in order. Here it is essential to employ pseudodifferential calculus, thanks to which
we control the order (as a pseudodifferential operator) of the new perturbation, and prove that it
is actually enough regular for the KAM iteration. For presenting better this point, assume that
we have a one-dimensional vector field of the form H(t) = Hy+ W (wt), with Hy € OPS¥, u > 1,

39
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and W (wt) € OPSY for any ¢ € R (for the definition of the classes of pseudodifferential operators
OPS*, see Definition . The Magnus transform is generated by an operator X (w;wt) solving

the homological equation
—w- 0, X (Wiwt) +W(wt) =0 = X(wjwt) = (w-dy) ' W(wt),

which is well defined, assuming I//I\/(O) := (2m) ™ {, W(p)el*¥ dp = 0. This implies that the new

perturbation is given by
V(w;wt) = i[X (w; wt), Hy] + ... € OPSH™L

where the dots stand for lower order terms. When pu = 1, as for our Klein-Gordon model, we
therefore obtain a bounded operator in OPS? that will be as small in size as the generator X is.
For p > 1, instead, the perturbation V increases in order and the problem of the reducibility is

still open. All the details for our computation are provided in Section [3.2]

A remark on the classes of pseudodifferential operators. We add here a brief observation
about the pseudodifferential calculus presented in Chapter [3|and Chapter [4l Indeed, the classes
of p-independent symbols S™ of order m € R are defined in the same way, see Definition and
Definition In particular, we say that a function a(z,j) is a symbol of order m if it is the
restriction to R x Z of a function a(x,§) which is C*-smooth on R x R, 27-periodic in z, and
satisfies

0207 a(w,€)| < Cap©™”, Va,BeNy.

Also the corresponding pseudodifferential operators are defined by the same quantization:

u(z) = Z ujeijm — (a(z, Dy)u) (z) = Z a(l’,j)ujeijm '

JEZ JEZ

When the dependence on the angle ¢ € T" is considered, for the KAM reducibility of Section
we want the regularity with respect to ¢ to be analytic. Therefore, in Chapter [3] we shall
control a symbol a(yp, z, &) with respect to the following seminorm (see Def. [3.3):

Opf(a):= sup > sup TP dlalp,x,8), €Ny,
Mmel<p 1 g<p (T.6ERXR
assuming that the function a : TV x T x R admits an analytic extension with respect to ¢ on the
torus T) :={p =0 +ipeC” : §e€T”, |¥| < p} for some p > 0.
On the other hand, it is more desired in all the analysis of Chapter || to control together

the regularity of the variables (p,z) € T**! in Sobolev classes. In particular, we shall check the
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boundedness of the operator with respect to the following norm on the symbols (see Def. [4.15]):

felnsca = e suplodal-, &)l 7.

In Chapter [4] we keep the same notation of the classes S™ and OPS™ also for ¢-dependent
symbols and operators, see Definition (where also the differentiable dependence on param-
eters is included). In Chapter , instead, since the radius of analyticity varies in the reduction,

we denote the analytic classes of symbols and operators by SJ* and OPSJ", respectively, see

p ?
Definitions [3.3],

Balanced Melnikov conditions and KAM reducibility. After the Magnus normal form,
we perform a KAM reducibility scheme in order to remove the time dependence from the coeffi-

cients of the equation. For briefly presenting the KAM reduction scheme, consider the system
i(t) = Hwt)y(t), H(wt) = Aw) + Plw;wt),

where the frequency vector w varies in some set < R*\{0}, with M < |w| < 2M, the time
independent operator A(w) is diagonal with respect to the Fourier basis and P(w;wt) is the
time quasi-periodic perturbation. The goal is to square the size of the latter by conjugating the
Hamiltonian H(wt) via a transformation generated by i X(wt). The transformed Hamiltonian is
given by

H' (wt) =A+P+i[X,A] —w-0,X+R,

where R is the remainder resulting from the commutator expansion. The generator is required

to solve the homological equation
—w- 0, X+i[X,Al+P =127,

where Z is the new time independent contribution to the normal form. By solving this equation
with respect to the Fourier basis representation of the linear operators, we face the presence of
small divisors of the form

w-l+ N+,

where \; are the eigenvalues of A. One needs to impose second order non-resonance Melnikov
conditions and, for instance, might ask for lower bounds on the denominators w - £+ A; — Ajr of

the form, for some v, 7 > 0,

v G-
&7 w7

lw €+ XN — \jr| = V(44,5)eZ” xNxN, (44,5 #(0,4,7). (2.1.2)
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Such conditions are violated for a set of frequencies of relative measure bounded by C+, where
C is a constant independent of |w| (we remark that the conditions in are violated on a
set of relative measure ~ y|w|, which is as large as the size of the frequency vector).

This classical version of the Melnikov conditions is useless in our context: indeed, after the
Magnus normal form, the new perturbation has size ~ |w| !, whereas the small denominators in
have size ~ |wl|; so the two of them compensate each others, and the KAM step cannot
reduce in size. To overcome the problem, rather than , we impose new balanced Melnikov
conditions, in which we balance a partial loss in size (in the denominator) with a gain in regularity
(in the numerator) in (2.1.2). More precisely, we show that for any « € [0,1] one can impose

v =0

O

|w£+)\]_)\j/|> ’ V(&]v]/)EZVXNXNv (E,],]/)¢(07]7]) (213)
for a set of w’s in Ry of large relative measure. By choosing 0 < « < 1, the left hand side of
(2.1.3) is larger than the corresponding one in (2.1.2), and the KAM transformation reduces in
size. However, note that the choice of  influences the regularizing effect given by (j + 7% in
the right hand side of (2.1.3); ultimately, this modifies the asymptotic expansion of the final

eigenvalues, as one can see in (|1.1.8)).

2.2 Ideas of the proof for Theorem 1.8

The proof of Theorem for the existence of the small amplitude quasi-periodic traveling wave
solutions of (1.1.13) is inspired by the approach used in [44] [13]. However, there are some major

novelties and difficulties in our analysis that differ from the previous works:

e As we look for traveling wave solutions, we need to take care that at each step of the
procedure we end up with maps that send traveling waves into themselves and that the

invariance by space translations is preserved;

e Unlike [44] 13], which prove the existence of standing waves, the solutions that we construct
are not even in z. This implies the presence of nearly double eigenvalues (when v = 0,
purely double) already at the linear level. Hence, the non-resonance conditions hold on a
set of parameter of large measure only when coupled with the restrictions on the Fourier
sites due to the conservation of the momentum (related, by Noether Theorem, to the

x-translation invariance aforementioned) and with a proper choice of the tangential sites;

e The Hamiltonian structure of the system (1.1.13)) is needed in the regularization of the
linearized vector field in order to avoid the presence of terms which are non-Hamiltonian
and that cannot be eliminated otherwise. Without exploiting this property, some transfor-

mations may be not close to the identity and the reduction would not be possible.
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We list and discuss in the following the main points of the scheme. Throughout this presentation,
instead with the coordinates (n,) which we have used for stating Theorem , we work with
the Wahlén variable (n, (), where

ey a1
¢:=1 2(% .

This variables are the Darboux coordinates in which the symplectic form becomes the canonical
one, see Section [4.1.1] and they are the one that we use in the rest of the analysis.

Nash-Moser Theorem of hypothetical conjugation Rescaling the variables (n,() —
(em,e¢) and introducing action-angle variables on the tangential sites (see Section , the
system (|1.1.13)) becomes the Hamiltonian system generated by

H. = Q(r) - T+ L Quww,w) 2 + P, (2.2.1)

where (k) € R” is defined in ([#.0.8), Q is the quadratic form of the linearized vector field
around the equilibrium (n, () = (0,0), w € jﬁé s is the coordinate in the normal subspace and
P is the nonlinear perturbation (see Section [4.4)).

The expected quasi-periodic solutions of the autonomous Hamiltonian system generated by
H. will have shifted frequencies ﬁj(ﬁ) -to be determined- close to the linear frequencies Q;(k)
in (4.0.3)). It is convenient to introduce the family of Hamiltonians

Hy=a-I+3(Qww,w):+ceP

parametrized by the "counter terms" o € RY: this allows to use the frequencies w € R” as
parameters to move for proving the non-resonance conditions. In this spirit, a quasi-periodic

traveling solution is searched as a v-dimensional embedded torus of the form
T > T xR x 95 v, o (0(9),1(9), w(p)),
close to the trivial embedding (¢, 0,0), which is a zero for the nonlinear operator

Fli,o,w, k,€) 1= w - 0xi(p) — X, (i(p))

w - 8,0(p) —a — 0 P(i(p))
= | w-a,I(p) +e0p P(i(¢))
w-dpw(p) —TIg 3 J(Qww(p) +eVuP(i(y)))

satisfying the traveling condition

(e —35) =0(p) = Jp, Ilo—=7p) =1(p), wlp—3xK)=1w(p), VYceR,
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where 7= (047q)q=1,..» € Z'\{0} and rcw(y, z) := w(p,x +¢). The embedding are search for all
the parameters (w, k) € R” x [k1, k2] in the Cantor set C%, (defined explicitly in (4.4.15)-(4.4.18))

which requires the parameters (w, k), in addition to the Diophantine condition
lw- £l =8 )™ VYLeZ\{0}, ) :=max{l,||},

the first and second non-resonance Melnikov conditions, each one coupled with the corresponding

momentum condition on the Fourier sites. For instance,

L3 13 —
jw €+ pf(w, k) = pii (w, k)] = doljlz = 15207,
Veez’, j,j €S (¢,4,5) #(0,5,5) with j-£+j—j =0.

where p}°(w, ) are the "final eigenvalues" in (4.4.13), which are defined for all (w, ) € R” x
[k1, k2] by means of the abstract Whitney extension theorem (see Appendix B in [I3] for details),
and S := Z\(S u {0}), where

S:={J, =04l : a=1,...,v} cZ\{0}, o0,€X%, N, €St

and ST, ¥ are defined in (1.1.26)),(1.1.27)), respectively. In particular, the set of the tangential
sites S is characterized by

17€S = #lf (2.2.2)

This choice of the tangential sites, together with the momentum condition, is not just technical,
but prevents the rising of resonances already at the unperturbed level of the linear frequencies.

For instance, for v = 6, the vector
Q("i) = (9—5(’%)7 Q—4(’%)7 9—3(’%)7 Q3(F‘7)7 94(’%)7 Q5(/{/)) € RG

is resonant or quasi-resonant for any value of k. Indeed, when h = +o0, it is fully resonant, since,
for ¢ = (—55, —ly, —Vls, 03, 54,55), the system

Q(/ﬁ)-€=7(f3+f4+£5)=0, 303+ 404+ 505 =0,

has the integer solution £3 = £5 = 1, {4 = —2, whereas, for h < o0, the system

—

Q(k) - £ = y(¢3 tanh(3h) + ¢4 tanh(4h) + {5 tanh(5h)) = 0, 303 +4l4 + 505 =10,

may have integer solutions for some values of h and, for any other fixed value of h, there exist

integer combinations such that (k) - £ is arbitrarily close to zero.

The final traveling embedding ix () = i (p, w, K, €) and "final counter term" a, of Theorem
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will be produced by the Nash-Moser iteration of Theorem which relies on the analysis
of the linearized operator d; oF at any approximate solution performed in Sections (see
also discussion below). The traveling torus is, as well as the counter term o, and the final
eigenvalues u}° are C*o differentiable with respect to the parameters (w, ), where the value of kg
is determined by the transversality of the unperturbed linear frequencies (see Proposition [4.53)).

Concerning the proofs of Theorems {.55] as well as the construction of the approximate
inverse in Section (modulo the reduction on the normal directions of the linearized operator),
the arguments that we use are modelled on the ones in [44] 13]. A very important difference,
which is one of the novelties of our result, is that we need to check at each step of the procedure
that we are dealing with quasi-periodic traveling embeddings and that the operators in the
construction of the approximate inverse are momentum preserving. This is essential not only
for ending up with a quasi-periodic traveling wave solution, but also for applying the degenerate

KAM theory, which needs the conservation of the momentum, as we discuss right below.

Transversality and degenerate KAM theory In order to prove the existence of quasi-
periodic solutions of the system with Hamiltonian H, in (2.2.1)) and not only of the system
generated by the modified Hamiltonian H,, with o = ax(w, k,€), we have to show that the

curve of the unperturbed linear tangential frequencies
[k1, k2] 3 K > (k) € R
intersects the image aw(C%) for "most" values of k € [k, k2]. Setting
Qe(r) := ' (Qr), k),

where az!( -, k) is the inverse of oo (-, k) at a fixed k € [k, ko], if the vector (Q-(x), &) belongs
to CY,, then Theorem implies the existence of a quasi-periodic solution of the system with
Hamiltonian H, with Diophantine frequency Qg(n).

In Theorem we state that the set of values of k € [k, k] for which the vector (€. (k), &)
belongs to Cy, is of large measure. Using that the linear frequencies as maps x +— (k) are
analytic in [k1, k2], we are able to implement the degenerate KAM theory. Formulated by
Bambusi, Berti and Magistrelli [2I] and used in [44], I3] in the case of simple eigenvalues, our
analysis differs from these previous works since we deal with periodic boundary conditions and
we add the conservation of the momentum. In particular, we show that the linear frequencies
are non-degenerate, in the sense that no curves of linear combinations of ;(x) with distinct

modules

(K1, k2] 3 K = 1), (k) + ... + enQjy(K), (c1,..,en) € R\{0},  |jal # |p| fora #b,
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are contained in any hyperplane of RV, This is proved in Lemma using a Vandermorde
determinant argument. In Proposition [4.53] this qualitative property is translated into quantita-
tive estimates for the non-degeneracy. For instance, for a second order Melnikov non-resonance

condition we prove that

(37 (§3(k) - £+ 95(0) — ()] = o)
<n<mo (2.2.3)

j-€+j—j/:0’ EEZVa jajlegga (&j,j/) #* (Ovjvj)a

where pg is the "amount of non-degeneracy" and mg is the "index of non-degeneracy". The main
difference with respect to [44] is that we need to impose the momentum condition J-¢+j+35 =0
for proving the transversality. In particular, it turns out to be essential during the proof when

we have to show that the system

—

Qr) L+ Q(k) —Q(k) =0, Vr€l[r,ke|, T-+j—j =0. (2.2.4)

has no nontrivial solutions. Without the momentum restriction 7- £ + j — j/ = 0, this is false.

" is treated in

Indeed, by picking 7 = —7; and j' = —7, assuming 71 # 72 (the case j = j
the Diophantine condition), the non-degeneracy of the frequencies Q;(x) on the interval [k1, k2]

implies that, for £ = (¢1,..,¢,) € Z",

—

Qr) L +Qi(k) —Qy(k) =0, Ve e [r1,h2] = 6L +1=0,0-1=0,/l3=..4,=0.

The vector £ = (—1,1,0,..,0) € Z” would be an acceptable solution for system ({2.2.4)) if the

momentum condition is not taken into account. Instead, we have
JAl+j—3 =0 —Df + e+ 1)Jp =271 —72) =0,

which leads to 7; = J,, contradicting the assumption 7; # 7.

The transversality conditions in Proposition are stable under perturbations that are small
in C*o-norm, where ko = mq + 2, still coupled with the momentum conditions. In particular, this
holds when the perturbation is given by the correction to the linear frequencies obtained at the
end on the Nash-Moser iteration on the Floquet exponents p3°(x) in (4.4.13), see Lemma W
Then, provided proper estimates on the resonant sets in Lemmata [£.57] {.59] it is possible to
prove the measure estimates of Theorem [£.56] The momentum condition is fundamental also in
the proof of Lemmata [4.57] This is essentially due to the expansion of the final eigenvalues.

Indeed, recalling (4.4.13)

P (w, k) = 0% (w, £)Q (k) + 0 (w, k)] + 0L (w, k) ]2 + 1P (w, k), (2.2.5)
2 2
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we note that the contribution at the first order is not trivial. In [44] they obtain the same
expansion with the exception of m{” = 0, which is due to the parity conditions that they impose
for obtaining standing waves. The nontrivial term at order one that is present in our analysis

could lead to troubles in the measure estimates if the momentum conditions are not imposed.

Reduction of the linearized operators. The construction of the solutions via the Nash-
Moser Theorem mostly relies on showing that the linearized operator d; o obtained at each
step of the iterative scheme admits an almost approrimate inverse satisfying tame estimates in
Sobolev spaces with loss of derivatives, see Theorem [£.65 By approzimate inverse we mean an
operator which is an exact inverse at any traveling wave solution of F(i,«) = 0. The adjective
almost refers to the fact that at the n-th step of the Nash-Moser we shall require only finitely
many non-resonance conditions, therefore the remaining operator supported on high Fourier
frequencies of magnitude O(N,) and thus can be estimated as O(N;?) for some a > 0 (in
suitable norms).

In Section the almost approximate inverse is constructed under the ansatz that the lin-
earized operator restricted on the normal directions L, defined in (4.5.33)), is almost invertible
on traveling wave functions. By Lemma [{.66] the operator £, is a finite rank perturbation of

the restriction to the normal subspace ﬁgﬁ 5, of

2.V +G(n)B ~G(n) )

L=w-0,+ ~ ~
g — KOzcOy + BV, + BG(n)B Vo, — BG(n)

(2.2.6)

v ~G(n)o; 0
+ o )
2\0,'G(n)B— BG(n)o, ' — 30,'G(n)o, ' —a,'G(n)

where the functions B,V,c¢ are given in (£6.11), (£6.13), which is obtained linearizing the
water waves equations (|1.1.13]) in the Wahlén coordinates at a quasi-periodic traveling wave

approximate solution (7, () and changing ¢y with the directional derivative w - d,. The goal of
Sections is to reduce the operator £, to a constant coefficient, Fourier diagonal one
so that it can be inverted on traveling wave functions once first order Melnikov conditions are

satisfied. The reduction consists of two main blocks:
1. Symmetrization and diagonalization of the operator £ up to smoothing operators;
2. Restriction of the normal subspace and KAM reducibility.

All the transformations performed in Sections are time quasi-periodic change of
variables acting in phase spaces of functions in z that are momentum preserving. Therefore,
they preserve dynamical system structure of the conjugated linear operators, which in particular

will maps quasi-periodic traveling wave functions into themselves.
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All these changes of variables are bounded and satisfy tame estimates between Sobolev spaces.
As a consequence, the estimates that we shall obtain on the inverse of the final constant coefficient
diagonal operator directly provide good tame estimates for the inverse of the operator L, in
E539).

Another difference with respect to the reduction in [44] is that we need to preserve the
Hamiltonian nature of £ at least until the symmetrization of the highest order (Section
in order to avoid operators of the form ia(cp)’H|Dx|%, where a(p) € R and #H denotes the Hilbert
transform, see . The latter operator is not present in [44] because it does not map even
functions into themselves and therefore it is incompatible with this symmetry. For overcoming
this issue, we require all the transformations in[{.6.1{4.6.3|to be symplectic, so that the conjugated
operators are Hamiltonian. From Section [4.6.4] on, this property will be not preserved anymore.

We also note that the original system L is reversible and that all the transformations that
we perform are reversibility preserving. The preservation of this property ensures that in the
final system the Floquet exponents are real valued. Under this respect, the linear stability of
the quasi-periodic traveling wave solutions in Theorem is obtained as a consequence of the
reversible nature of the water waves equations.

In the following we summarize step by step each part of the reduction. The main tool in
Sections 4.6.3 is the pseudodifferential calculus: in order to employ it, it is convenient to
ignore the projection on the normal subspace 5’_)SL+ 5, and to perform a regularization procedure on
the whole space before the KAM reducibility of éection see Remark .67} Then, in Section

we project back on the subspace .Sﬁgﬁ ot

1. Quasi-periodic reparametrization of time. The very first transformation that we

perform in Section is a quasi-periodic reparametrization of the time variable of the form
Ui=p+wple) < ¢=19+wp(), (2.2.7)

where p(p) is the real T”-periodic traveling function, in the sense that p(¢ — 75) = p(p) for any

¢ € R. In this way the operator £ is transformed into the Hamiltonian, momentum preserving

operator
:EN B -
Eozw-&wl aV—FGN(n) N G(n)
P \g — KOycdy + BV, + BG(n)B Vo, — BG(n)

(2.2.8)
] —G (), 0
p2\0,'G(n)B — BG(n)d, ' — 30,'G(n)é, ' —0,'G(n)) "’

where p(d) depends on p(y) and all the functions V, B, ¢ are meant to be reparametrized ac-
cording to (2.2.7). The function p will be chosen at the end of Section to set the coefficient

at the highest order to be constant also in the angle variable. In this way we avoid technical
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difficulties arising in the application of the Egorov Proposition in Section {.6.3]
2. Linearized good unknown of Alinhac. In Section we introduce the linearized

good unknown of Alinhac, as in [4], 44] [I3]. This is indeed the same change of variables intro-
duced by Lannes [133] [134] for proving energy estimates for the local existence theory. In these
new variables, relabeling ¥ v~ ¢, the linearized operator (2.2.8) becomes the more symmetric

operator

7 _ -1
Li=w-d,+ 2 0%V Gy 1y G)os O ) (229
P\g+a— KOOy Vi p2\30,'G(mo,t o, 1G(n)

where the Dirichlet-Neumann operator admits the expansion
G(n) = G(0) + Ra

with G(0) defined in (1.1.15) and Rg an OPS~® smoothing operator, see for instance [44. [13].
The operator in (2.2.9)) is Hamiltonian and momentum preserving.

3. Symmetrization and reduction of the highest order. The goal of Section is to
symmetrize and reduce to constant coefficient the leading order of (2.2.9)), so that it is conjugate

to the momentum preserving linear operator of the form

G(0)0.1 (2.2.10)

T

-2 L —ms(p)w(k
oo (105 o)

o2 Pl

ma(P)(s, D)~

where w(k, D) := \/K D2G(0) + g G(0) — (2071 G(0))2, m%(w) is a function close to 1 depending
only on ¢ € T and the dots stand for lower order operators, smaller in size (see for the
complete expression). In particular, in the complex unknowns (h, h) via the map in , the
first component of the operator in reads

(h,B) = w - dph +imy Qr, DY + a{” b + REVh + RER (2.2.11)

(which corresponds to (4.6.90)) neglecting the projector iIlp), where ms := m3z(¢)/p(¢) € R is
2 2

now purely constant, choosing properly the function p(p) of the reparametrization (2.2.7), and

Réd), Réo) are p-dependent families of pseudodifferential operators of order 0. We shall the former

operator "diagonal" and the latter "off-diagonal", we respect to the variables (h, h).

In order to transform (2.2.8)) into the linear operator (2.2.10)), we first introduce a change of
variable induced by a diffeomorphism of T, of the form y = x + S(p, z). Conjugating £1 by the

symplectic change of variables

u(p, ) = (Eu)(p, 7) := A/ 1+ Ba(, 2)(Bu) (@, ), (Bu)(p,2) := ulp, z + Bp,x)), (22.12)
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we obtain the operator of the form

—3G09, _a2G(0)a2> + (2.2.13)

Lo=w-0p+ —
2 7 <—ma28ya30ya2 +g— (%) 5_ —%&’y_lG(O)

where a9, as are quasi-periodic traveling wave functions defined by

az =B (V1+8:), a3=B"(c(l+5:))

and the dots stand for lower order terms, smaller in size. In particular, Lo is momentum preserv-

ing, because 3(y, x) is a quasi-periodic traveling function, and Hamiltonian, since £ is symplectic.

Then, conjugating ([2.2.13)) with the symplectic maps

Q= (g qi) , M= (M(()D) M—?(D)> 7 (2.2.14)

where q(p,x) is a quasi-periodic traveling function close to 1 and the symbol of the Fourier
multiplier M (D) is defined in (we are still neglecting in this exposition the action on the
zeroth mode, see the correct definition of the map M in ), we obtain the operator in
([2.2.10). Proper choices of the functions 3(p,z) and ¢(p,z) allow to end up with the function
m%(cp) independent of z € T.

As already mentioned, we require the transformations in (2.2.12)), (2.2.14) to be symplectic
in order to avoid the rising of an operator of the form (h,h) ib((p)”H|D|%h in (2.2.11)), which
cannot be deleted by any transformation.

Furthermore, comparing with the reduction in [44], the conjugation with the map in

leads to purely pseudodifferential remainders. Indeed, when we deal with the operator 81G(0)d; !,

which is due to the vorticity v and so is not present in [44], we require to expand the conjugated
operator £7! 0 97! o £ in homogeneity up to a pseudodifferential remainder of arbitrary lower
order —N provided by Proposition 4.20] which is a slight modification of Proposition 2.28 in [43].
The choice of the order — N is fixed at the end of Section [4.6.4]

4. Symmetrization up to smoothing remainders. In Section we reduce the off-
(

diagonal term R5O) to a pseudodifferential operator with very negative order, i.e. we conjugate
the above operator to another one of the form (see Lemma [4.75))

(h, ) = w - ph +imy Qr, D)h + ai0,.h + REOh + RYT, (2.2.15)

where Rgd) € OPS? and R(().O) e OPS™™ for a constant M large enough fixed in Section , in
view of the KAM reducibility scheme. The operator in (2.2.15) is still momentum preserving,

whereas the Hamiltonianity is not preserved anymore.
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5. Reduction of the order 1. In Section we reduce to constant coefficients the
operator agd)(go,x)é’x. First, we conjugate the operator by the time-1 flow of the pseu-
dodifferential PDE

dru =i B(p,2)|D|? ,

where b(p, x) is a small function to be determine. This kind of transformation — which are "semi-

1. 3) in Hérmander’s

notation — was introduced in [4] and studied as flows in [44]. Choosing appropriately the function

Fourier integral operator", namely pseudodifferential operators of type (

b(p, ) = bi(p,z) + ba(p) and translating the x-variable with respect to a ¢-dependent function

o(p), see (4.6.136]), (4.6.142)), (4.6.146]), the final outcome is a momentum preserving linear

operator of the form (see (4.6.147))

(hB) > w - 8ph +imsQ(r, D) +midph + ial”|D|2h + RPh + T(h,h) (2.2.16)
where m; € R is a small constant, agd)(cp, x) is a small traveling wave function, Réd) € OPSY and

the linear operator Tg is small, smoothing and satisfies tame estimates in Sobolev spaces, see

(4.6.151). Moreover, the p-dependent function be(p) is determined so that the z-average of the

(d)
3

function as ’ is independent of ¢ € T”.

6. Reduction of the order 1/2. In Section we reduce to constant coefficient the
operator ia3(¢,x)|D|%. We conjugate the operator (2.2.16) by the time-1 bounded flow of the
PDE

Oru = 1bs(p, z)H ,

where b3(¢, z) is a small function defined in (4.6.166) and # is the Hilbert transform. The final
outcome is the momentum preserving operator, see (4.6.169))

(hyh) — w - dyh + ims Q(k, D)h + midzh + im%|D|%h + Rg% + To(h, h), (2.2.17)

where m1 € R is a small constant, Réd) € OPS® and the linear operator Ty is small, smoothing
2
and satisfies tame estimates in Sobolev spaces, see (4.6.171)).

7. KAM reducibility. In Section[4.6.7]it is showed the conjugation of £, to a quasi-periodic

momentum preserving operator of the form
(h,B) = @+ Qb +imy (s, D)h +mid,h +imy | D|2h + Rk + R”h. (2.2.18)
where the linear operators
RO R0, o, BY . o, (R, ],

o R ot RD 8,1, m =1,
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and similarly R(O), satisfy tame estimates in Sobolev spaces for some b = b(7,kg) € N large
enough, fixed in , see Lemma Such conditions hold under the assumption that M
(the order of regularization in Section is chosen large enough as in ({.7.5) (essentially
M = O(b)). This is the property that compensates, along the KAM iteration, the loss of
derivatives in ¢ and x produced by the small divisors in the second order non-resonance Melnikov
conditions.

We follow the same KAM reducibility scheme in [44], which reduces essentially to prove
that the solution of the homological equation produced at each step of the KAM iteration is
closed in the class of D¥-modulo-tame operators (see Definition , which is the content of
Lemma In addition to the scheme in [44], we show that the generator of each iteration is
a momentum preserving operator so that the conjugated operator is momentum preserving, as

well.

2.3 Ideas of the proof of Theorem 1.10

Paradifferential reduction up to smoothing remainders. The first step in order to prove
Theorems and is to write ((1.1.30) (with v = 0) in paradifferential form, to symmetrize
it, and reduce to paradifferential symbols which are constant in x, see Proposition [5.11] These
results are proved in Berti-Delort [37] (up to minor details).

We define the Fourier multiplier A of order —1/4 as A := A(D) := (G(O))i (9 +wD*) 1,
which is equivalent to the Fourier multiplier M (D) with symbol given by in the case

~v = 0, and we consider the complex function

PN

1 i 1 1
= —Aw+—=A"1y, n=—A(u—1)), =—ANtu+7u 2.3.1
wi= et A, 0= (u—u), w NG (u+u) (2.3.1)

where A™! acts on functions modulo constants in itself. Then Proposition shows that, in

the variable U := (%) defined in (2.3.1), the equations (L.1.30) assumes the form (5.2.6)), which

in particular can be read as
U =iQ(D)EU +iM(U;t)U

where Q(D) = OpBW(Q(¢)), Q&) € fé is the dispersion relation symbol defined in (4.0.3))
(see also Definition , where the classes 1:6” are defined), and M (U;t) is a real-to-real map
in XM [r, N] ® M(C) for some my > 3/2 (see Definition , using that paradifferential
operators and smoothing remainders are maps, see (4.2.6) in [37]

Since the linear dispersion relation in is superlinear, the complex system of Proposition
5.10| can be transformed into a paradifferential diagonal system with a symbol constant in x, up

to smoothing terms, which is the content of Proposition In particular, we end up with the



2.3. IDEAS OF THE PROOF OF THEOREM 1.10 23
system in the variable Z = (g) of the form
6 Z =10p"V ((1 + {(Us)QUEE + H(U;t,))Z +1iR(U; t)[ Z] (2.3.2)

where the real function ((U;t) and the diagonal matrix of symbols H(U;t,§) of order 1 are

independent of x € T, whereas R(U;t) is a matrix of smoothing operators.

Quadratic Poincaré-Birkhoff normal form and 3-waves interaction. In Section
we transform the paralinearized reduced system into its quadratic Poincaré-Birkhoff
normal form. Moreover, noting that the contribution at the quadratic order of the operator
z > OpBW(g(U)Q(E))Z is zero due to the conservation of momentum (see Lemma , we
have only to transform the quadratic term of the smoothing operator R(U) = —iR1(U) —iR=2(U),
where R;(U) is homogeneous of degree 1 in U. The goal is therefore to provide a bounded in-

vertible map that transforms (2.3.2) into the system in the new variable Y = (3 ) of the form

8,Y = iQ(D)EY + R (V)[Y] + Xo3(U,Y) (2.3.3)

where RI®(Y) is Poincaré-Birkhoff resonant, according to Definition (5.13)), and X>3(U,Y) is a
cubic remainder that contributes to the energy estimates (5.0.10)) of Theorem .

The non-resonant term are removed in the process by solving the homological equation
G1(IQUD)EU) + [61(U),iUD)E| + R (U) = RI®(U), (2.3.4)

where G1(U) is a smoothing generator of the transformation. The equation (2.3.4) is solved in
Lemma which requires a lower bound on the non-resonant three waves interaction of the

linear frequencies, that is, on those Fourier sites ni,na, n3 € Z\{0} such that
ni+ons +o'n3 =0, Qny)+0oQng)+d'Qnsz) #0.

The restriction ny + ons + 0'ng = 0 on the Fourier sites is due to the invariance of the equations
(1.1.30)) with respect to space translations, which we also call, as in Section , the "momentum
condition". In Lemma we show that, on such non-resonant sites, an uniform lower bound

holds and that there are only finitely many triplets of Fourier sites that are resonant:

011 + 02j2 + 0353 =0 S
= max(|j1], |j2], [73]) < C. (2.3.5)
U1Qj1 + O'QQ]‘2 + 03Qj3 =0

This key fact that the resonant contribution to the dynamics is confined only on finitely many

interactions is fundamental for proving the energy estimates that lead to Theorem A more
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complicated and chaotic dynamics takes place when the system is restricted to these resonant
sites, which is responsible in fluid dynamics for the phenomenon of the Wilton ripples. For
instance, we refer to the work of Craig and Sulem [69], where they study some cases of resonant

triads that give rise to quasi-periodic solutions, either stable or unstable.

Normal form identification and energy estimates. In Section we perform a normal
form uniqueness argument that allows to identify the quadratic resonant vector field R1*(Y')[Y]
in as the cubic resonant Hamiltonian vector field obtained by the formal Birkhoff normal
form construction in [69]. Our identification argument is the easier version of the one used by
Berti, Feola and Pusateri in [39, 40] for the pure gravity case. A related strategy was first
implemented by Feola, Giuliani and Procesi in [89] for proving the existence of small amplitude,
quasi-periodic solution for small quasi-linear Hamiltonian perturbations of the Degasperis-Procesi
equation on the torus T.

The first step is to expand in homogeneity the invertible maps provided in Propositions[5.10
b.11] see Lemma [5.20] With such expansion, we compute how the Hamiltonian vector field
(1.1.30) (with v = 0), up to cubic and higher degrees of homogeneity, are transformed by the
previous maps truncated are the quadratic degree with a Lie commutator expansion, obtaining
the vector field

Xy + X o + [SS + To, XH§>]] S (2.3.6)
where X e X @ are the Hamiltonian vector field generated by the the quadratic and the
C C

cubic contribution of the Hamiltonian (1.1.18)) (with v = 0) in complex coordinates, see (5.4.6]),
whereas S‘zC and T2 are the quadratic vector field of the transformations of Proposition (5.10)),
5.14] respectively, and [[ -, -]] is the nonlinear commutator defined in (5.4.14). By construction,
if we project on the cubic resonant Fourier modes the vector field in (2.3.6)), we conclude that
: (.49
Rlies(Y) [Y] = err(XHq(:g)) = X

(3)
Hgnp '

where H}(B?N is the cubic resonant Hamiltonian in ((1.1.39)), [1.1.40} as claimed in Theorem

The quadratic life span of Theorem is proved by the energy estimate argument in Section
m By (2.3.5)), we consider for any function z € H*(T) the splitting between low and high

modes

z=z,+zyg, zp:=1Ipz= Z zje" oz i=Ipz = Z zje I
0<ljl<C li]=C

The system (1.1.38)) reads in z = zp, + 27 as

i = iQ(D) 2y, +10:H S (21, 21) + L (XU, 2))
zg =iQ(D)zy + 1y (X25(U, 2)),
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having that H1(331\)1F(Zv§) = Hl(;i\)IF(zL,fL). If we ignore the cubic remainders, we have that the
dynamics of zy is linear and preserves the Sobolev norm H?®. For the low modes, using that,
by construction of the Birkhoff normal form, the Hamiltonian H](;’l\)IF Poisson commutes with the

quadratic Hamiltonian Hg), that is
3 2
(Hip HE') =0,

we have that the evolution of zy, is constant for H, (((:2), which controls the L?-norm and any Sobolev
norm H? on the finitely many modes. Therefore, it is possible to show the energy estimates in
the H*-norm of Lemma with respect to the equivalent norm

2 2 _
|02 == HE (21) + lzn3gry,  where  HO(zp) = Y. Q27
0<lj|<C

Theorem (|1.10)), finally, follows by a standard bootstrap argument.
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Chapter 3

Reducibility for a linear Klein-Gordon

equation with a fast driven potential

We consider a linear Klein-Gordon equation with quasi-periodic driving
Ut — U + 20 + V(wt, z)u =0, zel0,m], teR, (3.0.1)

with spatial Dirichlet boundary conditions u(t,0) = u(t,7) = 0.

The potential V' : T¥ x [0,7] — R, is quasi-periodic in time with a fast oscillating frequency
vector w € R\{0}, namely |w| » 1.

The goal is to provide, for any frequency w belonging to a Cantor set of large measure, a
reducibility result for the system (3.0.1)). That is, we construct a change of coordinates which
conjugates equation into a diagonal, time independent one.

We recall the assumptions on the potential driving V (wt, x):

(V1) The even extension in x of V(p,z) : TV x [0,7] — R on the torus T =~ [—m, 7], which we
still denote by V, is smooth in both variables and it extends analytically in ¢ in a proper
complex neighbourhood of T of width p > 0. In particular, for any 8 € Ny := N u {0},
there is a constant Cg , > 0 such that

(V2) §p. V(p,2)dp = 0 for any z € [0, 7].

We introduce the new variables ¢ := BY2y 4+ iB~Y20,u and 9 := BY2u — iB~Y20,u, where

B:=+/—-A+mn?asin ([.1.2). In the new variables equation (3.0.1) is equivalent to the following

57



58 CHAPTER 3. LINEAR KLEIN-GORDON WITH FAST DRIVEN POTENTIAL

system

i0(t) = H()yp(t) , H() := (1; _OB> +%B’1/2V(wt,x)B’1/2 (_11 _11> . (3.0.2)

where, abusing notation, we denoted ¥(t) = (%Eg) the vector with the components v,1. The
phase space for (1.1.4]) is H" x H", where H", r = 0, is defined in (1.1.5). Here we have used
the notation (m) := (1 + |m|2)%, which will be kept throughout this chapter. We define the

v-dimensional annulus of size M > 0 by

RM = BQM(O)\BM(O) c R” 3
here we denoted by Bj;(0) the ball of center zero and radius M in the Euclidean topology of R”.

Theorem 3.1. Consider the system (L.1.4) and assume (V1) and (V2). Fiz arbitrary r,m =0
and o € (0,1). Fiz also an arbitrary v > 0 sufficiently small.
Then there exist My > 1, C' > 0 and, for any M = M, a subset Q% = Q5 (M, v4) in Ry, fulfilling

meas(Ry\Q%)

< Cryy,y
meas(Ry) e

such that the following holds true. For any frequency vector w € QY , there exists an operator
T (wt;w), bounded in L(H" x H"), quasi-periodic in time and analytic in a shrunk neighbourhood
of TV of width p/8, such that the change of coordinates ¥ = T (wt;w)w conjugates (1.1.4)) to the

diagonal time-independent system

DO 0
iw(t) = HO%w(t) , H** := ( 0 Do a) , D = diag{ \¥(w) [jeN}. (3.0.3)

The transformation T (wt;w) is close to the identity, in the sense that there exists C, > 0 inde-

pendent of M such that

Cr
17 (wt;w) — ]lHL(erq-p') S Ml? . (3.0.4)

ZA)

The new eigenvalues ()\;’»O (w))jen are real, Lipschitz in w, and admit the asymptotics, for j € N,

1
AP (W) = A (w, ) := Aj + e (w, ), £ (w,a) ~O (M]O‘> , (3.0.5)

where \j = 4/j% +m? are the eigenvalues of the operator B.

The rest of the chapter concerns the proof of Theorem [3.I] The relative functional setting
is presented in Section In particular, we define the family of pseudodifferential operators
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analytically depending on the variable ¢ € T” and the classes of linear operator with finite s-
decay. In Section we show how the system is transformed into a perturbative setting via the
Magnus normal form. In Section we prove the balance second order non-resonance Melnikov
conditions that are needed for the KAM reducibility scheme of Section [3.4]

3.1 Functional setting

Given a set @ < RY and a Fréchet space F, the latter endowed with a system of seminorms

{II - lln : neN}, we define for a function f: Q3w — f(w) € F the quantities

0= sup @)l s LR = sup L) =S @2l (3.1.1)
’ wEN ’ wl,;Qen |(A.}1 - (,U2|

Given w € R, we denote by Lip,(Q, F) the space of functions from Q into F such that

Lip(w Li
P = g+ Wl fE < o0 (3.1.2)

n,Q

If

3.1.1 Pseudodifferential operators

The main tool for the construction of the Magnus transform in Section is the calculus with
pseudodifferential operators acting on the scale of the standard Sobolev spaces on the torus
T := R/27Z, which is defined for any r € R as

H'(T) i= {u(@) = 25677, 2 e T+ [l i= 2, GO ] < o} (3.1.3)

JEZ JEZL

Definition 3.2. We say that a function f: R x Z — R, (z,j) — f(z,]) is a pseudodifferential
symbol of order m € R if it is the restriction of a function f(x,&), which is C* on R x R,

2m-periodic in z, so that, for any «, 8 € Ny, there exists C, g = 0 such that
030 (.| < Cap©™ ", VaeR.
In this case, we write f € S™.

We endow S™ with the family of seminorms

op(f) =Y, sup (& "2 f(w,€), eeNp.

atp<o (@EERXR

Analytic families of pseudodifferential operators. We will consider in our discussion also

symbols depending real analytically on the variable # € T. To define them, we need to introduce
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the complex neighbourhood of the torus
T, :={a+ibeC” : aeT”, |b] <p}.

Definition 3.3. Given m € R and p > 0, a function f: TV x T x Z - R, (¢, z,75) — f(p,z,7),
is called a symbol of class Sj* if it is the restriction of a function flp,2,&), which is C* on

T” x R x R, that extends analytically in ¢ on T} and such that
1090, f(0,2,6) < Cap ™", VueR,VpeC, mp|<p, Vo,feN.
We endow the class S7* with the family of seminorms

gpP(f):= sup Y sup (& "PUed f(pw6)l . eeNy.
|Im¢‘<p a+ﬁ<g(x7§)ERXR

We associate to a symbol f € S;" the operator f(e,x, Dy) acting on 2m-periodic functions by

standard quantization

Y(x) = Y e o (f(o,3, D)) () = D) Flo @, j)be?™ ; (3.1.4)
JEL JEZ

here D, = D := 1710, is the Hormander derivative.

Definition 3.4. We say that F' € OPST if it is a pseudodifferential operator with symbol of
class S}, i.e. if there exists a symbol f € S7* such that F' = f(p,z, Dy).
If F' does not depend on ¢, we simply write F' € OPS™.

Remark 3.5. For any o € R, the operator (D)’ = (1 — dyz)? is in OPS”.

As usual we give to OPS]" a Fréchet structure by endowing it with the seminorms of the
symbols. Finally we define the class of pseudodifferential operators depending on a Lipschitz

way on an external parameter.

Definition 3.6. We denote by Lip,(Q, OPS;”) the space of pseudodifferential operators whose
symbols belong to Lip, (@, S}*) and by (p?’p(-)gip(w)) . the corresponding seminorms.
je

Remark 3.7. Let F' € Lip,(Q, OPS}') and G € Lip, (2, OPS}). Then the symbolic calculus implies
that F'G € Lip,(Q, OPS)"™™) and [F, G] € Lip,(Q, OPS;”*"*I), with the quantitative bounds

Vj 3N s.t. p;ﬂ""nvp(FG)gip(W) < Clpﬁvp(F)gip(W) p%ﬂ(G)fl;ip(w) ,
¥j AN st o TR GG < Copl (F)gP o (G)g P
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Parity preserving operators. The space HO of is naturally identified with the sub-
space of HY(T) := L?(T) of odd functions. Therefore it makes sense to work with pseudod-
ifferential operators preserving the parity. Before describing them, we recall the orthogonal
decomposition of the periodic L?-functions on T:

L*(T) = L2, (T) @ L244(T)

even
where, for u(z) = >,z ujei® € L(T), we have for any j € Z,

ue L?

2en(T) & u_j=u; and wel?y(T) & u_j=—u,. (3.1.5)

Definition 3.8. We denote by PS]" the class of symbols f € SJ* satisfying the property

flo,z,5) = flo,—z,—j) VeeT”, zeT, jeZ. (3.1.6)

We denote by POPS]" the subset of OP.S]" of parity preserving operators, that is, those operators
A€ OPS} such that A(L2,,) € L2, and A(L2;;) S L2,

even eEven

Lemma 3.9. Let '€ OPS]" with symbol f € S;'. Then F € POPS] if and only if f € PS].

Proof. 1t is easy to check that F(L2,,(T)) € L2,,(T) if and only if the symbol f(z, j) of F fulfills
Im[(f(z,7) — f(—x,—3))e¥*] = 0. Similarly F(L2,.,(T)) € L?,.,(T) if and only if Re[(f(z,j) —

even even

f(=2,=j))e*] =0. O

Remark 3.10. For all o € R, the operator (D)° € POPS?, whereas, by the assumption (V1), we
have V € POPS/()).

Remark 3.11. Parity preserving operators are closed under composition and commutators.

Remark 3.12. For m = 0 and o > 0, we define B™7¢ := Z#O #wjeijm for any ¢ € L?(T);
clearly B~ € POPS~°. Note that BB~ = BBy = ¢ — 1g. However, the restriction B0
of B to the phase space (1.1.5)) is invertible (since the phase space contains only functions with

zero average) and B~ is its inverse.

3.1.2 Matrix representation and operator matrices

For the KAM reducibility, a second and wider class of operators without a pseudodifferential
structure is needed on the scale of Hilbert spaces (H"),cg, as defined as in . Moreover,
let H® := nperH" and H™® := UperH". If A is a linear operator, we denote by A* the adjoint
of A with respect to the scalar product of H°, while we denote by A the conjugate operator:
Ay 1= AP Yo € D(A).
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Matrix representation of operators. To any linear operator A: H® — H ™ we associate

its matrix of coefficients (A7), mren on the basis (&, := sin(ma))men, defined for m,m’ € N as
AT = (A8, 8 )0 -
Remark 3.13. If A is a bounded operator, the following implications hold:

AzA*(z)A%:Aim, Vm,m e N;

A=A — A = A", Ym,m'eN.
A useful norm we can put on the space of such operators is in the following:

Definition 3.14. Given a linear operator A: H* — H~® and s € R, we say that A has finite

s-decay norm provided

Al o= (X sup |Ag’|2)l/2 <. (3.1.7)

heNo [m—m/|=h
One has the following:
Lemma 3.15 (Algebra of the s-decay). For any s > 3 there is a constant Cs > 0 such that
|AB|, < Cs |A|, |B|,. (3.1.8)

The proof of the Lemma is an easy variant of the one in [33] we sketch it in Appendix [A.3]

Remark 3.16. If A : H*® — H ™ has finite s-decay norm with s > %, then for any r € [0,s], A
extends to a bounded operator H" — H". Moreover, by tame estimates, one has the quantitative
bound [|A| g3y < Crs| Als.

Next, we consider operators depending analytically on angles ¢ € T".

Definition 3.17. Let A be a p-depending operator, A: TV — L(H®,H~*). Given s = 0 and
p >0, we say that A e M, , if one has

~ ~ 1 .
= ol — —il-p
Al : gzjye |A(0)|s <00, where A((): (QW)VJVA(go)e de . (3.1.9)

Remark 3.18. If A is a p-depending bounded operator, the following implications hold:

|
Il
=
S
=
I
0
=
<
~
m
N
AN
By
33
=
I
>
33
=
<
~
m
N
. AN
<
3
3
m
Z,
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If Q3w A(w) € M, is a Lipschitz map, we write A € Lip,(Q, M, ), provided

. A(wr) — A(w2)]

Lip(w) | . o
;= sup |A(w +w sup

| |p7579 e A )|p’s w1 AW2EN w1 — wo

<. (3.1.10)
Remark 3.19. For any s > % and p > 0, the spaces M, and Lip,(Q, M, ;) are closed with
respect to composition, with

|AB|Lip(w) <O, |A|L1P(W) |B|Lip(w)'

|AB|p,s < CS |A|p,s |B| 0,8, 0,8, 0,8,8

pyS 7

This follows from Lemma [3.15| and the algebra properties for analytic functions.

Operator matrices. We are going to meet matrices of operators of the form

Ad - Ae
A= (_AO _Ad> : (3.1.11)

where A% and A° are linear operators belonging to the class M, s. Actually, the operator Al
on the diagonal will have different decay properties than the element on the anti-diagonal A°.

Therefore, we introduce classes of operator matrices in which we keep track of these differences.

Definition 3.20. Given an operator matrix A of the form (3.1.11), o, € R, p > 0,5 = 0, we
say that A belongs to M, (a, B) if

[A%]* = AT, A =A° (3.1.12)
and one also has
(DY* AT, AT(DY* e M, , (3.1.13)
(DY A%, A°(D) e M, , (3.1.14)
(DY A (DY " eM,,, Voe{ta,+£3,0}, Vie{d,o}. (3.1.15)

We endow M, s(a, 5) with the norm

AL =[(DY* A%+ |AL(DY | s + (DY A°ps + |47 (DY | s

+ ), KDY ANDYT
oe{ta,+3,0}
se{d,o}

(3.1.16)

ps8

with the convention that, in case of repetition (when o = 3, @ = 0 or § = 0), the same terms

are not summed twice. When A is independent of ¢ € T”, we use the norm |A|§"5 , defined as
(3.1.16), but replacing |- |, ; with the s-decay norm |- |, defined in (3.1.7).
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Let us motivate the properties describing the class M, s(«, 3):
e Condition (3.1.12)) is equivalent to ask that A is the Hamiltonian vector field of a real

valued quadratic Hamiltonian, see e.g. [145] for a discussion;

e Conditions (3.1.13) and (3.1.14) control the decay properties for the coefficient of the
coefficients of the matrices associated to A% and A°: indeed the matrix coefficients of

(DY* A (D) are given by
[<DY™ A DY™ (k) = (my™ A (k) ('Y’

therefore decay (or growth) properties for the matrix coefficients of the operator A are

implied by the boundedness of the norms | - |, s;

e Condition (3.1.15)) is just for simplifying some computations below.
Remark 3.21. Let 0 < p' < p,0< s <sa=d, = Then M, (o, ) € My g(,8") with
the quantitative bound |A|Z‘,lf,l < |A|?f

Finally, if A%(w) and A°(w) depend in a Lipschitz way on a parameter w, we introduce the
Lipschitz norm

A1) = Awo)lg)

Li ,
|A|p,§$)ﬁ,nﬁzsgglA(w)lﬁ,’erw sup P (3.1.17)

W1 F#waEQ |w1 - W2|

If such a norm is finite, we write A € Lip,(Q, M, s(c, 5)).

Embedding of parity preserving pseudodifferential operators. The introduction of the
classes M, s(a, 3) is due to the fact that they are closed with respect the KAM reducibility
scheme, for a proper choice of @ and . In the next lemma we show how parity preserving

pseudodifferential operators embed in such classes.

Lemma 3.22 (Embedding). Given o, (,p > 0, consider F € POPS,* and G € POPS,,_B.
Assume that

F*=F, G* =G,

(where the adjoint is with respect to the scalar product of H°). Define the operator matriz

A= <F G) . (3.1.18)
-G —-F

Then, for any s > 0 and 0 < p’ < p, one has A € My (o, ). Moreover, there exist C,c > 0

such that
C

a?/B
[Alys < (p—p)

(0 (F) + 0.£2(G)) - (3.1.19)
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Finally, if F' € Lip,(Q, POPS, %), G € Lipw(Q,POPS’;ﬁ), one has A € Lip,(Q, My (o, 8)) and
(13.1.19) holds with the corresponding weighted Lipschitz norms.

The proof is available in Appendix [A]

Commutators and flows. These classes of matrices enjoy also closure properties under com-

mutators and flow generation. We define the adjoint operator
adx (V) :=1i[X, V] ; (3.1.20)
note the multiplication by the imaginary unit in the definition of the adjoint map.

Lemma 3.23 (Commutator). Let a,p > 0 and s > 5. Assume V € M, (a,0) and X €
M, (o, ). Then adx (V) belongs to M, (o, o) with the quantitative bound

o0, X v (3.1.21)
p,s = S (2] s 7 T

‘ adx (V)

here Cs is the algebra constant of (3.1.7). Moreover, if V € Lip,(Q, M, s(c,0)) and X €
Lip,(Q, M, s(a, @), then adx (V) € Lip, (2, M, s(c, @), with

v|Lre (3.1.22)

Lip(w Lip(w
ladx (V)52 o <200 IXIEPW GIVIERE

p:sza7azn = P,5>047047Q

Also the proof of this lemma is postponed to Appendix [A]

Lemma 3.24 (Flow). Let o, p > 0, s > 1. Assume V € M, ,(a,0), X € M, (c, ). Then the
followings hold true:

(i) For any € [0, s] and any ¢ € TV, the operator ¢X¥) € L(H"), with the standard operator

norm uniformly bounded in ¢;

(ii) The operator €X Ve X belongs to M, s(«,0), while eX Ve X —V belongs to M, s(a, )

with the quantitative bounds:

XV K[ < OPES v]a
. . Py fo'Ne] e o, (3123)
|€1X V eilx - V|p,’5 g 2 0362 CS'X'p’S |X|Z[:g |V|g:g ’

Analogous assertions hold for V € Lip,(Q, M, s(«,0)) and X € Lip,(Q, M, s(a, @)).

The proof of this lemma is a standard application of (3.1.21)) and the remark that the operator
norm is controlled by the |-[7°¢-norm (see also Remark [3.16).
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3.2 The Magnus normal form

To begin with, we recall the Pauli matrices notation. Let us introduce

0 1 0 —i 1 0
o — oy = . o3= : 3.2.1

and, moreover, define

1 1 10 00
oy = , 1:= , 0:= .
2) =) o)

Using Pauli matrix notation, equation (L.1.4)) reads as

(1) =H(1)y(t) = (Ho + W(wh))u(t) ,
: (3.2.2)
Hy := Bo3, W(wt):= §B_1/2V(wt)B_l/2o'4 .

Note that, by assumption (V1), one has V € POPSS (see Remark ; therefore the properties
of the pseudodifferential calculus and of the associated symbols (see Remarks and imply
that

BePOPS' and B~Y?VB~'Y?ePOPS;! (3.2.3)

(in case m = 0, we use Remark to define B—/2). The difficulty in treating equation ([3.2.2)
is that it is not perturbative in the size of the potential, so standard KAM techniques do not

apply directly.

To deal with this problem, we perform a change of coordinates, adapted to fast oscillating
systems, which puts in a perturbative setting. We refer to this procedure as Magnus nor-
mal form. The Magnus normal form is achieved in the following way: the change of coordinates
Y(t) = e XWihy(t) conjugates to idyw(t) = H(t)w(t), where the Hamiltonian H(t) is
given by (see [20, Lemma 3.2])

~

l .
H(t) = e*X(“’M)H(t)eX(w“’Jt) - J e*SX(‘”;‘“t)X(w;wt)esx(““‘”t) ds (3.2.4)
0

= Hy +i[X,Ho] + W — X +i[X,...] . (3.2.5)

In (3.2.5)) we wrote, informally, [X,...] to remark that all the non written terms are commutators
with X. Then one chooses X to solve W — X = 0; if the frequency w is large and nonresonant,
then X has size |w| ™!, and the new equation (3.2.5) is now perturbative in size. The price to pay

is the appearance of i[X, Hy], which is small in size but possibly unbounded as operator. We
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control this term by employing pseudodifferential calculus and the properties of the commutators.

With this informal introduction, the main result of the section is the following:

Theorem 3.25 (Magnus normal form). For any 0 < 79 < 1, there exist a set Q9 < Ry < R
and a constant co > 0 (independent of M), with

7 < o (3.2.6)

such that the following holds true. For any w € Qo and any weight w > 0, there exists a time

—iX(w;wt)

dependent change of coordinates ¥(t) = e w(t), where

X(w;wt) = X(w;wt)oy , Xe Lipw(QU,POPS;/é) ,

that conjugates equation (3.2.2)) to

ib(t) = H(t)w(t), H(t) := Hy+ V(w;wt) , (3.2.7)
where
Vd . VOo(w: L
Viwg) = [ Cwi9) Vowio) ) e — v s = v (3.2.8)
—Viwip) =V (w;ie)
and
vie Lip,(Q0, POPS, 3) . V° € Lip,(Q, POPS)),) . (3.2.9)

Furthermore, for any o € Ny, there exists C, > 0 such that

_ ip(w o\Lip{w c
pQl,p/2(vd)§1;0p( ) 4 p(£J)7p/2(v )gop( ) < W@_

(3.2.10)
Proof. The proof is splitted into two parts, one for the formal algebraic construction, the other
for checking that the operators that we have found possess the right pseudodifferential properties

we are looking for.
Step I). Expanding (3.2.4) in commutators we have

H(t) = Hp +i[X,Ho] — [X,[X,Ho]] + W - X+ R, (3.2.11)

where the remainder R of the expansion is given in integral form by

1 1— 2
R := J A=) 5 s) e~ Fad (Ho)e™ ds
0

) ) (3.2.12)
+ if e XX, W]esX ds — iJ (1 — s)e™*X[X, X]e*X ds.
0 0
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From the properties of the Pauli matrices, we note that ai = 0. This means that the terms in

(13.2.12) involving W and X are null, and the remainder is given only by

_ ! (1 - 5)2 —sX . 13 sX
R = 5 € adx (Ho)e™™ ds. (3.2.13)
0

We ask X to solve the homological equation
. 1 )
0=W-X= (2 B~V (wt)B~1/? — X(w;wt)) o4 (3.2.14)
Expanding in Fourier coefficients with respect to the angles, its solution is actually given by

Rwil) = ﬁB*W\A/(K)B*W, for ¢ € Z\{0}, 5o15)

X(w;0)=0

where the second of (3.2.15) is a consequence of (V2). It remains to compute the terms in (3.2.4)
and (3.2.13) involving Hy. Using again the structure of the Pauli matrices, we get:

adx (Hp) := i[X o4, Bos| = iXB(1 — o1) —iBX(1 + o1) = i[X, B]1 —i[X, Blao1 , (3.2.16)
where we have denoted by [X, B], := XB + BX the anticommutator. Similarly one has

ad%((Ho) = —[Xo4,[Xo4, Bos]]

C29  (Xou, [X, BI1) - (X0, [X. Bluor])

(3.2.17)
= _([X7 [X’ B]] - [X7 [Xv B]a]a)0'4
=4XBXoy ;
thus
ad (Hp) 4i[Xo4, XBXa4] =0. (3.2.18)
This shows that R = 0 and, imposing (3.2.15) in (3.2.4]), we obtain
H(t) = Hy + V(wt;w) | (3.2.19)
with
VHO; w) = i[X(0; w), B] + 2X (0; w)BX (0; w) ,
(0;w) = i[X(0;w), B] (0;w)BX (0;w) (3.2.20)

VO O;w) := —i| X (0;w), Bla + 2X(0;w)BX(0;w) .
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Step II). We show now that X, V% and V°, defined in (3.2.15) and (3.2.20) respectively, are
pseudodifferential operators in the proper classes, provided w is sufficiently nonresonant. First

consider X. For 79 > 0 and 79 > v — 1, define the set of Diophantine frequency vectors

Q0 1= (70, 70) = {w €Ry: w-l > <€>T0M Vie Z”\{O}} (3.2.21)
We will prove in Proposition below that
meas(Ry\Qo)
measttuo) 2.22
meas(Ry) €070 (3 )

for some constant ¢y > 0 independent of M and ~y. This fixes the set Qy and proves (3.2.6).
We show now that X € Lip,(Qy, POPS /2) First note that, by Lemma (1) (in Appendix
and Remark one has B~ 1/QV(E) ~1/2¢ POPS~! (both B and V are independent from w)
with
1/ p-1/27 ~1/2 ol Lo p—1/2y R—1/2 —plt|
©, (B~/°V()B~ %) < 4e p, P(B/VB /%) < e C,.

Provided w € Qq, it follows that

15 1 1 _1/95 _ 47
1 1/2 1/2 ol
X (54 < = V({)B < C,.
o (X(50)q, [5352 oy €|]pg (B (0) ) TR 0
To compute the Lipschitz norm, it is convenient to use the notation
Ayfw) = flw+ Aw) — f(w), (3.2.23)

with w, w + Aw € Qp, Aw # 0. In this way one gets

| Aw|
2wl |(w+ Aw) - /|

4 <€>27'0
(70M)?

[AuX (i 0)] < BPVOBT] = o R0 < e,

As a consequence, X (w; ) = >, )?(w; 0)e*# is a pseudodifferential operator in the class Lip, (2, POPSP_/;)
(see Lemma [A.1fii) in Appendix [A]for details) fulfilling

~

—1,p/2 v Lip(w) 1 W C, max(l,w) C,
o5 LX) < (W + 7gMz)pQTW < (3.2.24)

It follows by Remark EI that V¥ € Lip, (2, POPS /2) and V° e Lipw(Qo,POPSg/2) with the
claimed estimates @

Finally, V is a real selfadjoint operator, simply because it is a real bounded potential, and
therefore V* = V = V. Tt follows by Remark and the explicit expression that
X* = X = X. Using these properties one verifies by a direct computation that [V]* = V¢ and
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[V°]* = V°. Estimate (3.2.24) and the symbolic calculus of Remark [3.11] give (3.2.10). O

Remark 3.26. Everything works with the more general assumptions V' € POPSS.

Remark 3.27. Pseudodifferential calculus is used to guarantee that V¢ has order -1 while V° has
order 0 (see (3.2.9)). Without this information it would be problematic to apply the standard
KAM iteration of Kuksin [129], which requires the eigenvalues to have an asymptotic of the form
§+0(4%) with 6 < 0. In principle one might circumvent this problem by using the ideas of [14} 91]
to regularize the order of the perturbation. However, in our context this smoothing procedure
is tricky, since it produces terms of size |w|, which are very large and therefore unacceptable for

our purposes.

Proposition 3.28. For vy > 0 and 79 > v — 1, the set Qo defined in (3.2.21)) fulfills (3.2.22)).

Proof. For any k € Z"\{0}, define the sets G’ := {w e Ry : |w-f| < <g—%M}. By Lemma
|gf| < X0 MY, Therefore the set G := Uz;&o G! has measure bounded by |G| < CHyoM”, which

M|7'0+1

proves the claim. O

3.3 Balanced unperturbed Melnikov conditions

As we shall see, in order to perform a converging KAM scheme, we must be able to impose
second order Melnikov conditions, namely bounds from below of quantities like w - &k + A; & Ay,

where the \;’s are the eigenvalues of the operator B defined in (1.1.2). Explicitly,

Ni=VErE =+ 2w = /e ). (331

J

One can check that 0 < ¢;(m) < m? for any j € N. We introduce the notation of the indexes sets:
IT:=7Z"xNxN, I :={((jj)eZ": (£45) #0575} . (3.3.2)

Furthermore, we define the relative measure of a measurable set Q as

_ll _ o
|Ry| MY (2¥ —1)c,

mT(Q) : (333)

where |C| is the Lebesgue measure of the set C and ¢, is the volume of the unitary ball in R”.

The main result of this section is the following theorem.
Theorem 3.29 (Balanced Melnikov conditions). Fiz 0 < o < 1 and assume that M > My :=
min{m?, (m)/*} if o € [0,1]. Then, for 0 <75 < min{’yg/Q, 1/8} and T = 2v + 3, the set

RYES PN
<£>T Ma

Uy = {weﬂo w04 A A > V(e,j,j')ezi} (3.3.4)
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1s of large relative measure, that is
m, (Q\Ua) < CFY3, (3.3.5)

where C' > 0 is independent of M and 7.
We will use several times the following standard estimate.

Lemma 3.30. Fiz ¢ € Z"\{0} and let Ry 3 w — ¢(w) € R be a Lipschitz function fulfilling
|§|I§ilf < ¢o < |l|. Define f(w) = w- €+ ¢(w). Then, for any § = 0, the measure of the set
A:={we Ry : |f(w)| <0} satisfies the upper bound

26
k| = co

|A] < (am)r—1 . (3.3.6)

Proof. Take w1 = w + €f, with e sufficiently small so that w; € Ry.
pon 1) = (@)

| | > |0 — |§|Iéi;) > |¢] — cp and the estimate follows by Fubini theorem. O
w1 — W

In the rest of the section we write a < b, meaning that a < Cb for some numerical constant
C > 0 independent of the relevant parameters.
The result of Theorem is carried out in two steps. The first one is the following lemma.

Lemma 3.31. Fiz 0 < a < 1. There exist 1 > 0 and 71 > v + « such that the set

Tii={wet: [w-l+]> <Z>1ﬁ %Za V(L) e 2\ {0} } (3.3.7)

has relative measure m,(Q\71) < C171, where Cy > 0 is independent of M and 7.

Proof. If ¢ = 0 and j # 0, the estimate in (3.3.7) holds. The same is true if £ # 0 and j = 0.
Therefore, let both ¢ and j be different from zero. For |j| > 4M|¢|, the inequality in (3.3.7) holds
true taking 41 < % Indeed:

. . . |]| 1 o ;\yl Yot
A+l =7 = |wl ] =i -2M = = = < Z
| gl =1l = lwl €] = 3] €] 2IJI e |71

2
Then, consider the case 1 < |j] < 4M|¢| (so, only a finite number of ¢ € Z\{0}). For fixed ¢ and
j, define the set

~ e’
. 7o
Qf:: {wERM : |w-£+j|<<£>7.1|ML} (3.3.8)
By Lemma [3.30] the measure of each set can be estimated by
|g€| < Mzzfl ’71 |j|a i <X Muflfa |j|a (3 3 9)
T T e g v © >
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Let Gy := QomU{Q’f (4, 5) € Z7TI\{0}, |j] < 4M|{|}. Then

ole 3 % oSy M

v \(0} (20 ]j|<
B0} el #Olgl<amel (3.3.10)
~ 1o 1 ~ ~
SyMTITe ) W(‘LM )t S ey T SN
iz0 <O = O

provided 71 > v + «. It follows that the relative measure of G; is given by

m(G1) < C171 (3.3.11)

where C7 > 0 is independent of M and ;. The thesis follows, since 71 = Q0\G1. O

Remark 3.32. In case m = 0, Lemma [3.31] implies Theorem [3.29]

From now on assume that m > 0. The second step is the next lemma.

Lemma 3.33. There exist 0 < §2 < min{vo,V1/2} and 72 = 71 + v + 1 such that the set

Yo (G £ 50"
&= e

T2 = {wETl w4 N A 2> V(Z,j,j’)eli} (3.3.12)

fulfills m, (T1\T2) < (12?, where Cy > 0 is independent of M, Y1, 7a.
71

Proof. Let (£,4,7') € IT*. We can rule out some cases for which the inequality in (3.3.12) is
already satisfied when w € 71 < Qq:

e For + = + and ¢ = 0, we have
N+ =5+ "+@+L(m)> i+ '/>E<'+ ">O‘
oForiz—andfsfé(),j:j’,wehave|w-€|Z%M;

e For + = —and £ =0, j # j', a € (0,1], it holds that

|)\._/\.,|:Ujxdﬂ:‘>1|j'—j|>%<j—jl>a
i | v e

When « = 0, the estimate is trivially verified.

Therefore, for the rest of this argument, let £ # 0 and j # j'. Assume first that |5 £ j'| = 8M|/|.
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In this case, one has:

b A A2 ] — 9™ G s ) - e

J J

.[|

FE=

DN | =

Let now |7 £ j'| < 8M|¢|. In the region j < j' assume

4m?M> (0)™
GG =R = ~< 2 : (3.3.13)
!

where 47 and 7 are the ones of Lemma [3.31] So, for w € T1, we get

w4 N A 2 o b4+ ] — |9 4 )
J J . (3.3.14)

oG m? IERYES D)
RO YOS U

Thus, we consider just those j and j’ with j{j + j/>* < R(£). The symmetric argument shows
that we can take those j' < j for which j'{j + j/>* < R(¥).
Like in the proof of Lemma [3.31], consider the set

0k CIYES N

defined for those ¢ # 0 and j # j’ in the regions

PE = (i 5| < suld}o (G £ <RO, j < S}oli’ G £ <R, j <j}) . (33.16)
Using Lemma [3.30] the estimate for its Lebesgue measure is

G5

TR (3.3.17)

GE| < Aau 1o
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Define g2 =T n U{Qé o+ (¢,7,7") € P£}. By symmetry of the summand, we estimate

6D, e
Grl< Y gl S ey YIS
(¢,5,5")eP~ (£,5,5")eP~ | |
< ﬁ Muflfa Z Z Z <] - j,>a
~ )2 |£|72+1
£#0 i<y’ w6 |[7—5"|<8M|¢|

S (3.3.18)

> my—1l—« h‘a
SR YD IRV

£#£0  j'—j=:h>0 F<RO(RY™

h<8M|¢|
1 1 ~
WY <wy < R
1 ~ A~ _ ~N A~
por St |€|7'2+ —T1 M o) |£|72 1 T

provided 79 > 7 + v. The same computation holds for g; . We conclude that

m, (T1\72) < m, (G5 N Gy) < CQ%, (3.3.19)

where Co > 0 is independent of M, 1, 7s. O

Proof of Theorem[3.29. Take 7, = A3 %y = 523 with some 5 > 0 sufficiently small so that
41 and s fulfill the assumptions of the previous lemmas. Similarly, choose 71 = v + 2 and
Ty = 2v + 3 . By definition, U, = T2 < Qo. Since Qo\Us = (\71) v (T1\72), we get by Lemma
and Lemma [3.33] that

m, (\Ua) < C131 + c% <SCFB . C=2(C1+C) .
1

3.4 The KAM reducibility transformation

The new potential V(w;wt) that we have found in Theorem is perturbative, in the sense
that the smallness of its norm is controlled by the size M of the frequency vector w. Thus, we are
now ready to attack with a KAM reduction scheme in analytical regularity, presenting first the
algebraic construction of the single iteration, then quantifying it via the norms and seminorms
that we have introduced in Section The complete result for this reduction transformation,

together with its iterative lemma, is proved at the end of this section.



3.4. THE KAM REDUCIBILITY TRANSFORMATION 75

3.4.1 Preparation for the KAM iteration

For the KAM scheme it is more convenient to work with operators of type M, ;. Of course, as

we have seen in Section [3.I] pseudodifferential operators analytic in ¢ belong to such a class.

Lemma 3.34. Fix an arbitrary so > 1/2 and put po := p/4. Then the operator V(w) defined in
(3-2.8)) belongs to Lip,(Q, M5, (1,0)) with the quantitative bound

Lip(w) c

|V|p0,so,1,0,90 < ﬁ; (3.4.1)
here C' > 0 is independent of M.
Proof. 1t is sufficient to apply the embedding Lemma [3.22) and ([3.2.10)). O
3.4.2 General step of the reduction
Consider the system
iw(t) = H(H)w(t), H(t) = A(w) + P(w;wt), (3.4.2)

where the frequency vector w varies in some set @ < R”, M < |w| < 2M; the time-independent
operator A(w) is diagonal, with

Aw) = (A(Ow) —/?(w)) ; Aw) :=diag{)\; (w) : jeN} < (0,00)N ; (3.4.3)

and the quasi-periodic perturbation P(w;wt) has the form

Plw;wt)  P°(w;wt)
—Po(w;wt) —P(w;wt)

P(w;wt) = ( ) , Pl=[PY*, Po=[P*. (3.4.4)

The goal is to square the size of the perturbation (see Lemma [3.37) and we do it by conjugating

—iX*+(wwt)

the Hamiltonian H(t¢) through a transformation w :=e z of the form

XHwiwt)  XO(w;wt)

+7. _ d _ d1* Yo _ [ E
X+ (w;wt) = (_Xo(w;wt) _Xd(w;wt)> . X9 = [X9*, X°=[X°)*, (3.4.5)

so that the transformed Hamiltonian, as in (3.2.4)), is

1 .
H (1) := e X (Wl g (1) X" (@it) J e XWX F (s wi) e X @it) g (3.4.6)
0
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Its expansion in commutators is given by
H"(t) = A +P +i[X* A] - X" +R,

1 . .
R:i=c¢ X AKX —(A+i[X* A]) +e X' PX —P - (J e X Xt e X" ds — X*) .
0
(3.4.7)

We ask now X7 to solve the "quantum" homological equation:
i[X" (), A] —w- 0, fX" () + IINP(p) = Z (3.4.8)

where IIyP(w; ¢) := Z\fléN ﬁ(w; 0)el# is the projector on the frequencies smaller than N, while
Z is the diagonal, time independent part of P¢:

Z=7Z(w):= (ZS’J) _Zo(w)> , Z= diag{@(w;()) : jeN}. (3.4.9)

With this choice, the new Hamiltonian becomes H(t)" = A* + P(wt)t with
AT=A+Z P :=1IyP+R, IyP:=(1-1Iy)P. (3.4.10)
In order to solve equation (3.4.8]), note that it reads block-wise as

-1y d o d d _
{1[)( Al —w-dpXi4 Pl=7 (5.411)

—i[X°, Ala — w - 0 X° 4+ P° =

Expanding both with respect to the exponential basis of B (for the space) and in Fourier in

angles (for the time), we get the solutions

1 P

- e ST
T (i) = { bt x ) —ase | @O EIIVER )
0 otherwise

1 o TP
E @i = 4 Mot x @ a G n @O BRIt g )
0 otherwise

where, following the notation in (3.3.2)), we have defined

Iy = {(t,5,§) e T* : |{| < N} . (3.4.14)

—

Remark that AT (w) = diag{)\;r(w) : j € N} with )\;r(w) = A (w) + (Pd)g(w; 0).
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3.4.3 Estimates for the general step

Both for well-posing the solutions (3.4.12)) and (3.4.13]) and ensuring convergence of the norms,
second order Melnikov conditions are required to be imposed. In particular, we choose the
frequency vector from the following set

RYET N
2(NY Mo

0= fwen: jw- L4 A7 (W) £ A5 (w)] 2 V(G eTH  (3415)

with ~,7 > 0 to be fixed later on. Here I;\L, has been defined in (3.4.14)).
The fact that Q1 is actually a set of large measure, that is m,.(Q\Q") = O(v), will be clear as a

direct consequence of Lemma of Section

From now on, we choose as Lipschitz weight w := /M and, abusing notation, we denote

Furthermore, we fix once for all sp > 1/2 and a € (0, 1).
For V e Lip, (2, M, 5, (c,0)), we write

|V| _|V|50 ) | | |V|p507 p,so,a(]ﬂ P

Lip(y) Lip(~y/M* Y Li
|-V|1( = V], / |V| _}_7”0|-v|1p
whereas, for V € Lip,,(Q, M, s,(a, @)), we denote

Li Li M) Li
IVIEED = VRS = VI, +*|||V||| 2

580,00,

IV, = V1%

P80 7

Remark 3.35. Note that [V[ZP0) < v ||[Lipdn),

P00 £0,20

Now, we provide the estimate on the generator X* of the previous transformation. For sake

of simplicity during the forthcoming proof, as short notation we define
g (W) i=w L+ X (W) X (w), (65,5)eTy. (3.4.16)
Lemma 3.36. Assume that:
(a) P € Lip, (2, M, 5,(c,0)), with an arbitrary p > 0;
(b) There exists 0 < C < 1 such that for any j € N, w, Aw € Q* one has

AN ()] < ClAW] . (3.4.17)

Let X = X*(w;wt) be defined by (3.4.12) and (3.4.13). Then X* € Lip, (27, M, 5 (o, @) with
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the quantitative bound
1 T M 1
|||X+|||Lp<7 < 16(NY? 7! |P|LP<’y . (3.4.18)

Proof. We start with the seminorm |||X+|||Z?Q+. Fix w € Q" and |¢| < N. Then, when j # j', we

have

—

X4 Ly 2N (P (s )|
XD (w3 0)] < P (w; 0)] < L 3.4.19
[(X9)j (w; 6)] e ||( )j (w; 0)] Y =" ( )
and similarly, for any j,l € N
—, 2(N)T M* I(P") (w3 0)]
XY (w; 0)] < . 3.4.20
[(X)5 (w; )] < S G+ ( )

From assumption (a), all the terms | (D) I/D\d(w; 0)|so, |]/3\d(w; 0){D)* |5y, {D)’ ﬁ(w; 0O {DY" 7 |s
(with 0 = +,0, § = d,0) are bounded. In order to bound ||X*(w;¢)||, what we have to prove

is that we can control also the terms
[ (DY* X0(w; O)|sg, 1 XO(w; £) (DY |sg,  [{D)” X(w; £) (D)™ |,

The seminorms involving the diagonal term X? can be easily handled, since, by (3.4.19), they are
essentially bounded by the same seminorms for P¢. The similar bound in (3.4.20)) is enough also
when we consider the terms | (D) X°(w; ) (D) ™° |so- Consider now the term (DY X0(w; 0).
Applying again (3.4.20]), we get

2NN G =

0V (1o
55 (LU

(DY Ko(w; )] = |G (XY (w; 0)] <

< 2 oo i)

The same bound holds for [(X°(w; ¢) <D>O‘)§/| We obtain that

2(N)" M~
X o < =—— P[5,
We deal now with the estimates on the Lipschitz seminorm |||X+|||Ip“ié’+. Using the notation
(13.2.23)) we have, for § = d, o:
g Mgl W) —= i —
AL(X0)] (w; b) = e (P)] (Wi ) + A (PY)] (w3 1)
g]] (w + Aw)g; (w) g = (w + Aw)

(3.4.22)
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By the assumption in (3.4.17)), we have that
1)
|Aw(g§:jic(w))| =|Aw- L+ Aw(/\j_ + )\;)| < | |Aw| + 2C|Aw| < (N) |Aw| (3.4.23)

uniformly for every j,j' € N and £ € Z", |¢{| < N. Therefore, we can estimate (3.4.22) by

— NNV2THL 20 (A P5 2(NY M Ay P5 w; ¢
DG ) < BT 8l (P 0] 20w AP @01 (34
v EYD v CETON
from which one deduces the claimed estimate (3.4.18|). O

Lemma 3.37. Let P € Lip, (Q, M 5,(,0)). Assume (3.4.17) and, for some fized Cs, > 0,
27+1 M* Lip(y
Con 16N [P ) <1, (3.4.25)

Then PT = I P + R, defined as in (3.4.10)), belongs to Lip, (27, M+ 5, (@, 0)) for any p* €
(0, p), with bounds

g P[P < e e IN PR Ry < 05029 C(NFEL (PSR (3.4.96)

Proof. The estimate on HJ- P follows by using that it contains only high frequencies. To estimate

the remainder R, use - ) to write it as

1 1
R = J (1-— s)e*SX+adX+ (Z - P)esX+ ds + J e X" audx+(P)eSX+ ds . (3.4.27)
0 0
Then, apply Lemma and Lemma [3.36 Ul

Remark 3.38. Defining the quantities

e Lip(~y + . K +|Lip(7)
UE IPI = [Py
and choosing N = —(p — p*) !Inn, Lemma implies that
1 1
—(p—pt 2741 27+1

3.4.4 TIterative Lemma and KAM reduction

Once that the general step has been illustrated, we are ready for setting our iterative scheme.

The Hamiltonian the iteration starts with is the one that we have found after the Magnus normal



80 CHAPTER 3. LINEAR KLEIN-GORDON WITH FAST DRIVEN POTENTIAL
form in Section 3.2

HO (1) = H” + VO (w;wt) |V<0>|I,;;§§3><% , (3.4.29)

where H(()O) := Hp and V(® := V as in Theorem All the iterated objects are constructed
from the transformation in Sections by setting for n = 0

H™(1) := A(w) + P(w;wt) , A := Hén) , P:=v®
zM.=7, XM.=x, R™.=R.

Given reals 7, pg, mo > 0 and a sequence of nested sets {Q,},>1, we fix the parameters

p - 3 o 5 o Ev(n) Lip(7) N, — il
n ‘= 7T2(1 n nQ)Po, Pn+1 ‘= Pn — On, I = ~ | |Pm9n s n = _571 N7y

Proposition 3.39 (Iterative Lemma). Fiz 7 > 0. There exists kg = ko(7,9) > 0 such that for

any 0 <~y <%, any M > 0 for which

po,f0 3

M i _
1o 1= 7|V(0)|pr <koe !, (3.4.30)
the following items hold true for any n € N:

(i) Setting Qo as in (3.2.21)), we have recursively for n = 0

IRYEF N
MO[

le:{we%:|ww+A@@oi§@@n>

Y i .
2 9 V(fa]aJ)GINn}a

=

(ii) For every w € Q, the operator X(M(w; -) € Lip., (Qn, My, so(, @) and

Lip(v)
Pn—1,8n

el < \/%e%(lf(%)nfl) . (3.4.31)

The change of coordinates X conjugates H?=1 to HW = Hgn) + V) such that:
(i) The Hamiltonian Hgn) (w) is diagonal and time independent, H[()n) (w) = diag{/\gn) (w)}jenos,
and the functions )\g»n)(w) = )\gn) (w,M, ) are defined over all Qy, fulfilling
. n—1
P R A C U (3.4.32)
(w) The new perturbation V(™ e Lip., (Qn, M, s, (@, 0)) and

Ma B (3 n
— 7|V<n>|Lp<v> <npet~(3)" (3.4.33)

Pn,Sn
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Proof. We argue by induction. For n = 0, one requires . Now, assume that the statements
hold true up to a fixed n € N. Define Qu41 as in item (7). In order to apply Lemma [3.36]
and Lemma we need to check that the assumptions in (3.4.17)) and (3.4.25)) are verified,
respectively. First, note that, by item (i),

n 0
AR < S X e <pge 3 e ()T <, (3.4.34)
m=1 m=1
so that ((3.4.17)) is satisfied, provided simply nge < 1.
We prove now that (3.4.25|) is fulfilled. We have

1 2\ 2r+1
FEP ot (it oL
5o 216 - Cy,

1+ mn2\2r+l
)

N < (<

as long as ng e is sufficiently small (depending only on &y, 7). Therefore we can apply Lemma
W and Lemma with P = V() and define X"+ ¢ Lip, (Qn+1, My, s (v, @)), the new

eigenvalues

—

A () o= A (W) + (VEM)(w;0)  VjieN (3.4.35)

and the new perturbation V("+1)_ We are left only with the quantitative estimates.
We start with item (iv). By Remark [3.38] one has

1 1.9, 1 2\ 2r+1 n
M1 S (1 + W(ln ,7)2 H)Wi < 2( Jgn ) (noe)ie™i(2)" . (3.4.36)
n n 0

Thus, (3.4.33) is satisfied at the iteration n + 1 provided again that nge is sufficiently small
(depending only on g, 7). For item (éi7), it is sufficient to note that

- — - ' 3\n
n—+1 n) Li Li n)Li n Li —{ =
AT = AR = (V) 0 < VO < vyt B 0 ()", (3.437
Now, by Kirszbraun theorem, we can extend the functions Agm (w,M) to all Qg preserving their

Lipschitz constant; this proves (7i7). Item (i4) is proved in the same lines, using (3.4.18]) and the

inductive assumption; we skip the details. O

A consequence of the iterative lemma is the following result.

Corollary 3.40 (Final eigenvalues). Fiz 7 > 7 (of Theorem[3.29). Assume (3.4.30)). Then for
every w € Qo and for every j € N, the sequence {)\gn)(-,M, a)}n>1 is a Cauchy sequence. We
denote by A\ (w,M, o) its limit, which is given by AP (w) = Aj + €7 (w) and one has the estimate

sup |j%€] |L1p(7) < Mlanoe . (3.4.38)
je
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—

Proof. By (3.4.35)) we have £°(w) := Yo (V(”)vd)zi(w; 0). The thesis follows using

e

i TN i (3.4.33) n
(VDI (w0 < (DY Vw0, < [VOED T Enge! ()

j (3.4.39)

O

Corollary 3.41 (Iterated flow). Fiz an arbitrary r € [0, so|; under the same assumptions of
Corollary for any w € NpQ, and @ € T, the sequence of transformations

W w; @) = emIXD@ip) o ... o eIX M (wip) (3.4.40)
is a Cauchy sequence in L(H" x H") fulfilling

IV (@0) = LUl aersrry < Vim0 e B eV > (3.4.41)
where ¥ := 2;(;0 e 2(3)". We denote by W*P(w; @) its limit in L(H" x H").

Proof. The convergence of the transformations is a standard argument, whereas the control of
the operator norm L(H" x H") follows from Remark [3.16} we skip the details. O

Since for any j € N the sequence {)\gn)}n>1 converges to a well defined Lipschitz function )\;?O

defined on 9y, we can now impose second order Melnikov conditions only on the final frequencies.

Lemma 3.42 (Measure estimates). Consider the set

v GEiH”
T me

Qg 1= {w €Us ¢ |w-k+ AP (W) £ AF ()] = . V(L) e zi} . (3.4.42)
Then Qo S NpQyn. Furthermore, taking 7 > v + a + 2, v € [0,7/2] and M = My (defined in

Theorem, , there exists a constant Cy > 0, independent of M and vy, such that
m, (Us\Qo,0) < Cooy . (3.4.43)

Proof. The proof that Qu o S NpQy, is standard, see e.g. Lemma 7.6 of [142].

To prove the measure estimate, let w € U, and (¢, 7,5’) € T*. We can rule out the cases as at
the beginning of Lemma with essentially the same arguments. Thus, we restrict to consider
all (¢,4,7") € I* for which £ # 0 and j # j'. Furthermore, if |j + j'| > 16M|¢|, we get again that
w- L+ AP (W) £AF (W) = 317 +4| (recall M > m?). So, we can work in the regions |j ;| < 16M |¢|.
Now, for j < j' satisfying

Q=

PG> (W) _ R0, (3.4.44)
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where ¢(7,5) := % — 1> 1 (recall that 5/2 > ), we have (using also (3.4.38))

|w- L+ AP (W) EAT(W)| = |w- £+ £ ] = e (w)] = €57 (W)
~ . SN . N
S J GRS yme v GET)T
<€>T Ma MCM ]a Ma <£>T

Therefore, we can further restrict to consider just those j < j satisfying j (j + j'> < R(£). The
symmetric argument leads to work in the sector j/ < [ under the condition j'(j' + j> < R(¢).
Now, define the set

e
o3 = {weRM w04 AP (w) £ AT ()] < <IZ>T Y §a> } (3.4.45)

for those £ # 0 and j # j' in the region
RE = {lj £ <16M[e]} 0 (G 25 <R, j <o {f' G5 <REO, j' <j}); (3.4.46)

Recall that f;-rj (W) i=w- L+ AP (w) + AJ(w) are Lipschitz functions on Ry. For ¢ # 0, since
|)\§?|;é;p < |¢]/4, by Lemma we get

e, G D"
~ |€|T+1

955

Js3’

Define G := U{gf;—f : (6,5,5') € R*} nU,. We have

- - G=i"" - W
|g°0| SQVM 0‘2 2 Z |€|7‘+1 SPYM az Z Z |£|T+1
(0 y jf;-' - li—j’|<16M/¢| (0 j\'hTiTéﬁﬁ\O J<R()ChY™*
J<i—3")<R(£

T 1 T W<
~y L P ~y L ~ )
A T e ey, )

A
A

Q[

taking 7 + 1 — a — £ > v. The same computation holds for G, and proves (3.4.43)). O

Theorem 3.43 (KAM reducibility). Fiz a € (0,1), so > 1/2, and 7 >v+1+a+ g For any
0 < <7, there exists My = My(m, o, 7y, po) > 0 such that for any M = M, the following holds true.
There exist functions {)\?o (w,M, ) }jen, defined and Lipschitz in w in the set Ry such that:

(i) The set Qoo = Qo oy, 7,M) C Ry defined in (3.4.42) fulfills m, (Ry\Qw) < C(y+3Y3 +),
where o s defined in Theorem [3.25 and ¥ in Theorem [3.29

(1t) For each w € Qu o there exists a change of coordinates w = W*(w;wt)¢ which conjugates
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equation (3.2.7) to a constant-coefficient diagonal one:
ip =H%¢, H”=H"(w,a)=diag{\’(w,a) : jeN}os. (3.4.47)
Furthermore for any r € |0, so| one has

IW® =1 pgr xpary < Vim0 €S VP (3.4.48)

Proof. Having fixed «, sp and 7, we can produce the constant kg(dg, 7) of the iterative Lemma
3.39. Having fixed also 0 < v < 7, we produce M, > 0 in such a way that for every M > M,, the
estimate is fulfilled. We can now apply the iterative Lemma Corollary and
Lemma to get the result. O

3.4.5 A final remark

The KAM reducibility scheme that we have presented has transformed Equation (3.2.7)) into
(13.4.47), where the asymptotic for the final eigenvalues are given, using Equation ((3.4.38]), by

) ED (1a> _ (3.4.49)

My

)\;D( a)— A~ 0 (Ma]a
One can argue that the asymptotic AP°(a) — Aj ~ OM~'57%) is not that satisfying, since the
pertubation V() at the beginning of the KAM scheme belongs to the class M g,50(1,0) and so
its diagonal elements have a smoothing effect of order 1 which could be expected to be preserved
in the effective Hamiltonian.

Actually, it is possible to modify our reducibility scheme for achieving this result: we explain

now briefly how to do it. After the Magnus normal form, we conjugate system (3.2.7) through

efiY(wt)
Y(wt) = (_0 YO(””) (3.4.50)

so that Y° solves the homological equation

, where

o ) i —= (V)30
ALY (0), Bl V7(6) = 00 °(0) = 0 = (V) (0)i= (s

Ve, 4,5 . (3.4.51)

We ask now the frequency vector w to belong to U Nl (see (3.3.4)). In this way one gets (in the
same lines of the proof of Lemma ) that Y € Lip,Y/M(L{l, M.50(1,1)), since we have chosen
w € Up, with the bound

|Y|L1p(7/M) <o |V(0)|L1p(v/M) <07 0)|L1p (v/M) ’ e (3.4.52)

£0,80,1,1 = £0,50,1 £0,50,1,0
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The new perturbation

w(wt) = (Vd((ft) 70 )

1
—Vd(wt) _|_f (1 _ S)eiSY(Wt)adY(wt) [V(O) (wt)]esY(wt) ds (3.4.53)

0

belongs to the class Lip, (U1, Mp, 5, (1, 1)) fulfilling estimate (3.4.1)).

Thus, one can perform a KAM reducibility scheme as in Section with a = 0 in
(3.4.15)), the perturbations appearing in the iterations in the class Lipv/Mo(ﬁ;L, M, 5,(1,1)) and
the new final eigenvalues X?O satisfying the non-resonance conditions

w0+ AP+ 2P| > V(C,5,5) eIt . (3.4.54)

T
<£>T7

In particular, we obtain better asymptotics on the final eigenvalues, that is 5\\;{0 —Aj ~ OM~157h).
The price that we pay for this result is that the preliminary change of coordinate e 'Y %) is not
a transformation close to identity, as the generator Y (wt) is just a bounded operator and not
small in size, see (3.4.52). The main consequence is that the effective dynamics of the original
system, as Corollary is no more valid. In this case, it is possible to conclude just that the
Sobolev norms stay uniformly bounded in time and do not grow, but in general their (almost-

Jconservation is lost.
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Chapter 4

Traveling quasi-periodic gravity
capillary water waves with constant

vorticity

We consider the space periodic gravity-capillary water waves equations with constant vorticity

e = G + e

Yy = —gn — % + U ¢2(1++ 77(;67))1&) + ﬁ(ﬁng)x + by + 70 "G .

(4.0.1)

The variable n(t, x) denotes the free boundary of the two dimensional fluid domain D, , defined in
(L.1.11), whereas (¢, z) is the trace at the free boundary y = n(t, ) of the generalized velocity
potential ®(t,z,y) solving (L.1.12). Here g > 0 is the gravity, k > 0 is the surface tension
coefficient and G(n) is the Dirichlet-Neumann operator defined in ((1.1.14)), with linear principal
part G(0) defined in (1.1.15), (1.1.16)). The derivation of the equations is available in

Appendix

The water waves equations (|1.1.13)) are a Hamiltonian system on the phase space H§(T) x
H *(T), endowed with a non canonical Poisson structure: it will be discussed with more details
in Section

The system obtained linearizing ((1.1.13)) at the equilibrium (n,%) = (0,0) is given by

om = G(O)w

(4.0.2)
oy = —(g9— KN+~ G(0)).

87
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The linear frequencies are given by

Q= Q(k) = Qj(k,h,g,7) := \/(ﬁjQ +g+ TG;20)>GJ‘(O) +

gGﬂ',OX jeZ\0}. (40.3)

J

Note that the map j — Q;(k) is not even due to the vorticity term 3G;(0)/j, which is odd in j.

Fixed finitely many arbitrary distinct natural numbers

Sti={ny,....m}cN, 1<m<...<n,, (4.0.4)
and signs
Y:={o1,...,00}, o.e{-1,1}, a=1,...,v, (4.0.5)
we consider the reversible quasi-periodic traveling wave solutions of the linear system (|1.1.20))
given by
(n(t,w)> _ ¥y (Mna n, cos(lgw — Qna<m>t>>
P6)) e eemtny \ Prav/ &g sin(@az — Qx, (1)) 408
N Z Mz A/ 7, cos(gx + Q_z, (K)t) -
ae{l,...v: og=—1} P_ﬁa V g_” Sln(nax + Q—na (K‘) )
where {45, > 0,a=1,...,v, and M, and P4, are the real coeflicients
1
G.(0) ) M
M; = L e | Te B0}, Peni- IZn oMY, neN (4.0.7)
Kj2+ g+ 475 e
. The frequency vector of (4.0.6) is
Q(k) := (Qom, (K))az1... € RV, (4.0.8)

A more general definition of quasi-periodic traveling wave is given in Definition

We shall construct traveling quasi-periodic solutions of with a Diophantine frequency
vector w € DC(v, 7) belonging to an open bounded subset Q in R” for some v € (0,1), 7 > v — 1,
as in (|1.1.24)

Regarding regularity, we will prove the existence of quasi-periodic traveling waves (ﬁ,@Z)
belonging to some Sobolev space HS(']I‘”, R?) defined in (L.1.25).

The result in Theorem shows that the linear solutions can be continued to
quasi-periodic traveling wave solutions of the nonlinear water waves equations (4.0.1), for most
values of the surface tension k € [k1, k2], with a frequency vector Q= (anna)a 1,..v, close to

Q(k) := (Qo,m, (K))a=1,...,,. Here is the precise statement.
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Theorem 4.1. (KAM for traveling gravity-capillary water waves with constant vor-

ticity) Consider finitely many tangential sites ST < N as in (4.0.4) and signs 3 as in (4.0.5).
Then there exist s > 0, g9 € (0,1) such that, for every |§| < 5(2), € = (&uma)a=1,...0 € RY, the
following hold:

1. there exists a Cantor-like set Ge C [K1, ko] with asymptotically full measure as & — 0, i.e.

lime_,0 |Ge| = k2 — K1;

2. for any K € Gg, the gravity-capillary water waves equations (1.1.13)) have a reversible quasi-
periodic traveling wave solution (according to Deﬁm'tion of the form

(n(t, x)) _ 2 (Mna\/%cos(nax — ﬁna(ﬁ)t)>

$60)) et gt \ Pra/Eu sin(Tiaz — O, (6)1) (4.0.9)
b T (e ) e
ag{l,...v}: oa=—1 \" “MaV 57 Ta ¢ o
where
I™s

r(t, z) = #(Qom, ()t —o11, . .., Qo m (K)t—oymyz), Fe H(TY,R?), lim

=0,
&0 4/lE]

with a Diophantine frequency vector O = (ﬁaam)a=17..,71, e RY, depending on k,&, and

satisfying lime_,o 0= ﬁ(/{) In addition these quasi-periodic solutions are linearly stable.

The rest of this chapter concerns the proof of Theorem

In Section we start by describing the Hamiltonian structure of equations together
with the choice of the Wahlén coordinates and the solution of the linearized system around the
trivial equilibrium. Then we provide a splitting of the phase space that allows to introduce
the normal subspace and the action-angle coordinates on the tangential one. Section is
devoted to the functional setting required for the proof of Theorem In particular, we define
the quasi-periodic traveling wave functions the p-dependent families of momentum preserving
linear operators, together with their properties. The rest of the functional setting, in particular
the pseudodifferential norms and the class of D¥o-tame operators, are quoted almost verbatim
from [44] 13]. In Section we prove the non-degeneracy of the unperturbed linear frequencies
and the transversality of the non-resonance conditions coupled with corresponding momentum
conditions. In Section [.4] we state the Nash-Moser theorem and we prove that the non-resonance
conditions on the final eigenvalues hold on a set of parameter of large measure. In Section we
construct the approximate inverse at each approximate quasi-periodic traveling wave embedding,
under the ansatz of the almost invertibility of the linearized vector field restricted on the normal
directions. Sections and [£.7] are devoted to the reduction to constant coefficients up to



90 CHAPTER 4. TRAVELING QUASI-PERIODIC WATER WAVES

bounded remainders and to the KAM reducibility scheme of the linearized vector field projected
on the normal direction, in order to provide estimates for its almost inverted operator. In Section
the Nash-Moser Theorem and the convergence of the Nash-Moser iteration are proved.

In particular, we check that each approximate torus is reversible and traveling.

4.1 Hamiltonian structure and linearization at the origin

In this section we describe the Hamiltonian structure of the water waves equations (4.0.1)), their
symmetries and the solutions of the linearized system (|1.1.20 at the equilibrium.

4.1.1 Hamiltonian structure

The Hamiltonian formulation of the water waves equations with non-zero constant vor-
ticity was obtained by Constantin-Ivanov-Prodanov [58] and Wahlén [163] in the case of finite
depth. For irrotational flows it reduces to the classical Craig-Sulem-Zakharov formulation in
[174], [68].

On the phase space H}(T) x HI(T), endowed with the non canonical Poisson tensor

() = (_2 ; 72(1) , (4.11)

we consider the Hamiltonian

H(n,) = ;JT (¢G(77)1/) + g772) dz + /QL V14n2de + % JT (—wgmz + %773) de. (4.1.2)

Such Hamiltonian is well defined on HE(T) x H(T) since G(n)[1] = 0 and §r G(n)ypdx = 0.
It turns out [58, [163] that equations (4.0.1)) are the Hamiltonian system generated by H(n, )

with respect to the Poisson tensor Jys(y), namely

o (Z) — Ju() (g;) (413)

where (V,H,V,H) € L2(T) x L(T) denote the L2-gradients.

Remark 4.2. The non canonical Poisson tensor Jys(7) in (4.1.1]) has to be regarded as an operator
from (subspaces of) (L3 x L2)* = [2 x L% to L3 x L2, that is

0 1d

—Idja e 707"
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The operator 0, ! maps a dense subspace of L in L2. For sake of simplicity, throughout the
chapter we may omit this detail. Above the dual space (L3 x L2)* with respect to the scalar
product in L? is identified with L2 x L(Q).

The Hamiltonian (4.1.2) enjoys several symmetries that we now describe.

Reversible structure. Defining on the phase space H}(T) x H! (T) the involution

S (Z) = (_Z;) Y (x) = n(—x), (4.1.4)

the Hamiltonian (4.1.2)) is invariant under S, that is HoS = H, or, equivalently, the water waves
vector field X defined in the right hand side on (4.0.1]) satisfies

XoS=-8S0X. (4.1.5)
This property follows noting that the Dirichlet-Neumann operator satisfies
G )] =(Gm¥D" . (4.1.6)

Translation invariance. Since the bottom of the fluid domain (1.1.11)) is flat (or in case of
infinite depth there is no bottom), the water waves equations (4.0.1) are invariant under space

translations. Specifically, defining the translation operator
7o u(x) - u(r +5), ceR, (4.1.7)

the Hamiltonian (4.1.2)) satisfies H o 7. = H for any ¢ € R, or, equivalently, the water waves
vector field X defined in the right hand side on (4.0.1]) satisfies

Xore=10X, Vc¢eR. (4.1.8)
In order to verify this property, note that the Dirichlet-Neumann operator satisfies

o G(n) =G(rn)ore, VeeR. (4.1.9)

Wahlén coordinates. The variables (7, 1) are not Darboux coordinates, in the sense that the
Poisson tensor (4.1.1)) is not the canonical one for values of the vorticity v # 0. Wahlén [163]
noted that in the variables (7, (), where ( is defined by

Ci=19 - %0;177, (4.1.10)
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the symplectic form induced by Jys() becomes the canonical one. Indeed, under the linear

transformation of the phase space H} x H' into itself defined by

N_ow (™M w0 o 0} (4.1.11)
Y ¢ 107t 1d e U

the Poisson tensor Jjs(7) is transformed into the canonical one,

W tiy(y) W H*=J, J:= (_(;d 1;1) : (4.1.12)

Here W* and (W ~1)* are the adjoints maps from (a dense subspace of) 12 x L3 into itself, and
the Poisson tensor J acts from (subspaces of) L2 x L% to L(Q) x L2, Then the Hamiltonian (14.1.2))

becomes
H:=HoW, ie HnC):= H(n,g+%a;1n), (4.1.13)
and the Hamiltonian equations (4.1.3) (i.e. (4.0.1))) are transformed into
n vy
0 =Xy(n,¢), Xyun, () :=J ,C). 4.1.14
’ (C) #(m,Q)s Xn(n, ) <V<H> (7,€) (4.1.14)

By (4.1.12), the symplectic form of (4.1.14) is the standard one,

m 2 B 1 (m 2 L 2 2 N
() )Y oo

where J~! is the symplectic operator

0 -Id
Jt = (4.1.16)
Id 0

regarded as a map from L% x L2 into L2 x L%. Note that JJ~1 = IdLQXL2 and J~LJ = IdL2
0
The Hamiltonian vector field X4(n, () in (4.1.14)) is characterized by the identity

2.
x Lg

M, O] = W(Xu(n, Q). 8), Vi = @ .

The transformation W defined in (4.1.11)) is reversibility preserving, namely it commutes with the
involution S in ({.1.4)) (see Definition below), and thus also the Hamiltonian # in (4.1.13)
is invariant under the involution S, as well as H in (4.1.2)). For this reason we look for solutions
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(n(t,x),((t,x)) of (4.1.14) which are reversible, i.e. see (1.1.19]),

(Z) (—t) =S (Z) (t). (4.1.17)

The corresponding solutions (n(t, x), (¢, x)) of induced by are reversible as well.

We finally note that the transformation W defined in commutes with the translation
operator ¢, therefore the Hamiltonian H in (4.1.13)) is invariant under 7., as well as H in (4.1.2]).
By Noether theorem, the horizontal momentum § (7, dz is a prime integral of ({.1.14)).

4.1.2 Linearization at the equilibrium

In this section we study the linear system ([1.1.20)) and prove that its reversible solutions have

the form (|1.1.22).
In view of the Hamiltonian (4.1.2)) of the water waves equations (4.0.1)), also the linear system

(1.1.20) is Hamiltonian and it is generated by the quadratic Hamiltonian

L00) 1= 5 | (0G0 + g + ) do = 5 (“L (ZD | (Z»L |

Thus, recalling (4.1.3), the linear system ([1.1.20) is

ki
2, (Z) — Ju()90 <Z> L Q= ( 68“’ G?())) . (4.1.18)

The linear operator €, acts from (a dense subspace) of L% x L2 to L2 x L% In the Wahlén

coordinates (4.1.11)), the linear Hamiltonian system (|1.1.20)), i.e. (4.1.18)), transforms into the

linear Hamiltonian system
n Ui
at = JQW )
<C> <<>

generated by the quadratic Hamiltonian

Hi(n,¢) == (Hp o W)(n,¢) = % (QW (Z) : (2)) . (4.1.20)
L2

The linear operator Qy acts from (a dense subspace) of Lg x L2 to L% x L%. The linear

) A2 A . . (4.1.19)
k02 +g— (1) 071G —%o; G(O))

1G(0)o, G(0)
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system is the Hamiltonian system obtained by linearizing at the equilibrium
(n,¢) = (0,0). We want to transform in diagonal form by using a symmetrizer and then
introducing complex coordinates. We first conjugate under the symplectic transforma-
tion (with respect to the standard symplectic form W in ({.1.15))) of the phase space

(2= ()

where M is the diagonal matrix of self-adjoint Fourier multipliers

1/4
Moo (MO0 Dy G(0) S @121
0 M(D)*! kD2 + g — 2071 G(0)05 !

with the real valued symbol M; defined in (4.0.7). The map M is reversibility preserving.

Remark 4.3. In ({.1.21)) the Fourier multiplier M (D) acts in H}. On the other hand, with a
slight abuse of notation, M (D)~! denotes the Fourier multiplier operator in H' defined as

M(D) Mel= [ ) My G ], () = ) gel

3#0 Jez

where [¢] is the element in H' with representant ¢(z).

By a direct computation, the Hamiltonian system (4.1.19)) assumes the symmetric form

" = b o Af* [ w(k,D) —3071G(0)
O (v) = JQg (v) , Qg = MQyM = (gG(O)&ml ij(m D) ) ) (4.1.22)

where

Wk, D) = \/Hm G(0) + g G(0) — (%5510(0))2 . (4.1.23)

Remark 4.4. To be precise, the Fourier multiplier operator w(x, D) in the top left position in
(£.1.22) maps H} into H' and the one in the bottom right position maps H' into H}. The
operator d;'G(0) acts on H' and G(0)d;! on HJ.

Now we introduce complex coordinates by the transformation

U z 1 Id Id _ ‘_L Id i
(U)zc(z>, c:=\/§<_i i), C 1._\/§<Id _i>. (4.1.24)

In these variables, the Hamiltonian system (4.1.22)) becomes the diagonal system

z\ (-1 0 z o [k, D) 0
Ot <Z> = (0 i) Qp <Z> , Qp:=C*"QsC = ( 0 Q(ij)) : (4.1.25)
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where

Q(k, D) := w(k, )+1—a 1G(0) (4.1.26)

is the Fourier multiplier with symbol ©;(x) defined in and Q(k, D) is defined by
Q(k, D)z := Q(k, D)z, Q(k,D) = w(k, D) —176 1G(0).

Note that Q(x, D) is the Fourier multiplier with symbol {Q_;(k)} ez fo}-

Remark 4.5. We regard the system in H! x H.

The diagonal system (4.1.25)) amounts to the scalar equation

dz = —iQ(k, D)z, 2(z)= ) 2z, (4.1.27)
JeZ)\{0}

and, writing (4.1.27)) in the exponential Fourier basis, to the infinitely many decoupled harmonic

oscillators
Zj = —in(H)Z]’ , J€ Z\{O} . (4128)

Note that, in these complex coordinates, the involution S defined in (4.1.4)) reads as the map

Ao A=) (4.1.29)
z(x) 2(—x)
that we may read just as the scalar map z(z) — z(—xz). Moreover, in the Fourier coordinates
introduced in (4.1.27)), it amounts to

2> %, VjeZ\{0}. (4.1.30)

In view of (4.1.28) and (4.1.30) every reversible solution (which is characterized as in (4.1.17)))

of (4.1.27) has the form

2(t, x) \F D1 pje I with  pieR. (4.1.31)
jeZ\{0}

Let us see the form of these solutions back in the original variables (n,1). First, by (4.1.21)),
(4.1.24),

M _ el L MDD M(D) 2\ _ 1 [ MD)(=+7)
¢ z) V2 \-iM(D)"' iMD)" ) \z) V2\-iMD)(z-%))"
(4.1.32)
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and the solutions (4.1.31]) assume the form

n(t,z)\ M, py, cos(nz — Q,(k)t) Myp_n cos(nz + Q_,(K)t)
<C(t, $)> a Z (Mnlpn sin(nx — Qn(li)t)) - Z (—Mnlp_n sin(nz + Q_n(m)t)> .

neN neN

Back to the variables (n, 1) with the change of coordinates (4.1.11]) one obtains formula ((1.1.22)).

Decomposition of the phase space in Lagrangian subspaces invariant under (4.1.19).
We express the Fourier coefficients z; € C in (4.1.27) as

a; + iﬁj

5=~ () eR?, jeZ\(0}).

In the new coordinates (aj,ﬁj)jez\{o}, we write as (recall that M; = M_;)
(n(@) _ Z ( M;(ajcos(jx) — Bjsin(jz)) ) (4.1.33)

=))  jemo M (B cos(jx) + ajsin(jz))

with 1

0y = 3= (M5 (n,cos(j)) 2 + My (C.sin(ja)) 2 ) .
: 1.

B = 5 (My(C cos(j)) 2 — M; ! (, sin(ja))y2 )

The symplectic form (4.1.15)) then becomes

2r . doy A dp;.
JEZ\0)

Each 2-dimensional subspace in the sum (4.1.33), spanned by («a;, 3;) € R? is therefore a sym-
plectic subspace. The quadratic Hamiltonian Hy, in (4.1.20) reads

2 D QjQ(“) (a2 + 7). (4.1.35)
JE7\{0}

In view of (4.1.33)), the involution S defined in (4.1.4)) reads

(aj,8;) = (a5, —B;), Vi e Z\{0}, (4.1.36)

and the translation operator 7. defined in (4.1.7)) as

A IR cos(js) —sin(js) | [« ,
(@') (Siﬂ(jc) COS(J’@))(&')’ AR (4.1.37)
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We may also enumerate the independent variables (Oéj,ﬁj)jez\{o} as (a,n,ﬁ,n,an,ﬁn), n € N,
Thus the phase space § := L3 x L2 of (4.1.14)) decomposes as the direct sum

D= Vos @V

neN
of 2-dimensional Lagrangian symplectic subspaces

Vo {(n) _ (Mn(an cos(nz) — By sin(nzx)) (o, Ba) € RQ} ’ (11.38)

¢ M3, cos(nz) + ay, sin(nz))

Vo = { <n> = ( Mf(a*” coslnz) + fon Si].n(m)))> (an, Bn) € R2} , (4.1.39)

¢ M, Y (B_p cos(nz) — a_, sin(nx)

which are invariant for the linear Hamiltonian system (4.1.19), namely JQw : V, 5 = V,, » (for
a proof see e.g. remark . The symplectic projectors Ily, ., o € {£}, on the symplectic

subspaces V,, , are explicitly provided by (4.1.33]) and (4.1.34) with j = no.
Note that the involution S defined in ({.1.4)) and the translation operator 7¢ in (4.1.7]) leave

the subspaces V,, ,, o € {£}, invariant.

4.1.3 Tangential and normal subspaces of the phase space

We decompose the phase space $ of (4.1.14)) into a direct sum of tangential and normal La-
grangian subspaces 5’J§+ 5 and 5’)§+ - Note that the main part of the solutions (4.0.9) that we
shall obtain in Theorem is the component in the tangential subspace ﬁéﬂE’ whereas the

component in the normal subspace ﬁgﬂ 5, is much smaller.
Recalling the definition of the sets ST and X defined in (4.0.4) respectively (4.0.5)), we split

H =9l ®HE: 5 (4.1.40)

where Y)éJr 5, is the finite dimensional tangential subspace

Nl Z Vi ou (4.1.41)

and ﬁ§+,2 is the normal subspace defined as its symplectic orthogonal

N5 Dol 2 Ve, —0a @ Z\: . Vot @ Vi, ) - (4.1.42)
neN\S

Both the subspaces 56§+ 5, and ﬁSﬁ 5, are Lagrangian. We denote by HSJr = and HS+ > the
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symplectic projections on the subspaces ﬁé + 5 and 5’)§+ 5, respectively. Since ﬁé + 5 and S’JSAJr 5
are symplectic orthogonal, the symplectic form W in (4.1.15) decomposes as

W(v1 + wy,vg + we) = W(vy,v2) + W(wy,ws), Youi,ve € 55%4@2 , Wi, wsy € jﬁéjz :
The symplectic projections Hé + 5 and H§+ 5, satisfy the following properties:

Lemma 4.6. We have that

ML, o J=J[ o) (M) T =77 I, (4.1.43)
g v J =J (g g)", (Ugg) T =775 5. (4.1.44)

Proof. Since the subspaces 97T := ﬁéJr 5 and 9" = ﬁ§+ 5, are symplectic orthogonal, we have,

recalling (4.1.15)), that
(J7v,w) 2 = (J 7 w,v) 2 =0, Yo e HT, Yw e H7.

14 := %

$+ 1 We have that

Thus, using the projectors IIT := Héﬂza
(J HITo, T%w) 2 = (J MT%w,0T0)2 =0, Yo,we$N,
and, taking adjoints, ((IT*)*J I v, w) 2 = (IIT)*J~1I%w, v) 2 = 0 for any v,w € §, so that
(IT4)*J 1T = 0 = (IT)*J 1~ (4.1.45)
Now inserting the identity 114 = Id — IIT in (£.1.45), we get

JTHIT = (Im)* I = (117)* gt

proving the second identity of (4.1.43)). The first identity of (4.1.43) follows applying J to the
left and to the right of the second identity. The identity (4.1.44)) follows in the same way. O

Note that the restricted symplectic form W| 57, is represented by the symplectic structure
sST.,2

IS5 o 05y, J7t=TE UL (4.1.46)

ms+,2

where Hf is the L?-projector on the subspace ﬁSﬁ 5 Indeed

Wlge, (w,h) = (J7 'w, @) 2 = (J 7 w, @) g2, Vw, b€ H 5
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We also denote the associated (restricted) Poisson tensor
J; 95 s > 5w, Jr=1G g s, - (4.1.47)

In the next lemma we prove that JZl and J, are each other inverses.

Lemma 4.7. J;'J, = J, J;' =1dg.

st,2

Proof. Let v € H%, .. By (#.1.46) and (#.1.47)), for any h € H%, . one has
S+.,% S+.2

TN T 0 k) e = (J T4 Ju, TS h) 2 = —(TT . Jv, J Yh) e
/ S+,2 S+,3

_ 7.1.44) _
(o, (I )" ) e BB (o, T T oy e = (0,B) e
-1 ..
The proof that J,J," = Id%ﬁ’E is similar. O
Lemma 4.8. II§, (JIIL =115, ,J.
Proof. For any u, h € $ we have, using Lemma {4.6

(g T u, h) 2 = —(UE w, J(TEy 1) *h) 2 = —(IE w, T, o Jh) e
—(u, Hgﬁ,th)L? = (J(H§+7z)*ua h)pz = (H§+7gjuah)L2

implying the lemma. O

Action-angle coordinates. We introduce action-angle coordinates on the tangential subspace
9L, & defined in {@#.1.41)). Given the sets ST and X defined in (4.0.4) and (4.0.5)), we define the

set

S:={J,.--, 0} <Z\{0}, J,:=040a, a=1,...,v, (4.1.48)

and the action-angle coordinates (6}, I;) jes, by the relations

aj = WCOS(%% Bj = —msm(@), § >0, || <&, VieS. (4.1.49)

In view of (4.1.40))-(4.1.42)), we represent any function of the phase space $) as

A0, I,w) :=v"(0,I) +w,

- Mjmcos(gj) cos(jx Mj\/msin(ej) sin(jz w
. W%K_ )> v (Mjl I +€jCOS(9j)> (] )] :

M 1/T; + & sin(6;
1 M;n/T; + & cos(0; — jx) w
_ \FE [(_M ))] + (4.1.50)

—1 Ij + f’j sin(ﬁj —jx

T
JES J
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where 9 = (gj)jeg c TV, I .= (I])]GS e RY and w € ijAJr -

Remark 4.9. In these coordinates the solutions (4.0.6) of the linear system (1.1.20)) simply read
as WoT(Q(k)t,0), where O(k) := (Q;(k))jes is given in ([{@.0.8).

In view of (4.1.50)), the involution S in (4.1.4)) reads

—

S:(0,I,w)— (—0,I,Sw) , (4.1.51)
the translation operator 7. in (4.1.7)) reads
Te: (0, I, w)— (0 -7, I, w), VseR, (4.1.52)

where

—

7:= (Gjes = Or,---»7) € Z\{0}, (4.1.53)

and the symplectic 2-form (4.1.15) becomes

W= >(do; A dl}) @ Winz - (4.1.54)
jes ’

We also note that W is exact, namely

W=dA,  whete  Agryl0,1,0] ==Y L6+ 5 (I w, @) (4.1.55)
jES
is the associated Liouville 1-form (the operator JZl is defined in (4.1.46])).
Given a Hamiltonian K: T" x RY x 53§+ s — R, the associated Hamiltonian vector field (with
respect to the symplectic form (4.1.54)) is

X = (01K, =09 K, J,; VoK) = (01K, =0 K, 11§, IV, K), (4.1.56)

where V,, K denotes the L? gradient of K with respect to w € 55§+ 5,- Indeed, the only nontrivial
component of the vector field X is the last one, which we denote by [Xx ] € f)sﬁ 5 1t fulfills

(J7 [ Xk Jw, @) 2 = dp K[@] = (Vo K, @)z, Vi€ H 5, (4.1.57)

and (4.1.56) follows by Lemma . We remark that along the paper we only consider Hamilto-
nians such that the L2-gradient V,, K defined by (#.1.57)), as well as the Hamiltonian vector field
HSﬁ sJ VK, maps spaces of Sobolev functions into Sobolev functions (not just distributions),

with possible loss of derivatives.
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Tangential and normal subspaces in complex variables. FEach 2-dimensional symplectic

subspace V,, 5, n € N, 0 = £1, defined in (4.1.38))-(4.1.39)) is isomorphic, through the linear map
MC defined in (4.1.32)), to the complex subspace

zjel” . :
szz{ e ,zje(C}, with j=noce€’.

Denoting by II; the L*-projection on Hj, we have that IIy, , = MCII; (MC)~*. Thus MC is
an isomorphism between the tangential subspace 55£+ 5, defined in (4.1.41) and

Hs := { <Z> D z(x) = szeijx}
< jes
and between the normal subspace .\”jgﬁ 5, defined in (4.1.42) and
HY = { <Z> L 2(z) = Y e LQ}, ¢ .= Z\(S U {0}). (4.1.58)
z €SS
Denoting by II{, Héo, the L2-orthogonal projections on the subspaces Hg and HSLO, we have that

ML, o = MCIL(MC)™", T, 5, = MCTIg (MC)™". (4.1.59)

The following lemma, used in Section is an easy corollary of the previous analysis.
Lemma 4.10. We have that (v7, Qww); > =0, for any vT € ﬁé+ s and w € Y)Sﬁ 5

Proof. Write vT = MCzT and MCz" with 2T € Hg and 2+ € Hg, . Then, by (#.1.22) and (4.1.23),
(T, Quw) 2 = (MCZT,QwMCZJ')LQ = (ZT,QDZJ‘)L2 =0,

since £2p preserves the subspace Héo. O

Remark 4.11. The same proof of Lemma actually shows that (v, —o, Qwvns)2 = 0 for any
Un.+o € Vi to, for any n € N, o = 1. Thus W(vn,—o, JQwne) = (Un 0y J 2 TQwne)r2 =0
which shows that Jy maps V,, , in itself.

Notation. For a <; b means that a < C(s)b for some positive constant C(s). We denote
N:={1,2,...} and Ny := {0} U N.
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4.2 Functional setting

Along this chapter we consider functions u(y,z) € L? (’]I‘”H, (C) depending on the space variable
x €T =T, and the angles ¢ € TV = T/ (so that T"*! = T% x T,) which we expand in Fourier

series as

u(p, ) = Z uj(p)e® = Z u&jei(ﬁ"pﬂx). (4.2.1)
JEZ LeZY JEZ

We also consider real valued functions u(ip, ) € R, as well as vector valued functions u(yp, z) € C2
(or u(ip, z) € R?). When no confusion appears, we denote simply by L%, L?(T"*!), L2 := L*(T,),

L2 := L*(T") either the spaces of real/complex valued, scalar/vector valued, L*-functions.

A crucial role is played by the following subspace of functions of (¢, x).

Definition 4.12. (Quasi-periodic traveling waves) Let J:= (7;,...,7,) € Z" be the vector
defined in (4.1.53)). A function u(yp,z) is called a quasi-periodic traveling wave if it has the form
u(p,r) = U(p — jr) where U : TV — CX| K € N, is a (27)”-periodic function.

Comparing with Definition we find convenient to call quasi-periodic traveling wave both
the function u(p, x) = U(p — jx) and the function of time u(wt, x) = U(wt — Jx).

Quasi-periodic traveling waves are characterized by the relation
u(p—J,") =Tu VceR, (4.2.2)

where 7. is the translation operator in (4.1.7)). Product and composition of quasi-periodic trav-
eling waves is a quasi-periodic traveling wave. Expanded in Fourier series as in (4.2.1)), a quasi-

periodic traveling wave has the form

u(p, ) = Z u&jei(é'@ﬂ"’”) , (4.2.3)
Lel” jeZ,5+7-£=0

namely, comparing with Definition [.12]

u(p, ) =Ulp —Jr), UM)= Y U™, U= . (4.2.4)
LelZv

The traveling waves u(p,z) = U(p — J&) where U(-) belongs to the Sobolev space H*(T", CK)
in (T.1.25) (with values in C¥, K € N), form a subspace of the Sobolev space

HM ) = {u= 3wy O = Y Jueg e P <o) (425)
((,j)EZ”+1 ((,j)EZ”+1
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where (¢, j) := max{1, ||, |j|}. Note the equivalence of the norms (use (4.2.4]))

HUHHS(T;XL) s HUHHS(’]I‘V)-

For s > so := [4}] + 1 € N one has H*(T"*!) ¢ C(T"*!), and H*(T*"!) is an algebra. Along
the chapter we denote by || ||s both the Sobolev norms in (|1.1.25) and (4.2.5).

For K = 1 we define the smoothing operator Ilx on the traveling waves

Mg :u= Z u&jel(g'“”ﬁ) = gy = Z Ug,je‘(g"pﬂx) , (4.2.6)
eeZ”:j6887j+.T'£:0 <Z><K,j€§8,j+jf=0

and I1% := Id—IIx. Note that, writing a traveling wave as in (4.2.4)), the projector Il in ({.2.6)

is equal to
(Mgu)(p,x) = Uk(p = Jr), Ux():= >, Uw?.
ez (<K
Whitney-Sobolev functions. We consider families of Sobolev functions A > u()\) € H*(T*!)
and A — U(\) € H%(T") which are ko-times differentiable in the sense of Whitney with respect to
the parameter \ := (w,x) € F' © RY x [k1, ko] where F' = R¥*! is a closed set. The case that we
encounter is when w belongs to the closed set of Diophantine vectors DC(v, 7) defined in (1.1.24)).
We refer to Definition 2.1 in [I3], for the definition of a Whitney-Sobolev function u : F' — H*
where H® may be either the Hilbert space H*(T" x T) or H*(T"). Here we mention that, given
v € (0,1), we can identify a Whitney-Sobolev function u : F' — H® with ko derivatives with the
equivalence class of functions f € WHo-®v(R¥+1 H*)/ ~ with respect to the equivalence relation
f~ g when & f(\) = &lg()\) for all A€ F, |j| < ko — 1, with equivalence of the norms
[l %~k lellwrommost gy = Y VI 0%u] oo oy -
|| <ko

The key result is the Whitney extension theorem, which associates to a Whitney-Sobolev function
u: F — H* with ko-derivatives a function @ : RV*! — H*, @ in WFo®(R¥*!, H*) (independently
of the target Sobolev space H®) with an equivalent norm. For sake of simplicity in the notation

we often denote || H?f’]}v = || |[Fov,

Thanks to this equivalence, all the tame estimates which hold for Sobolev spaces carry over
for Whitney-Sobolev functions. For example the following classical tame estimate for the product
holds: (see e.g. Lemma 2.4 in [I3]): for all s > so > (v + 1)/2,

luv] < C (s, ko) Jull™ vl & + C(s0, ko) lulsg o]} (4.2.7)

Moreover the following estimates hold for the smoothing operators defined in ({.2.6)): for any
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traveling wave u

IMculfo” < K ul2e, 0<a<s, [Mgulf¥ < K~*uls, a=0. (4.2.8)

s—a )

We also state a standard Moser tame estimate for the nonlinear composition operator, see e.g.
Lemma 2.6 in [13],

u(p, x) = £(u)(p, x) 1= fp,2,u(p, 7).

Since the variables (¢, z) =: y have the same role, we state it for a generic Sobolev space H®(T4).

Lemma 4.13. (Composition operator) Let f € C*(T? x R,R). If u(\) € H*(T9) is a family

of Sobolev functions satisfying |u|%V < 1, then, for all s = so 1= (d + 1)/2,

£l < Cls ko, ) (1 + ull)

1 J(p.2,0) = 0 then [£(u) | < C(s, ko, )]l .

Diophantine equation. Ifw is a Diophantine vector in DC(v, 7), see ([1.1.24)), then the equation

w - 0,v = u, where u(y, x) has zero average with respect to ¢, has the periodic solution

(w-0p)tu = Z — W’jéei(é"”jz) )
tez\{0}jez Y

For all w € R”, we define its extension

(W dp)eulp, ) = ), X(w - o™ )T) ey (4.2.9)

eizn @
where x € C*(R,R) is an even positive C*® cut-off function such that

0 if |¢<

_ , Oex(§) >0 VEe(5,2). (4.2.10)
1 if [ =

wWiNy W=

Note that (w - dy)oau = (w - ,) tu for all w € DC(v, 7). Moreover, if u(p, x) is a quasi-periodic
traveling wave with zero average with respect to ¢, then, by ([#.2.3), we see that (w-dy)qu(e, )
is a quasi-periodic traveling wave. The following estimate holds

l(w- ap)mhul s < Clho)o ™l sy p= ko +7(hko + 1), (4.2.11)

ko,v

and, for F € DC(v,7) x R4, one has |(w - dy,)~ qu“’ < C(ko)v*1\|u\|s+%p
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Linear operators. We consider p-dependent families of linear operators A : T + L(L?(T,)),
¢ — A(p), acting on subspaces of L?(T,), either real or complex valued. We also regard A as
an operator (which for simplicity we denote by A as well) that acts on functions u(p, z) of space

and time, that is

(Au)(p, z) := (A(p)ulp, -)) () . (4.2.12)

The action of an operator A as in ([4.2.12) on a scalar function u(p,z) € L? expanded as in

EZD is

Au(p, ) = Y. AL (@up()e?® = YN AL~ Oyup el (4.2.13)

1,J'€Z 5,J'€L Ll el”

We identify an operator A with its matrix (Aj (¢ — gl))j,j’eZ,é,f’eZV’
to the index ¢. We always consider T6plitz operators as in (4.2.12), (4.2.13)).

which is T6plitz with respect

Real operators. A linear operator A is real if A = A, where A is defined by A(u) := A(n).
Equivalently A is real if it maps real valued functions into real valued functions. We represent a

real operator acting on (7, ¢) belonging to (a subspace of) L?(T,,R?) by a matrix

(e %)
R = (4.2.14)
C D

where A, B, C, D are real operators acting on the scalar valued components 7, ¢ € L?(T,,R).

The change of coordinates (4.1.24) transforms the real operator R into a complex one acting

on the variables (z,%), given by the matrix

R:=C'RC = (Rl R2>
R2 Ru (4.2.15)

R :=%{(A+D)—1(B—C)} . R :=%{(A—D)+i(B+C)}.

A matrix operator acting on the complex variables (z, %) of the form (4.2.15)), we call it real. We
shall also consider real operators R of the form ({#.2.15) acting on subspaces of L?.

Lie expansion. Let X (¢) be a linear operator with associated flow ®7(y) defined by

-7 (p) = X ()27 ()

%(0) = Td T€[0,1].
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Let ®(p) := ®7(p)|;=1 denote the time-1 flow. Given a linear operator A(y), the conjugated

operator
AT (p) == ®(p)  Alp)®(p)

admits the Lie expansion, for any M € N,

TP SR G D
AT (p) = Z ol ad’¢ ) (A(@)) + Ru(e),
m=0 " (4.2.16)
_ (_1)M+1 ! _ A\M FT M+1 T
Rus(g) = | (1= @7 (o) MadE (4D (o) dr

where adx(,)(A(9)) = [X(9), A(p)] = X () A(p) — Alp) X () and ad(,) := 1d.
In particular, for A = w - 0, since [X (¢),w - 0y] = —(w - 0,X)(¢), we obtain

m+1

(p) Low-d, 0 D(p) =w-d, + 2 ——adf (@ 9. X (9))

(_I)M 1 1 T — T
S | =M@ ) ey (- 2, X ()07 (e) ar
(4.2.17)
For matrices of operators X(¢) and A(y) as in ([£.2.15)), the same formula (4.2.16) holds.

4.2.1 Pseudodifferential calculus

In this section we report fundamental notions of pseudodifferential calculus, following [44].

Definition 4.14. (VDO) A pseudodifferential symbol a(z,j) of order m is the restriction to

R x Z of a function a(x, ) which is C*-smooth on R x R, 27-periodic in z, and satisfies
090, a(w,€)| < Cap©™", Va,BeNy.

We denote by S™ the class of symbols of order m and S™% := n,505™. To a symbol a(z, &) in

S™ we associate its quantization acting on a 27-periodic function u(z) = ZjeZ uj eV as

[Op(a)u](z) := ) alx, j)u; "

JEL

We denote by OPS™ the set of pseudodifferential operators of order m and OPS~* := (1) OPS™.

For a matrix of pseudodifferential operators

A A
A= "1 ), A,eoPsm, i=1,....,4 (4.2.18)
Az Ay
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we say that A € OPS™.

When the symbol a(z) is independent of £, the operator Op(a) is the multiplication operator
by the function a(x), i.e. Op(a) : u(x) — a(z)u(x). In such a case we also denote Op(a) = a(zx).

We shall use the following notation, used also in [4] [44] 13]. For any m € R\{0}, we set

|DI™ := Op(x(£)I¢]™)

where x is an even, positive C* cut-off satisfying (4.2.10). We also identify the Hilbert transform
H, acting on the 27-periodic functions, defined by

H(e®) := —isign (j)eV® Vj#0, H(1):=0, (4.2.19)
with the Fourier multiplier Op(—isign (§)x(§)). Similarly we regard the operator
0, [e7*] == —ij e Vji#0, 9,'1]:=0, (4.2.20)

as the Fourier multiplier d;! = Op (—i X(f)f_l) and the projector g, defined on the 27-periodic

functions as
1

o Tu(az) dz, (4.2.21)

ToU 1=

with the Fourier multiplier Op(1 — x(£)). Finally we define, for any m € R\{0},

(Dy™ :=mo + |D™ := Op((1 = x(€)) + x(€)|€]™) -

We shall consider families of pseudodifferential operators with a symbol a(\; ¢, x,§) which is ko-
times differentiable with respect to a parameter A := (w, k) in an open subset Ag € R” x [k1, k2]
Note that 61)\‘714 = Op (élja) for any k € NSH.

We recall the pseudodifferential norm introduced in Definition 2.11 in [44].

Definition 4.15. (Weighted VDO norm) Let A(\) := a(\; ¢, z, D) € OPS™ be a family of
pseudodifferential operators with symbol a(A; ¢, z, &) € S™, m € R, which are ko-times differen-
tiable with respect to A € Ag =« R¥*!. For v € (0,1), o € Ny, s = 0, we define

k
JAlEeY, o= > o™ sup |EAN) s
/\EAO

|k|<ko
where [A(MN)],, 5o 1= MaXo<p<a SUPger H&?a()\; o E)s (€)7™FP. For a matrix of pseudodiffer-
ential operators A € OPS™ as in (4.2.18)), we define \|A||ﬁ?sva = maxX;—1,. 4 \Alﬂﬁfb):a :

Given a function a(X;p,x) € C® which is ko-times differentiable with respect to A, the
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weighted norm of the corresponding multiplication operator is

|Op(a) g% = lal™.  VaeNo. (4222)
Composition of pseudodifferential operators. If Op(a), Op(b) are pseudodifferential op-
erators with symbols a € S™, b € S, m,m’ € R, then the composition operator Op(a)Op(b)
is a pseudodifferential operator Op(a#b) with symbol a#b e S™+™ It admits the asymptotic

expansion: for any N > 1
-1

N
(a#b) (N, 2, 8) = ), iﬁlﬁ,ﬁfa()\; 0,2, £)00b(N; 0, 2,€) + (rv(a, b)) (N, 2,€) (4223
g=0

where 7x/(a,b) € ST =N The following result is proved in Lemma 2.13 in [44].

Lemma 4.16. (Composition) Let A = a(\;¢,x, D), B = b(\;p,z, D) be pseudodifferential
operators with symbols a(\; ¢, z,€) € S™, b(\; ¢, z,€) € 8™, m,m' € R. Then Ao B e QPS™+"

satisfies, for any o € Ny, s = sq,

[ABI s Sk C) LTS o IBI s 1220
+ O0) TS L IBI e - -
Moreover, for any integer N > 1, the remainder Ry := Op(ry) in satisfies
|Op(rn(a, b))Hf,ffm,_N’s’a Sm,N,ake C(8) |A] 53,7;N+a HBHfr?/:onH?NJra»NW (4.2.25)
+ C(s0) HAwaE::;}O,NJra ”BHI:Y(L);,I;+|m|+2N+CX,N+C¥ ) B

Both (4.2.24)-(4.2.25)) hold with the constant C(sg) interchanged with C(s).
Analogous estimates hold if A and B are matriz operators of the form (4.2.18]).

The commutator between two pseudodifferential operators Op(a) € OPS™ and Op(b) €

OPS™ is a pseudodifferential operator in OPS™4"'~1 with symbol a *» b € S™"™ 1 namely
[Op(a), Op(b)] = Op (a * b), that admits, by (4.2.23)), the expansion

axb=—1i {CL, b} + TNQ(aab) ’ TNQ(aﬂb) = 7‘2(@, b) - TQ(bv CL) € Sm+m'727

(4.2.26)
where {a, b} := 0cad,b — 0, a0ch,
is the Poisson bracket between a(x, &) and b(z, ). As a corollary of Lemma we have:

Lemma 4.17. (Commutator) Let A = Op(a) and B = Op(b) be pseudodifferential operators
with symbols a(X; ,z,€) € S™, b(X; ¢, x,&) € ™, m,m’ € R. Then the commutator [A, B] :=



4.2. FUNCTIONAL SETTING 109

AB — BA € OPS™"' 1 sqtisfies

ko,v ko,v ko,v
I[A, B, St ko C(8) [ Al I B,

m—+m/—1,s,a. ~m,m’,o.ko m,s+|m/|[+a+2,a+1 m/,so+|m|+a+2,a+1

+C(s0) A0 o

(4.2.27)
m,so+|m/|+a+2,a+1 HBHm’,s-&-\m|+o¢+2,a+1 )

Finally we consider the exponential of a pseudodifferential operator of order 0. The following

lemma follows as in Lemma 2.12 of [43] (or Lemma 2.17 in [44]).

Lemma 4.18. (Exponential map) If A := Op(a(X; ¢, z,€)) is in OPS°, then e? is in OPS®
and for any s = sg, a € Ny, there is a constant C(s,a) > 0 so that

ko»

0 exp(C (s, ) [AIE%Y 0 0) -

He 0,50+,

The same holds for a matriz A of the form ([#.2.18)) in OPS°.
Egorov Theorem. Consider the family of ¢-dependent diffeomorphisms of T, defined by

y=z+ppz) =  z=y+pBpy)), (4.2.28)

where (p, ) is a small smooth function, and the induced operators

(Bu)(p, ) :=u(p,x + B(p, 7)), (B 'u)(p,y) := ule,y + Ble,y)) .- (4.2.29)

Lemma 4.19. (Composition) Let HﬁHggoikOH <

operator B satisfies the tame estimates, for any s = s,

0(s0, ko) small enough. Then the composition

1Bull 3 Ssko Iull T + 181 el gg kg1

and the function B defined in ([£.2.28) by the inverse diffeomorphism satisfies HBHkO’ Ss.ko

ko,
1815k,

The following result is a small variation of Proposition 2.28 of [43].

Proposition 4.20. (Egorov) Let N € N, qy € No, S > s¢ and assume that d53()\;-,-) are C®
for all |k| < ko. There exist constants on,on(qo0) > 0, 6 = 0(S, N, qo, ko) € (0,1) such that,
if HBHSSJraN (@) < 4, then the conjugated operator B~ o 0™ o B, m € Z, is a pseudodifferential
operator of order m with an expansion of the form

N

B odloB = pn_i(Xie.y)dy " + Ru(y)
1=0

with the following properties:
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1. The principal symbol of pm, is

(i ery) = (IL+ B, )™ ) Loy o)
where B(A; ©,y) has been introduced in . Foranys>=sgandi=1,...,N,

k
[ = 1187 Il s 18555 - (4.2.30)

2. For any q € N with |q| < qo, n1,n2 € No with ng + ng +qo < N + 1 — kg —m, the operator
(DY IR N (){D)"2 is D¥o-tame with a tame constant satisfying, for any so < s < S,

im<D>n1ag},72]\;(<,o)<D>TL2( s) SS,Nq0 Hﬁ“fi’mv (q0) (4.2.31)

3. Let sop < s1 and assume that |Bjls, 1on(q) < 6 J = 1,2. Then |Aopm—ills; <si.n
|A128]s140ns @ =0,...,N, and, for any |q| < qo, n1,n2 € Ng with ny + na +qo < N —m,

IKDY" 03 A 12 RN (0)XD)" 2| B(rrs1y Ss1,Nm1.ma 1812851 40 (q0) -

Finally, if B(p,x) is a quasi-periodic traveling wave, then B is momentum preserving (we refer
to Definition and Lemma , as well as the conjugated operator B~' o 0™ o B, and each

function pm—i, t =0,..., N, is a quasi-periodic traveling wave.

Dirichlet-Neumann operator. We remind the following decomposition of the Dirichlet-
Neumann operator proved in Proposition 2.37 of [44], in the case of infinite depth, and in
Appendix A of [13], for finite depth.

Proposition 4.21. (Dirichlet-Neumann operator) Assume that d5n(},-,-) is C*(T” x T)

for all |k| < ko. There exists 0(so, ko) > O such that, if H77||]2€2(7)12k0+1 < 6(so, ko), then the

Dirichlet-Neumann operator G(n) = G(n,h) may be written as
G(n,h) = G(0,h) + Rg(n) (4.2.32)

where Rg(n) := Ra(n,h) € OPS™ is an integral operator with C* Kernel Kg which satisfies,

for all m, s, € N, the estimate

HRG( )H Om S, \ (87 m7 Oé, kO)HKGHS?H%Jra < C(Sv m? a? kO)HT/Hsi:OJFQkOJFeraJrg N (4233)

Let s1 > 2s0+1. There exists 5(s1) > 0 such that the map {|n|s,+6 < d(s1)} = H*(T" x T x T),
n— Kg(n) is C1 with bounded derivative.

We conclude by recalling the estimate for the Dirichlet-Neumann operator and for its first
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and second variation in 7, see Lemma 2.41 in [44].

Lemma 4.22 (Tame estimates for G(n)). There it 6(so, ko) > 0 such that, if |\77H350+2k0+5 <
0(s0, ko), then, for any s > so,

[(G(n) = GONCIE" Soko M550, - ano sl I + 52k g €15
|G (MAICIEY Semo IRISTS RIS + I IS0 Al 55
A oo sl L A0y (4.2.34)
IG" ()7 AICNEY Samo D105 A1) + [ 1 gl Al A5

ko, ko,v /1~1ko,
e e oo sl s (1Tl 50 ) %

4.2.2 D*-tame and modulo-tame operators

We present the notion of tame and modulo tame operators introduced in [44]. Let A := A())
be a linear operator as in (4.2.12), ko-times differentiable with respect to the parameter A in the
open set Ag < R¥*1.

Definition 4.23. (D*-o-tame) Let o > 0. A linear operator A := A()) is D*0-o-tame if there
exists a non-decreasing function [sg, S| — [0, +®), s — M4(s), with possibly S = +00, such
that, for all sg < s < S and ue H5,

sup sup oM (FEAN)ul < Malso) ful o + Mals) ful, 1 - (4.2.35)
|k|<ko AeAo

We say that M 4(s) is a tame constant of the operator A. The constant M 4(s) = Ma(ko, 0, s)
may also depend on kg, o but we shall often omit to write them. When the "loss of derivatives"
o is zero, we simply write D*o-tame instead of D*0-0-tame. For a matrix operator as in ,
we denote the tame constant Mg (s) := max {Mr, (s), Mz, (s)}.

Note that the tame constants 914 (s) are not uniquely determined. An immediate consequence
of (4.2.35)) is that |\AH£(HSO+U7HSO) < 29Ma(sg). Also note that, representing the operator A by

its matrix elements (A? (—0))owezv j ez as in (4.2.13)), we have for all |k| < ko, j' € Z, V' € 27,

VRS0 5% 5 AT (0 - )P < 2(Ma(s0))” (2L 5T+ 2(Ma(s))? (€L HO) L (4.2.36)
€7j

The class of D¥o-g-tame operators is closed under composition.

Lemma 4.24. (Composition, Lemma 2.20 in [44]) Let A, B be respectively D -g o-tame and

DFo_gp-tame operators with tame constants respectively M 4(s) and Mp(s). Then the composed
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operator Ao B is DY (o4 + og)-tame with tame constant
Map(s) < Clko) (Ma(s)Mp(so+0ca) +Ma(so)Mp(s+04)) .

It is proved in Lemma 2.22 in [44] that the action of a D¥0-g-tame operator A()\) on a Sobolev
function u = u(\) € H*"7 is bounded by

[ Aul2® S Malso) |ull s+ Mals) ful 50 (4.2.37)

s+o so+o *

Pseudodifferential operators are tame operators. We use in particular the following lemma;:

Lemma 4.25. (Lemma 2.21 in [44]) Let A = a(X\;p,z, D) € OPS® be a family of pseudodif-
ferential operators satisfying HAHISOS% < 0 for s = sg. Then A is DFo-tame with a tame constant

Ma(s) satisfying, for any s = so,
ko,v
M (s) < C(s)| ALY (4.2:38)
The same statement holds for a matriz operator R as in (4.2.15]).

In view of the KAM reducibility scheme of Section we also consider the stronger notion
of D¥o-modulo-tame operator, that we need only for operators with loss of derivative ¢ = 0. We
first recall the notion of majorant operator: given a linear operator A acting as in , we
define the majorant operator |A| by its matrix elements (|A§I (=0 )owezy jjen-

Definition 4.26. (D*-modulo-tame) A linear operator A = A()) is D*-modulo-tame if
there exists a non-decreasing function [sg, S| — [0, +0], s SﬁﬁA(s), such that for all k € Ny,

|k| < ko, the majorant operator |0¥A| satisfies, for all s < s < S and u € H?,

sup sup vl*l] |05 Alulls < 9 (s0) Jull, + 90 (s) Jlul,, - (4.2.39)
|k|<ko AeAg

The constant Dﬁ%(s) is called a modulo-tame constant for the operator A. For a matrix of
operators as in (4.2.15)), we denote the modulo-tame constant fmﬁR(s) = max{imgzl(s), imgzz (s)}.

If A, B are D*-modulo-tame operators with |A§,(€)| < |B§I(€)|, then Sm&(s) < im%(s). A
DFo_modulo-tame operator is also DFo-tame and M 4(s) < im%(s).

In view of the next lemma, given a linear operator A acting as in , we define the
operator (,)° A, b € R, whose matrix elements are (£ — ¢')° Agl (e—1).

Lemma 4.27. (Sum and composition, Lemma 2.25 in [44]) Let A, B, (d,)° A, (3,)° B
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be D -modulo-tame operators. Then A+ B, Ao B and (d,)° (AB) are D*-modulo-tame with

My p(s) < MYy (s) + My (s)
M, 5 (5) < O (ko) (M (5)0% (50) + DT (50) 9055 (5))

m < C(6)C(ko) (mga@m(s)mg(so) + mﬁwm(so)mg(s)

+ M ()N, 1 (50) + I (50)DE, 1, (9)) -

il
@nran®)

The same statement holds for matriz operators A, B as in (4.2.15)).
By Lemma we deduce the following result, cfr. Lemma 2.20 in [43].

Lemma 4.28. (Exponential) Let A and (0,)° A be D*0-modulo-tame and assume that 931&(50) <
1. Then the operators et4 —1d and <dp>b et —1d are DFo-modulo-tame with modulo-tame con-
stants satisfying

mﬁeiflf[d(s) ko m&(s)’ mﬁ

osretaia(®) Skop mt o, (s) + Sﬁﬁ,(s)mt”a@u(so) :

(0p)°A (

Given a linear operator A acting as in (4.2.13)), we define the smoothed operator IlIyA, N € N

whose matrix elements are

Al(—e) if {—¢y<N

(I A)] (£ =€) = (4.2.40)
0 otherwise .
We also denote ITy; := Id — Ily. It is proved in Lemma 2.27 in [44] that
m?’[ﬁA(S) < Nﬁbmgawa(S) ’ m%ﬁA(S) < m&(s) . (4241)

The same estimate holds with a matrix operator R as in (4.2.15)).

4.2.3 Tame estimates for the flow of pseudo-PDEs

We report in this section some results concerning tame estimates for the flow ®(7) of the pseudo-
PDE Cauchy problem

oru = i0p(a(p,z) |¢2 )u
u(0, ¢, x) = up(p, x)

, peT”" xzeT, (4.2.42)

where a(p, x) = a(\; ¢, x) is a real valued function that is C* with respect to the variables (p, x)
and ko-times differentiable with respect to the parameters A = (w,x). The function a = a(i)

may also depend on the "approximate" torus i(¢). The flow operator ®(7) = ®(\; ¢, 7) satisfies
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the equation
0:9(r) = 10p(a(p, ) ¢ ) B(7)
®(0) =1d.

(4.2.43)

Since the function a(p, ) is real valued, usual energy estimates imply that the flow ®(7) is a
bounded operator mapping H? to HS. Moreover, since (4.2.43) is an autonomous equation, the
flow ®(p, 7) satisfies the group property

O(p, 11 + 1) = B(p,m1) 0 B(p,12), ®(p,7)"! =d(p,—7). (4.2.44)

Since a(A -) is ko-times differentiable with respect to the parameter A\, then ®(\;p, 1) is ko-
times differentiable with respect to A as well. Note also that ®~!(7) = ®(—7) = ®(7) because

there operators solve the same Cauchy problem. Moreover, if a(p, z) is odd(y, z), then the real

[ (g, ) 0
q’“”’”"( 0 <I>(%w))

is reversibility preserving by Lemma [4.32

\BHI’C\
The operator 5’“66(5 loses | Dy| derivatives, which in (4.2.46)) are compensated by (D)™™
on the left hand side and (D) ™2 on the right hand side, with mq, mo € R satisfying mj + mg =

operator

(18] + |k]). The following proposition provides tame estimates in the Sobolev spaces HS

Proposition 4.29. Let fy,ko € No. For any B,k € Ny with |B| < Bo, |k| < ko, for any
my,mo € R with my +mo = 3(|8] + |k|) and for any s = so 1= (v + 1)/2, there exist constants
a(|B], k], m1,ma) >0, 6(s,m1) > 0 such that, if

k b
”aH2so+\m1|+2 < 5(Svm1) ) HaHsg_:_}g(gmko,ml,mQ) < 17 (4-2~45)
then the flow ®(7) = ©,7) of [2.42)) satisfies
sup [ (D)™™ a{a () (D)™™ b4
T€[0,1]
k b
s poskomms 0 (Al + 1215250 a1 e may Pllso ) (4.2.46)
sup [0 (®(7) —1d) hls
T€|0,1
—|k ko, k
S5 v M (Jlalie Il N, [l .3 IR LS ) (4.2.47)
Proof. See Proposition 2.37 in [13] and Appendix A in [44]. O

We consider also the dependence of the flow ® with respect to the torus ¢ = i(¢) and the

estimates for the adjoint operator ®*.
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Proposition 4.30. Let s; > so and By € No. For any 5 € Nij, |5| < fo, and for any my,ma € R
satisfying mi1 + mo = 5 (|8 + 1), there exists a constant o(|8]) = o (|8, m1,m2) > 0 such that,
if |als, +0(5,) < 0(s) with 6(s) > 0 small enough, then the following estimate holds:

Sl[épl] [<DY™™ 80 A1@(1) (D)™™ ||y ey [A122]5, 10 12, (4.2.48)
Telo,

where A1a® 1= ®(ig) — ®(i1) and Ajoa := a(iz) — a(i1). Moreover, for any k € Ny, |k| < ko

and for all s = sg,

_ ko,
|5 hls S v M (IR] g + 121" sl
st+5 s+so+|k|+5 S0+ 5

)
_ ko,
|05 (@* = 1) Alls <5 v M (s IRl e + 12l e ez IR0 gen ) -
S+ D) so+ 2

Finally, for all s € [so,s1], one has [|A12®*Rh|, <s \|A12a\|s+80+% HhHH%.

Proof. See Lemma 2.38 in [13] and Appendix A in [44]. O

4.2.4 Hamiltonian and Reversible operators

Along the reduction of the linearized operators we shall exploit both the Hamiltonian and re-

versible structure, that we now present.

Hamiltonian operators. A matrix operator R as in (4.2.14)) is Hamiltonian if the matrix

0 -Id\ {A B -C —-D
J IR = =
Id 0 C D A B
is self-adjoint, namely B* = B, C* = C, A* = —D and A, B,C, D are real.
Correspondingly, a matrix operator as in (4.2.15)) is Hamiltonian if

T=-Ri, R5=R,. (4.2.49)

Symplectic operators. A p-dependent family of linear operators R(p), ¢ € TV, as in (4.2.14])
is symplectic if

W(R(@)u, R(p)v) = W(u,v) Vu,ve L*(T,,R?), (4.2.50)
where the symplectic 2-form W is defined in (4.1.15)).
Reversible and reversibility preserving operators. Let S be an involution as in (4.1.4))

acting on the real variables (n,¢) € R2, or as in (#.1.51)) acting on the action-angle-normal
variables (6, I, w), or as in (4.1.29) acting in the (2,Z) complex variables introduced in (4.1.24)).
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Definition 4.31. (Reversibility) A p-dependent family of operators R(y), ¢ € T, is

o reversible if R(—p) oS = —SoR(p) for all p € T;

o reversibility preserving if R(—¢) oS =S o R(p) for all p € T.

Since in the complex coordinates (z,Z) the involution S defined in (4.1.4]) reads as in (4.1.29)),
an operator R(p) as in (4.2.15) is reversible, respectively anti-reversible, if, for any i = 1,2,

Ri(—p) oS ==SoRi(p), resp. Ri(—p)oS =350oRi(p), (4.2.51)

where, with a small abuse of notation, we still denote (Su)(x) = u(—x). Moreover, recalling that

in the Fourier coordinates such involution reads as in (4.1.30)), we obtain the following lemma.
Lemma 4.32. A ¢-dependent family of operators R(p), ¢ € T, as in ({4.2.15)) is

o reversible if, for any 1 =1, 2,

.7 - 5 -7

(R (—p) = —(Ri)I (¢) VeeT’, ie (R (6)=—(R)] () VeeZ'; (42.52)

o reverstbility preserving if, for any i = 1,2,

.y — .y m

(R (=¢) = (R (p) VoeT”, ie (R)] (0) = (Ry)] (£) VeeZV. (4.253)
Note that the composition of a reversible operator with a reversibility preserving operator is
reversible. The flow generated by a reversibility preserving operator is reversibility preserving.
If R(p) is reversibility preserving, then (w - d,R)(yp) is reversible.
We shall say that a linear operator of the form w0, + A(¢) is reversible if A(yp) is reversible.
Conjugating the linear operator w - d, + A(¢) by a family of invertible linear maps ®(y), we get

the transformed operator

() o (w0, + A(p)) 0 B(p) =w -0, + AL (),

(4.2.54)
A () =27 () (w- 3,2(9)) + 7' (0)A(0) B () -

The conjugation of a reversible operator with a reversibility preserving operator is reversible.

Lemma 4.33. A pseudodifferential operator Op(a(p, x,§)) is reversible, respectively reversibility

preserving, if and only if its symbol satisfies

a(_907 —Z, g) = —CL(QO, z, g) ) resp. a(—cp, —Z, g) = CL(QO, z, g) . (4255)
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Proof. If the symbols a satisfies (4.2.55)), then, recalling the complex form of the involution &

in (4.1.29)-(4.1.30)), we deduce that Op(a(p,z,§)) is reversible, respectively anti-reversible. The
vice versa follows using that a(y,,j) = e Y*Op(a(y, z, £))[e7]. 0

Remark 4.34. Let A(p) = R(p) + T(¢) be a reversible operator. Then A(p) = Ry (¢) + T+(p)

where both operators

Ri(p) := 5(R(p) = SR(=9)S), Ti(p) = 5(T() = ST(=¢)S),

are reversible. If R(yp) = Op(r(p,z,§)) is pseudodifferential, then

R-i-(QD) = Op(m_(go,x,f)) ) T’.;,.(gO,CC,f) = %(T(()Oax7§) - T(_§07 —l’,f))

and the pseudodifferential norms of Op(r) and Op(r.) are equivalent. If T'(¢) is a tame operator
with a tame constant 97(s), then T (p) is a tame operator as well with an equivalent tame

constant.

Definition 4.35. (Reversible and anti-reversible function) A function u(yp,-) is called
Reversible if Su(p,-) = u(—yp,-) (cfr.(4.1.17)); Anti — reversible if —Su(p,-) = u(—yp,").

The same definition holds in the action-angle-normal variables (6, I,w) with the involution &
defined in (4.1.51) and in the (z,%) complex variables with the involution in (4.1.29).

A reversibility preserving operator maps reversible, respectively anti-reversible, functions into

reversible, respectively anti-reversible, functions.

Lemma 4.36. Let X be a reversible vector field, according to (4.1.5)), and u(yp, z) be a reversible

quasi-periodic function. Then the linearized operator d,X (u(y,-)) is reversible, according to

Definition [4.51]

Proof. Differentiating (4.1.5)) we get (d,X)(Su) oS = —=8(d,X)(u) and use Su(yp,-) = u(—y, ).
0

We also note the following lemma.

Lemma 4.37. The projections HéﬂE’ HSﬁE defined in Section commute with the involution
S defined in (4.1.4), i.e. are reversibility preserving. The orthogonal projectors Ils and Héo

commute with the inwvolution in (4.1.29), i.e. are reversibility preserving.

Proof. The involution S defined in (4.1.4) maps V,, 1 into itself, acting as in (4.1.36). Then, by
the decomposition (4.1.33)), each projector Ily, , commutes with S. O
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4.2.5 Momentum preserving operators
The following definition is crucial in the construction of the traveling waves.

Definition 4.38. (Momentum preserving) A p-dependent family of linear operators A(yp),

p € TY, is momentum preserving if
Alp—FK)orc=10Alp), VpeT’, ceR, (4.2.56)

where the translation operator 7¢ is defined in (4.1.7)). A linear matrix operator A(p) of the form

(4.2.14) or (4.2.15) is momentum preserving if each of its components is momentum preserving.

Momentum preserving operators are closed under several operations.
Lemma 4.39. Let A(y), B(p) be momentum preserving operators. Then:
(i) (Composition): A(p) o B(p) is a momentum preserving operator.
(i) (Adjoint): the adjoint (A(p))* is momentum preserving.
(iii) (Inversion): If A(p) is invertible then A(@)~' is momentum preserving.

(iv) (Flow): Assume that
o' (p) = Alp)@'(p), 2(p) =1d, (4.2.57)

has a unique propagator ®(p) for any t € [0,1]. Then ®'(p) is momentum preserving.

Proof. Ttem (i) follows directly by (4.2.56]). Item (i7), respectively (ii7), follows by taking the
adjoint, respectively the inverse, of (4.2.56) and using that 7* = 7_ = 7-!. Finally, item (iv)
holds because 71 ®'(p — J5)7¢ solves the same Cauchy in ([£.2.57). O

We shall say that a linear operator of the form w - d, + A(p) is momentum preserving if
A(yp) is momentum preserving. In particular, conjugating a momentum preserving operator
w0y + A(y) by a family of invertible linear momentum preserving maps ®(¢), we obtain the

transformed operator w - d, + A1 (p) in (4.2.54) which is momentum preserving.

Lemma 4.40. Let A(p) be a momentum preserving linear operator and u a quasi-periodic trav-

eling wave, according to Definition . Then A(p)u is a quasi-periodic traveling wave.
Proof. Tt follows by Definition and by the characterization of traveling waves in (4.2.2). [

Lemma 4.41. Let X be a vector field translation invariant, according to (4.1.8)). Let u be a quasi-

periodic traveling wave. Then the linearized operator d, X (u(p,+)) is momentum preserving.

Proof. Differentiating (4.1.8)) we get (d, X )(7cu) o ¢ = 7c(dyX)(u), s € R. Then, apply (4.2.2)).
O
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We now provide a characterization of the momentum preserving property in Fourier space.

Lemma 4.42. Let p-dependent family of operators A(p), ¢ € TV, is momentum preserving if
and only if the matriz elements of A(p), defined by (4.2.13)), fulfill

s/

AL(0)#£0 = Jl+j—j =0, VleZ", jjel. (4.2.58)
Proof. By (4.2.13) we have, for any function u(x),

(Alp)u) = 35 3 A (O uye o)

J,7'€Z tezv
and

Ao = 59)|reu] = Z Z A;I (5)eiié'ﬁeijlgujrei(é'“"ﬂx).
j.JIET (T

Therefore (4.2.56)) is equivalent to (4.2.58]). O

We characterize the symbol of a pseudodifferential operator which is momentum preserving:

Lemma 4.43. A pseudodifferential operator A(p,x, D) = Op(a(p,x,§)) is momentum preserv-
ing if and only if its symbol satisfies

ale = 55,2,8) = alp,x +6,§), VeeR. (4.2.59)

Proof. If the symbol a satisfies (4.2.59)), then, for all ¢ € R,

Tg © Op(a(gp,x,f)) = Op(a(gp,:c + g?i)) ©T¢ = Op(a(gp - fg,x,f)) °Tg,

proving that 7. o A(p,z, D) = A(p — J5,x, D) o 7. The vice versa follows using that a(p, x,§) =
e 8T A, x, D)[€7]. O

If a symbol a(yp, z,§) satisfies (4.2.59)), then (w - d,a)(p, x,§) satisfies (4.2.59) as well.

Lemma 4.44. If B(p, ) is a quasi-periodic traveling wave, then the operator B(p) defined in
(4.2.29) is momentum preserving.

Proof. We have B(p—J¢)[rcu] = u(z+B(p—J5,2) +¢) = uw(z+c+B(p,2+¢)) = 7(B(p)u). O
We also note the following lemma.

Lemma 4.45. The symplectic projections H§+ oy H§+ 5, the L?-projections Hf and Ilg, H§O

defined in Section commute with the translation operators ¢ defined in (4.1.7), i.e. are

momentum preserving.
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Proof. Recall that the translation 7. maps V,, + into itself, acting as in (4.1.37). Consider the
L2—orthogonal decomposition $H = §H, (—B.ﬁi, setting $, := 56§+ 5 for brevity:

L2 L? L2 L2 L
u=Hﬁéu+Hﬁtu, Hﬁéueﬁl, HﬁtueﬁL.

Applying 7. we get Tou = Tgﬂéiu + Tgﬂgiu. As shown above, 7c maps ), into itself for all <.
V4
Thus also the L?-orthogonal subspace Sﬁi is invariant under the action of 7. and we conclude, by

the uniqueness of the orthogonal decomposition, that Tgﬂgiu = HéiTgu, Tgﬂgiu = Hg;Tgu. O

The next lemma concerns the Dirichlet-Neumann operator.

Lemma 4.46. The Dirichlet-Neumann operator G(7,h), evaluated at o quasi-periodic traveling

wave 7(p, ), is momentum preserving.

Proof. Tt follows by (4.1.9) and the characterization in (4.2.2)) of the quasi-periodic traveling
wave (¢, x). O

Quasi-periodic traveling waves in action-angle-normal coordinates. We now discuss
how the momentum preserving condition reads in the coordinates (6, I, w) introduced in (#.1.50).
Recalling , if u(p, z) is a quasi-periodic traveling wave with action-angle-normal compo-
nents (0(p), I(y), w(p,x)), the condition 7cu = u(yp — J5,-) becomes

0(e) — 55 0(¢ — 55)
Ie) =1 Ie=7%) |, vseRr. (4.2.60)
Tew(ep, ) w(p —J5,)

As we look for 6(yp) of the form 6(p) = ¢ + O(yp), with a (27)"-periodic function © : R” — R,

@ — O(p), the traveling wave condition becomes

O(y) O(p — J)
Ilp) |=| Ile=-F) |, VseR. (4.2.61)
Tew(p, ) w(p =5,

Definition 4.47. (Traveling wave variation) We call a traveling wave variation g(yp) =
(91(©), g2(), g3(, <)) € RY x R¥ x 53§+ 5, a function satisfying (4.2.61)), i.e.

g1(p) = g1 = 3%), 92(9) = g2(p = 55), 7eg3(@) = g3(¢p — %), Vs eR,
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or equivalently D7.g(¢) = g(¢ — J5) for any ¢ € R, where D7. is the differential of 7., namely

) S
D |1 |=| 1|, VseR.
w TeW

According to Definition , a linear operator acting in R¥ xIR” xﬁsﬁ 5, momentum preserving
if
Al —J5) o DT. = DT 0 A(p), VseR. (4.2.62)

Similarly to Lemma [1.40] one proves the following result:

Lemma 4.48. Let A(p) be a momentum preserving linear operator acting on R” x R” x ﬁsﬁ 5
and g € R” x R x f)é s be a traveling wave variation. Then A(p)g(y) is a traveling wave

variation.

4.3 Transversality of linear frequencies

In this section we extend the KAM theory approach of [44], [21] in order to deal with the linear
frequencies (k) defined in ([£.0.3). The main novelty is the use of the momentum condition in
the proof of Proposition . We shall also exploit that the tangential sites S :={7;,...,7,} €
Z\{0} defined in ({.1.48)), have all distinct modulus |7,| = T, see assumption ({4.0.4)).

We first introduce the following definition.

Definition 4.49. A function f = (f1,..., fn) : [k1, k2] — RY is non-degenerate if, for any

c € RM\{0}, the scalar function f - ¢ is not identically zero on the whole interval [x1, k2].

From a geometric point of view, if f is non-degenerate it means that the image of the curve

f([k1, K2]) = RY is not contained in any hyperplane of RY.

We shall use in the sequel that the maps k — (k) are analytic in [k1, k2]. We decompose

Qj(k) = wj(k) + ;ij(o) . wi(k) = \/KZ G;(0)j2 + g G;(0) + <;/Gj](0)) . (4.3.1)
G;(0)

Note that the dependence on & of (k) enters only through w;(x), because =4~ is independent
of k. Note also that j + wj(k) is even in j, whereas the component due to the vorticity
j— %G#(O) is odd. Moreover this term is, in view of ({1.1.16[), uniformly bounded in j.

Lemma 4.50. (Non-degeneracy-I) The following frequency vectors are non-degenerate:

1. Q(k) := (Q2(k))jes € RY;
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2. (Uk), k) e RV,
3. (Q(r), (k) € RV, for any j € Z\ ({0} US U (-S));
4. (ﬁ(n),Qj(/@),Qj/(n)) e RV*2, for any j,7 € Z\ ({0} uS U (=S)) and |j| # |5'|-

Proof. Let

ﬁj(n) _ Qi(k) forj#0 Bi(k) im wj(k) for j#0 (43.2)

NG for j =0, NG for j=0.
Recalling (4.3.1)), we have that, for any j € Z,
Gj(o)j2 fOI'j £ 0

. G \?
0xwj(r) = Nj(k)@j(Kr), Aj(k) = 2(“Gj(0)12+ng(0)+(¥ 5 ) (4.3.3)

= for j=0.

Moreover d,\j(k) = —2A;(k)?, for any j € Z, and therefore, for any n € N,
0, @i(k) = CpAj(R)"Wj(K), Cpi=ci-... Cn, Cp:i=3—2n. (4.3.4)

We now prove items 2 and 3, i.e. the non-degeneracy of the vector (ﬁ(lﬁ),ﬁj(ﬁ)) e R+ for
any j € Z\(S u (=S)), where (Nlj(ﬁ) is defined in (4.3.2). Items 1 and 4 follow similarly. For this

purpose, by analyticity, it is sufficient to find one value of k € [k1, k2] so that the determinant
of the (v + 1) x (v + 1) matrix

0ully (k) -+ 0:85 (K) 0x82(K)
A(k) = : - : :
0 (k) - I, (k) @4I04(k)

is not zero. We actually show that det A(x) # 0 for any & € [k1, k2]. By (4.3.2)-(4.3.4) and the
multilinearity of the determinant function, we get

1 1 1
det () = C(x)det | ) A”":(R) M) o) det Bl
A5, (K)Y A (K)Y (k)Y

where

C(k) := ng- H Ap(R)Dp(k) #0, VkeE [k, ke].

q:]' pe{jl 11111 jz/vj}
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Since B(k) is a Vandermorde matrix, we conclude that

det A(k) = C(k) [T )= Ap(x).
PP €{T1:,,3 1 P<P
Now, the fact that det A(k) # 0 for any « € [k1, k2] is a consequence from the following
Claim: For any p,p’' € {J1,...,7,,7}, p # P/, one has \p(k) # Ay (k) for any k € [k1, k2]
PROOF OF THE CLAIM: If p' = 0 and p # 0, the claim follows because, by (4.3.3),

! < 2.

oot s 20

/\p("f) =

Consider now the case p,p’ # 0. We now prove that the map p — A\,(x) is strictly monotone on
(0,400). In case of finite depth, G,(0) = ptanh(hp), and

1
OpAp(k) = -3 Pl

{Qg 12 3tanh(hp) — (1 — tanh?(hp))hp
2 tanh(hp) \ 2 | p° 4 '
2 (1 + & + 3 tennfen))

P3

The function f(y) := 3 tanh(y)—(1—tanh?(y))y is positive for any y > 0. Indeed f(y) — Oasy —
0, and it is strictly monotone increasing for y > 0, since f/(y) = 2(1—tanh?(y))(14y tanh(y)) > 0.
We deduce that dpAp(k) > 0, also if the depth h = 40c0. Since the function p — A\,(k) is even we
have proved that that it is strictly monotone decreasing on (—o0,0) and increasing in (0, +0).
Thus, if \p(k) = Ay (k) then p = —p'. But this case is excluded by the assumption and
the condition j ¢ S U (—S), which together imply |p| # |p/|. O

Note that in items 3 and 4 of Lemma we require that j and j’ do not belong to {0} U
S U (=S). In order to deal in Proposition when j and j' are in S U (—S), we need also the
following lemma. It is actually a direct consequence of the proof of Lemma noting that

(k) — wj(k) is independent of k.

Lemma 4.51. (Non-degeneracy-II) Let &(x) := (w;,(k),...,w;, (k). The following vectors

are non-degenerate:
1. (@(k),1) e RvHL;
2. (@(k),w;(k),1) € R¥*2 for any j € Z\ ({0} U S U (-S)).
For later use, we provide the following asymptotic estimate of the linear frequencies.

Lemma 4.52. (Asymptotics) For any j € Z\{0}, we have

wi(x) = vl + -G (4.35)

K712
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where, for any n € Ny, there exists a constant C,n > 0 such that

cj(k)
su 8”]7‘ <Chn. 4.3.6
j?Z\g}] " VE - ( )
KE[K],KQ

Proof. By (4.3.1)) we deduce (4.3.5) with

. . 9G;(0) 2 G;(0)
Klil(G5(0)~1i)+252 Q+@)’ )

glil?

Cj K) =
G;(O)—1il | 9G;(0) 1\2G;(0)
14“\/1+ ot (1 (3) She

Then (4.3.6)) follows exploiting that (both for finite and infinite depth) the quantities |j|(G;(0) —
l7]) and G;(0)/|j| are uniformly bounded in j, see (1.1.16). O

The next proposition is the key of the argument. We remind that 7= (3;,...,7,) denotes

the vector in Z" of tangential sites introduced in (4.1.53]).

Proposition 4.53. (Transversality) There exist mg € N and pg > 0 such that, for any K €
[k1, k2], the following hold:

max 0" (k) - 0] = pol), Ve Z'\{0}; (4.3.7)
0sn<mo

o (k) - £+ Q; > po (L
odnax |0 ((x) iR = poll) (43.8)

7 0+j=0, (eZ’, jeSE;

(22 (05) £+ 05(5) —~ ()| > po O s
j’.£+j_j’:[)’ EEZV,j?jIES(C)7 (67]1]/)‘7&(0’]’])7

max &’Zﬁﬁ-f—i-Q-ﬁ + Qi (k)| = pol
e (07 (3() €+ 05 (6) + ()| > po 0 w50

Jl+j+j=0,0eZ", j,j €S§.
We call pg the amount of non-degeneracy and mqg the index of non-degeneracy.

Proof. We prove separately (4.3.7)-(4.3.10). In this proof we set for brevity R := [k1, ka].
Proof of (4.3.7). By contradiction, assume that for any m € N there exist x,, € K and ¢, €

Z¥\{0} such that

(ke VO<n<m. (4.3.11)

Tyl T (my?
The sequences (Km)men € 8 and (Uy,/ i ))men < R¥\{0} are both bounded. By compactness,

up to subsequences k,, — & € & and £,/ ({;,) — ¢ # 0. Therefore, in the limit for m — +o0, by
[@E311) we get 0" (%) - ¢ = 0 for any n € Nyg. By the analyticity of ((x), we deduce that the
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function K — Q(K) - C is identically zero on R, which contradicts Lemma 1

Proof of (4.3.8). We divide the proof in 4 steps.
STEP 1. Recalling (4.3.1) and Lemma we have that, for any k € &,

[6(k) - £+ ()] 2 19 (0)] = () - €] > VA1 |j|? = O = (0

whenever | ]|% > Co{l), for some Cy > 0. In this cases (4.3.8) is already fulfilled with n = 0.

Hence we restrict in the sequel to indexes ¢ € Z” and j € S§ satisfying
1712 < Co(t) . (4.3.12)

STEP 2. By contradiction, we assume that, for any m € N, there exist x,, € R, {,, € Z¥ and
3
Jm € S, with |jmm|2 < Collp), such that, for any n € Ny with n <m

‘é’g(ﬁ( <€ > + <gm>Q.7m( ))‘H:Hm‘ < ﬁ
j’. @m + Jm =0.

(4.3.13)

Up to subsequences xk,, — & € 8 and ¢,/ () = € R”.
STEP 3. We consider first the case when the sequence (£,,)men © Z" is bounded. Up to subse-
quences, we have definitively that ¢, = £ € Z". Moreover, since j,, and £, satisfy ([4.3.12), also

the sequence (jp,)men is bounded and, up to subsequences, definitively j,, =7 € S§. Therefore,

in the limit m — oo, from (4.3.13]) we obtain

or (k) €+ Q5(k)), _.=0,YneNy, 7-0+7=0.

K=
By analyticity this implies
Q) T+ Q(k) =0, VheR, J-0+7=0. (4.3.14)

We distinguish two cases:

o Let 7¢ —S. By (4.3.14) the vector (ﬁ(ﬁ), Q;(k)) is degenerate according to Deﬁnitionm
with ¢ := (¢,1) # 0. This contradicts Lemma 3.

e Let 7€ —S. With no loss of generality suppose 7 = —7,. Then, denoting ¢ = (¢1,...,4,),
system (4.3.14) reads, for any k € g,

(E5 + Ve, () + Sy Ty, () + 3 (0~ )P 4 5, 7,50

_ (4.3.15)
(br = )71 + 29 laTa = 0.
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By Lemma the vector (&(k), 1) is non-degenerate, which is a contradiction for v # 0.
If v = 0 we only deduce i =—land ly =... =14, =0. Inserting these values in the
momentum condition in (4.3.15)), we get 27; = 0. This is a contradiction with 7; # 0.

STEP 4. We consider now the case when the sequence (£, )men is unbounded. Up to subsequences
|| — 00 as m — o0 and limy, 00 €/ () =: € # 0. By (4.3.1) and (4.3.5)), for any n € No,

. . s ) Y G0
g <€ y Sl 1) <<€m>f|jm| o ilimE 28wy im )|m=nm

g E(ag\/g)\m=ﬁ’ for m — 0,

with d := limy,_e0 |]m|% /{lmy € R. Note that d is finite because j,, and £, satisfy ({4.3.12).
Therefore (4.3.13) becomes, in the limit m — o0,

or (QY(x) e+ dvk), =0, VneN.

By analyticity, this implies that ﬁ(ﬁ) ¢+ dy/k = 0 for any k € R This contradicts the non-
degeneracy of the vector ((k),+/x) in Lemma 2, since (¢,d) # 0.

Proof of (4.3.9). We split again the proof into 4 steps.
STEP 1. By Lemma [4.52] for any « € K,

[650k) - £+ 25() = ()] = 19(8) = ()] = 19() - €] = ] ]2 = 13| = CL0 = (O

whenever | |j|% - |]’|%| > C1{) for some C7 > 0. In this case (4.3.9)) is already fulfilled with
n = 0. Thus we restrict to indexes £ € Z” and 7, j’ € S§, such that

3 g3
1312 = 1512 < C1). (4.3.16)

Furthermore we may assume j,, # j,, because the case jn, = j/, is included in (4.3.7).

STEP 2. By contradiction, we assume that, for any m € N, there exist k,, € R, £, € Z¥ and
Jms I € S§, satistying (4.3.16)), such that, for any 0 < n < m,
07 (€3(r)

. é% + %(Qjm(l"i) - Qﬂn(,{)))|n:lim| < ﬁ

j'€m+jm—j;,120.

(4.3.17)

Up to subsequences k,, — & € 8 and £,,,/ {{y,) = €€ R”.
STEP 3. We start with the case when (£,,)meny © Z¥ is bounded. Up to subsequences, we have
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definitively that ¢, = £ € Z". Moreover, if |j.| # |j.,|, there is ¢ > 0 such that

c(ldml? + 17512) < [ljm]? = 1|2 | < C1ltm) < VmeN,

If j, = —j}, we deduce by the momentum relation that |jn,| = |j,,| < Cp) < C, and we
conclude that in any case the sequences (jim)men and (j),)men are bounded. Up to subsequences,

we have definitively that j,, = 7 and j;, = 7, with 7,7 € S§ and such that
J#7 . (4.3.18)
Therefore (4.3.17) becomes, in the limit m — o0,

52(5(/1) 0+ Q5(k) —Qj/(/f))hi:g: 0,VneNy, 7-4+7-7=0.

By analyticity, we obtain that

Q(k) -0+ Q5(k) — () =0, Yee &, T-L+7-7 =0. (4.3.19)

We distinguish several cases:

e Let 7,7 ¢ —S and [7] # |7|- By (4.3.19) the vector (Q(/ﬁ;)ﬁl;(n),ﬁﬂﬁ)) is degenerate with
c:=({,1,—-1) # 0, contradicting Lemma 4.

e Let 7,7 ¢ —S and 7 = —7. In view of (4.3.1]), system (4.3.19) becomes

T+ .20 1 290) 0, vkeg,
< )1+ 3 (2 o) L320)
+ 23

=0.

ks
N |

By Lemma the vector (&(k), 1) is non-degenerate, which is a contradiction for v # 0.
If v = 0 the first equation in (4.3.20]) implies £ = 0. Then the momentum condition implies
27 = 0, which is a contradiction with 7 # 0.

e Let 7 ¢ —S and j € —S. With no loss of generality suppose 7 = —7;. In view of (4.3.1)), the
first equation in (4.3.19)) implies that, for any x € K

G0), 760 G0y

7 (-
(0 + 1wy, (K Z:: awy, (k) — wy (k) + 5 ((ﬂl 1) o 2 5 ;

By Lemma the vector (&(k),wy(k),1) is non-degenerate, which is a contradiction.

e Last, let 7,7 € —S and 7 # 7, by (4.3.18]). With no loss of generality suppose 7 = —7; and
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7 = —J5. Then (4.3.19) reads

(6 + Dwy, (8) + (b2 = 1) wy, + X5 laws, (K)

- G, (0 - G, (0 v G5 (0
+3 ((51 — 1)31—1() + (ly + 1)]7272() +YY ol Jga( ))) =0, Ve R, (4.3.21)

(0 =17 4+ (b + )Gy + Yo _50aJ, = 0.

By Lemma the vector (@(k), 1) is non-degenerate, which is a contradiction for v # 0.
If v = 0 the first equation in (4.3.21) implies that /1 = —1, lo = 1, {3 = ... = [, =
0. Inserting these values in the momentum condition we obtain —27; + 27, = 0. This

contradicts 7 # 7.

STEP 4. We finally consider the case when (£,,)men is unbounded. Up to subsequences |€,,| — o
as m — o0 and lim, 0 €/ ) =: € # 0. In addition, by (4.3.16]), up to subsequences

|2 = 12 <
RS Ty di e R. (4.3.22)
By (.3.1) and (4.3.5) we have, for any n,

1 N 5 s
n Q _ Q ., — n .m 5 _ g2
s (20n) = 94,9 = (S linl? — 17 )

1 Cj (H) Cjr (H) Yy G] (0) G]/ (0) _
+ mK) G, N (0 _ Gi, T (R
(L) v/t ( |2 Litl? ) 2<em>( Jm i )m%) = 10 (VK))

using (4.3.22)) and {¢,,,) — oo0. Therefore (4.3.17)) becomes, in the limit m — oo,

or (Q(x) e+ divk), =0, VneN.

By analyticity this implies (k) - ¢ + diy/k = 0, for all x € & Thus ((k), \/x) is degenerate
with ¢ = (¢,d;) # 0, contradicting Lemma, 2.
Proof of (4.3.10)). The proof is similar to that for (4.3.9)) and we omit it. O

4.4 Nash-Moser theorem and measure estimates

Under the rescaling (n, () — (en, (), the Hamiltonian system (4.1.14)) transforms into the Hamil-

tonian system generated by

He(n, Q) := e *H(en,e() = Hr(n,¢) +ePe(n. (), (4.4.1)
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where H is the water waves Hamiltonian (4.1.13]) expressed in the Wahlén coordinates (4.1.11]),
Hr is defined in (4.1.20) and

P0) o= 52 | (€438 W)(Glen) = GOD (¢ + 305 ) do

= T(m‘l‘f@dw”ﬁr(— (¢ + 307 m),n* + 30’ ) da.

2

(4.4.2)

We now study the Hamiltonian system generated by the Hamiltonian H.(n, (), in the action-
angle and normal coordinates (6, I, w) defined in Section[d.1.3] Thus we consider the Hamiltonian
H_.(0,1,w) defined by

H.oi=H.oA=c*HocA (4.4.3)

where A is the map defined in (4.1.50). The associated symplectic form is given in (4.1.54]).
By Lemma (see also (4.1.35)), (4.1.49))), in the variables (0, I, w) the quadratic Hamilto-
nian Hy, defined in (4.1.20) simply reads, up to a constant,

Ni=HpoA=0k) T+ 1 (Quw,w).
where (k) € R is defined in and Qu in ({.1.19). Thus the Hamiltonian H, in is
H.=N+eP with P:=PoA. (4.4.4)
We look for an embedded invariant torus

T >R xR x 95, 5, @ i(p) = (0(0), 1(9), w(e)),

of the Hamiltonian vector field Xy := (0rH., —é’gHE,Hg+ IV H,) filled by quasi-periodic

solutions with Diophantine frequency vector w € R” (which satisfies also first and second order

Melnikov non-resonance conditions, see (4.4.15)-(4.4.17))).

4.4.1 Nash-Moser theorem of hypothetical conjugation

The quasi-periodic solutions for the Hamiltonian system generated by the Hamiltonian in (4.4.3))
are expected to have a shifted frequency vector close the unperturbed linear frequency vector

Q(rk) defined in (4.0.8)). It is therefore convenient to introduce a "counterterm" o € R” and

consider the family of modified Hamiltonians
Hy:=Ny+eP, Ny=a I+ 3w Quuw). . (4.4.5)

In particular, when a = Q(k), we have H, = H..



130 CHAPTER 4. TRAVELING QUASI-PERIODIC WATER WAVES
Then we look for a zero (i, ) of the nonlinear operator

Fli,a) := F(w, k, €54, ) 1= w - 0,0(p) — X, (i(p))
w - 0,0(p) —a —ed1P(i(p))
= | w-d.1(p) +e0p P (i()) . (4.4.6)
w-dpw(p) —Ig o J(Qwuw(p) +eVuP(i(p)))

If 7(i,a) = 0, then the embedding ¢ +— i(p) is an invariant torus for the Hamiltonian vector
field X, filled with quasi-periodic solutions with frequency w.
Each Hamiltonian H, in (#.4.5) is invariant under the involution S and the translations 7.,

¢ € R, defined respectively in (4.1.51)) and in (4.1.52)):
HyoS =H,, Hyo7.=H,, V<eR. (4.4.7)

We look for a reversible traveling torus embedding ¢ +— i(¢) = (0(p), (@), w(p)), namely
satisfying

Si(p) =i(—p),  Ti(p) =i(p—3), VYseR. (4.4.8)
Lemma 4.54. The operator F(-, ) maps a reversible, respectively traveling, wave into an anti-

reversible, respectively traveling, wave variation, according to Definition [{.47

Proof. Tt follows directly by (4.4.6) and (4.4.7). O

The norm of the periodic components of the embedded torus

J(p) == i(@) = (¢,0,0) := (O(p), I(@), w(p)) , O(p):=0(p) — v, (4.4.9)
is |J|ko .= HGH%’ + HHI'E’@“ + |w[F? where
ko 1= mo + 2 (4.4.10)

and mg € N is the index of non-degeneracy provided by Proposition which only depends
on the linear unperturbed frequencies. Thus, kg is considered as an absolute constant and we
will often omit to write the dependence of the various constants with respect to ky. We look for

quasi-periodic solutions of frequency w belonging to a d-neighbourhood (independent of ¢)
Q:={weR : dist (w,ﬁ[m,/{g]) <6}, 6>0,

of the curve [k, k2] defined by (£.0.8).

Theorem 4.55. (Nash-Moser) There ezist positive constants ag, g, C' depending on S, ko and
7 = 1 such that, for all v =¢*, a€ (0,a9) and for all € € (0, &), there exist
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1. a ko-times differentiable function

Qg 1 Q X [K1, k2] — RY,

Qoo (W, k) = w + Te(w, k) with |re/Y < Cev™?; (4.4.11)

2. a family of embedded reversible traveling tori i (@) (cfr. (A.4.8)), defined for all (w,k) €
Q x |k1, ka], satisfying
lico (@) = (0, 0, O)HI;SU < Cev™! (4.4.12)

8. a sequence of ko-times differentiable functions p® : R” x[r1, k2] — R, j € S§ = Z\ (Su{0}),
of the form

1 (w, k) = 1% (w, K) (k) + 0 (@, 8)j + 0P (W, 8) |2+ (w k), (4.4.13)
2 2
with Q;(k) defined in (4.0.3), satisfying

i — 1, 0, I < OeysphPfer < Ca (41
JESy

such that, for all (w, k) in the Cantor-like set

Co i ={(wm) € @ x 1, ma] ¢ |-l = 80077, VEe ZN{0}; (4.4.15)

o £+ uP(w, k)| = 4v |2 ()T VLT, j €Sy with J- L+ j = 0; (4.4.16)

- € P w0, 1) — i (w0 )| = 4015 = 171300 (4.4.17)
VeeZ, j,i' €S§, (4,5,5) #(0,4,7) with7-£+j—34 =0,

o £+ 1w, 1) + p5(w, R)| = 40 (1712 +1517) O, (4.4.18)

VeeZV, j,j eSE, wz’thi-€+j+j’=0},

the function () = in(w, k,&;50) is a solution of F(w,k,€;luw,an(w,k)) = 0. As a conse-

quence, the embedded torus ¢ — ix(p) is invariant for the Hamiltonian vector field Xp as

am (w,k)

it 4s filled by quasi-periodic reversible traveling wave solutions with frequency w.

We remind that the conditions on the indexes in (4.4.16)-(4.4.17) (where j€ Z" is the vector
in (4.1.53)) are due to the fact that we look for traveling wave solutions. These restrictions are

essential to prove the measure estimates of the next section.
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4.4.2 Measure estimates

By (4.4.11)), the function ag( -, k) from Q into its image (R, k) is invertible and

B =ap(w,k) =w+r(w k) <

. (4.4.19)
w=ay (B,K) = B+7(8,K), ||V < Cev .

Then, for any f € aw(CY), Theorem proves the existence of an embedded invariant torus

filled by quasi-periodic solutions with Diophantine frequency w = az'(3, k) for the Hamiltonian
Hg = 61+ %(w,ﬂww)Lz +eP.

Consider the curve of the unperturbed tangential frequency vector ﬁ(n) in (£.0.8). In Theorem
below we prove that for "most" values of k € [r1, ko] the vector (ag((k), k), x) is in
CS,, obtaining an embedded torus for the Hamiltonian H. in , filled by quasi-periodic
solutions with Diophantine frequency vector w = ag!(§3(k), k), denoted € in Theorem 1.8 Thus
cA(i(Qt)), where A is defined in (.1.50), is a quasi-periodic traveling wave solution of the
water waves equations written in the Wahlén variables. Finally, going back to the

original Zakharov variables via (4.1.10)) we obtain solutions of (4.0.1)). This proves Theorem
together with the following measure estimate.

Theorem 4.56. (Measure estimates) Let
v=e¢", 0<a<min{ag, 1/(1+ko)}, 7>mo(v+4), (4.4.20)

where myg 1s the index of non-degeneracy given in Proposition [.55 and ko := mo + 2. Then, for

e €(0,e0) small enough, the measure of the set
G- = {k € [r1,K2] : (ozgol(ﬁ(ﬁ;),fi),fi) eCy} (4.4.21)

satisfies |Ge| = ko — K1 as € — 0.

The rest of this section is devoted to prove Theorem By (4.4.19) we have

Oc(k) := a M (k) k) = Q(k) + 7, (4.4.22)

|07 (k)| < Cev™(FR) -V |k| < ko, uniformly on [k, k2] . (4.4.23)
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We also denote, with a small abuse of notation, for all j € S§,

. 1
PG = 2 (G ). ) 1= (O ) +mE ()] + ()G +eP ). (14.20)
where n% (x) := 0T (Q:(r), k), nf(k) = 1P(Qe(k), 5), nT(r) := 0T (Qe(r),x) and P (r) =
2 2 2 2
o (Qe(k), k).
By (4.4.14) and (4.4.23) we have
‘Gi(mg(ﬁ) —1)|, |0im? (x)|, |5,’§m‘§(f@)| < Cev (4.4.25)
sup |6’,§t§o(n)| <Cev 'F VO<SEk<k. (4.4.26)

JESG
Recalling (4.4.15))-(4.4.17), the Cantor set in (4.4.21]) becomes

Ge ={re[r.ma] + |a() - €] > 800", Ve TN(0):
(k) - £+ uP () = 40lj[B )7, Ve ZY, j eSS, with j 0+ = 0;

= .3 3 —r
Q:(k) - £+ pF (8) — p (R)] = 4o {Jd]2 = |5'|2) <0
Vgezyv jajl ESO? (&J?] ) 7 (07]7]) with jg—i_j _jl = 07

= .3 3 o
19 (k) - £+ pF (1) + p3 (R)] = 40 (512 + 15'12) <O
VeeZ, j.j €St withj-€+j+j’=O}.

We estimate the measure of the complementary set

Ge = [k1, k2]\G-

:<UR§0>)U U Rlol U o mm ol U @] waen

£#£0 ez, jESG (£,3,5")#(0,5,5),5#3" LeZ? ,j,5'€SG
Fltj= 0 Fe+j—5'=0 Je+j+35'=0

where the “nearly-resonant sets"

RY :={k € k1, k9] : |F(r)- €] <80}, (4.4.28)
RY i={r e [r,ma] ¢ 1Ge(r) - €+ uP(x)] < dolj|? ()7}, (4.4.20)
R, ={n e [k, m2] ¢ |Ge(r) - €+ p (k) — nF(8)| < 402 = |7/|2)0 T}, (44.30)
ﬁffi ={r € [r1,m2] + [Qe(r) - €+ uP (k) + pF (k)] < aw(|j]z +1512) 7). (44.31)

Note that in the third union in (4.4.27)) we may require j # j' because Ryj];

we shall always suppose the momentum conditions on the indexes ¢, j, j' written in m Some

c REO) In the sequel
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of the above sets are empty.
Lemma 4.57. Consider the sets in ([4.4.27)-([£.4.31)). For e € (0,20) small enough, we have that

1. I RY) # @ then |j|2 < C0);

2. IfRYD, # & then ||j]2 — |j'|2| < C0);
3. If QD # @ then [j|2 +15'|2 < C (0.
Proof. We provide the proof for REIJ[; If Rén), # (¥ then there exists k € [k1, k2| such that
du{jlz — 152 = 43 3
0 -] < U <ot -1t e aam
By ({4.4.24) we have

(R (R) = 2 (W) + 0 (W) (] = §') + 0T (W) (517 = 15'17) + 57 (k) = €5 ().

Then, by m with £ = 0, - -, the momentum condition j — j/ = —7- £,

and the elementary mequahty ||j|2 — 7 | | > ||j|2 — 7 | |, we deduce the lower bound

() — 5 () = m

wviw &

a3 g3 = gL gL _
18 (k) = pf (K)| = (1= Ce)a(|ljlz — |j'|2| = C) — Celj- €| = Cellj|z — |5'|2] — Cev™

> 5|5 —|j|7| - Cele] — O — Cev! (4.4.33)
Combining (4.4.32) and (4.4.33), we deduce ||j|% - |j,|%| < C ), for € small enough. O

In order to estimate the measure of the sets m ) that are nonempty, the key
point is to prove that the perturbed frequencies satlsfy estimates similar to —m

Lemma 4.58. (Perturbed transversality) For ¢ € (0,e9) small enough and for all k €

(K1, k2],

max  [0"C (k) - |>%<e>, Ve Z\{0}; (4.4.34)

0<n<myg

maxo<nsmo |9 (Qe (k) - £ + p (k)] = B (0

(4.4.35)
Jl+j=0, (eZ, jeSq;
g _ o
maxosnsmo |0 (e (k) - €+ p (k) — 3 (£))] = 5 <6 (4.4.36)
Jl+ji—5 =0, ez, jj €S, (64,5 +(0,4,4);
e, p
maxosnsmo |0 (e (k) - €+ pi (k) + p5 (1)) = 5 <6 (4.4.37)

Jl+j+57 =0, (eZ”, jj €S§.
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We recall that pg is the amount of non-degeneracy that has been defined in Proposition [4.55

Proof. We prove (4.4.36). The proofs of (4.4.34), (4.4.35) and (4.4.37) are similar. By (4.4.24)

we have
o) - €+ i () = um (k) - £+ 7(k) - €+ Q) = 2 () (1.4.38)
+ @ (k) = 1) (QR) = Q(R) +0f(x) (G = 5) + 0P () (517~ 1712) + 5 (0) = e (w)

By Lemma we get that, for any n € {0, ..., mo},
100 (6) — ()] < C|IF1E —1713] + C < ') Oy (14.39)

because, by Lemma M@), we can restrict to indexes ¢, 7, j' such that ||]|% — |j/|%| < C ).

Furthermore

1517 = 1712| < |ldl7 = 1712 < €40 (4.4.40)

Therefore, by (5.3.15)), (4.4.25)), (4.4.26)), (4.4.23), (4.4.39)), (4.4.40)), and the momentum condition
j—j' = —7- £, we have that, for any n € {0, ..., mg},

|08 (k) - £+ () = pF (1))] = 108 (Ur) - £+ (k) = Qye(w))| = Cev™Hm0) (E)
Since (k) - £ + Q;(k) — Qs (k) satisfies (4.3.9), we deduce that
Jmax 30 () £+ ) — g5 R))] 2 po ) — Cew 470 (0 > 8.0

for € > 0 small enough. O

As an application of Riissmann Theorem 17.1 in [155], we deduce the following result:

Lemma 4.59. (Estimates of the resonant sets) The measure of the sets (4.4.27))- (4.4.31)
satisfy

1 - 1
IR < (0™ yme R < (w]j]2 @Y ) me
3 3 —(r L I 3 —(r 1
RID) < (013 — 17120~V )7, |@§’j]|<( (1312 + 15712) @~y ms
and, recalling Lemma [{.57,
RDY, RV 10D, 5 (wiey )7

Proof. We estimate R( ) , defined in (.4.30)). The other cases follow similarly. Defining fy ; y7(k) :=
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() - €+ 1P (5) = p (R)) O, we write

Ry = {n e lmnmal « fugy ()| < 4wl = 11507}
By Lemma we restrict to indexes satisfying H]|% - |j,|%‘ < C{¢). By ([4.4.30),

max |5 fojj (K )|>P0/27 VK€ |k, K.

0<n<mg

In addition, by (#.4.22)-(4.4.26), Lemma [4.52] the momentum condition [j — j'| = |7 ¢|, and
(£.4.40), we deduce that maxo<n<k, \agf@,j,j,(n)\ < C for all k € [k1, ko], provided ev=—(1+ko) jg
small enough, namely, by and € small enough. In particular, fy;; is of class Cho—1 =
C™*1 Thus Theorem 17.1 in [I55] applies. O

Proof of Theorem completed. We estimate the measure of all the sets in (4.4.27). By Lemma
and Lemma we have that

1

‘URO)‘ Z|RO>|<Z<<E>T+1>"L°’ (4.4.41)
‘U Rm‘\ DL HEY (&)”“SEUMZ (4.4.42)

¢, jeS§ ] 2 2 TV <€> mg 3
7430 bl lil<C6ys
1 1
(I1) (I7) v mo L ™o
U Qf,]y] 2 |Q£,j7j | ~ 2 <€>T < Z T _i- (4.4.43)
£, 3,9 ESC - 2 . 2 Y =y/d <£> mg 3
Feagi'2o0 71,15 < <63 Li[,15"[<CKE)3

We are left with estimating the measure of

§ R, _( | R ) ( U Rgffj)) (4.4.44)

(€,5,3")#(0,4,5),3#5" N ¢5,5", \7\#\7 |
7 l+ji—j"=0 ]"-1’.+2j:0 J+j—3'=0

By the momentum condition 7 £ 4 2j = 0 we get |j| < C (), and, by Lemma [.59]

1

1 1
|l e B s 8 () < D s e

£,5€S§,74+2j=0 <CCey lil<C<ey tezv {Lymo

Finally we estimate the measure of the second union in (4.4.44)). By Lemma we can restrict

to indexes satisfying ||7|>% — |4'|3/?| < C {¢) . Now, for any |j| # |j’|, we have

a1 gL
]+ 15| + 13121512 _ Ll 415
417 + 5|2 2

1517 = 15'12] = (1317 = 1712] (1] + 157] + 131215')7) =
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implying the upper bounds |j|, |5'| < C {(£)*. Hence

U mi

£33 131#15"| l3],157|<Cley? 51,15 |<C{e)?
Jl+j—j5'=0

1

1 1
11 v mo V™o
< ¥ s Y () =X (4440

iz (o

As = —4 > v by ([@4.20), all the series in [{@441), [E4.42), [@.443), ([E4.45), [440) are

mo

convergent, and we deduce
1
(&
|GE| < Cvmo .

For v = €2 as in [@4.20), we get |G.| = ry — k1 — Ce¥™0. The proof of Theorem is
concluded. O

4.5 Approximate inverse

In order to implement a convergent Nash-Moser scheme that leads to a solution of F(i,a) = 0,
where F (i, «) is the nonlinear operator defined in (4.4.6), we construct an almost approzimate

right inverse of the linearized operator
di.aF (i0, a0)[t; @] = w - 0,0 — diXp, (io(p)) [1] — (@,0,0) .

Note that d; o F(i0, %) = d;joF (o) is independent of ag. We assume that the torus ip(p) =

(Bo(), Lo(p), wo(g)) is reversible and traveling, according to (4.4.8)).
In the sequel we shall assume the smallness condition, for some k := k(7,v) > 0,

v«
We closely follow the strategy presented in [34] and implemented for the water waves equations in
[44] 13]. The main novelty is to check that this construction preserves the momentum preserving
properties needed for the search of traveling waves. Therefore, along this section we shall focus
on this verification. The estimates are very similar to those in [44 [I3] and will be proved in
Appendix
First of all, we state tame estimates for the composition operator induced by the Hamiltonian

vector field Xp = (01 P, =09 P, 11§, +JV,,P) in ({£.4.6).

Lemma 4.60. (Estimates of the perturbation P) Let J(¢) in (4.4.9) satisfy H’Jngg(’;jr%O% <

L. Then, for any s > so, [ Xp@)|5 <o 1+ 3158, sop s and. for all7:= (6.1.1),
127 11 K0s ~1ko, ~ ko, ~1ko,
[diXp D7 s 1737 + 19055500 420014 [Psg1
RN ) ~k 5 ~k 5 ~l K 5 ~k )
|2 X P @A, s TS 1o 3s + 13050 2k05 (Flg31)*
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Proof. The proof follows as in Lemma 5.1 of [44], using also the estimates of the Dirichlet-
Neumann operator in Lemmata [.21], 4.22] see Appendix O

Along this section, we assume the following hypothesis, which is verified by the approximate
solutions obtained at each step of the Nash-Moser Theorem

e ANSATZ. The map (w, k) — Jo(w, k) = io(p;w, k) — (,0,0) is ko-times differentiable

with respect to the parameters (w, k) € R x [k1, k2] and, for some p := pu(r,v) > 0,
v e (0,1),
[3)l50, + oo — w|*? < Cev?. (4.5.1)

As in [34] 44] [13], we first modify the approximate torus ig(¢) to obtain a nearby isotropic
torus i5(¢), namely such that the pull-back 1-form i§A is closed, where A is the Liouville 1-form
defined in (4.1.55)). We first consider the pull-back 1-form

ish =Y ar(p)der,  ar(p) = —([0:00()] " To(9)), + 5 (J wo(), dpwo()) 2, (4.5.2)
k=1
and its exterior differential

BW=digh= Y Agder adgy, Ai(9) = 0,05(9) — O, ax(e) (4.5.3)

1<k<j<v

By the formula given in Lemma 5 in [34], we deduce, if w belongs to DC(v, 7), the estimate
ko, - ko, ko,v 1~ ko,
|4kl 7 <s v (121557 + [ Zlg 1 130057 ) (4.5.4)

s+71(ko+1)+ko+1 so+ s+71(ko+1)+ko+1

where Z(y) is the “error function”

Z(p) = Flio, a0)(¢) = w - dgio(p) = X, (i0(¥)) - (4.5.5)

Note that if Z(¢) = 0, the torus io() is invariant for Xp, and the 1-form igA is closed, namely
the torus ig(¢) is isotropic. We denote below the Laplacian A, := >/, 5?%.

Lemma 4.61. (Isotropic torus) The torus is(v) := (0o(p), Is(¢), wo(p)), defined by

I5(p) = Io(9) + [0,00(2)] Tp(9) s p=(pj)jmtws  Pi(0) = AL Y 0o Akj(9), (45.6)
k=1
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is isotropic. Moreover, there is o := o(v,T) such that, for all s > s,

15 — Tolf <, 3007 (45.7)
15 — Tl <5 v (121598 + 121150, 130]1 502 ) (4.5.8)
|7 (is, 00) 152 <o 120800 + 121508, 130]5%2 (4.5.9)
[diis)[Elly, Ssr 171,20 + 130555 7150, (4.5.10)

for s1 < so+p (cfr. (4.5.1)). Furthermore is(p) is a reversible and traveling torus, cfr. (4.4.8).

Proof. Since ig(p) is a traveling torus (see (4.2.60)), in order to prove that i5(¢) is a traveling
torus it is sufficient to prove that I5(p — J5) = Is5(p), for any ¢ € R. In view of ({4.5.6), this
follows by checking that d,00(¢ — 5) = 0,00(p) and p(¢ — J5) = p(¢) for any ¢ € R. The first
identity is a trivial consequence of the fact that 0y(¢ — J5) = 0o(p) — 5 for any ¢ € R, whereas
the second one follows once we prove that the functions ay(p) defined in satisfy

ap(p — %) =ar(p) VeeR, Vk=1,...,v. (4.5.11)
Using that ig(p) is a traveling torus, we get, for any ¢ € R,
(agokw(](SO - jg)a lewo((p - jg))[ﬂ = (a¢k7§w0(¢)7 JZITCwU(SO))[; = (atpkw()((p)? JZIwO(@))L2

and, recalling (4.5.2), we deduce (4.5.11)). Moreover, since ig(y) is reversible, in order to prove
that is(¢p) is reversible as well, it is sufficient to show that I5() is even. This follows by (4.5.2)),

Lemma and SJ~! = —J~1S. Finally, the estimates (4.5.7)-(.5.10) follow e.g. as in Lemma
5.3 in [13] and will be proved in Appendix [C.2] O]

In the sequel we denote by o = o (v, 7) constants, which may increase from lemma to lemma,
which represent "loss of derivatives".
In order to find an approximate inverse of the linearized operator d; o F (i5), we introduce the

symplectic diffeomorphism Gy : (¢, y,w) — (0, I, w) of the phase space TV x R” x ﬁgﬁ,z’

0 ¢ 0o(9)
I|:=Gs|y|:=|15(8) + [0600()] Ty +[(2a0)(Bo(d))] T, " |, (4.5.12)
w W wo(P) +w

where @ (0) := wo(6, '(0)). It is proved in Lemma 2 of [34] that Gy is symplectic, because the

torus is is isotropic (Lemma {.61). In the new coordinates, is is the trivial embedded torus

((237 y’ W) = (¢7 07 0)'

Lemma 4.62. The diffeomorphism G in (4.5.12)) is reversibility and momentum preserving, in
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the sense that
SoGs=G508, T.oGs=Gs07, VseR, (4.5.13)

where S and 7. are defined respectively in [@1.51), (#1.52).

Proof. We prove the second identity in (4.5.13)), which, in view of (4.5.12)), (4.1.52)) amounts to

Oo(¢) — I = bo(¢ — ), Vs R, (4.5.14)

I5(0) + [2580(#)]™ "y + [(Po) (Bo(9))] " T 'w (4.5.15)
= I5(¢ — J5) + [0s00(& — F)1~ "y + [(@odo) (Bo(d — FI T J 7w,

Two (@) + 7w = wo(d — JK) + 7w . (4.5.16)

Identities (4.5.14) and (4.5.16) follow because is5(¢) is a traveling torus (Lemma [4.61)). For the
same reason Is(¢) = I5(¢ — J5) and 0y00(¢) = 0400(¢ — J5) for any ¢ € R. Hence, for verifying

([4.5.15)) it is sufficient to check that [(8p@o)(00())]" = [(Peto)(Bo(¢ — J5))] 7 (we have used
that JZI and 7. commute by Lemma , which in turn follows by

7c  (0go)(0o(¢)) = (dpio)(Bo(¢ — J5)), Vs eR, (4.5.17)

by taking the transpose and using that TJ =T = 7}_1. We claim that (4.5.17]) is implied by

W being a traveling wave, i.e.
TeWo(6, 1) = Wo(0 — %), VseR. (4.5.18)

Indeed, taking the differential of (4.5.18)) with respect to 6, evaluating at 6 = 6y(¢), and using
that Oo(p) — 75 = 0p(¢ — J5) one deduces (4.5.17)). It remains to prove (4.5.18]). By the definition

of Wy, and since wy is a traveling wave, we have
@o(0 — Jo) = wo(0y (0 — J)) = wo(fy ' (8) — J&) = mewo (8 ' (9)) = 7o,

using also that 6, (6 — ) = 6, '(9) — 7, which follows by inverting ([@.5.14). The proof of the
first identity in (4.5.13) follows by ([£.5.12), (#.1.51)), the fact that is is reversible, Lemma [4.37]

and since J~! and S anti-commute. O

Under the symplectic diffeomorphism Gs, the Hamiltonian vector field X g, changes into
Xg, = (DGs) ' Xp, 0G5 where  Kg:= HyoGs. (4.5.19)

By (4.5.13) and (4.4.7) we deduce that K|, is reversible and momentum preserving, in the sense
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that
KooS =K., KyoT.=K,, VseR. (4.5.20)

The Taylor expansion of K, at the trivial torus (¢, 0,0) is

Ka(o,y,w) = Koo(¢, @) + Kio(¢, @) - y + (Ko1 (¢, a),w) 2 + 3K20(0)y - y

(4.5.21)
+ (K11(¢)y7 W)L2 + %(K02(¢)w7 W)L2 + K23(¢7 Y, W) )

where K>3 collects all terms at least cubic in the variables (y,w). By (4.4.5) and (4.5.12), the
only Taylor coefficients that depend on « are Ko € R, K19 € R” and Kq; € f)Sﬁ 5, Whereas the
v x v symmetric matrix Koo, K11 € L(RY, )ﬁsﬁ 5) and the linear self-adjoint operator Koz, acting

on ﬁséty are independent of it.

Differentiating the identities in (4.5.20)) at (¢, 0,0), we have (recalling (4.1.51))

Koo(—¢) = Koo(¢), Kio(—¢) = Kio(¢), Kao(—¢) = Ka0(0),

(4.5.22)
SoKoi(—¢) = Koi(¢), SoKin(—9¢)=Kii(¢), Ko(-0¢)oS=380Kn(e),
and, recalling and using that TCT =T_¢= T;l, for any ¢ € R,
Koo(¢ — J5) = Koo(9), Kio(¢ —J5) = Kio(d), Kao(g —J5) = Ka0(0), (4.5.23)
Koi(¢ — 58) = cKo(o), Ko —5) =7K11(9), Ko2p—J) o =10 Kpa(d).
The Hamilton equations associated to are
(6 = Kio(, 0) + Kao(6)y + [K11(6)] W + 8, K36,y w)
) y = —0sKoo(¢, ) — [0sK10(¢, )] Ty — [05Ko1 (¢, )] Tw  ws21)

—04 (%KQO(@Z/ Y+ (K1 (@)y,w) 2 + % (Koz(p)w,w) 2 + K=3(¢, y>W))
(v =Jz (Koi(¢, ) + K11 (d)y + Koa(d)w + Ve K=3(¢,y,w))

where 94K is the v x v transposed matrix and dyK(;, K|} : 95 5, — R” are defined by the
duality relation (6¢K01[(;A5], W2 = $ [0sKo1] " w for any <$ eR” we Y)Sﬂ 5- The transpose K1 ()

is defined similarly.

On an exact solution (that is Z = 0), the terms Kyg, K1 in the Taylor expansion (4.5.21])

vanish and K19 = w. More precisely, arguing as in Lemma 5.4 in [13], we have
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Lemma 4.63. There is 0 := o(v,7) > 0, such that, for all s > s,

105K 00 (-, 0) |50 + | K10(-, o) — w50 + | Koy (-, ag) |50

So 121528 + 1208, 130520 (4.5.25)

|60 Koo 8 + |0aF10 = T[S + 00 Kor [ S5 [Tols3s (4.5.26)

| Kool 50 <o e(1+ [ 30]522) (4.5.27)
[Kyl5? <o elylEor + lylEo 130190 [ K2 <. el + Julfov |30)400)

(4.5.28)

A proof of the lemma is provided in Appendix [C.2] Under the linear change of variables

¢ 000 () 0 0 ¢
DGs(¢,0,0) | § | = | sls(¢) [200(P)]™" [(Ge@o)(o(D]" " [| G|, (4529
W 8¢w0(ap) 0 Id W

the linearized operator d; o F (is) is approximately transformed into the one obtained when one
linearizes the Hamiltonian system (4.5.24) at (¢,y,w) = (¢, 0,0), differentiating also in a at ag

and changing ; v w - d,, namely

w- 5ga$— 3¢K10( )[6] — dak10(9)[6] — Kao(9)F — [Ki(9)] @
w - 0,0 + 09 Koo(9)[¢] + 0a aquoo( MaT + [0 K10(0)] "5 + [0 Ko1(9)] 0
w00 — Js (0K (g )[@] + 6 Ko1(0)[a] + K11(0)7 + Koa2(p)w)

2 ) o)
1

(4.5.30)
By (4.5.29)), (4.5.1) and Lemma[4.61} the induced composition operator satisfies, for any traveling

wave variation 7 := (¢, 9, W),

7|50 (4.5.31)

~ ko,
B [F0 4 | To|E0Y |7y Ko 3P0 . (4.5.32)

~ 1ps ~ ~ ko,
| DGs(. 0, 0)[] [ + | DGs(0,0,0) [ s [257 + [ Tollss
| D2Gs(p, 0, 0) i1, 2] [ S5 212 [l 50 + 1 150

In order to construct an “almost approximate" inverse of , we need that

Ly :=T5 5 (w- 0y — JKo2(¢)) |ﬁ§+,z (4.5.33)
s "almost invertible" (on traveling waves) up to remainders of size O(N,, *,), where, for n € Ny
Kn:= KX, x=3)2. (4.5.34)

The (K,,)n=0 is the scale used in the nonlinear Nash-Moser iteration of Section and (N, )n=0
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is the one in the reducibility scheme of Section (4.7 Let HS (T"*) := H*(T"™) n H&, 5

(AI) Almost invertibility of L,: There exist positive real numbers o, u(b), a, p, Ky and
a subset N, < DC(v,T) X [K1,ke| such that, for all (w,k) € A, the operator L, may be
decomposed as

L,=L5+Ry+RE, (4.5.35)

where, for every traveling wave function g € H5 ™ (T* ™1, R?) and for every (w, k) € A,, there
is a traveling wave solution h € HS (T, R?) of LSh = g satisfying, for all sp < s < S,

1) g2 ss v (lgliy + gt 130120 ) o) - (4.5.36)

In addition, if g is anti-reversible, then h is reversible. Moreover, for any so < s < S, for
any traveling wave h € ﬁgﬁ 5., the operators R, R satisfy the estimates

ko, —1pr— ko, ko, ko,
IR S5 e0™ N2 (Al + 1Rl 13005 ey oo ) -

HRLthm s K2 (IR, 4 [h]fo 1900 st o) sosn) » ¥ >0,

so+b+o sot+o

I

1 ko, ko, ko,
[REREY < B2 + I, 130150

This assumption shall be verified by Theorem [1.93]at each n-th step of the Nash-Moser nonlinear

iteration.

In order to find an almost approximate inverse of the linear operator in (4.5.30) (and so of

di o F(i5)), it is sufficient to invert the operator

R w - @ﬂg — 0aK10(0)[A] — Kao(p)7 — K, (@)W
D|¢,7,%,a] := w - 0,0 + 0afyKoo(0)[8] (4.5.37)
L5w—Js (0aKor(p)[a] + Ki1(9)Y)

obtained neglecting in (4.5.30) the terms 0y K10, Opg K00, 03K00, OpKo1 (they vanish at an exact
solution by Lemma D and the small remainders R, Ri appearing in (4.5.35[). We look for

an inverse of D by solving the system

]D)[(;S, g//\v ﬁ, a] =1921> (4:538)
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where (g1, g2, g3) is an anti-reversible traveling wave variation (cfr. Definition 4.47)), i.e.

(=¢),  92(p) = —g2(=»),  Sgs(p) = —g3(—¢), (4.5.39)
(p =735, g2(9) = g2(p — &), Tcg3(p) = g3(p — 1), Vs eR. (4.5.40)

91(¢) = n
91(¢) = n

We first consider the second equation in (4.5.37))-(4.5.38)), that is w - 0, = g2 — 0ulsKoo(p)[a].
By (4.5.39) and (4.5.22)), the right hand side of this equation is odd in (. In particular it has

zero average and so

§i= (@ 0,)" (g2 — QalsKoo(9)[3]) - (4.5.41)

Since ga(¢) = g2(¢ — J5) for any ¢ € R by (4.5.40)) and 0,04 Koo(p)[@] satisfies the same property

by (4.5.23)), we deduce also that
Yl —35) =y(p), VeeR. (4.5.42)

Next we consider the third equation £5% = g3+ J/(daKo1(p)|a]+K11(p)y). The right hand side
of this equation is a traveling wave by ([£.5.40), (4.5.23), (4.5.42) and since J, = II&; |, Iz

st,2

commutes with 7¢ (by Lemma4.45). Thus, by assumption (AI), there is a traveling wave solution

W= (L35) (g3 + J2(0aKar(@)[a] + K11(9)D)) - (4.5.43)
Finally, we solve the first equation in , which, inserting and , becomes

W 0p0 = g1 + My (9)[G] + Ma()ga + Ma(p)gs (4.5.44)
where

Mi(p) := 0aK10(p) — M2()0a0p Koo () + M3(p)J 200 Ko1 (),
Ma(p) i= Kao(e)(w - 0,) ™" + K1 () (£35) " T K1i(p)(w-d,) 7",
Ms(p) = Ky (9) (£5) 7"

In order to solve (4.5.44)), we choose & such that the average in ¢ of the right hand side is zero.
By Lemma and (4.5.1), the p-average of the matrix M; satisfies (M1), = Id + O(ev™1h).
Then, for ev=! small enough, (Mz),, is invertible and <M1>;1 =Id + O(ev™1). Thus we define

= — (M, ({g1), + (Maga), + (Msgs),, ) , (4.5.45)
and the solution of equation (4.5.44)

6= (w-2,) " (g1 + Mi(9)[a] + Ma(i0)gz + M3 (i0)gs) - (4.5.46)
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The property $(¢ —-K) = QAﬁ(go) for any ¢ € R follows by (4.5.23)), (4.5.42)) and the fact that ¥ in
is a traveling wave. This proves that (<$, y,W) is a traveling wave variation, i.e. (4.5.40)
holds. Moreover, using (4.5.39), (4.5.22)), Lemma[4.37] the fact that J and S anti-commutes and
(AI), one checks that (gg, Y, W) is reversible, i.e.

o(p) = —o(=p),  Ylp) =i(=p),  Su(p) =u(-p). (4.5.47)

In conclusion, we have obtained a solution (qg, y,w, @) of the linear system (4.5.38)), and, denoting

ko,v

k )
the norm H(¢7y7W7 O[)HSO Y ‘= max {H(qbu y’W)HS ) |Oé|

ke
0¥}, we have:

Proposition 4.64. Assume (with pn = p(o) + o) and (Al). Then, for all (w,k) € Ay,
for any anti-reversible traveling wave variation g = (g1, 92,93) (i-e. satisfying ([£.5.39)-(4.5.40)),
system has a solution D™1g := (;ﬁ\, U, w, ), with ((Z, y,w,a) defined in (4.5.46), (4.5.41]),
(4.5.43), (4.5.45), where (qg, Y, W) is a reversible traveling wave variation, satisfying, for any
sp<s< S

—1 1k — ko, ~ 1Ko, ko,
ID™ g5 S5 0™ (Iglls% + 1301wy 4o 19l sore) - (4.5.48)

Proof. The estimate (4.5.48)) follows by the explicit expression of the solution in (4.5.41)), (4.5.43]),
(4.5.45), (4.5.46), and Lemma {463} (4.5.36), (4.5.1)). O

Finally we prove that the operator
Ty := To(io) := (DGs)(,0,0) o D™ o (DGs)(i,0,0) " (4.5.49)

is an almost approximate right inverse for d; o (ig), where Gs(d,y,w, ) := (Gs(d,y,w),a) is

the identity on the a-component.

Theorem 4.65. (Almost approximate inverse) Assume (Al). Then there isc := & (1, v, ko) >
0 such that, if (4.5.1) holds with u = p(b)+a, then, for all (w, k) € A, and for any anti-reversible

traveling wave variation g := (g1, g2,93) (i-e. satisfying (4.5.39)-(4.5.40) ), the operator Ty de-
fined in (4.5.49) satisfies, for all so < s < 5,

k — ko, ~ 1Ko, ko,
[ Togll5*” <5 0™ (l9l%5 + 1T0leY ey 5 19lsow) - (4.5.50)

Moreover, the first three components of Tog form a reversible traveling wave variation (i.e. satisfy

(4.5.47) and (4.5.40)). Finally, T¢ is an almost approzimate right inverse of d; oF (i), namely

ds o F (i) © To — Id = P(ig) + Pu(io) + P (io) ,
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where, for any traveling wave variation g, for all so < s < S,

[Pgllto <5 v (17 (o, )85 g (45.51)
+ (1 G, a0) 155 + 1F o, ao) &5 13012y ) a2ty )

[Puglio S5 ev N2y (9185 + 190185 )+ 191500 7) (4.5.52)

|PLg|fow <oy v K,D (ng’jg’fﬁﬁllJoH’iSf# +Wugu’;gf&), Vb>0, (4.5.53)

[Prgl5o ss 0 (91555 + 190l )5 l915005) - (4.5.54)

The proof of Theorem is available in Appendix

4.6 The linearized operator in the normal subspace
We now write an explicit expression of the linear operator £, defined in (4.5.33).

Lemma 4.66. The Hamiltonian operator L, defined in (4.5.33)), acting on the normal subspace
ﬁ§+ 5, has the form
L, = HS+ E(L’ — 6JR)|~6§4Jr o (4.6.1)

where :
1. L is the Hamiltonian operator
L:=w-0,—JO,NVH(Ts5(p)), (4.6.2)

where H is the water waves Hamiltonian in the Wahlén variables defined in (4.1.13)), eval-

uated at
T5(¢) 1= eA(is(¢)) = eA(00(), I5(¢), wo(9)) = ev™ (6o(¢), Is()) + ewo(¢),  (4.6.3)

the torus is(p) := (6o(), Is(p), wo(p)) is defined in Lemma and A(0,1,w), v7(0,1)
in (LT50);

2. R(¢) has the finite rank form

¢)[h] = 2 (hgj) 2 Xi> Vheds s, (4.6.4)

for functions g, x; € Y)Sﬁ s which satisfy, for some o := o(1,v,ko) >0, forallj =1,...,v,
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for all s = s,

ko, ko, ~ ko,
lgsll5° + Il <s 1+ 175555

~ " N N (4.6.5)
Idsg; [2l + Idax; 2l <s [lss6 + 12510 1760 5o -
The operator L, is reversible and momentum preserving.
Proof. In view of (4.5.21)), (4.5.19) and (4.4.5) we have
K02(¢) = awvaa((;Sa Oa 0) = awvw (Ha o G5) (¢a Oa 0)
= H§29w|54+ + 20,V (P o Gy) (6,0,0), (4.6.6)
ST.,2

where Qyy is defined in (4.1.19) and G5 in (4.5.12)). Differentiating with respect to w the Hamil-

tonian

(P o Gs)(¢,y,w) = P(00(¢), I5(¢) + L1(d)y + La(¢)w, wo(¢) +w) ,
where L1(¢) := [0400(¢)] " and La(¢) := [050(00(4))]T T, (see [{5.12)), we get

awvw(P o G&)(gba 0> 0) = awva(lé((b)) + R(¢) ) (4'6'7)
where R(¢) := Ri(¢) + Ra(¢) + R3(¢) and
Ry := Ly(¢) T 07P(i5(9))L2(0), Rz := L2(9) 0w0rP(is(¢)),  Rs:= 0rVuP(is(¢))La(¢) .

Each operator Ry, Ry, R3 has the finite rank form (4.6.4)) because it is the composition of at least
one operator with finite rank R” in the space variable (for more details see e.g. Lemma 6.1 in
[44]) and the estimates (4.6.5) follow by Lemma[4.60l By (4.6.6)), (4.6.7), (4.4.4), (4.4.3)), (4.4.1),

we obtain

Kox(¢) = ngauvu%(A(m(cb)))mgm +eR(p). (4.6.8)

In conclusion, by (4.6.8), Lemma and since T5(¢p) = A(is(4)), we deduce that the operator

L, in (4.5.33) has the form (4.6.1))-(4.6.2)). Finally the operator H§+ «J Koz2(¢p) is reversible and
momentum preserving, by (4.5.22)), (4.5.23), Lemmata [4.37] and the fact that J commutes

with 7. and anti-commutes with S. O

We remark that £ in (4.6.2)) is obtained by linearizing the water waves Hamiltonian system
(4.1.13), (4.1.14) in the Wahlén variables defined in (4.1.11)) at the torus u = (n,¢) = Ts(p)
defined in (4.6.3) and changing ¢; v~»» w - 0,. This is equal to

L=w:0,— W HdX)WTs(e))W, (4.6.9)

where X is the water waves vector field on the right hand side of (4.0.1)). The operator £ acts
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on (a dense subspace) of the phase space L3 x L2
In order to compute dX we use the "shape derivative" formula, see e.g. [133],

G ) = lim LGl + ) — Gn)) = ~G(n)(BA) — 2(VA) (46.10)

where

Gy + neths

B(n,v) := T2

) V(Tlﬂ/’) =ty — B(Uﬂ/’)ﬁx . (4611)

It turns out that (V, B) = (®,, ®,) is the gradient of the generalized velocity potential defined
in (1.1.12)), evaluated at the free surface y = n(x).
Using (4.6.9), (4.0.1)), (4.6.10)), (4.6.11)), the operator L is

0.V +G(n)B —G(n)
L=w-0,+ ~ ~
g — KkOzcdy + BV, + BG(n)B Vo, — BG(n) (4.6.12)
L7 ~G(n)e! 0 B
2\0,'G(n)B — BG()d," —30,'G(m)o, " —0,'G(n) )
where
V=V -, cn):= (1+77325)_%, (4.6.13)

and the functions B := B(n,¢), V := V(n,¢), ¢ := ¢(n) in (4.6.12)) are evaluated at the reversible
traveling wave (n,1) := WTs(p) where T5(y) is defined in (4.6.3)).

Remark 4.67. From now on we consider the operator £ in (4.6.12) acting on (a dense subspace
of) the whole L(T) x L?(T). In particular we extend the operator d; ! to act on the whole L*(T)
as in . In Sections we are going to make several transformations, whose aim is
to conjugate L to a constant coefficients Fourier multiplier, up to a pseudodifferential operator of

order zero plus a remainder that satisfies tame estimates, both small in size, see Lg in (4.6.169)).
Finally, in Section we shall conjugate the restricted operator £, in (4.6.1)).

Notation. In (4.6.12) and hereafter any function « is identified with the corresponding
multiplication operators h — ah, and, where there is no parenthesis, composition of operators is

understood. For example, 0,¢d, means: h — 0,(coh).

Lemma 4.68. The functions (1,() = Ts(p) and B,V c defined in (4.6.11), (4.6.13) are quasi-
periodic traveling waves. The functions (n,() = Ts(p) are (even(p, z),0dd(¢, x)), B is odd(yp, x),

V is even(yp,z) and c is even(p,z). The Hamiltonian operator L is reversible and momentum

preserving.

Proof. The function (n,() = Ts(p) is a quasi-periodic traveling wave and, using also Lemmata
and , we deduce that B, YN/, ¢ are quasi-periodic traveling waves. Since (n, () = Ts(y) is
reversible, we have that (1, () is (even(p, z),odd(p, x)). Therefore, using also (4.1.6]), we deduce
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that B is odd(p, ), V is even(p, ) and ¢ is even(p, ). By Lemmata and the operator
L in {.6.9) evaluated at the reversible quasi-periodic traveling wave WTs(p) is reversible and

momentum preserving. O

For the sequel we will always assume the following ansatz (satisfied by the approximate
solutions obtained along the nonlinear Nash-Moser iteration of Section : for some constants
po = po(T,v) >0, ve (0,1), (cfr. Lemma H.61))

~ k ) ~ k 5
HJOHSSJ:)MO ) HJ(SHSSJ:)NO <1. (4614)

In order to estimate the variation of the eigenvalues with respect to the approximate invariant
torus, we need also to estimate the variation with respect to the torus i(p) in another low norm

I [l5, for all Sobolev indexes s; such that

s1+09 < sg+ po, forsome og:=op(r,v)>0. (4.6.15)

Thus, by (4.6.14), we have

~ ko, AL
190ls7 o0 + 1355400 < 1-

The constants pg and og represent the loss of derivatives accumulated along the reduction pro-
cedure of the next sections. What is important is that they are independent of the Sobolev index
s. In the following sections we shall denote by o := o(7,v, ko) > 0, on(qo) := on(qo, T, v, ko),
oy = onm(ko, 7, v) > 0, Nyr(a) constants (which possibly increase from lemma to lemma) rep-

resenting losses of derivatives along the finitely many steps of the reduction procedure.

Remark 4.69. In the next sections pg := po(7,v, M,a) > 0 will depend also on indexes M, a,
whose maximal values will be fixed depending only on 7 and v (and kg which is however considered
an absolute constant along the paper). In particular M is fixed in , whereas the maximal
value of a depends on M, as explained in Remark [£.79

As a consequence of Moser composition Lemma [{.13| and (4.5.7)), the Sobolev norm of the
function u = Ty5(p) defined in (4.6.3)) satisfies for all s > sg

ko, ko, ko, ~ ko,
lull ¢ = Inll" + 1K1Y < eCls) (1 + 130 (4.6.16)

S
(the map A defined in (4.1.50)) is smooth). Similarly, using (4.5.10)),
HAl?uHsl Ssl e HZQ — Z'1H51 y where Algu = U(Zg) — u(zl) .

We finally recall that Jy = Jo(w, k) is defined for all (w, k) € R” x [k1, k2] and that the functions
B,V and ¢ appearing in £ in (£.6.12) are C* in (p,z), as u = (1, ¢) = Ts(¢p) is.
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4.6.1 AQuasi-periodic reparametrization of time

We conjugate the operator £ in (4.6.12)) by the change of variables induced by the quasi-periodic

reparametrization of time
Vi=p+wplp) < ¢=9+wp(d), (4.6.17)

where p(p) is the real T"-periodic function defined in (4.6.88)). Since n(p,x) is a quasi-periodic
traveling wave, even in (¢, z) (cfr. Lemma {4.68)), it results that

plp—3) =plp), YceR, pisodd(y). (4.6.18)

Moreover, by (4.6.88)), (4.2.11)), Lemma (4.6.16) and (4.6.14) and Lemma 2.30 in [44], both

p and p satisfy, for some o := o(7,v, ko) > 0, the tame estimates, for s > s,

ik - ~ ko,
P15 + 51507 S5 €0 (1 + [ Tollss) - (4.6.19)

S+o

Remark 4.70. We perform as a first step the time reparametrization of £, with a function
p(v) which will be fixed only later in Step 4 of Section , to avoid otherwise a technical
difficulty in the conjugation of the remainders obtained by the Egorov theorem in Step 1 of
Section[4.6.3] We need indeed to apply the Egorov Proposition [4.20]for conjugating the additional
pseudodifferential term in due to vorticity.

Denoting by
(PR)(p,2) i= i+ wpl(@)2),  (PTIR)(@,2) i= h(D +wp(9), z),
the induced diffeomorphism of functions h(y,x) € C2, we have
Plow -0, 0P =p@w-0y, p):=P (1+w-dp). (4.6.20)

Therefore, for any w € DC(v, 7), we get

1 1 0,V + G(n)B -G
Lo:=-PULP=w-dy+ - * N(n) ~ ()
P P \g — KOycoy + BV, + BG(n)B Vo, — BG(n)
1y —G (), 0
p2\0,'G(n)B - BG(n)d, ' — 30,'G(n)o,! —o,'G(n))

(4.6.21)
where V, B, ¢,V and G(n) are evaluated at (N, ¥p) 1= P~ (n, ). For simplicity in the notation
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we do not report in (4.6.21]) the explicit dependence on p, writing for example (cfr. (4.6.13)))

_3 _3
2 2

c= 1+ P i) =P 1+ (4.6.22)

Lemma 4.71. The maps P, P~ are D*-(ky + 1)-tame, the maps P —1Id and P~ —1d are
DFo- (kg + 2)-tame, with tame constants satisfying, for some o := o(r,v,kg) > 0 and for any
S0 § S § S,

Mpsi(s) S5 1+ [T0[52, Mpsr_1als) S 207 (1+ 130/22) . (4.6.23)
The function p defined in (4.6.20) satisfies
pis even(v) and p(v¥—35)=p), YseR. (4.6.24)
The operator Lo ts Hamiltonian, reversible and momentum preserving.

Proof. Estimates (4.6.23) follow by (4.6.19) and Lemma 2.30 in [44], writing (P — Id)h =
pgé Pr(w - 0 h)dr, where (Prh)(p,x) = h{p + Twp(p),z). We deduce ({.6.24) by (4.6.18)

and (4.6.20). Denoting £ = w - d, + A(p) the operator £ in (4.6.12)), then the operator Ly in
[{.621) is Lo = w- 0y + AL (V) with A, () = p 1(I9)AW + p(¥)w). Tt follows that A, (p) is
Hamiltonian, reversible and momentum preserving as A(y) (Lemma [4.68). O

Remark 4.72. The map P is not reversibility and momentum preserving according to Definitions
[4.31] respectively but maps (anti)-reversible, respectively traveling, waves, into (anti)-
reversible, respectively traveling, waves. Note that the multiplication operator for the function
p(9), which satisfies , is reversibility and momentum preserving according to Definitions
and

4.6.2 Linearized good unknown of Alinhac

We conjugate the linear operator Ly in (4.6.21)), where we rename 9 with ¢, by the multiplication

matrix operator
Id 0 Id 0
Z = ; Z_l = ’
B Id —-B 1Id

obtaining (in view of (4.2.54]))

Lq:=Z2"LyZ
1 ( 0,V —G(n)> 1y ( G(n)o; 0 > (4.6.25)
g b

=w-0p+ — ~
P +a— KOzcOy VOg
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where a is the function
a:=VBy+p(w-3,B). (4.6.26)

The matrix Z amounts to introduce, as in [I33] and [44] 13], a linearized version of the “good
unknown of Alinhac".

Lemma 4.73. The maps Z=' —1d are D*o-tame with tame constants satisfying, for some o :=
o(t,v, ko) > 0, for all s > sy,
s+o

Mz 1a(s), Mz 1ayx(s) Ss (14 |Tol202). (4.6.27)

The function a is a quasi-periodic traveling wave even(p,x). There is 0 := o(7,v, ko) > 0 such
that, for all s = sq,
Jal 2> + VI + 1B Ss (U4 1301%7) 1= el S (L + T0li5) - (4.6.28)

s+o S+o

Moreover, for any s1 as in (4.6.15)),

1Awaly, + [A12V s, + [A12Blg, <sy € lin — 25,15 (4.6.29)
|Avaclly, Ssi € lin =il 40 » (4.6.30)
[A12(ZE) sy, | A2 (25 Bllsy S € in — il 40 [, - (4.6.31)

The operator L1 is Hamiltonian, reversible and momentum preserving.

Proof. The estimates (4.6.28)) follow by the expressions of a, V, B, ¢ in (4.6.26), (4.6.11)), (4.6.13),

(reparametrized by P! as in (#.6.22)), Lemmata [4.13] and (4.6.23)), (4.2.7), (4.2.38)) and
(4.2.37). The estimate (4.6.27)) follows by (4.2.38]), (4.2.22)), (4.6.28) and since the adjoint Z* =

Id B
0 Id>' The estimates (4.6.29)-(4.6.31)) follow similarly. Since B is a odd(p, x) quasi-periodic
traveling wave, then the operators Z¥ are reversibility and momentum preserving. O

4.6.3 Symmetrization and reduction of the highest order

The aim of this long section is to conjugate the Hamiltonian operator £; in to the
Hamiltonian operator L5 in (4.6.90) whose coefficient m3 of the highest order is constant. This
is achieved in several steps. All the transformations of this section are symplectic.

Recalling the expansion of the Dirichlet-Neumann operator in Lemma {21}, we first

write

1 —21G(0)o ! ~G(0 1(e,V 0
Crmwe gt S 2 ) ir,
p \—Kdpcdr +9— (3) 07'G(0)o;1 —20,1G(0) p\ a Vo,
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where

1 IRa(n)o,! Ra(n)
o ((g)gaglRG(ﬁ)é’gl 3(22ch(77)> (4.6.33)

is a small remainder in OP.S~%®.

Step 1: We first conjugate £1 with the symplectic change of variable (cfr. (4.2.50))

(Eu)(p,2) = A1+ Bulp,2) (Bu)(p, ),  (Bu)(p,2) := ulp,z+B(p,x)),  (46.34)

induced by a family of ¢-dependent diffeomorphisms of the torus y = x4+ (¢, ) , where 5(p, x)
is a small function to be determined, see (4.6.68). We denote the inverse diffeomorphism by
2 =y + B(p,y). By direct computation we have that

ETWo,E = {B V(A +B)) 0y + H{B V(1 +5.)7 Y, (4.6.35)
E10,VE={B Y V(1 +5))}0y +{B (Vo + 3VBua(l+ B2) D}, (4.6.36)
E'aE = {B1a}, (4.6.37)

£ 10,0, = B-(1+ ) 2B B'0,B B~'cB B0,B B-'(1 + 5,)3
—{B 11+ B.)2} 0y {B 1(c(1 + B.))} 0, {B (1 +B.)2}, (4.6.38)
Elw- 0,8 =w-0y, +{B " (w-0,8)} 0y + ${B ' ((w-0,8) 1+ Bz) 1)} (4.6.39)

Then we write the Dirichlet-Neumann operator G(0) in (1.1.15) as
G(0) = G(0,h) = 0, HT(n), (4.6.40)

where H is the Hilbert transform in (4.2.19) and

Id ifh=o0
We have the conjugation formula (see formula (7.42) in [13])
B'G(0)B = {B~ (1 + B,)} G(0) + R1, (4.6.42)

where

Ry = {B (1 +B:)} 0y (H (B 'Op(rn)B —Op(r)) + (B 'HB —H) (B 'T(h)B)) . (4.6.43)
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The operator Ry is in OPS~® because both B~ 'Op(ry)B — Op(ry) and B~ 'HB — H are in
OPS~® and there is o > 0 such that, for any m € N, s > sg, and « € Ny,

ko, ko,
HB IHB HH_Omsa ~m,s,a,ko Hﬂ”sigm-&-a-&-a’

Lo\ e T o (4.6.44)
H p(?"h) - p(rh)H—m s, ~m s,a,ko HBHS-‘rm-FOé-‘rO' :

The first estimate is given by Lemmata whereas the second one follows by the fact that

rh € ST (see (4.6.41)) and Lemmata , . Therefore by (4.6.42)) we obtain
EG(0)E = (BN (1 + 8.)2} GO) {B~ (1 + B,)2} + Ry, (4.6.45)
where
= (BTN 1+ 8:) 2} RUBTI (14 B.)2 ). (4.6.46)
Next we transform G(0)0, 1. By (4.6.40) and using the identities Ho,0,! = H and HT(h) =

G(0):!

, ~ on the periodic functions, we have that

E1G(0)0,'6 = £ 10, HT(0)d, '€ = G(0)d," + Ra, (4.6.47)

where

g -3 - ! “i)o
Ry = {B~1(1+ ) )}[ ()){ 148202} 1]+ (B (1 +Ba) 2 (4.6.48)

o (B™'HB — H)(B~'T(n)B) + H(B~'Op(ra)B — Op(ra))) {B~'(1 + ,)7} .

The operator Ry is in OPS™* by (4.6.44)), (4.6.41) and because the commutator of H with any
smooth function a is in OPS~%. In particular, by Lemma , there is o > 0 such that, for any

meN, s = sp, and a € Ny,

k I k ’
IHT(0), al| %50 Smosako lallsFmsato- (4.6.49)

Finally we conjugate 0;'G(0)d;'. By the Egorov Proposition we have that, for any N € N,

gl = {B—l( )}a + P (.. D) + Ry, (4.6.50)

1
L+ B

where PEE)N((,O, x,D) e OPS 2 is

P£12),N(()07x7D) = {Bil(l “F/Ba:)i%}{[p—layil,g 1 +Bx % Zp 1—j yl J{B (1 —|—ﬁx)%}}
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with functions p_1_;(X\;¢,y), 7 =0,..., N, satisfying (4.2.30)) and Ry is a regularizing operator

satisfying the estimate (4.2.31)). So, using (4.6.50) and (4.6.47)), we obtain
£710,1G(0)0, 1€ = (£710,1€) (€71G(0)9,'€) = 9, G(0)2, " + PO +Roy,  (4.6.51)

where

Py = (—{B7(5 fmﬂm)}ay—l + P (.2, 0))G(0)2, " € OPS™ (4.6.52)

and Ry n is the regularizing operator
Ron = (€10, "€)Ra + RNG(0)0, . (4.6.53)

The smoothing order N € N will be chosen in Section during the KAM iteration (see also

Remark [4.76]).

In conclusion, by (£6.35)-(.6.39), [@.6.45), (£.6.47) and (£.6.51) we obtain

_7 -1 _
Loim €L1E = w- dpts ( 3G(0)g, azG(O)az)

24 _ _
p \—ragdyasdyas + g — (3)°0,'G(0)0,' —30,1G(0) (46,50
1 alay + a4 0 N
- +R5 +Ton,
P <a5 — (%)2 P£21),N a1é’y + a6> 2 2N
where
a1(p,y) == B7H(A + B)V + (w-8,8)), (4.6.55)
az(p,y) == BN (V/1+B2), as(e,y) =B (c(1+5:)), (4.6.56)
1 (VBaa+ (W 0Ba) | _
— p-1 ® -1
wley) =B (S gy T V) eslew) =BT, (4.6.57)
_ vﬁxm + (w ) a 51)
= 1 L4 4.6.
the operator P£21),N € OPS ! is defined in (4.6.52)) and
i o 2
rY.— (2R R} cge Ty = —— (1) 00 (4.6.59)
P\ 0 IRy p\2 Ron O

with R1, Ra, Ro v defined in (#6.46), ({#.6.48), (£.6.53) and R in (£6.33).
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Step 2: We now conjugate the operator Lo in (4.6.54) with the multiplication matrix operator

_f{qa O 1 ! 0
() o)

where q(¢, %) is a real function, close to 1, to be determined. The maps Q and Q! are symplectic

(cfr. (4.2.50))). We have that

1{A B
L3:=Q 10 =w- dp +; (C D) +Q YRy + Ton)Q, (4.6.60)

where

A=q (- %G(O)&;l +a10y + as)q + pg Hw - 0pq) (4.6.61)
B := —q 'ayG(0)azq !, (4.6.62)
C := q( — kagdyasdyas + g — (%)2 6;1G(0)8;1 + a5 — (%)2 PEZI),N)q, (4.6.63)
D:=q(— %&’y_lG(O) +a1dy +ag)g "t — pg (W Dpq) - (4.6.64)

We choose the function ¢ so that the coeflicients of the highest order terms of the off-diagonal

operators B and C satisfy

g %a3 = ¢*a3az = ms(p), (4.6.65)

with m3 (¢) independent of z. This is achieved choosing
2

q:= ( ! )1/4 (4.6.66)

as
and, recalling (4.6.56)), the function S so that
(14 Bu(p, ) c(p, ) = m(p) (4.6.67)

with m(¢) independent of x (the function c is defined in (4.6.22))). The solution of (4.6.67) is

m(yp) = (% L‘ clp,z) 13 dx) _3, Blp,x) =0, " ((;Zégi?))l/ig — 1) . (4.6.68)

In such a way, by (4.6.56)), we obtain (4.6.65)) with m%(cp) = +/m(p). By (1.6.68)) and (4.6.22))

we have .
-3

(cp)zPl(;Wﬁr\/de) . (4.6.69)
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Note that, since by (4.6.65]) the function ¢ 'as is independent of z, we have
_ -1 -1_ _ _—22
B = —q a2G(0)azq™ " = a;G(0) . (4.6.70)

Moreover we have the expansion

E6.65)
qa20ya3dyazq = q*a3asdy + (q*a3as)ydy + qaz(as(qaz)y)y = ms(p)dy +ar,  (4.6.71)

where
ar = qaz(az(qaz)y)y - (4.6.72)

In conclusion, the operator L3 in (4.6.60)) is, in view of (4.6.61)-(4.6.64) and (4.6.70)), (4.6.71)),

s -1
1 —3G(0)0 —m3()G(0)
fam Q@ LQ=wdt | ) (—n22 +29 (Wy)Qa—la(O)a—l) 10-16(0)
, _ (2 _1
27 v 27 Y v 2 (4.6.73)
1 Oy + 0
T T +RY + Ty,
P \ag + P—l,N alé’y + aio
where
ag := alé]*l(Jy +pq H(w-0pq) +as, ag:= asq” + g(q” — m%) — Kaz, (4.6.74)
a0 == —a1q gy — pq (W - 0,q) + ag, (4.6.75)
P& v i= = (3)° (aPR e + (a2 = m3)G(0)3,% + a[G(0), %, ¢~ 1]) € OPS ™!, (4.6.76)

and R;,)I’, T3 n are the smoothing remainders

RY = L (—;q—l[HT(h>,q ~1] 0

p 0 —3q[HT(n),q~" —1]
Tsn:=Q 'TynQ. (4.6.78)

) +Q 'RYQeOPS ®, (4.6.77)

Step 3: We now conjugate L3 in (4.6.73)), where we rename the space variable y by x, by the
symplectic transformation (cfr. (4.2.50)

— — —1
M := A0 , ML= A 0 , (4.6.79)
0 At 0 A

where A € OPS™ 1 is the Fourier multiplier

A= Jomo+ M(D), with inverse A~ := \/gmo + M(D) ' e OPS1, (4.6.80)
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with 7y defined in (4.2.21)) and M (D) in (4.1.21)). We have the identity
A= k% +9— (3)°07'G(0)0;)A = A'G0)A™! + mp = w(x, D) + o, (4.6.81)

where w(k, D) is defined in (4.1.23). In (4.6.80) and (4.6.81)) we mean that the symbols of
M(D), M(D) ! and w(k, D) are extended to 0 at j = 0, multiplying them by the cut-off function

x defined in (4.2.10). The factors in front of the projection 7y in (4.6.80)) on the zeroth mode
allow the transformation in (4.6.79)) to be symplectic. Thus we obtain

(p)w(r, D) (00
G(0)0, ! o 0

N

~ ~ -1G0)o;t —m
£4:=M1£3M=w-6¢+1( 2G(0)%

p \ms(p)w(k,D) -3
(4.6.82)
1 alaz + PO(41) 0 R\I’ T
+ ; Pff’) a1, + P0(44) + R, + Ty N,
2
where
P§"™ = A"Ya10,, A] + A~ asA € OPS, (4.6.83)
P = Aagh + APP (A e OPS™7, (4.6.84)
27 K
P = Aardy, A1 + AajpA~" € OPS?, (4.6.85)
and R:f, T4 n are the smoothing remainders
v 0 0 -1V iy —
R, = . + M TRy Me OPS™,
(p ms — 1)7r0 0
’ (4.6.86)

~ ~ 2 0 0
Tyn =M 'TyyM=—1 .
4p AngquA 0

Step 4: We finally move in complex coordinates, conjugating the operator £4 in (4.6.82) via
the transformation C defined in (4.1.24). We use the transformation formula (4.2.15)). We choose
the function p(¢) in (4.6.17)) in order to obtain a constant coefficient at the highest order. More

precisely we choose the periodic function p(y) such that

(4.6.87)

1 2 )_
™3 (15.69),(6.20) Pl ( <27r Sp/1+n2(p, w)de ) .

o - 14+ w-0yp
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is a real constant independent of . Thus, recalling (4.2.9), we define the periodic function

/171 —3
o) 1= (- 20)0d (o= (5 | VI+Bloidn) = 1) (46.59)
2
and the real constant
1 1 -3
= — — | /1 2 d de. 4.6.89
m% (271')” J’]I‘V (27T J’]I‘ + 77:5(%07 33) .%‘) ¥ ( )

Note that (4.6.87) holds for w € DC(v, 7). Moreover, by Lemmata [4.13| 4.68 and (4.6.16)), p
satisfies (4.6.19)) and it is odd in ¢. Let

= —ic ' Y)e=lfm™ ™
. ) 0 2 —T9 —70 .

Lemma 4.74. Let N € N, qp € Ny. For all w € DC(v, T), we have that

Ls:= (EQMC) 'L (€QMC)

(4.6.90)
— w0 +im3Qk, D) + Ard, +illy + RV + RY? 4+ Ts

where:

1. The operators EX' are D*-(ky + 1)-tame, the operators EX1 —1d, (£ — Id)* are Do-
(ko + 2)-tame and the operators QF', Q! —1d, (Q*! — Id)* are D*-tame with tame

constants satisfying, for some o := o(7,v,ko) > 0 and for all so < s < S,

Mes1(s) S5 1+ [Tolily, Mozi(s) S5 1+ [Toliyy (4.6.91)
M1 1a(s) + Mger_iqy+(s) S5 €7 (1 + [Tol55) (4.6.92)
Mor1_1a(s) + Mger_1qyx(s) S (1 + [305%%) (4.6.93)

. . _ ko,’U < 2.
2. the constant ms € R defined in (4.6.89) satisfies |m% 1] < e”;

3. Q(k, D) is the Fourier multiplier (see (4.1.25)), (4.1.26]))

_ Q(H,D) 0 . 11 1 .
Q(k,D) = < 0 —Q(lﬁD)> , Qk,D)=w(k,D)+ 2636 G(0); (4.6.94)

4. the matriz of functions Ay is

(d)
A= (al ?d)> , (4.6.95)

0 a
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for a real function agd)(gp, x) which is a quasi-periodic traveling wave, even(p, ), satisfying,
for some o := o(ky, T,v) > 0 and for all s = sp,

Jaf? [ < e(1+ [30125) (4:6.96)

5. Rgo’d) and Rgo’o) are pseudodifferential operators in OPSY of the form

3 (o)
(Ozd) Ts (SO’ z, D) 0 (0,0) 0 rl (807 z, D)
R = @, R = 46.

= (TN ) = (e © ) aeen

reversibility and momentum preserving, satisfying, for some oy = o(rT,v, N) > 0, for all

825070461\]07

d)| ko,v + HRg(’)O’O)

07 k 3 ~ k 5
IR o b < ona (14 00508 a0); (4.6.98)

s+on+2a

6. For any q € N§ with |q| < qo, n1,n2 € No with ny + ny < N — (ko + qo) + 2, the operator
(DY 03Ts N (p){D)"2 is DFo-tame with a tame constant satisfying, for some on(qo) =
on(qo, ko, 7,v) > 0 and for any so < s < S,

~e k ) .
M pym 08775 () DY2 (8) N0 €(1+ [T0ll5T5 (o) (4.6.99)

7. Moreover, for any s1 as in (4.6.15), a € Ng, q € N§j, with |q| < qo, and ny,ne € Ng, with
ni+ns <N —qo+3,

[ A2 (AR5, Ssr € llin —ialg, o lhlg 1o AE{ET(EF)*, QT = (QF)*}, (4.6.100)
|8120{7 s Sy e li =il » |Aroma] < € fir —ial, (4.6.101)
[212R 0,510+ 1A1R 0,510 Ssiva € i1 — ially, 4o 220 - (4.6.102)
[KDY™ G855 (2) D)™ ey SV € i1 = 82l 4 qo) - (4.6.103)

The real operator Ls is Hamiltonian, reversible and momentum preserving.

Proof. By the expression of £4 in (4.6.82)), using (4.2.15)), and (4.6.87)), we obtain that L5 has
the form (4.6.90). The functions 8 and ¢, defined respectively in (4.6.68)) and (4.6.66) with as

defined in (4.6.560)), satisfy, by Lemmata [4.19] and (4.6.28)), for some o := o(ko,7,v) > 0

and for all s > s,

181207 S5 (1 + Tol3%) g™ = 187 5 (1 + [Tolis) (4.6.104)
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The estimates (4.6.91)-(4.6.93) follow by Lemmata (4.24} 4.25| (.19} (4.6.104) and writing

1
(B —1d)h = BB:[hs], B:[h](e,x):= Jo ha(p,x + 78(p,z)) dT, (4.6.105)

B*h(p,y) = (1 + B, y))h{e,y + B(¢,y)), and similar expressions for B~1 —Id, (B~1)*. The
estimate for my follows by (@6.89), Lemma .13 and [@6.16). The real function a\? in (1.6.95)

18

(¢, 2) := ple) ai(p, ),

where p and a; are defined respectively in (4.6.20) and (4.6.55)). Recalling Lemmata and

, the function agd) is a quasi-periodic traveling wave, even in (p,z). Moreover, (4.6.96))
follows by Lemma {4.13| and (4.6.16)), (4.6.19), (4.6.28)), (4.6.104). By direct computations, we

have

1
réd)(gp,:v,D) = (Pééﬂ) + Pé44) +iP" 4 ’y(pm% - 1)G(0)6_1) ,

27 -1 N x
1” ? (4.6.106)
D)= o (B = HE9 419, )

where Pé41), P£4E?N, Pé44) are defined in (4.6.83), (4.6.84)), (4.6.85) and pms = m%(cp) with
m%(cp) defined in (4.6.69) (cfr. (4.6.87)). Therefore, the estimate follows by (4.6.74),
[E.6.79), (6.55), (1-6.56), (-6.57), (I-6.58), (1.6.76), (1-6.59), (-6.80), (L.1.21), applying Lem-
mata [£.16, .17 [I.19} [£.13) Proposition [£.20] and estimates (&6.16), (&6.19), (£6.23), (£.6.104).

The estimate (4.6.99]), where

Tsn:=C '(RY + T4n)C,

follows by (1.6.86), (-6.78), (#:6.77), {@-6.59), (£.6.53), (1.6.50), (4-6.45), (1.6.46), (4.6.43), Lem-
mata [1.24] estimates (4.6.44)), (4.6.49), Proposition 4.20] and (4.6.91)), (4.6.104)), Lemmata
[C] The estimates (4.6.100)), (4.6.101), (4.6.102)), (4.6.103) are proved in the same
fashion. Since the transformations &, Q, M are symplectic, the operator £4 is Hamiltonian.
Hence the operator L5 obtained conjugating with C is Hamiltonian according to . By
Lemma [4.68] the functions B(y, ) and ¢(y, z), defined in (£.6.68), (£.6.66) (with a3 defined in
(4.6.56))), are both quasi-periodic traveling waves, respectively odd(p, z) and even(p, x). There-

fore, the transformations £ and Q are momentum and reversibility preserving. Moreover, also M
and C are momentum and reversibility preserving (writing the involution in complex variables as
in (4.1.29))). Hence, since £1 is momentum preserving and reversible (Lemma [4.73)), the operator

L5 is momentum preserving and reversible as well, in particular the operators Réo’d) and Réo’o)

in (4.6.97) (e.g. check the definition in ({.6.106), see also Remark [4.34]). O
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4.6.4 Symmetrization up to smoothing remainders

The goal of this section is to transform the operator L5 in into the operator Lg in (4.6.109)
which is block diagonal up to a regularizing remainder. From this step we do not preserve any
further the Hamiltonian structure, but only the reversible and momentum preserving one (it is
now sufficient for proving Theorem .

Lemma 4.75. Fix M, N € N, qg € Ng. There exist real, reversibility and momentum preserving

operator matrices {X,}M_, of the form

X, = ( 0 Xm(p, z, D)

1
- : mlp,z,6) e §737™ 4.6.107
low D) 0 ) Xm (%, @, §) ( )

such that, conjugating the operator Ly in (4.6.90) via the map
By =eXlo oM (4.6.108)
we obtain the real, reversible and momentum preserving operator

Lg = EéM) = ‘I’Ejl Ls Py

B (4.6.109)
— w8, +imyQk, D) + Ard, +illg + RYCY + REYD 4 Tg
with o block-diagonal operator
(d)
r ,x, D 0
Rgo’d) = Ré?]’é) T (v ) @, .)€ oPSs?,
O TG (507 x, D)
and a smoothing off diagonal remainder
(o)
, 0 r ,x, D
RO =R = | ° (0. DN ¢ opg-n (4.6.110)
’ rﬁ ((pv Z, D) 0

both reversibility and momentum preserving, which satisfy for all o € Ny, for some oy :=
on(ko,7,v,N) >0, Xps(a) > 0, for all s = sg,

d —M ~
IRV + IR0 | Sonnnia e(1+ [To]500 ). (4.6.111)

0,s,c ston+RNp{a)

For any q € Ny with |q] < qo, ni1,n2 € Ng with ny + no < N — (ko + qo) + 5 the oper-

27
ator (DY 03 Te n(0){D)"2 is D*0-tame with a tame constant satisfying, for some on(qo) :=
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UN(k07T> v, qO); fO’I” any sop < s < S,

M Dy o o (p)Dy2 (8) SN0 (1 + [T0l 550 0 0)) (4.6.112)

The conjugation map ®yr in {4.6.108)) satisfies, for all s = sq,

kO» <

(1 + 3052 ). (4.6.113)

+1 ko, +1
| @57 — Idlloso + | (@ — Id) s+0 N +R2(0)

Furthermore, for any s1 as in (4.6.15), o € No, q € NYj, with |q] < qo, and ni,ne € Ny, with
ny+ny <N —qo+ 2, we have

—M . .
| AR o+ 18RS tra Soratva € lin — 12001 4o+ Nar(a) - (4.6.114)
I <DY™ 03 A12T6, N (D)™ || c(arny Ss1,M,N.q0 € 11 = 825, 1oy (q0)+Ras(0) - (4.6.115)
1A12 0+ [A12(®77)* 0,510 Ssr,mv € i1 = ally, 4oy 43000(0) - (4.6.116)

Proof. The proof is inductive on the index M. The operator Eéo) = L5 satisfy (4.6.111])-

(4.6.112) with Ro(a) := 2, by Lemma Suppose we have done already M steps obtaining
an operator EéM) as in (4.6.109)) with a remainder @Mng)’N(I)M, instead of T¢ n. We now show
how to perform the (M + 1)-th step. Define the symbol

X 1(,2,€) = = (2imgw(r, ) T (02, x(€) € ST (46.117)

)

where x is the cut-off function defined in (4.2.10) and w(k, &) is the symbol (cfr. (4.1.23))

, x(€)|€| tanh(n[é]), b < +o0
)‘5537 G(0;8) == < x(&)I¢], h = +00

w(k, &) = \/G(O;g) (,fgz bo+t :G(géf)

5 .

Note that xar41 in (4.6.117)) is well defined because w(k, §) is positive on the support of x(£). We
conjugate the operator CéM) in (4.6.109]) by the flow generated by Xjps41 of the form ({4.6.107))
with xar+1(p,x,§) defined in (4.6.117). By (4.6.111)) and Lemma for any s > so and

a € Ny,
ko, ko,v

IXareal ™ s o Ssa e(LH 130157 s ) - (4.6.118)

Therefore, by Lemnrlautanu7 m 4.16| and the induction assumption (4.6.113)) for @), the conjuga-
tion map ®pr4q 1= ®peXV+1 is well defined and satisfies estimate (4.6.113)) with M + 1. By



164 CHAPTER 4. TRAVELING QUASI-PERIODIC WATER WAVES
the Lie expansion (4.2.16) we have

L) = X {10 Xart = 0, 4 imy Q(k, D) + Ard, +illy + R (4.6.119)

[XM+1,1m3 Q(k, D)| + R( MO) + @, Tsn @i

1
J eTTEMA X iy, w0y +A(d)6 + Il —i—R( )] X dr (4.6.120)
0
! M
Je_TXIM—}—l XM+17RE;,_M 70)] eTXM+1 qr (4.6.121)
0
+J (1 — 1) X [XM+1,[XMH,im;Q(m,D)HeTXM“ dr. (4.6.122)
0 2

In view of (4.6.107), (4.6.94) and (4.6.110)), we have that

° 0 VA
_[XM+1,im§Q(I<L,D)] +R( M.0) = M ::ZMJrl??
2 ZM+1 0

where, denoting for brevity xas+1 := xm+1(p, 2, ), it results

Zy+1 = ims (Op(xars1)w(k, D) + w(r, D)Op(xar+1))

+ms3 o1, 07 ' G(O0)] + Op(r$)) - (4.6.123)

By ({.2.23), Lemma [4.16| and since yas41(p, 7, &) € S™2=M by ([{@.6.117), we have that
Op(XMJrl)w(I{? D) + w(’y”" D)OP(XM+1) = Op(QW(K, g)XMJrl((pa x, 5)) + TM+1,5,

where r741 is in OPS™™~1. By {.6.117) and (#.6.123)

Zarvr = imyTarss +ms P18, ' G(0)] + Op(r (1= x() e OPS ML,

The remaining pseudodlfferentlal operators in (4.6.120)-(#.6.122) have order OPS ™ 2. There-

fore the operator E in (£.6.119) has the form (£.6.109) at M + 1 with

RO+ RO = RO + 2o + (@6120) + (@6.121) + (E6.122) (4.6.124)

and a remainder <I>M+1T5 N®ur41. By Lemmata 4 7 the induction assumption (4 ,
(4.6.118), (4.6.96)), we conclude that Rg)]g”l and Ry Mj‘ﬁrl ) satisfy (4.6.111)) at order M +1 for
suitable constants Nps11(a) > Nps(«). Moreover the operator <I>]T41+1T5 NP1 satisfies (4
(with M + 1) by Lemmata [1.24] .25 and estimates (4.6.99)), (4.6.113). Estimates ,

(4.6.115)), (4.6.116)) follow similarly. By (4.6.117), (4.2.51)), Lemmata[d.33] [£.43] and the induction
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(

assumption that RG_N]}/[’O)

is reversible and momentum preserving, we conclude that Xj;11 is

reversibility and momentum preserving, and so are efXM+1_ By the induction assumption ﬁéM)

is reversible and momentum preserving, and so EéMH) is reversible and momentum preserving
as well, in particular the terms Réo],\il[)+1 + Ré_ﬁg,]ffl)’o) in (4.6.124)). O

Remark 4.76. The number of regularizing iterations M € N will be fixed by the KAM reduction
scheme in Section [£.7] see (4.7.5)). Note that it is independent of the Sobolev index s.

So far the operator Lg of Lemma depends on two indexes M, N which provide respectively

the order of the regularizing off-diagonal remainder RéﬁM’o) and of the smoothing tame operator

T . From now on we fix

N=DM. (4.6.125)

4.6.5 Reduction of the order 1

The goal of this section is to transform the operator Lg in (4.6.109)), with N = M (cfr. (4.6.125)),
into the operator Lg in (4.6.147) whose coefficient in front of @, is a constant. We first eliminate

the z-dependence and then the ¢-dependence.

Space reduction. First we rewrite the operator Lg in (4.6.109]), with N = M, as

Ps 0 B
£6=w-a¢+<06 > +ily + RS 4 g
6

having denoted

Ps := Ps(p,z,D) := im%Q(/ﬁ7 D) + agd)(cp, x)0y + Téd)(go,m D). (4.6.126)

We conjugate Lg through the real operator

_[2(p) O
®(y) ._< ) q)((p)) (4.6.127)

where ®(p) := ®7(p)|;=1 is the time 1-flow of the PDE

0-®7(p) = iA(p) 27 (),

CI’O( ) Id A(SO) = b((p,l’)|D|% ) (4.6.128)
(P = 9

and b(y, x) is a real, smooth, odd (¢, z), periodic function chosen later, see (4.6.134]), (4.6.136)),

(4.6.142). Usual energy estimates imply that the flow ®7(p) of (4.6.128)) is a bounded operator is
1B+
H?. The operator 0% 8?9(1) loses [D| 2 derivatives, which are compensated by (D)™ on the left
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hand side and (D)™™ on the right hand side, with m1,ms € R satisfying mi+ms = $ (|8] + |k|),
according to the tame estimates in the Sobolev spaces H;, ,, of Proposition in Appendix
Moreover, since b(p, ) is odd (¢, x), then b(y, :U)|D|% is reversibility preserving as well as ®(¢p).
Finally, note that ®my = 7y = &', which implies

& T1)® = I, . (4.6.129)

By the Lie expansion (4.2.16]) we have

1 21042 (_jyn
O Ps® = Py —i[A, Ps] — 514 [A, Pl + > —adl) (P) + T
s (4.6.130)
(=i OM+2g—T 2M+3 T
TM = m o (]_ - ’7_) P ((70) adA((p) (P6) P (go)dT,
and, by (21D,
) 21041 (_jyn X
20w 0@ = w2, +ilw 2 A)p) — D) adyl (- 2,A(0)) + Thy.
n=2 ’
Tl = OO M1 () ad2 ) (- 0, A()) B ()
MEE T oM ), 7 8% A) eI SRR
(4.6.131)
Note that adij‘({;f‘(ﬂg) and adij(vf;)rl(w - 0,A(p)) are in OPS~ M. The number M will be fixed in

(4.7.5). Note also that in the expansions (4.6.130]), (4.6.131)) the operators have decreasing order
and size. The terms of order 1 come from (4.6.130), in particular from Py — i[A, Ps]. Recalling

(4.6.126)), that A(p) := b(gp,x)|D|%, (4.2.26) and that (cfr. (4.3.1), (4.3.5))

3
Ok, &) = VEIEZX(E) +ro(k,€), To(k, &) € 57, (4.6.132)
(the cut-off function x is defined in (4.2.10])) we deduce that
[A, Ps] = i3v/kmy beds + (3(ai”)eb — a{”b,) D] 2 + Op(ry ). (4.6.133)

where 1,0 € SO is small with b. As a consequence, the first order term of Ps — i[A, Ps] is

(agd) +3 \/Em% b, )0, and we choose b(p, x) so that it is independent of z: we look for a solution

b(p, x) = bi(p, ) + b2(p) (4.6.134)

of the equation

a(p.x) + dms Vibo(p ) = i), (9) . (@), (0) 1= o

5 Jagd)(cp,a:)dx. (4.6.135)
T Jr
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Therefore

bi(p,2) 1= — 522 0, (ol (0, 2) = ol () - (4.6.136)

[V

We now determine by(¢) by imposing a condition at the order 1/2. We deduce by (4.6.130)),
([@6.131), (-6.126), (4.6.133)-(4.6.135), that

Ly = 071(p) (- 0y + P3) ®(p) =w- 3y +im3Qr, D) +<ai™), (¢) &

o . (4.6.137)
+1d$?|D|2 + Op(ri™) + Toy + T4,
where agd) (p, ) is the real function
3 1
af? i= = 5@ty + @ (01)e + JVEmg ((01)2 = S(01)aabr) + (@ - pb1) .
5 6.
= (3(af")e + SVRmg (b)) b2 + (w0 - 2pb2)
and
. 1 1 1
Op(r{") :=0p(iryo + 1,y +1¢”) = 5 [BIDI2, (3(ai”)cb — a{”b:)|DI2 + Op(rs0)]
M—1 (—i)" M (—i)" (4.6.139)
+ ), o adi (B) - > Tad@)(w -0,A(p)) € OPS?,
n=3 n=2

where r, _1 € S=% is small in b. In view of Section [4.6.6| we now determine the function ba ()
’ 2

so that the space average of the function agd) in (4.6.138)) is independent of ¢, i.e.

(asDy, () = meR, VoeT”. (4.6.140)

Noting that the space average <(%(agd))x + %m% \/E(bl)m)bg(go»x = 0 and that (w- é’@b1>¢ . =0,

we get

3 1
m = (=1 ,by + 0P (b)), + Z\/Em% ((b1)2 — 5(zal)mz)l)>w, (4.6.141)
ba(p) i= — (- 0p)t (( = 3(@?)abr + P (br)o+
3 1
+ Ty /R((b0)2 = 5 (b1)abr) + (@ b)), — m%) L (4.6.142)

Note that (4.6.140)) holds for any w € DC(v, 7).
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Time reduction. In order to remove the gp-dependence of the coefficient <a§d) ). () of the first
order term of the operator Ly in (4.6.137)), we conjugate Ly with the map

(Vu)(907 .13) = u(@a T+ Q((P)), s (4~6-143)

where o(y) is a real periodic function to be chosen, see . Note that V is a particular
case of the transformation £ in for a function S(p,z) = o(p), independent of x. We
have that

V7 Hw:0,)V = w0y + (W 0p0)0;

whereas the Fourier multipliers are left unchanged and a pseudodifferential operator of symbol

a(p, z, &) transforms as
Y 10p(a(p, z,€))V = Op(alp, z — o(),£)) - (4.6.144)
We choose o(¢) such that
w-0p0(0) +(a™, (9) =m,  m =) €R, (4.6.145)
(where a{” is fixed in Lemma [1.74), namely we define
o(p) 1= —(w - 3, (Caf™), —m1) . (4.6.146)

Note that (4.6.145)) holds for any w € DC(v, 7).

We sum up these two transformations into the following lemma.

Lemma 4.77. Let M € N, qp € Ng. Let b(p,x) = bi(p,x) + ba(p) and o(p) be the functions
defined respectively in (4.6.136)), (4.6.142)), (4.6.146). Then, conjugating Le in (4.6.109) via the
inwvertible, real, reversibility preserving and momentum preserving maps ®, V defined in (4.6.127))-

(4.6.128) and (4.6.143), we obtain, for any w € DC(v,T), the real, reversible and momentum

preserving operator

Ls =V 1®1L,®Y

(4.6.147)
= w0, +imsQ(k, D) + m3d, + 1A |D|z + il + ROV + Tg s,
2

where:

1. the real constant my defined in ([{.6.145) satisfies |mi|*oV < e;
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2. Agd) 18 a diagonal matriz of multiplication

AD . af’ 0
5 0 agd) ’
(d)

for a real function ay’ which is a quasi-periodic traveling wave, even(yp, x), satisfying
@ (p)=mi eR, VYeeT”, (4.6.148)
2
) ) = >
where mi € R is the constant in (4.6.141)), and for some o = o(7,v, ko) > 0, for all s = sg,

lasP|kov S o (1 + |T0 590 ; (4.6.149)

3. Rgo’d) 15 a block-diagonal operator
(d)
T ,x,D 0
Rgo,d) _ "8 (¢ ) — € OPSY |
0 r8 (907 Z, D)

that satisfies for all o € Ny, for some op() := op(ko, 7,v, ) > 0 and for all s > sg,

Od ~
IRV R0 < aa co™ (14 [T Y (4.6.150)

ston(a)

4. For any q € N§ with |q| < qo, n1,m2 € No with ny +ny < M — 2(ko + qo) + 3, the
operator (DY 93 Tg p()(DY"? is D*-tame with a tame constant satisfying, for some
on(qo) := onr(ko, 7,v, qo), for any so < s < S,

_ ~ ko, _
M Dy 03T (D2 (8) S5Ma0 €07 (L4 [T0l3%0 q0)) (4.6.151)

5. The operators @1 —1d, (®*1 —1d)* are D*-L (ko + 1)-tame and the operators V¥ —1d,
(VL —1d)* are D*0-(kg + 2)-tame, with tame constants satisfying, for some o > 0 and for
all sp < s <8,

Mp+1_14(s) + Mg+1_1ay+ (s) Ssev (1 + 1301525) (4.6.152)
M1 1a(s) + M1ty (5) Ss o™ (1 +[Tol337) - (4.6.153)

Furthermore, for any si as in (4.6.15), o € No, q € Ny, with |q| < qo, and ni,n2 € No, with
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n1+n2<M—2qO+%, we have

1812057 sy sy e i —dnlly, vy o [Aromi] S € iy — 2l s (4.6.154)
[812RE 0,010 Ssraria 07 it = ol 4ops @) - (4.6.155)
[ <DY™ 03 A12Ts ar (D)™ | cemsny Ssuirao €0 i1 = i2llg, 1 opr(q0) » (4.6.156)
[A1(A)hls Ssy v it — izl 4o 0l 4o » A€ {®F(@F)* VEL (VED)} . (4.6.157)

Proof. The function b(p, x) = by (@, x) + ba(p), with by and be, defined in (4.6.136)) and (4.6.142))
and the function o(y) in (4.6.146)), satisfy, by Lemma [4.19| and (4.6.96)),

~ ko, - ~ ko,
(D500 S5 oL+ [TolsSe) s (0187, [b2ll5 s el Ss ev™ (1 + [ Tols3s) (4.6.158)

S+o

for some o > 0 and for all s > sg. The estimate |m;|*0¥ < ¢ follows by (£.6.145) and (#.6.96)).
The function

o (p,2) =V 1(aS?) = al? (o, — 0()),,

where a}”) is defined in (£.6.138), satisfies ({.6.148) by (£.6.140). Moreover, the estimate (&.6.149)
follows by Lemma [4.19| and (4.6.96)), (4.6.158)). The estimate (4.6.150)) for (cfr. (4.6.144))

rD (o, 2, D) := V"D (. 2, DYV = i (0,2 — 0(¢p), D)

with 7{” defined in (I.6.139), follows by Lemmata [4.16, 4.17} 4.19| and (@6.158), (&-6.111). The
smoothing term Tg ps in (4.6.147)) is, using also (4.6.129)),

—M,o T T 0
Tyari=V (@ 'Teu® +illp(® —1d) + & 'R VI8)y+ v [TV oy 0 )y,
0 Ty+T,

with T and T}, defined in (4.6.130)), (4.6.131). The estimate follows by (4.6.126)), Lem-
mata [£.24] [£.25] the tame estimates of ® in Proposition [£.29] and estimates (4.6.96), (4.6.158),
([.6.152)), (@.6.112)), noting that operators of the form 0§03V lose |k|+ |q| derivatives. The esti-
mate follows by Proposition [4.30]and (4.6.158]), whereas follows by the equiv-

alent representation for V as in (4.6.105]), Lemma and (4.6.158)). The estimates (4.6.154)),
({@E6.155), (E6.156), (E6.157) are proved in the same fashion. By Lemmal4.74] the function a{” is

an even(p, z) quasi-periodic traveling wave, hence the function by in is a odd(y, ) quasi-
periodic traveling wave, the function bs in is odd in ¢ and satisfies by (¢ — J5) = ba(p)
for all ¢ € R, whereas the function ¢ in (4.6.146)) is odd in ¢ and satisfies o(¢ — 5) = o(¥)
for all ¢ € R. By Lemmata [£.33] .43} and 4.39] the transformations ® and V are reversibility

and momentum preserving. Then the operator Lg is reversible and momentum preserving. The
(d)
3

function as ’ is an even(p, x) quasi-periodic traveling wave. O
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4.6.6 Reduction of the order 1/2

The goal of this section is to transform the operator Lg in into the operator Lg in
[@6.169) whose coefficient in front of |D|"/? is a constant. We eliminate the z-dependence
and, in view of the property , we obtain that this transformation removes also the
p-dependence.

We first write the operator Lg in (4.6.147) as

Py 0
Ls=w- 0, + | +ilIp + Tgar,
8 o (0 Pg) 0 8,M

where
Py i= iy Q(k, D) +md, +iaf”|D|> + Op(r{"). (4.6.159)

We conjugate Lg through the real operator

U(yp) = (qj(w 0 ) : (4.6.160)

where U(yp) := U7 (p)|,~1 is the time-1 flow of

-V (p) = B(p)¥(¢),

\IIO( ) Id B(gp) = b3(()07$)7‘[; (4.6.161)
w) =1d,

the function b3(y, x) is a smooth, real, periodic function to be chosen later (see (4.6.166])) and
H is the Hilbert transform defined in (4.2.19)). Note that Umg = 79 = U~ l7, so that

U0 = 11,0 . (4.6.162)

By the Lie expansion in (4.2.16)) we have

U PU = Py — [B, Ps] + ), —adp) (Ps) + Lar,
n—2 (4.6.163)

(—1)M+2 M+1g— M+2
far = (M+1)'L (=) () adp gy (Py) W7 (p)dr
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and, by (4.2.17)),

M
Pyl ow@o‘l’—wé’ —i—(w aB Z B()W'ach(cp))"i_L,
s (4.6.164)
/ =DM Mg—r M T
Ly =0 jo<1—7> V() adl (@ - 0,B() UT()dr

The number M will be fixed in (4.7.5). The contributions at order 1/2 come from (4.6.163)), in

particular from Pg — [B, Ps] (recall (4.6.159)). Since B = bsH (see (4.6.161))), by (4.2.26) and
(4.6.132) we have

Py —[B, Bs] = im3Q(s, D) +md, +i (a§” — 3msv/ri(bs).) [D]2 (4.6.165)

+Op(réd)+rb3ﬁ%) [B,m 0, +ial”|D|2 + Op(ri")],

where Op(rbg’_%) € OPS~2 is small with bs. Recalling that, by (4.6.148)), the space average
<a§d)>x () = m1 for all p € TV, we choose the function bs(¢p, x) such that ag )_3 ,m3 VE(b3), =m1,
2

2
namely

bs(p, ) 1= 20y ol (g, 2) = (0§, (), (a§"), (9) = m . (4.6.166)

2

We deduce by (4.6.163)-(4.6.164) and (4.6.165]), (4.6.166] that

Lo =0 (p)(w- dy, + Ps)¥(p)

. W (4.6.167)
=w-0,+ im%Q(f@, D) +md, + im% |D|2 + Op(rg”) + Las + LYy,
where
Op(ri?) := Op(r{? 7y 1) = [Blp),mé, +1a$?|D|2 + Op(ri™M)] + (w - 8,B(¢))
M1, 1\ M n 4.6.168)
(D" (D" (
+ ) adfy, (Ps) — 22 —adi (@ 9,B(p)) € OPS°.

Define the matrix 3 := ( ) . Summing up, we have obtained the following lemma.

0 -1

Lemma 4.78. Let M € N, qg € Ng. Let b3 be the function defined in (4.6.166)). Then, conjugating
the operator Lg in (4.6.147)) via the invertible, real, reversibility and momentum preserving map ¥
defined in (4.6.160)), (4.6.161)), we obtain, for any w € DC(v, T), the real, reversible and momentum
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preserving operator

Loi= @ LgW® = w- 3, +imyQ(r, D) +md, +imy B[ D2 +ill + R + Ty s,

(4.6.169)
where
~ : kow < 2.
1. the constant m1 defined in (1.6.141) salisfies |m%| < e
(0,d) . ‘
2. Ry s a block-diagonal operator
(d)
T ,x,D 0
g0 _ (70 P m D) 5 | e OPs’,
0 7”9 ((P,.T,D)
that satisfies, for some oy = op(ko, 7,v) > 0, and for all s > sg,
d k 5 ~ k ’
[RG5S s e0™ (14 30]835,,) (4.6.170)

3. For any q € N§ with |q| < qo, n1,n2 € No with ny + ny < M — 2(ko + qo) + 3, the
operator (DY 93 Tg 1 ()(DY"? is D*-tame with a tame constant satisfying, for some

or(qo) := oa(ko, T,v,qo), for any so < s < S,

— ~ 1k s .
M Pyt 68Ty 01 (2)(Dy2 (8) Ss000 €0 (L4 [T0l 00 (g0 (4.6.171)

4. The operators ¥E1 —1d, (¥*! — 1d)* are DFo-tame, with tame constants satisfying, for

some o = o(ko,7,v) > 0 and for all s = sp,

Mys1_14(5) + Mega1_1aye(s) s e (1 + [0 5%0) - (4.6.172)

Furthermore, for any 31 as in (4.6.15), o € No, q € Ny, with |q| < qo, and ni,ne € No, with
ny+ng <M —2qp+ 2, we have

|A1RE Y 0,01 Sorar v in = il 4y - |Aroms | S €% i — iafly 1 - (4.6.173)
| (D)™ 03812 T 9 11 (D)™ | ooy Ss1.Mq0 €0 i1 = 2l vopr(a0) (4.6.174)
[ A2 (TE Ay + [A12(FE)* s, S5 ev™t in —dally o [Pl 4o - (4.6.175)

Proof. The function b3(¢,x) defined in (4.6.166)), satisfies, by (4.6.149)) and the estimate of m3
given in Lemma item42] for some o > 0 and for all s > so,

Joslfov g co (1 + [3]52). (4.6.176)

s+o
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The estimate for m1 follows by (4.6.141), (#.2.7) and (4.6.96)), (4.6.158). The estimate (4.6.170])
follows by (£.6.163), ([@6.159), Lemmata {16, .17, and (£.6.149), (£6.150), (&6.176). By

(4.6.147), (4.6.159)), (4.6.167)), and (4.6.162)), the smoothing term Ty ps in (4.6.169) is

L L 0
T97M = \I/_ITS,M\I/+1H0(‘I/—I(1)+ M+ S - —
0 Ly +L/M

with Ly and L), introduced in (4.6.163)), (4.6.164)). The estimate follows by Lemmata
.24 [4.25] [4.18], (4.6.159), (4.6.149), (4.6.151)), (#.6.176)), (£.6.172)). The estimate follows
by Lemma and (4.6.176)). The estimates (4.6.173), (4.6.174), (4.6.175)) are proved in the
same fashion. By Lemma , the function agd) is a even(yp, z) quasi-periodic traveling wave.
Hence the function b3 in is a odd(y, ) quasi-periodic traveling wave. By Lemmata
4.33] and [.39], the transformation W is reversibility and momentum preserving, therefore

the operator Lg is reversible and momentum preserving. O

Remark 4.79. In Proposition 4.83| we shall estimate ||[0,, Rgo’d)]ng?;é using (4.6.170) and (4.2.27)).
In order to control HRéO’d) ngosvl we used the estimates (4.6.98]) for finitely many o € Ny, a < a(M),

depending on M. Furthermore in Proposition we shall use (4.6.173)-(4.6.174) only for

s1 = So.

4.6.7 Conclusion: partial reduction of £,

By Sections the linear operator £ in (4.6.12) is semi-conjugated, for all w € DC(v, ),

to the real, reversible and momentum preserving operator L9 defined in (4.6.169)), namely
Lo =W5tLWwy, (4.6.177)

where

Wy = PZEQMC® VT, W, = PpZEQMCP VY . (4.6.178)

Moreover Lg is defined for all w € R”.
Now we deduce a similar conjugation result for the projected operator L, in (4.5.33)), i.e.
(4.6.1)), which acts in the normal subspace jﬁgﬂ 5- We first introduce some notation.

We denote by II, .. and H§+,2 the projections on the subspaces 5é+,2 and Sﬁgﬁx defined

S+.%
in Section 4.1.3] In view of Remark [4.67] we denote, with a small abuse of notation, H;Jr 5 =
0
Hé+’2 + 7, so that Hé*i + H§+,2 = Id on the whole L? x L?. We remind that Sy = S U {0},

0
where S is the set defined in (4.1.48)). We denote by Ilg, := Hé + mg, where Hé is defined below
(4.1.58) together with the definition of HLO, so that we have Ilg, + Héo = Id.
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Lemma 4.80. Let M > 0. There is opr > 0 (depending also on ko, T,v) such that, assuming

with po = oy, the following holds: the maps Wi, Wa defined in have the form
Wi = MC + Ri(e), (4.6.179)
where, for any i = 1,2, for all sg < s < S,
RIS S5 ar eo™ (RIS, + 130125, 101%,,) (1.6.150)
Moreover, for ev=1 < §(S) small enough, the operators

Wit =TI, Dy, Wy o= 15 oWl (4.6.181)

are tnvertible and, for all so < s < S,1=1,2,

1 k ko, ~ ko, ko,
[V R S s [R5, + 130555, 1Rl s, (4.6.182)
1 1 .
|21V hllsy Ssiar ev™ i = iallg, g0, 1Bl 10y - (4.6.183)

The operators Wf, Wj‘ map (anti)-reversible, respectively traveling, waves, into (anti)-reversible,

respectively traveling, waves.

Proof. The formulae (4.6.179) and the estimates (4.6.180]) follow by (4.6.178), Lemmata m
4.25, and (4.2.37), (4.6.23), (4.6.27), (4.6.92), (4.6.93)), (4.6.113)), (4.6.152)), (4.6.153)), (4.6.172]).

The invertibility of each VVll and the estimates follow with a perturbative argument
as in [I4] 13], noting that H§+,E Mc H§O = H§+,E MC H§O are invertible on their ranges with
inverses (T, ; MCTI4 )~ = IT4, (MC)7'IZ, .. Since 2,€,Q, M, ®57,®,V, ¥ are reversibility
and momentum preserving and using Remark and Lemmata and we deduce that

Wi, Wy map (anti)-reversible, respectively traveling, waves, into (anti)-reversible, respectively

traveling, waves. O

Remark 4.81. The time reparametrization P and the multiplication for the function p (which is

independent of the space variable), commute with the projections H§+ 5, and Hgo.

The operator £, in (4.5.33) (i.e. (4.6.1)) is semi-conjugated to

L= W) lL Wt =115 LoTTE + RY (4.6.184)

where R/ is, by (4.6.181), (#.6.177)), (#.6.179) (recall that M is defined in (4.6.79)-(4.6.80)), and
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[@-1.59),

RS = (Wy) 7', 5 Ra(e) s, Lol (4.6.185)
= W) THIg LT, Ra()TTg, — (W5) ™ TIg, 5 JRWE .

Lemma 4.82. The operator R/ in (£.6.185)) has the finite rank form (£.6.4), (4.6.5). Moreover,

let qo € No and M = 2(ko+qo) — 3. There ezists R(M,qo) > 0 (depending also on ko, T, v) such

that, for any ny,ng € No, with ny +ny < M —2(ko + qo) + %, and any q € Ny, with |q| < qq, the
operator (DY 03RRI (DY is D" -tame, with a tame constant satisfying

M pymi gars(py (8) Ssarqe €07 (1 + |\30|\’;0+’;’(M7q0)), Vsop<s< S, (4.6.186)
[ D)™ 8381 RS (D)™ [ £(rsr) Ssrmtao €0 i1 = dallg, 1n(argp) » (4.6.187)

for any s1 as in (4.6.15)).

Proof. The first two terms in (4.6.185)) have the finite rank form (4.6.4) because of the presence

of the finite dimensional projector Ils,, respectively H; . In the last term, the operator R has

the finite rank form (4.6.4). The estimate (4.6.186)) follows by (4.6.185)), (4.6.178), (4.6.181),
(E6.169), (A.64), (A27) and (E6.180), (1.6.182), ([@.6.170), [@.6.171), (@-6.5). The estimate

(4.6.187) follows similarly. O

Proposition 4.83. (Reduction of £, up to smoothing operators) For all (w, k) € DC(v, T) x

[k1, k2], the operator L, in (4.5.33) (i.e. (4.6.1)) is semi-conjugated via (4.6.184) to the real,
reversible and momentum preserving operator L. For all (w,k) € R” x [k1, k2], the extended
operator defined by the right hand side in (4.6.184)) has the form

EJ_ZW'&@]IJ_‘i‘iDJ_—‘FRJ_,, (4.6.188)

where 1, denotes the identity map of Héo (cfr. (4.1.58)) and

1. D 1s the diagonal operator

D, 0 . )
D, := — |, Dyi:=diagjee 1y, 5= Z\(S u {0}),
0 —-D;

with eigenvalues pj := m3$;(k) +mj + m1 |j|% € R, where the real constants ms,mj,m1,
2 2 2 2
defined respectively in (4.6.89), (4.6.145)), (4.6.141)), satisfy

lms — 1|70 4 Jmy [FOV + |my |FOV S g (4.6.189)
2 2
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In addition, for some o > 0,

|A12m%| + |A12m1| + |A12m%| <e Hll — i2|‘so+a . (46190)

2. The operator R is real, reversible and momentum preserving. Moreover, for any qo € N,

M > 2(ko + qo) — 3, there is a constant N(M,qo) > 0 (depending also on ko, T, v) such

that, assuming ({1.6.14) with po = R(M, qp), for any so < s < S, q € Nf, with |q| < qo, the
operators 3R, [0aR 1, 0] are DFo_tame with tame constants satisfying

- ~ 11ko,
magRl (8)7 m[f}%RlﬁI] (S) gS,M,qo Ev 1(1 + HJ0|‘83-§(M,q0)) . (46191)

Moreover, for any q € Ny, with |q| < qo,
HagAHRLHg(HSO) + HagAm[RL, aw]HE(H&o) SM E’Ufl HZI — i2|‘so+N(M,qo) . (4.6.192)

Proof. By (4.6.184) and (4.6.169) we deduce (4.6.188) with

R, := & (R 4 T u)TTE, + R .

The estimates ({.6.189)-(4.6.190)) follow by Lemmata 4.77, 4.78] The estimate (4.6.191)) fol-
lows by Lemmata [4.17} [4.25] (4.6.170) and (4.6.171), (4.6.186)), choosing (n1,n2) = (1,0), (0, 1).

The estimate (4.6.192) follows similarly. The operator L, in (4.5.33) is reversible and momen-
tum preserving (Lemma |4.66)). By Sections , the maps Z,¢&, Q,M, Dy, PV, P are

reversibility and momentum preserving. Therefore, using also (4.6.18), (4.6.24) and Lemmata

and we deduce that the operator £ in (4.6.184) is reversible and momentum preserv-

ing. Since iD is reversible and momentum preserving, we deduce that R, is reversible and

momentum preserving. Ul

4.7 Almost-diagonalization and invertibility of £,

In Proposition we obtained the operator £ in (4.6.188) which is diagonal and constant
coefficient up to the bounded operator R (¢). In this section we complete the diagonalization
of £, implementing a KAM iterative scheme. As starting point, we consider the real, reversible

and momentum preserving operator, acting in H§0:

Lo:=Lo(i) := £, =w-d,1, +iDg + R, (4.7.1)
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defined for all (w, k) € R” x [k1, k2], with diagonal part (with respect to the exponential basis)

D 0 . . it
Dy := < 00 D) . D= diagjege py) . pl” = mg (k) +mij +my |2, (4.7.2)
— 40

where S§ = Z\Sp, Sp = S U {0}, the real constants ms, my, m1 satisfy (4.6.189)-(4.6.190) and

0) RT @ Rf ) 0.d) . 7L L p00) . gL 1
RJ_ = RJ_ = (_R(OW') _R(Od)) y RJ_7 : HSO — HSO 7RJ_7 : H780 — HSO y (473)
1 1

which is a real, reversible, momentum preserving operator satisfying (4.6.191)), (4.6.192). We
denote Hi_So = {h(x) = Djgus, hje*% € L2}, Note that

— — : 0
Dy : Hg — H, . Dy = diagje g (1) (4.7.4)
Proposition implies that the operator R(f) satisfies the tame estimates of Lemma, below

by fixing the constant M large enough (which means performing sufficiently many regularizing

steps in Section [4.6.4)), namely
M :=[2(ko+so+b)—3]+1€eN, (4.7.5)

where
b:=[a]+2eN, a:=3n =1, 71:=ko+ (ko+1)7. (4.7.6)

These conditions imply the convergence of the iterative scheme (4.7.46))-(4.7.47), see Lemma
.91l We also set
wu(b) :=R(M,sp +b), (4.7.7)

where the constant ®(M, qp) is given in Proposition [£.83]

Lemma 4.84. (Smallness of R(f)) Assume (4.6.14]) with po = u(b). Then the operators RS_O),
R 0], and 03, R, [0, R 0], 030 RY, [0 "RY. 0:]. m = 1w, are D-tame
and, defining

Mp(s) := max {0 (s), M (s), M (s), M

0 0 S, 0 5 0
R R 0,] 20, R [0:9, R 0.]

M (s,b) := max {maso+be)(8), m[aso“Rf),ax](s) ,m=1,..., V} ) (4.7.9)

¥Ym Ym
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we have, for all so < s < S,

3
My(s,5) = mae { Mo(s), Mo(s,5) } < C(8) (14 [30]/ 2, . Mo(s.0) < CS)° . (47.20)
Moreover, for all q € Nij, with |q| < so + b,

182 81RD gm0y [80[02RY, 2]l ogro) < CS)ev it — ialyy ey - (A7.11)

Proof. Recalling (4.7.8), ([4.7.9), the bounds (4.7.10)-(4.7.11)) follow by (4.6.191)), {.7.5)), (4.7.7),
(4.6.192). O

We perform the almost-reducibility of Ly along the scale
N_j:=1, Np:=N}), VneNy, x:=3/2. (4.7.12)

Theorem 4.85. (Almost-diagonalization of Ly: KAM iteration) There exists 7o(T,v) >
(7, V) + a (with 11, a defined in (4.7.6)) such that, for all S > sq, there is No := No(S,b) € N
such that, if

NJMo(s0,b)v + < 1, (4.7.13)
then, for allmne Ng, n =0,1,...,1:

(S1), There exists a real, reversible and momentum preserving operator

Lyi=w-0,1, +iD, + R},

(D 0 - . (4.7.14)
D, := 0 1) Dy := diagjege pt; 7

defined for all (w, k) in RY x |Kk1, k2|, where ugn) are ko-times differentiable real functions

n n . L
,u§ )(w,m) = /L;-O)(w,li) +t§- )(w,m), /éo) =ms Qj(k) +m j +m 1712, (4.7.15)

|

satisfying tg.o) =0 and, forn =1,
R or < 08 p)ev ™, ul — plt DR < O(S 0)eIN, 3, Vi e SE (4.7.16)

The remainder

n,d n,0
() ._ RP RE
R(f,o) R(f,d)

>, R HE - HE, RYO 1Yy — HE (4.7.17)
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is D*o-modulo-tame: more precisely, the operators RS?’d), RS?’O), <6¢>b Rf’d), <6@>b RT’O), are

DFo _modulo-tame with modulo-tame constants

?Jﬁgs = ot s) := max{M* s,fmji s)},
(5) 1= ML () o= mas(OE . (5), 0 o (5))

u ; ﬁ , (4.7.18)
M (s,b) := m<a¢>bRT)(8) = max{m<a¢>bR$1,d)(S)7m<akp>bRSi1,o)(s)} )
which satisfy, for some constant Cy(sg,b) > 0, for all sp < s < S,
M (5) < Cu(50,0)Mo(5,b) N2, ME(5,b) < Cul50,0)Mo(5,0) Ny 1 . (4.7.19)
Define the sets Ay = A7 (i) by Aj := DC(2v,7T) X |Kk1, k2| and, forn >1,
A ={\ = (w,k) €AY, :
n—1 n— .3 3 —r
e A E A C R TN (>
V0l < Naots 4,5 S0, (6,5,5) #(0,4,5), with7-£+35—35 =0, (4.7.20)

n— n— I N
o £+ 170+ S = 0 (11 +17715) <0
V0] < Na—1, 5,5 ¢ So with 7- €+ j + ' = 0}.

Forn > 1 there exists a real, reversibility and momentum preserving map, defined for all (w, k) €
RY X [k1, k2], of the form

x@  x(©) “ "

Xa— — n— n— gl 1 o) . gL is

B, =X, X, = ( 5 (d)> , X9 HE - HE L X, HY, - HE
x x\

such that, for all A € A, the following conjugation formula holds:
Lp=® 'L, 1%, ;. (4.7.21)

The operators Xy 1, <5¢>b X1, are DFo-modulo-tame with modulo tame constants satisfying,

for all sp < s < S,
My (5) < C(s0,b)v " NJL N, %M (s, b)

(4.7.22)
M o (s) < Clso,b)u "NTL Ny_o9Mo(s, b) .

(S2), Let i1(w, k), i2(w, k) such that R(f)(il), R(f)(ig) satisfy (4.7.10), (4.7.11)). Then, for all
(w, k) € AP (i1) N AF2(i2) with v, v € [V/2,20],

[1212R [ a0y Sso 0™ N it — a4 o) - (4.7.23)

11€0)° 815R P | g0y Sso e0 Naa i = i) - (4.7.24)
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Furthermore, forn > 1, for all j € S§,

A2 (e — ) < ONALRY ) 20 » (4.7.25)
A1l < C(8,B)ev™ [lin — 2l o) - (4.7.26)

(S3)n Let i1,i2 be like in (S2)n and 0 < p < v/2. Then
v C(S)NI ] iy — iQHSOJm(b) <p = A1) S AT (i2). (4.7.27)
Theorem implies also that the invertible operator
Uz:=®po...oP57, n>1, (4.7.28)

has almost diagonalized Ly. We have indeed the following corollary.

Theorem 4.86. (Almost-diagonalization of Ly) Assume (4.6.14) with po = u(b). For all
S > s¢, there exist Nog = No(S,b) > 0 and dy = 00(S) > 0 such that, if the smallness condition

NPPev ™2 < & (4.7.29)

holds, where 1o = 7o(7,v) is defined in Theorem then, for allm € N and for all (w,rk) €
RY x [k1, k2| the operator Ug in (4.7.28) is well-defined, the operators U;—rl —1, are D*-modulo-

tame with modulo-tame constants satisfying, for all so < s < S,

me (s) S5 v 2 NG L+ 302 ,)) (4.7.30)

U1, s+pu(b)

where 11 is given by (4.7.6). Moreover Ug, Ugl are real, reversibility and momentum preserving.
The operator Lg = w - 0,1 +iDg + R(f), defined in (4.7.14)) with n = 1 is real, reversible and
momentum preserving. The operator R(f) is D*-modulo-tame with a modulo-tame constant

satisfying, for all s < s < S,

1 ko,
gmﬁR(f)(s) Ssev T NA(1+ HJOHSi#(b )

Moreover, for all (w, ) in A2 = AY(i) = (°_o AY, where the sets AY are defined in ([E7.20)), the
congugation formula Lg := UgngUﬁ holds.
Proof of Theorem

The proof of Theorem is inductive. We first show that (S1),-(S3), hold when n = 0.
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The step n = 0. PROOF OF (S1)y. Properties (4.7.14)-(4.7.15), (4.7.17) for n = 0 hold by
E7T), @ET2), @ET3) with ¢\ = 0. We now prove that also (£7-19) for n = 0 holds.

Lemma 4.87. We have img(s),img(s,b) Zso.b Mo(s,b).
Proof. Let Re {Rf’d), RT’O)}. We prove that <8¥,>b R is DF-modulo-tame. Using the inequality

)

<€ B £,>2q0 <] _j/>2 Sqo 1+ ‘f —f/‘QqO + ‘] _j/‘2 + ‘f _ ZI‘Q% ‘] _j/‘2

it follows, recalling (4.2.36)), (4.7.10), (the matrix elements of the commutator [d,, A| are i(j —
j’)A;:/(ﬁ — (")), that, for any j' € S, ¢ € ZV,

VMY = T G = i ARY (0= )
X (4.7.31)
<o Mo(s0, D)2 (L, 71> + Mo (5,0)2 (L, 71Y° .
Let so < s < S. Then, for any |k| < ko, by Cauchy-Schwartz inequality, we have
2
[1<0,)" & RIn: <2 P (X =0 @Ry (€= ) [k ])
E/ !

28 N\ So+b ! 1 2
<2<m>2 (X €=y G =D NER) (€ = Ol g =)

@,j g/ i
~502<e = G — R (= ) ke
£l7]/

E3)
b’U7||2‘hg//

~3S0
e//

(Mo(s0,b) L, 57> + Mo (s,b)2 (L, 5)° ) .

Therefore, we obtain zmga » o (8) Ssop Mo(s,b) and then S)ﬁ%(s, b) <sop Mo(s,b). The inequality

smg( ) Sso Mo(s,b) follows similarly. O

PROOF OF (S2)¢. The proof of estimates (4.7.23)), (4.7.24) at n = 0 follows by (4.7.11)), arguing
similarly to Lemma [4.87]
PROOF OF (S3)p. It is trivial since, by definition, A§(i1) = DC(2v, T) x [k1, k2] < Ay " (i2).

The reducibility step. We now describe the generic inductive step, showing how to transform
L, into Ly4+q by the conjugation with ®,. For sake of simplicity in the notation, we drop the
index n and we write + instead of n + 1, so that we write L := Ly, L, = Ly,1, R} := R(n)

R(f) = R(fH), N := Ny, etc. We conjugate L in m by a transformation of the form

x (@ x(o)
=X, X:= <X() @) X Hg - Hy,, X HY — Hg, (4.7.32)
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where X is a bounded linear operator, chosen below in (4.7.37)), (4.7.38). By the Lie expansions

([E.2.16)-([E-2.17) we have

Ly:=® 'L& =w-d,1, +iD + ((w-3,X) —i[X,D] + IyRy) + xR (4.7.33)
1 1
_ f efTX[X, RJ_]GTX dr — f (1-— T)e*TX[X, (w - 0,X) —i[X, D]]GTX dr
0 0

where Il is defined in (4.2.40) and Hﬁ ;= Id — IIy. We want to solve the homological equation

w-0,X —i[X, D] +IIyR, = [R] (4.7.34)
where [R(d)] . " "
1 . j
[R.]:= ( 0 [R@]) , [Rl ]:= dlagjeSS(RL );(0) (4.7.35)

By (4.7.14), (4.7.17) and (4.7.32)), the homological equation (4.7.34]) is equivalent to the two
scalar homological equations

w2, XD —i(xDp - XDy + Ty RY = [RY)

- (4.7.36)
w-0,X +i(XOD +DX) + TINRY = 0.

Recalling (4.7.14) and since D = diagje ge(p—;), acting in Hfgo (see (4.7.4)) the solutions of
(4.7.36) are, for all (w,r) € Ay, (see (4.7.20) with n v~ n 4+ 1)

d)\j’ .o .. ..
@Yo J0d) #0.5.9), 0.5 €S (O <N
(XD ()= { Ww L py—py) C-7+j—4 =0 (4.7.37)
\0 otherwise,,
B (R (o) o Jveer—jess (<N
(XY () = Wl pj+py) C-7+j—3"=0 (4.7.38)
0 otherwise .

Note that, since —j’ € S§, we can apply the bounds (4.7.20)) for (w,x) € AL, .

Lemma 4.88. (Homological equations) The real operator X defined in (4.7.32)), (4.7.37),
([4.7.38), (which for all (w,r) € A, solves the homological equation (4.7.20)))) admits an exten-

ston to the whole parameter space RY x [k1, k2]. Such extended operator is DFo-modulo-tame with

a modulo-tame constant satisfying, for all sp < s < S,

M (5) Sy N7 ' (s),

ok (8) Sho N7 tont(s,b), (4.7.39)
%)
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where 71 = T(ko + 1) + ko. If v/2 < w1, va < 2v, then, for all (w, k) € AL (i1) N A% (i2),

[ 1ALX] | 250y $ NP0 (| [RL(2)] |y lir = izl 1wy + 1 ALRRL [ £as0)) s (4.7.40)

11€0p)° A2 X gerro0) S
N2Tom (14000 Rt (i) oo i = d2lsg s oy + 11€000° AraRor |l arooy) - (4.7.41)

The operator X is reverstbility and momentum preserving.

Proof. We prove that (£.7.39) holds for X(@. The proof for X(° holds analogously. First, we

extend the solution in (4.7.37) to all X in R” x [k1, ko] by setting (without any further relabeling)
) _ N

(XN (0) =190, N (RY] (0), where

-1 3 3
ge,j,jI<A>:=X(f}X’)’), SO = w g — g, o= 0O — 171D,

and x is the cut-off function (.2.10). By (£.7.15), (£.7.16), (4.6.189), (4£.7.20), Lemma .52
(4.4.40)), together with (4.2.10)), we deduce that, for any ki € N, |k1| < ko,

Sko <€>TI U717|k1‘ , T = T(k‘o + 1) + ko,

k
sup |03 ge,5,7
|k1|<ko

and we deduce, for all 0 < |k| < ko,

XD O] <y D 108 g0 M2 (RIDY (0)]
k1+ko=k
Sho (DT 0TS ikl (RO (). (4.7.42)
k2 <[k

By (4.7.37) we have that (X(d))? (¢) = 0 for all (/) > N. Therefore, for all |k| < kg, we have

. 2
1@ AX DR < 0™ (3 1= EEDY (€= 0)l[hg )
l,5 {—lHY<N,j’

(4.7.42) y 2
She N2 2HED 2N, 520 (e - 0 (R (0= ) |he )
|2 |<| K| 2,5 o
Sho N2 205D S 20kl g 52 ok RUD || |2
|2 | <K

@2-39), (& 7-18)
<

Sko

N2 2D (O s, )2 B2, -+ 90 (0,002 [ 1]2)

and, by Definition 4.26] we conclude that mga@bx(d)(s) <ko N7u 19t (s, b). The analogous

estimates for (0,)° X, X(@  X(°) and [@7.40), @.7-41) follow similarly. By induction, the
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operator R is reversible and momentum preserving. Therefore, by (4.7.32)), (4.7.37), (4.7.38)
and Lemmata [4.32] [4.42] it follows that X is reversibility and momentum preserving. O

By (4.7.33), (4.7.34)), for all A € AY, |, we have

L. =& 'Lé=-w- 0,1, +iD, + R, (4.7.43)
where
D, =D —i[R,],
1 1 (4.7.44)
R{7 = TI4R, - f XX, R ]e™Xdr + J (1—7)e ™ [X,IyR, — [R,]]e™Xdr.
0 0

The right hand side of (4.7.43)-(4.7.44)) define an extension of L to the whole parameter space

R” x [k1, ko], since R and X are defined on R” x [k1, k2].
The new operator Ly in (4.7.43)) has the same form of L in (4.7.14]) with the non-diagonal
remainder R(f) which is the sum of a term HﬁR 1 supported on high frequencies and a quadratic

function of X and R . The new normal form D is diagonal:

Lemma 4.89. (New diagonal part) For all (w,k) € RV x [k1, k2], the new normal form is

D. 0

iD, =iD +[R,] =i e
+ [R.] (0 B

) ) D+ = diangSS :u§+) ) M§+) = IU’J + rj € IR7

where each r; satisfies, on RV x [k1, Ka],
s ot = u§™) — R < i () (4.7.45)

Moreover, given tori i1(w, k), i2(w, k), we have [r;(i1) — r;(i2)| < [|A12RL||z(ms0)-

Proof. Recalling (4.7.35)), we have that r; := —i(RSfl))g:(O), for all j € S§. By the reversibility
of R(f) and we deduce that r; € R. Recalling the definition of 9t (sg) in ([#.7.18) (with
s = so) and Definition[1.26] we have, for all 0 < |k| < ko, [|05R( ks, < 20~ M9 (s0) 1], and
therefore |8’§(R5i1))§(0)| < v kIt (sg) . Hence follows. The last bound for |r;(i1)—r;(i2)]

follows analogously. O

The iterative step. Letn e Ny and assume that the statements (S1),-(S3), are true. We now
prove (S1),.1-(S3)n+1. For sake of simplicity in the notation (as in other parts of the paper) we
omit to write the dependence on kg, which is considered as a fixed constant.

PROOF OF (S1)p41. The real operator X, defined in Lemma is defined for all (w,k) €
R” x [k1, k2] and, by (4.7.39)), (4.7.19), satisfies the estimates at the step n+ 1. The
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flow maps @' = etXs are well defined by Lemma, . By (4.7.43)), for all A € A7 ;, the
conjugation formula (4.7.21)) holds at the step n + 1. The operator X, is reversibility and

momentum preserving, and so are the operators ®F! = ¢*Xs. By Lemma, the operator

D,;1 is diagonal with eigenvalues ,u(»nﬂ) S»HH) = ,ug»o) + tg-nﬂ) with

j
t§n+1) = tgn) + rg.n) satisfying, using also (4.7.19)), (4.7.16) at the step n + 1. The next lemma

provides the estimates of the remainder R(fﬂ) = R(f) defined in (4.7.44).

: RY % [k1,k2] = R, u

Lemma 4.90. The operators RTH) and <8@>b RTH) are D¥-modulo-tame with modulo-tame

constants satisfying

ML, 1 (s) S Ny *0E (5, D) + N7 o™ "9 ()9 (s0) . (4.7.46)
ML, 1 (5,b) Sp MA(s,b) + N o~ (ME(s, )N (s0) + M (50, D)ME(s)) - (4.7.47)

Proof. The estimates (4.7.46), (4.7.47) follow by (4.7.44), Lemmata [4.27] , [4.28] (4.2.41) and
(4.7.39), (.7.19), {.7.6), (4.7.12)), (4.7.13). O

Lemma 4.91. FEstimates (4.7.19)) holds at the step n + 1.

Proof. Tt follows by (4.7.46), (4.7.47), (4.7.19) at the step n, (4.7.6), the smallness condition
(4.7.13) with No = Np(sp,b) > 0 large enough and taking 7o > 7 + a. O

)

Finally RS?H) is real, reversible and momentum preserving as R , since Xy is real, re-
versibility and momentum preserving. This concludes the proof of (S1),41.

PROOF OF (S2),+1. It follows by similar arguments and we omit it.

PROOF OF (S3)n41. The proof follows as for (S4),.; of Theorem 7.3 in [44], using (S2), and

the fact that the momentum condition in (4.7.20) implies |j — j'| < M.

Almost invertibility of L,

By ((.6.184) and Theorem [4.86] (where Ly = £ ) we obtain

Lo, =WoslaWil Wiz :=WiUs, Wyz:=Wy)Usg, (4.7.48)

1n°

where the operator Ly is defined in (4.7.14) with n = 7. By (4.6.182)) and (4.7.30), we have, for

some o := o (7,1, ko) > 0, for any sg < s < 5,

ko, ~ ko, ko,
IWihlE? IWaghle? Ss IRl + 130l 0w o IR le s - (4.7.49)
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In order to verify the almost invertibility assumption (AI) of £, in Section we decompose
the operator Ly in (4.7.14) (with n instead of n) as

L; =D: + Q™ +RY (4.7.50)
where
DS = T (w- 0,1, +iD)llg, + M, QY =Tl (w- 0,1, +iDa)llj —TIf_, (4.7.51)

and the smoothing operator Il on the traveling waves is defined in , and H = 1d - 1lg.
The constants Ky in (4.7.51) are Ky := K()f , X = 3/2 (cfr. ), and Ko will be fixed in
(4.8.5)).

Lemma 4.92. (First order Melnikov non-resonance conditions) For all A = (w, k) in

3

1412
<€>T?

AL = {)\ER x [r1, k2] = w04+ 1P| = 20 V|0 < Kz, j €SS, 5+ 7 g—o} (4.7.52)

on the subspace of the traveling waves 17cg(¢) = g — %), s € R, such that g(p,-) € HSJ-O, the
operator D= in (4.7.51)) is invertible and there exists an extension of the inverse operator (that

we denote in the same way) to the whole RY x [k1, k2] salisfying the estimate
_ —1y ke
D) gl Sk v glS7 s 7= ko +7(ko +1). (4.7.53)
Moreover (DS) " Yg is a traveling wave.

Proof. The estimate (4.7.53)) follows arguing as in Lemma m OJ

Standard smoothing properties imply that the operator Q(f) in (4.7.51) satisfies, for any
traveling wave h € H§O, for all b > 0,

— ko, n , ko,
IQP RISy < K AT, o QPRI < I (4.754)

By the decompositions (4.7.48)), ([£.7.50)), Theorem [£.86] (note that (4.5.1)) and Lemma imply

(4.6.14)), Proposition 4.83] the fact that Wy 5z, Wa 5 map (anti)-reversible, respectively traveling,
waves, into (anti)-reversible, respectively traveling, waves (Lemma [4.80) and estimates (4.7.49)),
(4.7.53), (4.7.54)), (4.2.8) we deduce the following theorem.

Theorem 4.93. (Almost invertibility of £,) Assume (4.5.1)). Let a,b as in (4.7.6) and M as
in (4.7.5). Let S > sy and assume the smallness condition (4.7.29). Then the almost invertibility
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assumption (AI) in Section [4.5 holds with Ay replaced by

v v . v vl
a+1 = Aﬁ-‘rl(l) = Aﬁ-‘rl M Aﬁ-‘rl 5 (4:755)

(see (4.7.20), (4.7.52))) and, with j(b) defined in ({4.7.7),

£5:=WoaDi Wik, Ryi= WoaRTW, L Ry = WoaQP WL

1ln> w

4.8 Proof of Theorem [4.55|

Theorem [4.55] is a consequence of Theorem below. We consider the finite dimensional

subspaces of traveling wave variations
E, = {3(p) = (0,1, w)(y) such that {#.2.61) holds : © =11,0, I =1II,I, w = Iw}

where IThw := i, w are defined as in (4.2.6) with K, in (4.5.34]), and we denote with the same
symbol I,g(p) := Z\f\éKn gee'?. Note that the projector I, maps (anti)-reversible traveling
variations into (anti)-reversible traveling variations.

In view of the Nash-Moser Theorem [£.95] we introduce the constants

aj := max{6oy + 13, x(p(7 + 1) + u(b) +207) + 1}, ag:=x ‘a3 —u(b) — 207,  (4.8.1)
p1 = 3(u(d) +201) +1, by:=a;+2u(b) +401 +3+x T, x=3/2 (4.8.2)
o1 := max{7, 2sg + 2ko + 5}, S =s9+b1, (4.8.3)

where @ = (1, v, ko) > 0 is defined by Theorem H4.65| 250+ 2k +5 is the largest loss of regularity
in the estimates of the Hamiltonian vector field Xp in Lemma w(b) is defined in (4.7.7)),

and b = [a] + 2 is defined in (4.7.6). The exponent p in (4.5.34) is required to satisfy

pa> ia; + 3o07. (4.8.4)

By (4.7.6)), and the definition of a; in (4.8.1), there exists p = p(7, v, ko) such that (4.8.4) holds,

for example we fix

b= 3(u(b) +a401 +1) .

Remark 4.94. The constant a; is the exponent in (4.8.9). The constant ap is the exponent in
the second bound in (4.8.7). The constant u is the exponent in (P3),. The conditions on the

constants p1,by,a; to allow the convergence of the Nash-Moser scheme in Theorem are

a; > 601+ 12, by > a; + 2u(b) + 4oy +X71,U'1; pa > %al +%0’1,
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as well as p1 > 3(u(b) + 201). In addition, we require a; = x(p(7 + 1) + u(b) + 201) + 1 so that
ap = p(T + 1) + x~!, which is used in the proof of Lemma m

Given a function W = (7, 3) where J is the periodic component of a torus as in and
B eRY, we denote [W[5 := I + |B[F.

Theorem 4.95. (Nash-Moser) There exist 6o, Csx > 0 such that, if

Kg?’ev_2 <8y, 73 :=max{pm, 201 +a;+4}, Ko:=v"t, vi=e?, 0 <a< (24+73)7}, (48.5)

where To = To(T,V) is given by Theorem then, for alln = 0:

(P1)n There exists a ko-times differentiable function Wa : RV x [k1, ko] = By 1 XRY, A = (w, k) —
Wa(\) 1= (Oa, & — w), forn = 1, and Wy := 0, satisfying

k07
n

-1
so s p(d)or S Cuev™ . (4.8.6)

Let Uy = Uy + WN/H, where Uy := (¢,0,0,w). The difference Hy:=U, — [711_1, forn>1,

satisfies

ko, — ko, —
\|H1HS§+M (o)1or < Cxev V|| Hy Lo o) ror < Caev 'K® Vn>2. (4.8.7)

The torus embedding % := (p,0,0) + Ty is reversible and traveling, i.e. [E£4.8) holds.

(P2)n, We define
Go:=Q x [k1,k2], Gny1:=GanAf (ln), Vn=0, (4.8.8)

where AL, (1) is defined in (L.7.55). Then, for all X € Gy , setting K_1 := 1, we have
| F(T)Fo? < CueK 2 . (4.8.9)
(P3)n, (HIGH NORMS) For all X € Gy, we have
|Wal 20, < Cuev™ KE, (4.8.10)

Proof. We argue by induction.
STEP 1: ProOOF OF (P1,2,3)o. They follow by

| F(Up)|ovw CLD LemmALS ) (4.8.11)

taking C large enough and by noting that ig := (p,0,0) is clearly reversible and traveling,

satisfying (4.2.60)).
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STEP 2: AssuME THAT (P1,2,3), HOLD FOR SOME n € Ny AND PROVE (P1,2,3)n1.

We are going to define the successive approximation CN/'DH by a modified Nash-Moser scheme and
prove by induction that the approximate torus 7,41 is a reversible and traveling wave. For that we
prove the almost-approximate invertibility of the linearized operator Ly = Ln(A) := d;j o F (in (X))
applying Theorem to Ly(\). By (4.8.5)), the smallness condition holds for & small
enough. Therefore Theorem holds and we deduce that the inversion assumption
holds for all A € AY, {, see (4.7.55)). Now we apply Theorem Wto the linearized operator Ly(\)
with A, := A} | (%) and S := 594Dy, where by is defined in . It implies the existence of an
almost-approximate inverse Ty := Ty(\,%,) of the linearized operator d; F (in) which satisfies

for any anti-reversible traveling wave variation g and for any sg < s < sg + by

k - ko, ~ ko, ko,
ITag0 Sagern v (al5%, + 15al 2, l91200) (4812)
_ ko,
ITagl0" Sapimn v g1, (48.13)

Moreover, the first three components of Tyg form a reversible traveling wave variation. For all

A € R” x [K1, k2] we define the successive approximation
U1 i= Uy + Hop1,  Huy1 = Gog1,Gns1) 1= —TLToll, F(U,) € Ey x R, (4.8.14)
where II,, is defined for any (J, «), with J a traveling wave variation, by
IL,(J,a) == (I,J,0), IIf:=(I[17,0). (4.8.15)

By Lemma and since 7, is a reversible traveling wave by induction assumption, we have that
]-"(ﬁn) = F (7, &) is an anti-reversible traveling wave variation, i.e (4.5.39)-(4.5.40)) hold. Thus

~

the first three components of TyII,F(U,) form a reversible traveling wave variation, as well as
HnTan}'(ﬁn). We now show that the iterative scheme in (4.8.14]) is rapidly converging. We

write

F(Unt1) = F(Un) + LaHns1 + Qn,

where Ly := d; o F(2n) and

~ ~ ~

Qui= QO Has1), QU H) i= F(Ua + H) — F(Ua) ~ Ll , He By xR'.  (48.16)
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Then, by the definition of Hy,1 in (4.8.14]), we have

F(Unt1) = F(Un) = LalLa Tolla F(Uy) + Qu
= F(Un) = LaTallnF(Uy) + LallZ Toll, F(Uy) + Qn

= (I + I F(Ta) = (T + T3) Lo Talln F (Ta) + LaTTy Talln F () + Qn s
= Uy F(Un) + Ra+ Pa+ Qu,
where
Ry i= (LIt — I L) TRl F(U),  Pa = a(Id — LyT) L F(Us) - (4.8.18)
We first note that, for all A € Q x [k1, k2], s = so,
| F(T) [0 Ss HF(Uo)H?“’” + | F(Un) = F(U) |50 510
B e B e e
and, by , , we have
v F ()5 < (4.8.20)

We want to estimate the H*°-norm of ]-"(UDH) decomposed as in ([@.8.17)), in terms of F(U,).
First, we need to estimate Hn+1 in | - 50+b1 By ({4.8.14), we have

B, CE T, 7 (0) 0

S0+bq so+b1
(4.2.8) ko
’\/50+b1 HT II F( )Hsoikblfal
" — k ~ 1k k
Ssotby U 1KUI(HH F(Ua)| 805, + 1 3nll 50 oy 1oy T F (T l50s,)
Qm Yexo B .
T R A G a L S ) (4.8.21)
N ET)EED)
\|Hn+1|\’§8’v Seo UKF()] ke (4.8.22)

Now we estimate Qy, Ry, P, in the norm | - |\’§g’”. By the definition of @, in (4.8.16]), we have

the quadratic estimate

~

v 7 7 v - r7
1Qull¥0" a0 107 0 F (Un) [Hag1, Hoia ]2 eld? . X p(Un)[H,

Lemma 14 13 [kow B ko
Sso (14 [ Tallon’ong+5) (1 Hns1 [502)°

n+1, Hn+1] Hko

4.8.23)
E53),@29),653) - (

Sso ev PK2 (1 Tl ) (1F (D) o)
o<1, ({59

ﬁso oL (| F (D w)e)?.
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According to Theorem we write the term P, in (4.8.18) as

Py = —I(Ly Ty — I)ILF(U,) = —PY — — pt

n,w "’

PY = ILPO)ILF(Uy), Paw = HnPw(zn)Hn]-"(Un) , Pl = L P (o)L F(Uy) -

Moreover, by (4.2.8)), we have that

ko,v ko,v ry ko,
F @1, < PO, + T F OIS, e
o1 ko,v —by r7 ko,v o
K (|F ()50 + K> | F(Un) |50, )

which implies, together with ([£.8.6), (4.8.5)), (4.8.19), (4.8.20) and the bounds in Theorem [4.65]

the following estimates:

ko, ko,
|POFov < oo (| F (@) 200 [T F (T lsa o, (4.8.25)
k ko, ko,
+ (1 + [ Falr b)m)\lf( o) ooty T F (Ta) 50, )
k‘ 3 k ’
Ssotor 0 H|(Thy + T F(T) [Fo |TLF (T, sgton

— o o ko,v ,
Ssotor U KT (| F (D) [50)% + K27 | F(Un) 15056, 1F (T) [50)

— o — o — ko, U
Ssoton 0 KGT (| F(T)[50)7 4 v RETHHOI0 (@ [T 08, ) |F (D)5

| P80 Sopny 0Ky pa<1+\|an\|’:g;u<b 1o ITF (Tn) [,

Ssoror VK R I F (T0) 1502, Seorn v KRR F(T) |50, (4.8.26)
|PEall80 Ssoror v B T (Ta) o0, s+ (3050 L ey 0 0 | T (T 5550

Soo+o 0 KT F (D) a0y, + KA 2P S|t o I F () [0

Sooiby v’lKI‘l‘(b)”‘”’bl (e + [Wal20%,) - (4.8.27)

Now we estimate Ry in (4.8.18). By (4.4.5)), (4.4.6) and (4.8.15)), we note that, for H := (3, a),

(LaJI} — LN L)H = e [d X p(3), TIH]T

Thus, by Lemma [4.60{ and (4.2.8), we have the following estimate

1 1 k ko, ~ ko, ~iko,
H(Lally — T L) HEOY Sopny eK3 D (31500, + [Fal500 13150 (4.8.28)

Hence, by [@.8.18), [@.8.28), [@8.12), [@8.5), ([&8.6), [E8.19), ([E8.20) and cv~! < 1, we get

ko, ~ ko, ko,
| Rall¥0? Sapsmy & K0 (| Talln F ()[40, + 1 3aleoty, | Talla F (Ta) [ 200
ko, ~ ko,
Sogby KT HHOIT20 (e Y F(T) [0, + 2] 3a]1505,) (4.8.29)

— k
ooty Kéal+2u(b)+2 b1(€+ HWangli-b1)~
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We obtain, by [{#.8.17), ([%.8.23), (#.8.25)-([#8.27), ([#.8.29), (#-8.19), (£.8.20),

— = ko,
|F @ DI oo v KL e + [ Wal ggts,)

1K201+4 F ko,v 2K~ paKtTl F ko,v (4'8'30)
+v (IF ) ko)? + ev ™K, R KT F(Ua) 15

with pg := 401 4+ 2u(b) + 2. Moreover, we have the bound

ko, -81 ko, \- B ko,
[ 5o | H st YF(Uo)|Fore -1 (4.8.31)

so+b1 so+b1 ~so+br U so4o14+by Ssotbr €U,

whereas for Wn+l = Wn + Hpi1, n = 1, we have, by (4.8.21)),
= ko, _ = ko,
[Wast 5o, Ssoor v K70 (e 4 [Walso,) (4.8.32)

We extend Hy. 1, defined for A € Gui1, to Hny1 defined for all A € R x [K1, k2], with an equivalent
| |5Y-norm. Set U1 := Un + Hy 1. Therefore, by ([@.8.30), [#.8.31)), (#.8.32) and the induction
assumption, we conclude that (4.8.6)), (4.8.6) (4.8.9)), (4.8.10) hold true at the step n+ 1. Finally,
by (4.8.14), (4.4.6)), (4.4.7), Theorem and the induction assumption on Uy, we have that Jn, 1
satisfies and so I7H+1 is a quasi-periodic traveling wave. This concludes the proof. O

Proof of Theorem Let v = €, with 0 < a < ap := 1/(2 4+ 73). Then, the smallness
condition in holds for 0 < & < g¢ small enough and Theorem holds. By (4.8.7),
the sequence of functions Wn = ﬁn —(p,0,0,w) = (ﬁn,&n — w) converges to a function Wy, :
RY x [k1, k2] = HZ x H x H® x R”, and we define

Uoo = (Zw, Oéoo) = ((p’ O, O, U.)) + Ww .
The torus iy is reversible and traveling, i.e. (4.4.8) holds. By (4.8.6)), (4.8.7)), we also deduce

[Uso = UnllE% ooy < Cozv™ s [Uso = Dl 0 < Cev™ K7™, ¥n> 1. (48.33)

In particular (4.4.11)-($.4.12) hold. By Theorem [.95}(P2),, we deduce that F(X; Ux(N)) = 0
for any

Aeﬂgn—goﬂﬂA“ v B [ﬂA“zn1] [ﬂAgJ(Tnfl)]

neNp n>=1 n>1 n>1

where Gy := Q x [k1, k2]. To conclude the proof of Theorem it remains only to define the
u;?O in (4.4.13)) and prove that the set CY, in (4.4.15))-(4.4.17) is contained in Np>0G,. We first
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define
Goo = Go N [ N Aﬁ“(z’oo)] A [ N Aﬁ“’l(ioo)] . (4.8.34)

n=1 nx1

Lemma 4.96. Goo S Ny>0Gn, where G, are defined in (4.8.8)).

Proof. We shall use the inclusion property (4.7.27)), with S fixed in (4.8.3)). By (4.8.33)) we have

e(20) T C(S)NGH oo — o g 1oy < £(20) TS KETV Crev < v,
e(20) T C(S)NTH oo — Tai | sgruey < £(20) LOS) KL VO K% < v, Yoz 2,

since 73 > p(7 + 1) (by (4.8.5) and 72 > 71 = 7(ko + 1) + ko) and as > p(7 + 1) (see Remark

4.94). Therefore (4.7.27) implies A2V(ix) © AY(75_1), Vn = 1. By similar arguments we deduce
that 029 (ie) < AL (3a_ ). 0

Then we define the ,LL;O in (4.4.13), where m% := m3 (i), mP = my(icn), m¥ = mi (iee), with
3 2 2

2 2

ms,my,m1 provided in Proposition 4.83] By (4.7.16]), the sequence (tg-n) (10))nen, with tgn) given

by Theorem (S1), (evaluated at i = iy), is a Cauchy sequence in | - |¥-¥. Then we define

v 1= limp o tg-n) (i), for any j € S§, which satisfies |3 — tgn)(ioo)|k07“ < Cev™IN7? for any

n > 0. Then, recalling tg-o)(ioo) = 0 and (4.6.189)), the estimates (4.4.14) hold (here C' = C(S5)
with S fixed in (4.8.3))). Finally one checks (see e.g. Lemma 8.7 in [44]) that the Cantor set CJ,

in (4.4.15)-(4.4.18]) satisfies CY, € Gu, with Gy defined in (4.8.34), and Lemma implies that

C% S Maz0Gn. This concludes the proof of Theorem {.55




Chapter 5

Quadratic life span of periodic

gravity-capillary water waves

We consider the space periodic gravity-capillary water waver equations

ne = Gy + s
1/}3: (%% + G(nW)Q + IQ( Nz ) . (5'0'1)

b= —gn— 2+ S
V1+n2

2 2(1+n2)
The variable 7(t, ) denotes the free boundary of the two dimensional fluid domain D, defined
in (L.1.11), whereas (¢, z) is the trace at the free boundary y = n(t,z) of the generalized
velocity potential ®(¢,x,y) solving . Here g > 0 is the gravity, x > 0 is the surface
tension coefficient and G/(n) is the Dirichlet-Neumann operator G(1n)y) = (—=®znz + Py)|y—p(a)-
As observed by Zakharov [174], the equations are the Hamiltonian system in (1.1.31),

([T1.32)
The system obtained linearizing (5.0.1)) at the equilibrium (n, ) = (0, 0), namely

0 = G(0
! () (5.0.2)
oy =—(g— K.
The associated linear frequencies (see (|1.1.34)) are given by
Q) = Qugnli) 1= 1/ (552 + 9)G5(0), € Z\{0}. (5.03)

The main goal is to prove that, for any value of (k,g,h), kK > 0, the gravity-capillary water
waves system ([5.0.1) is conjugated to its Birkhoff normal form, up to cubic remainders that
satisfy energy estimates (Theorem [5.1), and that all the solutions of (5.0.1)), with initial data of

size € in a sufficiently smooth Sobolev space, exist and remain in an e-ball of the same Sobolev

195



196 CHAPTER 5. QUADRATIC LIFE SPAN FOR WATER WAVES

space up times of order e 2, see Theorem . Let us state precisely these results.

Assume that, for s large enough and some T > 0, we have a classical solution
i
(n,9) € CO[~T.T); Hy " x IT°77%) (5.0.4)

of the Cauchy problem for (5.0.1)). The existence of such a solution, at least for small enough T,

is guaranteed by local well-posedness theory, see the literature at the end of this chapter.

Theorem 5.1. (Cubic Birkhoff normal form) Let k > 0, g = 0 and h € (0, +oo] There
exist s » 1 and 0 < € < 1, such that, if (n,) is a solution of - satisfying (5.0.4) with

sup Ui = L+ lY] 1) <E, 5.0.5
SR (Il -} Il emy) < (5.0.5)
then there exists a bounded and invertible linear operator B(n, ) : +4 x H" 1 — H9 which

depends (nonlinearly) on (n,1), such that

B B - <
H (n7w)|‘£(Hg+%st_%’Hs) + H( (77’71))) H,C(HS Hs+% XHS_%) (5 0 6)
1+ C(s)(|In] pd 191 1)
and the variable z :== B(n,Y)[n, Y] satisfies the equation
0z = QD)2 +10-HDp (2,2) + X, (5.0.7)

where:

1. QD) is the Fourier multiplier with symbol defined in (5.0.3|) and 0z is defined in (5.4.3));

2. the Hamiltonian Hg\)m(z,?) has the form

(3) =) — 102,08 E
HBNF(Z7 Z) - Z H;::]Z?.jgd Z.jq-ll Z]q; Z]q; (5 O 8)
o1j1+02j2+02j3=0,0=14, o
o1Q(j1)+028(j2) +032(j3)=0,5;€Z\{0}

where Z;_ = zj, z; :=7; and z; denotes the j-th Fourier coefficient of the function z (see

(5.1.2) ), and the coefficients

Aj2)
01,02,03 ,__ )

Hjl,jz,jg : 8\/7 (010331]3 + G5, (0)Gjy (0)) AGDAGs) (5.0.9)

with A(j) defined in (5.2.2) and G;(0) := jtanh(hj);
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8. XIy = XZ;(n, 0, 2,%) satisfies | X, < C(s)|z|%,, and the “energy estimate”

HHS—%

Ref DA%, - Dz dz < C(s)|| 2], - (5.0.10)
T

The main point of Theorem is the construction of the bounded and invertible transforma-
tion B(n,v) in (5.0.6) which recasts the irrotational water waves system (5.0.1]) in the Birkhoff
normal form (|1.1.38]), where the cubic vector field satisfies the energy estimate ((5.0.10]).

For general values of gravity, surface tension and depth (g, k,h), the “resonant" Birkhoff
normal form Hamiltonian H](B%\)IF in ((5.0.8]) is non zero, because the system

o19Q2(j1) + 029Q(j2) + 03Q2(j3) = 0, o1j1 + o2j2 + 0353 =0, (5.0.11)

for o; = £ , may possess integer solutions ji, j2,j3 # 0, known as 3-waves resonances (cases
with absence of 3-waves resonances are discussed in remark . The resonant Hamiltonian
H](Bgi\)m gives rise to a complicated dynamics, which, in fluid mechanics, is responsible for the
phenomenon of the Wilton ripples. Nevertheless we are able to prove the following long time

stability result.

Theorem 5.2. (Quadratic life span) For any value of (k,g,h), K > 0, g = 0, h € (0, +0],
there exists s > 0 and, for all s = sg, there are ¢ > 0, ¢ > 0, C > 0, such that, for any

0 < € < €g, any nitial data

+3 te 1 .
(0, 0) € Hy *(T,R) x H*"4(T,R)  with o .oy + [0l oy <, (5.0.12)
0

there ezists a unique classical solution (n,v) of (1.1.30) belonging to

1
s+

CO([—TS,TS],HO (T, R) x Hs*i(’JI‘,]R)> with T, > ce 2,
satisfying (n,%)|,_, = (n0,%0). Moreover

0 (0l + ) < O (5013

The rest of this chapter concerns the proof of Theorem [5.1] and Theorem [5.2] In Section
the paradifferential calculus of [37] is recalled, in particular the definitions and main properties
of paradifferential symbols, smoothing operators and multilinear maps. In Section we state
the paralinearization in complex form and the paradifferential reduction to constant symbols up
to smoothing operators of system as proved in [37]. In Section the paralinearized
reduced system is transformed into its quadratic Poincaré-Birkhoff normal form and we show

that there are only finitely many 3-waves interactions between the Fourier modes. In Section
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we perform the normal form uniqueness argument and then we prove the energy estimates
required for Theorem

5.1 Functional Setting and Paradifferential calculus

In this section we recall definitions and results of para-differential calculus following Chapter 3

of [37], where we refer for more information. In the sequel we will deal with parameters
szsog»> K>»p>»1.

Given an interval I < R, symmetric with respect to t = 0, and s € R, we define the space
CE(I, H(T,C?)) := N, C*(I; H* 2¥(T; C?)) endowed with the norm

sup [U(t,-)|k.s  where [U(t,-)]x.s := lef?t

s—ék
tel H

With similar meaning we consider CX (I; H5(T;C)). We denote by CﬁR(I,HS(T,(@)) the sub-
space of functions U in CX (I, H5(T,C2)) such that U = (#). Given r > 0 we set

BE(I;r) = {U e CK(I,F*(T;C2)) : sup |U(t, )| x.s < r}. (5.1.1)
tel

We expand a 27-periodic function u(x), with zero average in x, (which is identified with u in the

homogeneous space), in Fourier series as

) J u(z)e " dx . (5.1.2)
nezZ\{0} V2r T

+

We also use the notation u; := u, := @(n) and u,, := U, := 4(n). We set u*(z) := u(z) and

u (x) := u(x).
For n € N* := N~ {0} we denote by II,, the orthogonal projector from L?(T;C) to the

inxz ~ —inx

subspace spanned by {e"® e7"*} ie. (Il u)(z) := u(n)f/ﬂ + u(—n)‘eﬁ7 and we denote by

I1,, also the corresponding projector in L*(T,C?). If U = (Uy,...,U,) is a p-tuple of functions,
i = (ni,...,np) € (N*)P, we set Izl := (Il,, Uy, ..., 11, Up).

We deal with vector fields X which satisfy the x-translation invariance property
Xomp=moX, VOeR, where 7:u(x)— (1pu)(z):=u(x+0).

Para-differential operators. We first give the definition of the classes of symbols, collecting

Definitions 3.1, 3.2 and 3.4 in [37]. Roughly speaking, the class fZL contains homogeneous symbols
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of order m and homogeneity p in U, while the class I'}? ., , contains non-homogeneous symbols
of order m which vanish at degree at least p in U, and that are (K — K')-times differentiable in
t.

Definition 5.3. (Classes of symbols) Let m € R, p, N € N with p < N, K, K’ in N with
K' < K,r>0.

(1) p-homogeneous symbols. We denote by f‘gl the space of symmetric p-linear maps from
(H®(T;C2))? to the space of C® functions of (z,¢) € TxR, U — ((x,€) — a(Ud; z,£)), satisfying
the following. There is p > 0 and, for any «, 8 € N, there is C' > 0 such that

p
0907 a(Mlatds 2, €)| < Clii|* &)™ P | | I, Uy | 12 (5.1.3)
j=1

for any U = (Uy,...,Up) in (H®(T;C?))?, and 7 = (ny,...,n,) € (N*)P. Moreover we assume
that, if for some (ng,...,np) € N x (N*)P Il a(Il,, Uy, ... I, Up;-) # 0, then there exists a
choice of signs o, ...,0, € {—1,1} such that Z?:o ojn; = 0. For p = 0 we denote by 1:81 the
space of constant coefficients symbols £ — a(§) which satisfy with a = 0 and the right

hand side replaced by C{&)™ #. In addition we require the translation invariance property
a(r;z,8) = all;2 4+ 60,8), VOeR. (5.1.4)

(¢4) Non-homogeneous symbols. Let p > 1. We denote by I'} 1, [r] the space of functions
(Ust,x,§)—a(U;t, x,§), defined for U € Bg([; r), for some large enough s, with complex values
such that for any 0 < k < K — K/, any o > sg, there are C > 0, 0 < r(0) < r and for any
Ue BE(I;r(0)) n CHE (I H(T;C?)) and any «, 8 € N, with o < o — 59

|oFasofa(Ust,2,€)] < CO™PNUL or o IU ks k67,0 - (5.1.5)

(i47) Symbols. We denote by XI'% r, [r, N] the space of functions (U,t,,£) — a(U;t,z,§)
such that there are homogeneous symbols a, € 1:;", q=p,...,N—1, and a non-homogeneous

symbol ay € F%’K,VN[’I“] such that a(U;t,z,§) = Zé\[;pl aq(U,...,U;z,&) + an(U;t,z,£). We

denote by XI'% r [r, N] @ M2(C) the space 2 x 2 matrices with entries in XT'g ;. [r, N].

As a consequence of the momentum condition (5.1.4) a symbol a; in the class IN“T, for some

m € R, can be written as

a(Uiz,&) = D (a)](Eue” (5.1.6)

JEZ\{0}, 0=+

for some coefficients (a1)7 (§) € C, see [39].

Remark 5.4. A symbol a1 € IN“E” of the form (5.1.6)), independent of z, is actually a; = 0.
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We also define classes of functions in analogy with our classes of symbols.

Definition 5.5. (Functions) Fix N;p e N with p < N, K, K’ € N with K/ < K, r > 0. We
denote by ]-'p, resp. Fx i plr], XFp[r, N], the subspace of F , resp. Fg[r], resp. Efg[r, N],
made of those symbols thich are independent of £. We write }" , Tesp. .7-"}1%’ K,J)[r], E]—?} [r, N,
to denote functions in Fp, resp. Fg g7 p[r], Fp[r, N], which are real valued.

Paradifferential quantization. Given p € N we consider functions x, € C°(R? x R;R) and

X € C*(R x R;R), even with respect to each of their arguments, satisfying, for 0 < § « 1,

supp Xp © {(§,€) e R? xRy || < 6O}, xp(§,8) =1 for [¢] < 6(5)/2,
supp x < {(§,6) € R x R; [¢'] < 65} X(§,8) =1 for [¢] <6(5)/2.

For p = 0 we set xo = 1. We assume moreover that |6?6€B,Xp(£',£)| < Coé”3<§>*a*w|, VaeN, B e
NP, and 0205 x (€', €)] < Ca (677, Va, Be N.

If a(z,&) is a smooth symbol we define its Weyl quantization as the operator acting on a
27r-periodic function u(z) (written as in (5.1.2)) as

ikx

Op" (a)u = mé(ﬁ% —j7 )ﬁ(]))m (5.1.7)

where a(k, &) is the k" —Fourier coefficient of the 2r—periodic function z +— a(z, €).

Definition 5.6. (Bony-Weyl quantization) If a is a symbol in fg‘, respectively in F?’K,m[r],

we set

ay, Uz, 8) = Y xp (71, 8) a(llzl; 2, £),

eNP
1 o
(Uit €) = 5o | X (€16) aUit. €. ag,

where in the last equality a stands for the Fourier transform with respect to the x variable, and

we define the Bony- Weyl quantization of a as
Op"W(a(U;-)) = Op" (ay, U;-)),  Op"W(a(U;t,-)) = Op" (ay(Ust, ).

If a is a symbol in XI'g  [r,N], we define its Bony-Weyl quantization 0pEWV(a(U;t,-)) =
S0P (ag(U,. .., Us ) + OpPW(an (Ust, ) .

Paradifferential operators act on homogeneous spaces. If a is in EFTI@, K,}p[r, N], the corre-
sponding para-differential operator is bounded from H?® to H*~™, for all s € R, see Proposition
3.8 in [37].

Definition is independent of the cut-off functions x,, x, up to smoothing operators that
we define below (see Definition 3.7 in [37]). Roughly speaking, the class ﬁ; ? contains smoothing
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operators which gain p derivatives and are homogeneous of degree p in U, while the class R;{p K' p
contains non-homogeneous p-smoothing operators which vanish at degree at least p in U, and
are (K — K')-times differentiable in ¢.

Given (ng,...,np11) € NP*1 we denote by maxa(ni,...,n,.1) the second largest among the

integers my,...,Npy1.

Definition 5.7. (Classes of smoothing operators) Let N € N*, K, K’ € Nwith K’ < K € N,
p=0andr>0.

(i) p-homogeneous smoothing operators. We denote by ﬁ;p the space of (p + 1)-linear
maps R from (H®(T;C2))? x H*(T;C) to H®(T;C), symmetric in (Uy,.. ., Up), of the form
(Ui,...,Ups1) = R(Uy,...,U,)Up,y1 that satisty the following. There are o > 0, C' > 0 such

that
maXQ(nl n+1 p+1
MLy RO, Ut |12 < O s HHHnJUHLQ

for any U = (Uy,...,U,) € (H®(T;C2)?, Uyyy € HP(T;C), 7 = (n1,...,n,) € (N*)P, any

no, np+1 € N*. Moreover, if
o R(ILy, Uy, .o I Up) Iy, Up 1 # 0, (5.1.8)

then there is a choice of signs oy,...,0p+1 € {£1} such that Efié ojn; = 0. In addition we

require the translation invariance property
R(roU)[moUp+1] = 70 (R(U)UPH) , VOeR. (5.1.9)

(ii) Non-homogeneous smoothing operators. We denote by R;(f’K,’N[r] the space of maps
(V,U) = R(V)U defined on BE (I;r) x CE(I, H®(T, C)) which are linear in the variable U and
such that the following holds true. For any s > sg there are C' > 0 and r(s) €]0, r[ such that, for
any V € BE(I;r) n CE(I, H3(T,C?)), any U € CE(I, H(T,C)), any 0 < k < K — K’ and any

t e I, we have

10E RONUY () s < D3 CLIU VIR 0
Kk =k (5.1.10)

0o IV I e IV 4105 ) -

(iii) Smoothing operators. We denote by ZRK Kk pl7s N] the space of maps (V,t,U) —
R(V;t)U that may be written as R(V;t)U = ZN 'R (V VYU + Rn(V;t)U for some Ry in
Rq ,q=p,...,N—1and Ry in RK,K’,N[ r].

We denote by ERK k1 |7 N1 ® M2 (C) the space of 2 x 2 matrices with entries in the class
ZRI_(,K’,p[rvN]'
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Below we introduce classes of operators without keeping track of the number of lost derivatives
in a precise way (see Definition 3.9 in [37]). The class Mvm denotes multilinear maps that lose m
derivatives and are p-homogeneous in U, while the class M K Jc' p COntains non-homogeneous maps
which lose m derivatives, vanish at degree at least p in U, and are (K — K’)-times differentiable

in t.

Definition 5.8. (Classes of maps) Let p, Ne N, withp < N, N > 1, K, K’ e Nwith K’ < K
and m = 0.

(i) p-homogeneous maps. We denote by /\A/l/g”‘ the space of (p + 1)-linear maps M from

(H*(T; C?))Px H*(T; C) to H®(T; C) which are symmetric in (U3, . . ., U,), of the form (Uy, ..., Upi1) —

M(Uy,...,Up)Ups1 and that satisfy the following. There is C' > 0 such that

p+1
[T M (Tl L, Upst 2 < Clng +na + -+ -+ 1p41)™ | [ [, U2

for any U = (Un,...,Up) € (H®(T; C?))P, any Ups1 € H®(T;C), @ = (ny,.. ., np) in (N*)P any
no, np+1 € N*. Moreover the properties — hold.

(ii) Non-homogeneous maps. We denote by MF x, y[r] the space of maps (V,u) —
M(V)U defined on BE(I;r) x CK(1, H®(T,C)) which are linear in the variable U and such
that the following holds true. For any s > sg there are C' > 0 and r(s) €]0, [ such that for any
V e BE(I;r) n CK(1, H5(T,C?)), any U € CK(I, H%(T,C)), any 0 < k < K — K', t € I, we
have that [|of (M (V)U) (¢, )H «~3k—m is bounded by the right hand side of (6-1.10).

(iii) Maps. We denote by EME g plr, N1 the space of maps (V,¢,U) — M(V;t)U that
may be written as M(V;t)U ZN 1M( SWVU + My(V;t)U for some M, in ./\72”,
qg=mp,...,N—1and My in ME 1 y[r]. Flnally we set Mp = umgo/?/l/;%, Mg g plr] =
Umz0ME g1 o[1] EMK i p[r, N] = Umz0EME 10 1]

We denote by EM%K,JD[r, N]® M3(C) the space of 2 x 2 matrices whose entries are maps
in EMR g [r N|. We set SM g v p[r, N] @ M2(C) 1= UnmerEME 1 [r, N] @ M2 (C).

Given an operator Ry in ﬁl—P (or in M{”), and 292, o9 = +, the momentum condition ([5.1.9)
implies that
R(U)[z7] = D) (R)Jugzfzellonintoi)e (5.1.11)
J1,52€Z\{0},01==%

for some (R1)7!72 € C, see [39].

Proposition 5.9. (Compositions) Let m,m' € R, N, K, K' € N with K’ < K, p1,p2,p3 € N,
p=0andr >0 LetaeXIRp [rN], Re IR  [rN] and M € EMKK,p3[7“,N].
Then:

(i) R(U:1) 0 OpP™ (a(Ust, 2, 6)), OpBW (a(Ust,,)) 0 R(U: ) are in SRIZE™ . [r, N1
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(1) R(U;t) o M(U;t) and M(U;t) o R(U;t) are smoothing operators in ZRI_{{JI—ETZ;HU:s [r, N];

(1i1) If Ry € 7%;1”, p1 =1, then Ry(U,..., U, M(U;t)U) belongs to ZR[_(?;(_ZLH"‘PB [r, N].

p1—1

Proof. See Propositions 3.16, 3.17 in [37]. The translation invariance properties for the composed

operators and symbols in items (i)-(ii) follow as in [39)]. O

Real-to-real operators. Given a linear operator R(U)[-] acting on C (it may be a smoothing

operator in ER;fK, , or a map in XM v 1) we associate the linear operator defined by
R()[v] := R(U)[v], VYwveC.

We say that a matrix of operators acting on C? is real-to-real, if it has the form

R(U) = R (U) Ra(U) (5.1.12)
Ry(U) Ri(U)) h

If R(U) is a real-to-real matrix of operators then, given V = (%), the vector Z := R(U)[V] has

the form Z = (g), i.e. the second component is the complex conjugated of the first one.

Given two linear operators A, B (either two operator-valued matrices acting on C? as in
(5.1.12)), we denote their commutator by [A, B] = AB — BA.

e The notation A <; B means that A < C(s)B for some positive constant C(s) > 0.

5.2 Paradifferential reduction to constant symbols up to smooth-
ing operators

The first step in order to prove Theorem is to write (5.0.1) in paradifferential form, to

symmetrize it, and reduce to paradifferential symbols which are constant in z, see Proposition

5.11] These results are proved in [37] (up to minor details). We denote the horizontal and vertical

components of the velocity field at the free interface by

V= V(Ua ¢) = (%‘I))(Z’a??(x)) =y — B,

B = B(.6) = (0,0 n(a)) = 0TI

and the “good unknown” of Alinhac

w = 1) — Op"V(B(n, ), (5.2.1)
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as introduced in Alazard-Metivier [7]. The function B(n,v) belongs to E]-"%O’l[r, N], for any
1
N > 0 (see Proposition 7.4 in [37]). Then, by the action of a paraproduct, if n € Hg+4 and

(NS 577 then the good unknown w is in i,

Define the Fourier multiplier A of order —1/4 as

=

A= A(D) := (Dtanh(hD))? (g + kD?) (5.2.2)
and consider the complex function
Lw g At L A —m) LA ) (5.2.3)
U= —Aw+ — , =—Au—1), w=— U+u 2.
vt T T V2

where A1 acts on functions modulo constants in itself.

Let K € N. We first remark that, if (n,¢) solves the gravity-capillary system (5.0.1)), then
the function u defined in satisfies, by Proposition 7.9 in [37], for s » K, as long as u stays
in the unit ball of H*(T,C),

HﬁquHs—%k SS,K HUHHé ’ VOsk<K. (52'4)
As a consequence, if ((5.0.5)) holds then

sup Hé’quHs_%k <COyxe, VOSE<K. (5.2.5)
te[-T,T]

Proposition 5.10. (Paradifferential complex form of the water waves equations) Let
N,K € N*, p > 0. Assume that (n,1) solves the gravity-capillary system (5.0.1) and satisfy
(5.0.5) for some T > 0 and s » K. Then the function U := (%), with u defined in (5.2.3)), solves

DU = QUD)EU + Op®W(A(U;t,2,6))U + RU; U, E:=[} %], (5.2.6)

where Dy 1= %&g and:

~3
o Q(D) = OpPWY(Q(¢)) where Q&) € T is the dispersion relation symbol

QUE) 1= Qugn(€) 1= (IE + gle]) (tamh(nlé)) (5.2.7)
e the matriz of symbols A(U;t,x,&) € ZF}(’M[T, N]® M3(C) has the form
A(U; t,z,8) = (C(U;t, x)QE) + )\%(U;t,x, ))[(1) _01]
+ (C(Ust, 2)E) + A_1 (Ust,2,9))[] '] (5:2.8)
+ )‘1(U;t>x7€)[(% (1]] + )‘O(U’tvl" )[(1)(1J
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where:

— the function ((U;t,x) is in 2.7:}1%0’1[7", N];

— the symbols \;(U;t,z,§) are in ZF;H A NY, 7 =1,0,1/2,-1/2, and SN\;(U;t,z,§)
are in Zlﬂ;il[r, N] for j =1,1/2;

the matriz of smoothing operators R(U;t) is in ER;('?LI[T, N]® M2(C);

the operators iOpPY (A(U;t,x,€)) and iR(U;t) are real-to-real, according to (5.1.12).

Proof. 1t is Corollary 7.7 and Proposition 7.8 in [37]. The only difference is that U(z) is not even
in z. The property that the homogeneous components A,(U;t,x,&), Ry,(U;t), p=1,...,N, of
the matrices A(U;t, z,§), R(U;t) satisty (5.1.4) and (5.1.9) is checked as in [39]. O

System ([5.2.6) has the form
DU = QD)EU + M(U; t)U (5.2.9)

where M (U;t) is a real-to-real map in XM7Y | [r, N] ® M2(C) for some m; > 3/2 (using that
paradifferential operators and smoothing remainders are maps, see (4.2.6) in [37]).
As in [37], since the dispersion law (5.2.7)) is super-linear, system (5.2.6) can be transformed

into a paradifferential diagonal system with a symbol constant in z, up to smoothing terms.

Proposition 5.11. (Reduction to constant coefficients up to smoothing operators) Fiz
p > 0 arbitrary. There exist so > 0, K' := K'(p) such that, for any s = sg, for all 0 < r < ro(s)
small enough, for all K > K' and any solution U € BX(I;r) of , there is a family of
real-to-real, bounded, invertible linear maps F°(U), 6 € [0,1], such that the function

Z:= (%) = @ (U))p=1[U]
solves the system
D, Z = Op®WV ((1 + {(U; )QEE + H(U;t,€)) Z + R(U; 1) [ 2] (5.2.10)
where:

e the function ((U;t) € Z]-"%K,?l[r, N] and the diagonal matriz of symbols H(U;t,£) €
ZF}(’K,J[T, N]® M3(C) are independent of x;

o the symbol SH(U;t,&) belongs to EF%K,’I[T‘, N]® M2(C);

o the operators iOpEY (H(U;t,€)) and iR(U;t) are real-to-real, according to (5.1.12);
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o the map F°(U) satisfies, for all 0 <k < K — K', for any V € C’ﬁ{K'(I; H*(T; C2)),

1053 @IV g + 1F G (U)) VI < WVlks(1+ CorxlUlkso)  (5:2.11)

Frs—3k

uniformly in 0 € [0,1]. Moreover the map F°(U) = U + My (U)[U] + M=2(0; U)[U] where
My(U) is in My ® M3(C) and M=2(6;U) € M g1 2[r] @ Ma(C) with estimates uniform
in 6 €0,1].

Proof. This statement collects the results of Propositions 4.9, 5.1 and 5.5 in [37]. The remainder
in (5.2.9) in [37] has the form expressing U = (S’G(U))‘*elle and using the estimates
(5-2.11)), which follow by Lemma 3.22 in [37]. Another difference is that Z(z) is not even in x.
The z-invariance properties for the symbols and for the smoothing operators are
checked as in [39]. The last statement follows using Lemma A.2 in [39). O

5.3 Poincaré - Birkhoff normal form at quadratic degree

From this section the analysis strongly differs from [37].

e Notation: for simplicity in the sequel we omit to write the dependence on the time ¢ in
the symbols, smoothing remainders and maps, writing a(U;z, &), R(U), M(U) instead of
a(U;t,z, &), R(U;t), M(U;t).

The aim of this section is to transform system (5.2.10)) into its quadratic Poincaré-Birkhoff
normal form, see system (5.3.9). We first observe that the paradifferential vector field in (5.2.10)

of quadratic homogeneity is actually zero.

Lemma 5.12. (Quadratic Poincaré-Birkhoff normal form up to smoothing vector
fields) The system (5.2.10) with N = 2 has the form

0Z = iQD)EZ + Ry (U)[Z] + X=3(U, Z) (5.3.1)
where R1(U) € ﬁl_l’ ® M2(C) and

Xos(U, Z) = i0pPWY (H=2(U;€)) Z + Raa(U)[Z] (5.3.2)

where Hx=2(U;€) € F%QK, o[r] ® M2(C) is a diagonal matriz of symbols independent of x, such

that
SH=2(Us€) € T gr o[r] @ M2(C), (5.3.3)

and R=2(U) € R ,[r] @ M3(C). The operators Ri(U) and X-3(U, Z) are real-to-real.
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Proof. We expand in homogeneity the function {(U) = (1(U) + (=2(U), (1 € FR_ the diagonal
matrix of symbols H(U; &) = Hy(U;€) + Hxo(U;€), Hi(U;€) € I ® My (C), and the smoothing
remainder R(U) = —iR1(U) — iR=2(U), R1(U) € ﬁ;p ® My(C). Since the function ¢1(U) and
H,(U;¢) admit an expansion as and are independent of x (see Proposition [5.11)), Remark
5.4] implies that ¢ (U) = 0, H1(U;&) = 0. This proves (5.3.1)-(5.3.3). O

System (5.3.1)) is yet in Poincaré-Birkhoff normal form at degree 2 up to smoothing remainders

and the cubic term 2?23 in (5.3.2) admits an energy estimate as (5.0.10)), since Hxo(U;§) is
independent of 2 and purely imaginary up to symbols of order 0, see (5.3.3)).

The goal is now to transform the quadratic smoothing term Ry (U)[Z] in to Poincaré-
Birkhoff normal form at degree 2, see Definition The remainder Ri(U) in (5.3.1)) is real-to-
real (i.e. has the form (5.1.12)), satisfies the momentum condition (5.1.9)), thus it has the form
(5.1.11), and so we write it as

()
mll) = (<R1<U>>

(R1(U))
(R1(U))=

7

) RO e R, (R(U)F = (Ra(U))F (5.3.4)

I+ ++

for 0,0’ = +. For any 0,0’ = + we expand

R1(U))7 = > Ree(U))T (5.3.5)

e=+

where, for € = £, and (Ry(U))7 € 7%;” is the homogeneous smoothing operator

[

EF == B (3 Evgf e (5.3.6)

JEZN{0}  keZ\{0}

with entries

! ]_ /
RO =—= D (ri)lfu,, j.keZ\{0}, (5.3.7)
! v 2m neZ\{0}

en+o'k=0j

for suitable scalar coefficients (rl,e)Z’Z/ e C. The restriction en+o’'k = o is due to the momentum

condition.

Definition 5.13. (Poincaré-Birkhoff Resonant smoothing operator) Given a real-to-
real, smoothing operator Ri(U) € R;” ® My(C) as in (5.3.4)-(5.3.7), we define the Poincaré-
Birkhoff resonant, real-to-real, smoothing operator R}*(U) € 7%1_’) ® M3 (C) with matrix entries
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( 1i‘f(U))Z,Jk defined as in (5.3.7)) such that, for any €,0,0" = £, j, k € Z\{0},

’ 1 ’
7k s €
( ieS(U))Z] = Von 2 (rl,e);‘l; Uy, - (5.3.8)
T neZ\{0} ,en+o’'k=0j
o Q(j)—o'Q(k)—eQ(n)=0
In the next Proposition we conjugate (5.3.1) into its complete quadratic Poincarée-Birkhoff

normal form.

Proposition 5.14. (Quadratic Poincaré-Birkhoff normal form) There exists pg > 0 such
that, for all p = po, K > K' with K' := K'(p) given by Proposition there exists sg > 0
such that, for any s > so, for all 0 < r < ro(s) small enough, and any solution U € BE(I;r) of
the water waves system , there is a family of real-to-real, bounded, invertible linear maps
e (U), 0 € [0,1], such that, if Z solves (6-3.1), then the function

Y= (3) = @W)[2])jp=1

solves
oY =iQD)EY +R®(Y)[Y] + A=3(U,Y) (5.3.9)

where:

e E is the matriz in (5.2.6) and Q(D) has symbol (5.2.7));

e RI®(Y) e 7%1_(’)_’)0) ® My(C) is the real-to-real Poincaré-Birkhoff resonant smoothing oper-
ator introduced in Definition [5.13;

o Xo3(U,Y) has the form

X2, (UY)
LU = Giam

=

) == 10pPY (oo (U3 €))[Y] + R (U)[Y] (5.3.10)

where H=2(U;€) is defined in (5.3.2) and satisfies (5.3.3), while R=2(U) is a matriz of
real-to-real smoothing operators in R;é';;,go)[r] ® My (C);
o the map ¢O(U) satisfies, for any 0 <k < K —K', V e Cﬁ{K,(I; H3(T; C?)),
10r IV eegie + 10F (7)) HV]
k,s(l + Cs,r,KHU|

H 3 s—é
H*m2" (5.3.11)

<[V Ks0) T Cor ik [VIkso Ul s 5

uniformly in 0 € [0,1]. Moreover the map €/ (U)[V] = V + M (U)[V] + M=2(0;U)[V]
where My(U) is in M; @ My(C) and Msy(6;U) € M g1 2[r] ® Mo(C) with estimates
uniform in 0 € [0, 1].
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In order to prove Proposition we first provide lower bounds on the “small divisors” which

appear in the Poincaré-Birkhoff reduction procedure.

5.3.1 Three waves interactions

We analyze the possible three waves interactions among the linear frequencies (5.2.7)). We first

notice that they admit an expansion as

Q(n) = +/|n[tanh(b|n|)(g + £n2) = V&[n|2 +1(n), |r(n)] < C|n| 2 (5.3.12)

for some constant C' := C(k, g,h) > 0.

Lemma 5.15. (3-waves interactions) There exist ¢, C > 0 such that for any nq,na, ng € Z\{0},
0,0’ =+, such that

—_—

ni+ong+ao'ng =0, (5.3.13)

and max(|n1|, [n2|, |n3|) = C, we have
|n1) + 0Q(ng) +0'Q(n3)| = c. (5.3.14)

If max(|nq|, |n2l, |ns|) < C, then, either the phase Q(n1) + oQ(ng) + o’Qns) is zero, or (5.3.14)
holds.

Proof. If 0 = o/ = + then the bound is trivial for all ny, no,ng € Z\{0}. Assume o = —
and ¢’ = — (the cases (0,0') = (+,—) and (0,0’) = (—, +) are the same, up to reordering the
indexes). Then, by (5.3.13), we have n1 = ny + ng and we may suppose that |ni| = |nal, |ns|,
otherwise the bound is trivial. Without loss of generality we assume n; > 0, thus, also
ng and ng are positive. In conclusion we assume that nqy > ng = n3 > 1. By ,

|Q(n1) — Q(ng) — Q(n3)| = |Q(n2 + ng) — Ane

Nnjw ~—

> k((n2 + ng)% —ni — né) - (5.3.15)
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Now
5 3 8, ) ) 3 3
3 3 _ 2 2 _ 20y 2
(ns + ns)% S B (ng +n3)® — (ng + n3§) _ 3(nsns + njn3) . 2n;3 23
(n2 +n3)2 +n3 +nj (n2 +n3)2 +n3 +nj
_ 9(n3n3 + ngn3)? — Aninj 1
- - 3 3 3 3
(ng +73)2 +n2 +n2 3(ndng +ngn2) + 2n2nl
_ 9(nan3 + n3ni) + 14n3n3
3 3 3 3
((n2 + ng)% +n3 +n3)(3(ndnz + nan3) + 2n3ni)
9 no
> Y2 5.3.16
16(1++v2)Y 7 5 ( )
using that ne = n3 = 1. By (5.3.15) and (5.3.16)) we deduce that the phase
NG 3C NG
Q -0 -0 = \/no(— — = _— 5.3.17
| (nl) (7”L2) (’IZ3)| 712( 5 m) n2 10 ( )

if nons = (30C)?%/k, in particular, since n3 > 1, if
no = 01 = (30C)2//€.

Recall that ny = ng + ng < 2ny. Therefore ng > n1/2 and we conclude that

ny = max(nl,ng,ng) = 201 = ng = Cl — |Q(n1) — Q(ng) — Q(n3)| = 4/Nno

—
Sl%

For the finitely many integers ny, no, ng satisfying max(|ni|, |na|, |n3|) < C:= 2C] such that the
phase Q(n1) — Q(na) — Q(ns3) # 0, the lower bound ((5.3.14)) is trivial. O

Remark 5.16. The constant C(k,g,h) in (5.3.12)) is bounded by c¢(y/kh~2 4+ g '/2), for some
constant ¢ > 0 independent of k, g,h. Then, there are hg, kg such that, if h > hg, kK > kg, then
(5.3.17) holds, for all ny,na,n3 € Z\{0}. As a consequence there are no 3-waves interactions, i.e.

(5.3.14) holds for all ny,ng, ng € Z\{0}.

Note that, for some values of the parameters (k, g,h), there could be 3-waves interactions.

5.3.2 Poincaré-Birkhoff normal form of the smoothing quadratic terms

In order to prove Proposition we conjugate (5.3.1)) with the flow

09 (U) = G (U)e(U), ¢%(U)=1d, (5.3.18)
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with an operator G1(U) in ﬁfp ® M3(C), of the same form of Ry (U) in (5.3.4)-(5.3.7), to be
determined. We introduce the new variable Y := (¥) = (¢/(U) [Z])‘

6=1

Lemma 5.17. IfG(U) € 7%;'0 ® M3 (C) solves the homological equation
G1(iQUD)EU) + [61(U),iUD)E| + R (U) = RI®(U), (5.3.19)
where R1®(U) is the Poincaré-Birkhoff resonant operator in Definition then
6,Y =iQ(D)EY + R (U)[Y] +1i0p®W (H>2(U; €)Y + Rx2(U)[Y] (5.3.20)
where H=2(U; &) is the same diagonal matriz of symbols in and R=2(U) is a real-to-real

smoothing operator in R L5 [r] ® Ma(C) with my > 3/2 (fived below (5.2.9)).

The flow map €%(U) in (5.3.18)) satisfies (5.3.11) and €°(U) = U+OM(U)[U]+M=o(0; U)[U]
where My(U) is in My ® M3(C) and M=2(6;U) € M g1 2[r] @ Mao(C) with estimates uniform
in 6€]0,1].

Proof. Since G1(U) is a smoothing operator then the flow in is well-posed in Sobolev
spaces and satisfies the estimates , as well as the last statement, by e.g. Lemma A.3 in
[39]. To conjugate we apply the usual Lie expansion up to the first order (see for instance
Lemma A.1 in [39]). Denoting Adg, := [Gi, |, we have

eH{U)QUD)EE (U))™ = UD)E + [61(U), UD)E]

+ Jol(l — ) (U)ALG, (1) [AUD)EN(C"(U)) a0 (5.3.21)

Using that G1(U) belongs to ﬁl_p ® My(C), Proposition and (5.3.11)), the integral term in

3

(5.3.21)) is a smoothing operator in R;(p;% [7] ® M3(C). Similarly, we obtain
cHU)OP™W (H=2(U: ))(€H(U)) = Op™ (H=2(U5€))
43
up to a matrix of smoothing operators in R KP;FQ [7] ® M2(C). Finally

¢H(U)(R1(U) +R=2(U)) (1 (U)) ! =Ry (V)

plus a smoothing operator in R, 7y, ,[r] ® M2(C).

Next we consider the contribution coming from the conjugation of ¢,. Applying again a Lie
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expansion formula (see Lemma A.1 in [39]) we get

et U) (e U) ™t = 6,6, (U) +

%[Gl(U), 2,61 (U)] + % Eu — )2 (U) A2, 1, [1G1 (U)] (€(U)) "6 (5.3.22)
Recalling we have
0,61(U) = G1(iQD)EU + iM(U)[U]) = 61(i(D)EU) (5.3.23)

up to a term in ’R;(p;g,ng [r] ® M2(C), where we used Proposition By (5.3.23)), the fact that

G1(IQ(D)EU) is in ﬁl_p+(3/2) ® M3(C) and (5.3.11)), we deduce that the term in (5.3.22)) belongs
to SR s [r, N]® Ma(C). Collecting all the previous expansions, and using that G;(U) solves

(15.3.19)), we deduce ([5.3.20]). O

We now solve the homological equation ((5.3.19]).

Lemma 5.18. (Homological equation) Consider Ri(U) appearing in Lemma and recall

its expansion (5.3.4)-(5.3.7)). Let G1(U) be an operator of the form (5.3.4)-(5.3.7) with coefficients

/
o,0’ (rlﬁ)Z:Z

(8Le)pnk = {090 = o) — ) (5.3.24)

for any 0,0’ e = £, j,n, k € Z\{0}, satisfying
oj—ad'k—en=0, oQ(j) — a'Q(k) — eQ(n) #0, (5.3.25)

and (gLE)Z’,Z, := 0 otherwise. Then G1(U) is in ﬁl_p®./\/lz(@) and solves the homological equation
(15.3.19).

Proof. The coefficients in (5.3.24)) are well defined by ([5.3.25)) and, by Lemma they satisfy
the uniform lower bound |cQ(j) — o’Q(k) — eQ(n)| = c. Then the operator G1(U) is in 7%1_’) ®

My (C), see e.g. Lemma 6.5 of [39].
Next, recalling (5.3.4]), the homological equation (5.3.19) amounts to the equations

!

(G1(IQUD)EV))7 + (61(U))7 o'iU(D) — oiU(D)(G1(U))] + (Ru(U))] = (RF*(U))?

g

for 0,0’ = £, and, setting F1(U) := G1(i2(D)EU) to the equations, for any j, k € Z\{0}, € = +,

FrLeO)TF + 61 (U)F(— aiQ()) + o'i(K)) + R (U))SF

U,j O7j
5.3.26)
'k (
- ®E0)7)
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Expanding (G1(U))Z as in (5.3.5)-(5.3.7) with entries

/ 1 ’
GO =——= > (gndinus. G.keZ\{0},
2m neZ\{0}
en+o'k=0j

we have that F1(U) satisfies

! 1 /
(Fre(U)o = —— D (81,075 (1IQ(n)e)us, .
2m neZ\{0},en+o'k=0j

Hence the left hand side in (5.3.26]) has coeflicients
—(g1e)y 5 1{o92()) — o' Qk) — eQ(n)) + (r1,6);7%

for j, k,n € Z\{0} and o,0’,e = £ with en + ¢’k = oj. Recalling Definition we deduce that
G1(U) with coefficients in (5.3.24]) solves the homological equation ([5.3.19)). O

Proof of Proposition We apply Lemmata and [5.18] The change of variables that

transforms (5.3.1) into (5.3.20) is Y = ¢?(U)Z where ¢’(U) is the flow map in (5.3.18) that
satisfies (5.3.11)) and the last statement in Lemma [5.17} Moreover, using also the last item of

Proposition we may express

Y = (U)o (), [U] = U + MUV, (53.27)
M(U) € SME2 [, 2] @ Ma(C), ma > 3/2.
Then system (5.3.20) can be written as system (5.3.9) with X>3(U,Y) given in (5.3.10) and
R>2(U) := R®(U) = B{®(U + H(U)[U]) +R=2(U) .

By (5:3.27) and Proposition [5.9] (iii) we have that 9%=5(U) € SR, %% ® Ma(C) where pg ==
max{ml,mg}. O
5.4 Birkhoff normal form and quadratic life-span of solutions

In this section we prove Theorems and [1.10l Let B,B~! the linear maps defined by the

matrices
1 [iA7t A 1 1 [—iA A
B:=— , B i=— , 5.4.1
V2 (—iA1 A) V2 (Al A1> ( )

where A is the Fourier multiplier defined in (5.2.2). We now describe the Hamiltonian formalism
in the complex symplectic variables (w,w) = B(n, ) induced by B. A vector field X (n,) and a
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function H(n, ) assume the form
XC.=B*X :=BXB™!, He:=HoB™ ', (5.4.2)
We remind that the Poisson bracket between two real functions H(n,v), F(n, ) is
(H,F} = JT(VWHWF — V,HV,F)dz.
while in the complex variables (w,w) reads

{Fe,He} =1 )| 0w HedwFe — duyHeow, Fr .
JEZ\{O}

Given a Hamiltonian Fg, expressed in the complex variables (w,w), the associated Hamilto-

nian vector field Xg. is

10w F 1 10 Fe e
Xpo= [ 970 ) = — mree ), (5.4.3)
—idwFe V2w keZN {0} —i0y, Fce ™"
that we also identify, using the standard vector field notation, with
Xp, = 2 100, o Fc dug -
keZ\{0}, o=+

If Xp is the Hamiltonian vector field of the Hamiltonian F' := Fr o B, we have
X5 :=BXp = Xp.. (5.4.4)

The push-forward acts naturally on the commutator of nonlinear vector fields, defined in (5.4.14)),
namely

B[ X,Y] = [B*X,B*Y] = [XC, Y°]. (5.4.5)
Recalling the Taylor expansion of the Hamiltonian ((1.1.18)) (with v = 0),
H=H®%4+H® 4+ |

where (up to a constant)

1 1
H® .= 3 qu YG(0) da + g qu n? dx + g ﬁr nide, H® .= 3 Lw(DnD - G(O)nG(O))wdm

and the dots collects all the terms of homogeneity in (1,1)) greater or equal than 4, in complex
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coordinates this expansion reads

He:=HoB ' =HY + P + ..

where, recalling (5.4.1), (5.2.7)), (5.1.2)),

(2) _ N (3) _ 01,02,03, 01, 02, 0
He' = Z Q@)w;w;, He'o = Z Hj1,j27j3 wjlle;wj; (5.4.6)
JEZ\{0} o1j1+02j2+0353=0

and Hj 727 are computed in (5.0.9), for ji, j2, j3 € Z\{0}.

5.4.1 Normal form identification and proof of Theorem (1.9

A normal form uniqueness argument allows to identify the quadratic Poincaré-Birkhoff resonant
vector field R1**(Y)[Y] in (5.3.9) as the cubic resonant Hamiltonian vector field obtained by the

formal Birkhoff normal form construction in [69].

Proposition 5.19. (Identification of the quadratic resonant Birkhoff normal form)
The Birkhoff resonant vector field R{**(Y)[Y] defined in (5.3.9)) is equal to

REWY] =X

e (5.4.7)

where H](S?i\)IF is the cubic Birkhoff normal form Hamiltonian in (5.0.8]).

The proof follows the ideas developed in Section 7 in [39]. Recalling (5.4), we first expand
the water waves Hamiltonian vector field in (5.0.1))-(1.1.32)) in degrees of homogeneity

Xpg=X1+ X0+ Xo3 where X1 :=Xpe, Xo:=Xge, (5.4.8)

and X>3 collects the higher order terms. System (5.3.9) has been obtained conjugating (/5.0.1)
under the map
Y =FU)oBoG(y), (5.4.9)

where G is the good-unknown transformation (see (5.2.1)))

n
(&) =6(y) = (wfopBW(B(n,w))n)a (5.4.10)
the map B is defined in (5.4.1) and
F/(U) := (U)o FO(U), 0€0,1], (5.4.11)

where % (U), € (U) are defined respectively in Propositions and[5.14] Note that the variables
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U= (%) defined by are equal to Bo G ( Z ) In order to identify the quadratic vector field
in system , we perform a Lie commutator expansion, up to terms of homogeneity at least
3. Notice that the quadratic term in (5.3.9) may arise by only the conjugation of X + X3 under
the homogeneous components of the paradifferential transformations G and F!(U), neglecting

cubic terms.
We use the following Lemma that collects Lemmata A.8, A.9 and A.10 in [39]. The
variable U may denote both the couple of complex variables (u,u) in (5.2.3) or the real variables

(n,9)-
Lemma 5.20 ( [39]). (Lie expansion) Consider a map 6 — F%,(U), 0 € [0,1], of the form
Fo(U)=U+6M(U)[U],  M(U)e M ®M;(C). (5.4.12)
Then:
(i) the family of maps GLo (V) :=V — M (V)[V] is such that
GLy 0 FL(U) = U+ M2(0; U)[U], Flp 0 GLy(V) =V + Ma(8; U)[U],

where M>2(6;U) is a polynomial in 0 and finitely many monomials M,(U)|U] for M,(U) €
Mp@-/\/lQ((c); yy > 2;

(ii) the family of maps GL,(V) satisfies
0GL(V) = S(GL(V)) + Ma(0:U)[U],  GL(V) =V,

where S(U) = S1(U)[U] with S1(U) € M @ M5(C) and M=2(0;U) is a polynomial in 0
and finitely many monomials My(U)[U] for maps My(U) € Mp @ M3(C), p = 2;

(iii) Let X(U) = M(U)U for some map M(U) = My + My (U) where My is in Mo ® Ms(C)
and My(U) in My @ Mo(C). If U solves &,U = X(U), then the function V := FL,(U)
solves

oV =XV)+[SXIV)+---, (5.4.13)

up to terms of degree of homogeneity greater or equal to 3, where we define the nonlinear

commutator
[S, X(U) := du X (U)[S(U)] — duS(U)[X(U)]. (5.4.14)

e Notation. Given a homogeneous vector field X, we denote by ®5X the induced (formal)

push forward (see (5.4.13))
P X =X +[S, X]+--- (5.4.15)
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where the dots - -+ denote cubic terms.

Proof of Proposition [5.19
Step 1. The good unknown change of variable G in (5.4.10). First of all we note that
G(n,v) = (2(n,))p=1 where

‘I’B(Z) = (w—GOpBV\?Z(B(n,dz))n) , 0€f0,1].

Since B(n,1) is a function in Z}'}%M[r, 2] we have that ®%(n,) has an expansion as in (5.4.12))
up to cubic terms. Hence, by Lemma (1)-(i7), we regard the inverse of the map G<s, obtained

truncating G up to cubic remainders, as the (formal) time one flow of a quadratic vector field

So:=S1(m, ) (1), Si(n,v) e M1 ®Ma(C). (5.4.16)

By (5.4.9), (5.4.15) and (5.4.16), we get

D5, (X1 + X2) = X1+ Xo +[[Se, Xa| +--- . (5.4.17)

Step 2. Complex coordinates. Conjugating (5.4.17)) with the linear map B defined in (5.4.1)),
we obtain, recalling (5.4.2) and (5.4.5),

B*®g, (X1 + X2) = XT + X3 +[83, X{] + - (5.4.18)

where, by (5.4.4), (5.4.8), (5.4.6),

Xt = X e = i 00()ufou, Xy =X

j?a-

D - (5.4.19)

Step 3. The transformation F! in (5.4.11). By the last items of Proposition and
Proposition [5.14] the map F?(U) has the form (5.4.12) up to cubic terms. Thus, by Lemma
5.20-(i)-(ii), the approximate inverse of the truncated map FL, can be regarded as the (formal)

time-one flow of a vector field

T, := Ty(U)[U], Ti(U)e M;® Ms(C). (5.4.20)

By (5.4.18)), (5.4.19)), (5.4.15)), we get

1B 5, (X1 + Xa) = X o) + X o) + [sS + Ty, X ]+ . (5.4.21)
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Comparing (5.3.9) and (5.4.21)) we deduce that

RE(V)[Y] = X0 + 85 + T2, X ] (5.4.22)

The vector field R*®(Y)[Y] is in Poincaré-Birkhoff normal form, recall Definition [5.13] Therefore,
defining the linear operator Iy, acting on a quadratic monomial vector field u?ll u;”& s as

u‘”u@& if —oQ(5) +019351) + 022(j2) =0
err<uglug2a ) : g1 Uiy (J) 192(j1) 202(j2) (5.4.23)

g1 g2 .
0 otherwise,

we have that
R®(Y)[Y] = ier (RIZ(Y)[Y]) - (5.4.24)

In addition, since

U2 dug

[f s ug s X o] = 1(0Q0) = 01Q01) = 0292052) ) ufiuf;

we deduce
Mier[[S5 + T, X 0] = 0. (5.4.25)
C

In conclusion, (5.4.24), (5.4.22)) and (5.4.25) imply that

(5.4.6)
RIS(V)Y] = Tyer (X ) B2 X

(3)
Hpnr

where H1(331\)1F is the Hamiltonian in (5.0.8). This proves (5.4.7).

Proof of Theorem Hypothesis o) implies that the variable u defined in (5.2.3])
satisfies and therefore the function U = ( ) belongs to the ball BE(I;r) (recall ( G-1.1)
with 7 = C g€ « 1 and I = [T, T]. By Proposition [5.10) “ 0| the function U solves system (|5.2.6).
Then we apply Proposition and the Poincaré-Birkhofl Proposition with s » K >
K'(p) and K'(p) given by Proposition [5.11] taking  small enough. The map F*(U) in (5.4.11)

transforms the water waves system ([5.2.6) into (5.3.9), which, thanks to Proposition [5.19] is
expressed in terms of the Hamiltonian Hgi\)IF in (5.0.8)) as

Oy = D)y + iy H e (y,7) + Xy

where X;3 is the first component of X~3(U,Y") in (5.3.10). Renaming y v 2z, the above equation
is (5.0.7). We define z = B(n,¢)[n, ] as the first component of the change of variable (5.4.9),
namely of F1(U) o Bo G[n,v], with U written in terms of (n,+) by (5.2.3)), (5.2.1). By (5.3.11)
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and (5.2.11)) with k = 0, and using that U € BX (I;7r), we get
1z ggs ~s lw®)] s 5 (5.4.26)

and (5.0.6) follows, using also (5.2.3)), (6.2.1). The cubic vector field XJ; in (5.3.10) satisfies the
estimate || X’ 3H —3 Ss | 2|2, . by Proposition 3.8 in [37] (recall that H=2(U;€) € F%2K, [r] ®

), by m p.1.10) with k = 0, and (5.2.4), (5.4.26). Moreover, the vector field XJ; satisfies the
energy estimate (5.0.10) since the symbol H=o(U; &) is independent of x and purely imaginary
up to symbols of order 0, see (5.3.3) (for the detailed argument we refer to Lemma 7.5 in [39]).

5.4.2 Energy estimate and proof of Theorem [1.10]

We now deduce Theorem by Theorem and the following energy estimate for the solution
z of the Birkhoff resonant system (5.0.7). By time reversibility, without loss of generality, we

may only look at positive times t > 0.

Lemma 5.21. (Energy estimate) Fiz s,€ > 0 as in Theorem[1.9 and assume that the solution

n,v) of (6.0.1) satifies (5.0.5). Then the solution z(t) of (5.0.7) satisfies

[2(O)]5. < C)|2(0)]F. +C(s) JI Mg dr, Vte[0,T]. (5.4.27)

Proof. By Lemma the Birkhoff resonant Hamiltonian H](B%\)IF in (5.0.8) depends on finitely

+ _t
many variables z3, 23, 2 ]3, J1, j2, j3 € Z\{0}, because

o1j1 +02j2 + 0373 =0 e
, , , = max(|j1], |j2l, |73]) < C. (5.4.28)
a1Q2(j1) + 02Q(j2) + 0302(j3) = 0

For any function w € Hs (T) we define the projector I, on low modes, respectively the projector

Iy on high modes, as

We write w = wy, + wy and we define the norm
2
Jw]? == HE (wr) + |wi |,

where (see (5.4.6]))
HP(w) = [ @D wds = Y, 2wy (5.4.29)
B jez\{0}
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Since Q(j) > 0, ¥j # 0, and wy, is supported on finitely many Fourier modes 0 < |j| < C, we

have that, for some constant Cs > 0,
Oy Hwls < Jwl s < Cslwlls, (5.4.30)

i.e. the norms | - ||s and || - |5, are equivalent. We now prove the estimate (5.4.27) for the

equivalent norm | - |s.
We first note that, by (5.4.28]), H](331\)IF(Z,§) = H](g?I\)]F(ZLjL)- Therefore HHagHS\)IF(z,i) =0
and the equation (5.0.7) amounts to the system

i = iQ(D) 2y +10:HE (21, 21) + T (X2,(U, 2))

(5.4.31)

Moreover since the Hamiltonian H]%%F in is in Birkhoff normal form, it Poisson commutes
with the quadratic Hamiltonian H(C 1) ie.

(HQ L, HPy =0, (5.4.32)
We have
5.4. 3
HD (2 )- (HS . HP) + 2ReJ QD)L (XU, 2)) - Zdz

T
2Ref QD) (X2(U, 2)) - Trzde <, 2], (5.4.33)
T

using that [[TILQ(D) XI5 70 Ss |\z|\3Hs by item (2) of Theorem . Moreover, since I1y and Iy,

project on L?-orthogonal subspaces,
(5.4.31) _
dullzm|%. = 8,(|D 2m, | DI 211) 2 2Ref DI (X24(U, 2)) - | Dz da
T
= 2Ref |D|°XZ,(U, 2) - |D|’z dx — 2ReJ |D|°H(X35(U, Z)) - | D’z dx
T T

1i
S 1 S e PN V7T P 7 (5.4.34)

by item (2) of Theorem Integrating in ¢ the inequalities (5.4.33), (5.4.34)), we deduce

[2@®Z s [20)]F + f |2(7) . dr
which, together with the equivalence (5.4.30)), implies ((5.4.27)). O

Conclusion of the Proof of Theorem Consider initial data (g, 1o) satisfying (5.0.12)



5.4. BIRKHOFF NORMAL FORM AND QUADRATIC LIFE-SPAN OF SOLUTIONS 221

with s » 1 given by Theorem Classical local existence results imply that
1 .
(n, %) € C°([0, Tioe], Hy " (T, R) x H*3(T,R))

for some Tjoc > 0 and thus (5.0.5) holds with € = 2¢ and T = Tjo.. A standard bootstrap
argument based on the energy estimate (5.4.27)) (see for instance Proposition 7.6 in [39]) implies
that the solution z(t) of (5.0.7) can be extended up to a time T, := coe~2 for some ¢y > 0, and

satisfies

sup [z(t)] s Ss €. (5.4.35)
te[0,T¢]

We deduce (5.0.13) by (5.4.35)), the equivalence (5.4.26)), and going back to the original variables
(1,0) by (BZ3) and (521). .
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Appendix A

Technical results from Chapter

A.1 Properties of pseudodifferential operators
Recall that if F' is an operator, we denote by ﬁ(ﬁ) its £-th Fourier coeflicient defined as in (3.1.9)).
If F is a pseudodifferential operator with symbol f, so }?’(6) is, with symbol given by

fit.e.d) = o

L flp.a,j)e ¥ de.
Lemma A.1. Let p > 0 and p € R. The following holds true:
(i) If F € OPSY, then the operator ﬁ(f) belongs to OPS* for any £ € Z¥ and

R o
Ph(F(0)) < e P plhr(F)  VoeN.

(i) Assume to have for any £ € Z” an operator ﬁ'(ﬁ) € OPS* fulfilling
L) < e, VieZ’, YoeNy, (A1.1)

for some T = 0, p > 0 and C, > 0 independent of £. Define the operator F(p) :=
D ey F (). Then, F belongs to OPS;f, for any 0 < p’ < p and one has

: c
pp” (F) < ;

X (p_p/)i‘r*i’l/ VQENO.

On the classes Lip,(Q, POPSY), these assertions extend naturally without any further loss of
analyticity.
Proof. (i) By Cauchy estimates, it is well-known the analytic decay for the Fourier coefficients

223
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of the symbol f(p;z,7):

ez | <e s |f(pa i)l - (A12)

Plugging it into Definition of p‘é(ﬁ(@), we get the claim;

(ii) It is possible to control the seminorm p’g"p/ (F) in terms of the ones for the Fourier coefficients:

pg,p’(F) < Z ety @ Z (e'=p)Itl ¢ pyT C, < Co . (A.1.3)

+
LeZ” LeZ” (P P )T Y

O

In the next Proposition we essentially prove that pseudodifferential operators as in Definition
have matrices which belong to the classes Lip,(Q, M, ) extended from Definition [3.17

Proposition A.2. Let F € Lip,(2, POPSY), with p > 0. For any 0 < p/ < p and s > 3

5, the

matriz of the operator
(DY FDY, a+B+u<0,

belongs to Lip,(Q, M,y s). Moreover for any s > %, Ya + B < —pu, there exists o > 0 such that

Li C , Lip(w
(D)™ F (DY [P) < P bt (F)g ™). (A.1.4)
Proof. Since (D) € POPS! is clearly independent of parameters, without loss of generality let F
belong to POPS). We start by proving the result in the case p = a = 8 = 0. Let an arbitrary
s > % be fixed. Then

» f f(p, x, Dy)[sin(ma)] sin(nz)e % dp dz
v x[0,]

= » f f(p, x, Dy)[sin(ma)] sin(nz)e % dp da (A.1.5)
vx[-m,m]

4@ ﬁr Flpya m)(em 1 — eltmimaye e do da

where f € PSY is the symbol of F. Consider first the case m # n. Then, integrating by parts
S-times in z, with §:= |s + 2| 4+ 1, and shifting the contour of integration in ¢ to T —ipsgn(¥)
(here sgn(f) := (sgn(f1),...,sgn(¢,)) € {—1,1}"), one gets that for any n,m e N, n # m, £ € Z,

2efp|é|

~ 1 1

T (y < —PW( = + ~)

| m( )| e |m+n|5 |m—n|5 \Ilili\p<ﬁ
(z,m)eTxN

3 fpy,m)| <

=2 (f) -

m —n|*
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If m = n, in a similar way one proves the bound sup,,¢y ‘}?’,’[L‘(ﬁ)‘ < erll pg’p(f). It follows that
for any 0 < p’ < p, one has [F|, , < C(p — p’)_”pg’p(f) < o0, which proves in the case
a = =pu=0. To treat the general case, it is sufficient to note that, by Remarks and
, the operator (D)* F (D)’ € POPSY, so we have

C

|<D>aF <D>/67 |p’,s < W

04 (DY F (DY) < (pc_’pﬁ) JE(F).  (ALG)

O

A.2 Proof of Lemma 3.22 (Embedding)

The result of Lemma follows by a straightforward application of Proposition to the
operators F € Lip, (2, POPS, %) and G € Lipw(Q,POPS;ﬁ). Indeed, we obtain

-, p(F)Lip(W) .

(DY F(DY™ |5P@ Dy p|SPE Dy |5 < 03 (F)g

C
plsQ o8, 0,80 \(p_p)

The estimates for GG are analogous.

A.3 Proof of Lemma 3.15 (Algebra of the s-decay)

Denote by A, the extension of the operator A on L*(T) which coincides with A on L2,,(T) = H°

and is identically zero on L2, (T). Since A, is parity preserving, one verifies that

/

(A, e™® ™ “Dr2(my = (Asin(mz), sin(m'z))
for any m,m’ € Z. We want to give a proof of the algebra property for the s-decay norm on
linear operators, as in Definition and Lemma For our purposes it is useful to introduce
the notation

Sa(h):= suwp  |AT]

[m—m/|=h

=

for any linear operator A : H® — H~*, so that (3.1.7) reads as |A], := (X,ey, | ()" Sa(h)?) 2.
Let A, B : H*® — H~®. We compute:

Sap(h) = sup |(AB)Y/|< sup > |A][|Bf| < sup ZSA Ik —§')Sg(j — k|) -
li—7'|=h |7—3"1=h LeN |7—3'1=h LeN
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It follows that
(hY Sap(h) < sup (G =3 D Sallk - j')Ss(lj — k)

U*j/‘:h keN
= su — i I AV AY - G-
= j_jlpzh%% 7" Sallk =3 G = k) Sl = k) —ms 5 — g7 -

By Cauchy-Schwartz, we get

s . S . . S . <] _j,>28
KBy Sap(h)P < sup Y (k= ) Sallk—3')* G — k) Sp(|j - k)*- T 5
|jj’|h,§ %\1 k=% (G = k)
(A.3.1)
s a
t is easy to see that, for any a > 1, one has —~—a - < (C, , thus, we obtain 1n
It | hat, f h k<],3>,0h btain |
S k=30 G =3
E3)
(KhY* Sap(h)? < Cos sup 3" (= )" Sallk = 51)* G — k)™ Sp(lj — kI)?
li=5"1=h pen
=:C9 sup Ruagp(h
o SUD aB(h) (A.3.2)
= Cos maX{ sup Rap(h), sup RAB(h)}-
i/ =5’

i’ =j=h i=i'=h

Without loss of generality, assume that the maximum is attained in the first region, that is when

j' = j. We are now ready to compute:

JAB|2 = > [(hy Sap(W)* s Y sup Rap(h)
h=0 h>0 /27
=D sup Y G =R Sal — k)2 — kY Sp(j — k)
h=0 /20 1<k<
+ 3 sup Y GRS — k)P — 57 Spk - j)?

j'z5 %
h=0 S—izh JHISES)

+ 3 sup > =3 Salk — )k — 5% Sp(k — )% .

j'=3 7
h=0 S—ieh k=j5'+1

—j=h

(A.3.3)
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For these three sums we can perform change of indexes, so that we get

ABP S S S (0)* Sa(a)? (a— by Sp(a—h)?

h=0 h<a<oo

F3 Y (@ Sa@) h - Sp(h—a)’

h=>00<a<h—1 (A.3.4)

+ >0 > Kay* Sala)* (a + h)y** Sp(a + h)?

h=0az=1

=X+ X0+ X3 .
We estimate X1 as follows:

1= Y (@) Saa)*{a— 1) Spla—h)?

hz=20 h<a<oo

DT+ )P Sa(h + ha)? (ha)** Sp(ha)?
h=0 h1=0

2s 2 2s 2 (}X.3.5)
= 3 (2t h)® Salh + h)?) () Sp(hn)
h1=0  hz0
<AL Y (h)* Sp(h)® = |AL|BI? .
h1=0
The same estimate holds for X9 and X3, so that we can conclude
|ABJZ < G5 |AL|BI? (A.3.6)

as claimed.

A.4 Proof of Lemma 3.23 (Commutator)

In this section we show the proof of Lemma We start with operators independent of ¢ € T".

Let
d o d o
x={* ) v ( )
—Xo __)(d —Vo __‘/d
One has
, , izd iz°
i X, V] =i(XV -VX) = — 1\,
—(i2%) —(iz%
where

Z%:= XV - XVo - VIX 4 VoX, Z°:= XV - XVI - VIX° 4 VOX©.
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Omitting for sake of simplicity conjugate operators and labels for diagonal and anti-diagonal
elements, by Remark [3.19] the following inequalities hold (here o = +a,0):

KDY XV(D)™?|, < Cs D)7 X (D)™ 7| KDY V{D)™|, ;
(KDY* XV|, < Cs KDY X |, |V, s (A4.1)
| XV{D)*, < Cs |X (D), KD)™* V(D) ;

the same for those terms involving VX. All these norms extend easily to the analytic case.

Therefore, by the assumption and from the definition in (3.1.16f), properties [3.1.13] [3.1.14] and
3.1.15|are satisfied. It remains to show the symmetries conditions in (3.1.12). Note that (1Z9)* =

iZ% and (iZ°)* = iZ° if and only if (Z%)* = —Z4, (Z°)* = Z°. We check the condition for Z¢.
We have
(29 = (VH*(XD* = (VO (X°)* — (X)*(V)* + (X°)*(V)*

7 ., (A.4.2)
= Vix?—voxe - Xy 4 Xove' = —z¢.

In the same way one checks that (Z°)* = Z°. The Lipschitz dependence is easily checked.
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Derivation of water waves equations

with constant vorticity

The dynamics of the water waves in the two dimensional fluid domain D,y defined in (L.1.11)
is described by the two components velocity field wu(t, x,y) and v(t,z,y), which prescribe the
dynamics of the fluid particles inside D, y, and by the profile of the free surface n(t,z). The

equation of motions are the mass conservation and Euler equations in two dimensions:

divad =0

o +u-Vi = -VP — ge,

(B.0.1)

where P(t,z,y) denotes the pressure and g the gravity. Denoting 4 := (ﬁ), they read in

components as

Uy +vy =0
U + uly + vuy = — P, in Dyn (B.0.2)
vy Fuvy +vvy = —Py—g.

The boundary conditions that we impose are

v =1 4 ung at y = n(t,x)
v—0 fory —» —h (B.0.3)
P:Pg—/i(inx ) at y =n(t,z).

X

V1402

The first equation in (B.0.3), called kinematic boundary condition, expresses the fact the fluid
particles at the free surface remain on it along the evolution. The second condition in (B.0.3)) is

229
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equivalent to the impermeability condition of the bottom of the ocean:

v(t,z,—h) =0, if h isfinite,

limy, o v(t,z,y) =0 if h = 400;
The third equation in (B.0.3)), called the dynamic boundary condition, describes the presence of
capillarity forces at the interface between the water and the air above. The difference between
the outer and the inner pressure at the interface is proportional to the mean curvature of the

free surface, where x > 0 denotes the surface tension coefficient.
By taking the rotor of the Euler equation (B.0.1]), we obtain that the scalar vorticity

rot i := w 1= Uy — Uy
evolves according to the Helmholtz equation
1w + (u0y + v0y)w = 0. (B.0.4)
In our model we assume that the scalar vorticity of the vector field 4 is constant:
Wi= Vg — Uy = 7. (B.0.5)

Note that by (B.0.4)), if the initial vorticity wy_o = 7 is constant, then w = v remains

constant at any time t of existence of the solution.

B.1 Helmholtz decomposition of a vector field on D, y,

Inside the fluid, sufficiently away from the small waves of the free surface, for instance when
In(t, -)|r=,) < 1, the average in the horizontal direction of the vertical component of the

velocity field is null.
Lemma B.1. We have Sgﬂv(t,x,y) dx = 0 for all times t and y < —1.

Proof. Note that, by the divergence free condition u, + v, = 0 in (B.0.2)) and the 27-periodicity

of u, we have

2m 2m
6yJ v(t,z,y)dx = j —ug(t,z,y)de =0.
0 0

Hence, for any y € (—h, —1), we obtain Sgﬂv(t,x,y) dz = limy_,_y S[Q)W v(t,x,y)dz = 0 by the
impermeability condition in (B.0.3)). OJ

We analyze now the structure of vector field with constant scalar vorticity and its decompo-

sition as a sum of an irrotational vector field and divergence-free one. We denote the interior of
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the fluid domain by IntD, n := Dy n\0Dy .

Lemma B.2. Let d(z,y) = (Zg;’;) be a wvector field of class C*(IntDyn) N C%(Dyyn) with
constant scalar vorticity, namely

rot @ :=b, —ay, =. (B.1.1)
Then , for any y € (—h, —1), the function

1 21

= — | alz,y)dz+yy (B.1.2)
27T 0

is independent of y and there exists a C* function ®(z,y) defined for any (z,y) € IntD,,y such

that
(bgzi) _ (0) Vo) + (—OW) | (B13)

The function ® is uniquely defined up to a constant. Moreover, ® admits an extension to the

whole domain D,y and

0,9z, ~) = bz, <), @z, 0(x)) = (ala, n(x)) — ¢ +3n(x)) + bl n(@)ne(x) . (BL)

Proof. First, we assume the fluid to be irrotational, namely v = 0. By the 27-periodicity of a,

we have

21 2 21

0 | atepds = [ ayde = [ buleg)de = bmy) - b0.) = 0.
0 0 0

which implies that c is independent of y € (=1, —h). We now fix an arbitrary h € (1,h) and we

define the function ®(z,y) as the potential

(z,)
B(r,y) = J (az,y) — ¢) da + b(z, y)dy,

(vaﬂ)
integrated along any path joining (0,—h) and (z,y) € T x (=h, —1), which is the same by the
Gauss-Green theorem since in this region it holds that (a(z,y) — ¢), = b,. Choosing a path of
integration which is first horizontal from (0, —h) to (z,h) and then vertical from (x, —h) to (x,y)

we get
Y

O(x,y) = Jw (a(s,—h) —c) ds + J b(x,s)ds, (B.1.5)

0 —h

which is 2r-periodic in x because, exploiting the periodicity of the vector field (a(x,y), b(x,y))
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and the definition of ¢ in (B.1.2)), one has

27
¢2m + z,y) — O(x,y) = J (a(s,—h) —c)ds = 0.
0
Moreover, the function ®(z,y) in (B.1.5)) is allowed to be defined also for every (z,y) € IntDj;,
without losing any differentiability and the periodicity in z. By (B.1.5)), we have

Y Y

by(x,s)ds = a(z,—h) —c + J _ay(z,s)ds = a(z,y) —c

—h

2,0 (5,y) = alz, ) — c + f 7

—h

for any (x,y) € IntD,, and similarly 0,®(x,y) = b(x,y), proving the representation for
v = 0. The formula defines also an extension to the closed domain D, . Therefore, in
the case v = 0, the relations in follow.

Let (&, ®) be another solution of

a(x,y) _ c T T
()= (5] +wote

Then, by integrating in 2 € T, we obtain that ¢ = ¢ and V(® — ®) = 0.

alr,y) +
Finally, for any value of the vorticity v € R, we note that the vector field ( b(y) )7y>
LY
is irrotational and we deduce straightforward the representation in (B.1.3) and the relations in
(B.1.4)). O

Lemma B.3. Let d(z,y) = (a(x7y)) be a divergence free vector field of class C'(IntDyy) N

b(z,y)
CO(Dy,n) such that
21

lim b(x,y)dx =0. (B.1.6)

y—=h Jg

Then there exists a potential ¥(x,y) defined on IntDyy such that

b(z,y) 02V (z,y)
Moreover, ¥(x,y) admits an extension to Dyyn, with

0y¥(r, —h) = —a(z, -h), L@, n(@) = bl n(@) - ala, n@)n. () (B.1.8)

dx
< b(z,y) )
—a(x, y)

Proof. Since divd = 0 the vector field
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is irrotational. It follows from Lemma with v = 0 that there exists ¢ € R and a potential ¥

such that
b(z,
(@) = (° + V¥(z,y).
—a(x, y) 0
By taking the average in x and the limit as y — —h of the relation b(z,y) = ¢ + 0, P(z,y), we
get
1 T
c¢= lim f b(z,y)dx 0.
y——h 27 J,
This proves (B.1.7). O

By Lemma[B.2]above we conclude that there exists a function c(t) and a potential ®(¢, z,y),
27-periodic in z, called the generalized velocity potential, such that the velocity field of (B.0.1))-

(B.0.3) admits the decomposition

w(t,x,y) = c —yy + (¢, z,
(t,z,y) Yy + P (t, x,y) (B.1.9)
’U(t,l’,y) = q)y(t?xay)

27
(B.1.10)

where
1
u(t, r,y)dz +yy,

t) := —
clt) = 5= |
is independent of y. Actually c is constant also for any time of existence t. Indeed, by choosing

an arbitrary y € (—h, —1), we compute that

1 27 X0 1 2m
() i=— | ou(t,z,y) de — J (L0, (u?) + vdyu + 0, P) dz
2w 0 2w 0
o 1 2m 27
—J v(&xv—’y)dle vde =0,
2w 0 2w 0

by Lemma [B.1
B.2 The Zahkarov-Wahlén-Constantin formulation

The equations (B.0.1)-(B.0.3) can be regairded in a space-time frame moving horizontally with
an arbitrary constant speed ¢ € R. A direct computation shows that the new variables

u(t,z,y) :=u(t,x +ct,y) —c, 7(t,x):=n(t,x+ct),
() =t +etig) =, (6a) = (e + ) o

u
U(t,z,y) == v(t,z +ct,y),

satisfy the same equations (B.0.1)-(B.0.3). This means that we can always add an arbitrary
constant ¢ to the horizontal component of the velocity field.
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In view of the change of variable (B.2.1) induced by the moving frame, i.e. substituting
u,v,n, P with @, 7,1, P and setting ¢ = ¢, where c is defined in (B.1.10f), we can always assume
the following decomposition of the velocity field:

u(t,z,y) = =y + 0:@(t, 2, y)
U(t,.f,y) = ayq)(tvxvy) .

(B.2.2)

We want to use such decomposition of the velocity field in order to obtain the formulation of the

water waves problem with constant vorticity in (4.0.1)).

By (B.2.2) and since @ is divergence free, it follows that
AD(t,z,y) =0. (B.2.3)
We also express the boundary conditions (B.0.3) in terms of ®, obtaining

m=®y— Oune + 0. at y =n(t,z)

(B.2.4)
¢, -0 for y —» —h.
We define the trace of the generalized velocity potential at the free boundary
(t,2) = Bt 2, Y)lymy = O(t: 2, (). (B.2.5)

In such a way, given 7, ¢, the generalized velocity potential ® is recovered by solving the elliptic
problem
AP =0 inD,

=19 aty=nta2) (B.2.6)
®,=0 aty=-h.

Defining the Dirichlet-Neumann operator G(n,h)y as
G(%h)?/’ =N 1+ 77% (aﬁq)”y:n(t,a:) = (_(I)xnx + (I)y)|y=77(t,:v) , (B.2.7)

we deduce from (B.2.4) that

ne = G(n,h)Y + 01, (B.2.8)

which is the first equation in (4.0.1)).

Remark B.4. We have that

G(nm)[1] =0, meMMM=o
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Associated to the generalized velocity potential ® (¢, z,y), we have the so called stream func-

tion, which is the potential obtained in Lemma [B.J
Lemma B.5. (Stream function) There exists a function V(t,z,y) on Dyy such that
u=V,, v=-Y,. (B.2.9)
In particular, the function U =0+ % solves
D, =V, =u+ry, ®,=-V,=0. (B.2.10)

Remark B.6. Note that the fluid particles evolve according to the time-dependent Hamiltonian

system
y(\Ij - %y2)

~

i=u=V, =20
y=v=—U, =—0,(V-—3y?.

To deduce the second equation of water waves, we start again with the Fuler equation and
use the vectorial identity
Jul?

ﬁ-VﬁzV( )

) — U A roti
to write the second equation of (B.0.1)) as

Jul?

Byl + V<7) — @ Arotid = —V(P + gy). (B.2.11)

In particular, (B.2.11) is equivalent to

Vo

at(vq> + <_gy> ) + v(%) LAV £ V(P +gy) = 0.

where we have used that @ = (7)) + V@, |@]> = |[V¥|? and
- - v
U/\rotu='y( ) = -V,
—u

which follows by (B.0.5) and (B.2.9), Therefore, in the time dependent fluid domain we have

that
|2

A\
0® + | +4Y + P+ gy = C(t) (B.2.12)

for some C(t), which determines the pressure in the fluid. The equation (B.2.12) is a generaliza-
tion of the Bernoulli theorem for ideal fluid with constant scalar vorticity
Evaluating (B.2.12)) at the free surface, and imposing the last dynamic condition in (B.0.3])



236 APPENDIX B. DERIVATION OF WATER WAVES EQUATIONS

we obtain that

|V\I]|2 Nx
P, + +U — 5(7) +gn=c(t) aty=ntzx), B.2.13
¢ 5 ¥ T gn =c(t) aty=n(t ) ( )

where ¢(t) = C(t) — P.
We want to write now the equation in (B.2.13)) in terms of 0, only. We use the following
preliminary lemma. Given a 27-periodic function f(z) with zero average we define g := 971 f

the unique 2m-periodic function with zero average such that d,g = f.

Lemma B.7. There is co(t) such that
U(t,z,n(t,z) = —In* — 0, 'G(n, b)Y + co(t) . (B.2.14)
Proof. By Lemma we have that

d
. (U(t, 2, n(t,z)) + In?) = Vot z,n(t, 2) + Uy (t, 2,0, 2)) 10 + Y0
= —®,(t,z,n(t, z)) + (Pu(t, z,n(t, x)) — yn(t, x)) ne + Y700
-B.2.7
- _G(%h)w .
By integrating on [0, z], we obtain (B.2.14)). O]

Remark B.8. The previous computation gives another proof that ST G(n,h)ydx = 0.
Inverting with respect to ®, and ®,, the following system, see (B.2.5)) and (B.2.7),

Yy =Py + Pyne, G(n,h)p = Oy — Dy, aty=n(t ), (B.2.15)
we get
Yz — 112G (1, h)
‘I’x(ﬂ%n(ﬁf)) == 12_ (2 )
a (B.2.16)
P _ Yz + G(n,h)d)
Jfarm(a)) = P L SR
Nz
By Lemma, we have that, at y = 7,
U2 (R, —n)? + 2 2 P2 2yP,m + P2
Ve _ (P2 = m) y _ 2l Te TR T By (B.2.17)
2 2 2 2
Moreover, by differentiating (B.2.5)) with respect to ¢, we have, at y = n(t, x),
Py = Py + Dymy
(B.2.18)

_|v‘l’|2—’y\11+,‘€< L

2 V1402

)x —gn+c(t) + 2, (G, b)Y + 0 nz) -
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Now, by inserting (B.2.17)), (B.2.18)) and (B.2.16)) into (B.2.13)), we obtain, for some function
c(t),

Y= —gn— -+ —
1+n2

1/}920 (N2 + G(n,h)w)Q Nx
2 R <

) + e + 705 G, b)Y + E(t)

which is the second equation in (4.0.1)).
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Appendix C

Technical results from Chapter

C.1 Integral operators

The results that we present in this section come from Section 2.3 of [44].
Integral operators with C® kernels are operators in OPS™%, see Definition The respec-
tive norms are given in Definition {.15]

Lemma C.1 (Lemma 2.32, [44]). Let K = K(\;-) € C*(TY x T x T). Then the integral

operator
(Ru)(p.a) = | KO .z,mutionn) dy (C.11)

is in OPS™% and, for all m,s,a € Ny, it holds that

ko, ko,v
IR 5.0 < C(my s, 0, ko) [ K[| o msa - (C.1.2)

—m,s,x

Proof. The symbol associated to the integral operator (C.1.1) acting on periodic functions is
given, for any j € Z,

a(\;p,x,7) = LK()\; o, x, y)ei(y*‘r)j dy. (C.1.3)
In particular, we consider its extension on R

i €)= [ K. )(0)eldy, (©14)
where the function § € D(R) satisfies

spt(0) < [—3m, 37], O(z)+0(x—2m) =1 Vzel0,2n], 29(3: +2jm)=1 VzeR.
JEZ

In particular, the Fourier transform 5(5) € S(R) satisfies 5(0) =1 and 5(]) = 0 for any j € Z\{0}.

239
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Indeed,
e 1 —ij 1 O ik e
0(5) :=— | e V0(x)dx = —( e %0 (z)dr + e %0 (x) dw)
27 Jr 2m N\ J_on 0
1 2m o 1 2m o
= — e (0(x) + 0(x — 2m))de = — e ¥dx =0 ;.
2T 0 2T 0 ’

The function in (C.1.4) is C* in (¢, z,§) and ko-times differentiable with respect to A. Therefore,
by the Poisson summation formula, we have that

AN ,2,8) = Y alh g, 2, 5)0(E - j) (C.1.5)
JEZ

so that a(-;-,-,j7) = a(+-,-7) for any j € Z. We show now that Op(a) € OPS™® with the
required estimate.

Let £ € (j — 1,/ + %) for some j € Z. By (C.1.3), (C.1.3) and ({.2.10), for any m, q, 8 € Ny,

ne Ny and k e Ny™', with |k| < ko, we have

(1) hanatafa(n g, x,€) = Y. dhandla(h; ¢, @, ) (1) Pach(E — j')
J'eL

< Cydkandla(\; o, x, ) (if)™ P

= Cj Z Coi.q0 JT 5A&’Z&:‘£1K)()\; 0, y)agg-‘rm-‘rﬁ(ei(y—m)j) dy

q1+92=q

P quvq%mﬁf (PRopod o PR (X, 2, y) €V dy.

q1+q2=q

It follows that, for any m,q, 5 € Ng, n € Ny and k € Ng“ with |k| < ko, there exists a constant
C(m,q,B) > 0 such that

|0 p0%0ga(N: o, 2, )] < Clm, g, Byo~ M K5 ©" 7,

cm+q+B+|n|

from which we obtain, for any m, s, 3 € Ny and k € NY ™ |k| < ko, using that |ul|s ~ HuHHng +

Jull 2
[0253(x; ) €€ = (18AKAN - ) luzas + 1030008T A+ - - Ol cae
+ sup 03002400 lrzz) © ™"
Ssmp 0K s -

Then, the estimate ((C.1.2)) follows by Definition {4.15] O
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An integral operator transforms into another integral operator under a change of variables

Pu(p,x) == u(p,x + p(p,x)) . (C.1.6)

Lemma C.2 (Lemma 2.34, [44]). Let K = K(\; -) € C*(T"xTxT) and p(\; -) € C*(T"xT,R).
There exists §(so, ko) > 0 such that, if HpHggoqukoH < 0(s0, ko), then the integral operator R in
(C.1.1) transforms into the integral operator (P~ *RP)u(p,z) = ST (N o,z y)u(p, y) dy with

C® kernel
KX 9,2,2) = (1+ .00 0,2)) KA, 2 + q(Xs 9, 7), 2 + q(X, ¢, 2)) (C.1.7)

where z v— z + q(\; @, 2) is the inverse diffeomorphism of x — x + p(\;¢,x). The function K
satisfies, for all s = s,

S ko, ko, ko,
HKHI;O’U < C(S, ko)(HKHs?‘rZo + HpHs?‘r}C]o-i-lHKHsgfko-&-l) ' (018)

Proof. We have that
(RP)(p, ) = qu K\ 0,2, y)u(e,y +p(A;¢,9) dy -

By making the change of coordinates z = y + p(\; ,y), we get the operator (P 'RP)u(p, z) =
S Iv(()\; o, z,y)u(p,y) dy with K asin (C.1.7).

The function q(\; p, ) satisfies ¢(\; ¢, 2) + p(X\; 0, 2 + ¢(A; @, 2)) = 0. By a standard implicit
function argument, we have that g¢()\; -) € C®(T” x T,R), ko-times differentiable with respect
to A, and satisfies the estimates in Lemma u Therefore, we get K(X; -) € C°(T" x T,R),
ko-times differentiable with respect to A, and it satisfies the estimate by Lemma and

estimate (4.2.7)). O

We provide this estimate for the integral kernel of a family of Fourier multipliers in OPS~%.

Lemma C.3 (Lemma 2.28, [44]). Let g(\; ¢, &) be a family of Fourier multipliers with (?]f\g()\; g, )€
S~ for all k € N’/Jrl |k| < ko. Then the operator Op(g) is an integral operator with a C* kernel

Ky = Ky(\; +) satisfying | Kq|&" < 10D(9)]%5% 4 500 + [0D@) 52 o—10.0- for all s € No.

Proof. The operator Op(g) acting on periodic functions admits the integral representation

[Op(g)u](p,x) = f Kg(A;%x,y)U(%y) dy,
(C.1.9)

Ky(Xo,2,9) : Z X @, §)et Vi,
]EZ

Then the estimate on K, follows directly from its definition in (C.1.9). O
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On 27-periodic functions the Hilbert transform #, defined as a Fourier multiplier in (4.2.19)),

acts as

Hu(x) = —p.v. Ltan(my) dy

1
2 §

Y))
_ili%ﬂ f'” rﬂ Lytan ((5)—y))dy'

The commutator between the Hilbert transform and the multiplication operator by a smooth

(C.1.10)

function a is a regularizing operator in OPS™®.

Lemma C.4 (Lemma 2.35, [44]). Let a(\; -) € C*(T" x Ty, R). Then the commutator [a, H]
is in OPS™% and satisfies, for all m, s, a € Ny,

[[a, 111" s 0 < Clm, s, 0, ko) a5 . (C.1.11)

m,s,a S s+so+1+m+a

Proof. By (C.1.10)), the commutator

(Ha — aH)u(x) = ip.v. JT (aly) — a(x) J K(x,y)u

27 tan(3(z —

is an integral operator with C* kernel given by

. _ ay)—a() _ _y-r
K\ p,z,y) = % = (J 2N, + 1y — ))dt) tan(%(a: —y))

Then we obtain the estimate (C.1.11)) by Lemma and the bound ||K\|k0 <s HKH’;BFSO <s
k07

srsg41 for any s = 0. O

lal

Lemma C.5 (Lemma 2.36, [44]). Let p = p(\; -) € C®(T"*Y) and P = P(); -) be the associated
change of variable in (C.1.6). There exists 6(so, ko) > 0 such that, if |‘p‘|l2€gov+ko+1 < d(so0, ko),
then the operator P~YHP — H is an integral operator with a C* kernel K = K(X; -) satisfying
for all s = sq,

ko,v
|50 < C (s, ko) [Pl o1 - (C.1.12)

Proof. Changing the variable z = y + p(\; ¢, y) in (C.1.10)), we get

1, J u(p, 2)(1 + 3:q(\; ¢, 2))
2 tan (%(m —z4+ g\ 0,2) — q(X @, 2)))

(P HPYu(p,z) = dz.
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It follow that the operator P~'HP — H is an integral operator with C* kernel

1 ( 1+ 0:9(\; ¢, 2) B 1 )
27 \tan (2($ —z+q(N o, ) — q(X; @, z))) tan(%(m —2))
_%az - (Sm (3(z =z +a(Xp,2) —a(Xs g, 2))))

sin(1(z — 2))

1
= —;&’Z In(1+ g(X\; ,2,2)),

KX\, x,2) =

where the family of C* functions

(s 0,3, 2) = cos (q(A;%w) = a(A; o, Z)) .
T — 2\ sin (l(q()\; o, ) —q(X; p, z)))
Feos () = sin(3(z — 2))

ko,v ko,v

satisfies the estimate [g]s"" <s [ qllsq <s Hpri’ZOH by Lemma . Then the estimate (C.1.12))
follows by Lemma {4.13 O

C.2 Estimates for the approximate inverse

The proofs of this section are a readaptation of the results in Section 5 of [44].

Proof of the estimates in Lemma [4.60] We prove tame estimates for the composition
operator induced by the Hamiltonian vector field Xp = (01 P, —0dyp P, HS+ E)JVwP in (4.4.6). By

definition ([£.4.4), P = P. o A, where A is defined in (1.1.50) and P- in ({£.4.2). Hence

[6rvT(0, D]V P.(A(0, I,w))
Xp = [agm(e DTV P.(A6,I,w)) |, (C.2.1)

I, , JVP.(A(,6,],w))

where HSA*,E is the symplectic projection on the normal subspace Sﬁsﬁ’z defined in (4.1.42)). Now,
VP, = —-JXp_, where

e (Glen) = G(O)(C + 307 ') + e

(C+ %07 s Lo 1n))? 3
Xp = | —1((¢ + 3o, 1n),)? + Era Z)(lig%)(cma D 4 e (1 -+ 2n2)7 — 1)

+n(C + 30, ') + e 130, H(G(en) — G0))(C + 30, ') + 30,1 (nna)

The smallness condition of Lemma [£.22] is fulfilled because

k 5 ki ) ~|Ik ’
1ll58%2mo+5 < E1AOC) )y w2k +5 Sso &1+ [Tl3555 280 +5) < (50 ko)
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for € > 0 small enough. Moreover, by Lemma and the analyticity of the functions in (4.1.50)),
we have, for any «, 5 € Njj, with |a| + |5] < 3, and any s > s,

|05 27T (0(), I()[F00 <5 1+ [3)Fov. (C.2.2)

Thus, by Lemma [4.22] the interpolation inequality (4.2.7) and (C.2.2)), we get

IVEP(ABC), 1), w)D R <o [AGC), TG ew()[E05, oross Ss 1+ [T1508 o ys. (C-2.3)

Hence, by (C.2.1), (4.2.7), (C.2.2) and (C.2.3)), we conclude that, for any s > s,

. k ~ k )
[Xp@)* S 1+ 17058 200 420043 -

The other estimates in Lemma for d; X, and d?X p follow by differentiating the expression
of Xp in (C.2.1), applying Lemma and estimates (4.2.7), (C.2.2)), (C.2.3).

Proof of the estimates in Lemma We first prove the estimate (4.5.4) for the coefficients
Ap;(p) defined in (4.5.3). By Lemma 5 in [34], the coeflicients satisfy the identity

w - OpAr; = W(0pZ(p)er, Opin(p)e;) + W(pio(p)er, 0pZ(0)e;)

where W is the symplectic form in (4.1.15)), (4.1.54), e, denotes the k-th versor of R” and Z(y)
is the error function defined in (4.5.5). Then, by (4.2.7) and (4.5.1)), we get

k ko, ko,v [~ f1ko,
lw - oAkl s 12157 + 12151 1T0lls57

and (£5.4) follows by applying (w - 0,) 4 defined in (£:2.9) and the estimate ([{.2.11).

Now, the estimate (4.5.7) follows by (4.5.6)), (4.5.2), (4.5.3), (4.2.7), and (4.5.1]). The estimate

(4.5.8)) follows by (4.5.6) and (4.5.4). The estimate (4.5.10)) follows by (4.5.6]), (4.5.2), (4.5.3)
and (4.5.1)). It remains to show the bound in (4.5.9). We have

0
F(is, a0) = Flio, a0) + | w+ 0,(15 — Io) | +e(Xp(is) = Xp(io))
0 (C.2.4)
0 1
= ]:(Z'o,Oéo) + | w- a¢(15 — Io) + €L a[Xp(AZ'(; + (1 — )\)Zo) . (Ig — Io) d\.

0
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By differentiating (4.5.6) and arguing as in [34], we get

w - 0,(Is — Io) = [0,00(0)] Tw - dpp(e)
— ([0580(£)]™ " (w - 0,[0,00(0)] N[00 (2)]~ ") p(e0) , (C.2.5)
w - 0p0p00 ()] = €0,(rP)(i0()) + 0 Z1(p) -

Then the estimate (4.5.9)) follows by (C.2.4)), (C.2.5), (4.4.6), Lemma (4.60]) and estimates (4.2.7)),
(4.5.8), (4.5.1), (4.5.4).

Proof of the estimates in Lemma [4.63| By (4.5.19) and using that i5(¢) = Gs(¢,0,0), we
have that

XKao (¢7 O> 0) = (DGJ(d)a 07 O))_lXHaO (¢7 07 0) = (DG5(¢a 07 0))_1(0‘} ) 6¢Z§(¢) - Z(S(Cb)) ) (026)
where Z5 = (Z15, Za5, Z35) := F(is, ap). Moreover, from we get

K10(¢7 OCO)
XKy = | =0 Koo(9, a0) (C.2.7)
J 2 Ko1(9, o)

with J, defined in (4.1.47)). By combining ((C.2.6)), (C.2.7) together with the inverse of the linear

operator in and
(DG5(¢,0,0))”' Dis(¢)[w] = (w,0,0),

we deduce that

0 K00(9, 00) = [0500(8)] " ( — [06L5(0)][0p00(0)] ™" Z16 + Zos
+ [Bo@o(00(0))] " T 05wo(8)[0600(8)) ™" Z1.6 + [Gao(00()] T T Z35) ,
Kio(¢,a0) = w — [0400(0)] ™ Z1.5,
Ko1(¢, a0) = J, (0pwo(9)[0s00(0)] ™ Z1,5 — Z35) -
Then the estimates in follow by (£.5.7), (£.5.8), (£.2.7), (£.5.1). Asin [34,[14], by ([.5.19),

(4.5.12), (4.4.5), (4.5.29), it is possible to compute

0aKo0(9) = Is(¢)  0a10(d) = [0sb0(d)] ', 0aKor(9) = —J,  Fplin(0(e)),
Koo(¢) = e[0,00(0)] 011 P(is())[0p00()] T,
K11(p) = £(01VuwP(is(0)[0,00(2)] ™" = T 9io(00(9))drrP(i5(£))[0,00(0)] 7 T) -

Then the estimates (4.5.26)-(4.5.28)) follow by Lemmata {4.60} and (4.5.1).
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Proof of Theorem We claim that the first three components of Tyg, with T defined
in , form a reversible traveling wave variation when ¢ is an anti-reversible traveling wave
variation. Indeed, differentiating it follows that DGs(p,0,0), thus (DGs(p,0,0))" 1, is
reversibility and momentum preserving (cfr. (4.2.62)). In particular these operators map an
(anti)-reversible, respectively traveling, waves variation into a (anti)-reversible traveling waves
variation (cfr. Lemma . Moreover, by Proposition the operator D~! maps an anti-
reversible traveling wave into a vector whose first three components form a reversible traveling

wave. This proves the claim.

We now compute the operators P, P, and Pj and prove that they are defined on traveling
waves. By (4.4.6]), since X is independent of the action I and is differs from ¢y only in the
I-component, see Lemma we have

1
di o F(i0) — dioF (is) = EJ 0rdiXp(0o, Is + Ao — I5),wo)[Io — Is, [ - ]| dN =: &, (C.2.8)
0

where IT throughout this proof denotes the projection (7, &) — 7. Denote by u := (¢,y,w) the
symplectic coordinates induced by Gy in (4.5.12). Under the symplectic map Gy, the nonlinear
operator F in (4.4.6) is transformed into

F(Gs(u(p), a) = DGs(u(p))(w - dpulp) — Xk, (u(p), ), (C.2.9)

where K, = H, o Gs as in (4.5.19). By differentiating (C.2.9) at the trivial torus us(p) :=
G5 '(is)(p) = (,0,0) and at o = ap, we get

dioF(i5) = DGs(us)(w - 0y — dy o Xk, (us, 20)) DGs(us) ™t + &1, (C.2.10)

where

&1 := D*Gs(us)[DG5U (u5) ™' Flis, a0), DGs(us) " TI[ -]]. (C.2.11)

In expanded form, w - 0, — du,a Xk, (us, @) is provided in (4.5.30). By (4.5.37), (4.5.33) and
(4.5.35)), we split

W 0p — dyo X, (us,0) =D+ Rz + Ry, +RY (C.2.12)

where

-~

R 0 K(p, a0)l¢]
Rz|9,y,%,a] := | 049Ko0(p, a0)[] + [05K10(e, 040)]TZ~7A+ [0sKo1(p, a0)] @

—J,0pKo1(p, o) [ ]



C.2. ESTIMATES FOR THE APPROXIMATE INVERSE 247

and
0 0
Ru[¢. 5. %,a]:=| 0o |, Ri[pgwal=| o |. (C.2.13)
Ro[w] RS

By (C.2.8), (C.2.10), (C.2.11)), (C.2.12), we get the decomposition

di.oF(io) = DGs(us) o Do DGy(us) ' + & + & + EF, (C.2.14)
where

E=E+&+ DGg(u(;)RzDé(s(ug)_l ,
&y = DGs(us)R,DGs(us) ™", &L := DGs(us)REDGj(us) ™. (C.2.15)

Applying T defined in (4.5.49) to the right of (C.2.14)), since D oD~! = Id by Proposition m,

we get
di o F(ig) o To—1d = P+ P, + PL,

where
P=EoTy, P,=E&,0Ty, Pr=£ELoT,.

A direct inspection of these formulas shows that P, P, and P. are defined on traveling wave
variations. In particular, note that the operators R, Rj in are defined only if @ is
a traveling wave, because the operators R, R defined in (AI) act only on a traveling wave.
However, note that, if g is a traveling wave variation, the third component of D@g(ug)*ngg is
a traveling wave and therefore the operators &, &, in are well defined.

By Lemmata [4.60, 4.63| 4.61) and (4.5.1)), (4.5.31)), (4.5.32)), we obtain the estimate

€0 a5 s 1215 s sy + 121545
where Z = F(ig, ap), recall ([£.5.5). The estimate ([4.5.50) follows by (£.5.49)), Proposition [£.64]
and (4.5.31)). The estimate (4.5.51)) follows by (4.5.50), (C.2.16)), (4.5.1]). The estimates (4.5.52]),

(4.5.54), (4.5.53)) follow by the almost invertibility assumption (AI) on L, see (4.5.35)), Lemmata
K.61] 4.63] (4.64) and estimates (4.5.50), (4.5.1), (4.5.31).

et + 121 A %lls . (C216)

so+o so+o so+o Ss+o
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