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Benamou-Brenier and duality formulas for the entropic cost on

RCD*(K, N) spaces
Nicola Gigli * Luca Tamanini f

March 20, 2019

Abstract

In this paper we prove that, within the framework of RCD*(K, N) spaces with N < oo,
the entropic cost (i.e. the minimal value of the Schrédinger problem) admits:

- a threefold dynamical variational representation, in the spirit of the Benamou-
Brenier formula for the Wasserstein distance;

- a Hamilton-Jacobi-Bellman dual representation, in line with Bobkov-Gentil-Ledoux
and Otto-Villani results on the duality between Hamilton-Jacobi and continuity
equation for optimal transport;

- a Kantorovich-type duality formula, where the Hopf-Lax semigroup is replaced by
a suitable ‘entropic’ counterpart.

We thus provide a complete and unifying picture of the equivalent variational representa-
tions of the Schrodinger problem as well as a perfect parallelism with the analogous for-
mulas for the Wasserstein distance. Riemannian manifolds with Ricci curvature bounded
from below are a relevant class of RCD* (K, N) spaces and our results are new even in this

setting.
DEDICATED TO THE MEMORY OF PROF. KAZUMASA KUWADA
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1 Introduction

1.1 Optimal transport

It is well-known that the optimal transport problem with quadratic cost admits two equivalent
formulations: the Kantorovich dual one [22] and the Benamou-Brenier dynamical one [5].
Given two compactly supported probability measures jig = po L%, 1 = p1£% in RY, the former
tells us that the squared Wasserstein distance between pg and p; can be represented as

W) = swp [ oduo+ [ o am (L.1)

$ECy(RD)

with ¢¢ the c-conjugate of ¢, namely

2
o) = it Ty,

yeR4 2

On the other hand, J.-D. Benamou and Y. Brenier observed that the optimal transport
problem admits a fluid-dynamics interpretation in the following sense:

1
WGa.pn) = inf [ o0 Pote. ) deda (1.2)

where the infimum runs over all couples (p, v) solving the continuity equation
Op + div(pv) = 0, in R x (0,1)

with marginal constraints p(-,0) = po and p(-,1) = p; in R%

Although the two results may appear completely different in spirit at a first glance, as a
matter of fact they are deeply linked, since it is possible to pass directly from the one to the
other, gaining a further variational representation of the Wasserstein distance. This relies on
the duality between Hamilton-Jacobi and continuity equation, hidden in (1.2) and already
noticed by Benamou and Brenier. Indeed, the Hamilton-Jacobi equation

1
O + 5|V¢|2 =0, inR%x(0,1)
already arises in the optimality conditions for v in (1.2), which read as v = V¢ with ¢ solving

the PDE above. More generally, if (¢;) is a subsolution to the Hamilton-Jacobi equation and
(p,v) is a solution to the continuity equation, then

1
/ 6(1) dpny — / 6 0) duo < 3 / [ lo(e ) ot dtas



and, as first noticed by F. Otto and C. Villani in [33] and by S. Bobkov, I. Gentil and M.
Ledoux in [6], if we saturate the left-hand side with the supremum and the right-hand one
with the infimum, then the inequality turns out to be an equality, which in particular yields

3 R0, pn) =sup [ o, [ o(-.0)duo (1.3)

where the supremum runs over all subsolutions to the Hamilton-Jacobi equation with initial
condition ¢(-,0) = ¢ for all possible ¢y € C,(R?). Now it is sufficient to recall that maximal
subsolutions to the Hamilton-Jacobi equation are obtained via the Hopf-Lax semigroup Q,
defined for any f: R? — RU {+oo} and t > 0 as

Qufte) = it V4 gy
t yERd 2t '
This allows us to restate (1.3) as
*Wz (o, 1) = sup /Q1¢du1 /<Z>duo, (1.4)
peCy(R9)

which is equivalent to (1.1) by the very definition of the Hopf-Lax semigroup, thus closing
the loop.

The great interest in the study of metric spaces led subsequently the focus on the possible
generalization of these results. For what concerns the ‘static’ quantities, this comes quite for
free: (1.4) holds in great generality and actually can be stated for more general cost functions.
Similarly, (1.3) holds in arbitrary metric spaces provided one defines ¢(¢, ) via the Hopf-Lax
formula. The link of such formula with the Hamilton-Jacobi equation (with lip ¢ in place of
|V¢|) has been first studied in [2] and [20]. Things are technically more complicated for what
concerns (1.2), because it is not clear how to formulate the continuity equation on a metric
space. Yet, a natural notion of solution to such equation can be given on metric measure
spaces (X,d, m): adopting the language developed by the first author in [14] and recalled in
Section 2.1, we first say that a curve (uy) C HP2(X) is a solution of the continuity equation

d
dt,ut + le(XtMt> 0,

provided the following holds. The X;’s are vector fields in L°(TX) (in the smooth setting this
is the class of Borel vector fields identified up to equality a.e.) possibly defined only for a.e.
t € [0,1], the map ¢ — i is weakly continuous, ¢t — [ |X;|*du; belongs to L(0,1), uy < Cm
for all ¢t € [0,1] for some C' > 0 and for any f € WH3(X) the map [0,1] 2 ¢t — [ fdu, is
absolutely continuous with

(i/fdut_/df(Xt)th a.e. t.

With this premise, if (X, d, m) is infinitesimally Hilbertian and u,v € %5(X) are such that
there exists a Wa-geodesic (u¢) connecting them such that p; < Cm for all ¢ € [0, 1] for some
C > 0 (the statement in [16] is slightly more general), then

1
W2(u,v) :min/ /\XtIQd,utdt,
0

where the minimum is taken among all solutions (u:, X;) of the continuity equation such that
po = pand py = v.



1.2 Schrodinger problem

Formally similar to optimal transport but with completely different motivation and inter-
pretation, the Schrodinger problem is an optimization and interpolation problem too. While
optimal transport was originally formulated by G. Monge for engeneering purposes, such as
resource allocation, on the contrary Schrodinger problem is physical in nature, as in trying
to explain the wave-particle duality via a classical mechanics example, E. Schrodinger landed
in a maximal likelihood problem. In both cases two probability measures ug, p11 are assigned
as data, but while in optimal transport they are seen as initial and final configurations of
resources whose transportation cost has to be minimized among all possible couplings v be-
tween po and g, in Schrédinger problem pp and gy represent initial and final probability
distributions of diffusive particles and one looks for the most likely evolution from pg to 1,
thus suggesting a strong link with large deviations theory. Let us briefly describe what this
means in the Euclidean setting.

Given two probability measures pg = poL?, 1 = p1£? on R?, one looks for a coupling
between them that takes into account the fact that the particles are driven by a diffusion
process. As shown in [12] (see also [26] for a detailed explanation), this amounts to solve the
following minimization problem

inf  H(y|R 1.5
eadnl o HOIR) (1.5)

where Adm(ug, 1) denotes the family of all couplings between po and pi, H(-|-) is the
Boltzmann-Shannon entropy and dR(z,y) = ry/s(z, y) L%, ri/2 being the heat kernel at time
t = 1/2 (the time choice plays no special role, but is convenient in computations). The fact
that the Boltzmann-Shannon entropy appears in (1.5) is a hint of the very probabilistic nature
of the Schrodinger problem, which can be intuitively described as follows. Given n independent
Brownian particles, whose trajectories are described by stochastic processes Y, ..., Y™ with
values in C([0, 1], R?), consider the empirical measure

n 1 g
=1

and assume that its initial (resp. final) marginal Z} (resp. Z7') converges to pg (resp. p1)
as n — oco. By the law of large numbers we expect Z7' to converge to the law at ¢ = 1 of
the Brownian motion with initial distribution pg; thus if @1 does not match with it, then an
unlikely (but still possible, as n is finite) event occurred. The aim is to find the evolution
of the particle system conditionally on this rare event. The answer relies on large deviations
theory and more precisely on Sanov’s theorem, whence it is possible to deduce the informal
statement

1
lim —log Prob(Z]' ~ 1| 2§ ~ juo) = —inf {H(P|R) = H(po | £ },

where Z]' ~ p should be intended as ‘the law of Z7 is close to p1’, R is the law of the
reversible Brownian motion with initial distribution £? (notice that R has infinite mass) and
the infimum runs over all probability measures P on C([0, 1], R?) matching with the marginal
constraints g, 1. Following [12], it is then easy to see that the right-hand side above is
nothing but a restatement of (1.5).



After this premise, let us discuss the solvability of (1.5). It turns out that in great generality
this problem admits a unique solution < and the structure of the minimizer is very rigid: indeed
~ = f ® gR for some Borel functions f,g: R — [0,00), where f ® g(x,y) := f(x)g(y). As a
consequence

po=f h1/29 P1L=4g h1/2f7 (1.6)

where h; f is the heat flow starting at f evaluated at time ¢. This suggests us to interpolate
from pg to p; by defining

pt = hysafha_y) 29

This is called entropic interpolation, in analogy with displacement one. Introducing the
Schrodinger potentials ¢y, 1; (in connection with Kantorovich ones) as

ot = log ht/2f Yy = log h(lft)/297 (1.7)

the parallelism between optimal transport and Schrédinger problem can be fully appreciated.
Indeed, by direct computation it is not difficult to see that (¢;), (¢:) solve the Hamilton-
Jacobi-Bellman equations

1 1 1 1
Orpr = §|V80t|2 + 58 — Oy = §|V¢t’2 + 54, (1.8)
and they are linked to (p;) via the Fokker-Planck equations
. 1 . 1
—0pr + div(Vey py) = §Aﬂt Ovpy + div(Vipy py) = §Aﬂt-

Thus, denoting by .# (19, pt1) the minimal value of (1.5), the entropic analogue of the Benamou-
Brenier formula can be proved to be

1 ‘U+|2
I (o, 1) = H(po | £%) 4+ inf / / tLdy;Fdt

d PP
=H(u | L) + inf/ Ll dy,;dt

(r=wv7)Jo

where the infimum is taken among all suitable weak solutions of the forward Fokker-Planck
equation in the first case and of the backward one in the second case, with marginal constraints
1/3E = po and Vft = p1. If we also introduce the functions ¢, := @ it is not hard to check
that it holds

8tpt + le(Vﬁt pt) =0, (110)

and a third Benamou-Brenier formula for .# (p, (1) is available, namely

1 vl? 1
j(uo,ul) = 5 (H(NO | Ld) + H(,ul ’L + (lnnf { ﬂ ‘ t’ 8|V10gnt|2)ntdtdm} (111)

where the infimum now runs over all suitable weak solutions of the continuity equation with
marginal constraints n0L?% = o and 7 £% = p1. These formulas have been proved, in the
Euclidean setting, in [26], [11] and then extended to a slightly more general setting in [13],
moving from closely related results contained in [32], [12], [31] and the subsequent literature.
A heuristic discussion can be found also in [23].



As concerns the entropic analogue of Kantorovich duality, the natural guess is then to
replace solutions of the Hamilton-Jacobi equation with those of the Hamilton-Jacobi-Bellman
equation in (1.3) and thus to substitute the Hopf-Lax formula with a suitable semigroup
providing us with solutions of the latter PDE. This is given by

Qip(z) :=log (he?), Vo € Cp(RY) (1.12)

and thus (1.3) becomes

S (po, 1) = H(po | £%) + sup { /¢1 dpy — /¢0 d#o}, (1.13)

as shown in [28], where the supremum is taken among all supersolutions to the backward
Hamilton-Jacobi-Bellman equation with final condition ¢(-,1) = ¢; for all possible ¢; €
C°(R9), while (1.4) turns into

I (1o, 1) = H(po| £9) 4+ sup {/¢dﬂl—/Q1¢dﬂo}7 (1.14)

#Cy(RY)

as proved in [13]. Both (1.13) and (1.14) are forward representations and thus admit backward
counterparts. Truth to be told, in [28] and in the subsequent work [29] the Schrédinger problem
is not explicitly mentioned; nonetheless, a direct link between (1.9) and (1.14) is established.

1.3 Our result

As for optimal transport, also for the Schrodinger problem it is reasonable to investigate
what can be said in the curved and possibly non-smooth setting. In fact, the construction
of entropic interpolation and Schrédinger potentials can be done in great generality, as only
a heat kernel is needed. In this direction, in the recent work [19] the authors brought the
Schrodinger problem to finite-dimensional RCD* (K, N) spaces, obtaining new (even in the
Euclidean setting) estimated for the various objects appearing in the entropic interpolation
(we shall recall some of them in Section 2.2).

Still, the generalization of (1.9), (1.11), (1.13) and (1.14) to the non-smooth setting has
not been achieved yet, not even on smooth Riemannian manifolds (except for a partial result
obtained for (1.14) in [21], where Kantorovich duality for general transport costs is established
in the metric setting and applies to the Schrodinger problem in the case the space is assumed
to be compact). As concerns the Benamou-Brenier formulas for the entropic cost, this is
essentially due to the fact that in [28], [13] and [11] a more or less probabilistic approach is
always adopted: either via stochastic control techniques or (as it is in [13]) by strongly relying
on Girsanov’s theorem. On the contrary, we propose here a purely analytic proof which fits
to the RCD framework, thus extending the previous results and including, in particular, the
relevant case of Riemannian manifolds with Ricci curvature bounded from below: we recall
indeed that a Riemannian manifold (M, g) satisfies the RCD* (K, N)-condition if and only if
Ricy, > K and dim(M) < N (in particular, compact, connected and smooth manifolds are
covered by our analysis). As a further advantage, with slight modifications the same argument
allows us to obtain the Hamilton-Jacobi-Bellman duality (1.13) and, as a direct corollary, the
Kantorovich-type duality formula (1.14) for the entropic cost, that were also missing in the
Riemannian setting. This will be achieved as follows:



- (1.11) and (1.9) are proved in Theorems 4.2 and 4.4 respectively;
- (1.13) is established in Theorem 4.6;
- (1.14) is shown to hold in Theorem 4.7.

We thus provide a complete and unifying picture of the equivalent variational representations
of the Schrodinger problem as well as a perfect parallelism with the analogous formulas for
the Wasserstein distance. Our approach is based on a suitable (but very natural) variant
of Kuwada’s lemma, which has been extremely successful in dealing with the same kind of
dualism for the optimal transport problem (in particular in connection with the heat flow on
non-smooth spaces, see [17] and [2]). Let us informally outline our argument for proving the
Benamou-Brenier formula (1.11), neglecting all the smoothness and compactness issues.

Let (1, vt) be a solution of the continuity equation with nom = g, mm = u1, and (¢¢), (Y1)
arbitrary supersolution and subsolution of the first and second in (1.8), respectively. Put

= (¢t — ¢¢)/2. Then differentiate the map ¢ — [ ¥4 dm to obtain

js(/ﬁ‘sns dm)yszt :/(iﬁs\s:t)ﬁtdm+(i</z9tns dm),szt

for a.e. t € [0, 1]. For the first term on the right-hand side, the definition of 9J; and the choice
of Pt ¢t yleld

d Veal® Vel
/(dsﬁs\szt)mdmﬁ/(— 1 1 4< (Ve + 1), Vlognt>>mdm,

with equality if ¢, 1 are solutions of the respective equations, and by Young’s inequality

1 1
(V¥ + 1), Viogny) < §|V(wt +o)|* + §|V10g77t’2

with equality if and only if V(¢ + ;) = Vlogn m-a.e. On the other hand, the fact that
(ne, v¢) is a solution of the continuity equation implies that

d(/ﬂmsdm)|s=t = ;/<v(¢t — @), vgymdm

and by Young’s inequality

(V& — o)) < 19— @0 + il

with equality if and only if v, = V(¢y — ¢¢)/2 m-a.e. Plugging these observations together
and integrating over [0, 1] we deduce that

v |2 1
ZUP%/(% ¢1)dm /(%soo dpo < mf // | | g\VIOng)wdtdm, (1.15)
Ne

where the sup and inf are taken among all (sub/super) solutions of the stated equations. Now
we make a specific choice for these functions: we pick ¢, to be the Schrédinger potentials
associated to pg, p1, the densities 1y to be their entropic interpolation and v; := ViJ;. We
observe that:



i) these choices are admissible in (1.15) (recall the identities (1.8) and (1.10)),

ii) with these choices, we have equalities in all the above inequalites,

iii) by the explicit structure of the minimum for the Schrédinger problem, the relations
(1.6), (1.7) and little algebraic manipulation we see that the left hand side of (1.15)

equals to

These informations taken together give (1.11) and the same line of thoughts gives also (1.9),
(1.13) and (1.14). In fact, at least in the compact case and under appropriate smoothness
assumptions on pg, 41 we can also ensure that equality is achieved only with such choices of
v, 1, m,v, see Remark 4.5; except for (1.11), the general case remains elusive because to justify
our computations we have to perform some cut-off argument which makes hard to keep track

I (o, 1) — 5 H

of the equality condition.

If we replace ry /9 by r. /9 in (1.5), denote by % (i, 1) the minimal value of the associated
problem and rescale properly Fokker-Planck and Hamilton-Jacobi-Bellman equations, this

can be summarized as follows

(o | m) — LH (| m).

Optimal transport
W3 (1o, p1)/2

Schrédinger problem
eI (o, p1)

Primal problem
Static version

/l _‘de(w v)
’YEAdm(Moaul

inf eH R
YEAdm(po,p1) (’Y ‘ )

Primal problem

Dynamical version

2
inf // i pp dtdLd

|U+‘2 +
eHy + mf ——dy;"dt
0
6H1+inf/ /|
bFP
(H0+H1 +1nf//

\v1og | )ntdtdﬁd

|Ut|2

Dual problem

Static version

swp [ Quodin — [ oduo

PECH(R)

eHy+ sup /¢dN1 —/Q1¢dﬂo
¢€Cb(]Rd)

eH, + sup /¢duo—/Q1¢du1

#eCy(RY)

Dual problem

Dynamical version

sup [ 6D dj — [ 6(0)duo

cHo+ sup / o, 1) dpur — / 4(-,0) dyio

bHJB
ey + sup [ (0)duo — / 8-, 1) dpn

fHJB

where Hy := H(uo|L%), Hy := H(u1|£%) and CE, FP, HJ, HJB, f and b are short-hand
notations for continuity equation, Fokker-Planck, Hamilton-Jacobi, Hamilton-Jacobi-Bellman,

forward and backward respectively.

The choice of replacing ry /5 with r_ /5 in (1.5) is motivated by the fact that optimal trans-
port and Schrodinger problem are intertwined by an even stronger link, as one can guess




from letting € | 0 in the right-hand column above. Indeed, the Monge-Kantorovich probem
can be seen as the zero-noise limit of rescaled Schrodinger problems. The basic idea is that
if the heat kernel admits the asymptotic expansion elogr.(z,y) ~ —@ (in the sense of
Large Deviations), then the rescaled entropy functionals e H(- | R;) converge to % [d*(z,y)d-
(in the sense of I'-convergence). This has been obtained by Mikami in [27] for the quadratic
cost on R?, later on by Mikami-Thieullen [29] for more general cost functions and finally by
Léonard [24] for Polish spaces and general diffusion processes (we refer to [26] for a deeper
discussion of this topic, historical remarks and much more). For this reason and to highlight

the rescaling factor, throughout the paper we shall always make & explicit.

2 Preliminaries

2.1 Analysis and optimal transport in RCD spaces

By C([0, 1], (X,d)), or simply C([0, 1], X), we denote the space of continuous curves with values
on the metric space (X, d). For the notion of absolutely continuous curve in a metric space
and of metric speed see for instance Section 1.1 in [1]. The collection of absolutely continuous
curves on [0,1] is denoted AC([0, 1], (X, d)), or simply by AC([0, 1], X).

By Z(X) we denote the space of Borel probability measures on (X,d) and by %(X) C
Z(X) the subclass of those with finite second moment.

Let (X,d,m) be a complete and separable metric measure space endowed with a Borel
non-negative measure which is finite on bounded sets.

For the definition of the Sobolev space W!2(X) and of minimal weak upper gradient
|Df| see [7] (and the works [2], [34] for alternative - but equivalent - definitions of Sobolev
functions). The local counterpart of W2(X) is introduced as follows: L? (X) is defined as
the space of functions f € L%(X) such that for all  CC X, i.e. for all open set  C X with
compact closure, there exists a function g € L?(X) such that f = g m-a.e. in  and the local

Sobolev space I/Vlif(X) is then defined as
WhA(X) = {f e L°X) : ¥Q cC X g € WH*(X) s.t. f =g m-ae. in Q). (2.1)

The local minimal weak upper gradient of a function f € VVl{)’C2 (X) is denoted by |D f|, omitting
the locality feature, and defined for all Q@ CC X as |Df| := |Dg| m-a.e. in €, where g is as
n (2.1). The definition does depend neither on € nor on the choice of g associated to it by
locality of the minimal weak upper gradient.

If Wh2(X) is Hilbert, which from now on we shall always assume, then (X,d,m) is said
infinitesimally Hilbertian (see [15]). The language of L%-normed modules (see [14]) allows
to introduce the differential as a well-defined linear map d from VVZ:LC2 (X) with values in
LO(T*X), the family of (measurable) 1-forms. The dual of L°(T*X) as L-normed module is
denoted by L°(TX), it is canonically isomorphic to L°(T*X) and its elements are called vector
fields; the isomorphism sends the differential df to the gradient V f.

After lecz(X) we can also introduce

D(diviye) := {v € LY(TX) : ¥Q cC X Jw € D(div) s.t. v = w m-a.e. in Q}
D(Ape) = {f € L°(X) : VQ cc X 3g € D(A) s.t. f = g m-a.e. in Q}

so that the notions of divergence and Laplacian can be extended by locality to locally
integrable vector fields and functions respectively.



As regards the properties of d,div, A, the differential satisfies the following calculus rules
which we shall use extensively without further notice:

|df| = |Df| wm-a.e. Vf € S%(X)
df =dg  m-ae. on {f =g} Vf,g € S?(X)
d(gpo f)=¢ o fdf Vf e §%(X), ¢ : R — R Lipschitz
d(fg) =gdf + fdg Vf,g € L® N S%X)

where it is part of the properties the fact that po f, fg € S*(X) for ¢, f, g as above. For the
divergence, the formula

div(fv) = df(v) + fdiv(v) Vf e Wh2(X), v € D(div), such that |f], |v| € L®(X)

holds, where it is intended in particular that fv € D(div) for f,v as above, and for the
Laplacian

Alpo f)=¢" o fldf|*+¢ o fFAf
A(fg) =gAf + fAg+2(Vf,Vg)

where in the first equality we assume that f € D(A), ¢ € C?(R) are such that f, |df| € L>=(X)
and ¢, " € L°(R) and in the second that f,g € D(A)NL>(X) and |df[, |dg| € L*>*(X) and
it is part of the claims that ¢ o f, fg are in D(A). On I/V;CQ(X) as well as on D(divy,.) and
D(A,.) the same calculus rules hold with slight adaptations (see for instance [19]).

The Laplacian A is the infinitesimal generator of a l-parameter semigroup (h;) called
heat flow (see [2]). For such a flow it holds

we LX) = (hu) € O([0,00), L2(X)) N ACie((0,00), WE2(X))  (2.2)

and for any u € L?(X) the curve ¢ — h;u is the only solution of

d
ahtu = Ahu hiu — uwast]O.

If moreover (X,d,m) is an RCD(K, o0) space (see [3]), the following a priori estimates hold
true for every u € L*(X) and ¢ > 0:

1 1
[ Vheul[12x) < EHUH%Z(X) | A7) < @HUH%%X) (2.3)

and the Bakry-Emery contraction estimate (see [3]) is satisfied:
ldhef|? < e 2Bt (|df>) meae. Ve WHE(X), t > 0. (2.4)

Furthermore if v € L*°(X), then hsu is Lipschitz on supp(m) for all ¢ > 0 and

t
2/ e2sds Lip(hyu) < ||ull Lo (x)- (2.5)
0

Still within the RCD framework, there exists the heat kernel, namely a function

(0,00) x X* 3 (t,z,y) = nf2)(y) = nlyl(2) € (0,00) (2.6)

10



such that h.f(z) = [ f(y)ri[z](y) dm(y) for all t > 0 and for every f € L*(X). For every x € X
and t > 0, ry[z] is a probability density; thus the heat flow can be extended to L'(X), is mass
preserving and satisfies the maximum principle, i.e.

f<c m—ae. = hef <c¢ m-a.e., Vt>0.

On finite-dimensional RCD*(K, N) spaces (introduced in [15]), a well-known consequence of
lower Ricci curvature bounds (see e.g. [8], [9], [10]) is the existence of ‘good cut-off func-
tions’, typically intended as cut-offs with bounded Laplacian; for our purposes the following
result will be sufficient:

Lemma 2.1. Let (X,d,m) be an RCD*(K, N) space with K € R and N € [1,00). Then for
all R >0 and x € X there exists a function Xg : X = R satisfying:

(i) 0<Xgr <1, Xg =1 on Bg(z) and supp(Xr) C Bry1(z);
(ii) Xr € D(A) N L2(X), |[VXg| € L®(X), Axg € WH2 N L®(X).
Moreover, there exist constants C,C’" > 0 depending on K, N only such that
19Xl =0 < C. |AXR] ) < C 27)

The proof can be obtained following verbatim the arguments given in Lemma 3.1 of [30]
(inspired by [4], see also [18] for an alternative approach): there the authors are interested
in cut-off functions such that X = 1 on Br(z) and supp(X) C Bag(x): for this reason they
fix R > 0 and then claim that for all x € X and 0 < r < R there exists a cut-off function
X satisfying (), (i7) and (2.7) with C,C’ also depending on R. However, as far as one is
concerned with cut-off functions X where the distance between {X = 0} and {X = 1} is always
equal to 1, the proof of [30] in the case R = 1 applies and does not affect (2.7).

We conclude recalling that on RCD*(K, N) spaces with N € [1,00) the reference measure
m satisfies the following volume growth condition: for all z € X there exists a constant C' > 0
depending on x, K, N such that

m(B,(z)) < Ce“", vr > 0. (2.8)

For this reason we shall consider the weighted L?(X, e*Vm) and W12(X, e*Vm) spaces, where
V := Md?(-,z). Indeed e~V m has finite mass for every M > 0. For L?(X,e~"m) no comments
are required. The weighted Sobolev space is defined as

WX e Vm) = {f € WZ(X) : f,IDf| € (X, e m)}

loc
where |Df| is the local minimal weak upper gradient already introduced. Since V' is locally
bounded, W12(X, e~Vm) turns out to coincide with the Sobolev space built over the metric
measure space (X,d,e”"'m), thus motivating the choice of the notation.

2.2 The Schrodinger problem in RCD spaces

Let us first recall the definition of the relative entropy functional in the case of a reference
measure with possibly infinite mass (see [25] for more details). Given a o-finite measure v on
a Polish space (Y, 7), there exists a measurable function W : Y — [0, 00) such that

Zw = /e_WdV < 4o00.
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Introducing the probability measure vy := zﬁ,lefwu, for any o € Z(Y) such that [ Wdo <
400 the Boltzmann-Shannon entropy is defined as

H(o|v):=H(o|vw) — /Wda — log zw (2.9)

where H(o |vw) = [ plog(p)dvw if o = prw and +oo otherwise; notice that Jensen’s
inequality and the fact that o € Z(Y) grant that [ plog(p)dr is well-defined and non-
negative, in particular the definition makes sense.

Because of (2.8), on an RCD*(K, N) space (X,d,m) with K € R and N € [1,00) we can
choose W = d?(-,z) in the definition above, so that H(-|m) turns out to be well-defined on
P5(X) and Wa-lower semicontinuous. If we also introduce the following measure on X2

dR*(z, y) = re[z](y) dm(z) dm(y),

where r.[z](y) is the heat kernel (2.6), then the choice W : X2 — [0,00), W(z,2') =
d?(x,z) + d?(2',7) entails that, given any two probability measures po = pom, g1 = pim
with bounded densities and supports, H(-|R®) is well-defined in Adm(ug, 1) and narrowly
lower semicontinuous therein, as shown in [19].

Therefore, the minimization problem

inf  H(vy|R¥?),
YEAdm(po,p1) o )

also known as Schrédinger problem (the choice of working with R¢/2 is convenient for the
computations we will do later on) is meaningful. Actually, given pug, 11 as above, there exists
a unique minimizer 4° and v = f¢ ® g°R¥/? for appropriate Borel functions f, g : X — [0, o0)
which are m-a.e. unique up to the trivial transformation (f, g) — (cf, g/c) for some ¢ > 0. In
addition, f¢, ¢° belong to L°°(X) and their supports are included in supp(ug) and supp(u;)
respectively (cf. Proposition 2.1 and Theorem 2.2 in [19]). Thus, the entropic cost .7 relative
to RE/2, defined as
Ie(po, ) == min  H(y|R/?),
YEAdm (po,p1)

is finite.

Now let us fix the notations that we shall use in the sequel. For any € > 0 we set pf := po,

pi i= p1y WG 1= Mo, pf := g and

(0= JioE
Ii = het/2f€ 9; = hs(lft)/Qgs
pi = pym
i == clog ff Yf = elogg;
07 1= 50 — i)
for t € (0,1] for t € [0,1)
for t € (0,1)

and we also define

@ :=elog(f°)  in supp(uo),

2.10
Y7 = elog(g°) in supp(pq). ( )
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As shown in [19] all the functions above are well defined, ui € »(X) for every t € [0, 1], > 0
[0,1] > ¢ — H(pug |m) is continuous (2.11)
and moreover for any € > 0 it holds:

a) ff, g5, pf belong to D(A) for all ¢t € J, where J is the respective domain of definition (for
() we pick = (0, 1));

b) ¢, 9%, 95 belong to D(Ay,.) for all t € I, where J is the respective domain of definition.

Secondly, (££), (g5, (55) € C([0,1], L(X)) N ACiue(3, WH2(X)) 1 1([0, 1], L°(X)) for any
e > 0 and their time derivatives are given by the following expressions for a.e. t € [0, 1]:

d € d .
Aff o= —5A% e+ dv(p Vi) = 0. (2.12)

d £
&ft - 2

€
2
As concerns (¢f), (¥5), (¥5), for all € C J compact and Z € X there exists M > 0 depending
on K, N, po, p1,C, T such that they belong to AC(C, W12(X,e Vm)) where V = Md?(-, z);
their time derivatives are given by the following expressions for a.e. t € [0, 1]:

d 1 € d 1 €

—f = 2|V + S Ayf — —f = Z|VY§|* + Ay

dt 2 2 dt 2 2
1 R e 2 (2.13)
S e A YN log p¢ )
s 5 S ( og pf + |V log pf|

In addition, for every § € (0,1) and Z € X there exist constants C,C’ > 0 which depend on
K,N,Z, po, p1 and C” > 0 (depending also on §) such that

P < Ce CPCD  mae, vt eo,1], (2.14a)
lip(¢f) + lip(¥i_y) < C"(1+d(-, 7)), m-a.e., V¢ € [6,1]. (2.14b)

As a final remark, let us recall (Lemma 4.9 in [19]) that
1 1 1
// Vi [2pfdtdm < oo // V|2 pfdtdm < oo // (V5|2 pEdtdm < co.  (2.15)
0 0 0

3 Definitions and auxiliary results

We start giving the definition of ‘distributional’ solutions of the continuity equation and of
the forward /backward Fokker-Planck equation in our setting:

Definition 3.1. Let (X,d,m) be an infinitesimally Hilbertian metric measure space, t
X; € LY(TX) a Borel family of vector fields, possibly defined only for a.e. t € [0,1], and
c>0,0€{-1,1}. A curve () C P2(X) is a solution of

d .
O'&,U,t + div(Xpe) = cApy

if:

(i) it is weakly continuous and there exists C > 0 such that py < Cm for all t € [0,1];

13



(ii) the map t — [ |X;|>dus is Borel and belongs to L'(0,1);

(iii) for any f € D(A) the map [0,1] >t — [ fdu is absolutely continuous and it holds
crd/fd,ut = / (df(Xt) —I—CAf)d,ut a.e. t.
dt

When

-o=1and c>0, () is said to be a solution of the forward Fokker-Planck equation;

-o=—1andc>0, () is said to be a solution of the backward Fokker-Planck equation;
- ¢=0, () is said to be a solution of the continuity equation.

We will refer to (Xt) as drift or velocity field.

Let us point out that this definition of solution of the continuity equation is consistent
with the one proposed in [16] and recalled in the Introduction, because if

((iit/fd,ut :/df(Xt)dut a.e. t

holds for every f € D(A), then it also holds for f € W12(X): it is sufficient to integrate the
equality on [to,t1] C [0, 1] and argue by density thanks to the fact that by (i7)

1
/ /|Xt|2dﬂtdt < 0.
0

In view of Theorem 4.6 let us also provide a suitable notion of ‘strong’ supersolution of the
forward /backward Hamilton-Jacobi-Bellman equation.

Definition 3.2. Let 0 € {—1,1} and ¢,T > 0. A curve [0,T] > t — ¢ € LX) is a
supersolution of the forward (resp. backward) Hamilton-Jacobi-Bellman equation provided:

(i) there ezists C > 0 such that ||¢¢||po(x) < C for all t € [0,T];
(ii) ¢r € D(Ajoe) for all t € [0, T] with (|Vy|), (Ag:) € L=((0,T), L*(X)).
(i4i) there exist x € X and M > 0 such that (¢;) € AC(0,T], L*(X,e~V'm)), where V :=
Md?(-,z), and its time derivative satisfies

d 1
"&d’t > §\V¢)t]2 + cAdy for a.e. t € [0,T]

with o =1 (resp. o = —1).

In this section we also collect some auxiliary results that will be used several times in the
proof of the main theorems; for a fluid readability their proof is postponed to Appendix A.
We start with an integrability statement (a stronger result is actually true, see [19], but this
is sufficient for our purposes).
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Lemma 3.3. With the same assumptions and notation as in Section 2.2, the following holds.
For any e > 0 and t € J let hf denote any of ©f,v;,9%,1log p; and let Hf denote any of
the functions
pEh. pEIRE1, PFIVARE,
where J is the domain of definition of h§ (for log p; we pick 3 = (0,1)). Then Hi € L*(X)
for every ¢ € (0,1) and t € I and, for any € cC J, H® € L'(€ x X,dt ® m). Moreover,
I3t [ Hidm is continuous.

The following result is in the same spirit of the previous lemma and of the reminders of
Section 2.2.

Lemma 3.4. Let (X,d,m) be an RCD*(K, N) space with K € R and N < 0o, u € L>NL>®(X)
be non-negative and § > 0. Put ¢ := log(hyu + &) for all t > 0. Then:

(i) there exists C > 0 such that Hqﬁ?HLm(X) < C forallt >0;

(i) for allz € X and M > 0, (¢?) € C(]0,00), L*(X,e~Vm)) N AC),c((0, 00), L*(X, e V'm)),
where V := Md?(-,x), and its time derivative is given by

d
&géf = |V@2|? + Ag) for a.e. t > 0; (3.1)

(iii) (IV&7]). (Ad}) € L5, ((0, 00), L*(X));

(iv) let (pe)e>0 C P(X) be weakly continuous with py < Cm for some C > 0 independent of

t, set n == % and denote by Hf any of the functions

L T A U A
Then H) € L (X) for every t,6 > 0 and, for any € CC (0,00), H € L'(€ x X, dt @m).

Finally, we shall also make use of the following simple lemma valid on general metric
measure spaces.

Lemma 3.5. Let (Y,dy,my) be an infinitesimally Hilbertian metric measure space endowed
with a non-negative measure wy which is finite on bounded sets. Let (uy) be a solution of

d .
o + div(Xepe) = cApe

in the sense of Definition 3.1 and let f € D(A). Then t — [ fdu is absolutely continuous
and

d
5[] < [ (A1 dashdu ac te o) (3.2)

where the exceptional set can be chosen to be independent of f.
Moreover, if (f1) € AC([0, 1], L2(Y)) N L([0, 1], W2(Y)) with (Af;) € L=((0, 1], LX(Y)),
then the map t — [ fydps is absolutely continuous and

(i(/fs d“s)|s:t :/(;SfSIS_t) dpe + (i(/ft d“s>!5:t (3.3)

for a.e. t €10,1].
If ¢ = 0, it is sufficient to assume f € WH2(Y) in (3.2) and (f;) € AC([0,1], L*(Y)) N
L(]0,1], WH2(Y)) in (3.3).
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4 Dynamical and dual representations of the entropic cost

4.1 Benamou-Brenier formulas for .7,

In this section we extend to the RCD setting the dynamical representations (1.9) and (1.11)
of the entropic cost. We start with the following threefold dynamical (but not yet variational)
representation formula.

Proposition 4.1. With the same assumptions and notations as in Section 2.2, for any e > 0
the following holds:

v1962 .
eIe(po, ) = ( (ko | m) + H( m\m // | | !Vlogpt!) prdtdm

_ 1| 7wbt|2 £
= eH(uo | m) + pEdtdm (4.1)
2
:5H(,u1]m)+// W‘;’t’ pidtdm
0

proof Fix e > 0 and let us prove the first identity in (4.1). To this aim fix z € X, R > 0 and
let Xg be a cut-off function as in Lemma 2.1; recalling that (pf) € AC(]0,1], L?(X)) and for
all compact set C C (0,1) there exists M > 0 such that (¥5) € AC(C, WH2(X,e"V'm)) with
V = Md?(-,z), we see that t — [ Xg5pi dm belongs to ACi,.((0,1)) with

d Vﬁ€2 g2 g2
dt/XRt‘/‘tpt dm = / - [ ZAlogpi—glwogpiI?)pidm

/XR’ﬂedIV(p Viy7)dm  ae.te€ (0,1).

Integration by parts formula and integration in time on [0, 1 — §] with 6 € (0,1/2) then yield

£ (3 _ £ - 5 ‘V,ﬁz—: |2 S5
XrU]_spi_5dm XrU5p5 dm = ’V log pf|*) pf dtdm

1-6 1-6
+ // (VXR, Vi) dtdm + // 95 (VX g, V) p5 didm.
1 1

We claim that the limit as R — oo can be carried under the integral signs. For the first
summand on the right-hand side this is true by monotonicity, for all the other terms this
follows from the dominated convergence theorem. Indeed ¥5p5, 9 _s5p]_s € L'(X) by Lemma
3.3; |Vpi| and 95|VI5|p§ are, locally in t, uniformly bounded by an L!(X) function, since

Vil = pilViogpil,  |9¢]105p5] < pt(\ﬁ‘s\Q + Vi)

and because of Lemma 3.3 again; |Xg|, |VXg| are uniformly bounded in L>°(X) w.r.t. R and
converge m-a.e. to 1,0 respectively by construction. Thus, we obtain

1-6 |2 2
9
/19?_5,0‘?_5 dm — /19‘§p§ dm = //6 (W;’ + %\Vlogpfﬁ)pf dtdm.

Now let § | 0: convergence of the right-hand side is trivial by monotonicity. For the left-hand
side consider t — [ 95pf dm, use the identity ¥ = ¢§ — 5 log pf and observe that

tos [wipidm and o =S HGiE [ m)
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are both continuous at ¢t = 0, the former by Lemma 3.3 and the latter by (2.11). This implies
that

g
lim [ 95p5dm = [ ¢gpodm — - H .
(;fg/ 5Ps dm /%po m — 5 H(po [m)

The same argument with the identity ¥ = —pf + §log pj allows us to handle [ 05 _5p5_sdm
too, so that

9
— [ vimmam— [ o dm o+ (o | m) -+ ()
1 ,198 2 2
= // (M + Z|Vlogp§|2)p§dtdm.
o U 2 8

Thanks to the identity ¢f+1§ = € log po in supp(uo) and the integrability of ¢§po, po log po we
deduce that ¢§pp € L*(X) too. An analogous statement holds in ¢ = 1 and thus the previous
identity is in turn equivalent to

/wépoder/wimdm—;(H(uo\mHH(m!m))

1 1952 2
z// <|V t| +€—\Vlogp§]2>p§dtdm
o U2 8

and now it is sufficient to observe that by (2.10)

e (no, i) = eH(f° @ g°R/?|R?) = / phdpo + / Yidp. (4.2)

For the second and third identities in (4.1), the argument closely follows the one we have just
presented. Indeed, it is just a matter of computation to rewrite the continuity equation solved
by (pf, ;) as forward and backward Fokker-Planck equations with velocity fields given by
Vi and V¢§ respectively, i.e.

d (3} : & g € £
T + div(p; Vg) = §Apt (4.3a)
d £ : £ g € £

gt div(p; Vp) = §Apt (4.3b)

where the time derivatives are meant in the L?(X) sense as in (2.12). Therefore, arguing as
above it is not difficult to see that

1 2
V ()
/cp‘idm —/wﬁduo = —// | ?' pydtdm
0

and an analogous identity holds true for ¢;. Finally using the identities ¢f + 1§ = €log po in
supp(po) and ¢ + 9§ = log p1 in supp(p1), the entropic cost can be rewritten as

el ) = e (o [ ) + [ v~ [ o =<t |m)+ [ idmo ~ [ i,

whence the conclusion. O
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From this result we notice that the entropic cost can be expressed as the evaluation of an
action functional in three different ways: as a purely kinetic energy evaluated along (pj,v§)
and (pf, @) or as the sum of kinetic energy and Fisher information along (pf,95). As we
have just seen, three different ‘PDEs’ are associated to these couples, so that three different
minimization problems can be introduced, as already discussed in the Introduction.

The first of them reads as

2 2
inf // |Ut’ 8—\Vlog 77t|2>17tdtdm,
(n,v) 8

the infimum being taken among all solutions (nm,v) of the continuity equation in the sense
of Definition 3.1. In line with the smooth theory, we are now able to prove that, if we add
S(H (po | m) 4+ H(py |m)), this infimum coincides with e.# (o, p11), thus providing a first vari-
ational representation of the entropic cost and extending (1.11) to the RCD framework. More-
over, the infimum is attained if and only if (1, v¢) = (pf, VU5). We remark that the uniqueness
of the minimizers is not stated in [29], [11] and [13].

Theorem 4.2 (Benamou-Brenier formula for the entropic cost, 1st form). With the same
assumptions and notations as in Section 2.2, for any € > 0 the following holds:

sfg(,uo,,ul):;(H(M0|m)+H(,u1|m)>—|—mm{// \UtP 7|Vlog77t| )ntdtdm} (4.4)

where the minimum is taken among all couples (nm,v) solving the continuity equation in the
sense of Definition 3.1 under the constraint nom = pg and nym = py; moreover, the minimum
is attained if and only if (n,ve) = (p§, V).

proof

Inequality > in (4.4). Proposition 4.1, the third in (2.12) and the last in (2.15) imply that
(pf, VU7) solves the continuity equation in the sense of Definition 3.1.

Inequality < in (4.4). Start noticing that the assumptions on pug, g1 grant that 7 (uo, 1)
is finite. Thus, given a solution (7, v) of the continuity equation in the sense of the statement,
without loss of generality we can assume that

2 2
// |Ut’ %\Vlognt|2>mdtdm < +o00. (4.5)

Now fix x € X, R > 0 and pick a cut-off function Xgr as in Lemma 2.1; take also § > 0 and
define for all ¢ € [0, 1]

o’ =clog(ff +0) Wi i=clog(gf +0) 5% == (¢§ S _ g2,

By Lemma 3.4 (Xz07°) € ACie((0,1), LA(X)) N L2 ((0,1), WL2(X)). Thus, given to,t; €
(0,1) with ¢y < t1, Lemma 3.5 applies to (m;m) and ¢ — XRﬁf’é on [to,t1], whence

d d d
5( / xRﬁi"snsdm)|S:t = / R(05°) o) mdm + E( / XRﬁf’5nsdm)|s:t
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for a.e. t € [to, t1]. For the first term on the right-hand side, the fact that 93’ 9 = (¢p 8 cpf’é)/2
and the ‘PDESs’ solved by ;’ 6, o 0 (namely (3.1) up to rescaling and change of sign) yield

d \v4 £,6|2 e v £,012 c
/XR(d979?6|s:t)77tdm = - /XR<wt| + ZA%&(S + w + ZA90?5>77tdm

4 4
vy Ve
:/XR(—‘ wj c_| i | < (¢fé+wf’5),V10gnt>)mdm

€ g &
+5 [T+ ), Ixa) mam

and by Young’s inequality

£ & ]' & (3 62
e(Vi® + i), Viegm) < 5|V + i ")* + S|V logm|*. (4.6)

On the other hand, the fact that (n,v) is a solution of the continuity equation and Xm?i’(g €
Wh2(X) imply by Lemma 3.5 that

d 1 8 0 K 6
—( / Xady ngdm)| _, = 5 / (Xr(V (@ = &%) 0 + (W5 = ) (xR, 1) ) dm

and by Young’s inequality

1
(V5" —@i"), o) < IV = o) + . (4.7)

Plugging these observations together and integrating over [, tl] we deduce that

t1 vy |2
/XRﬁtl Ny, dm — /XRﬁt Mo dm < // XR | ;| |Vlog17t| )ntdtdm

t1
// V(y 04 gof’a), VXg) nidtdm
to

t1
/ (vy 0 _ 0y <VXR,Ut> nedtdm.
t

0

Now notice that

t1 2 tq 2
lim // ’i —|Vlog M| )mdtdm // M —]V]og M| )ntdtdm
R—o0 to

by monotonicity. Moreover, on the left-hand side ﬁf’ém € LY(X) for t = tg,t; by (iv) in
Lemma 3.4 and the very definition of ¥5; on the right-hand side we know that |||V Xz|| L (X)
is uniformly bounded w.r.t. R, ]V(wf’é—l—gof’d)]nt € L'([to,t1] x X, dt®m) by Lemma 3.4 again,

5 5 1 5 5
(97" = 03 ) (VXR, ve) me| < 5W><R!?7t(\¢f’ — 071 + vel?)

and |v¢|?*n; € L'([0,1] x X, dt ®@m) by (4.5). Thus the dominated convergence theorem applies
to all the remaining terms and, since |[VXg| — 0 m-a.e. as R — oo, this implies

s t1 ‘Ut|2 2,_:2 )
/ﬁtl M, dm — /ﬂt Nty dm < // (T + §]V10g 7| )mdtdm. (4.8)
to
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Passing to the limit as tg | 0, the convergence of the right-hand side is trivial by monotonicity.
As regards the left-hand side, notice that

‘ / 05 gy dm — / 5’ duo

and the fact that log is Lipschitz on [d, 00) together with the fact that n, < C for all ¢ € [0, 1]
entails

(4.9)

< [ —w85rntodm+'/wo modm— [ 457 du

,0 ,0
[ 158 = 05y dm < g, = gl

so that the first term on the right-hand side of (4.9) vanishes as ¢y J 0, since t + ¢ is L*-
continuous. As regards the second one, it also disappears: indeed g € Cy(X) (as a consequence
of g° € L*°(X) with compact support, (2.5) and the maximum principle for the heat equation)
so that 1/18’6 € (p(X) too, and ny,m — pp as to | 0 by definition.

For goi’(s we argue in an analogous way: we write

5 5 5 ed 5 5
‘/soio ntodm—/soé dpo S/Iwio —©5 Intoder’/sOS ntodm—/sﬁé dpio

and get rid of the first term on the right-hand side as just done for 1); * For the second one,

let us stress that in general neither f¢ nor @8’5 belong to Cy(X) and thus narrow convergence
can not be applied. However, f¢ has compact support, since so does pg: this means that @8’6
is constant outside a bounded set and thus for all & > 0 we can find h € Cy(X) such that

5% — hl| £1(x) < @; therefore, using again 7; < C, we get
0
+ [ 165 bl

‘/@8’6% dm—/sog"sduo §/|90(E)76_h|77t0 dm + ’/hnto dm—/hdﬂo

§2Ca+‘/hm0dm—/hd,u,0

and the arbitrariness of o together with n;,m — po as to | 0 allows us to conclude in the same
way as for 1/1?’6. Since 19?5 = (1/)5’5 — goi’é)/2, this implies

. £,0 - £,0
%(1)1% g Mty dm = /190 dpg-

In a completely analogous way we can handle the case ¢ T 1, whence from (4.8)

€,0 e,0 ! ’Ut‘Z g2 )
970 dpn — | 95° dpo < N + §|V10g ne|” ) medtdm. (4.10)
0

Now use the identity 950 = 5 — Slog((ff +9)(g° + 0)) and observe that by monotonicity

i [ 05 = [ i d, i [ log((f5 + 8)(g° + &)y = H(yu [ m)

510

Moreover both limits are finite, since the assumptions on p; grant that H(u; |m) < oo, while
the first one can be rewritten as e H (u1 | m) — [ 5 duy and ¢5p1 € L' (X) by Lemma 3.3. From
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the identity 95’ = —¢§* + 5 log((f+0)(g§+9)) an analogous statement holds for [ 95° dpg
as ¢ | 0 too, so that combining these remarks with (4.10) and (4.2) we get

A <<(Hm H( |“t‘ Vg ) mdtd
suo,m)_2 H(po | m) + mlm 8IVOng nedtdm,

whence the conclusion by taking the infimum.
Uniqueness of the minimizer. As a first step, notice that if (n;m, v;) solves the continuity
equation as in Definition 3.1 and we introduce the ‘momentum’ variable m; := n:v¢, then

I':={(n,m) : (nm,v) solves the continuity equation, nom = pg, mm = p1}

is closed w.r.t. convex combination. Secondly, the function @ : [0,00) x R — [0, oo] defined by

y2

= if z >0,
._ x
®(z,y) =9 ¢ if 2=y =0,
400 otherwise

is convex and lower semicontinuous. Therefore the functionals #°,.%, o7 : T' — [0, oo] defined

as
1 1 2 2
m) ::2// ’";t‘dtdm, (n,m) : // Nl vam, o =+ 7
0 t

(in case the set of t’s where n; ¢ I/Vllof(X) has positive £!-measure, we set .7 (n,m) := +0o0)
are convex too. Thus, if (77,7) is a minimizer for (4.4) and 7, := 7,0, then by Proposition
4.1 it follows that o7 (77, m) = <7 (p°, p°VI°) and so, by convexity of <7,

(i, m) = (1= N/ (7.77) + Aed (67, V) YA€ (0,1),

where 77 == (1—\)n + Ap§ and m := (1 — X\)my +A\p;VI5. As a byproduct the same identity
holds with .# instead of <7, since both J# and .% are convex and &/ = % + %, whence

©(ny, [V [) = (1= N, V7)) + A (pf, [V i) (4.11)

Taking into account the fact that ¢ is linear only along the lines passing through the origin,
we deduce that (7, |V7,|) and (pf, |Vpf|) are collinear. Since p7 > 0, it is not restrictive to
assume that the collinearity condition can be expressed as follows: for all ¢t € (0,1) and m-a.e.
x € X there exists o, ; > 0 such that

(M4, V1)) = v (07, V£ )- (4.12)

%(X) for

a.e. t, this 1mphes that oy € VVloc( ) for a.e. t. Furthermore, on the one hand by the very
definition of 7' together with (4.12) we have
A
i

0, = ((1 — Nag: + )\)pf

and on the other hand (4.11) also implies that (1}, |Vn}|) is collinear with (p,|Vpf|): this
implies

Since . = 0,/pf with pf € Wh 2(X) locally bounded away from 0 and 7, € wh

loc

N VM) = (1= Nawe + N) (05, Vi)
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Considering the gradient of the identity on the first coordinate we see that
V317 = (1=N) i +2) V05 P+ (1=2)%(0F)?| Vg o P4+2(1=X) (1= Nz 14-3) 05 (V5 , V)

and plugging the identity on the second coordinate therein this becomes
A
Vo> = —2(0436,75 + ﬁ) (Vlog pf, Vag.), VA€ (0,1). (4.13)

Since o+ does not depend on A, this can be true only if (Vlogpf, Va, ) = 0 m-a.e. thus
forcing also the left-hand side of (4.13) to vanish, namely a;; to be constant. Since 7, pf are
probability densities, we conclude that o, = 1.

Thus 7, = pf for all ¢ € [0,1] and now it is sufficient to use the strict convexity of
(vg) = ffol lv¢|2pf dtdm to conclude that v, = V5 for all ¢ € [0, 1]. O

Remark 4.3 (Uniqueness of the minimizer). As proved in [35], if X is assumed to be a
compact RCD*(K, N) space and pog, p1 are sufficiently regular (i.e. they belong to Test<(X)
with the notation used therein), then the fact that the minimum is attained in (4.4) if and
only if (n,v) = (pf, V) is straightforward. This is essentially due to the fact that no cut-
off argument is needed and (¥5) € AC([0,1], WH?(X)), so that ¢ — [9J5n, dm belongs to
AC(]0,1]), no limit as tg | 0,¢1 1T 1 and § | 0 appears in the previous proof and by the case
of equality in (4.6) and (4.7) the infimum is attained if and only if

1
V(; +¢;) =eViogn,  and v = va;? - ¢§),

which completely characterizes the optimal pair (n;, v;). |

The second and third dynamical variational representation of the entropic cost (and thus
the non-smooth analogue of (1.9)) are the content of the next result.

Theorem 4.4 (Benamou-Brenier formula for the entropic cost, 2nd form). With the same
assumptions and notations as in Section 2.2, for any & > 0 the following holds:

()

et ) = <tt(uolm)+ i { [ [ atar) (414)

where the minimum is taken among all couples (v ,v") solving the forward Fokker-
Planck equation in the sense of Definition 3.1 with ¢ = £/2 under the constraint vy = g
and vy = py; the minimum is attained at (pim, V§).

(i)

lpon i) = H s [ m) + min {/ /“t ay dt} (4.15)

where the minimum is taken among all couples (v—,v™) solving the backward Fokker-
Planck equation in the sense of Definition 3.1 with ¢ = £/2 under the constraint vy = o
and vy = py; the minimum is attained at (pjm, Ve5).
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proof It is sufficient to prove (i), as (i7) follows by swapping o and .

Inequality > in (4.14). Proposition 4.1, (4.3a) and the second in (2.15) imply that (pf, V)§)
solves the forward Fokker-Planck equation in the sense of Definition 3.1.

Inequality < in (4.14). For sake of notation, let us drop the apex + in (v*,v"). Fix z € X,
R > 0 and pick a cut-off function Xg as in Lemma 2.1; take also 6 > 0 and define 1); % as in
(i). By Lemma 3.4 (Xg}"®) € ACi0c([0, 1), L3(X)) N L%, ([0, 1), WE(X)) with (A(Xgy?)) €
L ([0,1), L*(X)). Thus, given t; € [0, 1), Lemma 3.5 applies to (1) and ¢ XR¢§’6 on [0, 1],

loc
d €,0 d £,0
ol / Pt v )|, = / ( SV ) A t+ds(/ v vy )|

whence
for a.e. t € [0,¢1]. For the first term on the right-hand side, the fact that wts’d solves (3.1) (up
to rescaling and change of sign) yields

/ ( v,bs lo_p) v :—/XR<W+;A¢§’6>th.

On the other hand, the fact that (v,v) is a solution of the forward Fokker-Planck equation
with ¢ = /2 and Xwa’é € D(A) imply that

ci’(/xm/)?(S dys) |s:t = / (XR<vwiE76= Ut> + w?(S(VXR,Uﬁ)th
- % / (XRMf * +2(VXR, VY]°) + 47 AX R) v,
and by Young’s inequality
(V4 ) < SIVUEP + Sl (116)

Plugging these observations together and integrating over [0, 1] we deduce that

t1 2 t1
/XRUJ;’J dl/t1 _/XR’@ZJO dMO / / ’ t‘ thdt+/ /’QZJ VXR,Ut dI/tdt

t1
+3 / / (05 axn +2(Ve;’, Vxg) ) dudt.
0

Since Lemma 2.1 ensures that [|AXg||fe(x) is uniformly bounded w.r.t. R and t — [ |v;|*dry
belongs to L'(0,1) by Definition 3.1, the argument by dominated convergence explained in
the proof of Theorem 4.2 applies and thus, passing to the limit as R — oo, we get

€8 6 o og)?
wtl thl - % dMO < Tthdt.
0

Both limits as t; 1 1 and 6 | 0 can also be handled as in Theorem 4.2, whence

1 ’%‘2
/@Did/ﬁl —/wédﬂo S/ /2 duydt,
0

and now it is sufficient to use the identity 9§ = —¢§ + clogpo in supp(up) in conjunction
with (4.2) to get the conclusion. O
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Remark 4.5 (Uniqueness of the drift). In the case X is assumed to be a compact RCD* (K, N)
space and py, p; are sufficiently regular, then as proved in [35] the drift of the optimal couple
is uniquely determined, namely: the minimum is attained in (4.14) (resp. (4.15)) if and only
if vy = Vi (resp. v = Vy5). As for Remark 4.3, this is essentially due to the fact that no
cut-off argument is needed and (v5) € AC([0,1], W1?(X)), so that ¢t — [4¢n dm belongs
to AC(]0,1]), no limit as ¢; 1T 1 and ¢ | 0 appears in the previous proof and by the case of
equality in (4.16) the infimum is attained if and only if v; = V5. [

4.2 Dual representations for .7,

As already suggested by the proof of Theorem 4.4, the duality between Hamilton-Jacobi
and continuity equation that appears in optimal transport is here replaced by the duality
between forward (resp. backward) Hamilton-Jacobi-Bellman and backward (resp. forward)
Fokker-Planck equation. This will be the content of the next result.

Theorem 4.6 (HJB duality for the entropic cost). Let (X,d,m) be an RCD*(K,N) space
with K € R and N < oo. Then, given any supersolution (¢) of the backward Hamilton-
Jacobi-Bellman equation in the sense of Definition 3.2 and any solution (v, v:) of the forward
Fokker-Planck equation in the sense of Definition 3.1 with the same parameter c, it holds

1 1
/¢1 du —/¢0dyo < 2/ /|vt|2dytdt. (4.17)
0

Analogously, for any supersolution (ét) of the forward Hamilton-Jacobi-Bellman equation in
the sense of Definition 3.2 and any solution (Uy,¥y) of the backward Fokker-Planck equation
in the sense of Definition 3.1 with the same parameter c, we have

- N 1 /1
/qso dig — /¢>1 di < 2/ /|®t|2dﬂtdt. (4.18)
0

In particular, with the same assumptions and notations as in Section 2.2, for any € > 0 the
following duality formula holds:

Ejg(,u,[), /Ll) = EH(,U,() |m) + sup { /(;51 dﬂl — /(Z)() d,UO} (4.19&)
=eH(puy | m) + sup { /éo dpo — /<Z~>1 d,ul} (4.19b)

where the supremum is taken among all supersolution of the backward (resp. forward) Hamilton-
Jacobi-Bellman equation in the sense of Definition 3.2 with ¢ = /2 in (4.19a) (resp. (4.19b) ).

proof In order to prove (4.17) let (¢;) and (v, v) be as in the statement, fix z € X,
R > 0 and let Xg be a cut-off function as in Lemma 2.1: by Definition 3.2 it follows that
(Xro:) € AC([0,1], L2(X)) N L>=([0, 1], W2(X)) with (A(Xgre:)) € L°°(]0,1], L?(X)). Thus
Lemma 3.5 applies to (1) and t — Xgr¢; on [0, 1], whence

(fs(/Xqu)s dl/s)|8:t = /XR(ig¢s|st)dyt+(ig</XR¢tdys)’st
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for a.e. t € [0,1]. For the first term on the right-hand side, the fact that ¢ is a supersolution
of the backward Hamilton-Jacobi-Bellman equation yields

/XR(i¢s|S:t)th < —/XR(N;bt'Q —i—cA(bt)dyt.

On the other hand, the fact that (v, v;) is a solution of the forward Fokker-Planck equation
and Xr¢: € D(A) imply that

cis(/XR(bthS)E:t :/(XR<V¢taUt>+¢t<VXR,vt>>dyt

+ C/ (XRA¢t +2(VXR, Vy) + ¢tAXR) duy

and by Young’s inequality
(Vor, ) < !V¢t|2 !vt\z-

From these observations and integrating over [0, 1] we obtaln

2
/XR¢1 duy —/XR% dyy < / /XRMthdt-F/ /¢t<VXR7Ut>thdt
0

+c/0/ ¢tAXR+2<V¢t,VXR))thdt

and, as in the proof of Theorems 4.2 and 4.4, we can pass the limit R — oo under the integral
sign by dominated convergence: indeed, all the integrability properties of ¢}’ ,1/1,5 ,198  that
we used are still true for ¢; by Definition 3.2. Keeping in mind that Xp — 1, |VXg|, AXg — 0
m-a.e. as R — oo and Xg, |Xg|, AXg are uniformly bounded in L*>°(X) w.r.t. R, (4.17) follows.

As concerns (4.19a) the ‘>’ inequality is a direct consequence of (4.17) and (4.14). For
the opposite inequality, notice that (¢; ’5) as defined in the proof of Theorem 4.2 is a solution
to the backward Hamilton-Jacobi-Bellman equation in the sense of Definition 3.2 only on the
compact subsets of [0,1). Thus let d,s > 0 and put

gbf’s = elog(hsg; +0) = elog(h.(1-¢) /249" + 0)-

By Lemma 3.4 ((Z)f’s) is now a solution to the backward Hamilton-Jacobi-Bellman equation in
the sense of Definition 3.2 on the whole [0, 1], whence

[ o am - /¢g’sdﬂoSSUP{/GﬁldMl—/ﬁbodMo}, V8,5 >0,

the supremum being considered as in (4.19a). The continuity of s — gbf’s in L?(X,e"Vm) as
s 0forall t €[0,1] (with V = Md?(-,z) for some x € X and M > 0) together with the fact
that pg, p1 have compact support entails

hm/qbf’s d,ul = /17[};-5’5 dﬂla = 0, 1
sl0
and arguing as in Theorem 4.2 we can pass to the limit as § | 0, thus getting

/d}idul—/d}éduo SSUP{/¢1dM1—/¢OdM0}-

Now it is sufficient to use the identity 1§ = —¢§ + €log po in supp(po) together with (4.2) to
conclude.
By reversing time and following the same strategy, (4.18) and (4.19b) also follow. O
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It is not difficult to deduce from the previous result that the entropic cost admits a
Kantorovich-like dual representation, the Hopf-Lax semigroup being replaced by (1.12) suit-
ably rescaled.

Theorem 4.7 (Kantorovich duality for the entropic cost). With the same assumptions and
notations as in Section 2.2, for any € > 0 the following duality formula holds:

e 5. (0, 1) = eH (po | m) +sup{ / wdpy — / Qiuduo}

ueVv

ueVv

—aH(,ul]m)—i-sup{/uduo—/Qﬁudul}

where V= {u: X = R : e¥/¢ € L> N L>®(X)}, with the convention e~ = 0, and

Qfu := elog (he/ge“/s).
proof Let us prove the second duality formula, as for the first one the argument is analogous.
The ‘<’ inequality is a trivial consequence of (4.2), the identity ¢ 4] = elog p1 in supp(p1)
and the facts that pf € V, ¢f = Qipf. For the converse inequality, let J, s > 0 and define for
allt € [0,1] and u € V

€,0,8

7 u = elog (hgt/gjLSe“/5 +6).

By Lemma 3.4 ( f’é’su) is a solution to the forward Hamilton-Jacobi-Bellman equation in the
sense of Definition 3.2 on [0, 1], so that by (4.19b)

eI (po, 1) > eH (p1 | m) +/Q3’6’Suduo —/Qi’(s’sudm.

Then let us pass to the limit as s | 0 as just done in the proof of Theorem 4.6 and, by
monotonicity and the very definition of V, as ¢ | 0 too, thus getting

eI (ptoy ) > eH (| m) + / wdpio - / Qudp.

Since this is true for all u € V, we conclude. O

A Proofs of Lemmas 3.3, 3.4, 3.5

This appendix is devoted to the proofs of the auxiliary lemmas contained in Section 3.

proof of Lemma 3.8 Since (pf) € C([0,1], L*(X)) and (hS), (|[VAS) € C(J,L2(X, e Vm)),
all the functions appearing in the statement are continuous from J to L°(X) equipped with
the topology of convergence in measure on bounded sets. Therefore the continuity of J > ¢t —
[ Hf dm for these maps will follow as soon as we show that they are, locally in ¢ € J, uniformly
dominated by an L!(X) function. This will also imply all the other statements. Furthermore,
it is sufficient to consider the case hi = ¢f, as the estimates for ¢; can be obtained by
symmetric arguments and the ones for ¥, log p; follow from the identities ¥ = Yi % and

2
elog pf = ¢f + .
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From (2.14a) and (2.14b) we immediately see that for any £ € X and § > 0 there exist
constants c1, co > 0 depending on K, N, d, Z, pg, p1 only such that

P |IVeE? < ey (1+ d?(., z))exp ( — cod?(-, z)) m-a.e.

for every t € [6,1] and € € (0,1). The volume growth (2.8) then implies that the right-hand
side is integrable and thus the conclusion.

For p§p§ and pf|h$|?, observe that from (2.14b) and the fact that X is a geodesic space it
follows that

|05 () — 9§ (2)] < Csd(, 2)(1 +d(z,2)) < C5(1 +d*(z,2)) Ve [6,1],

which means that ¢7 has quadratic growth. We then argue as before, coupling this information
with (2.14a) and (2.8). g

proof of Lemma 3.4 Fix x € X, M > 0 and let V' be defined as in the statement. By the
maximum principle for the heat flow logd < ¢f < log(||ul| oo (x) + 0) for all £ > 0, so that

S[}]lp)||¢?HL°°(X)<OO and  (¢f) € L((0,00), L*(X, eV 'm)).
t€|0,00

Since log is smooth with bounded derivatives on [J, +00), the chain and Leibniz rules entail
that

|VhtU’ |AhtU’ |VhtU’2
5 5

and, by the a priori estimates (2.3) and the Lipschitz regularization (2.5), (ii7) follows. Fur-
thermore, notice that (2.2) and the chain rule grant that m-a.e. (3.1) holds for a.e. ¢; since
(#4i) implies in particular that (|[V¢9|), (A¢?) € L2 ((0,00), L*(X,e~Vm)), this means that
(69) € AC)oe((0,00), L2(X, e~V m)) and (3.1) actually holds when the left-hand side is intended
as limit of the difference quotients in L?(X,e~"m).

The continuity in ¢ = 0 follows by dominated convergence from (i) and the fact that for
any sequence t,, | 0 there exists a subsequence t,, | 0 such that htnku — u m-a.e.

Finally, given € CC (0,00), observe that from (i), (iii) and the fact that pu; < Cm for all
t >0 we get

IVe| < |AgS| <

sup/|¢t]mdm+/|¢t] 77tdm+/lv¢t| Ny dm < oo,

whence integrability on € x X by Fubini’s theorem. For |V¢?|n; it is sufficient to notice that
V@2 |m < 3|V¢2|?n; + Lny and then argue as above. O

proof of Lemma 3.5 The absolute continuity of ¢ — [ fdu, and the bound (3.2) are trivial
consequences of Definition 3.1. The fact that the exceptional set can be chosen independently
of f follows from the separability of W2?(Y) and standard approximation procedures, carried
out, for instance, in [14].

This implies that the second derivative in the right hand side of (3.3) exists for a.e. ¢, so
that the claim makes sense. The absolute continuity of ¢ — [ f; dy follows from the fact that
for any tg,t; € [0,1], to < t; it holds

‘/ftl dpe, — /fto dpgg | < ‘/ftl dpe, — /ftl dpay +‘/ fro = fro) dpaeg
< [* [ anixieanama )5

: ft ’ dt d,uto
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and our assumptions on (f;). Now fix a point ¢ of differentiability for (f;) and observe that
the fact that %ﬁf’f strongly converges in L?(Y) to % fr and pyyp weakly converges to py as
h — 0 and the densities are equibounded is sufficient to get

. Jeen — [t d : /ft+h — [t
1 R = | — =1 )
B0 / p e qpt dre = fimy n dwe

Hence the conclusion comes dividing by h the trivial identity
/ft+hdut+h - /ftdut :/ftdut+h - /ft th+/(ft+h — fo)dp+
+ /(ft+h — Jo)dpesn — /(ft+h — fo)dpe

and letting h — 0.
The last statement is straightforward. ([l
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