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RANDOM FIELDS AND THE ENUMERATIVE GEOMETRY OF LINES ON

REAL AND COMPLEX HYPERSURFACES

SAUGATA BASU, ANTONIO LERARIO, ERIK LUNDBERG, CHRIS PETERSON

Abstract. We introduce a probabilistic framework for the study of real and complex enu-

merative geometry of lines on hypersurfaces. This can be considered as a further step in the
original Shub-Smale program of studying the real zeros of random polynomial systems. Our

technique is general, and it also applies, for example, to the case of the enumerative geometry

of flats on complete intersections.
We derive a formula expressing the average number En of real lines on a random hyper-

surface of degree 2n − 3 in RPn in terms of the expected modulus of the determinant of a

special random matrix. In the case n = 3 we prove that the average number of real lines on
a random cubic surface in RP3 equals:

E3 = 6
√

2− 3.

This technique can also be applied to express the number Cn of complex lines on a generic

hypersurface of degree 2n−3 in CPn in terms of the expectation of the square of the modulus
of the determinant of a random Hermitian matrix. As a special case, we recover the classical

statement C3 = 27.

We determine, at the logarithmic scale, the asymptotic of the quantity En, by relating it
to Cn (whose asymptotic has been recently computed in [19]). Specifically we prove that:

lim
n→∞

logEn

logCn
=

1

2
.

Finally we show that this approach can be used to compute the number Rn = (2n−3)!! of
real lines, counted with their intrinsic signs (as defined in [28]), on a generic real hypersurface

of degree 2n− 3 in RPn.

1. Introduction

1.1. Overview. A classical problem in enumerative geometry is the count of the number of
linear spaces satisfying some geometric conditions (e.g. the number of lines on a generic cubic
surface). These problems are usually approached with cohomological techniques, which turn out
to be very powerful over the complex numbers but which give almost no information over the
reals. In this paper we introduce a novel, more analytical approach to these questions. This
comes after adopting a probabilistic point of view – the main idea is the replacement of the word
generic with random. Of course over the complex numbers this gives the same answer, but it
also allows to compute other quantities especially meaningful over the reals, where the generic
number of solutions is not defined (e.g. the signed count or the average count).

Our contribution with this paper is thus in two different directions. On one hand we present
new results in the emerging field of random real algebraic geometry, with the investigation of
the real average count. A program on random real algebraic geometry started in the 1990s with
pioneer works of A. Edelman, E. Kostlan, M. Shub and S. Smale [10, 34, 11, 23, 36, 35] on random
polynomial system solving, with a particular emphasis on asymptotic studies. Our result can be
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2 SAUGATA BASU, ANTONIO LERARIO, ERIK LUNDBERG, CHRIS PETERSON

considered as a further step in the original Shub-Smale program: if the “complexity of Bezout’s
theorem” papers dealt with the basic problem of counting points in the intersection of random
hypersurfaces in projective space, here we count solutions to more advanced intersection theory
problems. The results presented here are the first results on sections of a homogeneous bundle
on a more general Grassmannian (beyond projective space).

On the other hand our methods provide a new way for performing the classical computations
over the complex numbers and the signed computation over the reals (see Section 1.4), essentially
reducing them to computing the average of some random determinants. Although the technique
that we introduce is very general, as it will become clear throughout the paper, we concentrate
on the problem of enumeration of lines on projective hypersurfaces.

1.2. Lines on a random cubic. One of the most classical statements from enumerative geom-
etry asserts that there are 27 lines lying on a generic cubic surface in CP3: Cayley proved this
result in the nineteenth century [7]. Today many proofs exist, some more geometric (using the
isomorphism between the blowup of CP2 at six generic points and the generic cubic in CP3),
others more topological (exploiting properties of Chern classes), see for example [9, 12]. (A new
proof, based on a probabilistic argument, will be given in this paper, see Corollary 8 below.)

In this paper we will mostly be interested in similar problems over the reals, where the
situation is more complicated. Schläfli [31] showed that if the cubic surface is real and smooth
then the number of real lines lying on it is either 27, 15, 7, or 3. In the blow-up point of view,
these correspond respectively to the following four cases for the blow-up points: all of them are
real (27); 4 are real and the other two are complex conjugate (15); 2 are real and there are two
pairs of complex conjugate (7); there are 3 pairs of complex conjugate (3). Reading the number
of real lines from the coefficients of the polynomial f defining the cubic is a difficult problem. It
is interesting to ask for a probabilistic treatment:

(1) “How many real lines are expected to lie on a random real cubic surface in RP3?”.

To make this question rigorous we should clarify what we mean by “random”. Here we
will sample f from the so-called Kostlan ensemble. We endow the space R[x0, x1, x2, x3](3) of
real homogeneous polynomials of degree 3 with a probability distribution by defining a random
polynomial f as a linear combination:

f =
∑
|α|=3

ξαx
α0
0 xα1

1 xα2
2 xα3

3 , α = (α0, . . . , α3),

where |α| = α0 + α1 + α2 + α3 denotes the length of the multi-index α, and the coefficients ξα
are real, independent, centered Gaussian variables with variances

σ2
α =

(
3

α

)
:=

3!

α0!α1!α2!α3!
.

(A similar definition is considered for homogeneous polynomials of degree d in several variables,
see Section 2.1 below.) This probability distribution is O(4)-invariant, that is, it is invariant
under an orthogonal change of variables (so there are no preferred points or directions in RP3).
Moreover it is the only (up to a multiplicative constant) O(4)-invariant Gaussian probability dis-
tribution on R[x0, x1, x2, x3](3) for which f can be defined as a linear combination of monomials
with independent Gaussian coefficients. This distribution is also natural from the point of view
of algebraic geometry, as it can be equivalently1 obtained by sampling a random polynomial

1“Equivalently” for our purposes, as we will only be interested in properties that depend on the zero set of a
polynomial.
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uniformly from the (projectivization of the) space of real polynomials with the metric induced
by the inclusion in the space of complex polynomials with the Fubini-Study metric, see Section
2.1 below for more details.

Let Gr(2, 4) denote the Grassmannian of two dimensional subspaces of R4 (or equivalently,
the Grassmannian of lines in RP3). Denoting by τ2,4 the tautological bundle of Gr(2, 4) we see
that the homogeneous cubic polynomial f defines, by restriction, a section σf of sym3(τ∗2,4). A
line ` lies on the cubic surface defined by {f = 0} if and only if σf (`) = 0. In this way, when
f is random, σf is a random section of sym3(τ∗2,4) and the section σf can be considered as a
generalization of a random field. In this case, the random field takes values in a vector bundle
but on a trivializing chart it reduces to the standard construction (see [1]). There is a powerful
technique that allows one to compute the average number of zeros of a random field, the so called
Kac-Rice formula [1]. The adaptation of this technique to random sections of vector bundles (we
discuss it in the proofs below) yields the existence of a function ρ : Gr(2, 4)→ R (the Kac-Rice
density) such that the answer to question (1) can be written as:

E3 =

∫
Gr(2,4)

ρωGr(2,4)

(here ωGr(2,4) is the volume density of Gr(2, 4) with respect to the metric induced by the Plücker
embedding). In our case, by invariance of the problem under the action of the orthogonal group,
ρ is a constant function. However, the computation of this constant is still delicate and is one
of the main results of this paper. To be precise, we show in Theorem 5 that its value equals:

ρ =
6
√

2− 3

2π2
.

Since the volume of Gr(2, 4) is equal to 2π2, we are able to conclude that E3 = 6
√

2− 3.

Notice that over the complex numbers whatever reasonable (i.e. absolutely continuous with
respect to Lebesgue measure) probability distribution we consider on the space of the coeffi-
cients of the defining polynomial, a random complex cubic surface will be generic in the sense of
algebraic geometry with probability one (this is essentially due to the fact that complex discrim-
inants have real codimension two). For this reason our technique, which produces an expected
answer over the reals, gives the generic answer when adapted to the complex setting.

If we take the coefficients of f to be complex Gaussians (with the same variances as for
the real case) we get a complex Kostlan polynomial. Equivalently we can sample from the
projectivization of the space of complex polynomials with the natural Fubini-Study metric (see
Section 2.1 below). In this way σf is a random holomorphic section of sym3(τ∗2,4) where τ2,4 is now
the tautological bundle of GrC(2, 4) (the Grassmannian of complex two dimensional subspaces
of C4). Here again one can use the Kac-Rice approach, interpreting 4 complex variables as 8 real
variables and the number C3 of complex lines on a generic cubic can be rewritten as an integral
(with respect to the volume density induced by the complex Plücker embedding) over GrC(2, 4)
of a function ρC. The model is invariant under the action of U(4) so that ρC is constant. The
evaluation of this constant is now much easier than its real analogue (see Corollary 8), and it
seems more combinatorial in nature. We compute the value to be:

ρC ≡
324

π4
.

The volume of GrC(2, 4) is equal to π4

12 and this implies C3 = 27.

Going back to the real case, Segre [32] divided the real lines lying on a cubic surface into
hyperbolic lines and elliptic lines, and showed that the difference between the number, h, of
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hyperbolic lines and the number, e, of elliptic lines always satisfy the relation h− e = 3. In this
direction we note that the technique below can also be used to compute this difference; this will
correspond to a signed Kac-Rice density and its computation amounts to removing the modulus
in the expectation of the determinant of the matrix in Theorem 2. Here we know that the signed
count is an invariant number R3 of the generic cubic [28] and consequently that the average

answer is the generic one; the explicit computation R3 = 3
2E det Ĵ3 = 3 recovers this number.

Remark 1. Allcock, Carlson, and Toledo [3] have studied the moduli space of real cubic surfaces
from the point of view of hyperbolic geometry. They compute the orbifold Euler characteristic
(which is proportional to the hyperbolic volume) of each component of the moduli space. One
could take the weighted average of the number of real lines, weighted by the volume of the
corresponding component, as an “average count”. This yields the number 239

37 , see [3, Table
1.2]. However this way of counting does not have a natural probabilistic interpretation and
generalization to n > 3.

Remark 2. A Monte Carlo experiment with 1500 random trials drawn from the Kostlan ensemble
yielded 868 cubics with 3 lines, 501 with 7 lines, 127 with 15 lines, and 4 with 27 lines. The
average number of lines obtained from these 1500 samples is 5.416. The approximate value of
6
√

2 − 3 is 5.485. These values are quite close. Each of the 4 cases, for the number of lines,
occur with positive probability. It would be interesting to obtain exact formulas expressing the
probability of a random trial to yield each of the 4 individual cases.

1.3. Lines on hypersurfaces. The same scheme can be applied to the problem of enumeration
of lines on hypersurfaces of degree 2n−3 in RPn and CPn (if the degree is larger than 2n−3 then
a random hypersurface is too “curved” and will contain no lines while if the degree is smaller
than 2n − 3 then lines will appear in families). Theorem 2 and its complex analogue Theorem
7 give a general recipe for the computation of the average number En of real lines on a real
Kostlan hypersurface and the number Cn of lines on a generic complex hypersurface. Zagier [19]
showed that Cn can be computed as the coefficient of xn−1 in the polynomial

pn(x) = (1− x)

2n−3∏
j=0

(2n− 3− j + jx)

and found that the asymptotic behavior for Cn as n→∞ is given by:

(2) Cn ∼
√

27

π
(2n− 3)2n− 7

2 (1 +O(n−1)).

One could notice some similarities between the expression that we derive for Cn in Theorem
7 and the analogous expression for En from Theorem 2. In Theorem 12 we will make this
comparison more rigorous, by proving that the two quantities are related by:

(3) lim
n→∞

logEn
logCn

=
1

2
.

This is roughly saying that the average number of real lines on a random real hypersurface is
the “square root” of the number of complex lines (this is true up to an exponential factor; note
that the numbers En and Cn are super-exponential).

After this paper was written, it was brought to our attention in a private communication that
Peter Bürgisser conjectured the square root law (as stated in Theorem 12) in a talk given at a
conference in 2008, at the Bernoulli Center in Lausanne, where he also gave numerical evidence
with regards to the value of E3.
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Remarkably, Okonek and Teleman [28] and Finashin and Kharlamov [14] have shown that
over the reals it is still possible to associate a numerical invariant Rn to a generic hypersurface,
counting the number of real lines with canonically assigned signs. Even though the bundles
sym2n−3(τ∗2,n+1) and TGr(2, n + 1) might not be orientable themselves, Okonek and Teleman
[28] introduce a notion of relative orientation between them that allows one to define an Euler
number up to a sign. In this case it turns out there is a canonical relative orientation, and each
zero of a generic section of sym2n−3(τ∗2,n+1) comes with an intrinsic sign (see Section 2.4 below).
The relative Euler number has the usual property that the sum of the zeroes of a generic section
counted with signs is invariant; for the problem of lines on hypersurfaces it equals2:

Rn = (2n− 3)!!.

In particular note that En ≥ (2n − 3)!!. Using the random approach, in Proposition 3 we give
an alternative proof of Rn = (2n− 3)!!.

1.4. Generic, signed, and average counts. We can summarize the above discussion by stat-
ing the following inequalities, that offer a broad point of view on the problem of lines on hyper-
surfaces (here b > 1 is a universal constant whose existence is proved in Proposition 11):

Rn ≤ En ≤
√
nbnC1/2

n .

These inequalities compare three quantities: the generic, the average and the signed count.
More generally, given k, d, n ∈ N0 such that

(4)

(
k + d

d

)
= (k + 1)(n− k),

one can consider the problem of determining the number of projective subspace of dimension k ly-
ing on a hypersurface Hd of degree d in RPn. (Equation (4) says that the rank of symd(τ∗k+1,n+1)

equals the dimension of Gr(k + 1, n + 1); this, combined with [8, Theorem 2.1], ensures that a
generic section of symd(τ∗k+1,n+1) vanishes at isolated points).

For this class of problems, the number of complex projective k-spaces on the generic Hd ⊂ CPn

can be computed (nontrivially!) using the splitting principle. It is interesting to observe that
the method that we introduce here for the problem of lines can be easily extended to the more
general case (in fact the first part of the proof of Theorem 7 is completely general and works for
all Grassmannians), and yields a new way for performing the computation in the generic case.

The signed count, however, in general is not always well-defined and even if defined it might
give zero. As observed in [15] and [28] this count is well defined3 as soon as the following identity
of first Stiefel-Whitney classes holds:

w1(Gr(k + 1, n+ 1)) = w1(symd(τ∗k+1,n+1)).

(This identity asserts that the two bundles are relatively orientable.) The simplest case is of
course when (k, d, n) = (0, d, 1), which corresponds to counting zeroes of a univariate polynomial.
In this case, since w1(RP1) = 0, and w1(symd(τ∗1,d)) = 1

2 (1 + (−1)d+1) mod 2, the signed count
in the above sense is well defined only when d is even – but this count gives zero. We observe
that, as for the complex case, our method allows in principle to compute the Euler class of

2Here and below in the paper we use the notation m!! (the “double-factorial”) to denote the product of all
positive integers that have the same parity as n; e.g. when m = 2n− 3 is odd, (2n− 3)!! denotes the product of
all odd numbers smaller than or equal to 2n− 3.

3In fact recently Kharlamov and Finashin have identified a class of problems for which this type of signed
count is defined [15], including some classical Schubert problems.
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the corresponding bundle, essentially reducing it to the evaluation of the expectation of the
determinant (without the modulus!) of a random matrix, as done in Proposition 3.

On the other hand for this class of problems the average count is always well defined, but
its evaluation is much more difficult, because of the presence of the modulus in the random
determinant of Theorem 2. In this direction, the second author of the current paper together
with P. Bürgisser have recently studied the average count in the case of special Schubert problems
[6], relating it to the volume of a convex body in the tangent space to the Grassmannian.

Remark 3. An interesting question on the subject is whether an enumerative problem is fully
real, meaning that there are real configurations of the constraints for which all a priori complex
solutions are real. Some fundamental results on this aspect of real Schubert calculus are contained
in papers of Sottile [39, 37, 38, 40], Eremenko and Gabrielov [13], Mukhin, Tarasov and Varchenko
[25], Vakil [43] (this list is by no means complete). In particular it is proved in [43] that Schubert
calculus is fully real. We do not know if the problem of counting lines on hypersurfaces is fully
real, and Theorem 12, combined with Theorem 13, indicates that “typically” this problem is far
from full reality.

Acknowledgements. The question (1) motivating this paper was posed to the second author
by F. Sottile. This paper originated during the stay of the authors at SISSA (Trieste), supported
by Foundation Compositio Mathematica. We are very grateful to the anonymous referee whose
careful reading and valuable insights improved the exposition dramatically.

2. The real case

2.1. Real Kostlan polynomials. Let E = Rn+1. Then, symd(E∗) is identified with the space,
R[x0, x1, . . . , xn](d), of homogeneous polynomials of degree d in n + 1 variables. A Gaussian

ensemble can be specified by choosing a scalar product on symd(E∗) in which case f is sampled
according to the law:

Probability(f ∈ A) =
1

vn,d

∫
A

e−
‖f‖2

2 df,

where vn,d is a normalizing constant that makes the integrand into a probability density function,
and df is the volume form on symd(E∗) induced by the chosen scalar product. The ensemble
we will consider, known as the Kostlan ensemble, results from choosing as a scalar product the
Bombieri product4, defined as:

〈f, g〉B =
1

d!πn+1

∫
Cn+1

f(z)g(z)e−‖z‖
2

dz.

The following expression relates the Bombieri norm of f =
∑
|α|=d fαz

α with its coefficients in

the monomial basis (see [26, Equation (10)]):

‖f‖B =

∑
|α|=d

|fα|2
(
d

α

)−1
 1

2

.

Here we are using multi-index notation α = (α0, α1, ..., αn), with |α| := α0 + α1 + · · · + αn,

zα := zα0
0 · · · zαnn , and

(
d
α

)
:= d!

α0!···αn! . The Bombieri product defined above can be described in

4This inner product has also been referred to as the “Fischer product”, especially in the field of holomorphic

PDE (e.g., see [21, Ch. 15, 18]) after H.S. Shapiro made a detailed study [33] reviving methods from E. Fischer’s
1917 paper [16]. The names of H. Weyl, V. Bargmann, and V. A. Fock have also been attached to this inner

product.
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a more algebro-geometric language as follows. The standard Hermitian inner product on Cn+1

induces a Hermitian inner product, (·, ·)d on the line bundles OCPn(d), and this in turn induces a
Hermitian inner product on the finite-dimensional space of holomorphic sections, H0(OCPn(d)),
by

〈f, g〉 =

∫
CPn

(f(z), g(z))d dz,

where the integration is with respect to the volume form on CPn induced by the standard Fubini-
Study metric on CPn. The restriction of this last Hermitian inner product to real sections of
OCPn(d) agrees up to normalization by a constant with the Bombieri product (after identifying
R[x0, x1, . . . , xn](d) with the space of real holomorphic sections of OCPn(d)). Thus, amongst all
possible O(n + 1)-invariant measures on R[x0, x1, . . . , xn](d), the Kostlan measure seems to be
the most natural one from the point of view of algebraic geometry.

An equivalent, and often more practical, approach to Gaussian ensembles is to build f as a
linear combination, using independent Gaussian coefficients, of the vectors in an orthonormal
basis for the associated scalar product. The Kostlan ensemble has the distinguished property of
being the unique Gaussian ensemble that is invariant under any orthogonal changes of variables
while simultaneously having the monomials as an orthogonal basis. We can sample f by placing
independent Gaussians ξα in front of the monomial basis (here again α is a multi-index):

f(x) =
∑
|α|=d

ξαx
α, ξα ∼ N

(
0,

(
d

α

))
.

Note that there are other orthogonally-invariant models, but their explicit description requires
special functions (Gegenbauer polynomials — in order to build a basis of spherical harmonics),
see [22, 17].

2.2. The Kac-Rice formula. A technical tool that we will use in the paper is the Kac-Rice
formula, which allows to compute the expectation of the number of real zeroes of a real Gaussian
map. There are various (more or less equivalent) formulations of this result, see for instance
[1, 4]; here we quote the version from [4].

Theorem 1 (Theorem 6.3 from [4]). Let U ⊂ RN be an open set and Z : U → RN be a random
map such that:

(i) Z is Gaussian;
(ii) Z is almost surely of class C1;
(iii) for every t ∈ U the random variable Z(t) has a nondegenerate distribution;
(iv) the probability that Z has a degenerate zero in U is zero.

Then, denoting by pZ(t) the density function of Z(t), for every Borel subset B ⊂ U we have:

(5) E# ({Z = 0} ∩B) =

∫
B

E
{
|det(JZ(t))|

∣∣Z(t) = 0
}
pZ(t)(0)dt,

where JZ(t) denotes the Jacobian matrix of Z(t).

Remark 4. When U has the additional structure of a Riemannian manifold, we can use the
volume form ωU induced by the Riemannian metric to write (5) in a more pleasant way. Arguing
exactly as in the proof of [1, Theorem 12.1.1], we have:

(6) E# ({Z = 0} ∩B) =

∫
U

E
{
|det(ĴZ(t))|

∣∣Z(t) = 0
}
pZ(t)(0) · ωU (t),

where now ĴZ(t) denotes the matrix of the derivatives of the components of Z with respect to
an orthonormal frame field.
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2.3. A general construction. Consider a random vector v = (v1, . . . , v2n−3) in R2n−3 whose
entries are independent Gaussian variables distributed as:

vj ∼ N
(

0,

(
2n− 4

j − 1

))
j = 1, . . . , 2n− 3.

Let now v(1), . . . , v(n−1) be independent random vectors all distributed as v. We define the
random (2n− 2)× (2n− 2) matrix Ĵn as:

Ĵn =



v
(1)
1 0 . . . v

(n−1)
1 0

v
(1)
2 v

(1)
1 v

(n−1)
2 v

(n−1)
1

... v
(1)
2

... v
(n−1)
2

v
(1)
2n−3

... v
(n−1)
2n−3

...

0 v
(1)
2n−3 . . . 0 v

(n−1)
2n−3


.

Theorem 2. The average number En of real lines on a random Kostlan hypersurface of degree
2n− 3 in RPn is

En =

(
(2n− 3)n−1

Γ(n)

2n−3∏
k=0

(
2n− 3

k

)−1/2
)
E|det Ĵn|.

Proof. We will start with a general construction that works for the Grassmannian Gr(k,m) and
only at the end of the proof will we specialize to the case k = 2,m = n+ 1.

Let Gr+(k,m) denote the Grassmannian of oriented k-planes in Rm. As a Riemannian
manifold Gr+(k,m) is identified with its image under the spherical Plücker embedding. The
image is equal to the set of simple, norm-one vectors in Λk(Rm); moreover the Riemannian metric
induced on Gr+(k,m) from this embedding is the same as the metric induced by declaring the
quotient map SO(m) → Gr+(k,m) to be a Riemannian submersion (see [24] for more details).
We denote by g this metric and by ωGr(k,m) the associated volume density.

Let also τ∗k,m denote the dual of the tautological bundle (on Gr+(k,m)) and consider its sym-

metric d-th power symd(τ∗k,m). Note that a homogeneous polynomial f ∈ R[x1, . . . , xm](d) defines

a real holomorphic section σf of the bundle symd(τ∗k,m), simply by considering the restriction

σf (w) = f |w (here w denotes the variable in Gr+(k,m)). Clearly σf also defines a section of
τ∗k,m as a bundle over Gr(k,m) (the standard Grassmannian) and a k-space w ∈ Gr(k,m) is
contained in the zero set of f if and only if the section σf vanishes at w.

Since Gr+(k,m) is a Riemannian double covering of Gr(k,m), when the rank of symd(τ∗k,m)

equals the dimension of Gr+(k,m), generically σf has finitely many zeroes; in this case the
number of zeros of σf as a section of the bundle symd(τ∗k,m) on Gr+(k,m) is twice the number

of zeros this section has as a section of symd(τ∗k,m) on Gr(k,m), and consequently:

(7) 2 · E#{w ∈ Gr(k,m) |σf (w) = 0} = E#{w ∈ Gr+(k,m) |σf (w) = 0}.

We will now divide the rest of the proof into two parts:

(a) first prove that there exists a constant ρ > 0 such that:

(8) E#{w ∈ Gr(k,m) |σf (w) = 0} = ρ · |Gr(k,m)|,

where |Gr(k,m)| denotes the volume of Gr(k,m) with respect to the metric g;
(b) then we identify this expectation with the constant En from the claim.
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(a) Proof of (8).
For i = 1, . . . , k and j = k + 1, . . . ,m consider the matrix Eij ∈ so(m) which consists of
all zeros except for having a 1 in position (i, j) and a −1 in position (j, i). Then etEij ∈
O(m) is the clockwise rotation matrix of an angle t in the plane, span{ei, ej}, spanned by

the ith and jth standard basis vectors. Let now t = (tij) ∈ Rk(m−k) and consider the map

R : Rk(m−k) × span{e1, . . . , ek} → Rm defined by:

R(t, y) =
(
e
∑
ij tijEij

)
· y = Rt · y.

The map ψ : Rk(m−k) → Gr+(k,m) defined by:

ψ(t) = Rte1 ∧ · · · ∧Rtek
is a local parametrization of Gr+(k,m) near e1 ∧ · · · ∧ ek = ψ(0). In fact the map ψ is the
Riemannian exponential map centered at e1 ∧ · · · ∧ ek (see [24]). As a consequence, the map
ϕ : U → Rk(m−k) (the inverse of ψ) gives a coordinate chart on a neighborhood U of e1∧· · ·∧ek.
(This chart has the property of being an isometry at the origin, and this will be useful for
computations.)

By construction, R(ϕ(w), ·)∗f defines for every w ∈ Gr+(k,m) a polynomial in R[y1, . . . , yk](d).
As a consequence, the map

q : symd(τ∗k,m)|U → U × R[y1, . . . , yk](d)

defined by:

f 7→ (w,R(ϕ(w), ·)∗f) , f ∈ symd(τ∗k,m)|w
gives a trivialization for symd(τ∗k,m) over U . To summarize, we have a commutative diagram

(the trivialization of the bundle):

symd(τ∗k,m)|U U × R[y1, . . . , yk](d)

U

q

π p1

Observation: Since Gr+(k,m) is compact and connected, the map ψ (the Riemannian expo-
nential map) is surjective and we can choose U such that Gr+(k,m)\U has measure zero (in this
way, integrating a continuous function over U with respect to the volume density of Gr+(k,m)
gives the same result as integrating the continuous function over all of Gr+(k,m)).

Let now f ∈ R[x1, . . . , xm](d) be a random Kostlan polynomial. Using f we can consider the
random map:

σ̃f : U −→ R[y1, . . . , yk](d) ' R(k+d−1
d ),

which is defined by q(σf (w)) = (w, σ̃f (w)) (in other words, σ̃f is nothing but σf in the trivial-
ization given by q).

Assume now that k(m − k) =
(
k+d−1
d

)
, so that rank

(
symd(τ∗k,m)

)
= dimGr(k,m). In this

case denoting by N = dim(R[y1, . . . , yk](d)) = dim(Gr(k,m)), we have that

Z = σ̃f ◦ ψ : ψ−1(U)→ RN
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is a random Gaussian map between two open sets in RN . Then we can use the Kac-Rice formula
from Theorem 1 to count the average number of zeros of Z (and consequently of σ̃f ):

E#{σ̃f = 0} = E#{Z = 0} (since ψ|U is a diffeomorphism)

=

∫
ψ−1(U)

E
{
|det JZ(t)|

∣∣Z(t) = 0
}
· pZ(t)(0)dt = (∗).(9)

Let us verify that the hypotheses from Theorem 1 are satisfied: (i) the fact that Z(t) is
Gaussian is clearly true; (ii) the fact that Z(t) is almost surely of class C1 is also clearly true
(in fact it is C∞); (iii) the fact that it has a nondegenerate distribution follows form the fact
that, in the monomial basis, the random vector Z(t) is just the list of coefficients of a Kostlan
polynomial in k homogeneous variables (the restriction of a Kostlan polynomial to a subspace is
still a Kostlan polynomial, see below), and the Kostlan distribution is nondegenerate; finally, for
property (iv), we observe that [8, Theorem 2.1] guarantees that the section σf is transversal to the
zero section of symd(τ∗k,m) for the generic f ; because the set of polynomials f whose corresponding

section σf is not transversal to the zero section of symd(τ∗k,m) is a semialgebraic set, [8, Theorem

2.1] implies that this semialgebraic set has codimension one, hence its complement has probability
one (the Kostlan measure on the space of polynomials is absolutely continuous with respect to
the Lebesgue measure).

Let us now endow ψ−1(U) with the pull-back metric ψ∗g. Then, following Remark 4, we can
present (9) in a more geometric way using (6):

(∗) =

∫
ψ−1(U)

E
{
|det ĴZ(t)|

∣∣Z(t) = 0
}
pZ(t)(0) ·

(
ψ∗ωGr+(k,m)

)
(t)

=

∫
U

E
{
|det J(w)|

∣∣ σ̃f (w) = 0
}
p(0;w) · ωGr+(k,m)(w),(10)

where we have denoted by p(0;w) the density at zero of the random vector σ̃f (w) and

J(w) = (∇i(σ̃f )j(w))

is the matrix of the derivatives at w of the components of σ̃f with respect to an orthonormal
frame field.

Because the polynomial f is O(m)-invariant, the quantity

ρ(w) = E
{
|det J(w)|

∣∣ σ̃f (w) = 0
}
p(0;w)

does not depend on w ∈ U and ρ(w) ≡ ρ is constant. Using also the above observation that we
can restrict the integration to be over U since it has full measure in Gr+(k,m), we have

E#{σf = 0} = E#{σ̃f = 0} =
(10)

∫
U

ρ(w) · ωGr+(k,m) =
ρ(w)≡ρ

|Gr+(k,m)| · ρ,

where |Gr+(k,m)| denotes the volume of Gr+(k,m). Together with (7), this proves (8).

(b) Computation of the constant ρ.
We proceed now with the computation of the constant ρ. Let w0 = e1 ∧ · · · ∧ ek, we compute
ρ = ρ(w0). It is easy to compute the density at zero of σ̃f (w0). In fact, in the trivialization q
we have:

σ̃f |w0
=
∑
|α|=d

ξα1,...,αk,0,...,0y
α1
1 · · · y

αk
k .
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Hence the coefficients of σ̃f |w0
are independent random variables and are still Kostlan distributed

(in fact, the restriction of a Kostlan polynomial to a subspace is still a Kostlan polynomial). As
a consequence:

p(0;w0) =
∏

α1+···+αk=d

(
α1! · · ·αk!

d!2π

)1/2

.

For the computation of E
{
|det J(w0)|

∣∣ σ̃f (w0) = 0
}

we proceed as follows. For i = 1, . . . , k and
j = k + 1, . . . ,m, consider the curve γij : (−ε, ε)→ Gr+(k,m):

γij(s) = esEije1 ∧ · · · ∧ esEijek.
For the curve γij , note that:

γij(0) = w0 and γ̇ij(0) = ψ∗(∂tij ).

By construction, the frame field

F(w) = {ψ∗(∂tij )(w) | i = 1, . . . , k, j = k + 1, . . . ,m}

at w = w0 is an orthonormal basis for Tw0
Gr+(k,m). Even though the frame field F is not

orthonormal in a full neighborhood of w0, we can still use it for computing J(w0), since the
value at a point of the derivative of a function with respect to a vector field only depends on the
value of the field at the given point (and not on its extension).

By definition of the trivialization q we have:

σ̃f (γij(s))(y1, . . . , yk) = f
(
esEijy

)
, y = (y1, . . . , yk, 0, . . . , 0).

Note that:

esEijy = (y1, y2, . . . , yi−1, yi cos s︸ ︷︷ ︸
i-th entry

, yi+1, . . . , yk, 0, . . . , 0, yi sin s︸ ︷︷ ︸
j-th entry

, 0, . . . , 0).

In particular:

σ̃f (γij(s))(y) =
∑
|α|=d

ξαy
α1
1 · · · y

αi−1

i−1 (yi cos s)αi(yi sin s)αjy
αi+1

i+1 · · · y
αk
k

=
∑
|α|=d

ξα(cos s)αi(sin s)αjyα1
1 · · · y

αi−1

i−1 y
αi+αj
i y

αi+1

i+1 · · · y
αk
k .

Taking the derivative of each coefficient with respect to s and evaluating at s = 0 we get:

d

ds
(σ̃f (γij(s))(y))

∣∣
s=0

=
∑

α1+···+αk+1=d

ξαy
α1
1 · · · y

αi−1

i−1 yαi+1
i y

αi+1

i+1 · · · y
αk
k .

=
∑

|β|=d,βi≥1

qβy
β1

1 · · · y
βk
k

from which we deduce that the coefficient qβ is distributed as:

qβ = ξβ1,...,βi−1,βi−1,βi+1,...,βk,0,...,0,1,...,0 (there is a 1 in position j).

From this we immediately see that |det J(w0)| and σ̃f (w0) are independent random variables
(because of the “1 in position j” above) and:

E
{
|det J(w0)|

∣∣ σ̃f (w0) = 0
}

= E {| det J(w0)|} .
The matrix J(w0) is in general quite complicated, but when we specialize to the case k = 2 it
becomes simpler (this is due to the fact that there is a natural way to order the monomials of
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a one-variable polynomial). In fact, working in the above basis {∂1,3, ∂2,3, . . . , ∂1,m, ∂2,m} for

Tw0G
+(2,m) and {yd1 , yd−1

1 y2, . . . , y1y
d−1
2 , yd2} for R[y1, y2](d), we see that:

∂1,j σ̃f =
∑

|α|=d,αj=1

ξαy
1+α1
1 yα2

2 and ∂2,j σ̃f =
∑

|α|=d,αj=1

ξαy
α1
1 y1+α2

2 .

For example, in the case m = 4 the matrix J(w0) is:

J(w0) =


ξ2010 0 ξ2001 0
ξ1110 ξ2010 ξ1101 ξ2001

ξ0210 ξ1110 ξ0201 ξ1101

0 ξ0210 0 ξ0201

 ,
In the case k = 2,m = n+ 1, for the Grassmannian Gr(2, n+ 1) of lines in RPn, the matrix

J(w0) has the same shape as Ĵn; moreover collecting
√

2n− 3 from each row of J(w0) we get a

matrix that is distributed as Ĵn:

E {|det J(w0)|} = (2n− 3)
2n−2

2 E|det Ĵn|.

Thus the average number, En, of real lines on a random Kostlan hypersurface of degree 2n− 3
in RPn is:

En = |Gr(2, n+ 1)| p(0;w0) (2n− 3)
2n−2

2 E|det Ĵn|︸ ︷︷ ︸
ρ

=
πn−

1
2

Γ
(
n
2

)
Γ
(
n+1

2

) 2n−3∏
k=0

(
k! · (2n− 3− k)!

(2n− 3)!2π

)1/2

(2n− 3)n−1 E|det Ĵn|

=
(2n− 3)n−1

Γ(n)

2n−3∏
k=0

(
2n− 3

k

)−1/2

E|det Ĵn|,

where for the volume of the Grassmannian we have used the formula (see Remark 5 below)

(11) |Gr(2, n+ 1)| = πn−
1
2

Γ
(
n
2

)
Γ
(
n+1

2

) ,
and in the subsequent step above we also used the duplication formula for the Γ function:

Γ(z) · Γ(z + 1/2) = 21−2z
√
πΓ(2z).

This concludes the proof. �

Remark 5 (Volume of Grassmannians). The formula (11) follows from |Gr(k,m)| = |O(m)|
|O(k)||O(m−k)|

and the formula for the volume of the Orthogonal group (see [20, Section 3.12]):

|O(k)| = 2kπ
k2+k

4

Γ(k/2)Γ((k − 1)/2) · · ·Γ(1/2)
.

Note that an analogous formula holds for the complex Grassmannian:

|GrC(k,m)| = |U(m)|
|U(k)||U(m− k)|

and |U(k)| = 2kπ
k2+k

2∏k−1
i=1 i!

.
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2.4. Intrinsic signs and lower bound. Generalizing Segre’s observation h − e = 3, Okonek
and Teleman [28] have shown that to each real line ` on a generic real hypersurface H of degree
2n − 3 in RPn it is possible to canonically associate a sign ε(`) which satisfies the property
that

∑
`⊂H ε(`) does not depend on H, and that this number equals (2n − 3)!!. The crucial

observation is that there exists a line bundle L→ Gr(2, n+ 1) such that [28, Proposition 12]:

K = det(sym2n−3(τ∗2,n+1))⊗ det(TGr(2, n+ 1)) = L⊗ L.

Hence K has a trivialization and sym2n−3(τ∗2,n+1) and TGr(2, n + 1) are said to be relatively

oriented (even if sym2n−3(τ∗2,n+1) and the Grassmannian themselves might not be orientable).
Relative orientation is all one needs to introduce an Euler number, which has the usual properties
and is well defined up to a sign [28, Lemma 5]. The fact that K = L⊗ L allows in this specific
case to canonically choose the relative orientation and the sign ε(`) for ` ⊂ H is defined in an
intrinsic way. Using this notation Okonek and Teleman [28] and Kharlamov and Finashin [14]
have independently proved that:

Rn
.
=

∣∣∣∣∣∑
`⊂H

ε(`)

∣∣∣∣∣ = (2n− 3)!!.

We now show that using the Kac-Rice formula, and the knowledge that the modulus of a
signed count is invariant, one can recover the value of Rn.

Proposition 3. Using the above notation, we have:

Rn = (2n− 3)!!.

Proof. Let us fix a trivialization of sym2n−3(τ∗2,n+1) on an open dense set U ⊂ Gr(2, n + 1) as
in the proof of Theorem 2. The lines on H = {f = 0} contained in U are the zeroes of:

σ̃f : U → R2n−2.

By [28, Lemma 5] we know that:

(12)
∑

σ̃f (w)=0

sign det(Jσ̃f )(w) = ε ·
∑

`⊂H,`∈U

ε(`)

and that the choice of the sign ε = ±1 is determined once the trivialization is fixed. On the other
hand, for a random map Z : R2n−2 → R2n−2 (sufficiently smooth, e.g. satisfying the hypothesis
of [1, Theorem 12.1.1]), we have:

E
∑

Z(w)=0

sign det(JZ)(t) =

∫
R2n−2

E{det(JZ)(t) |Z(t) = 0} · pZ(t)(0)dt.

This follows from [27, Lemma 3.5], as the function sign(det(·)) : R(2n−2)×(2n−2) → R is admissible
(in the terminology of [27]). Applying this to the case Z = σ̃f ◦ ψ and arguing exactly as in the
proof of Theorem 2 we get:

(13) E
∑

σ̃f (w)=0

sign det(Jσ̃f )(w) =

(
(2n− 3)n−1

Γ(n)

2n−3∏
k=0

(
2n− 3

k

)−1/2
)
Edet Ĵn

Let us first evaluate the factor Edet Ĵn. To simplify notations, let us denote by xi,j the random

variable v
(i)
j in the matrix Ĵn (we will also use this notation later in Remark 6). After taking

expectation, by independence, the only monomials in the expansion of det Ĵn that give a nonzero
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contribution are those with all squared variables (for example x2
1,1x

2
2,3 · · ·x2

n−1,2n−3). These
monomials all have the form:

x2
i1,1x

2
i2,3 · · ·x

2
in−1,2n−3, {i1, . . . , in−1} = {1, . . . , n− 1}.

There are (n− 1)! many such monomials and because every second subscript is shifted by two,

in the expansion of det Ĵn they all appear with the same sign. Moreover the product of all the
variances of the variables in each of these monomials equal:

∏
j odd

(
2n− 4

j − 1

)
=

n−1∏
k=1

(
2n− 4

2k − 2

)
.

From this we obtain:

Edet Ĵn = (n− 1)!

n−1∏
k=1

(
2n− 4

2k − 2

)
.

We look now at the term:

2n−3∏
k=0

(
2n− 3

k

)−1/2

=

2n−3∏
k=0

(
k!(2n− 3− k)!

(2n− 3)!

)1/2

=
1

(2n− 3)!n−1

(
2n−3∏
k=0

k!

)1/2(2n−3∏
k=0

(2n− 3− k)!

)1/2

=
1

(2n− 3)!n−1

2n−3∏
k=0

k!.

Collecting all this together, we obtain:(
(2n− 3)n−1

Γ(n)

2n−3∏
k=0

(
2n− 3

k

)−1/2
)
Edet Ĵn =

(∏2n−3
k=0 k!

)(∏n−1
k=1

(
2n−4
2k−2

))
(2n− 4)!n−1

=

(
2n−3∏
k=0

k!

)(
n−1∏
k=1

1

(2k − 2)!(2n− 2k − 2)!

)

=

n−1∏
j=1

(2j − 1)!

(n−1∏
k=1

1

(2n− 2k − 2)!

)

=

n−1∏
j=1

(2j − 1)!

n−1∏
j=1

1

(2j − 2)!


=

n−1∏
j=1

(2j − 1)!

(2j − 2)!

=

n−1∏
j=1

(2j − 1) = (2n− 3)!!

Combining the last equation with (13) and (12) concludes the proof. �
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Let us now denote by ρn the number:

ρn =
(2n− 3)n−1

Γ(n)

2n−3∏
k=0

(
2n− 3

k

)−1/2

.

Then the last computation in the proof of Proposition 3 shows that ρn · |Edet Jn| = (2n− 3)!!.
As a corollary, since:

En = ρn · E|det Jn| ≥ ρn · |Edet Jn|,
we derive the following lower bound for En. Note however that the proof of ρn · |E det Jn| ≥
(2n − 3)!! does not require [28, Corollary 17], hence this lower bound does not depend on the
knowledge that the signed count is invariant.

Corollary 4. The following inequality holds:

En ≥ (2n− 3)!!

3. The average number of real lines on a random cubic

Theorem 5. The average number of real lines on a random cubic surface in RP3 is 6
√

2− 3.

Proof. Applying Theorem 2 for the special case n = 3 we get:

(14) E3 =
3

2
E|det Ĵ3|.

where:

Ĵ3 =


a 0 d 0√
2b a

√
2e d

c
√

2b f
√

2e
0 c 0 f

 ,
with a, b, c, d, e, f independent standard normal random variables.

In order to compute E|det Ĵ3|, we first observe that:

det Ĵ3 = (af − cd)2 − 2(bf − ce)(ae− bd),

which will lead us to work in terms of the random variables:

x = (bf − ce),
y = (af − cd),

z = (ae− bd),

in order to compute the expectation of |det Ĵ3| = |2xz−y2|. We use the method of characteristic
functions (Fourier analysis) in order to compute the joint density ρ(x, y, z) of x, y, z.

By the Fourier inversion formula, we have:

(15) ρ(x, y, z) =
1

(2π)3
lim
R→∞

∫
|(t1,t2,t2)|<R

e−i(t1x+t2y+t3z) ρ̂(t1, t2, t3) dt1dt2dt3,

where

ρ̂(t1, t2, t3) = Eei(t1(bf−ce)+t2(ae−bd)+t3(af−cd))

is the characteristic function (Fourier transform) of ρ. In (15) the reason we are taking a limit
as R → ∞ of an integral over the ball of radius R (rather than directly integrating over R3 as
in the more familiar Fourier inversion formula) is because it will turn out (see (16) below) that
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the characteristic function ρ̂ is not in the space L1(R3) of integrable functions. However, ρ̂ is in
the space L2(R3), so one can justify (15) using the fact that the Fourier transform extends to
L2(R3)→ L2(R3) as an isometry (once an appropriate normalizing constant is introduced) – see
Plancherel’s Theorem in [29]. In particular, the extended Fourier transform and its inverse are
continuous. Since the sequence of truncations converges in L2(R3), this justifies (15). Of course
the Fourier transform and its inverse can be further extended to include more exotic classes of
functions (and distributions), but its extension to L2 suits our current purposes.

We notice that the expression:

t1(bf − ce) + t2(ae− bd) + t3(af − cd) = (a, b, c, d, e, f)TQ(a, b, c, d, e, f)

is a symmetric quadratic form in the Gaussian vector:

(a, b, c, d, e, f),

where the matrix for the quadratic form is given by:

Q =
1

2


0 0 0 0 t2 t3
0 0 0 −t2 0 t1
0 0 0 −t3 −t1 0
0 −t2 −t3 0 0 0
t2 0 −t1 0 0 0
t3 t1 0 0 0 0

 .

Using [30, Thm. 2.1] while taking t = 1 (and treating t1, t2, t3 as parameters), we have:

Eei(t1(bf−ce)+t2(ae−bd)+t3(af−cd)) =
1√

det(1− 2iQ)
,

which can be simplified to give

(16) ρ̂(t1, t2, t3) =
1

1 + t21 + t22 + t23
.

We substitute this into (15) to compute the density ρ next. Note that in the first step
of the computation below, we switch to spherical coordinates with the direction of the vector
(x, y, z) treated as the zenith, φ being the polar angle measured from the zenith, and θ being
the azimuthal angle.
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ρ(x, y, z) =
1

(2π)3
lim
R→∞

∫
|(t1,t2,t2)|<R

e−i(t1x+t2y+t3z)

1 + t21 + t22 + t23
dt1dt2dt3

=
1

(2π)3
lim
R→∞

∫ 2π

0

∫ π

0

∫ R

0

e−i|(x,y,z)|r cosφ

1 + r2
r2 sinφ drdφdθ

=
1

(2π)2
lim
R→∞

∫ π

0

∫ R

0

e−i|(x,y,z)|r cosφ

1 + r2
r2 sinφ drdφ

=
1

(2π)2
lim
R→∞

∫ R

0

r2

1 + r2

e−i|(x,y,z)|r cosφ

i|(x, y, z)|r

∣∣∣∣φ=π

φ=0

dr

=
1

2π2

1

|(x, y, z)|
lim
R→∞

=
∫ R

0

r

1 + r2
ei|(x,y,z)|r dr

=
1

4π2

1

|(x, y, z)|
lim
R→∞

=
∫ R

−R

r

1 + r2
ei|(x,y,z)|r dr

=
1

4π2

1

|(x, y, z)|
=
∮
CR

r

1 + r2
ei|(x,y,z)|r dr

=
1

4π

e−|(x,y,z)|

|(x, y, z)|
,

where = denotes the imaginary part, and we used residues [2, Ch. 5] to evaluate the final integral.
Let us give some details explaining this step. First one must modify the path of integration to
get a closed contour CR. We do this by including a semicircle of radius R (the upper half of
a circle about the origin). We can freely add this semicircle since it does not affect the limit;

indeed, the contribution along the semicircle can be estimated as, say, O(1/
√
R) by separately

considering the part of the semicircle that is within distance
√
R to the real axis, where we use

that the integrand is O(1/R), and the remaining part of the semicircle, where we can use the
exponential decay of the integrand with respect to the imaginary direction. Once we include
the semicircle (thus arriving at the contour integral over CR in the penultimate line among the
displayed equations above), we drop the limit notation because the resulting contour integral is
independent of R as long as R is large enough that CR surrounds r = i. We can then compute∮

CR

r

1 + r2
ei|(x,y,z)|r dr = 2πi ·

(
1

2
e−|(x,y,z)|

)
,

since the integrand has one simple pole inside this contour at r = i, and the residue is easily
computed by factoring out 1

r−i from the integrand and evaluating the remaining factor at r = i.

Having computed ρ(x, y, z), the expectation can now be expressed as:

E|det Ĵ3| =
1

4π

∫
R3

|2xz − y2|e
−|(x,y,z)|

|(x, y, z)|
dxdydz

=
1

8π

∫
R3

|a1a3 − a2
2|
e
−

√
a21
2 +a2+

a23
2√

a21
2 + a2 +

a23
2

da1da2da3
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where we have made the change of variables a1 =
√

2x, a2 = y, a3 =
√

2z. Let us view a1, a2, a3

as the entries of a symmetric matrix:

A =

[
a1 a2

a2 a3

]
.

Consider the coordinates given by the eigenvalues λ1, λ2 of A along with the angle α ∈ [0, π/2)
associated with the orthogonal transformation that diagonalizes A:

M =

[
cosα − sinα
sinα cosα

]
.

The Jacobian determinant for changing coordinates to (λ1, λ2, α) is |λ1 − λ2|. We recognize
a21
2 +a2 +

a23
2 =

λ2
1+λ2

2

2 as half the Frobenius norm of A, and a1a3−a2
2 = λ1λ2 as the determinant

of A. With respect to these coordinates, we have:

E|det Ĵ3| =
√

2

8π

∫ π/2

0

∫
R2

|λ1λ2|
e
−

√
λ21+λ22

2√
λ2

1 + λ2
2

|λ1 − λ2| dλ1dλ2 dα

=

√
2

16

∫
R2

|λ1λ2|
e
−

√
λ21+λ22

2√
λ2

1 + λ2
2

|λ1 − λ2| dλ1dλ2

=

√
2

16

∫ 2π

0

∫ ∞
0

r3| cos θ sin θ(cos θ − sin θ)|e−r/
√

2 dr dθ,

=
3
√

2

2

∫ 2π

0

| cos θ sin θ(cos θ − sin θ)| dθ,

=
3
√

2

2

(
8− 2

√
2

3

)
= 4
√

2− 2

where we have utilized polar coordinates λ1 = r cos θ, λ2 = r sin θ. Substituting the obtained
number into (14) gives the desired result E3 = 6

√
2− 3.

�

4. The complex case

4.1. Complex Kostlan polynomials. We consider now the space C[x0, x1, . . . , xn](d) of homo-
geneous polynomials of degree d in n+1 variables. A complex Kostlan polynomial is obtained by
replacing real Gaussian variables with complex Gaussian variables in the definition from section
2.1. Specifically we take:

f(x) =
∑
|α|=d

ξαx
α, ξα ∼ NC

(
0,

(
d

α

))
,

where as before the ξα are independent. The resulting probability distribution on the space
C[x0, x1, . . . , xn](d) is invariant by the action of U(n+ 1) by change of variables (see [22, 5]).

4.2. A general construction. We will need the following elementary Lemma.
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Lemma 6. Consider the 2m× 2m real matrix Ã defined by:

Ã =


A11 · · · A1m

...
...

Am1 · · · Amm

 where Aij =

[
aij bij
−bij aij

]

and the m×m complex matrix AC defined by:

AC =


a11 + ib11 · · · a1m + ib1m

...
...

am1 + ibm1 · · · amm + ibmm

 .
Then:

det(Ã) = det(AC) det(AC) and det(Ã) ≥ 0.

Proof. Let P ∈ GL(2m,R) be the permutation matrix corresponding to the permutation:

σ =

(
1 2 · · · m− 1 m m+ 1 m+ 2 · · · 2m− 1 2m
1 3 · · · 2m− 3 2m− 1 2 4 · · · 2m− 2 2m

)
.

Then the matrix P−1ÃP is of the form:[
M N
−N M

]
where M = (ajl) and N = (bjl).

Note that AC = M + iN and that:[
1 0
−i1 1

]
·
[

M N
−N M

]
·
[
1 0
i1 1

]
=

[
M + iN N

0 M − iN

]
,

which implies det(P−1ÃP ) = det(M + iN) det(M − iN). Consequently:

det(Ã) = det(P−1ÃP )

= det(M + iN) det(M − iN)

= det(AC) det(AC).

�

Consider now a random vector w = (w1, . . . , w2n−3) in C2n−3 whose entries are independent
Gaussian variables distributed as:

wj ∼ NC

(
0,

(
2n− 4

j − 1

))
j = 1, . . . , 2n− 3.

In other words:

wj ∼

√
1

2

(
2n− 4

j − 1

)
(ξ1 + iξ2)

where ξ1, ξ2 are two standard independent Gaussians.
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Let w(1), . . . , w(n−1) be independent random vectors all distributed as w. We define the
random (2n− 2)× (2n− 2) matrix ĴC

n as:

ĴC
n =



w
(1)
1 0 . . . w

(n−1)
1 0

w
(1)
2 w

(1)
1 w

(n−1)
2 w

(n−1)
1

... w
(1)
2

... w
(n−1)
2

w
(1)
2n−3

... w
(n−1)
2n−3

...

0 w
(1)
2n−3 . . . 0 w

(n−1)
2n−3


Theorem 7. The number Cn of lines on a generic hypersurface of degree 2n− 3 in CPn is:

Cn =

(
(2n− 3)2n−2

Γ(n)Γ(n+ 1)

2n−3∏
k=0

(
2n− 3

k

)−1
)
E|det ĴC|2

Proof. (sketch) The proof proceeds similarly to the proof of Theorem 2; again we use a general
approach and then specialize to the case of the Grassmannian of lines in CPn.

We view the complex Grassmannian GrC(k,m) as a real manifold of dimension 2k(m − k)
and the space C[z1, . . . , zm](d) of homogeneous polynomials of degree d as a real vector space of

dimension 2
(
m+d−1

d

)
:

f(z1, . . . , zm) =
∑
|α|=d

(aα + ibα)zα1
1 · · · zαmm , aα, bα ∈ R.

We put a Riemannian structure on GrC(k,m) by declaring the quotient map U(m)→ GrC(k,m)
to be a Riemannian submersion.

Consider the bundle symd(τ∗k,m) on GrC(k,m); a polynomial f ∈ C[z1, . . . , zm](d) defines a

section σf of this bundle and, in the case k(m−k) =
(
k+d−1
d

)
, the number of zeros of σf coincides

with the number of k-planes on {f = 0}. We build a random section of symd(τ∗k,m) by taking f
to be a complex Kostlan polynomial:

f(z) =
∑
|α|=d

ξαz
α1
1 · · · zαmm

where the ξα are independent and distributed as:

(17) ξα =

√
1

2

(
d

α

)
(ξ1 + iξ2)

and ξ1, ξ2 are standard, independent Gaussians. In this way the resulting probability distribution
on the space of polynomials is invariant by the action of the unitary group U(m).

Note that in the case k = 2,m = n+ 1, with probability one the number of zeros of σf equals
the number of k-planes on a generic hypersurface of degree d in CPn.

To trivialize the bundle we proceed as in the proof of Theorem 2, using now complex variables.
The invariance of f under the action of the unitary group allows to reduce the computation for
the Kac-Rice density at a point (which we again assume is w0 = span{e1, . . . , ek}). We obtain:

E#{w ∈ GrC(k,m) |σf (w) = 0} = |GrC(k,m)|ρC
where now:

ρC = E
{
|det J̃(w0)|

∣∣ σ̃f (w0) = 0
}
pC(0;w0),
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with pC(0;w0) the density at zero of the vector of the real coefficients of σ̃f |w0
∈ C[z1, . . . , zk](d),

and the matrix

J̃(w0) = (∇i(σ̃f )j(w0))

the 2k(m− k)× 2k(m− k) matrix of the derivatives of the coordinates of σ̃f with respect to an
orthonormal frame field at w0.

Note that σ̃f (w0) = f |w0
is the random polynomial:

σ̃f (w0)(z1, . . . , zk) =
∑
|α|=d

ξαz
α1
1 · · · z

αk
k

from which we immediately see that in the case k = 2,m = n + 1, for the Grassmannian
GrC(2, n+ 1) of lines in CPn we have:

pC(0, w0) =
2n−3∏
k=0

1

π

(
2n− 3

k

)−1

.

For the computation of J̃(w0) we use the orthonormal basis of Tw0GrC(k,m) given by derivatives
at zero of the curves:

γ1
lj , γ

2
lj : (−ε, ε)→ GrC(2,m)

defined for l = 1, . . . , k and j = k + 1, . . . ,m by:

γ1
lj(s) = esElje1 ∧ · · · ∧ esEljek and γ2

lj(s) = eisElje1 ∧ · · · ∧ eisEljek.

It is immediate to verify that:

d

ds

(
σ̃f (γ1

kj(s))(z)
)

=
∑

α1+···+αk+1=d

ξαz
α1
1 · · · z

αi+1
i · · · zαkk

=
∑

|β|=d,βi≥1

q
(1)
β zβ1

1 · · · z
βk
k

and that:

d

ds

(
σ̃f (γ2

kj(s))(z)
)

=
∑

α1+···+αk+1=d

iξαz
α1
1 · · · z

αi+1
i · · · zαkk

=
∑

|β|=d,β1≥1

q
(2)
β zβ1

1 · · · z
βk
k

From this we see that the coefficients q
(1)
β and q

(2)
β are distributed as:

(18) q
(1)
β = ξβ1,...,βi−1,βi−1,βi+1,...,βk,0,...,0,1,...,0 (there is a 1 in position j)

and:

(19) q
(2)
β = i · ξβ1,...,βi−1,βi−1,βi+1,...,βk,0,...,0,1,...,0 (there is a 1 in position j).

In particular, we deduce from (18) and (19) that det J̃(w0) and σ̃f (w0) are independent, and
consequently:

E
{
|det J̃(w0)|

∣∣ σ̃f (w0) = 0
}

= E|det J̃(w0)|.

Recalling the definition (17), and specializing to the case k = 2,m = n+ 1 of the Grassmannian

of lines, we see again from (18) and (19) that the matrix J̃(w0) has the same shape as the matrix
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Ã from Lemma 6. Collecting a factor of
√
d =
√

2n− 3 from each row and using Lemma 6 we
obtain:

E|det J̃(w0)| = (2n− 3)2n−2E
(

det ĴC
n det ĴC

n

)
.

Putting all the pieces together, and using the formula |GrC(2, n+ 1)| = π2n−2

Γ(n)Γ(n+1) (see Remark

5), we get:

Cn = |GrC(2, n+ 1)| pC(0, w0) E|det J̃(w0)|

=
π2n−2

Γ(n)Γ(n+ 1)

2n−3∏
k=0

1

π

(
2n− 3

k

)−1

(2n− 3)2n−2E
(

det ĴC
n det ĴC

n

)
=

(
(2n− 3)2n−2

Γ(n)Γ(n+ 1)

2n−3∏
k=0

(
2n− 3

k

)−1
)
E|det ĴC

n |2.

�

Remark 6 (Real versus complex Gaussians). Consider the matrix:

An(x) =



x1,1 0 · · · xn−1,1 0
... x1,1

... xn−1,1(
2n−4
j−1

)1/2
x1,j

...
(

2n−4
j−1

)1/2
xn−1,j

...
...

(
2n−4
j−1

)1/2
x1,j

...
(

2n−4
j−1

)1/2
xn−1,j

x1,2n−3

... xn−1,2n−3

...
0 x1,2n−3 · · · 0 xn−1,2n−3


.

The determinant Pn(x) of An(x) is a homogeneous polynomial of degree D = 2n − 2 in N =
(n− 1)(2n− 3) many variables and by construction we have:

E|det Ĵn| =
1

(2π)N/2

∫
RN
|Pn(x)| e− 1

2‖x‖
2

dx

and:

E|det ĴC
n |2 =

1

πN

∫
CN

Pn(z)Pn(z) e−‖z‖
2

dz.(20)

Recall that, given a homogeneous polynomial P (z) =
∑
|α|=D Pαz

α1
1 · · · z

αN
N of degree D in N

variables, we have denoted by ‖P‖B its Bombieri norm:

(21) ‖P‖B =

 ∑
|α|=D

|Pα|2
α1! · · ·αN !

D!

 1
2

.

Then, it is possible to rewrite (20) as:

(22) E|det ĴC
n |2 = (2n− 2)! ‖Pn‖2B .
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4.3. The 27 lines on a complex cubic.

Corollary 8. There are 27 lines on a generic cubic in CP3.

Proof. This is the case n = 3 in the previous theorem, which gives:

C3 =
3

4
E|det ĴC

3 |2

For the computation of E|det ĴC
3 |2 we use (22). We have the following expression for P3(x) =

detA3(x):

x2
13x

2
21− 2x12x13x21x22 + 2x11x13x

2
22 + 2x2

12x21x23− 2x11x13x21x23− 2x11x12x22x23 +x2
11x

2
23.

Recalling (21) we can immediately compute the Bombieri norm of P3:

‖P3‖2B =
36

4!
.

From this we get E|det ĴC
3 |2 = 4!‖P3‖2B = 36, and consequently C3 = 27. �

5. Asymptotics

The main purpose of this section is to prove Theorem 12, which gives the asymptotic (3) of
En in the logarithmic scale, as discussed above in Section 1.3 (the “square root law”). This will
follow from a combination of the lower bound given in Corollary 4 and the upper bound that we
will prove in Proposition 11.

Remark 7. Our proof of the upper bound uses the Leibniz expansion of the determinant and
requires some delicate combinatorics. Before stepping into this, let us briefly recall how the
Leibniz expansion easily leads to an estimate for the absolute moment of a random determinant
in the simpler setting of a random real Ginibre n×n matrix, or more generally a random matrix
Mn with i.i.d. entries mij each of mean zero and variance one:

(23) E|detMn| ≤
√
E(detMn)2 ≤

√√√√E

(∑
σ

Pσ

)2

=

√∑
σ,τ

E(PσPτ ) =
√
n!,

where σ and τ range over permutations of {1, 2, ..., n}, Pσ = sgn(σ)

n∏
i=1

miσ(i), and the last

equality follows from independence of mij and the fact that they are each of mean zero and

variance one (so that only the diagonal terms in the expansion of (
∑
σ Pσ)

2
survive after taking

expectation).

This simple estimate (23) was observed by Turán [42]. It turns out to be off by only a factor
of
√
n from the true asymptotic behavior of E|detMn| [18] (in particular, it is sharp at the

logarithmic scale).

The combinatorial difficulties in adapting this method to our setting are due to the repetition
of variables in the matrix An(x). A similar complication is faced in studying the moments of
the determinant of a random Wigner matrix (where there are pairs of repeating variables in
off-diagonal entries since the matrix is symmetric); the Leibniz expansion approach has been
adapted to that setting in [41].
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5.1. The upper bound. The strategy of our proof can be described as follows. In order
to simplify notations, let us absorb the variances in the variables of the matrix An(x) and
consider it as the matrix Bn(u) with entries the random variables ui,j =

(
2n−4
j−1

)
xi,j , so that

detAn(x) = detBn(u).

(24) Bn(u) =



u1,1 0 · · · un−1,1 0
... u1,1

... un−1,1

u1,j

... un−1,j

...
... u1,j

... un−1,j

u1,2n−3

... un−1,2n−3

...
0 u1,2n−3 · · · 0 un−1,2n−3


.

We will use both the double-index notation ui,j as well as single-index notation uk, k = 1, 2, .., N
for the N = (n− 1)(2n− 3) many variables appearing in Bn(u).

Given a permutation σ ∈ S2n−2 we consider the product:

2n−2∏
i=1

Bn(u)σ(i),i = uα1
1 · · ·u

αN
N .

We will call uα1
1 · · ·u

αN
N the monomial generated by the permutation σ. We will denote by I1

the set of all the multi-indices of all possible monomials generated by permutations in S2n−2. In
this way we can write:

Qn(u) = detBn(u) =
∑
α∈I1

Qαu
α1
1 · · ·u

αN
N .

We first prove that for each permutation π ∈ S2n−2, the monomial απ generated by π occurs with
a non-zero integral coefficient in the polynomial Qn(u). In other words there are no cancellations
occuring in the Leibniz expansion of the determinant of Bn(u): such cancellations are a priori
possible since the same monomial can be generated by several permutations, which is evident
(24) from the structure of the matrix. The proof of the above statement follows immediately
from Lemma 9 proved below. We then prove (Lemma 10) that in the expansion of the polynomial
Qn(u)2, each “cross-term” QαQβu

αuβ that appears with a non-zero coefficient can be “charged”
to some square term Q2

γu
2γ . Of course, many cross-terms might be charged to the same square-

term, but the number of different pairs (α, β) such that α+β = 2γ, is bounded by some number
at most exponential in n. Together, these two lemmas reduce the problem of bounding E(Qn(u))2

(up to a loss of an exponential factor) to the problem of bounding

E
∑
γ

Q2
γu

2
γ ,

and the latter can be bounded using linearity of expectation in terms of the Bombieri norm of
the polynomial Pn(x) = detAn(x) (Proposition 11).

We now prove the necessary preliminary results required to carry through the argument
sketched above.

Lemma 9. For each α ∈ I1, Qα 6= 0 and |Qα| > 1.

Proof of Lemma. For a given multi-index α suppose that σ = σ(1)σ(2) · · ·σ(2n − 2) and τ =
τ(1)τ(2) · · · τ(2n− 2) are two permutations (each given in one-line notation) that are associated
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with the monomial uα in the Leibniz expansion of the determinant of Bn(u). In other words,
the corresponding terms in the Leibniz expansion are sgn(σ)uα and sgn(τ)uα, respectively. It
suffices to show, for arbitrary such σ and τ , that we have sgn(σ) = sgn(τ), or equivalently that
θ = τ−1σ is even.

Note that in the matrix Bn(u) each variable appears exactly twice and in positions that are
separated by exactly one increment in the row and the column values. The assumption that σ
and τ generate the same monomial uα then implies the following claim.

Claim 1. Suppose σ(j) 6= τ(j). Then if j is odd, σ(j + 1) = τ(j) + 1 and τ(j + 1) = σ(j) + 1,
and if j is even, σ(j − 1) = τ(j)− 1 and τ(j − 1) = σ(j)− 1.

We will also need the next claim.

Claim 2. Suppose τ(j) = σ(k) for j 6= k. Then the parities of k and j are the same; moreover
if j is odd σ(j + 1) = τ(j) + 1 and τ(k + 1) = σ(k) + 1, if j is even σ(j − 1) = τ(j) − 1 and
τ(k − 1) = σ(k)− 1.

We prove Claim 2 in the case that j is odd; the case j is even is similar and is omitted. The
variable in the matrix Bn(u) in position (τ(j), j) must be selected by σ as well. Since σ(j) 6= τ(j)
and j is odd, the only option is that σ(j+1) = τ(j)+1.We will see that the case k is even leads to a
contradiction. Since τ(k) 6= σ(k) and k is even, in order for the variable in position (σ(k), k) to be
selected by τ we must have τ(k−1) = σ(k)−1 (by Claim 1). This implies that σ(k−1) 6= τ(k−1),
so that there is some ` 6= k − 1 such that σ(`) = τ(k − 1). In order for the variable in position
(σ(`), `) to be selected by τ we must have τ(` − 1) = σ(`) − 1 = τ(k − 1) − 1 (note that the
alternative option τ(`+ 1) = σ(`) + 1 is prevented since σ(`) + 1 = τ(k− 1) + 1 = σ(k) = τ(j)).
Iterating this argument τ(k − 1)− 2 more steps, and recalling equation (24), we reach the first
row of the matrix Bn(u) where we are forced to select an unpaired variable contradicting the
assumption that σ and τ generate the same monomial. This shows that k must be odd as well
and, by the same reasoning as above, τ(k + 1) = σ(k) + 1 as stated in the claim.

Let us now go back to the permutation θ = τ−1σ. Claim 2 implies that θ preserves parity, so
it can be written as the product of two permutations θ = θeven · θodd, where θeven (respectively,
θodd) is in the symmetric group Sn−1,even (respectively, Sn−1,odd) on the set of even (respectively,
odd) numbers belonging to {1, . . . , 2n − 2}. We identify Sn−1,even (respectively, Sn−1,odd) with
the subgroup of S2n−2 of permutations which fixes each odd (respectively, even) number in
{1, . . . , 2n− 2}. Claim 2 can now be rewritten as:

(25) θodd(2k − 1) = 2j − 1 ⇐⇒ θeven(2j) = 2k.

Note that the bijection:

{2, 4, . . . , 2n− 2} → {1, 3, . . . , 2n− 3}, 2k 7→ 2k − 1,

induces an isomorphism ψ : Sn−1,odd → Sn−1,even. Equation (25) shows that ψ(θodd) = θ−1
even.

In particular, since the sign of θeven and θ−1
even are the same it follows that θ is even. �

We will also need the following lemma.

Lemma 10. Let I2 be the set of all multi-indices γ = (γ1, . . . , γN ) such that there exist α, β ∈ I1
with αi + βi = 2γi for all i = 1, . . . , N. Then I2 ⊆ I1.

Proof. Let σ and τ be two permutations that are associated with the monomials uα and uβ ,
respectively, in the Leibniz expansion of detBn(u). It suffices to construct a third permutation
ω that is associated to the monomial uγ . In order for uα+β to be the square of a monomial, we
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must have that αi + βi is either 0, 2, or 4. If αi + βi = 0 then αi = βi = 0. If αi + βi = 4 then
αi = 2 and βi = 2. If αi + βi = 2 then there are three possibilities: we can have αi = 2 and
βi = 0 or αi = 1 and βi = 1 or αi = 0 and βi = 2. In terms of σ and τ , for each pair of columns
of Bn(u) with column numbers 2k − 1 and 2k, only the following three cases can occur.

Case 1. We have σ(2k − 1) = τ(2k − 1), which implies σ(2k) = τ(2k).
Case 2. We have σ(2k−1) 6= τ(2k−1) (which implies σ(2k) 6= τ(2k)) and τ(2k) = σ(2k−1)+1

(which implies σ(2k) = τ(2k − 1) + 1).
Case 3. We have σ(2k−1) 6= τ(2k−1) (which implies σ(2k) 6= τ(2k)), and τ(2k) = τ(2k−1)+1

and σ(2k) = σ(2k − 1) + 1.

Now we define ω, basing for our choice of ω(2k− 1) and ω(2k) (for 1 ≤ k ≤ n− 1) in terms of
the three cases enumerated above. In each of Cases 1 and 2, we simply take ω(2k−1) = σ(2k−1)
and ω(2k) = σ(2k). In the remaining Case 3, we take ω(2k− 1) = σ(2k− 1) and ω(2k) = τ(2k).

In order to see that ω is indeed a permutation, it suffices to see that it is one-to-one. Let
T ⊆ {1, 2, ..., 2n−2} denote the set of even integers 2k for which the pair of columns (c2k−1, c2k)
with column numbers 2k− 1 and 2k falls into Case 3, and let S = {1, 2, ..., 2n− 2} \T . We have
ω|S = σ|S , and ω|T = τ |T , hence ω is injective on these subsets and one only needs to check
that if i ∈ S and j ∈ T then ω(i) 6= ω(j). We will need the following claim (note that we will
only need the part of the claim pertaining to Case 3, but the statement concerns both Cases 2
and 3 as this is used in the inductive step of the proof).

Claim 3. Assume a pair of columns with column numbers 2k − 1 and 2k falls into Case 2 (re-
spectively Case 3). Then there exists another pair of columns that falls into Case 2 (respectively
Case 3) with column numbers 2j − 1 and 2j with j 6= k such that σ(2k − 1) = τ(2j − 1) (which
then forces σ(2j) = τ(2k) in Case 2 and σ(2k) = τ(2j) in Case 3).

We note that this claim can be verified pictorially from the equation (24) of the matrix Bn(u)
by “chasing” the row-column structure. However, we will proceed formally. We prove the claim
simultaneously for Case 2 and Case 3 by induction on q = min{σ(2k−1), τ(2k−1)}. For the base
of the induction, let min{σ(2k−1), τ(2k−1)} = 1. Since the roles of σ and τ are symmetric, we
can assume without loss of generality that σ(2k−1) = 1. Consider ` such that τ(`) = 1. Observe
that ` must be odd, so we can write ` = 2j − 1, and the variable in position (`+ 1, 2) = (2j, 2)
must be selected by either σ or τ . Namely, we have σ(2j) = 2 in Case 2 and τ(2j) = 2 in Case
3. i.e., if the pair of columns p = (c2k−1, c2k) falls into Case 2 (respectively Case 3), this forces
the pair of columns (c2j−1, c2j) to fall into Case 2 (respectively Case 3).

Assume now that the Claim holds for min{σ(2k − 1), τ(2k − 1)} ≤ q. For the inductive step,
suppose the pair (c2k−1, c2k) falls into Case 2 or Case 3 with min{σ(2k− 1), τ(2k− 1)} = q+ 1,
and again using the symmetry of the roles played by σ and τ we assume without loss of generality
that σ(2k − 1) = q + 1. Let us assume that the pair is in Case 2 (a similar argument addresses
Case 3). Pick ` such that τ(`) = σ(2k − 1) = q + 1. First, notice that ` must be odd. In fact,
if ` were even then the pair p′ = (c`−1, c`) would fall into either Case 2 or 3 and would give (by
the inductive hypothesis) another pair p′′ which is in the same Case as p′; this contradicts the
injectivity of σ. Since ` is odd we write ` = 2j − 1. The variable in position (2j, q + 2) must
be selected by either σ or τ , and we see that it must be σ, i.e., we have σ(2j) = τ(2j − 1) + 1.
Otherwise, if τ(2j) = τ(2j−1)+1 this would contradict the injectivity of τ . A similar argument
applies when the pair (c2k−1, c2k) is in Case 3. This completes the inductive step and proves the
claim.

Let us now return to verifying the injectivity of ω. Fixing an arbitrary 2k ∈ T and i ∈ S, let us
prove that ω(i) 6= ω(2k). We can apply Claim 3 to the pair of columns (c2k−1, c2k) (exchanging
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the roles of σ and τ) to produce j such that (c2j−1, c2j) falls into Case 3 and τ(2k−1) = σ(2j−1)
and τ(2k) = σ(2j). We have 2j ∈ T which implies i 6= 2j, and hence σ(2j) 6= σ(i). This implies
ω(2k) = τ(2k) = σ(2j) 6= σ(i) = ω(i), showing that ω is injective.

Considering the variables that are selected by ω it is simple to check that it is associated with
γ as desired. �

We will now prove the claimed upper bound for En.

Proposition 11. Using the notation of Theorem 2 and Theorem 7, there exists b > 1 such that:

En ≤
√
nbnC1/2

n .

Proof. As a first step, we claim that there exists b > 1 such that:

(26) E|det ĴR
n | ≤ bn

(
E|det ĴC

n |2
)1/2

.

We want to apply the Cauchy-Schwarz inequality, and estimate the quantity:

E|det ĴR
n | = E|detBn(u)| ≤

(
E (detBn(u))

2
)1/2

=
(
EQn(u)2

)1/2
.

We write now:

(27) Qn(u)2 =
∑
γ∈I1

Q2
γu

2γ1
1 · · ·u2γN

N +
∑
α6=β

QαQβu
α1+β1

1 · · ·uαN+βN
N ,

where I1 is the index set defined just before Lemma 9. Observe that, after taking expectation
and using independence, in the second sum in (27) only terms such that αi + βi is even for all
i = 1, . . . , N give a nonzero contribution:

(28) EQn(u)2 =
∑
γ∈I1

Q2
γEu

2γ1
1 · · ·u2γN

N +
∑

α 6=β and α+ β “even”

QαQβEuα1+β1

1 · · ·uαN+βN
N .

We now rewrite the double sum on the right as:∑
α6=β and α+ β even

QαQβEuα1+β1

1 · · ·uαN+βN
N =

∑
γ∈I2

 ∑
α+β=2γ

QαQβ

u2γ1
1 · · ·u2γN

N

where I2 is the index set defined in Lemma 10.

Note that there exists b1 > 1 such that |Qγ | ≤ bn1 for every γ ∈ I1. In fact, it is easy to see
that there are at most 2n−1 many ways a given monomial can appear as one of the summands
in the Leibniz expansion of detBn(u). Moreover there exists b2 > 1 such that, for every fixed γ,
the cardinality of the set of pairs (α, β) such that α + β = 2γ is bounded by bn2 . In fact, given
γi there are at most six possible pairs for (αi, βi) such that αi + βi = 2γi (namely (0, 0), (0, 2),

(1, 1), (1, 2), (2, 0) and (2, 2)). In our case each monomial u2γ1
1 · · ·u2γN

N can have at most 2n− 2
many variables with nonzero exponents, hence combinatorially we have at most 62n−2 ≤ bn2
many pairs (α, β) with α+ β = 2γ, as claimed. As a consequence we can bound:

(29)
∑
γ∈I2

 ∑
α+β=2γ

QαQβ

u2γ1
1 · · ·u2γN

N ≤ (b21b2)n
∑
γ∈I2

u2γ1
1 · · ·u2γN

N .

We now use the fact that in the expansion of detBn(u) no coefficient Qγ is zero for γ ∈ I1 (by
Lemma 9; moreover |Qγ | ≥ 1 and as a consequence we can write:∑

γ∈I2

u2γ1
1 · · ·u2γN

N ≤
∑
γ∈I1

u2γ1
1 · · ·u2γN

N ≤
∑
γ∈I1

Q2
γu

2γ1
1 · · ·u2γN

N .
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In the first inequality we have used the fact that I2 ⊆ I1 (Lemma 10). Combining this with (28)
and (29) we get:

(30) EQn(u)2 ≤ bn3
∑
γ∈I1

Q2
γEu

2γ1
1 · · ·u2γN

N .

We now switch back to the variables x1, . . . , xN (which are standard independent Gaussians).
Recalling the definition of Pn(x) = detAn(x) = detBn(u) = Qn(u), we have:∑

γ∈I1

Q2
γEu

2γ1
1 · · ·u2γN

N =
∑
γ∈I1

P 2
γEx

2γ1
1 · · ·x2γN

N .

We now look at Ex2γ1
1 · · ·x2γN

N for γ ∈ I1. Using independence:

Ex2γ1
1 · · ·x2γN

N =

N∏
i=1

Ex2γi
i =

∏
{i | γi 6=0}

Ex2γi
i ≤ bn4

∏
{i | γi 6=0}

γi! = bn4

N∏
i=1

γi!.

For the inequality in the line above we have used the fact that only 2n−1 many variables appear
with a nonzero power, and for those variables we have γi ≤ 2 which implies that the moment
Ex2γi

i = (2γi − 1)!! ≤ 2γi! (so we can take say b4 = 4). In particular, continuing from (30) we
get:

EPn(x)2 = EQn(u)2 ≤ bn3
∑
γ∈I1

P 2
γEx

2γ1
1 · · ·x2γN

N

≤ bn5
∑
γ∈I1

P 2
γ γ1! · · · γN !

= bn5 (2n− 2)!
∑
γ

P 2
γ

γ1! · · · γN !

(2n− 2)!

= bn5 (2n− 2)!‖Pn‖2B .

Recalling (22), we have (2n− 2)! ‖Pn‖2B = E|det ĴC
n |2, which finally implies (26):

E|det ĴR
n | ≤ bn

(
E|det ĴC

n |2
)1/2

.

We can finally use Theorem 2, and estimate the quantity En as:

En =

(
(2n− 3)n−1

Γ(n)

2n−3∏
k=0

(
2n− 3

k

)−1/2
)
E|det ĴR

n |

=
√
n

(
(2n− 3)2n−2

Γ(n)Γ(n+ 1)

2n−3∏
k=0

(
2n− 3

k

)−1
)1/2

E|det ĴR
n |

≤
√
n

(
(2n− 3)2n−2

Γ(n)Γ(n+ 1)

2n−3∏
k=0

(
2n− 3

k

)−1
)1/2

bn
(
E|det ĴC

n |2
)1/2

≤
√
nbnC1/2

n .

This proves the statement in the proposition.

�
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5.2. The square root law.

Theorem 12. Using the notation of Theorem 2 and Theorem 7, we have:

lim
n→∞

logEn
logCn

=
1

2
.

Proof. Applying Corollary 4 and Proposition 11 we get:

(2n− 3)!! ≤ En ≤ bn
√
nC1/2

n .

We note that log(2n− 3)!! = n log(n) +O(n) and that, by (2), logCn = 2n log(n) +O(n). As a
consequence:

n log(n) +O(n) = log(2n− 3)!! ≤ logEn ≤
1

2
logCn + n log b+O(log n)

and, dividing by logCn:

n log(n) +O(n)

2n log(n) +O(n)
≤ logEn

logCn
≤ 1

2
+
n log b+O(log n)

2n log(n) +O(n)
.

Taking the limit n→∞ yields the result. �

Note that the above proof entails an error estimate

logEn =
logCn

2
+O(n).

Moreoever, the fact that the lower bound in the above proof is deterministic leads to a basic
concentration of measure estimate. Namely, let Xn be the number of real lines on a random
hypersurface (i.e., Xn is the random variable whose expectation defines En). Then, first applying
Markov’s inequality to the non-negative random variable logXn−log(2n−3)!! and then applying
Jensen’s inequality, we have:

P{logXn − log(2n− 3)!! > t} ≤ E logXn − log(2n− 3)!!

t

≤ logEXn − log(2n− 3)!!

t

=
O(n)

t
.

This implies that, with high probability, the random variable logXn is within o
(

logCn
2

)
of logCn

2 .

More precisely, choosing, say, t = tn = n
√

log n in the above estimate, we have the following
concentration of measure result.

Theorem 13. Let Xn be the number of real lines on a random Kostlan hypersurface of degree
2n− 3 in n+ 1 variables. Then

P
{∣∣∣∣logXn −

logCn
2

∣∣∣∣ ≥ n√log n

}
= O

(
1√

log n

)
, as n→∞.
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