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Abstract

Non-equilibrium phenomena in quantum physics are ubiquitous in current research because

of their extremely rich phenomenology. Among them, adiabatic processes are particularly

interesting because they connect two of the cornerstone of modern condensed matter the-

ory: topological phases of matter and quantum information. Indeed with adiabatic periodic

driving, it is possible to engineer exotic non-equilibrium phases with tunable topological

properties, which are of great interest for both fundamental research and future quantum

technologies. Adiabatic processes can also be used to implement optimization processes on

quantum hardware and lie at the basis of hybrid quantum-classical algorithms that are ex-

tremely promising for near-term quantum devices. In this thesis, I focus on these two aspects

of adiabatic dynamics in quantum systems.

In the first part, I investigate the robustness of topological phases, arising in periodically

driven systems, with respect to the driving protocol and disorder. In particular, I show

that quantized transport and Anderson localization coexist in one-dimensional systems dis-

playing Thouless pumping, because of a delocalization-localization transition in the Floquet

spectrum. This transition is linked to the topological nature of the adiabatic driving and

disappears if the phase is trivial in the clean limit.

In the second part, I study one of the most popular hybrid optimization method, the quan-

tum approximate optimization algorithm (QAOA). I show that QAOA can tackle the first-

order phase transition arising in the infinite range p-spin model with polynomial resources,

in stark contrast with adiabatic quantum computation, which requires exponentially long

evolution time to reach similar performances. Finally, I present an approach to QAOA based

on reinforcement learning (RL). Interestingly, the RL agent automatically adopts strategies

that converge towards optimal adiabatic schedules and that can be easily transferred between

systems with different sizes, even in the presence of disorder.
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1. Introduction

In this thesis, I discuss two important physical processes related to non-equilibrium quantum

systems with an adiabatic time-dependent driving. The first one, studied in part I, deals with

adiabatic quantum transport, a cornerstone of topological phases of matter arising in non-

equilibrium systems. In part II, I analyze how quantum control and reinforcement learning

can be applied to optimization processes which can be regarded as offsprings of the Quantum

Annealing idea.

In quantum mechanics, adiabatic processes refer typically to systems described by a time-

dependent Hamiltonian Ĥ(t) which is slowly driven in time. The physics behind such phe-

nomena is well explained by the adiabatic theorem [1], that can be, loosely speaking, summa-

rized in the following way: the instantaneous time-dependent energy eigenstates |φn(t)〉 are

also approximate eigenstates of the unitary evolution operator, provided the driving is slow

enough. This means that if we prepare the system in any Hamiltonian eigenstate |φn(t0)〉
at time t0 and evolve it according to the Schrödinger equation, the time-evolved state will

remain close to the corresponding instantaneous eigenstate |φn(t)〉:

Û(t, t0) |φn(t0)〉 ' |φn(t)〉 (1.1)

where Û(t, t0) is the evolution operator between times t0 and t. The exact meaning of “slow

enough” in the theorem’s hypothesis is a crucial information, and also the bottleneck of

adiabatic dynamics. Intuitively it means that the time-scale τ at which the Hamiltonian

parameters change must be much longer than the time-scale associated with the microscopic

dynamics. Equivalently the rate at which energy is absorbed from the driving has to be small

enough not to excite the system, assuming it is prepared in its ground state. Quantitatively,

this request roughly becomes
~
τ
� ∆ (1.2)

where ∆ is the energy gap between the ground and the first excited state.

But why are adiabatic processes interesting? First of all, the possibility of driving a system,

while keeping it close to the instantaneous eigenstate of some time-dependent Hamiltonian,

is relevant for transport phenomena and quantum engines, analogously to reversible trans-

formations in classical thermodynamics. In particular periodic drivings, which are interesting

on their own sake also outside the adiabatic limit [2–8], can lead to out-of-equilibrium topo-

logical phases of matter with no static analogue [4,9–14], of which Thouless pumping [9,15] is

a paradigmatic example. The high level of control guaranteed by laser field in optical lattices

experiments [16] and photonic crystals [17] have allowed, in the last 15 years, the engineer-

ing and the experimental investigation of periodically driven systems, boosting even more

the interest in these topics [18–25]. The experimental availability of adiabatic topological

processes, however, raises several important questions about their robustness. Since perfect

1
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adiabaticity is impossible, how does the finite driving frequency influence the physical observ-

able related to the topological invariant? And how much a low dimensional non-equilibrium

topological process is robust against disorder? These questions will be the main motivations

behind part I of the present thesis.

A second interesting application of adiabatic processes is the problem of “ground state

preparation”, which lies at the heart of many condensed matter and quantum information

problems [26, 27]. The adiabatic theorem comes in as a tool to drive a quantum system

from a trivial initial state (usually a product state) to the target ground state one is aiming

at constructing, exploiting the time-evolution ruled by a time-dependent Hamiltonian that

interpolates between these two limits. This process, known as Quantum Annealing [28,

29] or Adiabatic Quantum Computation [30], is the simplest algorithm used for quantum

optimization and it has been implemented experimentally on several platforms [31–33]. Since

it relies on the adiabatic theorem, it is limited by the presence of small energy gaps in

the spectrum, in particular when the system crosses a phase transition, where the energy

gap goes to zero in the thermodynamic limit [34]. There are many techniques developed

which try to improve the annealing performance when passing through a second-order — or

even worse, a first-order — quantum phase transitions. These techniques include: schedule

optimization [35, 36], exploiting dissipation [37, 38] and the addition of extra driving terms,

either non-stoquastic [39] 1, or superadiabatic [40]. Characterizing the efficiency of such

processes is a central issue among the efforts in current research towards a fully scalable and

universal quantum computer [41].

Recently, hybrid algorithms [42] gained momentum. Their core idea is to integrate classical

and quantum tools in order to exploit the advantages of both: a quantum hardware undergoes

a unitary evolution — inaccessible to classical computers — driven by a set of gates, and

a classical algorithm is used to optimize the parameters entering in the quantum hardware,

usually by means of variational methods. The Variational Quantum Eigensolver (VQE) [43]

and the Quantum Approximate Optimization Algorithm (QAOA) [44] are the most popular

of such methods and promising candidates for near-term quantum technologies [45, 46]. In

part II I investigate the performance of QAOA in fully-connected ferromagnets and propose

a scheme where Reinforcement Learning (RL) is used to stabilize and increase the robustness

of QAOA.

In the remaining part of this chapter, I will give a more detailed introduction to the topics

discussed in this thesis.

1.1. Adiabatic Quantum Pumping

Topological phases of matter are one of the cornerstone of modern condensed matter the-

ory [47–49]. The first breakthrough in this field was the discovery of Integer Quantum

Hall effect (IQHE) [50–53], which describes the quantization of the conductivity in a two-

dimensional electron gas subjected to a magnetic field: if the Fermi energy lies in a spectral

1Loosely speaking, “non-stoquastic” means that there are off-diagonal Hamiltonian terms with a sign which

provokes the fermion-sign problem in quantum Monte Carlo approaches, hence potentially hard to simulate

classically

2
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Figure 1.1.: Thouless pump scheme: atoms in a one dimensional bipartite optical lattice,

generated by two laser beam with different wavelength λ1 = 2λ2. As the phase

difference φ between the two beams is shifted, also the on-site energies and the

hopping amplitudes change, leading to a quantized motion of one particle per

unit cell each period of the driving.

gap, the Hall conductivity σH is equal to an integer multiple n of a universal constant,

σH = ne2/h. The integer n is, in modern terminology, the Chern number [15, 54–56] of the

occupied bands. The Chern number is a topological invariant, which means that it cannot

change smoothly as the system’s parameters are modified. Hence the topological phase char-

acterized by a given Chern number is intrinsically robust against weak perturbations, such

as disorder or interactions. Topological invariants are now widely used to classify many novel

phases of matter, where the Laundau-Ginzburg approach approach of a local order param-

eter fails, as in topological insulators [57–61], topological superconductor [59, 62] and Weyl

semi-metals [63] among others.

Another fundamental step towards the understanding of the role of topology in physical

phenomena is adiabatic quantum pumping [9, 15], or Thouless pumping for short, which

realizes a non-equilibrium topological phase in a periodically driven system. It consists of the

quantization of particle transport in a one-dimensional band insulator, where the Hamiltonian

parameters are driven adiabatically in time along a closed path. If the path has a nontrivial

topology, i.e. it winds around a gap-closing singularity in the spectrum (a metallicity point),

an integer number of particles is pumped across the edges of the system at each period. Again,

this integer number is the topological invariant Chern number of the filled bands. A sketch

of the mechanism behind Thouless pumping is presented in Fig. 1.1. Since its formulation,

Thouless pump has been very popular, because it connects several fundamental aspects of

3
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topological phases of matter, from quantum Hall effect [64–66], to the modern theory of

polarization [67–69] and Floquet engeneering [6, 70, 71]. These non-equilibrium topological

phases of matter realized through a time-periodic driving are known as Floquet Topological

Insulators and are the subject of many recent research efforts [4, 7, 11–14,72].

Adiabatic quantum pumping is also the subject of many recent experimental investiga-

tions [21–23, 25, 73, 74], which raises several questions concerning the robustness of the phe-

nomenon.

First of all, any realistic implementation of a periodically driven system needs a finite

frequency ω: a perfect adiabatic limit ω → 0 is impossible to achieve. The exact quantization

of the pumped charge, however, holds only in the ω → 0 limit. Hence, to properly interpret

experimental data, one needs to understand the effects of a finite frequency. Moreover,

not only the value of ω but also the details of how the driving is turned-on influence the

corrections to quantized transport. In this regard, some mathematical results are known from

Refs. [64] and [65], where the IQHE is analyzed as a quantum pumping process. In Ref. [64]

it is demonstrated that, under strong regularity assumptions on the driving function, the

finite-frequency corrections to the Hall conductivity are non-analytic functions of the form

e−α/ω, suggesting an extreme robustness to non-adiabatic effects. Interesting results are also

presented in Ref. [65], where it is shown that the charge pumped in one period is necessarily a

non-analytic function of ω, but it is not specified if the absence of a Taylor expansion close to

ω = 0 is due to terms of the form e−α/ω or to other forms of non-analytic behaviour. Indeed,

the picture emerging from Ref. [75] suggests that increasingly fast oscillations — non-analytic

in nature — are found when a driving at finite frequency is turned on suddenly: the fast

oscillations decorate an overall envelope of the response that displays quadratic corrections to

the quantized limit, suggesting that the average response is perturbative, but hardly “robust”

to a finite ω driving. In chapter 3 I investigate further on this issue, showing that the response

of the system — being perturbative or non-analytic in ω —, depends on the details of how

the driving is turned on. Floquet theory will play a major role in this analysis because it

links ground state and finite-frequency topological properties.

The second question one might ask concerns the role played by disorder in transport

phenomena. If, on the one hand, topology is expected to be robust against perturbations [15,

70], insofar the ground state manifold is protected by an energy gap, on the other hand, it

is well known that one-dimensional disordered systems undergo Anderson localization [76],

where transport is strongly suppressed. Quantized transport could then occur only on short

time scales: when averaged over many driving periods transport should vanish. Indeed, if the

evolution operator is localized in space, it cannot induce transport on distances larger than

the localization length, while quantum pumping should describe ballistic transport, where

the distance covered by a particle is proportional to the number of driving periods. I will

show in chapter 4 that quantum pumping survives, in one-dimension, in presence of a finite

disorder W below a critical value Wc, because in the topological phase a large number of

Floquet states are delocalized, and they undergo a true delocalization/localization transition

at W = Wc. This happens only if the driving cycle is topological, while in the trivial phase

both Hamiltonian eigenstates and Floquet states are localized (although the latter tend to

have larger localization lengths due to the periodic driving [77,78]).

4
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A final comment is due on the effect of dissipation, although not directly relevant for this

thesis. Adiabatic pumping is a “deeply quantum” effect, meaning that it requires the coherent

unitary evolution of the wave-function for a long time. Any experimental implementation,

however, suffers from some source of dissipation, being the classical noise in the control fields

or the coupling of the system to a continuum of environmental modes. When looking at

topological properties of a time-dependent ground state, though, dissipation effects are not

necessarily detrimental. If dissipation is tuned in such a way that it helps the system to relax

to the appropriate “Floquet ground state” 2, disposing in such a way of part of the energy

that is necessarily absorbed from the driving, the quantization of particle transport could

become more robust to non-adiabatic effects, as observed in Ref. [79]. This is particularly

important for interacting driven systems because within a strictly unitary dynamics they

would tend to “heat-up” to a featureless infinite temperature steady state. In this scenario,

dissipation could stabilize topological transport at large time-scales without invoking many-

body localization [24], which prevents heating but also suppresses transport.

1.2. Quantum Optimization

Quantum optimization is a focus of current research in quantum computation (QC) [27] and

information processes. At its core, quantum optimization aims at designing and developing a

“machine” — depicted schematically in Fig. 1.2 — which would be able to exploit quantum

mechanics to prepare the ground state of a target Hamiltonian Ĥtarget, usually of a spin-1
2

model [80], provided as an input to the machine. This goal has many motivations, both from

fundamental research aspects and technological ones. Concerning fundamental aspects, being

able to study the low-energy properties of spin Hamiltonians is one of the building blocks

of modern condensed matter physics, and quantum optimization would be able to provide

information on systems inaccessible to classical computers [81]. On the technological side,

classical hard optimization problems are ubiquitous and some of them might be solved more

efficiently with the aid of quantum hardware and algorithms [80, 82]. Moreover, quantum

optimization would be a useful tool for quantum chemistry [26,83,84]. Finally, the theoretical

and technological efforts required to build such a wonderful machine are worth being pursued

per se, since they would likely both increase our understanding of fundamental processes in

Nature and pave the way to a whole class of new technologies based on the manipulation of

individual quantum systems.

One of the first methods proposed and implemented for quantum optimization is Quan-

tum Annealing (QA) [28, 29, 85–87] or equivalently Adiabatic Quantum Computation (AQC)

[30, 88]. It relies on the adiabatic theorem to drive the system from an initial state, easy

to prepare, to the ground state of the target Hamiltonian. To be more precise, let us con-

sider a spin-1
2 Hamiltonian Ĥtarget, of which we wish to find the ground state, and a second

2The concept of Floquet ground state is somewhat non-trivial: usually topological properties are associated

to the ground-state (GS) of a parameterized Hamiltonian Ĥ(R), as R describes some closed path. However

in a real implementation, R is changed in time with a finite rate ω, hence topology is better investigated by

looking at Floquet states. When ω is small, Floquet states and Hamiltonian eigenstates are very similar,

thanks to the adiabatic theorem, hence one can refer to the Floquet state with the largest projection on

the GS as Floquet ground state.

5
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Quantum
or 
Hybrid
(Quantum+Classical

Figure 1.2.: Sketch of a “dream machine” which prepares the ground state of the Hamiltonian

Ĥtarget with fully quantum or hybrid quantum-classical hardware and algorithms.

Hamiltonian Ĥdrive that does not commute with Ĥtarget. A common choice, relevant for both

condensed matter and classical optimization problems, is

Ĥtarget = Ĥz =
∑
i,j

Jij σ̂
z
i σ̂

z
j , Ĥdrive = Ĥx = −

∑
i

σ̂xi . (1.3)

In QA/AQC one considers a time-dependent interpolation of Ĥtarget and Ĥdrive written as

Ĥ(t) = s(t/τ)Ĥtarget + (1− s(t/τ))Ĥdrive . (1.4)

s(t/τ) ∈ [0, 1] is a control parameter chosen such that s(0) = 0 and s(1) = 1, while τ is the

total evolution time. The system is first prepared in the ground state |φ0(0)〉 of Ĥdrive, which is

a trivial product state with all spins aligned in the x̂ direction. Then, a Schrödinger evolution

associated to Ĥ(t) is implemented, and if τ is “large enough” the adiabatic theorem ensures

that the wave-function |ψ(t)〉 describing the system will be always close to the instantaneous

ground state of Ĥ(t). Hence at t = τ , it will end up in the desired ground state of Ĥtarget.

Unfortunately, true adiabatic evolution is quite fragile because it requires that the instan-

taneous ground state manifold |φ0(t)〉 is always protected by an energy gap ∆(t) from the

excited states. If this is the case, the “slow enough” hypothesis of the adiabatic theorem

requires that
τ

~
� Γ

mint ∆2(t)
,

at least for a linear schedule s(t/τ) = t/τ . Here Γ is the Hamiltonian matrix element

connecting the ground state and the first excited state. However, for most interesting Hamil-

tonians Ĥtarget, the system crosses a phase transition at sc < 1 from a quantum paramagnetic

phase (s(t) < sc) to a phase ordered in the ẑ direction (s(t) > sc), whether ferromagnetic,

anti-ferromagnetic or glassy. Phase transitions are always marked by an energy gap ∆ that

6
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vanishes in the thermodynamic limit when the driving parameter reaches the critical point

sc, hence spoiling the efficiency of QA/AQC.

Two are therefore the main questions that one has to answer in QA/AQC applications.

First, it is important to understand how the density of “defects” over the true desired GS

scales with the number of spin variables N and with the total evolution time τ . This allows

characterizing the efficiency of the process and determines the minimum resources needed to

obtain meaningful results. Second, the precise choice of the function s(t/τ) plays a major

role in the overall efficiency, hence its optimization is one of the key elements in developing

a successful QA/AQC setup. Finding the optimal schedule s(t) appears at a first sight as

a formidable problem, as it requires information on the target state or the instantaneous

spectrum, in order to “slow down” the evolution at the appropriate point.

Despite the difficulty of optimizing the schedule s(t) and the limitations imposed by phase

transitions, QA/AQC has been extremely popular since its first proposals, because it is easy

to implement on noisy intermediate-scale quantum (NISQ) devices [32, 41], easier, at least,

than circuit-based quantum computation. Indeed adiabatic ground state preparation requires

a rather simple control setup: once the Hamiltonian is encoded in a set of physical qubits

— which is a nontrivial step on its own — QA/AQC consists in the slow tuning of some

external magnetic field in order to reach the target state. Therefore QA/AQC is much less

sensitive to noise than circuit QC and it also suffers less from decoherence, since dissipation

is not necessarily bad when looking for low-energy states of a Hamiltonian. The D-Wave

processor, one of the most famous QA-based quantum computers, indeed exploits dissipation

and temperature tuning during the optimization process [89].

From the theoretical point of view, one of the main disadvantages of QA/AQC is the

difficulty in obtaining analytical results on the time-dependent wave-function |ψ(t)〉, since

this is a complicated object computed as the time-ordered exponential associated to a time-

dependent Hamiltonian

|ψ(t)〉 = Texp
(
− i

~

∫ t

0
dt′ Ĥ(s(t′))

)
|ψ(0)〉 . (1.5)

This evolution operator is nearly impossible to write explicitly, hence a useful approximation

is to introduce a mesh of P points, s1, · · · sP, substituting the schedule function s(t) with its

discretized step-like form at s(tm) = sm in the interval [0, τ ]. Hence, the final state can be

rewritten as

|ψ(τ)〉 '
←P∏
m=1

e−
i
~ Ĥ(sm)∆tm |ψ(0)〉 , (1.6)

where ∆tm is the length of the m−th time interval, with
∑P

m=1 ∆tm = τ , and the elements

in the product are ordered from right to left, as m increases. This approximation might

be referred to as “step-QA” [90]. Another simplification comes from Trotter decomposition:

each term of the product can be written as the product of two simpler evolution operator

e−
i
~ Ĥ(sm)∆tm = e−iĤxβme−iĤzγm +O(∆t2m) , (1.7)

where we have assumed the Hamiltonian written in Eq. (1.3). The parameters γm and βm
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Figure 1.3.: A smooth continuous-time QA schedule protocol s(t), with the associated step-

QA and digitized-QA schedules. Here P = 8. The time-intervals ∆tm are not

identical. Figure taken from Ref. [90].

are linked to the original discretized schedule sm in the following way γm = ∆tm
~ sm

βm = ∆tm
~ (1− sm)

⇔

 sm = γm
γm+βm

∆tm = ~(γm + βm)
(1.8)

The process associated to the parameters in Eq. (1.8) is called digitized Quantum Annealing

(dQA), and it leads to the approximate solution

|ψP(γ,β)〉 =
←P∏
m=1

e−iβmĤxe−iγmĤz |+〉 . (1.9)

Here we write explicitly that the initially the system is prepared in the ground state of Ĥx

with all spins aligned in the x̂ direction, hence |ψ(0)〉 = |+〉 with:

|+〉 =
1√
2L

L⊗
i=1

(|↑〉i + |↓〉i) , (1.10)

while γ and β are real vectors of dimension P.

As advocated in Ref. [91], dQA has the advantage that each unitary in Eq. (1.9) can be

implemented with universal quantum gates, with the possible inclusion of non-stoquastic

terms [92] that are in general hard to simulate on classical computers [93].

Equation (1.9) is also the starting point of the main player in part II of this thesis, the

Quantum Approximate Optimization Algorithm (QAOA). It is a hybrid quantum-classical

variational scheme [42], first proposed by Farhi et al. in Ref. [44], which has recently gained

momentum [94–97] and has been successfully realized in several experimental platforms [98,

99].

Essentially, QAOA considers the 2P control parameters (γ,β) as a set of variational pa-

rameters to be optimized in order to obtain the best possible approximation to the target

8
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state. It is a hybrid quantum-classical scheme: A set of quantum gates performs the unitary

evolution according to Eq. (1.9), with a given set of parameters (γ,β), and computes the

expectation value of the target Hamiltonian of the variational state

EP(γ,β) = 〈ψP(γ,β)| Ĥtarget |ψP(γ,β)〉 . (1.11)

Then, a classical minimization algorithm is used to find a minimum in the energy landscape

EP(γ,β), leading to an approximation of the ground state |ψP (γ∗,β∗)〉, where

(γ∗,β∗) = argmin(γ,β)EP(γ,β) . (1.12)

QAOA could also be regarded as a control scheme that allows optimizing the digitized sched-

ule sm in a dQA protocol. In general, however, the minima in the energy landscape EP(γ,β)

are not associated to smooth protocols [36], but an iterative minimum search for increasing

values of P can lead to schedules that correspond to the discretization of a continuous func-

tion, thus describing an optimized dQA [96]. Optimal dQA protocols are worth pursuing for

several reasons: first, they are easier to implement experimentally, since they do not require

abrupt changes in the control fields. Second, they should be more robust to noise because

a small deviation from the optimal protocol leaves the system in the basin of the “smooth”

local minimum, while this is not necessarily the case for highly irregular schedules. Finally,

they are scalable, meaning that once the shape of the optimal schedule is known, it is possible

to change the evolution time without searching for a new minimum, and they are universal,

i.e. they lead to similar performances for different system sizes.

In this thesis, I focus on QAOA applied on the fully-connected Ising model, or p-spin

model [100], which is a known case where standard QA/AQC fails due to the presence of a

first-order phase transition and hence the need for exponentially long annealing time [100–

102]. QAOA, instead, is able to prepare the ground state with resources scaling only poly-

nomially with the number of variables N , therefore it outperforms QA/AQC in this model.

However, this speedup comes at the price of a very complex energy landscape that makes

local optimization highly dependent on the initial value of the QAOA parameters, for shal-

low circuits (small parameters number P), and the convergence towards local minima very

slow. Indeed, we failed to find regular dQA schedules using the iterative procedures applied

successfully to other problems [95,96,98].

In the last chapter we propose a Reinforcement Learning [103] assisted scheme for quantum

optimization, where an artificial neural network (ANN) is trained to map quantum states to

pairs of control parameters (γ, β) in order to minimize the variational energy in Eq. (1.11).

We benchmark this method on the transverse field Ising model (TFIM) both with uniform

and random couplings and on the p = 2 fully connected p-spin model. Our RL scheme learns

strategies converging to the optimal adiabatic solution for QAOA [96] for the translationally

invariant quantum Ising chain. The same result holds in the presence of disorder, where

the policy can be transferred among different disorder instances and system sizes. Indeed,

our RL scheme allows the training part to be performed on small samples and transferred

successfully on larger systems and different disordered realizations. Our RL-assisted QAOA

is able to find regular schedules for the fully-connected Ising model, in sharp contrast with

local minimization alone. It improves also on the stability of QAOA process, leading to much

better results for large values of P and allowing for a better estimate of the scaling of the

residual energy with P and the system size N .
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2. Quantum pumping and Floquet Theory

In this chapter, I introduce the theoretical framework and the methods to understand topo-

logical phases in periodically driven quantum systems, which are the core of the first part

of this thesis, for which this chapter might be regarded as a “technical introduction”. In

Sec. 2.1 I give an overview of the topological interpretation of adiabatic quantum pumping,

as given in Ref. [9] and generalized in Ref. [15]. In Sec. 2.2 I review the elements of Floquet

theory that are going to be used in the following chapters to study the topological properties

of periodically driven systems close to an adiabatic regime.

2.1. Thouless pumping

Let us consider a generic system made ofN non-relativistic charged particles in one dimension,

with periodic boundary conditions. To calculate the particle current, we include, via the

minimal coupling, a vector potential A = ϕ/L, where ϕ is the magnetic flux piercing the ring

of length L. On the continuum, the Hamiltonian reads

Ĥ(ϕ) =

N∑
i=1

((p̂i + ~κ)2

2m
+ V (xi)

)
+

1

2

∑
i 6=j

Vint(xi − xj) , (2.1)

where ~κ = eϕ
L is the shift of momentum due to the flux ϕ, V (xi) the one-body potential and

Vint(xi − xj) the two-body interaction. The current density operator can now be computed

as [9]

Ĵ = ∂ϕĤ(ϕ)|ϕ=0 =
e

L

∑
i

p̂i
m

. (2.2)

Notice that the constant vector potential in Eq. (2.1) can be eliminated by a gauge trans-

formation of the wave-function, ψ(x) → ψ̃(x) = e−iκxψ(x), which is equivalent to twist the

boundary condition on ψ̃(x), i.e., ψ̃(x + L) = e−iθψ̃(x) by an angle θ = κL = 2π ϕ
ϕ0

, where

ϕ0 = h/e is the quantum of magnetic flux. We can extend this derivation to a tight binding

model, where the gauge transformation of the wave-function is equivalent to introducing a

Peierls’ phase in the hopping elements

ĉ†l+1ĉl → eiκa ĉ†l+1ĉl , (2.3)

where a is the lattice spacing. Thus, when we consider explicitly twisted boundary condition,

the current is computed as

Ĵ =
2π

ϕ0
∂θĤ(θ) , (2.4)

which is equivalent to Eq. (2.2) with a non-zero magnetic flux, with θ = 2π ϕ
ϕ0

.
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If we now add a time-dependent periodic potential to the Hamiltonian, an interesting

quantity to measure is the current induced by this periodic driving. Hence, let us now consider

a fermionic Hamiltonian with a periodic driving, Ĥ(t+τ) = Ĥ(t), on a ring, assuming that the

system is gapped (i.e., insulating) at any time t. τ is the period of the driving. If the system

is initially prepared in a N−particle insulating state |Ψ(0)〉 = |Φ0(0)〉 and the driving is slow

enough, the adiabatic theorem guarantees that the system will approximately remain in the

instantaneous ground state |Φ0(t)〉 along the whole evolution. More precisely, an adiabatic

expansion on the evolved states leads to [9]

|Ψ(t)〉 = eiγ0(t)e−
i
~
∫ t
0 dt′E0(t′)

|Φ0(t)〉+ i~
∑
n6=0

|Φn(t)〉 〈Φn(t)| ∂tΦ0(t)〉
En(t)− E0(t)

+O

(
1

τ2

)
, (2.5)

where γ0(t) is the Berry phase accumulated by the ground state |Φ0(t)〉, while En(t) and

|Φn(t)〉 are the instantaneous eigenvalues and eigenstates of Ĥ(t). To derive Eq. (2.5) one

assumes that the Hamiltonian depends on time through a set of parameters R(t/τ), such

that the inverse of the period can be used as a small parameter for a series expansion. The

sum in the second term, which runs over all the excited states (n 6= 0), is of fundamental

importance to computing transport properties.

We are now interested in the leading contribution to the average current 〈Ψ(t)| Ĵ(t) |Ψ(t)〉.
Since the time derivative 〈Φn(t)| ∂tΦ0(t)〉 is of the order 1/τ � 1, being the evolution adia-

batic, we will keep only terms up to first order in the expansion. A straightforward calculation

leads to

〈Ψ(t)| Ĵ(t) |Ψ(t)〉 = 〈Φ0(t)| ∂ϕĤ(t) |Φ0(t)〉+ i~

[
〈Φ0(t)| ∂ϕĤ |Φn(t)〉 〈Φn(t)| ∂tΦ0(t)〉

En(t)− E0(t)
− c.c.

]
.

(2.6)

As specified in Eq. (2.2), the Hamiltonian and all eigenvalues and eigenvectors are computed

for a vanishing magnetic flux ϕ = 0. To simplify Eq. (2.6), we make use of Hellmann-Feynman

theorem to write the first term on the right hand side as

〈Φ0(t)| ∂ϕĤ(t) |Φ0(t)〉 = ∂ϕE0(t) , (2.7)

while the terms in the sum can be re-written as

〈Φ0(t)| ∂ϕĤ |Φn(t)〉
En(t)− E0(t)

= −〈∂ϕΦ0(t)|Φn(t)〉 . (2.8)

To make the interpretation of the following equations more physically transparent, we now

substitute the magnetic flux ϕ with the associated momentum κ, first introduced in Eq. (2.1).

Hence, we obtain the following expression for the average current

〈Ψ(t)| Ĵ(t) |Ψ(t)〉 =
e

L

1

~
∂κE0(t)− i

∑
n 6=0

(〈∂κΦ0(t)|Φn(t)〉 〈Φn(t)| ∂tΦ0(t)〉 − c.c.)


=
e

L

[
1

~
∂κE0(t)− i (〈∂κΦ0(t)| ∂tΦ0(t)〉 − c.c.)

] . (2.9)

To obtain the last equality we inserted the term n = 0 into the sum, exploiting the fact that

it gives no contribution, since 〈∂κΦ0|Φ0〉 〈Φ0(t)| ∂tΦ0(t)〉 is a real number. Equation (2.9)

14
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has an appealing interpretation: The first term is the group velocity of the instantaneous

ground state, while the second term has the form of a Berry curvature, which is related to

the geometrical properties of the ground state manifold. Both terms become more clear when

the Hamiltonian has translational invariance and the momentum shift κ can be substituted

by the real momentum k. In this situation, the current can be rewritten as an integral over

all momenta and a sum over all occupied bands (recall that |Φ0〉 describes an insulator)

〈Ψ(t)| Ĵ(t) |Ψ(t)〉 = e
occ∑
v

∫ 2π/a

0

dk

2π

[
1

~
∂kEv,k(t)− i

(
〈∂kuv,k(t)| ∂tuv,k(t)〉 − c.c.

)]
, (2.10)

where uv,k(t) are the periodic part of the occupied Bloch wave-functions of the time-dependent

Hamiltonian. In going from Eq. (2.9) to (2.10) we assumed implicitly the thermodynamic

limit L→∞.

The number of particles transported across any section of the ring, the pumped charge, is

the integral over one time period of the average current, divided by the particle charge e

Q(τ) =
1

e

∫ τ

0
dt 〈Ψ(t)| Ĵ(t) |Ψ(t)〉 = −i

occ∑
v

∫ τ

0
dt

∫ 2π
a

0

dk

2π

(
〈∂kuv,k(t)| ∂tuv,k(t)〉 − c.c.

)
,

(2.11)

where we neglected the term with ∂kEv,k(t) because it is a real periodic function, integrated

over one period. This is the consequence of the insensitivity of an insulator to an external

driving: hence ordinary particle transport is absent, as expected. However the pumped charge

can still be non-zero. Indeed, Eq. (2.11) is the integral over a closed surface — the torus

[0, 2π
a ]× [0, τ ] — of the Berry curvature of the ground state:

Bk,t = i
occ∑
v

(
〈∂kuv,k(t)| ∂tuv,k(t)〉 − c.c.

)
. (2.12)

This integral can assume only an integer value, and is now known as the first Chern number

of the ground state: a topological invariant. Hence Q(τ) ∈ Z is quantized in the adiabatic

limit τ → ∞: its sign shows the direction in which the average current flows. Equation

(2.11), first derived by Thouless [9], is one of the cornerstones of non-equilibrium topological

phases in condensed matter systems.

To conclude this section, we extend Eq. (2.11) to systems where translational invariance

is broken, either by an external potential or interaction, following the work of Refs. [15, 70].

We make use of the insensitivity of insulators to the boundary conditions [104], to express

the pumped charge as the average over all possible phase twists θ at the boundary

Q(τ) =
1

~

∫ 2π

0

dθ

2π
〈Ψ(t)| ∂θĤ(θ) |Ψ(t)〉 , (2.13)

where we used Eq. (2.4) to write the particle current. Exploiting the same steps that led to

Eqs. (2.9) and (2.11), we finally arrive at

Q(τ) = −i
∫ τ

0
dt

∫ 2π

0

dθ

2π

(
〈∂θΦ0(t)| ∂tΦ0(t)〉 − c.c.

)
, (2.14)

which has again the mathematical structure of a curvature integrated on a closed surface —

the torus [0, τ ]× [0, 2π] — hence giving an integer Chern number.
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2.2. Floquet Theory

In this section, I will give an overview of the Floquet theory, which is the main tool we

are going to use to investigate the dynamics of periodically driven systems. In a more

general framework, Floquet theory includes a series of results on systems of linear differential

equations with periodic coefficients. For what regards quantum mechanics, the main field of

applications is for Hamiltonians which are periodic in space, which leads to the Bloch theorem

and to the band theory of crystals, or in time. Thus, let us consider a Hamiltonian which is

time-periodic with a period τ , Ĥ(t+τ) = Ĥ(t), and its associated Schrödinger time-evolution

operator Û(t, t0). Floquet theorem, the central result of the theory, states that

Û(t+ nτ, t0) = Û(t, t0)
[
Û(t0 + τ, t0)

]n
, (2.15)

where t0 < t < τ and n is an integer number. Equation (2.15) has the important implication

that the evolution operator within one period of the driving Û(t0+t, t0) with t < τ completely

describes the dynamics at arbitrarily large times. Of particular interest is the evolution

operator for exactly one period, which is often refereed to as the Floquet operator F̂t0(τ) =

Û(t0 + τ, t0). F̂t0(τ) is unitary, and therefore diagonalizable. Hence, we can write a “spectral

decomposition” over its basis

F̂t0(τ) =
∑
ν

e−
i
~ εντ |φν(t0)〉 〈φν(t0)| , (2.16)

where the eigenvectors |φν(t0)〉 are called the Floquet eigen-modes, while the εν are the

Floquet quasi-energies. Since the εν enter into Eq. (2.16) as “phases”, the quasi-energies are

usually taken into the first Floquet-Brillouine zone εν ∈
[
−~ω

2 ,
~ω
2

)
, with ω = 2π

τ being the

driving frequency, in analogy with the quasi-momenta k entering in the Bloch theorem for

translationally invariant Hamiltonians.

An important consequence of Floquet theorem concerns the time evolution of Floquet

states |ψν(t)〉 = Û(t + t0, t0) |φν(t0)〉. They can be written as the product of a phase term

and periodic part

|ψν(t)〉 = Û(t+ t0, t0) |φν(t0)〉 = e−
i
~ ενt |φν(t+ t0)〉 , (2.17)

where |φν(t+ τ)〉 = |φν(t)〉 is called Floquet mode and has the same periodicity of the Hamil-

tonian Ĥ(t). By construction, the Floquet states solve the time-dependent Schrödinger equa-

tion:

i~
∂

∂t
|ψν(t)〉 = Ĥ(t) |ψν(t)〉 . (2.18)

Equation (2.17) is the generalization for time-periodic Hamiltonian of the Bloch theorem in

one dimension, with εν/~ playing the role of the quasi-momentum k. 1

Equation (2.18), together with (2.17), allows us to derive directly a kind of eigenvalue

equation linking Floquet modes and quasi-energies:

K̂(t) |φν(t)〉 = εν |φν(t)〉 , (2.19)

1To avoid confusion, we will refer to the |ψν(t)〉 in Eq. (2.17) as Floquet states: they are solutions of the time-

dependent Schrödinger equation (2.18). The Floquet modes, instead, are only the periodic parts |φν(t)〉 of

the Floquet states.
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where the Hermitean operator

K̂(t) = Ĥ(t)− i~ ∂
∂t

(2.20)

is referred to as the Floquet extended Hamiltonian. It acts on the Hilbert space H′ = H⊗Iτ ,

with H the original Hilbert space of Ĥ(t) and Iτ the space of square-integrable periodic

function of period τ . The associated inner product is the natural extension of that of H:

〈〈f | g〉〉 =
1

τ

∫ τ

0
dt 〈f(t)| g(t)〉 . (2.21)

Armed with this machinery, we can now describe a generic wave-function evolving with a

periodic Ĥ(t), and prepared in the initial state |ψ(t0)〉 = |ψ0〉. In the following, we will set

t0 = 0 for simplicity. First, we write the initial wave-function on the (assumed complete)

Floquet mode basis, inserting a resolution of the indentity:

|ψ0〉 =
∑
ν

|φν(0)〉 〈φν(0)|ψ0〉 =
∑
ν

cν |φν(0)〉 , (2.22)

with cν = 〈φν(0)|ψ0〉. Next, we use Eqs. (2.15) and (2.17) to express the state of the system

at a generic time t′ = mτ + t as:

|ψ(mτ + t)〉 =
∑
ν

e−
i
~ εν(mτ+t) cν |φν(t)〉 . (2.23)

The information on the initial state is stored only in the expansion coefficients cν = 〈φν(0)|ψ0〉,
which are constant in time, while all the time-dependence is dictated by the phase factors (as

in the ordinary time-dependent Schrödinger evolution for time-independent Hamiltonians)

and in the periodic Floquet modes |φν(t)〉.

Here some comments are due on the link between Floquet states and Hamiltonian eigen-

states. If the evolution was truly adiabatic, the two would coincide, and the quasi-energy

could be computed directly from the adiabatic theorem. Indeed, for a strictly adiabatic

time-evolution of the Hamiltonian eigenstates |ψn〉 we would have:

Û(t, 0)|ψn(0)〉 = eiγn(t)e−
i
~
∫ t
0 dt′En(t′) |ψn(t)〉 . (2.24)

Here |ψn(t)〉 is the n−th instantaneous eigenstate of Ĥ(t), En(t) its energy and γn(t) =∫ t
0 dt′ 〈ψn(t′)| ∂t′ψn(t′)〉 the associated Berry phase. From Eq. (2.24) it is evident that |ψn(τ)〉 ≡
|ψn(0)〉 is an eigenstate of the Floquet operator Û(τ, 0), with eigenvalue eiγn(τ)e−

i
~
∫ τ
0 dt′En(t′).

Hence, in the adiabatic limit the quasi-energy reads

εn =
1

τ

(
~γn(τ)−

∫ τ

0
dt En(t)

)
. (2.25)

For non-equilibrium systems with a “small enough” driving frequency, this is a good estimate

of the actual quasi-energies, and it is extremely useful to have some physical insight in the

system dynamics, as will be further developed in chapter 3. When ω > 0 (τ is finite), Floquet

and Hamiltonian eigenstates do not coincide any more, but in general in a quasi-adiabatic

scenario, Floquet states will have a dominant projection on a single instantaneous energy

eigenstate, and very small overlap with the others. These overlaps can be computed with the

adiabatic theorem and are analyzed in detail in appendix A.1.
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2.2.1. Pumped charge and winding of quasi-energies

Here we link the quantization of Thouless pumping described in section 2.1 to the topological

aspects of Floquet states. Let us consider a time-periodic Hamiltonian Ĥ(t + τ) = Ĥ(t),

which can be used to describe adiabatic quantum pumping. In the following, we set e = 1,

so that the charge current is equivalent to the particle current.

We are interested in computing the charge pumped at a generic time tf , that we express

as

Q(tf) =

∫ tf

0
dt 〈Ψ(t)|Ĵ(t)|Ψ(t)〉 , (2.26)

where Ψ is the (many-body) wave-function and Ĵ(t) the time-dependent current density

operator. Let us focus on the pumped charge averaged over (infinitely) many periods

Qd = lim
m→∞

1

m
Q(mτ) = lim

m→∞

1

m

∫ mτ

0
dt 〈Ψ(t)|Ĵ(t)|Ψ(t)〉 . (2.27)

Our aim is to use Floquet representation to express this quantity. First of all, we write the

state, as in Eqs. (2.22) and (2.23):

|Ψ(0)〉 =
∑
ν

cν |Φν(0)〉 =⇒ |Ψ(t)〉 =
∑
ν

cνe−iEνt/~ |Φν(t)〉 , (2.28)

where |Φν(t)〉 is a (many-body) Floquet mode with (many-body) quasi-energy Eν . Expressing

the average current using such a decomposition of |Ψ(t)〉, we write:

Q(mτ) =
m−1∑
n=0

∑
ν,ν′

c∗ν′cνeinτ(Eν′−Eν)/~
∫ (n+1)τ

nτ
dt eit(Eν′−Eν)/~ 〈Φν′(t)| ∂ϕĤ(ϕ, t)|ϕ=0 |Φν(t)〉

=

m−1∑
n=0

∑
ν,ν′

c∗ν′cνeinτ(Eν′−Eν)/~
∫ τ

0
dt eit(Eν′−Eν)/~ 〈Φν′(t)| ∂ϕĤ(ϕ, t)|ϕ=0 |Φν(t)〉 ,

(2.29)

where in the integral we have used the periodicity of Ĥ(t) and of the Floquet modes. If

we take the limit m → ∞ and average over the number of periods, only terms with ν = ν ′

survive, leading to

Qd =
∑
ν

Nν
∫ τ

0
dt 〈Φν(t)| ∂ϕĤ(ϕ, t)|ϕ=0 |Φν(t)〉 , (2.30)

where Nν = |cν |2 is the occupation number of the ν−th many-body Floquet state, given the

initial state of the system |Ψ(0)〉. Equation (2.30) defines the main observable of interest in

part I of this thesis. Exploiting properties of the evolution operator [70], we can rewrite∫ τ

0
dt Û †(t, 0)∂ϕĤ(t)Û(t, 0) = iÛ †(τ, 0)∂ϕÛ(τ, 0) , (2.31)

which, together with Eq. (2.30), leads to

Qd = τ
∑
ν

Nν ∂ϕEν(ϕ)|ϕ=0 . (2.32)
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To better understand this result, it is useful to distinguish explicitly between systems

possessing translational invariance and those that are not uniform in space. First of all let us

assume that interactions are negligible, so that the N−particle Floquet state |Φν(0)〉 is just

a Slater determinant with N single-particle (SP) states. If momentum is conserved, the SP

Floquet states are labeled by the band index α and the wave-number k, such that in second

quantization we can write

|Φν(0)〉 =
∏
k

f †α,k |0〉 , (2.33)

where f †α,k creates a particle in the SP Floquet state |φα,k(0)〉. An immediate consequence

of Eq. (2.33) is that

Eν =
∑
k

εα,k →
L

2π

∫ 2π
a

0
dk εα,k , (2.34)

i.e., the N−particle quasi-energy is the sum of the single-particle ones associated with the

states in the Slater determinant. The initial ground state |Ψ(0)〉 can be also decomposed in

single-particle orbitals |ψk(0)〉, allowing to write the occupation number as

Nν =
L

2π

∑
α

∫ 2π/a

0
dk | 〈ψk(0)|φα,k(0)〉|2 . (2.35)

Translational invariance allows to express Eq. (2.32) as a single integral over momentum and

the sum over all N−particles Floquet states becomes a sum over all SP bands α

Qd =
Lτ

2π

∫ 2π
a

0
dk nα,k ∂ϕεα,k . (2.36)

Finally, we exploit ∂ϕ → e
~L∂k to write

Qd =
1

~ω
∑
α

∫ 2π
a

0
dk nα,k ∂kεα,k , (2.37)

where we dropped the charge e because we are interested in particle current. The occupation

number now is computed as nα,k = | 〈φα,k(0)|ψk(0)〉|2, where |φα,k(0)〉 and |ψk(0)〉 are re-

spectively the α−th Floquet state and the initial ground-state components with momentum

k. The pumped charge is written as the weighted sum of the winding number of the Floquet

quasi-energies. Indeed, if we focus on the simple scenario nα,k = δα,α′ , meaning that only the

α′−th Floquet state is occupied, Eq. (2.37) reduces to

Qd =
1

~ω

∫ 2π
a

0
dk ∂kεα′,k . (2.38)

Because of lattice periodicity εα′,2π/a = εα′,0 mod ~ω — recall that the quasi-energies are

the phases of the eigenvalues of the evolution operator — the integral over the momentum

in Eq. 2.38 must give an integer multiple of ~ω. Combining it with the prefactors, we obtain

that the pumped charge is an integer number, called winding number, that relates particle

transport to the topology of the Floquet states. This is schematically illustrated in Fig. 2.1,

where the quasi-energies of the Rice-Mele model [75, 105] are plotted versus the momentum

k. The thick line, associated with a single Floquet state, winds one time around the Floquet-

Brillouin zone and the transported charge is indeed Qd = 1. However, preparing the system
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0 2

k

k a
Figure 2.1.: Floquet quasi-energies vs momentum for the Rice-Mele model, with a driving fre-

quency ω = 0.2. The thick line is the Floquet state with the highest projection

over the ground state of the Hamiltonian. The winding number can be com-

puted counting the number of times that εk has a jump in the Floquet-Brillouin

zone, with a sign depending on the derivative: +1 if εk is increasing, −1 if it is

decreasing. Picture taken from Ref. [75].

in a single Floquet state is difficult, since typically the system is prepared in the ground

state of the Hamiltonian, which has in general projections over many Floquet modes. Hence

the pumped charge computed using Eq. (2.37) is generally not an integer number: there are

corrections depending on the occupation numbers nα,k, which are nevertheless small when

the driving is (quasi)-adiabatic.

In a disordered system, it is useful to compute the charge as its average over twisted

boundary conditions. Indeed if a quantum state projector is exponentially localized, bulk

properties are insensitive to a twist θ in the boundary condition [15, 104], or equivalently

they are insensitive to the presence of a flux that induces a phase shift θ when a particle hops

through the whole ring. Exploiting Eq. (2.4) we can write the charge as

Qd =
2πτ

ϕ0

∑
ν

∫ 2π

0

dθ

2π
Nν(θ) ∂θEν(θ) . (2.39)

Now the winding number is no longer computed as the integral over the momentum, but

rather over the phase twist at the boundary, which plays the role of a “supercell pseudo-

momentum”.
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3. Non-adiabatic effects

In this chapter, I discuss a work published in Ref. [106], where we study the robustness of

the quantization of the Hall conductivity towards the details of the protocol with which a

longitudinal uniform driving force Fx(t) is turned on.

The integer quantum Hall effect (IQHE) is one of the cornerstones of modern condensed

matter theory. It describes the current induced in a two-dimensional insulator, in a direction

perpendicular to an external field jy = σHFx, mediated by the Hall or transverse conductivity.

σH is quantized in units of e2/~ in the linear response regime Fx → 0, but experimentally it

holds with stunning precision even for rather large external fields.

Here we characterize the deviation from the linear response regime in the simplest tight-

binding model that displays IQHE, the Harper-Hofstadter model. Let us consider free spinless

fermions on a square lattice, where each plaquette is pierced by a magnetic flux φ and subject

to a uniform driving in the x̂ direction Fx = F x̂, as depicted in Fig. 3.1(a). Due to IQHE,

current flows in the transverse direction ŷ. We investigate how the time-averaged (steady-

(a) (b)

Figure 3.1.: (a) Sketch of the Harper-Hofstadter model on a square lattice with lattice spacing

a, and a magnetic flux per plaquette φ. (b) Possible deviations from quantization:

perturbative (blue dashed line) or non-analytic (red line).

state) particle current density jy deviates from the quantized value jy h/F = n due to the

finite value of F and the details of the switching-on protocol of the external field. There

are two possible outcomes, summarized in Fig. 3.1: the corrections to the quantized value

could be either perturbative in the field strength F or non-analytic. Regarding the possible

switching on protocols of Fx, we consider a sudden quench, a linear ramp, and a smooth

s-shaped ramp, the latter two taking place in tunable time t0. The three possibilities are

depicted in Fig. 3.2.
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0
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)
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Figure 3.2.: Possible schedules for the switching-on of the uniform driving force Fx(t). The

sudden quench case Fx(t) = θ(t)F , where θ(t) is the Heaviside step function, is

recovered for t0 → 0.

We tackle the problem as a quantum pumping process, using Peierls phase to introduce

a complex hopping amplitude periodic in time J → J e−i
aF
~ t = J e−iωt, with a frequency

proportional to the field strength F . Exploiting the time-periodicity of the Hamiltonian

Ĥ(t), we use Floquet techniques to study this problem, as described in Sec. 3.3.

In this picture, the (Kubo) linear response F → 0 regime corresponds to the adiabatic

limit for Ĥ(t). In the case of a sudden quench jy h/F shows F 2 corrections to the perfectly

quantized limit. When the switching-on is smooth, the result depends on the switch-on time

t0: for a fixed t0 we observe a crossover force F ∗ between a quadratic regime for F < F ∗ and

a non-analytic exponential e−γ/|F | for F > F ∗. The crossover F ∗ decreases as t0 increases,

eventually recovering the topological robustness.

3.1. Introduction

The quantization of the transverse conductivity σH in the Integer Quantum Hall Effect [51]

(IQHE) is probably the most famous manifestation of a topological invariant, the first Chern

number, in condensed matter physics [107]. Indeed the celebrated TKNN paper [54] showed

that in the linear response regime, i.e. when the external electric field is small, the Hall

conductivity predicted by the Kubo formula jey = σHEx is quantized and can be written as

the sum of the Chern numbers of the occupied bands. Therefore it must be an integer, in

units of e2/h.

The extreme precision of the quantized Hall conductance revealed in the experiments [51]

suggests a remarkable robustness of the IQH phase against many ingredients, notably the

presence of impurities and interactions, and the strength of the applied electric field. Con-

cerning the latter issue, the mathematical physics literature [64] has shown that corrections

to the Kubo formula vanish in Quantum Hall systems to all orders in perturbation theory.

Quite recently, the issue of the topological robustness of a related phenomenon — Thouless

pumping in one-dimensional insulators [9] — has been re-examined, showing that the details
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of the preparation of the quantum non-equilibrium steady-state and of the time interval in

which the pumped charge is measured deeply influence how the topological τ →∞ adiabatic

limit is approached [75]. In particular, it was shown that the charge pumped over a finite

number of periods shows non-analytic corrections — in the form of faster and faster oscilla-

tions as ω = 2π/τ → 0 — when the periodic driving protocol is turned-on abruptly starting

from an initial uncorrelated insulating state [75]. Such a non-analytic approach of the adia-

batic (topological) limit ω → 0 was indeed predicted by Avron & Kons [65] through rigorous

general arguments. What such rigorous arguments do not tell is how the limit ω → 0 is

approached when one considers the asymptotic (steady state) single-period pumped charge,

where topological effects should most appropriately be looked for [66] because this involves

an infinite-time limit. Remarkably, Ref. [75] shows that non-analytic corrections present

at finite-time turn into quadratic corrections ∼ ω2 when the asymptotic pumped charge is

considered.

Modern realizations of the IQHE physics involve artificial gauge fields in cold atomic sys-

tems [16, 19, 20, 108]. In the light of the results of Ref. [75], these experiments raise the

non-trivial issue of the robustness of the quantized Hall conductance against many details,

including primarily the preparation of the Quantum Hall state and the ensuing turning-on of

the constant field, as well as the measurement of the transverse current. To set up and state

the problem we will address, let us assume that the coherence-time [16] of these cold atomic

systems is so long that it is legitimate to estimate the time-average transverse current from

its infinite-time limit

jy = lim
T→∞

1

T

∫ t0+T

t0

dt′ 〈ψ(t′)| ĵy|ψ(t′)〉 . (3.1)

Here ĵy is the space-averaged particle-current density operator, and |ψ(t)〉 is assumed to

evolve unitarily with the system Hamiltonian Ĥ(t), including the external uniform force field

Fx(t) in the x̂-direction, which we represent by an extra time-dependent vector potential Axx̂
with ∂tAx(t) = Fx(t). Furthermore, let us assume that the external uniform force Fx(t) is

switched-on in a time t0 towards a stationary value F , i.e., Fx(t) = f(t/t0)F , where f(s),

with s = t/t0 ∈ [0, 1], is a switching-on function such that f(0) = 0 and f(1) = 1. The Kubo

formula for the IQHE implies that for small F :

jy = σyxF =
n

h
F , (3.2)

meaning that in the limit F → 0 the quantity jyh/F is exactly an integer number n. A

robust quantization against the strength of F would appear, in this context, as non-analytic

corrections of the form jyh/F ' n + Ae−γ/|F |, while the presence of quadratic corrections,

jyh/F ' n+BF 2 + o(F 2), would signal an ordinary perturbative response.

We investigate how the finite value of the stationary driving force F and the details of

the driving protocol, encoded in t0 and in the switching-on function f(s = t/t0), affect the

precision of the measurement of the transverse Hall response in cold atoms IQHE systems.

Our investigation focuses on the Harper-Hofstadter (HH) model [109], a two-dimensional

tight-binding Hamiltonian for IQHE which is particularly relevant for experimental realiza-

tions with optical lattices [19, 20, 108], providing an excellent tool to study QHE physics in

a tunable and controlled system. The techniques used involve quite standard Floquet tools

to study the time-periodic dynamics of the transverse current, which can be formulated as a

quantum pumping problem.
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We will show that the main responsible for topological robustness is the switching function

f(t/t0). We analyze in detail three possible schedules: a sudden quench Fx(t) = θ(t)F , a

linear ramp Fx(t) = (t/t0)F and a smoother ramp, as sketched in Fig. 3.2. We will show

that in the sudden case, Fx(t) = θ(t)F , the Hall response of the system is perturbative,

and F 2 corrections to jyh/F are present. When the driving force is turned-on linearly in a

time t0, Fx(t) = (t/t0)F , we find two distinct regimes: for a fixed t0 we observe a crossover

force F ∗(t0) between a quadratic regime for F < F ∗ and a non-analytic exponential e−γ/|F |

for F > F ∗. The crossover F ∗(t0) decreases as t0 increases, eventually recovering the topo-

logical robustness. Finally, if the switching-on is smoother (with a continuous derivative),

Fx(t) = 1
2 (1− cos(πt/t0))F , we observe no qualitative differences with the linear ramp case,

suggesting the main ingredient for the topological robustness seems to be the continuity of

Fx(t) and a suitably long t0.

3.2. Model

Our starting point is the Harper-Hofstadter Hamiltonian [109], sketched in Fig. 3.3, which

describes a tight-binding system of non-interacting spinless fermions on a two-dimensional

(2D) square lattice, pierced by a uniform magnetic field B = Bẑ perpendicular to the lattice

plane:

Ĥ = −J0

∑
l,m

[
ĉ†l+1,mĉl,m + e−i2παlĉ†l,m+1ĉl,m + H.c.

]
. (3.3)

Here J0 is the bare hopping amplitude, and (l,m) are integers labelling the square lattice

sites, rl,m = a(lx̂ + mŷ), with lattice spacing a, with boundary conditions to be discussed

later on. The magnetic field flux per plaquette, in units of the flux quantum φ0 = hc/e, is

here α = a2B/φ0, and results in a complex hopping amplitude through Peierls’ substitution,

J0 e−i
e
~c
∫ r′
r A·dx, with a Landau gauge choice for the vector potential A = Bxŷ, breaking

translational invariance along the x̂-direction.

In a condensed matter realization of this model Hamiltonian, with charged particles in

real magnetic fields, one would not be able to explore the full phase diagram of the model

for α ∈ [0, 1] since the flux per plaquette is too small, even with large laboratory fields. In

modern realizations with neutral cold atoms in optical lattices [108, 110], on the contrary,

synthetic gauge fields are used and all interesting values of α are possible. Historically, as

discovered by Hofstadter [109], the spectrum is extremely complex, with rational values of

α = p/q leading to q energy sub-bands with gaps in between. The crucial realization, due

to Thouless and coworkers [54], is that the insulating states obtained when the Fermi energy

lies inside the gaps between such sub-bands has a quantized Hall conductance

σH = −e
2

h

occ∑
ν

∫
BZ

d2k

2π
Ων(k) = n

e2

h
, (3.4)

where Ων(k) = i
[
〈∂kxuν,k|∂kyuν,k〉 − 〈∂kyuν,k|∂kxuν,k〉

]
is the Berry curvature [107] of ν-th

occupied band, and uν,k denote the periodic part of the Bloch wave-functions on the (mag-

netic) Brillouin Zone (BZ) of the system. This implies that a Hall current flows, for instance,
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Figure 3.3.: Schematic representation of the Harper-Hofstadter model: free electrons on a

square lattice of spacing a, in the presence of a uniform magnetic field B per-

pendicular to the lattice plane.

in the y-direction when an electric field Ex acts in the x-direction: jy = σHEx. The robust-

ness of this phenomenon is remarkable: disorder and (weak) interactions do not alter the

result, thus providing an exceptionally precise measurement [51] of e2/h. Further remarkable

robustness is offered by the fact that the Kubo-formula, derived from linear response theory,

seems to extend its regime of validity well beyond linear response: as mathematically proven

in Ref. [64], and further discussed in Ref. [65], all power-law corrections in the electric field

can be shown, under suitable hypotheses, to be missing.

The availability of new experiments employing synthetic gauge fields [108, 110], directly

sensitive to the time-dependent transient leading to the transverse response, calls for further

scrutiny of this issue. Experimentally, the driving force Fx(t) in the x̂-direction can be

turned on, as a function of time, with some freedom, either abruptly or in a more or less

smooth fashion. On the theory side, we can represent such a force in different gauges: quite

conveniently, for a finite-length system Lx with periodic boundary conditions (PBC) in the

x̂-direction, we can choose a vector-potential gauge in which the force is represented by a

time-dependent vector potential. The minimal coupling requires, in a tight-binding scheme,

the Peierls’ substitution:

ĉ†l+1,mĉl,m −→ e−iaκx(t) ĉ†l+1,mĉl,m , (3.5)

where κx(t) determines the force Fx(t) acting in the x-direction through Fx(t) = ~κ̇x(t), hence

making the Hamiltonian time-dependent, Ĥ(t). More in detail, we chose Fx(t) = Ff(t/t0),

where f(s = t/t0) is a switch-on function interpolating between 0 and 1, i.e., such that

f(s ≤ 0) = 0 and f(s ≥ 1) = 1, and F is the stationary value of the force, attained for t ≥ t0.

This choice leads to κx(t ≤ t0) = (t0F/~)
∫ t/t0

0 dsf(s) and κx(t ≥ t0) = κx(t0) + F (t− t0)/~.

The case of a sudden switch-on of the force is recovered by taking t0 = 0. Since κx(t) appears

in the hopping as a phase-factor, see Eq. (3.5), its linear increase for t ≥ t0 implies that the
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Hamiltonian becomes time-periodic for t ≥ t0, Ĥ(t+ τ) = Ĥ(t), with the period τ given by

τ =
2π~
aF

, (3.6)

which corresponds to a fundamental frequency ~ω = aF entering the problem. These con-

siderations clearly show that the question of the validity of linear response in F goes hand-

in-hand with the issue of adiabaticity of Ĥ(t): Kubo linear response is essentially obtained in

the fully adiabatic limit ω → 0.

To calculate the current, following Laughlin [52], we use PBC in the ŷ-direction as well,

introducing a vector potential, again with a minimal-coupling Peierls’ substitution:

ĉ†l,m+1ĉl,m −→ e−iaκy ĉ†l,m+1ĉl,m . (3.7)

The total current operator is obtained as a derivative of Ĥ with respect to κy:

Ĵy =
1

~
∂Ĥ

∂κy

∣∣∣∣
κy=0

. (3.8)

The Hall response can now be seen as a non-vanishing quantum average of Ĵy in presence

of a force Fx, describing the transport of particles along ŷ-direction. We can quantify this

through the linear-density of transported particles during the interval [t0, t] (dropping the

initial switching-on interval [0, t0]):

Qy(t ≥ t0) =

∫ t

t0

dt′ 〈ψ(t′)| ĵy|ψ(t′)〉 , (3.9)

where |ψ(t)〉 denotes the time-evolving state of the system, and ĵy = Ĵy/(LxLy) is the space-

averaged current density. Notice that Qy, as defined, gives the number of particles per-unit-

length moving along the ŷ-direction in the interval [t0, t]: we will often refer to it as pumped

charge, although the particles could be neutral.

We can ask for the charge pumped in the m-th period:

Qm = Qy(t0 +mτ)−Qy(t0 + (m− 1)τ) . (3.10)

We expect that the charge pumped in the initial periods Q1, Q2, · · · might be affected by

transient effects, depending on the details of the switching-on function f(t/t0) and time t0.

These transient effects are expected to decay for m→∞ so that the infinite-time average

Q = lim
M→∞

1

M

M∑
m=1

Qm , (3.11)

should effectively capture the asymptotic (steady state) single-period pumped charge, where

topological effects should most appropriately looked for [66]. The Floquet theorem enor-

mously simplifies the calculation of the infinite-time average Q. Indeed, the state of the sys-

tem at any time t ≥ t0 can be expanded in terms of Floquet modes and quasi-energies [6,111]

as:

|ψ(t)〉 =
∑
ν

e−iεν(t−t0)/~|uν(t)〉〈uν(t0)|ψ(t0)〉 (3.12)
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where εν are the Floquet quasi-energies and |uν(t)〉 the associated time-periodic Floquet

modes, |uν(t + τ)〉 = |uν(t)〉. A rather standard derivation [65, 112] shows that the infinite-

time average pumped charge is dominated by the Floquet diagonal ensemble value:

Q ≡ Qd =
∑
ν

nν

∫ t0+τ

t0

dt′ 〈uν(t′)| ĵy|uν(t′)〉 . (3.13)

where nν = |〈uν(t0)|ψ(t0)〉|2 is the “occupation” of the ν-th Floquet mode. This clearly

shows that the initial preparation, with the transient loading interval [0, t0], is all contained

in the occupation factors nν .

So far, we have made use of time-periodicity, but not of translational invariance. To

proceed, we make a rational choice of the magnetic flux, α = p/q with p and q co-prime

integers, which leads to an enlarged “magnetic” unit cell of size qa in the x-direction. We

now label the sites in the x-direction with a cell-index j = 0 · · ·Nx−1 and an intra-cell index

b = 0, 1, · · · q − 1, so that l = qj + b, while m = 0 · · ·Ny − 1 labels sites in the y-direction.

Hence, Lx = Nxqa, and Ly = Nya. We then define appropriate Bloch combinations of the

form: 
ĉ†k,b =

1√
N

Nx−1∑
j=0

Ny−1∑
m=0

eia(kx(qj+b)+kym)ĉ†qj+b,m

ĉ†qj+b,m =
1√
N

BZ∑
k

e−ia(kx(qj+b)+kym)ĉ†k,b

, (3.14)

where k = 2π
a

(
nx
qNx

x̂ +
ny
Ny

ŷ
)

, with nx = 0, · · · , Nx − 1 and ny = 0, · · · , Ny − 1, define the

N = NxNy wave-vectors inside the Brillouin Zone (BZ): [0, 2π
qa ] × [0, 2π

a ]. The Hamiltonian

for the system can then be written in the form:

Ĥ(t) = −J0

BZ∑
k

q−1∑
b=0

{
2 cos

(
aky + 2πp

q
b
)
ĉ†k,bĉk,b

+
[
e−ia(kx+κx(t))ĉ†k,b+1ĉk,b + H.c.

]}

=

BZ∑
k

(ĉ†k,0 · · · ĉ
†
k,q−1) · H(k, t) ·


ĉk,0
...

ĉk,q−1

 , (3.15)

i.e., effectively a q× q matrix problem H(k, t) for every k-vector in the BZ. The total current

operator has a similar expression:

Ĵy =
2aJ0

~

BZ∑
k

q−1∑
b=0

sin
(
aky + 2πp

q
b
)
ĉ†k,bĉk,b

=
BZ∑
k

(ĉ†k,0 · · · ĉ
†
k,q−1) · J(k) ·


ĉk,0
...

ĉk,q−1

 , (3.16)

where J(k) = (1/~)∂H/∂ky.
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From now on, we will concentrate our study on the case α = 1/3, where the Hamiltonian

becomes a 3 × 3 problem for every k. Exploiting the k-factorization of the initial state

|ψ(0)〉 and of the subsequent dynamics, using that the space-averaged current density is

ĵy = Ĵy/(LxLy), and transforming the sum over k into an integral on the BZ in the usual

fashion for a large system, we can rewrite the asymptotic pumped charge as:

Qd =
∑
ν

∫
BZ

d2k

(2π)2
nk,ν

∫ t0+τ

t0

dt′ 〈uk,ν(t′)|1
~
∂H

∂ky
|uk,ν(t′)〉 , (3.17)

where

nk,ν =
∣∣〈uk,ν(t0)|ψk(t0)〉

∣∣2 . (3.18)

A generalization of the Hellman-Feynman theorem for the Floquet case [111] shows that the

average current carried by a Floquet mode is easily expressed in terms of the quasi-energy

velocity: ∫ t0+τ

t0

dt′ 〈uk,ν(t′)| ∂H
∂ky
|uk,ν(t′)〉 = τ

∂εk,ν
∂ky

. (3.19)

Hence Qd in Eq. (3.17) can be re-expressed as:

Qd =
τ

~
∑
ν

∫
BZ

d2k

(2π)2
nk,ν

∂εk,ν
∂ky

. (3.20)

Henceforth we will refer to the quantity defined in Eq. (3.20) as the diagonal pumped charge.

We should stress that both the occupation factors nk,ν and the quasi-energies εk,ν are depen-

dent on the time-periodicity τ , or the frequency ω, a dependence that we have not explicitly

indicated.

It is useful to make here the connection with the time-averaged current density mentioned

in the introduction, Eq. (3.1). Using Eq. (3.11) and the fact that Q ≡ Qd, see Eq. (3.13), it

is straightforward to derive that

jy = lim
T→∞

1

T

∫ t0+T

t0

dt′ 〈ψ(t′)| ĵy|ψ(t′)〉 ≡ Qd

τ
. (3.21)

Hence, using the relationship (3.6) between the period τ and the force F , it is simple to show

that:

jy = σyxF =
aQd

h
F . (3.22)

Hence, the transverse Hall “conductance” is here given by σyx = (aQd)/h. Its quantization,

in units of 1/h, would require that aQd = n, an integer.

A final comment concerning transient effects. To appreciate them, the asymptotic pumped

charge Qd should be contrasted with the charge pumped in the m-th period, which would

read:

Qm =
1

~

∫
BZ

d2k

(2π)2

∫ t0+mτ

t0+(m−1)τ
dt′ 〈ψk(t′)| ∂H

∂ky
|ψk(t′)〉 . (3.23)

3.3. Robustness of Hall quantization to non adiabatc effects

To illustrate the previous general considerations, let us consider the case of a sudden switch-

on of a constant force Fx(t) = θ(t)F , which effectively amounts to taking t0 = 0 in the
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previous expressions. The bands of the unperturbed Hamiltonian are shown in Fig. 3.4 (top),

for Nx = 30, as a function of ky ∈ (−π/a, π/a]: we see q = 3 distinct bands, obtained by

projecting the Nx different values of kx. The initial insulating state is a Slater determinant

|ψ(0)〉 obtained by completely filling one such band, for instance the lowest one. We then

calculate the charge pumped in the first period:

Q1 =
1

~

∫
BZ

d2k

(2π)2

∫ τ

0
dt′ 〈ψk(t′)| ∂H

∂ky
|ψk(t′)〉 . (3.24)

Fig. 3.4 (bottom) shows the value of Q1 as a function of the driving F , expressed in terms

of ~ω = aF . Notice that for F → 0 we recover, as expected, a pumped charge which is
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Figure 3.4.: Top: Energy bands of the Harper-Hofstadter model for α = 1/3 vs ky for Nx =

30. The dashed red lines represent the energy averaged over the phase kx+κx(t).

Bottom: Charge pumped in the first period in each magnetic cell, 3aQ1, as a

function of the driving field aF/J0, where ~ω = aF , after a sudden switch-on of

the driving. For F → 0, 3aQ1 is quantized to the first Chern number, respectively

+3, -6, +3, of the band in which the system is initially prepared. (The simulation

has been repeated by preparing the initial Slater determinant insulating state

to be one of the three completely filled bands, in order to compute the Chern

numbers.) The first and the third band give exactly the same response. This

figure is essentially equivalent to Figure 1 of Ref. [65], where the abscissa is 1/ω.

quantized to the integer Chern numbers (+3,-6 and +3) of the three completely filled bands.
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Deviations from perfect quantization are clearly visible at finite ω: the remaining part of the

chapter is precisely devoted to understanding the nature and size of these deviations.

In order to proceed with the analysis of the deviations from perfect quantization for small

ω, we shift our attention to the infinite-time average of the pumped charge, where the Floquet

theory helps in elucidating the crucial ingredients. Our starting point is hence Eq. (3.20),

which we rewrite below for convenience in a slightly different form:

Qd =
1

~ω
∑
ν

∫
BZ

d2k

2π
nk,ν

∂εky ,ν

∂ky
. (3.25)

In this re-writing we have used the trivial fact that τ = 2π/ω and that the Floquet quasi-

energies εk,ν dependent only on ky: to appreciate the last fact, observe that the dependence of

the Hamiltonian, see Eq. (3.15), on kx and t is all contained in the phase-factor e−ia(kx+κx(t)) =

e−iaκx(t0)e−iω(t−tx), with tx = t0− akx/ω. Hence, different values of kx effectively correspond

to a shift in time t0 → t0 − tx, which in turn amounts to a unitary transformation on the

Floquet operator Ûk(t0 + τ, t0), whose eigenvector/eigenvalues are the Floquet modes/quasi-

energies:

Ûk(t0 + τ, t0)|uk,ν(t0)〉 = e−iεk,ντ/~|uk,ν(t0)〉 . (3.26)

As discussed in App. A.2, the fact that the Floquet operators at different kx are uni-

tarily equivalent implies that their eigenvalues are kx-independent, i.e., e−iεky,ντ/~. No-

tice that, on the contrary, the Floquet modes |uk,ν(t)〉, and hence the occupations nk,ν =

|〈uk,ν(t0)|ψk(t0)〉|2, do depend on kx.

3.3.1. Pumping of Floquet states.

The first issue we address is what happens to the pumped charge if the initial state |ψ(t0)〉
is precisely prepared to be the νth Floquet state, i.e., such that nk,ν′ = δν,ν′ . Then, the

corresponding value of the pumped charge is:

QF
ν =

1

3a~ω

∫ 2π
a

0
dky

∂εky ,ν

∂ky
, (3.27)

where we eliminated the trivial integral on kx ∈ [0, 2π
3a ]. To better understand the physical

implications of this formula, let us start from the extreme adiabatic limit ω → 0, where the

predictions of the adiabatic theorem give us a 0th-order expression for the quasi-energies, in

an extended Floquet BZ scheme [6], in the form:

ε
(0)
k,ν =

1

τ

∫ τ

0
dt [Ek,ν(t)− i~〈φk,ν(t)|∂tφk,ν(t)〉]

= εdk,ν + εgk,ν . (3.28)

Here φk,ν(t) and Ek,ν(t) are the instantaneous eigenstates/eigenvalues of Ĥ(t), while εdk,ν
and εgk,ν denote dynamical and geometric contributions [107]. See section 2.2, in particular

Eqs. (2.24) and (2.25), for a derivation of Eq. (3.28). These contributions are in turn expressed
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Figure 3.5.: Adiabatic quasi-energies ε
(0)
ky ,ν

in units of ~ω for the three bands of the Harper-

Hofsdtadter model. The frequency is ~ω = 0.1J0. ε
(0)
ky ,ν

is the sum of the kx-

averaged band, dashed line in Fig. 3.4 (upper panel), plus the geometric contri-

bution, giving rise to the loss of periodicity for ε
(0)
ky ,ν

in the BZ: ε
(0)
2π
a
,ν

= ε
(0)
0,ν+~ωCν ,

where Cν is the Chern number of the ν-the band.

as:

εdky ,ν = a

∫ 2π
a

0

dkx
2π

Ek,ν(0)

εgky ,ν = −~ω
∫ 2π

a

0

dkx
2π
A(ν)
x (k) . (3.29)

whereA(ν)
x (k) = i〈φk,ν(0)|∂kxφk,ν(0)〉 is the Berry connection of the ν-th band. In both terms,

the time integral has been transformed into a kx-integral using the fact that the dependence

on t is through the variable akx +ωt. As a consequence, both terms are functions of ky only.

The dynamical contribution is the kx-averaged Bloch band, and is strictly periodic in ky of

the BZ, see dashed red line in Fig. 3.4. On the contrary, the geometric term winds over the

BZ, ending up acquiring an overall integer equal to the Chern number of the corresponding

band:

εg2π
a
,ν
− εg0,ν = ~ωCν . (3.30)

This immediately leads to the expected integer quantization

3aQ(0)
ν =

1

~ω

∫ 2π
a

0
dky

∂ε
(0)
ky ,ν

∂ky
= Cν . (3.31)

We now consider finite-ω effects beyond the adiabatic limit. Fig. 3.6 shows the Floquet

quasi-energy bands for ~ω/J0 = 0.1, plotted versus ky in the region [0, 2π/(3a)], due to a

periodicity εky+ 2π
3a
,ν = εky ,ν discussed in App. A.2. Notice that the quasi-energies are here

naturally represented in the Floquet Brillouin Zone [6] [−~ω/2, ~ω/2], as they are obtained
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Figure 3.6.: (a) Floquet spectrum as a function of ky, for ~ω/J0 = 0.1. The squares signal

the Floquet resonance avoided crossings, the circle an ordinary avoided crossing.

Both are magnified in the top insets, where the size of the points is proportional

to the kx-averaged occupation nky ,ν , see Eq. (3.33). (b) Floquet adiabatic quasi

energies, Eq. (3.28), folded in the Floquet BZ. c) (ε
(0)
ky ,2
− ε(0)

ky ,1
)/~ω, the energy

difference between the two lowest adiabatic bands in the extended-zone scheme,

for ~ω = 0.1J0. The vertical lines indicate the Floquet resonances, ε
(0)
ky ,2
− ε(0)

ky ,1
=

m~ω with m = 29, 26, 23, 20, giving rise to the avoided crossing gaps of panel

(a).

by a numerical diagonalization of the Floquet operator. The thick line represents the quasi-

energy band emerging from the low-energy band of Fig. 3.5. We observe two conspicuous

features:
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i) an apparent winding over the Floquet Brillouin Zone, as a quasi-energy crossing ~ω/2
re-enters at −~ω/2 (and vice-versa). This is the winding expected from the geometric

contribution to the adiabatic quasi-energies shown in Fig. 3.5. It would lead to:

1

~ω

∫ 2π
a

0
dky

∂εky ,ν

∂ky
= Cν , (3.32)

where Cν is the Chern number of the ν-the band (Cν = +3, for the thick band shown

in Fig. 3.6).

ii) an apparent crossing of quasi-energies belonging to different Floquet bands.

The crossings between different Floquet bands can develop very small anti-crossing gaps

[65, 113], as indeed we find at the points signaled by a square (see inset of Fig 3.6). To

better understand the nature of such anti-crossing gaps, we reconsider again the adiabatic

bands. The central panel of Fig 3.6 shows a plot of the adiabatic bands ε
(0)
ky ,ν

folded back into

the Floquet BZ: quite evidently, they are a good approximation to the true quasi-energies

for such a value of ω. Notice, however, that here all the band crossings are genuine ones.

The bottom panel of Fig 3.6, finally, shows ε
(0)
ky ,2
− ε(0)

ky ,1
, the energy difference between the

two lowest adiabatic bands, which clearly suggests that the anti-crossing points — signalled

by vertical dashed lines — are associated to Floquet resonances when ε
(0)
ky ,2
− ε(0)

ky ,1
= m~ω.

Surprisingly, not all possible resonances actually lead to the opening of an anti-crossing gap,

but only a sequence of them, here with m = 29, 26, 23, 20. The periodicity of ∆m = 3 is

likely associated with our choice of flux α = 1/3, but the precise location of the resonance

is not fully understood. One thing that we can say, however, is that the resonances open

up gaps [114] in the quasi-energy spectrum, which are exponentially small in 1/ω. This

makes such gaps quite difficult to pinpoint precisely, but our numerical evidence is reasonably

robust on that issue. Fig. 3.7 shows the deviation from integer quantization, 3 − 3aQF
ν , —

calculated assuming nk,ν = 1 and using Eq. (3.17), which, as opposed to Eq. (3.27), avoids

derivatives of numerically determined quasi-energies — as a function of J0/~ω: in the ω-

region we plot, an overall exponential decay is clearly visible for 3 − 3aQF
ν ∼ e−γJ0/(~ω),

with γ ∼ 0.5, superimposed on a saw-tooth behaviour due to the sudden formation of larger

gaps when two nearby gaps coalesce together upon decreasing ω. Summarizing, if the quasi-

energy avoided-crossing gaps opening were the main responsible for finite-frequency/field

corrections to the quantized pumped charge, such deviations would be exponentially small in

1/ω ∝ 1/F : therefore non-analytic in the field strength [65] and exceedingly small for most

practical purposes: for instance, in an experiment in which ~ω = 10−2J0, we would estimate

3− 3aQF
ν ≈ 10−22.

3.3.2. Effect of the occupation factors: sudden switch-on.

The second source of deviations from perfect quantization arises from the fact that the pre-

pared state |ψ(t0)〉 is not precisely a Floquet state, i.e., that Floquet occupation factors deviate

from nk,ν′ = δν,ν′ . The inset of Fig. 3.6, where the size of the dots is proportional to the

Floquet occupation, shows that sizeable deviations occur whenever ω > 0, even if small, at

the quasi-energy avoided level crossing. Indeed, for a quasi-adiabatic evolution, the Floquet

modes will be “close” to the eigenstates of the Hamiltonian, to which they reduce for ω → 0.

33



Non-adiabatic effects PhD Thesis by M.M Wauters

10−4

10−3

10−2

10−1

100

0 2 4 6 8 10 12 14

e−
γJ0
~ω

3(
1
−
a
Q

F ν
)

J0/~ω

Figure 3.7.: The deviation of 3aQF
ν from integer quantization, 3−3aQF

ν , for the lowest Floquet

band, assuming nk,ν′ = δν,ν′ , showing that the exponentially small gaps in the

quasi-energy spectrum at finite ω lead to exponentially small deviations.

If we initialize the system in an insulating phase by filling the lowest-energy band, one of

the Floquet occupation number nk,ν will be close to 1 and much higher than the others: the

corresponding Floquet mode will be the main one responsible for charge transport. In the

following, we will refer to such a state as adiabatic or lowest-energy Floquet state: it is indeed

the Floquet state which has the largest overlap with the instantaneous Hamiltonian ground

state. This is highlighted in the Fig. 3.6, where the Floquet spectrum is plotted vs ky with

thickness proportional to kx-averaged occupation factor

nky ,ν =
3a

2π

∫ 2π
3a

0
dkx nk,ν . (3.33)

Let us now focus on the occupation of such “adiabatic” Floquet state. If the driving field

is suddenly turned on from Fx(t ≤ 0) = 0 to Fx(t > 0) = F , |ψ(t0 = 0)〉 coincides with

a Slater determinant Bloch eigenstate of Ĥ(0), and nk,ν is given by the overlap of such a

state with the adiabatic Floquet state: nk,ν = |〈uk,ν(0)|φk,ν〉|2. When ω is small, we can

combine adiabatic perturbation theory [115] (APT) to obtain an approximate expression for

the Floquet modes |uk,ν(0)〉, see App. A.1 for details. Following this approach nk,ν can be

calculated to be:

nk,ν = 1−
(
~ω
2π

)2∑
µ 6=ν

∣∣∣∣M (k)
µ,ν

∆
(k)
µ,ν

∣∣∣∣2 +O(ω3) . (3.34)

Here M
(k)
µ,ν and ∆

(k)
µ,ν are calculated from instantaneous Hamiltonian eigenvalues/eigenstates,

Ĥk(s)|φk,ν(s)〉 = Ek,ν(s)|φk,ν(s)〉 where s = ωt is the rescaled time, as:

∆(k)
µ,ν(s) = Ek,µ(s)− Ek,ν(s) ,

M (k)
µ,ν (s) =

〈φk,µ(s)|∂sĤk(s)|φk,ν(s)〉
∆

(k)
ν,µ

. (3.35)

In Eq. (3.34) all quantities are evaluated at s = 2π, corresponding to t = τ , a full period.

Therefore, if the matrix elements Mµ,ν are not all equal to zero, which in general they are
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Figure 3.8.: Correction to the k-averaged adiabatic Floquet mode occupation nν , Eq. (3.36),

vs 1/ω, showing the good agreement between the numerical data and the per-

turbation theory prediction from Eq. (3.34).

not, we expect to see power-law corrections to the occupation number of the Floquet states,

leading to a similar behavior for the pumped charge. Fig. 3.8 shows the k-averaged occupation

nν = 3a2

∫
BZ

d2k

(2π)2
nk,ν , (3.36)

calculated numerically, compared to the perturbation theory estimate in Eq. (3.34), as a

function of ω: the ω2 deviation is quite clearly visible. This quadratic correction to the

occupation factors reflects itself into the pumped charge, both the single-period charge Q1,

Eq. (3.24), as well as the infinite-time average Qd, Eq. (3.25), as seen from Fig. 3.9. The

faster-and-faster oscillations seen in Q1 for ω → 0 originate from the essential singularity in

ω = 0 of the expectation value of the current operator [65]; the oscillations are smeared in Qd,

due to the infinite-time average. This behavior is very similar to that reported in Ref. [75]

for adiabatic quantum pumping in the Rice-Mele model.

3.3.3. Effect of the occupation factors: continuous switch-on.

The picture becomes richer if we switch-on the driving in a continuous fashion, taking Fx(t) =

Ff(t/t0) with a suitably smooth function f(s = t/t0). The first obvious choice is a linear

switch-on, f(s) = s, with a fixed switch-on time t0. As shown in Fig. 3.10, we now observe

two regimes: a first one, for relatively large ω, where the corrections to the occupation nν of

the adiabatic Floquet band appear to be exponentially small in 1/ω, and a second regime,

for small ω, where the corrections are ∝ ω2:

1− nν ∼


A e−

γJ0
~ω for ω > ω∗

B
~4ω2

J4
0 t

2
0

for ω < ω∗
. (3.37)

The two regimes have markedly different behaviors. The non-analytic exponential observed

at higher ω is universal — with γ ' 0.5 from our data, and at most a very mild dependence
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Figure 3.9.: Pumped charge vs ω, both for one period (solid line) 3aQ1, Eq. (3.24), and in

the diagonal ensemble (dashed line) 3aQd, Eq. (3.25). Notice the oscillations in

Q1, signaling an essential singularity in ω = 0. The inset shows the deviation

from the quantized value 3aQ1(ω → 0) = 3 vs 1/ω. For small frequency this

deviation is quadratic in ω.

of A on t0 — and, as we will argue, it is directly related to the width of the resonances of the

Floquet spectrum. The power-law regime is non-universal, with an amplitude decreasing as

1/t20: hence the crossover frequency ω∗ between these two regimes, which is approximately

given by:

J0

~ω∗
' log

(√
A

B

J0t0
~

)
, (3.38)

is shifted towards smaller ω as t0 increases. Notice that the crossover ω∗ exists only if
J0t0
~ ≥

√
B
A

e
4 ; indeed if t0 is too small, only the power law regime survives, leading to the

ordinary “perturbative response” observed for the sudden quench case.

It is interesting to ask why the continuity in time of the force field Fx(t) is so important.

As explained in Sec. 3.3.1 the topological properties at finite frequency are related to the

Floquet states, while the system is initially prepared in a state |ψ(0)〉 which coincides with

the Hamiltonian ground state. By switching on the driving force in a continuous manner,

Fx(t) = Ff(t/t0), the initial state is continuously deformed into a state which is “closer” to

the “lowest-energy” Floquet state at the final frequency ω. Fig. 3.11 helps to illustrate what

happens as we turn on the driving frequency: as the instantaneous ω(t) = aFx(t)/~ increases,

each Floquet mode winds around the expanding Floquet-Brillouin zone (FBZ) and encounters

a series of (avoided) level crossings in the quasi-energy spectrum, with exponentially small

gaps ∆. Since the gaps ∆ are exponentially small, however, a finite value of t0 will lead the

system to cross them diabatically. The final Floquet state will show an occupation which can

be interpreted [116] as the excitation probability after many Landau-Zener [117,118] events.

Following Ref. [116], at each avoided crossing we obtain a transition probability

Pex(ω, t0) = e
− ∆2t0

4~2ζω , (3.39)

where we used the fact that the speed at which the gap is crossed can be estimated as

∂t(ε2 − ε1) ' ζ~ω/t0, ζ being the difference in slope between the two quasi-energy bands

36



PhD Thesis by M.M Wauters 3.3 Robustness of Hall quantization to non adiabatc effects

10−6

10−5

10−4

10−3

10−2

10−1

0 5 10 15 20 25

1
−
n
ν

J0/~ω

J0t0/~ = 0
J0t0/~ = 1
J0t0/~ = 3
J0t0/~ = 5
J0t0/~ = 10
J0t0/~ = 20

A exp(−γJ0/~ω)

B

(
~2ω
J2
0 t0

)2

Figure 3.10.: Correction to the occupation of the lowest energy Floquet band for different
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Figure 3.11.: Floquet quasi-energies in k = 0 as a function of the frequency. The width of

the line is proportional to the occupation of the state when the system is in

the ground state with a filling factor 1/3. The inset zooms on a level crossing

to highlight the presence of gaps, showing also that the adiabatic band is the

“excited” state after the avoided crossing. The solid black lines are the boundary

of the first Floquet-Brillouine zone.
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Figure 3.12.: Correction to the occupation of the ν−th Floquet mode compared with the

prediction of Eq. (3.42) (solid black lines).

as they wind around the Floquet BZ. Since the gaps ∆(ω) ∼ J0e−γJ0/~ω are the smallest

quantities, it is legitimate to expand the exponential in Eq. (3.39) to lowest order in ∆2. A

further simplification is because the dominant contribution to the sequence of LZ processes

comes from the largest gap encountered, which corresponds to the end of the ramp when the

frequency is maximum. Hence we obtain the following estimate for the corrections to nν

1− nν ∼
∆2t0

4~2ζω
∼ J2

0 t0
4~2ζω

e−2γJ0/~ω . (3.40)

This rather crude estimate gives a hint on the physical mechanism behind the non-perturbative

corrections to the integer occupation of the Floquet mode observed when the electric field

is turned on at a finite rate 1/t0. Incidentally, Eq. (3.40) also suggests that increasing the

ramp time t0 would lead to larger corrections to both nν and Qd, although our numerical

data do not show this, possibly because of the limited range of t0 explored. Indeed, at the

level crossing, a larger t0 would increase the adiabaticity of the process, therefore decreasing

the occupation of the lowest energy Floquet mode, which corresponds to the “excited” state

in the quasi-energy spectrum, as shown in Fig. 3.11. An alternative explanation is given in

Ref. [119], where it is suggested that the increasing deviations from the adiabatic preparation

of Floquet states for very large ramp times t0 is related to the absorption of energy from the

external field, leading to heating of the system.

This picture breaks down for small ω, where the crossover with the quadratic regime occurs.

The observed ω2 scaling suggests that a Floquet adiabatic perturbation theory (FAPT) [2,

119, 120] might be appropriate here. Unfortunately, the standard framework of application

of such a theory is when the slowly changed parameters λ(t) do not involve the crossing of

Floquet resonances [119], which is certainly not the case for ω → 0. So, we construct here

a simplified version of FAPT which should capture the ω → 0 regime. To do so, we start

from an expansion of the state |ψk(t)〉 in terms of instantaneous Floquet modes |uk,µ(ω(t), t)〉
corresponding to a frequency ω(t) (which is slowly evolving in time), with associated phase
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factor given by the adiabatic Floquet quasi-energy ε
(0)
k,µ(ω(t)):

|ψk(t)〉 =
∑
µ

ck,µ(t)e−
i
~
∫ t
0 ε

(0)
k,µ(ω(t′))|uk,µ(ω(t), t)〉 . (3.41)

Proceeding as in the standard APT, assuming that at t = 0 we have ck,µ(0) = δµ,ν and

keeping only the lowest-order terms we end-up writing:

ck,µ 6=ν(t0) ≈ −
∫ ω

0
dω′ 〈uk,µ|∂ω′uk,ν〉e−

it0
~ω
∫ ω′
0 (ε

(0)
k,ν−ε

(0)
k,µ)

where we assumed a linear adiabatic switch-on, ω(t) = (t/t0)ω, and changed variable to

an integral over frequency. Here |uk,µ〉 stands for |uk,µ(ω′, t(ω′)〉, where t(ω′) = t0ω
′/ω.

Noticing now that the adiabatic quasi-energy differences (ε
(0)
k,ν − ε

(0)
k,µ) are large compared to

ω′, we integrate by part, as in standard APT, ending up with:

ck,µ6=ν(t0) ≈ i~ω
t0

〈uk,µ(ω′, t(ω′))|∂ω′uk,ν(ω′, t(ω′))〉
ε
(0)
k,ν(ω′)− ε(0)

k,µ(ω′)
e−

it0
~ω
∫ ω′
0 (ε

(0)
k,ν−ε

(0)
k,µ)

∣∣∣∣ω′=ω
ω′=0

. (3.42)

Finally we compute the scalar products 〈uk,µ|∂ω′uk,ν〉 by using the expansion derived in

App. A.1, in particular Eq. A.8, which allows us to write:

〈uk,µ|∂ω′uk,ν〉 =
M

(k)
µ,ν

∆
(k)
µ,ν

+O(ω′) . (3.43)

Substituting back into Eq. (3.42), we get an expression that can be computed numerically.

Once the projections ck,µ 6=ν have been computed, the correction to the occupation number

of the “adiabatic” Floquet state reads

1− nν = 3a2
∑
µ6=ν

∫
BZ

d2k

(2π)2
|ck,µ|2 . (3.44)

As shown in Fig. 3.12 this simplified FAPT describes quite well the quadratic regime and its

scaling with t0. We observe that the accuracy of the approximation seems to decrease as t0
grows, probably because non-adiabatic corrections to the time-evolved eigenstates need to be

taken into account in computing Eq. (3.43).

As a final check, we have considered whether imposing continuity also on the first derivative

of ω(t) makes any difference or not. Fig. 3.13 shows the occupation of the “adiabatic” Floquet

state when the frequency is increased smoothly from 0 to its final value ω with a switching

function f(s) = 1
2 (1− cos (πs)). Beside some small numerical difference, the situation is

qualitatively similar to the one obtained with the linear ramp (Fig. 3.10), with a crossover

between an exponential regime for ω > ω∗(t0) and a power law tail for ω < ω∗(t0). This

suggests that while a necessary condition — albeit not sufficient — to obtain non-perturbative

corrections is indeed the continuity of the force field Fx(t), its differentiability seems not to

be required.

3.4. Conclusions

In this chapter, we discussed the robustness of the quantization of the Hall conductivity

beyond the validity range of linear response theory (adiabatic limit), in the Harper-Hofstadter
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Figure 3.13.: Correction to the occupation number of the adiabatic Floquet state, when the

driving force is smoothly turned on with the switching function f(s = t/t0) =
1
2 (1− cos (πs)). Eq. (3.42), with a slight modification due to the different driv-

ing schedule, still gives a good estimate of the quadratic regime for small ω.

model. Our work was mainly motivated by the possibility of realizing simple tight-binding

Hamiltonians, such as the HH one, in cold atoms experiments with synthetic gauge fields,

where the model parameters can be easily fine-tuned. By employing Floquet theory for

time-periodic systems, we showed that the quantization of the transverse pumped charge Qd

depends mainly on the occupation factor nν of the lowest energy Floquet state. In particular,

we found that a continuous and sufficiently slow switching-on of the driving force is necessary

to obtain corrections to the Kubo formula which are non-analytic in the force amplitude F ,

scaling as e−γ/|F |. If the switching time t0 is too small, or the force is turned on abruptly,

corrections of the order O(F 2) are always recovered when F → 0. A crossover force amplitude

F ∗(t0) between the quadratic and the exponential regimes is clearly shown by our numerical

analysis for any finite switching time t0, and it would be interesting to see if this crossover can

be indeed be observed in experimental realizations of IQHE or quantum pumping in optical

lattices experiments.

Another important element to complete the understanding of the physics of quantized

pumping is how the robustness of the topological phase and the crossover with a perturbative

regime are affected by the presence of disorder or dissipation. Concerning disorder, it is well

known that in solid state realizations of IQHE a certain amount of impurities, with associated

localized states, are crucial to the robustness of the Hall plateaus. The robustness of the

topological state against disorder [121] or absence of translational invariance [122] has also

been tested in simple tight-binding models: the crucial question, for what concerns our story,

is if disorder tends to increase the “robustness” of the time response, as we have formulated it,

by increasing the extent of the region in which non-analytic corrections to the Kubo formula

dominate. We observe that the dimensionality might play a role: while for clean samples a

two-dimensional (2D) lattice model with a constant drift is essentially equivalent to a one-

dimensional (1D) chain with a time-periodic driving, such as the Rice-Mele model [75], the

disorder could affect 1D and 2D system in different ways. The interplay between disorder

and topology in 1D Floquet insulators is indeed the main focus of chapter 4.
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Similar questions can be formulated concerning the role of dissipation: while the linear

response regime is quite well understood [123, 124], the interplay between non-adiabatic ef-

fects and the coupling with a thermal bath still requires a precise characterization. Recent

results on the effect of dissipation in the periodically driven Rice-Mele model [79] show that

dissipation towards a low-temperature bath can be beneficial in increasing the occupation

of the lowest-energy Floquet states, thus making the pumped charge closer to the Thouless

adiabatic limit.

41





4. Pumping in disordered systems

In this chapter, I present the results published in Ref. [125], where we investigate the effects

of disorder in Thouless pumping.

Given a one-dimensional insulator subjected to a periodic driving, Thouless (or adiabatic)

pumping consists in the quantization of the number of particles transported each period

across any section of the system. The value of the pumped charge depends on the topolog-

ical properties of the Hamiltonian eigenstates. A typical tight-binding model that displays

quantized pumping is the Rice-Mele (RM) model, sketched in Fig. 4.1. In the RM model the

Matteo Wauters

Digitare
l'equazione qui.

sites

Figure 4.1.: Sketch of the clean Rice-Mele model. The unit cell contains two sites because of

the staggered potential ±∆(t) and the different intra-cell and inter-cell hoppin

amplitudes J1(t) and j2(t).

pumped charge is Q = 1 if the system is driven along a close path enclosing the origin of the

parameter space (∆, J1 − J2), as summarized in Fig. 4.2. 1

Topological driving Trivial driving

Figure 4.2.: topological driving cycle on the left, with quantized pumping Q = 1, and trivial

driving cycle on the right, with Q = 0.

1A half-filled state with J1 = J2 and ∆ = 0 is clearly metallic, hence a closed path around it encloses a

singularity of the Berry curvature. By transforming the problem to k-space, it is simple to argue that the

two loops shown in Fig. 4.2 are topologically distinct.

43



Pumping in disordered systems PhD Thesis by M.M Wauters

When disorder is added to the sample, quantized pumping survives, because the nontrivial

topology is protected by the energy gap between the ground-state manifold and the excited

states. This, however, is in contrast with the expectation that any one-dimensional system

undergoes Anderson localization for arbitrarily small disorder. Transport should be therefore

suppressed since localized states cannot carry a steady-state current.

The solution of this puzzle is remarkable: while instantaneous energy eigenstates are An-

derson localized, the periodic driving plays a fundamental role in delocalizing Floquet states

over the whole system, henceforth allowing for a steady-state quantized current. This is

linked to a localization/delocalization transition of the Floquet states at strong disorder,

which occurs for periodic driving corresponding to a non-trivial loop in the parameter space.

The localization/delocalization transition is reflected in a crossover of the winding number

of quasi-energies and in the spectral properties of Floquet states. Indeed a transition occurs

between a continuous spectrum where the Floquet states are extended and quantized pumping

holds, to a pure point spectrum in the localized phase, where transport is strongly suppressed.

4.1. Introduction

Thouless pumping [9,15] provides one of the simplest manifestations of topology in quantum

systems, and has attracted a lot of recent interest, both theoretically [12, 14, 70, 75, 79, 126–

129] and experimentally [21–23, 25, 73, 74]. Thouless pumping is also the first example of

a topological phase emerging in a periodically driven system with no static analog. Such

phases have been the subject of many recent proposals [7,12–14,70,130–132]. In this respect,

understanding the role of disorder has a twofold purpose: on one hand, it is important to

understand the robustness to disorder of the topology of driven systems [74, 133] per se; on

the other hand, localization properties in the topological phase are relevant for the possibility

of stabilizing topological pumping in interacting systems [134, 135] by means of many-body

localization [24,136,137].

Since the seminal works on quantum pumping by Thouless & Niu in Ref. [15, 54] it has

been claimed that the quantization of the charge transport is robust against disorder, and in

general against any substrate potential, as long as the system stays in an insulating ground-

state. In the original formulation, this was guaranteed by the presence of an energy gap

that allows the system to evolve adiabatically for small enough driving frequency. Thouless

& Niu’s idea is to define the Berry connection through the derivative of the instantaneous

eigenstates with respect to an external flux piercing the system (with PBC) or equivalently

with respect to a twist θ of the boundary condition. Since observables must be independent

of θ in the thermodynamic limit, one can integrate over θ and define a two-dimensional torus

spanned by the time t ∈ [0, τ), τ being the period of the driving, and θ ∈ [0, 2π). While

Thouless & Niu set up the theoretical framework to understand quantized charge transport

in presence of disorder or interaction, they did not investigate the details of the transition

between a topological phase and a trivial one due to increasing disorder strength.

More recently Kitagawa et al. [70] claimed that even in the presence of disorder, integer

quantum pumping can be explained through the winding number of the many-body Floquet
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quasi-energy around a Floquet-Brillouin zone [−ω/2, ω/2)× [0, 2π), where again one averages

the system response over all possible values of the twist angle θ at the boundary. However,

they did not provide an analysis to study the actual robustness of the topological phase.

In this chapter we tackle the problem from a genuine time-periodic perspective, hence

exploiting Floquet theory. Restricting ourselves to non-interacting systems, we focus on

the localization properties of the Floquet states, which play a major role in explaining the

persistence of Thouless pumping at finite disorder strength. Indeed, while quantized transport

over a single period of the driving is expected at small disorder [15], its robustness over many

driving cycles is not trivial, since it would imply the existence of extended Floquet states.

But in the adiabatic limit, where the charge is strictly quantized, Floquet states for a generic

driving should coincide with the Hamiltonian eigenstates, which are Anderson localized in

one-dimension (1d). So, how can Thouless pumping in Anderson insulators be stable in the

long-time limit? It has already been shown that a strong driving can dramatically change the

localization properties of an Anderson insulator, see Flach [77] or Agarwal [78], leading to a

diffusive transport of particles up to the localization length of Floquet states, which can be

much larger of that of the energy eigenstates, even divergent for 2π/τ = ω → 0. This suggests

that, at finite frequency, transport will be always suppressed over a certain distance, leading

to a trivial steady-state with vanishing current across the system. Moreover, no evidence of

truly extended states nor a clear link between the localization properties and topology have

been found.

Focusing on the finite-size scaling of the localization length of Floquet states, the long-time

dynamics and the winding of Floquet quasi-energies, we show that when the clean system is

in topological phase with quantized currents, the intrinsic chirality of the model leads to a

survival of extended Floquet states even at finite disorder. Remarkably, as disorder increases

these states undergo a true delocalization/localization transition at a critical disorder strength

Wc, which reflects itself in the breakdown of quantized transport. Crucially, topology plays a

fundamental role in the existence of such extended states and on the character of the phase

transition, as we illustrate by explicit comparison with the case of a trivial adiabatic driving

protocol.

4.2. Model

We consider a disordered version of the driven Rice-Mele model [105], sketched in Fig. 4.1.

For a system of spinless fermions on a chain of L = 2N sites, with ĉ†α,j creating a fermion on

the α site of the j−th cell, the Hamiltonian reads

Ĥ(t) = −
N∑
j=1

(
J1(t) ĉ†A,j ĉB,j + J2(t) ĉ†B,j ĉA,j+1 + H.c.

)
+ ∆(t)

N∑
j=1

(
ĉ†A,j ĉA,j − ĉ

†
B,j ĉB,j

)

+W
∑

α=A,B

N∑
j=1

ζα,j ĉ
†
α,j ĉα,j . (4.1)

Here J1(2)(t) and ∆(t) describe hopping amplitudes and on-site energies for the clean model,

while Wζα,j describes the on-site disorder of strength W , with ζα,j ∈ [−1
2 ,

1
2 ] uniformly
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distributed random numbers. We assume periodic boundary conditions (PBC).

In absence of disorder, W = 0, and for generic J1(2) and ∆, the instantaneous spectrum is

split in two bands, separated by a gap. Thus, at half-filling — i.e., when number of particles

is equal to N —, the charge pumped in one period is equal in the adiabatic limit to the

Chern number of the occupied band [9]. This integer is different from 0 when the driving is

topologically non-trivial, i.e., when the path in the space (J1 − J2,∆) encloses the gapless

point (0, 0).

To characterize the topological phase we compute the average number of particles pumped

over an infinite number of periods [65,75]

Q = lim
M→∞

1

M

∫ Mτ

0
dt〈Ψ(t)|Ĵ(t)|Ψ(t)〉 , (4.2)

from the quantum-average of the current density operator Ĵ(t) [9]. Here, τ = 2π/ω is the

driving period, and the system is initially prepared in the N -particle ground-state |Ψ0〉 of

Ĥ(t = 0).

Since the Hamiltonian is time periodic, we can exploit the Floquet representation [111]

of the evolution operator Û(t, 0) =
∑

ν e−iEνt/~ |Φν(t)〉 〈Φν(0)|, where |Φν(t)〉 = |Φν(t+ τ)〉
are N -particle Floquet modes and Eν are the many-body quasi-energies. Q can be computed

directly in the Floquet diagonal ensemble [75,112]

Q = Qd =
∑
ν

Nν
∫ τ

0
dt 〈Φν(t)|Ĵ(t)|Φν(t)〉 , (4.3)

where Nν = |〈Ψ0|Φν(0)〉|2 is the occupation number of the ν-th Floquet state. For non-

interacting fermions, it suffices to know the single-particle (SP) Floquet states |φα(t)〉 and

their occupation number nα to explicitly calculate the diagonal pumped charge [65,75].

Details about the derivation of Eqs. (4.2) and (4.3) can be found in chapter 2.

4.3. Results

Let us start from the phenomenological aspect of the problem, and compute directly the

pumped charge with Eq. (4.3) as a function of the disorder strength W . Figure 4.3 (a)

shows the average over many istances [Qd]av, pumped in a topological driving cycle with

J1(2)(t) = J0 ± δ0 cos(ωt), and ∆(t) = ∆0 sin(ωt). The system is initially prepared in the

ground-state of Ĥ(t = 0) and then evolved directly with a finite frequency ~ω = 0.01J0.

We can clearly distinguish between three regimes. For sufficiently small W . 3J0 topological

pumping persists and the charge is still quantized, up to the non-adiabatic corrections studied

in Ref. [75] for the clean version of this model (see also the discussion in chapter 3). The

regime of large W & 8J0 is also rather clear: disorder is so strong that the particles are

localized on a single site during the whole driving cycle, hence Qd = 0. The intermediate

region W/J0 ≈ 4 shows large sample-to-sample fluctuations and corresponds to a transition

in the transport properties. Our aim in this chapter is to characterize precisely this transition

in terms of localization properties of Floquet states.
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Figure 4.3.: (a) Disorder average of the diagonal pumped charge plotted against disorder

strength. The transition between the quantized charge regime and the trivial

one Qd = 0 is linked to the closing of the minimum energy gap due to the

disorder, as highlighted by the vertical dashed line. (b) Many-body energy gap

ΛN in Eq. (4.4) versus disorder strength W . All data in both panels (a) and (b)

have been averaged over 200 disordered configurations.

Figure 4.3(b) shows that the drop of [Qd]av starts when disorder closes the instantaneous

gap

ΛN ≡ min
t∈[0,τ ]

[EN+1(t)− EN (t)] , (4.4)

where EN (t) is the N -particle ground-state energy at time t. Apparently, quantized pump

has a very simple requirement: disorder must not close the gap at any point during the

driving, to allow for an adiabatic evolution of the ground-state. Non-adiabatic corrections do

not increase as the gap shrinks due to rising disorder, until ΛN < ~ω and the driving excites

states in the conduction band, gradually destroying quantized pumping. Notice however that

in the transient regime W/J0 ≈ 4 transport is still present and the current can be rather

large, depending on the particular disorder instance under investigation.

Tackling the problem from this perspective, one might ask whether the choice of the Hamil-

tonian parameters, and hence the driving cycle in the space (J1 − J2,∆), plays any role in

determining the disorder strength Wc at which charge quantization breaks down. Of course

it does, and it depends on the gap structure induced by disorder in the parameter space. To

illustrate this, we show in Fig. 4.4 the logarithm of ΛN as a function of J1 − J2 and ∆, and

compare the position of the gapless points with the driving cycle we are considering (black

ellipse). When disorder is absent, W = 0, there is a single gapless point in (0, 0) and the

driving cycle circles around it, leading to topological transport [9,75]. As disorder increases,

the number of gapless points increases and they are connected by a net of lines where ΛN
is very small. As the net size increases, gapless points are crossed during the driving, thus

breaking the quantization of Qd. However at this point — see for instance W = 4J0 — one

could enlarge the cycle, i.e. making the variation of the Hamiltonian parameters larger, and

again enclose inside the path all the gapless points, restoring quantized transport. When

disorder increase again, however, the gapless lines cross necessarily any realistic path, leading

to a “frozen” localized system with no transport at all.

We turn now our attention to the localization properties of Floquet states, in order to
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Figure 4.4.: Gap-closing structure in the (J1−J2,∆) parameter space for increasing disorder

in a single random instance. The solid black line is the driving cycle we consider

throughout the chapter. The gap we plot is ΛN in Eq. (4.4).

understand why quantized transport survives in spite of the instantaneous eigenstates being

Anderson localized [138]. We will show that, crucially, a significant fraction of the SP Floquet

states remain delocalized even for very low frequency, due to a driving-induced mixing of

localized states [77, 78]. We analyzed localization/delocalization of states through the real-

space inverse participation ratio (IPR) [139] of the single-particle Floquet modes |φα(0)〉

IPRα =
∑
l

|〈l |φα(0)〉 |4 , (4.5)

with |l〉 = ĉ†l |0〉 being a particle localized at site l. For a finite system, IPRα ∈ [L−1, 1],

where IPRα ∼ L−1 signals a completely delocalized (plane-wave-like) state, while IPRα = 1

corresponds to a perfect localization on a single site.

Figure 4.5(a) shows the distribution of IPRs of Floquet states for three values of the

disorder strength W . Notice the presence of a very sharp peak in the IPR distribution,

signalling the presence of a bunch of states with large localization length. By analyzing the

peak position as a function of the system size L, we find that it scales as IPRα ∼ L−1

for W/J0 = 2 and 4, see Fig. 4.5(b), suggesting that the mode 2 of the IPR distribution

corresponds to extended states. For stronger disorder instead, the mode reaches a finite

value, as expected for a localized system. Incidentally, the average IPR suggests always a

localized scenario, as IPR = 1
L

∑
α IPRα saturates to a finite value for L → ∞. However,

the shape of the distribution also suggests that the average alone is not enough to study the

2The “mode” of a distribution is the value that appears more often, i.e., the maximum.
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Figure 4.5.: (a): Disorder averaged IPR distribution of SP Floquet states for several values

of W and L = 280. The inset shows the sharp peaks almost superimposed at

small IPR for W = 2J0 and W = 4J0. (b): Scaling of the mode of the IPR

distribution with the system size L; the dashed line highlights the delocalized

behavior ∼ L−1.

localization properties of the model, hence we believe that the mode of the distribution is a

better indicator.

Intriguingly, a similar distributions (not shown) emerges — for the same disorder strength

— also when the driving protocol is topologically trivial. To better analyze the size-dependence

of the IPR peak, and its correlation with the topology of the driving, we estimate a charac-

teristic localization length for a chain of size L from the inverse of the peak’s position in the

IPR distribution (inverse of the mode)

ξL(W ) =
1

argmax(P (IPRα))
. (4.6)

Figures 4.6(a) and (b) show the size-scaling of ξL(W ) for a trivial and topological driving,

respectively. When the driving is trivial, our data suggest that ξL(W ) scales as W−β with

β ' 2.5 for large W , see Fig. 4.6(a), while it saturates to the system size ∼ L when W is

small. Hence we can extract a crossover disorder strength W ∗ ∼ L−1/β separating these two

regimes, vanishing in the thermodynamic limit: here, truly extended Floquet states appear

only at zero disorder. By rescaling the data, we see a very good collapse of ξL(W )/L versus

L1/βW , see inset of Fig. 4.6(a). On the other hand, when the driving is topological the

same phenomenology holds with a finite critical disorder strength Wc, see Fig. 4.6 (b): For

W > Wc ' 3.5J0 we observe that ξL(W ) ∼ (W − Wc)
−β, with β ' 2, while, again, the

localization length saturates to L when W < Wc, thus indicating the presence of an true

localization/delocalization phase transition. The critical value Wc extracted by our scaling

analysis is compatible with the breaking of quantization in Fig. 4.3.

To understand the mechanism behind the delocalization/localization transition, we study

the relation between the time-averaged energy of the SP Floquet states

〈E〉α =
1

τ

∫ τ

0
dt 〈φα(t)| Ĥ(t) |φα(t)〉 , (4.7)
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Figure 4.6.: (a): Characteristic localization length ξL(W ) as a function of disorder, for a

trivial driving cycle (J1 = 4J0+δ0 sin(ωt)). The inset shows the collapse obtained

by ξL → ξL/L and W → WL1/β, with β ' 2.5. (b): Characteristic localization

length when the system exhibits topological transport (J1 = J0+δ0 sin(ωt)). The

inset shows the collapse ξL → ξL/L and W → (W −Wc)L
1/β, with Wc ' 3.5J0

and β ' 2. The parameters used in the simulation are δ0 = 0.5J0, ∆0 = 1.5J0,

~ω = 0.01J0.

and the corresponding IPRα (Fig. 4.7). For weak disorder, extended states carrying charge in

the positive (negative) direction lay in the middle of the lower (higher) band, while localized

ones stay closer to the edges. Floquet states from different bands are separated in energy

by a gap — closely related to the instantaneous energy gap — and by a mobility edge. The

presence of localized states at the band edges suggests that the driving-induced mixing occurs

mainly at the band center, as long as W . Wc (see panel (b) of Fig. 4.7, with W = 3.5J0).

This implies an additional robustness against non-adiabatic effects — indeed we observe that

our results do not depend on the precise value of ω, as further examined in section 4.5—, even

when the gap is almost completely closed. When W �Wc the two bands merge into a single

one where extended states transporting opposite charges hybridize into localized states, see

panel (c) with W = 8J0, and the current stops flowing.

This phenomenology is similar to what happens in integer quantum Hall effect (IQHE) in

2D systems, where there must be spectral regions of extended states [53, 140, 141], in order

to have a non-zero quantized transverse conductivity. Also the exponent β ' 2 found for

W > Wc, is in good agreement with a similar scaling analysis performed on the density of

extended states in IQHE in a disordered sample [142]. Even though the parallelism between

the physics of clean 1D topological charge pumping and 2D integer quantum Hall effect is

well established [15, 66, 143], this connection is not obvious for disordered samples. Indeed

a localization/delocalization transition clearly associated with topological properties, as it

happens in IQHE [140,141], has not been investigated previously in a one dimensional driven

Anderson insulator.
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Figure 4.7.: IPRα vs the time-averaged energy of the corresponding Floquet state 〈E〉α. The

dashed lines indicates the value 1/L associated with extended states. The data

refer to several realizations of a chain with 200 sites and increasing disorder

strengths: W = 2J0 in panel (a), W = 3.5J0 in panel (b), and W = 8J0 in panel

(c). Qd = ±1 is the charge transported when a single band is completely filled.
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Figure 4.8.: (a) Quasi-energy E0(θ) of the many-body Floquet state with lowest energy. The

winding is well defined only for W = 2J0 and W = 8J0, when |Ψ0〉 has a non

vanishing projection on a single MB Floquet state. (b): SP quasi-energy spec-

trum for all possible angles θ as a function of the disorder. (c) and (d): details

of the dependence of SP quasi-energy εα on the phase twist θ for W = 2J0 and

W = 4J0. Only a portion of the quasi-energy spectrum is reported, with the

linewidth proportional to the occupation of the corresponding Floquet state.
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4.4. Winding of quasi-energies

In a clean system, quantized pumping corresponds to a non-trivial winding of the quasi-energy

of the occupied Floquet bands in k-space, as the momentum spans the first Brillouin zone.

A detailed derivation is provided in section 2.2. When translational invariance is broken,

a common procedure is to introduce a phase twist θ ∈ [0, 2π) between site 1 and site L

and then take the average of Qd over θ [15, 70]. This operation is justified because when

the state projector is exponentially localized, the dependence of observables on the twisted

boundary decays exponentially with L [104]. Recalling the relation between pumped charge

and winding number in section 2.2, Eq. (4.3) can then be equivalently written as

Qd =

∫ 2π

0

dθ

2π
Qd(θ) =

τ

~
∑
ν

∫ 2π

0

dθ

2π
Nν(θ)∂θEν(θ) . (4.8)

Here Eν = εα1 + · · · + εαN is the N−particle quasi-energy associated with the Floquet state

|Φν〉 given by a Slater determinant of the SP states |φα1〉 , . . . , |φαN 〉; Nν = |〈Ψ0 |Φν〉 |2 is

the occupation number. In this context, the winding number is the number of times that

Eν(θ) wraps around the first Floquet-Brillouin zone as θ goes from 0 to 2π. Besides non-

adiabatic corrections that depend on the initial state |Ψ0〉 [75,106] discussed in chapter 3, Qd

is quantized when a single many-body Floquet state is occupied, e.g. Nν ' δ0,ν independently

of θ, and that state has a nontrivial winding number. Henceforth we focus on the Floquet

state with the lowest initial energy |Φ0(θ)〉, computed as the Slater determinant of the N SP

Floquet states with the highest projection on the ground-state in which the state is initially

prepared.

We report in Fig. 4.8(a) E0(θ) in the first Floquet-Brillouin zone for three different disorder

strengths W/J0 = 2, 4 and 8, which are respectively below, close, and above the transition

point. In Fig. 4.8(b) the SP quasi-energy spectrum is plotted with respect to W as θ spans

the interval ∈ [0, 2π). A localized state is characterized by a quasi-energy εα periodic in θ,

while extended ones with positive winding satisfy the relation εα(2π) = εα+1(0). Hence, we

distinguish between three situations.

1) W < Wc: |Φ0〉 coincides essentially with |Ψ0〉 (Nν ' δ0,ν), because adiabaticity is pre-

served at many-body level, and has winding number equal to 1, blue line in Fig. 4.8(a).

The SP quasi-energy spectrum is continuous in θ and there are no gaps in the Floquet-

Brillouin zone, Fig. 4.8(b). Most of the SP states feel the twist at the boundary, obey

εα(2π) = εα+1(0) and contribute to the winding of E(θ), as shown in Fig. 4.8(c)).

2) W &Wc: the initial ground-state |Ψ0〉 has relevant projections over many MB Floquet

states and the SP occupation numbers nα depend non-trivially on θ. Hence the set

α1, . . . , αN of SP Floquet states in the Slater determinant |Φ0〉, changes with θ, thus

making E0(θ) discontinuous, see red dots in Fig. 4.8(a). Gaps start to appear in the

SP quasi-energy spectrum, see Fig. 4.8(b), and the occupation number itself depends

non-trivially on θ. The SP Floquet states with opposite transported charge start to be

mixed in pairs of localized states, with quasi-energies periodic in θ, see Fig. 4.8(d).

3) W > Wc: both SP Floquet states and Hamiltonian eigenstates are strongly localized

and there is no current. Again Nν = δ0,ν , but the winding number is trivial, see
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the green horizontal line in Fig. 4.8(a), because SP quasi-energy spectrum has only a

pure-point contribution and localization makes the system insensitive to the boundary

twist.

4.5. Frequency dependence of the localization length
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Figure 4.9.: Left: SP Floquet states IPR distribution for frequencies ~ω = 0.1J0, 0.01J0 and

0.001J0, W = 2J0 and L = 280. Notice the almost perfect overlap around the

peak of extended states. Right: localization length versus disorder strength for

a chain of 280 sites for different values of the driving frequency.

When considering the frequency dependence of the localization/delocalization transition

discussed in section 4.3, two main issues can be raised: i) how does the “fraction of extended

states” and ii) how the “mode” of the IPR distribution change with ω?

The fraction of extended states is related to the area under the peak in the IPR distribution.

In the left panel of Fig. 4.9 we compare P (IPR) for three different frequencies spanning

two orders of magnitude. This shows that the shape of the peak remains almost identical,

suggesting that the fraction of delocalized states does not depend much on ω.

The localization length ξ̄L, instead, shows a mild dependence on the frequency, namely it

increases as ω decreases when W > Wc. This is in agreement with general results on driven

Anderson insulators [77, 78]. However, the curves for ~ω ≤ 0.01J0 are almost superimposed,

suggesting that the critical disorder strength converges rapidly with decreasing ω to the

value at which the minimum energy gap closes Wc ' 3.5J0. When the charge is quantized

(W < Wc) the localization length, instead, does not show any dependence on the frequency.

4.6. Conclusions

In this chapter we analyzed the steady-state current flowing in a one-dimensional Floquet-

Anderson insulator: the topological periodic driving mixes localized Hamiltonian eigenstates,

giving rise to extended Floquet modes. The dynamics is adiabatic only at many-body level,

but not at the SP one, where driving-induced mixing of localized states occurs even at very

low frequencies. Delocalization makes quantized pumping robust until extended Floquet

states with opposite winding coalesce for large disorder. Even though the physics of quantum
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pumping in clean systems is the same as 2D IQHE, this analogy is not trivial in the presence of

disorder, since the 1D periodically driven chain would be mapped in an extremely anisotropic

disordered 2D model.

A subtle point emerges in the adiabatic limit ω → 0. In a truly adiabatic evolution the

SP Floquet states would coincide with the Hamiltonian eigenstates, thus being localized,

at least when the disorder-induced SP level crossings are actually avoided crossings. This

happens generically when one takes the adiabatic limit in a finite system, where the energy

levels are protected by finite gaps, although exponentially small in L. Quantized pumping

still works because disorder induces resonances in the spectrum, allowing for large distance

tunnelling [144, 145]. Instead, if disorder induces true level crossings in the occupied band

of the SP spectrum, as in the control freak limit [146], a fine tuned driving is still able to

mix localized energy eigenstates into extended Floquet states, even at vanishing frequency.

When the thermodynamic limit L → ∞ is taken first, the spectrum becomes dense and the

driving mixes SP levels at arbitrarily small frequency, leading again to a quantized pumping.

These arguments suggest that quantized pumping is obtained regardless of which of the two

limits (ω → 0 or L→∞) is taken first, although the physical mechanisms appear somewhat

different.
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Part II.

Quantum Optimization
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5. QAOA on fully connected models

In this chapter I discuss our work on the quantum approximate optimization algorithm,

available on the arXiv [147].

As discussed in the introduction in section 1.2, one of the central problems in quantum

computing is “ground state preparation”, which is a relevant aspect for many different fields,

from condensed matter problems and material design to classical optimization problems and

information theory.

A recent proposal to find the ground state of a spin Hamiltonian Ĥz is the quantum approx-

imate optimization algorithm (QAOA), sketched in Fig. 5.1. It consists in the optimization

of a variational wave-function |ψP(γ,β)〉 obtained by applying a set of P unitary operators

Û(γm, βm) = e−iβmĤxe−iγmĤz , (5.1)

to evolve the initial state. Here Ĥx is a driving Hamiltonian that induces fluctuations in the

basis of Ĥz.

In this chapter, we test QAOA on the fully connected p-spin Ising ferromagnet

Ĥz = −

∑
j

σ̂zj

p

, (5.2)

a problem that notoriously poses severe difficulties to a Quantum Annealing (QA) approach,

due to the exponentially small gaps encountered at first-order phase transition for p ≥ 3.

We demonstrate that QAOA can construct with polynomially scaling resources the ground

state of the p-spin ferromagnet with very shallow circuits P = 1 or P = 2 depending on

Figure 5.1.: Schematic representation of QAOA protocol.
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the parity of the number of variables N . This optimal minimum, however, is hidden in an

extremely rugged energy landscape, which makes minimization attempts prone to remain

trapped in bad local minima. Indeed for a generic target state, we show that an appropriate

QAOA parameter initialization is necessary to achieve a good performance of the algorithm

when the number of variational parameters 2P is much smaller than the system size N ,

because of the large number of sub-optimal local minima. When P exceeds a critical value

P∗N ∝ N instead, the structure of the parameter space simplifies and all minima become

degenerate. This allows us to achieve the ground state with perfect fidelity with a number of

parameters scaling extensively with N , and with resources scaling polynomially with N .

5.1. Introduction

Optimization and ground state preparation are two of the building blocks in the current

research on quantum technologies [45, 148]. Optimization is a long-standing problem in

physics and computer science and lies at the roots of the efforts to show a possible “quantum

supremacy” [149–151] over classical algorithms. A robust state preparation strategy, in turn,

would be a crucial tool for quantum technologies, and would also allow to “solve”, using

quantum hardware, many long-standing problems in condensed matter theory or quantum

chemistry [26, 83, 84]. The two are intimately connected, as many optimization tasks can

be reformulated in terms of finding the classical ground state of an appropriate spin-glass

Hamiltonian [80].

A traditional tool in this field has been Quantum Annealing [28, 29, 85, 86] (QA) — alias

Adiabatic Quantum Computation [30, 88] —, which relies on the adiabatic theorem to find

the ground state of a target Hamiltonian, starting from a trivial initial state. Although QA

appeared to be more efficient than its classical counterpart for certain problems [86,152–155],

it is limited by the smallest gap encountered during the evolution, which vanishes, in the

thermodynamic limit, when the system crosses a phase transition. In this context, the fully-

connected p-spin Ising ferromagnet is a simple but useful benchmark for optimization, because

QA fails due to the exponentially small gap at the first-order phase transition encountered for

p ≥ 3 [100–102]. Several techniques have been advocated to overcome the slowness induced by

such an exponentially small gap, including the introduction of non-stoquastic terms [39,156],

pausing [157], dissipative effects [38, 158], or approximated counterdiabatic driving [159].

Their successful application, however, often depends on the knowledge of the spectrum or on

the phase diagram of the model, thus making these techniques highly problem-specific.

Recent alternative ground state preparation approaches [44,160,161] rely on hybrid quantum-

classical variational techniques [42] to tackle such problems, avoiding the limitations imposed

by a QA adiabatic evolution. Here we focus on one such scheme, the Quantum Approximate

Optimization Algorithm (QAOA) [44,95].

The core idea of QAOA is to write a trial wave-function as a product of many unitary

operators, each depending on a classical variational parameter, applied to a state simple to

construct, usually a product state with spins aligned in the x-direction. A quantum hardware

performs the discrete quantum dynamics and measures the expectation value of the target
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Hamiltonian, which is then minimized by an external classical algorithm, as a real function

in a high dimensional parameter space.

Although QAOA is a universal computational scheme [94], its performance strongly de-

pends on the details of the target Hamiltonian. QAOA seems to performs rather well on

Max-Cut problems [95] and on short-range spin systems [96, 162]. The Grover search prob-

lem has also been studied within QAOA, showing that it leads to the optimal square root

speed-up with respect to classical algorithms [163]. For generic long-ranged Hamiltonians,

however, many open questions remain. The questions concern, in particular, the efficiency

of the algorithm when a large number of unitaries are employed, or the ability to overcome

large energy barriers in presence of first-order phase transitions, or the presence of “smooth”

sets of optimal parameters [90,95,98].

In this chapter, I will show that QAOA can construct with polynomially scaling resources

the ground state of the fully-connected p-spin Ising ferromagnet for all p ≥ 2, hence including

the case where a first-order phase transition occurs. For a generic target state, I find that an

appropriate QAOA parameter initialization is necessary to achieve a good performance of the

algorithm when the number of variational parameters 2P is much smaller than the system

size N , because of the large number of sub-optimal local minima. Finally, I will show that

when P > P∗N ∝ N , the structure of the parameter space simplifies, and all minima become

degenerate. This allows us to achieve the ground state with perfect fidelity with a number of

parameters scaling extensively with N , and with resources scaling polynomially with N .

5.2. Model and QAOA algorithm

As a benchmark for QAOA on long-range models we focus on the ferromagnetic fully-

connected p-spin model [100–102,164]:

Ĥtarget = − 1

Np−1

( N∑
j=1

σ̂zj

)p
− h
( N∑
j=1

σ̂xj

)
, (5.3)

where σ̂x,zj are Pauli matrices at site j, N is the total number of sites, and h a transverse

field. This model displays, for p = 2, a second-order quantum phase transition, at a critical

transverse field hc = 2, from a paramagnetic (h > hc) to a symmetry-broken ferromagnetic

phase (h < hc). The transition becomes first-order for p > 2, and hc decreases for increasing

p, with hc → 1 for p→∞ [100].

The QAOA algorithm [44] is a variational method to find the ground state of a target

Hamiltonian Ĥtarget. Starting from an initial spin state polarized along the x̂ direction

|+〉 =

(
|↑〉+ |↓〉√

2

)⊗N
, (5.4)

QAOA writes the following variational Ansatz

|ψP(γ,β)〉 = e−iβPĤxe−iγPĤz · · · e−iβ1Ĥxe−iγ1Ĥz |+〉 (5.5)
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in terms of 2P variational parameters γ = (γ1 · · · γP) and β = (β1 · · ·βP), where Ĥz and Ĥx

are non-commuting Hamiltonians depending on the problem we wish to solve. Here we take

Ĥx = −
∑

j σ̂
x
j , the standard transverse field term, and an interaction term Ĥz

Ĥz =
( N∑
j=1

σ̂zj

)p
, (5.6)

chosen for convenience to have a super-extensive form with an integer spectrum. These choices

allow us to restrict the parameter space for γm and βm to the interval [0, π]. See appendix

B.1.4 for a detailed discussion on the symmetries in the variational parameter space. In each

QAOA run the variational energy cost function

EP(γ,β) = 〈ψP(γ,β)|Ĥtarget|ψP(γ,β)〉 , (5.7)

is minimized, until convergence to a local minimum (γ∗,β∗) is obtained. The quality of the

variational solution is gauged by computing the residual energy density [96]

εres
P (γ∗,β∗) =

EP(γ∗,β∗)− Emin

Emax − Emin
, (5.8)

where Emin and Emax are the lowest and largest eigenvalues, respectively, of the target Hamil-

tonian.

The connection with a QA approach is interesting [96]. In QA one would write an inter-

polating Hamiltonian [30] Ĥ(s) = sĤtarget + (1 − s)Ĥx, with s(t) driven from s(0) = 0 to

s(τ) = 1 in a sufficiently large annealing time τ . A lowest-order Trotter decomposition of the

corresponding step-discretized evolution operator — with sm=1···P constant for a time-interval

∆tm=1···P — would then result in a state of the form of Eq. (5.5) with:
γm =

sm∆tm
~

1

Np−1

βm =
∆tm
~

(
1− sm(1− h)

) (5.9)

where the total evolution time would be given by:

τ

~
=

P∑
m=1

∆tm
~

=
P∑

m=1

(
βm + (1− h)γmN

p−1
)
. (5.10)

While an optimization of the parameters sm and ∆tm is in principle possible, the standard

linear schedule s(t) = t/τ would result in a digitized-QA scheme where sm = m/P and

∆tm = ∆t = τ/P [91, 165]. With these choices, a convenient starting point for the QAOA

optimization algorithm would be to take
γ0
m =

∆t

~
m

P

1

Np−1

β0
m =

∆t

~

(
1− m

P
(1− h)

) , (5.11)

with possible addition of a small noise term. Alternatively, we might choose a completely

random initial point with γ0
m, β

0
m ∈ [0, π]. These two alternative choices will be henceforth

referred to as l-init and r-init.
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5.3. Exact ground state with P = 1

Ref. [166] has shown that the target ground state of the p = 2 fully connected Ising ferromag-

net with h = 0, the so-called Lipkin-Meshov-Glick [167] model, can be perfectly constructed,

with unit fidelity, with the smallest QAOA circuit, P = 1. Ref. [168] has recently shown that

a whole class of spin-glass models can be constructed where QAOA shows such a property.

Here I show that the general p-spin model in Eq. (5.3) belongs to the class of P = 1

QAOA-solvable problems, provided that h = 0 and that the number of spin variable N is

odd, when the system is initially prepared in the fully x-polarized state in Eq. (5.4). This

result is already noteworthy, as it shows that one can construct the exact h = 0 classical

ground state with an algorithm whose equivalent computational time, see Eq. (5.10), scales

as Np−1. On the contrary, for any finite N , a QA algorithm would need to cope with a

minimum spectral gap at the transition point [100–102, 164] which scales as ∆ ∼ N−1/3 if

p = 2 and ∆ ∼ e−αpN if p ≥ 3: with a linear schedule annealing, this would imply a total

annealing time τ ∝ ∆−2, hence τ ∼ N2/3 for p = 2 and τ ∼ e2αpN for p > 2. Therefore,

QAOA shows an exponential speed-up with respect to a linear-schedule QA for p > 2, without

exploiting any knowledge on the spectrum or on the phase diagram.

In the following, I sketch the analysis of the optimal solution for P = 1 and N odd, while a

detailed proof is provided in appendix. B.1. The core idea of the proof starts from observing

that for P = 1 the fidelity reads:

F(γ, β) =
∣∣∣〈ψtarg| e−iβĤxe−iγĤz |+〉

∣∣∣2
=

∣∣∣ 1√
2N

∑
l

e−iγEl 〈ψtarg| e−iβĤx |l〉
∣∣∣2 , (5.12)

where |ψtarg〉 is the h = 0 target ground state, and the sum in the second line runs over the

2N basis states |l〉 of the computational basis, with Ĥz |l〉 = El |l〉. Eq. (5.12) shows that F
is the scalar product of two 2N -dimensional unit vectors of components

F = |v† · u|2 , (5.13)

where

(v(γ))l =
1√
2N

eiγEl and (u(β))l = 〈ψtarg|e−iβĤx |l〉 . (5.14)

To ensure F = 1, the Cauchy-Schwarz inequality requires v(γ) and u(β) to be parallel up

to an overall phase factor u(β) = eiθv(γ). By imposing |(u(β))l|2 = |(v(γ))l|2, one obtains

β = π
4 mod π, as discussed in detail in appendix B.1. This result is rather general and holds

both for a classical ferromagnetic target state |ψtarg〉 = |⇑〉1 and a quantum superposition

|ψtarg〉 = 1√
2
(|⇑〉 + |⇓〉), that corresponds respectively to p odd and p even in the p-spin

model.

Furthermore, a unit fidelity further imposes [168] that all terms appearing in the sum

in Eq. (5.12) are pure phase factors, which have to be identical for all states |l〉, modulo

2π. For p odd, the energy is the odd power of an odd number El = −(Ml)
p, Ml being the

1|⇑〉 = |↑↑ . . . ↑〉 is the state with all spins pointing up.
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magnetization eigenvalue, Ŝz |l〉 = Ml |l〉, and the key observation is the following property of

arithmetic congruence:

Mp−1
l = 1 mod 8 =⇒ Mp

l = Ml mod 8 if p is odd . (5.15)

Hence, we can write

F(π4 ,
π
4 ) =

∣∣∣∣∣ 1

2N

∑
l

exp

(
i
2π

8

[(
Mp
l + 2N↓l

)
mod 8

])∣∣∣∣∣
2

=

∣∣∣∣∣ 1

2N

∑
l

exp

(
i
2π

8

[(
Ml + 2N↓l

)
mod 8

])∣∣∣∣∣
2

=

∣∣∣∣∣ 1

2N

∑
l

exp

(
i
2π

8
[N mod 8]

)∣∣∣∣∣
2

= 1 , (5.16)

where we have inserted the contribution for the u(β = π
4 ) vector

〈ψtarg|e−i
π
4 Ĥx |l〉 =

1√
2N

ei
π
2

N↓l . (5.17)

N↓l = (N −Ml)/2 is the number of spins pointing downward in the |l〉 basis vector. Equation

(5.16) demonstrates that (γ, β) = (π4 ,
π
4 ) allows targeting exactly the ferromagnetic ground

state |⇑〉, when both p and N are odd. A more detailed proof is given in appendix B.1, where

we perform all the calculations explicitly, for both p odd and even. In the latter case, the

proof is more complicated and we find that the precise values of γ leading to perfect fidelity

depend on p. As a final remark, notice that in the theoretical proof we use for convenience

the fidelity, instead of the residual energy. In general, however, we prefer the latter as a

figure of merit, since it is directly linked to the variational minimization of the expectation

value of the target Hamiltonian. Moreover computing the fidelity requires the full knowledge

of the target ground state, which in general is not available for large systems. The energy

instead is computed more easily and it is accessible also in experimental implementations of

QAOA [98], without performing full tomography of the variational state.

5.4. Numerical results for P > 1

The possibility of finding exactly the ground state with P = 1 holds only when the target

Hamiltonian is classical (the transverse field is h = 0) and the system has an odd number

of spin variables N . When N is even, we have numerical evidence that P = 2 is enough to

target the ferromagnetic ground state for h = 0, but already at this level the efficiency of local

optimization is severely limited by the presence of many local minima. Indeed we find that the

energy landscape EP(γ,β) is extremely rugged for P ≥ 2, as shown in Fig. 5.2, making local

optimizations highly dependent on the initial set of parameters (γ0,β0). Specifically, we use

the Broyden-Fletcher-Goldfard-Shanno (BFGS) algorithm [169]. We observe a very different

behavior if the minimization is initialized with parameters γ0
m and β0

m chosen randomly in

[0, π] (r-init), or rather with an initial guess based on a linear schedule, γ0
m = ∆t

~
m
P

1
Np−1 and

β0
m = ∆t

~
(
1− m

P (1− h)
)

(l-init).
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Figure 5.2.: Section of the residual energy landscape εPres(γ,β) along two random orthogonal

directions, for N = 32, p = 2 and P = 2. The picture is centered on one minimum

corresponding to the ferromagnetic ground state.

The results for the random initialization for p = 2 are summarized in Fig. 5.3, where

we show the normalized residual energy, Eq. (5.8), versus the number of QAOA steps P

for h =
√

5−1
2 < hc, whose target state lies in the ferromagnetic phase for any value of p.

Data for different system sizes N collapse perfectly after rescaling P→ (P− 2)/N (see inset

of Fig. 5.3) and drop below machine precision at P = P∗N = N
2 + 2. Correspondingly, the

variance of the residual energy distribution, which is rather large for P < P∗N as witnessed

by the error bars, drops to 0 at P∗N, implying that all local minima become degenerate. The

colored area around each curve shows the range between the lowest and the highest residual

energy obtained for each value of P and N . The distribution of individual optimizations is

symmetric around the average, with the exception of small values of P where r-init QAOA

occasionally finds a local minimum with very small residual energy. For better readability, in

the following figures we report only error-bars corresponding to the standard deviation of our

data. This behavior holds for any value of the transverse field h, if the QAOA minimization

is initialized with random parameters. In general, we find that the residual energy follows:

εres
P =


(

1− P

P∗N

)b
if P < P∗N

0 if P ≥ P∗N

, (5.18)

with b ' 3. Remarkably, this scaling holds also for p > 2, see Fig. 5.4, with similar values of

b, with the only difference that P∗N = N+1 for p odd, because of the lack of the Z2 symmetry.

This implies that for finite N one can attain a perfect control of the state with a circuit depth

P = P∗N ∝ N , physically corresponding to a total evolution time that scales as a power-law

with N . Once again, this is at variance with a standard linear-schedule QA, where the total

evolution time has to scale exponentially with N when the transition is first-order, i.e., for

p > 2.

We have shown that a QAOA circuit with P = P∗N ∝ N is sufficient to prepare the exact
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Figure 5.3.: Results of local optimizations with (γ0,β0) initialized randomly in [0, π] (r-init)

averaged over 200 different realizations, for several values of N and h =
√

5−1
2 ,

for p = 2. The shaded areas show the range between the best and the worst

result obtained for each set of data. The inset shows the collapsed data (in log

scale) after rescaling P→ (P− 2)/N .
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Figure 5.4.: Results of local optimizations with (γ0,β0) with averaged over 200 random ini-

tializations, for several values of N and h =
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5−1
2 , for p = 3. The inset shows

the collapsed data (in log scale) after rescaling P→ (P− 1)/N . The solid black

line is the scaling desribed in Eq. (5.18).
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Figure 5.5.: Number of iterations required for BFGS algotihm to converge, averaged over 20

optimizations with random initializations of QAOA parameters. The correspond-

ing value of P is N/2 + 2 for p even, and N + 1 for p odd, which is sufficient to

obtain a residual energy below the numerical error.

ground state of the p-spin model for an arbitrary target h. However, to estimate the total

computational complexity of running the QAOA algorithm to solve the p-spin model, we must

include the computational cost of finding the QAOA variational parameters (with BFGS).

Indeed, during the optimization process, the quantum device is used Niter times, to sample

the optimization landscape associated with QAOA circuits of P = P∗N. In Fig. 5.5 we show

the number of iterations Niter, that the BFGS required for convergence as a function of N .

Niter appears to increase linearly with N , with a slope that only depends on the parity of

p. Hence, the total computational time needed for converging to the exact ground state, at

arbitrary transverse field, is at most polynomial in N , since it requires an order O(N) of

iterations and a similar number of variational parameters, all in the range [0, π].

A linear initialization of QAOA parameters, with a small noise (see caption of Fig. 5.6 for

details), improves drastically the QAOA performance. This is illustrated in Fig. 5.6 where

the results of the two competing schemes, random (r-init) versus linear (l-init) initialization,

are shown for a system with N = 64 for both p = 2 (main plot) and p = 3 (inset), and

three fixed values of P = 5, 15, 25. Notice how the linear initialization is able to “detect” the

quantum paramagnetic phase, for h > hc, as being “easy”, with the QAOA minima found

having vanishingly small residual energy, almost to machine precision, even if P < P∗N. This

occurs not only in the second-order transition case with p = 2, but also in the more “difficult”

first-order case with p = 3. At variance with that, a random initialization performs on average

quite independently of the target transverse field h, and knows nothing about the location

of the critical field. Interestingly, this suggests that QAOA for small P is sensitive to the

phase diagram of the target Hamiltonian: choosing a good Ansatz for the initial parameter

set (γ0,β0) is fundamental to initialize the variational wave-function in a “good” basin of

attraction, where the minimization leads to small values of εres
P . Whether this feature is

unique to infinite range models or is a common property of long range Hamiltonians is an

interesting issue to pursue in future works.
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Figure 5.6.: QAOA residual energy versus the transverse field h for a system with N = 64,

and three values of P = 5, 15, 25, for random (r-init) and linear initialization

(l-init) of the QAOA parameters. Notice that P∗N = N/2 + 2 = 34 for p = 2 and

P∗N = N+1 = 65 for p = 3. The vertical dashed lines show the critical transverse

field: hc = 2 for p = 2 in panel (a) and hc ' 1.3 for p = 3 in panel (b). The

linear initialization (l-init) corresponds to Eq. (5.9) multiplied element-wise by

a noise factor (1 + r), with r ∈ [−0.05, 0.05]2P a vector of uniformly distributed

random numbers. Data are averaged over 100 different instances of r.

The linear initialization displays better efficiency, compared to the random one, also when

the target state belongs to the ferromagnetic phase (h < hc), and P < P∗N. This is illustrated

in Fig. 5.7 for p = 2 (a) and p = 3 (b). Here, however, the improvement is only quantitative

— εres
P decreases faster and scales better with system size — since the actual change in the

landscape, with degenerate global minima, occurs only at P∗N. Moreover, the system displays

a large roughness of the variational energy landscape, which makes the task of obtaining good

variational minima extremely demanding, especially for p ≥ 3, hence justifying the poorer

improvement of l-init over r-init observed in Fig. 5.7(b).

A smooth change of the control parameters is required, or at least useful, for experimental

implementations of QAOA algorithms [98]. Finding local minima (γ∗,β∗) which can be seen

as the discretization of some continuous function, proves however to be a difficult task for

this model. In contrast with Refs. [95, 96], an iterative procedure that initializes (γ0,β0)

from an interpolation of a smooth set obtained for a smaller parameter space does not seem

to work straightforwardly. Our failed attempts do not exclude that smart smooth choices for

(γ0,β0) can be constructed: they only signal that finding them is a non-trivial task, due to

the extreme roughness of the energy landscape. The linear initialization we have adopted is

able to find reasonably smooth (γ∗,β∗) only for small values of P, as reported in Fig. 5.8.

In the upper panels, it is shown the expectation value of the target Hamiltonian during the

digital evolution Em = 〈ψm| Ĥtarget |ψm〉, with |ψm〉 being the wave-function evolved with only

the first m out of P parameters. In the lower panel, it is shown the interpolation parameter

sm =
Np−1γm

(1− h)Np−1γm + βm
. (5.19)

As the dimensionality of the parameter space increases, and so does the roughness and the

number of local minima, the optimal parameters obtained starting from a linear initialization
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Figure 5.7.: Comparison between the optimized residual energy obtained from a linear initial

guess plus small noisce (l-init) and from random initialization (r-init), for two

system sizes N = 32 and N = 64. In (a) p = 2, in (b) p = 3.

scheme appear to be increasingly irregular, and so does the expectation value of the energy.

5.5. Conclusions

We analyzed the performance of QAOA on the fully connected p-spin model, showing that it

is able to find exactly the ferromagnetic ground state with polynomial resources, even when

the system encounters a first-order phase transition. In particular, the algorithm prepares

the ground state of Ĥz with only P = 1 (if N is odd) or P = 2 (if N is even) steps, with a

corresponding evolution time that scales as Np−1, while QA would require an exponentially

long annealing time. This exact minimum however exists only for zero transverse field, h = 0.

Interestingly, the exact minimum, which clearly survives for P ≥ 2, is very hard to find with

gradient-based optimization schemes due to the extreme roughness of the energy landscape,

especially for p > 2. The “hardness” of the problem for p > 2 is thus reflected in the difficulty

in finding the correct absolute minimum, rather than in the resources (i.e. the computational

time) needed.

The performance of the optimization itself strongly depends on the initialization of the

variational parameters (γ0,β0). For a random initialization, the residual energy drops below

machine precision as (P∗N − P)b, with b ∼ 3 and P∗N growing linearly with N . This behavior

is independent of the target transverse field h and from p, with the only difference that

P∗N = N/2+2 for p even and P∗N = N+1 for p odd. With a linear initialization, the algorithm

performs much better and is able to detect the presence of a phase transition, although the

improvement deteriorates rapidly as P increases, because of the growing number of “bad”

local minima.

For future developments, it would be interesting to understand whether infinite or long-

range Hamiltonians can be used to boost QAOA performance on short-range models. The

idea is to add a further unitary e−iεĤ
′
z in Eq. (5.5), generated by a long-range Hamiltonian Ĥ ′z

unrelated to the problem to solve. This enlarges the portion of Hilbert space approximated

with a QAOA Ansatz, at a fixed number of Trotter steps P, at the price however of increasing
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the number of variational parameters.

At variance with Refs. [95, 96, 98], we are unable to construct minima in the energy land-

scape associated with smooth parameters (γ∗,β∗). These regular parameter choices are often

desired since they might be linked to adiabatic schedules, that can be used to infer the opti-

mal protocol s(t) in a continuous annealing scenario, and allow for a faster minimum search

in the 2P-dimensional parameter space, once a solution for P′ < P is known [96,98]. Prelimi-

nary results [170] with reinforcement learning [103] methods applied to the QAOA evolution

suggest however that smooth choices of (γ∗,β∗) do indeed exist, but they are hard to find

with local optimizations. This topic will be investigated in the next chapter. Whether global

minima are related to smooth values of (γ∗,β∗) remains an open and interesting question.
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6. Reinforcement Learning for quantum

optimization

I discuss here a reinforcement learning (RL) scheme for feedback quantum control within

the quantum approximate optimization algorithm (QAOA), which we have recently pub-

lished [170].

The main idea presented in this chapter is to rephrase the minimum search in the energy

landscape of QAOA, discussed in the previous chapter, as a reinforcement learning process.

An RL agent learns a strategy (called policy) to associate a particular action choice — in

the QAOA framework, a pair of parameters γ and β — to any state |ψ〉 that belongs to the

region of the Hilbert space explored during the training. The information on the current

state of the system is provided by measuring a set of observables.

The difference between the standard QAOA process and our proposal is summarized in

Fig. 6.1. While QAOA treats the digitized evolution as a whole and looks for a minimum

of the variational energy E(γ,β) in the 2P dimensional parameter space, an RL-assisted

optimization gets partial information on the wave-function at each discrete time step t and

then evolves the system, according to a learned strategy, with the goal of minimizing the

final energy. This feedback control mechanism is repeated until P steps are covered and the

expectation value of the target Hamiltonian is computed.

I will show that our RL scheme finds a policy converging to the optimal adiabatic solution

for QAOA, found by Mbeng et al. [96] for the translationally invariant quantum Ising chain.

The same result holds in the presence of disorder, where the policy can be transferred among

different disorder instances and system sizes. Indeed, our RL scheme allows the training part

to be performed on small samples and transferred successfully on larger systems and different

disordered realizations.

RL-assisted QAOA is able to find smooth regular schedules for the p-spin model (with

p = 2) described in chapter 5, in sharp contrast with local minimization alone. It improves

also the stability of the QAOA process, leading to much better results for large values of P,

and allowing for a better estimate of the scaling of the residual energy with P and the system

size N .

Disclaimer In this chapter, there is a slight change in notation with respect to the

previous one. Here we will indicate with t the discrete time-step in a digitized evolution,

which previously was denoted with m. For instance, the QAOA parameters will be

labelled as γt and βt instead of γm and βm. This is to keep our notation consistent with

that standard in Reinforcement Learning.

i
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Figure 6.1.: Pictorial representation of the diffrence between standard QAOA and Reinforce-

ment Learning assisted QAOA.

6.1. Introduction

Reinforcement Learning [103] (RL) is a class of machine learning algorithms where an agent

faces the task of maximizing a reward function, by acting on an environment. The agent has

no prior knowledge of which are good strategies to follow, hence it learns, by trials and errors,

how its actions modify the environment and influence the reward it receives. This “learning

from experience alone” makes RL suitable for several control processes, such as automated

driving [171–173] and robot controls [174, 175]. Moreover, RL has been successfully applied

in complex strategic games such as Go [176, 177], where future planning is essential to any

winning strategy.

Our idea here is to apply RL as a feedback control mechanism on quantum optimization,

specifically for a digitized quantum evolution such as the Ansatz of the Quantum Approximate

Optimization Algorithm (QAOA) [42,44], which we used already in Chap. 5.

Before entering in the details of our proposals, let us recap briefly the methods used for

quantum optimization that are relevant for our discussion.

Info: As commonly done in optimization techniques for physical problems, we restrict

ourselves to spin-1/2 Hamiltonians.

i

In Quantum Annealing (QA) [28,29,85–87] alias Adiabatic Quantum Computation (AQC) [30,

88] (QA/AQC) one constructs an interpolating Hamiltonian Ĥ(s) = sĤz + (1− s)Ĥx, where

Ĥz is the problem Hamiltonian whose ground state (GS) we are searching [178], while
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Figure 6.2.: Scheme of a single step of Reinforcement Learning for QAOA.

Ĥx = −h
∑

j σ̂
x
j is a transverse field term. An adiabatic dynamics is then attempted by

slowly increasing s(t) from s(0) = 0 to s(τ) = 1 in a large annealing time τ , starting from

some easy-to-prepare initial state |+〉, the GS of Ĥx. The difficulty is usually associated with

the growing annealing time τ necessary when the system crosses a transition point, especially

of first order [179].

QAOA, instead, uses a variational Ansatz of the form

|ψP(γ,β)〉 =
( P←1∏

t

e−iβtĤxe−iγtĤz
)
|+〉 , (6.1)

where γ = γ1, . . . , γP and β = β1, . . . , βP are 2P real parameters. The product is a time-

ordered product with t = 1 . . .P increasing from right to left. The standard QAOA approach

consists of a classical minimum search in such a 2P-dimensional energy landscape, which is,

in general, not a trivial task [180]. Indeed, there are in general very many local minima in

the QAOA-landscape, and local optimizations with random starting points produce irregular

parameter sets (γ∗,β∗), hard to implement and sensitive to noise. To obtain stable and

regular solutions (γ∗,β∗) that can be easily generalized to different values of P and imple-

mented experimentally, it is necessary to employ iterative procedures during the minimum

search [96,98,181]. Interestingly, as discovered in Ref. [96] for quantum Ising chains, smooth

regular optimal schedules for γt and βt can be found, which are adiabatic in a digitized-

QA/AQC [91] context.

One might indeed reformulate the QAOA minimization as an optimal control process [182]

in which one acts sequentially on the system in order to maximize a final reward. This

reformulation seems particularly suited for Reinforcement Learning (RL) [103,176,183,184].

As schematically represented in Fig. 6.2, at each discrete time step t an “agent” is given some

information, typically through measuring some observables Ot−1 on the state St−1 = |ψt−1〉
of the system on which it acts (the “environment”). The agent then performs an action at —

here choosing the appropriate (γt, βt) and applying the corresponding unitaries to the state

— obtaining a new state St = |ψt〉 and receiving a “reward” rt, measuring the quality of the

variational state constructed.

In our work we address several questions that have not been investigate in the literature

that flourished recently on RL applied to quantum optimization [185–190]:
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i) is such RL-assisted QAOA able to “learn” optimal schedules?

ii) Are the schedules found smooth in t?

iii) How to dwell with the fact that getting information from |ψt〉 involves quantum mea-

surements which destroy the state?

iv) Are the strategies learned easily transferable to larger systems?

In this chapter I show, on the paradigmatic example of the transverse field Ising chain, that

optimal strategies — well known in that case, see Ref. [96] — can be effectively learned by an

agent trained with Proximal Policy Optimization (PPO) algorithm [191] employing very small

neural networks (NN). We show that RL automatically learns smooth control parameters,

hence realizing an optimal controlled digitized-QA algorithm [96, 192]. By working with

disordered quantum Ising chains we show that strategies “learned” on small samples can

be successfully transferred to larger systems, hence alleviating the “measurement problem”:

one can learn a strategy on a small problem which can be simulated on a computer, and

implement it on a larger experimental setup [193]. Finally, we show that RL stabilizes the

performance of QAOA applied on the p = 2 p-spin model, investigated in chapter 5, and

learns smooth schedules, which we did not find using the standard QAOA approach.

6.2. Basis of RL

Here we provide a very concise introduction to Reinforcement Learning, discussed in more

detail in appendix C.

The term “Reinforcement Learning” refers to an entire class of algorithms and methods

developed to optimize sequences of consecutive actions in order to obtain a well defined target

objective. While several key concepts of RL were developed already in past decades, the field

is currently seeing a new surge of interest, thanks also to its success in tackling complex

strategic tasks such as those necessary in real-time strategic videogames.

At their core, RL algorithms deal with an agent which interacts with an outside environ-

ment, i.e. changing its state (s) through some actions (a). The agent receives information

on the consequences of its actions in the form of the new state of the environment and the

instantaneous reward (r) relative to its objective. RL algorithms are particularly useful when

a long-term strategy is fundamental to the solution of the problem, i.e. in cases where, quot-

ing Ref. [103], “actions influence not just immediate rewards, but also subsequent situations,

or states, and through those future rewards”. The schematics of an agent/environment sys-

tem are represented in Fig. 6.2, where all the elements are already specified in the QAOA

framework. The goal of any RL algorithm is to find the optimal policy, i.e., a mapping from

each possible state to the distribution probability of actions to take, aiming at maximizing a

future reward.

Two key concepts in RL are the policy and the state value function. The policy Π(a|s) is

the strategy followed by the RL agent and, in a stochastic process language, it describes the

conditional probability of taking the action a, knowing that the environment is in the state s.
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The state value function VΠ(s) describes how well the policy Π performs, when evolving the

environment from the initial state s. It is a well defined (but generally unknown) quantity:

V Π(s) = EΠ[
∑
t

λtrt|s0 = s] .

It represents the expected cumulative future reward that one will obtain starting from s,

always choosing actions following a given policy a ∼ Π. The discount-factor λ ∈ [0, 1] is used

to modulate the relative importance of long-term and short-term rewards1

The basic structure of an RL algorithm is to produce trajectories T selecting actions that

follow a policy Πk and recording at each time t the step (st, at, rt, st+1). Using the experienced

data, a new updated policy Πk+1 is constructed such that actions that “performed best” have

increased probability to happen. The period between the policy updates is called an epoch.

New trajectories are produced following Πk+1 and the process is repeated.

RL-algorithms differ mainly in i) how the performance of the actions is evaluated ii) how

the value of states is approximated and iii) how policy is updated. What specific flavor of

RL algorithms is best suited to solve a task depends therefore on the specific features of

the problem at hand, e.g., whether the state and action spaces are discrete or continuous or

whether the agent has access to a complete description of the state of the environment or

only to a partial observation.

Here, we utilize a Proximal-Policy Optimization (PPO) algorithm [191], which belongs to

the family of actor-critic algorithms. The detailed description of the implementation of the

PPO algorithm can be found here, and is well outside the scope of this work: In the following,

we describe only the basic ideas involved, while some extra details are given in appendix C.3.

In PPO two Neural Networks (NNs) are used as parametric approximations of the functions

describing policy Π(a|s) (the actor) and the value V Π(s) (critic).

Value function The value function is an expectation over a potentially infinite number of

trajectories, hence the experience gained from those sampled in a single epoch in general

does not contain sufficient information to faithfully approximate it. The rewards obtained in

the sampled trajectories can, however, be used to extrapolate better estimations of the value

functions with different methods. At the end of each epoch, the NN is updated to minimize

the error between the parametrized value function V Π
θ′ (s) and the new one extrapolated from

experience V Π
T (s) for all visited states.

Policy To update the policy, the outcome of the experienced actions has to be evaluated.

The “goodness” of having chosen at time t a particular action at, is measured with the

Advantage function

AΠ(st, at) = rt + λV Π(st+1)− V Π(st) ≈ rt + V Π
θ′ (st+1)− V Π

θ′ (st). (6.2)

This seemingly complex expression has a conceptually simple meaning: The expectation value

of being in the state st, V
Π
θ′ (st), is measured against the known fact that it has experimentally

1Usually in RL notation, the discount factor is denoted with γ. Here I use λ to avoid confusion with the γ

parameter of QAOA.
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Figure 6.3.: Scheme of the “episode” loop in each k-th training “epoch”, with the “policy”

and “state-value” neural networks Πθk and V Π
θ′k

.

produced a reward rt and it has changed the state of the environment to st+1 (with its

expectation value V Π
θ′ (st+1)). The policy is then updated such that the probability of taking

actions with a positive score of AΠ is increased, and conversely that of actions with negative

AΠ is decreased. A sketch of the training process of the PPO algorithm is depicted in Fig. 6.3

The defining feature of PPO is that a clipping function is used such that the changes between

old policy and new policy cannot be larger than a fixed amount. This simple additional feature

adds remarkable stability to the learning process.

6.3. RL assisted QAOA

The key ingredients of the RL-assisted algorithm, as schematized in Fig. 6.2, are as follows.

State) The state St at time step t = 1, . . . ,P is encoded by the wave-function |ψt〉, defined

iteratively as |ψt〉 = e−iβtĤxe−iγtĤz |ψt−1〉, with |ψ0〉 = |+〉 = 1√
2N

⊗
i (|↑〉i + |↓〉i). Due

to the symmetry of both Ĥx and Ĥz, |ψt〉 is always Z2 symmetric. The agent has

partial information through a number of observables Ot−1 measured on |ψt−1〉. Our

choice (with t− 1→ t) is

Ot =
{
〈ψt|σ̂zj σ̂zj+1|ψt〉, 〈ψt|σ̂xj |ψt〉

}
, (6.3)

where a single value of j is enough when translational invariance is respected. Inter-

estingly, the agent seems to achieve comparable results even with a single observable

Ot = 〈ψt|σ̂zj σ̂zj+1|ψt〉, see appendix C.4 for further information.

Action) The action at at time t corresponds to choosing (γt, βt). The conditional probability

of at given the observables Ot−1, the policy, is denoted by Πθ(at|Ot−1), where θ are

the parameters of a Neural Network (NN) encoding. Our policy is stochastic, to help

exploration: Πθ(a|O) is chosen as a Gaussian distribution, whose mean and standard

deviation are computed by the NN. From this, at = (γt, βt) is extracted. 2

2At variance with section 6.2, here I specify that the policy depends on the state s through the observable
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Reward) A reward rt is calculated at time t. In our present implementation, rt=1,...,P−1 = 0

and only rP > 0. The final reward rP = R(EP) is associated to minimizing the final

expectation value EP = 〈ψP|Ĥtarget|ψP〉. Here R(EP) is monotonically increasing when

EP decreases. Specifically, we take R(EP) = −EP, but different non-linear choices have

been tested.

Training) The training process consists of a numberNepo of “epochs”, as sketched in Fig. 6.2(b).

During each epoch the RL agent explores, with a fixed policy, the state-action trajecto-

ries for a certain number Nepi of “episodes”, each episode involving P steps t = 1, . . . ,P.

At the end of each epoch, the policy is updated to favor trajectories with higher re-

wards. The particular RL algorithm we used is the Proximal Policy Optimization

(PPO) algorithm [191], from the OpenAI SpinningUp library [194], which is well suited

for continuous state-action pairs. In our numerical simulations, we used NNs with two

fully-connected hidden layers of 32, 16 neurons, and linear-rectification (ReLu) activa-

tion function, which is defined as

f(x) =

{
0 if x < 0 ,

x if x ≥ 0 .
(6.4)

It has been chosen because it has always a positive gradient when the signal is positive

(x > 0), leading to a faster policy optimization compared to a sigmoid3 activation

function [103].

6.4. Results

We test our scheme on three different spin models, namely the transverse field Ising model

(TFIM), the random Ising model (rTFIM) and the Lipkin-Meshov-Glick (LMG) model. The

latter is equivalent to the p-spin model studied in chapter 5 with p = 2. All these models

are solvable with exact numerical techniques, which allows for a full characterization of the

dynamics: the one-dimensional TFIM can be diagonalized with the Jordan-Wigner transfor-

mation [195], while the p − spin is restricted to the maximally polarized subsector of the

Hilbert space. Moreover, both the TFIM and the p-spin model have been studied in depth

concerning QAOA processes [96, 147], so they represent perfect benchmarks for RL assisted

quantum optimization.

6.4.1. Ising model with uniform couplings

Let us first consider the transverse field Ising model (TFIM) in one dimension, with periodic

boundary conditions, where detailed QAOA results are already known [96]. Specifically, we

O(s), although in RL literature the notation Π(a|s) is more common even when the agent has only a partial

knowledge on the state.
3A sigmoid is a function which interpolates smoothly between 0 and 1, such as (1 + e−x)−1. It has zero

gradient when |x| � 1 but it is differentiable in x = 0, at variance with a ReLu function. The best choice

depends on the specific problem at hand.
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define the target Hamiltonian Ĥtarget = Ĥz + hĤx with

Ĥz = −
N∑
j=1

Jj σ̂
z
j σ̂

z
j+1 , Ĥx = −

∑
j

σ̂xj . (6.5)

We start considering the uniform TFIM, where Jj = J . The model has a paramagnetic

(h > J) and a ferromagnetic (h < J) phase, separated by a 2nd-order transition at h = J . The

performance of QAOA on the uniform TFIM chain has been studied in detail in Refs. [96,162].

Given a set of QAOA parameters (γ,β), we gauge the quality of the resulting state from the

residual energy density

εres
P (γ,β) =

EP (γ,β)− Emin

Emax − Emin
, (6.6)

where EP (γ,β) = 〈ψP(γ,β)|Ĥtarget|ψP(γ,β)〉 is the variational energy, and Emax and Emin

are the highest and lowest eigenvalues of the target Hamiltonian. Specifically, the results

presented below will concern targeting the classical state for h = 0, although the approach

can be easily extended to the case with h > 0. At h = 0 the residual energy is bounded by

the inequality [96]

εres
P (γ,β) ≥

{
1

2P+2 if 2P < N

0 if 2P ≥ N
, (6.7)

which becomes an equality if and only if (γ,β) are optimal QAOA parameters.

In the RL training, the system is initially prepared in the state |ψ0〉 = |+〉, while the NNs

for the policy and the state-value function are both initialized with random parameters. The

agent is then trained for Nepo = 1024 epochs, each comprising Nepi = 100 episodes of P steps

each. After training, we test the RL algorithm with ∼ 50 runs.

Figure 6.4.: Residual energy density εres
P , Eq. (6.6), vs P. The target state is ferromagnetic

with h = 0. Full symbols: results from RL only; empty symbols: a local opti-

mization (LO) supplements the RL actions (RL+LO); data are averaged over 50

test runs. The black dashed line is the lower bound of Eq. (6.7)

.
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Fig. 6.4(a) shows the results obtained by the RL-trained policy. For P ≤ 6, the trained

RL agent finds optimal QAOA parameters, saturating the bound for εres
P in Eq. (6.7). In

particular, for small system sizes N , when P > N/2, the agent finds the exact target ground

state, and εres
P = 0. For longer episodes (P > 6), the residual energy deviates from the lower

bound due to two factors: i) the longer the episode, the more difficult it is to learn the

policy, as a larger number of training epochs are necessary to reach convergence; ii) since we

are using a stochastic policy, the error due to the finite width of the action distributions is

accumulated during an episode, leading to larger relative errors for longer trajectories. To

cure this fact, we adopted the following strategy: we supplement the RL-trained policy with

a final local optimization (LO) of the parameters (γ,β), employing the Broyden-Fletcher-

Goldfard-Shanno (BFGS) algorithm [169]. This last step is computationally cheap since the

RL training brings the agent already close to a local minimum, provided Nepo is large enough.

The residual energy data obtained in this way, denoted by RL+LO in Fig. 6.4, falls on top

of the optimal curve εres
P = 1

2P+2 .

Figure 6.5.: The schedule st = γt/(γt+βt). Full blue lines denote st learned after Nepo = 1024

epochs on a chain of N = 128 sites; Dashed red lines, the RL+LO results; Black

empty squares, the iterative LO smooth solution [96]. The RL actions are in the

basin of the same optimal minimum. Inset: same data for Nepo = 128 training

epochs, where not all the LO optimized actions sets fall onto the iterative LO

solution.

To visualize the action choices, we translate γt and βt into the corresponding interpolation

parameter st which a Trotter-digitised QA/AQC would show, which for h = 0 is given by: [96]

st =
γt

γt + βt
. (6.8)

Fig. 6.5 shows the interpolation parameter st during an episode t = 1, . . . ,P, for a chain

of N = 128 spins and P = 8. Different curves are obtained by repeating a test run of the

same stochastic policy, trained for Nepo = 1024 epochs. The parameters obtained through

the RL policy are smooth, and different tests result in similar s-shaped profiles for st. When

a final local minimization is added, the curves for st coalesce and coincides with the smooth

optimal schedule obtained in Ref. [96] through an independent iterative local optimization
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Figure 6.6.: Residual energy, Eq. (6.6), vs P for a single instance of the random TFIM:

comparison between bare RL and RL followed by local optimization (LO) results

(RL+LO).

strategy. When the training is at an early stage, i.e., the number of epochs is small, see

inset of Fig. 6.4(b), the profiles st are more irregular and do not fall all in the same smooth

minimum upon performing the LO (see the three dashed red lines in the inset).

6.4.2. Ising model with random couplings

Next, we turn to the random TFIM case, described by the Hamiltonian

Ĥz = −
∑
j

Jj σ̂
z
j σ̂

z
j+1, Ĥx = −

∑
j

σ̂xj . (6.9)

The couplings Jj ∈ [0, 1] are uniformly distribute random numbers. Here, for each chain

length N we fix a given disorder instance {Jj}j=1,...,N , both for the training and the test of

the RL policy. Since translational invariance is now lost, one would naively imagine that the

relevant observables Ot in Eq. (6.3) would involve a list of 2N measurements. However, our

experience has taught us that we can efficiently go on with a reduced list comprising only

the two Hamiltonian terms, Ot =
{
〈ψt|Ĥz|ψt〉, 〈ψt|Ĥx|ψt〉

}
, hence chain-averaged quantities.

All the parameters involved in training the NNs are fixed as in the uniform TFIM case.

Fig. 6.6 shows the residual energy εres
P vs P obtained from the bare RL (full symbols) and

from RL followed by a local optimization (RL+LO, empty symbols). The local optimization

significantly improves the quality for large P ≥ 10. A detailed study of the behaviour of εres
P

for large P and a comparison with the results obtained [164] by a linear-QA/AQC scheme,

with s(t) = t/τ , is left to a future study.

Fig. 6.7 shows the optimal parameter st = γt/(γt + βt) found by the RL+LO method,

compared to the st constructed with the iterative optimization strategy described in Ref. [96]:

the agreement between the two is remarkable, showing that the RL-assisted QAOA effectively

“learns” smooth action trajectories.
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Figure 6.7.: The optimized st obtained with different procedures. Empty squares: the it-

erative LO process of Ref. [96]; Blue circles: RL+LO performed directly on a

N = 128 chain; Gray lines: RLN=8+LON=128, i.e., training of a N = 8 chain used

as Ansatz for LO of the N = 128 chain.

The most remarkable fact, however, is shown by the series of grey lines present in Fig. 6.7.

These are obtained by training the RL agent on a much smaller instance with N = 8 sites,

and then use the suggested actions to initialize local optimizations for a larger system with

N = 128. Each line corresponds to a different disorder instance of the longer “test” chain.

These results show that a single trained policy can be easily adapted to any realization of

the rTFIM model, changing both the couplings and the chain length, without decreasing the

quality of the approximate ground state |ψP(γ∗,β∗)〉 compared to a policy trained directly on

the target system. It also reduces drastically the resource needed for RL assisted optimization,

because training the policy over a large system is computationally much heavier than training

on a smaller one. This approach does not even change the final residual energy after the local

optimization on top of the RL actions. In Fig. 6.8 we report the residual energies obtained

on 10 random instances of a system of Ntest = 128 spins, with policies trained on chains of

different length Ntr. The dashed black line refers to the residual energy of the coupling choice

where the largest system (Ntr = 128) has been trained; after a local optimization this value

is totally independent of the actual training instance and system size, showing that the RL

can be perfectly transferred. Indeed the dispersion of the data of each training size is due

only on the dispersion of the residual energies of different disordered instances.

The actions (γt, βt) can be even be transferred directly from the N = 8 chain to the

N = 128 one without a final local minimization, obtaining residual energies comparable with

an RL agent trained on the larger system, again without the action optimization at the end.

We have to remark however that only the actions and not the policy itself can be applied

on different random instances; indeed Π(a|O) learns only a specific choice of couplings. It

is possible however that a cleverer design of the learning process would allow for a direct

transfer of the policy, without using the original system as a reference to choose the actions

to apply afterward on different ones.
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Figure 6.8.: Comparison of the residual energy obtained by training the policy on a single

disordered instance with Ntr sites and tested on 10 instances of length Ntest =

128. When a local optimization for the test instance is added on top of the RL

actions (blue circles), the final residual energy is independent from the training

instance and system size.

Finally, the action transferability suggests the following way-out from the “measurement

problem” involved in the construction of the state observables Ot. Indeed, in an experimental

implementation of RL-assisted QAOA, the RL agent could observe a small system, efficiently

simulated on a classical hardware, and then use the learned actions to evolve the larger

experimental system. This reduces drastically the number of measurements to be performed

and allows to test RL-assisted QAOA on physical quantum platforms.

6.4.3. LMG model

Here we consider the Lipkin-Meshkov-Glick (LMG) model, corresponding to the p = 2 p-spin

model we analyzed in chapter 5, described by the Hamiltonian

Ĥ = − 1

N

(∑
i

σ̂zi

)2

− h
∑
i

σ̂xi . (6.10)

This model provides another useful benchmark for our method because it displays some

peculiarities within QAOA framework. It has a very rugged energy landscape [147] which

makes local optimizations unstable: it is hard to find good minima when P < N/2 and in a

previous work [147] we failed in finding smooth parameter sets. In particular, the iterative

optimization used in Refs. [96, 181] does not work.

Here I show that RL makes the local optimization more stable than QAOA alone. We

consider a target Hamiltonian corresponding to a nonzero transverse field Ĥtarget = Ĥz +hĤx

and focus on reaching the ferromagnetic phase when the system is initially prepared in the

paramagnetic state |+〉. In the upper panel of Fig. 6.9 O present the data obtained with

the different protocols for a chain of N = 64 spins and target transverse field h =
√

5−1
2 .
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Figure 6.9.: Upper panel: Comparison between the residual energy curves obtained with

different protocols: QAOA with random initialization (blue circles), QAOA with

linear initialization (green squares), RL (red triangles), RL+LO (black triangles).

The data refers to a chain of N = 64 spins. Lower panel: data collapse of the

residual energy curves after rescaling P→ P/ log2N .

While the quality of RL alone deteriorates rapidly when P increases, even if still better than

QAOA with random initializations, it makes the results of a subsequent local optimization

much more stable. A data collapse shows that results for different chain length collapse

nicely when P is rescaled with the logarithm of the system size N . Thus, among the QAOA

variational Ansatz for the LMG model, there exist a class of minima that allow reaching very

small residual energy with an evolution time increasing only logarithmically with the system

size N . However these minima are very hard to find with local optimization; indeed only

RL-assisted QAOA is able to address them correctly, among all the techniques we tested

(random initialization, linear initialization, iterative local optimization).

Another nice feature of RL-assisted QAOA is the (partial) smoothness of the interpolation

parameter st, which was absent in the standard QAOA approach. Since the transverse field
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of the target Hamiltonian is non-zero, st takes the form

st =
γt

(1− h)γt + βt
. (6.11)

In Fig. 6.10(a) I report the interpolation parameter st (blue lines) for ten different test runs

of a RL policy trained on a system of N = 64 spins with P = 10 and target transverse

field h =
√

5−1
2 . Alongside, I plot the st relative to the local optimization (dashed red

lines) on top of the actions chosen by the RL agent. Comparing with the results obtained

from l-init QAOA in Fig. 6.10(b), the difference in smoothness is striking. Even after the

final local optimization, the RL actions are much more regular and the different trajectories

clearly suggest the presence of a common basin linked to some continuous schedule s(t). An

interesting feature of the schedule learned by the algorithm is that it is not the discretization

of an annealing protocol that interpolates between Ĥdrive and Ĥtarget. Indeed st does not start

close to 0 at the beginning of the episode, but as t→ 0 st reaches a finite value close to 0.5,

indicating that the associated continuous schedule s(t) is (likely) not adiabatic with respect

to the instantaneous Hamiltonian.

Finally, let us discuss the transferability of the policy in the LMG model. I report in

Fig. 6.11 the residual energies I obtained by training the NN on a system of Ntr spins for

1024 epochs and then testing the policy on a larger set with Ntest = 128, both with and

without a local optimization on top (blue circles and red squares, respectively). At difference

with the random TFIM model presented in the previous section, now the transferred policy

displays a clear change in performance depending on the ratio between the training and

the test system sizes. The final local optimization tends to smear out this difference in the

residual energies, but clearly the performance is better when Ntr = Ntest, as indicated also

by the smaller error-bar.

6.5. Conclusions

I have shown that the optimal QAOA strategies well known for the TFIM [96] can be ef-

fectively learned with a simple PPO-algorithm [191] employing rather small NNs. The ob-

servables measured on a state, referring to the two competing terms in the Hamiltonian and

providing information to the “agent”, seem to be effective in the learning process. I have

shown that RL learns smooth control parameters, hence realizing an RL-assisted feedback

Quantum Control for the schedule s(t) of a digitized QA/AQC algorithm [96], in absence

of any spectral information. By working with disordered quantum Ising chains, I showed

that strategies “learned” on small samples can be successfully transferred to larger systems,

hence alleviating the “measurement problem”: one can learn a strategy on a small problem

simulated on a computer, and implement it on a larger experimental setup.

A discussion of previous RL-work on quantum systems is here appropriate. RL as a tool

for quantum control and quantum-error-correction has been investigated in Refs. [185, 186].

Regarding applications to QAOA, Refs. [187, 188, 190] have all formulated RL strategies to

learn optimal variational parameters (γ,β). While sharing similar RL tools, their approach

is markedly different from ours: they identify the RL “state” with the whole set of QAOA

parameters. The agent has no access to the internal quantum state, and no information
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Figure 6.10.: (a) Learned actions after 1024 training epochs on a chain of N = 64 (blue lines),

and their local optimization (red dashed lines). (b) optimal parameter sets from

QAOA with local optimization (blue lines), their average (thick green line), and

the linear Ansatz (black line). In both panels P = 10 and the target transverse

field is h =
√

5−1
2 . In both panels, we indicate the typical residual energy found

for those parameter sets.
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Figure 6.11.: Residual energy obtained by training the policy on a system of Ntr spins and

then applying the actions on a test system of Ntest = 128 spins. Red squares

refer to the direct transfer of the RL actions, while blue circles have a local

optimization on top. The inset shows the same data in log scale, where it is

possible to appreciate the difference in the average performance depending on

the value of Ntr.

on the evolution process can be exploited in the optimization. In this way, the issue of

measuring the intermediate quantum state is bypassed. This choice, however, reduces RL to

a heuristic optimization which forfeits one of the most relevant features of the RL framework:

The possibility to drive the process with a step-by-step evolution. An alternative proposal,

closer to ours in methods but tackling different physical questions, has recently appeared in

Ref. [189].

Concerning future developments, we mention possible improvements to the “measurement

problem”. One possibility is to introduce ancillary bits to provide intermediate information

to the RL agent without destroying the state of the system, in a way similar to Ref. [186]. A

possible alternative is to perform weak measurements [196]. A second issue is the sensitivity

to noise: preliminary results show that noise in the initial state preparation does not harm

the ability to learn the correct strategies. Finally, the application to other models is worth

pursuing, to better investigate the universality of our approach.
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7. Conclusions

In the present Thesis I have discussed how adiabatic dynamics and related processes gener-

ate interesting non-equilibrium physical phenomena and provide useful tools for developing

quantum technologies. Two are the aspects that are analyzed: topological phases arising in

periodically driven systems and optimization techniques rooted in adiabatic quantum com-

putation.

Periodically driven systems are the focus of part I, where I investigate the robustness of

quantum pumping with respect to finite frequency effects and substrate disorder. Floquet

engineering and non-equilibrium phases are indeed the objects of flourishing research activ-

ities, and understanding the response of such systems to possible perturbations is necessary

to properly interpret experimental data.

As a first contribution, in chapter 3 I extend the results presented in Ref. [75], showing

that the relative time scales of the periodic driving and the ramp that turns on the driving

itself determine whether the system displays a perturbative or a non-analytic response to the

finite frequency. A detailed analysis of the quasi-energy spectrum at small frequency allows

connecting the topological properties of the instantaneous ground state of the time-period

Hamiltonian to those of the Floquet states relative to the actual frequency of the driving. A

topologically robust response of the form e−αω is obtained only if the Floquet state with the

same Chern number as the ground state is prepared through a continuous deformation of the

latter, accelerating the driving up to the final frequency. The acceleration, however, needs

not to be too small, because this process must be diabatic with respect to the small gap due

to resonances in the Floquet spectrum. This leads to a crossover between a non-analytic and

a perturbative response depending on the ratio between the final driving frequency and the

switching-on time.

As a second contribution, in chapter 4 I demonstrated that the robustness of quantized

transport to static on-site disorder, which also breaks the symmetry protecting the topological

phase, is due to a remarkable delocalization/localization transition of the Floquet states. The

pumped charge averaged over an infinite number of driving periods Qd displays a smooth

crossover between a topological plateau, where Qd is independent of the disorder strength

W , and a trivial regime where disorder completely suppresses transport. The two regimes

are connected by a region where pumping is not quantized and the precise value of Qd

strongly depends on the actual disorder instance. Hence no sharp transition is observed.

However, the inverse participation ratio (IPR) distribution of the single-particle Floquet

states shows a marked peak corresponding to extended states, that disappear when transport

is suppressed. An analysis of the localization length and spectral properties associated with

this peak suggests the presence of an actual delocalization/localization transition of Floquet

states driven by the disorder, which is a remarkable fact in a one-dimensional system with an

87



Conclusions PhD Thesis by M.M Wauters

Anderson localized energy spectrum. This transition is linked to the topological nature of the

driving in the clean system and disappears in the trivial phase, where no particle transport

occurs in the insulating ground state.

A key future development will be understanding the interplay between interaction, disorder,

and topology. On the one hand, it is known that Thouless pumping can only survive as

a metastable state in clean interacting Floquet systems [135], before reaching a featureless

infinite temperature state. On the other hand, interaction and disorder can induce many-body

localization, where a periodically driven state can be stabilized even at low frequencies [24].

Quantized transport, however, requires extended Floquet states, in contrast with the localized

energy spectrum. The key question, therefore, is whether a topological periodic driving in

an interacting disordered system can induce extended Floquet states, while at the same time

the localized Hamiltonian eigenstates prevent the system to absorb energy from the driving.

Another interesting perspective is understanding if disorder makes quantum pumping more

robust to some of the detail of its implementation, such as the chemical potential µ. Indeed,

this is well known in the integer quantum Hall effect (IQHE), where disorder creates localized

states in the energy gap between different Landau levels (LL) and makes the quantization

of the conductivity possible as long as µ lies within the energy of localized states. Although

quantum pumping is a dimensional reduction of the IQHE , in the clean limit, when disorder

is present this parallelism is not so clear anymore. When mapping a one-dimensional driven

system to a two-dimensional one [197], one obtains a disordered pattern organized in stripes,

hence preserving translational invariance in the “time” direction, which is very different to

actual uniform disorder in 2D.

For what regards quantum optimization, I investigated in chapter 5 the performance of the

Quantum Approximate Optimization Algorithm on the fully-connected p-spin model, where

QAOA is able to prepare the ground state with polynomial resources. This is in sharp contrast

with continuous adiabatic evolution, where the total time required scales exponentially with

the system size N , due to the presence of a first order phase transition when p ≥ 3. However,

the presence of many local minima poses severe difficulties in finding a good approximation

to the ground state for small values of P, where the target state can not be addressed exactly.

Our results suggest that infinite-range Hamiltonians can be useful tools to allow collective

transformations of the variational wavefunction and thus explore more efficiently the energy

landscape. This might be used in QAOA optimizations for generic spin models, adding extra

generators to the unitary transformations, beside the target and the driving Hamiltonians.

However, this approach does not guarantee the convergence of QAOA to the true ground

state in the P→∞ limit, where it should be able to recover an analogic adiabatic evolution.

With more kinds of unitary operators, the variational Ansatz describes a larger class of

functions, but convergence to the correct minimum might become extremely hard. Further

investigations on this topic are due to uncovering the full power of such hybrid variational

optimization techniques,

Finally, I proposed in chapter 6 a reinforcement learning (RL) assisted QAOA, where an RL

agent learns good approximation for optimal smooth parameter schedules for the transverse

field Ising model (TFIM). Indeed, without any constraint on the action choices, the RL agent

learns a policy which lies in the same basin of attraction of the optimal digitized-QA schedule

found with iterative optimization in Ref. [96]. Hence when a local optimization is added on top
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of the RL actions, the optimal schedule is recovered. The most interesting feature is that the

learned policy for the TFIM with random couplings can be easily transferred among systems

with different sizes and different disordered instances. After the final local optimization step,

the residual energy is independent of the particular system where the agent has been trained,

provided the number of learning epochs is large enough to bring the policy close to the

correct minimum. Our method works well also on the p-spin (p = 2) model, making the local

optimization much more stable with respect to standard QAOA, both regarding the residual

energy and the optimal parameters.

Several open questions remain: First of all the measurement problem, i.e. the fact that

RL requires constantly to monitor the state of the system, in order to choose the proper

action pair. Besides exploiting the transferability of the policy, an amenable solution would

be reducing or changing the kind of information given to the agent. For instance, one could

try to provide single-shot outcomes, instead of the average of operators, which are much

less expensive in experimental realization. Another possibility is to couple the system to

auxiliary qubits and performing projective or weak measurements only on those [186]. It

would introduce some decoherence in the dynamics, but for optimization purposes it might

not be necessarily a drawback, as some degree of dissipation is exploited in many quantum

annealing processes [198–200]. Also, a detailed study of the learning process itself might be

interesting, to characterize the collapse of the learned policies to the optimal strategy after

a local optimization. This indeed might help to improve the method, for instance finding

the minimum number of training epochs required to reach the basin of attraction of an

optimal smooth minimum, depending on the size of the system and the number of Trotter

steps P. Finally, a fundamental issue is the universality of the method, and primarily of the

transferability of the policy. Future works will for sure deal with more complicated, non-

integrable models, such as the XXZ chain, more complex Max-Cut problems, such as those

studied in Ref. [181], or frustrated spin-glasses, as the Sharrington-Kirkpatrick model studied

in Ref. [193].
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A. Details for chapter 3

A.1. Adiabatic expansion of Floquet eigenstates

In this appendix we derive an expansion in powers of 1/τ for the Floquet modes, looking in

particular for their overlap with the Hamiltonian eigenstates. To obtain this expansion, we

first exploit adiabatic perturbation theory [115] (APT) to compute the Floquet operator and

then we use ordinary perturbation theory (PT) to calculate the corrections to the Floquet

modes.

Given a gapped periodic Hamitlonian Ĥ(t + τ) = Ĥ(t) with Ĥ(t)|φν(t)〉 = Eν(t)|φν(t)〉
denoting instantaneous eigenstates/eigenvalues, if the evolution is slow enough, the adiabatic

theorem states that we can write the time evolved state |ψν(τ)〉 originating from |ψν(t =

0)〉 ≡ |φν(0)〉 up to the 0−th order in 1/τ , as:

|ψν(τ)〉 ≈ |ψ(0)
ν (τ)〉 = e−iεντ/~|φν(0)〉 , (A.1)

where

εντ =

∫ τ

0
dt
(
Eν(t)− i~〈φν(t)|∂tφν(t)〉

)
.

Hence, writing the Floquet operator as

F̂ (τ) ≡ Û(τ, 0) =
∑
ν

|ψν(τ)〉〈φν(0)| , (A.2)

the adiabatic theorem tells us that, when ω = 2π
τ → 0, it reduces to the expression

F̂ (0)(τ) =
∑
ν

e−iεντ/~|φν(0)〉〈φν(0)| . (A.3)

Notice that |φν(τ)〉 = |φν(0)〉 due to the time periodicity of the Hamiltonian. Eq. (A.3)

means that in this limit the Floquet modes |uν(0)〉 and the instantaneous eigenstates |φν(0)〉
at the end of each period coincide. To obtain finite frequency corrections, we need to write

|ψν(τ)〉 through an adiabatic perturbation series [115]

|ψν(τ)〉 =

∞∑
p=0

(
~
τ

)p
|ψ(p)(τ)〉 , (A.4)

which leads to a similar expression for the Floquet operator

F̂ (τ) =
∞∑
p=0

(
~
τ

)p
F̂ (p)(τ) . (A.5)
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Now we assume that at t = 0 the system is prepared in the ν−th eigenstate |φν(0)〉 of the

Hamiltonian. From Eq. (A.3) we expect a single Floquet state to have a large overlap with

|φν(0)〉 if the period τ is large, and therefore its occupation number nν should be close to

one. We wish to exploit perturbation theory to compute the lowest order corrections in 1
τ to

nν = |〈φν(0)|uν(0)〉|2 = |〈φν(τ)|uν(τ)〉|2 . (A.6)

As we will show in the following, the lowest order terms are quadratic in 1
τ —or equivalently

in ω— and they originate from second-order corrections due to F̂ (1)(τ). Indeed first-order

corrections to a given eigenstate in perturbation theory are always orthogonal to the unper-

turbed one and therefore F̂ (2)(τ) can only give contribution of order O( 1
τ4 ). Thus we just

neep to compute F̂ (1)(τ). Before proceeding we define the following quantities depending on

a rescaled time s = t/τ

τεν = τ

∫ 1

0
dsEν(s)− i~

∫ 1

0
ds〈φν(s)|∂sφν(s)〉 ,

∆ν,µ(s) = Eν(s)− Eµ(s) ,

where {Eν(s)} is the set of instantaneous eigenvalues of Ĥ(s) and {|φν(s)〉} the corresponding

eigenvectors. The adiabatic expansion of the time evolved state ψν(t) will be written in terms

of

Mµ,ν(s) =
〈φµ(s)|∂sĤ(s)|φν(s)〉

∆ν,µ
,

Jµ,ν =

∫ 1

0
ds
|Mµ,ν(s)|2

∆µ,ν(s)
,

which again depend only on the instantaneous spectrum of the Hamiltonian. Following

Ref. [115] we can write the first-order correction to the evolved eigenstate |ψν(τ)〉 as:

|ψ(1)
ν 〉 =i

∑
µ 6=ν

e−iτεν/~Jµ,ν |φν〉+

i
∑
µ 6=ν

Mµ,ν

∆µ,ν

(
e−iτεν/~ − e−iτεµ/~

)
|φµ〉 ,

(A.7)

where the s dependence is omitted since all quantities are computed in s = 1. The “perturba-

tion” of order 1/τ to the Floquet operator consists of a diagonal part (first term of the RHS

in Eq. (A.7)) and an off-diagonal part (second term). The former acts only as a renormaliza-

tion of the eigenvalues (the Floquet quasi-energies) of the operator but does not change the

eigenvector, since it is diagonal in the original basis. We can now apply perturbation theory

for linear operators to obtain the correction to the Floquet modes. The first-order term reads

|u(1)
ν 〉 =

~
τ

∑
µ6=ν
|φµ〉

〈φµ|F̂ (1)(τ)|φν〉
e−iτεν/~ − e−iτεµ/~

= i
~
τ

∑
µ 6=ν

Mµ,ν

∆µ,ν
|φµ〉 ,

(A.8)

where the off diagonal elements of F (1)(τ) are obtained by combining Eq. (A.2) and Eq. (A.7),

leading to

F (1)
µ,ν(τ) = i

Mµ,ν

∆µ,ν

(
e−iτεν/~ − e−iτεµ/~

)
|φµ〉〈φν | . (A.9)
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Since we are interested in computing the projection 〈φν |uν〉, only the terms proportional

to |φν〉 are needed. Clearly Eq. (A.8) gives no contribution — all terms are orthogonal to

|φν〉— but it can be used to obtain the next order by imposing the normalization condition

〈uν |uν〉 = 1

|u(2)
ν 〉 =− ~2

2τ2
|φν〉

∑
µ6=ν
|Mµ,ν

∆µ,ν
|2

+ terms orthogonal to |φν〉 .
(A.10)

Hence the occupation at finite frequency of the targeted Floquet mode reads

nν =

∣∣∣∣∣∣1− ~2

2τ2

∑
µ6=ν
|Mµ,ν

∆µ,ν
|2
∣∣∣∣∣∣
2

+ o(1/τ2)

= 1− ~2

τ2

∑
µ6=ν
|Mµ,ν

∆µ,ν
|2 + o(1/τ2) . (A.11)

Therefore, if the matrix elements Mµ,ν are not all equal to zero, we expect to see power law

correction to the occupation number of Floquet modes, when the system is prepared in the

ν−th state |φν(0)〉 of Ĥ(t = 0).

A.2. Dependence on kx of Floquet quasi-energies and occupations

Here we discuss the dependency of Floquet modes and quasi-energies form kx and how the

system can be effectively described in only 1+1 dimensions (space + time). The starting

point is the block diagonal Hamiltonian in momentum space, which reads

Ĥk(t) = J0

q−1∑
b=0

{
2 cos

(
aky + 2πp

q
b
)
ĉ†k,bĉk,b+[

e−ia(kx+κx(t))ĉ†k,b+1ĉk,b + H.c.
]}

,

(A.12)

where ĉk,q = ĉk,0 and aκx(t) = ω(t − t0) when the force field F = ~ω
a is stationary. t0 is

the initial time for which the system is prepared with a non periodic driving. Notice that

Ĥk(t) depends on kx and time only through the phase akx + ω(t− t0). Hence we can define

tx = t0 − kx/ω, so that the evolution operator over one period (the Floquet operator) for a

given t0 can be written as

F̂k(τ) = Ûk(τ + t0, t0) = Ûky(τ + tx, tx) , (A.13)

Here a subscript ky indicates that the associated quantity is evaluated in k = (0, ky). By

applying the composition property of evolution operator and exploiting Floquet theorem in

the form

Û(t0 + t+ τ, t0) = Û(t+ t0, t0)Û(τ + t0, t0) ,

one obtains

F̂k(τ) = Ûky(tx, t0)F̂ky(τ)Û †ky(tx, t0) , (A.14)
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which can be written explicitly as

F̂k(τ) =
∑
ν

e−iεky,ντ/~|uky ,ν(tx)〉〈uky ,ν(tx)| , (A.15)

since the phase factors arising from the action of Ûky(tx, t0) and Û †ky(tx, t0) exactly cancel

each other. Therefore the Floquet modes shifted along kx are

|uk,ν(t0)〉 = |uky ,ν(t0 −
akx
ω

)〉

= eiεky,ν(tx−t0)/~Ûky(tx, t0)|uky ,ν(t0)〉 ,
(A.16)

i.e. the periodic part of the ν-th Floquet state in k = (0, kx) evolved for a time tx − t0 < τ .

Thus the Floquet operator at any point in the k− space with kx 6= 0 can be obtained by a

unitary transformation applied on F̂ky . The most important implication is that the quasi-

energies εk,ν = εky ,ν are independent from kx. The Floquet modes instead still depend on kx,

because of Eq. (A.16). Hence when computing the infinite time average pumped charge

Qd =
τ

~
∑
ν

∫
BZ

d2k

(2π)2
nk,ν

∂εky ,ν

∂ky
, (A.17)

the only remaining dependence on kx is in the occupation number nk,ν = |〈ψk|uky ,ν(tx)〉|2.

Another interesting property of the Hamiltonian as written in Eq. (A.12), is that the

spectrum is invariant for a discrete shift of the momentum in the ŷ) direction ky → ky + 2πp
qa .

Indeed this transformation is equivalent to a shift of a in real space of the magnetic unit cell,

leading to a simple relabelling of the internal index b → b + 1. For the case investigated in

chapter 3 (p = 1, q = 3), this property is clearly shown in Fig. 3.4, where the invariance for

ky → ky + 2π
3a is evident. This symmetry in the Hamiltonian is inherited also by the quasi-

energy spectrum, which is also repeated three times inside the Brillouin zone. This symmetry

is nothing else than gauge invariance: the spectrum must depend on the same way by kx and

ky, because the breaking of translational invariance along the x̂ direction is only due to the

gauge choice, which can not influence any observable. If we had chosen A = −Byx̂, the

magnetic unit cell would have consisted of three sites along the ŷ direction and thus the first

Brillouin zone would have been [0, 2π
a )× [0, 2π

3a ), leading to a periodicity of 2π
3a in ky.
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In this appendix we will show that one can get the exact target ground state of the p-spin

model with a single QAOA step, P = 1, starting from the fully x-polarized state |+〉 =
1√
2N

⊗N
j=1

(
|↑〉j + |↓〉j

)
, provided the number of sites N is odd. This holds true for all possible

values of p, and generalizes the result of Ref. [166] to p > 2. We will then analyze some

general symmetry properties of the QAOA landscape for the problem for general P.

B.1. exact ground state preparation for P = 1

B.1.1. P = 1: requirements on β

For P = 1 the QAOA state has only two parameters, which we will denote by γ and β,

without an index. Let |ψtarg〉 denote the (target) ground state of the model, and define the

fidelity:

F(γ, β) =
∣∣∣〈ψtarg|ψP=1(γ, β)〉

∣∣∣2 =
∣∣∣〈ψtarg| e−iβĤxe−iγĤz |+〉

∣∣∣2 =
∣∣∣ 1√

2N

∑
l

e−iγEl 〈ψtarg| e−iβĤx |l〉
∣∣∣2 ,

(B.1)

where we have expanded the initial state |+〉 = 1√
2N

∑
l |l〉 as an equal superposition of all

possible 2N classical z-basis configurations |l〉, and we used that Ĥz |l〉 = El |l〉, where El
is the energy of the configuration |l〉. Let us now define the following two 2N dimensional

complex vectors:

(v(γ))l =
1√
2N

eiγEl and (u(β))l = 〈ψtarg|e−iβĤx |l〉 . (B.2)

Simple algebra shows that they have unit norm, ||v(γ)|| = 1 and ||u(β)|| = 1, and that the

fidelity can be expressed as a scalar product of them: F(γ, β) = |v†(γ) · u(β)|2. Hence, by

the Cauchy-Schwarz inequality:

1 = F(γ, β) = |v†(γ) · u(β)|2 ⇐⇒ ∃ θ ∈ R such that u(β) = eiθv(γ) , (B.3)

i.e., the two vectors coincide, up to an overall phase factor. Since |(v(γ))l|2 = 1
2N , this in

turn implies that we must have∣∣∣〈ψtarg|e−iβĤx |l〉
∣∣∣2 = |(u(β))l|2 =

1

2N
∀l . (B.4)

So far, our arguments have been rather general. We now specialize in our discussion to the

case where |ψtarg〉 is the ground state of the classical p-spin ferromagnet.
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For p odd, we have |ψtarg〉 = |↑ · · · ↑〉, and a simple calculation shows that:

〈ψtarg|e−iβĤx |l〉 =

N∏
j=1

〈↑ | cosβ 1̂j + i sinβ σ̂xj |lj〉 =
(

cosβ
)N↑l (i sinβ

)N↓l , (B.5)

where N↑l and N↓l denote the number of ↑ and ↓ spins in the configuration |l〉. Hence the

requirement given by Eq. (B.4) is satisfied only if

cos2β = sin2β =
1

2
=⇒ β =

π

4
,
3π

4
,
5π

4
,
7π

4
. (B.6)

Similar arguments have been used, see Ref. [168], for the more general case in which |ψtarg〉
is the classical ground state of a generic spin-glass Hamiltonian.

For p even the calculation is slightly more involved, since the target state is now a non-

classical superposition of the two degenerate ferromagnetic states

|ψtarg〉 =
1√
2

(
|↑ · · · ↑〉+ |↓ · · · ↓〉

)
. (B.7)

Hence: ∣∣∣〈ψtarg|e−iβĤx |l〉
∣∣∣2 =

1

2

∣∣∣( cosβ
)N↑l (i sinβ

)N↓l +
(

cosβ
)N↓l (i sinβ

)N↑l ∣∣∣2 . (B.8)

Once again, one easily verifies that β = π
4 satisfies the requirement (B.4), provided N is odd,

so that N↑l and N↓l have opposite parity and therefore |iN
↑
l + iN

↓
l |2 = 2.

From now on we will therefore restrict our choice of β to β = π
4 , a necessary condition for

unit fidelity, and study the conditions that γ has to verify. Essentially, the value of γ will

have to be chosen in such a way that the various phase factors interfere constructively in a

way that is independent of l. To this goal, we notice that the energy El of the configuration

|l〉 can be expressed as:

El = −〈l|
(∑

j

σ̂zj
)p|l〉 = −(N↑l −N↓l )

p = −Mp
l , (B.9)

where Ml = N↑l −N↓l is the total magnetization of the configuration.

B.1.2. P = 1 and p odd: requirements on γ

Here we prove that for odd values of p and N, the p-spin QAOA circuit of depth P = 1 and

parameters (γ = π
4 , β = π

4 ) is sufficient to prepare the ferromagnetic target state |ψtarg〉 = | ↑
· · · ↑〉. Substituting β = π

4 and i = ei
π
2 in Eq. (B.5), and using El = −Mp

l in Eq. (B.1) we

get:

F(γ, π4 ) =
∣∣∣ 1

2N

∑
l

eiγMp
l ei

π
2

N↓l

∣∣∣2 . (B.10)
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Taking γ = π
4 gives

F(π4 ,
π
4 ) =

∣∣∣∣∣ 1

2N

∑
l

exp

(
i
2π

8

[(
Mp
l + 2N↓l

)
mod 8

])∣∣∣∣∣
2

=

∣∣∣∣∣ 1

2N

∑
l

exp

(
i
2π

8

[(
Ml + 2N↓l

)
mod 8

])∣∣∣∣∣
2

=

∣∣∣∣∣ 1

2N

∑
l

exp

(
i
2π

8
[N mod 8]

)∣∣∣∣∣
2

= 1 , (B.11)

where we have used the fact that for N odd, Ml = N − 2N↓l is also odd and the following

property of arithmetic congruences holds:

Mp−1
l = 1 mod 8 =⇒ Mp

l = Ml mod 8 if p is odd . (B.12)

Eq. (B.11) proves our initial claim, that the QAOA protocol (γ = π
4 , β = π

4 ) prepares the

target ground state of Ĥz for the p-spin ferromagnet with unit fidelity, provided N and p are

both odd.

B.1.3. P = 1 and p even: requirements on γ

For even values of p, the system is Z2 symmetric. The p-spin QAOA circuit preserves such

symmetry. Therefore, the targeted ground state of Ĥz is |ψtarg〉 in Eq. (B.7). As we did in the

previous section, we compute the fidelity between the output
∣∣ψP=1(γ, β = π

4 )
〉

of the QAOA

circuit and the (non-classical) target state |ψtarg〉 in Eq. (B.7):

F(γ, β = π
4 ) =

∣∣∣∣∣ 1

2N

∑
l

eiγMp
l

(
ei
π
2

N↓l + ei
π
2

N↑l
√

2

)∣∣∣∣∣
2

. (B.13)

We observe that for N = N↑l + N↓l odd, N↑l and N↓l must have opposite parity, and the term

inside parenthesis is a pure phase factor, which can be expressed as:(
ei
π
2

N↓l + ei
π
2

N↑l
√

2

)
= ei

π
4

Ne−iπf(Ml) , (B.14)

where

f(M) =


0 for M mod 8 = ±1

1 for M mod 8 = ±3

. (B.15)

Hence, omitting the irrelevant l-independent common factor ei
π
4

N, we can rewrite the fidelity

as:

F(γ, π4 ) =
∣∣∣ 1

2N

∑
l

ei(γMp
l −πf(Ml))

∣∣∣2 . (B.16)

The arithmetics to prove that the various phase factors can be made l-independent for a

judicious choice of γ are now slightly more involved, for even p. By experimenting with this
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expression for p ≤ 10, we have come out with the following unconventional parameterization

of an even value of p: for every even p, two natural numbers n and k can be found such that:

p = 2k+1 + n2k . (B.17)

Correspondingly, given the value of k in Eq. (B.17), we will set the value of γ to:

γk =
2π

2k+4
. (B.18)

The crucial arithmetic identity which we will use — see Sec. B.1.3 for a proof — is the

following:

m2k+1+n2k mod 2k+4 = f(m) 2k+3 + 1 ∀ m ∈ Z with m odd , (B.19)

where f(m) is the function given in Eq. (B.15).

With these definitions, it is immediate to verify that:

F(γk,
π
4 ) =

∣∣∣∣∣ 1

2N

∑
l

e−iπf(Ml) exp

(
i

2π

2k+4
(Ml)

2k+1+n2k
)∣∣∣∣∣

2

=

∣∣∣∣∣ 1

2N

∑
l

e−iπf(Ml) exp

(
i

2π

2k+4

[
(Ml)

2k+1+n2k mod 2k+4
])∣∣∣∣∣

2

=

∣∣∣∣∣ 1

2N

∑
l

e−iπf(Ml) exp

(
i

2π

2k+4

(
f(Ml) 2k+3 + 1

))∣∣∣∣∣
2

=

∣∣∣∣∣ 1

2N

∑
l

e−iπf(Ml)e
iπf(Ml)+i

2π

2k+4

∣∣∣∣∣
2

= 1 . (B.20)

Proof of identity in Eq. (B.19) For completeness, we also present a proof of the arithmetic

identity Eq. (B.19). To prove Eq. (B.19), it is sufficient to show that

∀k ∈ N,m ∈ Z,m odd : (m2k+1 − 1) mod 2k+4 = f(m) 2k+3 . (B.21)

We prove Eq. (B.21) by induction over k:

(i) We show that Eq. (B.21) holds for k = 0.

For k = 0, a direct computation, for odd m, gives:

(m20+1 − 1) mod 20+4 = (m2 − 1) mod 16

= (m− 1)(m+ 1) mod 16

= f(m) 23 (B.22)

(ii) We show that if Eq. (B.21) holds for a given k ∈ N and for all odd m ∈ N, then it holds

also for k + 1.

Using Eq. (B.21), we write

m2k+1
= am2k+4 + f(m) 2k+3 + 1 , (B.23)
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with am ∈ Z. Then, we have

(m2(k+1)+1 − 1) = (m2k+1 − 1)(m2k+1
+ 1)

= (am2k+4 + f(m) 2k+3)(am2k+4 + f(m) 2k+3 + 2)

= (am2k+5 + f(m) 2k+4)(am2k+3 + f(m) 2k+2 + 1) . (B.24)

From this, we derive

(m2(k+1)+1 − 1) mod 2(k+1)+4 = f(m) 2k+4(am2k+3 + f(m) 2k+2 + 1) mod 2k+5(B.25)

= f(m) 2k+4 , (B.26)

where we have used that f(m) = 0, 1 for all odd m ∈ Z. This indeed implies that for

all k ∈ N:

(m2k+1 − 1) mod 2k+4 = f(m) 2k+3 =⇒ (m2(k+1)+1 − 1) mod 2(k+1)+4 = f(m) 2(k+1)+3 .(B.27)

This concludes the proof by induction of Eq. (B.21).

Incidentally, as an immediate consequence of Eq. (B.21) we get that, for any n ∈ N:

m2k+1
mod 2k+4 = f(m) 2k+3 + 1 (B.28)

m2k+2
mod 2k+4 = 1 (B.29)

m2k+1+n2k mod 2k+4 = f(m) 2k+3 + 1 . (B.30)

Notice that Eq. (B.29) also follows from the properties of the multiplicative group of integers

modulo 2k discussed in Refs. [201,202] (eg. (Z/2k+4
Z)× ∼= C2 × C2k+2).

B.1.4. Symmetries of the parameter space for general P, N and p

We discuss here the symmetries in the parameter space of the function

EP(γ,β) = 〈ψP(γ,β)|Ĥtarget|ψP(γ,β)〉 . (B.31)

A first trivial operation that leaves the energy unaltered is the inversion (γ,β) → −(γ,β),

which corresponds to the complex conjugate of Eq. (B.31). Indeed it is immediate to see that

|ψP(−γ,−β)〉 =

P∏
m=1

eiβmĤxeiγmĤz |ψ0〉 = |ψP(γ,β)〉∗ , (B.32)

given that |ψ0〉 = |+〉 is a real wavefunction in the basis of Ŝz.

The symmetries on the β parameters are shared by all QAOA wavefunctions where quan-

tum fluctuations are induced by a magnetic field transverse to the computational basis. We

can write a single evolution operator e−iβmĤx as a set of rotation on each individual spin

e−iβmĤx = eiβm
∑N
j=1 σ̂

x
j =

N⊗
j=1

(
cosβm + σ̂xj sinβm

)
. (B.33)
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∀ N, p E(−γ,−β) = E(γ,β)

p odd E(γ,β + π) = E(γ,β)

p even E(γ,β + π
2 ) = E(γ,β)

N odd E(γ + π,β) = E(γ,β)

N even E(γ + π
2p−1 ,β) = E(γ,β))

Table B.1.: Symmetry operations for the QAOA process of the p-spin model. It is understood

that any component of γ or β can be modified.

A shift βm → βm + π changes the sign of each term in the product, leading to

e−i(βm+π)Ĥx =
N⊗
j=1

(
− cosβm − σ̂xj sinβm

)
= (−1)N

N⊗
j=1

(
cosβm + σ̂xj sinβm

)
, (B.34)

which is a trivial global phase that does not change the energy in Eq. (B.31). Moreover, if

p is even, the target Hamiltonian is Z2 symmetric. Recall that Ĥx = −Ŝx (twice the total

spin), which implies that:

ei
π
2

ŜxĤtargete
−iπ

2
Ŝx = Ĥtarget , (B.35)

because e−i
π
2

Ŝx is a π-rotation around the x-direction which gives a global spin flip σ̂zj → −σ̂zj ,
leading to EP(γ,β + π

2 ) = EP(γ,β).

The symmetry for γ is subtler and is model-specific. Notice first that Ŝz =
∑

j σ̂
z
j has

integer eigenvalues, even or odd depending on N , and so does Ĥz = −Ŝp
z . Following the same

notation introduced previously, we write a single QAOA evolution operator as

e−iγmĤz =
∑
l

eiγmMp
l |l〉 〈l| . (B.36)

If N is odd the eigenvalues Mp
l of Ŝp

z are also odd, and the periodicity of γm is π, because

(γm + π)Mp
l = γmMp

l + π mod 2π . (B.37)

Hence the shift γm → γm + π introduces a global phase e−i(γm+π)Ĥz = −e−iγmĤz , which is

irrelevant in the expectation value of the energy. If N is even, the eigenvalues Mp
l of Ŝp

z are

multiples of 2p, hence

(γm +
π

2p−1
)Mp

l = γmMp
l mod 2π , (B.38)

which means that ei(γm+ π
2p−1 )Ŝp

z = eiγmŜp
z . In table B.1 we summarize the symmetries we have

discussed.
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C. Details for chapter 6

In this appendix, we provide a brief introduction to reinforcement learning mathematical

formulation and describe with some detail the algorithm we used in chapter 6. We follow

quite closely the introduction to reinforcement learning given in the documentation of the

OpenAI Spinningup library.

First, let us give an intuitive picture of what can be called reinforcement learning. In a

nutshell, RL studies how an artificial intelligent (AI) agent acts on an environment and how

it can learn by trial and error. It gives a formal structure to the idea that rewards and

punishments help to repeat or forego a certain behavior in the future. RL methods have

been applied successfully to a great variety of problems, from teaching computers to control

robots to self-driving vehicles. It has also been proved able to learn to play complex strategy

games, most notably Go and Dota, where RL agents outperform human players, or to teach

computers to play Atari games from pixel inputs.

C.1. Introduction to RL: Key concepts and notation

The two main elements of RL are the agent and the environment. The environment is the

world where the agent lives and that changes as a consequence of the agent’s actions. At

every step of the agent-environment interaction, the agent gets partial information on the

state of the world through an observation and then decides which action to perform. In the

simplest formulation of RL, the state of the environment changes when the agent acts on it,

even if in general it could also change on its own.

The agent receives a reward from the environment, a real number that measures how good

or bad the present state of the world is. The agent’s goal is to maximize the cumulative

reward along all the actions it takes, called return. Reinforcement learning describes a set of

strategies that the agent can learn to achieve its goal.

To enter in deeper details on RL formalism, we need to introduce some further concepts:

• states and observations,

• action spaces,

• policies,

• trajectories,

• different formulations of return,
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• the RL optimization problem,

• value functions.

States and Observations A state s is a complete description of the environment and con-

tains all possible knowledge on the world. An observation o(s) is only a partial description of

the state s, and in general loses some information. In most RL applications both states and

observations are represented with real vectors, matrices, or higher order tensors. When the

agent obtains the complete information on the state of the environment, we say the environ-

ment is fully observed. When only partial information is known, we say that the environment

is partially observed.

Info: In RL notation the symbol for the state, s, is often used instead of the one for

observation, o, even if the latter would be more appropriate, for instance when considering

the action choice made by the agent. However, it should be clear from the context which

of the two is meant.

i

Action Spaces The proper actions that can be performed depend on the problem, and hence

on the environment, that the agent is facing. The action space is the set of all possible valid

actions. It can be discrete, when a finite number of actions can be taken, such as in Atari

games and Go, or continuous, as in the optimization scheme presented in chapter 6.

Policies A policy is a function of the environment state and determines the action chosen

by the agent. Here we consider only stochastic policies, denoted by π:

at ∼ π(·|st). (C.1)

The last equation means that the action at is extracted from the conditional probability

distribution described by the policy, given the system is in state st. In deep RL, the policies

are usually parametric functions, where the output depends on a set of parameters (eg the

weights and biases of a neural network) which can be tuned to modify the agent behavior

through some optimization algorithms. This set of parameters is denoted by θ, and the

corresponding parametrized policy is πθ(·|st).

Now we discuss briefly two of the most common stochastic policies: categorical policies,

for discrete action spaces, and diagonal Gaussian policies, for continuous action spaces.

Info: In chapter 6 the policy is denoted with Π(a|s), to avoid confusion with the number

π. Here we choose to follow more strictly common RL notation and call the policy

π(a|s).

i

Categorical Policies In machine learning language, a categorical policy is a classifier over

the discrete action space. If the current action a has to be chosen among k different option,
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and the environment is in state s, the output of the policy will be a k dimensional vector

Pθ(s) that represents the probability of taking each action. a is thus extracted according

to this probability distribution. Of particular interest for policy optimization, which we will

describe further on, is the logarithm of the probability distribution, which reads

log Πθ(a|s) = log [Pθ(s)]a . (C.2)

In the last equation we used the action a as the index for the vector describing the probability

distribution Pθ(s).

Diagonal Gaussian Policies A multivariate Gaussian distribution is identified by vector

µ describing the mean of each variable, and a covariance matrix, σ. A diagonal Gaussian

distribution is a particular subclass where the covariance matrix has only diagonal entries

and can, therefore, be described by a vector too.

In RL, a diagonal Gaussian policy always has a neural network that computes the mean

actions given the state (or the observation) µθ(s). Regarding the covariance matrix instead, it

can be represented in two ways. In the first, there is a single vector of logarithms of standard

deviations, log σ, which is independent of the state. The Proximal Policy Optimization (PPO)

algorithm we used in chapter 6 is implemented in this way. As an alternative, the log standard

deviations may be computed by a neural network log σθ(s), which could share some layers

with the one describing the averages µθ(s).

In both cases, it is convenient to consider the log standard deviations instead of standard

deviations directly. This is because log σ can take any value in (−∞,∞), while σ must be

non-negative. In general, it is easier to train parameters without enforcing such constraint,

and the actual standard deviation can easily be recovered by exponentiating its logarithm,

without losing information.

The log-likelihood of a k-dimensional action a is easily computed using logarithm properties

log πθ(a|s) = −1

2

(
k∑
i=1

(
(ai − µi)2

σ2
i

+ 2 log σi

)
+ k log 2π

)
. (C.3)

Trajectories A trajectory T is a sequence of states of the environment and actions performed

by the agent,

T = (s0, a0, s1, a1, . . . ). (C.4)

When all trajectories have a well defined length or they have a terminal state, they are also

called episodes.

State transitions that describe the evolution from st to st+1, depend on the dynamics of

the environment and on the last action performed only. They can be either deterministic,

st+1 = f(st, at) (C.5)

or stochastic,

st+1 ∼ P (·|st, at). (C.6)

The actions are chosen by the agent following a certain policy.
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Reward and Return The reward function R is crucial in reinforcement learning, because it

describes to the agent the task it is facing. It depends on the state of the environment at

time t, the corresponding action, and the next state st+1:

rt = R(st, at, st+1) , (C.7)

even though it is often simplified to a dependence on the current state only , rt = R(st), or

on the state-action pair rt = R(st, at).

The agent aims to maximize a cumulative reward over a trajectory, denoted with R(T).

The exact definition of R(T) depends on the dynamics involved in the environment and on

the length of the trajectory.

The simplest definition is just the sum of all the rewards obtained along a trajectory of

finite length P

R(T) =

P∑
t=0

rt. (C.8)

This is called finite-horizon undiscounted return.

Another common choice is the infinite-horizon discounted return, where the sum runs over

all rewards ever got by the agent, multiplied by a discount factor γ ∈ (0, 1) that becomes

smaller the farther away in the future the reward is obtained.

R(T) =

∞∑
t=0

γtrt. (C.9)

This formulation is particularly useful to derive analytical results because it is easy to ensure

convergence thanks to the geometric series. Moreover, it encodes the intuitive idea that a

reward now is better than a reward later. γ > 0 is fundamental however to learn good

strategies for future rewards.

The RL Problem The goal of reinforcement learning is to find a policy that maximizes

the expected return, when the agent follows it. To treat formally the expected return, it

is helpful to consider first the probability distribution of trajectories, in a situation where

both the policy and the environment transition are stochastic. The probability of a P−step

trajectory reads

P (T|π) = ρ0(s0)

P−1∏
t=0

P (st+1|st, at)π(at|st). (C.10)

Here ρ0(s0) is the distribution over the initial state. In chapter 6 we considered the simple

case where all trajectories start from the same state.

Then we can write the expected return J(π) as

J(Π) =

∫
T
P (T|π)R(T) = ET∼πR(T) , (C.11)

which is the average return over all trajectories generated by the policy π, each weighted

with its probability distribution. The key optimization problem in RL is then summarized

by the search of the optimal policy π∗, which satisfies

π∗ = arg max
π

J(π). (C.12)
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Value Functions Another key element of RL is evaluating how good or bad is to be in a

certain state, or to pick an action from a given state, and then evolve afterward according to

the policy π. The value of a state is represented by its expected reward. We will introduce

four functions that formally encode this information.

The On-Policy Value Function, or State Value Function, V π(s) gives the expected return

if the environment starts initially in state s and always evolve according to policy π:

V π(s) = ET∼πR(T) |s0 = s (C.13)

The On-Policy Action-Value Function Qπ(s, a), describes the expected return if the envi-

ronment starts in state s, any action a is chosen, even different from the one suggested by

the policy, and then the agent forever after acts according to policy Π:

Qπ(s, a) = ET∼πR(T) |s0 = s, a0 = a (C.14)

It can also be written using the on-policy value function

Qπ(s, a) = R(s, a, s′) + γV π(s′) , (C.15)

where the first term of the right-hand side is the reward got when going from state s to state

s′ due to the action a. γ is the discount factor.

The Optimal Value Function V ∗(s) is the value function when the agent follows the optimal

policy starting from state s

V ∗(s) = max
π

ET∼πR(T) |s0 = s (C.16)

The Optimal Action-Value Function Q∗(s, a) is equivalent to eq. (C.14), but with the agent

following the optimal policy, after action a is taken

Q∗(s, a) = max
π

ET∼πR(T) |s0 = s, a0 = a (C.17)

Info: When value functions do not have a time-dependence, they refer to the expected

infinite-horizon discounted return. Value functions for finite-horizon undiscounted return

need to time as an extra argument.

i

Info: There are two important relations between value functions and state-action value

functions that follow directly from their definitions:

V π(s) = Ea∼πQ
π(s, a), (C.18)

and

V ∗(s) = max
a

Q∗(s, a). (C.19)

i
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An important connection exists between the optimal action-value function Q∗(s, a) and

the action selected by the optimal policy. Following from eq. (C.17) and the definition of the

optimal policy Π∗, if we have Q∗, we can directly obtain the optimal action a∗(s) via

a∗(s) = arg max
a

Q∗(s, a). (C.20)

The optimal action may not bu unique, but there might be multiple choices that maximize

Q∗(s, a), in which case the optimal policy may randomly select any of them.

Bellman Equations All the value functions we introduced obey special self-consistency equa-

tions called Bellman equations. The Bellman equations are a central element in RL theory

to implement policy optimization. The Bellman equations for the on-policy value functions

are

V π(s) = Ea∼πs′∼P r(s, a) + γV π(s′),

Qπ(s, a) = Es′∼P r(s, a) + γEa′∼πQ
π(s′, a′)

(C.21)

where s′ ∼ P means that the next state s′ is sampled from the environment’s dynamics;

a ∼ π and a′ ∼ π indicate that the actions are chosen following the policy π when the state

is s and s′ respectively.

The Bellman equations for the optimal value functions are

V ∗(s) = max
a

Es′∼P r(s, a) + γV ∗(s′),

Q∗(s, a) = Es′∼P r(s, a) + γmax
a′

Q∗(s′, a′).
(C.22)

Notice the presence of the max over the actions in eq.(C.22), which is the main difference

between the Bellman equations for the On-Policy value functions and the optimal ones. It

reflects the fact that whenever the optimal action always leads to the maximum value function.

Info: The right-hand side of Bellman equations is called ”Bellman backup” in the RL

literature.

i

Advantage Functions The advantage function describes how much a specific action a is

better than your average expectation, instead of telling how much it is good in absolute.

Formally, the advantage function Aπ(s, a) corresponding to a policy π is defined by

Aπ(s, a) = Qπ(s, a)− V π(s) = (r + γV π(s′))− V π(s). (C.23)

Here s′ is the sate reached from s after action a. The advantage function is crucially important

to policy gradient methods such as PPO, as we will discuss later on.

108



PhD Thesis by M.M Wauters C.2 Introduction to policy optimization

C.2. Introduction to policy optimization

In this section, we present the basic mathematical formulation to understand and write policy

optimization gradient-based algorithms. RL methods in this class represent a policy explicitly

as πθ(a|s). They aim to maximize the expected return J(πθ), by optimizing the parameters

θ either directly by gradient ascent objective function, or indirectly, by maximizing local

approximations of J(πθ). We focus on model-free on-policy methods; model-free means that

the agent does not know the dynamic laws of the environment, but has to figure them through

the exploration. On-policy means that the data used to estimate the performance, gradients

and value functions are all generated following the current policy.

We make use of three fundamental tools in the theory of policy gradients: the simplest

equation for the gradient with respect to policy parameters of the policy performance itself,

a way to eliminate useless term in that expression, and a rule to add useful terms to that

expression. Tying those results together we describe the advantage-based update that lies at

the core of most common policy gradient methods.

Deriving the Simplest Policy Gradient Let us consider consider a stochastic, parameterized

policy, πθ. The goal is to maximize the expected return J(πθ) = ET∼πθR(T). In the

following, we take R(T) to be the undiscounted finite-horizon return, defined in eq. (C.8).

The mathematical derivation for the infinite-horizon discounted return, eq. (C.9), is almost

identical.

We would like to maximize the policy performance by steepest ascent

θk+1 = θk + α ∇θJ(πθ)|θk . (C.24)

The gradient of the expected return, ∇θJ(πθ), is called the policy gradient, and algorithms

that exploit it to optimize the policy belong to the class of policy gradient algorithms. Prox-

imal Policy Optimization, the algorithm we used in chapter 6 is one of those1.

The first thing we need is an expression for the policy gradient that can be numerically

computed. We will show in the following that the analytical form of the gradient is an

expectation value over trajectories, which will be evaluated from the finite number of data

as a monte-carlo average. Here we derive the simplest form for these expressions.

Before starting, we highlight some definition and properties which will be useful afterwards.

1. Probability of a Trajectory. The probability of a trajectory T = (s0, a0, ..., sP+1) with

actions chosen from the policy πθ is

P (T|θ) = ρ0(s0)
P∏
t=0

P (st+1|st, at)πθ(at|st). (C.25)

2. The Log-Derivative Trick. The log-derivative trick follows directly from the derivative

1rigorously is slightly inappropriate to call PPO a policy gradient algorithm, but these technical details are

beyond the scope of this appendix
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of logarithms

∇θP (T|θ) = P (T|θ)∇θ logP (T|θ). (C.26)

3. Log-Probability of a Trajectory. The log-prob of a trajectory T is simply

logP (T|θ) = log ρ0(s0) +
P∑
t=0

(
logP (st+1|st, at) + log πθ(at|st)

)
. (C.27)

4. Gradients of Environment Functions. All functions of the environment only has no

dependence on θ, so gradients of ρ0(s0), P (st+1|st, at), and R(T) are zero.

5. Grad-Log-Prob of a Trajectory. The gradient of the log-prob of a trajectory is therefore

∇θ logP (T|θ) = ∇θ log ρ0(s0) +

P∑
t=0

(
∇θ logP (st+1|st, at) +∇θ log πθ(at|st)

)

=

P∑
t=0

∇θ log πθ(at|st).

(C.28)

Using all these tools, we are able to derive the basic policy gradient expression

∇θJ(πθ) = ∇θET∼πθR(T) (C.29)

= ∇θ
∫
T
P (T|θ)R(T) Expand expectation (C.30)

=

∫
T
∇θP (T|θ)R(T) Bring gradient under integral (C.31)

=

∫
T
P (T|θ)∇θ logP (T|θ)R(T) Log-derivative trick (C.32)

= ET∼πθ∇θ logP (T|θ)R(T) Return to expectation form (C.33)

∴ ∇θJ(πθ) = ET∼πθ

T∑
t=0

∇θ log πθ(at|st)R(T) Expression for grad-log-prob (C.34)

This is an average over the trajectories distribution, which in practice is estimated numerically

with a sample mean. If we collect a set of trajectories N = {Ti}i=1,...,N acting according the

policy πθ, the policy gradient can be estimated with

ĝ =
1

|D|
∑
T∈D

P∑
t=0

∇θ log πθ(at|st)R(T), (C.35)

where |N | = N is the number of sampled trajectories.

Assuming that the policy is written in way which allows to compute∇θ log πθ(a|s), eq. (C.35)

makes it possible to estimate the policy gradient from a set of trajectories run on the envi-

ronment, and then update the policy parameters θ.

C.3. Proximal Policy Optimization

PPO is an on-policy algorithm that can be used both with discrete and continuous action

spaces. It is motivated by the following question: how can we make the biggest possible

110



PhD Thesis by M.M Wauters C.3 Proximal Policy Optimization

improvement step when updating a policy, without stepping so far that the performance

collapses?

There are several methods used in PPO algorithms to keep the new policy close to the old

one. Here we describe PPO-Clip, which is the one implemented in the OpenAI SpinningUp

library. In a nutshell, PPO-Clip relies on specialized clipping in the objective function to the

maximum allowed change in the policy. More precisely, the policy parameters are updated

following

θk+1 = arg max
θ

E
s,a∼πθk

[L(s, a, θk, θ)] . (C.36)

Usually, multiple steps of stochastic gradient descent (SDG) are taken to maximize the ob-

jective function. Here L is given by

L(s, a, θk, θ) = min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), g(ε, Aπθk (s, a))

)
, (C.37)

where Aπθk (s, a) is the parameterized advantage function defined in eq. (C.23), and

g(ε, A) =

{
(1 + ε)A A ≥ 0

(1− ε)A A < 0.
(C.38)

ε is a small hyperparameter that controls how far away the new policy and the old one can

be.

To understand how this update works, it is useful to focus on a single state action pair

(s, a), where two cases may happen.

Advantage is positive: if Aπθk (s, a) > 0 its contribution to the objective function reduces

to

L(s, a, θk, θ) = min

(
πθ(a|s)
πθk(a|s)

, (1 + ε)

)
Aπθk (s, a). (C.39)

Since the advantage is positive, the objective will increase if πθ(a|s) becomes larger, meaning

that the action is chosen more likely. But the min in eq. (C.39) limits how much the objective

can increase. Once πθ(a|s) > (1 + ε)πθk(a|s), the this term is clipped by the min to (1 +

ε)Aπθk (s, a), preventing the new policy from taking a benefit in going too far away from the

old one.

Advantage is negative: if Aπθk (s, a) < 0, its contribution to the objective function reads

L(s, a, θk, θ) = max

(
πθ(a|s)
πθk(a|s)

, (1− ε)
)
Aπθk (s, a). (C.40)

Because the advantage is negative, the objective will increase if πθ(a|s) decreases, that is if

the action is chosen less likely. Again the max here limit how much the objective function

can increase. When πθ(a|s) < (1− ε)πθk(a|s), it is clipped to (1− ε)Aπθk (s, a) by the max in

eq. (C.40), and again the new policy does not benefit from changing too much.

The hyperparameter ε thus works as a regularizer that prevents dramatic changes in the

policy, which may lead to large drops in the performance.

PPO is an on-policy method to train a stochastic policy. This means that the exploration

is carried out by sampling actions following only the current version of the stochastic policy.
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The randomness in the chosen actions is influenced both by the initial condition and by the

training process. During the training, the action selection becomes less and less random, as

the update encourages the agent to exploit choices already explored. However, the drawback

of encouraging exploitation over exploration at the end of the training is that the policy may

got trapped in local maxima.

PPO Pseudocode

1: initialize policy parameters θ0 and value function parameters φ0

2: for k = 0, 1, 2, . . . do

3: sample batch of trajectories Nk = Ti following policy πk = πθk .

4: compute rewards R̂t.

5: Estimate advantages Ât using current value function Vφk .

6: update policy via eq. (C.36).

7: Fit value function and update φk+1.

C.4. Choice of policy and training parameters

The results presented in chapter 6 are obtained by training a diagonal Gaussian policy with

PPO algorithm, for 1024 epochs of 100 episodes each. The reward function is the simplest

possible rt = −δt,P 〈ψ(γ,β)| Ĥtarget |ψ(γ,β)〉, and the RL agent receives it only at the end

of each episode (t = P). Here we discuss briefly our choices of training parameters, the

hyperparameters in RL language.

The PPO algorithm has been chosen because it is one of the most advanced RL methods

suited for problems with a continuous action space [191,194], such as QAOA. This algorithm

is implemented in the OpenAI SpinningUp [194] library with a stochastic diagonal Gaussian

policy. This means that at each step the two parameters which constitute the action at =

(γt, βt) are extracted from independent Gaussian distributions, with the averages given by

the output of the Neural Network that parametrizes the policy. The logarithm of the variance

of the two Gaussian distributions are also parameters learned during the training process.

The code for the Quantum environment is publicly available on GitHub https://github.

com/mwauters92/QuantumRL.

The reward function must measure the variational quality of the final wavefunction |ψ(γ,β)〉P,

hence it must be a monotonic increasing function of minus the final energy EP(γ,β). We

tested two choices:

R(EP(γ,β)) = −EP(γ,β) (C.41)

and

R(EP(γ,β)) = e−4EP(γ,β)/N , (C.42)
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Figure C.1.: Difference between the residual energy during the training and QAOA optimal

value 1
2(P+2) , for a uniform Ising chain of N = 32 spins and episode length

P = 10. We compare two choices of the reward function given by Eq. (C.41) and

Eq. (C.42), blue and red lines respectively. The black solid line is a heuristic

upper bound for the convergence speed of the residual energy obtained from RL

protocol to the optimal value.

where the system size N is used to prevent the reward to diverge. The factor 4 increases

the steepness of the reward function towards the optimal control value EP(γ,β) = −N (for

the TFIM model). A possible advantage of the exponential choice over the linear one is

indeed the higher derivative towards the maximum possible reward, which should improve

policy optimization when the agent has already reached a good strategy. However, we do

not see an appreciable difference between the two choices, as reported in fig. C.1, where

we show the convergence of the corresponding residual energy to the QAOA optimal value

εres
P = (2P + 2)−1. There is little difference between the two choices of the reward function.

Moreover one can see that the residual energy decrease very slowly with the number of epochs,

making it inconvenient to try reaching the optimal value by increasing Nepo instead of adding

a local optimization on top of the Reinforcement Learning process.

To choose the number of episodes per training epoch, i.e. the number of trajectories used

to evaluate and update the policy, we tested several values Nepo = 50, 100, 150, 200, on a

single TFIM model with N = 32 and P = 10. We found that Nepi = 100 gives the lowest

average residual energy, as reported in Fig. C.2.

Regarding the observables provided to the agent, there are several available choices. The

first is full tomography of the wavefunction, which has the huge disadvantage of requiring an

exponentially large number of measurements to provide reliable information. Moreover, it is a

redundant description of the state, and the neural network needs first to learn how to compress

it and extract the relevant information, before optimizing the policy. The performance of the

method with this choice turns out to be rather poor and the convergence towards an optimal

strategy very slow. Furthermore, the number of nodes in the NN has to scale with the system

size in order to be able to extract the information, worsening efficiency at larger sizes, and

hampering transferability.

When focusing on observables, one of the most intuitive choices is providing the expec-
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Figure C.2.: Average residual energy at the end of the training versus the number of episodes

per training epoch. The data are obtained for a uniform Ising chain of N = 32

spins and episode length P = 10.

tation values of the problem and the driving Hamiltonians, Ĥz and Ĥx. This is what we

used throughout this Letter. This choice has the advantage of being easily accessible from

the Jordan-Wigner representation of the Ising chain and allows us to visualize the policy as

a vector function of two real variables. Moreover, it is an efficient description of the state

for what regards the optimization task, since 〈Ĥz〉 is directly linked to the reward function.

This set of observable has been enlarged to include correlation functions at longer distances

〈σ̂zi σ̂zi+k〉. The test we performed did not indicate any increase in the performance. Prelimi-

nary results instead suggest that 〈Ĥz〉 alone is sufficient to learn optimal smooth schedules.

An alternative choice would be computing the expectation value of the three components

of the magnetization 〈Ŝα〉, with α = x, y, z, as done in Ref. [189]. This, however, does not

work when the state preserves Z2 symmetry, as in the TFIM case.
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