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1 Introduction

Entanglement has attracted an intense research activity during the last two decades in

quantum field theory, quantum gravity, quantum many-body systems and quantum in-

formation (see [1–5] for reviews). Among the entanglement indicators, the entanglement

entropy plays a dominant role because it quantifies the entanglement of a bipartition when

the entire quantum system is in a pure state.

Given the Hilbert space H associated to a quantum system in the state characterised

by the density matrix ρ, and assuming that it is bipartite as H = HA ⊗ HB, the A’s

reduced density matrix is ρA = TrHB
ρ and the entanglement entropy between A and B

is defined as the Von Neumann entropy of ρA, namely SA = −Tr(ρA log ρA). Similarly,

the entanglement entropy SB is the Von Neumann entropy of B’s reduced density matrix

ρB = TrHA
ρ . When ρ is a pure state, we have SA = SB. Hereafter we only consider spatial

bipartitions where A is a spatial region and B its complement.

In the approach to quantum gravity based on the gauge/gravity correspondence, a

crucial result was found by Ryu and Takayanagi [6, 7], who proposed the holographic

formula to compute the entanglement entropy of a d+1 dimensional CFT at strong coupling

with a gravitational dual description characterised by an asymptotically AdSd+2 spacetime.

This prescription has been extended to time dependent backgrounds in [8]. Recently, an

interesting reformulation of the holographic entanglement entropy through some peculiar

flows has been proposed in [9] and explored further in [10].

In this manuscript, for simplicity, only static spacetimes are considered. By introducing

the coordinate z > 0 along the holographic direction in the gravitational spacetime, the dual

CFTd+1 is defined on the conformal boundary at z = 0. Given a region A in a spatial slice

of the CFTd+1, its holographic entanglement entropy at strong coupling is obtained from

the area of the d dimensional minimal area hypersurface γ̂A anchored to the boundary of A

(i.e. such that ∂γ̂A = ∂A) and homologous to A [11, 12]. Since the asymptotically AdSd+2

gravitational spacetime is noncompact along the holographic direction and γ̂A reaches its

boundary, the area of γ̂A diverges. This divergence is usually regularised by introducing

a cutoff ε > 0 in the holographic direction z (i.e. z > ε) such that ε � Area(∂A), which

corresponds to the gravitational dual of the UV cutoff in the CFTd+1. Denoting by γ̂ε ≡
γ̂A ∩ {z > ε} the restriction of γ̂A to z > ε, the holographic entanglement entropy is

given by

SA =
Area(γ̂ε)

4GN

(1.1)

being GN the d+ 2 dimensional gravitational Newton constant.

By expanding the r.h.s. of (1.1) as ε → 0+, the leading divergence is O(1/εd−1) and

its coefficient is proportional to the area of the hypersurface ∂A ∩ ∂B which separates A

and B (entangling surface). The terms subleading with respect to the area law provide

important information. For instance, in d = 3 and for smooth ∂A, a logarithmic divergence

occurs and its coefficient contains the anomaly coefficients of the CFT4 [13–15].

In this manuscript, we focus on d = 2, where (1.1) becomes

SA =
L2

AdS

4GN

A[γ̂ε] (1.2)

– 1 –
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where the dependence on the AdS radius LAdS has been factored out and the area A[γ̂ε] of

the two dimensional surface γ̂ε must be evaluated by setting L2
AdS = 1. In AdS4/CFT3, the

minimal area surface γ̂A is anchored to the entangling curve ∂A = ∂B and the expansion

of A[γ̂ε] as ε→ 0 reads

A[γ̂ε] =
PA
ε
− FA + o(1) (1.3)

where PA = length(∂A) = length(∂B) is the perimeter of A.

In three dimensional quantum field theories, the subleading term with respect to the

area law in SA is finite for smooth entangling curves and it contains relevant information.

For instance, when A is a disk, it has been shown that this term decreases along a renormal-

ization group flow going from an ultraviolet to an infrared fixed point [16–21]. In a CFT3,

when A contains corners, the subleading term with respect to the area law is a logarithmic

divergence whose coefficient is determined by a model dependent corner function [22–26].

The limit of this function as the corner disappears provides the coefficient characterising

the two point function of the stress tensor [27–30].

These important results tell that it is useful to study the shape dependence of the

subleading term with respect to the area law in SA. Nonetheless, it is very difficult to

get analytic expressions valid for generic shapes, even for simple quantum field theories.

This problem has been tackled for the holographic entanglement entropy in AdS4/CFT3.

Interesting results have been obtained for regions given by small perturbations of the disk

and for star shaped domains [31–34]. When A has a generic shape, analytic expressions

for FA can be written where the Willmore functional [35–39] plays an important role. The

first result has been found in [40] for the static case where the gravitational background

is AdS4. This analysis has been further developed in [41] and then extended to a generic

asymptotically AdS4 spacetime in [42]. In [42] the analytic results have been also checked

against numerical data obtained with Surface Evolver [43, 44], which has been first em-

ployed to study the holographic entanglement entropy in [45]. The analytic expressions

for FA found in [40–42] hold also when A is made by disjoint regions. We remark that,

in CFT3, it is very difficult to find analytic results about the entanglement entropy of

disjoint regions [46, 47]. Also in CFT2, where the conformal symmetry is more powerful,

few analytic results are available when the subsystem is made by disjoint intervals [48–52].

Conformal field theories in the presence of boundaries (BCFTs) have been largely

studied in the literature [53–64] and also their gravitational duals through the gauge/gravity

correspondence (which is called AdS/BCFT in these cases) have been constructed [65–85].

These gravitational backgrounds are part of asymptotically AdS spacetimes delimited by a

hypersurface Q extended in the bulk whose boundary coincides with the boundary of the

dual BCFT [68–74].

We are interested in the shape dependence of the holographic entanglement entropy

in AdS/BCFT through the prescription (1.1). Given a spatial region A in a spatial slice

of the BCFT, the holographic entanglement entropy is determined by the minimal area

hypersurface γ̂A anchored to the entangling surface ∂A∩ ∂B. Whenever ∂A intersects the

boundary of the BCFT, we have ∂A ∩ ∂B ( ∂A and the area of ∂A ∩ ∂B occurs in the

leading divergence (area law term). Another peculiar feature of extremal hypersurfaces in

– 2 –
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the context of AdS/BCFT is that γ̂A may intersect Q (with a slight abuse of notation, in

the following we will denote in the same way Q and its spatial section). It is important to

remark that, since γ̂A∩Q is not fixed, the extremization of the area functional leads to the

condition that γ̂A intersects Q orthogonally. Furthermore, as discussed above, in order to

evaluate the holographic entanglement entropy we have to introduce the UV cutoff ε and

consider the area of the restricted hypersurface γ̂ε ≡ γ̂A ∩ {z > ε} because γ̂A reaches the

conformal boundary of an asymptotically AdS space.

In this manuscript, we consider the holographic entanglement entropy in AdS4/BCFT3

of spatial regions A having an arbitrary shape. For the sake of simplicity, we will consider

static backgrounds in AdS4/BCFT3, which provide the simplest arena where the shape

dependence plays an important role. The holographic entanglement entropy is computed

through (1.2), where the minimal area surface γ̂A is anchored to the entangling curve and

it can intersect orthogonally Q (see also footnote 11 of [10]).

The expansion of the areaA[γ̂ε] of the two dimensional surface γ̂ε in (1.2) as ε→ 0 reads

A[γ̂ε] =
PA,B
ε
− FA + o(1) (1.4)

being PA,B = length(∂A ∩ ∂B) 6 PA the length of the entangling curve. When ∂A is

smooth, FA is finite. It is worth considering the configurations whose subleading term FA
can be computed analytically. For instance, the case of an infinite strip parallel to a flat

boundary has been considered in [72, 73, 86, 87].

When A contains corners, the subleading term FA diverges logarithmically and the co-

efficient of this divergence is determined by different kinds of corner functions, depending

on the position of the tips of the corners. For the corners whose tip is not on the boundary

of the BCFT3, the well known corner function of [22, 23] must be employed. If the tip

of the corner is located on the boundary of the BCFT3, the corner functions encode also

the boundary conditions characterising the BCFT3. In the context of AdS4/BCFT3, these

corner functions have been studied analytically in [87] by computing the holographic en-

tanglement entropy of an infinite wedge. For instance, when A is an infinite wedge adjacent

to a flat boundary, the holographic entanglement entropy is given by (1.2) with

A[γ̂ε] =
L

ε
− Fα(ω) log(L/ε) +O(1) (1.5)

where L� ε is an infrared cutoff, ω is the opening angle of the wedge and the subindex α

denotes the fact that the corner function Fα(ω) depends on the boundary conditions in a

highly non trivial way. The analytic expression of Fα(ω) has been checked numerically by

employing Surface Evolver [87].

1.1 Summary of the results

In this manuscript, we study the subleading term FA of the holographic entanglement

entropy in AdS4/BCFT3 (see (1.2) and (1.4)) for entangling curves having arbitrary shapes.

After a brief description of the AdS/BCFT setup [68–74], in section 2 we adapt the

method employed in [40–42] for the holographic entanglement entropy in AdS4/CFT3 to

– 3 –
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this case. This analysis leads to writing FA as a functional evaluated on the surface γ̂ε em-

bedded in a three dimensional Euclidean space with boundary which is asymptotically flat

close to the boundary. This result holds for any static gravitational background and for any

region, even when it is made by disjoint domains. Focusing on the simplest AdS4/BCFT3

setup, where the gravitational background is a part of H3 and the asymptotically flat space

is a part of R3, in section 2.2 we observe that the functional obtained for FA becomes

the Willmore functional [35–39] with a proper boundary term evaluated on the surface γ̂ε
embedded in R3. In the remaining part of the manuscript, further simplifications are intro-

duced by restricting to BCFT3’s whose spatial slice is either a half plane (see section 2.2.1)

or a disk (see section 2.2.2).

The analytic expression found for FA is checked by considering some particular regions

such that the corresponding FA can be found analytically. In section 3 we recover the result

for an infinite strip parallel to a flat boundary [72, 73, 86, 87]. When A is a finite region with

smooth ∂A that does not intersect the boundary, FA is finite. The simplest configuration

to consider is a disk disjoint from a boundary which is either flat or circular. In section 4 we

compute FA analytically for these configurations and check the results against numerical

data obtained through Surface Evolver. We remark that Surface Evolver is a very powerful

tool in this analysis because it allows to study numerically any kind of region A, even

when it is made by disjoint connected domains or when it contains corners (see [45, 87] for

some examples in AdS4). In section 5 Surface Evolver is employed to find numerically FA
corresponding to some ellipses disjoint from a flat boundary.

In section 6 we check that the result derived in section 2.2 for FA can be applied also

when A contains corners by considering the explicit cases of a half disk (see section 6.1) and

an infinite wedge adjacent to the flat boundary (see section 6.2). The analytic expression

for the corner function Fα(ω) found in [87] is recovered from the general expression of FA
obtained in section 2.2.

In appendix A we report the mappings that are employed to study the disk disjoint

from a flat boundary. The appendix B contains the technical details for the derivation of

the analytic results presented in section 4 about a disk concentric to a circular boundary.

In appendix C we discuss the details underlying the derivation of the corner function of [87]

through the general formula for FA of section 2.2.1. In appendix D we further discuss the

auxiliary surfaces corresponding to some extremal surfaces occurring in the manuscript.

2 Holographic entanglement entropy in AdS4/BCFT3

In this section we provide an analytic formula for the subleading term FA of the holographic

entanglement entropy in AdS4/BCFT3 which is valid for any region A and any static

background. In section 2.1 we derive the general formula and in section 2.2 we describe how

it simplifies when the gravitational background is a part of AdS4, focusing on the simplest

cases where the boundary of a spatial slice of the BCFT3 is either an infinite line or a circle.

Following [68], we consider the gravitational background dual to a BCFTd+1 given by

an asymptotically AdSd+2 spacetime M restricted by the occurrence of a d + 1 dimen-

sional hypersurface Q in the bulk whose boundary coincides with the boundary of the

– 4 –
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BCFTd+1. Hence the boundary ofM is the union of Q and the conformal boundary where

the BCFTd+1 is defined. The gravitational action for the d+ 2 dimensional metric Gab in

the bulk reads [68, 69]

I =
1

16πGN

∫
M

√
−G

(
R− 2Λ

)
+

1

8πGN

∫
Q

√
−HK + IQ (2.1)

being Λ = −d(d+1)
2L2

AdS
the negative cosmological constant, Hab the induced metric on Q and

K = HabKab the trace of the extrinsic curvature Kab of Q. The boundary term IQ
describes some matter fields localised on Q. The boundary term due to the fact that ∂M

is non smooth [88, 89] along the boundary of the BCFTd+1 and the ones introduced by

the holographic renormalisation procedure [90–93] have been omitted because they are not

relevant in our analysis. We will focus only on static backgrounds.

While in section 2.1 a generic Q is considered, for the remaining part of the manuscript

we focus on the simplest case where IQ in (2.1) is given by

IQ = − T

8πGN

∫
Q

√
−H (2.2)

being T a constant real parameter characterising the hypersurface Q. Different proposals

have been made to construct Q [68, 71–73], but they will not be discussed here because

our results can be employed independently of the way underlying the construction of Q.

In this manuscript, we consider the holographic entanglement entropy in AdS4/BCFT3

with static gravitational backgrounds.

Given a two dimensional region A in the spatial slice of the BCFT3, the corresponding

holographic entanglement entropy is given by (1.2) and (1.4), as discussed in section 1.

The minimal area surface γ̂A is anchored to the entangling curve ∂A ∩ ∂B and, whenever

γ̂A ∩ Q 6= ∅, these two surfaces are orthogonal along their intersection. We remind that

the expansion (1.4) is defined by first introducing the UV cutoff ε and then computing the

area of the part of γ̂A restricted to z > ε, namely γ̂ε ≡ γ̂A ∩ {z > ε}. By employing the

method of [40–42], in section 2.1 we find an analytic expression for the subleading term FA
in (1.4) that is valid for any region A and for any static gravitational background.

2.1 Static backgrounds

In the AdS4/BCFT3 setup described above, let us denote by M3 the three dimensional

Euclidean space with metric gµν obtained by taking a constant time slice of the static

asymptotically AdS4 gravitational background. The boundary of M3 is the union of the

conformal boundary, which is the constant time slice of the spacetime where the BCFT3

is defined, and the surface Q delimiting the gravitational bulk.

Let us consider a two dimensional surface γ embedded into M3 whose boundary ∂γ

is made by either one or many disjoint closed curves. Denoting by nµ the spacelike unit

vector normal to γ, the metric induced on γ (first fundamental form) and the extrinsic

curvature of γ (second fundamental form) are given respectively by

hµν = gµν − nµnν Kµν = h α
µ h β

ν ∇αnβ (2.3)

where ∇α is the torsionless covariant derivative compatible with gµν .

– 5 –
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In our analysis gµν is conformally equivalent to the metric g̃µν corresponding to a

Euclidean space M̃3 which is asymptotically flat near the conformal boundary, namely

gµν = e2ϕ g̃µν (2.4)

where ϕ is a function of the coordinates. The two dimensional surface γ is also a subman-

ifold of M̃3. Denoting by ñµ the spacelike unit vector normal to γ ⊂ M̃3, we have that

nµ = eϕ ñµ. The fundamental forms in (2.3) can be written in terms of the fundamental

forms h̃µν and K̃µν characterising the embedding γ ⊂ M̃3 as follows

hµν = e2ϕ h̃µν Kµν = eϕ
(
K̃µν + h̃µν ñ

λ∂λϕ
)

(2.5)

The area A[γ] of the surface γ can be written as [42]

A[γ] =

∮
∂γ
b̃µ∂µϕds̃ +

1

4

∫
γ

(
TrK

)2
dA (2.6)

−
∫
γ

(
1

4

(
TrK̃

)2
+ ∇̃2ϕ− e2ϕ − ñµñν ∇̃µ∇̃νϕ+

(
ñλ∂λϕ

)2)
dÃ

where ∇̃α is the torsionless covariant derivative compatible with g̃µν and b̃µ is the unit

vector on ∂γ that is tangent to γ, orthogonal to ∂γ and outward pointing with respect to

γ. The area element dA =
√
h dΣ of γ ⊂M3 and the area element dÃ =

√
h̃ dΣ of γ ⊂ M̃3

are related as dA = e2ϕdÃ, being dΣ = dσ1dσ2, where σi are some local coordinates on γ.

If part of γ belongs to the conformal boundary at z = 0, the area (2.6) in infinite

because of the behaviour of the metric hµν near the conformal boundary. In order to

regularise the area, one introduces the UV cutoff ε and considers the part of γ given by

γε ≡ γ∩{z > ε}. The curve ∂γε can be decomposed as ∂γε = ∂γQ∪∂γ‖, where ∂γQ ≡ γε∩Q
and ∂γ‖ ≡ γε ∩ {z = ε} are not necessarily closed lines. Consequently, for the surfaces γε
the boundary term in (2.6) can be written as∮

∂γε

b̃µ∂µϕds̃ =

∫
∂γ‖

b̃µ∂µϕds̃ +

∫
∂γQ

b̃µ∂µϕds̃ (2.7)

Let us consider the integral over ∂γ‖ in the r.h.s. of this expression. Since in our

analysis ϕ = − log(z) +O(za) with a > 1 as z → 0, we need to know the behaviour of the

component b̃z at z = ε as ε → 0. If b̃z = − 1 + o(ε), for the integral over ∂γ‖ in (2.7) we

obtain the following expansion∫
∂γ̂‖

b̃µ∂µϕds̃ =
PA,B
ε

+ o(1) (2.8)

as ε → 0, being PA,B = length(∂A ∩ ∂B) the length of the entangling curve. The above

expansion for b̃z holds for any surface, not necessarily minimal, which intersects the con-

formal boundary orthogonally [41]. Hereafter we will consider only this class of surfaces,

which includes also the extremal surfaces, which are compelled to intersect orthogonally

the conformal boundary [40–42, 94].

– 6 –
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By plugging (2.8) into (2.7) first and then substituting the resulting expression

into (2.6), for the area of the surfaces γε we find the following expansion

A[γε] =
PA,B
ε

+

∫
∂γQ

b̃µ∂µϕds̃ +
1

4

∫
γε

(
TrK

)2
dA (2.9)

−
∫
γε

(
1

4

(
TrK̃

)2
+ ∇̃2ϕ− e2ϕ − ñµñν ∇̃µ∇̃νϕ+

(
ñλ∂λϕ

)2)
dÃ + o(1)

as ε→ 0. We remark that (2.9) also holds for surfaces γε that are not extremal of the area

functional. Furthermore, no restrictions are imposed along the curve ∂γQ.

In order to compute the holographic entanglement entropy in AdS4/BCFT3

through (1.2), we must consider the minimal area surface γ̂A which is anchored to the

entangling curve ∂A ∩ ∂B. This implies that γ̂A intersects the surface Q orthogonally,

whenever γ̂A∩Q 6= ∅. The expression (2.9) significantly simplifies for the extremal surfaces

γ̂ε ≡ γ̂A∩{z > ε} (with a slight abuse of notation, sometimes we denote by γ̂A also extremal

surfaces which are not the global minimum). The local extrema of the area functional are

the solutions of the following equation

TrK = 0 ⇐⇒
(
TrK̃

)2
= 4(ñλ∂λϕ)2 (2.10)

which, furthermore, intersect orthogonally Q whenever γ̂A∩Q 6= ∅. The second expression

in (2.10) has been obtained by using the second formula in (2.5).

Plugging the extremality condition (2.10) into (2.9), we find the expansion of A[γ̂ε] as

ε→ 0, which provides the holographic entanglement entropy of a region A in AdS4/BCFT3

for static gravitational backgrounds. It reads

A[γ̂ε] =
PA,B
ε

+

∫
∂γ̂Q

b̃µ∂µϕds̃ −
∫
γ̂ε

(
1

2

(
TrK̃

)2
+ ∇̃2ϕ− e2ϕ − ñµñν ∇̃µ∇̃νϕ

)
dÃ + o(1)

(2.11)

where the leading divergence gives the expected area law term for the holographic entan-

glement entropy in AdS4/BCFT3. Comparing (2.11) with the expansion (1.4) expected for

A[γ̂ε], we find that the subleading term is given by

FA =

∫
γ̂ε

(
1

2

(
TrK̃

)2
+ ∇̃2ϕ− e2ϕ − ñµñν ∇̃µ∇̃νϕ

)
dÃ −

∫
∂γ̂Q

b̃µ∂µϕds̃ (2.12)

This is the main result of this manuscript. According to (2.12), the subleading term

is made by two contributions: an integral over the whole minimal surface γ̂ε and a line

integral over the curve ∂γ̂Q = γ̂ε ∩ Q. We remark that the definition of Q has not been

employed in the derivation of (2.12).

The integrand of the surface term in (2.12) is the same obtained in [42], where this

analysis has been applied for the holographic entanglement entropy in AdS4/CFT3. The

holographic entanglement entropy in AdS4/BCFT3 includes the additional term given by

the line integral over ∂γ̂Q. This term can be written in a more geometrical form by

considering the transformation rule of the geodesic curvature k under Weyl transformations

(see e.g. [41])

k = e−ϕ
(
k̃ + b̃µ∂µϕ

)
(2.13)

– 7 –
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This formula allows to write the line integral over ∂γQ in (2.12) as follows∫
∂γQ

b̃µ∂µϕds̃ =

∫
∂γQ

k ds−
∫
∂γQ

k̃ ds̃ (2.14)

In this manuscript, we consider backgrounds such that ϕ = − log(z) in (2.4). In these

cases, the first and the last term of the integrand in the surface integral in (2.12) become

respectively

(
TrK̃

)2
=

4(ñz)2

z2
ñµñν ∇̃µ∇̃νϕ =

(ñz)2

z2
+

1

z
Γ̃zµν ñ

µñν (2.15)

where the first expression has been obtained from the second expression in (2.10) and Γ̃zµν
are some components of the Christoffel connection compatible with g̃µν .

2.2 AdS4

In the remaining part of the manuscript, we focus on the simple gravitational background

given by a part of AdS4 delimited by Q and the conformal boundary, which provides the

gravitational background dual to the ground state of the BCFT3. The metric of AdS4 in

Poincaré coordinates reads

ds2 =
1

z2

(
− dt2 + dz2 + dx2 + dy2

)
(2.16)

where z > 0, while the range of the remaining coordinates is R. The metric induced on a

t = const slice of AdS4 is the one characterising the three dimensional Euclidean hyperbolic

space H3

ds2 =
1

z2

(
dz2 + dx2 + dy2

)
(2.17)

Specialising the results of section 2.1 to this background, we haveM3 = H3, i.e. gµν =
1
z2
δµν , which means that g̃µν = δµν and ϕ = − log(z). In this case, drastic simplifications

occur (2.12) because ∇̃2ϕ− e2ϕ = 0 and all the components of the connection Γ̃zµν vanish

identically. Thus, when the gravitational bulk is a proper subset of H3 delimited by the

surface Q and the conformal boundary, the expression (2.12) for FA reduces to

FA =
1

4

∫
γ̂ε

(
TrK̃

)2
dÃ +

∫
∂γ̂Q

b̃z

z
ds̃ =

∫
γ̂ε

(ñz)2

z2
dÃ +

∫
∂γ̂Q

b̃z

z
ds̃ (2.18)

The surface integral over γ̂ε in the first expression is the Willmore functional of γ̂ε ⊂ R3.

Notice that the curves ∂γ̂Q corresponding to some configurations may intersect the plane

given by z = ε.

When A contains corners, the expression (2.18) diverges logarithmically as ε → 0. In

AdS4/CFT3, the emergence of the logarithmic divergence from the Willmore functional for

domains with corners has been studied in [42], where the corner function found [22, 23] has

been recovered. In this AdS4/BCFT3 setup, the occurrence of a logarithmic divergence

in (2.18) for singular domains will be discussed in section 6 and the corner function found

in [87] will be obtained.
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When the entangling curve is a smooth and closed line that does not intersect the

spatial boundary of the BCFT3, the limit ε→ 0 of (2.18) provides the following finite ex-

pression

FA =
1

4

∫
γ̂A

(
TrK̃

)2
dÃ +

∫
∂γ̂Q

b̃z

z
ds̃ =

∫
γ̂A

(ñz)2

z2
dÃ +

∫
∂γ̂Q

b̃z

z
ds̃ (2.19)

which will be largely employed throughout this manuscript.

Hereafter we will focus on BCFT3’s whose spatial slice is either the half plane bounded

by a straight line or the disk. In section 2.2.1 and section 2.2.2 some details about these

two setups are discussed.

2.2.1 Flat boundary

Let us consider a BCFT3 defined in a spacetime whose generic spatial slice is the half

plane {(x, y) ∈ R2, x > 0} bounded by the straight line x = 0 (see the grey horizontal

half plane and the straight solid black line in figure 1). When the term (2.2) occurs in

the gravitational action (2.1), it has been found in [68, 69] that the spatial section of the

gravitational background is given by H3, whose metric is (2.17), bounded by the following

half plane Q in the bulk

Q : x = − (cotα) z α ∈ (0, π) z > 0 (2.20)

(the green half plane in figure 1) whose boundary coincides with the straight line x = 0

bounding the spatial slice of the BCFT3. The angular parameter α provides the slope of

the half plane Q and it is related to the constant T in (2.2) as T = (2/LAdS) cosα. In

particular, a t = const slice of the gravitational bulk is the part of H3 defined by

x > − (cotα) z (2.21)

The term FA in the holographic entanglement entropy can be easily obtained by spe-

cialising (2.18) to this AdS4/BCFT3 setup. We remark that, for this case, the line integral

over ∂γ̂Q in (2.18) simplifies because b̃z = − cosα for all the points of ∂γ̂Q. Furthermore,

k̃ = 0 in (2.14) in this setup, i.e. ∂γ̂Q is a geodesic of γ̂ε ∈ R3. Thus, for any region A in

the half plane x > 0, we find

FA =

∫
γ̂ε

(ñz)2

z2
dÃ − (cosα)

∫
∂γ̂Q

1

z
ds̃ (2.22)

The two integrals in this expression are always positive, but their relative sign depends

on the slope α. In particular, when α > π/2 we have FA > 0, while FA can be negative

when α < π/2 (see e.g. the expression (6.1) for the half disk adjacent to the flat boundary

considered in section 6.1).

When ∂A is a closed and smooth curve that does not intersect the boundary x = 0,

the limit ε→ 0 of (2.22) is finite and one finds

FA =

∫
γ̂A

(ñz)2

z2
dÃ − (cosα)

∫
∂γ̂Q

1

z
ds̃ (2.23)

which corresponds to (2.19) specialised to this setup.
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Figure 1. Extremal surface γ̂ε constructed with Surface Evolver from a spatial domain A in the

right half plane (the grey half plane) whose ∂A is the red curve, which is also highlighted in the

inset. The gravitational bulk is the part of H3 defined by (2.21), whose boundary is made by the

conformal boundary at z = 0 (the grey half plane) and Q (the green half plane defined in (2.20)).

Here α = 3π/4. The green curve corresponds to ∂γ̂Q = γ̂ε ∩ Q, and γ̂ε intersects Q orthogonally

along this curve.

In figure 1 we show an explicit example where (2.23) can be applied. The entangling

curve ∂A is the red curve in the z = 0 half plane also highlighted in the inset. Sur-

face Evolver has been employed to construct γ̂ε, as done in [87] for other regions in this

AdS4/BCFT3 setup.

2.2.2 Circular boundary

The second setup is given by a BCFT3 defined on a spacetime whose t = const slice is a disk

of radius RQ, that can be conveniently described by introducing the polar coordinates (ρ, φ)

with the origin in the center of the disk, namely such that 0 6 ρ 6 RQ and 0 6 φ < 2π.

This disk can be mapped into the half plane {(x, y) ∈ R2, x > 0} considered in section 2.2.1,

as discussed in appendix A. In terms of the polar coordinates in the conformal boundary,

the metric of H3 reads ds2 = (dz2+dρ2+ρ2dφ2)/z2, being z > 0 the holographic coordinate.

– 10 –
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For a BCFT3 defined in the above disk of radius RQ, the gravitational background

dual to the ground state is a region of H3 delimited by a surface Q invariant under rotations

about the z-axis, whose boundary is the circle CQ given by (ρ, z) = (RQ, 0). When the

term (2.2) occurs in the gravitational action (2.1), the profile of Q can be found as the

image of the half plane (2.20) through the conformal map (A.3) described in appendix A.

The result reads [68, 69]

ρ =
√

(RQ cscα)2 − (z −RQ cotα)2 (2.24)

(see also (A.4)), which corresponds to a spherical cap Q centered in (ρ, z) = (0, RQ cotα)

with radius RQ/ sinα (see the green surface in the left panel of figure 3). When α = π/2,

this spherical cap becomes the hemisphere ρ2 + z2 = R2
Q. By introducing the angular

coordinate θ as tan θ = z/ρ, from (2.24) we find that the coordinates of a point of Q are

(ρ, z) = RQ
(
Qα(θ), Qα(θ) tan θ

)
with

Qα(θ) ≡ cos θ
(

cotα sin θ +
√

1 + (cotα sin θ)2
)

=

√
ζ2 + (sinα)2 + ζ cosα

(ζ2 + 1) sinα
(2.25)

where in the last step we have introduced ζ ≡ tan θ, that will be employed also in section 4.1.

In this AdS4/BCFT3 setup, FA is given by (2.18) (or (2.19) whenever it can be applied).

We remark that typically b̃z is not constant along ∂γ̂Q. Instead, this simplification occurs

when A is a disk sharing the origin with CQ (see the left panel of figure 3).

3 Infinite strip adjacent to the boundary

In this section we focus on the holographic entanglement entropy of infinite strips parallel

to the flat boundary, in the AdS4/BCFT3 setup described in section 2.2.1. We show that

the formula (2.23) reproduces the result for FA computed in [72, 73, 86, 87] by means of a

straightforward computation of the area for the corresponding minimal surfaces.

An infinite strip A of width ` adjacent to the boundary can be studied by taking the

rectangular domain (x, y) ∈ R2 such that 0 6 x 6 ` and −L‖/2 6 y 6 L‖/2 in the regime

of L‖ � ` � ε. In this limit, the invariance under translations in the y direction can be

assumed. The corresponding minimal surfaces γ̂A have been studied in [87] in the whole

regime of α ∈ (0, π), by employing the partial results previously obtained in [72, 73, 86].

The minimal surface γ̂A intersects the z = 0 half plane orthogonally along the line

x = `, which is a component of ∂γ̂A. In this case PA,B = L‖ in (2.11), therefore the leading

linear divergence (area law term) in the expansion of A[γ̂ε] as ε → 0 is L‖/ε. We are

mainly interested in the subleading term FA, which depends on the entire surface. Because

of the invariance under translations in the y direction, γ̂A is characterised by its section

at y = const.

When α 6 π/2, two surfaces γ̂ dis
A and γ̂ con

A extremise the area functional (see the left

panel in figure 2); therefore their areas must be compared to find the global minimum [72,

73, 87]. The surface γ̂ dis
A is the half plane x = ` (the purple half plane in figure 2), which

remains orthogonal to the z = 0 plane and does not intersect Q at a finite value of z.
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Figure 2. Minimal area surfaces corresponding to the same infinite strip A in the z = 0 half plane

(the grey half plane) which is adjacent to the boundary x = 0 (straight solid black line). The

entangling curve is the straight solid red line. The yellow horizontal plane is given by z = ε. The

green half planes correspond to Q in (2.20) for different values of α and the red half plane is Q with

α = αc. For α > αc we show γ̂ con
A and ∂γ̂Q = γ̂ con

A ∩ Q are highlighted (green straight lines). The

vertical purple half plane corresponds to γ̂ dis
A . In the left panel 0 < α 6 π/2 and in the right panel

π/2 6 α < π.

Instead, the surface γ̂ con
A intersects the half plane Q orthogonally at a finite value z∗ of the

coordinate z. When α > π/2 (see the right panel in figure 2), the solution γ̂ dis
A does not

exist; hence the global minimum is given by γ̂ con
A .

The extremal surface γ̂ con
A for a given α ∈ (0, π) is characterised by the following

profile [87]

Pθ =
(
x(θ) , z(θ)

)
=

`

g(α)

(
E
(
π/4− α/2 | 2

)
− cosα√

sinα
+ E

(
π/4− θ/2 | 2

)
,
√

sin θ

)
(3.1)

where θ ∈ [0, π − α] is the angular parameter such that θ = 0 corresponds to z = 0 and

g(α) ≡ E
(
π/4− α/2 | 2

)
− cosα√

sinα
+

Γ
(
3
4

)2
√

2π
(3.2)

being E(x|y) the incomplete elliptic integral of the second kind (we adopt the convention

of Mathematica for the elliptic function throughout this manuscript). From (3.1) we can

easily obtain z∗ = z(π − α) given by

z∗ =

√
sinα

g(α)
` (3.3)

which characterises the position of the straight green lines corresponding to γ̂ con
A ∩ Q in

figure 2. Since we must have z∗ > 0, from (3.3) one observes that γ̂ con
A is well defined when

g(α) > 0. It is straightforward to notice that g(α) has only one zero for α ∈ (0, π) given by

αc ' π/4.85. Thus, when α 6 αc the solution γ̂ con
A does not exist and the global minimum

is γ̂ dis
A (the purple half plane in figure 2), as discussed in [72, 73, 87].
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The O(1) term in the expansion of A[γ̂ε] as ε→ 0 for α ∈ (0, π) reads [87]

FA = L‖
a0(α)

`
a0(α) =

{
− g(α)2 α > αc

0 α 6 αc
(3.4)

The main observation of this section is that the non trivial expression for FA corre-

sponding to the regime α > αc in (3.4) can be recovered by evaluating (2.23) for γ̂ con
A as

surface embedded in R3. The surface γ̂ con
A is described by the constraint C = 0, being

C ≡ z− z(x), and its unit normal vector ñµ = (ñz, ñx, ñy) can be found by first computing

∂µC and then normalising the resulting vector. We find ñµ = (1,−z′, 0)/
√

1 + (z′)2. The

area element in the surface integral occurring in (2.23) reads dÃ =
√

1 + (z′)2 dx dy in this

case. Combining these observations, we get∫
γ̂A

(ñz)2

z2
dÃ =

∫
γ̂A

dx dy

z2
√

1 + (z′)2
(3.5)

where we have not used yet the fact that z(x) corresponds to γ̂A. Specifying (3.5) to the

profile (3.1), we find
√

1 + (z′)2 = 1/ sin θ and dx = `
√

sin θ dθ/(2g(α)). By employing

these observations, (3.5) becomes∫
γ̂A

(ñz)2

z2
dÃ = L‖

2g(α)

`

∫ π−α

0

√
sin θ dθ = L‖

g(α)

`

(
E
(
π/4− α/2 | 2

)
+

Γ(34)2
√

2π

)
(3.6)

The integral over the line ∂γ̂Q in (2.23) significantly simplifies for these domains be-

cause ∂γ̂Q is the straight line given by (z, x, y) = (z∗, x∗, y) with −L‖/2 6 y 6 L‖/2, where

(x∗, z∗) = Pπ−α can be read from (3.1) and it corresponds to the green straight lines in

figure 2. Thus, the line integral in (2.23) gives∫
∂γ̂Q

1

z
ds̃ =

L‖

z∗
=

g(α)

`
√

sinα
L‖ (3.7)

where (3.3) has been used in the last step.

Plugging (3.6) and (3.7) into the general expression (2.23), for an infinite strip of width

` adjacent to the boundary we find

FA
∣∣
γ̂ con
A

= L‖
g(α)

`

[(
E
(
π/4− α/2 | 2

)
+

Γ(34)2
√

2π

)
− cosα√

sinα

]
= L‖

g(α)2

`
(3.8)

where the last result has been obtained by employing (3.2). Notice that both the terms

in (2.23) provide non trivial contributions.

From the results discussed in this section, it is straightforward to find FA when A is

an infinite strip parallel to the flat boundary and at a finite distance from it through the

formula (2.23), recovering the result presented in section 5.3 of [87]. In the analysis of

this configuration, we find it instructive to employ the extremal surfaces anchored to two

infinite parallel strips in the plane [95] as discussed in appendix D.
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Figure 3. Left: extremal area surface γ̂ con
A anchored to a disk A disjoint from a circular concentric

boundary (see section 2.2.2 and section 4.1) where Q (green spherical dome) is described by (2.24).

Here α = π/3 and R◦/RQ ∼ 0.85, which corresponds to r◦,min (see section 4.1.1). Right: extremal

surface γ̂ con
A anchored to a disk disjoint from a flat boundary (see section 2.2.1 and section 4.2).

Here α = π/3 and d/R can be obtained from the first expression in (4.22) with the value of R◦/RQ
of the left panel because the two configurations shown in these panels are related through (A.3).

4 Disk disjoint from the boundary

In this section we study the holographic entanglement entropy of a disk A at a finite

distance from the boundary.

In the setup described in section 2.2.2, in section 4.1 we consider the case of a disk

A concentric to the circular boundary because the symmetry of this configuration allows

us to obtain an analytic expression for the profile characterising the minimal surface γ̂A
(in the left panel of figure 3 we show an example of γ̂A). The corresponding area A[γ̂ε] is

computed in two ways: by the direct evaluation of the integral and by specifying the general

formula (2.23) to this case. In section 4.2, by employing the second transformation in (A.3)

and the analytic results presented in section 4.1, we study the holographic entanglement

entropy of a disk disjoint from the flat boundary in the setup introduced in section 2.2.1

(see the right panel of figure 3 for an example of γ̂A in this setup). The two configurations

in figure 3 have the same α and are related through the map (A.3) discussed in appendix A.

4.1 Disk disjoint from a circular concentric boundary

In the AdS4/BCFT3 setup introduced in section 2.2.2, let us consider a disk A with radius

R◦ < RQ which is concentric to the boundary of the spatial slice of the spacetime. In

section 4.1.1 we obtain an analytic expression for the profile characterising γ̂A and in

section 4.1.2 we evaluate the corresponding area A[γ̂ε]. In the following we report only

the main results of this analysis. Their detailed derivation, which is closely related to the

evaluation of the holographic entanglement entropy of an annulus in AdS4/CFT3 [45, 96–

99] has been presented in appendix B.

4.1.1 Profile of the extremal surfaces

Adopting the coordinate system (ρ, φ, z) introduced in section 2.2.2, the invariance under

rotations around the z-axis for this configuration in the z = 0 plane implies that the local

extrema of the area functional are described by the profiles of their sections at φ = const.
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Figure 4. Sections of the extremal surfaces anchored to a disk A of radius R◦ disjoint from a

circular concentric boundary with radius RQ (see section 4.1.1). Left: profiles corresponding to the

three extremal surfaces in the case of R◦/RQ = 0.9 and α = π/3. The green curve represents Q.

The black curve corresponds to γ̂ dis
A (the hemisphere). The red curve and the blue curve correspond

to γ̂ con
A and they have been obtained through the analytic results discussed in section 4.1.1 and in

appendix B. The red curve provides the global minimum in this case. Right: extremal surfaces

γ̂ con
A having R◦/RQ ' 0.85 for different values of α: α = π/3 (red), α = π/2.5 (magenta), α = π/2

(green), α = 2π/3 (blue) and α = 3π/4 (black). The dashed curves are the profiles of the auxiliary

surfaces γ̂ con
A, aux, with the same color code. All the profiles correspond to the smaller value of

k whenever two surfaces γ̂ con
A exists. All the curves except for the red one provide the global

minimum of the corresponding configuration.

For a given A, an extremal surface is the hemisphere anchored to the circle ∂A. Since

it does not intersect Q, this solution will be denoted by γ̂ dis
A , while we will refer to the

extremal surfaces that intersect Q orthogonally as γ̂ con
A . The holographic entanglement

entropy of A is provided by the surface corresponding to the global minimum of the area.

Let us anticipate that we find at most two solutions γ̂ con
A ; hence we have at most three local

extrema for a given disk A. The number of solutions depends on the value of α, as we will

discuss in the following. By employing the analytic result that will be presented below,

in the left panel of figure 4 we show the three profiles corresponding to γ̂ dis
A (black curve)

and γ̂ con
A (blue and red curve) in an explicit case. The red curve provides the holographic

entanglement entropy in this example.

We find it worth introducing an auxiliary surface that allows to relate our problem

to the one of finding the extremal surfaces in H3 anchored to an annulus, which has been

already addressed in the literature. Given γ̂ con
A , let us consider its unique surface γ̂ con

A, aux

in the whole H3 such that γ̂ con
A ∪ γ̂ con

A, aux is an extremal area surface in H3 anchored to the

annulus whose boundary is made by the two concentric circles with radii R◦ and Raux > R◦.

Thus, γ̂ con
A can be viewed as part of an extremal surface anchored to a proper annulus whose

boundary are the union of two circles, one of which is ∂A. By using the solution that will

be discussed in the following, in the right panel of figure 4 we fix A and we show the profiles
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associated to γ̂ con
A (solid curves) for various α and the ones for the corresponding extensions

γ̂ con
A, aux (dashed curves). Other examples are shown in figure 6.

The profile of a section of γ̂ con
A at fixed φ can be written as (ρ, z) = (ργ(θ), ργ(θ) tan θ),

where the angular variable is defined as ζ ≡ tan θ = z/ρ (see section 2.2.2). Considering

the construction of the extremal surfaces in H3 anchored to an annulus reported in [45],

we have that the curve ργ(θ) can be written by introducing two branches as follows

ργ(θ) =

{
R◦ e

−q−,k(ζ)

Raux e
−q+,k(ζ)

(4.1)

with Raux > R◦. The functions q±,k(ζ) are defined as

q±,k(ζ) ≡
∫ ζ

0

λ

1 + λ2

(
1± λ√

k (1 + λ2)− λ4

)
dλ 0 6 ζ 6 ζm (4.2)

being k > 0 and ζ2m ≡
(
k +

√
k(k + 4)

)
/2 the unique admissible root of the biquadratic

equation coming from the expression under the square root in (4.2). Since q±,k(0) = 0, the

two branches in (4.1) give ργ = R◦ and ργ = Raux when z = 0.

The two branches characterised by q±,k(ζ) in (4.1) match at the point Pm = (ρm, ζm)

associated to the maximum value of θ. The coordinates of Pm read (see also appendix B)

ζ2m =
k +

√
k(k + 4)

2
ρm = R◦ e

−q−,k(ζm) = Raux e
−q+,k(ζm) (4.3)

The last equality in the second expression follows from the continuity of the profile (4.1)

and it gives
R◦
Raux

= eq−,k(ζm)−q+,k(ζm) (4.4)

which will be denoted by χ(ζm) in the following. Being ζm given by the first expression

in (4.3), from (4.4) we observe that the ratio R◦/Raux is a function of the parameter k > 0.

Moreover, by employing (4.2) in (4.4), it is straightforward to observe that R◦/Raux < 1.

The integral in (4.2) can be computed analytically, finding that q±,k(ζ) can be written

in terms of the incomplete elliptic integrals of the first and third kind as follows

q±,k(ζ) =
1

2
log(1 + ζ2)± κ

√
1− 2κ2

κ2 − 1

[
Π
(
1− κ2,Ω(ζ)|κ2

)
− F

(
Ω(ζ)|κ2

)]
(4.5)

where

Ω(ζ) ≡ arcsin

(
ζ/ζm√

1 + κ2(ζ2/ζ2m − 1)

)
κ ≡

√
1 + ζ2m
2 + ζ2m

(4.6)

Let us remark that the above expressions depend on the positive parameters R◦ and k.

The dependence on the parameters RQ and α characterising the boundary occurs through

the requirement that γ̂ con
A ⊥ Q.

Denoting by P∗ = (ρ∗, z∗) the point in the radial profile corresponding to the intersec-

tion between γ̂ con
A and Q, in appendix B we have found that

ζ2∗ =
k +

√
k(k + 4(sinα)2)

2
ρ∗ = RQ

√
ζ2∗ + (sinα)2 + ζ∗ cosα

(ζ2∗ + 1) sinα
(4.7)
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where the first expression has been obtained by imposing that γ̂ con
A intersectsQ orthogonally

at P∗, while the second one comes from (2.25). In appendix B.1 (see below (B.12)) we have

also remarked that the orthogonality condition also implies that P∗ belongs to the branch

described q−,k when α > π/2, while it belongs to the branch characterised by q+,k when

α 6 π/2. This observation and (4.1) specialised to P∗ lead to

R◦ = ρ∗

(
1 + ηα

2
eq−,k(ζ∗) +

1− ηα
2

χ(ζm) eq+,k(ζ∗)

)
(4.8)

where ηα ≡ − sign(cotα) and χ(ζm) denotes the ratio in (4.4).

Notice that eq−,k(ζ∗) = χ(ζm) eq+,k(ζ∗) for α = π/2. Moreover, if we employ this obser-

vation into the second expression of (4.3), we find that P∗ = Pm when α = π/2.

By using the expression of ρ∗ in (4.7) into (4.8), we get the following relation

R◦
RQ

=

√
ζ2∗ + (sinα)2 + ζ∗ cosα

(ζ2∗ + 1) sinα

(
1 + ηα

2
eq−,k(ζ∗) +

1− ηα
2

χ(ζm) eq+,k(ζ∗)

)
(4.9)

where ζ∗ is the function of k and α given by the first formula in (4.7). The expression (4.9)

tells us that R◦/RQ is a function of k and α. In figure 5 we plot this function by employing
4
√
k as the independent variable and α as parameter. Since the disk A is a spatial subsystem

of the disk with radius RQ, the admissible configurations have R◦/RQ < 1.

We find it worth discussing the behaviour of the curves R◦/RQ in (4.9) parameterised

by α in the limiting regimes given by k → 0 and k → ∞. The technical details of this

analysis have been reported in appendix B.3.

The expansion of (4.9) for small k reads

R◦
RQ

= 1− g(α)
4
√
k +

g(α)2

2

√
k + o

(√
k
)

(4.10)

where g(α) has been defined in (3.2). Since g(α) > 0 only for α > αc, being αc the unique

zero of g(α) introduced in section 3, the expansion (4.10) tells us that, in the regime of

small k, an extremal surface γ̂ con
A can be found only when α > αc because R◦/RQ < 1.

From figure 5 we notice that this observation can be extended to the entire regime of k.

Indeed, since R◦/RQ > 1 for the curves with α 6 αc, we have that γ̂ con
A does not exist in

this range of α.

In appendix B.3 also the limit of (4.9) for large k has been discussed, finding that for

any α ∈ (0, π) it reads

lim
k→∞

R◦
RQ

= cot(α/2) (4.11)

which gives the asymptotic value of the curves in figure 5 for large k.

When α > αc the curve R◦/RQ has only one local minimum (see figure 5). Denoting

by k◦,min and r◦,min the values of k and R◦/RQ characterising this point, we have that

r◦,min < cot(α/2). The plot of r◦,min in terms of α > αc has been reported in figure 8

(black solid curve) where cot(α/2) corresponds to the dashed blue curve.

These observations about the limits of R◦/RQ and the numerical analysis of figure 5

allow to discuss the number of extremal surfaces γ̂ con
A in the various regimes of the parame-

ters. When α 6 αc the solutions γ̂ con
A do not exist because R◦/RQ > 1. When α > αc also

– 17 –



J
H
E
P
0
8
(
2
0
1
8
)
1
6
4
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Figure 5. The ratio R◦/RQ providing γ̂ con
A as a function of 4

√
k from (4.9) for different values

of α. The allowed configurations have R◦/RQ < 1 and the black dashed line corresponds to the

limiting value R◦/RQ = 1. The asymptotic behaviours of these curves for k → 0 and k → ∞ are

given by (4.10) and (4.11) respectively. For fixed values of α > αc and R◦/RQ < 1, the number of

extremal solutions γ̂ con
A is given by the number of intersections between the curve corresponding to

α and the horizontal line characterised by the given value of R◦/RQ.

the global minimum r◦,min of R◦/RQ is an important parameter to consider. Indeed, for

αc < α 6 π/2 (see e.g. the green curve in figure 5) one has two distinct extremal surfaces

γ̂ con
A when r◦,min < R◦/RQ < 1, one extremal surface when R◦/RQ = r◦,min and none of

them when R◦/RQ < r◦,min. For α > π/2 also the asymptotic value (4.11) plays an impor-

tant role. Indeed, when cot(α/2) 6 R◦/RQ < 1 we can find only one extremal surface γ̂ con
A ,

when r◦,min < R◦/RQ < cot(α/2) there are two solutions γ̂ con
A , when r◦,min = R◦/RQ we

have again only one solution, while γ̂ con
A do not exist when R◦/RQ < r◦,min. Whenever two

distinct solutions γ̂ con
A can be found, considering their values k1 < k2 for the parameter k,

we have that k1 < k◦,min < k2 because R◦/RQ has at most one local minimum for k > 0.

As for the extremal surface γ̂ dis
A , which does not intersect Q, its existence depends

on the value of α because the condition that γ̂ dis
A does not intersect Q provides a non

trivial constraint when α < π/2. In order to write this constraint, one first evaluates

the z coordinate zQ of the tip of Q by setting ρ = 0 in (2.24), finding that zQ/RQ =

cot(α/2). Then, being γ̂ dis
A a hemisphere, we must impose that R◦ 6 zQ and this leads to

R◦/RQ 6 cot(α/2).

Focusing on the regimes where at least one extremal surface γ̂ con
A exists and employing

the above observations, we can plot the profile given by the section of γ̂ con
A at φ = const

by using (4.1) and the related expressions. In figure 6 we show some radial profiles of γ̂ con
A
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Figure 6. Radial profiles of extremal surfaces γ̂ con
A intersecting Q (green curve) orthogonally

and anchored to a disk A of radius R◦ concentric to a circular boundary with radius RQ (see

section 4.1.1). The value of α in the three panels is α = 3π/4 (top), α = π/2 (bottom, right) and

α = π/3 (bottom, left). The solid lines give γ̂ con
A , while the dashed ones (with the same colour)

give the corresponding auxiliary surface γ̂ con
A, aux. The value of k associated to all the shown profiles

is the minimum one, whenever two solutions occur (see figure 5). All the profiles except for the

black one correspond to the global minimum. The red curves correspond to the critical value of

the ratio R◦/RQ where the area of the extremal surface γ̂ dis
A is equal to the minimum of the area

of the extremal surfaces γ̂ con
A . The points have been found by taking the φ = const section of

the extremal surfaces constructed by Surface Evolver and they nicely agree with the corresponding

analytic solutions.

(solid lines) and of the corresponding auxiliary surfaces γ̂ con
A, aux (dashed lines) obtained from

the analytic expressions discussed above. These analytic results have been also checked

numerically by employing Surface Evolver as done in [42, 45, 87] for other configurations.

The data points in figure 6 correspond to the φ = const section of the extremal surfaces

obtained numerically with Surface Evolver. The nice agreement between the solid curves

and the data points provides a highly non trivial check of our analytic results. We remark

that Surface Evolver constructs also extremal surfaces that are not the global minimum

corresponding to a given configuration.

A detailed discussion about the position of the auxiliary circle with respect to the

circular boundary has been reported in appendix D. Here let us notice that in the top

panel, where α = 3π/4, for the black curve and the blue curve we have Raux < RQ.

In the above analysis we have considered the case of a disk concentric to a circular

boundary. Nonetheless, we can also study the case of a disk whose center does not coincide
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with the center of the circular boundary by combining the analytic expressions obtained

for this configuration and the mapping discussed in appendix A.

4.1.2 Area

Given a configuration characterised by a disk A of radius R◦ < RQ concentric to the

spatial disk of radius RQ and the value α for Q, in section 4.1.1 we have seen that we can

find at most three local extrema of the area functional among the surfaces anchored to A:

the hemisphere γ̂ dis
A and at most two surfaces γ̂ con

A ⊥ Q. Since for these three surfaces the

expansion of the regularised area is given by the r.h.s. of (1.4) with PA,B = PA = 2πR◦, the

holographic entanglement entropy of A can be found by comparing their subleading terms

FA. Let us denote by Fcon the subleading term for the surfaces intersecting Q orthogonally

discussed in section 4.1.1. Since FA = 2π for the hemisphere [6, 7, 100], the holographic

entanglement entropy of A is given by

A[γ̂ε] =
2πR◦
ε
−max

(
2π, F̂con

)
+O(ε) (4.12)

where we have denoted by F̂con the maximum between the (at most) two values taken by

Fcon for the values of k corresponding to the local extrema γ̂ con
A .

In appendix B.2, we have computed Fcon by employing two methods: a straightforward

evaluation of the integral coming from the area functional and the general expression (2.19)

specialized to the extremal surfaces γ̂ con
A of these configurations. Both these approaches

lead to the following result

Fcon = 2π

[
1 + ηα

2
Fk(ζ∗) +

1− ηα
2

(
2Fk(ζm)−Fk(ζ∗)

)]
(4.13)

where

Fk(ζ) ≡
√
k(1 + ζ2)− ζ4√

k ζ
− F(arcsin(ζ/ζm) | − ζ2m − 1)− E(arcsin(ζ/ζm) | − ζ2m − 1)

ζm
(4.14)

and we recall that ζm and ζ∗ are the values of ζ corresponding to the points Pm and P∗
respectively (see section 4.1.1). For ζ = ζm, we have

Fk(ζm) =
E(−ζ2m − 1)−K(−ζ2m − 1)

ζm
(4.15)

where K and E are the complete elliptic integral of the first and second kind respectively.

Since ζm is a function of k (see (4.3)), the r.h.s. of (4.15) depends only on this parameter.

Instead, since ζ∗ depends on both k and α (see the first expression in (4.7)), we have

that (4.13) defines a family of functions of k parameterised by α ∈ (0, π).

We find it worth discussing the limiting regimes of Fcon in (4.13) for small and large

values of k (the technical details of this analysis have been reported in appendix B.3).

In the limit k → 0, which corresponds to R◦ → RQ (see (4.10) and figure 5), the

expansion of Fcon reads

Fcon =
2π g(α)

4
√
k

+
π

2

(
cotα√
sinα

+ F
(
π/4− α/2 | 2

)
+

Γ2
(
1
4

)
4
√

2π

)
4
√
k + o

( 4
√
k
)

(4.16)
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Figure 7. The subleading term Fcon for the extremal surfaces γ̂ con
A which intersect Q orthogonally

as a function of 4
√
k (see (4.13)). The horizontal dashed line corresponds to 2π, i.e. the value of FA

for the hemisphere γ̂ dis
A , and it provides the asymptotic limit at large k for any value of α. The

asymptotic behaviour for k → 0 is given by (4.16). The curve with α = αc vanishes as k → 0

and the slope of its tangent at k = 0 is given by the coefficient of the O( 4
√
k ) term in (4.16). We

numerically observe that, for α > αc, the values of k corresponding to the local minima coincide

with the values of k of the local minima in figure 5.

Since the coefficient of the leading term is positive when α > αc, negative when α < αc and

zero when α = αc, different qualitative behaviours are observed when k → 0. In particular,

for α = αc the subleading term is o(1); therefore Fcon → 0.

By using (4.10), the expansion (4.16) can be written also as an expansion for R◦/RQ →
1, finding that

Fcon =
2π g(α)2

1−R◦/RQ
− π g(α)2 +O(1−R◦/RQ) (4.17)

In the limit k → ∞ we have seen that (4.11) and in appendix B.3 we find that

Fcon → (2π)− for every α.

In figure 7 we show Fcon in terms of 4
√
k for different values of α. The horizontal dashed

line corresponds to 2π, which is the value of the subleading term in the expansion of the

area of the hemisphere γ̂ dis
A . This value provides the asymptotic limit of all the curves,

confirming the result obtained in appendix B.3.

When α 6 αc, from figure 7 we observe that Fcon < 2π for all values of k. Since in

section 4.1.1 we have shown that the local solutions γ̂ con
A do not exist in this regime, the

curves Fcon having α 6 αc do not occur in the computation of holographic entanglement

entropy. Thus, for α 6 αc the holographic entanglement entropy is given by γ̂ dis
A .
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Figure 8. The solid black curve is the minimal value r◦,min of R◦/RQ, below which the local

solutions γ̂ con
A intersecting Q orthogonally do not exist (see also figure 5), in terms of α > αc. The

solid red curve gives the value r◦,c > r◦,min of R◦/RQ for α > αc corresponding to the critical

configuration where γ̂ con
A and γ̂ dis

A provide the same finite term FA of the holographic entanglement

entropy. The dashed blue curve is the asymptotic value (4.11).

When α > αc we have that Fcon → +∞ for k → 0 and Fcon → (2π)− for k →∞. This

implies that at least a local minimum exists. We observe numerically that Fcon has only

one local extremum for k = k◦,min, i.e. the same value for k corresponding to the minimum

of the ratio R◦/RQ. This observation and the fact that, whenever two solutions γ̂ con
A can

be found, for their values k1 < k2 of k we have k1 < k◦,min < k2 lead to conclude that

Fcon(k2) < 2π. Hence, the holographic entanglement entropy is obtained by comparing

2π with Fcon evaluated on k1. When α > αc, let us denote with k = kc the solution

of Fcon = 2π, which can be found numerically and characterises the configuration where

the subleading terms for γ̂ con
A and γ̂ dis

A take the same value. Since kc < k◦,min, the minimal

surface providing the holographic entanglement entropy is γ̂ con
A if k1 < kc and γ̂ dis

A if k1 > kc .

Denoting by r◦,c the value of the ratio R◦/RQ for the critical configuration having k = kc,

in figure 8 we show r◦,min < r◦,c in terms of α ∈ (αc, π).

The solid curves in figure 9, which are parameterised by α, have been obtained by

combining (4.9) and (4.13) through a parametric plot. The allowed configurations have

R◦/RQ < 1. A vertical line having R◦/RQ < 1 can intersect twice a solid curve corre-

sponding to a fixed value of α > αc. These two intersection points provide the values

of Fcon (see figure 7) obtained from the two values of k given by the intersection of the

horizontal line R◦/RQ with the curve in figure 5 having the same α.

In figure 9, the value of R◦/RQ corresponding to the intersection between Fcon for a

given α and the horizontal dashed line (whose height is 2π) is r◦,c (see the red line in

figure 8), while r◦,min is the value of R◦/RQ corresponding to the cusp.
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Figure 9. The subleading term Fcon for the extremal surfaces γ̂ con
A intersecting orthogonally Q

in terms of the ratio R◦/RQ, for some values of α. The allowed configurations have R◦/RQ < 1.

The solid curves have been obtained by combining the analytic expressions (4.9) and (4.13). The

horizontal dashed line corresponds to the value of the subleading term of the hemisphere γ̂ dis
A ,

i.e. FA = 2π. The data points are the numerical values obtained through Surface Evolver. The

ones below the horizontal dashed line correspond to extremal surfaces that are not global minima.

Different kind of markers are associated to the two different ways employed to extract Fcon from

the numerical data provided by Surface Evolver: either by subtracting the area law term from

the area of the entire extremal surface (empty circles) or by applying the general formula (2.18)

(empty triangles).

The analytic expression for Fcon has been checked numerically with Surface Evolver, by

adapting the method discussed in [87] to the configurations considered in this manuscript.

The numerical results are the data points in figure 9, where the two different kind of

markers (the empty circles and the empty triangles) correspond to two different ways to

obtain the numerical value of Fcon from the numerical data about the extremal surface γ̂ con
A .

One way is to evaluate ÂSE
ε − 2πR◦/ε, being ÂSE

ε the numerical value of the area of the

extremal surface γ̂ con
A . The other method consists in finding Fcon by plugging into (2.18)

the geometrical quantities about γ̂ con
A required to employ this formula, which are also given

by Surface Evolver.

Notice that figure 9 shows that the extremal surfaces γ̂ con
A do not exist when R◦/RQ →

0. This means that the hemisphere γ̂ dis
A provides the holographic entanglement entropy in

this regime, as expected.

The agreement between the solid curves and the data points in figure 9 provides a

highly non trivial confirmation of the analytic expressions obtained above.
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Figure 10. Extremal surfaces γ̂ con
A anchored to a disk of radius R (bounded by the red circle) at

finite distance d from the flat boundary (see section 4.2). Here d/R ∼ 0.042 is fixed and different

values of α are considered: α = π/2.5 (left), α = 2π/3 (middle) and α = 2.7 (right). The surface

γ̂ con
A intersects the green half plane Q orthogonally along the green circle ∂γ̂Q. The shaded surfaces

correspond to the auxiliary surfaces γ̂ con
A, aux (see also appendix D). The extremal surface γ̂ con

A is the

global minimum when the corresponding FA is larger than 2π. Here FA = 5.6 (left), FA = 17.1

(middle) and FA = 47.1 (right). The surface in the left panel has the smallest area among the two

solutions γ̂ con
A but the global minimum is the hemisphere γ̂ dis

A in this case.

The formula (4.13) can be found also by specialising the general result (2.19) to the

extremal surfaces γ̂ con
A for the disks A that we are considering. The details of this compu-

tation have been reported in appendix B.2 and in the following we report only the main

results. For the surface integral in (2.19) we find∫
γ̂A

(ñz)2

z2
dÃ= 2π

(
1+ηα

2
Fk,−(ζ∗)+

1−ηα
2

[
Fk,+(ζm)+Fk,−(ζm)−Fk,+(ζ∗)

])
(4.18)

where the functions Fk,± can be written in terms of the function Fk introduced in (4.14)

as follows (the derivation of this identity is briefly discussed in appendix B.2)

Fk,±(ζ) = Fk(ζ)−
√
k(ζ2 + 1)− ζ4√
k ζ
(
ζ2 + 1

) ± ζ2√
k (ζ2 + 1)

(4.19)

Since for ζ = ζm the expression under the square root in (4.19) vanishes, it is straightfor-

ward to observe that, by plugging (4.19) into (4.18), one obtains (4.13) and an additive

contribution which depends on ζ∗ but that does not contain ζm. This additive contribution

is cancelled by the integral over the line ∂γ̂Q = γ̂ con
A ∩Q in (2.19), which gives∫

∂γ̂Q

b̃z

z
ds̃ = 2π

√
ζ2∗ + (sinα)2 ζ∗ − cosα

ζ∗ (ζ2∗ + 1)
(4.20)

This concludes our analysis of the disk concentric to a circular boundary. We remark

that we can easily study disks which are not concentric to the circular boundary by com-

bining the analytic expressions presented above with the mapping discussed in appendix A.

4.2 Disk disjoint from a flat boundary

In the final part of this section we consider a disk A of radius R at finite distance d from

a flat boundary, in the AdS4/BCFT3 setup described in section 2.2.1. By combining the

results presented in section 4.1 with the mapping (A.3) discussed in appendix A, one can
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Figure 11. Extremal surfaces γ̂ con
A anchored to a disk (bounded by the red circle) of radius R at

finite distance d from the flat boundary, like in figure 10. Here α = 2.7 is fixed (like in the right panel

of figure 10) and the different values of d/R are considered: d/R ∼ 0.042 (left), d/R ∼ 1.6 (middle)

and d/R ∼ 2.243 (right). The shaded surfaces correspond to γ̂ con
A, aux and for all the configurations of

this figure part of γ̂ con
A, aux belongs to the gravitational spacetime (2.21) (see also appendix D). The

extremal surface γ̂ con
A, aux is a global minimum when its FA is larger than 2π. The configuration in

the left panel is the same shown in the right panel of figure 10. In the remaining panels FA = 6.95

(middle) and FA = 6.13 (right).

easily obtain the analytic expressions for the extremal surfaces anchored to ∂A and for the

corresponding subleading term in the expansion of the area as ε→ 0.

The values of R and d are related to the parameters R◦ and RQ characterising the

configuration considered in section 4.1.1 and section 4.1.2 as follows

R =
R◦R

2
Q

R2
Q −R2

◦
d =

RQ(RQ −R◦)
2(RQ +R◦)

(4.21)

From these expressions it is straightforward to find that

d

R
=

(R◦/RQ − 1)2

2R◦/RQ

R◦
RQ

=
d

R
+ 1−

√
d

R

(
d

R
+ 2

)
(4.22)

Since the extremal surfaces anchored to a disk disjoint from the flat boundary in

the setup of section 2.2.1 are obtained by mapping the extremal surfaces described in

section 4.1.1 through (A.3), also for this configuration we have at most three local extrema

of the area functional, depending on the ratio d/R: the hemisphere γ̂ dis
A and at most two

solutions γ̂ con
A intersecting the half plane Q orthogonally.

In figure 10 we show some examples of γ̂ con
A for a fixed configuration of the disk A and

three different slopes of Q (the green half plane). In each panel, the shaded surface is the

auxiliary surface γ̂ con
A, aux corresponding to γ̂ con

A , which intersects orthogonally Q along ∂γ̂Q
and is such that γ̂ con

A ∪γ̂ con
A, aux is an extremal surface in H3 anchored to the two disjoint circles

(one of them is ∂A). In figure 11 we show γ̂ con
A and the corresponding γ̂ con

A, aux for a fixed

value of α and three different values of d/R. Notice that for some configurations γ̂ con
A, aux lies

entirely outside the gravitational spacetime (2.21) (see e.g. the left panel and the middle

panel of figure 10), while for other ones part of γ̂ con
A, aux belongs to it. The latter case occurs

when the auxiliary region A aux is a subset of the half plane x > 0, where also A is defined.

For the extremal surfaces that we are considering, the leading term of A[γ̂ε] as ε→ 0

is the area law term 2πR/ε and the subleading finite term is −max(2π, F̂con), like in (4.12),

where F̂con corresponds to the maximum between the values of Fcon evaluated for the
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extrema γ̂ con
A . The analytic expression of Fcon as function of d/R can be obtained through

a parametric plot involving Fcon in (4.13), d/R in (4.22) and R◦/RQ in (4.9). This procedure

has been employed to find the solid black curves in figure 13, which correspond to a disk.

From (4.22), it is straightforward to observe that d/R→∞ corresponds to R◦/RQ →
0, and d/R → 0 to R◦/RQ → 1. Thus, when d/R → ∞ the hemisphere γ̂ dis

A is the

minimal surface providing the holographic entanglement entropy (see also section 4.1.2).

In the opposite limiting regime d/R → 0, the second expression in (4.22) implies that

R◦/RQ = 1 −
√

2 d/R + d/R + O((d/R)3/2). Hence, from the expansion (4.17), it is

straightforward to obtain that Fcon = 2π g(α)2/
√

2d/R+O
(√

d/R
)

at leading order.

5 On smooth domains disjoint from the boundary

Analytic expressions for the subleading term FA in (1.4) can be obtained for configurations

which are particularly simple or highly symmetric. Two important cases have been dis-

cussed in section 3 and section 4. In order to find analytic solutions for an extremal surface

anchored to a generic entangling curve, typically a partial differential equation must be

solved, which is usually a difficult task. Thus, it is useful to develop efficient numerical

methods that allow us to study the shape dependence of FA.

The crucial tool of our numerical analysis is Surface Evolver, which has been already

employed to study the holographic entanglement entropy in AdS4/CFT3 [42, 45] and to

check the corner functions in AdS4/BCFT3 [87]. In this manuscript we consider some

regions disjoint from the boundary in AdS4/BCFT3. In section 4.1 Surface Evolver has

been used to check numerically the analytic expressions of the extremal surfaces and of FA
for a disk concentric to a circular boundary (see figure 6 and figure 9 respectively). In this

section we use Surface Evolver to study the extremal surfaces γ̂A and the corresponding

FA for some simple domains which cannot be treated through analytic methods.

Considering the simple AdS4/BCFT3 setup described in section 2.2.1, in figure 1 we

showed the extremal surface corresponding to a region A with a complicated shape (the

entangling curve is the red curve in the inset) which has been constructed by using Surface

Evolver and which is very difficult to describe analytically.

In the same setup, let us consider, for simplicity, regions A delimited by ellipses at

distance d from the flat boundary with one of the semiaxis parallel to the flat boundary.

These regions are given by the points (x, y) ∈ R2 with x > 0 such that (x− d−R⊥)2/R2
‖+

y2/R2
⊥ 6 1, where R⊥ and R‖ are the lengths of the semiaxis which are respectively

orthogonal and parallel to the flat boundary x = 0. As for the extremal surfaces anchored

to the entangling curve ∂A, either they are disconnected from the half plane Q or they

intersect it orthogonally. The occurrence of these different kind of extremal surfaces and

which of them gives the global minimum depend on the values of α, of the ratio d/R⊥ and

of the eccentricity of A. For some configurations only the solutions disconnected from Q
are allowed, while for other configurations only the extremal surfaces intersecting Q exist,

as discussed in a specific example in the final part of section 4.1.1. In figure 12 we show

two examples of extremal surfaces anchored to ellipses in the z = 0 half plane (the red

curves) which intersect Q orthogonally along the green line ∂γ̂Q.
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Figure 12. Extremal surfaces γ̂con
A found with Surface Evolver in the gravitational setup described

in section 2.2.1. The extremal surfaces are anchored to the boundary of two different ellipses A

(red curves) and intersect orthogonally the half plane Q with α = 2π/3 (green half plane). Here

ε = 0.03. Denoting by R⊥ and R‖ the lengths of the semiaxis which are respectively orthogonal

and parallel to the flat boundary, and by d the distance of ∂A from the flat boundary, we have

d/R⊥ = 0.2 in both the panels. Instead, R‖ = 2R⊥ in the left panel and R‖ = 0.5R⊥ in the

right panel.

In figure 13 the values of the subleading term for extremal surfaces intersecting Q and

anchored to various ellipses are plotted in terms of the ratio d/R⊥. These data points

have been obtained through Surface Evolver by first constructing the extremal surface γ̂SE
ε

anchored to the ellipses defined at z = ε and then employing the information about γ̂SE
ε

provided by the code (in particular its area A[γ̂SE
ε ] and its normal vectors) in two different

ways. One way to extract the subleading term is to compute PA/ε−A[γ̂SE
ε ] (empty circles in

figure 13). Another way is to evaluate (2.22) from the unit vector ñµ normal to γ̂SE
ε (empty

triangles in figure 13). The agreement between these two approaches provides a strong

numerical evidence that (2.22) is correct. The numerical analysis has been performed by

adapting the method discussed in [87] to the configurations considered here.

The horizontal dashed lines in figure 13 correspond to the extremal surfaces that do

not intersect Q. Denoting by Fdis the subleading term in the expansion of A[γ̂SE
ε ] for

these surfaces, we have that FA in (1.4) is finite and given by FA = max(Fcon, Fdis). The

relation Fcon = Fdis provides the critical value of d/R⊥ characterising the transition in

the holographic entanglement entropy between the surfaces connected to Q and the ones

disjoint from Q (see the intersection between the curve identified by the data points and

the horizontal dashed line having the same colour in figure 13, except for the magenta

points, that must be compared with the red dashed line).

The black points in figure 13 correspond to disks disjoint from a flat boundary and

the solid black curves have been obtained through the analytic expressions discussed in

section 4 (see (4.13) and (4.22)). The nice agreement with the data points found with

Surface Evolver is a strong check for the analytic expressions.

In section 4 we have found that the critical value αc (defined as the unique zero of (3.2))

for the slope of Q in the AdS4/BCFT3 setup of section 2.2.1 is such that extremal surfaces
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F
con
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F
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d/R?
<latexit sha1_base64="qMuHpbqywPJWUQkQTalJ3XMysrM=">AAAB73icbVDLSgMxFL3js9ZXfezcBIvgqs6IoO4KblxWcWylHWomzbShSSYkGaEM/Qo3LlTc+jvu/BvTx0JbD1w4nHMv994TK86M9f1vb2FxaXlltbBWXN/Y3Nou7ezemzTThIYk5aluxNhQziQNLbOcNpSmWMSc1uP+1civP1FtWCrv7EDRSOCuZAkj2DrpoXNy224pqlW7VPYr/hhongRTUq7uJ8kjANTapa9WJyWZoNISjo1pBr6yUY61ZYTTYbGVGaow6eMubToqsaAmyscHD9GRUzooSbUradFY/T2RY2HMQMSuU2DbM7PeSPzPa2Y2uYhyJlVmqSSTRUnGkU3R6HvUYZoSyweOYKKZuxWRHtaYWJdR0YUQzL48T8LTymUluHFhnMEEBTiAQziGAM6hCtdQgxAICHiGV3jztPfivXsfk9YFbzqzB3/gff4A3xmRbQ==</latexit><latexit sha1_base64="pyiK/b8h/jCTgqZ27DbfJQXrnvg=">AAAB73icbVBNS8NAEN3Ur1q/6sfNy2IRPNVEBPVW8OKxirGVNpTNZtIu3WyW3Y1QQn+FFw8qXv073vw3btMetPXBwOO9GWbmhZIzbVz32yktLa+srpXXKxubW9s71d29B51mioJPU56qdkg0cCbAN8xwaEsFJAk5tMLh9cRvPYHSLBX3ZiQhSEhfsJhRYqz0GJ3e9boSlOxVa27dLYAXiTcjtcZBXKDZq351o5RmCQhDOdG647nSBDlRhlEO40o30yAJHZI+dCwVJAEd5MXBY3xslQjHqbIlDC7U3xM5SbQeJaHtTIgZ6HlvIv7ndTITXwY5EzIzIOh0UZxxbFI8+R5HTAE1fGQJoYrZWzEdEEWosRlVbAje/MuLxD+rX9W9WxvGOZqijA7RETpBHrpADXSDmshHFCXoGb2iN0c5L8678zFtLTmzmX30B87nD37bkqU=</latexit><latexit sha1_base64="pyiK/b8h/jCTgqZ27DbfJQXrnvg=">AAAB73icbVBNS8NAEN3Ur1q/6sfNy2IRPNVEBPVW8OKxirGVNpTNZtIu3WyW3Y1QQn+FFw8qXv073vw3btMetPXBwOO9GWbmhZIzbVz32yktLa+srpXXKxubW9s71d29B51mioJPU56qdkg0cCbAN8xwaEsFJAk5tMLh9cRvPYHSLBX3ZiQhSEhfsJhRYqz0GJ3e9boSlOxVa27dLYAXiTcjtcZBXKDZq351o5RmCQhDOdG647nSBDlRhlEO40o30yAJHZI+dCwVJAEd5MXBY3xslQjHqbIlDC7U3xM5SbQeJaHtTIgZ6HlvIv7ndTITXwY5EzIzIOh0UZxxbFI8+R5HTAE1fGQJoYrZWzEdEEWosRlVbAje/MuLxD+rX9W9WxvGOZqijA7RETpBHrpADXSDmshHFCXoGb2iN0c5L8678zFtLTmzmX30B87nD37bkqU=</latexit><latexit sha1_base64="+9xuWELSP1itJYoevoQPnyY8peg=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBU90VQb0VvHis4tpKu5RsNm1Dk2xIskJZ+iu8eFDx6t/x5r8xbfeg1QcDj/dmmJkXK86M9f0vr7S0vLK6Vl6vbGxube9Ud/fuTZppQkOS8lS3Y2woZ5KGlllO20pTLGJOW/Hoauq3Hqk2LJV3dqxoJPBAsj4j2DrpITm57XUV1apXrfl1fwb0lwQFqUGBZq/62U1SkgkqLeHYmE7gKxvlWFtGOJ1UupmhCpMRHtCOoxILaqJ8dvAEHTklQf1Uu5IWzdSfEzkWxoxF7DoFtkOz6E3F/7xOZvsXUc6kyiyVZL6on3FkUzT9HiVMU2L52BFMNHO3IjLEGhPrMqq4EILFl/+S8LR+WQ9u/FrjrEijDAdwCMcQwDk04BqaEAIBAU/wAq+e9p69N+993lryipl9+AXv4xvaDY/t</latexit>

Figure 13. The subleading term Fcon for the extremal surfaces γ̂ con
A intersecting orthogonally the

half plane Q and anchored to ellipses at distance d from a flat boundary (see figure 12). A semiaxes

of the ellipse is orthogonal to the flat boundary and its length is R⊥, while R‖ is the length of the

other one. The three panels are characterised by three diverse values of the slope α for the half plane

Q (see figure 12): α = π/2 (top), α = 2π/3 (bottom right) and α = 3π/4 (bottom left). Different

colours correspond to different eccentricities: R‖ = 3R⊥ (green), R‖ = 2R⊥ (red), R‖ = R⊥ (black)

and R‖ = 0.5R⊥ (magenta). The solid black curves correspond to the analytic expressions obtained

in section 4.2 for disks. The dashed horizontal lines provide the value FA = Fdis for the extremal

surfaces disconnected from Q. In particular, Fdis = 9.25 (green), Fdis = 2π (black) and Fdis = 7.33

(red and magenta).

anchored to a disk A disjoint from the flat boundary and intersecting Q orthogonally do

not exist for α 6 αc. We find it reasonable to conjecture the validity of this property (with

same αc) for any smooth region A disjoint from the boundary in the AdS4/BCFT3 setups

described in section 2.2.1 and section 2.2.2.

We find it worth exploring the existence of bounds on the subleading term FA. In the

AdS4/CFT3 duality when the dual gravitational background is AdS4, by employing a well

known bound for the Willmore functional in R3, it has been shown that FA > 2π for any

kind of spatial region, including the ones with singular ∂A and the ones made by disjoint

components [42].

In the remaining part of this section we discuss that, in the context of AdS4/BCFT3

and when the gravitational dual is the part of AdS4 delimited by Q and the conformal

boundary, for any kind of spatial region A disjoint from the boundary we have

FA > 2π (5.1)
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If A contains at least one corner, this bound is trivially satisfied because FA diverges

logarithmically and the coefficient of this divergence is positive, being determined by the

corner function of [22, 23].

For regions A with smooth ∂A, the subleading term FA in (1.4) is finite and the

corresponding minimal surface γ̂A is such that either γ̂A ∩ Q = ∅ or γ̂A ∩ Q 6= ∅. In the

former case γ̂A is also a minimal surface in H3, therefore we can employ the observation

made in [42] for AdS4/CFT3 and conclude that (5.1) holds.

If γ̂A∩Q 6= ∅, let us denote by FA = Fcon the value of the subleading term corresponding

to γ̂A. In these cases, we have two possibilities: either another extremal surface γ̂ dis
A such

that γ̂ dis
A ∩Q = ∅ exists or not. In the former case, being γ̂A the global minimum, we have

that Fcon > Fdis > 2π, where the last inequality is obtained from the observation of [42],

as above.

The remaining configurations are the ones such that only the extremal surface γ̂A with

γ̂A ∩ Q 6= ∅ exists (see e.g. the explicit case discussed in the final part of section 4.1.1).

In these cases γ̂ dis
A does not occur because, by introducing the extremal surface γ̂(0)

A in H3

anchored to ∂A, we have that γ̂(0)

A ∩ Q 6= ∅. Let us consider the part γ̂ ∠
A ⊂ γ̂(0)

A of γ̂(0)

A be-

longing to the region of AdS4 delimited by Q and the conformal boundary. We remark that

γ̂ ∠
ε intersects Q but, typically, they are not orthogonal along their intersection. Restrict-

ing both γ̂(0)

A and γ̂ ∠
A to z > ε, for the resulting surfaces γ̂(0)

ε and γ̂ ∠
ε the expansion (1.3)

holds with the same PA but different O(1) terms, that will be denoted by F (0)

A and F ∠
A

respectively. Notice that the observation of [42] here gives F (0)

A > 2π. Since γ̂ ∠
A ⊂ γ̂(0)

A ,

we have A[γ̂(0)
ε ] > A[γ̂ ∠

ε ], which implies F (0)

A 6 F ∠
A , being PA the same for γ̂(0)

ε and γ̂ ∠
ε .

Since Fcon corresponds to an extremal surface and γ̂ ∠
ε is not extremal, we can conclude that

Fcon > F ∠
A . Collecting these observations, we find that Fcon > F ∠

A > F (0)

A > 2π.

This completes our discussion about the validity of the inequality (5.1) for any spatial

region A disjoint from the boundary, including the ones having singular ∂A or that are

made by disjoint connected components. We find it worth remarking that the bound (5.1)

does not hold in general when A is adjacent to the boundary because the corner function

is negative for some configurations [87].

6 Domains with corners adjacent to the boundary

The holographic entanglement entropy of domains A with corners whose tip is on the

boundary contains a subleading logarithmic divergence whose coefficient is determined by

a model dependent corner function which depends also on the boundary conditions. In

the setups of AdS4/BCFT3 of section 2.2.1, the analytic expression of the corner function

Fα(ω) has been found in [87] from a direct evaluation of the area of the minimal surface

corresponding to an infinite wedge adjacent to the flat boundary (see (1.5)).

Below, we show that the corner function Fα(ω) can be also obtained also from (2.22).

In section 6.1 we focus on the simplest configuration given by a half disk centered on the

flat boundary, while in section 6.2 we discuss the most general case of an infinite wedge

adjacent to the flat boundary with generic opening angle.
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Figure 14. Minimal surfaces γ̂A anchored to the entangling curve corresponding to a half disk A

centered on the flat boundary. The slope of the green half plane Q is α = π/3 in the left panel and

α = 2π/3 in the right panel. The yellow half plane has z = ε and its intersection with γ̂A is the

yellow curve. The green curve corresponds to ∂γ̂Q in (6.2).

6.1 Half disk centered on the boundary

In the gravitational setup described in section 2.2.1, let us consider the half disk A of

radius R centered in the origin, which belongs to the flat boundary, i.e. A = {(x, y) ∈
R2 |x2 + y2 6 R2, x > 0}. The minimal surface corresponding to this configuration is

simply given by the part of the hemisphere anchored to the entire circle centered in the

origin which satisfies the constraint 2.2.1. In figure 14 the minimal surface γ̂A is shown for

two different values of α. When α 6= π/2, a non trivial logarithmic divergence occurs in

the expansion of the area A[γ̂ε]. In particular, it has been found that [87]

A[γ̂ε] =
πR

ε
+ 2 cotα log(R/ε) +O(1) (6.1)

which tells us that Fα(π/2) = − cotα for the corner function introduced in (1.5), being the

factor of 2 due to the fact that A has two corners adjacent to the boundary. The expression

of Fα(π/2) has been first obtained in [74] by considering the equal bipartition of the half

plane where the entangling curve is the half line orthogonal to the flat boundary.

It is instructive to show that the general formula (2.22) is able to reproduce the loga-

rithmic term occurring in (6.1). Let us observe that the integral over γ̂ε in (2.22) provides

a finite result as ε→ 0 because γ̂ε is part of the hemisphere γ̂A∪ γ̂A, aux and, being the inte-

grand positive, the integral over γ̂ε is smaller than the integral over the entire hemisphere

γ̂A ∪ γ̂A, aux , which gives 2π.

The intersection between γ̂A and Q is given by the following semi-circle

∂γ̂Q :

{
x2 + y2 + z2 = R2

z = −x tanα
(6.2)

By employing the spherical coordinates

z = R sin θ cosφ x = −R sin θ sinφ y = R cos θ (6.3)

one finds the following parametric representation of ∂γ̂Q

∂γ̂Q : (z, x, y) = R
(

sin θ cos(π/2− α) , − sin θ sin(π/2− α) , cos θ
)

θε 6 θ 6 π − θε
(6.4)
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Figure 15. Minimal surface γ̂A anchored to the entangling edge (the red line) of an infinite wedge

A adjacent to the flat boundary, in the gravitational setup of section 2.2.1. The analytic results

of [87] have been employed to plot these surfaces (see section 6.2). The green half plane is Q and

the yellow plane corresponds to z = ε, and they intersect γ̂A along the green line and the yellow

curve respectively. Left: ω = 0.2 and α = π/4. Right: ω = 0.3 and α = 2π/3.

The angle θε is given by the intersection of ∂γ̂Q with the cutoff z = ε; therefore it can be

found from the condition ε = R sin θε cos(π/2 − α). Since the line element is ds̃ = Rdθ,

from (6.4) we easily obtain the following result for the line integral over ∂γ̂Q in (2.18)

and (2.22) for this configuration∫
∂γ̂Q

b̃z

z
ds̃ = − cotα

∫ π−θε

θε

1

sin θ
dθ = − cotα log

[
tan(θ/2)

]∣∣∣π−θε
θε

(6.5)

As ε→ 0, at the leading order we obtain∫
∂γ̂Q

b̃z

z
ds̃ = − 2 cotα log(R/ε) +O(1) (6.6)

Thus, the logarithmic divergence and its coefficient in (6.1) have been recovered by

specifying the general formula (2.22) to this configuration, finding that they come from the

line integral over ∂γ̂Q.

6.2 Infinite wedge adjacent to the boundary

In the gravitational setup described in section 2.2.1, let us consider the following infinite

wedge A adjacent to the flat boundary

A =
{

(ρ, φ)
∣∣ 0 6 φ 6 ω , ρ 6 L

}
L� ε (6.7)

where ω is the opening angle of the wedge and we have adopted the polar coordinates

(ρ, φ) for the spatial section of the conformal boundary such that φ = 0 corresponds to

the positive y semiaxis, which are related to the usual Cartesian coordinates as x = ρ sinφ

and y = ρ cosφ.

The minimal surface γ̂A has been found analytically in [87]. In figure 15 we show two

examples of γ̂A corresponding to the same A and to different slopes for Q. In [87] the area
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of the corresponding regularised surface γ̂ε = γ̂A∩{z > ε} has been computed, finding (1.5)

and an explicit expression for the corner function Fα(ω).

The parametric form of the minimal surface γ̂A can be written in cylindrical coordinates

(z, ρ, φ) by introducing the following ansatz

(z, ρ, φ) =

(
ρ

q(φ)
, ρ , φ

)
ρ ∈ (0, L), φ ∈ (φ∗ , ω) (6.8)

where φ∗ corresponds to the value of φ characterising the line ∂γ̂Q along which γ̂A ⊥ Q
(the green line in figure 15).

The function q(φ), which provides the minimal surface, can be implicitly obtained from

(see (F.9) and (F.10) in [87]) ∣∣φ− ω + P0(q0)
∣∣ = P (q, q0) (6.9)

where

P0(q0) ≡
1

q0

{
(1 +Q2

0) Π
(
−1/Q2

0 ,−Q2
0

)
−Q2

0 K
(
−Q2

0

)}
(6.10)

P (q, q0) ≡
1

q0

{
(1 +Q2

0) Π
(
− 1/Q2

0 , σ(q, q0)
∣∣−Q2

0

)
−Q2

0 F
(
σ(q, q0)

∣∣−Q2
0

)}
(6.11)

with

σ(q, q0) ≡ arctan

√
q2 − q20
1 + 2q20

Q2
0 ≡

q20
1 + q20

∈ (0, 1) (6.12)

being F(φ|m) and Π(n, φ|m) the incomplete elliptic integrals of the first and third kind

respectively, while K(x) is the complete elliptic integral of the first kind. Here q0 is the

minimum value of q. Given the opening angle ω of the wedge and the slope α of Q, the

values of q0 and φ∗ are obtained by inverting the following transcendental equations

φ∗(α, q0) = ηα arcsin[s∗(α, q0)] ω = P0(q0) + φ∗(α, q0)− ηα P
(
q∗(α, q0), q0

)
(6.13)

where we have introduced

s∗(α, q0) ≡ − ηα
cotα√

2

{√
1 + 4(sinα)2(q40 + q20)− cos(2α)

(cosα)2 + q40 + q20

} 1
2

q∗(α, q0) =
| cotα |
s∗(α, q0)

(6.14)

The expansion of the area of the minimal surface γ̂ε as ε → 0 is given by (1.5). The

analytic expression of the corner function reads [87]

Fα(ω) = F (q0) + ηα G
(
q∗(α, q0), q0

)
(6.15)

where

F (q0) ≡
E(q̃20)− (1− q̃20)K(q̃20)√

1− 2q̃20
q̃0 =

q20
1 + 2q20

(6.16)
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and

G(q, q0) ≡
√

1 + q20

{
F
(
σ(q, q0)

∣∣−Q2
0

)
− E

(
σ(q, q0)

∣∣−Q2
0

)
+

√
(q2 + 1)(q2 − q20)

(q20 + 1)(q2 + q20 + 1)

}
(6.17)

The goal of this section is to show that (6.15) can be recovered also from the general

expression (2.22). In appendix C, we discuss the details of this computation, while in the

following we only report the main intermediate steps. Let us remark that, while for the half

disk centered on the flat boundary the logarithmic divergence in the expansion of A[γ̂ε]

comes only from the line integral over ∂γ̂Q (see section 6.1), for the wedge adjacent to

the boundary both the surface integral over γ̂ε and the line integral over ∂γ̂Q provide a

logarithmic divergence. In particular, for the line integral over ∂γ̂Q we find∫
∂γ̂Q

b̃z

z
ds̃ = − cotα

√
1 + (cosα cotφ∗)2 log(L/ε) +O(1) (6.18)

Notice that, since for the half disk centered on the flat boundary φ∗ = ηα π/2, the expres-

sion (6.18) is consistent with (6.6) (where we recall that the factor of 2 occurs because the

half disk contains two corners).

The evaluation of the surface integral over γ̂ε in (2.22) is less straightforward than (6.18)

and it provides the following logarithmic divergence∫
γ̂ε

(ñz)2

z2
dÃ = I(q∗, q0) log(L/ε) +O(1) (6.19)

whose coefficient is given by

I(q∗, q0) ≡ F (q0)− ηα

(
S(q∗, q0) +

√
(q∗ − q0) (q∗ + q0) (q2∗ + q20 + 1)

q2∗ + 1

)
(6.20)

where

S(q∗, q0)≡
√
q20+1

[
E

(
iarccsch

q0√
q2+1

∣∣∣∣ −q20q20+1

)
−F

(
iarccsch

q0√
q2+1

∣∣∣∣ −q20q20+1

)]∣∣∣∣∣
q∗

q0
(6.21)

By combining (6.18) and (6.19) as prescribed by the general formula (2.18) (see the

appendix C for some technical details), we recover the expression (6.15) for the cor-

ner function.

7 Conclusions

Understanding the gauge/gravity correspondence when the dual conformal field theory has

a physical boundary is an important question.

In this manuscript we studied the holographic entanglement entropy in AdS4/BCFT3

for spatial regions having arbitrary shapes, along the lines of [68–74, 86, 87]. Considering

the expansion of the holographic entanglement entropy as the UV cutoff vanishes (see (1.4)
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and (1.2)), our main result is the analytic formula (2.12) for the subleading term FA, that

can be applied for any spatial region and any static gravitational background. Known

analytic expressions corresponding to some particular configurations such as an infinite

strip parallel to a flat boundary [72, 73, 86, 87] or an infinite wedge adjacent to a flat

boundary [87] have been recovered through (2.12).

The second result is the analytic study of the extremal surfaces anchored to a disk dis-

joint from a boundary which is either flat or circular, when the gravitational background is

a part of H3. The corresponding expression for the subleading term FA has been obtained

both by evaluating the area in the standard way and by specialising (2.12) to this config-

uration. Furthermore, when the spatial section of the gravitational spacetime is a part of

H3, we found the bound FA > 2π for any region A that does not intersect the boundary.

The numerical analysis of the holographic entanglement entropy in AdS4/BCFT3 per-

formed in this manuscript is based on Surface Evolver, which has been previously employed

to study the holographic corner functions in AdS4/BCFT3 [87] and the holographic entan-

glement entropy in AdS4/CFT3 for regions with arbitrary shape [42, 45].

Many interesting directions can be explored in the future. In the AdS/BCFT construc-

tion, it is important to identify the possible relation occurring between the geometrical

parameter α in the bulk and the allowed boundary conditions for the dual BCFT3. As

for the holographic entanglement entropy in AdS4/BCFT3, gravitational backgrounds dual

to a BCFT3 at finite temperature or to a boundary RG flows could be considered. The

expression (2.12) found in this manuscript holds also in these cases; nonetheless, it would

be interesting to find explicit analytic expressions in some simple setups. An interesting

direction to address involves time-dependent gravitational backgrounds.

The results and the methods discussed in this manuscript could be useful

also in the context of the gauge/gravity correspondence in the presence of defects

(AdS/dCFT) [86, 101–105].
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A Useful mappings

In this appendix we discuss two useful transformations employed in section 2.2 and sec-

tion 4.

Let us consider the map (x, y, z)→ (X,Y, Z) with z > 0 and Z > 0 defined by [100]

X = λ
x− ax + cx

[
(x− a)2 + z2

]
1 + 2 c · (x− a) + c2

[
(x− a)2 + z2

]
Y = λ

y − ay + cy
[
(x− a)2 + z2

]
1 + 2 c · (x− a) + c2

[
(x− a)2 + z2

]
Z = λ

z

1 + 2 c · (x− a) + c2
[
(x− a)2 + z2

]
(A.1)

where λ > 0, the vectors x = (x, y), a = (ax, ay) and c = (cx, cy) belong to R2 and

· denotes the standard scalar product between vectors in R2. The transformation (A.1)

leaves the metric (2.17) invariant up to a conformal factor. On the conformal boundary,

given by Z = z = 0, the map (A.1) becomes a special conformal transformation.

The first special case of (A.1) that we need is the map sending the right half plane

{(x, y) ∈ R2, x > 0} at z = 0 into the disk {(X,Y ) ∈ R2, X2 + Y 2 6 R2
Q} of radius RQ at

Z = 0. Since this transformation must send the straight line (x, y, z) = (0, y, 0) into the

circle CQ given by (X,Y, Z) = (RQ cosφ,RQ sinφ, 0) with φ ∈ [0, 2π), it can be constructed

by first setting ay = az = 0 and x = z = 0 in (A.1), and then imposing X2 + Y 2 = R2
Q.

This leads to

λ2 (a2x + y2)

(a2x + y2)
(
c2x + c2y

)
− 2axcx + 2cyy + 1

−R2
Q = 0 ∀y ∈ R (A.2)

which can be written as a quadratic equation in y that must hold ∀y ∈ R; therefore we

have to impose the vanishing of its coefficients. This procedure gives ax = ±RQ/(2λ)

and c = (±λ/RQ, 0), where the choice of the sign determines whether the right half plane

x > 0 is mapped in the region inside (positive sign) or outside (negative sign) the circle

CQ. Considering the former option, we find that (A.1) becomes

X =
RQ
[
4λ2(x2 + y2 + z2)−R2

Q
]

R2
Q + 4λ2 (x2 + y2 + z2) + 4λRQ x

Y =
4λR2

Q y

R2
Q + 4λ2 (x2 + y2 + z2) + 4λRQ x

Z =
4λR2

Q z

R2
Q + 4λ2 (x2 + y2 + z2) + 4λRQ x



x =
RQ
(
R2
Q −X2 − Y 2 − Z2

)
2λ
[
(RQ −X)2 + Y 2 + Z2

]
y =

R2
Q Y

λ
[
(RQ −X)2 + Y 2 + Z2

]
z =

R2
Q Z

λ
[
(RQ −X)2 + Y 2 + Z2

]
(A.3)

where also the inverse map has been reported. The transformations in (A.3) relate the

setups described in section 2.2.1 and section 2.2.2. Since in (A.3) the constant λ can be

reabsorbed through the rescaling (x, y, z) → λ(x, y, z), which leaves H3 invariant, we are
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allowed to set λ = 1 in (A.3) without loss of generality. The first transformation in (A.3)

maps the half plane (2.20) into the following spherical cap [69]

X2 + Y 2 + (Z −RQ cotα)2 =
R2
Q

sin2 α
Z > 0 (A.4)

which has been written also in (2.24) by means of cylindrical coordinates. When α =

π/2, (A.4) reduces to the hemisphere of radius RQ.

The second map in (A.3) has been used in section 4.2 to obtain the holographic en-

tanglement entropy of a disk disjoint from a flat boundary starting from the holographic

entanglement entropy of a disk concentric to a circular boundary computed in section 4.1.

Indeed, by considering the circle (X,Y ) = (b◦ + R◦ cosφ,R◦ sinφ) with φ ∈ [0, 2π) in-

side the disk delimited by CQ, its image through the second map in (A.3) is the circle

(x, y) = (d+R+R cosφ,R sinφ) in the right half plane at z = 0, which has radius R and

distance d from the straight boundary at x = 0. We find that (R◦, b◦) can be written in

terms of (R, d) as follows

R◦
RQ

=
4R/RQ

1 + 4(d/RQ + 2R/RQ)d/RQ + 4(d/RQ +R/RQ)
(A.5)

b◦
RQ

= 1−
2
[
1 + 2(d/RQ +R/RQ)

][
1 + 2(d/RQ + 2R/RQ)

] [
1 + 2d/RQ

] (A.6)

where the r.h.s.’s depend only on the ratios R/RQ and d/RQ. For a circle concentric to

the circular boundary (considered e.g. in section 4.1), b◦ = 0. The expressions in (4.21)

have been obtained by solving (A.5) and (A.6) in this special case.

The second map in (A.3) has been also employed to obtain the analytic expressions

for the extremal surfaces shown in figure 10 and figure 11.

The second transformation coming from (A.1) that we consider is the one mapping

the disk delimited by CQ into itself. Let us rename (x, y, z) = (X ′, Y ′, Z ′) in (A.1) for

this case, where Z = Z ′ = 0. By imposing that the circle CQ is mapped into itself in the

coordinates (X ′, Y ′), we find the following two options: either a = (±RQ
√

(λ+ 1)/λ, 0)

and c = (±
√
λ(1 + λ)/RQ, 0) or a = (±RQ

√
(λ− 1)/λ, 0) and c = (∓

√
λ(λ− 1)/RQ, 0)

with λ > 1. Since the first option exchanges the interior and the exterior of the disk,

we have to select the second one, where the lower or upper choice of the signs move the

center of the disk along either X ′ > 0 or X ′ < 0 respectively. Being the disk invariant

under a rotation of π about the origin, we can choose one of these two options without

loss of generality. Considering e.g. a = −(RQ
√

(λ− 1)/λ, 0) and c = (
√
λ(λ− 1)/RQ, 0)

with λ > 1, the resulting transformation maps the circle (X,Y ) = (R◦ cosφ,R◦ sinφ) with

R◦ < RQ into the circle (X ′, Y ′) = (b′◦ +R′◦ cosφ,R′◦ sinφ), where

R′◦
RQ

=
R◦/RQ

λ
[
1− (R◦/RQ)2

]
+ (R◦/RQ)2

b′◦
RQ

=

√
(λ− 1)λ

[
1− (R◦/RQ)2

]
λ
[
1− (R◦/RQ)2

]
+ (R◦/RQ)2

(A.7)

By inverting these relations, one gets R◦/RQ and λ in terms of R′◦/RQ and b′◦/RQ. We have

checked that, under the transformation that we have constructed, the surface Q in (A.4)

remains unchanged for any value of λ > 1.

– 36 –



J
H
E
P
0
8
(
2
0
1
8
)
1
6
4

The expression of R◦/RQ obtained in this way and (4.13) provide the finite term FA
for the holographic entanglement entropy of a disk A inside the disk delimited by CQ in

the cases where these two disks are not concentric.

B On the disk concentric to a circular boundary

In this appendix we provide some technical details underlying the derivation of the results

reported in section 4.1. Considering the setup introduced in section 2.2.2, we are interested

in the extremal surfaces anchored to the boundary of a disk A with radius R◦ concentric

to the disk of radius RQ > R◦, which corresponds to a spatial slice of the spacetime where

the BCFT3 is defined. In the following we will adapt to this case the analysis reported in

appendix D.2 of [45] about the extremal surfaces anchored to the boundary of an annulus

in AdS4/CFT3 (see also [96–99]).

B.1 Extremal surfaces

The invariance under rotations about the vertical axis z of this configuration significantly

simplifies the analysis of the corresponding extremal surfaces. Indeed, by introducing the

polar coordinates (ρ, φ) in the z = 0 plane, an extremal surface is determined by the curve

z = z(ρ) obtained by taking its section at a fixed angle φ. The area functional evaluated

on these surfaces becomes

A = 2πL2
AdS

∫
dρ ρ

√
z′2 + 1

z2
(B.1)

The equation of motion coming from the extremization of this functional reads

z z′′ +
(
1 + z′2

)(
2 +

z z′

ρ

)
= 0 (B.2)

By introducing the variable u and the function ζ(ρ) as follows

z(ρ) = ρ ζ(ρ) u = log ρ ζu = ∂uζ (B.3)

the differential equation (B.2) becomes

ζ ζu(1 + ∂ζζu) +
[
1 + (ζ + ζu)2

][
2 + ζ(ζ + ζu)

]
= 0 (B.4)

Integrating this equation, one finds

ζu,± = −1 + ζ2

ζ

[
1± ζ√

k(1 + ζ2)− ζ4

]−1
k > 0 (B.5)

where k is the integration constant. By employing that du = dζ/ζu and integrating (B.5)

starting from an arbitrary initial point, we get

log(ρ/ρin) =

∫ u

uin

dũ = −
∫ ζ

ζin

λ

1 + λ2

[
1± λ√

k(1 + λ2)− λ4

]
dλ (B.6)
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Since the extremal surfaces are anchored to the boundary of the disk A of radius R◦ at

z = 0, from (B.3) we have ζ(R◦) = 0 and u = logR◦ when ρ = R◦. Choosing ρin = R◦ and

the negative sign within the integrand in (B.6), one finds the first equation in the r.h.s.

of (4.1), namely

log(ρ/R◦) = − q−,k(ζ) (B.7)

where q−,k(ζ) has been defined in (4.2). The choice of the negative sign in (B.7) will be

discussed at the end of this subsection.

The solution (B.7) is well defined as long as the expression under the square root

of (B.6) is positive. Such expression vanishes at the point Pm = (ρm, ζm), whose coordinates

have been reported in (4.3). Following the curve given by (B.7) starting from (ρ, z) =

(R◦, 0), if it intersects Q before reaching Pm, then (B.7) fully describes the profile of γ̂ con
A .

Otherwise, (B.7) provides the profile of γ̂ con
A until Pm and for the part between Pm and the

point P∗ = (ρ∗, ζ∗) (which fully characterises the curve ∂γ̂Q = γ̂A ∩ Q in this case) also

the function defined by (B.6) with the positive sign must be employed. In particular, the

profile between Pm and P∗ reads

log(ρ/R◦) = − q+,k(ζ) + q+,k(ζm)− q−,k(ζm) (B.8)

which can be written also in the form given by the second expression in the r.h.s. of (4.1),

once (4.4) has been used.

In order to justify (4.3) for the coordinates of Pm, let us consider the unit vectors vµ±
tangent to the radial profile of γ̂con

A along the two branches characterised by q±,k. They read

vµ± =
(
vρ±, v

z
±, v

φ
±
)

=
± z√

(q′±,k)
2 + (1− ζ q′±,k)2

(
q′±,k , ζ q

′
±,k − 1 , 0

)
(B.9)

where ± refer to the two different branches. At the matching point Pm, the tangent vector

field defined by vµ± must be continuous, hence a necessary condition is that gµν v
µ
+v

ν
− = 1

at Pm. From (B.9), one finds that this requirement gives ζ4 = k(1 + ζ2), whose only

admissible solution is the first expression in (4.3).

The boundary condition along the curve ∂γ̂Q = γ̂A∩Q provides the parameter k. The

condition to impose is that γ̂ con
A and Q intersects orthogonally along ∂γ̂Q. This requirement

is equivalent to impose that the vector vµ tangent to γ̂ con
A and the vector uµ tangent to Q

are orthogonal along ∂γ̂Q. From (2.24), we find

uµ = (uρ, uz, uφ) = (cotα− ρ ζ/RQ , ρ/RQ , 0) (B.10)

By using (B.9) and (B.10), we find that the orthogonality condition vρuρ + vzuz = 0

at the intersection between γ̂ con
A and Q gives

q′±,k(ρ∗) =
ρ∗
RQ

tanα (B.11)

where q′±,k can be read from (4.2) and ρ∗/RQ can be obtained by specializing (2.25) to P∗.

This leads to √
ζ2∗ + sin2 α

cosα
= ± ζ2∗√

k(1 + ζ2∗ )− ζ4∗
(B.12)
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that allows us to write ζ∗ as a function of k and α. Indeed, the first expression of (4.7)

can be found by taking the square of (B.12). The ± in the r.h.s. of (B.12) correspond to

the same choice of sign occurring in (B.11). From (B.12) and ζ∗ > 0, one observes that

the orthogonality condition can be satisfied only by q+,k when α 6 π/2, while for α > π/2

the orthogonality condition leads to select q−,k . Consequently, P∗ belongs to the branch

described q−,k for α 6 π/2 and to the one characterised by q+,k for α > π/2. When

α → π/2 the l.h.s. of (B.12) diverges; therefore the argument of the square root in the

r.h.s. must vanish in this limit. This means that ζ∗ = ζm, being ζm given in (4.3). Thus,

when α = π/2, the extremal surface γ̂ con
A intersects Q at the matching point Pm of the two

branches characterised by q±,k.

In order to justify the choice of q−,k in (B.7), in the following we show that a contra-

diction is obtained if q+,k is assumed in (B.7) instead of q−,k . In this case the profile of γ̂A
can be obtained from (4.1) simply by exchanging the role of R◦ and Raux, i.e.

ργ(θ) =

{
R◦ e

−q+,k(ζ)

Raux e
−q−,k(ζ)

(B.13)

where now RQ > R◦ > Raux. First, let us notice that the maximum value of z(ζ) is realized

in the q+,k branch because from (B.9) we have that vz± = 0 only for the q+,k branch (at

ζ = 4
√
k). Since RQ > R◦ > Raux, this observation leads to conclude that Q cannot intersect

the q−,k branch without intersecting the one described by q+,k (see e.g. the red and the

black curves in the top panel of figure 6 as guidance). Thus, the only possibility is that

Q intersects orthogonally the branch described by q+,k . In this case, the condition (B.12)

leads to α 6 π/2. In order to find a contradiction, let us compare the quantity ρ2 + z2 for

the branch q+,k with the one for Q. For Q in the range α 6 π/2 we get

ρ2 + z2 = R2
Q
(
1 + ζ2

)
Q2
α = R2

Q

(√
ζ2(cscα)2 + 1 + ζ cotα

)2
ζ2 + 1

> R2
Q (B.14)

being Qα the function introduced in (2.25). As for the q+,k branch, from (B.13) and (B.3)

we get ρ2γ + z2 = (1 + ζ2)ρ2γ = R2
◦ e
−2f+,k where f+,k ≡ q+,k− log

√
1 + ζ2 (see (4.5)). Since

f+,k > 0 for any ζ and R◦ > RQ, we have ρ2γ + z2 < R2
Q. This means that the branch

described by q+,k cannot intersect Q in the whole range α 6 π/2, ruling out the possibility

that γ̂A is described by the profile (B.13).

B.2 Area

In this appendix we evaluate the area of γ̂ con
A in two ways: by a direct computation of the

integral (B.1) and by specialising the general formula (2.19) to the extremal surfaces γ̂ con
A .

The analysis performed in section B.1 allows to write the area of γ̂ con
A from (B.1)

and (B.3) as follows

A =


2πL2

AdS

( ∫ ζm

ε/R◦

dζ

ζ2
√

1 + ζ2 − ζ4/k
+

∫ ζm

ζ∗

dζ

ζ2
√

1 + ζ2 − ζ4/k

)
0 < α 6 π/2

2πL2
AdS

∫ ζ∗

ε/R◦

dζ

ζ2
√

1 + ζ2 − ζ4/k
π/2 6 α < π

(B.15)
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where the UV cutoff ε has been introduced to regularise A, which is a divergent quantity

as ε→ 0. Le us recall that ζ∗ = ζm for α = π/2. The integrals in (B.15) can be explicitly

written by using that ∫
dζ

ζ2
√

1 + ζ2 − ζ4/k
= −Fk(ζ) + const (B.16)

where Fk(ζ) has been introduced in (4.14). The expression (4.13) for Fcon can be found

from (B.15) by employing the expansions of Fk(ζ) as ζ → 0+, which reads

Fk(ζ) =
1

ζ
+
ζ

2
+O

(
ζ3
)

(B.17)

In the remaining part of this appendix we show that the analytic expression for Fcon

given in (4.13) can be obtained also by applying the general formula (2.19) in the special

cases of the extremal surfaces γ̂ con
A .

In order to evaluate the surface integral over γ̂A in (2.19), we need the normal vector

ñµ and the area element dÃ, which are given respectively by

ñµ = (nρ, nz, nφ) =
1√

1 + z′2

(
z′,−1, 0

)
dÃ =

√
z′2 + 1 ρ dρ dφ (B.18)

The evaluation of the surface integral over γ̂A in (2.19) can be performed by using (B.3)

and (B.18), finding

∫
(ñz)2

z2
dÃ =

 2π
(
Fk,−(ζm) + Fk,+(ζm)−Fk,+(ζ∗)

)
0 < α 6 π/2

2πFk,−(ζ∗) π/2 6 α < π
(B.19)

(which can be written as reported in (4.18)) where we have introduced the following func-

tions

Fk,±(ζ) ≡ 1√
k

∫ ζ

0

(√
k(1 + ξ2)− ξ4 ± ξ

)2
(ξ2 + 1)2

√
k(1 + ξ2)− ξ4

dξ (B.20)

which can be written in terms of Fk(ζ) (see (4.19)). The relation (4.19) has been found by

integrating the following identity(√
k (ζ2 + 1)− ζ4 ± ζ

)2
√
k (ζ2 + 1)2

√
k (ζ2 + 1)− ζ4

+
1√
k

∂

∂ζ

(√
k (ζ2 + 1)− ζ4 ± ζ

ζ(ζ2 + 1)

)
= − 1

ζ2
√
ζ2 + 1− ζ4/k

(B.21)

The result of this indefinite integration contains an arbitrary integration constant which

can be fixed by taking ζ → 0 and imposing that both sides of the equation are consistent

in this limit (also (B.17) is useful in this computation).

In order to facilitate the recovering of the expression (4.13) for Fcon, let us observe

that, by employing (4.19), the expression (4.18) can be written as follows∫
γ̂

(ñz)2

z2
dÃ = Fcon − 2π

ζ3∗ + ηα
√
k (ζ2∗ + 1)− ζ4∗√

k ζ∗(ζ2∗ + 1)
= Fcon − 2π

ζ3∗ −
√
k cosα√

k ζ∗(ζ2∗ + 1)
(B.22)
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z/RQ
<latexit sha1_base64="DHSzZ3J8BY7SdxN1SWXKEPfopZY=">AAAB+3icbVDLSsNAFL2pr1pf0S7dDBbBVU1EUXcFNy5bMbbQhjCZTtuhkwczEyGG+CtuXKi49Ufc+TdO2iy0emDgcM693DPHjzmTyrK+jMrS8srqWnW9trG5tb1j7u7dySgRhDok4pHo+VhSzkLqKKY47cWC4sDntOtPrwq/e0+FZFF4q9KYugEeh2zECFZa8sz6AzpGN142CLCaEMyzTp57ZsNqWjOgv8QuSQNKtD3zczCMSBLQUBGOpezbVqzcDAvFCKd5bZBIGmMyxWPa1zTEAZVuNgufo0OtDNEoEvqFCs3UnxsZDqRMA19PFhnloleI/3n9RI0u3IyFcaJoSOaHRglHKkJFE2jIBCWKp5pgIpjOisgEC0yU7qumS7AXv/yXOCfNy6bdOW20zso2qrAPB3AENpxDC66hDQ4QSOEJXuDVeDSejTfjfT5aMcqdOvyC8fENlSOUQQ==</latexit><latexit sha1_base64="DHSzZ3J8BY7SdxN1SWXKEPfopZY=">AAAB+3icbVDLSsNAFL2pr1pf0S7dDBbBVU1EUXcFNy5bMbbQhjCZTtuhkwczEyGG+CtuXKi49Ufc+TdO2iy0emDgcM693DPHjzmTyrK+jMrS8srqWnW9trG5tb1j7u7dySgRhDok4pHo+VhSzkLqKKY47cWC4sDntOtPrwq/e0+FZFF4q9KYugEeh2zECFZa8sz6AzpGN142CLCaEMyzTp57ZsNqWjOgv8QuSQNKtD3zczCMSBLQUBGOpezbVqzcDAvFCKd5bZBIGmMyxWPa1zTEAZVuNgufo0OtDNEoEvqFCs3UnxsZDqRMA19PFhnloleI/3n9RI0u3IyFcaJoSOaHRglHKkJFE2jIBCWKp5pgIpjOisgEC0yU7qumS7AXv/yXOCfNy6bdOW20zso2qrAPB3AENpxDC66hDQ4QSOEJXuDVeDSejTfjfT5aMcqdOvyC8fENlSOUQQ==</latexit><latexit sha1_base64="DHSzZ3J8BY7SdxN1SWXKEPfopZY=">AAAB+3icbVDLSsNAFL2pr1pf0S7dDBbBVU1EUXcFNy5bMbbQhjCZTtuhkwczEyGG+CtuXKi49Ufc+TdO2iy0emDgcM693DPHjzmTyrK+jMrS8srqWnW9trG5tb1j7u7dySgRhDok4pHo+VhSzkLqKKY47cWC4sDntOtPrwq/e0+FZFF4q9KYugEeh2zECFZa8sz6AzpGN142CLCaEMyzTp57ZsNqWjOgv8QuSQNKtD3zczCMSBLQUBGOpezbVqzcDAvFCKd5bZBIGmMyxWPa1zTEAZVuNgufo0OtDNEoEvqFCs3UnxsZDqRMA19PFhnloleI/3n9RI0u3IyFcaJoSOaHRglHKkJFE2jIBCWKp5pgIpjOisgEC0yU7qumS7AXv/yXOCfNy6bdOW20zso2qrAPB3AENpxDC66hDQ4QSOEJXuDVeDSejTfjfT5aMcqdOvyC8fENlSOUQQ==</latexit><latexit sha1_base64="DHSzZ3J8BY7SdxN1SWXKEPfopZY=">AAAB+3icbVDLSsNAFL2pr1pf0S7dDBbBVU1EUXcFNy5bMbbQhjCZTtuhkwczEyGG+CtuXKi49Ufc+TdO2iy0emDgcM693DPHjzmTyrK+jMrS8srqWnW9trG5tb1j7u7dySgRhDok4pHo+VhSzkLqKKY47cWC4sDntOtPrwq/e0+FZFF4q9KYugEeh2zECFZa8sz6AzpGN142CLCaEMyzTp57ZsNqWjOgv8QuSQNKtD3zczCMSBLQUBGOpezbVqzcDAvFCKd5bZBIGmMyxWPa1zTEAZVuNgufo0OtDNEoEvqFCs3UnxsZDqRMA19PFhnloleI/3n9RI0u3IyFcaJoSOaHRglHKkJFE2jIBCWKp5pgIpjOisgEC0yU7qumS7AXv/yXOCfNy6bdOW20zso2qrAPB3AENpxDC66hDQ4QSOEJXuDVeDSejTfjfT5aMcqdOvyC8fENlSOUQQ==</latexit>

z/RQ
<latexit sha1_base64="DHSzZ3J8BY7SdxN1SWXKEPfopZY=">AAAB+3icbVDLSsNAFL2pr1pf0S7dDBbBVU1EUXcFNy5bMbbQhjCZTtuhkwczEyGG+CtuXKi49Ufc+TdO2iy0emDgcM693DPHjzmTyrK+jMrS8srqWnW9trG5tb1j7u7dySgRhDok4pHo+VhSzkLqKKY47cWC4sDntOtPrwq/e0+FZFF4q9KYugEeh2zECFZa8sz6AzpGN142CLCaEMyzTp57ZsNqWjOgv8QuSQNKtD3zczCMSBLQUBGOpezbVqzcDAvFCKd5bZBIGmMyxWPa1zTEAZVuNgufo0OtDNEoEvqFCs3UnxsZDqRMA19PFhnloleI/3n9RI0u3IyFcaJoSOaHRglHKkJFE2jIBCWKp5pgIpjOisgEC0yU7qumS7AXv/yXOCfNy6bdOW20zso2qrAPB3AENpxDC66hDQ4QSOEJXuDVeDSejTfjfT5aMcqdOvyC8fENlSOUQQ==</latexit><latexit sha1_base64="DHSzZ3J8BY7SdxN1SWXKEPfopZY=">AAAB+3icbVDLSsNAFL2pr1pf0S7dDBbBVU1EUXcFNy5bMbbQhjCZTtuhkwczEyGG+CtuXKi49Ufc+TdO2iy0emDgcM693DPHjzmTyrK+jMrS8srqWnW9trG5tb1j7u7dySgRhDok4pHo+VhSzkLqKKY47cWC4sDntOtPrwq/e0+FZFF4q9KYugEeh2zECFZa8sz6AzpGN142CLCaEMyzTp57ZsNqWjOgv8QuSQNKtD3zczCMSBLQUBGOpezbVqzcDAvFCKd5bZBIGmMyxWPa1zTEAZVuNgufo0OtDNEoEvqFCs3UnxsZDqRMA19PFhnloleI/3n9RI0u3IyFcaJoSOaHRglHKkJFE2jIBCWKp5pgIpjOisgEC0yU7qumS7AXv/yXOCfNy6bdOW20zso2qrAPB3AENpxDC66hDQ4QSOEJXuDVeDSejTfjfT5aMcqdOvyC8fENlSOUQQ==</latexit><latexit sha1_base64="DHSzZ3J8BY7SdxN1SWXKEPfopZY=">AAAB+3icbVDLSsNAFL2pr1pf0S7dDBbBVU1EUXcFNy5bMbbQhjCZTtuhkwczEyGG+CtuXKi49Ufc+TdO2iy0emDgcM693DPHjzmTyrK+jMrS8srqWnW9trG5tb1j7u7dySgRhDok4pHo+VhSzkLqKKY47cWC4sDntOtPrwq/e0+FZFF4q9KYugEeh2zECFZa8sz6AzpGN142CLCaEMyzTp57ZsNqWjOgv8QuSQNKtD3zczCMSBLQUBGOpezbVqzcDAvFCKd5bZBIGmMyxWPa1zTEAZVuNgufo0OtDNEoEvqFCs3UnxsZDqRMA19PFhnloleI/3n9RI0u3IyFcaJoSOaHRglHKkJFE2jIBCWKp5pgIpjOisgEC0yU7qumS7AXv/yXOCfNy6bdOW20zso2qrAPB3AENpxDC66hDQ4QSOEJXuDVeDSejTfjfT5aMcqdOvyC8fENlSOUQQ==</latexit><latexit sha1_base64="DHSzZ3J8BY7SdxN1SWXKEPfopZY=">AAAB+3icbVDLSsNAFL2pr1pf0S7dDBbBVU1EUXcFNy5bMbbQhjCZTtuhkwczEyGG+CtuXKi49Ufc+TdO2iy0emDgcM693DPHjzmTyrK+jMrS8srqWnW9trG5tb1j7u7dySgRhDok4pHo+VhSzkLqKKY47cWC4sDntOtPrwq/e0+FZFF4q9KYugEeh2zECFZa8sz6AzpGN142CLCaEMyzTp57ZsNqWjOgv8QuSQNKtD3zczCMSBLQUBGOpezbVqzcDAvFCKd5bZBIGmMyxWPa1zTEAZVuNgufo0OtDNEoEvqFCs3UnxsZDqRMA19PFhnloleI/3n9RI0u3IyFcaJoSOaHRglHKkJFE2jIBCWKp5pgIpjOisgEC0yU7qumS7AXv/yXOCfNy6bdOW20zso2qrAPB3AENpxDC66hDQ4QSOEJXuDVeDSejTfjfT5aMcqdOvyC8fENlSOUQQ==</latexit>

⇢/RQ
<latexit sha1_base64="4D5fSkEGabLmT0YUyIhNJsAvdPs=">AAAB/nicbVBPS8MwHE39O+e/quDFS3AInmYrinobePG4iXWDtZQ0y7awNClJKozag1/FiwcVr34Ob34b060H3XwQeLz3+/F7eVHCqNKO820tLC4tr6xW1qrrG5tb2/bO7r0SqcTEw4IJ2YmQIoxy4mmqGekkkqA4YqQdja4Lv/1ApKKC3+lxQoIYDTjtU4y0kUJ735dDAU/gbZj5MdJDjFjWyvPQrjl1ZwI4T9yS1ECJZmh/+T2B05hwjRlSqus6iQ4yJDXFjORVP1UkQXiEBqRrKEcxUUE2yZ/DI6P0YF9I87iGE/X3RoZipcZxZCaLjGrWK8T/vG6q+5dBRnmSasLx9FA/ZVALWJQBe1QSrNnYEIQlNVkhHiKJsDaVVU0J7uyX54l3Wr+qu62zWuO8bKMCDsAhOAYuuAANcAOawAMYPIJn8ArerCfrxXq3PqajC1a5swf+wPr8AeAglYo=</latexit><latexit sha1_base64="4D5fSkEGabLmT0YUyIhNJsAvdPs=">AAAB/nicbVBPS8MwHE39O+e/quDFS3AInmYrinobePG4iXWDtZQ0y7awNClJKozag1/FiwcVr34Ob34b060H3XwQeLz3+/F7eVHCqNKO820tLC4tr6xW1qrrG5tb2/bO7r0SqcTEw4IJ2YmQIoxy4mmqGekkkqA4YqQdja4Lv/1ApKKC3+lxQoIYDTjtU4y0kUJ735dDAU/gbZj5MdJDjFjWyvPQrjl1ZwI4T9yS1ECJZmh/+T2B05hwjRlSqus6iQ4yJDXFjORVP1UkQXiEBqRrKEcxUUE2yZ/DI6P0YF9I87iGE/X3RoZipcZxZCaLjGrWK8T/vG6q+5dBRnmSasLx9FA/ZVALWJQBe1QSrNnYEIQlNVkhHiKJsDaVVU0J7uyX54l3Wr+qu62zWuO8bKMCDsAhOAYuuAANcAOawAMYPIJn8ArerCfrxXq3PqajC1a5swf+wPr8AeAglYo=</latexit><latexit sha1_base64="4D5fSkEGabLmT0YUyIhNJsAvdPs=">AAAB/nicbVBPS8MwHE39O+e/quDFS3AInmYrinobePG4iXWDtZQ0y7awNClJKozag1/FiwcVr34Ob34b060H3XwQeLz3+/F7eVHCqNKO820tLC4tr6xW1qrrG5tb2/bO7r0SqcTEw4IJ2YmQIoxy4mmqGekkkqA4YqQdja4Lv/1ApKKC3+lxQoIYDTjtU4y0kUJ735dDAU/gbZj5MdJDjFjWyvPQrjl1ZwI4T9yS1ECJZmh/+T2B05hwjRlSqus6iQ4yJDXFjORVP1UkQXiEBqRrKEcxUUE2yZ/DI6P0YF9I87iGE/X3RoZipcZxZCaLjGrWK8T/vG6q+5dBRnmSasLx9FA/ZVALWJQBe1QSrNnYEIQlNVkhHiKJsDaVVU0J7uyX54l3Wr+qu62zWuO8bKMCDsAhOAYuuAANcAOawAMYPIJn8ArerCfrxXq3PqajC1a5swf+wPr8AeAglYo=</latexit><latexit sha1_base64="4D5fSkEGabLmT0YUyIhNJsAvdPs=">AAAB/nicbVBPS8MwHE39O+e/quDFS3AInmYrinobePG4iXWDtZQ0y7awNClJKozag1/FiwcVr34Ob34b060H3XwQeLz3+/F7eVHCqNKO820tLC4tr6xW1qrrG5tb2/bO7r0SqcTEw4IJ2YmQIoxy4mmqGekkkqA4YqQdja4Lv/1ApKKC3+lxQoIYDTjtU4y0kUJ735dDAU/gbZj5MdJDjFjWyvPQrjl1ZwI4T9yS1ECJZmh/+T2B05hwjRlSqus6iQ4yJDXFjORVP1UkQXiEBqRrKEcxUUE2yZ/DI6P0YF9I87iGE/X3RoZipcZxZCaLjGrWK8T/vG6q+5dBRnmSasLx9FA/ZVALWJQBe1QSrNnYEIQlNVkhHiKJsDaVVU0J7uyX54l3Wr+qu62zWuO8bKMCDsAhOAYuuAANcAOawAMYPIJn8ArerCfrxXq3PqajC1a5swf+wPr8AeAglYo=</latexit>

⇢/RQ
<latexit sha1_base64="4D5fSkEGabLmT0YUyIhNJsAvdPs=">AAAB/nicbVBPS8MwHE39O+e/quDFS3AInmYrinobePG4iXWDtZQ0y7awNClJKozag1/FiwcVr34Ob34b060H3XwQeLz3+/F7eVHCqNKO820tLC4tr6xW1qrrG5tb2/bO7r0SqcTEw4IJ2YmQIoxy4mmqGekkkqA4YqQdja4Lv/1ApKKC3+lxQoIYDTjtU4y0kUJ735dDAU/gbZj5MdJDjFjWyvPQrjl1ZwI4T9yS1ECJZmh/+T2B05hwjRlSqus6iQ4yJDXFjORVP1UkQXiEBqRrKEcxUUE2yZ/DI6P0YF9I87iGE/X3RoZipcZxZCaLjGrWK8T/vG6q+5dBRnmSasLx9FA/ZVALWJQBe1QSrNnYEIQlNVkhHiKJsDaVVU0J7uyX54l3Wr+qu62zWuO8bKMCDsAhOAYuuAANcAOawAMYPIJn8ArerCfrxXq3PqajC1a5swf+wPr8AeAglYo=</latexit><latexit sha1_base64="4D5fSkEGabLmT0YUyIhNJsAvdPs=">AAAB/nicbVBPS8MwHE39O+e/quDFS3AInmYrinobePG4iXWDtZQ0y7awNClJKozag1/FiwcVr34Ob34b060H3XwQeLz3+/F7eVHCqNKO820tLC4tr6xW1qrrG5tb2/bO7r0SqcTEw4IJ2YmQIoxy4mmqGekkkqA4YqQdja4Lv/1ApKKC3+lxQoIYDTjtU4y0kUJ735dDAU/gbZj5MdJDjFjWyvPQrjl1ZwI4T9yS1ECJZmh/+T2B05hwjRlSqus6iQ4yJDXFjORVP1UkQXiEBqRrKEcxUUE2yZ/DI6P0YF9I87iGE/X3RoZipcZxZCaLjGrWK8T/vG6q+5dBRnmSasLx9FA/ZVALWJQBe1QSrNnYEIQlNVkhHiKJsDaVVU0J7uyX54l3Wr+qu62zWuO8bKMCDsAhOAYuuAANcAOawAMYPIJn8ArerCfrxXq3PqajC1a5swf+wPr8AeAglYo=</latexit><latexit sha1_base64="4D5fSkEGabLmT0YUyIhNJsAvdPs=">AAAB/nicbVBPS8MwHE39O+e/quDFS3AInmYrinobePG4iXWDtZQ0y7awNClJKozag1/FiwcVr34Ob34b060H3XwQeLz3+/F7eVHCqNKO820tLC4tr6xW1qrrG5tb2/bO7r0SqcTEw4IJ2YmQIoxy4mmqGekkkqA4YqQdja4Lv/1ApKKC3+lxQoIYDTjtU4y0kUJ735dDAU/gbZj5MdJDjFjWyvPQrjl1ZwI4T9yS1ECJZmh/+T2B05hwjRlSqus6iQ4yJDXFjORVP1UkQXiEBqRrKEcxUUE2yZ/DI6P0YF9I87iGE/X3RoZipcZxZCaLjGrWK8T/vG6q+5dBRnmSasLx9FA/ZVALWJQBe1QSrNnYEIQlNVkhHiKJsDaVVU0J7uyX54l3Wr+qu62zWuO8bKMCDsAhOAYuuAANcAOawAMYPIJn8ArerCfrxXq3PqajC1a5swf+wPr8AeAglYo=</latexit><latexit sha1_base64="4D5fSkEGabLmT0YUyIhNJsAvdPs=">AAAB/nicbVBPS8MwHE39O+e/quDFS3AInmYrinobePG4iXWDtZQ0y7awNClJKozag1/FiwcVr34Ob34b060H3XwQeLz3+/F7eVHCqNKO820tLC4tr6xW1qrrG5tb2/bO7r0SqcTEw4IJ2YmQIoxy4mmqGekkkqA4YqQdja4Lv/1ApKKC3+lxQoIYDTjtU4y0kUJ735dDAU/gbZj5MdJDjFjWyvPQrjl1ZwI4T9yS1ECJZmh/+T2B05hwjRlSqus6iQ4yJDXFjORVP1UkQXiEBqRrKEcxUUE2yZ/DI6P0YF9I87iGE/X3RoZipcZxZCaLjGrWK8T/vG6q+5dBRnmSasLx9FA/ZVALWJQBe1QSrNnYEIQlNVkhHiKJsDaVVU0J7uyX54l3Wr+qu62zWuO8bKMCDsAhOAYuuAANcAOawAMYPIJn8ArerCfrxXq3PqajC1a5swf+wPr8AeAglYo=</latexit>

Figure 16. Radial profiles of extremal surfaces γ̂ con
A intersecting Q (green curve) orthogonally

and anchored to a disk A of radius R◦ concentric to a circular boundary with radius RQ (see

section 4.1.1). Here α = 2π/3 (left panel) and α = π/3 (right panel). Any solid line provides

γ̂ con
A and the dashed line with the same colour gives the radial profile of the corresponding auxiliary

surface γ̂ con
A, aux. Here the values of k associated to γ̂ con

A (see figure 5) are k = 1 (red), k = 1000 (blue)

and k = 107 (black). For large k, both γ̂ con
A and the corresponding γ̂ con

A, aux tend to the hemisphere

with radius cot(α/2), which is tangent to Q at ρ = 0.

where in the last step we used the identity
√
k (ζ2∗ + 1)− ζ4∗ = −

√
k ηα cosα, which comes

from the explicit form of ζ∗ given in the first expression of (4.7).

As for the boundary term in (2.19), the vector b̃µ can be obtained from the vector

which is tangent to Q given in (B.10), finding

b̃µ =
(
b̃ρ, b̃z, b̃φ

)
=

(√
1−

(
ρ∗
RQ

ζ∗ sinα− cosα

)2

,
ρ∗
RQ

ζ∗ sinα− cosα , 0

)
(B.23)

that coincides with (B.9) evaluated at P∗. From the component b̃z in (B.23) and the fact

that ds̃ = ρ∗dφ along ∂γ̂Q, we find that the boundary contribution in (2.19) becomes∫
∂γ̂Q

b̃z

z
ds̃ = 2π

b̃z

ζ∗
= 2π

(
ρ∗
RQ

sinα− cosα

ζ∗

)
(B.24)

which reduces to (4.20), once the second expression of (4.7) has been employed. Then,

plugging (B.22) and (4.20) into (2.19), one obtains

FA = Fcon − 2π
ζ2∗ −

√
k
[
ζ2∗ + (sinα)2

]
√
k (ζ2∗ + 1)

(B.25)

where, by using (B.12) and the identity given in the text below (B.22), it is straightforward

to observe that the numerator in the r.h.s. vanishes.

B.3 Limiting regimes

In the remaining part of this appendix we provide some technical details about the limiting

regimes k → 0 and k → ∞ of the analytic expressions for R◦/RQ and Fcon (see (4.9)
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and (4.13) respectively). The results of this analysis have been reported in (4.10), (4.11)

and (4.16).

As for the ratio R◦/RQ, whose analytic expression is (4.9) with χ(ζm) given by (4.4),

we have to study q±,k(ζ∗) and q±,k(ζm) in these limiting regimes.

In order to find q±,k(ζ∗) for k → 0, let us write q±,k(ζ∗) from the integral (4.2) evaluated

for ζ = ζ∗ (see (4.7)) and adopt ζ∗λ as integration variable because it leads us to a definite

integral whose extrema are 0 and 1. By first expanding the integrand of the resulting

formula and then integrating separately the terms of the expansion, we find

q±,k(ζ∗) = ±
[
E
(

arcsin(
√

sinα )
∣∣− 1

)
− F

(
arcsin(

√
sinα )

∣∣− 1
)] 4
√
k +

sinα

2

√
k +O

(
k3/4

)
(B.26)

Adapting this analysis to q±,k(ζm), we obtain

q±,k(ζm) = ±
(
E(−1)−K(−1)

)
4
√
k +

√
k

2
+O(k3/4) (B.27)

By employing the expansions (B.26) and (B.27) into (4.4) and (4.9), one gets the re-

sult (4.10).

As for the k →∞ regime, for the integrals (4.2) we have

q±,k(ζ) =
1

2
log(1 + ζ2) +O

(
1/
√
k
)

(B.28)

Moreover, from (4.3) and (4.7) notice that both ζ∗ and ζm diverge, with ζ∗/ζm → 1. Thus,

being ζ = z/ρ with finite z for the surfaces that we are considering, we have that ρ∗ → 0 and

ρm → 0. These observations tell us that, in the regime of large k, the two branches in (4.1)

become the same arc of circle from ρ = R◦ to ρ = 0 (see the black curves in figure 16). In

particular, we have Raux → R◦. By taking the limit of (2.25) for large ζ and employing the

identity cotα+cscα = cot(α/2), one finds that P∗ = Pm = RQ(0, cot(α/2)) in this regime.

Then, being the limiting curve a circle of radius R◦, we have that RQ cot(α/2) = R◦. The

latter relation provides (4.11), which is the asymptotic behaviour of the curves in figure 5.

In figure 16 we show some examples of extremal surfaces (which are not necessarily the

global minimum of the area) as k increases for two fixed values of α, highlighting the limit

of large k, which corresponds to the black curves.

In order to study the subleading term of area of the extremal surfaces as k → 0 or

k →∞, we find it convenient to employ the expressions (2.19), (4.18) and (4.20). Indeed,

since Fk,±(ζ∗) and Fk,±(ζm) can be written through the integral representation (B.20) of

the functions Fk,±(ζ), we can adapt the above analysis to this case (e.g. for Fk,±(ζ∗) one

first introduces ζ∗ξ as integration variable, obtaining a definite integral between 0 and 1,

then expands the integrand of the resulting expression and finally integrates the various

terms of the expansion), finding

Fk,±(ζ∗) =
1
4
√
k

[
E
(

arcsin(
√

sinα )
∣∣− 1

)
− F

(
arcsin(

√
sinα )

∣∣− 1
)]
± sinα

+

(
1

4
F
(

arcsin(
√

sinα )
∣∣− 1

)
− ηα cosα

√
sinα

)
4
√
k +O

(√
k
)

(B.29)
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and

Fk,±(ζm) =
E(−1)−K(−1)

4
√
k

± 1 +
K(−1)

4
4
√
k +O(

√
k) (B.30)

By using these expansions into (4.18), together with (4.20) into (2.19), the expansion (4.16)

is obtained.

The asymptotic value 2π for large k in figure 7 can be found by employing that the

profile of γ̂con
A in this regime is the one of the hemisphere in H3 anchored to R◦ (see also

the appendix D in [45]). Since the finite term of the area for the hemisphere in H3 is 2π,

we can easily conclude that the curves in figure 7 tend to this value as k →∞.

C On the infinite wedge adjacent to the boundary

In the gravitational setup described in section 2.2.1, let us consider an infinite wedge A

in (6.7), which is adjacent to the flat boundary and whose opening angle is ω. As for the

corresponding holographic entanglement entropy, by a direct evaluation of the area A[γ̂ε],

it has been found that (1.5) holds and the analytic expression of the corner function Fα(ω)

has been found [87]. In this appendix we provide some technical details underlying the

discussion of section 6.2, where we have shown that the analytic expression for Fα(ω) can

be recovered also through (2.22).

Let us consider first the line integral over ∂γ̂Q occurring in (2.22). The curve ∂γ̂Q is a

line on Q which can be parameterised as follows [87]

∂γ̂Q : (z, x, y) = ρ
(
− sinφ∗ tanα , sinφ∗ , cosφ∗

)
0 6 ρ 6 L (C.1)

where φ∗ is the angular coordinate characterising the projection of ∂γ̂Q on the z = 0 plane.

The line element ds̃ induced by the flat metric in (2.22) reads

ds̃ =
√
x′2 + y2 + z′2 dρ =

√
x′2 + cos2 α y′2 dρ

| cosα|
= − ηα

cosα

√
sin2 φ∗ + cos2 α cos2 φ∗ dρ

(C.2)

By employing (C.1) and (C.2), the line integral over ∂γ̂Q in (2.22) becomes

− cosα

∫
∂γ̂Q

1

z
ds̃ = − cotα

∫ L

ρε

√
1 + cos2 α cot2 φ∗

ρ
dρ (C.3)

where sign(sinφ∗) = ηα has been used. The integral in the r.h.s. of (C.3) has been

regularised by introducing the lower extremum ρε, which is defined by the condition

ε = − ρε sinφ∗ tanα, obtained by intersecting ∂γ̂Q in (C.1) with the plane z = ε. The

radial integral (C.3) can be easily evaluated, finding (6.18) at leading order as ε→ 0.

In order to compute the surface integral over γ̂ε in (2.22), we need the unit normal

vector ñν . Up to a normalization factor, this vector is given by the gradient of the equation

C = z−ρ/q(φ) = 0, where q(φ) has been introduced in (6.8) and characterises the minimal

surface. By imposing the normalization condition ñµñ
µ = 1, we get

ñµ =
1√

q4 + q2 + q′2

(
q2,−q, q′ρ

)
(C.4)
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where the index µ spans the cylindrical coordinates (z, ρ, φ) defined in section 6.2. The

first derivative q′ of q with respect to φ can be expressed in term of q and q0 with the help

of the integral of motion associated to the cyclic coordinate φ [22, 23, 87], finding that

(q′)2

q2
= (q2 + 1)

(
q4 + q2

q40 + q20
− 1

)
q > q0 (C.5)

By using (C.4) and (C.5) the integrand of the integral over γ̂ε in (2.22) can be written as

(ñz)2

z2
=

q6

ρ2 (q4 + q2 + q′2)
=
q2(q40 + q20)

(q2 + 1)2ρ2
(C.6)

In terms of the cylindrical coordinates introduced in section 6.2, the area element induced

by the flat metric reads

dÃ =

√
q′2 + q4 + q2

q2
ρ dρ dφ =

q2 + 1√
q40 + q20

ρ dρ dφ (C.7)

Plugging (C.6) and (C.7) into the surface integral over γ̂ε in (2.22), it reduces to the

following double integral∫
γ̂ε

(ñz)2

z2
dÃ =

∫ ρmax

ρmin

1

ρ
dρ

∫ ωε

φ∗

q2
√
q40 + q20

q2 + 1
dφ (C.8)

The integration domain in the angular integral is defined by the angle φ∗ characterising

∂γ̂Q and ωε ≡ ω − δε, where δε ∼ 0 is the angle between the border of the wedge at

φ = ω and the straight line in the z = 0 half plane connecting the tip of the wedge to the

intersection point between the circle given by ρ = ρmax and the projection of γ̂A ∩ {z = ε}
on the half plane z = 0. In the radial direction we have introduced the large cutoff ρmax

to regulate the infrared divergences of this integral, while the lower extremum ρmin = q0 ε

(being q0 the minimum value of q) controls the UV behaviour. The cutoff ρmax is related

to L in (6.7) and to δε through the relation L = ρmax cos δε , and to ε through the condition

ρmax = ε q(ω − δε) (C.9)

In order to perform the angular integration in (C.8), it is convenient to change the inte-

gration variable from φ to q. However, since q is not monotonic as function of φ for some

values of α, we have to split the integral into two separate contributions (depending on the

sign of cotα) as follows∫
γ̂

(ñz)2

z2
dÃ =

∫ ρmax

ρmin

dρ

ρ

(∫ ρ/ε

q0

q2
√
q40 + q20

(q2 + 1) q′
dq − ηα

∫ q∗

q0

q2
√
q40 + q20

(q2 + 1) q′
dq

)
(C.10)

where (C.5) can be used to express q′. By introducing the integration variable ρ̃ = ρ/ε in

the radial integration, we get∫
γ̂

(ñz)2

z2
dÃ =

∫ ρmax/ε

ρmin/ε

dρ̃

ρ̃

(∫ ρ̃

ρmin/ε

q2
√
q40 + q20

(q2 + 1) q′
dq − ηα

∫ q∗

q0

q2
√
q40 + q20

(q2 + 1) q′
dq

)
≡ I1 − ηα I2

(C.11)
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where I2 is defined as the integral multiplying ηα, while I1 is the remaining one.

Considering I1 first, in order to single out the logarithmic divergence we exchange the order

of integration between ρ̃ and q, finding that

I1 =

∫ ρmax/ε

ρmin/ε

q2
√
q40 + q20

(q2 + 1) q′
dq

∫ ρmax/ε

q

dρ̃

ρ̃
(C.12)

Now the integration over ρ can be easily performed, obtaining

I1 =

∫ ρmax/ε

ρmin/ε

√
q40 + q20

(
q2

(q2 + 1) q′
log(ρmax/ε)−

q2 log q

(q2 + 1) q′

)
dq (C.13)

Since L is large, the dominant contribution comes from the first integral (the second one

is finite in this limit). In particular, we find

I1 =

( ∫ +∞

q0

q2
√
q40 + q20

(q2 + 1) q′
dq

)
log(L/ε) + · · · (C.14)

where the integral multiplying the logarithmic divergence provides an integral representa-

tion of the function F (q0) given in (6.16) in terms of elliptic function, i.e.∫ +∞

q0

q2
√
q40 + q20

(q2 + 1) q′
dq = F (q0) (C.15)

The second integral I2 in (C.11) can be also calculated in closed form in terms of elliptic

functions. Expanding the result for large L, one finds that the dominant contribution is

the following logarithmic divergence

I2 =

(
S(q∗, q0) +

√(
q2∗ − q20

) (
q2∗ + q20 + 1

)
q2∗ + 1

)
log(L/ε) + · · · (C.16)

where S(q∗, q0) has been defined in (6.21).

Combining (C.14) and (C.16) into (C.11), we get the logarithmic divergence provided

by the surface integral over γ̂ε in (2.22), which is given by (6.19) and (6.20). By taking into

account also the logarithmic divergence provided by the line integral over ∂γ̂Q (see (6.18)),

for the coefficient of log(L/ε) in the subleading term FA we find

Fα(q0) = F (q0)− ηαS(q∗(α, q0), q0) (C.17)

− ηα

√(
q2∗ − q20

) (
q2∗ + q20 + 1

)
q2∗ + 1

−
√

1 + cos2 α cot2 φ∗(α, q0) cotα

where the last two terms in (C.17) cancel, once the explicit expressions for φ∗(α, q0) and

q∗(α, q0) (see (6.13) and (6.14)) have been used. Hence, Fα(q0) simplifies to

Fα(q0) = F (q0)− ηα S(q∗(α, q0), q0) (C.18)

In order to show that (C.18) coincides with (6.15), we have to prove that S(q∗, q0) =

−G(q∗, q0). This follows from two observations that can be easily verified: the function

obtained by taking the derivative of (6.17) with respect to q and then evaluating it for q = q∗
is the opposite of the derivative of (6.21) with respect to q∗ and S(q0, q0) = G(q0, q0) = 0

for any α.
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D Auxiliary surfaces

In this appendix we discuss a way to relate an extremal surface γ̂A anchored to the entan-

gling curve of a region A in AdS4/BCFT3 to an extremal surface in AdS4/CFT3 anchored

to a corresponding entangling curve in R2, which is the spatial slice of the CFT3, being

the gravitational background the one obtained by removing Q. We will discuss only the

simplest cases where a spatial section of the gravitational spacetimes is given by H3 or

part of it.

In AdS4/BCFT3 setups of section 2.2.1 and section 2.2.2, if the extremal surface γ̂A
does not intersect the boundary Q, then it can be also seen as an extremal surface in

H3. Instead, when γ̂A intersects orthogonally Q along some curve ∂γ̂Q (since we mainly

consider extremal surfaces intersecting Q orthogonally, in this appendix we denote by γ̂A
the surfaces γ̂ con

A of section 4.1.1), we can consider the unique auxiliary surface γ̂A, aux such

that γ̂A∪ γ̂A, aux is an extremal surface in H3 and γ̂A, aux is orthogonal to Q along ∂γ̂Q. The

extremal surface γ̂A ∪ γ̂A, aux in H3 is anchored to ∂A aux of some auxiliary region A aux in

the plane R2 at z = 0.

As first example, let us consider an infinite strip A of width ` adjacent to the flat

boundary in the setup of section 2.2.1. In this case, A aux is a strip whose width is [87]

`aux =
2
√
π Γ(34)

Γ(14) g(α)
` (D.1)

where g(α) has been defined in (3.2). We remark that the strip A is not necessarily a

subset of the A aux. Indeed, for α 6 αc, aux we have that A ⊆ A aux, while A aux ⊆ A

when α > αc, aux. The value of αc, aux is defined by imposing that `aux = `, which gives

g(αc, aux) = 2
√
π Γ(34)/Γ(14). From the latter result and (3.2), for α ∈ (0, π) we have

g(π − α) = g(αc, aux)− g(α) (D.2)

By specifying this relation to α = αc, the critical value of α defined in section 3 as the zero

of g(α), one finds that αc, aux = π − αc.
Another interesting configuration is given by a disk A disjoint from the boundary which

is either flat or circular (see section 4). In these cases the extremal surfaces γ̂A, aux ∪ γ̂A are

anchored to a pair of circles and they have been studied in [45, 96–99] for the gravitational

background given by H3. In the setup of section 2.2.2, considering a disk A of radius R◦
concentric to a circular boundary of radius RQ as in section 4.1, we have that γ̂A ∪ γ̂A, aux
is an extremal surface in H3 anchored to the boundary of an annulus characterised by the

radii R◦ and Raux > R◦ (see also (4.1)). The ratio R◦/Raux is given by (4.4).

Partitioning H3 into the part M3, introduced in section 2.1, and its complement M3,

we have that part of γ̂A, aux belongs to M3 because γ̂A, aux ⊥ Q along ∂γ̂Q. It can happen

that the intersection between γ̂A, aux and M3 is non trivial (see e.g. the right panel in

figure 10). In figure 17 we show the ratio Raux/RQ as function of k for some values of

α. Let us introduce the critical value αc, aux such that Raux/RQ < 1 for every k at fixed

α > αc, aux. For this configuration we observe numerically that αc, aux = π−αc, namely the

same relation found above for the strip adjacent to the flat boundary. Three qualitatively
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Figure 17. The ratio R aux/RQ for a disk A concentric to a circular boundary of radius RQ (see

section 4.1.1 and appendix D) in terms of the parameter k, obtained by combining (4.4) and (4.9).

For α > π − αc we have that R aux 6 RQ, therefore part of γ̂A, aux belongs to the gravitational

spacetime bounded by Q.

different situations are observed (see figure 17): when α 6 π/2 we have Raux > RQ and

γ̂A, aux ∩M3 = ∅, for π/2 6 α 6 π − αc it is possible that γ̂A, aux ∩M3 6= ∅, while when

α > π − αc we have that some part of γ̂A, aux always belongs to M3 because Raux < RQ.

By employing the map (A.3), analogous considerations can be done for the extremal

surfaces anchored to a disk A disjoint from a flat boundary, considered in section 4.2. The

extremal surface is anchored to a pair of circles in R2 and one of them is ∂A. For this

configuration explicit examples are given in figure 10 and figure 11, where γ̂A, aux are the

shaded surfaces.

As for the auxiliary surfaces corresponding to the extremal surfaces anchored to the

singular domains considered in section 6 we refer the reader to the exhaustive discussion

reported in [87]. Here we just recall that for the half disk adjacent to the boundary (see

section 6.1) γ̂A∪γ̂A, aux is the hemisphere and for the infinite wedge adjacent to the boundary

(see section 6.2) γ̂A ∪ γ̂A, aux is the extremal surface anchored to an infinite wedge in R2

found in [22, 23].
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