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1
Introduction

Reducing the dimensionality of a system is often associated with enhanced quantum e�ects,
which lead to exotic electronic, optical, and magnetic properties [1]. Van der Waals layered
materials are formed by stacks of atomically thin layers held together by weak van der Waals
forces. Each layer has an independent chemical structure without unsatis�ed valencies, which
makes each individual layer stable. With isolation of a single graphite atomic sheet known
as graphene, and the discovery of its intriguing physical properties, the research �eld of 2D
materials thrived [2]. The electronic band structure of graphene can be described by introducing
quasi-relativistic particles near the corners of the hexagonal Brillouin zone of the system K
and K′. Around these points, the valence and conduction bands meet in conical valleys where
energy disperse linearly as a function of momentum. This common feature with massless Dirac
fermions, leads to the emergence of various electronic properties such as the so-called Klein
tunneling across a potential barrier, unconventional quantum Hall e�ect [3] and nontrivial Berry
phase [4].
Since graphene has been stabilized, the family of 2D crystals has grown exponentially to
include metals such as NbSe2, semiconductors like phosphorene or most transition metal dichal-
chogenides (TMDs), insulators (e.g. hexagonal Boron Nitride) and magnetic materials (e.g. CrI3).
Among transition metal dichalchogenides, the most widely studied are those formed by a group-
VI transition metal atom (Mo, W) sandwiched between two chalchogen layers (Se, S, Te). The
monolayer bandstructure exhibit a direct band gap in the visible range located at the Brillouin
zone corners. The relatively heavy metal atoms and the lack of inversion symmetry induces a
strong spin orbit coupling which splits the TMDs valence bands into two spin-polarized ones in
which electron spin can be controlled by circularly polarized light. Of particular interest are
excitons, which, due to the lack of bulk dielectric screening, acquire large binding energies [5].
Hexagonal boron nitride is a wide-gap (≈ 6 eV) insulator. Its strong, in-plane, ionic bonding of
the planar hexagonal lattice structure makes it relatively inert. This and its dielectric properties
make it an ideal substrate for 2D materials. In particular, encapsulating graphene in hBN protects
it from the local environment and dramatically enhances electronic transport [6].
The broadening of the 2D materials family opened up the possibility to stack di�erent 2D crystals
on top of each other thus building new types of heterostructures. This allowed researchers to
explore novel collective phenomena at the interfaces between di�erent layers [7]. Recently, a
new kind of heterostructure has emerged in the �eld. Adjusting the angle between two layers or
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1.1 Experimental features of magic angle twisted bilayer graphene 5

simply stacking layers with di�erent lattice constants can result in structures known as moiré
superlattices. In these systems, the local registry between the two layers periodically varies in
real space with a wavelength that depends on the twist angle, and can greatly exceed the linear
size of each layer’s unit cell. The moiré pattern acts as a long-wavelength modulating potential,
dramatically a�ecting electronic, optical, vibrational and structural properties. The resulting
emergent states di�er qualitatively from those of the underlying monolayers. The possibility
to use the twist angle as a new degree of freedom opened up a new research �eld known as
twistronics, which will be the main focus of this thesis.

1.1 Experimental features of magic angle twisted bilayer
graphene
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Figure 1.1: a) Schematic of the tBLG device used in Refs. [8, 9]. The twisted bilayer is encapsulated in
hexagonal boron nitride �akes and fabricated on S iO2/S i substrates. The conductance is measured while
varying the local bottom gate voltage. ‘S’ and ‘D’ are the source and drain contacts, respectively. Below, a
zoom within the moiré pattern with wavelength λ ≈ 13 nm which form in θ ≈ 1.1◦ tBLG. b) c) d) E�ect
of an increasing interlayer hybridization. When 2w is comparable to ~v0kθ a set of narrow bands around
neutrality form. e) θ = 1.08◦ tBLG bandstructure computed with tight-binding as in Ref. [10]. A set of
four isolated and narrow bands form around charge neutrality set at E = 0. The �rst four panels are
reproduced from Ref. [8].

Perhaps the most dramatic moiré phenomena are those observed by stacking two graphene
layers slightly twisted with respect to each other (tBLG). If the two layers are decoupled, the low-
energy band structure of twisted bilayer graphene can be seen as two sets of monolayer graphene
Dirac cones rotated by the twist angle θ as in Fig. 1.1(b). The interlayer coupling depends on
the local registry of the two layers, so that it varies smoothly along the long-wavelength moiré
pattern. As a consequence, Dirac cones near either K or K’ valleys mix through the interlayer
hybridization. Bistritzer and MacDonald predicted in Ref. [11] that the consequences of such
hybridization are the energy gaps that open near the intersection of the Dirac cones and a strong
renormalization of the Fermi velocity vF at the K points. In particular, at some twist angles
called magic angles, the Fermi velocity was predicted to vanish and the resulting ’moiré ’ bands
con�ned to few tens of meV. The �attening of these bands can be understood qualitatively from
the competition between the intra- and interlayer hybridization energy strengths (Fig. 1.1(b-d)).
When the interlayer hybridization energy 2w is comparable to the energy mismatch between the
Dirac cones at the intersection point, equal to ~v0kθ where v0 is the monolayer Fermi velocity,
the layer hybridized states are pushed toward zero energy [11, 9].
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a)

d)c)

0

b)

Figure 1.2: This �gure is reproduced from Refs.[8, 9]. a) Two-probe conductance G of θ = 1.16◦ tBLG
as a function of charge carrier density n measured in zero magnetic �eld (red) and at a perpendicular
�eld of 0.4 Tesla (blue). On top, �lling is expressed as the number of electrons ν per moiré unit cell
injected into the system by gating. The curves exhibit insulating states at the superlattice band gaps,
which correspond to �lling of ν = ±4 electrons in each moiré unit cell (blue and red bars). They also
exhibit reduced conductance at intermediate integer �llings of ν = ±2. Near a �lling of −2 electrons
per unit cell, there is considerable conductance enhancement at zero �eld that is suppressed in B = 0.4
Tesla. This enhancement signals the onset of superconductivity. b) Minimum conductance values in the
quarter �lling insulating states. The dashed lines are Arrhenius �ts of exp[−∆/(2kBT )] to the data, with
∆ = 0.31 meV as the thermal activation gap. c) Dependence of the conductance on the perpendicular
magnetic �eld B of the quarter �lling states at ν = ±2. The measurement is taken at 0.3 K. d) Four-probe
resistance Rxx, measured at densities corresponding to the region bounded by pink dashed lines in a),
versus temperature. Two superconducting domes are observed next to the quarter �lling insulating state,
which is labeled ‘Mott’. The remaining regions in the diagram are denoted as ’metal’ owing to the metallic
temperature dependence. The highest critical temperature observed in this device is TC = 0.5K

In Fig. 1.1(f) we shown the bandstructure at the �rst magic angle θ ≈ 1.1◦ along some high-
symmetry lines in the Brilluoin zone of tBLG. As can be seen, a set of four extremely narrow
bands lie isolated in energy around the charge neutrality point (CNP). It was by doping these
bands that Cao et.al. [8, 9] opened two years ago a Pandora’s box touching simultaneously 2D
materials, moiré superlattices, insulating and superconducting states in narrow band materials,
emergent symmetries, topological phenomena, and more.
The tBLG devices were fabricated using the ’tear and stack’ technique [12], which allows
controlling the twist angle with an accuracy of about 0.1◦ − 0.2◦ degrees. The sample was
encapsulated in hexagonal boron nitride �akes with thicknesses of about 10 − 30 nm and
fabricated on SiO2/Si substrates (see Fig. 1.1(a)). A bottom Pd/Au gate enabled the control of the
charge carrier density n upon electrochemical doping.
In Fig. 1.2(a) conductance is shown as a function of charge carrier density with and without
perpendicular magnetic �eld applied to the sample. On top, the doping density is expressed as
the number of electrons ν per moiré unit cell injected into the system. As the chemical potential



1.1 Experimental features of magic angle twisted bilayer graphene 7

is moved away from the charge neutrality point, the system is metallic until the quarter integer
�llings of ±2 electrons per unit cell is reached. Here, conductance suddenly drops and the
system turns into an insulator. Fig. 1.2(b) shows conductance as a function of temperature for
ν = −2 (p-doped) and ν = 2 (n-doped) devices. Below ≈ 4 K the conductance gets exponentially
suppressed. The dashed lines are Arrhenius �ts of exp[−∆/(2kBT )] to the data, where ∆ ≈ 0.3
meV is the thermal activation gap. Moreover, as shown in Fig. 1.2(c), these insulators turn into
metals as a perpendicular magnetic �eld is applied to the sample. The Zeeman energy required
to suppress these quarter �lling insulating states is approximately 0.5 meV, the same order of
magnitude as that of the thermal excitation energy. Due to the insulating behavior being in stark
contrast with the metallic one predicted by single-particle bandstructure calculations, these
insulating states have been identi�ed as correlation driven or Mott insulators. By further doping
away from neutrality, the system turns into a band insulator at ν = ±4 electrons per unit cell,
which corresponds to full �lling/depletion of the four �at bands (see Fig. 1.1(f)).
Perhaps, the most interesting phenomena is that observed upon slightly doping away from the
insulating states at quarter �lling. There, conductance abruptly rises as resistance drops to zero,
which is the �ngerprint of a superconducting behavior. The critical temperature is few Kelvins
and 0.4 Tesla are enough to suppress this state. In Fig. 1.2(d) the phase diagram of the system
around quarter �lling is shown. Two superconducting domes surround the insulating state and
turn into normal metal upon heating. The apparent resemblance of such a phase diagram with
that of Cuprates [13] fueled an intense theoretical and experimental e�ort to understand the
origin of these phenomena.
By improving the quality of the samples and experimental setups, the phase diagram of Refs. [8, 9]
has been further enriched. First of all, insulating states have been observed at most integer �llings
of the four �at bands, including at charge neutrality [14, 15, 16, 17, 18, 19, 20]. In particular, by
aligining one of the two graphene layers to the hBN substrate, the insulators at ν = ±3 �lling
showed an intriguing magnetic behavior [21]. The longitudinal resistance Rxy approaches the
quantized value of ~/e2, concomitant with a deep minimum in Rxx reminiscent of an integer
quantum Hall state. Furthermore, the Hall resistivity is hysteretic, with a coercive �eld of
several tens of millitesla, indicative of the Quantum anomalous Hall e�ect. This state requires
spontaneous time reversal symmetry breaking, suggesting a non-trivial topological origin for
such phenomena.
The phase diagram of magic angle tBLG has also been investigated with scanning tunneling
microscopy (STM) [16, 17, 18, 20, 22]. These experiments show how the local and total density
of states associated with the �at bands evolves by changing the �lling. Interestingly, bandwidth
and in particular the separation between the two van Hove singularities, increases when the
chemical potential is within the �at bands, reaching a maximum value at the CNP. Some of these
works [16, 20, 17] also report a three-fold rotational symmetry breaking when the system is
doped around quarter �lling.
Another interesting feature of tBLG is the large linear-in-temperature resistivity that survives
over a broad range of angles and up to temperatures of several tens of Kelvin [23, 24]. A dominant
role of electron-phonon scattering [23, 25] or of quantum �uctuations [24] might be behind such
behavior.
Finally, superconductivity has been observed over a broader range of densities [15, 26, 14, 27],
even when the insulating states were suppressed by screening of a nearby metallic layer [27] or
by slightly moving the twist angle away from the magic angle condition [26]. The observation
of superconductivity in the absence of correlated insulating states constitutes powerful evidence
that such phenomenon arises independently, and might well be simply explained through the
standard electron–phonon coupling BCS mechanism [28, 29, 30].
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1.2 Moirè van derWaals materials as quantum simulation
platforms

The physics of magic angle tBLG is not bound to occur only in a bilayer or in carbon allotropes,
but is general to any moiré material. Twisted trilayer [31] and double bilayer [32] graphene
exhibit similar insulating and superconducting behaviors. Evidences of gate tunable insulating
states in ABC stacked trilayer graphene forming a moiré pattern with the underlying hBN
substrate has been reported in Ref. [33].
Of particular interest are the moiré patterns formed in transition metal dichalchogenides (TMDs),
which allow realizing the so-called moiré excitons [34, 35, 36, 37] that can feature topological
bands supporting excitonic edge states [38]. Their bandstructure, in particular around the top
of the valence band, comprises a set of extremely narrow bands. The topology of these bands
depends on how the moiré heterostructure is formed. Stacking on top of each other di�erent
TMD layers (heterobilayers) lead to the formation of a moiré pattern even without a twist if
the chalchogen atoms are di�erent. In these cases, the charge density is strongly con�ned in a
triangular superlattice. If a twist is present, it can be used to continuously tune the localization
of the charge density and the lattice constant of the moiré superlattice. By quenching the kinetic
energy with a twist, these bands �atten enhancing correlation e�ects realizing an e�ective
Hubbard model on the triangular lattice [39].
Homobilayers can display very di�erent physics depending on chemical composition. In WSe2

and MoTe2 the band edge of the bilayer is located around the Brilluoin zone corners. In this
case, the physics is similar to that of heterobilayers. Indeed, insulating states and evidences
of superconducting ones have been found upon doping the top of the valence band in twisted
WSe2, over a broad range of twist angles [40].
If the band edge is instead located around the Brilluoin zone center as in WS2, MoS2 and MoSe2,
the physics can be completely di�erent [41, 42]. As a consequence of an emergent D6 symmetry
(see Chapter. 5) electrons are con�ned in an honeycomb lattice. In energetic order the �rst
three bands realize a single-orbital (s-like) model and a two-orbital (px ± ipy-like) model on an
honeycomb lattice [42]. The third set of bands is more intriguing, as it realizes a single-orbital
model on a Kagome lattice, which is induced by an orbital hybridization that moves the charge
away from the honeycomb sites. Again, since bandwidth and correlation strength can be tuned
at will by changing the twist angle, these systems open the exciting possibility to study strongly
correlated physics in multiorbital honeycomb and Kagome lattices.
Twisted insulators such as hBN can host triangular lattice physics similar to that of TMDs [43].
The triangular Bravais lattices emerging in the materials considered so far are due to the
three fold (120◦) rotational symmetry of the corresponding monolayers. This situation can be
enriched by twisting 2D materials with a rectangular unit cell such as Germanium Selenide [44]
or phosphorene [45]. Here,at small angles the emergent moiré lattice structure has negligible
dispersion along one of the two principal axes, which forces electrons to disperse in only one
direction, thus realizing an e�ective one dimensional model.
The systems described above are only few examples of the arti�cial moiré lattices which form in
2D heterostructures. The possibility to quench their kinetic energy by simply changing twist
angle renders them into a versatile quantum simulation platform.

1.3 Plan of the thesis
In the �rst part of this Thesis we focus mostly on twisted bilayer graphene. In Chapter. 2
we review the most common theoretical tools to deal with the electronic and structural prop-
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erties of twisted bilayer graphene. After describing in details the structural features of the
moiré pattern formed by the relative twist between the layers, we introduce lattice relaxation
(Section. 2.2).Then, the bandstructure of the system is computed by means of tight-binding
(Section. 2.3.1) and Continuum model Hamiltonians (Section. 2.3.2).
In Chapter. 3 we deal with the di�cult but important task to reduce the complexity of the
problem by deriving a minimal (number of orbitals) model that faithfully describes the �at
bands physics. We start by showing the set of emergent symmetries developed by the system
in Section. 3.1. As a consequence of these symmetries we prove that a description of the �at
bands in terms of only four Wannier orbitals is not possible (Section. 3.2). In the last part of this
Chapter (Section. 3.3) we propose a 16 Wannier orbitals model which is able to reproduce the
�at bands complexity.
In Chapter. 4 we describe a lattice driven mechanism which might be responsible of the experi-
mental features observed in Refs. [8, 9]. In Section. 4.1 we compute the phonon spectrum of the
twisted bilayers, showing that the system develops a set of almost dispersionless modes that
resemble global vibrations of the moiré supercell dubbed as moiré phonons. Such phonons are
strongly coupled to the emergent electronic degrees of freedom, and are able to open gaps at
most integer �lling of the four �at bands (Section. ‘4.1.3 and Section. 4.1.5). Such mechanism
is extremely e�cient, as a lattice deformation of less than few mÅ can open gaps of tens of
meV. As explained in Section. 4.1.4, this electron-phonon coupling mechanism and its e�ciency
realizes by an E ⊗ e Jahn-Teller Hamiltonian. In Section. 4.2 we describe the superconducting
state that might be mediated by the Jahn-Teller phonons. Finally, in Section. 4.3 we work out
how the Jahn-Teller mechanism can be included within the continuum model formalism.
In Chapter. 5 we focus on twisted transition metal dichalchogenides. We derive a continuum
model Hamiltonian for those homobilayers (identi�ed in Section. 5.1) in which the valence
band edge is around the Brilluoin zone center Γ. As a consequence of the emergent symmetries
described in Section. 5.2.1 the system simulates honeycomb lattice physics. In Section. 5.2.2
the continuum model for twisted WS2, MoS2 and MoSe2 is derived by �tting DFT calculations
that include lattice relaxation. In Section. 5.2.3 we demonstrate the e�cacy of the continuum
model to predict the bandstructure of twisted TMDs at small angles, where fully microscopic
calculations are prohibitive. A symmetry analysis of the Bloch states with the three set of bands
higher in energy reveal their origin, which can be described in terms of a simple harmonic
oscillator picture (Section. 5.2.4).
The last Chaper. 6 is devoted to concluding remarks.
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2
Lattice and electronic structure of twisted

bilayer graphene

In this chapter we introduce the most common theoretical tools used to obtain the structural and
electronic properties of twisted bilayer graphene (tBLG). After de�ning those angles at which
the lattice is periodic in Section. 2.1, we employ molecular dynamics techniques to determine
the relaxed structures (Section. 2.2). In the second part of this chapter, we focus on their
bandstructure, which is computed by means of tight-binding in Section. 2.3.1 and continuum
model calculations in Section. 2.3.2.

2.1 Commensurate angles
When two layers are slightly misaligned with respect to each other a moiré pattern form. The
resulting lattice is in general not periodic, except at a speci�c set of discrete angles known as
’commensurate angles’ [46]. In order to determine this set of angles, we consider two identical
and aligned honeycomb lattices with lattice constant a and lattice vectors:

a0 = (1/2,−
√

3/2) a,

b0 = (1/2,
√

3/2) a
(2.1)

the two sites in the unit cell are assumed to be located at

rA =
2
3

a0 +
1
3

b0 ,

rB =
1
3

a0 +
2
3

b0

(2.2)

where the origin is the center of the hexagon.
The reciprocal lattice vectors are de�ned as

Ga =
4π
√

3a
(
√

3/2,−1/2) ,

Gb =
4π
√

3a
(
√

3/2, 1/2)
(2.3)
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We consider a generic lattice vector

R−n,m = −n a0 + m b0 =
(
(m − n)/2 ,

√
3(m + n)/2

)
≡ Rnm

(
sin φnm , cos φnm

)
, (2.4)

where
Rnm = a

√
n2 + m2 + n m , tan φnm =

1
√

3

m − n
m + m

. (2.5)

Since the honeycomb lattice is symmetric under re�ection with respect to the y-axis [30], for
a given Rnm = (Rx,Ry) there always exists a Rmn = (−Rx,Ry). Therefore, if we rotate one
layer by φnm and the other by −φnm, we have that they have in common the superlattice vector
Rm,n → Rnm (0, 1). The full spectrum of commensurate angles can be obtained through Eq. (2.5)
for several choices of n and m. Noting that m−n and m + n have the same parity, the equivalence
class (p, q) of rational numbers p/q = (m − n)/(n + m), with p − q even, de�nes the same

tan φ =
1
√

3

p
q
, (2.6)

but generally di�erent

Rnm = a
√

n2 + m2 + n m → R(p, q) = a

√
3
4

q2 +
1
4

p2 =
p

2 sin φ
, (2.7)

which are multiple of each other. Therefore, the fundamental R within each equivalence class is
de�ned by the minimum p, and identi�es the lattice vector of the moiré superlattice R = R (0, 1).
By �xing p = 1 and q as an odd integer equal to q = 2k + 1, we have that

R =
a

2 sin φ
tan φk =

1
√

3

1
2k + 1

(2.8)

where k ∈ Z≥. For instance, if k = 30 we have that the twisting angle is θ = 2φ ' 1.08◦, the
number of atoms in the unit cell is N = 4R2 = 11164 and the moiré lattice constant is several
thousand times larger than that of the layers forming it.
Given Eq. 2.8, the moiré lattice vectors can be chosen as

R1 = R
(√

3/2 , −1/2
)

,R2 = R
(√

3/2 , 1/2
)
, (2.9)

The moiré reciprocal lattice vectors are consequently

G1 =
4π
√

3R

(
1/2 , −

√
3/2

)
=

4π sin φ
√

3

(
1 , −

√
3
)
,

G2 =
4π
√

3R

(
1/2 ,

√
3/2

)
=

4π sin φ
√

3

(
1 ,
√

3
)
,

(2.10)

so that the two monolayer Brillouin zones are folded several times in the mini-Brillouin zone
(MBZ) of the system, which is still hexagonal (see 2.1). In the untwisted bilayer the Dirac points
are

K′ = −
1
3

Ga +
2
3

Gb =
4π
3

(
1/2 ,

√
3/2

)
,

K = −
2
3

Ga +
1
3

Gb =
4π
3

(
− 1/2 ,

√
3/2

)
,

(2.11)
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A
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Figure 2.1: a) Two overimposed honeycomb lattices twisted by an angle θ = 2φ. b)The two monolayer
Brillouin zones (in red and blue) are folded several times in the mini-Brillouin zone (MBZ) of the twisted
lattice. Inequivalent K/K′ points in di�erent layers are folded into the same K1/K2 points in the MBZ. c)
The MBZ formed by the reciprocal lattice vectors G1 and G2. One of the high-symmetry paths often used
in this thesis is also denoted by a black dashed line.

and the three equivalent points obtained by a 120◦ rotation. We consider two of these points,
speci�cally

K′k = k
(
G2 −G1

)
+ K′ =

2π
√

3/2

( 1

2
√

3
, k +

1
2

)
=

∣∣∣Kk

∣∣∣ ( sin φk , cos φk
)
,

Kk = k
(
G2 −G1

)
+ K =

2π
√

3/2

(
−

1

2
√

3
, k +

1
2

)
=

∣∣∣Kk

∣∣∣ ( − sin φk , cos φk
)
.

(2.12)

If we assume that K′k belongs to the top layer while Kk to the bottom one , it follows that after
the twist the two fall to the same point along the y-axis if

tan φk =
1
√

3

1
2k + 1

, (2.13)

which is exactly the condition (2.8). The above result thus implies that K(K′) of one layer and
K′(K) of the other layer fold on the same point in the MBZ.

2.2 Moirè pattern and lattice relaxation in twisted bilayer
graphene

In Fig. 2.2 we show two graphene layers rotated with respect to each other by a small angle.
Due to the small misalignment between the graphene layers, a moiré pattern forms where
regions characterized by local realizations of di�erent stacking modes appear periodically within
the bilayer. Bernal-stacked regions (AB or BA) form an honeycomb lattice (green and orange
triangles in Fig. 2.2), while AA-stacked regions in the hexagon centers form a triangular lattice.
This picture is however not realistic, as it turns out that there is a substantial lattice energy
mismatch between zones di�erently stacked within the moiré pattern. This can be seen in
Table 2.1, where the total energy of aligned graphene bilayers is shown for di�erent stackings.
This energy di�erence which varies smoothly along the moiré, generating a non-uniform force
�eld which tends to dramatically alter the lattice [47, 48, 49, 50, 51, 52, 10, 30, 53, 54]. Indeed,
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Figure 2.2: Moiré superlattice formed by two unrelaxed graphene layers (in blue and red) twisted by a
small angle θ. We indicate the di�erent stacking regions: AA and the two di�erent Bernal regions AB
and BA. The domain walls (DWs) separate AB from BA regions,connect di�erent AA regions and are
denoted by grey lines. On the right, a zoom within the high-symmetry stacking regions is shown.

there is strong experimental evidence of a substantial lattice relaxation, especially at small twist
angles [55, 48], which needs to be accounted for to get physically reliable results.
We thus performed lattice relaxations via classical molecular dynamics simulations using state-
of-the-art force-�elds. The carbon-carbon intralayer interactions are modeled via the sec-
ond generation REBO potential [56]. The interlayer interactions are instead modeled via the
Kolmogorov-Crespi (KC) potential,[57] using the parametrization of Ref. [58]. The starting
intralayer carbon-carbon distance is set equal to a0 = 1.3978 Å , corresponding to the equi-
librium bond length of the adopted REBO potential, giving a lattice parameter of a ≈ 2.42 Å.
Geometric optimizations are performed using the FIRE algorithm.[59] The atomic positions are
relaxed toward equilibrium until total force acting on each atom, Fi = | − ∇ri(V

KC
inter + VREBO

intra )|,
become less than 10−6 eV/atom. It is important to stress that during the relaxation the system is
not constrained to preserve any particular symmetry. Fig. 2.3(a) shows the supercell of tBLG
at θ ≈ 1.08◦, before relaxation, corresponding to a triangular superlattice of period ≈ 13 nm.
Examining di�erent directions, areas of energetically least favorable AA stacking, see Table 2.1,
gradually turn into energetically more favorable saddle point (SP) regions or most favorable AB
and BA stacking regions. This is achieved via small in-plane deformations characterized by a
displacement �eld that rotates around the center of the AA domains (see Fig. 2.3(c)), respectively
counterclockwise and clockwise in the upper and lower layer. As a consequence of this the AA
regions shrink while the area of the Bernal-stacked regions expand (see Fig. 2.3(b)). The interface
regions between AB and BA sharpen, forming the so called domain walls (DWs). We note
that such distortions lead to negligible local lattice compressions/expansions, corresponding
to variations < 0.03% of the sti� carbon-carbon bond length relative to the equilibrium value.
On the other hand, the large di�erence between the equilibrium interlayer distances of the AA
and AB stacking (see Table 2.1) leads to signi�cant out-of-plane buckling deformations, genuine
"corrugations" of the graphene layers, that form protruding bubbles in correspondence of the
AA regions. This is clearly shown in Fig. 2.3(d), where the color map of the local interlayer
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interlayer dist. ∆ε

(Å) (meV/atom)
AB 3.39 0
SP 3.42 0.74
AA 3.61 4.70

Table 2.1: The equilibrium interlayer distance and the corresponding total energy of aligned (θ = 0◦)
graphene bilayers at various stacking modes, speci�ed in the �rst column. Energies are measured relative
to that of the optimal AB stacking. Results obtained by initially shifting the relative (x,y) centers-of mass
of the two layers, and then relaxing. For the case of AB stacking, a full relaxation of the bilayer was
performed. For the case of AA or SP stacking, only the z coordinate of all atoms was relaxed, while the
in plane (x,y) coordinates were held �xed. This prevented the bilayer from falling into the AB global
minimum, thus preserving the initial stacking.

distance, shows an overall increase of ∼ 0.2 Å from Bernal AB (blue circle) to the AA region
(green circle). We end by pointing out that the stacking-dependence of the force �elds acting on
each atom, which varies smoothly along the moiré, will also a�ect phonons. As shown in the
next chapter 4.1.2, the normal modes of the system are modulated and strongly a�ected by the
moiré pattern.

2.3 Bandstructure of twisted bilayer graphene

2.3.1 Tight-binding

The tight-binding method is an useful tool to compute the electronic properties of a system.
In particular, the fact that the Hamiltonian depends directly on the atomic positions, makes
this method suitable to treat systems with a deformed or relaxed lattice. Denoting the position
within the unit cell of atom i as ri we can write the tight-binding Hamiltonian as:

Ĥ =
∑

i, j

(
t
(
ri − r j

)
|i〉 〈 j| + H.c.

)
, (2.14)

where t(ri − r j) is the hopping amplitude which is computed using the Slater-Koster formal-
ism: [60]

t(d) = Vppσ(d)
[d · ez

d

]2

+ Vppπ(d)
[
1 −

(d · ez

d

)2
]
, (2.15)

where d = ri− r j, d = |d|, and ez is the unit vector in the direction perpendicular to the graphene
planes. The out-of-plane (σ) and in-plane (π) transfer integrals are:

Vppσ(x) = V0
ppσe−

x−d0
r0 Vppπ(x) = V0

ppπe
−

x−a0
r0 (2.16)

where V0
ppσ = 0.48 eV and V0

ppπ = −2.7 eV are values chosen to reproduce ab-initio dispersion
curves in AA and AB stacked bilayer graphene, d0 = 3.344Å is the starting inter-layer distance,
a = 1.3978Å is the intralayer carbon-carbon distance, and r0 = 0.184 a is the decay length, in
units of the lattice parameter.[61, 50] Although the hopping amplitude decreases exponentially
with distance, we found that upon setting even a fairly large cuto� rc, important features of
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R1

R2

Figure 2.3: (a) The supercell of a tBLG at θ ≈ 1.08◦ used in simulations. Arrows show the primitive
lattice vectors, of length R, of the triangular moiré superstructure. Green, grey, red and blue circles mark
the regions of AA, SP, AB and BA stacking, respectively. (b) Local structure before and after relaxation
around the center of the AA, SP and AB regions. (c) Displacement �eld showing the in-plane deformations
of the upper layer. The displacement vectors {ui} go from the equilibrium position of the carbon atoms
in the non-relaxed con�guration to the corresponding position in the fully relaxed structure. Only few
vectors are shown for clarity, magni�ed by a factor of ten. (d) Colored map showing the local interlayer
distance. The colored circles reported in panels (c) and (d) correspond to the samples of panel (b).

the band structure are spoiled. An example is the degeneracy at the K1(2) points, which we �nd
to be fourfold, up to our numerical accuracy, keeping all hopping amplitudes that are nonzero
within machine precision, while it is fully lifted using a cuto� as large as rc ≈ 4a0. In Fig. 2.4
we show the bandstructure of twisted bilayer graphene before relaxation. The bandwidth of
the four bands close to neutrality, which are highlited in yellow, decreases with twist angle
while being compressed around neutrality. Then, at an angle θc ≈ 1.3◦,the bandwidth reaches
a minimum and by further decreasing the angle the bandwidth increases again. They become
extremely �at again at θc = 0.5◦ and at a series of other magic angles. However, although
a set of extremely �at bands is predicted, the bandstructure of the unrelaxed structure di�er
quantitatively from the experimental data. There, the angle in which superconductivity is
observed is smaller, around 1.05◦ ∼ 1.1◦ [9, 15]. More importantly, the �at bands are reproducibly
found in experiments [14, 8, 9, 15, 16, 17, 23, 62, 63] to be separated from the other bands by a
sizeable gap of around ∼ 30 − 50 meV, a feature not observed in the bands in Fig. 2.4. A better
agreement with experiments is obtained if lattice relaxation is taken into account. We therefore
computed the bandstructure of the system updating the atomic positions in the unit cell with
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Figure 2.4: Bandstructure of unrelaxed twisted bilayer graphene at di�erent angles. The background
of the set of four bands around charge neutrality is colored in yellow. Their bandwidth monotonously
decreases until θ ≈ 1.3◦, then it increases again.

those of the relaxed structure. We assumed the carbon π-orbitals to be oriented along ez, while
in reality they are oriented along the direction locally perpendicular to the relaxed graphene
sheet, no longer �at. However, since the out of plane distortions varies smoothly along the
moiré pattern, we checked that the misorientation of the orbitals with respect to the z axis
are lower than ∼ 0.1 − 0.01◦, and have no noticeable e�ect on the band structure. While the
above discussion focused on a speci�c supercell at θ ≈ 1.08◦, qualitatively similar results were
obtained for other angles, too. We emphasize that out-of-plane deformations, signi�cant at
small magic angles, have important e�ects on the electronic structure of the system. Indeed, as
can be seen from Fig. 2.5(a), where the tight-binding band structure is calculated for the fully
relaxed structure, the �at bands are now well separated from the rest by an ≈ 35 − 40 meV gap,
consistent with experiments [8, 15, 9] and DFT calculations [53, 54], and larger than the gap
obtained allowing only in-plane displacements.[50] Furthermore, the �at bands Fig. 2.5(b) are
considerably �atter than in the unrelaxed structure at a similar angle, so that lattice relaxation
lowers the magic angle to a value consistent with experiments [64]. Finally, the particle-hole
asymmetry is also a feature present only if lattice relaxation is included in the calculation and
routinely observed in experiments [18, 16].

2.3.2 Continuum Model Hamiltonian

The large number of atoms contained in the θ ≈ 1.08◦ unit cell of twisted bilayer graphene
(more than 11000), make any calculation, more involved than a simple thigh-binding one,
rather tough, if not computationally impossible. Such a problem can be solved introducing
the less computationally demanding continuum model of Ref. [11]. This approach avoids the
real space complexity of the problem by solving it in reciprocal space. This method can serve
as a suitable starting point for BCS [28, 29], Hartree-Fock [65, 66, 67, 68] and many other
calculations, which may involve both phonons and correlations. In order to derive the Bistritzer-
MacDonald continuum model for twisted bilayer graphene [11], we recall that the single layer
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Figure 2.5: a) Bandstructure of relaxed twisted bilayer graphene at the magic angle θ ≈ 1.08◦ obtained
with tight-binding. b) zoom within the �at bands region. These bands are isolated in energy due to the
lattice relaxation.

Dirac Hamiltonian is, around the K and K′ = −K valleys, respectively,

Ĥk∼K ≡ Ĥ+1
k = −v

(
k −K

)
·
(
σx, σy

)
,

Ĥk∼−K ≡ Ĥ−1
k = −v

(
k + K

)
·
(
− σx, σy

)
,

(2.17)

namely

Ĥζ
k = −v

(
k − ζK

)
·
(
ζ σx, σy

)
, (2.18)

with ζ = ±1 the valley index, and where the Pauli matrices σa act on the two component
wavefunctions, each component referring to one of the two sites per unit cell that form the
honeycomb lattice.
We recall that the reciprocal lattice vectors in the MBZ are:

G1 = G(2)
b −G(1)

b ,

G2 = G(1)
a −G(2)

a .
(2.19)

where G(1)
a/b = R+φ

(
Ga/b

)
and G(2)

a/b = R−φ
(
Ga/b

)
are the reciprocal lattice vectors of each layer

after the twist (the layer index is denoted by the apex (1/2)), with Rφ the rotation operator by
an angle φ.
The Dirac nodes of each monolayer are, correspondingly, R±φ(K) ≡ K±φ for the valley we shall
denote as ζ = +1, and R±φ(K′) ≡ K′

±φ for the other valley, ζ = −1. With our choices, K+φ and
K′
−φ fold into the same point K1 of the MBZ, as well as K−φ and K′+φ into the point K2, see

Fig. 2.1b).
We introduce the (real) Wannier functions derived by the pz orbital of each carbon atom:

φ1αR(1)(r) ≡ φ
(
r − R(1) − r(1)

α −
d⊥
2

)
,

φ2αR(2)(r) ≡ φ
(
r − R(2) − r(2)

α +
d⊥
2

)
,

(2.20)



2.3 Bandstructure of twisted bilayer graphene 19

where d⊥ = (0, 0, d), with d the interlayer distance, R(i) label the positions of the unit cells in
layer i = 1, 2, while r(i)

α the coordinates with respect to R(i) of the two sites within each unit cell,
α = A, B denoting the two sublattices. From the Wannier functions we build the Bloch functions

ψ1αk(r) =
1
√

N

∑
R(1)

e−ik·
(

R(1)+r(1)
α

)
φ1αR(1)(r) ,

ψ2αk(r) =
1
√

N

∑
R(2)

e−ik·
(

R(2)+r(2)
α

)
φ2αR(2)(r) .

(2.21)

Conventionally, one assumes the two-center approximation [11], so that, if V⊥(r) is the interlayer
potential, then the interlayer hopping"

dr φ1αR(2)(r) V⊥(r) φ2 βR(1)(r) ' T⊥
(
R(2) + r(2)

α − R(1) − r(1)
β

)
, (2.22)

depends only on the distance between the centers of the two Wannier orbitals. We de�ne T⊥(q),
the Fourier transform of T⊥(r):

T⊥(r) =
1
N

∑
q

eiq·r T⊥(q) , (2.23)

where r and q are vectors in the x-y plane. Hereafter, all momenta are assumed also to lie in the
x-y plane.
The interlayer hopping between an electron in layer 1 with momentum p and one in layer 2
with momentum k is in general a matrix T̂kp, with elements Tαβ

kp , α, β = A, B, which, through
equations (2.21), (2.22) and (2.23), reads explicitly

Tαβ
kp =

1
N

∑
R(2)R(1)

e−ik·
(

R(2)+r(2)
α

)
eip·

(
R(1)+r(1)

β

)
T⊥

(
R(2) + r(2)

α − R(1) − r(1)
β

)
=

∑
q

T⊥(−q)
1

N2

∑
R(2)R(1)

e−i
(

k+q
)
·
(

R(2)+r(2)
α

)
ei
(

p+q
)
·
(

R(1)+r(1)
β

)
=

∑
q

T⊥(−q)
∑

G(2)G(1)

δk+q ,−G(2) δp+q ,−G(1) eiG(2)·r(2)
α e−iG(1)·r(1)

β

=
∑

G(2)G(1)

T⊥
(
k + G(2)

)
δk+G(2) ,p+G(1) eiG(2)·r(2)

α e−iG(1)·r(1)
β .

(2.24)

Since we are interested in the low energy physics, k and p must be close to the corresponding
Dirac points, namely Kφ and K′φ for p in layer 1, while K−φ and K′

−φ for k in layer 2. Therefore,
T̂kp can in principle couple to each other states of di�erent layers within the same valley, or
between opposite valleys. Since T⊥(q) decays exponentially with q = |q| [11], the leading
terms are those with the least possible

∣∣∣k + G(2)
∣∣∣ compatible with momentum conservation

k + G(2) = p + G(1). At small twist angle φ, only the intra-valley matrix elements, p ∼ k, are
sizeable, while the inter-valley ones are negligibly small, despite opposite valleys of di�erent
layers fold into the same point of the MBZ. For instance, if p ' K+φ and k ' K′

−φ, momentum
conservation requires very large G(1) = (2k + 1)

(
G(1)

a −G(1)
b

)
and G(2) = (2k + 1)

(
G(2)

b −G(2)
a

)
,

thus an exponentially small T⊥
(
k + G(2)). The e�ective decoupling between the two valleys

implies that the number of electrons within each valley is to high accuracy a conserved quantity,
thus an emergent valley Uv(1) symmetry [11, 69] that causes accidental band degeneracies along
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high-symmetry lines in the MBZ [69, 30].

We can therefore just consider the intra-valley inter-layer scattering processes. We start with
valley ζ = +1, and thus require that k is close to K−φ = K2 and p close to K+φ = K1, see Fig. 2.1.
Since the modulus of k ∼ K2 is invariant under C3z rotations, where C3z

(
K2

)
= K2 −G(2)

1 and
C2

3z
(
K2

)
= K2 −G(2)

2 , maximisation of T⊥
(
k + G(2)) compatibly with momentum conservation

leads to the following conditions, see Eq. (2.19),

p = k ,
p = k −G(2)

a + G(1)
a = k + G2 ,

p = k −G(2)
b + G(1)

b = k −G1 .

(2.25)

Upon de�ning T (k) ≡ t⊥, and using Eq. (2.25) to evaluate the phase factors in (2.24), we �nally
obtain

T̂ ζ=+1
kp = δp,k T̂1 + δp ,k+G2 T̂2 + δp ,k−G1 T̂3 , (2.26)

where we explicitly indicate the valley index ζ, and

T̂1 = t⊥

(
1 1
1 1

)
, T̂2 = t⊥

(
1 ω∗

ω 1

)
, T̂3 = t⊥

(
1 ω
ω∗ 1

)
, (2.27)

with ω = e2πi/3.

We now focus on the other valley, ζ = −1, and take k close to K′
−φ = −K1, and p to K′φ = −K2,

see Fig. 2.1(d). In this case Eq. (2.25) is replaced by

p = k ,
p = k −G2 ,

p = k + G1 ,

(2.28)

and

T̂ ζ=−1
kp = δp,k T̂ ∗1 + δp ,k−G2 T̂ ∗2 + δp ,k+G1 T̂ ∗3 . (2.29)

Let us brie�y discuss how one can take into account lattice relaxation, which as pointed out
in the previous section tends to shrink the energetically unfavourable AA regions enlarging
the Bernal stacked triangular domains in the moiré pattern. As a consequence, the inter- and
intra-sublattice hopping processes acquire di�erent amplitudes, which is taken into account by
modifying the operators T̂i in Eq. (2.27) according to

T̂1 → T1(u, u′) =

(
u u′

u′ u

)
= uσ0 + u′ σx ,

T̂2 → T̂2(u, u′) =

(
u u′ ω∗

u′ ω u

)
= uσ0 + u′

(
cos

2π
3
σx + sin

2π
3
σy

)
,

T̂3 → T̂3(u, u′) =

(
u u′ ω

u′ ω∗ u

)
= uσ0 + u′

(
cos

2π
3
σx − sin

2π
3
σy

)
,

(2.30)

with u generally smaller than u′. In Fig. 2.6 we show the bandstructure of θ = 1.08◦ twisted
bilayer graphene obtained using the u, u′ parameters of Ref. [53]. The bandstructure is in general
similar to the one obtained with tight-binding, although the bands are particle-hole symmetric.
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Figure 2.6: Bandstructure of relaxed twisted bilayer graphene at the magic angle θ ≈ 1.08◦ obtained
with the continuum model and using the parameters of Ref.[53]. On the left a zoom within the �at bands
region.

The continuum model Hamiltonian can be made more accurate by introducing other terms in
the Hamiltonian [70] which tend to break this additional particle-hole symmetry.
We conclude by showing how this formalism allows recovering the untwisted case, where
G(1)

1/2 = G(2)
1/2, so that, through Eq. (2.19), G1 = G2 = 0, and therefore

T̂kp −−−−→
φ→0

δp,k
(
T̂1 + T̂2 + T̂3

)
= 3t⊥ δp,k

(
1 0
0 1

)
, (2.31)

which is what one would expect from an AA stacked bilayer.
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3
Emergent symmetries and Wannier orbitals

in twisted bilayer graphene

Because of the very non-dispersive character of the �at bands (FBs), it is tempting to invoke an
important role of strong electronic correlations in the physics of magic angle tBLG [8]. Despite
mean �eld calculations such as Hartree-Fock have been performed with the continuum model,
the common approach dealing with strong correlations is adding electron-electron repulsion
on top of a tight-binding lattice model. However, the large number of atoms contained in the
unit cell makes it challenging, if not impossible, to carry out a straight many-body calculation
even in the already simpli�ed lattice model. A further approximation may consist in focusing
just on the four �at bands, an approach which requires to �rst identify their corresponding
Wannier functions. Surprisingly, even such a preliminary step turns out to be rather di�cult
and, to some extent, controversial [71, 72, 73, 74, 75, 76]. The scope of this chapter is to shed
light on this debated issue. In Section. 3.1 we work out what are the symmetries of tBLG. Then,
in Section. 3.2 we show that due to the peculiarities of the Bloch states at the high-symmetry
points it is not possible to build a minimal model of the �at bands which employs less than 8
Wannier orbitals. In Section. 3.3 we propose a 8 orbitals (per valley) model , able to faithfully
describe the �at bands physics and topology.

3.1 Emergent symmetries in twisted bilayer graphene

As shown in Fig. 3.1, the point group of twisted bilayer graphene depends on the twisting center.
If the twisted bilayer is obtained from AA stacking upon rotation around the center of two
overlapping basic graphene hexagons, the point-group symmetry of the superlattice is D6, which
reduces to D3 when the rotation center is around a vertical C-C bond [77, 71]. If instead the
twisting center is the midpoint between two carbon atoms in the same layer, the group is D2.
Finally, whenever the layers are rotated around non-high symmetry points (the situation more
likely to occur in experiments), the point group of the lattice contains only a re�ection with
respect to the rotation axis. This is puzzling since some of the most interesting features of a
bandstructure are those protected by symmetry. As an example, if the group was D3, the Dirac
nodes at the K points would loose symmetry protection and would be gapped by perturbations

23
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a) b) c)

Figure 3.1: Point group of twisted bilayer graphene obtained by twisting with respect to three di�erent
twisting centers. a) the twisting center is the center of two overlapping hexagons and the point group of
the lattice is D6. b) the rotation point is a vertical C-C bond and the point group of the lattice is D3. c)
the lattice is twisted with respect to the mid point between two carbon atoms and the point group of the
lattice is D2.

such as an electric �eld perpendicular to the graphene layers. In this section we show that
at small angles, twisted bilayer graphene develops a set of ’emergent’ symmetries, which are
completely independent on the twisting center and robust with respect to lattice relaxation. The
emergence of these symmetries is general to any long-wavelength moiré material with striking
consequences also on the physics of twisted TMDs (see Chapter 5).

3.1.1 Emergent D6 symmetry
We start by recalling the symmetries and irreducible representations of the group D6, which, as
we’ll see in the following, emerges in the low energy Bloch states despite the lattice having no
symmetries. Speci�cally, resolving the action of each symmetry operation in the indices that
identify the two layers, 1 and 2, the two sublattices within each layer, A and B, and, �nally, the
two sublattices AB and BA of the moiré superlattice, we have that:

— the rotation C3z by 120◦ degrees around the z-axis is diagonal in all indices, 1 and 2, A and
B, AB and BA;

— the C2x rotation by 180◦ degrees around the x-axis interchanges 1 with 2, A with B, but is
diagonal in AB and BA;

— the C2y rotation by 180◦ degrees around the y-axis interchanges 1 with 2, AB with BA, but
is diagonal in A and B;

— �nally, the action of a C2z rotation by 180◦ degrees around the z-axis is a composite
symmetry operation obtained by noting that C2z = C2x × C2y.

In Table 3.1 we list the irreducible representations (irreps) of the D6 space group and the action
on each of them of the symmetry transformations C3z, C2x and C2y. The D3 group di�er from
the D6 one because it lacks of the C2z rotations being generated by the C3z and C2y symmetries
only. In order to prove that the system is developing an emergent D6 symmetry, we relaxed
a θ = 1.08◦ twisted bilayer whose supercell was built twisting around a vertical C-C bond. In
this case, the unrelaxed bilayer posses D3 symmetry which is in general not preserved during
relaxation. Then, we analyze the symmetries of the Bloch states at the high-symmetry points of
the spectrum. The little group L at Γ coincides with the full G, while, at K1 or K2, L is generated
only by C3z for both G=D6 and G=D3. It follows that the symmetry properties of the Bloch
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C3z C2x C2y

A1(1) +1 +1 +1
A2(1) +1 -1 -1
B1(1) +1 +1 -1
B2(1) +1 -1 +1

E1(2)
(
cos φ − sin φ
sin φ cos φ

) (
+1 0
0 −1

) (
−1 0
0 +1

)
E2(2)

(
cos φ − sin φ
sin φ cos φ

) (
1 0
0 −1

) (
1 0
0 −1

)
Table 3.1: Nontrivial irreducible representations of the space group D6. Each representation has the de-
generacy shown in parenthesis. We also list the action of the symmetry operations for each representation,
where φ = 2π/3.

wavefunctions at Γ can discriminate between G=D6 and G=D3 or any other group.
We thus analyze the Bloch states at Γ within the �at bands. Looking at Fig. 3.2, one notes that
the Bloch functions have negligible amplitude in the AA zones, being mostly localized in AB/BA
[78]. Most importantly, one �nds that the Bloch function is not only invariant under C3z, but
also possesses well de�ned symmetry properties under C2z and C2x, speci�cally it is odd under
the former, cf. panel layer #1 A with panel layer #1 B, and even under the latter, cf. panel #1
A with panel layer #2 B. Similarly, the other state within the lower doublet (not shown) is still
even under C2x, but also even under C2z. That doublet thus transforms with respect to C2x as an
s-orbital. On the contrary, the upper doublet is odd under C2x, thus transforming as a pz-orbital,
one state being even and the other odd under C2z. We thus conclude that close to the charge
neutrality point the e�ective symmetry group is actually D6 [77], and hence contains also C2z,
even if the relaxed structure lacks any point symmetry.

3.1.2 Uv(1) valley symmetry
We stress that the double degeneracy of the �at bands at Γ is generically not to be expected
even assuming D6 symmetry. The accidental degeneracy is due to the fact that the coupling
between di�erent Dirac points in di�erent layers, e�ectively vanishes at small twist angles
[11], even though symmetry does not prohibit this coupling to be �nite. This phenomenon
corresponds to an additional emergent symmetry, dynamical in nature, often referred as valley
charge conservation Uv(1) symmetry. The mini Brillouin zone (MBZ) that corresponds to the
real space geometry of Fig. 2.2 and its relationship with the original graphene Brillouin zones
are shown in Fig. 2.1. Because of the chosen geometry, the Dirac point Kφ(K′φ) of the top layer
and K′−φ(K−φ) of the bottom one fold onto the same point, K1 or K2, of the MBZ, so that a �nite
matrix element of the Hamiltonian between them is allowed by symmetry. Nevertheless, the
matrix element of the one-body component of the Hamiltonian is negligibly small at small twist
angles, so that the two Dirac points or valleys, remain e�ectively independent of each other.
This implies that the operator

∆Nv = N1 − N2 , (3.1)

where N1 and N2 are the occupation numbers of each valley, must commute with the non-
interacting Hamiltonian of the tBLG at small angles. That operator is in fact the generator of the
Uv(1) symmetry. As we will see in more details in the following Chapter (see 4.0.1), the interplay
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Figure 3.2: Layer (#1-#2) and sublattice (A-B) components of one state within the lowest-energy doublet
at Γ in the �at bands. The colour of each point indicates its complex phase, while its size is a measure
of its square modulus. Each unit cell (black dashed line in top left panel) has been replicated 3 times to
improve visibility. This eigenstate is invariant under C3z, even with respect to C2x and odd under C2z.

between the valley symmetry and C2y is responsible for the additional two-fold degeneracies
beyond those of Table 3.1 in both electron band structure and phonon spectra along all the
points in the MBZ invariant under that symmetry.

3.2 Symmetry analysis of the Bloch states andWannier ob-
struction

In Fig. 3.3 we show the electronic structure and the symmetries of the Bloch states obtained
with tight-binding calculations on the relaxed lattice (see Section 2.3.1). The colored circles
and triangles at the Γ and K points, respectively, indicate the irreps that transform like the
corresponding Bloch states. As mentioned before at Γ the FBs consist of two doublets, the lower
corresponding to the s-like irreps A1 + B1, and the upper to the pz-like A2 + B2. Right above
and below the FBs, we �nd at Γ two quartets, each transforming like E1 + E2. At K, the FBs
are degenerate and form a quartet E + E. Consistently with the D3 little group containing C3z

and C2y, at K we �nd either quartets, like at the FBs, made of degenerate pairs of doublets, each
transforming like E, or doublets transforming like A1 + A2, where A1 and A2 di�er in the parity
under C2y. As mentioned above, this overall doubling of degeneracies beyond their expected D6

space group irreps, re�ects the valley Uv(1) symmetry. We end by remarking that the so-called
’fragile’ topology [75, 77, 76, 79], diagnosed by the odd winding of the Wilson loop (WL) [75], is
actually robust against lattice corrugations [80] and relaxation, as shown by panel (c) in Fig. 3.3.
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Figure 3.3: (a) Electronic band structure of twisted bilayer graphene at the angle θ = 1.08 after full
atomic relaxation. The charge neutrality point is the zero of energy. The irreps at the Γ point are encoded
by colored circles, where blue, red and green stand for the A1 + B1, A2 + B2 and E1 + E2 irreps of the D6
space group, respectively. A1 and B1 transform as s-like orbitals with respect to C2x while A2 and B2 as
pz orbitals. The two dimensional irreps instead transform as px ± ipy orbitals. At the K1 point the E and
A1 + A2 irreps of the little group D3 are represented by green and violet triangles, respectively. b) Zoom
in the FBs region. c) Wilson loop of the four FBs as function of k = G2/π.

3.2.1 Wannier Orbitals
There is wide consensus [75, 74, 72, 71, 78] that a proper description of the band structure can
be obtained by just assuming that the Wannier orbitals of the �at bands are centered on the
AB and BA sites of the honeycomb moiré superlattice, even though their actual weight is often
mostly localized on the AA regions. In the following we will denote as L1 and L2 the moiré
lattice vectors, which span the triangular lattice formed by the AA sites with coordinates Ri and
R′i . We parametrize the Wannier orbitals ΨAB(r − rAB) and ΨBA(r − rBA) centered around the AB
and BA sites with coordinates rAB and rBA, respectively, through the functions ψAB

i (r − Ri) and
ψBA

i (r − R′i), i = 1, 2, 3, centered instead around AA, see Fig. 3.4. In particular we shall assume
that ψAB

1 and ψBA
3 are centered at the origin, taken to coincide with AA center R1 = R′3 = 0, so

that R2 = −L1, R′2 = L2, R3 = R′1 = L1 − L2, rAB = (L1 − 2L2)/3 and rBA = (2L1 − L2)/3.
It follows that the most general Bloch function Φk(r) can be written as

Φk(r) =
1
√

V

∑
R

(
uk e−ik·(R+rAB) ΨAB(r − rAB − R) + vk e−ik·(R+rBA) ΨBA(r − rBA − R)

)
=

1
√

V

∑
R

e−ik·R
(
uk ψ

AB
k (r − R) + vk ψ

BA
k (r − R)

)
≡

1
√

V

∑
R

e−ik·R φk(r − R) ,
(3.2)

where |uk|
2 + |vk|

2 = 1, V is the area, and

ψAB
k (r) = ψAB

1 (r) e−ik·(L1−2L2)/3 + ψAB
2 (r) e−ik·(L1+L2)/3 + ψAB

3 (r) e−ik·(−2L1+L2)/3 ,

ψBA
k (r) = ψBA

1 (r) e−ik·(−L1+2L2)/3 + ψBA
2 (r) e−ik·(−L1−L2)/3 + ψBA

3 (r) e−ik·(2L1−L2)/3 .
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Figure 3.4: Pictorial view of the Wannier functions ΨAB(r − rAB) and ΨBA(r − rBA) centered at AB and
BA sites, respectively. The triangles represent wavefunction components centered around the AA regions,
while the combination of the three triangles de�nes the Wannier orbital, centered instead around AB,
left, or BA, right.

We note that, even though φk(r − R) might be confused with the Wannier function centred in
the triangular site R, yet it is not so because of the explicit dependence upon momentum k. In
particular, under a symmetry transformation G, such that r→ rG and k→ kG,

G
(
Φk(r)

)
=

1
√

V

∑
R

e−ikG ·R φk(rG − R) , (3.3)

the outcome simpli�es only at the high-symmetry k-points, i.e., when kG ≡ k apart from a
reciprocal lattice vector, in which case

G
(
Φk(r)

)
= Φk(rG) . (3.4)

Going back to the de�nitions (3.3) and (3.3), we �nd for the high-symmetry points shown in
Fig. 2.1,

ψAB
Γ (r) = ψAB

1 (r) + ψAB
2 (r) + ψAB

3 (r) ,

ψBA
Γ (r) = ψBA

1 (r) + ψBA
2 (r) + ψBA

3 (r) ,
(3.5)

at Γ, while at K2,

ψAB
K2

(r) = ω
(
ψAB

1 (r) + ωψAB
2 (r) + ω∗ ψAB

3 (r)
)
,

ψBA
K2

(r) = ω∗
(
ψBA

1 (r) + ω∗ ψBA
2 (r) + ωψBA

3 (r)
)
,

(3.6)

and �nally at K1,

ψAB
K1

(r) = ω∗
(
ψAB

1 (r) + ω∗ ψAB
2 (r) + ωψAB

3 (r)
)
,

ψBA
K1

(r) = ω
(
ψBA

1 (r) + ωψBA
2 (r) + ω∗ ψBA

3 (r)
)
,

(3.7)

where ω = ei2π/3.

Since the Wannier functions are centred at the vertices of the hexagons, where the symmetry
is C3 irrespective of the global symmetry, one could be tempted to rationalize [71, 72] the FBs
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Figure 3.5: Layer #1 and sublattice (A-B) components of s1(r) (left panel) and s2(r) (right panel). The
colour of each point indicates its complex phase, while its size is a measure of its square modulus. Each
unit cell (black dashed line in top left panel) has been replicated 3 times to improve visibility.

mathb f Γ point double degeneracy as due to two di�erent ΨAB, as well as ΨBA, see Fig. 3.4, which
transform as the two-dimensional irreducible representation of C3. We �nd that this assumption
is not correct in our case because as we have shown in Section. 3.1.1 the wavefunctions within
the �at bands at Γ are instead invariant under C3z, which implies that the Wannier functions
must transform as one of the singlet irreps of C3. Assuming therefore that all the Wannier
functions are invariant under C3z, we can parametrize the functions ψAB

i (r), i = 1, 2, 3, of Fig. 3.4
as follows

ψAB
1 (r) = A(r) + E+1(r) + E−1(r) ,

ψAB
2 (r) = A(r) + ω E+1(r) + ω∗ E−1(r) ,

ψAB
3 (r) = A(r) + ω∗ E+1(r) + ω E−1(r) ,

(3.8)

where A(r) is invariant under C3, while E±1(r) transforms with eigenvalue ω±1 = e±i2π/3. Recall-
ing that ψAB

n+1(r − L2) = C3(ψAB
n (r − 0)) (n = 1, 2, 3 and n + 3 = n), one can readily show that the

Wannier function ΨAB(r) shown in Fig. 3.4 is indeed invariant under C3z. Similarly, for ψBA
i (r)

we introduce the functions A′(r) and E′
±1(r). It follows that the Eqs. (3.5) and (3.6) simplify to

ψAB
Γ (r) = 3A(r) ,

ψAB
K2

(r) = 3ω E−1(r) ,

ψAB
K1

(r) = 3ω∗ E+1(r) ,

(3.9)
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Figure 3.6: Layer #1 and sublattice (A-B) components of p1(r) (left panel) and p2(r) (right panel). The
colour of each point indicates its complex phase, while its size is a measure of its square modulus. Each
unit cell (black dashed line in top left panel) has been replicated 3 times to improve visibility

for AB, and

ψBA
Γ (r) = 3A′(r) ,

ψBA
K2

(r) = 3ω∗ E′+1(r) ,

ψBA
K1

(r) = 3ω E′−1(r) ,

(3.10)

for BA. Therefore, studying the Bloch functions at the di�erent high-symmetry points gives
direct access to A(r) as well as E±1(r), as we show in what follows. If so, AB and BA being
equivalent, the function φk(r), see Eqs. (3.2), (3.5), (3.9) and (3.10), at Γ can be written as

φΓ(r) = 3A(r) ± 3A′(r) , (3.11)

i.e., sum or di�erence of the AB and BA components. Since the two combinations cannot be
degenerate, in order to describe the band structure we need at least two di�erent s-like and two
di�erent pz-like orbitals for each sublattice AB or BA. It thus follows that there must be two
additional doublets above or below the �at-bands, one of s-type and another of pz-type, both
invariant under C3z. As can be seen in Fig. 3.3, above the �at-bands at Γ there are two fourfold
degenerate levels that actually transform as the two-dimensional irreducible representation,
and hence are not invariant under C3z. The next two states (upper red circle) have instead the
right symmetry properties, i.e., they are invariant under three-fold rotations and have well
de�ned parity, actually odd, under C2x (one being even and one odd with respect to C2z). This
doublet is therefore the partner of the pz-doublet in the �at bands. The same holds in the lower
energy bands (lower blue circle). With the only di�erence that the doublet is now even under
C2x, hence it is the partner of the s-doublet in the �at bands. Let us focus for instance on the



3.2 Symmetry analysis of the Bloch states and Wannier obstruction 31

layer #1 A layer #1 B layer #2 A layer #2 B

−π

−π/2

0

π/2

π

AA

AB

BA

AB AB AB

Figure 3.7: Layer and sublattice components in the unit cell of one of the two degenerate Bloch functions
at K2 whose Wannier orbitals are centred on AB.

two s-orbitals, and denote 3A(r) either as s1(r) or s2(r), and similarly 3A′(r) as s′1(r) or s′2(r).
We assume that the s-doublet below the FBs corresponds to the AB+BA combination, hence,
through Eqs. (3.9) and (3.10),

φ(1+)
Γ

(r) = s1(r) + s′1(r) ,

φ(2+)
Γ

(r) = s2(r) + s′2(r) .
(3.12)

If φ(1+)
Γ

is chosen to be even under C2z, so that φ(2+)
Γ

is odd, then

s′1 = C2z
(
s1

)
, s′2 = −C2z

(
s2

)
. (3.13)

The s-doublet within the FBs must therefore be the AB-BA combination

φ(1−)
Γ

(r) = s1(r) − s′1(r) ,

φ(2−)
Γ

(r) = s2(r) − s′2(r) ,
(3.14)

so that φ(1−)
Γ

is odd under C2z, while φ(2−)
Γ

even. It follows that taking either the sum or the
di�erence between two states belonging to di�erent s-doublets with opposite parity under C2z,
we should �nd wavefunctions centred either in AB or BA. This is indeed the case. In Fig. 3.5
we show the layer #1 sublattice components of s1(r), left panel, and s2(r), right panel. The
components on layer #2 can be obtained through C2x, and the functions s′1(r) and s′2(r) on the
sublattice BA through C2z. We can repeat a similar analysis to �nd the two pz-type functions,
p1(r) and p2(r), which are shown in Fig. 3.6.

3.2.2 Bloch functions at K
At the high-symmetry points K2 and K1 = −K2 the AB and BA Wannier functions are e�ectively
decoupled and degenerate. However, the outcome of numerical diagonalization is a generic linear
combination of the degenerate levels. Therefore, in order to identify AB and BA components,
we introduced a small perturbation in the Hamiltonian that makes AB and BA inequivalent
while preserving the C3z symmetry:

V(r) = −

3∑
j=1

2V0sin(g j · r), (3.15)
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where g1 = G1, g2 = G2, g3 = −G1 − G2, and V0 ≈ 1 µeV. This function is maximum in AB,
minimum in BA and zero in AA. By doing so, the fourfold degenerate states at K1/2 are split
by a tiny gap (less than 0.2 µeV) in two doublets, the lower/upper one composed by Bloch
states that are combination of BA/AB Wannier orbitals only. In such a way, we can directly
obtain the proper lattice-symmetric functions E±1(r) and E′

±1(r) through Eqs. (3.9) and (3.10).
Since there are four states at K1/2, there will be two di�erent E+1(r),and similarly for all the
other components. In Fig. 3.7 we show the layer and sublattice components of one of the two
degenerate Bloch functions at K2 centred on AB. We note that this Bloch functions transforms
under C3z as the expected E−1(r), see Eq. (3.9). We did check that all other Bloch functions at K2

and K1 are compatible with Eqs. (3.9) and (3.10).

3.2.3 Wannier obstruction
In the previous section we have shown that each pair of Bloch states at Γ has a partner high-
er/lower in energy. In other words, considering the additional valley degree of freedom and that
the orbitals are centered on the honeycomb formed by the AB/BA regions, atleast eight Wannier
orbitals are necessary to faithfully generate the physics around Γ. This phenomenon is known as
’Wannier obstruction’ [74, 75, 76] because although the system exhibit a set of four energetically
isolated bands, they cannot be described by four Wannier orbitals only. The existence of such
an obstruction in twisted bilayer graphene has been proved with several methods, most of them
introducing the concept of ’fragile topology’ [81]. In this picture, the �at bands are the result of
a series of avoided crossings between energy levels within the �at bands and the bands above
and below. As a consequence of this level repulsion, energy levels are compressed to form the
�at bands around neutrality. The complex interference between these levels is �nely tuned by
the twisting angle. We conclude by stressing that the same symmetry partners of the FB levels
at Γ are no less than 300 meV away from them, and in between there are several states with
di�erent symmetry. However, as soon as we move away from Γ all those states will be coupled
to each other by the Hamiltonian, and thus a description in terms only of few of them is hardly
possible. This implies that the number of Wannier orbitals per valley might be even larger than
four.

3.3 Wannier model of the �at bands physics in twisted bi-
layer graphene

As mentioned in Sec. 3.2.3, it is not possible to build a Wannier model for the �at bands of tBLG
which contains only four orbitals. Here, inspired by the symmetries of the Bloch states at the
high-symmetry points, we enlarge the 8 orbital model proposed previously to include twice as
many orbitals. The resulting 16 orbitals model faithfully describes the �at bands physics and
topology.

3.3.1 16 orbitals model
All the Wannier orbitals (WOs) considered in this model are centered at the Wycko� positions
2c of the moiré triangular superlattice, i.e., at the AB and BA region centers. While a variety of
WOs centered at di�erent Wycko� positions has been proposed [78, 74, 77, 71, 76, 72, 73, 75, 64],
our simple assumption is well suited for our purposes. The site symmetry at the Wycko�
positions 2c is D3, and includes only C3z and C2x with irreps A1, A2 and E. Inspired by the
symmetries of the Bloch states at the high-symmetry points, see Sec. 3.2), we consider two A1
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and A2 one-dimensional irreps (1d-irreps), both invariant under C3z and eigenstates of C2x with
opposite eigenvalues c2x = ±1. In addition, we consider one two-dimensional irrep (2d-irrep) E,
which transforms under C3z and C2x as the 2d-irreps in Table 3.1, hence comprises eigenstates
of C2x, with opposite eigenvalues c2x = ±1, which are not invariant under C3z.
We de�ne on sublattice α = AB, BA the spin-σ WO annihilation operators Ψα,Rσ and Φα,Rσ
corresponding to the two 1d-irreps ( Ψ) or the single 2d-irrep (Φ), respectively

Ψα,Rσ =


Ψα,1,s,Rσ
Ψα,2,s,Rσ
Ψα,1,p,Rσ
Ψα,2,p,Rσ

 ,Φα,Rσ =


Φα,1,s,Rσ
Φα,2,s,Rσ
Φα,1,p,Rσ
Φα,2,p,Rσ

 , (3.16)

where the subscript s refers to c2x = +1, and p to c2x = −1, while the labels 1 and 2 refer to
the two valleys. It is implicit that each component is itself a spinor that includes fermionic
operators corresponding to di�erent WOs that transform like the same irrep. We shall combine
the operators of di�erent sublattices into a single spinor

ΨRσ =

(
ΨAB,Rσ
ΨBA,Rσ

)
,ΦRσ =

(
ΦAB,Rσ
ΦBA,Rσ

)
. (3.17)

We further introduce three di�erent Pauli matrices σa that act in the moiré sublattice space (AB,
BA), µa in the c2x = ±1 space (s, p), and τa in the valley space (1, 2), where a = 0, 1, 2, 3, a = 0
denoting the identity.
With these de�nitions, the generator (3.1) of the valley Uv(1) symmetry becomes simply

∆Nv =
∑
Rσ

(
Ψ
†

Rσ σ0 τ3 µ0 ΨRσ + Φ
†

Rσ σ0 τ3 µ0 ΦRσ

)
. (3.18)

It is now worth deriving the expression of the space group symmetry operations in this
notation and representation. By de�nition, the C2x transformation corresponds to the simple
operator

C2x

(
ΨRσ

)
= σ0 τ0 µ3 ΨC2x(R)σ ,

C2x

(
ΦRσ

)
= σ0 τ0 µ3 ΦC2x(R)σ .

(3.19)

The 180◦ rotation around the z-axis that connects sublattice AB with BA of each layer (C2z) is
not diagonal in the valley indices and can be represented by [75, 74]

C2z

(
ΨRσ

)
= σ1 τ1 µ0 ΨC2z(R)σ ,

C2z

(
ΦRσ

)
= σ1 τ1 µ0 ΦC2z(R)σ .

(3.20)

Finally, since C2y = C2z × C2x, then

C2y

(
ΨRσ

)
= σ1 τ1 µ3 ΨC2y(R)σ ,

C2y

(
ΦRσ

)
= σ1 τ1 µ3 ΦC2y(R)σ .

(3.21)

For the sake of simplicity we shall not require the model Hamiltonian to reproduce precisely
the shape of all the bands around charge neutrality, especially those above or below the FBs, but
only the correct elementary band representation, topology and, obviously, the existence of the
four �at bands separated from the all others. Considering for instance only the 32 states at Γ
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Figure 3.8: Panel a): sketch of the elementary band representation along Γ→ K1 taking into account
the 32 bands closest to the charge neutrality point and without allowing avoided crossing between same
symmetry Bloch states. Blue, red and green lines refer to Bloch states that at Γ transform like A1 + B1,
A2 + B2 and E1 + E2, respectively. Should we allow for avoided crossings, close to charge neutrality we
would obtain the four �at bands shown as black lines surrounding the shaded region. Panel b): the FBs
obtained by a model tight-binding Hamiltonian that includes only the solid bands of panel a). Panel c):
Wilson loop corresponding to the four bands in panel b) fully occupied.

closest to the charge neutrality point, and maintaining our assumption of WOs centred at the
Wycko� positions 2c, those states (apart from avoided crossings allowed by symmetry) would
evolve from Γ to K1 in accordance with the D6 space group as shown in Fig. 3.8. Once we allow
same-symmetry Bloch states to repel each other along Γ → K1, the band representation can
look similar to the real one (Fig. 3.3), including the existence of the four FBs that start at Γ as two
doublets, A1 + B1 and A2 + B2, and end at K1 as two degenerate doublets, each transforming as
the 2d-irrep E, see the two solid black lines in Fig. 3.8. While this picture looks compatible with
the actual band structure, we shall take a further simpli�cation and just consider the thicker red,
blue and green bands in Fig. 3.8, which could still produce �at bands with the correct symmetries.
This oversimpli�cation obviously implies giving up the possibility to accurately reproduce the
shape of the bands above and below the FBs - but it makes the algebra much simpler. Within this
approximation the components of the spinor operators in Eq. (3.16) are actually single fermionic
operators, so that we limit ourselves to just four WOs for each sublattice, AB or BA, and valley, 1
and 2. Two of such WOs transform like the 1d-irreps, one even, A1, and the other odd, A2, under
C2x. The other two instead transform like the 2d-irrep E. In order to make the invariance under
C3z more explicit, we shall use the transformed spinors(

Φ+1,kσ
Φ−1,kσ

)
=

1
√

2

(
1 −i
1 +i

) (
Φs,kσ
Φp,kσ

)
, (3.22)

for the 2d-irreps, which correspond to WOs eigenstates of C3z. Moreover, it is convenient to
transform also the spinors Ψkσ of the 1d-irreps in the same way, i.e.,(

Ψ+1,kσ
Ψ−1,kσ

)
=

1
√

2

(
1 −i
1 +i

) (
Ψs,kσ
Ψp,kσ

)
, (3.23)
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which correspond to WOs still invariant under C3z but not under C2x, whose representation both
in Ψkσ and Φkσ becomes the Pauli matrix µ1. In conclusion the spinor operators de�ned above
satisfy

C3z

(
Φkσ

)
=

(
ω 0
0 ω∗

)
ΦC3z(k)σ ,

C3z

(
Ψkσ

)
= ΨC3z(k)σ ,

C2x

(
Φkσ

)
= µ1 ΦC3z(k)σ ,

C2x

(
Ψkσ

)
= µ1 ΨC3z(k)σ .

(3.24)

We shall, for simplicity, consider only nearest and next nearest neighbor hopping between AB
and BA region, which correspond to the following functions in momentum space:

γ1(k) = αk

(
1 + e−ik·a + e−ik·b

)
,

γ1,+1(k) = αk

(
1 + ω e−ik·a + ω∗ e−ik·b

)
,

γ1,−1(k) = αk

(
1 + ω∗ e−ik·a + ω e−ik·b

)
,

(3.25)

for �rst neighbors, and

γ2(k)= αk

(
eik·(a−b) + e−ik·(a−b) + e−ik·(a+b)

)
,

γ2,+1(k)= αk

(
ω eik·(a−b)+ ω∗e−ik·(a−b)+ e−ik·(a+b)

)
,

γ2,−1(k)= αk

(
ω∗eik·(a−b)+ ω e−ik·(a−b)+ e−ik·(a+b)

)
,

(3.26)

for second neighbors, where ω = ei2π/3, αk = eik·(a+b)/3, and the superlattice constants a =

R(
√

3/2,−1/2) and b = R(
√

3/2, 1/2). Since

C3z
(
a
)

= b − a ,C3z
(
b
)

= −a ,
C2x

(
a
)

= b ,C2x
(
b
)

= a ,
(3.27)

then, for n = 1, 2,

γn

(
C3z(k)

)
= γn(k) ,

γn,±1

(
C3z(k)

)
= ω±1 γn,±1(k) ,

γn

(
C2x(k)

)
= γn(k) ,

γn,±1

(
C2x(k)

)
= γn,∓1(k) ,

(3.28)

which shows that γn,±1(k) transform like the 2d-irrep E.
We assume the following tight-binding Hamiltonian for the 1d-irreps

H1d−1d =
∑
kσ

[
− ∆ Ψ

†

kσ σ0 µ1 τ0 Ψkσ −
∑
n=1,2

t(n)
11

(
γn(k) Ψ

†

kσ σ
+ µ0 τ0 Ψkσ + H.c.

)]
,
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where t(1)
11 and t(2)

11 are the �rst and second neighbor hopping amplitudes, respectively, which we
assume to be real.
The 2d-irreps have instead the Hamiltonian

H2d−2d = −
∑
kσ

2∑
n=1

[
t(n)
22 γn(k) Φ

†

kσ σ
+ µ0 τ0 Φkσ+ g(n)

22 Φ
†

kσ σ
+ γ̂n(k) µ1 τ0 Φkσ + H.c.

]
,

with real hopping amplitudes, where

γ̂n(k) =

(
γn,+1(k) 0

0 γn,−1(k)

)
. (3.29)

Finally, the coupling between 1d and 2d irreps is represented by the Hamiltonian

H1d−2d = −
∑
kσ

2∑
n=1

t(n)
12

[
Φ
†

kσ σ
+ µ1 γ̂n(k) µ1 τ0 Ψkσ + Ψ

†

kσ σ
+ γ̂n(k) τ0 Φkσ

+i Φ
†

kσ σ
+ µ1 γ̂n(k) τ3 Ψkσ + i Ψ

†

kσ σ
+ µ1 γ̂n(k) τ3 Φkσ + H.c.

]
,

with real t(n)
12 .

The Hamiltonian thus reads

Tel = H1d−1d + H2d−2d + H1d−2d , (3.30)

which, through the equations (3.24) and (3.28), can be readily shown to be invariant under C3z and
C2x, and is evidently also invariant under the Uv(1) generator τ3. In addition, the Hamiltonian
must be also invariant under TC2z, where T is the time reversal operator. Noting that

TC2z

(
Φkσ

)
= σ1 µ1 Φk−σ ,

TC2z

(
Ψkσ

)
= σ1 µ1 Ψk−σ ,

(3.31)

one can show that H in (3.30) is also invariant under that symmetry. Finally the minimal
tight-binding model Hamiltonian can be written in the more compact form:

Hel = −∆
∑
Rσ

Ψ
†

Rσσ0τ0µ3ΨRσ + Tel, (3.32)

where ∆ splits the s from the p WOs of the 1d-irreps. The model Hamiltonian thus depends
on eight parameters. The FBs shown in Fig. 3.8 have been obtained choosing: ∆ = 10 , t1

11 = 2
, t1

22 = 5 , g1
22 = 10 , t2

22 = g2
22 = −t2

11 = 1.2 , t1
12 = 2 and t2

12 = 0.5. We emphasize that the FBs
arise in this picture from a sequence of avoided crossings between a large set of relatively broad
bands that strongly repel each other away from the high symmetry points, rather than from
truly localized’ WOs.



4
Valley Jahn-Teller E�ect in twisted bilayer

graphene

In this chapter we introduce a phonon-driven mechanism able to open insulating gaps and
mediate superconductivity in the �at bands of magic angle twisted bilayer graphene. Owing to
the �atness of these bands, the fractional �lling insulators found in [8, 9] are conjectured to be
Mott Insulators, even though rather anomalous ones, since they turn frankly metallic above a
critical temperature or above a threshold Zeeman splitting in a magnetic �eld (see Section. 1),
features not expected from a Mott insulator. Actually, the linear size of the unit cell at the
magic angle is as large as ≈ 14 nm, and the e�ective on-site Coulomb repulsion, the so-called
Hubbard U , must be given by the charging energy in this large supercell projected onto the
FBs, including screening e�ects due to the gates and to the other bands. Even neglecting the
latter, the estimated U ∼ 9 meV is comparable to the bandwidth of the FBs [82]. Since the FBs
are reproducibly found in experiments [14, 8, 9, 15, 16, 17, 23, 62, 63] to be separated from the
other bands by a gap of around ∼ 30 − 50 meV, the actual value of U should be signi�cantly
smaller, implying that tBLG might not be more correlated than a single graphene sheet [83].
In turn, this suggests that the insulating behaviour at ν = ±2 occupancy might instead be the
result of a weak-coupling Stoner or CDW band instability driven by electron-electron and/or
electron-phonon interactions, rather than a Mott localization phenomenon.
As pointed out in [77], in order to open an insulating gap the band instability must break the
twofold degeneracy at the K-points imposed by the D6 space group symmetry of the moiré
superlattice, as well as the additional twofold degeneracy due to the valley charge conservation.
In other words, breaking only symmetries of the D6 group is not enough to open the fractional
�lling gaps observed in experiments. It is therefore essential to identify a microscopic mechanism
that could e�ciently break the valley symmetry Uv(1). The most natural candidate is the
Coulomb repulsion [77, 84, 85], whose Fourier transform decays more slowly than that of
electron hopping, possibly introducing a non negligible coupling among the two valleys even at
small twist angles. Indeed DFT-based calculations show a tiny valley splitting [75, 53], almost at
the limits of accuracy of the method, which is nevertheless too small to explain the insulating
states found in the FBs.
Here we uncover another Uv(1)-breaking mechanism involving instead the lattice degrees of

37
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freedom, mostly ignored so far. As mentioned in the �rst Chapter 2.2, even ab-initio DFT-based
calculations fail to predict well de�ned FBs separated from other bands unless atomic positions
are allowed to relax. That alone already demonstrated that the e�ects of atomic motions in the
lattice are not at all negligible in tBLG, further supported by the signi�cant phonon contribution
to transport [23, 25, 86]. We calculate the phonon spectrum of the fully-relaxed bilayer at 1.08◦

twist angle, which shows the presence, among the about thirty thousands phonons, of a small set
of very special optical modes, with C-C stretching character, very narrow and uniquely coherent
over the moiré supercell Brillouin Zone. Among them, we �nd a doubly degenerate optical
mode that couples to the Uv(1) symmetry much more e�ciently than Coulomb repulsion seems
to do in DFT calculations. A subsequent frozen-phonon tight-binding calculation shows that
this mode is able to fully lift the valley degeneracy even when its lattice deformation amplitude
is extremely small. Remarkably, both electrons and phonons are twofold Uv(1) -degenerate,
and the coupling of this mode with the electron bands actually realizes an E ⊗ e Jahn-Teller
(JT) e�ect [87]. This e�ect is able to stabilize insulating states at integer occupancies of the
FBs, both even and odd. Moreover, a surprising and important additional result will be that the
electron-phonon coupling magnitude controlling this process is extremely large, and not small
as one could generally expect for a very narrow band. We therefore studied the superconducting
state that might be mediated by the Jahn-Teller coupling.
This Chapter is organized as follows. In subsection 4.0.1 we explain how the valley symmetry
enforces two fold degeneracies along most of the high-symmetry lines in the bandstructure
of the system. The phonon spectrum and its properties, especially focusing on special optical
modes strongly coupled with the valley Uv(1) symmetry, are throughly discussed in section 4.1.
Section 4.2 addresses the properties of the superconducting state that might be stabilized by the
particular phonon mode identi�ed in the previous section through a mean-�eld BCS calculation.
Finally, in 4.3 we work out the electron-phonon coupling Hamiltonian terms in the continuum
model formalism.

4.0.1 SU(2) symmetry and accidental degeneracy along C2y invariant
lines

As shown in Fig. 3.3, along all directions that are invariant under C2y, which include the diagonals
as well as all the edges of the MBZ, the electronic bands show a twofold degeneracy between
Bloch states that transform di�erently under C2y. These lines corresponds to the domain walls
(DWs) in real space. This "accidental" degeneracy is a consequence of the interplay between Uv(1)
and C2y symmetries. We can use the operators and Wannier orbitals introduced in Section. 3.3.1
and focus along the Γ→ K1,2 and M → K1,2 high symmetry lines where:

C2y

(
Ψkσ

)
= σ1 τ1 µ3 Ψkσ , (4.1)

and similarly for Φkσ. It follows that the generator of Uv(1), i.e., the operator σ0 τ3 µ0, anticom-
mutes with the expression of C2y along the lines invariant under that same symmetry, namely
the operator σ1 τ1 µ3, and both commute with the Hamiltonian. Then also their product, σ1 τ2 µ3,
commutes with the Hamiltonian and anticommutes with the other two. The three operators

2T3 = σ0 τ3 µ0, 2T1 = σ1 τ1 µ3, 2T2 = σ1 τ2 µ3, (4.2)

thus realise an S U(2) algebra and all commute with the Hamiltonian Ĥk in momentum space
for any C2y-invariant k-point. This emergent S U(2) symmetry is therefore responsible of the
degeneracy of eigenstates with opposite parity under C2y. We note that C2x instead commutes
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Figure 4.1: Panel a): the displacement �eld η(r), Eq. (4.3), restricted on the DWs: the direction of the
atomic displacement is depicted by a small arrow, while its magnitude in mÅ is expressed in colors. Panel
b): displacement along the DW area highlighted by a black dashed line in panel a). The overall e�ect of
the distortion is a narrowing of the DW. Panel c): low energy band structure of tBLG at θ = 1.08 after the
distortion in panel a). The two-fold degeneracies protected by the valley symmetry are completely lifted.

with Uv(1), so that there is no S U(2) symmetry protection against valley splitting along C2x

invariant lines (Γ→ M).

4.1 Phonons in twisted bilayer graphene
The Uv(1) valley symmetry is an emergent one since, despite the fact that its generator (3.1)
does not commute with the Hamiltonian, the spectrum around charge neutrality is nonetheless
Uv(1)–invariant. It is therefore not obvious to envisage a mechanism that could e�ciently break
it.
However, since the lattice degrees of freedom play an important role at equilibrium, as discussed
in Section 2.2, it is possible that they could o�er the means to destroy the Uv(1) valley symmetry.
In this Section we shall show that they indeed provide such a symmetry-breaking tool.

4.1.1 Valley splitting lattice modulation

In Section 3.1.2 we mentioned that the valley symmetry arises because, even though inequivalent
Dirac nodes of the two layers should be coupled to each other by the Hamiltonian after being
folded onto the same point of the MBZ (see Fig. 2.1), at small angle these matrix elements are
vanishingly small and thus the valleys are e�ectively decoupled. That is true if the carbon
lattice, although mechanically relaxed, is unperturbed by the presence of the electrons. Once
coupling with electrons is considered, we cannot exclude that for example a lattice distortion
modulated with the wave vectors connecting the inequivalent Dirac nodes of the two layers, Kφ

with K′
−φ and K′φ with K−φ in Fig. 4.2, might instead yield a signi�cant matrix element among

the valleys. To investigate that possibility we build an ad-hoc distortion into the bilayer carbon
atom positions. We de�ne the vector Qi j = Kφ,i −K′

−φ, j, where i, j = 1, 2, 3 run over the three
equivalent Dirac points of the BZ of each layer, and the D6 conserving displacement �eld

η(r) =
∑

a

3∑
i, j=1

sin
(
Qi j · ra

)
ua,i j δ

(
r − ra

)
, (4.3)
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Figure 4.2: Q-vectors which connect inequivalent valleys in di�erent layers used in Eq. 4.3.

where a runs over all atomic positions, and ua,i j corresponds to a displacement of atom a in
direction Qi j, whose (tunable) magnitude is the same for all atoms. In proximity of the AA
regions the distortion is locally similar to the graphene breathing mode, the in-plane transverse
optical phonon at K [88] with A1 symmetry. Since by construction Qi j is a multiple integer of
the reciprocal lattice vectors, η(r) has the same periodicity of the unit cell, i.e., the distortion
is actually at the Γ point. Moreover, the distortion’s D6 invariance implies no change of space
group symmetries.

Since the most direct evidence of the Uv(1) symmetry is the accidental degeneracy in the
band structure along all C2y–invariant lines, corresponding just to the DWs directions in real
space, we further assume the action of the displacement �eld η(r) to be restricted to a small
region in proximity of the DWs, a�ecting only ≈ 1% of the atoms in the moiré supercell, see top
panels in Fig. 4.1. The modi�ed FBs in presence of the displacement �eld η(r) with

∣∣∣ua,i j

∣∣∣ = 20 mÅ
are shown in the bottom panel of Fig. 4.1. Remarkably, despite the minute distortion magnitude
and the distortion involving only the minority of carbon atoms in the DWs, the degeneracy along
Γ→ K1 and M→ K2 is lifted to such an extent that the four bands split into two similar copies.
This is remarkable in two aspects. First, we repeat, because there is no space symmetry breaking.
The only symmetry a�ected by the distortion is Uv(1), since, by construction, η(r) preserve the
full space group symmetries. Second, the large splitting magnitude re�ects an enormous strength
of the e�ective electron-phonon coupling, whose origin is interesting. Generally speaking, in
fact, broad bands involve large hoppings and large absolute electron-phonon couplings, while
the opposite is expected for narrow bands. The large electron-phonon couplings which we �nd
for the low energy bands of tBLG is reminiscent of the broad-band origin of the FBs discussed
in Sec. 3.2.3.

4.1.2 The phonon spectrum

We compute phonons in tBLG using the force constants of the non-harmonic potentials that we
used to relax the structure:

Cαβ(il, js) =
∂2U

∂Rαil∂Rβ js
(4.4)
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Figure 4.3: a): Phonon dispersion obtained with our choice of intralayer and interlayer potentials in
Bernal stacked bilayer graphene. b) Phonon density of states F(ω) for Bernal stacked bilayer graphene at
zero twist angle (red dashed line) and fully relaxed tBLG at θ = 1.20◦, 1.12◦, 1.08◦ (blue, green and black
lines).

where (i, j) label the atoms in the unit cell, (l, s) the moiré lattice vectors and α, β = x, y, z. Then,
we de�ne the Dynamical Matrix at phonon momentum q as:

Dαβi j(q) =
1

MC

∑
l

Cαβ(il, j0)e−iqRl (4.5)

where MC is the carbon atom mass. Using the above relation we determine the eigenvalue
equation for the normal modes of the system and the phonon spectrum:∑

jβ

Dαβi j(q)ε jβ(q) = ω2
qεiα(q) (4.6)

where ωq denote the energy of the normal mode ε(q). The phonon dispersion of Bernal stacked
bilayer graphene obtained with this method is shown Fig. 4.3 a). As can be seen, the transverse
optical (TO) modes at K are found at ω ≈ 207 meV. As a consequence, the Jahn-Teller modes
discussed in the main text, which vibrate in the same way on the graphene scale, have similar
frequency. However, the frequency of the TO modes in graphene is strongly sensitive to the
choice of the intralayer potential used [89], so that these modes can be predicted to have
frequencies as low as ≈ 170 meV [90, 91]. This implies that also the JT modes may be observed
at a lower frequencies than ours. Fig. 4.3 shows the phonon density of states F(ω) for tBLG
at three di�erent twist angles in comparison with the Bernal bilayer. As previously reported
[92, 93], F(ω) is almost independent of the twist angle, which only a�ects the inter-layer van
der Waals forces, much weaker than the in-plane ones arising from the sti� C −C bonds. As a
consequence, phonons in tBLG are basically those of the Bernal stacked bilayer. This is true
except for a small set of special phonon modes, clearly distinguishable in Fig. 4.4 that depicts
the phonon spectrum zoomed in a very narrow energy region ≈ 0.04 meV around the high
frequency graphene K-point peak of the phonon density of states. Speci�cally, within the large
number of energy levels of all other highly dispersive phonon bands, unresolved in the narrow
energy window, a set of 10 almost dispersionless modes emerges. We note that these special
modes show the same accidental degeneracy doubling along the C2y invariant lines as that of
the electronic bands around the charge neutrality point.
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Figure 4.4: Zoom in the optical region of the phonon spectrum of the fully relaxed tBLG at θ = 1.08.
Among many scattered energy levels of highly dispersive branches (not resolved in this narrow energy
window) a set of 10 narrow continuous branches stands out (no line drawn through data points, which just
fall next to one another). The degeneracy of these modes is twice that expected by D6 space symmetry,
similar in this to electronic bands. The two-fold degenerate mode with the highest overlap with the
deformation η(r), drawn in Fig. 4.5, is marked by a red arrow, while the mode at M used in section 4.1.5
by a green arrow. The avoided crossing which occurs close to Γ is encircled by a blue dashed line.

Similar to the electronic degeneracy, whose underlying Uv(1) symmetry arises from vanish-
ingly weak hopping matrix elements between interlayer K-K’ points in the Hamiltonian, the
mechanically weak van der Waals interlayer coupling here leads to an e�ective Uv(1) symmetry
for this group of lattice vibrations. Their poor dispersion is connected with a displacement which
is non-uniform in the supercell, and is strongly modulated on the moiré length scale, a distinctive
feature of these special modes that we shall denote as ‘moiré phonons’. Their existence has
been recently con�rmed in experiments [94]. In particular, the vibration is maximum in the
center of the AA zones, �nite in the DWs, and negligible in the large AB and BA Bernal regions.
The overlap between the displacement η(r) in (4.3) and the 33492 phonons of the θ = 1.08◦

tBLG at the Γ point is non-negligible only for those moiré phonons. In particular, we �nd the
highest overlap with the doubly degenerate mode marked by a red arrow in Fig. 4.4, and which
transforms like A1 + B1. In Fig. 4.5a) we show the real space distortion corresponding to the
A1 component of the doublet, where the displacement direction is represented by small arrows,
while its intensity is encoded in colors. This inspection of the eigenvectors of these modes at the
atomistic level reveals a de�nite underlying single-layer graphene character, speci�cally that
of the A1 symmetry transverse optical mode at K. Since the graphene K-point does not fold
into the bilayer Γ-point, their appearance along the whole Γ→ K line in the spectrum of the
fully relaxed bilayer must be merely a consequence of relaxation, a relaxation that is particularly
strong precisely in the AA and DW regions.

4.1.3 Insulating state at charge neutrality
We will next focus on the e�ect on the electronic band structure of a carbon atom displacement
corresponding to the two degenerate phonon modes A1 and B1 atΓ, which should a�ect the valley
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Figure 4.5: Panel a): atomic displacements on one of the two layers corresponding to the A1-symmetry
moiré mode of the phonon doublet marked by a red arrow in Fig. 4.4. The direction of displacement is
represented by a small arrow centered at each atomic position, while its modulus is encoded in colors. The
mean displacement per atom is 0.57 mÅ. Panel b): zoom in the center of an AA region, shown for both
layers. Panel c): zoom along one of the domain walls. Note the similarity with the ad-hoc displacement
in Fig. 4.1.

symmetry as the displacement in Fig. 4.1. In order to verify that, we carried out a frozen phonon
calculation of the modi�ed FB electronic structure with increasing intensity of the deformation.
Remarkably, despite transforming as di�erent irreps (A1 or B1), both frozen phonon distortions
are not only degenerate, but have exactly the same e�ect on the bands. As soon as the lattice is
distorted, see Fig. 4.6 b), the fourfold degeneracy at K1 and K2, and the twofold one at Γ and
M is lifted, and small avoided crossings appear and start to move from K1(2) towards the M
points. Once they cross M, they keep moving along M → Γ, see Fig. 4.6 c). However, along
these directions, the C2x symmetry prevents the avoided crossings, and thus leads to six elliptical
Dirac cones. Finally, once they reach Γ at a threshold value of the distortion, the six Dirac
points annihilate so that a gap opens at the charge neutrality point (CNP), see Fig. 4.6 d). This
gap-opening mechanism is very e�cient, with large splittings even for small values of the atomic
displacement amplitude shown in Fig. 4.6. For instance, an average displacement as small as
≈ 0.5 mÅ per atom is enough to completely separate the four FBs and to open a gap at charge
neutrality.
We emphasize that this occurs without breaking any spatial symmetry of the tBLG, just Uv(1).

As a consequence, the insulator state possesses a non trivial topology, as highlighted by the
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Figure 4.6: Evolution of the FBs when the lattice is distorted with increasing intensity along one of the
two modes indicated by a red arrow in Fig. 4.4. Panel (a) undistorted. Panel (b) mean displacement per
atom 0.07 mÅ. In the inset we show the avoided crossing along M→ K2. Panel (c) mean displacement
0.19 mÅ. Now the avoided crossing appears as a genuine crossing protected by C2x symmetry along
Γ → M, which actually leads to Dirac points. Panel (d) mean displacement 0.57 mÅ, opening a gap
between the FBs. Inset: Wilson loop of the lowest two bands in panel d).

odd-winding of the Wilson loop of the lowest two bands, shown in the inset of the same �gure
4.6 d). In turn, the non trivial topology of the system implies the existence of edge states within
the gap separating the two lower �at bands from the two upper ones. We thus recalculated the
band structure freezing the moiré phonon with A1 symmetry at Γ in a ribbon geometry, which
is obtained by cutting the tBLG along two parallel domain walls in the y-direction at a distance
of 7 supercells. The ribbon has therefore translational symmetry along y, but it is con�ned in the
x-direction. In Fig. 4.7 we show the single-particle energy levels as function of the momentum
ky along the y-direction. Edge states within the gap at charge neutrality are clearly visible. In
particular, we �nd for each edge two counter-propagating modes.

As a matter of fact, recent experiments do report the existence of a �nite gap also at charge
neutrality [14, 20, 18, 27, 22], which is actually bigger than at other non zero integer �llings, and
appears without a manifest breakdown of time reversal symmetry T [14] or C2z symmetry [20],
and with the FBs still well separated from other bands [20]. These evidences seem not to support
an interaction driven gap, which would entail either T or T C2z symmetry breakings [14, 95], or
else the FBs touching other bands at the Γ point [14]. Our phonon-driven insulator at charge
neutrality breaks instead Uv(1) and, eventually, C2y if the frozen phonon has B1 character, both
symmetries experimentally elusive. However, the edge states that we predict could be detectable
by STM or STS, thus providing support or disproving the mechanism that we uncovered.
We end mentioning that near charge neutrality there are compelling evidences of a substantial
breakdown of C3z symmetry [16, 17, 20], which, although is not expected to stabilize on its own
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Figure 4.7: The band structure of twisted bilayer graphene at θ ≈ 1.08◦ in a ribbon geometry with open
boundary conditions. The atomic structure inside the unit cell (replicated 7 times along the x direction)
has been deformed with the A1 symmetric moiré phonon mode. With a mean deformation amplitude
of ≈ 1.14 mÅ, that mode is so strongly coupled to open a large electronic gap at CNP of ≈ 25 meV .
The bulk bands have been highlighted in blue to emphasize the presence of edge states both within the
phonon-driven FBs gap and the gaps above and below them.

an insulating gap unless the latter were in fact just a pseudo gap [95], still it is worth being
properly discussed, which we postpone to Section 4.1.6.

4.1.4 E ⊗ e Jahn-Teller e�ect
The evidence that the two degenerate modes marked by a red arrow in Fig. 4.4 produce the same
band structure in a frozen-phonon distortion is reminiscent of a E ⊗ e Jahn-Teller e�ect, i.e., the
coupling of a doubly degenerate vibration with a doubly degenerate electronic state [87].
Let us consider the action of the two Γ-point A1 and B1 phonon modes, hereafter denoted as q1

and q2, along the C2y invariant lines. We note that the A1 mode, q1, although invariant under
the D6 group elements, is able to split the degeneracy along those lines. Therefore it must be
coupled to the electrons through a D6 invariant operator that does not commute with the Uv(1)
generator τ3. That in turn cannot but coincide with C2y itself, which, along the invariant lines,
is the operator T1 = σ1 τ1 µ3/2 in Eq. (4.2). On the other hand, the B1 mode, q2, is odd under
C2y, and thus it must be associated with an operator that anticommutes with C2y and does not
commute with τ3. The only possibility that still admits a U(1) valley symmetry is the operator
T2 = σ1 τ2 µ3/2 in Eq. (4.2). Indeed, with such a choice, the electron-phonon Hamiltonian is

Hel-ph = −g
(
q1 T1 + q2 T2

)
, (4.7)

with g the coupling constant. This commutes with the operator

J3 = T3 + L3 =
τ3

2
+ q ∧ p , (4.8)

(where p = (p1, p2) the conjugate variable of the displacement q = (q1, q2)), the generator of a
generalized Uv(1) symmetry that involves electron and phonon variables. As anticipated, the
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Hamiltonian (4.7) describes precisely a E ⊗ e Jahn-Teller problem [87, 96, 97].
Since the phonon mode q is almost dispersionless, see Fig. 4.4, we can think of it as the vibration
of a moiré supercell, as if the latter were a single, though very large, molecule, and the tBLG a
molecular conductor. In this language, the band structures shown in Fig. 4.6 would correspond to
a static Jahn-Teller distortion. However, since the phonon frequency is substantially larger than
the width of the �at bands, we cannot exclude the possibility of a dynamical Jahn-Teller e�ect
that could mediate superconductivity [96, 98], or even stabilize a Jahn-Teller Mott insulator [97]
in presence of a strong enough interaction.
The Jahn-Teller nature of the electron-phonon coupling entails a very e�cient mechanism to
split the accidental degeneracy, linear in the displacement within a frozen phonon calculation.
However, this does not explain why an in-plane displacement as small as 0.57 mÅ is able to
split the formerly degenerate states at Γ by an amount as large as 15 meV, see Fig. 4.6 d), of the
same order as the original width of the �at bands. To clarify that, we note that this displacement
would yield a change in the graphene nearest neighbor hopping of around δt ' 3.6 meV, see
Eq. (2.15), which in turn entails a splitting at Γ of 6 δt ∼ 21 meV, close to what we observe. We
believe that such correspondence is not accidental, but indicates that the actual energy scale
underneath the �at bands is on the order of the bare graphene bandwidth, rather than the �at
bandwidth itself. We shall return on this issue later in Section 4.2.

4.1.5 Insulating states at other commensurate �llings
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Figure 4.8: Atomic displacements on one of the two layers corresponding to one of the moiré modes at
M marked by a green arrow in Fig. 4.4. The direction of displacement is represented by a small arrow
centered at each atomic position, while its modulus is encoded in colors. The mean deformation is 1.8 mÅ
and leads to the DOS in Fig. 4.9. The inset shows a zoom in the AA region close to the origin. The
rectangular unit cell, now containing twice the number of atoms, is highlighted by a black dashed line.

The Γ-point distortion described above can lead to an insulating state at charge neutrality,
possibly connected with the insulating state very recently reported [14, 20]. The same phonon
branch might also stabilize insulating states at other integer occupancies of the mini bands
besides charge neutrality. However, this necessarily requires freezing a mode at a high-symmetry
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Figure 4.9: Density of states in the �at bands region after the tBLG has been distorted by one of the
two degenerate modes at M marked by a green arrow in Fig. 4.4. A mesh of 40 × 40 points in the MBZ
has been used. The DOS is expressed as function of energy, the zero corresponding to the CNP, and
corresponding occupancy ν of the FBs. The band gaps at ν = ±2,±4 are highlighted in violet. The mean
displacement per atom is 1.8 mÅ.

k-point di�erent from Γ in order to get rid of the band touching at the Dirac points, K1 and K2,
protected by the C6z symmetry. We consider one of the two degenerate phonon modes at the
M-point marked by a green arrow in Fig. 4.4. This mode has similar features as the Jahn-Teller
one at Γ, even if it belongs to an upper branch due to an avoided crossing along Γ→M (blue
dashed line in Fig. 4.4). In Fig. 4.8 we depict this mode, which still transforms as the A1 of
graphene K-point on the microscopic graphene scale, but whose long-wavelength modulation
now forms a series of ellipses elongated along some of the DWs, thus macroscopically breaking
the C3z symmetry of the moiré superlattice.
In Fig. 4.9 we show the DOS of the FBs obtained by a frozen-phonon realistic tight-binding
calculation. Besides the band gaps at ν = ±4, which separates the FBs from the others bands,
now small gaps opens at ν = ±2 with an average atomic displacement of 1.8 mÅ induced by the
mode at M.
Finally we also considered a more exotic multi-component distortion induced by a combination
of the modes at the three inequivalent M points, which quadruples the unit cell (see Fig. 4.10).
The resulting DOS of the FBs is shown in Fig. 4.11, and displays small gaps at the odd integer
occupancies ν = 1 and ν = ±3. The very qualitative conclusion of this exploration is that frozen
phonon distortions with various k-vectors can very e�ectively yield Peierls-like insulating
states at integer hole/electron �llings. Of course all distortions at k-points di�erent from Γ also
represent super-superlattices, with an enlargement of the unit cell that should be veri�able in
such a Peierls state, even if the displacement is a tiny fraction of the equilibrium C–C distance.
We note here that the the zone boundary phonons are less e�ective in opening gaps at non zero
integer �llings than the zone center phonons are at the charge neutrality point. The reason is
that away from charge neutrality the Jahn-Teller e�ect alone is no longer su�cient; one needs to
invoke zone boundary phonons that enlarge the unit cell, and thus open gaps at the boundaries
of the folded Brillouin zone. The e�ciency of such gap opening mechanism is evidently lower
than that of the Jahn-Teller Γ-point mode.
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Figure 4.10: Atomic displacements on one of the two layers corresponding to multicomponent deforma-
tion obtained combining moiré JT phonons at three inequivalent M points. The mean deformation is
1.7 mÅ and leads to the DOS in Fig. 4.11. The intensity of displacement is encoded in colors. The inset
shows a zoom in one of the AA regions when both layers are considered. The unit cell, denoted by a
black dashed line, is four times larger than the original one.

4.1.6 C3z symmetry breaking
We observe that the multicomponent distortion with the phonons frozen at the inequivalent M
points leads to a width of the FBs �ve times larger than in the undistorted case, see Fig. 4.11
as opposed to Fig. 4.6 a), which is not simply a consequence of the tiny gaps that open at the
boundary of the reduced Brillouin zone. Such substantial bandwidth increase suggests that the
tBLG may be intrinsically unstable to C3z symmetry breaking, especially near charge neutrality.
Electron-electron interaction treated in mean-�eld does a very similar job [17]. Essentially, both
interaction- and phonon-driven mechanisms act right in the same manner: they move the two
van Hove singularities of the fully symmetric band structure away from each other, and split
them into two, with the net e�ect of increasing the bandwidth. As such, those two mechanisms
will cooperate to drive the C3z symmetry breaking, or enhance it when explicitly broken by
strain, not in disagreement with experiments [16, 17, 20]. The main di�erence is that the moiré
phonons also break Uv(1), and thus are able to open gaps at commensurate �llings that C3z

symmetry breaking alone would not do.
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Figure 4.11: Electronic density of states with a multicomponent lattice distortion obtained by freezing a
combination of the modes at the three inequivalent M points. Band gaps at ν = +1,±3,±4 are highlighted
in violet. The mean displacement per atom is 1.7 mÅ.

4.2 Phonon mediated superconductivity

In this Section we work out the properties of the superconducting state that might be stabilized
by the moiré Jahn-Teller phonons. Neglecting their extremely small dispersion, we can write
their Hamiltonian simply as

Hph =
ω

2

∑
R

(
pR · pR + qR · qR

)
, (4.9)

with ω ' 207 meV.
Rather than trying to model more faithfully the Jahn-Teller coupling (4.7), we shall follow a
simpli�ed approach based just on symmetry considerations.
In general, we could integrate out the phonons to obtain a retarded electron-electron attrac-
tion that can mediate superconductivity. However, since here the phonon frequency is much
larger that the bandwidth of the FBs, where the chemical potential lies, we can safely neglect
retardation e�ects making a BCS-type approximation virtually exact. The attraction thus be-
comes instantaneous and can be represented as in Fig. 4.12. The phonon couples electrons in
nearest neighbor AB and BA regions, giving rise to an inter-moiré site spin-singlet pairing,
a state which we expect to be much less a�ected by Coulomb repulsion than an on-site one.
Therefore, neglecting Coulomb repulsions we can concentrate on the pairing channel between
nearest neighbor AB and BA regions. The scattering processes in Fig. 4.12 imply that the pairing
channels are only τ1 µ0 and τ1 µ3, corresponding to inter valley pairing, as expected because
time reversal interchanges the two valleys.
Having assumed pairing between Wannier orbitals centered in nearest neighbor AB and BA
regions, we must identify pair functions in momentum space that connect nearest neighbor unit
cells, and transform properly under C3z. These functions are
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Figure 4.12: Phonon mediated attraction. The two scattering channels corresponds to the two phonons
and have the same amplitude g2/2ω.

γ(k) = eik·(a+b)/3
(
1 + e−ik·a + e−ik·b

)
,

γ+1(k) = eik·(a+b)/3
(
1 + ω e−ik·a + ω∗ e−ik·b

)
,

γ−1(k) = eik·(a+b)/3
(
1 + ω∗ e−ik·a + ω e−ik·b

)
,

(4.10)

where ω = ei2π/3. Speci�cally, γ(k) ∼ A1 is invariant under C3z, while

γ±1

(
C3z(k)

)
= ω±1 γ±1(k) . (4.11)

In other words,
(
γ+1(k), γ−1(k)

)
form a representation of the 2d-irrep E =

(
E+1, E−1

)
in which

C3z is diagonal with eigenvalues ω and ω∗.
Here it is more convenient to transform the spinor Φkσ(

Φ+1,kσ
Φ−1,kσ

)
=

1
√

2

(
1 −i
1 +i

) (
Φs,kσ
Φp,kσ

)
, (4.12)

so that Φ
±1,kσ is associated with a WO that transforms like E±1. Under the assumption of pairing

diagonal in the irreps, we can construct the following spin-singlet Cooper pairs:∑
σ

σΦ
†

+1,AB,kσ τ1 Φ
†

+1,BA,−k−σ ∼ E−1,k , (4.13)∑
σ

σΦ
†

−1,AB,kσ τ1 Φ
†

−1,BA,−k−σ ∼ E+1,k , (4.14)

1
√

2

∑
σ

σ
(
Φ
†

+1,AB,kσ τ1 Φ
†

−1,BA,−k−σ +(−)Φ†
−1,AB,kσ τ1 Φ

†

+1,BA,−k−σ

)
∼ A1(2),k , (4.15)

1
√

2

∑
σ

σΨ
†

AB,kσ τ1 µ0(3) Ψ
†

BA,−k−σ ∼ A′1(2),k , (4.16)

which can be combined with the k-dependent functions in (4.10) to give pair operators that
transform like the irreps of D3. For instance, multiplying (4.13) by γ+1(k), (4.14) by γ−1(k), (4.15)
with the plus sign by γ(k), or (4.16) with µ0 by γ(k), we obtain pair operators that all transform
like A1. We shall denote their sum as A†1k, and, similarly, all other symmetry combinations as A†2k
and E†

±1,k. Evidently, since in our modeling the FBs are made of 1d and 2d irreps, the gap function
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Figure 4.13: Pair amplitudes ∆(k)† of the leading superconducting channels: d − id-wave (a-b) and
extended s-wave (c-d). In each panel we show the hexagonal MBZ and the phase amplitudes restricted to
a narrow region close to the Fermi surfaces corresponding to the occupancies ν ∼ −2 (a-c) and ν ∼ −1
(b-d). The phase of the superconducting order parameter is expressed in color. Note that the double line
are due to the fact that two bands cross the chemical potential at di�erent k-points.

will in general involve a combination of γ(k) and γ±1(k), namely, it will be a superposition of s
and d ± id symmetry channels. The dominant channel will depend on which is the prevailing
WO character of the Bloch states at the chemical potential, as well as on the strength of the
scattering amplitudes in the di�erent pairing channels, A†1k, A†2k and E†

±1,k.
In general, we may expect the totally-symmetric A1 channel to have the largest amplitude, thus
we assume the following expression of the phonon-mediated attraction

Hel-el ' −
λ

V

∑
kp

A†1k A1p , (4.17)

that involves a single parameter λ ∼ g2/2ω. We treat the full Hamiltonian (3.32) plus (4.17) in
mean �eld allowing for a superconducting solution, which is always stabilized by the attraction
provided the density of states is �nite at the chemical potential. We �nd that superconductivity
opens a gap everywhere in the Brillouin zone. Since

〈A†1k 〉 = γ+1(k) 〈 E−1,k 〉 + γ−1(k) 〈 E+1,k 〉 + γ(k) 〈 A1,k 〉 + γ(k) 〈 A′1,k 〉 , (4.18)

the order parameter may have �nite components with di�erent symmetries, E±1 and A1. In the
model calculation all components acquire similar magnitude, implying a mixture of s and d ± id
wave symmetries. In Fig. 4.13 we show 〈 A′1,k 〉 and 〈 E−1,k 〉 at the Fermi surface corresponding to
densities ν ≈ −1 and ν ≈ −2 with respect to charge neutrality. We conclude by emphasizing that
the Cooper pair is made by one electron in AB and one in BA, thus leading, in the spin-singlet
channel, to extended s and/or d ± id symmetries. That is merely a consequence of the phonon
mode and electron-phonon properties, hence it does not depend on the above modeling of the FBs.
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There are already in literature several proposals about the superconducting states in tBLG.
Most of them, however, invoke electron correlations as the element responsible, or strongly
e�ecting the pairing [99, 77, 100, 101, 102, 85, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
114, 115]. There are few exceptions [116, 29, 25] that instead propose, as we do, a purely phonon
mediated attraction. In both works [116] and [29] the tBLG phonons are assumed to coincide
with the single layer graphene ones, as if the interlayer coupling were ine�ective in the phonon
spectrum, which is not what we �nd for the special modes discussed above. Moreover, they both
discuss the e�ects of such phonons only in a continuum model for the FBs. In particular, the
authors of [116] consider a few selected graphene modes, among which the transverse optical
mode at K that has the largest weight in the tBLG phonon that we consider. They conclude that
such graphene mode mediates d ± id pairing in the A2 channel, τ1 µ3 in our language, leading to
an order parameter odd upon interchanging the two layers. On the contrary, the authors of [29]
focus just on the acoustic phonons of graphene, and conclude they stabilize an extended s-wave
order parameter.

4.3 Coupling to moiré phonons in the continuum model
formalism of twisted bilayer graphene

In this Section we work out how the Jahn-Teller mechanism described previously can be imple-
mented in the continuum model formalism. This method is more manageable than the realistic
tight-binding modelling of Section 2.3.1, whose results can be reproduced with much less e�ort.
In addition, the continuum model formalism has the great advantage of providing a full quantum
mechanical expression of the electron-phonon Hamiltonian, which may allow going beyond a
simple frozen-phonon calculation , and thus describing phenomena like a dynamical Jahn-Teller
e�ect and the phonon-mediated superconductivity.

4.3.1 Perturbation induced by a static atomic displacement
We derive in the continuum model the expression of the perturbation induced by a collective
atomic displacement. Under a generic lattice deformation, the in-plane atomic positions xiα

change according to

xiα ≡ Ri + riα → Ri + rα + ui
(
xiα

)
= xiα + ui

(
xiα

)
, (4.19)

where i is now labeling a generic unit cell position. Since the phonon modes we are going to
study involve only in-plane atomic displacements, we assume that z-coordinate of each carbon
atom does not vary. It follows that a generic potential in the two-centers approximation and at
linear order in the displacement reads

T
(
xiα − x jβ, ziα − z jβ

)
→ T

(
xiα − x jβ, ziα − z jβ

)
+ W

(
xiα − x jβ, ziα − z jβ

)
·
(
ui

(
xiα

)
− u j

(
x jβ

))
,

(4.20)
We further neglect the dependence on z, which we will take into account by distinguishing at
the end between di�erent scattering channels, intra- and inter-layers, so that:

W(r) =
1
N

∑
q

eiq·r W(q) = ∇T (r) = i
1
N

∑
q

q T (q) eiq·r , (4.21)

namely
W(q) = iq T (q) = iq T (q) , (4.22)

assuming that T (q) depends only on q = |q|.
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4.3.2 Deformation�elds approximating the Jahn-Tellermoiré phonon
modes

In the previous Section 4.1.2, we pointed out the existence of a pair of high-frequency optical
modes at the Γ point of the MBZ, which are extremely e�cient in lifting the valley degeneracies
observed in the band structure. These two modes, microscopically, both look as the well-known
in-plane optical phonon modes of graphene at K, which transform as the A1 and B1 irreducible
representations. These two irreducible representations di�er by the fact that B1 is odd with
respect to C2z and C2y, while A1 is even with respect to all symmetries of the D6 space group.
Although the complexity of these modes is hard to capture by a simple analytical expression, their
e�ect on the band structure can be well approximated introducing the following deformation
�elds

u(a)
c

(
x(a)
α

)
=

3∑
i=1

2∑
j=0

u(a)
α

(
Qi j

)
cos

((
R(a) + r(a)

α

)
·Qi j

)
,

u(a)
s

(
x(a)
α

)
=

3∑
i=1

2∑
j=0

v(a)
α

(
Qi j

)
sin

((
R(a) + r(a)

α

)
·Qi j

)
.

(4.23)

were Qi j are the k-vectors connecting di�erent valleys and depicted in Fig.4.2, while a = 1, 2 is
the layer index. Since the transformation Cg (g = 3z, 2x) is a symmetry operation even in the
distorted lattice, we have that

Cg

(
x(a)
α

)
= x(b)

β −−−→ Cg

(
u(a)(x(a)

α

))
= u(b)(x(b)

β

)
. (4.24)

By noting that the set of momenta {Qi j} is invariant under C3z and C2x, it immediately follows
that, for g = 3z, 2x

Cg

(
u(a)
α

(
Qi j

))
= u(b)

β

(
Cg

(
Qi j

))
.

Cg

(
v(a)
α

(
Qi j

))
= v(b)

β

(
Cg

(
Qi j

))
.

(4.25)

On the contrary, {Qi j} is not invariant under Cg (g = 2y, 2z), and the phonon modes are either
even (A1) or odd (B1) under these symmetries. Therefore, recalling that C2z exchanges the two
sublattices,

C2z

(
u(a)

A
(
Qi j

))
= −u(a)

A
(
Qi j

)
= ±u(a)

B
(
Qi j

)
,

C2z

(
v(a)

A
(
Qi j

))
= −v(a)

A
(
Qi j

)
= ∓v(a)

B
(
Qi j

)
.

(4.26)

If we choose

u(a)
A

(
Qi j

)
= u(a)

B
(
Qi j

)
, v(a)

A
(
Qi j

)
= v(a)

B
(
Qi j

)
, (4.27)

then the cosine distortion in (4.23) u(a)
c

(
x(a)
α

)
transforms as B1, while the sine one, u(a)

s

(
x(a)
α

)
, as

A1. They both can be shortly written as

u(a)
(
x(a)
α

)
=

3∑
i=1

2∑
j=0

[
u(a)

(
Qi j

)
ei
(

R(a)+r(a)
α

)
·Qi j + c.c.

]
, (4.28)

where u(a)(Qi j
)
∗ ≡ u(a)( −Qi j

)
and u(a)(Qi j

)
is real for the B1 distortion and imaginary for A1.

We end by pointing out that W(q) satis�es

Cg
(
W(q)

)
= W

(
Cg

(
q
))
, (4.29)
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for all symmetry operations of the lattice, in particular

C2z

(
W(q)

)
= −W(q) = W

(
C2z

(
q
))

= W(−q) = W(q)∗ . (4.30)

4.3.3 Phonon induced Hamiltonian matrix elements
A lattice distortion involving the A1 or B1 phonons generates a matrix element between layer
a momentum k ∼ K(a) and layer b momentum p ∼ −K(b), where we recall that K(1) = K2 and
K(2) = K1 in Fig. 2.1(d):

W(a,k, α; b,p, β) =
1

N2

∑
qQi j

∑
R(a)R(b)

W(−q) ·
[
u(a)

(
Qi j

)
e−i

(
k+q−Qi j

)
·
(

R(a)+r(a)
α

)
ei(p+q)·

(
R(b)+r(b)

β

)
−u(b)

(
Qi j

)
e−i(k+q)·

(
R(a)+r(a)

α

)
ei
(

p+q+Qi j

)
·
(

R(b)+r(b)
β

)]
=

∑
qQi j

∑
G(a)G(b)

W(−q) ·
[
δ−q,k−Qi j+G(a) δ−q,p+G(b) u(a)

(
Qi j

)
eiG(a)·r(a)

α −iG(b)·r(b)
β

−δ−q,k+G(a) δ−q,p+Qi j+G(b) u(b)
(
Qi j

)
eiG(a)·r(a)

α −iG(b)·r(b)
β

]
.

We can readily follow the same steps outlined in section 2.3.2 to identify the G(a) and G(b) recip-
rocal lattice vectors that enforce momentum conservation and maximize the matrix element
W(−q) = W(q). Therefore, we shall not repeat that calculation and jump directly to the results.

The lattice distortion introduces a perturbation both intra-layer and inter-layer. The former, in
the representation introduced in Appendix A, has the extremely simple expression:

δĤ ||x(y)(k)QQ′ = τx(y)

3∑
i=1

(
δQ′−Q,qi + δQ−Q′,qi

)
T̂i(g, g′) ≡ τx(y) δĤ ||QQ′ , (4.31)

where τx refers to the A1 mode, τy to the B1 one, and the matrices T̂i(g, g′) have the same
expression as those in Eq. (2.30), with u and u′ replaced, respectively, by g and g′.

The inter layer coupling has a simpler expression, since, as we mentioned previously, opposite
valleys in di�erent layers fold on the same momentum in the MBZ, and thus the coupling is
diagonal in Q and Q′ and reads

δĤ⊥x(y)(k)QQ′ = δQ,Q′ γ σ0 τx(y) ≡ τx(y) δĤ⊥QQ′ . (4.32)

As before τx and τy refers to the A1 and B1 modes, respectively.
It is worth remarking that, because of the transformation (A.11), which exchanges the sublattices
in the valley ζ = −1, the diagonal elements of the matrices T̂i(g, g′) in (4.31) and σ0 in (4.32)
refer to the opposite sublattices, while the diagonal elements to the same sublattice, right the
opposite of the unperturbed Hamiltonian (A.12).

Let us rephrase the above results in second quantization and introducing the quantum mechanical
character of the phonon mode. In the continuum model, a plane wave with momentum k + G,
where G = nG1 + mG2 is a reciprocal lattice vector of the MBZ, in layer i = 1, 2, valley ζ = +1
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and with sublattice components described by a two-component spinor χk+G can be associated to
a two component spinor operator according to

ei(k+G)·r χk+G −−−→ Ψ
(i)
+1,k+G . (4.33)

For any G we can write, see Eq. (A.2),

G = K1 −QA = K2 −QB , (4.34)

and thus de�ne

Ψ
(1)
+1,k+G = Ψ

(1)
+1,k+K2−QB

≡ Ψk,QB,+1 ,

Ψ
(2)
+1,k+G = Ψ

(1)
+1,k+K1−QA

≡ Ψk,QA,+1 .
(4.35)

We note that K+φ + K−φ ≡ Gk = (2k + 1)
(
G1 + G2

)
, which allows us de�ning the operators in

valley ζ = −1 as

Ψ
(1)
−1,k+G−Gk

= Ψ
(1)
−1,k−K+φ−QA

≡ σx Ψk,QA,−1 ,

Ψ
(2)
−1,k+G−Gk

= Ψ
(2)
+1,k−K−φ−QB

≡ σx Ψk,QB,−1 ,
(4.36)

where, in accordance with our transformation in Eq. (A.11), we interchange the two sublattices
in valley ζ = −1 through σx. We note that the mismatch momentum Gk is just what is provided
by the phonon modes. Absorbing the valley index into two additional components of the spinors,
and introducing back the spin label, the second quantized Hamiltonian can be written in terms
of four component spinor operators Ψkσ,Q, where, Q = QA refer to layer 2 if the valley index
ζ = +1 and layer 1 if ζ = −1, while Q = QB to layer 1 if ζ = +1, and layer 2 if ζ = −1.
Next, we introduce a two component dimensionless variable q0 = (q1, q2), and its conjugate one,
p0 = (p1, p2), where q1 and q2 are the phonon coordinates of the A1 and B1 modes at Γ = 0,
respectively. Using the above de�ned operators, the full quantum mechanical Hamiltonian reads

H =
∑
kQσ

[
Ψ
†

kσQ ĤQQ′(k) ΨkσQ′ + Ψ
†

kσQ

(
q0 · τ δĤQQ′

)
ΨkσQ′

]
+
ω0

2

(
p0 · p0 + q0 · q0

)
, (4.37)

where ω0 is the phonon frequency, equal for both A1 and B1 modes, τ = (τx, τy), and

ĤQQ′(k) = δQQ′ v τz
(
k −Q

)
· σ + τ0

3∑
i=1

(
δQ′−Q,qi + δQ−Q′,qi

)
T̂i(u, u′) ,

δĤQQ′ = δĤ ||QQ′ + δĤ⊥QQ′ =

3∑
i=1

(
δQ′−Q,qi + δQ−Q′,qi

)
T̂i(g, g′) + δQ,Q′ γ .

(4.38)

As in Eq.4.7, we observe that the Hamiltonian (4.37) still possesses a valley Uv(1) symmetry,
with generator

Jz =
1
2

∑
kQσ

Ψ
†

kσQ σ0 τz ΨkσQ + q0 ∧ p0 ≡ Tz + Lz , (4.39)

where Tz is half the di�erence between the number of electrons in valley ζ = +1 and the one in
valley ζ = −1, while Lz is the angular momentum of the phonon mode. The Hamiltonian (4.37)
actually realises a e ⊗ E Jahn-Teller model.
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Figure 4.14: Band structure of 2φ = 1.08◦ twisted bilayer graphene with increasing frozen phonon
deformation intensity g. The other parameters used in this calculation are: u = 0.0761, u′ = 0.1031,
g′ = g/10 and γ = g/2.5. a) Undistorted case. b) Slightly distorted lattice. Two small avoided crossings
occur along the K1 → Γ and M→ Γ lines. c) By further increasing the distortion intensity the four bands
further separate. The avoided crossing along K1 → Γ persists, while a genuine crossing occur along
Γ→M. d) A gap at charge neutrality has �nally opened.

It is straightforward to generalise the above result to an atomic displacement modulated
with the wave vectors Qi j + P, where P ∈ MBZ. Since Qi j are multiples of the MBZ reciprocal
lattice vector, such displacement is at momentum P, and can be considered as the previous
one at Γ, shown in Fig. 4.2, on top of which we add an additional incommensurate long wave-
length component. Since P is small as compared to the vectors Qi j, we shall assume that the
displacement has the same expression of Eq. (4.28), with the only di�erence that

e±i
(

R(a)+r(a)
α

)
·Qi j −−−→ e±i

(
R(a)+r(a)

α

)
·
(

Qi j±P
)
. (4.40)

The full quantum mechanical Hamiltonian becomes

H =
∑
kQσ

Ψ
†

kσQ ĤQQ′(k) ΨkσQ′ +
∑

kQPσ

Ψ
†

kσQ

(
q−P · τ δĤQQ′(P)

)
Ψk+PσQ′

+
1
2

∑
P

ωP

(
pP · p−P + qP · q−P

)
,

(4.41)

where δĤQQ′(P) is the same as δĤQQ′ in Eq. (4.38) with P-dependent constants gP, g′P, and γP,
invariant under the little group at P. In this general case, the generator of Uv(1) reads

Jz =
1
2

∑
kQσ

Ψ
†

kσQ σ0 τz ΨkσQ +
∑

P

qP ∧ p−P . (4.42)

4.3.4 Frozen phonon band structure in the continuum model formal-
ism

We perform a frozen phonon calculation with the continuum model formalism and benchmark it
with the tight-binding calculation done in Section. 4.1.3. We neglect the phonon energy, last term
in Eq. (4.37), and �x q = (q1, q2) to some constant value. Because of the Uv(1) symmetry, what
matters is just the modulus q of q. In practice we have taken q = (1, 0), and studied the band
structure varying the coupling constants g, setting g′ = g/10 and γ = g/2.5, and assuming the
following parameters: ~v/a0 = 2.1354 eV [117]; u = 0.0761 eV and u′ = 0.1031 eV [53]. This
choice �ts well the microscopic tight-binding calculations of Fig. 4.6. As shown in Fig. 4.14, as
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Figure 4.15: Reduced Brillouin zones with the multicomponent distortion at M, shown as coloured
hexagons, while the four times larger hexagon drawn with a dashed line is the undistorted MBZ. The
vectors pi, black arrows, and qi, blue arrow, for i = 1, . . . , 3, are also shown. Note that p1 = A′ and
p2 = B′ are also the reciprocal lattice vectors of the reduced Brillouin zone. The black and red circles are
the positions of the sublattice vectors QA and QB, respectively, de�ned in Eq. (4.48).

soon as the frozen phonon terms are turned on, all the degeneracies in the band structure arising
due to the valley symmetry are lifted. This occur with a set of avoided crossings which move
from K→M and from K→ Γ (Fig.4.14b)). In particular, the crossings that move from K→M
eventually meet at M, forming (six) Dirac nodes, which then move towards Γ (Fig. 4.14c)). Finally,
at a threshold value of g, a gap opens at the charge neutrality point (Fig. 4.14d)). Such gap keeps
increasing as the deformation amplitude increases.

4.3.5 Moiré phonons at M in the continuum model formalism
The phonon modes considered in the previous section were at position Γ of the MBZ, thus
preserving the periodicity of the moiré superlattice. As pointed out before, these modes are
able to open a gap in the band structure only at charge neutrality. Gap opening at di�erent
commensurate �llings requires freezing �nite momentum phonons (see Section 4.1.5). Here, we
consider the multicomponent distortion shown in Fig. 4.10 which involves the modes at the
three inequivalent M points in the MBZ:

M1 =
G1

2
,M2 = C3z

(
M1

)
=

G2

2
,M3 = C3z

(
M2

)
= −

G1 + G2

2
. (4.43)

Freezing a multiple distortion at all these points reduces by a quarter the Brillouin zone, see
Fig. 4.15, which has now the reciprocal lattice vectors

A′ = M1 , B′ = M2 . (4.44)

Since Mi, i = 1, 2, 3, are small as compared to the vectors Qi j introduced in the previous
section, we can make the same assumption (4.40) that leads to the Hamiltonian (4.41), namely
assume that the displacement induced by the multiple distortion has the same expression of
Eq. (4.28), with the only di�erence that

ei
(

R(a)+r(a)
α

)
·Qi j −−−→

6∑
n=1

ei
(

R(a)+r(a)
α

)
·
(

Qi j+pn

)
(4.45)
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Figure 4.16: Density of states around charge neutrality obtained with the Hamiltonian (4.48) with
g′ = g/10, γ = g/2.5, a′ = a/10 and α = a/2.5. Gaps are highlighted in red, and the corresponding �lling
factor is ν. a) The undistorted lattice density of states. b) The density of states obtained by deforming the
lattice with only the distortion at Γ, which opens a gap at charge neutrality. c) Density of states obtained
using both the Γ and the M multicomponent distortions. Here a gap opens at �lling of 1 electron (3 holes
with respect to neutrality) per unit cell.

where

p1 = −p4 = M1 = A′ , p2 = −p5 = M2 = B′ , p3 = −p6 = M3 = −A′ − B′ (4.46)

are the additional long wavelength modulation vectors on top of the leading short wavelength
ones at Qi j. The vectors qi de�ned in Eq. (A.3) can be written in terms of the new reciprocal
lattice vectors A′ and B′ as

q1 =
2
3

(
A′ − B′

)
, q2 =

2
3

(
A′ + 2B′

)
, q3 =

2
3

(
− 2A′ − B′

)
. (4.47)

Both pi and qi, i = 1, 2, 3, are shown in Fig. 4.15. Considering all momenta k within the new BZ,
the light blue hexagon in Fig. 4.15, and assuming that, besides the multicomponent distortion
at M, there is still a distortion at Γ, the Hamiltonian can be written again as a matrix ĤQQ′(k),
which now reads

ĤQQ′(k) = δQ,Q′ v τz

(
k −Q

)
· σ + τ0

3∑
i=1

(
δQ′−Q,qi + δQ−Q′,qi

)
T̂i

(
u, u′) + γ δQ,Q′ τx

+τx

3∑
i=1

(
δQ′−Q,qi + δQ−Q′,qi

)
T̂i

(
g, g′) + α τx

6∑
i=1

(
δQ′−Q,pi + δQ−Q′,pi

)
+τx

3∑
i=1

6∑
j=1

(
δQ′−Q,qi+p j + δQ−Q′,qi+p j

)
T̂i

(
a, a′) ,

where the matrices T̂i(x, x′) are those in Eq. (2.30), though they depend on di�erent set of
parameters, (u, u′), (g, g′) and (a, a′). The crucial di�erence with respect to the Hamiltonian
(4.38) with only the Γ-distortion, is that the Q vectors span now the sites of the honeycomb
lattice generated by the new fourfold-smaller Brillouin zone, hence they are de�ned through

Q =
{
Q′A , Q′B

}
=

Q′A = A′ − B′
3 + nA′ + mB′ ,

Q′B = −A′ − B′
3 + nA′ + mB′ ,

(4.48)

and shown in Fig. 4.15 as black and red circles, respectively, and must not be confused with those
in Eq. (A.2). In Fig. 4.16 we show the density of states around neutrality of the Hamiltonian
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(4.48). The �rst two cases corresponds to undistorted and Γ-only distorted structures, while the
third panel involves also the M multicomponent distortion. As can be seen, a gap now opens at
the partial �lling of 1 electron per unit cell. As it was shown in Section 4.1.5, other phonons or
combinations of them can open gaps at any integer �lling of the four electronic �at bands.
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5
Γ-valley Transition metal dichalcogenide

moiré bands

Transition metal dichalcogenides (TMDs) are an emerging class of two dimensional materials
with features that make them attractive for applications and fundamental studies of novel
physical phenomena. Unlike graphene, TMDs monolayers are binary compounds composed
by two chalchogen (X) atoms per metal (M) site. Most TMDs exist in two structural phases
characterized by either octahedral (1T) or trigonal prismatic (2H) coordination of metal atoms
[5]. In this Chapter we focus on 2H group-VI TMDs, whose moiré heterostructures are currently
under active investigation [40, 34, 35, 36, 37, 118, 119, 120].
In Section 5.1 we select those TMDs homobilayers in which the valence band maximum (VBM)
is at the Brillouin zone center Γ. In these cases, the bilayer valence band maxima is a layer-
antibonding state that is energetically separated with respect to its bonding counterpart by
several hundreds of meV.
This observation motivates the construction in Section 5.2.1 of a one-band continuum model in
which the antibonding state is not explicitly included, and which is similar at �rst sight to the
one band Hamiltonian of K-valley heterobilayers [39]. We �nd however that as a consequence
of the emergent D6 symmetry described in Section 5.2.1, Γ-valley homobilayers simulate 2D
honeycomb lattice physics, opening up a new chapter of strong correlation physics in moiré
superlattices.
The parameters of the continuum model are tuned to match the DFT bandstructures of Sec-
tion 5.2.2, that are performed directly at small angles with the inclusion of lattice relaxation.
Then, in Section 5.2.3, we demonstrate the usefulness of the continuum model by using it to
predict the bandstructure of twisted TMDs at angles where full microscopic calculations are
prohibitive. By using the Topological Quantum Chemistry technique [121], we show that the
�rst three set of bands is formed by Wannier orbitals sitting on honeycomb or kagome lattices.
In Section 5.2.4 we discuss the symmetries and band centers evolution of the moiré bands in
terms of Wannier orbitals transforming as harmonic oscillator eigenvalues.
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5.1 Aligned bilayer bandstructure vs. Stacking
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Figure 5.1: Bilayer DFT bandstructures for relaxed MoS 2, MoS e2 and WS 2 with AA and AB/BA stacking.
The VBM energy is denoted by a red dashed line while the layer bonding and antibonding valence states
at Γ are denoted by red circles.

In bulk TMDs with 2H structure, the valence band maximum (VBM) is located at the Brillouin-
zone center Γ point [5]. This property is a consequence of the valence band orbital character
[122], which is dominated by metal dz2/chalcogen pz antibonding orbitals whose out-of-plane
orientation generates strong inter-layer hybridization that pushes band energies near the Γ-point
up. The valence band maximum is at the two-dimensional Γ-point all the way from bulk to
bilayer in WS2, MoS2 and MoSe2, the materials on which we focus. We performed a systematic
analysis of the stacking dependence of these untwisted bilayer electronic structures to identify
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the valence band edges at two high-symmetry stacking (AA and AB/BA).
The calculations were performed with QUANTUM ESPRESSO [123, 124] using the Perdew-Burke-
Ernzerhof (PBE) generalized gradient approximation (GGA) functional. The weak van-der-Waals
(vdW) forces acting between the layers were taken into account by means of the non-local
vdW functional vdW-DF2-C09 [125, 126], which has been shown to give good results over a
broad range of layered materials [127, 128]. Spin orbit coupling (SOC) is included in these
calculations. For all the elements considered except Tungsten (W) we used fully relativistic
ultrasoft pseudopotentials from pslibrary.1.0.0 [129]; the Tungsten (W) pseudopotential was
instead taken from the SG15-ONCV [130] library. The plane-wave basis used to sample the
reciprocal space was selected with a kinetic energy cuto� of 55 Ry for the wave functions, while
a 500 Ry cuto� energy was is used to represent the charge density. The BZ was sampled by an
20 × 20 × 1 Monkhorst-Pack k-point grid. We initially relaxed the monolayer unit cells in order
to determine the lattice parameters a0. Then, we relaxed the bilayers geometry with a vacuum
layer of 20 Å.
In Fig.5.1 we show the bandstructures of AA and AB/BA stacked MoS2, MoSe2 and WS2. As
can be seen, the VBM is always located at the Γ point. At this point, the orbital character is
dominated by out-of-plane oriented metal dz and chalcogen pz orbitals, so that the VBM is
strongly sensitive to the interlayer distance which is larger by ≈ 0.7Å in the AA stacking case.
This leads to a 300 − 350 meV Γ energy di�erence between the two con�gurations. In any case,
the bilayer valence band maxima is a layer-antibonding state that is energetically separated
with respect to its bonding counterpart by several hundreds of meV. This is emphasized by
red circles in Fig 5.1. We checked their energy separation for bilayers with a generic relative
stacking vector d taken on a 10x10 real space grid of the unit cell vectors. We found that the
lowest energy separations occur for AA stacking, and that the separation is never lower than
350-400 meV, thus justifying our one-band model assumption of Section. 5.2.2.
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Figure 5.2: a) The three high symmetry con�gurations in β homobilayers: BAX/M , ABM/X and AA. On
the left, the moirè pattern formed in a θ = 3.15◦ homobilayer is illustrated. The Bernal stacked regions,
whose centers form an honeycomb lattice are denoted by green and blue triangles, and the AA region
by a black circle. b) The �rst shell (s = 1) of moirè reciprocal lattice vectors used to expand the moirè
potential and the the maximal Wycko� positions of wallpaper group 17. On the left we show the moirè
potential ∆(r) for MoS2, which is attractive for holes on the hexagonal network formed by the AB/BA
regions.
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Twisted heterostructures between binary van der Waals monolayers, like TMDs but unlike
graphene, occur in two distinct con�gurations - referred to here as α and β [43] . The two
con�gurations di�er by a 180◦ rotation of the top layer with respect to the metal axis. In 5.2 (a)
we show a β twisted bilayer in which AA regions form a triangular lattice and are surrounded
by six Bernal (ABM/X and BAX/M) regions that form a honeycomb network. In the BAX/M/ABM/X

areas a metal atom (M) on one layer is directly on top/below a chalcogen atom (X) on the other
layer. The two regions are related by a re�ection that exchanges the two layers. In α bilayers, on
the other hand, the (ABM/M and BAX/X) Bernal stacked regions are structurally and energetically
di�erent. In the following we will focus on β bilayers and we will omit the apex in the AB/BA
labeling.

5.2.1 Emergent D6 symmetry in the homobilayers moiré potential
We derive the valence band moiré Hamiltonian from �rst principles following the approach
outlined in [131]. The main di�erence compared to the procedure adopted in previous works
[39, 132] is that we obtain continuum model parameters directly from the ab initio electronic
structure of fully relaxed twisted bilayers. In our low-energy model we retain only the anti-
bonding state at Γ, which, as shown in the previous Section, is energetically isolated from other
bands by 350-800 meV because of interlayer hybridization. Neglecting spin-orbit coupling, which
vanishes at the Γ-point by Kramer’s theorem, we obtain the following simple single band k · p
Hamiltonian:

H = −
~2k2

2m∗
+ ∆(d), (5.1)

where m∗ is the e�ective mass and ∆(d) is the potential felt by holes at the valence band maximum
as a function of the relative displacement d between the two aligned layers.
The two-dimensional lattice periodicity of the aligned bilayers implies that ∆(d) is a periodic
function. Threefold rotations with respect to the z-axis (C3z) require that ∆(d) is equal to
∆(C3zd). Moreover, two bilayers stacked by d and C2zd = −d are mapped into each other by a
z ↔ −z mirror and hence have the same bandstructure. This property, which is peculiar to β
homobilayers, further implies that ∆(d) = ∆(C2zd), i.e. that ∆(d) is a six-fold symmetric function.
As a consequence the moirè potential, and hence the Hamiltonian in (5.1), are D6 symmetric
objects. The extrema of this potential are either at d = 0 (AA stacking) or at d = ±(a1 + a2)/3
(AB and BA stacking), where a1 = a0(1, 0) and a2 = a0(−1/2,

√
3/2) are the primitive lattice

vectors of the monolayer.

5.2.2 Continuum model for twisted Homobilayers
Twisting by a small angle θ yields a local interlayer displacement d = θẑ × r. Replacing d in
Eq. 5.1 with r then retains the potential’s symmetries and magni�es positions to yield a moiré
potential described by the following Fourier expansion:

∆(r) =
∑

s

6∑
j=1

Vs exp
(
igs

j · r + φs

)
(5.2)

where gs
j+1 = C6zgs

j is the s-th shell of six moiré g vectors ordered with increasing |g|. The
phase factors φs are constrained by the C6z symmetry to be either 0 or π. We solve for the moiré
Hamiltonian Bloch states by expanding in plane waves:

〈
k + g’

∣∣∣H ∣∣∣k + g
〉

= −δg,g’
~2|k+g|2

2m∗
+ ∆(g − g′), (5.3)
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Figure 5.3: DFT vs continuum model. a,b) Twisted WS2 bandstructure obtained with DFT (black crosses)
and continuum model (colored lines) at two di�erent twisting angles θ = 3.15◦, 2.65◦. Similar plots for
twisted MoS 2 and MoS e2 can be found in 5.4. The valence band maximum is set to E = 0 and the bands
originating from s and px ± ipy moiré Wannier orbitals are colored in red and blue respectively. c) Charge
density distributions of two selected Bloch states encircled in b) as obtained with DFT and with the
continuum model.

where k is a wavevector in the moiré Brillouin-zone. The applicability of this low-energy model
does not rely on commensurability between the moiré pattern and the underlying lattice. Even
though the twisted lattice has only D3 symmetry [132], the moiré Hamiltonian (5.3) inherits the
D6 symmetry of the moiré potential (5.2). This emergent low-energy property has profound
consequences for the low energy moiré bands, and is the main focus of this paper. The emergence
of symmetries not present in the underlying lattice is a common [10, 77] and intriguing feature
of moirè materials.

WS 2 MoS 2 MoS e2

V1 33.5 39.45 36.8
V2 4.0 6.5 8.4
V3 5.5 10.0 10.2
φ1,2,3 π π π
m∗ 0.87 0.9 1.17
a0 3.18 3.182 3.295

Table 5.1: Parameters of the moiré Hamiltonian (Eq. (5.3)) for the three TMD β-homobilayers considered
in this paper. V1,2,3 are in meV, m∗ is in bare electron mass units, and the triangular lattice constant a0 is
in Angstroms.

We performed large scale ab-initio calculations on the relaxed θ = 2.65◦, 3.15◦ twisted
supercells. Due to the large volume of these supercells, containing more than 2800 atoms, these
calculations required massive parallelization over more than 4000-5000 CPUs. Although most
of the details of these calculations are similar to those described in the previous section, here
we did not include SOC, whose e�ect vanishes at Γ (see Fig. 5.1) due to Kramer’s theorem.
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Figure 5.4: Twisted MoS2 and MoSe2 bandstructures obtained with DFT (black crosses) and continuum
model (colored lines) at two di�erent twist angles θ = 3.15◦, 2.65◦. The valence band maximum is set to
E = 0 and the bands originating from s and px ± ipy moiré Wannier orbitals are colored in red and blue
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Instead we used scalar relativistic pseudopotentials from the SSSP e�ciency library [133], which
required lower plane wave and charge density kinetic energy cuto�s equal to 40 Ry and 320 Ry
respectively. We sampled the BZ only at the Γ point. The atomic positions were optimized
with the convergence criterion that all components of the forces acting on the atoms must
be less than 10−3 Ry/bohr. The relaxation was performed along all the spatial directions in
order to capture not only the interlayer corrugation but also the local in-plane strain patterns
[120, 134, 135, 42]. The parameters (Vs, φs, m∗) of the continuum model were adjusted to match
the DFT bandstructures.
As shown in Fig. 5.3 and 5.4, we found that expanding up to the third shell s = 3 was su�cient
to accurately �t the low energy bandstructures and the charge density distribution of the
relaxed bilayers. The model parameters for twisted WS2, MoS2 and MoSe2 are listed in 5.1.
As a consequence of the out-of-plane nature of the pz and dz2 orbitals involved at the Γ VBM
the amplitude of the moirè potential Vs is more than �ve times larger than for K-valley TMDs
[39, 132]. Furthermore, since the VBM in the Bernal stacked regions is higher in energy than
in the AA regions (�xing φs = π), the minimum of the potential felt by holes in the valence
bands lies on the hexagonal lattice formed by the AB/BA regions (see Fig.5.2(b)). The physics
of the moiré band edges in Γ-valley β TMDs homobilayers is therefore generated by orbitals
sitting on a honeycomb lattice opening up a new chapter of strong correlation physics in moiré
superlattices. Finally, the Hamiltonian presented here can be easily generalized to describe Γ
α-homobilayers or heterobilayers by simply relaxing the (φs = 0, π) constraint imposed by the
emergent D6 symmetry.

5.2.3 Twist angle dependence of the bandstructure
We now demonstrate the e�cacy of the continuum model by using it to predict the bandstructure
of twisted TMDs at angles where full microscopic calculations are prohibitive. To reveal the
moiré band physics more fully we employ Topological Quantum Chemistry theory [121] to
identify the symmetries and centers of the Wannier orbitals underlying the moiré bands by i)
computing the symmetry of the Bloch states and classifying them in terms of the irreducible
representations (irreps) of the little groups at the corresponding high symmetry points and ii)
comparing the list of irreps with the Elementary Band Representatons (EBR) of the space group
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Figure 5.5: a) Bandstructure of θ = 1.1◦ twisted WS2. b) The �rst set of bands has a bandwidth of
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orbitals on the honeycomb and has a bandwidth of ≈ 3.2 meV . The third set of bands, formed by a set of
hybridized sd2 orbitals on a kagome lattice, has a bandwidth of ≈ 5.75 meV.

P6mm listed on the Bilbao Crystallographic server [136].
In Fig.5.5 the band structure of θ = 1.1◦ twisted WS2 is shown. Consistent with the emergent
honeycomb structure of the moirè potential, the �rst set of bands is formed by a pair of s-like
orbitals centered in the AB/BA regions. These bands are non-degenerate at Γ, form a Dirac node
at K, and are topologically equivalent to the π bands of graphene. Consistent with previous
studies on MoS2 [42], the second set of bands, is instead formed by px ± ipy orbitals on an
honeycomb [137] that form a pair of almost dispersionless bands and also have a Dirac node
at K. The third set of bands is even more intriguing, because it is formed by an odd (three)
number of bands, a feature inconsistent with orbitals on an honeycomb. The symmetry analysis
reveals that they are generated by orbitals centered on the 3c Wycko� positions, which lie at
the mid point between two honeycomb sites (see Fig.5.2 b). Interestingly, the lattice formed by
this Wycko� positions is a kagome lattice, a prominent platform to host frustration and spin
liquid physics [138, 139]. The topology of these bands, which have one �at band and a Dirac
node, further con�rms the kagome picture. To understand these bands in terms of the hexagonal
moirè potential of the system, we need two orbitals on di�erent honeycomb sites to hybridize.
As a consequence of this hybridization, the Wannier centers move from the honeycomb AB/BA
sites (2b) to their midpoints (3c), e�ectively turning the honeycomb into a kagome lattice.

5.2.4 Twisted TMDs as coupled harmonic oscillators

We have performed a systematic analysis of all the bands within ≈ 110 meV below the VBM as
a function of twist angle. This analysis is summarized in Fig. 5.6, where the band centers of the
�rst �ve sets of bands bands are represented by colored circles whose saturation represents the
corresponding bandwidths. The band centers and separations asymptotically evolve linearly
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Figure 5.6: Band center of the �ve lowest energy bands in twisted MoS 2 as a function of twist angle.
The bandwidth is encoded in color with the 1 meV bandwidth threshold marked by a star. The black
dashed lines correspond to the n = 0−4 harmonic oscillator eigenvalues with an oscillator frequency that
is proportional to twist angle. Within the red rectangle, the n = 2 levels split in two sets of kKagagome
bands (in green and orange) as a consequence of the sd2 orbital hybridization.

with the inverse moirè length a−1
M ∝ θ, whereas the bandwidths decrease exponentially with

θ. This behaviour can be understood [39, 140] by making an harmonic approximation to the
moiré potential near its maxima; ∆(r) ≈ −γ(r/aM)2/2 where γ = 8π2(V1 + 6V2 + 4V3) for β-
homobilayers.
The black dashed lines in Fig. 5.6 are the n = 0 − 4 eigenvalues of this harmonic oscillator
problem. The good agreement identi�es the harmonic oscillators wavefunctions as Wannier
functions. Within this approximation, the ratio between the Wannier wavefunction size to the
moiré period scales as aW/aM ≈ θ

1/2, implying that the overlap between neighboring Wannier
functions and the bandwidths are ∝ e−θ. The absence of magic angles in this systems is in sharp
contrast with twisted bilayer graphene case [141, 142, 10, 75, 30].
The symmetries of the 2D harmonic oscillator wavefunctions further con�rm this picture since
the n = 0 orbital is an s state and the n = 1 doublet is spanned by px ± ipy. The n = 3 harmonic
oscillator orbitals consist of one s and two d orbitals per honeycomb site. The EBR analysis shows
that over a broad intermediate twist angles (0.85◦ < θ < 1.4◦) the six n = 2 orbitals per unit
cell separate into two groups of three which can be identi�ed as sd2 bonding and antibonding
bands centered on kagome lattice sites located half-way the honeycomb sites. This situation is
known to give rise to kagome lattice physics [143], but has not been realized experimentally.
The splitting between bonding and antibonding bands decreases with the angle until, at a critical
θc ≈ 0.85, the six bands merge. By further decreasing the angle the bands disconnect again, this
time forming sets of 2 and 4 bands separated by a small gap, whose dispersion resemble that
of the s and px ± ipy bands. We observed similar behaviour also in the n = 3, 4 sets of energy
bands. This feature is due to high order terms not included in our simple harmonic oscillator
approximation. In particular, the topology of these sub-bands is always that induced by orbitals
(s or p) whose angular momenta is lower than two, consistent with the constraints imposed by
a triangular quantum well [144]. We expect this behaviour to be even further enhanced by the
strong reconstruction observed at very small angles, which tends to expand and sharpen the
triangular Bernal domains [120].



6
Conclusions

This PhD thesis concerns our research activity in the rapidly growing �eld of moiré 2D materials.
We initially focused on modeling the electronic and structural properties of twisted bilayer
graphene. In this system, the slowly-varying local registry between the two layers along the
moiré leads to a substantial lattice relaxation, which has been modeled by means of classical
molecular dynamics with state-of-the-art force �elds. In essence, relaxation acts as a torsion
�eld winding around the AA regions in opposite directions for the two layers, with net e�ect of
shrinking the AA regions, enlarging the more energetically favorable Bernal stacked regions,
thus e�ectively forming triangular domains. In addition, the interlayer distance of the AA
regions increases with respect to that of the Bernal zones, leading to signi�cant out-of-plane
buckling deformations.
The lattice relaxation has profound e�ects on the electronic bandstructure of the system that
we computed by means of tight-binding and continuum model calculations. The microscopic
tight-binding formalism has the advantage to rely on the real space atomic positions within the
unit cell, thus being suitable to work with lattice deformations. However, the large number of
atoms contained in the small-angle unit cell of twisted bilayer graphene makes any calculation
more involved than that rather tough, if not computationally impossible. To cope with it, we
introduced the continuum model formalism, which is much less computationally demanding.
In both these formalisms, the set of extremely narrow bands of magic angle twisted bilayer
graphene are isolated in energy by sizable band gaps only if lattice relaxation is included in the
calculation.
Given the fact that the four �at bands are isolated in energy, it looks tempting to compute
the corresponding Wannier orbitals, thus obtaining an e�ective four orbital model useful to
perform many-body calculations. To do so, one has to �gure out what are the symmetries
of the problem, which is not straightforward as the exact point group of a twisted lattice
depends on structural details not controllable in experiments, such as the twisting center or
commensurability. Nevertheless, we showed that at small angles and low energy the system
develops a set of emergent D6 and U(1) valley symmetries, which are robust to lattice relaxation
and independent on the exact point group of the lattice. Then, we characterized the �at bands
Bloch states in terms of these symmetries, showing that at least eight Wannier orbitals are
necessary, but probably not su�cient, to describe the complex �at bands topology. This is
reminiscent of the fact that these bands originate from an intricate set of avoided crossings
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between energy levels around neutrality. As a consequence of such level repulsion, which is
�nely tuned by the twisting angle, a set of bands is compressed around neutrality, although
they remain strongly entangled with the others. This mechanism is completely di�erent from
that in twisted TMDs or hBN, where there are no magic angles and the bandwidth continuously
decreases with the twist angle. Although complicated, we built a minimal (number of orbitals)
model for the �at bands, in which 8 Wannier orbitals per valley are introduced.
This ’broad band’ origin of the �at bands together with the observed phenomenology of the
insulating states of Refs. [8, 9], which turn metallic above a threshold Zeeman splitting or above
a critical temperature, suggest that they might arise from a weak-coupling Stoner or CDW band
instability driven by electron–electron and/or electron–phonon interactions, rather than from
the Mott’s localization phenomenon in presence of strong correlations.
We showed that twisted bilayer graphene supports an extremely large electron-phonon coupling
that might be responsible for the observed insulating and superconducting states. In particular,
we found that a pair of degenerate optical phonons couples strongly with the valley degrees
of freedom, also doubly degenerate, realizing a so-called E ⊗ e Jahn-Teller coupling. The JT
coupling lifts very e�ciently all degeneracies which arise from the valley symmetry, and may
lead, for an average atomic displacement as small as few mÅ, to large gaps (tens of meV) at
most the integer �llings of the narrow bands. Some of these insulating states might posses
non-trivial topology as testi�ed by the odd winding of the Wilson loop. The phonons involved
in this mechanism are a peculiarity of moiré materials, as their vibration is localized within the
AA regions, with little or negligible atomic movement within the other regions of the moiré .
Similar modes are routinely found in the entire phonon spectrum of the system (even in the
acoustic region) and have been dubbed as ’moiré phonons’.
Justi�ed by the large electron phonon coupling that we found, we worked out the possible
superconducting state stabilized by these phonons. In a mean �eld BCS framework, the pairing
instability occur in the spin-singlet Cooper channel, which may condense a superconducting
order parameter in the extended s-wave and/or d ± id-wave symmetry.
In the �nal part of this Thesis we focus on twisted Transition metal dichalchogenides bilayers. We
derive a continuum model Hamiltonian for those homobilayers in which the valence band edge is
located around the Brilluoin zone center, such as WS2, MoS2 and MoSe2. Their continuum model
is obtained by �tting large scale ab-initio calculations with the inclusion of lattice relaxation.
Then, we apply the continuum model approach to derive the bandstructure of twisted TMDs
at angles were fully microscopic calculations are prohibitive. Interestingly, also these systems
develop an emergent D6 symmetry, and e�ectively realize a honeycomb lattice physics.
By performing a symmetry analysis of the Bloch states, we show that in energetic order the �rst
three bands realize i) a single-orbital model on a honeycomb lattice, ii) a two-orbital model on a
honeycomb lattice, and iii) a single-orbital model on a kagome lattice. The lowest energy bands
provides a convenient realization of arti�cial graphene, but with a �ne-structure constant that
can be tuned simply by varying twist angle. The second set of bands is formed by px± ipy orbitals
on a honeycomb lattice, and is a promising candidate to study orbital and nematic order. Thanks
to an sd2 hybridization of honeycomb lattice orbitals, the third set of bands realizes a kagome
lattice model and is expected to host spin-liquid physics. Since all models have bandwidths that
can be adjusted simply by varying twist angles or by applying pressure, they provide an enticing
platform to study the exotic properties of strongly correlation physics on the honeycomb and
kagome lattices.



A
A more convenient continuum model

representation

For the purposes of Section 4.3, it is actually more convenient to use the alternative representation
of the Hamiltonian derived in Ref. [75].
We translate K′φ = −K2 so that it falls on K−φ = K2, and similarly K′

−φ = −K1 on Kφ = K1, see
Fig. 2.1 (d). This implies that the diagonal parts of the Hamiltonian Ĥ(i)

ζ (k), where i = 1, 2 is the
layer index and ζ = ±1 the valley one, become simply

Ĥ(2)
+1 (k) = −v

(
k −K2

)
·
(
σx , σy

)
,

Ĥ(1)
−1 (k) = −v

(
k −K2

)
·
(
− σx , σy

)
= v

(
k −K2

)
· σT ,

Ĥ(1)
+1 (k) = −v

(
k −K1

)
·
(
σx , σy

)
,

Ĥ(2)
−1 (k) = −v

(
k −K1

)
·
(
− σx , σy

)
= v

(
k −K1

)
· σT .

(A.1)

Following Ref. [75], we de�ne a set of vectors

Q =
{
QA , QB

}
=

QA = K2 + nG1 + mG2 ,

QB = K1 + nG1 + mG2 ,
(A.2)

which span the vertices of the MBZs, where QA, black circles in Fig. A.1, correspond to valley
ζ = +1 in layer 2 and valley ζ = −1 in layer 1, while QB, red circles in Fig. A.1, correspond to
valley ζ = +1 in layer 1 and valley ζ = −1 in layer 2. In addition we de�ne

q1 = K1 −K2 ,q2 = q1 + G2 ,q3 = q1 −G1 . (A.3)

Next, we rede�ne the momenta for layers 1 and 2 as, respectively,

p −K2 → k′ −QB ,k −K1 → k′ −QA , (A.4)

thus

k = k′ + K1 −QA ,

p = k′ + K2 −QB ,
(A.5)
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K1

=K-K2

=K QB

QA

q1

q3
q2

Figure A.1: The lattice in momentum space of Ref. [75]. The QA and QB vectors span the lattice formed
by the K points of the two twisted monolayer Brillouin zones.

so that the selection rules transforms into

p = k ⇒ QA −QB = q1 ⇒ QB = QA − q1 ,

p = k + G2 ⇒ QA −QB = q1 + G2 ⇒ QB = QA − q2 ,

p = k −G1 ⇒ QA −QB = q1 −G1 ⇒ QB = QA − q3 .

(A.6)

With those de�nitions, and denoting the conserved momentum k′ as k, the Hamiltonian of
valley ζ now reads

Ĥζ

QQ′(k) = δQQ′ v ζ
(
k −Q

)
·
(
σx, ζ σy

)
+

3∑
i=1

(
δQ′−Q,qi + δQ−Q′,qi

)
T̂ ζ

i (u, u′) ,
(A.7)

where

T̂ ζ
1 (u, u′) = uσ0 + u′ σx ,

T̂ ζ
2 (u, u′) = uσ0 + u′

(
cos

2π
3
σx + ζ sin

2π
3
σy

)
,

T̂ ζ
3 (u, u′) = uσ0 + u′

(
cos

2π
3
σx − ζ sin

2π
3
σy

)
= σx T̂ ζ

2 (u, u′) σx .

(A.8)

In particular,

T̂−ζi (u, u′) = σx T̂ ζ
i (u, u′)σx . (A.9)

One can further simplify the notation introducing the Pauli matrices τa, a = 0, x, y, z, with τ0

the identity, that act in the valley subspace, and thus write

ĤQQ′(k) = δQQ′ v τz
(
k −Q

)
· ΩσΩ

+ τ0

3∑
i=1

(
δQ′−Q,qi + δQ−Q′,qi

)
Ω T̂i(u, u′) Ω ,

(A.10)
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where T̂i(u, u′) ≡ T̂ +1
i (u, u′), and Ω is the real unitary operator

Ω = σx
1 − τz

2
+ σ0

1 + τz

2
= σx Pζ=−1 + σ0 Pζ=+1 , (A.11)

being Pζ the projector onto valley ζ, which actually interchanges sublattice A with B in the
valley ζ = −1. Applying the unitary operator Ω we thus obtain

Ω ĤQQ′(k) Ω→ ĤQQ′(k) = δQQ′ v τz
(
k −Q

)
· σ

+ τ0

3∑
i=1

(
δQ′−Q,qi + δQ−Q′,qi

)
T̂i(u, u′) ,

(A.12)

which has the advantage of having a very compact form.
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