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We study strongly interacting ultracold spin-1/2 fermions in a honeycomb lattice in the presence of
a harmonic trap. Tuning the strength of the harmonic trap we show that it is possible to confine the
fermions in artificial structures reminiscent of graphene nanoflakes in solid state. The confinement on
small structures induces magnetic effects which are absent in a large graphene sheet. Increasing the
strength of the harmonic potential we are able to induce different magnetic states, such as a Néel-like
antiferromagnetic or ferromagnetic states, as well as mixtures of these basic states. The realization
of different magnetic patterns is associated with the terminations of the artificial structures, in turn
controlled by the confining potential.

I. INTRODUCTION

The discovery of graphene [1, 2], a two-dimensional
sheet of carbon atoms arranged on a honeycomb lat-
tice, has generated a new field of research which at-
tracted an unprecedented interest as it combines an al-
most ideal non-trivial quantum problem with extraordi-
nary mechanical, electronic, thermal, and transport prop-
erties [2, 3]. From a more theoretical perspective, the rise
of graphene has increased the interest in the properties
of quantum particles on the honeycomb lattice.

Besides the synthesis of a variety of graphene-based
systems, this has also pushed the community to devise
quantum simulators of the honerycomb lattice using ul-
tracold atoms [4–7], which can access regimes which are
not easily reached in solid state systems.

One of the most elusive properties of solid-state
graphene systems is magnetism. Infinite, or very large,
graphene sheets do not show magnetic ordering [8], which
is instead proposed and realized in nanoscopic structures
composed by a small number of carbon atoms when the
termination have a so-called zigzag pattern [9, 10]. How-
ever, the instability of zig-zag edges severely limits the
realization of magnetic graphene nanostructures and the
first solid experimental evidence is very recent [11] .

Promising candidates for magnetism are
nanoflakes [12, 13]. Their theoretical phase dia-
gram is quite rich, and it is characterized by a strong
competition between short-range antiferromagnetic (AF)
and long-range ferromagnetic (FM) correlations. The
former are particularly strong in insulating half-filled
flakes with one fermion per site, while the latter emerge
when the density is reduced and the carriers become
more mobile. In principle this competition might be ex-
ploited to manipulate the magnetic ground state by, e.g.,
electrostatic [12, 14, 15] or chemical doping [16–18] and
to engineer different kinds of spin filters [16, 17, 19–22].
This rich scenario is however so far largely unexplored
owing to the technical difficulties to control the edges of
solid-state graphene nanosystems.

harmonic trap

Figure 1. (Color online) Protocol for the realization of arti-
ficial nanoflakes by spatial confinement using a optical trap-
ping potential. Solid and shaded lines denote the 5N and 3N
hexagonal flakes, respectively.

In this paper we propose an alternative route to in-
duce magnetism in effective artificial graphene structures
formed by cold atoms moving in optical lattices [23, 24]
which overcomes the limitations of solid-state realiza-
tions. The idea is to engineer an optical lattice with the
graphene honeycomb structure [4–7] in the presence of
a strong harmonic trapping potential which confines the
fermions in a limited portion of the lattice, thus realizing
an artificial nanostructure. A schematic illustration of
this idea is depicted in Fig. 1. In what follows we show
that this procedure leads to sufficiently well defined arti-
ficial edges which mirror the different edges of solid-state
nanosystems. We demonstrate that, by continuously tun-
ing the strength of the trapping potential, and thus the
size of the artificial flake, we can induce magnetic phases
starting from a non-magnetic system and we can induce
transitions between different magnetic states with differ-
ent arrangements of the spins. We will highlight that
the effective flakes will be characterized by a spatially in-
homogeneous distribution of the fermions, with a larger
local density in the central region. This will enrich the
scenario of the magnetic properties of the effective flakes
with respect to graphene nanoflakes.
The paper is organized as follows: In Sec. II we intro-

duce the model used to describe the graphene-like struc-
ture and give an overview of dynamical mean-field theory
that is used to solve the system. In the Sec. III we dis-
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cuss the two main results, namely the creation of the
artificial nanostructures in optical lattices reminiscent of
graphene nanoflakes (Sec. III A) and the magnetic prop-
erties of the synthetic nanoflakes (Sec.III B). Sec. IV is
dedicated to concluding remarks.

II. MODEL AND METHOD

We model our artificial structure by a Fermi-Hubbard
model with repulsive interactions on a two-dimensional
honeycomb lattice

H =− t
∑

〈i,j〉,σ

(ĉ†iσ ĉjσ + h.c) + U
∑

i

n̂i↑n̂i↓

+
∑

i

(Vi − µ)(n̂i↑ + n̂i↓),
(1)

where ĉ†iσ (ĉiσ) denotes the creation (annihilation) opera-
tor for spin-1/2 fermions and n̂iσ is the density operator
at site i for the two spin states, labeled by σ ∈ {↑, ↓}.
ni =

∑
σ niσ is the total density on site i. t denotes the

nearest-neighbour tunneling amplitude, U the on-site re-
pulsion while the chemical potential µ controls the num-
ber fermions. Vi = V0r

2
i is a harmonic trapping potential,

with ri = (xi, yi) the lattice coordinate and ri = |ri|.
In our calculations we consider a L = 150 sites lattice
with hexagonal shape and zigzag edges whose geometric
center, r = (0, 0), coincides with the minimum of the
parabolic potential, as shown in the left panel of Fig. 1.
In the absence of the optical trap, on an infinite hon-

eycomb lattice, this model displays a transition from a
Dirac semimetal to an antiferromagnetic insulator at av-
erage density of one fermion per site (half-filling) [25]. A
metallic state is generally found for any other number of
fermions. The critical interaction strength for the onset
of magnetism has been estimated to be Uc ≃ 3.87t [26]
via numerically exact Quantum Monte Carlo simula-
tions of large lattices. On smaller systems with zigzag
edges, an AF spin ordering establishes at the bound-
aries [10, 12, 14]. Importantly, theoretical [12] and exper-
imental [27] evidences suggest that this edge magnetism
survives up to room temperature. As expected, AF order
is favoured in half-filled systems, for which the Hubbard
interaction is more effective in localizing the carriers. The
general expectation is that, when the density deviates
substantially from half-filling, delocalized metallic states
are favoured. The free motion of carriers in a metallic
state destroys the AF ordering, while they it can coexist
with a FM order, which is not spoiled by the motion of
carriers. This leads to a competition between AF and FM
tendencies which is mainly determined by the density. It
is therefore very interesting to address this issue in our
inhomogeneous system where the local density changes
as we move from the center to the edge of the system.
We solve the model using a real-space dynamical mean-

field theory (DMFT) [28–31] approach, which has been
previously used to study inhomogeneous systems, such as

cold atoms [31–33], and nanostructures [34–36], including
isolated graphene nanoflakes [12]. In the homogeneous
case DMFT approximates the lattice self-energy of the
interacting many-body problem with a local, momentum-
independent, self-energy which, however, retains the full
frequency dependence which allows to capture non-trivial
quantum correlations characteristic of strongly correlated
systems [28]. In order to treat an intrinsically inhomoge-
neous system and the confinement effects induced by the
parabolic potential we need to relax this approximation
using real-space DMFT, in which the self-energy remains
local but it acquires a dependence on the specific lattice,
i.e., Σijσ = δijΣiσ.
In order to explore extensively the dependence of pa-

rameters we focus on finite artificial flakes, following pre-
vious calculations in a solid-state set-up [12, 21]. We
borrow from these works the choice to start from the
150-site cluster that we label as 5N (according to a no-
tation where N is the number of sites on an edge). This
cluster contains smaller hexagonal nanoflakes (4N , 3N ,
...) with the same symmetry, as well as flakes with dif-
ferent edge termination (bearded), which are shown in
Fig. 2(f), which can all in principle be stabilized by the
trapping potential.
This allows to prove whether our protocol to confine

atoms in effective nanostructures actually works in con-
figurations which have already been tested. In this light
we refrain from a detailed comparison with potential re-
alizations with actual cold-atom experiments, which we
postpone to future research. We notice that a similar
scheme, where the optical trapping is used to induce
quantum states in an optical lattice loaded with ultra-
cold fermions, has been realized in Ref. [37].

III. RESULTS

A. Artifical Nanostructures

As discussed in the following, the electronic distribu-
tion and the magnetic ordering of the fermions in the
trapping potential depend on the value of the local re-
pulsion, which in cold-atom experiments can easily be
controlled via tuning the strength of the optical lattice
and the scattering length, when Feshbach resonances
are available. We consider two case: U/t = 3.75 and
U/t = 11.25. The first value corresponds to a realis-
tic choice for actual graphene, and it falls in the range
where the semimetal/AF insulator transition takes place
for the infinite honeycomb lattice [25, 26]. The latter
is sufficient to put any graphene structure deeply in the
Mott state, where the fermions are described as localized
spins interacting via a Heisenberg exchange.
We will first consider a system with the same num-

ber of fermions per each spin species N↑ = N↓ = Nf/2,
where Nf is the total number of fermions, which in fixed.
This is the standard situation for a cold-atom experi-
ment, where the number of fermions in each species is
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Figure 2. (Color online) Spatial confinement into artificial
nanoflakes. (a-c) Map of the local density n(ri) = 〈ni〉 in
the absence of the trap, and for trapping potential strengths
V0/t = 0.4 at repulsion U/t = 3.75 and U/t = 11.25. (e-
d) Radial density distribution for selected potential strengths
V0/t = 0.1, 0.25, 0.4, at U/t = 3.75 and U/t = 11.25. Average
fermion density: 〈n〉 = 0.36. The vertical solid lines in panels
(d-e) mark the position of the edge sites, as labelled in panel
(f), where only one sixth of the flake is shown.

conserved. As a second step we will also release this con-
straint, allowing the system to relax in a state with a
finite global magnetization (i.e., with N↑ 6= N↓). This
situation would be realized in systems in which spin-flip
processes are possible as a consequence of the coupling to
an external environment or the inclusion of a small arti-
ficial spin-orbit coupling. From a theoretical perspective,
this will be useful to clarify the tendency towards ferro-
magnetic ordering with a finite magnetization for some
values of the interaction and of the trapping potential.
In all our calculations we consider Nf = 54, which

coincides with the number of sites composing the 3N
nanoflake with zigzag edges. Thus, if the fermions can
be trapped in the portion of space corresponding to the
3N flake we would have one fermion per site (half-filling),
which is the ideal situation for the onset of AF order-
ing, at least for a homogeneous system. On the other
hand, for our system of 150 sites, the average filling is

n = Nf/L = 0.36, i.e. a small density which makes in-
teractions marginally effective. Therefore, in the absence
of trapping potential we have no magnetic effects and the
fermions are spread over the whole system also for large
interaction strength.

This non-magnetic state is the starting point to intro-
duce the harmonic potential. Increasing the strength V0,
we progressively localize the fermions in the central re-
gion. This is demonstrated in Figs. 2(a-c), where we show
the map of the local density 〈ni〉 on the whole system for
calculations with N↑ = N↓[38]. In the absence of the
trap we recover a nearly homogeneous system (the small
deviation is due to boundary effects) with 〈ni〉 ≈ 0.36 for
every site i. Conversely for trapping potential strength
V0/t = 0.4 the fermions are spatially localized within
a reduced region around the center of the trap. The
sharpness of the confinement depends on the value of the
Coulomb repulsion.

In order to investigate this aspect, in Figs. 2(d,e) we
show the radial profile of the local density as a function
of the distance from the trap center r = |r| for differ-
ent values of the trapping potential. In shallow traps
(e.g., V0/t = 0.1 and V0/t = 0.25) the fermion distri-
bution is only weakly affected by the Coulomb repulsion
due to the low average local density. As the trap deep-
ens, the fermions tend to leave the boundaries to pack
in the central region, and we witness an important ef-
fect of the repulsive interaction, which competes with
the spatial charge accumulation. This effect is clear at
V0/t = 0.4. For relatively weak repulsion U/t = 3.75,
as in Figs. 2(a,d), the charge accumulates towards the
center of the trap, where we approach the maximum lo-
cal density allowed by Pauli principle. Therefore, even if
the fermions are localized in a region r <

∼ 5, the distri-
bution is not uniform within the confinement region. At
U/t = 11.25 instead, as in Figs. 2(c,e), the fermions are
Mott localized, and energetically costly double occupan-
cies 〈ni↑ni↓〉 are strongly suppressed throughout the lat-
tice. The tendency to reduce double occupancy contrasts
the packing of fermions in the center of the trap and fa-
vors single occupation 〈ni〉 = 1. In the strong-coupling
(Mott) regime, most of the fermions are confined within
a region r <

∼ 4.5, characterized by a nearly constant lo-
cal density of ni ≃ 1, with a sharp drop at this effective
boundaries. The competition between the trapping po-
tential and the repulsion results in a smaller structure, al-
most homogeneously filled, which appears as a promising
effective nanoflake. Our results directly reflect the incom-
pressible nature of the Mott insulator, where the config-
uration with singly-occupied sites is highly favoured and
robust with respect to the packing effect of the trapping
potential. In contrast, in the weak- and intermediate-
coupling regimes the system is a quantum fluid with a
finite compressibility, which allows charges to accumu-
late in the center of the trap.

In Figs. 2(d,e) we denoted by vertical lines the radii
corresponding to the edge sites of different hexagonal
nanoflakes (5N , 4N , and 3N) as labeled in Fig. 2(f).



4

4

5

6

7

0 0.1 0.2 0.3 0.4 0.5

Figure 3. (Color online) Effective edge r∗edge of the arificial
flake induced by the trapping potential as a function of V0/t.
Horizontal lines correspond to the positions of the edge sites
as labelled in Fig. 2(b). In this setup, the 3N flake is stable
for a wide range of V0/t.

At V0/t = 0.4, the sharp edge observed in the strong
coupling regime coincides with that of the 3N nanoflake
with zigzag edges which we already identified as a promis-
ing candidate for the emergence of magnetism because it
can a host a half-filled configuration for the chosen total
number of particles.

Before probing the magnetic properties of the artificial
flake, we introduce a concrete definition of the effective
edge r∗edge. In Fig. 3 we plot as a function of V0/t the es-
timate of r∗edge given by the position where the derivative

of the density with respect to the position ∂n/∂r is max-
imal. Obviously, this definition has a degree of arbitrari-
ness, but we have verified that different criteria provide
the same result for large interactions, while some intrinsic
ambiguity is present for small interactions. We marked as
horizontal lines the positions of the edge sites as in Fig. 2.
Upon increasing V0/t the fermionic cloud is attracted to-
wards the center of the trap and its effective size is re-
duced. The contraction is faster at weak coupling with
respect to strong coupling because the Coulomb repulsion
acts as internal pressure competing with the trapping po-
tential. Interestingly, in both regimes the system evolves
through a series of effective flakes of different sizes. The
3N zigzag-edged flake is the most stable artificial struc-
ture, due to the initial choice of Nf , and it is realized in
a wide range of trapping potential strength.

B. Magnetism

We are now in the position to test whether the effec-
tive nanostructures that we have defined actually support
magnetic ordering. Therefore in Fig. 4 we report color
maps of the local magnetization along the z-direction
〈Sz

i 〉 = 〈ni↑ − ni↓〉 for the two values of interaction
and three values of trapping potential used in Fig. 1.
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Figure 4. (Color online) Map of the local magnetization 〈Sz

i 〉.
The first row (a-c) presents results for U/t = 11.25, while the
second row (d-f) shows data for U/t = 3.75 with 〈Sz〉 = 0 (d-
f) and the third row (g-i) data for U/t = 11.25 with 〈Sz〉 6=
0. In all cases we show results for three different values of
V0/t. The competition of emergent AF and FM magnetic
exchanges gives rise to different magnetic states, depending
on the electronic density distribution determined by V0/t and
U/t.

Red (blue) indicates a positive (negative) magnetization.
Since the honeycomb lattice is bipartite, i.e., it can be
divided in two sub-lattices A and B, such that sites of
A are only connected with sites of B and vice versa, we
can define a perfect AF state when the magnetization
of sublattice A is the opposite of that of sublattice B
〈Sz

iA
〉 = −〈Sz

iB
〉, while a FM has the same magnetization

on the two sublattices. A ferrimagnetic state is charac-
terized by the presence of both a staggered and a uniform
magnetization. In a non-magnetic state we have vanish-
ing local magnetic moments 〈Sz

iA,B
〉 ≈ 0. The results in

Fig. 4 show a rich landscape of magnetic solutions which
depend from the effective radius and the density distri-
bution of the artificial flakes.

We start presenting results where we impose that the
total number of up and down fermions is conserved and
N↑ = N↓ = Nf/2, or 〈Sz〉 = 0, where Sz =

∑
i S

z
i . We

first consider results in the strong-coupling regime, where
the emergence of an effective half-filled 3N nanoflake is
clear, as shown by our data for U/t = 11.25. In the ab-
sence of a trapping potential, or for very shallow ones,
the fermion density is low on every site (we remind that
〈ni〉 ≈ 0.36 at V0 = 0) and the flake is not magnetic (not
shown). As the fermions are attracted towards the cen-
ter of the trap, as in Fig. 4(a,b), we observe a clear AF
pattern in the region of the inner rings, where 〈ni〉 ≈ 1
while in the region where 〈ni〉 ≈ 0.5 (quarter-filling) we
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find weakly FM islands. In Fig.4(c) we show that increas-
ing V0/t leads to a dramatic enhancement of the magnetic
moments, which form Néel AF state extended over the
whole occupied central region. The character of the mag-
netic ordering of this half-filled structure is not surprising
and it can be easily understood in terms of the strong-
coupling limit (U/t ≫ 1) of the Hubbard model, that
leads to an effective Heisenberg model with a nearest-
neighbor exchange coupling J = 4t2/U which leads to
an AF ordering on the honeycomb lattice. The magnetic
response confirms the formation, in the strong-coupling
regime, of a well-defined effective flake, with properties
reminiscent of an isolated graphene nanoflake, and proves
that a simple change of the trapping potential can induce
a magnetic state. The results in the strong coupling limit
do not change if we relax the 〈Sz〉 = 0 constraint, con-
firming that the AF solution is the actual groundstate of
the system.

At intermediate interaction (e.g., for U/t = 3.75)
the evolution of the magnetic properties in Fig 4(d-f)
is richer and more peculiar, as a result of a less pro-
nounced tendency towards the formation of magnetic
moments and the more ambiguous definition of an ar-
tificial edges. On the other hand, as discussed in previ-
ous work on graphene nanoflakes[12], densities different
from one fermion per site favor FM correlations which are
more compatible with metallic behavior. In our artificial
nanoflake, this leads to a non-trivial evolution as a func-
tion of V0/t characterized by the competition between
AF and FM correlations.

For shallow traps, the fermions are spread over a rela-
tively large area, and AF ordering establishes in the cen-
tral region, even if weaker than in the large-U case. In
the outer region we observe the development of small FM
islands which are ordered in a staggered pattern around
a hexagonal ring as shown in Fig. 4(d). This suggests
the emergence of long-range AF correlations between FM
domains at distances dAF ≈ 5r, mediated by the short-
range (i.e., dAF = r) Heisenberg exchange. For deeper
traps the packing towards the center is stronger because
of the smaller repulsion. Once the occupation of the sites
in the inner region becomes close to 2 the tendency to-
wards AF order is washed away, and the center of the
trap tends to host a FM island surrounded by a non-
magnetic region and an external ring where the fermions
have the opposite spin with respect to the center. When
the trapping potential becomes even larger (Fig. 4(f) for
V0/t = 0.8) the magnetic moments become smaller be-
cause of the increased density in the center of the trap.

Our results directly demonstrate that tuning the trap-
ping potential and the interaction strength we can induce
magnetism or change completely its nature. For example
if we change the interaction strength at fixed V0/t we can

induce a transition between a FM and AF states (panels
(b) and (e) or (c) and (f) of Fig. 4).
Finally, as anticipated above, we relax the the 〈Sz〉 = 0

constraint. This protocol, which would require to include
some mechanism able to flip the spins of the atoms, is
chosen in order to better highlight the tendency towards
FM that we have identified for the case with moderate
electron-electron interaction. In contrast with the large-
U case, here we find that the system indeed minimizes
its energy by polarizing the fermionic spins. In the third
row of Fig. 4 we show these results. In particular if we
compare panel (h) with panel (e) and panel (i) with panel
(f) we find a clear enhancement of the FM correlations
which invade a larger portion of the effective flake and, for
the largest value of the potential that we considered we
obtain a FM polarization spread over the whole effective
flake.

IV. CONCLUSIONS

In this work we have shown that a trapping poten-
tial can induce a variety of magnetic phases in an oth-
erwise non-magnetic honeycomb lattice. In particular,
a parabolic potential can be used to trap the fermions
in artificial nanoflakes, which inherits the properties that
have been widely studied in a solid-state framework. The
trapping is most effective for strong fermion-fermion re-
pulsion, underlining the important effect of interactions
in the realization of well-defined artificial edges. Our
work shows a novel route to induce magnetism in arti-
ficial graphene nanostructures, and it is expected to be
robust with respect to details of the system, i.e., actual
size and number of fermions as long as the interactions
can be made sufficiently strong to reach the Mott regime.
Also when it is difficult to establish a direct corre-

spondence with solid-state systems, because the trapping
leads to strongly inhomogeneous density distributions, we
find a competition between FM and AF tendencies. This
leads to a tunable system evolving from a weak antiferro-
magnet to a ferromagnet. The magnetic ordering is also
expected to be reflected in the transport properties, lead-
ing to highly non-trivial spin transport. The possibility
to induce different magnetic states could be exploited to
investigate of spin-filter [21] and spin-valve effects within
transport experiment in optical lattices [39, 40].
We acknowledge support from H2020 Frame-

work Programme, under ERC Advanced Grant No.
692670 “FIRSTORM” and MIUR PRIN 2015 (Prot.
2015C5SEJJ001) and SISSA/CNR project ”Supercon-
ductivity, Ferroelectricity and Magnetism in bad metals”
(Prot. 232/2015). A.V. acknowledges financial support
from the Austrian Science Fund (FWF) through the
Erwin Schrödinger fellowship J3890-N36.
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