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ON THE NUMBER OF FLATS TANGENT TO CONVEX HYPERSURFACES
IN RANDOM POSITION

KHAZHGALI KOZHASOV AND ANTONIO LERARIO

ABSTRACT. Motivated by questions in real enumerative geometry [4, 6, 11, 12, 13, 14, 15]
we investigate the problem of the number of flats simultaneously tangent to several convex
hypersurfaces in real projective space from a probabilistic point of view (here by “convex hy-
persurfaces” we mean that these hypersurfaces are boundaries of convex sets). More precisely,
we say that smooth convex hypersurfaces X1, ... s Xy, C RP", where di, , = (k+1)(n —k),
are in random position if each one of them is randomly translated by elements g1, ... s 9
sampled independently from the orthogonal group with the uniform distribution. Denoting by
(X1, ., Xdk:,n) the average number of k-dimensional projective subspaces (k-flats) which
are simultaneously tangent to all the hypersurfaces we prove that

dk n

Q0 (X7)
(X1, Xy, ) = Okyn H || i)

Sch(k,n)

where 0y, , is the expected degree from [6] (the average number of k-flats incident to dj,,, many
random (n — k — 1)-flats), |[Sch(k,n)| is the volume of the Special Schubert variety of k-flats
meeting a fixed (n — k — 1)-flat (computed in [6]) and [ (X)| is the volume of the manifold
Q(X) C G(k,n) of all k-flats tangent to X. We give a formula for the evaluation of |24 (X)|
in terms of some curvature integral of the embedding X < RP™ and we relate it with the
classical notion of intrinsic volumes of a convex set:

12,(00)]
—— =4V, __1(C), k=0,...,n—1.
Sch(k, n))| n—k-1(C)
As a consequence we prove the universal upper bound:
Tk(Xh ey Xdk,n) S 6k,n . 4dk,n .

Since the right hand side of this upper bound does not depend on the specific choice of the
convex hypersurfaces, this is especially interesting because already in the case k = 1,n = 3

for every m > 0 we can provide examples of smooth convex hypersurfaces Xi,..., X4 such
that the intersection Q1(X1)N---NQ1(X4) C G(1,3) is transverse and consists of at least m
lines.

Finally, we present analogous results for semialgebraic hypersurfaces (not necessarily con-
vex) satisfying some nondegeneracy assumptions.

1. INTRODUCTION

1.1. Flats simultaneously tangent to several hypersurfaces. Given dy, = (k+1)(n—k)
projective hypersurfaces Xi,..., Xy, , C RP" a classical problem in enumerative geometry is to
determine how many k-dimensional projective subspaces of RP" (called k-flats) are simultane-
ously tangent to Xi,...,Xq, .-

Geometrically we can formulate this problem as follows. Let G(k, n) denote the Grassmannian
of k-dimensional projective subspaces of RP" (note that di , = dimG(k,n)). If X C RP" is a
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2 KHAZHGALI KOZHASOV AND ANTONIO LERARIO

smooth hypersurface, we denote by Q(X) C G(k,n) the variety of k-tangents to X, i.e. the set
of k-flats that are tangent to X at some point. The number of k-flats simultaneously tangent to
hypersurfaces X1,..., Xg, , C RP" equals

#Qk(Xl) n---N Qk(Xdk,n)-

Of course this number depends on the mutual position of the hypersurfaces X1, ..., Xy, , in the
projective space RP".

In [13] F.Sottile and T.Theobald proved that there are at most 3 - 2"~! real lines tangent to
2n — 2 general spheres in R™ and they found a configuration of spheres with 3 - 2"~ common
tangent lines. They also studied [14] the problem of k-flats tangent to dj, , many general quadrics
in RP" and proved that the “complex bound” 2% . deg(G¢(k,n)) can be attained by real
quadrics. See also [4, 11, 12, 15] for other interesting results on real enumerative geometry of
tangents.

An exciting point of view comes by adopting a random approach: one asks for the expected
value for the number of tangents to hypersurfaces in random position. We say that the hyper-
surfaces X1,...,Xq, , C RP" are in random position if each one of them is randomly translated
by elements g1, ..., gq, , sampled independently from the orthogonal group O(n + 1) endowed
with the uniform distribution. The average number 74(X1,..., Xq, ,) of k-flats tangent to
X1,...,Xg,, CRP" in random position is then given by

Tk(Xl, ceey Xdk,n) = Egh»»»-,gdk,nEO(nJrl)# Qk(ngl) N---N Qk(gdk,n'Xdk,n)'

The computation and study of properties of this number is precisely the goal of this paper.

A special feature of the current paper is that we concentrate on the case when the hypersur-
faces are boundaries of convex sets. The results we present, however, hold in higher generality
as we discuss in Section 5.

Definition 1.1 (Convex hypersurface). A subset C of RP" is called (strictly) convex if C' does
not intersect some hyperplane L and it is (strictly) convex in the affine chart RP™ \ L ~ R™.

A smooth hypersurface X C RP" is said to be convex if it bounds a strictly conver open set of
RP".

Remark 1.2 (Spherical versus projective geometry). Our considerations in projective spaces run
parallel to what happens on spheres, with some small adaptations. A set C' C S™ is called
(strictly) convex if it is the intersection of a (strictly) convex cone K C R™™! with S™. A
smooth hypersurface X C S™ is said to be convez if it bounds a strictly convex open set of S™.
For the purposes of enumerative geometry, the notion of flats should be replaced with the one
of plane sections of S™. Computations involving volumes and the generalized integral geometry
formula also require very small modifications (mostly multiplications by a factor of two) and we
leave them to the reader.

1.2. Probabilistic enumerative geometry. Recently, the second author of the current paper
together with P. Biirgisser [6], have studied the similar problem of determining the average
number of k-flats that simultaneously intersect dy, , many (n — k — 1)-flats in random position in
RP™. They have called this number the ezpected degree of the real Grassmannian G(k, n), here
denoted by dy,, and have claimed that this is the key quantity governing questions in random
enumerative geometry of flats. (The name comes from the fact that the number of solutions of
the analogous problem over the complex numbers coincides with the degree of Gg(k,n) in the
Pliicker embedding. Note however that the notion of expected degree is intrinsic and does not
require any embedding.)
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For reasons that will become more clear later, it is convenient to introduce the special Schubert
variety' Sch(k,n) C G(k,n) consisting of k-flats in RP™ intersecting a fixed (n—k—1)-flat. Here
and below we endow the Grassmannian with the Riemannian metric induced by the spherical
Pliicker embedding. The smooth locus of a stratified subset of the Grassmannian inherits a
Riemannian metric as well, and the volume is computed with respect to this metric, see Section
2.1 for more details. The volume of the special Schubert variety is computed in [6, Theorem 4.2]
and equals

[Sch(k, n)| = |G(k,n)| - 2

where |G(k, n)| denotes the volume of the Grassmannian (see Section 2.1). The following theorem
relates our main problem to the expected degree (see Theorem 4.1).

Theorem (Probabilistic enumerative geometry). The average number of k-flats in RP™ simul-

taneously tangent to convexr hypersurfaces X1,...,Xq, , in random position equals
dk,n
1% (X3)|
Tk(Xla"';Xdkn = H |Schk5 n

where |Q(X)| denotes the volume of the manifold of k-tangents to X .

The number Jj, ,, equals (up to a multiple) the volume of a convex body for which the authors
of [6] coined the name Segre zonoid. Except for do, = dp—1,,» = 1, the exact value of this
quantity is not known, but it is possible to compute its asymptotic as n — oo for fixed k. For
example, in the case of the Grassmannian of lines in RP"™ one has [6, Theorem 6.8]

n2\"
(1.1) O1n = 3;%/2 : % : (Z) (1+0(n™).

The number d; 3 (the average number of lines meeting four random lines in RP?) can be written
as an integral [6, Proposition 6.7], whose numerical approximation is d; 3 = 1.7262.... It is an
open problem whether this quantity has a closed formula (possibly in terms of special functions).

This reduces our study to the investigation of the geometry of the manifold of tangents, for
which we prove the following result (Propositions 3.1 and 3.2 below).

Proposition (The volume of the manifold of k-tangents). For a convex hypersurface X C RP"
we have

Q0] _ DT (%55
Sk~ ot /Xak(x)dVX.

where o : X — R is the k-th elementary symmetric polynomial of the principal curvatures of
the embedding X — RP".

Remark 1.3. After this paper was written it was pointed out to us by P. Biirgisser that this result
can be also derived using a limiting argument from [2], where the tube neighborhood around
Q(X) is described (see also [1, Lemma 6.5.1]).

Ezample 1.4 (Spheres in projective space). Let S,, = {2 + --- + 22 = (tanr;)? 22} C RP" be
a metric sphere in RP™ of radius r; € (0,7/2), ¢ =1,...,dk, (see Figure 1). Since all principal

I'Note that in the notation of [6] we have Sch(k,n) = X(k 4+ 1,n + 1) and Ok,n =edegG(k+1,n + 1).
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FIGURE 1. The equation 2% + --- + 22 = (tanr)?z? defines in RP" a metric
sphere of radius r, i.e. the set of all points at distance r from a fixed point.

curvatures of Sy, are constants equal to cotr; and since |S,,| = %(sin ;)" ! Corollary 3.2
2
gives
Qi (S, o (2t
| k( r)| _ ( 2 ) . (COSTi)k(SinTi)nikil,

Seblk,m] ~ T(52)T (25
Combining this into Theorem 4.1 we obtain
dk n
; o (n_+1)
(1.2) Tk(Srys- vy Sry ) =0kn - < - 2n_k - (cos )k (sinr)" R
o) = e L gy (o

For a fixed k it is natural to find the maximum of the expectation in the case when all the
hypersurfaces are spheres. For example, when k& = 1 one can easily see that cosr;(sinr;)" 2
is maximized at r; = arccos \/% =35 - # + O(n~%/2), which is just a bit smaller than 5

Therefore,

syl 4 (3)7 rey

max o = —— -
re(0,n/2) [Sch(k,n)| 7T (n—1)2 I (
1
2

and, together with (1.1) and (1.2), this gives

1 2n—2
8\? 1
Spryeeey Sy =610 || — 1+ —+0(n?
rl,...,r$%§e(0,%)71( 19 ) 2n72) 1, <<67T) ( + m + (n )))

-5 T <2_7T> (1+07).

We observe that a hypersurface Sy, which is a sphere in some affine chart U ~ R”, i.e.
Syr={zeR": 3"  (z; —y;)® = r?}, is a convex hypersurface in RP", but it is not a sphere
with respect to the projective metric unless it is centered at the origin (y = 0); and, vice versa,

a metric sphere in RP™ does not need to be a sphere in an affine chart.

Remark 1.5 (The semialgebraic case). The theorem above remains true in the case of semialge-
braic hypersurfaces Xi,...,Xq, , C RP" satisfying some mild non-degeneracy conditions (see
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Section 5 for more details). Specifically it still holds true that

di,n |Qk
Tk(Xla""Xdk n = H |SCh k n

but the volume of the manifold of k-tangents has a more comphcated description:

2] _ (”kl)F(%)F(”T’“)/
Seh(hn)] T | B acgr x| Ba () Vs,

where | B, (A)| denotes the absolute value of the determinant of the matrix of the second fun-
damental form of X — RP" restricted to A € Gry(T,X) and written in an orthonormal basis
of A (see Section 3), and the expectation is taken with respect to the uniform distribution on
Gry(TyX) ~ Gr(k,n — 1).

1.3. Relation with intrinsic volumes. The quantities [{2;(X)| offer an alternative interesting
interpretation of the classical notion of intrinsic volumes. Recall that if C is a convex set in RP",
the Spherical Steiner formula [7, Equation (9)] allows to write the volume of the e-neighborhood
Urpr (C,€) of C'in RP" as

n—1
Urp (C,e)] = |C+ Y frle)lS*|IS"*HVi(C),
k=0
where
(1.3) fi(e) = / (cost)*(sint)" "1 *at.
0

The quantities Vy(C), ..., V,—1(C) are called intrinsic volumes of C. What is remarkable is that
when C' is smooth and strictly convex, |Q(9C)| coincides, up to a constant depending on k and
n only, with the (n — k — 1)-th intrinsic volume of C' (again this property can be derived by a
limiting argument from the results in [2]).

Proposition (The manifold of k-tangents and intrinsic volumes). Let C' C RP™ be a smooth
strictly convex set. Then?

1 Q4 (00)]
Viegk—1(C) ==+ ——F——, k=0,...,n—1
1) = 1 S| "
This interpretation offers possible new directions of investigation and allows to prove the
following upper bound (see Corollary 4.2)

Tk(Xl, - 7Xdk,n) < 5k,n . 4dk’",

where the right-hand side depends only on k and n. However, already for n = 3, as observed by
T. Theobald there is no upper bound on the number of lines that can be simultaneously tangent
to four convex hypersurfaces in RP? in general position (see Section 6 for details).

1.4. Related work. Enumerative geometry over the field of complex numbers is classical. Over
the real numbers it is a much harder subject, due to the nonexistence of generic configurations.
From the deterministic point of view we mention, among others, the papers that are closest to
our work and that gave a motivation for it: [4, 11, 12, 13, 14, 15]. The probabilistic approach
to real enumerative geometry was initiated in [6] for what concerns Schubert calculus, and in [3]
for the study of the number of real lines on random hypersurfaces.

2As pointed out by an anonymous referee, this formula already appears in [1, Lemma 6.5.1] (up to the
identification of the involved constants with the volume of Sch(k,n)).
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2. PRELIMINARIES

By G(k,n) ~ Gr(k + 1,n + 1) we denote the Grassmannian of (k + 1)-planes in R"™! (or,
equivalently, the set of projective k-flats in RP"™). Both notations are used throughout the article.
The dimension of G(k, n) is denoted by di , := dim G(k,n) = (k + 1)(n — k).

2.1. Metrics & volumes. The Grassmannian Gr(k,n) is endowed with an O(n)-invariant rie-
mannian metric through the Pliicker embedding

k
i:Gr(k,n) — P </\R">
where P( /\]C R™), the projectivization of the vector space /\k R™, is endowed with the standard
metric. Using this we locally identify Gr(k,n) with the set of unit simple k-vectors vq A - -+ A vg,
where vy, ..., vy are orthonormal in R™ (see [10] for more details).

A canonical left-invariant metric on the orthogonal group O(n) is defined as
1
(A, B) = gtr(AtB), A, B e€T10(n)
(

Denoting by | X| the total volume of a Riemannian manifold X (whenever it is finite) one can
prove the following formulas

_ |O(n)| O +1)| | o - ot
|Gr(k,n)| = Om)0m -k |0 =|s", o) =2, |S |_@'

For an m-dimensional semialgebraic subset X of Gr(k,n), viewed as a semialgebraic subset of

RP(z)_l using the Pliicker embedding, by |X| we denote the m-dimensional volume of the set
of smooth points X, of X.

2.2. Probabilistic setup. Given a Riemannian manifold Y and a smooth function f:Y — R
we denote by fY f(y)dVy the integration of f with respect to the Riemannian volume density
of Y. We recall that there is a unique O(n)-invariant probability distribution on O(n), Gr(k, n)
and S™ called the uniform distribution (see [6, 10] for more details). For a measurable subset
AC X e{O(n),Gr(k,n),S™} it is defined as

1
]P’(A) = _|X| /1AdVX.
X

In the sequel all probabilistic concepts are referred to the above listed spaces endowed with the
uniform distribution.

Recall that random variables ¢, ...,gq are said to be mutually independent if their joint
cumulative distribution is the product of the cumulative distributions.
Remark 2.1. For a measurable A C Gr(k,n) the set A= {g € O(n) : g"'R¥F € A} is measurable
in O(n) and

1

1 o

R — 14dV, =—— [ 1;dVom =P(4

|GT’(I€,TL)| / A Gr(k,n) |O(n)| / A O(n) ( )
Gr(k,n) O(n)

P(A)

We will implicitly use this identification when needed.
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2.3. Integral geometry of coisotropic hypersurfaces of Grassmannian. A smooth (re-
spectively semialgebraic) hypersurface H of G(k,n) is said to be coisotropic if for any (respec-
tively for any smooth point of codimension one) A € H the normal space Ny\H C TaG(k,n) ~
Hom(A, A1) is spanned by a rank one operator.

For k,m > 1 let u; € S(Rk),vj € SR™), j =1,...,km be mutually independent random unit
vectors. Then the average scaling factor a(k, m) is defined as

alk,m) :=FE|(u1 @ v1) A+ A (Ugm @ vgm)]|

where || - || is induced from the standard scalar product on R¥ @ R™: (u; ® vy, us ® v2) =
(u1,u2)(v1,v2). We will use the generalized Poincaré formula for coisotropic hypersurfaces of
G(k,n) proved in [6, Thm. 3.19].

Theorem 2.2. Let Hi,...,Ha, , be coisotropic hypersurfaces of G(k,n). Then

dig,n
T Ml
E N---N =alk+1,n—k)|G(k —_
#(917_[1 gdk,ank,n) a( + y ) | ( 7n)| 11;[1 |G(k5, TL)|
where g1, ..., 9d,, € O(n+1) are mutually independent randomly chosen orthogonal transforma-

tions, i.e., (91,.--,9dy.,) i sampled from (O(n + 1))d with the product probability distribution.

Remark 2.3. This theorem expresses the average number of points in the intersection of dj
many hypersurfaces of G(k,n) in random position in terms of the volumes of the hypersurfaces
and the average scaling factor a(k + 1,n — k), which only depends on the pair (k,n).

2.4. Intersection of real special Schubert varieties. A real special Schubert variety Sch(k,n)
consists of all projective k-flats in RP™ that intersect a fixed projective (n — k — 1)-flat II:

Sch(k,n) = {A € G(k,n): ANIIL # 2}

It is a coisotropic algebraic hypersurface of G(k,n). In [6] P. Biirgisser and the second author of
the current article had introduced a notion of expected degree dy, ,, of the Grassmannian G(k, n).
It is defined as the average number of projective k-flats in RP™ simultaneously intersecting d, ,,
many random projective (n — k — 1)-flats independently chosen in G(n — k — 1,n). In other
words,

Ok = E#(g1Sch(k,n) N ---N ga, ,Sch(k,n)).
Using the formula in [6, Thm. 4.2] for the volume of Sch(k,n):

D(Eg2) T(nbt)

P(4) T(%5%)

[Sch(k,n)| = |G(k,n)|

and Theorem 2.2 one can express

e di,n
r(&2)r(e=+)
+1
2

Sk = alk + 1,1 — k) |G(k,n)| <r(’“—) (k)

Remark 2.4. The exact value of 0y, (equivalently a(k+1,n — k)) remains unknown for 0 < k <
(n —1). See [6, Sect. 6] for various asymptotics of o p.

Remark 2.5. Note that one can define a notion of “expected degree” even over the complex
numbers, by sampling complex projective subspaces uniformly from the complex Grassmannian.
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Denoting by cx,, € H?(G®(k,n);Z) the first Chern class of the tautological bundle and by
[G®(k,n)] € Haa, ,(G®(k,n); Z) the fundamental class we have that

the expected degree over the complex numbers = <(ck7n)d’“’", [GE(k, n)])

The resulting number also equals the degree of G(k, n) in the Pliicker embedding.

3. THE MANIFOLD OF TANGENTS

Let X = OC be a convex hypersurface of RP" (bounding the strictly convex open set C' C
RP™) and let p : Gri(X) — X be the Grassmannian bundle of k-planes of X (this is a smooth
fiber bundle over X whose fiber p~!(z) is the Grassmannian Gry (T, X) ~ Gr(k,n — 1)). Define
the kth Gauss map

P Grg(X) — G(k,n)
(x,A) — P(Span{z, A})

here we identify the tangent space T, RP™ with the hyperplane - C R"*! and thus A and x (a
line in R"*1) are both subspaces of R"*1.

With this notation we observe that ¢ is a smooth embedding and that Q(X), the set of all
k-flats tangent to X, coincides, by definition, with im(v)).

Let us choose a unit normal vector field v to X C RP" pointing inside the convex region C.
Then the second fundamental form B of X is positive definite everywhere. For (x,A) € Gri(X)
and an orthonormal basis vy, . .., v of A let us denote by B, (A) = det(B(v;,v,)) the determinant
of the k x k matrix {B(v;,v;)}. Note that B,(A) does not depend on the choice of vy,. .., vg.
Using the smooth coarea formula we prove the following proposition.

Proposition 3.1. If X C RP" is a convex hypersurface, then

(3.1) 1Q4(X)] = |G’°k" '/ak )V

where o, : X — R is the k-th elementary symmetric polynomial of the principal curvatures of
the embedding X — RP".

Proof. The O(n+ 1)-invariant metric g on G(k,n) induces a Riemannian metric 1*g on Gry(X)
through the embedding . Note that the restriction of ¢*g to the fibers Gry (T, X) is O(T, X) ~
O(n—1)-invariant. We apply the smooth coarea formula (see [8, Appendix]) to p : (Gri(X),v*g) —
(X, gx), where gx denotes the induced metric on X — RP". We obtain:

~1
€% (X)] = / AVer,(x) = / / (NJ(@ayp)  dVar, (1, x) dVx,
Gri(X) X Gri(Ty X)
where the first inequality follows from the definition of the metric on the fiber bundle Gry(X).
Let us show first that the normal Jacobian NJ, 2)p equals |Bo(A)| ™" = |det(B(vi, v;))| "

Given a point 2 € X, a unit normal v € T,RP" to T, X and an orthonormal basis vy, ...,v; €
T.X of A € Gr (T, X) let us complete them to an orthonormal basis &, v, v1, . . ., Uk, Vg1, « - « s Un—1
of R"™1. Using these vectors we describe the tangent space to Grg(X) at (z, A).

Fori=1,...,.n—1and j = 1,...,k let ; = z;(t) be a curve through z in the direction
v; and let v§ = v}(t) be the parallel transport of v; along x;, i.e. the vector field solving
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Vi = 0,v5(0) = v;. Note that for any time ¢ the vectors v{(t),...,vj(t) € Ty, )X remain
pairwise orthonormal. For ¢ = 1,...,n — 1 consider now the curve in Gry(X) given by:

Fi(t) = (zi(t), v1(8) A~ A1),
and denote by T; its tangent vector at zero:

k
Ti:=5(0) = (v, Y _v1 A== A65(0) A~ Awg)
=1

Observe that

(32) ’U; (0) = V§:+1U;— = VUXI’U; —Hll'j x + bij V=a4;T + bij V.
=0

Since the standard scalar product on R™™! (here denoted by a dot) induces the metric on
T,RP™ = T,S™ = z1 and since the second fundamental form of the unit sphere S* C R"*!
coincides with the metric tensor, for the coefficients in (3.2) we have

ntl s
ai; = (Vi vj) - = 0y

’U;) V= (anfnv; +dz) v= (Vﬂffnv;-) -v = B(v;,v;)

(3-3) bij = (Ve
The tangent space to the fiber T(, 7)G7x (T X) = ker(p.) is spanned by the following k(n—1—k)
vectors:

gij(t)z(:t,vl/\---/\(vi cost+u; sint) A---Awvg), i =1,...,k

@ijIzeij(()):(0,1)1/\~-~/\1)j/\~~-/\’0k), ji=k+1,....n—-1

Since 9, is an isometry, in order to compute the normal Jacobian it is convenient to work with
the images I';, ©;; € Tspan{z,a}G(k,n) of T'; and ©;; under .. It is easy to see that

k
Ti=li=viAvi Ao Ave+ Y bgmAvi A AvA--Av, 1<i<n-—1
j=1 !
@ij:w*éij:LL'/\’Ul/\'-'/\’Uj/\'-'/\’Uk, 1<i<k k+1<5j<n—-1.
i

From this we see that the I';’s are orthogonal to the ©;;’s, but the I';’s are not in general
orthonormal vectors. Therefore, since p.I'; = v; and the v;’s form an orthonormal basis for T, X,
for the computation of the normal Jacobian NJ; a)p we need to find a change of basis matrix
from {T;}1<i<n_1 to some orthonormal basis for the space Span{T';}1<ij<n_1 = ker(p. o ¢ 1)*+.
For this purpose let us note that for the orthonormal vectors

Si=xANvi A~ AVA--- A, 1<j<k
J

Pi=v; Avi A+ Ay, k+1<i<n-1
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we have
Fl b11 blk 0 0 ... 0 Sl
T | /b 0ON/S\ | w ... b 0 0 0 Sy,
FkJrl * 1 R bk+111 karl,k 1 0 0 PkJrl
| bo11 .o bk 0 0 0 1) \P,,

where b = {bij}lgi,jgk e {B(’Ui, vj)}lgingk by (33) Note that
(3.4) 1, is injective iff b is invertible iff B|s is non-degenerate.

Then, since B is positive definite everywhere, b is invertible and

S ]
Sk B ) Ty
Pk+1 * 1 Fk—l—l
Pn—l Fn—l

Applying p. o ;! to the S, P;’s we obtain that
NJgayp = |det(b™1)] = |Bo ()7
and thus
(35 20I= [ [ B Vo mxdvs.
X GTk(TzX)
Since the fibers Gry (T, X) are endowed with an O(n — 1) ~ O(T, X) ~ O({z, v, })-invariant
metric we may rewrite the inner integral as

(36) / |Bw(A)| dVGrk(TIX) = |GT‘(/€, n— 1)| EAGGT(k,n—1)|Bw(A)|

Grk (TIX)

Since the restriction B|a of a positive definite form B is also positive definite, we have B, (A) > 0
and hence

E accrkn—1)|Bz(A)] = E rcarkn—1) Bz (A).
We prove that

n—1

i >_ sp(di(x),...,dp-1(x))

Ercar(kn—1)Bz(A) = (
where di(z),...,d,—1(x) are the principal curvatures of X C RP" at € X and sy, is the k-th
elementary symmetric polynomial. Now let us choose an orthonormal basis e = {d1,...,0,-1} of
T, X in which the second fundamental form B is diagonal D = diag{ds,...,d,—1}. For vectors
v; we denote by the same letters their coordinate representation in the basis e. Let V and F be
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(n — 1) x k matrices with columns {v; }1<;<x and {J; }1<i<k respectively:

1 0 ... 0

v U' v' o0 - 0 1

I IR “lo ... ... 0
| |

0 ... ... 0

There exists an orthogonal matrix g € O(n — 1) s.t. V = ¢g- E and then b = {B(v;, vj) }1<i,j<k
can be written as b = V!DV = El¢g!DgE. In this view B,(A) = det(b) = det(E'g*DgFE) is just
the leading principal minor of g* Dg of order k. Note that B, (A) does not depend on the choice of
g, namely it is invariant under the action of Stabgpangs,.....5,3 =~ O(k) xO(n—1—k) C O(n—1).
Using this and the fact that the induced metric on the fibers Gry (T, X) ~ Gr(k,n — 1) is the
standard O(n — 1)-invariant metric we obtain

1
E rcaren—1)Bz(A) = Grlen =1 / B(A) dVgr(kn—1)
Gr(k,n—1)
1

/ det(E'g' DgE) dg
O(n—1)

~ [Gr(k,n—1)[- [O(K)] - [O(n — 1 — k)]

= /
= det(E'¢' DgFE) dg
|0(n —1)]
O(n—1)
where dg = dVp(,—1) is the invariant Haar measure on O(n — 1).

Now for any k-subset I = {iy,...,ix} C {1,...,n — 1} denote by E; the (n — 1) x k matrix
with columns §;,,...,d;,. Er can be obtained as a left multiplication of F by the permutation
matrix M,,: Er = M - E, where o7 is any permutation that sends 1,...,k into 1,...,%k
respectively. Using invarlance of dg we get

/det(E}gthEl)dg: /det(Et(gMUI)tD(gMUI)E)dg: /det(EtgthE)dg
O(n—1) O(n—1) O(n—1)

Consequently we can express E ycqr(k,n—1)Bz(A) as a sum over all k-subsets I C {1,...,n—1}
divided by (";"):

n—1\""
EAEGr(k,n—l)Bz(A) = ( k > 7’L — 1 / Z det(EIg DgE[)d

(n—1) IC{1|7| ;7; 1},

The integrand here is the sum of all principal minors of g* Dg of order k and thus does not depend
on g and is equal to the k-th elementary symmetric polynomial si(dy,...,dn,—1) of d1 ..., dp_1.
Combining this with (3.5) and (3.6) we end the proof. O

In particular we can derive the following corollary.

Corollary 3.2. If X C RP" is a convex hypersurface, then

Q2% (X)] —F(%)F(%_k)/ak(x)d‘/x.
X

[Sch(F, )] o
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Proof. We first observe that
Grikn-1| _ 1 T ()T (%)
Gk, )] w21 (M) T (258)
and, recalling [6, Theorem 4.2],

[Sch(k,n)| _ |E(k+1n+1) T(H2) T (=)

|G(k,n)]  |Gr(k+1,n+1)] T (k_zl) =3
Substituting into (3.1) we obtain
S~ ST AT e s
n\ [ (ntl E+1\ 1 (n=k
AT ) TR T
- T f_)> r J o
) )

O

3.1. Intrinsic volumes. Recall that the intrinsic volumes V4(C), ..., V,_1(C) of a convex set
C C RP™ are characterized by Steiner’s formula, which gives the exact expansion (for small
€ > 0) of the volume of the e-neighbourhood of C"

n—1
(3.7) [Urpn (C,e)| = Cl+ > frle)|S*|[S™FH|Vi(C)

k=0
(the functions f are defined in (1.3)). The formula (3.7) is obtained from the Spherical Steiner
Formula [7, (9)] as follows. For a convex set C C RP" denote by C' C S™ any of the two
components of p~1(C'), where p : S™ — RP" is the double covering. Under p, an open hemisphere
in S™ maps isometrically onto the complement of a hyperplane in RP". Therefore, for a small
e > 0 we have |Ugpn (C, €)| = [Urp (C,€)| and V;(C) = V;(C) for every j =0,...,n— 1. As a
consequence we obtain the following corollary.

Corollary 3.3 (The manifold of k-tangents and intrinsic volumes). Let C C RP" be a strictly
convez set with the smooth boundary OC. Then

€2 (00|
4- n—k— R TIEN TR =Y s 16 1
Var-1(C) = 1o ] 0,...m
Proof. From [7, (10)] and Corollary 3.2 it follows that
1
Vn—k—l(C) O'k(.’L')dVac

~ISFSP R o

T (ELL) T (=t
— ( 2 )n+1( 2 )/ Uk(w)dVac
42 ac

_ 1 (% (00|

" 4 |Sch(k,n)|’
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This together with [7, (15)] implies the following interesting corollary.

Corollary 3.4. Let C C RP" be a strictly convexr set with the smooth boundary OC and let C°
be the polar set of C' C S™. Then

4|O| 4|O° |Qk
=4.
|S™ |S" Z |Sch
In particular, for every k=0,...,n—1 we hcwe
|€2,(00)|
3.8 — - < 4.
(38) [Sch(k,n)| —

4. HYPERSURFACES IN RANDOM POSITION

Theorem 4.1. The average number of k-planes in RP™ simultaneously tangent to convex hy-

persurfaces X1,...,Xq, , CRP™ in random position equals
dk n
T 1% (X0
4.1 Xi,...,X =0kn —_—.
( ) Tk( 1 ) dk,n) k7 H |SCh(k, TL)|

Proof. We use the generalized kinematic formula for coisotropic hypersurfaces of G(k, n) proved
in [6] (Theorem 2.2 above).

In order to apply Theorem 2.2 to the case H; = Qi(X;),i = 1,...,dkn, we need to prove
that each Q4(X;) is a coisotropic hypersurface of G(k,n). Given (z,A) € Gri(X;) as in the
proof of Proposition 3.1 let us consider an orthonormal basis v1,...,v,_1 of T, X; such that
A = span{vy,...,v;} and a unit normal v € T,RP" to T, X;. For a curve z,(¢t) C RP" through
x in the direction v we consider the parallel transports v{ (¢),..., v} (t) € Ty, RP™ of vy,... v
along x,(t). We claim that the tangent vector to the curve v(t) = =, (t) Avy(t) A--- AVf(t) €
G(k,n) is normal t0 Tppp, a---Av, Ok (X;). Indeed,

k
(0) :V/\Ul/\---/\Uk-l—zgv/\vl/\---A?'J;-’(O)/\---Avk VAV A AV
j=1
since v;’(O) = Vﬂfpn vy + ajz =0+ ajz is proportional to z. Now it is elementary to verify that
4(0) is orthogonal to the tangent space Tyau, a--av, 2k (X;) described in (3.1). As an operator,
4(0) sends = to v and all vectors in A to 0. Hence £ (X;) is coisotropic.

Applying now Theorem 2.2 we deduce

dkn

Qx(
(4.2) Te(X1,..., Xa,,,) =k +1,n— H :Gkk .

Note that applying Theorem 2.2 to the real special Schubert variety Sch(k,n) we obtain

Ok,n = E#(g1Sch(k,n) N ---Ngaq, ,Sch(k,n))
[Sch(k, n)|) *
=alk+1,n—k)|G(k,n)| <7
G (k,n)|
This gives an expression for a(k 4+ 1,n — k), which substituted into (4.2) gives (4.1). O

As a consequence we derive the following corollary, which gives a universal upper bound to
our random enumerative problem.
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Corollary 4.2. If Xi,...,Xq, , C RP" are convex hypersurfaces, then
Tk(Xl, - 7'Xdk,n) < 51@,71 - 4en

Proof. This follows immediately from (4.1) and (3.8). O

5. THE SEMIALGEBRAIC CASE

In this section we discuss a generalization of the previous results to the case of semialgebraic
hypersurfaces satisfying some nondegeneracy conditions.

Let X be a closed, semialgebraic and smooth (in the sense of differential geometry) hypersur-
face in RP™. As in Section 3 we define the Grassmannian bundle of k-planes over X:

p:Gr(X) - X
(,A) —»
Gri(X) :={(z,A):z € X, A € Grp,(TxX) ~ Gr(k,n —1)}
The variety Q(X) of k-tangents to X coincides with the image im(¢)) of the kth Gauss map:
P Gr(X) — G(k,n)
(z,A) — P(Span{z, A})
but now, unlike to the case of a convex hypersurface, Q;(X) is in general singular.

It is convenient to identify the smooth manifold Gry (X) with its image in X x G(k,n) under
the map id x :

Gri(X) ~ (id x ¥)(Gri(X)) = {(z,A) € X x G(k,n) : T,A C T, X}
idx¢:Grg(X) = X x G(k,n)
(z,A) — (z,P(Span{z, A}))
Note that Gry(X) is a smooth semialgebraic subvariety of X x G(k, n) and the variety of tangents
Q(X) is obtained by projecting it onto the second factor.

For a point € X let us denote by B the second fundamental form of X defined locally near
x using any of the two local coorientations of X. For (z,A) € Gri(X) and an orthonormal basis
v1,...,v, of A denote by B, (A) = det(B(v;,v;)) the determinant of the k x k matrix {B(v;, v;)}.
Notice that |B,(A)| does not depend on the choice of vy, ..., v, and the local coorientation of
X near z.

Definition 5.1. We say that X C RP" is k-non-degenerate if

(1) the semialgebraic set
D= {A€G(k,n) : (6 (A) > 1} € 2(X)

of k-flats that are tangent to X at more than one point has codimension at least one in
Qi (X) and
(2) the semialgebraic set

S:={(z,A) € Gri(X) : B|r,a is degenerate}
has codimension at least one in the semialgebraic variety Gry(X).

Remark 5.2. Note that the sets D and S are closed in Qi (X) and Gry(X) respectively and, by
the same reasoning as in the proof of Proposition 3.1 (up to (3.4)), the set S consists of such
(z,A) € Gri(X) where 73 : Gri(x) — G(k,n) is not an immersion.
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A convex semialgebraic hypersurface is k-non-degenerate for any k£ = 0,...,n — 1 since in
this case the sets D, S from Definition 5.1 are empty. The following lemma shows that a generic
algebraic surface in RP? of sufficiently high degree is 1-non-degenerate.

Lemma 5.3. Let XC C CP? be an irreducible smooth surface of degree d > 4 which does not
contain any lines and such that X = RXC ¢ RP? is of dimension 2. Then X is 1-non-degenerate.

Proof. Theorem 4.1 in [9] asserts that under the assumptions of the current lemma the singular
locus ¥ := Sing(1 (X)) of the variety Q;(X®) € G®(1,3) of complex lines tangent to the
complex surface X© c CP? is described as follows:

»¢ = DCUIF,

where D® consists of lines that are tangent to X© at more than one point and IC consists of
lines intersecting X© at some point with multiplicity at least 3.

We now show that the singular locus ¥ := Sing(Q; (X)) = Q1(X) N Sing(QF (X)) of Q;(X)
is of dimension at most 2. There are two cases: either (1) there exists A € ¥ which is smooth
for both ¥ and X€ or (2) any smooth point A € ¥ of ¥ is singular for ¥¢. In the case (1) we
have dimg(X) = dimg(7xY) = dimg(TA%®) = dime(2°) < dime(921(XC)) = 3 and therefore
dimg(¥) < 2. In the case (2) we have dimg () = dimg(7TA %) < dime(Sing(X°)) < dime(2°) <
dimc (921 (X©)) = 3 and hence dimg (%) < 1.

For the complex surface X€ C RP? let Gri(X©) = {(2,A) € X© x G®(1,3) : T,A C T, X}
be the Grassmannian bundle of complex lines over X©. In the proof of [9, Thm. 4.1] it is shown
that a line A € IC intersects X© € CP3 at a point x € X© with multiplicity at least 3 if and only
if the differential (m2). : T(,; 2)Gr1(XC) — TAG®(1,3) is not injective. By (3.4) for (z,A) € S
the differential (m2). @ T(ya)Gr1(X) — TaAG(1,3) (and hence also (m2). : T(, A)Gr1(XC) —
TAG®(1,3)) is not injective. In particular m(S) C Q1 (X)NIC. Now, if X€ does not contain any
lines, the fibers of the projection 72 : Gr1(X) — G(1,3) are finite and hence dim(72(S)) = dim S.
On the other hand, since m3(S) C X, the above arguments show that dim(m2(S)) < dim(X) < 2
and consequently dim(S) < 2 < 3 = dim(Gr1(X)). Moreover, this together with (3.4) imply
that there exists a point in Grq(X) at which 72 : Gr1(X) — G(1, 3) is an immersion and hence
Q1 (X) = m2(Gry1(X)) is of dimension 3.

Observe finally that D € ©;(X) N D® C ¥ and the above arguments imply that dim(D) <
dim(¥) < 2 < 3 = dim(24(X)). This finishes the proof. O

Remark 5.4. The above lemma implies that a generic algebraic surface X C RP? of high enough
degree is 1-non-degenerate.

In the following proposition we provide a formula for the volume of Q(X).

Proposition 5.5. Let X be a k-non-degenerate semialgebraic hypersurface in RP™. Then

(5.1) ()| = [Gr(k,n — 1) / E rccren_1|Be(A)] dVx
X

Proof. The complement

R:=Grig(X)\ S ={(z,A) € Gri(X) : B|r,a is non-degenerate}
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of S is an open dense semialgebraic subset of Gri(X). Let us pull back the metric from G(k, n)
to R through the immersion m3|g. Then repeating the proof of Proposition 3.1 up to the point
(3.5) we get

(5.2) /dVR =/ / B (M) AV -1 () @V n
R

Xr Aen; M (2)NR

where Xp := 71 (R) C X is the projection of R C X x G(k,n) onto the first factor and the fiber
7 H(x) = Gre(T X) =~ Gr(k,n — 1) C Gri(X) is endowed with the uniform distribution. Note
that since B, (A) = 0 precisely for A € 7, ' () \ R we can extend the integration over the whole
fiber 7, ! () in (5.2). Moreover, since Xg = 71 (R) is open and dense in X (being the image of
an open and dense set under the projection 71) and since the function

o / IBL (M) dV, )
AETI’;I(I)

is continuous (5.2) becomes

[we] |

[Bo (M) dV, 1,y dVx = [Gr(kon — 1 |/EA€GHM DI Ba(A)] dVy
X Aen )
It remains to prove that [Q(X)| = [ dVg. For this let us consider the set
R

x

D= wgl(D) ={(z,A) € Gri(X) : #(W;l(/\)) > 1}

Note that D is a closed semialgebraic subset of Gry(X) and from Definition 5.1 it follows that
D c Gry, (X) is of codimension at least one. As a consequence, the semialgebraic set R \ D is
open and dense in Gry,(X) (and hence also in R) and therefore its projection m (R \ D) is open
and dense in Q4 (X). In particular,

)| = [ra(B\ D) = [ @V = [ Vi
R\D R
O

Remark 5.6. Using, for example, the Cauchy-Binet theorem it is easy to derive the inequality
Gr( k n—
()| < [Grtkn 1] / se(lds (@), .., [du_r(2)]) dVix

where si(|d1(2)], ..., |dn—1(2)|) is the kth elementary symmetric poynomial of the absolute prin-
cipal curvatures at x € X. Unfortunately, we do not have a clear geometric interpretation of the
right-hand side of the above inequality.

In the case of lines tangent to a surface in RP? we can refine the formula (5.1) as follows.
Corollary 5.7. If X ¢ RP? is a smooth 1-non-degenerate surface then

1 (X)] = / h(ds (2), do(2)) dVx

X
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where

g|d1 +do|, if drds >0

[ d [ d
2y/—dydy + |dq + do| - |arctan < —d—1> — arctan < —d—2> | , if dida <0
2 1

and di(x),da(x) are the principal curvatures of X at the point x.

h(dy,d2) =

Proof. The formula (5.1) reads

()| = / E accraBa(A)] dVy
X

In coordinates in which the second fundamental form B, of X C RP? at the point z € X is
diagonal with values di, d> we have

/2
TE aer1,2)|Be(A)] = TEyesr By (v, v)| = / |di cos®  + da sin® p|dy
—m/2
The last integral can be evaluated by elementary integration methods giving Z|d; + da| in case
d1 dg 2 0 and
dq do
2y/—dydy + |d1 — dao| - |arctan vl B arctan -
2 1
in case dids < 0. O

Finally we prove an analog of Theorem 4.1 for k-non-degenerate semialgebraic hypersurfaces.

Theorem 5.8. The average number of k-flats in RP™ simultaneously tangent to k-non-degenerate

semialgebraic hypersurfaces X1, ..., Xq, , in random position equals
dig,n
1% (X))
(X1, ..., X =
H(X i) H |Sch(k,n)| k n)

Proof. Exactly in the same way as in the proof of 4.1 one can show that the smooth locus
Qi (X)) sm of Qip(X;) is a coisotropic hypersurface of G(k,n). Since Q(X;) \ Qx(X;)sm has
codimension > 2 in G(k,n) by standard transversality arguments we have that

G0 (X1) O N gay De(Kay ) = 1% (X1 )em 0 -+ N gay, (X)) sm
for a generic choice of g1, ...,g4,, € O(n+1).

The claim follows by applying the integral geometry formula (Theorem 2.2) to the semialge-
braic sets Qx(X1)sm, .- -, Q% (Xa, . )sm as in the proof of Theorem 4.1. O

Remark 5.9. (Random invariant hypersurfaces) The previous Theorem can be used for comput-
ing the expectation of the number of k-flats tangent to random Kostlan hypersurfaces of degree
mi,...,mgq, , in RP" - notice that here the randomness comes directly from the hypersurfaces!
Let us discuss the case n = 3, k = 1.

Let f1,..., fa € R[z1,...,24] be random, independent, O(4)-invariant polynomials of degree
mi,...,ms > 4 and denote by X(f;) = {f; = 0} € RP?, i = 1,...,4 the corresponding
projective hypersurfaces. We are interested in computing

() =Eg, n#F0(X(f1) NN QX (fa))-
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/] ]

[
FIGURE 2. The construction of the coordinate system introduced in Section 6.1.

We use the fact that the polynomials are invariant for writing:

() =Eg. B g # (@1 X(f1)) NN Q1(94X (fa))
=Ep, g, a# (1 X (f1) NN Q1(gaX (fa)).

For ¢ = 1,...,4 with probability one X(f;) is irreducible and there are no lines on it; hence
by Lemma 5.3 with probability one each X (f;) is 1-non-degenerate. Applying Theorem 5.8 we
conclude that

0 (X(fi))]

e HFU(X(f1)) D 0 (X(f1) = 13- HEflSchl

6. CONVEX BODIES WITH MANY COMMON TANGENTS

The purpose of this section is to show that for every m > 0 there exist convex surfaces
X1,..., X4 C RP? in general position such that the intersection Q; (X;)N---NQ(Xy) C G(1,3)
is transverse and consists of at least m points. We owe the main idea for this to T. Theobald. (A
similar construction is used in [5] to obtain an upper bound on the number of lines simultaneously
tangent to 4 convex polyhedra in R3 as a function of the total number of edges.)

6.1. A coordinate system. Let X, X3, X3 C RP? be smooth convex semialgebraic surfaces
such that the intersection Z = Q1 (X71) N Q1 (X2) N Q1(X3) is transverse (hence Z is a smooth
curve in G(1,3)). Let

P={(Av]): A€ Z[v] € A~RP'}
be the projectivized tautological bundle over Z and consider the tautological map
n:P — RP3
(A [v]) = [o]
We determine points where 7 is an immersion.

Lemma 6.1. . : T(p o) P — T[U]RP3 ~ vt is injective if and only if v is not annihilated by
the generator of TaZ C Hom(A, AL).
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K

U2

FIGURE 3. The convex body C.

Proof. Let A(t) = v(t) A u(t) be a local parametrization of Z near A = A(0), where {u(t),v(t)}
is an orthonormal basis of A(t) and v = v(0),u = u(0). The tangent vectors to the curves
1 (t) = (A, [costv +sintu]), v2(t) = (A(t),[v(t)]) at t = 0 span the tangent space {4 ,]) P
and 7.(31(0)) = [u], 7:(52(0)) = [©(0)]. Any generator of the one-dimensional space ThZ C
Hom(A, A+) sends v € A to ©(0) € A+ C vt. The assertion follows. O

Let (A, [v]) € P be a point where 7 is an immersion (by the above lemma such (A, [v]) € P
exists for any A € Z) and let V =~ RP? € RP? be a plane through [v] = n((A, [v])) € RP? that
is transversal to the line /) := n((A,A)). The map 7 is an embedding locally near (A, [v]).
Therefore the image under n of a small neighbourhood of (A, [v]) intersects V' along a smooth
curve which we denote by I'. Moreover, the images of the fibers of P define a smooth field of
directions {¢, : z € T'} on I" (see figure 2) which can be smoothly extended to a field of directions
{€,:z € U} on a neighbourhood U C V of T.

As a consequence there exists a neighborhood W € RP? of [v] of the form
W=]J[tnWw~Ux(-1,1)
zeU

On this neighbourhood we have a smooth map (the projection on the first factor):
m: W —=U.
This map has the following property:

Lemma 6.2. If B C W is a smooth strictly convex subset in RP? and z € U is a critical value
for mlop, then £, is tangent to OB.

Proof. In fact if #{¢, N 0B} = 2 then the line ¢, would be trasversal to 0B and z would be a
regular value for 7|sp. O
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6.2. The construction. Using strict convexity of X, Xo, X3 it is easy to show that for a generic
choice of the plane V' a small arc of the curve I is strictly convex. Let us use the same letter I'
to denote such an arc. For a given number m > 0 pick n = m + 1 distinct points ¢,...,t, on I’
and consider an n—polygonal arc K tangent to I' at the points ¢1,...,t,. Call v1...,v,_1 the
ordered vertices of K and for every (curvilater) triangle ¢,v;t;+1 pick a point x; in its interior
(see left picture in Figure 3).

Let now C' C W be the convex body in RP® defined as the convex hull of the segments in
W~Ux(-1,1):

C =conv({z1} x (=64,6),...,{xn_1} X (=6,9)),

where 6 > 0 is chosen small enough such that none of ¢1,...,¢, belongs to 7(C). Note that the
polygon x1 - -- 2,1 is a subset of 7(C') C C. As a consequence, there exist points s1,...,8n—1
on T', interlacing ti,...,t, such that they all belong to im(|incy). (See the right picture in
Figure 3.)

Let now C. C W be a smooth, strictly convex semialgebraic approximation of C' such that:

(1) 81,...,8n € 7T|int(ce);
(2) t1,...,tn & w(Co);
(3) the intersection 1(Ce) NNy (X71) N Q1 (X2) N Q1 (X3) is transverse.

The conditions (1) and (2) imply that 7(0C.) N T (a semialgebraic subset of T') consists of
intervals:

w(&Ce) NnI= [al,bl] J---u [CLN,bN]

possibly reduced to points and N > n — 1. Now each a; (and b;) is critical for 7|sc.: otherwise
the image of 7|gc, near a; would contain an open set and a; would not be a boundary point
of the intersection 7(dC,) NT. By Lemma 6.2 this implies that each line ¢,, is tangent to 9C,
and condition (3) implies that the transverse intersection Q1 (C¢) N Q1 (X71) N Q1 (X2) N Q1 (X3)
(which is finite) contains more than n — 1 = m lines.
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